text
stringlengths
1.18k
92.5k
lang
stringclasses
39 values
# cython: language_level=3 # Copyright (c) 2014-2023, Dr Alex Meakins, Raysect Project # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the Raysect Project nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from raysect.optical.colour import d65_white from raysect.optical cimport World, Primitive, Ray, Spectrum, Point3D, AffineMatrix3D, Normal3D, Intersection from libc.math cimport round, fabs cimport cython cdef class Checkerboard(NullVolume): """ Isotropic checkerboard surface emitter Defines a plane of alternating squares of emission forming a checkerboard pattern. Useful in debugging and as a light source in test scenes. :param float width: The width of the squares in metres. :param SpectralFunction emission_spectrum1: Emission spectrum for square one. :param SpectralFunction emission_spectrum2: Emission spectrum for square two. :param float scale1: Intensity of square one emission. :param float scale2: Intensity of square two emission. .. code-block:: pycon >>> from raysect.primitive import Box >>> from raysect.optical import World, rotate, Point3D, d65_white >>> from raysect.optical.material import Checkerboard >>> >>> world = World() >>> >>> # checker board wall that acts as emitter >>> emitter = Box(lower=Point3D(-10, -10, 10), upper=Point3D(10, 10, 10.1), parent=world, transform=rotate(45, 0, 0)) >>> emitter.material=Checkerboard(4, d65_white, d65_white, 0.1, 2.0) """ def __init__(self, double width=1.0, SpectralFunction emission_spectrum1=d65_white, SpectralFunction emission_spectrum2=d65_white, double scale1=0.25, double scale2=0.5): super().__init__() self._width = width self._rwidth = 1.0 / width self.emission_spectrum1 = emission_spectrum1 self.emission_spectrum2 = emission_spectrum2 self.scale1 = scale1 self.scale2 = scale2 self.importance = 1.0 @property def width(self): """ The width of the squares in metres. :rtype: float """ return self._width @width.setter @cython.cdivision(True) def width(self, double v): self._width = v self._rwidth = 1.0 / v @cython.boundscheck(False) @cython.wraparound(False) @cython.initializedcheck(False) cpdef Spectrum evaluate_surface(self, World world, Ray ray, Primitive primitive, Point3D hit_point, bint exiting, Point3D inside_point, Point3D outside_point, Normal3D normal, AffineMatrix3D world_to_primitive, AffineMatrix3D primitive_to_world, Intersection intersection): cdef: Spectrum spectrum double[::1] emission bint v int index double scale v = False # generate check pattern v = self._flip(v, hit_point.x) v = self._flip(v, hit_point.y) v = self._flip(v, hit_point.z) # select emission spectrum = ray.new_spectrum() if v: emission = self.emission_spectrum1.sample_mv(spectrum.min_wavelength, spectrum.max_wavelength, spectrum.bins) scale = self.scale1 else: emission = self.emission_spectrum2.sample_mv(spectrum.min_wavelength, spectrum.max_wavelength, spectrum.bins) scale = self.scale2 for index in range(spectrum.bins): spectrum.samples_mv[index] = emission[index] * scale return spectrum @cython.cdivision(True) cdef bint _flip(self, bint v, double p) nogil: # round to avoid numerical precision issues (rounds to nearest nanometer) p = round(p * 1e9) / 1e9 # generates check pattern from [0, inf] if fabs(self._rwidth * p) % 2 >= 1.0: v = not v # invert pattern for negative if p < 0: v = not v return v <|end_of_text|># cython: c_string_type=unicode, c_string_encoding=ascii # ------------------------------------------------------------------------------------------------- # Imports # ------------------------------------------------------------------------------------------------- from functools import wraps, partial import logging import traceback import sys cimport numpy as np import numpy as np from cpython.ref cimport Py_INCREF from libc.string cimport memcpy from libc.stdio cimport printf cimport datoviz.cydatoviz as cv logger = logging.getLogger('datoviz') # ------------------------------------------------------------------------------------------------- # Types # ------------------------------------------------------------------------------------------------- ctypedef np.float32_t FLOAT ctypedef np.double_t DOUBLE ctypedef np.uint8_t CHAR ctypedef np.uint8_t[4] CVEC4 ctypedef np.int16_t SHORT ctypedef np.uint16_t USHORT ctypedef np.int32_t INT ctypedef np.uint32_t UINT ctypedef np.uint32_t[3] TEX_SHAPE # ------------------------------------------------------------------------------------------------- # Constants # ------------------------------------------------------------------------------------------------- # region # folding in VSCode DEFAULT_WIDTH = 800 DEFAULT_HEIGHT = 600 cdef TEX_SHAPE DVZ_ZERO_OFFSET = (0, 0, 0) # TODO: add more keys _KEYS = { cv.DVZ_KEY_LEFT: 'left', cv.DVZ_KEY_RIGHT: 'right', cv.DVZ_KEY_UP: 'up', cv.DVZ_KEY_DOWN: 'down', cv.DVZ_KEY_HOME: 'home', cv.DVZ_KEY_END: 'end', cv.DVZ_KEY_KP_ADD: '+', cv.DVZ_KEY_KP_SUBTRACT: '-', cv.DVZ_KEY_F: 'f', cv.DVZ_KEY_R: 'r', cv.DVZ_KEY_G: 'g', } # HACK: these keys do not raise a Python key event _EXCLUDED_KEYS = ( cv.DVZ_KEY_NONE, cv.DVZ_KEY_LEFT_SHIFT, cv.DVZ_KEY_LEFT_CONTROL, cv.DVZ_KEY_LEFT_ALT, cv.DVZ_KEY_LEFT_SUPER, cv.DVZ_KEY_RIGHT_SHIFT, cv.DVZ_KEY_RIGHT_CONTROL, cv.DVZ_KEY_RIGHT_ALT, cv.DVZ_KEY_RIGHT_SUPER, ) _BUTTONS = { cv.DVZ_MOUSE_BUTTON_LEFT: 'left', cv.DVZ_MOUSE_BUTTON_MIDDLE:'middle', cv.DVZ_MOUSE_BUTTON_RIGHT: 'right', } _MODIFIERS = { cv.DVZ_KEY_MODIFIER_SHIFT:'shift', cv.DVZ_KEY_MODIFIER_CONTROL: 'control', cv.DVZ_KEY_MODIFIER_ALT: 'alt', cv.DVZ_KEY_MODIFIER_SUPER:'super', } _BUTTONS_INV = {v: k for k, v in _BUTTONS.items()} _EVENTS ={ 'mouse_press': cv.DVZ_EVENT_MOUSE_PRESS, 'mouse_release': cv.DVZ_EVENT_MOUSE_RELEASE, 'mouse_move': cv.DVZ_EVENT_MOUSE_MOVE, 'mouse_wheel': cv.DVZ_EVENT_MOUSE_WHEEL, 'mouse_drag_begin': cv.DVZ_EVENT_MOUSE_DRAG_BEGIN, 'mouse_drag_end': cv.DVZ_EVENT_MOUSE_DRAG_END, 'mouse_click': cv.DVZ_EVENT_MOUSE_CLICK, 'mouse_double_click': cv.DVZ_EVENT_MOUSE_DOUBLE_CLICK, 'key_press': cv.DVZ_EVENT_KEY_PRESS, 'key_release': cv.DVZ_EVENT_KEY_RELEASE, 'frame': cv.DVZ_EVENT_FRAME, 'timer': cv.DVZ_EVENT_TIMER, 'gui': cv.DVZ_EVENT_GUI, } _VISUALS =
Cython
{ 'point': cv.DVZ_VISUAL_POINT, 'marker': cv.DVZ_VISUAL_MARKER, 'mesh': cv.DVZ_VISUAL_MESH, 'path': cv.DVZ_VISUAL_PATH, 'text': cv.DVZ_VISUAL_TEXT, 'polygon': cv.DVZ_VISUAL_POLYGON, 'image': cv.DVZ_VISUAL_IMAGE, 'image_cmap': cv.DVZ_VISUAL_IMAGE_CMAP, 'volume': cv.DVZ_VISUAL_VOLUME, 'volume_slice': cv.DVZ_VISUAL_VOLUME_SLICE, 'line_strip': cv.DVZ_VISUAL_LINE_STRIP, 'rectangle': cv.DVZ_VISUAL_RECTANGLE, } _CONTROLLERS = { 'panzoom': cv.DVZ_CONTROLLER_PANZOOM, 'axes': cv.DVZ_CONTROLLER_AXES_2D, 'arcball': cv.DVZ_CONTROLLER_ARCBALL, 'camera': cv.DVZ_CONTROLLER_CAMERA, } _TRANSPOSES = { None: cv.DVZ_CDS_TRANSPOSE_NONE, 'xfyrzu': cv.DVZ_CDS_TRANSPOSE_XFYRZU, 'xbydzl': cv.DVZ_CDS_TRANSPOSE_XBYDZL, 'xlybzd': cv.DVZ_CDS_TRANSPOSE_XLYBZD, } _COORDINATE_SYSTEMS = { 'data': cv.DVZ_CDS_DATA, 'scene': cv.DVZ_CDS_SCENE, 'vulkan': cv.DVZ_CDS_VULKAN, 'framebuffer': cv.DVZ_CDS_FRAMEBUFFER, 'window': cv.DVZ_CDS_WINDOW, } _PROPS = { 'pos': cv.DVZ_PROP_POS, 'color': cv.DVZ_PROP_COLOR, 'alpha': cv.DVZ_PROP_ALPHA, 'ms': cv.DVZ_PROP_MARKER_SIZE, 'marker': cv.DVZ_PROP_MARKER_TYPE, 'normal': cv.DVZ_PROP_NORMAL, 'texcoords': cv.DVZ_PROP_TEXCOORDS, 'index': cv.DVZ_PROP_INDEX, 'range': cv.DVZ_PROP_RANGE, 'length': cv.DVZ_PROP_LENGTH, 'text': cv.DVZ_PROP_TEXT, 'glyph': cv.DVZ_PROP_GLYPH, 'text_size': cv.DVZ_PROP_TEXT_SIZE, 'scale': cv.DVZ_PROP_SCALE, 'cap_type': cv.DVZ_PROP_CAP_TYPE, 'light_params': cv.DVZ_PROP_LIGHT_PARAMS, 'light_pos': cv.DVZ_PROP_LIGHT_POS, 'texcoefs': cv.DVZ_PROP_TEXCOEFS, 'linewidth': cv.DVZ_PROP_LINE_WIDTH, 'colormap': cv.DVZ_PROP_COLORMAP, 'transferx': cv.DVZ_PROP_TRANSFER_X, 'transfery': cv.DVZ_PROP_TRANSFER_Y, 'clip': cv.DVZ_PROP_CLIP, } _DTYPES = { cv.DVZ_DTYPE_CHAR: (np.uint8, 1), cv.DVZ_DTYPE_CVEC2: (np.uint8, 2), cv.DVZ_DTYPE_CVEC3: (np.uint8, 3), cv.DVZ_DTYPE_CVEC4: (np.uint8, 4), cv.DVZ_DTYPE_USHORT: (np.uint16, 1), cv.DVZ_DTYPE_USVEC2: (np.uint16, 2), cv.DVZ_DTYPE_USVEC3: (np.uint16, 3), cv.DVZ_DTYPE_USVEC4: (np.uint16, 4), cv.DVZ_DTYPE_SHORT: (np.int16, 1), cv.DVZ_DTYPE_SVEC2: (np.int16, 2), cv.DVZ_DTYPE_SVEC3: (np.int16, 3), cv.DVZ_DTYPE_SVEC4: (np.int16, 4), cv.DVZ_DTYPE_UINT: (np.uint32, 1), cv.DVZ_DTYPE_UVEC2: (np.uint32, 2), cv.DVZ_DTYPE_UVEC3: (np.uint32, 3), cv.DVZ_DTYPE_UVEC4: (np.uint32, 4), cv.DVZ_DTYPE_INT: (np.int32, 1), cv.DVZ_DTYPE_IVEC2: (np.int32, 2), cv.DVZ_DTYPE_IVEC3: (np.int32, 3), cv.DVZ_DTYPE_IVEC4: (np.int32, 4), cv.DVZ_DTYPE_FLOAT: (np.float32, 1), cv.DVZ_DTYPE_VEC2: (np.float32, 2), cv.DVZ_DTYPE_VEC3: (np.float32, 3), cv.DVZ_DTYPE_VEC4: (np.float32, 4), cv.DVZ_DTYPE_DOUBLE: (np.double, 1), cv.DVZ_DTYPE_DVEC2: (np.double, 2), cv.DVZ_DTYPE_DVEC3: (np.double, 3), cv.DVZ_DTYPE_DVEC4: (np.double, 4), cv.DVZ_DTYPE_MAT2: (np.float32, (2, 2)), cv.DVZ_DTYPE_MAT3: (np.float32, (3, 3)), cv.DVZ_DTYPE_MAT4: (np.float32, (4, 4)), cv.DVZ_DTYPE_STR: (np.dtype('S1'), 1), } _TRANSFORMS = { 'earth': cv.DVZ_TRANSFORM_EARTH_MERCATOR_WEB, } _CONTROLS = { 'slider_float': cv.DVZ_GUI_CONTROL_SLIDER_FLOAT, 'slider_float2': cv.DVZ_GUI_CONTROL_SLIDER_FLOAT2, 'slider_int': cv.DVZ_GUI_CONTROL_SLIDER_INT, 'input_float': cv.DVZ_GUI_CONTROL_INPUT_FLOAT, 'checkbox': cv.DVZ_GUI_CONTROL_CHECKBOX, 'button': cv.DVZ_GUI_CONTROL_BUTTON, 'label': cv.DVZ_GUI_CONTROL_LABEL, } _COLORMAPS = { 'binary': cv.DVZ_CMAP_BINARY, 'hsv': cv.DVZ_CMAP_HSV, 'cividis': cv.DVZ_CMAP_CIVIDIS, 'inferno': cv.DVZ_CMAP_INFERNO, 'magma': cv.DVZ_CMAP_MAGMA, 'plasma': cv.DVZ_CMAP_PLASMA, 'viridis': cv.DVZ_CMAP_VIRIDIS, 'blues': cv.DVZ_CMAP_BLUES, 'bugn': cv.DVZ_CMAP_BUGN, 'bupu': cv.DVZ_CMAP_BUPU, 'gnbu': cv.DVZ_CMAP_GNBU, 'greens': cv.DVZ_CMAP_GREENS, 'greys': cv.DVZ_CMAP_GREYS, 'oranges': cv.DVZ_CMAP_ORANGES, 'orrd': cv.DVZ_CMAP_ORRD, 'pubu': cv.DVZ_CMAP_PUBU, 'pubugn': cv.DVZ_CMAP_PUBUGN, 'purples': cv.DVZ_CMAP_PURPLES, 'rdpu': cv.DVZ_CMAP_RDPU, 'reds': cv.DVZ_CMAP_REDS, 'ylgn': cv.DVZ_CMAP_YLGN, 'ylgnbu': cv.DVZ_CMAP_YLGNBU, 'ylorbr': cv.DVZ_CMAP_YLORBR, 'ylorrd': cv.DVZ_CMAP_YLORRD, 'afmhot': cv.DVZ_CMAP_AFMHOT, 'autumn': cv.DVZ_CMAP_AUTUMN, 'bone': cv.DVZ_CMAP_BONE, 'cool': cv.DVZ_CMAP_COOL, 'copper': cv.DVZ_CMAP_COPPER, 'gist_heat': cv.DVZ_CMAP_GIST_HEAT, 'gray': cv.DVZ_CMAP_GRAY, 'hot': cv.DVZ_CMAP_HOT, 'pink': cv.DVZ_CMAP_PINK, 'spring': cv.DVZ_CMAP_SPRING, 'summer': cv.DVZ_CMAP_SUMMER, 'winter': cv.DVZ_CMAP_WINTER, 'wistia': cv.DVZ_CMAP_WISTIA, 'brbg': cv.DVZ_CMAP_BRBG, 'bwr': cv.DVZ_CMAP_BWR, 'coolwarm': cv.DVZ_CMAP_COOLWARM, 'piyg': cv.DVZ_CMAP_PIYG, 'prgn': cv.DVZ_CMAP_PRGN, 'puor': cv.DVZ_CMAP_PUOR, 'rdbu': cv.DVZ_CMAP_RDBU, 'rdgy': cv.DVZ_CMAP_RDGY, 'rd
Cython
ylbu': cv.DVZ_CMAP_RDYLBU, 'rdylgn': cv.DVZ_CMAP_RDYLGN, 'seismic': cv.DVZ_CMAP_SEISMIC, 'spectral': cv.DVZ_CMAP_SPECTRAL, 'twilight_shifted': cv.DVZ_CMAP_TWILIGHT_SHIFTED, 'twilight': cv.DVZ_CMAP_TWILIGHT, 'brg': cv.DVZ_CMAP_BRG, 'cmrmap': cv.DVZ_CMAP_CMRMAP, 'cubehelix': cv.DVZ_CMAP_CUBEHELIX, 'flag': cv.DVZ_CMAP_FLAG, 'gist_earth': cv.DVZ_CMAP_GIST_EARTH, 'gist_ncar': cv.DVZ_CMAP_GIST_NCAR, 'gist_rainbow': cv.DVZ_CMAP_GIST_RAINBOW, 'gist_stern': cv.DVZ_CMAP_GIST_STERN, 'gnuplot2': cv.DVZ_CMAP_GNUPLOT2, 'gnuplot': cv.DVZ_CMAP_GNUPLOT, 'jet': cv.DVZ_CMAP_JET, 'nipy_spectral': cv.DVZ_CMAP_NIPY_SPECTRAL, 'ocean': cv.DVZ_CMAP_OCEAN, 'prism': cv.DVZ_CMAP_PRISM, 'rainbow': cv.DVZ_CMAP_RAINBOW, 'terrain': cv.DVZ_CMAP_TERRAIN, 'bkr': cv.DVZ_CMAP_BKR, 'bky': cv.DVZ_CMAP_BKY, 'cet_d10': cv.DVZ_CMAP_CET_D10, 'cet_d11': cv.DVZ_CMAP_CET_D11, 'cet_d8': cv.DVZ_CMAP_CET_D8, 'cet_d13': cv.DVZ_CMAP_CET_D13, 'cet_d3': cv.DVZ_CMAP_CET_D3, 'cet_d1a': cv.DVZ_CMAP_CET_D1A, 'bjy': cv.DVZ_CMAP_BJY, 'gwv': cv.DVZ_CMAP_GWV, 'bwy': cv.DVZ_CMAP_BWY, 'cet_d12': cv.DVZ_CMAP_CET_D12, 'cet_r3': cv.DVZ_CMAP_CET_R3, 'cet_d9': cv.DVZ_CMAP_CET_D9, 'cwr': cv.DVZ_CMAP_CWR, 'cet_cbc1': cv.DVZ_CMAP_CET_CBC1, 'cet_cbc2': cv.DVZ_CMAP_CET_CBC2, 'cet_cbl1': cv.DVZ_CMAP_CET_CBL1, 'cet_cbl2': cv.DVZ_CMAP_CET_CBL2, 'cet_cbtc1': cv.DVZ_CMAP_CET_CBTC1, 'cet_cbtc2': cv.DVZ_CMAP_CET_CBTC2, 'cet_cbtl1': cv.DVZ_CMAP_CET_CBTL1, 'bgy': cv.DVZ_CMAP_BGY, 'bgyw': cv.DVZ_CMAP_BGYW, 'bmw': cv.DVZ_CMAP_BMW, 'cet_c1': cv.DVZ_CMAP_CET_C1, 'cet_c1s': cv.DVZ_CMAP_CET_C1S, 'cet_c2': cv.DVZ_CMAP_CET_C2, 'cet_c4': cv.DVZ_CMAP_CET_C4, 'cet_c4s': cv.DVZ_CMAP_CET_C4S, 'cet_c5': cv.DVZ_CMAP_CET_C5, 'cet_i1': cv.DVZ_CMAP_CET_I1, 'cet_i3': cv.DVZ_CMAP_CET_I3, 'cet_l10': cv.DVZ_CMAP_CET_L10, 'cet_l11': cv.DVZ_CMAP_CET_L11, 'cet_l12': cv.DVZ_CMAP_CET_L12, 'cet_l16': cv.DVZ_CMAP_CET_L16, 'cet_l17': cv.DVZ_CMAP_CET_L17, 'cet_l18': cv.DVZ_CMAP_CET_L18, 'cet_l19': cv.DVZ_CMAP_CET_L19, 'cet_l4': cv.DVZ_CMAP_CET_L4, 'cet_l7': cv.DVZ_CMAP_CET_L7, 'cet_l8': cv.DVZ_CMAP_CET_L8, 'cet_l9': cv.DVZ_CMAP_CET_L9, 'cet_r1': cv.DVZ_CMAP_CET_R1, 'cet_r2': cv.DVZ_CMAP_CET_R2, 'colorwheel': cv.DVZ_CMAP_COLORWHEEL, 'fire': cv.DVZ_CMAP_FIRE, 'isolum': cv.DVZ_CMAP_ISOLUM, 'kb': cv.DVZ_CMAP_KB, 'kbc': cv.DVZ_CMAP_KBC, 'kg': cv.DVZ_CMAP_KG, 'kgy': cv.DVZ_CMAP_KGY, 'kr': cv.DVZ_CMAP_KR, 'black_body': cv.DVZ_CMAP_BLACK_BODY, 'kindlmann': cv.DVZ_CMAP_KINDLMANN, 'extended_kindlmann': cv.DVZ_CMAP_EXTENDED_KINDLMANN, 'glasbey': cv.DVZ_CPAL256_GLASBEY, 'glasbey_cool': cv.DVZ_CPAL256_GLASBEY_COOL, 'glasbey_dark': cv.DVZ_CPAL256_GLASBEY_DARK, 'glasbey_hv': cv.DVZ_CPAL256_GLASBEY_HV, 'glasbey_light': cv.DVZ_CPAL256_GLASBEY_LIGHT, 'glasbey_warm': cv.DVZ_CPAL256_GLASBEY_WARM, 'accent': cv.DVZ_CPAL032_ACCENT, 'dark2': cv.DVZ_CPAL032_DARK2, 'paired': cv.DVZ_CPAL032_PAIRED, 'pastel1': cv.DVZ_CPAL032_PASTEL1, 'pastel2': cv.DVZ_CPAL032_PASTEL2, 'set1': cv.DVZ_CPAL032_SET1, 'set2': cv.DVZ_CPAL032_SET2, 'set3': cv.DVZ_CPAL032_SET3, 'tab10': cv.DVZ_CPAL032_TAB10, 'tab20': cv.DVZ_CPAL032_TAB20, 'tab20b': cv.DVZ_CPAL032_TAB20B, 'tab20c': cv.DVZ_CPAL032_TAB20C, 'category10_10': cv.DVZ_CPAL032_CATEGORY10_10, 'category20_20': cv.DVZ_CPAL032_CATEGORY20_20, 'category20b_20': cv.DVZ_CPAL032_CATEGORY20B_20, 'category20c_20': cv.DVZ_CPAL032_CATEGORY20C_20, 'colorblind8': cv.DVZ_CPAL032_COLORBLIND8, } _TEXTURE_FILTERS = { None: cv.VK_FILTER_NEAREST, 'nearest': cv.VK_FILTER_NEAREST, 'linear': cv.VK_FILTER_LINEAR, # 'cubic': cv.VK_FILTER_CUBIC_EXT, # requires extension VK_EXT_filter_cubic } _SOURCE_TYPES = { 1: cv.DVZ_SOURCE_TYPE_TRANSFER, 2: cv.DVZ_SOURCE_TYPE_IMAGE, 3: cv.DVZ_SOURCE_TYPE_VOLUME, } _FORMATS = { (np.dtype(np.uint8), 1): cv.VK_FORMAT_R8_UNORM, (np.dtype(np.uint8), 3): cv.VK_FORMAT_R8G8B8_UNORM, (np.dtype(np.uint8), 4): cv.VK_FORMAT_R8G8B8A8_UNORM, (np.dtype(np.uint16), 1): cv.VK_FORMAT_R16_UNORM, (np.dtype(np.int16), 1): cv.VK_FORMAT_R16_SNORM, (np.dtype(np.uint32), 1): cv.VK_FORMAT_R32_UINT, (np.dtype(np.int32), 1): cv.VK_FORMAT_R32_SINT, (np.dtype(np.float32), 1): cv.VK_FORMAT_R32_SFLOAT, } _MARKER_TYPES = { 'disc': cv.DVZ_MARKER_DISC, 'vbar': cv.DVZ_MARKER_VBAR, 'cross': cv.DVZ_MARKER_CROSS, } _CUSTOM_COLORMAPS = {} #endregion
Cython
# ------------------------------------------------------------------------------------------------- # Constant utils # ------------------------------------------------------------------------------------------------- def _key_name(key): """From key code used by Datoviz to key name.""" return _KEYS.get(key, key) def _button_name(button): """From button code used by Datoviz to button name.""" return _BUTTONS.get(button, None) def _get_modifiers(mod): """From modifier flag to a tuple of strings.""" mods_py = [] for c_enum, name in _MODIFIERS.items(): if mod & c_enum: mods_py.append(name) return tuple(mods_py) def _c_modifiers(*mods): cdef int mod, c_enum mod = 0 for c_enum, name in _MODIFIERS.items(): if name in mods: mod |= c_enum return mod def _get_prop(name): """From prop name to prop enum for Datoviz.""" return _PROPS[name] # ------------------------------------------------------------------------------------------------- # Python event callbacks # ------------------------------------------------------------------------------------------------- cdef _get_event_args(cv.DvzEvent c_ev): """Prepare the arguments to the Python event callbacks from the Datoviz DvzEvent struct.""" cdef float* fvalue cdef int* ivalue cdef bint* bvalue dt = c_ev.type # GUI events. if dt == cv.DVZ_EVENT_GUI: if c_ev.u.g.control.type == cv.DVZ_GUI_CONTROL_SLIDER_FLOAT: fvalue = <float*>c_ev.u.g.control.value return (fvalue[0],), {} elif c_ev.u.g.control.type == cv.DVZ_GUI_CONTROL_SLIDER_FLOAT2: fvalue = <float*>c_ev.u.g.control.value return (fvalue[0], fvalue[1]), {} elif c_ev.u.g.control.type == cv.DVZ_GUI_CONTROL_SLIDER_INT: ivalue = <int*>c_ev.u.g.control.value return (ivalue[0],), {} elif c_ev.u.g.control.type == cv.DVZ_GUI_CONTROL_INPUT_FLOAT: fvalue = <float*>c_ev.u.g.control.value return (fvalue[0],), {} elif c_ev.u.g.control.type == cv.DVZ_GUI_CONTROL_CHECKBOX: bvalue = <bint*>c_ev.u.g.control.value return (bvalue[0],), {} elif c_ev.u.g.control.type == cv.DVZ_GUI_CONTROL_BUTTON: bvalue = <bint*>c_ev.u.g.control.value return (bvalue[0],), {} # Key events. elif dt == cv.DVZ_EVENT_KEY_PRESS or dt == cv.DVZ_EVENT_KEY_RELEASE: key = _key_name(c_ev.u.k.key_code) modifiers = _get_modifiers(c_ev.u.k.modifiers) return (key, modifiers), {} # Mouse button events. elif dt == cv.DVZ_EVENT_MOUSE_PRESS or dt == cv.DVZ_EVENT_MOUSE_RELEASE: button = _button_name(c_ev.u.b.button) modifiers = _get_modifiers(c_ev.u.b.modifiers) return (button, modifiers), {} # Mouse button events. elif dt == cv.DVZ_EVENT_MOUSE_CLICK or dt == cv.DVZ_EVENT_MOUSE_DOUBLE_CLICK: x = c_ev.u.c.pos[0] y = c_ev.u.c.pos[1] button = _button_name(c_ev.u.c.button) modifiers = _get_modifiers(c_ev.u.c.modifiers) dbl = c_ev.u.c.double_click return (x, y), dict(button=button, modifiers=modifiers) #, double_click=dbl) # Mouse move event. elif dt == cv.DVZ_EVENT_MOUSE_MOVE: x = c_ev.u.m.pos[0] y = c_ev.u.m.pos[1] modifiers = _get_modifiers(c_ev.u.m.modifiers) return (x, y), dict(modifiers=modifiers) # Mouse wheel event. elif dt == cv.DVZ_EVENT_MOUSE_WHEEL: x = c_ev.u.w.pos[0] y = c_ev.u.w.pos[1] dx = c_ev.u.w.dir[0] dy = c_ev.u.w.dir[1] modifiers = _get_modifiers(c_ev.u.w.modifiers) return (x, y, dx, dy), dict(modifiers=modifiers) # Frame event. elif dt == cv.DVZ_EVENT_FRAME: idx = c_ev.u.f.idx return (idx,), {} return (), {} cdef _wrapped_callback(cv.DvzCanvas* c_canvas, cv.DvzEvent c_ev): """C callback function that wraps a Python callback function.""" # NOTE: this function may run in a background thread if using async callbacks # It should not acquire the GIL. cdef object tup if c_ev.user_data!= NULL: # The Python function and its arguments are wrapped in this Python object. tup = <object>c_ev.user_data # For each type of event, get the arguments to the function ev_args, ev_kwargs = _get_event_args(c_ev) # Recover the Python function and arguments. f, args = tup # This is the control type the callback was registered for. name = args[0] if args else None # NOTE: we only call the callback if the raised GUI event is for that control. dt = c_ev.type if dt == cv.DVZ_EVENT_GUI: if c_ev.u.g.control.name!= name: return # We run the registered Python function on the event arguments. try: f(*ev_args, **ev_kwargs) except Exception as e: print(traceback.format_exc()) cdef _add_event_callback( cv.DvzCanvas* c_canvas, cv.DvzEventType evtype, double param, f, args, cv.DvzEventMode mode=cv.DVZ_EVENT_MODE_SYNC): """Register a Python callback function using the Datoviz C API.""" # Create a tuple with the Python function, and the arguments. cdef void* ptr_to_obj tup = (f, args) # IMPORTANT: need to either keep a reference of this tuple object somewhere in the class, # or increase the ref, otherwise this tuple will be deleted by the time we call it in the # C callback function. Py_INCREF(tup) # Call the Datoviz C API to register the C-wrapped callback function. ptr_to_obj = <void*>tup cv.dvz_event_callback( c_canvas, evtype, param, mode, <cv.DvzEventCallback>_wrapped_callback, ptr_to_obj) # ------------------------------------------------------------------------------------------------- # Public functions # ------------------------------------------------------------------------------------------------- def colormap(np.ndarray[DOUBLE, ndim=1] values, vmin=None, vmax=None, cmap=None, alpha=None): """Apply a colormap to a 1D array of values.""" N = values.size if cmap in _COLORMAPS: cmap_ = _COLORMAPS[cmap] elif cmap in _CUSTOM_COLORMAPS: cmap_ = _CUSTOM_COLORMAPS[cmap] else: cmap_ = cv.DVZ_CMAP_VIRIDIS # TODO: ndarrays cdef np.ndarray out = np.zeros((N, 4), dtype=np.uint8) if vmin is None: vmin = values.min() if vmax is None: vmax = values.max() if vmin >= vmax: logger.warn("colormap vmin is larger than or equal to vmax") vmax = vmin + 1 cv.dvz_colormap_array(cmap_, N, <double*>&values.data[0], vmin, vmax, <cv.cvec4*>&out.data[0]) if alpha is not None: if not isinstance(alpha, np.ndarray): alpha = np.array(alpha) alpha = (alpha * 255).astype(np.uint8) out[:, 3] = alpha return out def colorpal(np.ndarray[INT, ndim=1] values, cpal=None, alpha=None): """Apply a colormap to a 1D array of values.""" N = values.size if cpal in _COLORMAPS: cpal_ = _COLORMAPS[cpal] elif cpal in _CUSTOM_COLORMAPS: cpal_ = _CUSTOM_COLORMAPS[cpal] else: cpal_ = cv.DVZ_CPAL256_GLASBEY # TODO: ndarrays cdef np.ndarray out = np.zeros((N, 4), dtype=np.uint8) cv.dvz_colorpal_array(cpal_, N, <cv.int32_t*>&values.data[0], <cv.cvec4*>&out.data[0]) if alpha is not None: if not isinstance(alpha, np.ndarray): alpha = np.array(alpha) alpha = (alpha * 255).astype(np.uint8) out[:, 3] = alpha return out def demo(): cv.dvz_demo_standalone() # ------------------------------------------------------------------------------------------------- # Util functions # ------------------------------------------------------------------------------------------------- def _validate_data(dt, nc, data): """Ensure a NumPy array has a given dtype and shape and is contiguous.""" data = data.astype(dt) if not data.flags['C_CONTIGUOUS']: data = np.ascontiguousarray(data)
Cython
if not hasattr(nc, '__len__'): nc = (nc,) nd = len(nc) # expected dimension of the data - 1 if nc[0] == 1 and data.ndim == 1: data = data.reshape((-1, 1)) if data.ndim < nd + 1: data = data[np.newaxis, :] assert data.ndim == nd + 1, f"Incorrect array dimension {data.shape}, nc={nc}" assert data.shape[1:] == nc, f"Incorrect array shape {data.shape} instead of {nc}" assert data.dtype == dt, f"Array dtype is {data.dtype} instead of {dt}" return data cdef _canvas_flags(show_fps=None, pick=None, high_dpi=None, offscreen=None): """Make the canvas flags from the Python keyword arguments to the canvas creation function.""" cdef int flags = 0 flags |= cv.DVZ_CANVAS_FLAGS_IMGUI if show_fps: flags |= cv.DVZ_CANVAS_FLAGS_FPS if pick: flags |= cv.DVZ_CANVAS_FLAGS_PICK if high_dpi: flags |= cv.DVZ_CANVAS_FLAGS_DPI_SCALE_200 if offscreen: flags |= cv.DVZ_CANVAS_FLAGS_OFFSCREEN return flags # ------------------------------------------------------------------------------------------------- # App # ------------------------------------------------------------------------------------------------- cdef class App: """Singleton object that gives access to the GPUs.""" cdef cv.DvzApp* _c_app _gpus = {} def __cinit__(self): """Create a Datoviz app.""" # TODO: selection of the backend self._c_app = cv.dvz_app(cv.DVZ_BACKEND_GLFW) if self._c_app is NULL: raise MemoryError() def __dealloc__(self): self.destroy() def destroy(self): """Destroy the app.""" if self._c_app is not NULL: # # Destroy all GPUs. # for gpu in self._gpus.values(): # gpu.destroy() # self._gpus.clear() cv.dvz_app_destroy(self._c_app) self._c_app = NULL def gpu(self, idx=None): """Get a GPU, identified by its index, or the "best" one by default.""" if idx in self._gpus: return self._gpus[idx] g = GPU() if idx is None: g.create_best(self._c_app) else: assert idx >= 0 g.create(self._c_app, idx) self._gpus[idx] = g return g def run( self, int n_frames=0, unicode screenshot=None, unicode video=None, bint offscreen=False): """Start the rendering loop.""" # Autorun struct. cdef cv.DvzAutorun autorun = [0, 0] if screenshot or video: logger.debug("Enabling autorun") autorun.enable = True autorun.n_frames = n_frames autorun.offscreen = offscreen if screenshot: ss = screenshot.encode('UTF-8') autorun.screenshot[:len(ss) + 1] = ss logger.debug(f"Autorun screenshot: {ss}") autorun.video[0] = 0 if video: sv = video.encode('UTF-8') autorun.video[:len(sv) + 1] = sv autorun.screenshot[0] = 0 logger.debug(f"Autorun video: {sv}") cv.dvz_autorun_setup(self._c_app, autorun) cv.dvz_app_run(self._c_app, n_frames) def next_frame(self): """Run a single frame for all canvases.""" return cv.dvz_app_run(self._c_app, 1) def _set_running(self, bint running): """Manually set whether the app is running or not.""" self._c_app.is_running = running def __repr__(self): return "<Datoviz App>" # ------------------------------------------------------------------------------------------------- # GPU # ------------------------------------------------------------------------------------------------- cdef class GPU: """The GPU object allows to create GPU objects and canvases.""" cdef cv.DvzApp* _c_app cdef cv.DvzGpu* _c_gpu cdef object _context # _canvases = [] cdef create(self, cv.DvzApp* c_app, int idx): """Create a GPU.""" assert c_app is not NULL self._c_app = c_app self._c_gpu = cv.dvz_gpu(self._c_app, idx); if self._c_gpu is NULL: raise MemoryError() cdef create_best(self, cv.DvzApp* c_app): """Create the best GPU found.""" assert c_app is not NULL self._c_app = c_app self._c_gpu = cv.dvz_gpu_best(self._c_app); if self._c_gpu is NULL: raise MemoryError() @property def name(self): return self._c_gpu.name def canvas( self, int width=DEFAULT_WIDTH, int height=DEFAULT_HEIGHT, bint show_fps=False, bint pick=False, bint high_dpi=False, bint offscreen=False, clear_color=None, ): """Create a new canvas.""" # Canvas flags. cdef int flags = 0 flags = _canvas_flags(show_fps=show_fps, pick=pick, high_dpi=high_dpi, offscreen=offscreen) # Create the canvas using the Datoviz C API. c_canvas = cv.dvz_canvas(self._c_gpu, width, height, flags) # Canvas clear color. if clear_color == 'white': cv.dvz_canvas_clear_color(c_canvas, 1, 1, 1) if c_canvas is NULL: raise MemoryError() # Create and return the Canvas Cython wrapper. c = Canvas() c.create(self, c_canvas) # self._canvases.append(c) return c def context(self): """Return the GPU context object, used to create GPU buffers and textures.""" if self._context is not None: return self._context c = Context() assert self._c_gpu is not NULL # If the context has not been created, it means we must create the GPU in offscreen mode. if self._c_gpu.context is NULL: logger.debug("Automatically creating a GPU context with no surface (offscreen only)") # Create the GPU without a surface. cv.dvz_gpu_default(self._c_gpu, NULL) # Create the context. cv.dvz_context(self._c_gpu) c.create(self._c_app, self._c_gpu, self._c_gpu.context) self._context = c return c def __repr__(self): return f"<GPU \"{self.name}\">" # ------------------------------------------------------------------------------------------------- # Context # ------------------------------------------------------------------------------------------------- cdef class Context: """A Context is attached to a GPU and allows to create GPU buffers and textures.""" cdef cv.DvzApp* _c_app cdef cv.DvzGpu* _c_gpu cdef cv.DvzContext* _c_context cdef create(self, cv.DvzApp* c_app, cv.DvzGpu* c_gpu, cv.DvzContext* c_context): assert c_app is not NULL assert c_gpu is not NULL assert c_context is not NULL self._c_app = c_app self._c_gpu = c_gpu self._c_context = c_context def texture( self, int height, int width=1, int depth=1, int ncomp=4, np.dtype dtype=None, int ndim=2): """Create a 1D, 2D, or 3D texture.""" dtype = np.dtype(dtype or np.uint8) tex = Texture() # Texture shape. assert width > 0 assert height > 0 assert depth > 0 if depth > 1: ndim = 3 cdef TEX_SHAPE shape # NOTE: shape is in Vulkan convention. shape[0] = width shape[1] = height shape[2] = depth # Create the texture. tex.create(self._c_context, ndim, ncomp, shape, dtype) logger.debug(f"Create a {str(tex)}") return tex def colormap(self, unicode name, np.ndarray[CHAR, ndim=2] colors): """Create a custom colormap""" assert colors.shape[1] == 4 color_count = colors.shape[0] assert color_count > 0 assert color_count <= 256 colors = colors.astype(np.uint8) if not colors.flags['C_CONTIGUOUS']: colors = np.ascontiguousarray(colors) # TODO: use constant CMAP_CUSTOM instead of hard-coded value cmap = 160 + len(_CUSTOM_COLORMAPS) _CUSTOM_COLORMAPS[name] = cmap cv.dvz_colormap_custom(cmap, color_count, <cv.cvec4*>&colors.data[0]) cv
Cython
.dvz_context_colormap(self._c_context) def __repr__(self): return f"<Context for GPU \"{self._c_gpu.name}\">" # ------------------------------------------------------------------------------------------------- # Texture # ------------------------------------------------------------------------------------------------- cdef class Texture: """A 1D, 2D, or 3D GPU texture.""" cdef cv.DvzContext* _c_context cdef cv.DvzTexture* _c_texture cdef TEX_SHAPE _c_shape # always 3 values: width, height, depth (WARNING, reversed in NumPy) cdef np.dtype dtype cdef int ndim # 1D, 2D, or 3D texture cdef int ncomp # 1-4 (eg 3 for RGB, 4 for RGBA) cdef cv.DvzSourceType _c_source_type cdef create(self, cv.DvzContext* c_context, int ndim, int ncomp, TEX_SHAPE shape, np.dtype dtype): """Create a texture.""" assert c_context is not NULL self._c_context = c_context assert 1 <= ndim <= 3 assert 1 <= ncomp <= 4 self.ndim = ndim self.ncomp = ncomp self._update_shape(shape) # Find the source type. assert ndim in _SOURCE_TYPES self._c_source_type = _SOURCE_TYPES[ndim] # Find the Vulkan format. cdef cv.VkFormat c_format self.dtype = dtype assert (dtype, ncomp) in _FORMATS c_format = _FORMATS[dtype, ncomp] # Create the Datoviz texture. self._c_texture = cv.dvz_ctx_texture(self._c_context, ndim, &shape[0], c_format) cdef _update_shape(self, TEX_SHAPE shape): # Store the shape. for i in range(self.ndim): self._c_shape[i] = shape[i] for i in range(self.ndim, 3): self._c_shape[i] = 1 @property def item_size(self): """Size, in bytes, of every value.""" return np.dtype(self.dtype).itemsize @property def size(self): """Total number of values in the texture (including the number of color components).""" return np.prod(self.shape) @property def shape(self): """Shape (NumPy convention: height, width, depth). Also, the last dimension is the number of color components.""" shape = [1, 1, 1] for i in range(3): shape[i] = self._c_shape[i] if self.ndim > 1: # NOTE: Vulkan considers textures as (width, height, depth) whereas NumPy # considers them as (height, width, depth), hence the need to transpose here. shape[0], shape[1] = shape[1], shape[0] return tuple(shape[:self.ndim]) + (self.ncomp,) def set_filter(self, name): """Change the filtering of the texture.""" cv.dvz_texture_filter(self._c_texture, cv.DVZ_FILTER_MIN, _TEXTURE_FILTERS[name]) cv.dvz_texture_filter(self._c_texture, cv.DVZ_FILTER_MAG, _TEXTURE_FILTERS[name]) def resize(self, w=1, h=1, d=1): cdef TEX_SHAPE shape shape[0] = h shape[1] = w shape[2] = d cv.dvz_texture_resize(self._c_texture, &shape[0]) self._update_shape(shape) def upload(self, np.ndarray arr): """Set the texture data from a NumPy array.""" assert arr.dtype == self.dtype for i in range(self.ndim): assert arr.shape[i] == self.shape[i] logger.debug(f"Upload NumPy array to {self}.") cv.dvz_upload_texture( self._c_context, self._c_texture, &DVZ_ZERO_OFFSET[0], &DVZ_ZERO_OFFSET[0], self.size * self.item_size, &arr.data[0]) def download(self): """Download the texture data to a NumPy array.""" cdef np.ndarray arr arr = np.empty(self.shape, dtype=self.dtype) logger.debug(f"Download {self}.") cv.dvz_download_texture( self._c_context, self._c_texture, &DVZ_ZERO_OFFSET[0], &DVZ_ZERO_OFFSET[0], self.size * self.item_size, &arr.data[0]) cv.dvz_process_transfers(self._c_context) return arr def __repr__(self): """The shape axes are in the following order: height, width, depth, ncomp.""" return f"<Texture {self.ndim}D {'x'.join(map(str, self.shape))} ({self.dtype})>" # ------------------------------------------------------------------------------------------------- # Canvas # ------------------------------------------------------------------------------------------------- cdef class Canvas: """A canvas.""" cdef cv.DvzCanvas* _c_canvas cdef object _gpu cdef bint _video_recording cdef object _scene cdef create(self, gpu, cv.DvzCanvas* c_canvas): """Create a canvas.""" self._c_canvas = c_canvas self._gpu = gpu self._scene = None def gpu(self): return self._gpu def scene(self, rows=1, cols=1): """Create a scene, which allows to use subplots, controllers, visuals, and so on.""" if self._scene is not None: logger.debug("reusing existing Scene object, discarding rows and cols") return self._scene else: logger.debug("creating new scene") s = Scene() s.create(self, self._c_canvas, rows, cols) self._scene = s return s def screenshot(self, unicode path): """Make a screenshot and save it to a PNG file.""" cdef char* _c_path = path cv.dvz_screenshot_file(self._c_canvas, _c_path); def video(self, unicode path, int fps=30, int bitrate=10000000): """Start a high-quality video recording.""" cdef char* _c_path = path cv.dvz_canvas_video(self._c_canvas, fps, bitrate, _c_path, False) self._video_recording = False def record(self): """Start or restart the video recording.""" self._video_recording = True cv.dvz_canvas_pause(self._c_canvas, self._video_recording) def pause(self): """Pause the video recording.""" self._video_recording = not self._video_recording cv.dvz_canvas_pause(self._c_canvas, self._video_recording) def stop(self): """Stop the video recording and save the video to disk.""" cv.dvz_canvas_stop(self._c_canvas) def pick(self, cv.uint32_t x, cv.uint32_t y): """If the canvas was created with picking support, get the color value at a given pixel.""" cdef cv.uvec2 xy cdef cv.ivec4 rgba xy[0] = x xy[1] = y cv.dvz_canvas_pick(self._c_canvas, xy, rgba) cdef cv.int32_t r, g, b, a r = rgba[0] g = rgba[1] b = rgba[2] a = rgba[3] return (r, g, b, a) def gui(self, unicode title): """Create a new GUI.""" c_gui = cv.dvz_gui(self._c_canvas, title, 0) gui = Gui() gui.create(self._c_canvas, c_gui) return gui def gui_demo(self): """Show the Dear ImGui demo.""" cv.dvz_imgui_demo(self._c_canvas) def close(self): if self._c_canvas is not NULL: logger.debug("Closing canvas") cv.dvz_canvas_destroy(self._c_canvas) # cv.dvz_canvas_to_close(self._c_canvas) # cv.dvz_app_run(self._c_canvas.app, 1) self._c_canvas = NULL def _connect(self, evtype_py, f, param=0, cv.DvzEventMode mode=cv.DVZ_EVENT_MODE_SYNC): # NOTE: only SYNC callbacks for now. cdef cv.DvzEventType evtype evtype = _EVENTS.get(evtype_py, 0) _add_event_callback(self._c_canvas, evtype, param, f, (), mode=mode) def connect(self, f): """Add an event callback function.""" assert f.__name__.startswith('on_') ev_name = f.__name__[3:] self._connect(ev_name, f) return f def click(self, float x, float y, button='left', modifiers=()): """Simulate a mouse click at a given position.""" cdef cv.vec2 pos cdef int mod cdef cv.DvzMouseButton c_button pos[0] = x pos[1] = y c_button
Cython
= _BUTTONS_INV.get(button, 0) mod = _c_modifiers(*modifiers) cv.dvz_event_mouse_click(self._c_canvas, pos, c_button, mod) # ------------------------------------------------------------------------------------------------- # Scene # ------------------------------------------------------------------------------------------------- cdef class Scene: """The Scene is attached to a canvas, and provides high-level scientific plotting facilities.""" cdef cv.DvzCanvas* _c_canvas cdef cv.DvzScene* _c_scene cdef cv.DvzGrid* _c_grid cdef object _canvas _panels = [] cdef create(self, canvas, cv.DvzCanvas* c_canvas, int rows, int cols): """Create the scene.""" self._canvas = canvas self._c_canvas = c_canvas self._c_scene = cv.dvz_scene(c_canvas, rows, cols) self._c_grid = &self._c_scene.grid def destroy(self): """Destroy the scene.""" if self._c_scene is not NULL: cv.dvz_scene_destroy(self._c_scene) self._c_scene = NULL def panel(self, int row=0, int col=0, controller='axes', transform=None, transpose=None, **kwargs): """Add a new panel with a controller.""" cdef int flags flags = 0 if controller == 'axes': if kwargs.pop('hide_minor_ticks', False): flags |= cv.DVZ_AXES_FLAGS_HIDE_MINOR if kwargs.pop('hide_grid', False): flags |= cv.DVZ_AXES_FLAGS_HIDE_GRID ctl = _CONTROLLERS.get(controller, cv.DVZ_CONTROLLER_NONE) trans = _TRANSPOSES.get(transpose, cv.DVZ_CDS_TRANSPOSE_NONE) transf = _TRANSFORMS.get(transform, cv.DVZ_TRANSFORM_CARTESIAN) c_panel = cv.dvz_scene_panel(self._c_scene, row, col, ctl, flags) if c_panel is NULL: raise MemoryError() c_panel.data_coords.transform = transf cv.dvz_panel_transpose(c_panel, trans) p = Panel() p.create(self._c_scene, c_panel) self._panels.append(p) return p def panel_at(self, x, y): """Find the panel at a given pixel position.""" cdef cv.vec2 pos pos[0] = x pos[1] = y c_panel = cv.dvz_panel_at(self._c_grid, pos) cdef Panel panel for p in self._panels: panel = p if panel._c_panel == c_panel: return panel # ------------------------------------------------------------------------------------------------- # Panel # ------------------------------------------------------------------------------------------------- cdef class Panel: """The Panel is a subplot in the Scene.""" cdef cv.DvzScene* _c_scene cdef cv.DvzPanel* _c_panel _visuals = [] cdef create(self, cv.DvzScene* c_scene, cv.DvzPanel* c_panel): """Create the panel.""" self._c_panel = c_panel self._c_scene = c_scene @property def row(self): """Get the panel's row index.""" return self._c_panel.row @property def col(self): """Get the panel's column index.""" return self._c_panel.col def visual(self, vtype, depth_test=None, transform='auto'): """Add a visual to the panel.""" visual_type = _VISUALS.get(vtype, 0) if not visual_type: raise ValueError("unknown visual type") flags = 0 if depth_test: flags |= cv.DVZ_GRAPHICS_FLAGS_DEPTH_TEST if transform is None: flags |= cv.DVZ_VISUAL_FLAGS_TRANSFORM_NONE # This keyword means that the panel box will NOT be recomputed every time the POS prop # changes elif transform == 'init': flags |= cv.DVZ_VISUAL_FLAGS_TRANSFORM_BOX_INIT c_visual = cv.dvz_scene_visual(self._c_panel, visual_type, flags) if c_visual is NULL: raise MemoryError() v = Visual() v.create(self._c_panel, c_visual, vtype) self._visuals.append(v) return v def size(self, axis, float value): cdef cv.DvzGridAxis c_axis if axis == 'x': c_axis = cv.DVZ_GRID_HORIZONTAL else: c_axis = cv.DVZ_GRID_VERTICAL cv.dvz_panel_size(self._c_panel, c_axis, value) def span(self, axis, int n): cdef cv.DvzGridAxis c_axis if axis == 'x': c_axis = cv.DVZ_GRID_HORIZONTAL else: c_axis = cv.DVZ_GRID_VERTICAL cv.dvz_panel_span(self._c_panel, c_axis, n) def pick(self, x, y, target_cds='data'): """Convert a position in pixels to the data coordinate system, or another coordinate system.""" cdef cv.dvec3 pos_in cdef cv.dvec3 pos_out pos_in[0] = x pos_in[1] = y pos_in[2] = 0 source = cv.DVZ_CDS_WINDOW target = _COORDINATE_SYSTEMS[target_cds] cv.dvz_transform(self._c_panel, source, pos_in, target, pos_out) return pos_out[0], pos_out[1] def get_lim(self): cdef cv.vec4 out cv.dvz_panel_lim_get(self._c_panel, out); return (out[0], out[1], out[2], out[3]) def set_lim(self, lim): cdef cv.vec4 clim clim[0] = lim[0] clim[1] = lim[1] clim[2] = lim[2] clim[3] = lim[3] cv.dvz_panel_lim_set(self._c_panel, clim); def link_to(self, Panel panel): cv.dvz_panel_link(&self._c_scene.grid, self._c_panel, panel._c_panel) def camera_pos(self, float x, float y, float z): cdef cv.vec3 pos pos[0] = x pos[1] = y pos[2] = z cv.dvz_camera_pos(self._c_panel, pos) def arcball_rotate(self, float u, float v, float w, float a): cdef cv.vec3 axis axis[0] = u axis[1] = v axis[2] = w cdef float angle angle = a cv.dvz_arcball_rotate(self._c_panel, angle, axis) # ------------------------------------------------------------------------------------------------- # Visual # ------------------------------------------------------------------------------------------------- cdef class Visual: """A visual is added to a given panel.""" cdef cv.DvzPanel* _c_panel cdef cv.DvzVisual* _c_visual cdef cv.DvzContext* _c_context cdef unicode vtype _textures = {} cdef create(self, cv.DvzPanel* c_panel, cv.DvzVisual* c_visual, unicode vtype): """Create a visual.""" self._c_panel = c_panel self._c_visual = c_visual self._c_context = c_visual.canvas.gpu.context self.vtype = vtype def data(self, name, np.ndarray value, idx=0, mode=None, drange=None): """Set the data of the visual associated to a given property.""" prop_type = _get_prop(name) c_prop = cv.dvz_prop_get(self._c_visual, prop_type, idx) dtype, nc = _DTYPES[c_prop.dtype] value = _validate_data(dtype, nc, value) N = value.shape[0] if mode == 'append': cv.dvz_visual_data_append(self._c_visual, prop_type, idx, N, &value.data[0]) elif mode == 'partial' and drange is not None: first_item, n_items = drange assert first_item >= 0, "first item should be positive" assert n_items > 0, "n_items should be strictly positive" cv.dvz_visual_data_partial( self._c_visual, prop_type, idx, first_item, n_items, N, &value.data[0]) else: cv.dvz_visual_data(self._c_visual, prop_type, idx, N, &value.data[0]) def append(self, *args, **kwargs): """Add some data to a visual prop's data.""" return self.data(*args, **kwargs, mode='append') def partial(self, *args, **kwargs): """Make a partial data update.""" return self.data(*args, **kwargs, mode='partial') def texture(self, Texture tex, idx=0): """Attach a texture to a visual.""" # Bind the texture with the visual for the specified source. cv.dvz_visual_texture( self._c_visual, tex._c_source_type, idx, tex._c_texture) def load
Cython
_obj(self, unicode path, compute_normals=False): """Load a mesh from an OBJ file.""" # TODO: move to subclass Mesh? cdef cv.DvzMesh mesh = cv.dvz_mesh_obj(path); if compute_normals: print("computing normals") cv.dvz_mesh_normals(&mesh) nv = mesh.vertices.item_count; ni = mesh.indices.item_count; cv.dvz_visual_data_source(self._c_visual, cv.DVZ_SOURCE_TYPE_VERTEX, 0, 0, nv, nv, mesh.vertices.data); cv.dvz_visual_data_source(self._c_visual, cv.DVZ_SOURCE_TYPE_INDEX, 0, 0, ni, ni, mesh.indices.data); # ------------------------------------------------------------------------------------------------- # GUI # ------------------------------------------------------------------------------------------------- cdef class GuiControl: """A GUI control.""" cdef cv.DvzGui* _c_gui cdef cv.DvzCanvas* _c_canvas cdef cv.DvzGuiControl* _c_control cdef unicode name cdef unicode ctype cdef bytes str_ascii cdef object _callback cdef create(self, cv.DvzGui* c_gui, cv.DvzGuiControl* c_control, unicode name, unicode ctype): """Create a GUI control.""" self._c_gui = c_gui self._c_canvas = c_gui.canvas assert self._c_canvas is not NULL self._c_control = c_control self.ctype = ctype self.name = name def get(self): """Get the current value.""" cdef void* ptr ptr = cv.dvz_gui_value(self._c_control) if self.ctype == 'input_float' or self.ctype =='slider_float': return (<float*>ptr)[0] def set(self, obj): """Set the control's value.""" cdef void* ptr cdef char* c_str ptr = cv.dvz_gui_value(self._c_control) if self.ctype == 'input_float' or self.ctype =='slider_float': (<float*>ptr)[0] = <float>float(obj) elif self.ctype =='slider_float2': (<float*>ptr)[0] = <float>float(obj[0]) (<float*>ptr)[1] = <float>float(obj[1]) elif self.ctype == 'label': self.str_ascii = obj.encode('ascii') if len(self.str_ascii) >= 1024: self.str_ascii = self.str_ascii[:1024] c_str = self.str_ascii # HACK: +1 for string null termination memcpy(ptr, c_str, len(self.str_ascii) + 1) else: raise NotImplementedError( f"Setting the value for a GUI control `{self.ctype}` is not implemented yet.") def connect(self, f): """Bind a callback function to the control.""" self._callback = f _add_event_callback(self._c_canvas, cv.DVZ_EVENT_GUI, 0, f, (self.name,)) return f def press(self): """For buttons only: simulate a press.""" if self.ctype == 'button' and self._callback: self._callback(False) @property def pos(self): """The x, y coordinates of the widget, in screen coordinates.""" cdef float x, y x = self._c_control.pos[0] y = self._c_control.pos[1] return (x, y) @property def size(self): """The width and height of the widget, in screen coordinates.""" cdef float w, h w = self._c_control.size[0] h = self._c_control.size[1] return (w, h) cdef class Gui: """A GUI dialog.""" cdef cv.DvzCanvas* _c_canvas cdef cv.DvzGui* _c_gui cdef create(self, cv.DvzCanvas* c_canvas, cv.DvzGui* c_gui): """Create a GUI.""" self._c_canvas = c_canvas self._c_gui = c_gui def control(self, unicode ctype, unicode name, **kwargs): """Add a GUI control.""" ctrl = _CONTROLS.get(ctype, 0) cdef char* c_name = name cdef cv.DvzGuiControl* c cdef cv.vec2 vec2_value if (ctype =='slider_float'): c_vmin = kwargs.get('vmin', 0) c_vmax = kwargs.get('vmax', 1) c_value = kwargs.get('value', (c_vmin + c_vmax) / 2.0) c = cv.dvz_gui_slider_float(self._c_gui, c_name, c_vmin, c_vmax, c_value) elif (ctype =='slider_float2'): c_vmin = kwargs.get('vmin', 0) c_vmax = kwargs.get('vmax', 1) c_value = kwargs.get('value', (c_vmin, c_vmax)) c_force = kwargs.get('force_increasing', False) vec2_value[0] = c_value[0] vec2_value[1] = c_value[1] c = cv.dvz_gui_slider_float2(self._c_gui, c_name, c_vmin, c_vmax, vec2_value, c_force) elif (ctype =='slider_int'): c_vmin = kwargs.get('vmin', 0) c_vmax = kwargs.get('vmax', 1) c_value = kwargs.get('value', c_vmin) c = cv.dvz_gui_slider_int(self._c_gui, c_name, c_vmin, c_vmax, c_value) elif (ctype == 'input_float'): c_step = kwargs.get('step',.1) c_step_fast = kwargs.get('step_fast', 1) c_value = kwargs.get('value', 0) c = cv.dvz_gui_input_float(self._c_gui, c_name, c_step, c_step_fast, c_value) elif (ctype == 'checkbox'): c_value = kwargs.get('value', 0) c = cv.dvz_gui_checkbox(self._c_gui, c_name, c_value) elif (ctype == 'button'): c = cv.dvz_gui_button(self._c_gui, c_name, 0) elif (ctype == 'label'): c_value = kwargs.get('value', "") c = cv.dvz_gui_label(self._c_gui, c_name, c_value) # Gui control object w = GuiControl() w.create(self._c_gui, c, name, ctype) return w <|end_of_text|># cython: profile=False cimport cython from libc.stdint cimport uint32_t cdef uint32_t *CRC_TABLE = [0x00000000L, 0xf26b8303L, 0xe13b70f7L, 0x1350f3f4L, 0xc79a971fL, 0x35f1141cL, 0x26a1e7e8L, 0xd4ca64ebL, 0x8ad958cfL, 0x78b2dbccL, 0x6be22838L, 0x9989ab3bL, 0x4d43cfd0L, 0xbf284cd3L, 0xac78bf27L, 0x5e133c24L, 0x105ec76fL, 0xe235446cL, 0xf165b798L, 0x030e349bL, 0xd7c45070L, 0x25afd373L, 0x36ff2087L, 0xc494a384L, 0x9a879fa0L, 0x68ec1ca3L, 0x7bbcef57L, 0x89d76c54L, 0x5d1d08bfL, 0xaf768bbcL, 0xbc267848L, 0x4e4dfb4bL, 0x20bd8edeL, 0xd2d60dddL, 0xc186fe29L, 0x33ed7d2aL, 0xe72719c1L, 0x154c9ac2L, 0x061c6936L, 0xf477ea35L, 0xaa64d611L, 0x580f5512L, 0x4b5fa6e6L, 0xb93425e5L, 0x6dfe410eL, 0x9f95c20dL, 0x8cc531f9L, 0x7eaeb2faL, 0x30e349b1L, 0xc288cab2L, 0xd1d83946L, 0x23b3ba45L, 0xf779deaeL, 0x05125dadL, 0x1642ae59L, 0xe429
Cython
2d5aL, 0xba3a117eL, 0x4851927dL, 0x5b016189L, 0xa96ae28aL, 0x7da08661L, 0x8fcb0562L, 0x9c9bf696L, 0x6ef07595L, 0x417b1dbcL, 0xb3109ebfL, 0xa0406d4bL, 0x522bee48L, 0x86e18aa3L, 0x748a09a0L, 0x67dafa54L, 0x95b17957L, 0xcba24573L, 0x39c9c670L, 0x2a993584L, 0xd8f2b687L, 0x0c38d26cL, 0xfe53516fL, 0xed03a29bL, 0x1f682198L, 0x5125dad3L, 0xa34e59d0L, 0xb01eaa24L, 0x42752927L, 0x96bf4dccL, 0x64d4cecfL, 0x77843d3bL, 0x85efbe38L, 0xdbfc821cL, 0x2997011fL, 0x3ac7f2ebL, 0xc8ac71e8L, 0x1c661503L, 0xee0d9600L, 0xfd5d65f4L, 0x0f36e6f7L, 0x61c69362L, 0x93ad1061L, 0x80fde395L, 0x72966096L, 0xa65c047dL, 0x5437877eL, 0x4767748aL, 0xb50cf789L, 0xeb1fcbadL, 0x197448aeL, 0x0a24bb5aL, 0xf84f3859L, 0x2c855cb2L, 0xdeeedfb1L, 0xcdbe2c45L, 0x3fd5af46L, 0x7198540dL, 0x83f3d70eL, 0x90a324faL, 0x62c8a7f9L, 0xb602c312L, 0x44694011L, 0x5739b3e5L, 0xa55230e6L, 0xfb410cc2L, 0x092a8fc1L, 0x1a7a7c35L, 0xe811ff36L, 0x3cdb9bddL, 0xceb018deL, 0xdde0eb2aL, 0x2f8b6829L, 0x82f63b78L, 0x709db87bL, 0x63cd4b8fL, 0x91a6c88cL, 0x456cac67L, 0xb7072f64L, 0xa457dc90L, 0x563c5f93L, 0x082f63b7L, 0xfa44e0b4L, 0xe9141340L, 0x1b7f9043L, 0xcfb5f4a8L, 0x3dde77abL, 0x2e8e845fL, 0xdce5075cL, 0x92a8fc17L, 0x60c37f14L, 0x73938ce0L, 0x81f80fe3L, 0x55326b08L, 0xa759e80bL, 0xb4091bffL, 0x466298fcL, 0x1871a4d8L, 0xea1a27dbL, 0xf94ad42fL, 0x0b21572cL, 0xdfeb33c7L, 0x2d80b0c4L, 0x3ed04330L, 0xccbbc033L, 0xa24bb5a6L, 0x502036a5L, 0x4370c551L, 0xb11b4652L, 0x65d122b9L, 0x97baa1baL, 0x84ea524eL, 0x7681d14dL, 0x2892ed69L, 0xdaf96e6aL, 0xc9a99d9eL, 0x3bc21e9dL, 0xef087a76L, 0x1d63f975L, 0x0e330a81L, 0xfc588982L, 0xb21572c9L, 0x407ef1caL, 0x532e023eL, 0xa145813dL, 0x758fe5d6L, 0x87e466d5L, 0x94b49521L, 0x66df1622L, 0x38cc2a06L, 0xcaa7a905L, 0xd9f75af1L, 0x2b9cd9f2L, 0xff56bd19L, 0x0d3d3e1aL, 0x1e6dcdeeL, 0xec064eedL, 0xc38d26c4L, 0x31e6a5c7L, 0x22b65633L, 0xd0ddd530L, 0x0417b1dbL, 0xf67c32d8L, 0xe52cc12cL, 0x1747422fL, 0x49547e0bL, 0xbb3ffd08L, 0xa86f0efcL, 0x5a048dffL, 0x8ecee914L, 0x7ca56a17L, 0x6ff599e3L, 0x9d9e1ae0L, 0xd3d3e1abL, 0x21b862a8L, 0x32e8915cL, 0xc083125fL, 0x144976b4L, 0xe622f5b7L, 0xf5720643L, 0x07198540L, 0x590ab964L, 0xab613a67L, 0xb831c993L, 0x4a5a4a90L, 0x9e902e7bL, 0x6cfbad78L, 0x7fab5e8cL, 0x8dc0dd8fL, 0xe330a81aL, 0x115b2b19L, 0x020bd8edL, 0xf0605beeL, 0x24aa3f05L, 0xd6c1bc06L, 0xc5914ff2L, 0x37faccf1L, 0x69e9f0d5L, 0x9b8273d6L, 0x88d28022L, 0x7ab90321L, 0xae7367caL, 0x5c18e4c9L, 0x4f48173dL, 0xbd23943eL, 0xf36e6f75L, 0x0105ec76L, 0x12551f82L, 0xe03e9c81L, 0x34f4f86aL, 0xc69f7b69L, 0xd5cf889dL, 0x27a40b9eL, 0x79b737baL, 0x8bdcb4b9L, 0x988c474dL, 0x6ae7c44eL, 0xbe2da0a5L, 0x4c4623a6L, 0x5f16d052L, 0xad7d5351L] # initial CRC value cdef uint32_t CRC_INIT = 0 cdef uint32_t _MASK = 0xFFFFFFFFL #cdef uint32_t crc_update(uint32_t crc, bytes data): # cdef char b # cdef int table_index # # crc = crc ^ _MASK # for b in data: # table_index = (crc ^ b) & 0xff # crc = (CRC_TABLE[table_index] ^ (
Cython
crc >> 8)) & _MASK # return crc ^ _MASK @cython.wraparound(False) @cython.boundscheck(False) cdef inline uint32_t crc_update(uint32_t crc, char *data, size_t n) nogil: cdef char b cdef int table_index cdef size_t i crc = crc ^ _MASK for i in range(n): b = data[i] table_index = (crc ^ b) & 0xff crc = (CRC_TABLE[table_index] ^ (crc >> 8)) & _MASK return crc ^ _MASK @cython.wraparound(False) @cython.boundscheck(False) cdef inline uint32_t crc_finalize(uint32_t crc) nogil: return crc & _MASK @cython.wraparound(False) @cython.boundscheck(False) cdef inline uint32_t crc32c(char *data, size_t n) nogil: return crc_finalize(crc_update(CRC_INIT, data, n)) @cython.wraparound(False) @cython.boundscheck(False) cpdef uint32_t masked_crc32c(bytes data): cdef uint32_t crc = crc32c(data, len(data)) return (((crc >> 15) | (crc << 17)) + 0xa282ead8) & 0xffffffff <|end_of_text|>cdef extern from "zoltan_types.h": # basic type used by all of Zoltan ctypedef unsigned int ZOLTAN_ID_TYPE # MPI data type cdef unsigned int ZOLTAN_ID_MPI_TYPE # pointer to the basic type ctypedef ZOLTAN_ID_TYPE* ZOLTAN_ID_PTR # /*****************************************************************************/ # /* # * Error codes for Zoltan library # * ZOLTAN_OK - no errors # * ZOLTAN_WARN - some warning occurred in Zoltan library; # * application should be able to continue running # * ZOLTAN_FATAL - a fatal error occurred # * ZOLTAN_MEMERR - memory allocation failed; with this error, it could be # * possible to try a different, more memory-friendly, # * algorithm. # */ # /*****************************************************************************/ cdef int ZOLTAN_OK cdef int ZOLTAN_WARN cdef int ZOLTAN_FATAL cdef int ZOLTAN_MEMERR # /*****************************************************************************/ # /* Hypergraph query function types # */ # /*****************************************************************************/ cdef int _ZOLTAN_COMPRESSED_EDGE cdef int _ZOLTAN_COMPRESSED_VERTEX <|end_of_text|>cdef extern from 'ql/math/interpolations/backwardflatinterpolation.hpp' namespace 'QuantLib' nogil: cdef cppclass BackwardFlat: pass cdef extern from 'ql/math/interpolations/loginterpolation.hpp' namespace 'QuantLib' nogil: cdef cppclass LogLinear: pass cdef extern from 'ql/math/interpolations/linearinterpolation.hpp' namespace 'QuantLib' nogil: cdef cppclass Linear: pass cdef extern from 'ql/math/interpolations/bilinearinterpolation.hpp' namespace 'QuantLib' nogil: cdef cppclass Bilinear: pass cdef extern from 'ql/math/interpolations/bicubicsplineinterpolation.hpp' namespace 'QuantLib' nogil: cdef cppclass Bicubic: pass cdef extern from 'ql/math/interpolations/sabrinterpolation.hpp' namespace 'QuantLib' nogil: cdef cppclass SABRInterpolation: pass cdef extern from 'ql/math/interpolations/cubicinterpolation.hpp' namespace 'QuantLib' nogil: cdef cppclass Cubic: pass <|end_of_text|>print("hello extension") <|end_of_text|>cimport cython as ct from cython.parallel cimport prange cimport numpy as np import numpy as np from cython cimport parallel from libc cimport math as cmath import multiprocessing as mp cdef int nproc = mp.cpu_count() @ct.boundscheck(False) @ct.wraparound(False) def projectCluster( clusters, id, output, axis ): assert( len(clusters.shape) == 3 ) assert( len(output.shape) == 2) assert( clusters.shape[0] == clusters.shape[1] ) assert( clusters.shape[0] == clusters.shape[2] ) assert( clusters.shape[0] == output.shape[0] ) assert( clusters.shape[0] == output.shape[1] ) cdef np.ndarray[np.uint8_t, ndim=3] clustersC = clusters cdef int idC = id cdef np.ndarray[np.uint8_t, ndim=2] outputC = output cdef int N = clusters.shape[0] cdef int ix, iy, iz for ix in range(N): for iy in range(N): for iz in range(N): if ( clustersC[ix,iy,iz] == idC and axis==0 ): outputC[iy,iz] = outputC[iy,iz]+1 elif ( clustersC[ix,iy,iz] == idC and axis==1 ): outputC[ix,iz] = outputC[ix,iz]+1 elif ( clustersC[ix,iy,iz] == idC and axis==2 ): outputC[ix,iy] = outputC[ix,iy]+1 return outputC @ct.boundscheck(False) @ct.wraparound(False) def averageAzimuthalClusterWeightsAroundX( clusters, clusterID, output, mask ): assert( len(output.shape) == 2 ) assert( len(clusters.shape) == 3 ) assert( clusters.shape[0] == clusters.shape[1] ) assert( clusters.shape[0] == clusters.shape[2] ) assert( clusters.shape[0] == output.shape[0] ) assert( clusters.shape[0] == output.shape[1] ) cdef np.ndarray[np.float64_t, ndim=2] outputR = output cdef np.ndarray[np.uint8_t,ndim=3] clustersR = clusters cdef np.ndarray[np.uint8_t,ndim=3] maskC = mask cdef int N = clusters.shape[0] cdef int cID = clusterID cdef float qy, qz, qperp, weight cdef int qperpInt cdef center=N/2 for ix in range(N): for iy in range(N): for iz in range(N): if ( maskC[ix,iy,iz] == 0 ): continue if ( clustersR[ix,iy,iz] == cID ): qy = iy-N/2 qz = iz-N/2 qperp = cmath.sqrt(qy*qy+qz*qz) qperpInt = <int>qperp # Rounds to integer below if ( qperpInt < (N-1)/2 ): weight = qperp-qperpInt outputR[ix,center+qperpInt] = outputR[ix,center+qperpInt]+1.0-weight outputR[ix,center+qperpInt+1] = outputR[ix,center+qperpInt+1] + weight elif ( qperpInt < N/2 ): outputR[ix,center+qperpInt] = outputR[ix,center+qperpInt] + 1.0 return output @ct.boundscheck(False) @ct.wraparound(False) def azimuthalAverageX( data3D, output, mask ): assert( len(data3D.shape) == 3 ) assert( len(output.shape) == 2 ) assert( data3D.shape[0] == data3D.shape[1] ) assert( data3D.shape[0] == data3D.shape[2] ) assert( data3D.shape[0] == output.shape[0] ) assert( data3D.shape[0] == output.shape[1] ) cdef np.ndarray[np.float64_t,ndim=3] data3DC = data3D cdef np.ndarray[np.float64_t,ndim=2] outputC = output cdef np.ndarray[np.uint8_t,ndim=3] maskC = mask cdef int N = data3D.shape[0] cdef float qy, qz, qperp, weight cdef int qperpInt cdef int center = N/2 for ix in range(N): for iy in range(N): for iz in range(N): if ( maskC[ix,iz,iz] == 0 ): continue qy = iy-N/2 qz = iz-N/2 qperp = cmath.sqrt( qy*qy + qz*qz ) qperpInt = <int>qperp # Rounds to integer below if ( qperpInt < N-1 ): weight = qperp-qperpInt outputC
Cython
[ix,center+qperpInt] = outputC[ix,center+qperpInt] + data3DC[ix,iy,iz]*(1.0-weight) outputC[ix,center+qperpInt+1] = outputC[ix,center+qperpInt+1] + data3DC[ix,iy,iz]*weight elif ( qperpInt < N ): outputC[ix,center+qperpInt] = outputC[ix,center+qperpInt] + data3DC[ix,iy,iz] return output @ct.boundscheck(False) @ct.wraparound(False) def maskedSumOfSquares( reference, data, mask ): cdef np.ndarray[np.float64_t] ref = reference.ravel() cdef np.ndarray[np.float64_t] dataR = data.ravel() cdef np.ndarray[np.uint8_t] maskR = mask.ravel() cdef int N = data.size cdef int i cdef np.ndarray[np.float64_t] sumsq = np.zeros(nproc) for i in prange(N, nogil=True, num_threads=nproc): if ( maskR[i] == 1 ): sumsq[parallel.threadid()] = sumsq[parallel.threadid()] + cmath.pow( ref[i]-dataR[i], 2 ) return np.sum(sumsq) <|end_of_text|># distutils: language = c++ # # Copyright 2015-2020 CNRS-UM LIRMM, CNRS-AIST JRL # cimport mc_control.c_mc_control as c_mc_control cimport eigen.eigen as eigen cimport sva.c_sva as c_sva cimport sva.sva as sva cimport mc_observers.c_mc_observers as c_mc_observers cimport mc_observers.mc_observers as mc_observers cimport mc_rbdyn.c_mc_rbdyn as c_mc_rbdyn cimport mc_rbdyn.mc_rbdyn as mc_rbdyn cimport mc_solver.mc_solver as mc_solver cimport mc_tasks.mc_tasks as mc_tasks cimport mc_rtc.mc_rtc as mc_rtc cimport mc_rtc.gui.gui as mc_rtc_gui from cython.operator cimport preincrement as preinc from cython.operator cimport dereference as deref from libcpp.map cimport map as cppmap from libcpp.string cimport string from libcpp.vector cimport vector from libcpp cimport bool as cppbool import warnings def deprecated(): warnings.simplefilter('always', category=DeprecationWarning) warnings.warn("This call is deprecated", DeprecationWarning) warnings.simplefilter('ignore', category=DeprecationWarning) cdef class ControllerResetData(object): def __cinit__(self): pass property q: def __get__(self): return self.impl.q cdef ControllerResetData ControllerResetDataFromPtr(c_mc_control.ControllerResetData * p): cdef ControllerResetData ret = ControllerResetData() ret.impl = p return ret cdef class Contact(object): def __ctor__(self, r1, r2, r1Surface, r2Surface, friction = mc_rbdyn.Contact.defaultFriction, eigen.Vector6d dof = None): if isinstance(r1, unicode): r1 = r1.encode(u'ascii') if isinstance(r1Surface, unicode): r1Surface = r1Surface.encode(u'ascii') if isinstance(r2, unicode): r2 = r2.encode(u'ascii') if isinstance(r2Surface, unicode): r2Surface = r2Surface.encode(u'ascii') if dof is None: self.impl = c_mc_control.Contact(r1, r2, r1Surface, r2Surface, friction) else: self.impl = c_mc_control.Contact(r1, r2, r1Surface, r2Surface, friction, dof.impl) def __cinit__(self, *args): if len(args) > 0: self.__ctor__(*args) property r1: def __get__(self): if self.impl.r1.has_value(): return self.impl.r1.value() else: return None def __set__(self, r1): if isinstance(r1, unicode): r1 = r1.encode(u'ascii') self.impl.r1 = <string>(r1) property r1Surface: def __get__(self): return self.impl.r1Surface def __set__(self, r1Surface): if isinstance(r1Surface, unicode): r1Surface = r1Surface.encode(u'ascii') self.impl.r1Surface = r1Surface property r2: def __get__(self): if self.impl.r2.has_value(): return self.impl.r2.value() else: return None def __set__(self, r2): if isinstance(r2, unicode): r2 = r2.encode(u'ascii') self.impl.r2 = <string>(r2) property r2Surface: def __get__(self): return self.impl.r2Surface def __set__(self, r2Surface): if isinstance(r2Surface, unicode): r2Surface = r2Surface.encode(u'ascii') self.impl.r2Surface = r2Surface property friction: def __get__(self): return self.impl.friction def __set__(self, friction): self.impl.friction = friction property dof: def __get__(self): return eigen.Vector6dFromC(self.impl.dof) def __set__(self, dof): if isinstance(dof, eigen.Vector6d): self.impl.dof = (<eigen.Vector6d>dof).impl else: self.dof = eigen.Vector6d(dof) cdef Contact ContactFromC(const c_mc_control.Contact & c): cdef Contact ret = Contact() ret.impl = c return ret cdef class MCController(object): def __cinit__(self): pass def run(self): return self.base.run() def reset(self, ControllerResetData data): self.base.reset(deref(data.impl)) def env(self): return mc_rbdyn.RobotFromC(self.base.env()) def robots(self): return mc_rbdyn.RobotsFromRef(self.base.robots()) def supported_robots(self): supported = [] self.base.supported_robots(supported) return supported def config(self): return mc_rtc.ConfigurationFromRef(self.base.config()) def logger(self): return mc_rtc.LoggerFromRef(self.base.logger()) def gui(self): return mc_rtc_gui.StateBuilderFromShPtr(self.base.gui()) property timeStep: def __get__(self): return self.base.timeStep property contactConstraint: def __get__(self): return mc_solver.ContactConstraintFromPtr(self.base.contactConstraint.get()) property dynamicsConstraint: def __get__(self): return mc_solver.DynamicsConstraintFromPtr(self.base.dynamicsConstraint.get()) property kinematicsConstraint: def __get__(self): return mc_solver.KinematicsConstraintFromPtr(self.base.kinematicsConstraint.get()) property selfCollisionConstraint: def __get__(self): return mc_solver.CollisionsConstraintFromPtr(self.base.selfCollisionConstraint.get()) property postureTask: def __get__(self): return mc_tasks.PostureTaskFromPtr(self.base.postureTask.get()) property qpsolver: def __get__(self): return mc_solver.QPSolverFromRef(self.base.solver()) def hasObserverPipeline(self, name): if isinstance(name, unicode): name = name.encode(u'ascii') return self.base.hasObserverPipeline(name) def observerPipeline(self, name = None): if isinstance(name, unicode): name = name.encode(u'ascii') if name is None: return mc_observers.ObserverPipelineFromRef(self.base.observerPipeline()) else: return mc_observers.ObserverPipelineFromRef(self.base.observerPipeline(name)) def observerPipelines(self): it = self.base.observerPipelines().begin() end = self.base.observerPipelines().end() ret = [] while it!= end: ret.append(mc_observers.ObserverPipelineFromRef(deref(it))) preinc(it) return ret def addCollisions(self, r1, r2, collisions): assert(all([isinstance(col, mc_rbdyn.Collision) for col in collisions])) cdef vector[c_mc_rbdyn.Collision] cols if isinstance(r1, unicode): r1 = r1.encode(u'ascii') if isinstance(r2, unicode): r2 = r2.encode(u'ascii') for col in collisions: cols.push_back((<mc_rbdyn.Collision>col).impl) self.base.addCollisions(r1, r2, cols) def removeCollisions(self, r1, r2, collisions = None): cdef vector[c_mc_rbdyn.Collision] cols if isinstance(r1, unicode): r1 = r1.encode(u'ascii') if isinstance(r2, unicode): r2 = r2.encode(u'ascii') if collisions is None: self.base.removeCollisions(r1, r2) else: for col in collisions:
Cython
cols.push_back((<mc_rbdyn.Collision>col).impl) self.base.removeCollisions(r1, r2, cols) def hasRobot(self, name): if isinstance(name, unicode): name = name.encode(u'ascii') return self.base.hasRobot(name) def robot(self, name = None): if isinstance(name, unicode): name = name.encode(u'ascii') if name is None: return mc_rbdyn.RobotFromC(self.base.robot()) else: return mc_rbdyn.RobotFromC(self.base.robot(name)) def addContact(self, c, *args): if isinstance(c, Contact): assert len(args) == 0, "addContact takes either an mc_control.Contact object or arguments for its construction" self.base.addContact((<Contact>c).impl) else: self.addContact(Contact(c, *args)) def removeContact(self, c, *args): if isinstance(c, Contact): assert len(args) == 0, "removeContact takes either an mc_control.Contact object or arguments for its construction" self.base.removeContact((<Contact>c).impl) else: self.removeContact(Contact(c, *args)) def contacts(self): cdef c_mc_control.ContactSet cs = self.base.contacts() return [ContactFromC(c) for c in cs] def hasContact(self, Contact c): self.base.hasContact(c.impl) cdef MCController MCControllerFromPtr(c_mc_control.MCController * p): cdef MCController ret = MCController() ret.base = p return ret cdef class PythonRWCallback(object): def __cinit__(self, succ, out): self.impl.success = succ self.impl.out = out property success: def __get__(self): return self.impl.success def __set__(self, value): self.impl.success = value property out: def __get__(self): return self.impl.out def __set__(self, value): self.impl.out = value cdef cppbool python_to_run_callback(void * f) except+ with gil: return (<object>f).run_callback() cdef void python_to_reset_callback(const c_mc_control.ControllerResetData & crd, void * f) except+ with gil: (<object>f).reset_callback(ControllerResetDataFromPtr(&(c_mc_control.const_cast_crd(crd)))) cdef c_sva.PTransformd python_af_callback(callback, const c_mc_rbdyn.Robot & robot) except+ with gil: cdef mc_rbdyn.Robot r = mc_rbdyn.RobotFromC(robot) cdef sva.PTransformd af = callback(r) return deref(af.impl) cdef class MCPythonController(MCController): AF_CALLBACKS = [] def __dealloc__(self): del self.impl self.impl = self.base = NULL def __cinit__(self, robot_modules, double dt): cdef mc_rbdyn.RobotModuleVector rmv = mc_rbdyn.RobotModuleVector(robot_modules) self.impl = self.base = new c_mc_control.MCPythonController(rmv.v, dt) try: self.run_callback c_mc_control.set_run_callback(deref(self.impl), &python_to_run_callback, <void*>(self)) except AttributeError: raise TypeError("You need to implement a run_callback method in your object") try: self.reset_callback c_mc_control.set_reset_callback(deref(self.impl), &python_to_reset_callback, <void*>(self)) except AttributeError: pass def addAnchorFrameCallback(self, name, callback): if isinstance(name, unicode): name = name.encode(u'ascii') MCPythonController.AF_CALLBACKS.append(callback) c_mc_control.add_anchor_frame_callback(deref(self.impl), <string>(name), &python_af_callback, callback) def removeAnchorFrameCallback(self, name): if isinstance(name, unicode): name = name.encode(u'ascii') c_mc_control.remove_anchor_frame_callback(deref(self.impl), name) cdef class MCGlobalController(object): def __dealloc__(self): del self.impl self.impl = NULL def __cinit_simple__(self): self.impl = new c_mc_control.MCGlobalController() def __cinit_conf__(self, conf): if isinstance(conf, unicode): conf = conf.encode(u'ascii') self.impl = new c_mc_control.MCGlobalController(conf) def __cinit_full__(self, conf, mc_rbdyn.RobotModule rm): if isinstance(conf, unicode): conf = conf.encode(u'ascii') self.impl = new c_mc_control.MCGlobalController(conf, rm.impl) def __cinit__(self, *args): if len(args) == 0: self.__cinit_simple__() elif len(args) == 1: self.__cinit_conf__(args[0]) elif len(args) == 2: self.__cinit_full__(args[0], args[1]) else: raise TypeError("Wrong arguments passed to MCGlobalController ctor") def init(self, q, pos = None): cdef c_mc_control.array7d p = c_mc_control.array7d() if pos is None: self.impl.init(q) else: assert(len(pos) == 7) for i,pi in enumerate(pos): p[i] = pos[i] self.impl.init(q, p) def setSensorPosition(self, eigen.Vector3d p): self.impl.setSensorPosition(p.impl) def setSensorOrientation(self, eigen.Quaterniond q): self.impl.setSensorOrientation(q.impl) def setSensorLinearVelocity(self, eigen.Vector3d lv): self.impl.setSensorLinearVelocity(lv.impl) def setSensorAngularVelocity(self, eigen.Vector3d av): self.impl.setSensorAngularVelocity(av.impl) def setSensorAcceleration(self, eigen.Vector3d a): deprecated() self.impl.setSensorLinearAcceleration(a.impl) def setSensorLinearAcceleration(self, eigen.Vector3d a): self.impl.setSensorLinearAcceleration(a.impl) def setEncoderValues(self, q): self.impl.setEncoderValues(q) def setEncoderVelocities(self, alpha): self.impl.setEncoderVelocities(alpha) def setJointTorques(self, tau): self.impl.setJointTorques(tau) def setWrenches(self, wrenchesIn): cdef cppmap[string, c_sva.ForceVecd] wrenches = cppmap[string, c_sva.ForceVecd]() for sensor,w in wrenchesIn.iteritems(): if not isinstance(w, sva.ForceVecd): w = sva.ForceVecd(w) wrenches[sensor] = deref((<sva.ForceVecd>(w)).impl) self.impl.setWrenches(wrenches) def run(self): return self.impl.run() def timestep(self): return self.impl.timestep() def controller(self): return MCControllerFromPtr(&(self.impl.controller())) def ref_joint_order(self): return self.impl.ref_joint_order() def robot(self): return mc_rbdyn.RobotFromC(self.impl.robot()) property running: def __get__(self): return self.impl.running def __set__(self, b): self.impl.running = b cdef class ElementId(object): def __cinit__(self, category, name): if isinstance(name, unicode): name = name.encode(u'ascii') self.impl = c_mc_control.ElementId([s.encode(u'ascii') if isinstance(s, unicode) else s for s in category], name) property category: def __get__(self): return self.impl.category property name: def __get__(self): return self.impl.name cdef class ControllerClient(object): def __cinit__(self, sub_conn_uri, push_conn_uri, timeout = 0.0): if isinstance(sub_conn_uri, unicode): sub_conn_uri = sub_conn_uri.encode(u'ascii') if isinstance(push_conn_uri, unicode): push_conn_uri = push_conn_uri.encode(u'ascii') self.impl = new c_mc_control.ControllerClient(sub_conn_uri, push_conn_uri, timeout) def send_request(self, element_id, data = None): if data is None: deref(self.impl).send_request((<ElementId>element_id).impl) else: deref(self.impl).send_request((<ElementId>element_id).impl, deref((<mc_rtc.Configuration>data).impl)) <|end_of_text|>cimport pyftw from pyftw cimport ftw, nftw, stat, FTW, dev_t, ino_t, mode_t, nlink_t, uid_t, gid_t, off_t, blksize_t, blkcnt_t, time_t __doc__ = "Primitive ftw.h wrapper" # Flags cpdef enum: FTW_F = 0 FTW_D = 1 FTW_DNR = 2 FTW_NS = 3 FTW_SL = 4 FTW_DP = 5 FTW_SLN = 6 cpdef enum: FTW_PHYS = 1 FTW_MOUNT = 2 FTW_CHDIR = 4 FTW_DEPTH
Cython
= 8 FTW_ACTIONRETVAL = 16 # Service wrappers cdef class Stat: cdef public dev_t st_dev cdef public ino_t st_ino cdef public mode_t st_mode cdef public nlink_t st_nlink cdef public uid_t st_uid cdef public gid_t st_gid cdef public dev_t st_rdev cdef public off_t st_size cdef public blksize_t st_blksize cdef public blkcnt_t st_blocks cdef public time_t st_atim cdef public time_t st_mtim cdef public time_t st_ctim cdef fill(self, const stat *sb): self.st_dev = sb.st_dev self.st_ino = sb.st_ino self.st_mode = sb.st_mode self.st_nlink = sb.st_nlink self.st_uid = sb.st_uid self.st_gid = sb.st_gid self.st_rdev = sb.st_rdev self.st_size = sb.st_size self.st_blksize = sb.st_blksize self.st_blocks = sb.st_blocks self.st_atim = sb.st_atime self.st_mtim = sb.st_mtime self.st_ctim = sb.st_ctime cdef class Nftw: cdef public int base cdef public int level cdef fill(self, FTW *ftwbuf): self.base = ftwbuf.base self.level = ftwbuf.level # Globals for python callbacks cdef ftw_fn cdef nftw_fn # C callbacks cdef int ftw_callback(const char *fpath, const stat *sb, int typeflag): return ftw_fn(fpath, Stat().fill(sb), typeflag) cdef int nftw_callback(const char *fpath, const stat *sb, int typeflag, FTW *ftwbuf): return nftw_fn(fpath, Stat().fill(sb), typeflag, Nftw().fill(ftwbuf)) # Wrappers cpdef int py_ftw(const char *dirpath, fn, int nopenfd): '''py_ftw(dirpath, fn, nopenfd)\n\nPerform file tree walk (ftw wrapper)''' global ftw_fn ftw_fn = fn return ftw(dirpath, ftw_callback, nopenfd) cpdef int py_nftw(const char *dirpath, fn, int nopenfd, int flags): '''py_nftw(dirpath, fn, nopenfd, flags)\n\nPerform file tree walk (nftw wrapper)''' global nftw_fn nftw_fn = fn return nftw(dirpath, nftw_callback, nopenfd, flags) <|end_of_text|>import numpy as _N from cython.parallel import prange, parallel from libc.math cimport sin, fabs def calc_using_prange(int rep, int TR, int N): cdef int tr, i, r cdef double tot outs = _N.empty(rep*TR) cdef double[::1] v_outs = outs cdef double *p_outs = &v_outs[0] with nogil: for r from 0 <= r < rep: for tr in prange(TR): p_outs[r*TR+tr] = FFdv_new(N, tr, r) return outs def calc_using_range(int rep, int TR, int N): cdef int tr, i, r cdef double tot outs = _N.empty(rep*TR) cdef double[::1] v_outs = outs cdef double *p_outs = &v_outs[0] with nogil: for r from 0 <= r < rep: for tr in range(TR): p_outs[r*TR+tr] = FFdv_new(N, tr, r) return outs cdef double FFdv_new(int _Np1, int r, int tr) nogil: cdef double tot = 1 cdef int n1, n2, n3 for n1 from 1 <= n1 < _Np1: for n2 from 1 <= n2 < _Np1: tot += fabs(sin((n1 + n2) / 1000) + tr + r + n3) * 0.001 return tot """ def doit(int rep, int TR, int N): cdef int tr, i, r with nogil: for r from 0 <= r < rep: for tr in prange(TR): FFdv_new(N) cdef void FFdv_new(int _Np1) nogil: cdef double tot = 1 cdef int n1, n2, n3 for n1 from 1 <= n1 < _Np1: for n2 from 1 <= n2 < _Np1: for n3 from 1 <= n3 < _Np1: tot += (n1 + n2) / 100 + 200 + n3 """ <|end_of_text|>#cython: language_level=3 import os from pysam import AlignmentFile __all__ = ['Bri', 'bench'] """ Expose bare minimum from jts/bri headers """ cdef extern from "bri_index.h": struct bam_read_idx_record: size_t file_offset struct bam_read_idx: bam_read_idx_record* records bam_read_idx*bam_read_idx_load(const char* input_bam) void bam_read_idx_build(const char* input_bam) void bam_read_idx_destroy(bam_read_idx* bri) cdef extern from "bri_get.h": void bam_read_idx_get_range(const bam_read_idx* bri, const char* readname, bam_read_idx_record** start, bam_read_idx_record** end) cdef extern from "bri_benchmark.h": int bam_read_idx_benchmark_main(int argc, char** argv) def bench(input_bam): bam_read_idx_benchmark_main(2, ['benchmark', input_bam.encode('utf-8')]) cdef class Bri: """ Wrapper class for Jared's bri, supports creating and reading.bri index and extracting reads using pysam Attributes: index (bam_read_idx*): Bri index instance input_bam_path (bytes): Path to bam file input_bri_path (bytes): Path to bri file hts (pysam.AlignmentFile): Bam file instance """ cdef: bam_read_idx*index object hts bytes input_bam_path bytes input_bri_path def __init__(self, input_bam): """ Args: input_bam (str): Path to.bam file """ self.input_bam_path = input_bam.encode('utf-8') self.input_bri_path = (input_bam + '.bri').encode('utf-8') if not os.path.exists(self.input_bam_path): raise IOError("Bam file does not exist") def create(self): """ Create bri index for bam file by calling bam_read_idx_build and bam_read_idx_save. Index is immediately destroyed, call load() after this to recycle this object. """ bam_read_idx_build(self.input_bam_path) # noinspection PyAttributeOutsideInit def load(self): """ Load the index from.bri file """ if not os.path.exists(self.input_bri_path): # Avoid exit() calls in bri_index.c raise IOError("Bri file does not exist") self.index = bam_read_idx_load(self.input_bam_path) # load.bri index self.hts = AlignmentFile(self.input_bam_path, 'rb') # load.bam file def get(self, read_name): """ Get reads for read_name from the bam file using.bri index Args: read_name (str): Reads to search for Yields: pysam.AlignedSegment: found reads """ if not self.index: raise ValueError('Bri index is not loaded, call load() function first') cdef: bam_read_idx_record*start bam_read_idx_record*end bam_read_idx_get_range(self.index, read_name.encode('utf-8'), &start, &end) hts_iter = iter(self.hts) while start!= end: self.hts.seek(start.file_offset) read = next(hts_iter) yield read start += 1 def __dealloc__(self): """ Proper cleanup """ if self.index: bam_read_idx_destroy(self.index) if self.hts: self.hts.close() <|end_of_text|># This is an example of a pure Python function def getForce(): # Write your code here, then delete the "pass" statement below pass<|end_of_text|># cython: profile=True #cimport cython #cimport dilap.core.tools as dpr cimport dilap.geometry.tools as gtl from dilap.geometry.vec3 cimport vec3 from libc.math cimport sqrt from libc.math c
Cython
import sqrt from libc.math cimport cos from libc.math cimport sin from libc.math cimport tan from libc.math cimport acos from libc.math cimport asin from libc.math cimport hypot cimport numpy import numpy stuff = 'hi' __doc__ = '''dilapidator\'s implementation of a quaternion in R3''' # dilapidators implementation of a quaternion in R3 cdef class quat: ########################################################################### ### python object overrides ############################################### ########################################################################### def __str__(self):return 'quat:'+str(tuple(self)) def __repr__(self):return 'quat:'+str(tuple(self)) def __iter__(self):yield self.w;yield self.x;yield self.y;yield self.z def __mul__(self,o):return self.mul(o) def __add__(self,o):return self.add(o) def __sub__(self,o):return self.sub(o) def __is_equal(self,o):return self.isnear(o) def __richcmp__(x,y,op): if op == 2:return x.__is_equal(y) else:assert False ########################################################################### ########################################################################### ### c methods ############################################################# ########################################################################### def __cinit__(self,float w,float x,float y,float z): self.w = w self.x = x self.y = y self.z = z # given an angle a and axis v, modify to represent # a rotation by a around v and return self # NOTE: negative a still maps to positive self.w cdef quat av_c(self,float a,vec3 v): cdef float a2 = a/2.0 cdef float sa = sin(a2) cdef float vm = v.mag_c() self.w = cos(a2) self.x = v.x*sa/vm self.y = v.y*sa/vm self.z = v.z*sa/vm return self # modify to represent a rotation # between two vectors and return self cdef quat uu_c(self,vec3 x,vec3 y): cdef float a = x.ang_c(y) cdef vec3 v if a == 0.0:self.w = 1;self.x = 0;self.y = 0;self.z = 0 else: v = x.crs_c(y) return self.av_c(a,v) # set self to the quaternion that rotates v to (0,0,1) wrt the xy plane cdef quat toxy_c(self,vec3 v): if v.isnear(vec3(0,0,-1)): self.w = 0;self.x = 1;self.y = 0;self.z = 0 elif not v.isnear(vec3(0,0,1)):self.uu_c(v,vec3(0,0,1)) else:self.av_c(0,vec3(0,0,1)) return self # return an independent copy of this quaternion cdef quat cp_c(self): cdef quat n = quat(self.w,self.x,self.y,self.z) return n # return an independent flipped copy of this quaternion cdef quat cpf_c(self): cdef quat n = quat(-self.w,self.x,self.y,self.z) return n # is quat o within a very small neighborhood of self cdef bint isnear_c(self,quat o): cdef float dw = (self.w-o.w) if dw*dw > gtl.epsilonsq_c:return 0 cdef float dx = (self.x-o.x) if dx*dx > gtl.epsilonsq_c:return 0 cdef float dy = (self.y-o.y) if dy*dy > gtl.epsilonsq_c:return 0 cdef float dz = (self.z-o.z) if dz*dz > gtl.epsilonsq_c:return 0 return 1 # return the squared magintude of self cdef float mag2_c(self): cdef float w2 = self.w*self.w cdef float x2 = self.x*self.x cdef float y2 = self.y*self.y cdef float z2 = self.z*self.z cdef float m2 = w2 + x2 + y2 + z2 return m2 # return the magintude of self cdef float mag_c(self): return sqrt(self.mag2_c()) # normalize and return self cdef quat nrm_c(self): cdef float m = self.mag_c() if m == 0.0:return self else:return self.uscl_c(1.0/m) # flip the direction of and return self cdef quat flp_c(self): self.w *= -1.0 return self # multiply each component by a scalar of and return self cdef quat uscl_c(self,float s): self.w *= s self.x *= s self.y *= s self.z *= s return self # conjugate and return self cdef quat cnj_c(self): self.x *= -1.0 self.y *= -1.0 self.z *= -1.0 return self # compute the inverse of self and return cdef quat inv_c(self): cdef m = self.mag2_c() cdef quat n = self.cp_c().cnj_c().uscl_c(1/m) return n # given quat o, return self + o cdef quat add_c(self,quat o): cdef quat n = quat(self.w+o.w,self.x+o.x,self.y+o.y,self.z+o.z) return n # given quat o, return self - o cdef quat sub_c(self,quat o): cdef quat n = quat(self.w-o.w,self.x-o.x,self.y-o.y,self.z-o.z) return n # given quat o, rotate self so that self represents # a rotation by self and then q (q * self) cdef quat mul_c(self,quat o): cdef float nw,nx,ny,nz if gtl.isnear_c(self.w,0):nw,nx,ny,nz = o.__iter__() elif gtl.isnear_c(o.w,0):nw,nx,ny,nz = self.__iter__() else: nw = o.w*self.w - o.x*self.x - o.y*self.y - o.z*self.z nx = o.w*self.x + o.x*self.w + o.y*self.z - o.z*self.y ny = o.w*self.y - o.x*self.z + o.y*self.w + o.z*self.x nz = o.w*self.z + o.x*self.y - o.y*self.x + o.z*self.w cdef quat n = quat(nw,nx,ny,nz) return n # given quat o, rotate self so that self represents # a rotation by self and then q (q * self) cdef quat rot_c(self,quat o): cdef quat qres = self.mul_c(o) self.w,self.x,self.y,self.z = qres.__iter__() return self # rotate a set of vec3 points by self cdef quat rotps_c(self,ps): cdef vec3 p cdef int px cdef int pcnt = len(ps) for px in range(pcnt): p = ps[px] p.rot_c(self) return self # return the dot product of self and quat o cdef float dot_c(self,quat o): return self.w*o.w + self.x*o.x + self.y*o.y + self.z*o.z # spherically linearly interpolate between # self and quat o proportionally to ds cdef quat slerp_c(self,quat o,float ds): cdef float hcosth = self.dot_c(o) # will need to flip result direction if hcosth < 0???? if gtl.isnear_c(abs(hcosth),1.0):return self.cp_c() cdef float hth = acos(hcosth) cdef float hsinth = sqrt(1.0 - hcosth*hcosth) cdef float nw,nx,ny,nz,a,b if gtl.isnear_c(hsinth,0): nw = (self.w*0.5 + o.w*0.5) nx = (self.x*0.5 + o.x*0.5) ny = (self.y*0.5 + o.y*0.5) nz = (self.z*0.5 + o.z*0.5) else: a = sin((1-ds)*hth)/hsinth b = sin(( ds)*hth)/hsinth nw = (self.w*a + o.w*b) nx = (self.x*a + o.x*b) ny = (self.y*a + o.y*b) nz = (self.z*a + o.z*b)
Cython
cdef quat n = quat(nw,nx,ny,nz) return n ########################################################################### ########################################################################### ### python wrappers for c methods ######################################### ########################################################################### # given an angle a and axis v, modify to represent # a rotation by a around v and return self cpdef quat av(self,float a,vec3 v): '''modify to represent a rotation about a vector by an angle''' return self.av_c(a,v) # modify to represent a rotation # between two vectors and return self cpdef quat uu(self,vec3 x,vec3 y): '''modify to represent a rotation from one vector to another''' return self.uu_c(x,y) # set self to the quaternion that rotates v to (0,0,1) wrt the xy plane cpdef quat toxy(self,vec3 v): '''set self to the quaternion that rotates v to (0,0,1) wrt the xy plane''' return self.toxy_c(v) # return an independent copy of this quaternion cpdef quat cp(self): '''create an independent copy of this quaternion''' return self.cp_c() # return an independent flipped copy of this quaternion cpdef quat cpf(self): '''create an independent flipped copy of this quaternion''' return self.cpf_c() # is quat o within a very small neighborhood of self cpdef bint isnear(self,quat o): '''determine if a point is numerically close to another''' return self.isnear_c(o) # return the squared magintude of self cpdef float mag2(self): '''compute the squared magnitude of this quaternion''' return self.mag2_c() # return the magintude of self cpdef float mag(self): '''compute the magnitude of this quaternion''' return self.mag_c() # normalize and return self cpdef quat nrm(self): '''normalize this quaternion''' return self.nrm_c() # flip the direction of and return self cpdef quat flp(self): '''flip the direction of rotation represented by this quaternion''' return self.flp_c() # multiply each component by a scalar of and return self cpdef quat uscl(self,float s): '''multiply components of this point by a scalar''' return self.uscl_c(s) # conjugate and return self cpdef quat cnj(self): '''conjugate this quaternion''' return self.cnj_c() # compute the inverse of self and return cpdef quat inv(self): '''compute the inverse of this quaternion''' return self.inv_c() # given quat o, return self + o cpdef quat add(self,quat o): '''compute the addition of this quaternion and another''' return self.add_c(o) # given quat o, return self - o cpdef quat sub(self,quat o): '''compute the subtraction of this quaternion and another''' return self.sub_c(o) # given quat o, rotate self so that self represents # a rotation by self and then q (q * self) cpdef quat mul(self,quat o): '''rotate this quaternion by another quaternion''' return self.mul_c(o) # given quat o, rotate self so that self represents # a rotation by self and then q (q * self) cpdef quat rot(self,quat o): '''rotate this quaternion by another quaternion''' return self.rot_c(o) # rotate a set of vec3 points by self cpdef quat rotps(self,ps): '''rotate a set of vec3 points this quaternion''' return self.rotps_c(ps) # return the dot product of self and quat o cpdef float dot(self,quat o): '''compute the dot product of this quaternion and another''' return self.dot_c(o) # spherically linearly interpolate between # self and quat o proportionally to ds cpdef quat slerp(self,quat o,float ds): '''create a new quat interpolated between this quat and another''' return self.slerp_c(o,ds) ########################################################################### <|end_of_text|>import numpy as np cimport numpy as np assert sizeof(float) == sizeof(np.float32_t) cdef extern from "kernel/manager.hh": cdef cppclass C_distMatrix "distMatrix": C_distMatrix(np.float32_t*, np.float32_t*, np.float32_t*, int, int, int) void compute() void compute_sharedMem() cdef class distMatrix: cdef C_distMatrix* g def __cinit__(self, \ np.ndarray[ndim=1, dtype=np.float32_t] A, \ np.ndarray[ndim=1, dtype=np.float32_t] B, \ np.ndarray[ndim=1, dtype=np.float32_t] C, \ int x1, int x2, int dim): self.g = new C_distMatrix(&A[0], &B[0], &C[0], x1, x2, dim) def compute(self): self.g.compute() def compute_sharedMem(self): self.g.compute_sharedMem()<|end_of_text|>from CBARX cimport * from DataContainer cimport * cdef class CBARX2(CBARX): cpdef BuildElementMatrix(self,DataContainer dc) cpdef BuildInternalForceVector(self, DataContainer dc)<|end_of_text|>cdef extern from "stdlib.h": cpdef long random() nogil cpdef void srandom(unsigned int) nogil cpdef const long RAND_MAX cdef double randdbl() nogil: cdef double r r = random() r = r/RAND_MAX return r cpdef double calcpi(const int samples): """serially calculate Pi using Cython library functions""" cdef int inside, i cdef double x, y inside = 0 srandom(0) for i in range(samples): x = randdbl() y = randdbl() if (x*x)+(y*y) < 1: inside += 1 return (4.0 * inside)/samples <|end_of_text|>from mpfmc.core.audio.sdl2 cimport * from mpfmc.core.audio.gstreamer cimport * from mpfmc.core.audio.sound_file cimport * from mpfmc.core.audio.track cimport * from mpfmc.core.audio.notification_message cimport * # --------------------------------------------------------------------------- # Sound Loop Track types # --------------------------------------------------------------------------- cdef enum: do_not_stop_loop = 0xFFFFFFFF cdef enum LayerStatus: layer_stopped = 0 layer_queued = 1 layer_playing = 2 layer_fading_in = 3 layer_fading_out = 4 ctypedef struct SoundLoopLayerSettings: LayerStatus status SoundSample *sound Uint8 volume long sound_loop_set_id Uint64 sound_id Uint32 fade_in_steps Uint32 fade_out_steps Uint32 fade_steps_remaining bint looping Uint8 marker_count GArray *markers cdef enum SoundLoopSetPlayerStatus: # Enumeration of the possible sound loop set player status values. player_idle = 0 player_delayed = 1 player_fading_in = 2 player_fading_out = 3 player_playing = 4 ctypedef struct SoundLoopSetPlayer: SoundLoopSetPlayerStatus status Uint32 length SoundLoopLayerSettings master_sound_layer GSList *layers # An array of SoundLoopLayerSettings objects Uint32 sample_pos Uint32 stop_loop_samples_remaining Uint32 start_delay_samples_remaining float tempo ctypedef struct TrackSoundLoopState: # State variables for TrackSoundLoop tracks GSList *players SoundLoopSetPlayer *current # --------------------------------------------------------------------------- # TrackSoundLoop class # --------------------------------------------------------------------------- cdef class TrackSoundLoop(Track): # Track state needs to be stored in a C struct in order for them to be accessible in # the SDL callback functions without the GIL (for performance reasons). # The TrackSoundLoopState struct is allocated during construction and freed during # destruction. cdef TrackSoundLoopState *type_state cdef long _sound_loop_set_counter cdef dict _active_sound_loop_sets cdef process_notification_message(self, NotificationMessageContainer *notification_message) cdef _apply_layer_settings(self, SoundLoopLayerSettings *layer, dict layer_settings) cdef _initialize_player(self, SoundLoopSetPlayer *player) cdef _delete_player(self, SoundLoopSetPlayer *player) cdef _delete_player_layers(self, SoundLoopSetPlayer *player) cdef _cancel_all_delayed_players(self) cdef _fade_out_all_players(self, Uint32 fade_steps) cdef inline Uint32 _fix_sample_frame_pos(self, Uint32 sample_pos, Uint8 bytes_per_sample, int channels) cdef inline Uint32 _round_sample_pos_up_to_interval(self, Uint32 sample_pos, Uint32 interval, int bytes_per_sample_frame) @staticmethod cdef void mix_playing_sounds(TrackState *track, Uint32 buffer_length, AudioCallbackData *callback_data) nogil cdef SoundLoopLayerSettings *_create_sound_loop_layer_settings() nogil <|end_of_text|>from cython.operator cimport
Cython
dereference as deref from libc.stdlib cimport free from libcpp cimport bool from hltypes cimport Array, String cimport XAL import os cdef char* XAL_AS_ANDROID = "Android" cdef char* XAL_AS_DIRECTSOUND = "DirectSound" cdef char* XAL_AS_OPENAL = "OpenAL" cdef char* XAL_AS_SDL = "SDL" cdef char* XAL_AS_AVFOUNDATION = "AVFoundation" cdef char* XAL_AS_COREAUDIO = "CoreAudio" cdef char* XAL_AS_DISABLED = "Disabled" cdef char* XAL_AS_DEFAULT = "" cdef XAL.BufferMode FULL = XAL.FULL cdef XAL.BufferMode LAZY = XAL.LAZY cdef XAL.BufferMode MANAGED = XAL.MANAGED cdef XAL.BufferMode ON_DEMAND = XAL.ON_DEMAND cdef XAL.BufferMode STREAMED = XAL.STREAMED cdef XAL.SourceMode DISK = XAL.DISK cdef XAL.SourceMode RAM = XAL.RAM cdef XAL.Format FLAC = XAL.FLAC cdef XAL.Format M4A = XAL.M4A cdef XAL.Format OGG = XAL.OGG cdef XAL.Format SPX = XAL.SPX cdef XAL.Format WAV = XAL.WAV cdef XAL.Format UNKNOWN = XAL.UNKNOWN cdef extern from *: ctypedef char* const_char_ptr "const char*" ctypedef unsigned char* const_unsigned_char_ptr "const unsigned char*" ctypedef String& chstr "chstr" ctypedef String hstr "hstr" ctypedef Array harray "harray" # cdef str LOG_PATH = "" # cdef bool LOG_ENABLED = False # cpdef SetLogPath(str path): # ''' # Sets the path where XAL should create a log file. # the path should not include the file # PyXAL will try to create a folder at the path if the path doesn't exist and will save it's log in that folder as a file named XAL.log # @param path: string path to the folder where the log should be made # @return: returns True or False if the path was set # ''' # global LOG_PATH # cdef str blank = "" # cdef bint result = False # if not LOG_PATH == blank and not os.path.exists(path) or not os.path.isdir(path): # try: # os.makedirs(path) # except StandardError: # return result # LOG_PATH = path # result = True # return result # cpdef EnableLogging(bool state = True, str path = ""): # ''' # sets the logging state of PyXAL by default it is off # @param state: bool True or False if XAL should be logging data default is True so calling # PyXAL.EnableLogging will turn logging on (by default PyXAL does not log) # @param path: string path to the folder where PyXAL should create the log # it is an empty string by default so that should mean the log will be made in the # current working directory. calling PyXAL.EnableLogging will set the path to an empty string if the paramater is not included # @return: returns True or False if the path was set # ''' # global LOG_ENABLED # LOG_ENABLED = state # cdef bint result = False # result = SetLogPath(path) # return result # cdef void Log(chstr logMessage): # global LOG_PATH # global LOG_ENABLED # if not LOG_ENABLED: # return # cdef const_char_ptr message # cdef const_char_ptr line_end = "\n" # message = logMessage.c_str() # pymessage = message + line_end # if os.path.exists(LOG_PATH): # try: # path = os.path.join(LOG_PATH, "XAL.log") # file = open(path, "ab") # file.write(pymessage) # file.close() # except StandardError: # pass # XAL.setLogFunction(Log) Mgr = None cdef hstr Py_to_Hstr (string): py_byte_string = string.encode('UTF-8') cdef char* c_str = py_byte_string cdef hstr hstring = hstr(c_str) return hstring cdef Hstr_to_Py (hstr string): cdef const_char_ptr c_str = string.c_str() py_byte_string = c_str pystring = py_byte_string.decode('UTF-8') return pystring cdef class PyAudioManager: ''' A wrapper for the C++ xal::AudioManager class. it is currently not used ''' cdef XAL.AudioManager *_pointer cdef bool destroyed def __init__(self): ''' this is a wapper class for a C++ class. it should not be initialied outside of the PyXAL module as proper set up would be impossible. as such calling the __init__ method will raise a Runtime Error ''' raise RuntimeError("PyAudioManager Can not be initialized from python") cdef class SoundWrapper: ''' A wrapper class for the C++ xal::Sound class. it is returned by the XALManager.createSound and PyPlayer.getSound methods ''' cdef XAL.Sound *_pointer cdef bool destroyed def __init__(self): ''' this is a wapper class for a C++ class. it should not be initialied outside of the PyXAL module as proper set up would be impossible. as such calling the __init__ method will raise a Runtime Error ''' raise RuntimeError("PySound Can not be initialized from python") def _destroy(self): if self.isXALInitialized() and not self.destroyed : XAL.mgr.destroySound(self._pointer) self.destroyed = True def __dealloc__(self): if (XAL.mgr!= NULL) and (not self.destroyed): XAL.mgr.destroySound(self._pointer) self.destroyed = True def isXALInitialized(self): ''' returns true if the C++ side of the interface to XAL exists ''' if XAL.mgr!= NULL: return True else: return False def getName(self): ''' @return: returns the string name of the sound. it is normal the full path of teh sound file with out the file extention ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") cdef hstr hl_name = self._pointer.getName() name = Hstr_to_Py(hl_name) return name def getFilename(self): ''' @return: returns a string containing the file name the sound was loaded from ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") cdef hstr hl_name = self._pointer.getFilename() name = Hstr_to_Py(hl_name) return name def getRealFilename(self): ''' @return: returns a string with the full path to the file the string was loaded from ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") cdef hstr hl_name = self._pointer.getRealFilename() name = Hstr_to_Py(hl_name) return name def getSize(self): ''' @return: int the size of the sound data in bits not bytes ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") cdef int size = self._pointer.getSize() return size def getChannels(self): ''' @return: int number of channels the sound has. 1 for mono or 2 for stereo ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") cdef int channels = self._pointer.getChannels() return channels def getSamplingRate(self): ''' @return: int the sampeling rate for the sound in samples per second ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") cdef int rate = self._pointer.getSamplingRate() return rate def getBitsPerSample(self): ''' @return: int the bits per sample of data in the sound. usualy 8, 16, or 24, possibly 32 not sure ''' if not self.isXALInitialized():
Cython
raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") cdef int rate = self._pointer.getBitsPerSample() return rate def getDuration(self): ''' @return: float duration of the sound in seconds. it is a floating point number to acound for fractions of a second ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") cdef float duration = self._pointer.getDuration() return duration def getFormat(self): ''' @return: int the intrnal designation of the sound format. coresponds to a file type but as of now there is no way to tell for certin which is which as the nubers will change depending on what formats are currently suported by XAL ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") cdef int format = <int>self._pointer.getFormat() return format def isStreamed(self): ''' @return: bool is the sound being streamed from it's file to the player? or is it comleatly loaded into memory. should always return false in PyXAL as PyXAL uses full decoding mode ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") cdef bint streamed = self._pointer.isStreamed() return streamed def readPcmData(self): ''' read the pcm data of the sound and return it the format of said data can be determined from the size, chanels, bits per sample and sampleling rate of the sound @return: a 2 tuple of (number of bits read, string of bytes read) ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") cdef unsigned char* pcm_data cdef int pcm_size cdef char* c_data data = "" try: pcm_size = self._pointer.readPcmData(&pcm_data) if pcm_size > 0: c_data = <char*>pcm_data data = c_data[:pcm_size] finally: free(pcm_data) pcm_data = NULL return (pcm_size, data) cdef class PlayerWrapper: ''' a wraper for the C++ class xal::Player. it is retuned by the XALManager.createPlayer method ''' cdef XAL.Player *_pointer cdef bool destroyed def __init__(self): ''' this is a wapper class for a C++ class. it should not be initialied outside of the PyXAL module as proper set up would be impossible. as such calling the __init__ method will raise a Runtime Error ''' raise RuntimeError("PyPlayer Can not be initialized from python") def _destroy(self): if self.isXALInitialized() and not self.destroyed: XAL.mgr.destroyPlayer(self._pointer) self.destroyed = True def __dealloc__(self): if (XAL.mgr!= NULL) and (not self.destroyed): XAL.mgr.destroyPlayer(self._pointer) self.destroyed = True def isXALInitialized(self): ''' returns true if the C++ side of the interface to XAL exists ''' if XAL.mgr!= NULL: return True else: return False def getGain(self): ''' @return: float the current gain of the player (also knows as volume) ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") cdef float gain = self._pointer.getGain() return gain def setGain(self, float value): ''' set the gain of the player (also knows as volume) @param value: float the value of the volume to set 1.0 is normal 2.0 is twice as loud 0.5 is half volume ect. ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") self._pointer.setGain(value) def getPitch(self): ''' @return: float the current pitch of the player ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") cdef float offset = self._pointer.getPitch() return offset def setPitch(self, float value): ''' set the current pitch of the player @param value: float the value of the pitch to set to set 1.0 is normal 2.0 is a 200% shift 0.5 is a 50% shift ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") self._pointer.setPitch(value) def getName(self): ''' @return: returns the string name of the sound. it is normal the full path of teh sound file with out the file extention ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") cdef hstr hl_name = self._pointer.getName() name = Hstr_to_Py(hl_name) return name def getFilename(self): ''' @return: returns a string containing the file name the sound was loaded from ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") cdef hstr hl_name = self._pointer.getFilename() name = Hstr_to_Py(hl_name) return name def getRealFilename(self): ''' @return: returns a string with the full path to the file the string was loaded from ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") cdef hstr hl_name = self._pointer.getRealFilename() name = Hstr_to_Py(hl_name) return name def getDuration(self): ''' @return: float duration of the sound in seconds. it is a floating point number to acound for fractions of a second ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") cdef float duration = self._pointer.getDuration() return duration def getSize(self): ''' @return: int the size of the sound data in bits not bytes ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") cdef int size = self._pointer.getSize() return size def getTimePosition(self): ''' @return: float the time position in seconds ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") cdef float size = self._pointer.getTimePosition() return size def getSamplePosition(self): ''' @return: unsigned int the position in the buffer ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") cdef unsigned int size = self._pointer.getSamplePosition() return size def isPlaying(self): ''' @return: bool True of the sound is playing ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._pointer.isPlaying() def isPaused(self): ''' @return: bool True if the sound is paused ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._pointer.isPaused() def isFading(self): ''' @return: bool True if the sound is fading in or out ''' if not self.isXALInitialized(): raise RuntimeError
Cython
("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._pointer.isFading() def isFadingIn(self): ''' @return: bool True if the sound is fading in ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._pointer.isFadingIn() def isFadingOut(self): ''' @return: bool True if teh sound is fading out ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._pointer.isFadingOut() def isLooping(self): ''' @return: bool True of the sound is looping ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._pointer.isLooping() def play(self, float fadeTime = 0.0, bool looping = False): ''' start the sound playing at it's current offset, the offset starts at 0.0 when teh sound is first loaded @param fadeTime: float the time in seconds for the sound to fade in (0.0 by default) @param looping: bool should the sound loop (False by default) ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") self._pointer.play(fadeTime, looping) def stop(self, float fadeTime = 0.0): ''' stop the sound playing and rest set it's offset to 0.0 @param fadeTime: float the time in seconds for the sound to fade out (0.0 by default) ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") self._pointer.stop(fadeTime) def pause(self, float fadeTime = 0.0): ''' stop the sound playing keeping the current offset of the sound @param fadeTime: float the time in seconds for the sound to fade out (0.0 by default) ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") self._pointer.pause(fadeTime) class PySound(object): ''' a interface for the wrapper of the xal::Sound class ''' CATEGORY_STR = "default" _wrapper = None destroyed = False def __init__(self, filename): ''' this creates a sound object from a file name ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") path = os.path.split(filename)[0] cdef hstr file_str = Py_to_Hstr(filename) cdef hstr path_str = Py_to_Hstr(path) cdef hstr category = Py_to_Hstr(self.CATEGORY_STR) cdef XAL.Sound* sound sound = XAL.mgr.createSound(file_str, category, path_str) if sound == NULL: raise RuntimeError("XAL Failed to load file %s" % filename) cdef SoundWrapper wrapper = SoundWrapper.__new__(SoundWrapper) wrapper._pointer = sound wrapper.destroyed = False self._wrapper = wrapper def _destroy(self): if self.isXALInitialized() and not self.destroyed: self._wrapper._destroy() self.destroyed = True def __del__(self): if self.isXALInitialized(): self._destroy() del self._wrapper def isXALInitialized(self): ''' returns true if the C++ side of the interface to XAL exists ''' if XAL.mgr!= NULL: return True else: return False def getName(self): ''' @return: returns the string name of the sound. it is normal the full path of teh sound file with out the file extention ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.getName() def getFilename(self): ''' @return: returns a string containing the file name the sound was loaded from ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.getFilename() def getRealFilename(self): ''' @return: returns a string with the full path to the file the string was loaded from ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.getRealFilename() def getSize(self): ''' @return: int the size of the sound data in bits not bytes ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.getSize() def getChannels(self): ''' @return: int number of channels the sound has. 1 for mono or 2 for stereo ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.getChannels() def getSamplingRate(self): ''' @return: int the sampeling rate for the sound in samples per second ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.getSamplingRate() def getBitsPerSample(self): ''' @return: int the bits per sample of data in the sound. usualy 8, 16, or 24, possibly 32 not sure ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.getBitsPerSample() def getDuration(self): ''' @return: float duration of the sound in seconds. it is a floating point number to acound for fractions of a second ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.getDuration() def getFormat(self): ''' @return: int the intrnal designation of the sound format. coresponds to a file type but as of now there is no way to tell for certin which is which as the nubers will change depending on what formats are currently suported by XAL ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.getFormat() def isStreamed(self): ''' @return: bool is the sound being streamed from it's file to the player? or is it comleatly loaded into memory. should always return false in PyXAL as PyXAL uses full decoding mode ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.isStreamed() def readPcmData(self): ''' read the raw data of the sound and return it the format of said data can be determined from the size, chanels, bits per sample and sampleling rate of the sound @return: a 2 tuple of (number of bits read, string of bytes read) ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.readPcmData() class PyPlayer(object): ''' a interface for the C++ wrapper ''' _wrapper = None _sound = None destroyed = False def __init__(self, sound): ''' a PyPlayer object created by bassing a PySound to the __init__ method ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if not isinstance(sound, PySound
Cython
): raise TypeError("Expected argument 1 to be of type PySound got %s" % type(sound)) sound_name = sound.getName() cdef hstr hl_name = Py_to_Hstr(sound_name) cdef XAL.Player* player player = XAL.mgr.createPlayer(hl_name) if player == NULL: raise RuntimeError("XAL Failed to create a player for %s" % sound_name) cdef PlayerWrapper wrapper = PlayerWrapper.__new__(PlayerWrapper) wrapper._pointer = player wrapper.destroyed = False self._wrapper = wrapper self._sound = sound def _destroy(self): if self.isXALInitialized() and not self.destroyed: self._wrapper._destroy() self.destroyed = True def __del__(self): global Mgr if not self.destroyed: if Mgr is not None: if hasattr(Mgr, "_players"): if Mgr._players.has_key(self.getName()): if self in Mgr._player[self.getName()]: Mgr.players[self.getName()].remove(self) if self.isXALInitialized(): self._destroy() del self._wrapper del self._sound def isXALInitialized(self): ''' returns true if the C++ side of the interface to XAL exists ''' if XAL.mgr!= NULL: return True else: return False def getGain(self): ''' @return: float the current gain of the player (also knows as volume) ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.getGain() def setGain(self, float value): ''' set the gain of the player (also knows as volume) @param value: float the value of the volume to set 1.0 is normal 2.0 is twice as loud 0.5 is half volume ect. ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") self._wrapper.setGain(value) def getPitch(self): ''' @return: float the current pitch of the player ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.getPitch() def setPitch(self, float value): ''' set the current pitch of the player @param value: float the value of the pitch to set to set 1.0 is normal 2.0 is a 200% shift 0.5 is a 50% shift ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") self._wrapper.setPitch(value) def getSound(self): ''' return a PySound class wrapper for the sound object of the player ''' return self._sound def getName(self): ''' @return: returns the string name of the sound. it is normal the full path of teh sound file with out the file extention ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.getName() def getFilename(self): ''' @return: returns a string containing the file name the sound was loaded from ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.getFilename() def getRealFilename(self): ''' @return: returns a string with the full path to the file the string was loaded from ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.getRealFilename() def getDuration(self): ''' @return: float duration of the sound in seconds. it is a floating point number to acound for fractions of a second ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.getDuration() def getSize(self): ''' @return: int the size of the sound data in bits not bytes ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.getSize() def getTimePosition(self): ''' @return: float the time position in seconds ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.getTimePosition() def getSamplePosition(self): ''' @return: unsigned int the position in the buffer ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.getSamplePosition() def isPlaying(self): ''' @return: bool True of the sound is playing ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.isPlaying() def isPaused(self): ''' @return: bool True if the sound is paused ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.isPaused() def isFading(self): ''' @return: bool True if the sound is fading in or out ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.isFading() def isFadingIn(self): ''' @return: bool True if the sound is fading in ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.isFadingIn() def isFadingOut(self): ''' @return: bool True if teh sound is fading out ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.isFadingOut() def isLooping(self): ''' @return: bool True of the sound is looping ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") return self._wrapper.isLooping() def play(self, float fadeTime = 0.0, bool looping = False): ''' start the sound playing at it's current offset, the offset starts at 0.0 when teh sound is first loaded @param fadeTime: float the time in seconds for the sound to fade in (0.0 by default) @param looping: bool should the sound loop (False by default) ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") self._wrapper.play(fadeTime, looping) def stop(self, float fadeTime = 0.0): ''' stop the sound playing and rest set it's offset to 0.0 @param fadeTime: float the time in seconds for the sound to fade out (0.0 by default) ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed") self._wrapper.stop(fadeTime) def pause(self, float fadeTime = 0.0): ''' stop the sound playing keeping the current offset of the sound @param fadeTime: float the time in seconds for the sound to fade out (0.0 by default) ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self.destroyed: raise RuntimeError("the C++ interface for this object has been destroyed")
Cython
self._wrapper.pause(fadeTime) cdef class XALManagerWrapper(object): ''' a wrapper for the xal::mgr object which is a xal::AudioManager. in other words this is the main interface to XAL you SHOLD NOT create an instance of the class yourself. call PyXAL.Init to set up XAL. an instance of this class will be made avalable at PyXAL.Mgr ''' cdef bint destroyed, inited cdef XAL.Category *_category cdef char* CATEGORY_STR def __init__(self, char* systemname, int backendId, bint threaded = False, float updateTime = 0.01, char* deviceName = ""): ''' sets up the interface and initializes XAL you SHOULD NOT BE CREATING THIS CLASS YOUR SELF call PyXAL.Init and use the object created at PyXAL.Mgr if PyXAL.Mgr is None call PyXAL.Destroy and then PyXAL.Init to set up the interface again @param systemname: string name of the back end system to use @param backendId: int window handle of the calling aplication @param threaded: bool should the system use a threaded interface? (False by defaut) @param updateTime: float how offten should XAL update (0.01 by default) @param deviceName: string arbatrary device name ("" by default) ''' global Mgr if Mgr is not None: raise RuntimeError("Only one XALManager interface allowed at a time, use the one at PyXAL.Mgr") self.CATEGORY_STR = "default" cdef hstr name = hstr(systemname) cdef hstr dname = hstr(deviceName) self._destroyXAL() XAL.init(name, <void*>backendId, threaded, updateTime, dname) self.inited = True self.destroyed = False self.SetupXAL() def __dealloc__(self): if XAL.mgr!= NULL: fade = 0.0 XAL.mgr.stopAll(fade) XAL.destroy() def isXALInitialized(self): ''' returns true if the C++ side of the interface to XAL exists ''' if XAL.mgr!= NULL: return True else: return False def SetupXAL(self): ''' set up XAL and create the default sound catagory ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") cdef hstr category = hstr(self.CATEGORY_STR) self._category = XAL.mgr.createCategory(category, FULL, DISK) def _destroyXAL(self): if XAL.mgr!= NULL: fade = 0.0 XAL.mgr.stopAll(fade) XAL.destroy() class XALManager(object): ''' a wrapper for the xal::mgr object which is a xal::AudioManager. in other words this is the main interface to XAL you SHOLD NOT create an instance of the class yourself. call PyXAL.Init to set up XAL. an instance of this class will be made avalable at PyXAL.Mgr ''' destroyed = False inited = False CATEGORY_STR = "default" _players = {} _wrapper = None def __init__(self, int backendId, bint threaded = False): ''' sets up the interface and initializes XAL you SHOULD NOT BE CREATING THIS CLASS YOUR SELF call PyXAL.Init and use the object created at PyXAL.Mgr if PyXAL.Mgr is None call PyXAL.Destroy and then PyXAL.Init to set up the interface again @param backendId: int window handle of the calling aplication @param threaded: bool should the system use a threaded interface? (False by defaut) ''' global Mgr if Mgr is not None: raise RuntimeError("Only one XALManager interface allowed at a time, use the one at PyXAL.Mgr") cdef XALManagerWrapper wrapper = XALManagerWrapper(XAL_AS_DEFAULT, backendId, threaded) self._wrapper = wrapper self._players = {} def isXALInitialized(self): ''' returns true if the C++ side of the interface to XAL exists ''' if XAL.mgr!= NULL: return True else: return False def __del__(self): ''' make sure XAL is destroyed if the interface is destroyed ''' del self._players del self._wrapper def clear(self): ''' clear the XAL interface and reset it to be like it was freshly initialized all current sounds and players become invalid ''' self._players = {} if self.isXALInitialized(): fade = 0.0 XAL.mgr.stopAll(fade) XAL.mgr.clear() def createSound(self, filename): ''' create a sound object raises a runtime error if the sound fails to load so be sure to put this call in a try except block @param filename: string full path to a sound file to load @return: a PySound wraper to the sound object ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") pysound = PySound(filename) return pysound def createPlayer(self, sound): ''' create a player from a sound object raises a runtime error if XAL fails to create a player so be sure to put this call in a try except block @param sound: a PySound wrapper to a sound object @return: a PyPlayer wraper to the player object ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if not isinstance(sound, PySound): raise TypeError("Expected argument 1 to be of type PySound got %s" % type(sound)) sound_name = sound.getName() if not self._players.has_key(sound_name): self._players[sound_name] = [] pyplayer = PyPlayer(sound) self._players[sound_name].append(pyplayer) return pyplayer def destroyPlayer(self, player): ''' destroy a player object destroyes the C++ interface. the object is unusable after this @param pyplayer: the PyPlayer wrapper for the player to destory ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if not isinstance(player, PyPlayer): raise TypeError("Expected argument 1 to be of type PyPlayer got %s" % type(player)) name = player.getName() if self._players.has_key(name): if player in self._players[name]: self._players[name].remove(player) player._destroy() def destroySound(self, sound): ''' destroy a sound object destroyes the C++ interface. the object is unusable after this and so is any player that uses the sound @param pyplayer: the Pysound wrapper for the sound to destory ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if not isinstance(sound, PySound): raise TypeError("Expected argument 1 to be of type PySound got %s" % type(sound)) sound._destroy() def findPlayer(self, str name): ''' tries to find a player for the sound whos name is passed. it find the player useing the intrealy kept list of wrpaed player instances. returns the first player in the list @param name: string the name of the soudn to find a player for @return: a PyPlayer wraper to the player object or None if no player is found ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") if self._players.has_key(name): if len(self._players[name]) > 0: return self._players[name][0] return None def play(self, name, float fadeTime = 0.0, bool looping = False, float gain = 1.0): ''' play the sound identified by the name passed (it must of alrady been created) @param name: string the name of the sound to play. it must alrady of been created @param fadeTime: float time is seconds for teh sound to fade in (0.0 by default) @param looping: bool should the sound loop? (False by default) @param gain: float the volume to play the sound at. 1.0 is normal 0.5 is half 2.0 is twice the volume ect. (1.0 by default) ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") cdef hstr hl_name = Py_to_Hstr(name) XAL.mgr.play(hl_name, fadeTime, looping, gain) def stop(self, name, float fadeTime = 0.0): ''' stop playing the sound identifed by the name passed @param name: string the name of the sound to stop @param fadeTime: float the
Cython
time is second for the sound to fade out (0.0 by default) ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") cdef hstr hl_name = Py_to_Hstr(name) XAL.mgr.stop(hl_name, fadeTime) def stopFirst(self, name, float fadeTime = 0.0): ''' stop playing the first player of the sound identifed by the name passed @param name: string the name of the sound to stop @param fadeTime: float the time is second for the sound to fade out (0.0 by default) ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") cdef hstr hl_name = Py_to_Hstr(name) XAL.mgr.stopFirst(hl_name, fadeTime) def stopAll(self, float fadeTime = 0.0): ''' stop playing the all players of the sound identifed by the name passed @param name: string the name of the sound to stop @param fadeTime: float the time is second for the sound to fade out (0.0 by default) ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") XAL.mgr.stopAll(fadeTime) def isAnyPlaying(self, name): ''' @param name: sting name of sound to check @return: bool True if there is a sound by this name playing ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") cdef hstr hl_name = Py_to_Hstr(name) cdef bint result = XAL.mgr.isAnyPlaying(hl_name) return result def isAnyFading(self, name): ''' @param name: sting name of sound to check @return: bool True if there is a sound by this name fading in or out ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") cdef hstr hl_name = Py_to_Hstr(name) cdef bint result = XAL.mgr.isAnyFading(hl_name) return result def isAnyFadingIn(self, name): ''' @param name: sting name of sound to check @return: bool True if there is a sound by this name fading in ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") cdef hstr hl_name = Py_to_Hstr(name) cdef bint result = XAL.mgr.isAnyFadingIn(hl_name) return result def isAnyFadingOut(self, name): ''' @param name: sting name of sound to check @return: bool True if there is a sound by this name fading out ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") cdef hstr hl_name = Py_to_Hstr(name) cdef bint result = XAL.mgr.isAnyFadingOut(hl_name) return result def suspendAudio(self): ''' pause all sounds and players @param fadeTime: float the time is second for the sound to fade out (0.0 by default) ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") XAL.mgr.suspendAudio() def resumeAudio(self): ''' resume all sounds and players @param fadeTime: float the time is second for the sound to fade in (0.0 by default) ''' if not self.isXALInitialized(): raise RuntimeError("XAL is not Initialized") XAL.mgr.resumeAudio() def Init(int backendId, bint threaded = True): ''' Setup XAL and create an XALManager interface at PyXAL.Mgr @param backendId: int window handel in the calling aplication @param threaded: bool should XAL use a threaded interface? (True by default) ''' global Mgr if Mgr is None: if XAL.mgr!= NULL: fade = 0.0 XAL.mgr.stopAll(fade) XAL.destroy() Mgr = XALManager(backendId, threaded) def Destroy(): ''' Destroy XAL and remove the interface at PyXAL setting it to None ''' global Mgr if XAL.mgr!= NULL: fade = 0.0 XAL.mgr.stopAll(fade) XAL.destroy() Mgr = None<|end_of_text|>from collections import OrderedDict as odict from bot_belief_1 cimport Bot as BotBelief1 from bot_belief_4 cimport Bot as BotBelief4 from bot_belief_f cimport Bot as BotBeliefF from bot_diffs_1 cimport Bot as BotDiffs1 from bot_diffs_1_m cimport Bot as BotDiffs1M from bot_diffs_2 cimport Bot as BotDiffs2 from bot_diffs_3 cimport Bot as BotDiffs3 from bot_diffs_4 cimport Bot as BotDiffs4 from bot_diffs_4_m cimport Bot as BotDiffs4M from bot_linear cimport Bot as BotLinear from bot_linear_m cimport Bot as BotLinearM from bot_phases_1 cimport Bot as BotPhases1 from bot_quadratic cimport Bot as BotQuadratic from bot_random cimport Bot as BotRandom from bot_random_1 cimport Bot as BotRandom1 from bot_random_5 cimport Bot as BotRandom5 from bot_random_n cimport Bot as BotRandomN from bot_simi cimport Bot as BotSimi from bot_states_1 cimport Bot as BotStates1 available_bots = odict(( ('belief_1', BotBelief1), ('belief_4', BotBelief4), ('belief_f', BotBeliefF), ('diffs_1', BotDiffs1), ('diffs_1_m', BotDiffs1M), ('diffs_2', BotDiffs2), ('diffs_3', BotDiffs3), ('diffs_4', BotDiffs4), ('diffs_4_m', BotDiffs4M), ('linear', BotLinear), ('linear_m', BotLinearM), ('phases_1', BotPhases1), ('quadratic', BotQuadratic), ('random', BotRandom), ('random_1', BotRandom1), ('random_5', BotRandom5), ('random_n', BotRandomN), ('simi', BotSimi), ('states_1', BotStates1) )) <|end_of_text|>from.object cimport PyObject cdef extern from "Python.h": ############################################################################ # 6.3 Sequence Protocol ############################################################################ bint PySequence_Check(object o) # Return 1 if the object provides sequence protocol, and 0 # otherwise. This function always succeeds. Py_ssize_t PySequence_Size(object o) except -1 # Returns the number of objects in sequence o on success, and -1 # on failure. For objects that do not provide sequence protocol, # this is equivalent to the Python expression "len(o)". Py_ssize_t PySequence_Length(object o) except -1 # Alternate name for PySequence_Size(). object PySequence_Concat(object o1, object o2) # Return value: New reference. # Return the concatenation of o1 and o2 on success, and NULL on # failure. This is the equivalent of the Python expression "o1 + # o2". object PySequence_Repeat(object o, Py_ssize_t count) # Return value: New reference. # Return the result of repeating sequence object o count times, or # NULL on failure. This is the equivalent of the Python expression # "o * count". object PySequence_InPlaceConcat(object o1, object o2) # Return value: New reference. # Return the concatenation of o1 and o2 on success, and NULL on # failure. The operation is done in-place when o1 supports # it. This is the equivalent of the Python expression "o1 += o2". object PySequence_InPlaceRepeat(object o, Py_ssize_t count) # Return value: New reference. # Return the result of repeating sequence object o count times, or # NULL on failure. The operation is done in-place when o supports # it. This is the equivalent of the Python expression "o *= # count". object PySequence_GetItem(object o, Py_ssize_t i) # Return value: New reference. # Return the ith element of o, or NULL on failure. This is the # equivalent of the Python expression "o[i]". object PySequence_GetSlice(object o, Py_ssize_t i1, Py_ssize_t i2) # Return value: New reference. # Return the slice of sequence object o between i1 and i2, or NULL # on failure. This is the equivalent of the Python expression # "o[i1
Cython
:i2]". int PySequence_SetItem(object o, Py_ssize_t i, object v) except -1 # Assign object v to the ith element of o. Returns -1 on # failure. This is the equivalent of the Python statement "o[i] = # v". This function does not steal a reference to v. int PySequence_DelItem(object o, Py_ssize_t i) except -1 # Delete the ith element of object o. Returns -1 on failure. This # is the equivalent of the Python statement "del o[i]". int PySequence_SetSlice(object o, Py_ssize_t i1, Py_ssize_t i2, object v) except -1 # Assign the sequence object v to the slice in sequence object o # from i1 to i2. This is the equivalent of the Python statement # "o[i1:i2] = v". int PySequence_DelSlice(object o, Py_ssize_t i1, Py_ssize_t i2) except -1 # Delete the slice in sequence object o from i1 to i2. Returns -1 # on failure. This is the equivalent of the Python statement "del # o[i1:i2]". int PySequence_Count(object o, object value) except -1 # Return the number of occurrences of value in o, that is, return # the number of keys for which o[key] == value. On failure, return # -1. This is equivalent to the Python expression # "o.count(value)". int PySequence_Contains(object o, object value) except -1 # Determine if o contains value. If an item in o is equal to # value, return 1, otherwise return 0. On error, return -1. This # is equivalent to the Python expression "value in o". Py_ssize_t PySequence_Index(object o, object value) except -1 # Return the first index i for which o[i] == value. On error, # return -1. This is equivalent to the Python expression # "o.index(value)". object PySequence_List(object o) # Return value: New reference. # Return a list object with the same contents as the arbitrary # sequence o. The returned list is guaranteed to be new. object PySequence_Tuple(object o) # Return value: New reference. # Return a tuple object with the same contents as the arbitrary # sequence o or NULL on failure. If o is a tuple, a new reference # will be returned, otherwise a tuple will be constructed with the # appropriate contents. This is equivalent to the Python # expression "tuple(o)". object PySequence_Fast(object o, char *m) # Return value: New reference. # Returns the sequence o as a tuple, unless it is already a tuple # or list, in which case o is returned. Use # PySequence_Fast_GET_ITEM() to access the members of the # result. Returns NULL on failure. If the object is not a # sequence, raises TypeError with m as the message text. PyObject* PySequence_Fast_GET_ITEM(object o, Py_ssize_t i) # Return value: Borrowed reference. # Return the ith element of o, assuming that o was returned by # PySequence_Fast(), o is not NULL, and that i is within bounds. PyObject** PySequence_Fast_ITEMS(object o) # Return the underlying array of PyObject pointers. Assumes that o # was returned by PySequence_Fast() and o is not NULL. object PySequence_ITEM(object o, Py_ssize_t i) # Return value: New reference. # Return the ith element of o or NULL on failure. Macro form of # PySequence_GetItem() but without checking that # PySequence_Check(o) is true and without adjustment for negative # indices. Py_ssize_t PySequence_Fast_GET_SIZE(object o) # Returns the length of o, assuming that o was returned by # PySequence_Fast() and that o is not NULL. The size can also be # gotten by calling PySequence_Size() on o, but # PySequence_Fast_GET_SIZE() is faster because it can assume o is # a list or tuple. <|end_of_text|>import sys cdef str container_format_postfix = 'le' if sys.byteorder == 'little' else 'be' cdef object _cinit_bypass_sentinel cdef AudioFormat get_audio_format(lib.AVSampleFormat c_format): """Get an AudioFormat without going through a string.""" cdef AudioFormat format = AudioFormat.__new__(AudioFormat, _cinit_bypass_sentinel) format._init(c_format) return format cdef class AudioFormat(object): """Descriptor of audio formats.""" def __cinit__(self, name): if name is _cinit_bypass_sentinel: return cdef lib.AVSampleFormat sample_fmt if isinstance(name, AudioFormat): sample_fmt = (<AudioFormat>name).sample_fmt else: sample_fmt = lib.av_get_sample_fmt(name) if sample_fmt < 0: raise ValueError('Not a sample format: %r' % name) self._init(sample_fmt) cdef _init(self, lib.AVSampleFormat sample_fmt): self.sample_fmt = sample_fmt def __repr__(self): return '<av.AudioFormat %s>' % (self.name) property name: """Canonical name of the sample format. >>> SampleFormat('s16p').name 's16p' """ def __get__(self): return <str>lib.av_get_sample_fmt_name(self.sample_fmt) property bytes: """Number of bytes per sample. >>> SampleFormat('s16p').bytes 2 """ def __get__(self): return lib.av_get_bytes_per_sample(self.sample_fmt) property bits: """Number of bits per sample. >>> SampleFormat('s16p').bits 16 """ def __get__(self): return lib.av_get_bytes_per_sample(self.sample_fmt) << 3 property is_planar: """Is this a planar format? Strictly opposite of :attr:`is_packed`. """ def __get__(self): return bool(lib.av_sample_fmt_is_planar(self.sample_fmt)) property is_packed: """Is this a planar format? Strictly opposite of :attr:`is_planar`. """ def __get__(self): return not lib.av_sample_fmt_is_planar(self.sample_fmt) property planar: """The planar variant of this format. Is itself when planar: >>> fmt = Format('s16p') >>> fmt.planar is fmt True """ def __get__(self): if self.is_planar: return self return get_audio_format(lib.av_get_planar_sample_fmt(self.sample_fmt)) property packed: """The packed variant of this format. Is itself when packed: >>> fmt = Format('s16') >>> fmt.packed is fmt True """ def __get__(self): if self.is_packed: return self return get_audio_format(lib.av_get_packed_sample_fmt(self.sample_fmt)) property container_name: """The name of a :class:`ContainerFormat` which directly accepts this data. :raises ValueError: when planar, since there are no such containers. """ def __get__(self): if self.is_planar: raise ValueError('no planar container formats') if self.sample_fmt == lib.AV_SAMPLE_FMT_U8: return 'u8' elif self.sample_fmt == lib.AV_SAMPLE_FMT_S16: return's16' + container_format_postfix elif self.sample_fmt == lib.AV_SAMPLE_FMT_S32: return's32' + container_format_postfix elif self.sample_fmt == lib.AV_SAMPLE_FMT_FLT: return 'f32' + container_format_postfix elif self.sample_fmt == lib.AV_SAMPLE_FMT_DBL: return 'f64' + container_format_postfix raise ValueError('unknown layout') <|end_of_text|># Copyright (c) Meta Platforms, Inc. and affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from libc cimport stdint from libcpp cimport bool as cbool from libcpp.string cimport string INT32_MIN = stdint.INT32_MIN INT32_MAX = stdint.INT32_MAX UINT32_MAX = stdint.UINT32_MAX INT64_MIN = stdint.INT64_MIN INT64_MAX = stdint.INT64_MAX UINT64_MAX = stdint.UINT64_MAX cdef extern from "
Cython
thrift/lib/python/capi/test/marshal_fixture.h" namespace "apache::thrift::python": cdef object __make_unicode(object) cdef object __roundtrip_pyobject[T](object) cdef object __roundtrip_unicode(object) cdef object __roundtrip_bytes(object) def roundtrip_int32(object x): return __roundtrip_pyobject[stdint.int32_t](x) def roundtrip_int64(object x): return __roundtrip_pyobject[stdint.int64_t](x) def roundtrip_uint32(object x): return __roundtrip_pyobject[stdint.uint32_t](x) def roundtrip_uint64(object x): return __roundtrip_pyobject[stdint.uint64_t](x) def roundtrip_float(object x): return __roundtrip_pyobject[float](x) def roundtrip_double(object x): return __roundtrip_pyobject[double](x) def roundtrip_bool(object x): return __roundtrip_pyobject[cbool](x) def roundtrip_bytes(object x): return __roundtrip_bytes(x) def roundtrip_unicode(object x): return __roundtrip_unicode(x) def make_unicode(object x): return __make_unicode(x) <|end_of_text|># cython: language_level=3 # cython: profile=True # Time-stamp: <2019-10-30 17:27:50 taoliu> """Module Description: Statistics function wrappers. NOTE: This file is no longer used in any other MACS2 codes. This code is free software; you can redistribute it and/or modify it under the terms of the BSD License (see the file LICENSE included with the distribution). """ from libc.math cimport log10, log from MACS2.Prob import poisson_cdf cdef class P_Score_Upper_Tail: """Unit to calculate -log10 poisson_CDF of upper tail and cache results in a hashtable. """ cdef: dict pscore_dict def __init__ ( self ): self.pscore_dict = dict() cpdef float get_pscore ( self, int x, float l ): cdef: float val if ( x, l ) in self.pscore_dict: return self.pscore_dict [ (x, l ) ] else: # calculate and cache val = -1 * poisson_cdf ( x, l, False, True ) self.pscore_dict[ ( x, l ) ] = val return val cdef class LogLR_Asym: """Unit to calculate asymmetric log likelihood, and cache results in a hashtable. """ cdef: dict logLR_dict def __init__ ( self ): self.logLR_dict = dict() cpdef float get_logLR_asym ( self, float x, float y ): cdef: float val if ( x, y ) in self.logLR_dict: return self.logLR_dict[ ( x, y ) ] else: # calculate and cache if x > y: val = (x*(log10(x)-log10(y))+y-x) elif x < y: val = (x*(-log10(x)+log10(y))-y+x) else: val = 0 self.logLR_dict[ ( x, y ) ] = val return val cdef class LogLR_Sym: """Unit to calculate symmetric log likelihood, and cache results in a hashtable. "symmetric" means f(x,y) = -f(y,x) """ cdef: dict logLR_dict def __init__ ( self ): self.logLR_dict = dict() cpdef float get_logLR_sym ( self, float x, float y ): cdef: float val if ( x, y ) in self.logLR_dict: return self.logLR_dict[ ( x, y ) ] else: # calculate and cache if x > y: val = (x*(log10(x)-log10(y))+y-x) elif y > x: val = (y*(log10(x)-log10(y))+y-x) else: val = 0 self.logLR_dict[ ( x, y ) ] = val return val cdef class LogLR_Diff: """Unit to calculate log likelihood for differential calling, and cache results in a hashtable. here f(x,y) = f(y,x) and f() is always positive. """ cdef: dict logLR_dict def __init__ ( self ): self.logLR_dict = dict() cpdef float get_logLR_diff ( self, float x, float y ): cdef: float val if ( x, y ) in self.logLR_dict: return self.logLR_dict[ ( x, y ) ] else: # calculate and cache if y > x: y, x = x, y if x == y: val = 0 else: val = (x*(log10(x)-log10(y))+y-x) self.logLR_dict[ ( x, y ) ] = val return val <|end_of_text|># cython: cdivision=True cpdef bytearray decrypt(unsigned char *data, int data_len, unsigned char *key, int key_len, unsigned char *scramble, int scramble_len, unsigned char counter, int counter_step=1): cdef unsigned int output_idx = 0 cdef unsigned int idx = 0 cdef unsigned int even_bit_shift = 0 cdef unsigned int odd_bit_shift = 0 cdef unsigned int is_even_bit_set = 0 cdef unsigned int is_odd_bit_set = 0 cdef unsigned int is_key_bit_set = 0 cdef unsigned int is_scramble_bit_set = 0 cdef unsigned int is_counter_bit_set = 0 cdef unsigned int is_counter_bit_inv_set = 0 cdef unsigned int cur_bit = 0 cdef unsigned int output_word = 0 output_data = bytearray(data_len * 2) while idx < data_len: output_word = 0 cur_data = (data[(idx * 2) + 1] << 8) | data[(idx * 2)] cur_bit = 0 while cur_bit < 8: even_bit_shift = (cur_bit * 2) & 0xff odd_bit_shift = (cur_bit * 2 + 1) & 0xff is_even_bit_set = int((cur_data & (1 << even_bit_shift))!= 0) is_odd_bit_set = int((cur_data & (1 << odd_bit_shift))!= 0) is_key_bit_set = int((key[idx % key_len] & (1 << cur_bit))!= 0) is_scramble_bit_set = int((scramble[idx % scramble_len] & (1 << cur_bit))!= 0) is_counter_bit_set = int((counter & (1 << cur_bit))!= 0) is_counter_bit_inv_set = int(counter & (1 << ((7 - cur_bit) & 0xff))!= 0) if is_scramble_bit_set == 1: is_even_bit_set, is_odd_bit_set = is_odd_bit_set, is_even_bit_set if ((is_even_bit_set ^ is_counter_bit_inv_set ^ is_key_bit_set)) == 1: output_word |= 1 << even_bit_shift if (is_odd_bit_set ^ is_counter_bit_set) == 1: output_word |= 1 << odd_bit_shift cur_bit += 1 output_data[output_idx] = (output_word >> 8) & 0xff output_data[output_idx+1] = output_word & 0xff output_idx += 2 counter += counter_step idx += 1 return output_data cpdef bytearray encrypt(unsigned char *data, int data_len, unsigned char *key, int key_len, unsigned char *scramble, int scramble_len, unsigned char counter, int counter_step=1): cdef unsigned int output_idx = 0 cdef unsigned int idx = 0 cdef unsigned int even_bit_shift = 0 cdef unsigned int odd_bit_shift = 0 cdef unsigned int is_even_bit_set = 0 cdef unsigned int is_odd_bit_set = 0 cdef unsigned int is_key_bit_set = 0 cdef unsigned int is_scramble_bit_set = 0 cdef unsigned int is_counter_bit_set = 0 cdef unsigned int is_counter_bit_inv_set = 0 cdef unsigned int cur_bit = 0 cdef unsigned int output_word = 0 cdef unsigned int set_even_bit = 0 cdef unsigned int set_odd_bit = 0 output_data = bytearray(data_len * 2) while idx < data_len: output_word = 0 cur_data = (data[(idx * 2)] << 8) | data[(idx * 2) + 1] cur_bit = 0 while cur_bit < 8: even_bit_shift = (cur_bit * 2) & 0xff odd_bit_shift
Cython
= (cur_bit * 2 + 1) & 0xff is_even_bit_set = int((cur_data & (1 << even_bit_shift))!= 0) is_odd_bit_set = int((cur_data & (1 << odd_bit_shift))!= 0) is_key_bit_set = int((key[idx % key_len] & (1 << cur_bit))!= 0) is_scramble_bit_set = int((scramble[idx % scramble_len] & (1 << cur_bit))!= 0) is_counter_bit_set = int((counter & (1 << cur_bit))!= 0) is_counter_bit_inv_set = int(counter & (1 << ((7 - cur_bit) & 0xff))!= 0) set_even_bit = is_even_bit_set ^ is_counter_bit_inv_set ^ is_key_bit_set set_odd_bit = is_odd_bit_set ^ is_counter_bit_set if is_scramble_bit_set == 1: set_even_bit, set_odd_bit = set_odd_bit, set_even_bit if set_even_bit == 1: output_word |= 1 << even_bit_shift if set_odd_bit == 1: output_word |= 1 << odd_bit_shift cur_bit += 1 output_data[output_idx] = output_word & 0xff output_data[output_idx+1] = (output_word >> 8) & 0xff output_idx += 2 counter += counter_step idx += 1 return output_data <|end_of_text|># cython: language_level=3 cdef class MultiCast: cdef bytes _group cdef bytes _port cdef bytes _iface cdef bytes _ip<|end_of_text|># mode: run # tag: closures # preparse: id # preparse: def_to_cdef # # closure_tests_2.pyx # # Battery of tests for closures in Cython. Based on the collection of # compiler tests from P423/B629 at Indiana University, Spring 1999 and # Fall 2000. Special thanks to R. Kent Dybvig, Dan Friedman, Kevin # Millikin, and everyone else who helped to generate the original # tests. Converted into a collection of Python/Cython tests by Craig # Citro. # # Note: This set of tests is split (somewhat randomly) into several # files, simply because putting all the tests in a single file causes # gcc and g++ to buckle under the load. # def g1526(): """ >>> g1526() 2 """ x_1134 = 0 def g1525(): x_1136 = 1 z_1135 = x_1134 def g1524(y_1137): return (x_1136)+((z_1135)+(y_1137)) return g1524 f_1138 = g1525() return f_1138(f_1138(x_1134)) def g1535(): """ >>> g1535() 3050 """ def g1534(): def g1533(): def g1531(t_1141): def g1532(f_1142): return t_1141(f_1142(1000)) return g1532 return g1531 def g1530(): def g1529(x_1140): return (x_1140)+(50) return g1529 return g1533()(g1530()) def g1528(): def g1527(y_1139): return (y_1139)+(2000) return g1527 return g1534()(g1528()) def g1540(): """ >>> g1540() 2050 """ def g1539(): t_1143 = 50 def g1538(f_1144): return (t_1143)+(f_1144()) return g1538 def g1537(): def g1536(): return 2000 return g1536 return g1539()(g1537()) def g1547(): """ >>> g1547() 2050 """ def g1546(): def g1545(): def g1543(t_1145): def g1544(f_1146): return (t_1145)+(f_1146()) return g1544 return g1543 return g1545()(50) def g1542(): def g1541(): return 2000 return g1541 return g1546()(g1542()) def g1550(): """ >>> g1550() 700 """ def g1549(): x_1147 = 300 def g1548(y_1148): return (x_1147)+(y_1148) return g1548 return g1549()(400) def g1553(): """ >>> g1553() 0 """ x_1152 = 3 def g1552(): def g1551(x_1150, y_1149): return x_1150 return g1551 f_1151 = g1552() if (f_1151(0, 0)): return f_1151(f_1151(0, 0), x_1152) else: return 0 def g1562(): """ >>> g1562() False """ def g1561(): def g1556(x_1153): def g1560(): def g1559(): return isinstance(x_1153, list) if (g1559()): def g1558(): def g1557(): return (x_1153[0]) return (g1557() == 0) return (not g1558()) else: return False if (g1560()): return x_1153 else: return False return g1556 f_1154 = g1561() def g1555(): def g1554(): return [0,[]] return [0,g1554()] return f_1154(g1555()) def g1570(): """ >>> g1570() False """ def g1569(): def g1563(x_1155): def g1568(): if (x_1155): def g1567(): def g1566(): return isinstance(x_1155, list) if (g1566()): def g1565(): def g1564(): return (x_1155[0]) return (g1564() == 0) return (not g1565()) else: return False return (not g1567()) else: return False if (g1568()): return x_1155 else: return False return g1563 f_1156 = g1569() return f_1156(0) def g1575(): """ >>> g1575() [] """ def g1574(): def g1571(x_1157): def g1573(): def g1572(): return isinstance(x_1157, list) if (g1572()): return True else: return (x_1157 == []) if (g1573()): return x_1157 else: return [] return g1571 f_1158 = g1574() return f_1158(0) def g1578(): """ >>> g1578() 4 """ y_1159 = 4 def g1577(): def g1576(y_1160): return y_1160 return g1576 f_1161 = g1577() return f_1161(f_1161(y_1159)) def g1581(): """ >>> g1581() 0 """ y_1162 = 4 def g1580(): def g1579(x_1164, y_1163): return 0 return g1579 f_1165 = g1580() return f_1165(f_1165(y_1162, y_1162), f_1165(y_1162, y_1162)) def g1584(): """ >>> g1584() 0 """ y_1166 = 4 def g1583(): def g1582(x_1168, y_1167): return 0 return g1582 f_1169 = g1583() return f_1169(f_1169(y_1166, y_1166), f_1169(y_1166, f_1169(y_1166, y_1166))) def g1587(): """ >>> g1587() 0 """ y_1170 =
Cython
4 def g1586(): def g1585(x_1172, y_1171): return 0 return g1585 f_1173 = g1586() return f_1173(f_1173(y_1170, f_1173(y_1170, y_1170)), f_1173(y_1170, f_1173(y_1170, y_1170))) def g1594(): """ >>> g1594() 4 """ def g1593(): def g1588(y_1174): def g1592(): def g1591(f_1176): return f_1176(f_1176(y_1174)) return g1591 def g1590(): def g1589(y_1175): return y_1175 return g1589 return g1592()(g1590()) return g1588 return g1593()(4) def g1598(): """ >>> g1598() 23 """ def g1597(): def g1596(x_1177): return x_1177 return g1596 f_1178 = g1597() def g1595(): if (False): return 1 else: return f_1178(22) return (g1595()+1) def g1603(): """ >>> g1603() 22 """ def g1602(): def g1601(x_1179): return x_1179 return g1601 f_1180 = g1602() def g1600(): def g1599(): return 23 == 0 return f_1180(g1599()) if (g1600()): return 1 else: return 22 def g1611(): """ >>> g1611() 5061 """ def g1610(): def g1609(x_1182): if (x_1182): return (not x_1182) else: return x_1182 return g1609 f_1185 = g1610() def g1608(): def g1607(x_1181): return (10)*(x_1181) return g1607 f2_1184 = g1608() x_1183 = 23 def g1606(): def g1605(): def g1604(): return x_1183 == 0 return f_1185(g1604()) if (g1605()): return 1 else: return (x_1183)*(f2_1184((x_1183-1))) return (g1606()+1) def g1614(): """ >>> g1614() 1 """ def g1613(): def g1612(): return 0 return g1612 f_1186 = g1613() x_1187 = f_1186() return 1 def g1617(): """ >>> g1617() 1 """ def g1616(): def g1615(): return 0 return g1615 f_1188 = g1616() f_1188() return 1 def g1620(): """ >>> g1620() 4 """ def g1619(): def g1618(x_1189): return x_1189 return g1618 f_1190 = g1619() if (True): f_1190(3) return 4 else: return 5 def g1623(): """ >>> g1623() 6 """ def g1622(): def g1621(x_1191): return x_1191 return g1621 f_1192 = g1622() (f_1192(4)) if (True) else (5) return 6 def g1627(): """ >>> g1627() 120 """ def g1626(): def g1624(fact_1195, n_1194, acc_1193): def g1625(): return n_1194 == 0 if (g1625()): return acc_1193 else: return fact_1195(fact_1195, (n_1194-1), (n_1194)*(acc_1193)) return g1624 fact_1196 = g1626() return fact_1196(fact_1196, 5, 1) def g1632(): """ >>> g1632() 144 """ def g1631(): def g1628(b_1199, c_1198, a_1197): b_1203 = (b_1199)+(a_1197) def g1630(): def g1629(): a_1201 = (b_1199)+(b_1199) c_1200 = (c_1198)+(c_1198) return (a_1201)+(a_1201) return (a_1197)+(g1629()) a_1202 = g1630() return (a_1202)*(a_1202) return g1628 return g1631()(2, 3, 4) def g1639(): """ >>> g1639() 3 """ def g1638(): def g1636(x_1204): def g1637(): return x_1204() return g1637 return g1636 f_1205 = g1638() def g1635(): def g1634(): def g1633(): return 3 return g1633 return f_1205(g1634()) return g1635()() def g1646(): """ >>> g1646() 3628800 """ def g1645(): def g1643(x_1207): def g1644(): return x_1207 == 0 if (g1644()): return 1 else: return (x_1207)*(f_1206((x_1207)-(1))) return g1643 f_1206 = g1645() q_1208 = 17 def g1642(): def g1640(a_1209): q_1208 = 10 def g1641(): return a_1209(q_1208) return g1641 return g1640 g_1210 = g1642() return g_1210(f_1206)() <|end_of_text|># cython: language_level = 3, boundscheck = False from __future__ import absolute_import from._noncustomizable cimport noncustomizable cdef class saved_yields(noncustomizable): pass <|end_of_text|>""" Cython implementation for the 1D shock code """ from __future__ import division from scipy.special import erf, erfinv from numpy cimport ndarray, dtype import numpy as np; cimport numpy as np cimport cython; from cpython cimport bool # # Types # DTYPE = np.float64 ctypedef np.float64_t DTYPE_t # # Constants here and externs from math # cdef extern from "math.h": double sqrt(double m) double pow(double m, double n) double exp(double a) double fabs(double a) double M_PI bint isnan(double x) double log10(double x) double fmin(double, double) cdef double kk = 1.3806488e-16 cdef double ss = 5.670367e-5 # # Functions HERE # """ Decipher the input parameters from the gas and dust parameters """ cdef decipherW(ndarray[DTYPE_t, ndim=1] w, int nspecs, int ndust): """ Variables """ cdef int ig, id cdef ndarray[DTYPE_t, ndim=1] w1 = np.zeros(w.shape[0], dtype=DTYPE) # # First copy # for ig in range(w.shape[0]): w1[ig] = w[ig] # # modify gas # for ig in range(nspecs): w1[2+ig] = w[2+ig] # # modify dust: limit size # for id in range(ndust): if (w1[<unsigned int> (2+nspecs+4*id+3)] < 0.0): w1[2+nspecs+4*id+3] = 1e-30 return w1 """""" cdef double calcQdust(double Tg, double vdg, double Td, double mass,
Cython
double gamma): """ Calculate the dust heating rate qd = rhogas CHd ( Trec - Td) |vg - vd| """ # # Variables # cdef double s, qd, fact, Trec, CHd # # # s = fabs(vdg)/sqrt(2.*kk*Tg/mass) # # Calculate the heating rate # qd = 0.0 if fabs(vdg) <= 1e0: qd += (gamma+1.)/(gamma-1.) * (Tg - Td) * (sqrt( (pow(kk,3.)*Tg)/(8.*M_PI*pow(mass,3.)))) else: """ # # Calculate the recovery temperature # """ fact = ((2.*gamma)/(gamma-1.) + 2.*s*s - ( 1./( 0.5 + s*s + (s/sqrt(M_PI)) * exp(-s*s) * (1./erf(s)))) ) Trec = Tg*(gamma-1.)/(gamma+1.) * fact if s == 0.0: Trec = Tg # # Calculate the heat transfer coefficient # CHd = (gamma+1.)/(gamma-1.) * (kk/(8.0*mass*s*s)) * ( (s/sqrt(M_PI))*exp(-s*s) + ((0.5 + s*s) * erf(s)) ) """""" # # Calculate the heating rate # qd += CHd*(Trec - Td)*fabs(vdg) return qd """""" cdef double getCpd(double Td): """ Calculate and return the heat capacity """ # # Calculate the heat capacity # cdef double Cpd = 0.0 if (Td > 1400.0) and (Td < 1820.0): Cpd += 1e7 + 5e9/(1820.-1400.0) else: Cpd += 1e7 return Cpd """""" cdef double getfEvap(double Td): """ Return the evaporation fraction """ cdef double dT = 1e2 if Td < 1950.0: return 0.0 elif Td > 2050.0: return 1.0 else: return ( 3./(dT*dT) * (Td - 2e3 + dT/2.)**(2.) - 2./(dT*dT*dT) * (Td - 2e3 + dT/2.)**(3.)) """""" cdef double getEPS(double ad): return 0.8*fmin(1.0, ad/(2.0e-4)) """""" cdef double calcFDrag(double mbar, double nd, double vd, double td, double ad, double vg, double Tg, double Rhogas): """ Calculate the drag forces This depends on vdust, vgas, Tgas, Tdust, gas density """ # # Variables # cdef double vdg, Fdrag, Cd, s # # veldif # vdg = (vd - vg) # # The s variable # Fdrag = 0.0 s = fabs(vdg)/sqrt(2.* kk * Tg/ mbar) # # Calculate the drag coefficients # if s == 0.0: return 0.0 else: Cd = ( (2./(3.*s)) * sqrt(M_PI*td/Tg) + ( (2.0*s*s+1.)/(sqrt(M_PI)* s * s * s) * np.exp(-s*s)) + ( (4.0* pow(s,4.) + 4.*s*s - 1.)/(2.* pow(s,4.)) * erf(s)) ) # # Calculate the drag # Fdrag1 = (-M_PI*ad*ad*Rhogas * Cd/2. * (fabs(vdg)*vdg) ) if isnan(Cd) or isnan(Fdrag1): Fdrag += 0.0 else: Fdrag += Fdrag1 """""" return Fdrag """""" cdef double calcDXa(double nd, double vd, double td, double ad, double vg, double gam, double Tg, double Jrad, double rhod, double Rhogas, double Ngas): """ Calculate the change of the dust size dx ad = - f/(rho * H * vd) * (qd + radiation) This also depends on the recovery temperature and the heat transfer coefficient -> needs the differential velocities """ # # Variables # cdef double vdg, qd, mbar, fevap, netheat, dxa cdef double Hevap = 1.1e11 # # veldif # vdg = (vd - vg) # # The s variable # qd = 0.0 mbar = Rhogas/Ngas # # Calculate the heating rate # The function returns the middle part of the equation # qd = rhogas * qd * |vg - vd| # tempqd = calcQdust(Tg, vdg, td, mbar, gam) if isnan(tempqd): qd += 0.0 else: qd += tempqd*Rhogas """""" # # Calculate the evaporation fraction # fevap = getfEvap(td) # # Calculate the dxa # netheat = 0.0 if Jrad == 0.0: netheat += qd else: netheat = (qd + getEPS(ad)*( M_PI*Jrad - ss*pow(td, 4.)) ) dxa = -fevap/(rhod*Hevap*vd) * netheat if netheat < 0.0: dxa = 0.0 return dxa """""" cdef double calcDxTd(double nd, double vd, double td, double ad, double vg, double Tg, double Rhogas, double Ngas, double gam, double Jrad, double rhod): """ Calculate the rate of change of the dust temperature """ # # variables # cdef double vdg, qd, mbar, s, tempqd, Cpd, fevap, netheat, dxtd # # veldif # vdg = (vd - vg) # # The s variable # This has to be done per gas species # qd = 0.0 mbar = Rhogas/ Ngas s = fabs(vdg)/sqrt(2.* kk * Tg / mbar) # # Calculate the heating rate # The function returns the middle part of the equation # qd = rhogas * qd * |vg - vd| # tempqd = calcQdust(Tg, vdg, td, mbar, gam) if isnan(tempqd): qd += 0.0 else: qd += tempqd*Rhogas """""" # # Calculate the heat capacity # Cpd = getCpd(td) # # Calculate the evaporation fraction # fevap = getfEvap(td) # # Calculate the rate of change # netheat = 0.0 if Jrad == 0.0: netheat += qd else: netheat += qd + getEPS(ad)*(M_PI*Jrad - ss*pow(td, 4.)) """""" dxtd = 0.0 dxtd += ( (3. * (1.0 - fevap))/( vd * Cpd * rhod * ad) * netheat) return dxtd """""" # # Chemistry of gas using rates # @cython.boundscheck(False) cdef calculateR(double Tg, int nspecs, ndarray[DTYPE_t, ndim=1] nden, ndarray[DTYPE_t, ndim=2] rate ): """ Calculate the reactions and update the values This rate is the creation of gas species i in terms of number of reactions per unit time per unit volume """ # # Variables # cdef int nrate, irate cdef int ip1, ip2, ip3, ip4, ip5, ip6, ip7 cdef double k, zeta, avmag, albedo, rad cdef double d1, d2, d3, d4, d5,d6, d7 cdef ndarray[DTYPE_t, ndim=1]
Cython
temprates = np.zeros( (nspecs), dtype=DTYPE) zeta = 0.0 avmag = 1e30 albedo = 0.0 rad = 1e9 # # Loop through the rates to get formation and destruction rates # for irate in range(rate.shape[0]): """ Options for rate reactions """ k = 0.0 if <unsigned int> rate[irate,0] == 1: k += zeta*rate[irate, 8] # alpha elif <unsigned int> rate[irate,0] == 2: k += (zeta*rate[irate, 8]*pow( Tg / 300.0, rate[irate,9]) * rate[irate,10]/ (1.0-albedo)) elif <unsigned int> rate[irate,0] == 3: if (-rate[irate,9]*avmag > -30.0): k += (rad * rate[irate,8] * exp(-rate[irate, 10] * avmag) ) else: k += 0.0 elif <unsigned int> rate[irate,0] == 4: print 'NOT AVAILABLE!' #k += iceform(Temp) raise SystemExit else: if (-rate[irate,10]/Tg > -60.0): k += (rate[irate, 8]*pow(Tg / 300.0, rate[irate, 9])* exp(-rate[irate, 10] / Tg) ) else: k += 0.0 """""" if k > 1e10: print irate, rate[irate,0], rate[irate, 8:] print rate[irate,8] * pow(Tg/300.0, rate[irate,9]) print exp(-rate[irate,10]/Tg) raise SystemExit # # # if (k > 1e-90) and (~np.isinf(k)): """ # # Get the seven indices of products and reactants # include this rate # """ d1 = 0.0 d2 = 0.0 d3 = d4 = d5 = d6 = d7 = 0.0 ip1 = <unsigned int> rate[irate, 1] ip2 = <unsigned int> rate[irate, 2] ip3 = <unsigned int> rate[irate, 3] ip4 = <unsigned int> rate[irate, 4] ip5 = <unsigned int> rate[irate, 5] ip6 = <unsigned int> rate[irate, 6] ip7 = <unsigned int> rate[irate, 7] # # destruction # if ip2!= -99: d1 += (-k*nden[ip2] if ip3 == -99 else -k*nden[ip2]*nden[ip3]) temprates[ip1] += d1*nden[ip1] d2 += (-k*nden[ip1] if ip3 == -99 else -k*nden[ip1]*nden[ip3]) temprates[ip2] += d2*nden[ip2] if ip3!= -99: d3 += (-k*nden[ip1]*nden[ip2]) temprates[ip3] += d3*nden[ip3] else: d1 += -k temprates[ip1] += d1*nden[ip1] # # formation # if ip2!= -99: d4 += (k*nden[ip1]*nden[ip2] if ip3 == -99 else k*nden[ip1]*nden[ip2]*nden[ip3]) temprates[ip4] += d4 else: d4 += k*nden[ip1] temprates[ip4] += d4 if ip5!= -99: if ip2!= -99: d5 += (k*nden[ip1]*nden[ip2] if ip3 == -99 else k*nden[ip1]*nden[ip2]*nden[ip3]) temprates[ip5] += d5 else: d5 += k*nden[ip1] temprates[ip5] += d5 if ip6!= -99: if ip2!= -99: d6 += (k*nden[ip1]*nden[ip2] if ip3 == -99 else k*nden[ip1]*nden[ip2]*nden[ip3]) temprates[ip6] += d6 else: d6 += k*nden[ip1] temprates[ip6] += d6 if ip7!= -99: d7 += (k*nden[ip1]*nden[ip2] if ip3 == -99 else k*nden[ip1]*nden[ip2]*nden[ip3]) temprates[ip7] += d7 """""" """""" return temprates """""" cdef double calculateFreeEnergy(double totrate): """ Calculate the net energy H + H + energy -> H2 H2 + energy -> H + H """ # # Variables # cdef double onev = 1.6021772e-12 return <double> (totrate*4.48*onev) """""" cdef double gasKap(double Tg, int destroyed, ndarray[DTYPE_t, ndim=1] Tkap, ndarray[DTYPE_t, ndim=1] Kaps): """ Averaged gas opacities """ cdef double kap kap = <double> pow(10.0, np.interp(log10(Tg), Tkap, Kaps)) if (destroyed == 1 and (Tg < 1.4e3)): kap = 0.5 return kap """""" """ The vector field of the matrix to solve """ @cython.boundscheck(False) @cython.cdivision cdef vectorfield(double x, np.ndarray[DTYPE_t, ndim=1] w, np.ndarray[DTYPE_t, ndim=2] Jrad, int haveJ, int nspecs, int ndust, ndarray[DTYPE_t, ndim=1] gmasses, ndarray[DTYPE_t, ndim=1] gammas, double rhod, int destroyed, ndarray[DTYPE_t, ndim=1] Tkap, ndarray[DTYPE_t, ndim=1] Kaps, ndarray[DTYPE_t, ndim=1] gdustFrac, np.ndarray[DTYPE_t, ndim=2] rate): """ w : the variables to solve -> x, y x : position with respect to the shock p : parameters """ # # Variables here # cdef int ii, idust, ig, dumid cdef double curJ cdef double Rhogas, Ngas, vgas, Tgas, gam, gam1 cdef double dustLoss, nd, vd, td, ad cdef double varA, varB, varC, varD, varE, varF cdef double dumGas, dumDust, radiation cdef double f1, f2 dumid = nspecs+2 cdef ndarray[DTYPE_t, ndim=1] YDOT = np.zeros( <unsigned int> (2 + nspecs+ 4*ndust), dtype=DTYPE) # # Rest of functions # curJ = 0.0 if haveJ == 1: curJ += np.interp(x, Jrad[0,:], Jrad[1,:]) """""" # # Calculate the gas constants first # vgas = w[0] Tgas = w[1] Rhogas = 0.0 Ngas = 0.0 for ii in range(nspecs): Rhogas += w[<unsigned int> (2+ii)] * gmasses[<unsigned int> ii] Ngas += w[<unsigned int> (2+ii)] # # Gamma # gam1 = 0.0 gam = 0. for ii in xrange(nspecs): gam1 += w[<unsigned int> (2+ii)] * (gammas[ii] *2. - 2.) gam += (gam1/Ngas + 2.)/(gam1/Ngas) # # Dust changes # cdef np.ndarray[DTYPE_t, ndim=1] md
Cython
ust = np.zeros(ndust, dtype=DTYPE) cdef np.ndarray[DTYPE_t, ndim=1] fdrag = np.zeros(ndust, dtype=DTYPE) cdef np.ndarray[DTYPE_t, ndim=1] dxa = np.zeros(ndust, dtype=DTYPE) cdef np.ndarray[DTYPE_t, ndim=1] dxtd = np.zeros(ndust, dtype=DTYPE) cdef np.ndarray[DTYPE_t, ndim=1] Cpd = np.zeros(ndust, dtype=DTYPE) dustLoss = 0.0 # # Dust position is 2 + gas species + dusttype*4 # since each dust takes 4 positions # for idust in range(ndust): nd = w[<unsigned int> (2+nspecs + idust*4 + 0)] vd = w[<unsigned int> (2+nspecs + idust*4 + 1)] td = w[<unsigned int> (2+nspecs + idust*4 + 2)] ad = w[<unsigned int> (2+nspecs + idust*4 + 3)] mdust[idust] = (4.0/3.0)*M_PI*rhod*pow(ad, 3.) fdrag[idust] = calcFDrag(Rhogas/Ngas, nd, vd, td, ad, vgas, Tgas, Rhogas) dxa[idust] = calcDXa(nd, vd, td, ad, vgas, gam, Tgas, curJ, rhod, Rhogas, Ngas) dxtd[idust] = calcDxTd(nd, vd, td, ad, vgas, Tgas, Rhogas, Ngas, gam, curJ, rhod) Cpd[idust] = getCpd(td) if dxa[idust] > 0.0: dustLoss += 0.0 else: dustLoss += -4.0 * M_PI * (nd * vd * rhod * ad*ad * dxa[idust]) """""" """""" # # Calculate the variable here # varA = Rhogas*w[0] - (kk*w[1]/w[0])*Ngas varB = Ngas*kk varC = 0.0 # reset variable C # # Variable C now has dust properties # Calculate the gas part # cdef ndarray[DTYPE_t, ndim=1] RatesMat = (calculateR(Tgas, nspecs, w[2:2+nspecs], rate)) dumGas = 0.0 # Reset gas component for ii in range(nspecs): dumGas += RatesMat[ii]*(w[0]*gmasses[ii] + (kk*w[1]/w[0])) # # Add the dust evaporation mass # dumGas += dustLoss/(gmasses[3])*(w[0]*gmasses[3] + (kk*w[1]/w[0])) # # Get the dust part # dumDust = 0. # reset the dust part for idust in range(ndust): dumDust += (w[<unsigned int> (2+nspecs+idust*4 +0)] * (fdrag[idust] + 4.0*M_PI * pow(w[<unsigned int> (2+nspecs+idust*4 + 3)],2) * rhod * pow(w[<unsigned int> (2+nspecs+idust*4+1)], 2.) * dxa[idust]) ) varC += -(dumGas + dumDust) # # Calculate the variables for energy equation # varD = w[0]*w[0]*Rhogas varE = 0.0 for ii in range(nspecs): varE += gammas[ii] * w[2+ii] varE *= kk*w[0] varF = 0.0 # reset variable F # # Calculate the variable F with the dust # dumGas = 0.0 # reset gas for ii in range(nspecs): dumGas += (RatesMat[ii]*(gammas[ii]*kk*w[1] + 0.5*w[0]*w[0]*gmasses[ii])) dumGas += dustLoss/(gmasses[3]) * (gammas[3]*kk*w[1] + 0.5*w[0]*w[0]*gmasses[3]) # # Dust part for variable F # dumDust = 0.0 # reset dust for idust in range(ndust): dumDust += ( w[<unsigned int> (dumid + idust*4+1)] * w[<unsigned int> (dumid+idust*4+0)] * (fdrag[idust] + 2.*M_PI* pow(w[<unsigned int> (dumid+idust*4+3)], 2.) * rhod * pow(w[<unsigned int> (dumid+idust*4+1)], 2.) *dxa[idust]) + w[<unsigned int> (dumid+idust*4+0)] * ( mdust[idust] * w[<unsigned int> (dumid+idust*4+1)] * Cpd[idust] * dxtd[idust]) + (4.0 * M_PI * ( pow(w[<unsigned int> (dumid+idust*4+3)],2.) * w[<unsigned int> (dumid+idust*4+0)] * Cpd[idust] * w[<unsigned int> (dumid+idust*4+1)] * w[<unsigned int> (dumid+idust*4+2)] * rhod *dxa[idust])) ) varF += - (dumGas + dumDust) + calculateFreeEnergy(RatesMat[1]) # # Radiation part # radiation = 0.0 if haveJ == 1: radiation += (4.0 * M_PI * Rhogas * gasKap(w[1], destroyed, Tkap, Kaps) * (curJ - (ss*pow(w[1], 4.)/M_PI))) for idust in range(ndust): radiation += (4.0* M_PI * M_PI * w[<unsigned int> (dumid+4*idust+0)] * pow(w[<unsigned int> (dumid+4*idust+3)], 2.) * getEPS(w[<unsigned int> (dumid+4*idust+3)]) * (curJ- (ss * pow(w[<unsigned int> (dumid+4*idust+2)], 4.)/ M_PI))) varF += radiation # add the radiation #if curJ > 0.0: # print x, varA, varB, varC, varD, varE, varF # print Jrad[0,:5], Jrad[1,:5] # print curJ # raise SystemExit # # The RHS matrix # Check few numbers to make sure these are not too large # or too small # YDOT[0] = (varC*varE - varB*varF)/(varA*varE - varB*varD) YDOT[1] = (varA*varF - varD*varC)/(varA*varE - varB*varD) # # Integration is over space dx # The change of n * v # changes in chemical species # Add the dust evaporation # for ii in range(nspecs): YDOT[<unsigned int> (2+ii)] += RatesMat[ii] YDOT[<unsigned int> (2+ii)] += (gdustFrac[ii]*dustLoss/gmasses[ii]) YDOT[<unsigned int> (2+ii)] -= (w[2+ii] * YDOT[0]) YDOT[<unsigned int> (2+ii)] /= w[0] # # # DUST from here on # if ndust > 0: for idust in xrange(ndust): nd = w[<unsigned int> (2+nspecs + idust*4 + 0)] vd = w[<unsigned int> (2+nspecs + idust*4 + 1)] td = w[<unsigned int> (2+nspecs + idust*4 + 2)] ad = w[<unsigned int> (2+nspecs + idust*4 + 3)] YDOT[<unsigned int> (dumid + idust*
Cython
4 + 1)] += ( fdrag[idust]/(mdust[idust]*vd)) YDOT[<unsigned int> (dumid + idust*4 + 0)] += ( - (nd/vd) * YDOT[<unsigned int> (dumid + idust*4 + 1)]) YDOT[<unsigned int> (dumid + idust*4 + 2)] += dxtd[idust] YDOT[<unsigned int> (dumid + idust*4 + 3)] += dxa[idust] # # Crash and BURN handles # if (isnan(YDOT[<unsigned int> (dumid + idust*4 + 1)])): print 'NAN is found!' print 'Tgas and vgas: %e, %e'%(w[1], w[0]*1e-5) print 'ndust, vdust and Tdust: ', w[2+nspecs:] print print fdrag, mdust print w raise SystemExit if (isnan(YDOT[<unsigned int> (dumid + idust*4 + 0)])): print 'NAN is found!' print 'Tgas and vgas: %e, %e'%(w[1], w[0]*1e-5) print 'ndust, vdust and Tdust: ', w[2+nspecs:] print print fdrag, mdust print w raise SystemExit if (isnan(YDOT[<unsigned int> (dumid + idust*4 + 2)])): print 'NAN is found!' print 'Tgas and vgas: %e, %e'%(w[1], w[0]*1e-5) print 'ndust, vdust and Tdust: ', w[2+nspecs:] print print fdrag, mdust print w raise SystemExit if (isnan(YDOT[<unsigned int> (dumid + idust*4 + 3)])): print 'NAN is found!' print 'Tgas and vgas: %e, %e'%(w[1], w[0]*1e-5) print 'ndust, vdust and Tdust: ', w[2+nspecs:] print print fdrag, mdust print w raise SystemExit """""" """ Limit the changes with respect to values to 1e-15 f1 -> vgas f2 -> tgas f3 -- f6 -> number densities rest -> dust """ return YDOT """""" # # Function to be called from outside # cpdef solve(double x, np.ndarray[DTYPE_t, ndim=1] w, list p): """ Here is the function to pass to the cython function """ # # Variables # cdef int nspecs, ndust, haveJ, destroyed cdef ndarray[DTYPE_t, ndim=1] w0 = np.zeros(w.shape[0], dtype=DTYPE) # # Rescale the input # nspecs = <unsigned int> (p[0].nspecs) ndust = <unsigned int> (p[1].nspecs) w0 = decipherW(w, nspecs, ndust) # # return YDOT # haveJ = 0 if p[3]: haveJ = 1 destroyed = 0 if p[1].destroyed: destroyed = 1 return (vectorfield(x, w0, p[2], haveJ, nspecs, ndust, np.array(p[0].mass), np.array(p[0].gamma), p[1].mdust, destroyed, p[0].logT, p[0].logK, np.array(p[0].dustfrac), p[0].rates)) """""" <|end_of_text|>cimport numpy as np import numpy as np cdef void solve(Py_ssize_t n, double[:] lower, double[:] diag, double[:] upper, double[:] rhs, double[:] x): cdef: double m Py_ssize_t i, im1, nm1 = n - 1 for i in xrange(n): im1 = i - 1 m = lower[i] / diag[im1] diag[i] -= m * upper[im1] rhs[i] -= m * rhs[im1] x[nm1] = rhs[nm1] / diag[nm1] for i in xrange(n - 2, -1, -1): x[i] = (rhs[i] - upper[i] * x[i + 1]) / diag[i] cpdef double[:] tdma(double[:] a, double[:] b, double[:] c, double[:] d): cdef: Py_ssize_t n = b.shape[0] double[:] x = np.zeros(n, dtype=np.float64) solve(n, a, b, c, d, x) return x <|end_of_text|># mode: run # tag: cpp, cpp11, pthread # cython: experimental_cpp_class_def=True, language_level=2 from libcpp.vector cimport vector cdef cypclass Value: __dealloc__(self) with gil: print("Value destroyed") int foo(self): return 0 def test_cpp_index_refcounting(): """ >>> test_cpp_index_refcounting() Value destroyed 0 """ cdef vector[Value] vec vec.push_back(Value()) a = vec[0] if Cy_GETREF(a)!= 3: return -1 return 0 cdef cypclass Vector[T]: vector[T] vec T __getitem__(self, int index): return vec[index] def test_cyp_template_index_refcounting(): """ >>> test_cyp_template_index_refcounting() Value destroyed 0 """ v = Vector[Value]() v.vec.push_back(Value()) a = v[0] if Cy_GETREF(a)!= 3: return -1 return 0 cdef cypclass ValueVector: vector[Value] vec Value __getitem__(self, int index): return vec[index] def test_cyp_index_refcounting(): """ >>> test_cyp_index_refcounting() Value destroyed 0 """ v = ValueVector() v.vec.push_back(Value()) a = v[0] if Cy_GETREF(a)!= 3: return -1 return 0 def test_call_on_cpp_index_refcounting(): """ >>> test_call_on_cpp_index_refcounting() Value destroyed 0 """ cdef vector[Value] vec val = Value() vec.push_back(val) vec[0].foo() if Cy_GETREF(val)!= 3: return -1 return 0 def test_call_on_cyp_template_index_refcounting(): """ >>> test_call_on_cyp_template_index_refcounting() Value destroyed 0 """ v = Vector[Value]() val = Value() v.vec.push_back(val) v[0].foo() if Cy_GETREF(val)!= 3: return -1 return 0 def test_call_on_cyp_index_refcounting(): """ >>> test_call_on_cyp_index_refcounting() Value destroyed 0 """ v = ValueVector() val = Value() v.vec.push_back(val) v[0].foo() if Cy_GETREF(val)!= 3: return -1 return 0 <|end_of_text|>include '../../../types.pxi' from cython.operator cimport dereference as deref from libcpp cimport bool from libcpp.vector cimport vector from quantlib.handle cimport shared_ptr from quantlib.time.date cimport Date, date_from_qldate from quantlib.time._date cimport Date as _Date from quantlib.time.daycounter cimport DayCounter from quantlib.time._daycounter cimport DayCounter as QlDayCounter from.black_vol_term_structure cimport BlackVarianceTermStructure from. cimport _black_vol_term_structure as _bvts from..._vol_term_structure cimport VolatilityTermStructure cdef class BlackVarianceCurve(BlackVarianceTermStructure): """ Black volatility curve modelled as variance curve This class calculates time-dependent Black volatilities using as input a vector of (ATM) Black volatilities observed in the market. The calculation is performed interpolating on the variance curve. Linear interpolation is used as default; this can be changed by the set_interpolation() method. For strike dependence, see BlackVarianceSurface. Parameters ---------- reference_date : Date dates : list of Date black_vols : list of Volatility day_counter: DayCounter force_monotone_variance: bool """ cdef inline _bvc.BlackVarianceCurve* get_bvc
Cython
(self): """ Utility function to extract a properly casted BlackVarianceCurve out of the internal _thisptr attribute of the BlackVolTermStructure base class. """ return <_bvc.BlackVarianceCurve*>self.as_ptr() def __init__(self, Date reference_date, list dates, vector[Volatility] black_vols, DayCounter day_counter, bool force_monotone_variance = True, ): cdef vector[_Date] _dates for d in dates: _dates.push_back(deref((<Date?>d)._thisptr)) self._thisptr.reset( new _bvc.BlackVarianceCurve( deref(reference_date._thisptr), _dates, black_vols, deref(day_counter._thisptr), force_monotone_variance, ) ) @property def min_strike(self): return self.get_bvc().minStrike() @property def max_strike(self): return self.get_bvc().maxStrike() <|end_of_text|>from libcpp.memory cimport static_pointer_cast from.kaacore.hashing cimport c_calculate_hash from.kaacore.resources cimport CResourceReference from.kaacore.textures cimport CTexture, CImageTexture ctypedef CTexture* CTexture_ptr cdef class Texture: cdef CResourceReference[CTexture] c_texture @staticmethod cdef Texture create(const CResourceReference[CTexture]& texture): cdef Texture instance = Texture.__new__(Texture) instance.c_texture = texture return instance def __init__(self, str path not None): self.c_texture = CResourceReference[CTexture]( static_pointer_cast[CTexture, CImageTexture]( CImageTexture.load(path.encode()).res_ptr ) ) def __eq__(self, Texture other): if other is None: return False return self.c_texture == other.c_texture def __hash__(self): return c_calculate_hash[CTexture_ptr](self.c_texture.get()) @property def dimensions(self): return Vector.from_c_vector(self.c_texture.get().get_dimensions()) <|end_of_text|>from _c_sc cimport * cdef extern from "sc_mpi.h" nogil: enum: SC_MPI_H enum: MPI_SUCCESS enum: MPI_COMM_NULL enum: MPI_COMM_WORLD enum: MPI_COMM_SELF enum: MPI_ANY_SOURCE enum: MPI_ANY_TAG enum: MPI_STATUS_IGNORE enum: MPI_STATUSES_IGNORE enum: MPI_REQUEST_NULL enum: MPI_CHAR enum: MPI_SIGNED_CHAR enum: MPI_UNSIGNED_CHAR enum: MPI_BYTE enum: MPI_SHORT enum: MPI_UNSIGNED_SHORT enum: MPI_INT enum: MPI_UNSIGNED enum: MPI_LONG enum: MPI_UNSIGNED_LONG enum: MPI_LONG_LONG_INT enum: MPI_FLOAT enum: MPI_DOUBLE enum: MPI_LONG_DOUBLE enum: MPI_MAX enum: MPI_MIN enum: MPI_SUM enum: MPI_PROD enum: MPI_LAND enum: MPI_BAND enum: MPI_LOR enum: MPI_BOR enum: MPI_LXOR enum: MPI_BXOR enum: MPI_MINLOC enum: MPI_MAXLOC enum: MPI_REPLACE enum: MPI_UNDEFINED SC_EXTERN_C_BEGIN enum sc_tag_t: SC_TAG_AG_ALLTOALL = '' + '' SC_TAG_AG_RECURSIVE_A SC_TAG_AG_RECURSIVE_B SC_TAG_AG_RECURSIVE_C SC_TAG_NOTIFY_RECURSIVE SC_TAG_REDUCE SC_TAG_PSORT_LO SC_TAG_PSORT_HI ctypedef int MPI_Comm ctypedef int MPI_Datatype ctypedef int MPI_Op ctypedef int MPI_Request cdef struct MPI_Status: int count int cancelled int MPI_SOURCE int MPI_TAG int MPI_ERROR ctypedef MPI_Status MPI_Status int MPI_Init (int *, char ***) int MPI_Finalize () int MPI_Abort (MPI_Comm, int) __attribute__ ((noreturn)) int MPI_Comm_dup (MPI_Comm, MPI_Comm *) int MPI_Comm_free (MPI_Comm *) int MPI_Comm_size (MPI_Comm, int *) int MPI_Comm_rank (MPI_Comm, int *) int MPI_Barrier (MPI_Comm) int MPI_Bcast (void *, int, MPI_Datatype, int, MPI_Comm) int MPI_Gather (void *, int, MPI_Datatype, void *, int, MPI_Datatype, int, MPI_Comm) int MPI_Gatherv (void *, int, MPI_Datatype, void *, int *, int *, MPI_Datatype, int, MPI_Comm) int MPI_Allgather (void *, int, MPI_Datatype, void *, int, MPI_Datatype, MPI_Comm) int MPI_Allgatherv (void *, int, MPI_Datatype, void *, int *, int *, MPI_Datatype, MPI_Comm) int MPI_Reduce (void *, void *, int, MPI_Datatype, MPI_Op, int, MPI_Comm) int MPI_Allreduce (void *, void *, int, MPI_Datatype, MPI_Op, MPI_Comm) double MPI_Wtime () int MPI_Recv (void *, int, MPI_Datatype, int, int, MPI_Comm, MPI_Status *) int MPI_Irecv (void *, int, MPI_Datatype, int, int, MPI_Comm, MPI_Request *) int MPI_Send (void *, int, MPI_Datatype, int, int, MPI_Comm) int MPI_Isend (void *, int, MPI_Datatype, int, int, MPI_Comm, MPI_Request *) int MPI_Probe (int, int, MPI_Comm, MPI_Status *) int MPI_Iprobe (int, int, MPI_Comm, int *, MPI_Status *) int MPI_Get_count (MPI_Status *, MPI_Datatype, int *) int MPI_Wait (MPI_Request *, MPI_Status *) int MPI_Waitsome (int, MPI_Request *, int *, int *, MPI_Status *) int MPI_Waitall (int, MPI_Request *, MPI_Status *) size_t sc_mpi_sizeof (MPI_Datatype t) SC_EXTERN_C_END <|end_of_text|>import math import numpy as np from libc.stdlib cimport malloc, free ### Kolmogorov complexity ### #% a la Lempel and Ziv (IEEE trans inf theory it-22, 75 (1976), #% h(n)=c(n)/b(n) where c(n) is the kolmogorov complexity #% and h(n) is a normalised measure of complexity. This function returns h(n) def normedKolmogorovComplexity(s): n = len(s) c = 1 l = 1 b = n/math.log(n,2); i = 0 k = 1 k_max = 1 stop = 0 while stop==0: if s[i+k-1]!= s[l+k-1]: if k>k_max: k_max=k i=i+1 if i==l: c=c+1 l=l+k_max if l+1>n: stop=1 else: i=0 k=1 k_max=1 else: k=1 else: k=k+1 if l+k>n: c=c+1 stop=1 return(c/b) def CnormedKolmogorovComplexity(s): cdef int n = len(s) cdef int p = 10 cdef int c = 1 cdef int l = 1 cdef int i = 0 cdef int k = 1 cdef int k_max = 1 cdef int stop = 0 cdef int *cs = <int *>malloc(n * sizeof(int)) try: for j in range(n): cs[j] = s[j] while stop==0: if cs[i+k-1]!= cs[l+k-1]: if k>k_max: k_max=k i=i+1 if i==l: c=c+1 l=l+k_max if l+1>n: stop=1 else: i=0 k=1 k_max=1 else: k=1 else: k=k+1 if l+k>n: c=c+1 stop=1 finally: free(cs) b = n/math.log(n,2); return(c/b) def MovingKC(data, mean, window): n = len(data) bindata = binaryTimeseries(data,mean) kc = np.array([normedKolmogorovComplexity(bindata[i-window:i]) for i in range(2*window, n)]) na = np.zeros(2*window) na.fill(float('NaN')) kc = np.concatenate([na,kc]) return(kc) def CMovingKC(data, mean, window): n = len(data) bindata = binaryTimeseries(data,mean) kc = np.array([CnormedKolmogorovComplex
Cython
ity(bindata[i-window:i]) for i in range(2*window, n)]) na = np.zeros(2*window) na.fill(float('NaN')) kc = np.concatenate([na,kc]) return(kc) #for detrending: from scipy import signal def CMovingKC_detrend(data, window): n = len(data) def KCbinaryTimeseriesDetrend(data,window): zeros = np.zeros(window) detrend = signal.detrend(data, type='linear') binary = binaryTimeseries(detrend,zeros) return(CnormedKolmogorovComplexity(binary)) kc = np.array( [KCbinaryTimeseriesDetrend(data[i-window:i],window) for i in range(2*window, n)]) na = np.zeros(2*window) na.fill(float('NaN')) kc = np.concatenate([na,kc]) return(kc) ### ### #% Convert a timeseries, a, to a binary timeseries, c. If a[i] >= b[i] then c[i] = 1, otherwise c[i] = 0. Taken from Rohani and Miramontes, 1995. Takes as an argument two numpy arrays def binaryTimeseries(a,b): def switch(x): if(x>=0): return(1) else: return(0) return([switch(x) for x in a-b]) <|end_of_text|>include "packet.pxd" include "flow.pxd" cdef class PacketFlow: cdef flow_struct flow cpdef long get_flow_start_time(self) cpdef int get_packet_count(self) cdef bint check_flow_direction(self, char* packet_src_addr) cdef void first_packet(self, packet_struct packet) cpdef void add_packet(self, packet_struct packet) cdef void update_flow_bulk(self, packet_struct packet) cdef void update_forward_bulk(self, packet_struct packet, long timestamp_last_bulk) cdef void update_backward_bulk(self, packet_struct packet, long timestamp_last_bulk) cdef void detect_and_update_sublfows(self, packet_struct packet) cpdef void update_active_and_idle_time(self, long current_time, int threshold) cdef void check_flags(self, packet_struct packet) cdef float get_sub_flow_forward_bytes(self) cdef float get_sub_flow_forward_packets(self) cdef float get_sub_flow_backward_bytes(self) cdef float get_sub_flow_backward_packets(self) cdef float get_forward_packets_per_second(self) cdef float get_backward_packets_per_second(self) cdef float get_down_up_ratio(self) cdef float get_avg_package_size(self) cdef float forward_avg_segment_size(self) cdef float backward_avg_segment_size(self) cdef float forward_bulk_duration_in_second(self) cdef float forward_avg_bytes_per_bulk(self) cdef float forward_avg_packets_per_bulk(self) cdef float forward_avg_bulk_rate(self) cdef float backward_bulk_duration_in_second(self) cdef float backward_avg_bytes_per_bulk(self) cdef float backward_avg_packets_per_bulk(self) cdef float backward_avg_bulk_rate(self) cdef float get_flow_duration(self) cdef float flow_bytes_per_second(self) cdef float flow_packets_per_second(self) cdef int packet_count(self) cpdef get_features(self)<|end_of_text|>import numpy as np cimport numpy as np length = 300 cdef np.ndarray target target = np.zeros(length) target[np.random.uniform(0,1,length)>0.6]=1 print("target") print(target) ctypedef np.int_t DTYPE_t cdef np.ndarray[DTYPE_t] cross(np.ndarray[DTYPE_t] ch1,np.ndarray[DTYPE_t] ch2): cdef int index index = int(np.random.uniform(0,length)) return np.concatenate([ch1[:index],ch2[index:]]) cdef np.ndarray[DTYPE_t] mutate(np.ndarray[DTYPE_t] ch): cdef int index index = int(np.random.uniform(0,length)) if ch[index]>0: ch[index]=0 else: ch[index]=1 return ch cdef init_chromosome(int length): cdef np.ndarray chromosome chromosome = np.zeros(length) chromosome[np.random.uniform(0,1,length)>0.6]=1 return chromosome cdef DTYPE_t metric(np.ndarray[DTYPE_t] a): return -np.sum((a-target)**2) cdef evaluate(np.ndarray[DTYPE_t,ndim=2] population, DTYPE_t[:] result): #cdef int r=len(population) #cdef DTYPE_t[:] result = np.empty(r,dtype=np.DTYPE_t) for i in range(len(result)): #result[i] = metric(population[i]) result[i] = metric(population[i]) #return result cdef select_mutate(np.ndarray[DTYPE_t,ndim=2] population, float rate, np.ndarray[DTYPE_t,ndim=2] p1): #cdef int r1=int(len(population)*rate) #cdef int r2=length #cdef int index #cdef np.ndarray[:] p1 = np.empty(r1, dtype=np.ndarray) for i in range(len(p1)): index = int(np.random.uniform(0,len(population),1)) p1[i] = population[index] #return p1 cdef select_cross(np.ndarray[DTYPE_t,ndim=2] population, float rate, np.ndarray[DTYPE_t,ndim=2] p1, np.ndarray[DTYPE_t,ndim=2] p2): #cdef int r1=int(len(population)*rate) #cdef int r2=length #cdef np.ndarray[:] p1 = np.empty(r1, dtype=np.ndarray) #cdef np.ndarray[:] p2 = np.empty(r1, dtype=np.ndarray) for i in range(len(p1)): pair = [int(j) for j in np.random.uniform(0,len(population),2)] p1[i] = population[pair[0]] p2[i] = population[pair[1]] #return p1,p2 cdef gp(int population_num, int loop_num, float cross_rate, float mutate_rate): cdef int population_num1 = population_num cdef int population_num2 = int(population_num*cross_rate) cdef int population_num3 = int(population_num*mutate_rate) cdef int population_num4 = population_num1+population_num2+population_num3 #cdef np.ndarray[:] population=np.empty(population_num1,dtype=np.ndarray) #cdef np.ndarray[:] all_population=np.empty(population_num4,dtype=np.ndarray) cdef np.ndarray[DTYPE_t, ndim=2] population = np.zeros([population_num,length],dtype=int) cdef np.ndarray[DTYPE_t, ndim=2] all_population = np.zeros([population_num4,length],dtype=int) #cdef np.ndarray[:] cross_population1=np.empty(population_num2,dtype=np.ndarray) cdef np.ndarray[DTYPE_t,ndim=2] cross_population1=np.zeros([population_num2,length],dtype=int) #cdef np.ndarray[:] cross_population2=np.empty(population_num2,dtype=np.ndarray) cdef np.ndarray[DTYPE_t,ndim=2] cross_population2=np.zeros([population_num2,length],dtype=int) #cdef np.ndarray[:] cross_children=np.empty(population_num2,dtype=np.ndarray) cdef np.ndarray[DTYPE_t,ndim=2] cross_children=np.zeros([population_num2,length],dtype=int) #cdef np.ndarray[:] mutate_population=np.empty(population_num3,dtype=np.ndarray) cdef np.ndarray[DTYPE_t,ndim=2] mutate_population=np.zeros([population_num3,length],dtype=int) #cdef np.ndarray[:] mutate_children=np.empty(population_num3,dtype=np.ndarray) cdef np.ndarray[DTYPE_t, ndim=2] mutate_children=np.zeros([population_num3,length],dtype=int) cdef DTYPE_t[:] result=np.empty(population_num4,dtype=int) cdef DTYPE_t[:] result2=np.empty(population_num,dtype=int) #cdef np.ndarray all_population[population_num+int(population_num*cross_rate)+int(population_num*mutate_rate)] #cdef np.ndarray cross_population1[int(population_num*cross_rate)] #cdef np.ndarray cross_population2[int(population_num*cross_rate)] #cdef np.ndarray cross_children[int(population_num*cross_rate)] #cdef np.ndarray mutate_population[int(population_num*mutate_rate)] #cdef np.ndarray mutate_children[int(population_num*mutate_rate)] #cdef np.ndarray result[population_num] for i in range(population_num): population[i] = init_chromosome(length) for i in range(loop_num): select_cross(population, cross_rate, cross_population1, cross_population2) select_mutate(population, mutate_rate,mutate_population) # for j in range(len(cross_population1)): cross_children[j] = cross(cross_population1[j],cross_population2[j]) # # for j in range(len(mutate_population)): # mutate_children[j] = mutate(mutate_population[j]) #
Cython
# all_population = np.concatenate([population,cross_children,mutate_children]) # #all_population = np.concatenate([population,cross_children]) # #all_population = np.concatenate([population]) # # #score = evaluate(np.asarray(all_population)) # evaluate(all_population,result) # indexs = np.asarray(result).argsort()[-population_num:] # population = np.asarray(all_population)[indexs] # #for i in range(len(population)): # # result[i] = metric(population[i]) # evaluate(population,result2) # best_index = np.asarray(result2).argsort()[-1] # best = np.asarray(population)[np.asarray(result2).argsort()[-1]] # best_score = result[np.asarray(result2).argsort()[-1]] # # print("best") # print(best) # print(best_score) cpdef gpp(int population_num, int loop_num, float cross_rate, float mutate_rate): gp(population_num, loop_num, cross_rate, mutate_rate) <|end_of_text|># distutils: language = c++ # distutils: sources = src/bogus.cpp # cython: c_string_type=str, c_string_encoding=ascii cdef extern from 'bogus.hpp': cdef cppclass bogus: bogus() except + int get_double(int value) cdef class Bogus: cdef bogus b def get_double(self, int value): return self.b.get_double(value) <|end_of_text|>import math import numpy import re cimport numpy cimport cython cdef extern from "math.h": double sqrt(double i) cdef class Box(object): """ A unlabeled bounding box not bound to a frame. """ @cython.profile(False) def __init__(self, int xtl, int ytl, int xbr, int ybr, int frame = 0, int lost = 0, int occluded = 0, image = None, label = None, int generated = 0, double score = 0.0, attributes = None): """ Initializes the bounding box. """ if xbr <= xtl: raise TypeError("xbr ({0}) must be > xtl ({1})".format(xbr, xtl)) elif ybr <= ytl: raise TypeError("ybr ({0}) must be > ytl ({1})".format(ybr, ytl)) elif xtl < 0: raise TypeError("xtl must be nonnegative") elif ytl < 0: raise TypeError("ytl must be nonnegative") self.xtl = xtl self.ytl = ytl self.xbr = xbr self.ybr = ybr self.frame = frame self.lost = lost self.image = image self.label = label self.occluded = occluded self.generated = generated self.score = score if attributes is None: attributes = [] self.attributes = attributes @property def width(self): return self.xbr - self.xtl @property def height(self): return self.ybr - self.ytl @property def size(self): return self.width, self.height @property def center(self): """ Calculates the center of the bounding box. """ return self.xtl+self.width/2, self.ytl+self.height/2 @property def area(self): return (self.xbr - self.xtl) * (self.ybr - self.ytl) def distance(self, oth): """ Calculate the Euclidean distance between boxes. """ scenter = abs(self.xbr + self.xtl) / 2, \ abs(self.ybr + self.ytl) / 2 ocenter = abs(oth.xbr + oth.xtl) / 2, \ abs(oth.ybr + oth.ytl) / 2 diff = scenter[0] - ocenter[0], \ scenter[1] - ocenter[1] sum = diff[0]**2 + diff[1]**2 return math.sqrt(sum) def intersects(self, oth): """ Determines if there is any overlap between two boxes. """ xlap = max(self.xtl, oth.xtl) <= min(self.xbr, oth.xbr) ylap = max(self.ytl, oth.ytl) <= min(self.ybr, oth.ybr) return xlap and ylap def percentoverlap(self, oth): """ Calculates the percent of boxes that overlap. """ xdiff = <float>(min(self.xbr, oth.xbr) - max(self.xtl, oth.xtl)) ydiff = <float>(min(self.ybr, oth.ybr) - max(self.ytl, oth.ytl)) if xdiff <= 0 or ydiff <= 0: return 0 uni = self.area + oth.area - xdiff * ydiff return float(xdiff * ydiff) / float(uni) def contains(self, point): return (self.xtl >= point[0] and self.xbr <= point[0] and self.ytl >= point[1] and self.ybr <= point[1]) def resize(self, xratio, yratio = None): """ Resizes the box by the xratio and yratio. If no yratio is specified, defaults to the xratio. """ if yratio is None: yratio = xratio return Box(self.xtl, self.ytl, self.xtl + <int> (self.width * xratio), self.ytl + <int> (self.height * yratio), self.frame, self.lost, self.occluded, self.image, self.label, self.generated, self.score, list(self.attributes)) def transform(self, xratio, yratio = None): """ Transforms the space that the box exists in by an x and y ratio. If the y ratio is not specified, defaults to the xratio. """ if yratio is None: yratio = xratio cdef int xtl = <int>(self.xtl * xratio) cdef int ytl = <int>(self.ytl * yratio) cdef int xbr = <int>(self.xbr * xratio) cdef int ybr = <int>(self.ybr * yratio) if xbr <= xtl: xbr += 1 if ybr <= ytl: ybr += 1 return Box(xtl, ytl, xbr, ybr, self.frame, self.lost, self.occluded, self.image, self.label, self.generated, self.score, list(self.attributes)) def average(self, other): return Box((self.xtl + other.xtl) / 2, (self.ytl + other.ytl) / 2, (self.xbr + other.xbr) / 2, (self.ybr + other.ybr) / 2, (self.frame + other.frame) / 2, self.lost or other.lost, self.occluded or other.occluded, self.image, self.label, self.generated, self.score, list(self.attributes)) def __str__(self): """ Returns a string representation. """ return "Box({0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11})".format( self.xtl, self.ytl, self.xbr, self.ybr, self.frame, self.lost, self.occluded, self.image, self.label, self.generated, self.score, repr(self.attributes)) def __repr__(self): """ Returns a string representation. """ return str(self) def __richcmp__(self, other, int t): """ A comparator to see if boxes are equal or not. """ if not isinstance(other, Box): return False equality = self.xtl is other.xtl and \ self.ytl is other.ytl and \ self.xbr is other.xbr and \ self.ybr is other.ybr and \ self.frame is other.frame and \ self.lost is other.lost if t == 0: return self.frame < other.frame elif t == 1: return self.frame <= other.frame elif t == 2: return equality elif t == 3: return not equality elif t == 4: return self.frame > other.frame elif t == 5: return self.frame >= other.frame else: return False def __reduce__(self): """ Provides support to serialize the box. """ return (Box, (self.xtl, self.ytl, self.xbr, self.ybr, self.frame, self.lost, self.occluded, self.image, self.label, self.generated, self.score, list(self.attributes))) def __getitem__(self, a): """ Allows accessing bounding box as if its a tuple """ tuple
Cython
= (self.xtl, self.ytl, self.xbr, self.ybr, self.frame, self.lost, self.occluded, self.image, self.label, self.generated, self.score, list(self.attributes)) return tuple[a] def readpaths(pointer): """ Reads a path file, typically coming from vatic. """ paths = [] lastid = None currentpath = [] currentlabel = None for line in pointer: line = re.match("(\d+) (\d+) (\d+) (\d+) (\d+) (\d+) (\d+) (\d+) " "(\d+) \"(.+)\"( \".+\")*?", line) id, xtl, ytl, xbr, ybr, frame, lost, occ, gen, label, attributes = line.groups() box = Box(int(xtl), int(ytl), int(xbr), int(ybr), int(frame), int(lost), int(occ), int(gen)) if lastid!= id: if lastid!= None: paths.append((currentlabel, currentpath)) lastid = id currentpath = [] currentlabel = None currentpath.append(box) currentlabel = label paths.append((currentlabel, currentpath)) return paths <|end_of_text|>cdef int i, j, k i = 17; j = 42; k = i * j if j > k: i = 88 else: i = 99; j = k def result(): """ >>> result() == (99, 17*42, 17*42) True """ return (i,j,k) <|end_of_text|># coding=utf-8 cimport numpy as np cimport cython @cython.boundscheck(False) @cython.wraparound(False) cdef np.ndarray[np.float32_t, ndim=2] _bbox_insect( np.ndarray[np.float32_t, ndim=1] box, np.ndarray[np.float32_t, ndim=2] boxes): cdef int N = boxes.shape[0] cdef np.ndarray[np.float32_t, ndim=1] t_box for i in range(N): t_box = boxes[i] <|end_of_text|>from PyGasMix.Gas cimport Gas cdef void Gas_h2o(Gas* object) <|end_of_text|># distutils: language = c++ from pytraj.ArrayIterator cimport * cdef extern from "ComplexArray.h": cdef cppclass _ComplexArray "ComplexArray": _ComplexArray() _ComplexArray(int) _ComplexArray(const _ComplexArray&) #_ComplexArray& operator =(const _ComplexArray&) #~_ComplexArray() void Allocate(int) void Assign(const _ComplexArray&) void PadWithZero(int) void Normalize(double) void SquareModulus() void ComplexConjTimes(const _ComplexArray&) double * CAptr() int size() const double& operator[](int idx) const double& operator[](int idx) const #const iterator begin() const #const iterator end() const cdef class ComplexArray: cdef _ComplexArray* thisptr <|end_of_text|>cimport cython cdef list pe3(long long n=*) <|end_of_text|>import numpy as np cimport numpy as np cimport cython ctypedef np.float_t DTYPE_t cdef class IntegratorsClass: cdef: readonly int N, M, kI, kE, nClass readonly double beta, gE, gA, gIa, gIs, gIh, gIc, fsa, fh, ep, gI readonly double tS, tE, tA, tIa, tIs, gIsp, gIcp, gIhp, ars, kapE readonly np.ndarray rp0, Ni, dxdt, CM, FM, TR, sa, iaa, hh, cc, mm, alpha cpdef set_contactMatrix(self, double t, contactMatrix) @cython.wraparound(False) @cython.boundscheck(False) @cython.cdivision(True) @cython.nonecheck(False) cdef class SIR(IntegratorsClass): """ Susceptible, Infected, Removed (SIR) Ia: asymptomatic Is: symptomatic """ cpdef rhs(self, rp, tt) @cython.wraparound(False) @cython.boundscheck(False) @cython.cdivision(True) @cython.nonecheck(False) cdef class SIRS(IntegratorsClass): """ Susceptible, Infected, Removed, Susceptible (SIRS) Ia: asymptomatic Is: symptomatic """ cpdef rhs(self, rp, tt) @cython.wraparound(False) @cython.boundscheck(False) @cython.cdivision(True) @cython.nonecheck(False) cdef class SEIR(IntegratorsClass): """ Susceptible, Exposed, Infected, Removed (SEIR) Ia: asymptomatic Is: symptomatic """ cpdef rhs(self, rp, tt) @cython.wraparound(False) @cython.boundscheck(False) @cython.cdivision(True) @cython.nonecheck(False) cdef class SEI5R(IntegratorsClass): """ Susceptible, Exposed, Infected, Removed (SEIR) The infected class has 5 groups: * Ia: asymptomatic * Is: symptomatic * Ih: hospitalized * Ic: ICU * Im: Mortality S ---> E E ---> Ia, Is Ia ---> R Is ---> Ih, R Ih ---> Ic, R Ic ---> Im, R """ cpdef rhs(self, rp, tt) @cython.wraparound(False) @cython.boundscheck(False) @cython.cdivision(True) @cython.nonecheck(False) cdef class SEI8R(IntegratorsClass): """ Susceptible, Exposed, Infected, Removed (SEIR) The infected class has 5 groups: * Ia: asymptomatic * Is: symptomatic * Ih: hospitalized * Ic: ICU * Im: Mortality S ---> E E ---> Ia, Is Ia ---> R Is ---> Is',Ih, R Ih ---> Ih',Ic, R Ic ---> Ic',Im, R """ cpdef rhs(self, rp, tt) @cython.wraparound(False) @cython.boundscheck(False) @cython.cdivision(True) @cython.nonecheck(False) cdef class SIkR(IntegratorsClass): """ Susceptible, Infected, Removed (SIkR) method of k-stages of I """ cpdef rhs(self, rp, tt) @cython.wraparound(False) @cython.boundscheck(False) @cython.cdivision(True) @cython.nonecheck(False) cdef class SEkIkR(IntegratorsClass): """ Susceptible, Infected, Removed (SIkR) method of k-stages of I See: Lloyd, Theoretical Population Biology 60, 59􏰈71 (2001), doi:10.1006􏰅tpbi.2001.1525. """ cpdef rhs(self, rp, tt) @cython.wraparound(False) @cython.boundscheck(False) @cython.cdivision(True) @cython.nonecheck(False) cdef class SEAIR(IntegratorsClass): """ Susceptible, Exposed, Asymptomatic and infected, Infected, Removed (SEAIR) Ia: asymptomatic Is: symptomatic A : Asymptomatic and infectious """ cpdef rhs(self, rp, tt) @cython.wraparound(False) @cython.boundscheck(False) @cython.cdivision(True) @cython.nonecheck(False) cdef class SEAI5R(IntegratorsClass): """ Susceptible, Exposed, Activates, Infected, Removed (SEAIR) The infected class has 5 groups: * Ia: asymptomatic * Is: symptomatic * Ih: hospitalized * Ic: ICU * Im: Mortality S ---> E E ---> Ia, Is Ia ---> R Is ---> Ih, R Ih ---> Ic, R Ic ---> Im, R """ cpdef rhs(self, rp, tt) @cython.wraparound(False) @cython.boundscheck(False) @cython.cdivision(True) @cython.nonecheck(False) cdef class SEAI8R(IntegratorsClass): """ Susceptible, Exposed, Activates, Infected, Removed (SEAIR) The infected class has 5 groups: * Ia: asymptomatic * Is: symptomatic * Ih: hospitalized * Ic: ICU * Im: Mortality S ---> E E ---> A A ---> Ia, Is Ia ---> R Is ---> Ih, Is',
Cython
R Ih ---> Ic, Ih', R Ic ---> Im, Ic', R """ cpdef rhs(self, rp, tt) @cython.wraparound(False) @cython.boundscheck(False) @cython.cdivision(True) @cython.nonecheck(False) cdef class SEAIRQ(IntegratorsClass): """ Susceptible, Exposed, Asymptomatic and infected, Infected, Removed, Quarantined (SEAIRQ) Ia: asymptomatic Is: symptomatic A : Asymptomatic and infectious """ cpdef rhs(self, rp, tt) @cython.wraparound(False) @cython.boundscheck(False) @cython.cdivision(True) @cython.nonecheck(False) cdef class SEAIRQ_testing(IntegratorsClass): """ Susceptible, Exposed, Asymptomatic and infected, Infected, Removed, Quarantined (SEAIRQ) Ia: asymptomatic Is: symptomatic A : Asymptomatic and infectious """ cpdef rhs(self, rp, tt) @cython.wraparound(False) @cython.boundscheck(True) @cython.cdivision(False) @cython.nonecheck(True) cdef class Spp(IntegratorsClass): cdef: readonly np.ndarray linear_terms, infection_terms readonly np.ndarray parameters readonly list param_keys readonly dict class_index_dict readonly np.ndarray _lambdas """ Susceptible, Exposed, Asymptomatic and infected, Infected, Removed, Quarantined (SEAIRQ) Ia: asymptomatic Is: symptomatic A : Asymptomatic and infectious """ cpdef rhs(self, rp, tt) <|end_of_text|>from typing import List from libcpp.vector cimport vector from constants import SEARCH_LIST cdef extern from "src/binarysearch.hpp": int binsearch(vector[int] l, int value, int low, int high) cdef int cython_binary_search(l: List[int], value: int, low: int = 0, high: int = -1): if high >= low: mid = (high + low) // 2 if l[mid] == value: return mid elif l[mid] > value: return cython_binary_search(l, value, low, mid - 1) else: return cython_binary_search(l, value, mid + 1, high) else: return -1 cpdef void benchmark_native_binary_search(loops=10): cdef int len_search_list = len(SEARCH_LIST) for i in range(0, loops): binsearch(SEARCH_LIST, 66666, 0, len_search_list) cpdef void benchmark_cython_binary_search(loops: int = 10): cdef int len_search_list = len(SEARCH_LIST) for i in range(0, loops): cython_binary_search(SEARCH_LIST, 66666, 0, len_search_list) <|end_of_text|>cdef bint variants_discovery(bytes chrid, list batchfiles, dict popgroup, float min_af, cvg_file_handle, vcf_file_handle, batch_count)<|end_of_text|># cython: language_level = 3, boundscheck = False cdef extern from "../../src/objects.h": ctypedef struct FROMFILE: char *name char **labels unsigned long n_rows unsigned long n_cols double **data cdef extern from "../../src/dataframe/fromfile.h": FROMFILE *fromfile_initialize() void fromfile_free(FROMFILE *ff) <|end_of_text|>""" cparticle.pyx """ cdef class Particle: """Simple Particle type.""" cdef readonly double mass cdef public double position, velocity def __init__(self, m, p, v): self.mass = m self.position = p self.velocity = v cpdef double get_momentum(self): """Return the particle's momentum.""" return self.mass * self.velocity def add_momentums(particles): """Return the sum of particles' momentums.""" total_mom = 0. for particle in particles: total_mom += particle.get_momentum() return total_mom def add_momentums_typed(list particles): """Typed momentum summer.""" cdef: double total_mom = 0.0 Particle particle for particle in particles: total_mom += particle.get_momentum() return total_mom <|end_of_text|># tag: cpp,cpp11 # mode: compile # tag: no-cpp-locals # TODO cpp_locals works fine with the standard library that comes with gcc11 # but not with gcc8. Therefore disable the test for now cdef extern from *: """ class NoAssignIterator { public: explicit NoAssignIterator(int pos) : pos_(pos) {} NoAssignIterator(NoAssignIterator&) = delete; NoAssignIterator(NoAssignIterator&&) {} NoAssignIterator& operator=(NoAssignIterator&) = delete; NoAssignIterator& operator=(NoAssignIterator&&) { return *this; } // Default constructor of temp variable is needed by Cython // as of 3.0a6. NoAssignIterator() : pos_(0) {} int operator*() { return pos_; } NoAssignIterator operator++() { return NoAssignIterator(pos_ + 1); } int operator!=(NoAssignIterator other) { return pos_!= other.pos_; } int pos_; }; class NoAssign { public: NoAssign() {} NoAssign(NoAssign&) = delete; NoAssign(NoAssign&&) {} NoAssign& operator=(NoAssign&) = delete; NoAssign& operator=(NoAssign&&) { return *this; } void func() {} NoAssignIterator begin() { return NoAssignIterator(0); } NoAssignIterator end() { return NoAssignIterator(2); } }; NoAssign get_NoAssign_Py() { return NoAssign(); } NoAssign get_NoAssign_Cpp() { return NoAssign(); } """ cdef cppclass NoAssignIterator: int operator*() NoAssignIterator operator++() int operator!=(NoAssignIterator) cdef cppclass NoAssign: void func() NoAssignIterator begin() NoAssignIterator end() # might raise Python exception (thus needs a temp) NoAssign get_NoAssign_Py() except * # might raise C++ exception (thus needs a temp) NoAssign get_NoAssign_Cpp() except + cdef internal_cpp_func(NoAssign arg): pass def test_call_to_function(): # will fail to compile if move constructors aren't used internal_cpp_func(get_NoAssign_Py()) internal_cpp_func(get_NoAssign_Cpp()) def test_assignment_to_name(): # will fail if move constructors aren't used cdef NoAssign value value = get_NoAssign_Py() value = get_NoAssign_Cpp() def test_assignment_to_scope(): cdef NoAssign value value = get_NoAssign_Py() value = get_NoAssign_Cpp() def inner(): value.func() cdef class AssignToClassAttr: cdef NoAssign attr def __init__(self): self.attr = get_NoAssign_Py() self.attr = get_NoAssign_Cpp() def test_generator_cpp_iterator_as_temp(): for i in get_NoAssign_Py(): yield i <|end_of_text|>from libc.stdlib cimport malloc from cython.operator import dereference cdef extern from "bstree.h": ctypedef struct data: int indx char *cdata float fdata cdef struct tree_node: data *dat void *left # to link to next struct void *right ctypedef tree_node tn void error() void insert(tn ** root, int indx, char * name, float ratio) void inorder(tn * root) int count(tn * root) data * search(tn * root, int key) tn * delete(tn * root, int key) cdef class BSTree: cdef tn *root def __cinit__(self): self.root = NULL cpdef void insert(self, int indx, char * name, float ratio): insert(&self.root, indx, name, ratio) cpdef void inorder(self): inorder(self.root) cpdef void remove(self, int node): self.root = delete(self.root, node) def search(self, int node): cdef data *temp_tree = search(self.root, node) if not temp_tree: return "node doesn't exist" else: temp = dereference(temp_tree) return (temp.indx, temp.cdata, round(temp.fdata, 3)) cpdef int node_count(self): return count(self.root) <|end_of_text|>'''Original code from https://github.com/benoitc/http-parser 2011 (c) Benoît Chesneau <[email protected]> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
Cython
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Modified and adapted for pulsar. ''' import os import sys from http cimport * ispy3k = sys.version_info[0] == 3 if ispy3k: from urllib.parse import urlsplit else: from urlparse import urlsplit class _ParserData: def __init__(self, decompress=False): self.url = "" self.body = [] self.headers = {} self.environ = {} self.decompress = decompress self.decompressobj = None self.chunked = False self.headers_complete = False self.partial_body = False self.message_begin = False self.message_complete = False self._last_field = "" self._last_was_value = False cdef class HttpParser: """Cython HTTP parser wrapping http_parser.""" cdef http_parser _parser cdef http_parser_settings _settings cdef object _data cdef str _path cdef str _query_string cdef str _fragment cdef object _parsed_url def __init__(self, kind=2, decompress=False): """ constructor of HttpParser object. :attr kind: Int, could be 0 to parseonly requests, 1 to parse only responses or 2 if we want to let the parser detect the type. """ # set parser type if kind == 2: parser_type = HTTP_BOTH elif kind == 1: parser_type = HTTP_RESPONSE elif kind == 0: parser_type = HTTP_REQUEST # initialize parser http_parser_init(&self._parser, parser_type) self._data = _ParserData(decompress=decompress) self._parser.data = <void *>self._data self._parsed_url = None self._path = "" self._query_string = "" self._fragment = "" # set callback self._settings.on_url = <http_data_cb>on_url_cb self._settings.on_body = <http_data_cb>on_body_cb self._settings.on_header_field = <http_data_cb>on_header_field_cb self._settings.on_header_value = <http_data_cb>on_header_value_cb self._settings.on_headers_complete = <http_cb>on_headers_complete_cb self._settings.on_message_begin = <http_cb>on_message_begin_cb self._settings.on_message_complete = <http_cb>on_message_complete_cb def execute(self, char *data, size_t length): """ Execute the parser with the last chunk. We pass the length to let the parser know when EOF has been received. In this case length == 0. :return recved: Int, received length of the data parsed. if recvd!= length you should return an error. """ return http_parser_execute(&self._parser, &self._settings, data, length) def get_version(self): """ get HTTP version """ return (self._parser.http_major, self._parser.http_minor) def get_method(self): """ get HTTP method as string""" return http_method_str(<http_method>self._parser.method) def get_status_code(self): """ get status code of a response as integer """ return self._parser.status_code def get_url(self): """ get full url of the request """ return self._data.url def maybe_parse_url(self): raw_url = self.get_url() if not self._parsed_url and raw_url: parts = urlsplit(raw_url) self._parsed_url = parts self._path = parts.path or "" self._query_string = parts.query or "" self._fragment = parts.fragment or "" def get_path(self): """ get path of the request (url without query string and fragment """ self.maybe_parse_url() return self._path def get_query_string(self): """ get query string of the url """ self.maybe_parse_url() return self._query_string def get_fragment(self): """ get fragment of the url """ self.maybe_parse_url() return self._fragment def get_headers(self): """get request/response headers dictionary.""" return self._data.headers def get_protocol(self): return None def get_body(self): return self._data.body def recv_body(self): """ return last chunk of the parsed body""" body = b''.join(self._data.body) self._data.body = [] self._data.partial_body = False return body def recv_body_into(self, barray): """ Receive the last chunk of the parsed body and store the data in a buffer rather than creating a new string. """ l = len(barray) body = b''.join(self._data.body) m = min(len(body), l) data, rest = body[:m], body[m:] barray[0:m] = data if not rest: self._data.body = [] self._data.partial_body = False else: self._data.body = [rest] return m def is_headers_complete(self): """ return True if all headers have been parsed. """ return self._data.headers_complete def is_partial_body(self): """ return True if a chunk of body have been parsed """ return self._data.partial_body def is_message_begin(self): """ return True if the parsing start """ return self._data.message_begin def is_message_complete(self): """ return True if the parsing is done (we get EOF) """ return self._data.message_complete def is_chunked(self): """ return True if Transfer-Encoding header value is chunked""" te = self._data.headers.get('transfer-encoding', '').lower() return te == 'chunked' <|end_of_text|>def fib(int n): cdef long fib1 = 1 cdef long fib2 = 1 cdef long current_sum = 0 cdef int i = 0 while i < n - 2: current_sum = fib1 + fib2 fib1 = fib2 fib2 = current_sum i += 1 return fib2 <|end_of_text|># cython: profile=False ''' Created on Dec 31, 2018 @author: cclausen ''' # arbitrary performance scale # Base cython version: 1.27 # randargmax : 1.57 # cdef TreeNode 1 : 1.69 # by hand pickMove : 2.46 # q value init : 4.37 <- different (better?!) search behavior, but the same as in cMctsTree, this was an oversight that made this one behave different (slower & worse) # dconst cache : 4.47 import numpy as np cimport numpy as np DTYPE = np.float32 ctypedef np.float32_t DTYPE_t from libc.stdlib cimport rand, RAND_MAX import time # TODO this should be part of the config.... cdef float DRAW_VALUE = 0.1 # 1 means draws are considered just as good as wins, 0 means draws are considered as bad as losses cdef float DESPERATION_FACTOR = 0.1 # negative values should be not possible for moves in general?! cdef float illegalMoveValue = -1 cdef int hasAncestor(TreeNode child, TreeNode ancestor): if child == ancestor: return 1 for pNode, _ in child.parentNodes: if hasAncestor(pNode, ancestor): return 1 return 0 cdef int bestLegalValue(float [:] ar): cdef int n = ar.shape[0] if n == 0: return -1 cdef int startIdx = int((rand()/(<float>RAND_MAX)) * n) cdef int idx, bestIdx, i cdef float bestValue bestIdx = -1 bestValue = -1 for i in range(n): idx = (i + startIdx) % n if ar[idx] > bestValue and ar[idx]!= illegalMoveValue: bestValue = ar[idx] bestIdx = idx return bestIdx cdef object dconsts = {} cdef object getDconst(int n): global dconsts if not n in dconsts: dconsts[n] = np.asarray([10.0 / n] * n, dtype=np.float32) return dconsts[n] cdef class TreeNode(): cdef readonly object state cdef float noiseMix cdef
Cython
int isExpanded cdef object parentNodes cdef object children cdef int useNodeRepository cdef object nodeRepository cdef unsigned short [:] compressedMoveToMove cdef int numMoves cdef float [:] edgePriors cdef float [:] edgeVisits cdef float [:] edgeTotalValues cdef float[:] noiseCache cdef int winningMove cdef object terminalResult cdef float stateValue cdef int allVisits cdef object netValueEvaluation def __init__(self, state, parentNodes = [], noiseMix = 0.25, nodeRepository = None, useNodeRepository = True): self.state = state self.useNodeRepository = useNodeRepository if self.useNodeRepository: if nodeRepository is None: self.nodeRepository = {} else: self.nodeRepository = nodeRepository self.noiseMix = noiseMix self.isExpanded = 0 self.parentNodes = parentNodes self.children = {} self.winningMove = -1 self.terminalResult = None self.noiseCache = None self.stateValue = 0.5 #overwritten before first use self.allVisits = 0 self.numMoves = -1 self.compressedMoveToMove = None self.edgeVisits = None self.edgeTotalValues = None self.edgePriors = None cdef void lazyInitEdgeData(self): if self.numMoves == -1: legalMoves = self.state.getLegalMoves() self.numMoves = len(legalMoves) self.compressedMoveToMove = np.array(legalMoves, dtype=np.uint16) self.edgeVisits = np.zeros(self.numMoves, dtype=np.float32) self.edgeTotalValues = np.zeros(self.numMoves, dtype=np.float32) cdef void backupWinningMove(self, int move): if self.winningMove!= -1: return self.winningMove = move cdef int pMove cdef TreeNode pNode for pNode, pMove in self.parentNodes: if pNode.state.getPlayerOnTurnIndex() == self.state.getPlayerOnTurnIndex(): pNode.backupWinningMove(pNode.compressedMoveToMove[pMove]) else: break cdef TreeNode executeMove(self, int move): cdef object newState = self.state.clone() newState.simulate(move) if newState.isTerminal() and newState.getWinner() == self.state.getPlayerOnTurnIndex(): self.backupWinningMove(move) cdef TreeNode knownNode cdef int ix cdef int compressedNodeIdx = -1 for ix in range(self.numMoves): if self.compressedMoveToMove[ix] == move: compressedNodeIdx = ix break if self.useNodeRepository and newState in self.nodeRepository: knownNode = self.nodeRepository[newState] knownNode.parentNodes.append((self, compressedNodeIdx)) return knownNode cdef TreeNode newNode = TreeNode(newState, [(self, compressedNodeIdx)], noiseMix = self.noiseMix, nodeRepository = self.nodeRepository, useNodeRepository = self.useNodeRepository) if self.useNodeRepository: self.nodeRepository[newState] = newNode return newNode def exportTree(self): """ create an independent data structure that describes the entire tree that starts at this node, meant for storage and later analysis """ me = {} me["state"] = self.state.packageForDebug() me["expanded"] = self.isExpanded me["winner"] = self.state.getWinner() if self.isExpanded: me["priors"] = np.asarray(self.edgePriors).tolist() me["netValue"] = np.asarray(self.netValueEvaluation).tolist() edges = {} cdef int move for move in self.children: child = self.children[move] e = {} e["move"] = self.state.getHumanMoveDescription(move) e["tree"] = child.exportTree() e["visits"] = self.edgeVisits[move] e["totalValue"] = self.edgeTotalValues[move] e["meanValue"] = self.edgeTotalValues[move] / self.edgeVisits[move] edges[move] = e me["edges"] = edges return me def getBestValue(self): """ returns a single float that is meant to tell what the best possible expected outcome is by choosing the best possible actions """ if self.winningMove!= -1: return 1 if self.numMoves == -1: return 0 cdef float bestValue = 0 cdef int i for i in range(self.numMoves): if self.edgeVisits[i] > 0 and (self.edgeTotalValues[i] / self.edgeVisits[i]) > bestValue: bestValue = (self.edgeTotalValues[i] / self.edgeVisits[i]) return bestValue def cutTree(self): """ deletes all children, reducing the tree to the root resets all counters meant to be used when different solvers are used in an alternating fashion on the same tree. maybe instead a completely different tree should be used for each solver. But meh. Training does reuse the trees, test play doesn't. Better than nothing... TODO Why even have a function like this, instead of just grabbing the game state and creating a new root node around it?! """ self.children = {} self.isExpanded = 0 self.parentNodes = [] self.terminalResult = None self.nodeRepository = {} cdef int i if self.edgePriors is not None: for i in range(self.state.getMoveCount()): self.edgePriors[i] = 0 if self.numMoves!= -1: for i in range(self.numMoves): self.edgeVisits[i] = 0 self.edgeTotalValues[i] = 0 self.stateValue = 0.5 self.allVisits = 0 cdef float getVisitsFactor(self): #.0001 means that in the case of a new node with zero visits it will chose whatever has the best P # instead of just the move with index 0 # but there is little effect in other cases return self.allVisits ** 0.5 + 0.0001 cdef TreeNode selectDown(self, float cpuct): cdef TreeNode node = self while node.isExpanded and not node.state.isTerminal(): node = node.selectMove(cpuct) return node def getTreeDepth(self): if len(self.children) == 0: return 1 return max([self.children[ckey].getTreeDepth() for ckey in self.children]) + 1 def getChildForMove(self, int move): self.lazyInitEdgeData() cdef TreeNode child = None if not move in self.children: child = self.executeMove(move) self.children[move] = child else: child = self.children[move] child.parentNodes = [] cdef TreeNode cached if self.useNodeRepository: cKeys = list(self.nodeRepository.keys()) for childKey in cKeys: cached = self.nodeRepository[childKey] if not hasAncestor(cached, child): del self.nodeRepository[childKey] cached.parentNodes = [] cached.children = {} return child def getEdgePriors(self): if self.edgePriors is None: return np.zeros(self.state.getMoveCount(), dtype=np.float32) else: return np.copy(np.asarray(self.edgePriors, dtype=np.float32)) def getMoveDistribution(self): result = np.zeros(self.state.getMoveCount(), dtype=np.float32) if self.winningMove!= -1: result[self.winningMove] = 1 else: result[self.compressedMoveToMove] = self.edgeVisits result /= float(self.allVisits) return result cdef int pickMove(self, float cpuct): if self.winningMove!= -1: return self.winningMove cdef int useNoise = len(self.parentNodes) == 0 cdef int i cdef float nodeQ, nodeU if useNoise and self.noiseCache is None: self.noiseCache = np.random.dirichlet(getDconst(self.numMoves)).astype(np.float32) cdef float vFactor = self.getVisitsFactor() cdef float [:] valueTmp = np.zeros(self.numMoves, dtype=np.float32) cdef int decompressedMove for i in range(self.numMoves): decompressedMove = self.compressedMoveToMove[i] if useNoise: valueTmp[i] = (1 - self.noiseMix) * self.edgePriors[decompressedMove] + self.noiseMix * self.noiseCache[i] else: valueTmp[i] = self.edgePriors[decompressedMove] # not using an initialization of zero is a pretty good idea. # not only for search quality (to be proven) but also
Cython
for search speed by like 50% # zero may be bad, stateValue is far worse! That means that especially for very clear cut # situations the tree search will start to extensively explore bad plays to the point of diminishing the winning play probability quite considerably. if self.edgeVisits[i] == 0: # idea: if the current position is expected to be really good: Follow the network nodeQ = self.stateValue * self.edgePriors[decompressedMove] + (1 - self.stateValue) * DESPERATION_FACTOR else: nodeQ = self.edgeTotalValues[i] / self.edgeVisits[i] nodeU = valueTmp[i] * (vFactor / (1.0 + self.edgeVisits[i])) valueTmp[i] = nodeQ + cpuct * nodeU cdef int result = bestLegalValue(valueTmp) return self.compressedMoveToMove[result] cdef TreeNode selectMove(self, float cpuct): self.lazyInitEdgeData() move = self.pickMove(cpuct) if not move in self.children: self.children[move] = self.executeMove(move) return self.children[move] cdef void backup(self, object vs): cdef int pMove cdef TreeNode pNode for pNode, pMove in self.parentNodes: pNode.edgeVisits[pMove] += 1 pNode.allVisits += 1 pNode.edgeTotalValues[pMove] += vs[pNode.state.getPlayerOnTurnIndex()] if pNode.state.hasDraws(): pNode.edgeTotalValues[pMove] += vs[self.state.getPlayerCount()] * DRAW_VALUE pNode.backup(vs) def getTerminalResult(self): if self.terminalResult is None: numOutputs = self.state.getPlayerCount() if self.state.hasDraws(): numOutputs += 1 r = [0] * numOutputs winner = self.state.getWinner() if winner!= -1: r[winner] = 1 else: if self.state.hasDraws(): r[numOutputs-1] = 1 else: r = [1.0 / self.state.getPlayerCount()] * self.state.getPlayerCount() self.terminalResult = np.array(r, dtype=np.float32) return self.terminalResult cdef void expand(self, object movePMap, object vs): self.edgePriors = np.zeros(self.state.getMoveCount(), dtype=np.float32) np.copyto(np.asarray(self.edgePriors), movePMap, casting="no") self.isExpanded = 1 self.netValueEvaluation = vs self.stateValue = vs[self.state.getPlayerOnTurnIndex()] if (self.state.hasDraws()): self.stateValue += vs[self.state.getPlayerCount()] * DRAW_VALUE def getNetValueEvaluation(self): return self.netValueEvaluation # init # prepareA # evaluate A # prepare B # GPU - CPU # do: # evaluate B - backup A, prepare A # evaluate A - backup B, prepare B # repeat # complete # backupA def backupWork(backupSet, evalout): cdef TreeNode node for idx, ev in enumerate(evalout): node = backupSet[idx] w = ev[1] if node.state.isTerminal(): w = node.getTerminalResult() else: node.expand(ev[0], ev[1]) node.backup(w) def cpuWork(prepareSet, backupSet, evalout, cpuct): prepareResult = [] cdef TreeNode tnode if backupSet is not None: backupWork(backupSet, evalout) for i in range(len(prepareSet)): tnode = prepareSet[i] prepareResult.append(tnode.selectDown(cpuct)) return prepareResult def batchedMcts(object states, int expansions, evaluator, float cpuct): workspace = states halfw = len(workspace) // 2 workspaceA = workspace[:halfw] workspaceB = workspace[halfw:] asyncA = True preparedDataA = cpuWork(workspaceA, None, None, cpuct) evaloutA = evaluator(preparedDataA) preparedDataB = cpuWork(workspaceB, None, None, cpuct) evaloutB = None def asyncWork(): nonlocal preparedDataA nonlocal preparedDataB nonlocal asyncA nonlocal cpuct nonlocal evaloutA nonlocal evaloutB nonlocal workspaceA nonlocal workspaceB if asyncA: preparedDataA = cpuWork(workspaceA, preparedDataA, evaloutA, cpuct) else: preparedDataB = cpuWork(workspaceB, preparedDataB, evaloutB, cpuct) for _ in range(expansions): for _ in range(2): if asyncA: evaloutB = evaluator(preparedDataB, asyncWork) else: evaloutA = evaluator(preparedDataA, asyncWork) asyncA = not asyncA backupWork(preparedDataA, evaloutA) # cdef TreeNode tmp, node # # for _ in range(expansions): # tlst = workspace # workspace = [] # for i in range(len(tlst)): # tmp = tlst[i] # workspace.append(tmp.selectDown(cpuct)) # # evalout = evaluator(workspace) # # for idx, ev in enumerate(evalout): # node = workspace[idx] # # w = ev[1] # if node.state.isTerminal(): # w = node.getTerminalResult() # else: # node.expand(ev[0], ev[1]) # node.backup(w) # workspace[idx] = states[idx] <|end_of_text|>import numpy as np # cimport numpy as np from scipy.misc import derivative from scipy.optimize import root_scalar import cython def get_retarded_time(double x, double z, q_x_func, q_z_func, double t, double C): def func(t_r): return np.sqrt((x - q_x_func(t_r)) ** 2 + (z - q_z_func(t_r)) ** 2) - C * (t - t_r) result = root_scalar(func, x0=0, x1=1) return result.root # pos_x from other script # pos_z from other script def E_at_point(double x, double z, double t, q_x_func=None, q_z_func=None, double C=0, double EPS_0=0, double Q=0): """ Počítá komponenty X a Z pole pohybujícího se náboje v bodě [x, z] Parameters ---------- x : float Pole hodnot X mřížky z : float Pole hodnot Y mřížky t : float Čas q_x_func : callable Funkce souřadnice X bodového náboje v čase q_z_func : callable Funkce souřadnice Z bodového náboje v čase C : float Rychlost světla EPS_0 : float Permitivita vakua Q : float Velikost náboje Returns ------- E_x : float Xová složka E E_z : float Zová složka E """ if not q_x_func: q_x_func = lambda t: 0 if not q_z_func: q_z_func = lambda t: 0 if not C: C = 2 if not EPS_0: EPS_0 = 1 if not Q: Q = 1 t_ret = get_retarded_time(x, z, q_x_func, q_z_func, t, C) cdef double nice_r_x = x - q_x_func(t_ret) cdef double nice_r_z = z - q_z_func(t_ret) cdef double nice_r_norm = np.sqrt(nice_r_x ** 2 + nice_r_z ** 2) cdef double v_x_ret = derivative(q_x_func, t_ret, dx=1e-6) cdef double v_z_ret = derivative(q_z_func, t_ret, dx=1e-6) cdef double a_x_ret = derivative(q_x_func, t_ret, dx=1e-6, n=2) cdef double a_z_ret = derivative(q_z_func, t_ret, dx=1e-6, n=2) cdef double u_x = C * nice_r_x / nice_r_norm - v_x_ret cdef double u_z = C * nice_r_z / nice_r_norm - v_z_ret cdef double nice_r_dot_u = nice_r_x * u_x + nice_r_z * u_z cdef double const = Q / (4 * np.pi * EPS_0) cdef double front = nice_r_norm / (nice_r_dot_u ** 3) cdef double radiation_term_x = -nice_r_z * (u_z * a_x_ret - u_x * a_z_ret)
Cython
cdef double radiation_term_z = nice_r_x * (u_z * a_x_ret - u_x * a_z_ret) E_x = const * front * radiation_term_x E_z = const * front * radiation_term_z return E_x, E_z # @cython.embedsignature(True) # nefunguje jak má def E_components_on_grid(xs, zs, t, q_x_func=None, q_z_func=None, C=0, EPS_0=0, Q=0, x_origin=0, z_origin=0, t_origin=0, mask_func=None): """ Počítá komponenty X a Z pole pohybujícího se náboje na mřížce bodů Parameters ---------- xs : sorted iterable of floats Pole hodnot X mřížky zs : sorted iterable of floats Pole hodnot Y mřížky t : float Čas q_x_func : callable Funkce souřadnice X bodového náboje v čase q_z_func : callable Funkce souřadnice Z bodového náboje v čase C : float Rychlost světla EPS_0 : float Permitivita vakua Q : float Velikost náboje x_origin : float Posunutí počátku souřadnice X (aby bylo možné použít stejnou funkci polohy náboje na čase pro náboje v různých místech) z_origin : float Posunutí počátku souřadnice Z t_origin : float Posunutí počátku času mask_func : callable(x, z) Funkce masky. Volá se pro všechny body mřížky, vrátí-li se True, není pole pro bod počítáno, vrácené pole v těchto souřadnicích obsahují NaN Returns ------- E_x : 2D numpy.ndarray Xová složka E E_z : 2D numpy.ndarray Zová složka E """ t_shifted = t - t_origin nrows = len(zs) ncols = len(xs) field_x = np.ndarray(shape=(nrows, ncols), dtype=np.float64) field_z = np.ndarray(shape=(nrows, ncols), dtype=np.float64) for row, z_orig in enumerate(zs): for col, x_orig in enumerate(xs): x = x_orig - x_origin z = z_orig - z_origin if mask_func: if mask_func(x, z): field_x[row, col] = np.nan field_z[row, col] = np.nan continue e_x, e_z = E_at_point(x, z, t_shifted, q_x_func, q_z_func, C, EPS_0, Q) field_x[row, col] = e_x field_z[row, col] = e_z return field_x, field_z @cython.embedsignature(True) def E_theta_on_grid(xs, zs, double t, q_x_func=None, q_z_func=None, double C=0, double EPS_0=0, double Q=0, double x_origin=0, double z_origin=0, double t_origin=0, mask_func=None): """ Počítá theta komponentu pole pohybujícího se náboje na mřížce bodů Parameters ---------- xs : sorted iterable of floats Pole hodnot X mřížky zs : sorted iterable of floats Pole hodnot Y mřížky t : float Čas q_x_func : callable Funkce souřadnice X bodového náboje v čase q_z_func : callable Funkce souřadnice Z bodového náboje v čase C : float Rychlost světla EPS_0 : float Permitivita vakua Q : float Velikost náboje x_origin : float Posunutí počátku souřadnice X (aby bylo možné použít stejnou funkci polohy náboje na čase pro náboje v různých místech) z_origin : float Posunutí počátku souřadnice Z t_origin : float Posunutí počátku času mask_func : callable(x, z) Funkce masky. Volá se pro všechny body mřížky, vrátí-li se True, není pole pro bod počítáno, vrácené pole v těchto souřadnicích obsahují NaN Returns ------- E_theta : 2D numpy.ndarray Theta složka E """ cdef double t_shifted = t - t_origin nrows = len(zs) ncols = len(xs) field_theta = np.ndarray(shape=(nrows, ncols), dtype=np.float64) for row in range(nrows): for col in range(ncols): x = xs[col] - x_origin z = zs[row] - z_origin if mask_func: if mask_func(x, z): field_theta[row, col] = np.nan continue E_x, E_z = E_at_point(x, z, t_shifted, q_x_func, q_z_func, C, EPS_0, Q) theta = np.arctan2(abs(x), z) e_theta_x = np.cos(theta) e_theta_z = -np.sin(theta) field_theta[row, col] = E_x * e_theta_x * np.sign(x) + E_z * e_theta_z return field_theta <|end_of_text|># distutils: language=c++ # cython: cdivision=True # cython: boundscheck=False # cython: nonecheck=False # cython: wraparound=False import numpy as np # cython imports from calibration.types cimport * cimport cython cimport numpy as np np.import_array() cdef class DArrayList(object): def __cinit__(self, int initial_size): self.data = np.zeros((initial_size,)) self.capacity = initial_size self.size = 0 cpdef update(self, NPDOUBLE_t[:] row): for r in row: self.add(r) cpdef add(self, NPDOUBLE_t x): cdef np.ndarray newdata if self.size == self.capacity: self.capacity *= 4 newdata = np.zeros((self.capacity,)) newdata[:self.size] = self.data self.data = newdata self.data[self.size] = x self.size += 1 cpdef np.ndarray[NPDOUBLE_t, mode='c'] finalize(self): cdef np.ndarray data = self.data[:self.size] return np.ascontiguousarray(data) <|end_of_text|># distutils: language = c++ # distutils: sources = gmm.cpp # # Author: David Zurow, adapted from G. Bartsch # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED # WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, # MERCHANTABLITY OR NON-INFRINGEMENT. # See the Apache 2 License for the specific language governing permissions and # limitations under the License. # import cython from libcpp.string cimport string from libcpp.vector cimport vector import numpy as np cimport numpy as cnp import struct import wave import os import re from pathlib import Path from tempfile import NamedTemporaryFile import subprocess from cpython.version cimport PY_MAJOR_VERSION cdef unicode _text(s): if type(s) is unicode: # Fast path for most common case(s). return <unicode>s elif PY_MAJOR_VERSION < 3 and isinstance(s, bytes): # Only accept byte strings as text input in Python 2.x, not in Py3. return (<bytes>s).decode('utf8') elif isinstance(s, unicode): # We know from the fast path above that's' can only be a subtype here. # An evil cast to <unicode> might still work in some(!) cases, # depending on what the further processing does. To be safe, # we can always create a copy instead. return unicode(s) else: raise TypeError("Could not convert to unicode.") cdef extern from "gmm_wrappers.h" namespace "kaldi": cdef cppclass GmmOnlineModelWrapper: GmmOnlineModelWrapper() except + GmmOnlineModelWrapper(float, int, int, float, float, int, string, string, string, string, string) except + cdef cppclass GmmOnlineDecoderWrapper: GmmOnlineDecoderWrapper() except + GmmOnlineDecoderWrapper(GmmOnlineModelWrapper *) except + bint decode(float, int, float *, bint)
Cython
except + void get_decoded_string(string &, float &) except + bint get_word_alignment(vector[string] &, vector[int] &, vector[int] &) except + cdef class KaldiGmmOnlineModel: cdef GmmOnlineModelWrapper* model_wrapper cdef unicode modeldir, graph cdef object od_conf_f def __cinit__(self, object modeldir, object graph, float beam = 7.0, # nnet3: 15.0 int max_active = 7000, int min_active = 200, float lattice_beam = 8.0, float acoustic_scale = 1.0, # nnet3: 0.1 int frame_subsampling_factor = 3, # neet3: 1 int num_gselect = 5, float min_post = 0.025, float posterior_scale = 0.1, int max_count = 0, int online_ivector_period = 10): self.modeldir = _text(modeldir) self.graph = _text(graph) cdef unicode config = u'%s/conf/online_decoding.conf' % self.modeldir cdef unicode word_symbol_table = u'%s/graph/words.txt' % self.graph cdef unicode model_in_filename = u'%s/final.mdl' % self.modeldir cdef unicode fst_in_str = u'%s/graph/HCLG.fst' % self.graph cdef unicode align_lex_filename = u'%s/graph/phones/align_lexicon.int' % self.graph # # make sure all model files required exist # for conff in [config, word_symbol_table, model_in_filename, fst_in_str, align_lex_filename]: if not os.path.isfile(conff.encode('utf8')): raise Exception ('%s not found.' % conff) if not os.access(conff.encode('utf8'), os.R_OK): raise Exception ('%s is not readable' % conff) # # generate ivector_extractor.conf # self.od_conf_f = NamedTemporaryFile(prefix=u'py_online_decoding_', suffix=u'.conf', delete=True) # print(self.od_conf_f.name) with open(config) as file: for line in file: if re.search(r'=.*/.*', line): # FIXME: uses python 3 f-strings # self.od_conf_f.write(re.sub(r'=(.*)', lambda m: f"={self.modeldir}/{Path(*Path(m[1]).parts[2:])}", line).encode('utf8')) self.od_conf_f.write(re.sub(r'=(.*)', lambda m: "=%s/%s" % (self.modeldir, m[1]), line).encode('utf8')) else: self.od_conf_f.write(line.encode('utf8')) self.od_conf_f.flush() # subprocess.run(f"cat {self.od_conf_f.name}", shell=True) # # instantiate our C++ wrapper class # self.model_wrapper = new GmmOnlineModelWrapper(beam, max_active, min_active, lattice_beam, acoustic_scale, frame_subsampling_factor, word_symbol_table.encode('utf8'), model_in_filename.encode('utf8'), fst_in_str.encode('utf8'), self.od_conf_f.name.encode('utf8'), align_lex_filename.encode('utf8')) def __dealloc__(self): if self.od_conf_f: self.od_conf_f.close() if self.model_wrapper: del self.model_wrapper cdef class KaldiGmmOnlineDecoder: cdef GmmOnlineDecoderWrapper* decoder_wrapper cdef object ie_conf_f def __cinit__(self, KaldiGmmOnlineModel model): # # instantiate our C++ wrapper class # self.decoder_wrapper = new GmmOnlineDecoderWrapper(model.model_wrapper) def __dealloc__(self): del self.decoder_wrapper def decode(self, samp_freq, cnp.ndarray[float, ndim=1, mode="c"] samples not None, finalize): return self.decoder_wrapper.decode(samp_freq, samples.shape[0], <float *> samples.data, finalize) def get_decoded_string(self): cdef string decoded_string cdef double likelihood=0.0 self.decoder_wrapper.get_decoded_string(decoded_string, likelihood) return decoded_string.decode('utf8'), likelihood def get_word_alignment(self): cdef vector[string] words cdef vector[int] times cdef vector[int] lengths if not self.decoder_wrapper.get_word_alignment(words, times, lengths): return None return words, times, lengths # # various convenience functions below # def decode_wav_file(self, object wavfile): wavf = wave.open(wavfile, 'rb') # check format assert wavf.getnchannels()==1 assert wavf.getsampwidth()==2 assert wavf.getnframes()>0 # read the whole file into memory, for now num_frames = wavf.getnframes() frames = wavf.readframes(num_frames) samples = struct.unpack_from('<%dh' % num_frames, frames) wavf.close() return self.decode(wavf.getframerate(), np.array(samples, dtype=np.float32), True) <|end_of_text|># # Copyright (c) 2012-2021 Snowflake Computing Inc. All right reserved. # # distutils: language = c++ # cython: language_level=3 from cpython.ref cimport PyObject from libc.stdint cimport * from libcpp cimport bool as c_bool from libcpp.memory cimport shared_ptr from libcpp.string cimport string as c_string from libcpp.vector cimport vector from snowflake.connector.snow_logging import getSnowLogger from.errorcode import ( ER_FAILED_TO_CONVERT_ROW_TO_PYTHON_TYPE, ER_FAILED_TO_READ_ARROW_STREAM, ) from.errors import Error, InterfaceError, OperationalError snow_logger = getSnowLogger(__name__) ''' the unit in this iterator EMPTY_UNIT: default ROW_UNIT: fetch row by row if the user call `fetchone()` TABLE_UNIT: fetch one arrow table if the user call `fetch_pandas()` ''' ROW_UNIT, TABLE_UNIT, EMPTY_UNIT = 'row', 'table', '' cdef extern from "cpp/ArrowIterator/CArrowIterator.hpp" namespace "sf": cdef cppclass ReturnVal: PyObject * successObj; PyObject * exception; cdef cppclass CArrowIterator: shared_ptr[ReturnVal] next(); cdef extern from "cpp/ArrowIterator/CArrowChunkIterator.hpp" namespace "sf": cdef cppclass CArrowChunkIterator(CArrowIterator): CArrowChunkIterator( PyObject* context, vector[shared_ptr[CRecordBatch]]* batches, PyObject* use_numpy, ) except + cdef cppclass DictCArrowChunkIterator(CArrowChunkIterator): DictCArrowChunkIterator( PyObject* context, vector[shared_ptr[CRecordBatch]]* batches, PyObject* use_numpy ) except + cdef extern from "cpp/ArrowIterator/CArrowTableIterator.hpp" namespace "sf": cdef cppclass CArrowTableIterator(CArrowIterator): CArrowTableIterator( PyObject* context, vector[shared_ptr[CRecordBatch]]* batches, bint number_to_decimal, ) except + cdef extern from "arrow/api.h" namespace "arrow" nogil: cdef cppclass CStatus "arrow::Status": CStatus() c_string ToString() c_string message() c_bool ok() c_bool IsIOError() c_bool IsOutOfMemory() c_bool IsInvalid() c_bool IsKeyError() c_bool IsNotImplemented() c_bool IsTypeError() c_bool IsCapacityError() c_bool IsIndexError() c_bool IsSerializationError() cdef cppclass CResult "arrow::Result"[T]: CResult() CResult(CStatus status) CResult(T) c_string ToString() c_string message() c_bool ok() const CStatus& status() T& ValueOrDie() T operator*() cdef cppclass CBuffer" arrow::Buffer": CBuffer(const uint8_t* data, int64_t size) cdef cppclass CRecordBatch" arrow::RecordBatch" cdef cppclass CRecordBatchReader" arrow::RecordBatchReader": CStatus ReadNext(shared_ptr[CRecordBatch]* batch) cdef extern from "arrow/ipc/api.h" namespace "arrow::ipc" nogil: cdef cppclass CRecordBatchStreamReader \ " arrow::ipc::RecordBatchStreamReader"(CRecordBatchReader): @staticmethod CResult[shared_ptr[CRecordBatchReader]] Open(const InputStream* stream) cdef extern from "arrow/io/api.h" namespace "arrow::io" nogil: enum FileMode" arrow::io::FileMode::type": FileMode_READ" arrow::io::FileMode::READ" FileMode_WRITE" arrow::io::FileMode::WRITE" FileMode_READWRITE" arrow::io
Cython
::FileMode::READWRITE" cdef cppclass FileInterface: CStatus Close() CStatus Tell(int64_t* position) FileMode mode() c_bool closed() cdef cppclass Readable: # put overload under a different name to avoid cython bug with multiple # layers of inheritance CStatus ReadBuffer" Read"(int64_t nbytes, shared_ptr[CBuffer]* out) CStatus Read(int64_t nbytes, int64_t* bytes_read, uint8_t* out) cdef cppclass InputStream(FileInterface, Readable): pass cdef cppclass Seekable: CStatus Seek(int64_t position) cdef cppclass RandomAccessFile(InputStream, Seekable): CStatus GetSize(int64_t* size) CStatus ReadAt(int64_t position, int64_t nbytes, int64_t* bytes_read, uint8_t* buffer) CStatus ReadAt(int64_t position, int64_t nbytes, shared_ptr[CBuffer]* out) c_bool supports_zero_copy() cdef extern from "arrow/python/api.h" namespace "arrow::py" nogil: cdef cppclass PyReadableFile(RandomAccessFile): PyReadableFile(object fo) T GetResultValue[T](CResult[T]) except * cdef class EmptyPyArrowIterator: def __next__(self): raise StopIteration def init(self, str iter_unit, bint number_to_decimal): pass cdef class PyArrowIterator(EmptyPyArrowIterator): cdef object context cdef CArrowIterator* cIterator cdef str unit cdef shared_ptr[ReturnVal] cret cdef vector[shared_ptr[CRecordBatch]] batches cdef object use_dict_result cdef object cursor # this is the flag indicating whether fetch data as numpy datatypes or not. The flag # is passed from the constructor of SnowflakeConnection class. Note, only FIXED, REAL # and TIMESTAMP_NTZ will be converted into numpy data types, all other sql types will # still be converted into native python types. # https://docs.snowflake.com/en/user-guide/sqlalchemy.html#numpy-data-type-support cdef object use_numpy def __cinit__( self, object cursor, object py_inputstream, object arrow_context, object use_dict_result, object numpy, ): cdef shared_ptr[InputStream] input_stream cdef shared_ptr[CRecordBatch] record_batch cdef CStatus ret input_stream.reset(new PyReadableFile(py_inputstream)) cdef CResult[shared_ptr[CRecordBatchReader]] readerRet = CRecordBatchStreamReader.Open(input_stream.get()) if not readerRet.ok(): Error.errorhandler_wrapper( cursor.connection, cursor, OperationalError, { 'msg': 'Failed to open arrow stream:'+ str(readerRet.status().message()), 'errno': ER_FAILED_TO_READ_ARROW_STREAM }) cdef shared_ptr[CRecordBatchReader] reader = readerRet.ValueOrDie() while True: ret = reader.get().ReadNext(&record_batch) if not ret.ok(): Error.errorhandler_wrapper( cursor.connection, cursor, OperationalError, { 'msg': 'Failed to read next arrow batch:'+ str(ret.message()), 'errno': ER_FAILED_TO_READ_ARROW_STREAM }) if record_batch.get() is NULL: break self.batches.push_back(record_batch) snow_logger.debug(msg="Batches read: {}".format(self.batches.size()), path_name=__file__, func_name="__cinit__") self.context = arrow_context self.cIterator = NULL self.unit = '' self.use_dict_result = use_dict_result self.cursor = cursor self.use_numpy = numpy def __dealloc__(self): del self.cIterator def __next__(self): self.cret = self.cIterator.next() if not self.cret.get().successObj: msg = 'Failed to convert current row, cause:'+ str(<object>self.cret.get().exception) Error.errorhandler_wrapper(self.cursor.connection, self.cursor, InterfaceError, { 'msg': msg, 'errno': ER_FAILED_TO_CONVERT_ROW_TO_PYTHON_TYPE }) # it looks like this line can help us get into python and detect the global variable immediately # however, this log will not show up for unclear reason ret = <object>self.cret.get().successObj if ret is None: raise StopIteration else: return ret def init(self, str iter_unit, bint number_to_decimal): # init chunk (row) iterator or table iterator if iter_unit!= ROW_UNIT and iter_unit!= TABLE_UNIT: raise NotImplementedError elif iter_unit == ROW_UNIT: self.cIterator = new CArrowChunkIterator( <PyObject*>self.context, &self.batches, <PyObject *>self.use_numpy, ) if not self.use_dict_result else new DictCArrowChunkIterator( <PyObject*>self.context, &self.batches, <PyObject *>self.use_numpy ) elif iter_unit == TABLE_UNIT: self.cIterator = new CArrowTableIterator( <PyObject*>self.context, &self.batches, number_to_decimal, ) self.unit = iter_unit <|end_of_text|>cimport ndvector from libc.stdlib cimport malloc, free from libc.math cimport exp ctypedef double dtype ctypedef ndvector.ndvector_dtype ndvector_dtype # supporting functions --------------------------------------------------------------------------------------- cdef inline ndvector_dtype ndvector_memoryview_construct(dtype* vector_ptr, int* shape_ptr, int ndim): """ constructs ndvector_dtype from dtype memoryview """ cdef ndvector_dtype ndvector_construct ndvector_construct.vector_ptr = vector_ptr ndvector_construct.shape_ptr = shape_ptr ndvector_construct.dweight_ptr = <long*>malloc(sizeof(long) * ndim) ndvector_construct.ndim = ndim ndvector.ndvector_init_size(&ndvector_construct) ndvector.ndvector_init_dweight(&ndvector_construct) return ndvector_construct cdef inline void update_k_wrapper(ndvector_dtype* ndvector_ptr, dtype* vector_ptr, long k_sequence_index, long k_sequence_size): """ updates the vector, shape pointer to accomodate the Kth observation sequence. """ ndvector_ptr.vector_ptr = &vector_ptr[ndvector_ptr.dweight_ptr[0] * k_sequence_index] ndvector_ptr.shape_ptr[0] = k_sequence_size ndvector.ndvector_init_size(ndvector_ptr) cdef inline void remove_k_wrapper(ndvector_dtype* ndvector_ptr, dtype* vector_ptr, int t_observations): ndvector_ptr.vector_ptr = vector_ptr ndvector_ptr.shape_ptr[0] = t_observations ndvector.ndvector_init_size(ndvector_ptr) cdef inline void ndvector_logprob_mreducecast(ndvector_dtype* ndvector_outptr, ndvector_dtype* ndvector_xptr, int order): """ reduces log-probability distributions to [@param order]. """ ndvector.ndvector_dtype_mreducecast(&ndvector.vreduce_logsumexp, ndvector_outptr, ndvector_xptr, order, 0) cdef long reduced_size = ndvector_outptr.size // ndvector_outptr.shape_ptr[ndvector_outptr.ndim - 1] cdef dtype* ndvector_priorptr = <dtype*>malloc(sizeof(dtype) * reduced_size) ndvector.ndvector_reducecast_vptr(&ndvector.vreduce_logsumexp, ndvector_priorptr, ndvector_outptr .vector_ptr, ndvector_outptr.shape_ptr, ndvector_outptr.dweight_ptr, ndvector_outptr.size, ndvector_outptr.ndim, -1) ndvector.ndvector_broadcast_vptr(&ndvector.logdivexp, ndvector_outptr.vector_ptr, ndvector_priorptr, ndvector_outptr.size, reduced_size, -1) free(ndvector_priorptr) cdef inline void forward(ndvector_dtype* init_logprobdist, ndvector_dtype* transition_logprobdist, ndvector_dtype* emission_logprobgraph, ndvector_dtype* forward_logprobgraph, ndvector_dtype* logweightsum_tempbuffer, int max_order, int t_observations, int n_states): """ parameters init_logprobdist: shape[N] the log-probability distribution for initializing in state N. transition_logprobdist: shape[N ^(max_order + 1)] the transition log-probability distribution encoding N states and order M, where the index [0, 1... q] corresponds to the sequence <0 1... q> and P(Qt = q|Q(t-m):Q(t-1) = 0...). emission_logprobgraph: shape[T x N] the emission log-probabilities of the observation sequence, P(Ot|Qt). forward_logprob_graph: shape[T x N ^max_order] return-pointer encoding the forward log-probability α where P(OT|λ) = Σ EXP(forward_logprob_graph[T]) """ cdef Py_ssize_t timestep cdef int ndvector_order, mdvector_order cdef long ndvector_size, mdvector_size cdef long fgraph_tdweight = forward_logprobgraph.dweight_ptr[
Cython
0] cdef long egraph_tdweight = emission_logprobgraph.dweight_ptr[0] cdef dtype* forward_logprob_tempbuffer = <dtype*>malloc(sizeof(dtype) * n_states ** max_order) ndvector.vector_init_copy(forward_logprob_tempbuffer, init_logprobdist.vector_ptr, n_states) ndvector.vector_broadcast(&ndvector.vsum_dtype, forward_logprob_tempbuffer, emission_logprobgraph.vector_ptr, n_states) ndvector.ndvector_logdtype_identitycast_vptr(forward_logprobgraph.vector_ptr, forward_logprob_tempbuffer, n_states, 1, n_states, max_order) ndvector_size = n_states ndvector_order = 1 for timestep in range(1, t_observations): mdvector_order = min(timestep + 1, max_order) mdvector_size = n_states ** mdvector_order ndvector_logprob_mreducecast(logweightsum_tempbuffer, transition_logprobdist, ndvector_order + 1) ndvector.ndvector_broadcast_vptr(&ndvector.logprodexp, logweightsum_tempbuffer.vector_ptr, forward_logprob_tempbuffer, logweightsum_tempbuffer.size, ndvector_size, -1) if ndvector_order == max_order: ndvector.ndvector_reducecast_vptr(&ndvector.vreduce_logsumexp, forward_logprob_tempbuffer, logweightsum_tempbuffer.vector_ptr, logweightsum_tempbuffer.shape_ptr, logweightsum_tempbuffer.dweight_ptr, logweightsum_tempbuffer.size, logweightsum_tempbuffer.ndim, 0) else: ndvector.vector_init_copy(forward_logprob_tempbuffer, logweightsum_tempbuffer .vector_ptr, mdvector_size) ndvector.ndvector_broadcast_vptr(&ndvector.logprodexp, forward_logprob_tempbuffer, &emission_logprobgraph.vector_ptr[egraph_tdweight * timestep], mdvector_size, n_states, 0) ndvector.ndvector_logdtype_identitycast_vptr(&forward_logprobgraph.vector_ptr[fgraph_tdweight * timestep], forward_logprob_tempbuffer, mdvector_size, mdvector_order, n_states, max_order) ndvector_size = mdvector_size ndvector_order = mdvector_order free(forward_logprob_tempbuffer) cdef inline void backward(ndvector_dtype* transition_logprobdist, ndvector_dtype* emission_logprobgraph, ndvector_dtype* backward_logprobgraph, ndvector_dtype* logweightsum_tempbuffer, int max_order, int t_observations, int n_states): """ parameters transition_logprobdist: shape[N ^(max_order + 1)] the transition log-probability distribution encoding N states and order M, where the index [0, 1... q] corresponds to the sequence <0 1... q> and P(Qt = q|Q(t-m):Q(t-1) = 0...). emission_logprobgraph: shape[T x N] the emission log-probabilities of the observation sequence, P(Ot|Qt). backward_logprob_graph: shape[T x N ^max_order] return-pointer encoding the backward log-probability β where P(O|λ) = Σ[P(O1|S) P(Q1=S) EXP(backward_logprobgraph[1]]) """ cdef Py_ssize_t timestep cdef int ndvector_order, mdvector_order cdef long ndvector_size, mdvector_size cdef long bgraph_tdweight = backward_logprobgraph.dweight_ptr[0] cdef long egraph_tdweight = emission_logprobgraph.dweight_ptr[0] cdef dtype* backward_logprob_tempbuffer = <dtype*>malloc(sizeof(dtype) * n_states ** max_order) mdvector_size = n_states ** max_order mdvector_order = max_order ndvector.vector_init_zeros(backward_logprob_tempbuffer, mdvector_size) ndvector.vector_init_zeros(&backward_logprobgraph.vector_ptr[bgraph_tdweight * (t_observations - 1)], mdvector_size) for timestep in range(t_observations - 2, -1, -1): ndvector_order = min(timestep + 1, max_order) ndvector_size = n_states ** ndvector_order ndvector_logprob_mreducecast(logweightsum_tempbuffer, transition_logprobdist, ndvector_order + 1) ndvector.ndvector_broadcast_vptr(&ndvector.logprodexp, logweightsum_tempbuffer.vector_ptr, backward_logprob_tempbuffer, logweightsum_tempbuffer.size, mdvector_size, 0) ndvector.ndvector_broadcast_vptr(&ndvector.logprodexp, logweightsum_tempbuffer.vector_ptr, &emission_logprobgraph.vector_ptr[egraph_tdweight * (timestep + 1)], logweightsum_tempbuffer.size, n_states, 0) ndvector.ndvector_reducecast_vptr(&ndvector.vreduce_logsumexp, backward_logprob_tempbuffer, logweightsum_tempbuffer.vector_ptr, logweightsum_tempbuffer.shape_ptr, logweightsum_tempbuffer.dweight_ptr, logweightsum_tempbuffer.size, logweightsum_tempbuffer.ndim, -1) ndvector.ndvector_logdtype_identitycast_vptr(&backward_logprobgraph.vector_ptr[bgraph_tdweight * timestep], backward_logprob_tempbuffer, ndvector_size, ndvector_order, n_states, max_order) mdvector_size = ndvector_size mdvector_order = ndvector_order free(backward_logprob_tempbuffer) cdef inline dtype expectation_logprob(ndvector_dtype* transition_logprobdist, ndvector_dtype* emission_logprobgraph, ndvector_dtype* transition_logprobgraph, ndvector_dtype* state_logprobgraph, ndvector_dtype* forward_logprobgraph, ndvector_dtype* backward_logprobgraph, ndvector_dtype* logweightsum_tempbuffer, int max_order, int t_observations, int n_states): """ computes the transition sequence expected probability ξ = P(Q(t-m+1):Qt,Q(T+1)|O,λ), state sequence expected probability γ = P(Q(t-m+1):Qt|O,λ), and the observation sequence probability P(O|λ), where P(O|λ) = Σ[αT•βT] ξt = [αt•A(t:t+1)•B(t+1)•β(t+1)]/P(O|λ) γt = [αt•βt]/P(O|λ) parameters transition_logprobdist: shape[N ^(max_order + 1)] the transition log-probability distribution encoding N states and order M, where the index [0, 1... q] corresponds to the sequence <0 1... q> and P(Qt = q|Q(t-m):Q(t-1) = 0...). emission_logprobgraph: shape[T x N] the emission log-probabilities of the observation sequence, P(Ot|Qt). forward_logprobgraph: shape[T x N ^max_order] the forward log-probabilities α computed in the forward algorithm. backward_logprob_graph: shape[T x N ^max_order] the backward log-probabilities β computed in the backward algorithm. transition_logprobgraph: shape[(T - max_order) x N^(max_order + 1)] return-pointer for log-probability ξ. state_logprobgraph: [T x N ^max_order] return-pointer for log-probability γ. returns observation_logprob: dtype P(O|λ) """ cdef Py_ssize_t timestep cdef dtype observation_logprob = ndvector.vreduce_logsumexp(&forward_logprobgraph.vector_ptr [forward_logprobgraph.dweight_ptr[0] * (t_observations - 1)], n_states ** max_order) ndvector.ndvector_init_copy(state_logprobgraph, forward_logprobgraph) ndvector.vector_broadcast(&ndvector.logprodexp, state_logprobgraph.vector_ptr, backward_logprobgraph.vector_ptr, state_logprobgraph.size) for timestep in range(state_logprobgraph.size): state_logprobgraph.vector_ptr[timestep] = ndvector.logdivexp(state_logprobgraph.vector_ptr [timestep], observation_logprob) ndvector_logprob_mreducecast(logweightsum_tempbuffer, transition_logprobdist, max_order + 1) ndvector.ndvector_broadcast_vptr(&ndvector.vconstruct_dtype, transition_logprobgraph.vector_ptr, logweightsum_tempbuffer.vector_ptr, transition_logprobgraph.size, logweightsum_tempbuffer.size, 0) cdef long transition_tstepsize = transition_logprobgraph.size // transition_logprobgraph.shape_ptr[0] for timestep in range(max_order, t_observations): ndvector.ndvector_broadcast_vptr(&ndvector.logprodexp, &transition_logprobgraph.vector_ptr [transition_logprobgraph.dweight_ptr[0] * (timestep - max_order)], &forward_logprobgraph.vector_ptr[forward_logprobgraph.dweight_ptr[0] * (timestep - 1)], transition_tstepsize, forward_logprobgraph.size // forward_logprobgraph.shape_ptr[0], -1) ndvector.ndvector_broadcast_vptr(&ndvector.logprodexp, &transition_logprobgraph.vector_ptr [transition_logprob
Cython
graph.dweight_ptr[0] * (timestep - max_order)], &emission_logprobgraph.vector_ptr[emission_logprobgraph.dweight_ptr[0] * timestep], transition_tstepsize, emission_logprobgraph.size // emission_logprobgraph.shape_ptr[0], 0) ndvector.ndvector_broadcast_vptr(&ndvector.logprodexp, &transition_logprobgraph.vector_ptr [transition_logprobgraph.dweight_ptr[0] * (timestep - max_order)], &backward_logprobgraph.vector_ptr[backward_logprobgraph.dweight_ptr[0] * timestep], transition_tstepsize, backward_logprobgraph.size // backward_logprobgraph.shape_ptr[0], 0) for timestep in range(transition_logprobgraph.size): transition_logprobgraph.vector_ptr[timestep] = ndvector.logdivexp(transition_logprobgraph .vector_ptr[timestep], observation_logprob) return observation_logprob cdef inline void maximization_transition_logprobdist(ndvector_dtype* transition_logprobdist, ndvector_dtype* k_transition_logprobgraph, ndvector_dtype* k_state_logprobgraph, dtype* transition_logprobgraph, dtype* state_logprobgraph, ndvector_dtype* k_transition_tempbuffer, ndvector_dtype* k_state_tempbuffer, dtype* observation_logprobgraph, int* k_sequence_indexes, int* k_sequence_sizes, int k_sequences, int max_order, int n_states): """ updates transition log-probability distribution A = P(Qt|Q(t-m):Q(t-1)) for K observation sequences where A = Σk[Σ(ξk)/P(Ok|λ)]/Σk[Σ(γk)/P(Ok|λ)] parameters: transition_logprobgraph: shape[K x (Tk - max_order) x N^(max_order + 1)] the transition sequence expected log-probability LN(ξ) where ξ = P(Q(t-m+1):Qt,Q(T+1)|O,λ) for K observation sequences and the shape K parameter padded to |O|. state_logprobgraph: shape[K x Tk x N ^max_order] = [O x N ^max_order] the state sequence expected probability LN(γ) where γ = P(Q(t-m+1):Qt|O,λ) for K observation sequences. observation_logprobgraph: shape[K] the observation sequence log-probability LN(P(Ok|λ)) for K observation sequences. transition_logprobdist: shape[N ^(max_order + 1)] return-pointer for the transition log-probability distribution A, encoding N states and order M, where the index [0, 1... q] corresponds to the sequence <0 1... q> and P(Qt = q|Q(t-m):Q(t-1) = 0...). """ cdef Py_ssize_t k cdef dtype* state_tempbuffer = <dtype*>malloc(sizeof(dtype) * n_states ** max_order) for k in range(k_sequences): update_k_wrapper(k_transition_logprobgraph, transition_logprobgraph, k_sequence_indexes[k], k_sequence_sizes[k] - max_order) update_k_wrapper(k_state_logprobgraph, state_logprobgraph, k_sequence_indexes[k], k_sequence_sizes[k] - max_order) ndvector.ndvector_reducecast_vptr(&ndvector.vreduce_logsumexp, &k_transition_tempbuffer.vector_ptr[k * k_transition_tempbuffer.dweight_ptr[0]], k_transition_logprobgraph.vector_ptr, k_transition_logprobgraph.shape_ptr, k_transition_logprobgraph.dweight_ptr, k_transition_logprobgraph.size, k_state_logprobgraph.ndim, 0) ndvector.ndvector_reducecast_vptr(&ndvector.vreduce_logsumexp, &k_state_tempbuffer.vector_ptr[k * k_state_tempbuffer.dweight_ptr[0]], &k_state_logprobgraph.vector_ptr[(max_order - 1) * k_state_logprobgraph.dweight_ptr[0]], k_state_logprobgraph.shape_ptr, k_state_logprobgraph.dweight_ptr, k_state_logprobgraph.size, k_state_logprobgraph.ndim, 0) ndvector.ndvector_broadcast_vptr(&ndvector.logdivexp, k_transition_tempbuffer.vector_ptr, observation_logprobgraph, k_sequences * k_transition_tempbuffer.dweight_ptr[0], k_sequences, -1) ndvector.ndvector_broadcast_vptr(&ndvector.logdivexp, k_state_tempbuffer.vector_ptr, observation_logprobgraph, k_sequences * k_state_tempbuffer.dweight_ptr[0], k_sequences, -1) ndvector.ndvector_dtype_mreducecast(&ndvector.vreduce_logsumexp, transition_logprobdist, k_transition_tempbuffer, max_order + 1, 0) ndvector.ndvector_reducecast_vptr(&ndvector.vreduce_logsumexp, state_tempbuffer, k_state_tempbuffer .vector_ptr, k_state_tempbuffer.shape_ptr, k_state_tempbuffer.dweight_ptr, k_state_tempbuffer.size, k_state_tempbuffer.ndim, 0) ndvector.ndvector_broadcast_vptr(&ndvector.logdivexp, transition_logprobdist.vector_ptr, state_tempbuffer, transition_logprobdist.size, n_states ** max_order, -1) free(state_tempbuffer) cdef inline void forward_backward_empass(ndvector_dtype* init_logprobdist, ndvector_dtype* transition_logprobdist, ndvector_dtype* k_emission_logprobgraph, ndvector_dtype* k_forward_logprobgraph, ndvector_dtype* k_backward_logprobgraph, ndvector_dtype* k_transition_logprobgraph, ndvector_dtype* k_state_logprobgraph, ndvector_dtype* logweightsum_tempbuffer, ndvector_dtype* k_transition_tempbuffer, ndvector_dtype* k_state_tempbuffer, dtype* emission_logprobgraph, dtype* forward_logprobgraph, dtype* backward_logprobgraph, dtype* transition_logprobgraph, dtype* state_logprobgraph, dtype* observation_logprobgraph, int* k_sequence_indexes, int* k_sequence_sizes, int k_sequences, int max_order, int t_observations, int n_states): cdef Py_ssize_t k cdef int kindex, ksize for k in range(k_sequences): kindex = k_sequence_indexes[k] ksize = k_sequence_sizes[k] update_k_wrapper(k_emission_logprobgraph, emission_logprobgraph, kindex, ksize) update_k_wrapper(k_forward_logprobgraph, forward_logprobgraph, kindex, ksize) update_k_wrapper(k_backward_logprobgraph, backward_logprobgraph, kindex, ksize) update_k_wrapper(k_transition_logprobgraph, transition_logprobgraph, kindex, ksize - max_order) update_k_wrapper(k_state_logprobgraph, state_logprobgraph, kindex, ksize) forward(init_logprobdist, transition_logprobdist, k_emission_logprobgraph, k_forward_logprobgraph, logweightsum_tempbuffer, max_order, t_observations, n_states) backward(transition_logprobdist, k_emission_logprobgraph, k_backward_logprobgraph, logweightsum_tempbuffer, max_order, t_observations, n_states) observation_logprobgraph[k] = expectation_logprob(transition_logprobdist, k_emission_logprobgraph, k_transition_logprobgraph, k_state_logprobgraph, k_forward_logprobgraph, k_backward_logprobgraph, logweightsum_tempbuffer, max_order, t_observations, n_states) maximization_transition_logprobdist(transition_logprobdist, k_transition_logprobgraph, k_state_logprobgraph, transition_logprobgraph, state_logprobgraph, k_transition_tempbuffer, k_state_tempbuffer, observation_logprobgraph, k_sequence_indexes, k_sequence_sizes, k_sequences, max_order, n_states) cdef inline dtype viterbi(ndvector_dtype* init_logprobdist, ndvector_dtype* transition_logprobdist, ndvector_dtype* emission_logprobgraph, ndvector_dtype* logweightsum_tempbuffer, int* maxprob_pathgraph, int max_order, int t_observations, int n_states): cdef ndvector_dtype viterbi_logprobgraph viterbi_logprobgraph.size = t_observations * n_states ** max_order viterbi_logprobgraph.ndim = max_order + 1 viterbi_logprobgraph.vector_ptr = <dtype*>malloc(sizeof(dtype) * viterbi_logprobgraph.size) viterbi_logprobgraph.shape_ptr = <int*>malloc(sizeof(dtype) * viterbi_logprobgraph.ndim) viterbi_logprobgraph.dweight_ptr = <long*>malloc(sizeof(long) * viterbi_logprobgraph.ndim) viterbi_logprobgraph.shape_ptr[0] = t_observations ndvector.vector_init_repeat(&viterbi_logprobgraph.shape_ptr[1], n_states, max_order) ndvector.ndvector_init_dweight(&viterbi_logprobgraph) cdef int* backpointer_pathgraph_vptr = <int*>malloc(sizeof(int) * viterbi_logprobgraph.size) cdef Py_ssize_t timestep cdef int ndvector_order, mdvector_order cdef long ndvector_size, mdvector
Cython
_size cdef long vgraph_tdweight = viterbi_logprobgraph.dweight_ptr[0] ndvector.vector_init_copy(viterbi_logprobgraph.vector_ptr, init_logprobdist.vector_ptr, n_states) ndvector.vector_broadcast(&ndvector.vsum_dtype, viterbi_logprobgraph.vector_ptr, emission_logprobgraph.vector_ptr, n_states) ndvector_size = n_states ndvector_order = 1 for timestep in range(1, t_observations): mdvector_order = min(timestep + 1, max_order) mdvector_size = n_states ** mdvector_order ndvector_logprob_mreducecast(logweightsum_tempbuffer, transition_logprobdist, ndvector_order + 1) ndvector.ndvector_broadcast_vptr(&ndvector.logprodexp, logweightsum_tempbuffer.vector_ptr, &viterbi_logprobgraph.vector_ptr[(timestep - 1) * vgraph_tdweight], logweightsum_tempbuffer.size, ndvector_size, -1) ndvector.ndvector_broadcast_vptr(&ndvector.logprodexp, logweightsum_tempbuffer.vector_ptr, &emission_logprobgraph.vector_ptr[timestep * emission_logprobgraph.dweight_ptr[0]], logweightsum_tempbuffer.size, n_states, 0) if ndvector_order == max_order: ndvector.ndvector_reducecast_vptr(&ndvector.vreduce_dtypemax, &viterbi_logprobgraph.vector_ptr[timestep * vgraph_tdweight], logweightsum_tempbuffer.vector_ptr, logweightsum_tempbuffer.shape_ptr, logweightsum_tempbuffer.dweight_ptr, logweightsum_tempbuffer.size, logweightsum_tempbuffer.ndim, 0) ndvector.ndvector_reducecast_vptr(&ndvector.vreduce_dtype_argmax, &backpointer_pathgraph_vptr[timestep * vgraph_tdweight], logweightsum_tempbuffer.vector_ptr, logweightsum_tempbuffer.shape_ptr, logweightsum_tempbuffer.dweight_ptr, logweightsum_tempbuffer.size, logweightsum_tempbuffer.ndim, 0) else: ndvector.vector_init_copy(&viterbi_logprobgraph.vector_ptr[timestep * vgraph_tdweight], logweightsum_tempbuffer.vector_ptr, mdvector_size) ndvector_size = mdvector_size ndvector_order = mdvector_order cdef dtype max_logprob = ndvector.vector_reduce(&ndvector.vmax_dtype, &viterbi_logprobgraph .vector_ptr[(t_observations - 1) * vgraph_tdweight], ndvector_size) ndvector.ndvector_mdargmax( &maxprob_pathgraph[t_observations - max_order], &viterbi_logprobgraph.vector_ptr[(t_observations - 1) * vgraph_tdweight], &viterbi_logprobgraph.shape_ptr[1], &viterbi_logprobgraph.dweight_ptr[1], viterbi_logprobgraph.size // viterbi_logprobgraph.shape_ptr[0], max_order ) for timestep in range(t_observations - 1, max_order - 1, -1): reversed_timestep = timestep - max_order maxprob_pathgraph[reversed_timestep] = ndvector.ndvector_indexing_vptr( &backpointer_pathgraph_vptr[timestep * vgraph_tdweight], &maxprob_pathgraph[reversed_timestep + 1], &viterbi_logprobgraph.dweight_ptr[1], max_order ) ndvector.ndvector_deconstruct(&viterbi_logprobgraph) free(backpointer_pathgraph_vptr) return max_logprob <|end_of_text|>#cython: boundscheck=False #cython: wraparound=False #cython: nonecheck=False #cython: language_level=3 from libc.math cimport lgamma from scipy.optimize.cython_optimize cimport ridder import numpy as np # For internal testing of the cython documentation cimport numpy as np # "cimport" is used to import special compile-time stuff DTYPE_d = np.float ctypedef np.float_t DTYPE_d_t cdef expect_inv_beta_p_delta(np.ndarray[DTYPE_d_t, ndim=1] bs_po, np.ndarray[DTYPE_d_t, ndim=1] br_po, np.ndarray[DTYPE_d_t, ndim=2] delta): """Compute the expectation of 1/(beta + delta)""" b_mean = br_po / (bs_po - 1) return 1 / (b_mean + delta) def _update_alpha(np.ndarray[DTYPE_d_t, ndim=2] as_pr, np.ndarray[DTYPE_d_t, ndim=2] ar_pr, list zp_po, np.ndarray[DTYPE_d_t, ndim=2] bs_po, np.ndarray[DTYPE_d_t, ndim=2] br_po, list delta_ikj, list dt_ik, np.ndarray[DTYPE_d_t, ndim=1] last_t): cdef: dim = as_pr.shape[1] np.ndarray[DTYPE_d_t, ndim=2] as_po = np.zeros((dim+1, dim)) # Alpha posterior shape, to return np.ndarray[DTYPE_d_t, ndim=2] ar_po = np.zeros((dim+1, dim)) # Alpha posterior rate, to return np.ndarray[DTYPE_d_t, ndim=2] zp_po_i for i in range(dim): # update shape as_po[:, i] = as_pr[:, i] + zp_po[i].sum(axis=0) # update rate ar_po[0, i] = ar_pr[0, i] + last_t[i] D_i_kj = (np.expand_dims(dt_ik[i], 1) * expect_inv_beta_p_delta(bs_po[:, i], br_po[:, i], delta_ikj[i][:, 1:] + 1e-20)) ar_po[1:, i] = ar_pr[1:, i] + D_i_kj.sum(axis=0) return as_po, ar_po cdef digamma(np.ndarray[DTYPE_d_t, ndim=1] arr): """Digamma function (arr is assumed to be 1 or 2 dimensional)""" cdef: int dim0 = arr.shape[0] int dim1 = arr.shape[1] double eps = 1e-8 lgamma_prime = np.zeros_like(arr) if arr.ndim == 1: for i in range(dim0): lgamma_prime[i] = (lgamma(arr[i] + eps) - lgamma(arr[i])) / eps elif arr.ndim == 2: for j in range(dim0): for i in range(dim1): lgamma_prime[j, i] = (lgamma(arr[j, i] + eps) - lgamma(arr[j, i])) / eps return lgamma_prime cdef expect_log_alpha(np.ndarray[DTYPE_d_t, ndim=1] as_po, np.ndarray[DTYPE_d_t, ndim=1] ar_po): """Compute the expectation of log(alpha)""" return digamma(as_po) - np.log(ar_po) cdef expect_log_beta_p_delta(np.ndarray[DTYPE_d_t, ndim=1] bs_po, np.ndarray[DTYPE_d_t, ndim=1] br_po, np.ndarray[DTYPE_d_t, ndim=2] delta): """Compute the expectation of log(beta + delta)""" b_mean = br_po / (bs_po - 1) return np.log(b_mean + delta) cdef _compute_epi(int i, np.ndarray[DTYPE_d_t, ndim=2] as_po, np.ndarray[DTYPE_d_t, ndim=2] ar_po, np.ndarray[DTYPE_d_t, ndim=2] bs_po, np.ndarray[DTYPE_d_t, ndim=2] br_po, list dt_ik, list delta_ikj): # log(inter-arrival time), only for valid events epi = np.zeros_like(delta_ikj[i]) epi += np.log(np.expand_dims(dt_ik[i], 1) + 1e-20) # Expected value log(alpha) epi += np.expand_dims(expect_log_alpha(as_po[:, i], ar_po[:, i]), 0) # Expected value log(beta + delta), only for j>=1, i.e. ignore baseline epi[:, 1:] -= expect_log_beta_p_delta(bs_po[:, i], br_po[:, i], delta_ikj[i][:, 1:] + 1e-20) return epi def _update_z(np.ndarray[DTYPE_d_t, ndim=2] as_po, np.ndarray[DTYPE_d_t, ndim=2] ar_po, np.ndarray[DTYPE_d_t, ndim=2] bs_po, np.ndarray[DTYPE_d_t, ndim=2] br_po, list dt_ik, list delta_ikj): dim = as_po.shape[1] zs = list() for i in range(dim): epi = _compute_epi(i, as_po, ar_po, bs_po, br_po, dt_ik, delta_ikj) # Softmax epi -= epi.max() epi =
Cython
np.exp(epi) epi /= np.expand_dims(epi.sum(axis=1), 1) zs.append(epi) return zs <|end_of_text|>from __future__ import print_function from cpython cimport bool from collections import defaultdict from itertools import chain import io def filter_word_stream(self, sentence): cdef list filtered cdef set stop_list stop_list = self.config.get('stop_list', set()) filtered = [] for w in sentence: self.vocabulary[w] += 1 if self.vocabulary[w] > self.config.get('lower_threshold', 0) and w not in stop_list: filtered.append(w) return filtered def _read_documents(self, corpus): """ If text file, treats each line as a sentence. If list of list, treats each list as sentence of words """ if isinstance(corpus, str): corpus = open(corpus) for sentence in corpus: if isinstance(sentence, list): pass elif isinstance(sentence, str): sentence = _tokenize(sentence) else: raise TypeError("Corpus format not supported") yield filter_word_stream(self, sentence) if isinstance(corpus, io.TextIOBase): corpus.close() def _tokenize(s): """ Removes all URL's replacing them with 'URL'. Only keeps A-Ö 0-9. """ return s.split() cdef tuple _build_contexts(self, focus, list sentence, int i): cdef bool ordered, directed, is_ngrams cdef int left, right cdef tuple window_size cdef list context cdef int j cdef str add_word ordered = self.config.get('ordered', False) directed = self.config.get('directed', False) window_size = self.config['window_size'] left = i - window_size[0] if i - window_size[0] > 0 else 0 right = i + window_size[1] + 1 if i + window_size[1] + 1 <= len(sentence) else len(sentence) context = [] for j in range(right - left): if left + j == i: # skip focus word continue add_word = sentence[left+j] if directed: if left + j < i: add_word += '_left' elif left + j > i: add_word += '_right' if ordered: if left + j < i: add_word += '_' + str(j + 1) elif left + j > i: add_word += '_' + str(left + j - i) context.append(add_word) return focus, context def _vocabularize(self, corpus): """ Wraps the corpus object creating a generator that counts the vocabulary, and yields the focus word along with left and right context. Lists as replacements of words are treated as one unit and iterated through (good for ngrams). """ cdef int n, i cdef list sentence cdef str focus is_ngrams = self.config.get('is_ngrams', False) for n, sentence in enumerate(_read_documents(self, corpus)): if n % 1000 == 0: print(".", end=" ", flush=True) for i, focus in enumerate(sentence): contexts = _build_contexts(self, focus, sentence, i) yield contexts def build(focus_words, context_words): """ Builds a dict of dict of collocation frequencies. This is to be cythonized. """ # Collect word collocation frequencies in dict of dict colfreqs = defaultdict(lambda: defaultdict(int)) for focus, contexts in zip(focus_words, context_words): for context in contexts: colfreqs[focus][context] += 1 return colfreqs <|end_of_text|>"""Module for parsing and manipulating data from ENDF evaluations. Currently, it only can read several MTs from File 1, but with time it will be expanded to include the entire ENDF format. All the classes and functions in this module are based on document ENDF-102 titled "Data Formats and Procedures for the Evaluated Nuclear Data File ENDF-6". The latest version from June 2009 can be found at http://www-nds.iaea.org/ndspub/documents/endf/endf102/endf102.pdf For more information on the Evaluation class, contact Paul Romano <[email protected]>. For more information on the Library class, contact John Xia <[email protected]>. """ from __future__ import print_function, division, unicode_literals import re import os try: from collections.abc import Iterable from collections import OrderedDict except ImportError: from collections import OrderedDict, Iterable from warnings import warn from pyne.utils import QA_warn cimport numpy as np import numpy as np from numpy.polynomial.polynomial import Polynomial from numpy.polynomial.legendre import Legendre from scipy.interpolate import interp1d cimport cython from pyne cimport cpp_nucname from pyne import nucname from pyne import rxdata from pyne.rxname import label from pyne.utils import fromendf_tok, endftod np.import_array() QA_warn(__name__) libraries = {0: 'ENDF/B', 1: 'ENDF/A', 2: 'JEFF', 3: 'EFF', 4: 'ENDF/B High Energy', 5: 'CENDL', 6: 'JENDL', 31: 'INDL/V', 32: 'INDL/A', 33: 'FENDL', 34: 'IRDF', 35: 'BROND', 36: 'INGDB-90', 37: 'FENDL/A', 41: 'BROND'} FILE1END = r'([1-9]\d{3}| [1-9]\d{2}| [1-9]\d| [1-9]) 1451(?= *[1-9]\d*$)[ \d]{5}$' FILE1_R = re.compile(r'^.{66}'+FILE1END) SPACEINT11_R = re.compile('^((?= *-?[1-9]\d*$)[ \d-]{11}| {10}0)$') # I11 (FORTRAN77) def _radiation_type(value): p = {0: 'gamma', 1: 'beta-', 2: 'ec/beta+', 3: 'IT', 4: 'alpha', 5: 'neutron', 6:'sf', 7: 'proton', 8: 'e-', 9: 'xray', 10: 'unknown'} if value % 1.0 == 0: return p[int(value)] else: return (p[int(value)], p[int(10*value % 10)]) class Library(rxdata.RxLib): """A class for a file which contains multiple ENDF evaluations.""" def __init__(self, fh): self.mts = {} self.structure = {} self.mat_dict = {} self.more_files = True self.intdict = {1: self._histogram, 2: self._linlin, 3: self._linlog, 4: self._loglin, 5: self._loglog, 6: self._chargedparticles, 11: self._histogram, 12: self._linlin, 13: self._linlog, 14: self._loglin, 15: self._loglog, 21: self._histogram, 22: self._linlin, 23: self._linlog, 24: self._loglin, 25: self._loglog} self.chars_til_now = 0 # offset (byte) from the top of the file for seek()ing self.fh = fh self._set_line_length() # read first line (Tape ID) self._read_tpid() # read headers for all materials while self.more_files: self._read_headers() def _set_line_length(self): opened_here = False if isinstance(self.fh, str): fh = open(self.fh, 'r') opened_here = True else: fh = self.fh # Make sure the newlines attribute is set: read a couple of lines # and rewind to the beginning. # Yes, we need to read two lines to make sure that fh.newlines gets # set. One line seems to be enough for *nix-style line terminators, but # two seem to be necessary for Windows-style terminators. fh.seek(0) fh.readline() line = fh.readline() self.line_length = len(line) # actual chars/line read # self.offset now stores the diff. between the length of a line read # and the length of a line in the ENDF-6 formatted file. self.offset = len(fh.newlines) - (self.line_length - 80) fh.seek(0) if opened_here: fh.close() def load(self): """load() Read the ENDF file into a NumPy array. Returns ------- data : np.array, 1
Cython
d, float64 Returns a 1d float64 NumPy array. """ opened_here = False if isinstance(self.fh, basestring): fh = open(self.fh, 'r') opened_here = True else: fh = self.fh fh.readline() data = fromendf_tok(fh.read()) fh.seek(0) if opened_here: fh.close() return data def _read_tpid(self): if self.chars_til_now == 0: opened_here = False if isinstance(self.fh, basestring): fh = open(self.fh, 'r') opened_here = True else: fh = self.fh line = fh.readline() self.chars_til_now = len(line) + self.offset else: warn('TPID is the first line, has been read already', UserWarning) def _isContentLine(self,parts): """Check whether a line is consisted of 22*spaces and 4*(I11)s (FORTRAN77). Parameters ----------- parts: list made by dividing 1-66 chars of an input line into 6 parts of equal length """ return parts[0]+parts[1]==' '*22 and \ SPACEINT11_R.match(parts[2]) and SPACEINT11_R.match(parts[3]) and \ SPACEINT11_R.match(parts[4]) and SPACEINT11_R.match(parts[5]) def _read_headers(self): cdef int nuc cdef int mat_id cdef double nucd opened_here = False if isinstance(self.fh, basestring): fh = open(self.fh, 'r') opened_here = True else: fh = self.fh # Go to current file position fh.seek(self.chars_til_now) # get mat_id line = fh.readline() mat_id = int(line[66:70].strip() or -1) # check for isomer (LIS0/LISO entry) matflagstring = line + fh.read(3*self.line_length) flagkeys = ['ZA', 'AWR', 'LRP', 'LFI', 'NLIB', 'NMOD', 'ELIS', 'STA', 'LIS', 'LIS0', 0, 'NFOR', 'AWI', 'EMAX', 'LREL', 0, 'NSUB', 'NVER', 'TEMP', 0, 'LDRV', 0, 'NWD', 'NXC'] flags = dict(zip(flagkeys, fromendf_tok(matflagstring))) nuc = cpp_nucname.id(<int> (<int> flags['ZA']*10000 + flags['LIS0'])) # Make a new dict in self.structure to contain the material data. if nuc not in self.structure: self.structure.update( {nuc: {'styles': '', 'docs': [], 'particles': [], 'data': {}, 'matflags': {}}}) self.mat_dict.update({nuc: {'end_line': [], 'mfs': {}}}) # Parse header (all lines with 1451) mf = 1 start = self.chars_til_now//(self.line_length+self.offset) # present (the first) line number stop = start # if no 451 can be found line = fh.readline() # get the next line; start parsing from the 6th line while FILE1_R.search(line): # divide 1-66 chars of the line into six 11-char parts lineparts = [line[i:i+11] for i in range(0, 66, 11)] # parse contents section if self._isContentLine(lineparts): # When MF and MT change, add offset due to SEND/FEND records. old_mf = mf mf, mt = int(lineparts[2]), int(lineparts[3]) if old_mf!= mf: start += 1 mt_length = int(lineparts[4]) stop = start + mt_length # The first number in the tuple is the offset in the file to seek(), # whereas the second stands for the number of characters to be read(). self.mat_dict[nuc]['mfs'][mf, mt] = ((self.line_length+self.offset)*start, self.line_length*stop) start = stop + 1 line = fh.readline() # parse comment else: self.structure[nuc]['docs'].append(line[0:66]) line = fh.readline() # Find where the end of the material is and then jump to it. # The end is 3 lines after the last mf,mt # combination (SEND, FEND, MEND) self.chars_til_now = (stop + 3)*(self.line_length+self.offset) # at the end of a MAT fh.seek(self.chars_til_now) nextline = fh.readline() self.more_files = (nextline!= '' and nextline[68:70]!= '-1') # Update materials dict if mat_id!= -1: self.mat_dict[nuc]['end_line'] = \ (self.chars_til_now+self.offset)//self.line_length setattr(self,'mat{0}'.format(nuc), self.structure[nuc]) self._read_mat_flags(nuc) fh.seek(0) if opened_here: fh.close() def _read_mat_flags(self, nuc): """Reads the global flags for a certain material. Parameters ----------- nuc: int ZZAAAM of material. """ mf1 = self.get_rx(nuc, 1, 451, lines=4) flagkeys = ['ZA', 'AWR', 'LRP', 'LFI', 'NLIB', 'NMOD', 'ELIS', 'STA', 'LIS', 'LIS0', 0, 'NFOR', 'AWI', 'EMAX', 'LREL', 0, 'NSUB', 'NVER', 'TEMP', 0, 'LDRV', 0, 'NWD', 'NXC'] flags = dict(zip(flagkeys, mf1[:12])) del flags[0] self.structure[nuc]['matflags'] = flags def _get_cont(self, keys, line): """Read one line of the array, treating it as a CONT record. Parameters ----------- keys: iterable An iterable containing the labels for each field in the CONT record. For empty/unassigned fields, use 0. line: array-like The line to be read. Returns -------- cont : dict Contains labels and values mapped to each other. """ cont = dict(zip(keys, line.flat[:6])) if 0 in cont: del cont[0] return cont def _get_head(self, keys, line): """Read one line of the array, treating it as a HEAD record. Parameters ----------- keys: iterable An iterable containing the labels for each field in the HEAD record. For empty/unassigned fields, use 0. line: array-like The line to be read. Returns -------- cont : dict Contains labels and values mapped to each other. """ # Just calls self._get_cont because HEAD is just a special case of CONT if (keys[0] == 'ZA' and keys[1] == 'AWR'): return self._get_cont(keys, line) else: raise ValueError('This is not a HEAD record: {}'.format( dict(zip(keys, line)))) def _get_list(self, headkeys, itemkeys, lines): """Read some lines of the array, treating it as a LIST record. Parameters ----------- headkeys: iterable An iterable containing the labels for each field in the first record. For empty/unassigned fields, use 0. itemkeys: iterable An iterable containing the labels for each field in the next records. For empty/unassigned fields, use 0. If itemkeys has length 1, the array is flattened and assigned to that key. lines: two-dimensional array-like The lines to be read. Each line should have 6 elements. The first line should be the first line of the LIST record; since we don't know the length of the LIST record, the last line should be the last line it is plausible for the LIST record to end. Returns -------- head: dict Contains elements of the first line paired with their labels. items: dict Contains columns of the LIST array paired with their labels, unless itemkeys has length 1, in which case items contains the flattened LIST array paired with its label. total_lines: int The number of lines the LIST record takes up. """ head = dict(zip(headkeys, lines[0:].flat[:len(headkeys)])) if 0 in head: del head[0] npl = int(lines[0][4]) headlines = (len(headkeys)-1)//6 + 1 arraylines = (npl-1)//6 + 1 if len(itemkeys
Cython
) == 1: array_len = npl - (headlines-1) * 6 items = {itemkeys[0]: lines[headlines:].flat[:array_len]} else: array_width = ((len(itemkeys)-1)//6 + 1)*6 items_transposed = np.transpose( lines[headlines:headlines+arraylines].reshape(-1, array_width)) items = dict(zip(itemkeys, items_transposed)) if 0 in items: del items[0] total_lines = 1+arraylines return head, items, total_lines def _get_tab1(self, headkeys, xykeys, lines): """Read some lines of the array, treating it as a TAB1 record. Parameters ----------- headkeys: iterable, length 6 An iterable containing the labels for each field in the first line. For empty/unassigned fields, use 0. xykeys: iterable, length 2 An iterable containing the labels for the interpolation data. The first key should be xint, the second should be y(x). lines: two-dimensional array-like The lines to be read. Each line should have 6 elements. The first line should be the first line of the TAB1 record; since we don't know the length of the TAB1 record, the last line should be the last line it is plausible for the TAB1 record to end. Returns -------- head: dict Contains elements of the first card paired with their labels. intdata: dict Contains the interpolation data. total_lines: int The number of lines the TAB1 record takes up. """ head = dict(zip(headkeys, lines[0])) if 0 in head: del head[0] nr, np_ = int(lines[0][4]), int(lines[0][5]) meta_len = (nr*2-1)//6 + 1 data_len = (np_*2-1)//6 + 1 intmeta = dict(zip(('intpoints', 'intschemes'), (np.asarray(lines[1:1+meta_len].flat[:nr*2:2], dtype=int), lines[1:1+meta_len].flat[1:nr*2:2]))) intdata = dict(zip(xykeys, (lines[1+meta_len:1+meta_len+data_len].flat[:np_*2:2], lines[1+meta_len:1+meta_len+data_len].flat[1:np_*2:2]))) intdata.update(intmeta) total_lines = 1 + meta_len + data_len return head, intdata, total_lines def _histogram(self, e_int, xs, low, high): if low in e_int: # truncate at lower bound xs = xs[e_int >= low] e_int = e_int[e_int >= low] elif low is not None and low > e_int[0]: # truncate at lower bound and prepend interpolated endpoint low_xs = xs[e_int < low][-1] xs = np.insert(xs[e_int > low], 0, low_xs) e_int = np.insert(e_int[e_int > low], 0, low) if high in e_int: # truncate at higher bound xs = xs[e_int <= high] e_int = e_int[e_int <= high] elif high is not None: # truncate at higher bound and prepend interpolated endpoint high_xs = xs[e_int < high][-1] xs = np.append(xs[e_int < high], high_xs) e_int = np.append(e_int[e_int < high], high) de_int = float(e_int[-1]-e_int[0]) return np.nansum((e_int[1:]-e_int[:-1]) * xs[:-1]/de_int) def _linlin(self, e_int, xs, low, high): if low is not None or high is not None: interp = interp1d(e_int, xs) if low in e_int: xs = xs[e_int >= low] e_int = e_int[e_int >= low] elif low is not None and low > e_int[0]: low_xs = interp(low) xs = np.insert(xs[e_int > low], 0, low_xs) e_int = np.insert(e_int[e_int > low], 0, low) if high in e_int: xs = xs[e_int <= high] e_int = e_int[e_int <= high] elif high is not None: high_xs = interp(high) xs = np.append(xs[e_int < high], high_xs) e_int = np.append(e_int[e_int < high], high) de_int = float(e_int[-1]-e_int[0]) return np.nansum((e_int[1:]-e_int[:-1]) * (xs[1:]+xs[:-1])/2./de_int) def _linlog(self, e_int, xs, low, high): if low is not None or high is not None: interp = interp1d(np.log(e_int), xs) if low in e_int: xs = xs[e_int >= low] e_int = e_int[e_int >= low] elif low is not None and low > e_int[0]: low_xs = interp(np.log(low)) xs = np.insert(xs[e_int > low], 0, low_xs) e_int = np.insert(e_int[e_int > low], 0, low) if high in e_int: xs = xs[e_int <= high] e_int = e_int[e_int <= high] elif high is not None: high_xs = interp(np.log(high)) xs = np.append(xs[e_int < high], high_xs) e_int = np.append(e_int[e_int < high], high) de_int = float(e_int[-1]-e_int[0]) x1 = e_int[:-1] x2 = e_int[1:] y1 = xs[:-1] y2 = xs[1:] A = (y1-y2)/(np.log(x1/x2)) B = y1-A*np.log(x1) return np.nansum(A*(x2*np.log(x2) - x1*np.log(x1)-x2+x1) + B*(x2-x1))/de_int def _loglin(self, e_int, xs, low, high): if low is not None or high is not None: interp = interp1d(e_int, np.log(xs)) if low in e_int: xs = xs[e_int >= low] e_int = e_int[e_int >= low] elif low is not None and low > e_int[0]: low_xs = np.e ** interp(low) xs = np.insert(xs[e_int > low], 0, low_xs) e_int = np.insert(e_int[e_int > low], 0, low) if high in e_int: xs = xs[e_int <= high] e_int = e_int[e_int <= high] elif high is not None: high_xs = np.e ** interp(high) xs = np.append(xs[e_int < high], high_xs) e_int = np.append(e_int[e_int < high], high) de_int = float(e_int[-1]-e_int[0]) x1 = e_int[:-1] x2 = e_int[1:] y1 = xs[:-1] y2 = xs[1:] A = (np.log(y1)-np.log(y2))/(x1-x2) B = np.log(y1) - A*x1 return np.nansum((y2-y1)/A)/de_int def _loglog(self, e_int, xs, low, high): if low is not None or high is not None: interp = interp1d(np.log(e_int), np.log(xs)) if low in e_int: xs = xs[e_int >= low] e_int = e_int[e_int >= low] elif low is not None and low > e_int[0]: low_xs = np.e ** interp(np.log(low)) xs = np.insert(xs[e_int > low], 0, low_xs) e_int = np.insert(e_int[e_int > low], 0, low) if high in e_int: xs = xs[e_int <= high] e_int = e_int[e_int <= high] elif high is not None: high_xs = np.e ** interp(np.log(high)) xs = np.append(xs[e_int < high], high_xs) e_int = np.append(e_int[e_int < high], high) de_int = float(e_int[-1]-e_int[0]) x1 = e_int[:-1] x2 = e_int[1:] y1 = xs[:-1] y2 = xs[1:] A = - np.log(y2/y1)/np.log(x1/x2) B = - (np.log(y1)*np.log(x2) - np.log(y2)*np.log(x1))/np.log(x1/x2) return np.nansum(np.e**B / (A+1) * (x2**(A+1) - x1**(A+1
Cython
))/de_int) def _chargedparticles(self, e_int, xs, flags=None): q = flags['Q'] if q > 0: T = 0 else: T = q de_int = float(e_int[-1]-e_int[0]) x1 = e_int[:-1] x2 = e_int[1:] y1 = xs[:-1] y2 = xs[1:] B = np.log(y2*x2/(x1*y1)) / (1/(x1-T)**0.5 - 1/(x2-T)**0.5) A = np.e**(B/(x1-T)**0.5)*y1*x1 # FIXME raise NotImplementedError('see docs for more details.') def integrate_tab_range(self, intscheme, e_int, xs, low=None, high=None): """integrate_tab_range(intscheme, e_int, xs, low=None, high=None) Integrates across one tabulation range. Parameters ---------- intscheme : int or float The interpolation scheme used in this range. e_int : array The energies at which we have xs data. xs : array The xs data corresponding to e_int. low, high : float Lower and upper bounds within the tabulation range to start/stop at. Returns ------- sigma_g : float The group xs. """ with np.errstate(divide='ignore', invalid='ignore'): # each of these functions returns a normalized integration # over the range return self.intdict[intscheme](e_int, xs, low, high) def _cont_and_update(self, flags, keys, data, total_lines): flags.update(self._get_cont(keys, data[total_lines])) return flags, total_lines+1 def _nls_njs_loop(self, L_keys, j_keys, itemkeys, data, total_lines, range_flags, subsection_dict): nls = int(range_flags['NLS']) for nls_iter in range(nls): if j_keys is None: L_flags, items, lines = self._get_list( L_keys, itemkeys, data[total_lines:]) total_lines += lines spi, L = range_flags['SPI'], L_flags['L'] subsection_dict[spi, L] = items else: L_flags = self._get_cont(L_keys, data[total_lines]) total_lines += 1 njs = int(L_flags['NJS']) for njs_iter in range(njs): j_flags, items, lines = self._get_list( j_keys, itemkeys, data[total_lines:]) total_lines += lines items.update(j_flags) spi, L, aj = range_flags['SPI'], L_flags['L'], j_flags['AJ'] subsection_dict[(spi, L, aj)] = items return total_lines def _read_res(self, mat_id): """_read_res(mat_id) Read the resonance data from one material in the library and updates self.structure. Parameters ----------- mat_id: int Material id. """ lrp = self.structure[mat_id]['matflags']['LRP'] if (lrp == -1 or mat_id in (-1, 0)): # If the LRP flag for the material is -1, # there's no resonance data. # Also if the mat id is invalid. # # However other methods expects _read_res to set # structur[nuc]['data'], so fill it with a single # entry for mat_id and empty values: self.structure[mat_id]['data'].update( {mat_id: {'resolved': [], 'unresolved': [], 'datadocs': [], 'xs': {}, 'output': {'channel1': [], 'channel2': []}, 'isotope_flags': {}}}) pass else: # Load the resonance data. mf2 = self.get_rx(mat_id, 2, 151).reshape(-1, 6) self.structure[mat_id]['matflags'].update( self._get_head(['ZA', 'AWR', 0, 0, 'NIS', 0], mf2[0])) total_lines = 1 for isotope_num in range( int(self.structure[mat_id]['matflags']['NIS'])): total_lines += self._read_nis(mf2[total_lines:], lrp, mat_id) for isotope in self.structure[mat_id]['data'].values(): isotope['resolved'].sort() isotope['unresolved'].sort() def _read_nis(self, isotope_data, lrp, mat_id): """_read_nis(isotope_data, lrp, mat_id) Read resonance data for a specific isotope. Parameters ----------- isotope_data: 2D array The section of the resonance data to read. The isotope starts at the top of this. lrp: int A flag denoting the type of data in the isotope. Exact meaning of this flag can be found in ENDF Manual pp.50-51. mat_id: int Material ZZAAAM. Returns -------- total_lines: int The number of lines the isotope takes up. """ isotope_flags = self._get_cont(['ZAI', 'ABN', 0, 'LFW', 'NER', 0], isotope_data[0]) # according to endf manual, there is no specification # for metastable states in ZAI # if we have a LIS0!= 0 we add the state to all isotopes if self.structure[mat_id]['matflags']['LIS0'] == 0: nuc_i = nucname.id(int(isotope_flags['ZAI']*10)) else: nuc_i = nucname.id(int(isotope_flags['ZAI']*10 + self.structure[mat_id]['matflags']['LIS0'])) self.structure[mat_id]['data'].update( {nuc_i: {'resolved': [], 'unresolved': [], 'datadocs': [], 'xs': {}, 'output': {'channel1': [], 'channel2': []}, 'isotope_flags': isotope_flags}}) total_lines = 1 for er in range(int(isotope_flags['NER'])): total_lines += self._read_subsection(isotope_data[total_lines:], isotope_flags, mat_id, nuc_i) return total_lines def _read_subsection(self, subsection, isotope_flags, mat_id, nuc_i): """Read resonance data for a specific energy range subsection. Parameters ----------- subsection: 2D array The section of the resonance data to read. The energy range subsection starts at the top of this. range_flags: dict Dictionary of flags inherited from the range. isotope_flags: dict Dictionary of flags inherited from the isotope. mat_id: int Material ZZAAAM. nuc_i: int Isotope ZZAAAM. Returns -------- total_lines: int The number of lines the energy range subsection takes up. """ range_flags = self._get_cont(('EL', 'EH', 'LRU', 'LRF', 'NRO', 'NAPS'), subsection[0]) total_lines = 1 lru = int(round(range_flags['LRU'])) lru_list = [self._read_ap_only, self._read_resolved, self._read_unresolved] total_lines += lru_list[lru](subsection[1:], range_flags, isotope_flags, mat_id, nuc_i) return total_lines def _read_resolved(self, subsection, range_flags, isotope_flags, mat_id, nuc_i): """Read the subsection for a resolved energy range. Parameters ----------- subsection: 2D array The section of the resonance data to read. The energy range subsection starts at the top of this. range_flags: dict Dictionary of flags inherited from the range. isotope_flags: dict Dictionary of flags inherited from the isotope. mat_id: int ZZAAAM of the material. nuc_i: int ZZAAAM of the isotope. Returns -------- total_lines: int The number of lines taken up by the subsection. """ def read_kbks(nch, subsection, aj_data, total_lines): for ch in range(nch): lbk = int(subsection[total_lines][4]) lbk_list_keys = {2: ('R0', 'R1', 'R2', 'S0', 'S1', 0), 3: ('R0', 'SO', 'GA', 0, 0, 0)} aj_data['ch{}'.format(ch)] = {'LBK': lbk} ch_data = aj_data['ch{}'.format(ch)] if lbk == 0: total_lines += 2 elif lbk == 1: total_lines += 2 rbr, rbr_size = self._
Cython
get_tab1( (0, 0, 0, 0, 'NR', 'NP'), ('e_int', 'RBR'), subsection[total_lines:])[1:3] total_lines += rbr_size ch_data['RBR'] = rbr rbi, rbi_size = self._get_tab1( (0, 0, 0, 0, 'NR', 'NP'), ('e_int', 'RBI'), (subsection[total_lines:]))[1:3] total_lines += rbi_size ch_data['RBI'] = rbi else: ch_data, total_lines = self._cont_and_update( ch_data, ('ED', 'EU', 0, 0, 'LBK', 0), subsection, total_lines) ch_data, total_lines = self._cont_and_update( ch_data, lbk_list_keys[lbk], subsection, total_lines) return total_lines def read_kpss(nch, subsection, aj_data, total_lines): for ch in range(nch): ch_data = aj_data['ch{}'.format(ch)] lps = subsection[total_lines][4] ch_data['LPS'] = lps total_lines += 2 if lps == 1: psr, psr_size = self._get_tab1( (0, 0, 0, 0, 'NR', 'NP'), ('e_int', 'PSR'), subsection[total_lines:])[1:3] total_lines += psr_size ch_data['PSR'] = psr psi, psi_size = self._get_tab1( (0, 0, 0, 0, 'NR', 'NP'), ('e_int', 'PSI'), (subsection[total_lines:]))[1:3] total_lines += psi_size ch_data['PSI'] = psi total_lines += psi_size return total_lines lrf = int(range_flags['LRF']) subsection_dict = rxdata.DoubleSpinDict({}) headers = [None, ('SPI', 'AP', 0, 0, 'NLS', 0), ('SPI', 'AP', 0, 0, 'NLS', 0), ('SPI', 'AP', 'LAD', 0, 'NLS', 'NLSC'), ('SPI', 'AP', 0, 0, 'NLS', 0), None, None, (0, 0, 'IFG', 'KRM', 'NJS', 'KRL')] if range_flags['NRO'] > 0: intdata, total_lines = self._get_tab1((0, 0, 0, 0, 'NR', 'NP'), ('E', 'AP'), subsection)[1:3] subsection_dict['int'] = intdata else: total_lines = 0 range_flags, total_lines = self._cont_and_update( range_flags, headers[lrf], subsection, total_lines) lrf_L_keys = [None, ('AWRI', 'QX', 'L', 'LRX', '6*NRS', 'NRS'), ('AWRI', 'QX', 'L', 'LRX', '6*NRS', 'NRS'), ('AWRI', 'APL', 'L', 0, '6*NRS', 'NRS'), (0, 0, 'L', 0, 'NJS', 0)] lrf_J_keys = [None, None, None, None, ('AJ', 0, 0, 0, '12*NLJ', 'NLJ')] lrf_itemkeys = [None, ('ER', 'AJ', 'GT', 'GN', 'GG', 'GF'), ('ER', 'AJ', 'GT', 'GN', 'GG', 'GF'), ('ER', 'AJ', 'GN', 'GG', 'GFA', 'GFB'), ('DET', 'DWT', 'GRT', 'GIT', 'DEF', 'DWF', 'GRF', 'GIF', 'DEC', 'DWC', 'GRC', 'GIC')] if lrf == 4: # Adler-Adler bg_flags, bg, bg_size = self._get_list( ('AWRI', 0, 'LI', 0, '6*NX', 'NX'), ('A1', 'A2', 'A3', 'A4', 'B1', 'B2'), subsection[total_lines:]) total_lines += bg_size subsection_dict['bg'] = bg if lrf < 5: total_lines = self._nls_njs_loop(lrf_L_keys[lrf], lrf_J_keys[lrf], lrf_itemkeys[lrf], subsection, total_lines, range_flags, subsection_dict) if lrf == 7: # R-Matrix Limited Format (ENDF Manual pp. 62-67) # Particle pair descriptions for the whole range particle_pair_data, pp_size = self._get_list( (0, 0, 'NPP', 0, '12*NPP', '2*NPP'), ('MA', 'MB', 'ZA', 'ZB', 'IA', 'IB', 'Q', 'PNT', 'SHF', 'MT', 'PA', 'PB'), subsection[total_lines:])[1:3] total_lines += pp_size range_flags.update(particle_pair_data) for aj_section in range(int(range_flags['NJS'])): # Read first LIST record, with channel descriptions aj_flags, ch_items, ch_size = self._get_list( ('AJ', 'PJ', 'KBK', 'KPS', '6*NCH', 'NCH'), ('IPP', 'L', 'SCH', 'BND', 'APE', 'APT'), subsection[total_lines:]) total_lines += ch_size # Second LIST record, with resonance energies and widths. er_flags, er_data, er_size = self._get_list( (0, 0, 0, 'NRS', '6*NX', 'NX'), ('ER',), subsection[total_lines:]) total_lines += er_size nch = int(aj_flags['NCH']) er_array_width = (nch//6+1)*6 er_data = er_data['ER'].reshape(-1, er_array_width).transpose() aj_data = {'ER': er_data[0], 'GAM': er_data[1:1+nch].transpose()} aj_data.update(ch_items) aj = aj_flags['AJ'] # Additional records if aj_flags['KBK'] > 0: lbk_list_keys = ((), (), # ('ED','EU',0,0,'LBK',0), ('R0', 'R1', 'R2', 'S0', 'S1', 0), ('R0', 'SO', 'GA', 0, 0, 0)) total_lines = read_kbks(nch, subsection, aj_data, total_lines) if aj_flags['KPS'] > 0: total_lines = read_kpss(nch, subsection, aj_data, total_lines) subsection_dict[aj] = aj_data el, eh = range_flags['EL'], range_flags['EH'] subsection_data = (el, eh, subsection_dict, range_flags) isotope_dict = self.structure[mat_id]['data'][nuc_i] isotope_dict['resolved'].append(subsection_data) return total_lines def _read_unresolved(self, subsection, range_flags, isotope_flags, mat_id, nuc_i): """Read unresolved resonances of an energy subsection. Parameters ----------- subsection: array Contains data for energy subsection. range_flags: dict Contains metadata flags for energy range. isotope_flags: dict Contiains flags for isotope. mat_id: int Material ZZAAAM. nuc_i: int Isotope ZZAAAM. Returns -------- total_lines: int """ head_cont = ('SPI', 'AP', 'LSSF', 0, 'NLS', 0) has_head_cont = {(0, 1): True, (1, 1): False, (0, 2): True, (1, 2): True} L_keys = {(0, 1): ('AWRI', 0, 'L', 0, '6*NJS', 'NJS'), (1, 1): ('AWRI', 0, 'L', 0, 'NJS', 0), (0, 2): ('AWRI', 0, 'L', 0, 'NJS', 0), (1, 2): ('AWRI', 0, 'L', 0, 'NJS', 0)} j_keys = {(0, 1): None, (1, 1): (0, 0, 'L', 'MUF', 'NE+6', 0, 'D', 'AJ', 'AMUN', 'GN0', '
Cython
GG', 0), (0, 2): ('AJ', 0, 'INT', 0, '6*NE+6', 'NE', 0, 0, 'AMUX', 'AMUN', 'AMUG', 'AMUF'), (1, 2): ('AJ', 0, 'INT', 0, '6*NE+6', 'NE', 0, 0, 'AMUX', 'AMUN', 'AMUG', 'AMUF')} itemkeys = {(0, 1): ('D', 'AJ', 'AMUN', 'GN0', 'GG', 0), (1, 1): ('GF', ), (0, 2): ('ES', 'D', 'GX', 'GN0', 'GG', 'GF'), (1, 2): ('ES', 'D', 'GX', 'GN0', 'GG', 'GF')} lfw, lrf = int(isotope_flags['LFW']), int(range_flags['LRF']) subsection_dict = rxdata.DoubleSpinDict({}) if range_flags['NRO'] > 0: tabhead, intdata, total_lines = self._get_tab1((0, 0, 0, 0, 'NR', 'NP'), ('E', 'AP'), subsection) subsection_dict['int'] = intdata else: total_lines = 0 if has_head_cont[(lfw, lrf)]: range_flags, total_lines = self._cont_and_update( range_flags, head_cont, subsection, total_lines) if (lfw, lrf) == (1, 1): # Case B in ENDF manual p.70 head_flags, es_array, lines = self._get_list( ('SPI', 'AP', 'LSSF', 0, 'NE', 'NLS'), ('ES', ), subsection[total_lines:]) subsection_dict['ES'] = es_array['ES'] total_lines += lines range_flags.update(head_flags) total_lines = self._nls_njs_loop(L_keys[(lfw, lrf)], j_keys[(lfw, lrf)], itemkeys[(lfw, lrf)], subsection, total_lines, range_flags, subsection_dict) el, eh = range_flags['EL'], range_flags['EH'] subsection_data = (el, eh, subsection_dict, range_flags) isotope_dict = self.structure[mat_id]['data'][nuc_i] isotope_dict['unresolved'].append(subsection_data) return total_lines def _read_ap_only(self, subsection, range_flags, isotope_flags, mat_id, nuc_i): 'Read in scattering radius when it is the only resonance data given.' subsection_dict = {} if range_flags['NRO'] > 0: tabhead, intdata, total_lines = self._get_tab1((0, 0, 0, 0, 'NR', 'NP'), ('E', 'AP'), subsection) subsection_dict['int'] = intdata else: total_lines = 0 range_flags, total_lines = self._cont_and_update( range_flags, ('SPI', 'AP', 0, 0, 'NLS', 0), subsection, total_lines) return total_lines def _read_xs(self, nuc, mt, nuc_i=None): """Read in cross-section data. Read resonances with Library._read_res first. Parameters ----------- nuc: int id of material. mt: int Reaction number to find cross-section data of. nuc_i: int Isotope to find; if None, defaults to mat_id. """ nuc = nucname.id(nuc) if nuc_i is None: nuc_i = nuc if 600 > mt > 500: xsdata = self.get_rx(nuc, 23, mt).reshape(-1, 6) else: xsdata = self.get_rx(nuc, 3, mt).reshape(-1, 6) total_lines = 0 head_flags = self._get_head(('ZA', 'AWR', 0, 0, 0, 0), xsdata[total_lines]) total_lines += 1 int_flags, int_data, int_size = self._get_tab1( ('QM', 'QI', 0, 'LM', 'NR', 'NP'), ('e_int', 'xs'), xsdata[total_lines:]) int_flags.update(head_flags) isotope_dict = self.structure[nuc]['data'][nuc_i] isotope_dict['xs'].update({mt: (int_data, int_flags)}) total_lines += int_size def get_xs(self, nuc, mt, nuc_i=None): """get_xs(nuc, mt, nuc_i=None) Grab cross-section data. Parameters ---------- nuc: int id of nuclide to read. mt: int ENDF reaction number to read. nuc_i: int id of isotope to read. Defaults to nuc. Returns ------- tuple Returns a tuple with xs data in tuple[0] and flags in tuple[1]. """ nuc = nucname.id(nuc) if not nuc_i: nuc_i = nuc else: nuc_i = nucname.id(nuc_i) if (nuc not in self.structure) or (not self.structure[nuc]['data']): self._read_res(nuc) if nuc_i not in self.structure[nuc]['data'] or \ mt not in self.structure[nuc]['data'][nuc_i]['xs']: self._read_xs(nuc, mt, nuc_i) return self.structure[nuc]['data'][nuc_i]['xs'][mt] def get_rx(self, nuc, mf, mt, lines=0): """get_rx(nuc, mf, mt, lines=0) Grab the data from one reaction type. Parameters ---------- nuc : int id form of material to read from. mf : int ENDF file number (MF). mt : int ENDF reaction number (MT). lines : int Number of lines to read from this reaction, starting from the top. Default value is 0, which reads in the entire reaction. Returns ------- data : NumPy array Contains the reaction data in an Nx6 array. """ nuc = nucname.id(nuc) if nuc in self.structure: return self._read_nucmfmt(nuc, mf, mt, lines) else: raise ValueError('Material {} does not exist.'.format(nuc)) def _read_nucmfmt(self, nuc, mf, mt, lines): """Load in the data from one reaction into self.structure. Parameters ---------- nuc : int id of nuclide. mf : int ENDF file number (MF). mt : int ENDF reaction number (MT). Returns ------- array, 1d, float64 1d, float64 NumPy array containing the reaction data. """ opened_here = False if isinstance(self.fh, basestring): fh = open(self.fh, 'r') opened_here = True else: fh = self.fh try: start, stop = self.mat_dict[nuc]['mfs'][mf, mt] except KeyError as e: msg = 'MT {1} not found in File {0}.'.format(mf, mt) e.args = (msg,) raise e fh.readline() fh.seek(start) if lines == 0: s = fh.read(stop-start) else: s = fh.read(lines*self.line_length) if opened_here: fh.close return fromendf_tok(s) def at_end_of_tape(f): """Indicate whether file is positioned at the end of an ENDF tape. Parameters ---------- f : file_like File to check Returns ------- bool Whether the file is at the end of the ENDF tape """ position = f.tell() line = f.readline() if line == '' or line[66:70] ==' -1': return True else: f.seek(position) return False def seek_material_end(f): """Position the file at the end of the ENDF material (MAT) currently being read. Parameters ---------- f : file_like File to position """ while True: line = f.readline() if line[66:70] ==' 0': break def seek_file_end(f): """Position the file at the end of the ENDF file (MF) currently being read. Parameters ---------- f : file_like File to position """ while True: line = f.readline() if line[70:72] =='0': break def seek_section_end(f): """Position the file at the end of the ENDF section (MT) currently being read. Parameters
Cython
---------- f : file_like File to position """ while True: line = f.readline() if line[72:75] ==' 0': break class Evaluation(object): """ENDF material evaluation with multiple files/sections The Evaluation class provides a means to parse data from an ENDF-6 format file and access it as stored internal Python objects. A summary of the parsing capabilities is as follows: == === =============================================== ======== MF MT Description Complete == === =============================================== ======== 1 451 Descriptive data and directory Yes 1 452 Number of neutrons per fission Yes 1 455 Delayed neutron data Yes 1 456 Number of prompt neutrons per fission Yes 1 458 Components of fission energy release Yes 1 460 Delayed photon data Yes 2 151 Resonance parameters Yes 3 - Reaction cross sections Yes 4 - Angular distributions Yes 5 - Energy distributions Yes 6 - Product energy-angle distributions Yes 7 2 Thermal elastic scattering Yes 7 4 Thermal inelastic scattering Yes 8 454 Independent fission yields Yes 8 457 Radioactive decay data Yes 8 459 Cumulative fission yields Yes 8 - Radioactive nuclide production Yes 9 - Multiplicities of radioactive products Yes 10 - Production cross sections for radionuclides Yes 12 - Photon production yield data Yes 13 - Photon production cross sections Yes 14 - Photon angular distributions Yes 15 - Continuous photon energy spectra Yes 23 - Photon and electron cross sections Yes 26 - Secondary distributions for electro-atomic data Yes 27 - Atomic form factors Yes 28 533 Atomic relaxation data Yes 30 1 Directory and correspondance table No 30 2 Covariance matrix No 30 - Sensitivities No 31 - Covariances of fission No 32 - Covariances of resonance parameters No 33 - Covariances of neutron cross sections No 34 - Covariances for angular distributions No 35 - Covariances for energy distributions No 40 - Covariances for radionuclide production No == === =============================================== ======== Attributes ---------- atomic_relaxation : dict Dictionary containing atomic relaxation data from MF=28, MT=533. If the evaluation is not an atomic relaxation sublibrary, the dictionary is empty. decay : dict Dictionary containing decay data from MF=8. If the evaluation is not from a decay sublibrary, the dictionary is empty. fission : dict Dictionary containing fission-related data, such as neutrons release from fission (MF=1, MT=452,455,456), components of energy release (MF=1, MT=458), delayed photons from fission (MF=1, MT=460), and cumulative/independent fission yields (MF=8, MT=454,459). info : dict Miscallaneous information about the evaluation. target : dict Information about the target material, such as its mass, isomeric state, whether it's stable, and whether it's fissionable. projectile : dict Information about the projectile such as its mass. reaction_list : list of 4-tuples List of sections in the evaluation. The entries of the tuples are the file (MF), section (MT), number of records (NC), and modification indicator (MOD). reactions : collections.OrderedDict Dictionary whose keys are MT numbers and values are Reaction instances. resonances : dict Resolved resonance data from MF=2, MT=151. thermal_elastic : dict Coherent and/or incoherent thermal elastic data from MF=7, MT=2. thermal_inelastic : dict Incoherent thermal inelastic data from MF=7, MT=4. """ def __init__(self, filename_or_handle, verbose=True): if hasattr(filename_or_handle,'read'): self._fh = filename_or_handle else: self._fh = open(filename_or_handle, 'r') self._verbose = verbose self._veryverbose = False # Create public attributes self.atomic_relaxation = {} self.decay = {} self.fission = {'nu': {}, 'energy_release': {}, 'delayed_photon': {}, 'yield_independent': {}, 'yield_cumulative': {}} self.info = {} self.target = {} self.projectile = {} self.reaction_list = [] self.reactions = OrderedDict() self.resonances = {} self.thermal_elastic = {} self.thermal_inelastic = {} # Determine MAT number for this evaluation MF = 0 while MF == 0: position = self._fh.tell() line = self._fh.readline() MF = int(line[70:72]) self.material = int(line[66:70]) # Save starting position for this evaluation self._fh.seek(position) # First we need to read MT=1, MT=451 which has a description of the ENDF # file and a list of what data exists in the file self._read_header() # Save starting position self._start_position = self._fh.tell() def read(self, reactions=None, skip_mf=[], skip_mt=[]): """Reads reactions from the ENDF file of the Evaluation object. If no arguments are provided, this method will read all the reactions in the file. A single reaction can be read if provided. Parameters ---------- reactions : tuple or list of tuple, optional A single reaction in the following format: (MF, MT) skip_mf : list of int, optional Files (MF) which should not be read skip_mt : list of int, optional Reactions (MT) which should not be read """ # Make sure file is positioned correctly self._fh.seek(self._start_position) if isinstance(reactions, tuple): reactions = [reactions] while True: # Find next section while True: position = self._fh.tell() line = self._fh.readline() MAT = int(line[66:70]) MF = int(line[70:72]) MT = int(line[72:75]) if MT > 0 or MAT == 0: self._fh.seek(position) break # If end of material reached, exit loop if MAT == 0: break # If there are files/reactions requested to be skipped, check them if MF in skip_mf: seek_file_end(self._fh) continue if MT in skip_mt: seek_section_end(self._fh) continue # If reading is restricted to certain reactions, check here if reactions and (MF, MT) not in reactions: seek_section_end(self._fh) continue # File 1 data if MF == 1: if MT == 452: # Number of total neutrons per fission self._read_total_nu() elif MT == 455: # Number of delayed neutrons per fission self._read_delayed_nu() elif MT == 456: # Number of prompt neutrons per fission self._read_prompt_nu() elif MT == 458: # Components of energy release due to fission self._read_fission_energy() elif MT == 460: self._read_delayed_photon() elif MF == 2: # Resonance parameters if MT == 151: self._read_resonances() else: seek_section_end(self._fh) elif MF == 3: # Reaction cross sections self._read_reaction_xs(MT) elif MF == 4: # Angular distributions self._read_angular_distribution(MT) elif MF == 5: # Energy distributions self._read_energy_distribution(MT) elif MF == 6: # Product energy-angle distributions self._read_product_energy_angle(MT) elif MF == 7: # Thermal scattering data if MT == 2: self._read_thermal_elastic() if MT == 4: self._read_thermal_inelastic() elif MF == 8: # decay and fission yield data if MT == 454: self._read_independent_yield() elif MT == 459: self._read_cumulative_yield() elif MT == 457: self._read_decay() else: self._read
Cython
import numpy as np cimport numpy as np cimport cython DIST_DTYPE = np.float32 PATH_DTYPE = np.int ctypedef np.float32_t DIST_DTYPE_t ctypedef np.int_t PATH_DTYPE_t @cython.boundscheck(False) # turn off bounds-checking for entire function @cython.wraparound(False) # turn off negative index wrapping for entire function def dynamic_time_warping_c(np.ndarray[DIST_DTYPE_t, ndim=2] precomputed_distances): assert precomputed_distances.dtype == DIST_DTYPE cdef int n = precomputed_distances.shape[0] cdef int m = precomputed_distances.shape[1] assert n > 1, m > 1 cdef np.ndarray[DIST_DTYPE_t, ndim=2] cost = np.full([n + 1, m + 1], np.inf, dtype=DIST_DTYPE) cost[0, 0] = 0 cdef DIST_DTYPE_t dist cdef int i, j for i in range(1, n + 1): for j in range(1, m + 1): dist = precomputed_distances[i-1, j-1] cost[i, j] = dist + min(cost[i-1, j], cost[i, j-1], cost[i-1, j-1]) cdef np.ndarray[PATH_DTYPE_t, ndim=2] path = compute_path_c(cost) return cost[1:, 1:], path @cython.boundscheck(False) # turn off bounds-checking for entire function @cython.wraparound(False) # turn off negative index wrapping for entire function def compute_path_c(np.ndarray[DIST_DTYPE_t, ndim=2] cost): cdef int i = cost.shape[0] cdef int j = cost.shape[1] cdef np.ndarray[PATH_DTYPE_t, ndim=2] p = np.zeros([i * j, 2], dtype=PATH_DTYPE) cdef int p_idx = p.shape[0] - 1 i -= 2 j -= 2 p[p_idx, 0] = i p[p_idx, 1] = j p_idx -= 1 cdef int k while i > 0 or j > 0: k = np.argmin((cost[i, j], cost[i, j + 1], cost[i + 1, j])) if k == 0: i -= 1 j -= 1 elif k == 1: i -= 1 else: j -= 1 p[p_idx, 0] = i p[p_idx, 1] = j p_idx -= 1 return p[(p_idx + 1):] <|end_of_text|>import scipy as sp import random import pylab class GeneticAlgorithm(object): """ A genetic algorithm is a model of biological evolution. It maintains a population of chromosomes. Each chromosome is represented as a list of 0's and 1's. A fitness function must be defined to score each chromosome. Initially, a random population is created. Then a series of generations are executed. Each generation, parents are selected from the population based on their fitness. More highly fit chromosomes are more likely to be selected to create children. With some probability crossover will be done to model sexual reproduction. With some very small probability mutations will occur. A generation is complete once all of the original parents have been replaced by children. This process continues until the maximum generation is reached or when the isDone method returns True. """ def __init__(self, length, popSize, verbose=False): self.verbose = verbose # Set to True to see more info displayed self.length = length # Length of the chromosome self.popSize = popSize # Size of the population self.bestEver = None # Best member ever in this evolution self.bestEverScore = 0 # Fitness of best member ever self.population = None # Population is a list of chromosomes self.scores = None # Fitnesses of all members of population self.totalFitness = None # Total fitness in entire population self.generation = 0 # Current generation of evolution self.maxGen = 100 # Maximum generation self.pCrossover = None # Probability of crossover self.pMutation = None # Probability of mutation (per bit) self.bestList = [] # Best fitness per generation self.avgList = [] # Avg fitness per generation print("Executing genetic algorithm") print("Chromosome length:", self.length) print("Population size:", self.popSize) def initializePopulation(self): """ Initialize each chromosome in the population with a random series of 1's and 0's. Returns: None Result: Initializes self.population """ raise NotImplementedError("TODO") def evaluatePopulation(self): """ Computes the fitness of every chromosome in population. Saves the fitness values to the list self.scores. Checks whether the best fitness in the current population is better than self.bestEverScore. If so, prints a message that a new best was found and its score, updates this variable and saves the chromosome to self.bestEver. Computes the total fitness of the population and saves it in self.totalFitness. Appends the current bestEverScore to the self.bestList, and the current average score of the population to the self.avgList. Returns: None """ raise NotImplementedError("TODO") def selection(self): """ Each chromosome's chance of being selected for reproduction is based on its fitness. The higher the fitness the more likely it will be selected. Uses the roulette wheel strategy on self.scores. Returns: A COPY of the selected chromosome. """ raise NotImplementedError("TODO") def crossover(self, parent1, parent2): """ With probability self.pCrossover, recombine the genetic material of the given parents at a random location between 1 and the length-1 of the chromosomes. If no crossover is performed, then return the original parents. Returns: Two children """ raise NotImplementedError("TODO") def mutation(self, chromosome): """ With probability self.pMutation tested at each position in the chromosome, flip value. Returns: None """ raise NotImplementedError("TODO") def oneGeneration(self): """ Execute one generation of the evolution. Each generation, repeatedly select two parents, call crossover to generate two children. Call mutate on each child. Finally add both children to the new population. Continue until the new population is full. Replaces self.pop with a new population. Returns: None """ raise NotImplementedError("TODO") def evolve(self, maxGen, pCrossover=0.7, pMutation=0.001): """ Run a series of generations until a maximum generation is reached or self.isDone() returns True. Returns the best chromosome ever found over the course of the evolution, which is stored in self.bestEver. """ raise NotImplementedError("TODO") def plotStats(self, title=""): """ Plots a summary of the GA's progress over the generations. Adds the given title to the plot. """ gens = range(self.generation+1) pylab.plot(gens, self.bestList, label="Best") pylab.plot(gens, self.avgList, label="Average") pylab.legend(loc="upper left") pylab.xlabel("Generations") pylab.ylabel("Fitness") if len(title)!= 0: pylab.title(title) pylab.show() def fitness(self, chromosome): """ The fitness function will change for each problem. Therefore it is not defined here. To use this class to solve a particular problem, inherit from this class and define this method. """ # Override this pass def isDone(self): """ The stopping critera will change for each problem. Therefore it is not defined here. To use this class to solve a particular problem, inherit from this class and define this method. """ # Override this pass <|end_of_text|>cdef extern from "entropy.c": int read_all_from(char* address, int limit) cpdef py_read_all_from(py_address, limit): py_byte_string = py_address.encode('UTF-8') cdef char* c_string = py_byte_string return read_all_from(c_string, limit) cdef extern from "entropy.c": int increment(int a) cpdef py_increment(a): return increment(a) cdef extern from "entropy.c": int calculation( char* data_file_name, char* results_file_name, int compartment_size, int subcompartment_num, int result_placement ) cpdef py_calculation( data_file_name, results_file_name, compartment_size, subcompartment_num, result_placement ): data_file_name_byte_string = data_file_name.encode('UTF-8')
Cython
cdef char* data_file_name_c_string = data_file_name_byte_string results_file_name_byte_string = results_file_name.encode('UTF-8') cdef char* results_file_name_c_string = results_file_name_byte_string return calculation( data_file_name_c_string, results_file_name_c_string, compartment_size, subcompartment_num, result_placement ) """ from libc.stdio cimport FILE from cpython cimport array cdef extern from "entropy.c": int following_compartments( FILE* output, double* compartments, int compartment_size, int* compartments_y, double* compartment_y_address, int subcompartment_num, double* latest_data_address, double* min_y_address, double* max_y_address, int* min_y_index_address, int* max_y_index_address, int* data_size_address, int* input_size_address, double* result_address ) cpdef py_following_compartments( output, compartments, compartment_size, compartments_y, compartment_y_address, subcompartment_num, latest_data_address, min_y_address, max_y_address, min_y_index_address, max_y_index_address, data_size_address, input_size_address, result_address ): return following_compartments( output, compartments_arr, compartment_size, compartments_y, compartment_y_address, subcompartment_num, latest_data_address, min_y_address, max_y_address, min_y_index_address, max_y_index_address, data_size_address, input_size_address, result_address ) """ <|end_of_text|>from ConvexHull2D cimport ConvexHull2D as _ConvexHull2D from DPosition cimport DPosition2 as _DPosition2 from DBoundingBox cimport DBoundingBox2 as _DBoundingBox2 def enclosesXY(self, float x, float y): """ Parameters: x (float) y (float) Returns: int """ cdef _DPosition2 pos pos[0] = x pos[1] = y return self.inst.get().encloses(pos) def getHullPointsNPY(self): """ Returns: result (np.ndarray[np.float32_t, ndim=2]) """ cdef libcpp_vector[_DPosition2] points = self.inst.get().getHullPoints() cdef np.ndarray[np.float32_t, ndim=2] result cdef n = points.size() result = np.zeros( [n,2], dtype=np.float32) cdef libcpp_vector[_DPosition2].iterator it = points.begin() cdef int i = 0 while it!= points.end(): result[i,0] = deref(it)[0] result[i,1] = deref(it)[1] inc(it) i += 1 return result def setHullPointsNPY(self, np.ndarray[np.float32_t, ndim=2] points): """ Parameters: points (np.ndarray[np.float32_t, ndim=2]) """ cdef _ConvexHull2D * hull = self.inst.get() cdef int N = points.shape[0] cdef int i cdef libcpp_vector[_DPosition2] vec cdef _DPosition2 p for i in range(N): p[0] = points[i,0] p[1] = points[i,1] vec.push_back(p) self.inst.get().setHullPoints(vec) def getBoundingBox2D(self): """ Returns: ((double,double),(double,double)) """ cdef _DBoundingBox2 box = self.inst.get().getBoundingBox() cdef _DPosition2 minp = box.minPosition() cdef _DPosition2 maxp = box.maxPosition() return (minp[0], minp[1]), (maxp[0], maxp[1]) def addPointXY(self, x, y): """ Parameters: x (double) y (double) """ cdef _DPosition2 p p[0] = x p[1] = y self.inst.get().addPoint(p) def addPointsNPY(self, np.ndarray[np.float32_t, ndim=2] points): """ Parameters: points (np.ndarray[np.float32_t, ndim=2]) """ cdef _ConvexHull2D * hull = self.inst.get() cdef int N = points.shape[0] cdef int i cdef libcpp_vector[_DPosition2] vec cdef _DPosition2 p for i in range(N): p[0] = points[i,0] p[1] = points[i,1] vec.push_back(p) self.inst.get().addPoints(vec) <|end_of_text|># -*- coding: utf-8 -*- # distutils: language=c # cython: initializedcheck=False # cython: nonecheck=False # cython: overflowcheck=False # cython: boundscheck=False from myawesomelib.types cimport data_t, ufunc cimport numpy as cnp cdef apply_ufunc(cnp.ndarray x, ufunc f, bint inplace=?) cdef data_t apply_ufunc0(data_t x, ufunc f) nogil cdef data_t[:] apply_ufunc1(data_t[:] x, ufunc f) nogil cdef data_t[:, :] apply_ufunc2(data_t[:, :] x, ufunc f) nogil cdef data_t[:, :, :] apply_ufunc3(data_t[:, :, :] x, ufunc f) nogil cdef data_t[:, :, :, :] apply_ufunc4(data_t[:, :, :, :] x, ufunc f) nogil cdef data_t[:, :, :, :, :] apply_ufunc5(data_t[:, :, :, :, :] x, ufunc f) nogil cdef data_t[:, :, :, :, :, :] apply_ufunc6(data_t[:, :, :, :, :, :] x, ufunc f) nogil cdef data_t[:, :, :, :, :, :, :] apply_ufunc7(data_t[:, :, :, :, :, :, :] x, ufunc f) nogil <|end_of_text|># Present for backwards compatability from cpython.dict cimport * <|end_of_text|># distutils: language = c++ """ Provides Cython header for "Solitaire.h". """ from libcpp.string cimport string __author__ = 'Tiziano Bettio' __license__ = 'MIT' __version__ = '0.0.10' __copyright__ = """Copyright (c) 2020 Tiziano Bettio Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" cdef extern from "Move.cpp": pass cdef extern from "Move.h": cdef struct Move: pass cdef extern from "Card.cpp": pass cdef extern from "Card.h": pass cdef extern from "HashMap.h": pass cdef extern from "Pile.cpp": pass cdef extern from "Pile.h": pass cdef extern from "Random.cpp": pass cdef extern from "Random.h": pass cdef extern from "Solitaire.cpp": pass cdef extern from "Solitaire.h": cdef enum SolveResult "SolveResult": CouldNotComplete = -2, SolvedMayNotBeMinimal = -1, Impossible = 0, SolvedMinimal = 1 cdef cppclass Solitaire: void Initialize() int Shuffle1(int dealNumber) void Shuffle2(int dealNumber) void ResetGame() void ResetGame(int drawCount) SolveResult SolveMinimalMultithreaded(int numThreads, int maxClosedCount) nogil SolveResult SolveMinimal(int maxClosedCount) nogil SolveResult SolveFast(int maxClosedCount, int twoShift, int threeShift) nogil int MovesMadeCount() int MovesMadeNormalizedCount() int FoundationCount() int DrawCount() void SetDrawCount(int drawCount) string GetMoveInfo(Move move) bint LoadSolitaire(const string& cardSet) string GetSolitaire() bint LoadPysol
Cython
(const string& cardSet) string GetPysol() string GameDiagram() string GameDiagramPysol() string MovesMade() Move operator[](int index) <|end_of_text|>"""The cmSystemTools Cython declaration.""" cdef extern from "cmSystemTools.h" namespace "cmSystemTools": void FindExecutableDirectory(char * argv0) <|end_of_text|> """ Implements ObjectID base class and global object registry. It used to be that we could store the HDF5 identifier in an ObjectID and simply close it when the object was deallocated. However, since HDF5 1.8.5 they have started recycling object identifiers, which breaks this system. We now use a global registry of object identifiers. This is implemented via a dictionary which maps an integer representation of the identifier to a weak reference of an ObjectID. There is only one ObjectID instance in the universe for each integer identifier. When the HDF5 reference count for a identifier reaches zero, HDF5 closes the object and reclaims the identifier. When this occurs, the identifier and weak reference must be deleted from the registry. If an ObjectID is deallocated, it is deleted from the registry and the HDF5 reference count is decreased, HDF5 closes and reclaims the identifier for future use. All interactions with the registry must be synchronized for thread safety. You must acquire "registry.lock" before interacting with the registry. The registry is not internally synchronized, in the interest of performance: we don't want the same thread attempting to acquire the lock multiple times during a single operation, if we can avoid it. All ObjectIDs and subclasses thereof should be opened with the "open" classmethod factory function, such that an existing ObjectID instance can be returned from the registry when appropriate. """ from defs cimport * from weakref import KeyedRef, ref ## {{{ http://code.activestate.com/recipes/577336/ (r3) from cpython cimport pythread from cpython.exc cimport PyErr_NoMemory cdef class FastRLock: """Fast, re-entrant locking. Under uncongested conditions, the lock is never acquired but only counted. Only when a second thread comes in and notices that the lock is needed, it acquires the lock and notifies the first thread to release it when it's done. This is all made possible by the wonderful GIL. """ cdef pythread.PyThread_type_lock _real_lock cdef long _owner # ID of thread owning the lock cdef int _count # re-entry count cdef int _pending_requests # number of pending requests for real lock cdef bint _is_locked # whether the real lock is acquired def __cinit__(self): self._owner = -1 self._count = 0 self._is_locked = False self._pending_requests = 0 self._real_lock = pythread.PyThread_allocate_lock() if self._real_lock is NULL: PyErr_NoMemory() def __dealloc__(self): if self._real_lock is not NULL: pythread.PyThread_free_lock(self._real_lock) self._real_lock = NULL def acquire(self, bint blocking=True): return lock_lock(self, pythread.PyThread_get_thread_ident(), blocking) def release(self): if self._owner!= pythread.PyThread_get_thread_ident(): raise RuntimeError("cannot release un-acquired lock") unlock_lock(self) # compatibility with threading.RLock def __enter__(self): # self.acquire() return lock_lock(self, pythread.PyThread_get_thread_ident(), True) def __exit__(self, t, v, tb): # self.release() if self._owner!= pythread.PyThread_get_thread_ident(): raise RuntimeError("cannot release un-acquired lock") unlock_lock(self) def _is_owned(self): return self._owner == pythread.PyThread_get_thread_ident() cdef inline bint lock_lock(FastRLock lock, long current_thread, bint blocking) nogil: # Note that this function *must* hold the GIL when being called. # We just use 'nogil' in the signature to make sure that no Python # code execution slips in that might free the GIL if lock._count: # locked! - by myself? if current_thread == lock._owner: lock._count += 1 return 1 elif not lock._pending_requests: # not locked, not requested - go! lock._owner = current_thread lock._count = 1 return 1 # need to get the real lock return _acquire_lock( lock, current_thread, pythread.WAIT_LOCK if blocking else pythread.NOWAIT_LOCK) cdef bint _acquire_lock(FastRLock lock, long current_thread, int wait) nogil: # Note that this function *must* hold the GIL when being called. # We just use 'nogil' in the signature to make sure that no Python # code execution slips in that might free the GIL if not lock._is_locked and not lock._pending_requests: # someone owns it but didn't acquire the real lock - do that # now and tell the owner to release it when done. Note that we # do not release the GIL here as we must absolutely be the one # who acquires the lock now. if not pythread.PyThread_acquire_lock(lock._real_lock, wait): return 0 #assert not lock._is_locked lock._is_locked = True lock._pending_requests += 1 with nogil: # wait for the lock owning thread to release it locked = pythread.PyThread_acquire_lock(lock._real_lock, wait) lock._pending_requests -= 1 #assert not lock._is_locked #assert lock._count == 0 if not locked: return 0 lock._is_locked = True lock._owner = current_thread lock._count = 1 return 1 cdef inline void unlock_lock(FastRLock lock) nogil: # Note that this function *must* hold the GIL when being called. # We just use 'nogil' in the signature to make sure that no Python # code execution slips in that might free the GIL #assert lock._owner == pythread.PyThread_get_thread_ident() #assert lock._count > 0 lock._count -= 1 if lock._count == 0: lock._owner = -1 if lock._is_locked: pythread.PyThread_release_lock(lock._real_lock) lock._is_locked = False ## end of http://code.activestate.com/recipes/577336/ }}} cdef class _Registry: cdef object _data cdef readonly FastRLock lock def __cinit__(self): self._data = {} self.lock = FastRLock() __hash__ = None # Avoid Py3 warning def cleanup(self): "Manage invalid identifiers" deadlist = [] for key in self._data: val = self._data[key] val = val() if val is None: deadlist.append(key) continue if not val.valid: deadlist.append(key) for key in deadlist: del self._data[key] def __getitem__(self, key): o = self._data[key]() if o is None: # This would occur if we had open objects and closed their # file, causing the objects identifiers to be reclaimed. # Now we clean up the registry when we close a file (or any # other identifier, for that matter), so in practice this # condition never obtains. del self._data[key] # We need to raise a KeyError: o = self._data[key]() return o def __setitem__(self, key, val): # this method should only be called by ObjectID.open self._data[key] = ref(val) def __delitem__(self, key): # we need to synchronize removal of the id from the # registry with decreasing the HDF5 reference count: self._data.pop(key,None) if H5Iget_type(key) >= 0: # if not, object was explicitly closed H5Idec_ref(key) registry = _Registry() cdef class ObjectID: """ Represents an HDF5 identifier. """ property fileno: def __get__(self): cdef H5G_stat_t stat H5Gget_objinfo(self.id, '.', 0, &stat) return (stat.fileno[0], stat.fileno[1]) property valid: def __get__(self): if not self.id: return False res = H5Iget_type(self.id) > 0 if not res: self.id = 0 return res def __cinit__(self, id): self.id = id self.locked = 0 with registry.lock:
Cython
registry[id] = self def __dealloc__(self): if not self.locked: try: with registry.lock: del registry[self.id] except AttributeError: # library being torn down, registry is None pass def __nonzero__(self): return self.valid def __copy__(self): cdef ObjectID cpy cpy = type(self)(self.id) return cpy def __richcmp__(self, object other, int how): """ Default comparison mechanism for HDF5 objects (equal/not-equal) Default equality testing: 1. Objects which are not both ObjectIDs are unequal 2. Objects with the same HDF5 ID number are always equal 3. Objects which hash the same are equal """ cdef bint equal = 0 if how!= 2 and how!= 3: return NotImplemented if isinstance(other, ObjectID): if self.id == other.id: equal = 1 else: try: equal = hash(self) == hash(other) except TypeError: pass if how == 2: return equal return not equal def __hash__(self): """ Default hashing mechanism for HDF5 objects Default hashing strategy: 1. Try to hash based on the object's fileno and objno records 2. If (1) succeeds, cache the resulting value 3. If (1) fails, raise TypeError """ cdef H5G_stat_t stat if self._hash is None: try: H5Gget_objinfo(self.id, '.', 0, &stat) self._hash = hash((stat.fileno[0], stat.fileno[1], stat.objno[0], stat.objno[1])) except Exception: raise TypeError("Objects of class %s cannot be hashed" % self.__class__.__name__) return self._hash @classmethod def open(cls, id): """ Return a representation of an HDF5 identifier """ with registry.lock: try: res = registry[id] except KeyError: res = cls(id) return res cdef hid_t pdefault(ObjectID pid): if pid is None: return <hid_t>H5P_DEFAULT return pid.id <|end_of_text|># Copyright (c) 2021-2022, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # cython: profile=False # distutils: language = c++ # cython: embedsignature = True # cython: language_level = 3 from libcpp cimport bool from pylibraft.common.handle cimport * cdef extern from "cugraph/legacy/graph.hpp" namespace "cugraph::legacy": ctypedef enum PropType: PROP_UNDEF "cugraph::legacy::PROP_UNDEF" PROP_FALSE "cugraph::legacy::PROP_FALSE" PROP_TRUE "cugraph::legacy::PROP_TRUE" ctypedef enum DegreeDirection: DIRECTION_IN_PLUS_OUT "cugraph::legacy::DegreeDirection::IN_PLUS_OUT" DIRECTION_IN "cugraph::legacy::DegreeDirection::IN" DIRECTION_OUT "cugraph::legacy::DegreeDirection::OUT" struct GraphProperties: bool directed bool weighted bool multigraph bool bipartite bool tree PropType has_negative_edges cdef cppclass GraphViewBase[VT,ET,WT]: WT *edge_data handle_t *handle; GraphProperties prop VT number_of_vertices ET number_of_edges VT* local_vertices ET* local_edges VT* local_offsets void set_handle(handle_t*) void set_local_data(VT* local_vertices_, ET* local_edges_, VT* local_offsets_) void get_vertex_identifiers(VT *) const GraphViewBase(WT*,VT,ET) cdef cppclass GraphCOOView[VT,ET,WT](GraphViewBase[VT,ET,WT]): VT *src_indices VT *dst_indices void degree(ET *,DegreeDirection) const GraphCOOView() GraphCOOView(const VT *, const ET *, const WT *, size_t, size_t) cdef cppclass GraphCompressedSparseBaseView[VT,ET,WT](GraphViewBase[VT,ET,WT]): ET *offsets VT *indices void get_source_indices(VT *) const void degree(ET *,DegreeDirection) const GraphCompressedSparseBaseView(const VT *, const ET *, const WT *, size_t, size_t) cdef cppclass GraphCSRView[VT,ET,WT](GraphCompressedSparseBaseView[VT,ET,WT]): GraphCSRView() GraphCSRView(const VT *, const ET *, const WT *, size_t, size_t) cdef cppclass GraphCSCView[VT,ET,WT](GraphCompressedSparseBaseView[VT,ET,WT]): GraphCSCView() GraphCSCView(const VT *, const ET *, const WT *, size_t, size_t) <|end_of_text|> from PDSim.flow import flow_models cimport PDSim.flow.flow_models as flow_models from PDSim.flow.flow_models import FlowFunction from PDSim.flow.flow_models cimport FlowFunction from PDSim.flow.flow import FlowPath from PDSim.flow.flow cimport FlowPath from PDSim.scroll import scroll_geo from PDSim.scroll.common_scroll_geo import geoVals from PDSim.scroll.common_scroll_geo cimport geoVals cdef class _Scroll(object): cdef public geoVals geo cdef public double theta cdef public double HTC cpdef dict __cdict__(self) cpdef double SA_S(self, FlowPath FP) cpdef double Discharge(self,FlowPath FP) cpdef double Inlet_sa(self, FlowPath FP) cpdef double radial_leakage_area(self, double, long, long) cpdef tuple radial_leakage_angles(self, double theta, long key1Index, long key2Index) cpdef double RadialLeakage(self, FlowPath FP, double t = *) cpdef double FlankLeakage(self, FlowPath FP, int Ncv_check = *) <|end_of_text|>from quantlib.time._calendar cimport Calendar cdef extern from 'ql/time/calendars/japan.hpp' namespace 'QuantLib': cdef cppclass Japan(Calendar): Japan() <|end_of_text|># Copyright (c) 2013, Robert Escriva # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of this project nor the names of its contributors may # used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import collections from cpython cimport bool cdef extern from "stdlib.h": void* malloc(size_t sz) void free(void* ptr) cdef extern from "stdint.h": ctypedef unsigned int uint32_t ctypedef long unsigned int uint64_t cdef extern from "ygor/data.h": cdef enum ygor_units: YGOR_UNIT_S = 1 YGOR_UNIT_MS = 2 YGOR_UNIT_US = 3 YGOR_UNIT_BYTES = 9 YGOR_UNIT_KBYTES = 10 YGOR_UNIT_MBYTES = 11 YGOR_UNIT_GBYTES = 12 YGOR_UNIT_MONOTONIC= 254 YGOR_UNIT_UNIT = 255 cdef enum ygor_precision: YGOR_PRECISE_INTEGER = 1 YGOR_HALF_PRECISION = 2
Cython
YGOR_SINGLE_PRECISION = 3 YGOR_DOUBLE_PRECISION = 4 cdef struct ygor_series: const char* name ygor_units indep_units ygor_precision indep_precision ygor_units dep_units ygor_precision dep_precision cdef union ygor_data_value: uint64_t precise double approximate cdef struct ygor_data_point: const ygor_series* series ygor_data_value indep ygor_data_value dep cdef struct ygor_data_logger ygor_data_logger* ygor_data_logger_create(const char* output, const ygor_series** series, size_t series_sz) int ygor_data_logger_flush_and_destroy(ygor_data_logger* ydl) int ygor_data_logger_record(ygor_data_logger* ydl, ygor_data_point* ydp) cdef extern from "ygor-internal.h": int ygor_is_precise(ygor_precision p) Series = collections.namedtuple('Series', ('name', 'indep_units', 'indep_precision', 'dep_units', 'dep_precision')) units_conversion = {'s': YGOR_UNIT_S, 'ms': YGOR_UNIT_MS, 'us': YGOR_UNIT_US, 'B': YGOR_UNIT_BYTES, 'KB': YGOR_UNIT_KBYTES, 'MB': YGOR_UNIT_MBYTES, 'GB': YGOR_UNIT_GBYTES, None: YGOR_UNIT_UNIT} precision_conversion = {'precise': YGOR_PRECISE_INTEGER, 'half': YGOR_HALF_PRECISION, 'single': YGOR_SINGLE_PRECISION, 'double': YGOR_DOUBLE_PRECISION} cdef class __series: cdef bytes name cdef ygor_series series cdef class DataLogger: cdef ygor_data_logger* dl cdef dict series cdef dict series_idxs cdef const ygor_series** ys; cdef size_t ys_sz def __cinit__(self, str output, series): self.dl = NULL self.series = {} self.series_idxs = {} self.ys = <const ygor_series**>malloc(sizeof(const ygor_series*) * len(series)) self.ys_sz = len(series) for idx, ser in enumerate(series): if ser.indep_units not in units_conversion.keys(): raise ValueError("invalid independent units") if ser.indep_precision not in ('half','single', 'double', 'precise'): raise ValueError("invalid independent precision") if ser.dep_units not in units_conversion.keys(): raise ValueError("invalid dependent units") if ser.dep_precision not in ('half','single', 'double', 'precise'): raise ValueError("invalid dependent precision") if ser.name in self.series: raise KeyError("series defined twice") s = __series() s.name = ser.name.encode('utf8') s.series.name = s.name s.series.indep_units = units_conversion[ser.indep_units] s.series.indep_precision = precision_conversion[ser.indep_precision] s.series.dep_units = units_conversion[ser.dep_units] s.series.dep_precision = precision_conversion[ser.dep_precision] self.series[s.name] = s self.series_idxs[s.name] = idx self.ys[idx] = &s.series out = output.encode('utf8') self.dl = ygor_data_logger_create(out, self.ys, self.ys_sz) if not self.dl: raise RuntimeError("error creating data logger") def __dealloc__(self): if self.dl: self.flush_and_destroy() if self.ys: free(self.ys) def flush_and_destroy(self): assert(self.dl) ygor_data_logger_flush_and_destroy(self.dl) self.dl = NULL def record(self, str _series, indep, dep): cdef bytes series = _series.encode('utf8') assert series in self.series idx = self.series_idxs[series] cdef ygor_data_point ydp ydp.series = self.ys[idx] if ygor_is_precise(ydp.series.indep_precision): ydp.indep.precise = indep else: ydp.indep.approximate = indep if ygor_is_precise(ydp.series.dep_precision): ydp.dep.precise = dep else: ydp.dep.approximate = dep if ygor_data_logger_record(self.dl, &ydp) < 0: raise RuntimeError("could not log data record") <|end_of_text|># File: slp.pyx # Abstract: Pyrex wrapper for OpenSLP # Requires: OpenSLP installation, Pyrex # # Author(s): Ganesan Rajagopal <[email protected]> # # Copyright (C) 2003 The OpenSLP Project # # This program is released under same license as the OpenSLP project (BSD # style without the advertising clause). Alternatively, you can use it under # the Python License. cdef extern from "slp.h": ctypedef enum SLPBoolean: SLP_FALSE SLP_TRUE ctypedef enum SLPError: SLP_LAST_CALL = 1 SLP_OK = 0 SLP_LANGUAGE_NOT_SUPPORTED = -1 SLP_PARSE_ERROR = -2 SLP_INVALID_REGISTRATION = -3 SLP_SCOPE_NOT_SUPPORTED = -4 SLP_AUTHENTICATION_ABSENT = -6 SLP_AUTHENTICATION_FAILED = -7 SLP_INVALID_UPDATE = -13 SLP_REFRESH_REJECTED = -15 SLP_NOT_IMPLEMENTED = -17 SLP_BUFFER_OVERFLOW = -18 SLP_NETWORK_TIMED_OUT = -19 SLP_NETWORK_INIT_FAILED = -20 SLP_MEMORY_ALLOC_FAILED = -21 SLP_PARAMETER_BAD = -22 SLP_NETWORK_ERROR = -23 SLP_INTERNAL_SYSTEM_ERROR = -24 SLP_HANDLE_IN_USE = -25 SLP_TYPE_ERROR = -26 cdef struct srvurl: char *s_pcSrvType char *s_pcHost int s_iPort char *s_pcNetFamily char *s_pcSrvPart ctypedef srvurl SLPSrvURL ctypedef void *SLPHandle ctypedef void SLPRegReport(SLPHandle hSLP, SLPError errCode, void *pvCookie) ctypedef SLPBoolean SLPSrvTypeCallback( SLPHandle hSLP, char *pcSrvTypes, SLPError errCode, void *pvCookie) ctypedef SLPBoolean SLPSrvURLCallback( SLPHandle hSLP, char *pcSrvURL, unsigned short sLifetime, SLPError errCode, void *pvCookie) ctypedef SLPBoolean SLPAttrCallback( SLPHandle hSLP, char *pcAttrList, SLPError errCode, void *pvCookie) SLPError SLPOpen(char *lang, SLPBoolean isasync, SLPHandle *phslp) void SLPClose(SLPHandle hSLP) SLPError SLPAssociateIFList(SLPHandle hSLP, char* McastIFList) SLPError SLPAssociateIP(SLPHandle hSLP, char* unicast_ip) SLPError SLPReg(SLPHandle hSLP, char *pcSrvURL, unsigned short usLifetime, char *pcSrvType, char *pcAttrs, SLPBoolean fresh, SLPRegReport callback, void *pvCookie) SLPError SLPDereg(SLPHandle hSLP, char *pcSrvURL, SLPRegReport callback, void *pvCookie) SLPError SLPDelAttrs(SLPHandle hSLP, char *pcSrvURL, char *pcAttrs, SLPRegReport callback, void *pvCookie) SLPError SLPFindSrvTypes(SLPHandle hslp, char *namingauthority, char *scopelist, SLPSrvTypeCallback callback, void* cookie) SLPError SLPFindSrvs(SLPHandle hSLP, char *pcServiceType, char *pcScopeList, char *pcSearchFilter, SLPSrvURLCallback callback, void *pvCookie) SLPError SLPFindAttrs(SLPHandle hSLP, char *pcURLOrServiceType, char *pcScopeList, char *pcAttrIds, SLPAttrCallback callback, void *pvCookie) unsigned short SLPGetRefreshInterval() SLPError SLPFindScopes(SLPHandle hSLP, char **ppcScopeList) SLPError SLPParseSrvURL(char *pcSrvURL, SLPSrvURL** ppSrvURL) SLPError SLPEscape(char *pcInbuf, char **ppcOutBuf, SLPBoolean isTag) SLPError SLPUnescape(char* pcInbuf, char **ppcOutBuf, SLPBoolean isTag) void SLPFree(void *pvMem) char *SLPGetProperty(char* pcName) void SLPSetProperty(char *pc
Cython
Name, char *pcValue) SLPError SLPParseAttrs(char *pcAttrList, char *pcAttrId, char **ppcAttrVal) # C callbacks get a python tuple as the cookie parameter. The first element # of the tuple is a python function and the second element is a cookie to # be passed to it (as the last parameter). # Callback for register(), deregister() and delattrs() methods cdef void errcb(SLPHandle hslp, SLPError errcode, void *cookie): callback, realcookie = <object>cookie callback(errcode, realcookie) # Callback for findsrvtypes() and findattrs() methods cdef SLPBoolean strcb(SLPHandle slph, char *string, SLPError errcode, void *cookie): cdef SLPBoolean ret callback, realcookie = <object>cookie if string!= NULL: # when errcode!= SLP_OK pystring = string ret = callback(pystring, errcode, realcookie) return ret # Callback for findsrvs() menthod cdef SLPBoolean srvcb(SLPHandle hslp, char *srvurl, unsigned short lifetime, SLPError errcode, void *cookie): cdef SLPBoolean ret callback, realcookie = <object>cookie pysrvurl = None if srvurl!= NULL: # when errcode!= SLP_OK pysrvurl = srvurl ret = callback(pysrvurl, lifetime, errcode, realcookie) return ret # Wrapper for OpenSLP APIs cdef class SLPConn: cdef SLPHandle slph cdef object cookie # defaultcookie will be passed as the cookie parameter to callback # functions if no explicit parameter is specified in the call def __init__(self, char *lang, int async, object defaultcookie = None): self.cookie = defaultcookie if async: f = SLP_TRUE else: f = SLP_FALSE err = SLPOpen(lang, f, &self.slph) if err!= SLP_OK: raise EnvironmentError(err, "") def __del__(self): if self.slph!= NULL: SLPClose(self.slph) # Close the SLP Handle def close(self): SLPClose(self.slph) self.slph = NULL def associate_if_list(self, char *mcast_if_list): return SLPAssociateIFList(self.slph, mcast_if_list) def associate_ip(self, char *unicast_ip): return SLPAssociateIP(self.slph, unicast_ip) # register an SLP service def register(self, char *srvurl, unsigned lifetime, char *attrs, object callback, object cookie = None): pycb = (callback, cookie or self.cookie) return SLPReg(self.slph, srvurl, <unsigned short>lifetime, "", attrs, SLP_TRUE, errcb, <void *>pycb) # deregister an SLP service def deregister(self, char *srvurl, object callback, object cookie = None): pycb = (callback, cookie or self.cookie) return SLPDereg(self.slph, srvurl, errcb, <void *>pycb) # delete attributes from a SLP service URL def delattrs(self, char *srvurl, char *attrs, object callback, object cookie = None): pycb = (callback, cookie or self.cookie) return SLPDelAttrs(self.slph, srvurl, attrs, errcb, <void *>pycb) # find SLP service types def findsrvtypes(self, char *na, char *scopelist, object callback, object cookie = None): pycb = (callback, cookie or self.cookie) return SLPFindSrvTypes(self.slph, na, scopelist, strcb, <void *>pycb) # find SLP services matching the service type and searchfilter def findsrvs(self, char *srvtype, char *scopelist, char *searchfilter, object callback, object cookie = None): pycb = (callback, cookie or self.cookie) return SLPFindSrvs(self.slph, srvtype, scopelist, searchfilter, srvcb, <void *>pycb) # find attributes for the given SLP service URL def findattrs(self, char *url, char *scopelist, char *attrids, object callback, object cookie = None): pycb = (callback, cookie or self.cookie) return SLPFindAttrs(self.slph, url, scopelist, attrids, strcb, <void *>pycb) # find supported SLP scopes def findscopes(self): cdef char *scopes err = SLPFindScopes(self.slph, &scopes) if err!= SLP_OK: raise EnvironmentError(err, "") return scopes def getrefreshinterval(): """get refresh interval""" return SLPGetRefreshInterval() def parsesrvurl(char *srvurl): """Parse given service URL""" cdef SLPSrvURL *pSrvURL err = SLPParseSrvURL(srvurl, &pSrvURL) if err!= SLP_OK: raise EnvironmentError(err, "") parsedurl = (pSrvURL.s_pcSrvType, pSrvURL.s_pcHost, pSrvURL.s_iPort, pSrvURL.s_pcNetFamily, pSrvURL.s_pcSrvPart) SLPFree(pSrvURL) return parsedurl def escape(char *s, int isTag): """Escape given string""" cdef char *outs if isTag: f = SLP_TRUE else: f = SLP_FALSE err = SLPEscape(s, &outs, f) if err!= SLP_OK: raise EnvironmentError(err, "") ret = outs SLPFree(outs) return ret def unescape(char *s, int isTag): """Unescape given string""" cdef char *outs if isTag: f = SLP_TRUE else: f = SLP_FALSE err = SLPUnescape(s, &outs, f) if err!= SLP_OK: raise EnvironmentError(err, "") ret = outs SLPFree(outs) return ret def getprop(char *name): """Get a SLP property""" return SLPGetProperty(name) def setprop(char *name, char *value): """Set an SLP property""" SLPSetProperty(name, value) # Local Variables: # mode: python # End: <|end_of_text|># -*- coding: utf-8 -*- """Serial METIS with 64bit integer """ include "impl_metis.pxi" <|end_of_text|> #cython: embedsignature=True, cdivision=True, boundscheck=False, wraparound=False, initializedcheck=False __all__ = ['c_maxvol', 'c_rect_maxvol'] import numpy as np cimport numpy as cnp from libc.stdlib cimport malloc, realloc, free from cython.parallel import prange from scipy.linalg.cython_blas cimport ( strsm, dtrsm, ctrsm, ztrsm, scopy, ccopy, dcopy, zcopy, sgemv, dgemv, cgemv, zgemv, sger, dger, cgerc, cgeru, zgerc, zgeru, isamax, idamax ) from scipy.linalg.cython_lapack cimport ( sgetrf, dgetrf, cgetrf, zgetrf ) cdef extern from "complex.h" nogil: double cabs(double complex) float cabsf(float complex) cdef extern from "math.h" nogil: double fabs(double) float fabsf(float) def c_rect_maxvol(A, tol=1., maxK=None, min_add_K=None, minK=None, start_maxvol_iters=10, identity_submatrix=True, top_k_index=-1): """ Cython implementation of rectangular 2-volume maximization. For information see `rect_maxvol` function. """ cdef int N, r, id_sub cdef cnp.ndarray lu, coef, basis if type(A)!= np.ndarray: raise TypeError, "argument must be of numpy.ndarray type" if len(A.shape)!= 2: raise ValueError, "argument must have 2 dimensions" N, r = A.shape if N <= r: return np.arange(N, dtype=np.int32), np.eye(N, dtype=A.dtype) lu = np.copy(A, order='F') if maxK is None or maxK > N: maxK = N if maxK < r: maxK = r if minK is None or minK < r: minK = r if minK > N: minK = N if min_add_K is not None: minK = max(minK, r+min_add_K) if minK > maxK: minK
Cython
= maxK if identity_submatrix: id_sub = 1 else: id_sub = 0 try: if A.dtype is np.dtype(np.float32): return srect_maxvol(N, r, <float *>lu.data, tol, minK, maxK, start_maxvol_iters, id_sub, top_k_index) elif A.dtype is np.dtype(np.float64): return drect_maxvol(N, r, <double *>lu.data, tol, minK, maxK, start_maxvol_iters, id_sub, top_k_index) elif A.dtype is np.dtype(np.complex64): return crect_maxvol(N, r, <float complex *>lu.data, tol, minK, maxK, start_maxvol_iters, id_sub, top_k_index) elif A.dtype is np.dtype(np.complex128): return zrect_maxvol(N, r, <double complex*>lu.data, tol, minK, maxK, start_maxvol_iters, id_sub, top_k_index) except Exception: raise def c_maxvol(A, tol=1.05, max_iters=100, top_k_index=-1): """ Cython implementation of 1-volume maximization. For information see `maxvol` function. """ cdef int N, r cdef cnp.ndarray lu, coef, basis if type(A)!= np.ndarray: raise TypeError, "argument must be of numpy.ndarray type" if len(A.shape)!= 2: raise ValueError, "argument must have 2 dimensions" N, r = A.shape if N <= r: return np.arange(N, dtype=np.int32), np.eye(N, dtype=A.dtype) if tol < 1: tol = 1.0 lu = np.copy(A, order='F') coef = np.copy(lu, order='F') basis = np.ndarray(r, dtype=np.int32) try: if A.dtype is np.dtype(np.float32): smaxvol(N, r, <float *>lu.data, <float *>coef.data, <int *>basis.data, tol, max_iters, top_k_index) elif A.dtype == np.dtype(np.float64): dmaxvol(N, r, <double *>lu.data, <double *>coef.data, <int *>basis.data, tol, max_iters, top_k_index) elif A.dtype is np.dtype(np.complex64): cmaxvol(N, r, <float complex *>lu.data, <float complex *> coef.data, <int *>basis.data, tol, max_iters, top_k_index) elif A.dtype is np.dtype(np.complex128): zmaxvol(N, r, <double complex*>lu.data, <double complex *> coef.data, <int *>basis.data, tol, max_iters, top_k_index) else: raise TypeError("must be of float or complex type") except Exception: raise return basis, coef cdef object srect_maxvol(int N, int R, float *lu, float tol, int minK, int maxK, int start_maxvol_iters, int identity_submatrix, int top_k_index): cdef char cN = 'N' cdef int i, j, i_one = 1, K, size = N*R cdef float d_one = 1.0, d_zero = 0.0, l cdef float tol2 = tol*tol, tmp, tmp2 cdef int *basis = <int *> malloc(N * sizeof(int)) cdef float *chosen = <float *> malloc(N * sizeof(float)) cdef int [:]basis_buf cdef int coef_realloc_step = R, coef_columns = R+coef_realloc_step cdef float *coef = <float *> malloc(N * coef_columns * sizeof(float)) cdef float *tmp_pointer cdef float *L = <float *> malloc(N * sizeof(float)) cdef float *V = <float *> malloc(N * sizeof(float)) cdef float *tmp_row = <float *> malloc(N * sizeof(float)) cdef float [:,:] coef_buf if top_k_index == -1 or top_k_index > N: top_k_index = N if top_k_index < R: top_k_index = R scopy(&size, lu, &i_one, coef, &i_one) tmp = 1.05 # tolerance for square maxvol smaxvol(N, R, lu, coef, basis, tmp, start_maxvol_iters, top_k_index) # compute square length for each vector for j in prange(top_k_index, schedule="static", nogil=True): L[j] = 0.0 V[j] = 0.0 chosen[j] = 1.0 for i in range(R): tmp_pointer = coef+i*N for j in prange(top_k_index, schedule="static", nogil=True): tmp = fabsf(tmp_pointer[j]) L[j] += tmp*tmp for i in prange(R, schedule="static", nogil=True): L[basis[i]] = 0.0 chosen[basis[i]] = 0.0 i = isamax(&top_k_index, L, &i_one)-1 K = R while K < minK or (L[i] > tol2 and K < maxK): basis[K] = i chosen[i] = 0.0 #scopy(&K, coef+i, &N, tmp_row, &i_one) tmp_pointer = coef+i for j in prange(K, schedule="static", nogil=True): tmp_row[j] = tmp_pointer[j*N] sgemv(&cN, &N, &K, &d_one, coef, &N, tmp_row, &i_one, &d_zero, V, &i_one) l = (-d_one)/(1+V[i]) sger(&N, &K, &l, V, &i_one, tmp_row, &i_one, coef, &N) tmp = -l if coef_columns <= K: coef_columns += coef_realloc_step coef = <float *> realloc(coef, N * coef_columns * sizeof(float)) tmp_pointer = coef+K*N for j in prange(N, schedule="static", nogil=True): tmp_pointer[j] = tmp*V[j] for j in prange(top_k_index, schedule="static", nogil=True): tmp2 = fabsf(V[j]) L[j] -= tmp2*tmp2*tmp L[j] *= chosen[j] i = isamax(&top_k_index, L, &i_one)-1 K += 1 free(L) free(V) free(tmp_row) C = np.ndarray((N, K), order='F', dtype=np.float32) coef_buf = C for i in prange(K, schedule="static", nogil=True): for j in range(N): coef_buf[j, i] = coef[i*N+j] free(coef) if identity_submatrix == 1: for i in prange(K, schedule="static", nogil=True): tmp_pointer = &coef_buf[0, 0]+basis[i] for j in range(K): tmp_pointer[j*N] = 0.0 tmp_pointer[i*N] = 1.0 I = np.ndarray(K, dtype=np.int32) basis_buf = I for i in prange(K, schedule="static", nogil=True): basis_buf[i] = basis[i] free(basis) return I, C cdef object smaxvol(int N, int R, float *lu, float *coef, int *basis, float tol, int max_iters, int top_k_index): cdef int *ipiv = <int *> malloc(R * sizeof(int)) cdef int *interchange = <int *> malloc(N * sizeof(int)) cdef float *tmp_row = <float *> malloc(R*sizeof(float)) cdef float *tmp_column = <float *> malloc(N*sizeof(float)) cdef int info = 0, size = N * R, i, j, tmp_int, i_one = 1, iters = 0 cdef int k_row, k_col cdef char cR = 'R', cN = 'N', cU = 'U', cL = 'L' cdef float d_one = 1, alpha, max_value cdef float abs_max, tmp if (ipiv == NULL or interchange == NULL or tmp_row == NULL or tmp_column == NULL): raise MemoryError("malloc failed to allocate temporary buffers") if top_k_index == -1 or top_k_index > N: top_k_index = N if top_k_index < R: top_k_index = R sgetrf(&top_k_index, &R, lu, &N, ipiv, &info) if info < 0: raise ValueError("Internal maxvol_fullrank error, {} argument of" " sgetrf_ had illegal value".format(info)) if info > 0: raise
Cython
ValueError("Input matrix must not be singular") for i in prange(N, schedule="static", nogil=True): interchange[i] = i for i in prange(R, schedule="static", nogil=True): j = ipiv[i]-1 if j!= i: tmp_int = interchange[i] interchange[i] = interchange[j] interchange[j] = tmp_int free(ipiv) for i in prange(R, schedule="static", nogil=True): basis[i] = interchange[i] free(interchange) strsm(&cR, &cU, &cN, &cN, &N, &R, &d_one, lu, &N, coef, &N) strsm(&cR, &cL, &cN, &cU, &N, &R, &d_one, lu, &N, coef, &N) while iters < max_iters: abs_max = -1 for k_row in range(top_k_index): for k_col in range(R): tmp = fabsf(coef[k_row+k_col*N]) if tmp > abs_max: abs_max = tmp j = k_row i = k_col max_value = coef[j+i*N] if abs_max > tol: scopy(&R, coef+j, &N, tmp_row, &i_one) tmp_row[i] -= d_one scopy(&N, coef+i*N, &i_one, tmp_column, &i_one) basis[i] = j alpha = (-d_one)/max_value sger(&N, &R, &alpha, tmp_column, &i_one, tmp_row, &i_one, coef, &N) iters += i_one else: break free(tmp_row) free(tmp_column) return cdef object drect_maxvol(int N, int R, double *lu, double tol, int minK, int maxK, int start_maxvol_iters, int identity_submatrix, int top_k_index): cdef char cN = 'N' cdef int i, j, i_one = 1, K, size = N*R cdef double d_one = 1.0, d_zero = 0.0, l cdef double tol2 = tol*tol, tmp, tmp2 cdef int *basis = <int *> malloc(N * sizeof(int)) cdef double *chosen = <double *> malloc(N * sizeof(double)) cdef int [:]basis_buf cdef int coef_realloc_step = R, coef_columns = R+coef_realloc_step cdef double *coef = <double *> malloc(N * coef_columns * sizeof(double)) cdef double *tmp_pointer cdef double *L = <double *> malloc(N * sizeof(double)) cdef double *V = <double *> malloc(N * sizeof(double)) cdef double *tmp_row = <double *> malloc(N * sizeof(double)) cdef double [:,:] coef_buf if top_k_index == -1 or top_k_index > N: top_k_index = N if top_k_index < R: top_k_index = R dcopy(&size, lu, &i_one, coef, &i_one) tmp = 1.05 # tolerance for square maxvol dmaxvol(N, R, lu, coef, basis, tmp, start_maxvol_iters, top_k_index) # compute square length for each vector for j in prange(top_k_index, schedule="static", nogil=True): L[j] = 0.0 V[j] = 0.0 chosen[j] = 1.0 for i in range(R): tmp_pointer = coef+i*N for j in prange(top_k_index, schedule="static", nogil=True): tmp = fabs(tmp_pointer[j]) L[j] += tmp*tmp for i in prange(R, schedule="static", nogil=True): L[basis[i]] = 0.0 chosen[basis[i]] = 0.0 i = idamax(&top_k_index, L, &i_one)-1 K = R while K < minK or (L[i] > tol2 and K < maxK): basis[K] = i chosen[i] = 0.0 #dcopy(&K, coef+i, &N, tmp_row, &i_one) tmp_pointer = coef+i for j in prange(K, schedule="static", nogil=True): tmp_row[j] = tmp_pointer[j*N] dgemv(&cN, &N, &K, &d_one, coef, &N, tmp_row, &i_one, &d_zero, V, &i_one) l = (-d_one)/(1+V[i]) dger(&N, &K, &l, V, &i_one, tmp_row, &i_one, coef, &N) tmp = -l if coef_columns <= K: coef_columns += coef_realloc_step coef = <double *> realloc(coef, N * coef_columns * sizeof(double)) tmp_pointer = coef+K*N for j in prange(N, schedule="static", nogil=True): tmp_pointer[j] = tmp*V[j] for j in prange(top_k_index, schedule="static", nogil=True): tmp2 = fabs(V[j]) L[j] -= tmp2*tmp2*tmp L[j] *= chosen[j] i = idamax(&top_k_index, L, &i_one)-1 K += 1 free(L) free(V) free(tmp_row) C = np.ndarray((N, K), order='F', dtype=np.float64) coef_buf = C for i in prange(K, schedule="static", nogil=True): for j in range(N): coef_buf[j, i] = coef[i*N+j] free(coef) if identity_submatrix == 1: for i in prange(K, schedule="static", nogil=True): tmp_pointer = &coef_buf[0, 0]+basis[i] for j in range(K): tmp_pointer[j*N] = 0.0 tmp_pointer[i*N] = 1.0 I = np.ndarray(K, dtype=np.int32) basis_buf = I for i in prange(K, schedule="static", nogil=True): basis_buf[i] = basis[i] free(basis) return I, C cdef object dmaxvol(int N, int R, double *lu, double *coef, int *basis, double tol, int max_iters, int top_k_index): cdef int *ipiv = <int *> malloc(R * sizeof(int)) cdef int *interchange = <int *> malloc(N * sizeof(int)) cdef double *tmp_row = <double *> malloc(R*sizeof(double)) cdef double *tmp_column = <double *> malloc(N*sizeof(double)) cdef int info = 0, size = N * R, i, j, tmp_int, i_one = 1, iters = 0 cdef int k_row, k_col cdef char cR = 'R', cN = 'N', cU = 'U', cL = 'L' cdef double d_one = 1, alpha, max_value cdef double abs_max, tmp if (ipiv == NULL or interchange == NULL or tmp_row == NULL or tmp_column == NULL): raise MemoryError("malloc failed to allocate temporary buffers") if top_k_index == -1 or top_k_index > N: top_k_index = N if top_k_index < R: top_k_index = R dgetrf(&top_k_index, &R, lu, &N, ipiv, &info) if info < 0: raise ValueError("Internal maxvol_fullrank error, {} argument of" " dgetrf_ had illegal value".format(info)) if info > 0: raise ValueError("Input matrix must not be singular") for i in prange(N, schedule="static", nogil=True): interchange[i] = i for i in prange(R, schedule="static", nogil=True): j = ipiv[i]-1 if j!= i: tmp_int = interchange[i] interchange[i] = interchange[j] interchange[j] = tmp_int free(ipiv) for i in prange(R, schedule="static", nogil=True): basis[i] = interchange[i] free(interchange) dtrsm(&cR, &cU, &cN, &cN, &N, &R, &d_one, lu, &N, coef, &N) dtrsm(&cR, &cL, &cN, &cU, &N, &R, &d_one, lu, &N, coef, &N) while iters < max_iters: abs_max = -1 for k_row in range(top_k_index): for k_col in range(R): tmp = fabs(coef[k_row+k_col*N]) if tmp
Cython
> abs_max: abs_max = tmp j = k_row i = k_col max_value = coef[j+i*N] if abs_max > tol: dcopy(&R, coef+j, &N, tmp_row, &i_one) tmp_row[i] -= d_one dcopy(&N, coef+i*N, &i_one, tmp_column, &i_one) basis[i] = j alpha = (-d_one)/max_value dger(&N, &R, &alpha, tmp_column, &i_one, tmp_row, &i_one, coef, &N) iters += i_one else: break free(tmp_row) free(tmp_column) return cdef object crect_maxvol(int N, int R, float complex *lu, float tol, int minK, int maxK, int start_maxvol_iters, int identity_submatrix, int top_k_index): cdef char cN = 'N' cdef int i, j, i_one = 1, K, size = N*R cdef float complex d_one = 1.0, d_zero = 0.0, l cdef float tol2 = tol*tol, tmp, tmp2 cdef int *basis = <int *> malloc(N * sizeof(int)) cdef float *chosen = <float *> malloc(N * sizeof(float)) cdef int [:]basis_buf cdef int coef_realloc_step = R, coef_columns = R+coef_realloc_step cdef float complex *coef = <float complex *> malloc(N * coef_columns * sizeof(float complex)) cdef float complex *tmp_pointer cdef float *L = <float *> malloc(N * sizeof(float)) cdef float complex *V = <float complex *> malloc(N * sizeof(float complex)) cdef float complex *tmp_row = <float complex *> malloc(N * sizeof(float complex)) cdef float complex [:,:] coef_buf if top_k_index == -1 or top_k_index > N: top_k_index = N if top_k_index < R: top_k_index = R ccopy(&size, lu, &i_one, coef, &i_one) tmp = 1.05 # tolerance for square maxvol cmaxvol(N, R, lu, coef, basis, tmp, start_maxvol_iters, top_k_index) # compute square length for each vector for j in prange(top_k_index, schedule="static", nogil=True): L[j] = 0.0 V[j] = 0.0 chosen[j] = 1.0 for i in range(R): tmp_pointer = coef+i*N for j in prange(top_k_index, schedule="static", nogil=True): tmp = cabsf(tmp_pointer[j]) L[j] += tmp*tmp for i in prange(R, schedule="static", nogil=True): L[basis[i]] = 0.0 chosen[basis[i]] = 0.0 i = isamax(&top_k_index, L, &i_one)-1 K = R while K < minK or (L[i] > tol2 and K < maxK): basis[K] = i chosen[i] = 0.0 #ccopy(&K, coef+i, &N, tmp_row, &i_one) tmp_pointer = coef+i for j in prange(K, schedule="static", nogil=True): tmp_row[j] = tmp_pointer[j*N].conjugate() cgemv(&cN, &N, &K, &d_one, coef, &N, tmp_row, &i_one, &d_zero, V, &i_one) l = (-d_one)/(1+V[i]) cgerc(&N, &K, &l, V, &i_one, tmp_row, &i_one, coef, &N) tmp = -l.real if coef_columns <= K: coef_columns += coef_realloc_step coef = <float complex *> realloc(coef, N * coef_columns * sizeof(float complex)) tmp_pointer = coef+K*N for j in prange(N, schedule="static", nogil=True): tmp_pointer[j] = tmp*V[j] for j in prange(top_k_index, schedule="static", nogil=True): tmp2 = cabsf(V[j]) L[j] -= tmp2*tmp2*tmp L[j] *= chosen[j] i = isamax(&top_k_index, L, &i_one)-1 K += 1 free(L) free(V) free(tmp_row) C = np.ndarray((N, K), order='F', dtype=np.complex64) coef_buf = C for i in prange(K, schedule="static", nogil=True): for j in range(N): coef_buf[j, i] = coef[i*N+j] free(coef) if identity_submatrix == 1: for i in prange(K, schedule="static", nogil=True): tmp_pointer = &coef_buf[0, 0]+basis[i] for j in range(K): tmp_pointer[j*N] = 0.0 tmp_pointer[i*N] = 1.0 I = np.ndarray(K, dtype=np.int32) basis_buf = I for i in prange(K, schedule="static", nogil=True): basis_buf[i] = basis[i] free(basis) return I, C cdef object cmaxvol(int N, int R, float complex *lu, float complex *coef, int *basis, float tol, int max_iters, int top_k_index): cdef int *ipiv = <int *> malloc(R * sizeof(int)) cdef int *interchange = <int *> malloc(N * sizeof(int)) cdef float complex *tmp_row = <float complex *> malloc(R*sizeof(float complex)) cdef float complex *tmp_column = <float complex *> malloc(N*sizeof(float complex)) cdef int info = 0, size = N * R, i, j, tmp_int, i_one = 1, iters = 0 cdef int k_row, k_col cdef char cR = 'R', cN = 'N', cU = 'U', cL = 'L' cdef float complex d_one = 1, alpha, max_value cdef float abs_max, tmp if (ipiv == NULL or interchange == NULL or tmp_row == NULL or tmp_column == NULL): raise MemoryError("malloc failed to allocate temporary buffers") if top_k_index == -1 or top_k_index > N: top_k_index = N if top_k_index < R: top_k_index = R cgetrf(&top_k_index, &R, lu, &N, ipiv, &info) if info < 0: raise ValueError("Internal maxvol_fullrank error, {} argument of" " cgetrf_ had illegal value".format(info)) if info > 0: raise ValueError("Input matrix must not be singular") for i in prange(N, schedule="static", nogil=True): interchange[i] = i for i in prange(R, schedule="static", nogil=True): j = ipiv[i]-1 if j!= i: tmp_int = interchange[i] interchange[i] = interchange[j] interchange[j] = tmp_int free(ipiv) for i in prange(R, schedule="static", nogil=True): basis[i] = interchange[i] free(interchange) ctrsm(&cR, &cU, &cN, &cN, &N, &R, &d_one, lu, &N, coef, &N) ctrsm(&cR, &cL, &cN, &cU, &N, &R, &d_one, lu, &N, coef, &N) while iters < max_iters: abs_max = -1 for k_row in range(top_k_index): for k_col in range(R): tmp = cabsf(coef[k_row+k_col*N]) if tmp > abs_max: abs_max = tmp j = k_row i = k_col max_value = coef[j+i*N] if abs_max > tol: ccopy(&R, coef+j, &N, tmp_row, &i_one) tmp_row[i] -= d_one ccopy(&N, coef+i*N, &i_one, tmp_column, &i_one) basis[i] = j alpha = (-d_one)/max_value cgeru(&N, &R, &alpha, tmp_column, &i_one, tmp_row, &i_one, coef, &N) iters += i_one else: break free(tmp_row) free(tmp_column) return cdef object zrect_maxvol(int N, int R, double complex *lu, double tol, int minK, int maxK, int start_maxvol_iters, int identity_submatrix, int top_k_index): c
Cython
def char cN = 'N' cdef int i, j, i_one = 1, K, size = N*R cdef double complex d_one = 1.0, d_zero = 0.0, l cdef double tol2 = tol*tol, tmp, tmp2 cdef int *basis = <int *> malloc(N * sizeof(int)) cdef double *chosen = <double *> malloc(N * sizeof(double)) cdef int [:]basis_buf cdef int coef_realloc_step = R, coef_columns = R+coef_realloc_step cdef double complex *coef = <double complex *> malloc(N * coef_columns * sizeof(double complex)) cdef double complex *tmp_pointer cdef double *L = <double *> malloc(N * sizeof(double)) cdef double complex *V = <double complex *> malloc(N * sizeof(double complex)) cdef double complex *tmp_row = <double complex *> malloc(N * sizeof(double complex)) cdef double complex [:,:] coef_buf if top_k_index == -1 or top_k_index > N: top_k_index = N if top_k_index < R: top_k_index = R zcopy(&size, lu, &i_one, coef, &i_one) tmp = 1.05 # tolerance for square maxvol zmaxvol(N, R, lu, coef, basis, tmp, start_maxvol_iters, top_k_index) # compute square length for each vector for j in prange(top_k_index, schedule="static", nogil=True): L[j] = 0.0 V[j] = 0.0 chosen[j] = 1.0 for i in range(R): tmp_pointer = coef+i*N for j in prange(top_k_index, schedule="static", nogil=True): tmp = cabs(tmp_pointer[j]) L[j] += tmp*tmp for i in prange(R, schedule="static", nogil=True): L[basis[i]] = 0.0 chosen[basis[i]] = 0.0 i = idamax(&top_k_index, L, &i_one)-1 K = R while K < minK or (L[i] > tol2 and K < maxK): basis[K] = i chosen[i] = 0.0 #zcopy(&K, coef+i, &N, tmp_row, &i_one) tmp_pointer = coef+i for j in prange(K, schedule="static", nogil=True): tmp_row[j] = tmp_pointer[j*N].conjugate() zgemv(&cN, &N, &K, &d_one, coef, &N, tmp_row, &i_one, &d_zero, V, &i_one) l = (-d_one)/(1+V[i]) zgerc(&N, &K, &l, V, &i_one, tmp_row, &i_one, coef, &N) tmp = -l.real if coef_columns <= K: coef_columns += coef_realloc_step coef = <double complex *> realloc(coef, N * coef_columns * sizeof(double complex)) tmp_pointer = coef+K*N for j in prange(N, schedule="static", nogil=True): tmp_pointer[j] = tmp*V[j] for j in prange(top_k_index, schedule="static", nogil=True): tmp2 = cabs(V[j]) L[j] -= tmp2*tmp2*tmp L[j] *= chosen[j] i = idamax(&top_k_index, L, &i_one)-1 K += 1 free(L) free(V) free(tmp_row) C = np.ndarray((N, K), order='F', dtype=np.complex128) coef_buf = C for i in prange(K, schedule="static", nogil=True): for j in range(N): coef_buf[j, i] = coef[i*N+j] free(coef) if identity_submatrix == 1: for i in prange(K, schedule="static", nogil=True): tmp_pointer = &coef_buf[0, 0]+basis[i] for j in range(K): tmp_pointer[j*N] = 0.0 tmp_pointer[i*N] = 1.0 I = np.ndarray(K, dtype=np.int32) basis_buf = I for i in prange(K, schedule="static", nogil=True): basis_buf[i] = basis[i] free(basis) return I, C cdef object zmaxvol(int N, int R, double complex *lu, double complex *coef, int *basis, double tol, int max_iters, int top_k_index): cdef int *ipiv = <int *> malloc(R * sizeof(int)) cdef int *interchange = <int *> malloc(N * sizeof(int)) cdef double complex *tmp_row = <double complex *> malloc(R*sizeof(double complex)) cdef double complex *tmp_column = <double complex *> malloc(N*sizeof(double complex)) cdef int info = 0, size = N * R, i, j, tmp_int, i_one = 1, iters = 0 cdef int k_row, k_col cdef char cR = 'R', cN = 'N', cU = 'U', cL = 'L' cdef double complex d_one = 1, alpha, max_value cdef double abs_max, tmp if (ipiv == NULL or interchange == NULL or tmp_row == NULL or tmp_column == NULL): raise MemoryError("malloc failed to allocate temporary buffers") if top_k_index == -1 or top_k_index > N: top_k_index = N if top_k_index < R: top_k_index = R zgetrf(&top_k_index, &R, lu, &N, ipiv, &info) if info < 0: raise ValueError("Internal maxvol_fullrank error, {} argument of" " zgetrf_ had illegal value".format(info)) if info > 0: raise ValueError("Input matrix must not be singular") for i in prange(N, schedule="static", nogil=True): interchange[i] = i for i in prange(R, schedule="static", nogil=True): j = ipiv[i]-1 if j!= i: tmp_int = interchange[i] interchange[i] = interchange[j] interchange[j] = tmp_int free(ipiv) for i in prange(R, schedule="static", nogil=True): basis[i] = interchange[i] free(interchange) ztrsm(&cR, &cU, &cN, &cN, &N, &R, &d_one, lu, &N, coef, &N) ztrsm(&cR, &cL, &cN, &cU, &N, &R, &d_one, lu, &N, coef, &N) while iters < max_iters: abs_max = -1 for k_row in range(top_k_index): for k_col in range(R): tmp = cabs(coef[k_row+k_col*N]) if tmp > abs_max: abs_max = tmp j = k_row i = k_col max_value = coef[j+i*N] if abs_max > tol: zcopy(&R, coef+j, &N, tmp_row, &i_one) tmp_row[i] -= d_one zcopy(&N, coef+i*N, &i_one, tmp_column, &i_one) basis[i] = j alpha = (-d_one)/max_value zgeru(&N, &R, &alpha, tmp_column, &i_one, tmp_row, &i_one, coef, &N) iters += i_one else: break free(tmp_row) free(tmp_column) return <|end_of_text|>import numpy as np cimport numpy as np cimport allelefreq as af cdef class AdmixProp: """ Admixture proportions for all samples and their relevant methods fall under this class. The prior over admixture proportions is set to be a symmetric Dirichlet distribution with parameter 1/K. Arguments N : int number of samples K : int number of populations """ cdef long N,K cdef np.ndarray alpha, var, xi cdef list oldvar cdef copy(self) cdef require(self) cdef update(self, np.ndarray[np.uint8_t, ndim=2] G, af.AlleleFreq pi) cdef square_update(self, np.ndarray[np.uint8_t, ndim=2] G, af.AlleleFreq pi) <|end_of_text|>cdef extern from * nogil: ctypedef char* SlepcBVType "const char*" SlepcBVType BVMAT SlepcBVType BVSVEC SlepcBVType BVVECS SlepcBVType BVCONTIGUOUS ctypedef enum SlepcBVOrthogType "BVOrthog
Cython
Type": BV_ORTHOG_CGS BV_ORTHOG_MGS ctypedef enum SlepcBVOrthogRefineType "BVOrthogRefineType": BV_ORTHOG_REFINE_IFNEEDED BV_ORTHOG_REFINE_NEVER BV_ORTHOG_REFINE_ALWAYS ctypedef enum SlepcBVOrthogBlockType "BVOrthogBlockType": BV_ORTHOG_BLOCK_GS BV_ORTHOG_BLOCK_CHOL int BVCreate(MPI_Comm,SlepcBV*) int BVDuplicate(SlepcBV,SlepcBV*) int BVCopy(SlepcBV,SlepcBV) int BVView(SlepcBV,PetscViewer) int BVDestroy(SlepcBV*) int BVSetType(SlepcBV,SlepcBVType) int BVGetType(SlepcBV,SlepcBVType*) int BVSetSizes(SlepcBV,PetscInt,PetscInt,PetscInt) int BVSetSizesFromVec(SlepcBV,PetscVec,PetscInt) int BVGetSizes(SlepcBV,PetscInt*,PetscInt*,PetscInt*) int BVSetOptionsPrefix(SlepcBV,char[]) int BVGetOptionsPrefix(SlepcBV,char*[]) int BVAppendOptionsPrefix(SlepcBV,char[]) int BVSetFromOptions(SlepcBV) int BVSetOrthogonalization(SlepcBV,SlepcBVOrthogType,SlepcBVOrthogRefineType,PetscReal,SlepcBVOrthogBlockType) int BVGetOrthogonalization(SlepcBV,SlepcBVOrthogType*,SlepcBVOrthogRefineType*,PetscReal*,SlepcBVOrthogBlockType*) int BVSetRandom(SlepcBV) int BVSetMatrix(SlepcBV,PetscMat,PetscBool) int BVGetMatrix(SlepcBV,PetscMat*,PetscBool*) int BVApplyMatrix(SlepcBV,PetscVec,PetscVec) int BVSetActiveColumns(SlepcBV,PetscInt,PetscInt) int BVGetActiveColumns(SlepcBV,PetscInt*,PetscInt*) int BVInsertVec(SlepcBV,PetscInt,PetscVec) int BVInsertVecs(SlepcBV,PetscInt,PetscInt*,PetscVec*,PetscBool) int BVGetColumn(SlepcBV,PetscInt,PetscVec*) int BVRestoreColumn(SlepcBV,PetscInt,PetscVec*) int BVDot(SlepcBV,SlepcBV,PetscMat) int BVDotVec(SlepcBV,PetscVec,PetscScalar*) int BVMatProject(SlepcBV,PetscMat,SlepcBV,PetscMat) int BVMatMult(SlepcBV,PetscMat,SlepcBV) int BVMatMultHermitianTranspose(SlepcBV,PetscMat,SlepcBV) int BVMultVec(SlepcBV,PetscScalar,PetscScalar,PetscVec,PetscScalar*) int BVScaleColumn(SlepcBV,PetscInt,PetscScalar) int BVScale(SlepcBV,PetscScalar) int BVNormColumn(SlepcBV,PetscInt,PetscNormType,PetscReal*) int BVNorm(SlepcBV,PetscNormType,PetscReal*) int BVOrthogonalizeVec(SlepcBV,PetscVec,PetscScalar*,PetscReal*,PetscBool*) int BVOrthogonalize(SlepcBV,PetscMat) cdef inline int BV_Sizes( object size, PetscInt *_n, PetscInt *_N, ) except -1: # unpack and get local and global sizes cdef PetscInt n=PETSC_DECIDE, N=PETSC_DECIDE cdef object on, oN try: on, oN = size except (TypeError, ValueError): on = None; oN = size if on is not None: n = asInt(on) if oN is not None: N = asInt(oN) if n==PETSC_DECIDE and N==PETSC_DECIDE: raise ValueError( "local and global sizes cannot be both 'DECIDE'") # return result to the caller if _n!= NULL: _n[0] = n if _N!= NULL: _N[0] = N return 0 <|end_of_text|>from time import time cdef float start_time cdef int minscore, maxscore, i1, i3, i4, i5, i6, i7, i8, i9, score, counter cdef list mincircle, maxcircle def read_distinct_primes(path): primes = [] with open(path, 'r') as f: for l in f.readlines(): distinct = True for i in range(10): if l.count(str(i)) > 1: distinct = False break if distinct: primes.append(l) return primes cdef calculate_score(circle, primes): cdef sc, move cdef int counter, score, temps, ii, i, ij, j cdef str p sc = {(i,j): min(abs(ij-ii), 9-ij+ii, 9-ii+ij) for ii,i in enumerate(circle) for ij,j in enumerate(circle)} counter = 0 score = 0 for p in primes: temps = 0 for i in range(6): move = (int(p[i]), int(p[i+1])) if move in sc: temps += sc[move] else: temps = -1 break if temps > 0: score += temps counter += 1 return counter, score primes = read_distinct_primes('primes7.txt') start_time = time() minscore = 10000000 mincircle = [] maxscore = 0 maxcircle = [] for i1 in [0,1]: qq = {i for i in range(i1)} for i2 in {0,1,2,3,4,5,6,7,8,9}-{i1}-qq: for i3 in {0,1,2,3,4,5,6,7,8,9}-{i1,i2}-qq: for i4 in {0,1,2,3,4,5,6,7,8,9}-{i1,i2,i3}-qq: for i5 in {0,1,2,3,4,5,6,7,8,9}-{i1,i2,i3,i4}-qq: for i6 in {0,1,2,3,4,5,6,7,8,9}-{i1,i2,i3,i4,i5}-qq: for i7 in {0,1,2,3,4,5,6,7,8,9}-{i1,i2,i3,i4,i5,i6}-qq: for i8 in {0,1,2,3,4,5,6,7,8,9}-{i1,i2,i3,i4,i5,i6,i7}-qq: for i9 in {0,1,2,3,4,5,6,7,8,9}-{i1,i2,i3,i4,i5,i6,i7,i8}-qq: circle = [i1,i2,i3,i4,i5,i6,i7,i8,i9] counter, score = calculate_score(circle, primes) if score < minscore: minscore = score mincircle = circle print('New min circle: '+str(circle)+' ; score: '+str(score) +' ('+str(counter)+')') if score > maxscore: maxscore = score maxcircle = circle print('New max circle: '+str(circle)+' ; score: '+str(score) +' ('+str(counter)+')') print() print('Min circle:') print(mincircle) print('Max circle:') print(maxcircle) print() print('Time used (seconds): '+str(time()-start_time))<|end_of_text|># Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Cython wrapper for ``surface_intersection.f90``.""" from bezier._status cimport Status cdef extern from "bezier/surface_intersection.h": cpdef enum SurfaceContained: NEITHER = 0 FIRST = 1 SECOND = 2 ctypedef struct CurvedPolygonSegment: double start double
Cython
end int edge_index void newton_refine_surface(int* num_nodes, double* nodes, int* degree, double* x_val, double* y_val, double* s, double* t, double* updated_s, double* updated_t) void locate_point_surface(int* num_nodes, double* nodes, int* degree, double* x_val, double* y_val, double* s_val, double* t_val) void surface_intersections(int* num_nodes1, double* nodes1, int* degree1, int* num_nodes2, double* nodes2, int* degree2, int* segment_ends_size, int* segment_ends, int* segments_size, CurvedPolygonSegment* segments, int* num_intersected, SurfaceContained* contained, Status* status) void free_surface_intersections_workspace() <|end_of_text|>''' Tree procedures and stuff ''' import sys from cnode import Node import Extras #This takes in the newick and the #seq data then puts them in a data #structure that can be preorder or #postorder traversed pretty easily def build(instr): #print "Entered build" root = None name_array =[] index = 0 nextchar = instr[index] begining = "Yep" keepgoing = True current_node = None #keeps going until the value becomes false while keepgoing == True: #This situation will only happen at the very beginning but #when it hits this it will create a root and change begining #to no if nextchar == "(" and begining == "Yep": root = Node() current_node = root begining = "No" #This happens anytime their is an open bracket thats not the #beginning elif nextchar == "(" and begining == "No": newnode = Node() current_node.add_child(newnode) current_node = newnode #This indicates that you are in a clade and tells the #program to move back one to grab the sister to the clade elif nextchar == ',': current_node = current_node.parent #This says you are closing a clade and therefore it moves #back to where the parent node is which allows the name #to be added to the parent node elif nextchar == ")": #print "Closing Clade" current_node = current_node.parent index += 1 nextchar = instr[index] while True: if nextchar == ',' or nextchar == ')' or nextchar == ':' \ or nextchar == ';' or nextchar == '[': break name += nextchar index += 1 nextchar = instr[index] current_node.label = name index -= 1 #This indicates everything is done so keepgoing becomes false elif nextchar == ';': keepgoing = False break #This indicates you have branch lengths so it grabs the branch #lengths turns them into floats and puts them in the current node elif nextchar == ":": index += 1 nextchar = instr[index] while True: if nextchar == ',' or nextchar == ')' or nextchar == ':' \ or nextchar == ';' or nextchar == '[': break branch += nextchar index += 1 nextchar = instr[index] current_node.length = float(branch) index -= 1 #This is for if anywhitespace exists elif nextchar =='': index += 1 nextchar = instr[index] #This is for when any taxa name is hit, it will concatenate #the taxa names together and add the name else: # this is an external named node newnode = Node() current_node.add_child(newnode) current_node = newnode current_node.istip = True while True: if nextchar == ',' or nextchar == ')' or nextchar == ':' \ or nextchar == ';' or nextchar == '[': break name += nextchar index += 1 nextchar = instr[index] current_node.label = name name_array.append(name) index -= 1 if index < len(instr) - 1: index += 1 nextchar = instr[index] name = "" branch = "" return root #get segments of a bipart def clade_post_order(clade,clade_names): for x in clade.children: if x.istip: clade_names.append(x.label) clade_post_order(x,clade_names) return clade_names #Post order traverse the whole tree def post_order(tree,support,all_names,t_to_clade): for x in tree.children: #account for trees that don't have support if x.children and x.label == "": #print "Clade does not have support value" clade_names = [] clade = [] clade_names = clade_post_order(x,clade_names) clade = get_right(clade_names, all_names) t_to_clade.append(clade) elif x.children and support <= int(x.label): #print "Clade has support value: " + x.label clade_names = [] clade = [] clade_names = clade_post_order(x,clade_names) clade = get_right(clade_names, all_names) t_to_clade.append(clade) post_order(x,support,all_names,t_to_clade) return t_to_clade #get the other side of the bipartition def get_right(clade_names, all_names): mis1 = list(set(all_names.split(",")) - set(clade_names)) clade_names.append("|") return ",".join(clade_names + mis1) def comp_biparts(tree_bipart,all_biparts): bi = tree_bipart.split("|") part1 = bi[0][:-1].split(",") part2 = bi[1][1:].split(",") for x in all_biparts: comp_bi = x.split("|") comp_part1 = comp_bi[0][:-1].split(",") if len(part1) == len(comp_part1): dif = list(set(part1) - set(comp_part1)) if len(dif) == 0: return True if len(part2) == len(comp_part1): dif = list(set(part2) - set(comp_part1)) if len(dif) == 0: return True return False #compare if any incoming biparts are new def get_biparts(trees_clades, all_biparts): new_biparts = [] count = 0 for x in trees_clades: bin = comp_biparts(x,all_biparts) if bin == False: new_biparts.append(x) return new_biparts #ugh...this is ugly def dissect_trees(tr,all_names,support): all_biparts = [] count = 0 for x in tr: sys.stderr.write("tree " + str(count) + "\r") t_to_clade = [] new_biparts = [] x = x.rstrip("\r\n") tree = build(x) trees_clades = post_order(tree,support,all_names,t_to_clade) if len(all_biparts) == 0: all_biparts = trees_clades else: new_biparts = get_biparts(trees_clades, all_biparts) all_biparts += new_biparts count += 1 return all_biparts def make_constraints(biparts, out_folder, outf): outb = open(out_folder + "/bipartitions.txt", "w") count = 0 constraint_list = [] for x in biparts: constraint_name = "constraint_" + str(count) + ".tre" c = x.split("|") out = open(out_folder + "/Constraints/" + constraint_name, "w") #checks for 2 to account for the split leading to a blank one if len(c[0].split(",")) == 2 or len(c[1].split(",")) == 2: message = "can't make constraint for \"" + x + "\" it may be rooted" Extras.get_time(message, outf) constraint = "((" + c[0][:-1] + ")" + c[1] + ");" outb.write(constraint_name + ": " + c[0][:-1] + "|" + c[1][1:] + "\n") out.write(constraint) constraint_list.append(constraint_name) count += 1 return constraint_list <|end_of_text|># cython: profile=True, binding=True, infer_types=True from cpython.object cimport PyObject from libc.stdint cimport int64_t from typing import Optional cdef extern from "polyleven.c": int64_t polyleven(PyObject *o1, PyObject *o2, int64_t k) cpdef int64_t levenshte
Cython
in(a: str, b: str, k: Optional[int] = None): if k is None: k = -1 return polyleven(<PyObject*>a, <PyObject*>b, k) <|end_of_text|>from wavefunc_gpu cimport ShWavefuncGPU, ShWavefuncArrayGPU from field cimport Field from atom cimport ShAtomCache cdef class WfArrayGPUWorkspace: def __cinit__(self, ShAtomCache atom_cache, ShGrid grid, UabsCache uabs_cache, int N): self.cdata = new WfArrayGpu(atom_cache.cdata, grid.data, uabs_cache.cdata, N) self.atom_cache = atom_cache self.grid = grid self.uabs_cache = uabs_cache def __init__(self, ShAtomCache atom_cache, ShGrid grid, UabsCache uabs_cache, int N): pass def __dealloc__(self): del self.cdata def prop(self, ShWavefuncArrayGPU wf_array, double[:] E, double dt): self.cdata.prop(wf_array.cdata, &E[0], dt) def prop_abs(self, ShWavefuncArrayGPU wf_array, double dt): self.cdata.prop_abs(wf_array.cdata, dt) def prop_at(self, ShWavefuncArrayGPU wf_array, double dt): self.cdata.prop_at(wf_array.cdata, dt) cdef class WfGPUWorkspace: def __cinit__(self, ShAtomCache atom_cache, ShGrid grid, UabsCache uabs_cache, int gpuGridNl = 1024, int threadsPerBlock = 32): self.cdata = new WfGpu(atom_cache.cdata[0], grid.data[0], uabs_cache.cdata[0], gpuGridNl, threadsPerBlock) self.atom_cache = atom_cache self.grid = grid self.uabs_cache = uabs_cache def __init__(self, ShAtomCache atom_cache, ShGrid grid, UabsCache uabs_cache, int gpuGridNl = 1024, int threadsPerBlock = 32): pass def __dealloc__(self): del self.cdata def prop(self, ShWavefuncGPU wf, Field field, double t, double dt): self.cdata.prop(wf.cdata[0], field.cdata[0], t, dt) def prop_abs(self, ShWavefuncGPU wf, double dt): self.cdata.prop_abs(wf.cdata[0], dt) def prop_at(self, ShWavefuncGPU wf, double dt): self.cdata.prop_at(wf.cdata[0], dt) <|end_of_text|># cython: embedsignature=True # cython: binding=True """ # use these for profiling (note linetracing is broken on PyPy) # cython: linetrace=True # cython: profile=True # distutils: define_macros=[CYTHON_TRACE=1, CYTHON_TRACE_NOGIL=1] """ import numpy as np import numbers import os import warnings from libc.stdio cimport printf, FILE, SEEK_SET, SEEK_CUR, SEEK_END from libc.stdlib cimport malloc, free, realloc from libc.stdint cimport int64_t, uint64_t, int32_t, uint32_t cimport cython cimport numpy as np np.import_array() # Marks operation success ctypedef enum tng_function_status: TNG_SUCCESS, TNG_FAILURE, TNG_CRITICAL # Marks use of hash checking in file read ctypedef enum tng_hash_mode: TNG_SKIP_HASH, TNG_USE_HASH # Datatypes that can be read off disk ctypedef enum tng_datatypes: TNG_CHAR_DATA, TNG_INT_DATA, TNG_FLOAT_DATA, \ TNG_DOUBLE_DATA # Marks particle or non-particle data ctypedef enum tng_particle_dependency: TNG_NON_PARTICLE_BLOCK_DATA, \ TNG_PARTICLE_BLOCK_DATA # Indicates compression type ctypedef enum tng_compression: TNG_UNCOMPRESSED, TNG_XTC_COMPRESSION, \ TNG_TNG_COMPRESSION, TNG_GZIP_COMPRESSION # TNG alias for T/F ctypedef enum tng_bool: TNG_FALSE, TNG_TRUE # Indicates variable number of atoms ctypedef enum tng_variable_n_atoms_flag: TNG_CONSTANT_N_ATOMS, \ TNG_VARIABLE_N_ATOMS # Flag to indicate frame dependent data. DEF TNG_FRAME_DEPENDENT = 1 # Flag to indicate particle dependent data. DEF TNG_PARTICLE_DEPENDENT = 2 # GROUP 1 Standard non-trajectory blocks # Block IDs of standard non-trajectory blocks. DEF TNG_GENERAL_INFO = 0x0000000000000000LL DEF TNG_MOLECULES = 0x0000000000000001LL DEF TNG_TRAJECTORY_FRAME_SET = 0x0000000000000002LL DEF TNG_PARTICLE_MAPPING = 0x0000000000000003LL # GROUP 2 Standard trajectory blocks # Block IDs of standard trajectory blocks. Box shape and partial charges can # be either trajectory blocks or non-trajectory blocks DEF TNG_TRAJ_BOX_SHAPE = 0x0000000010000000LL DEF TNG_TRAJ_POSITIONS = 0x0000000010000001LL DEF TNG_TRAJ_VELOCITIES = 0x0000000010000002LL DEF TNG_TRAJ_FORCES = 0x0000000010000003LL DEF TNG_TRAJ_PARTIAL_CHARGES = 0x0000000010000004LL DEF TNG_TRAJ_FORMAL_CHARGES = 0x0000000010000005LL DEF TNG_TRAJ_B_FACTORS = 0x0000000010000006LL DEF TNG_TRAJ_ANISOTROPIC_B_FACTORS = 0x0000000010000007LL DEF TNG_TRAJ_OCCUPANCY = 0x0000000010000008LL DEF TNG_TRAJ_GENERAL_COMMENTS = 0x0000000010000009LL DEF TNG_TRAJ_MASSES = 0x0000000010000010LL # GROUP 3 GROMACS data block IDs # Block IDs of data blocks specific to GROMACS. DEF TNG_GMX_LAMBDA = 0x1000000010000000LL DEF TNG_GMX_ENERGY_ANGLE = 0x1000000010000001LL DEF TNG_GMX_ENERGY_RYCKAERT_BELL = 0x1000000010000002LL DEF TNG_GMX_ENERGY_LJ_14 = 0x1000000010000003LL DEF TNG_GMX_ENERGY_COULOMB_14 = 0x1000000010000004LL # NOTE changed from TNG_GMX_ENERGY_LJ_(SR) DEF TNG_GMX_ENERGY_LJ_SR = 0x1000000010000005LL # NOTE changed from TNG_GMX_ENERGY_COULOMB_(SR) DEF TNG_GMX_ENERGY_COULOMB_SR = 0x1000000010000006LL DEF TNG_GMX_ENERGY_COUL_RECIP = 0x1000000010000007LL DEF TNG_GMX_ENERGY_POTENTIAL = 0x1000000010000008LL DEF TNG_GMX_ENERGY_KINETIC_EN = 0x1000000010000009LL DEF TNG_GMX_ENERGY_TOTAL_ENERGY = 0x1000000010000010LL DEF TNG_GMX_ENERGY_TEMPERATURE = 0x1000000010000011LL DEF TNG_GMX_ENERGY_PRESSURE = 0x1000000010000012LL DEF TNG_GMX_ENERGY_CONSTR_RMSD = 0x1000000010000013LL DEF TNG_GMX_ENERGY_CONSTR2_RMSD = 0x1000000010000014LL DEF TNG_GMX_ENERGY_BOX_X = 0x1000000010000015LL DEF TNG_GMX_ENERGY_BOX_Y = 0x1000000010000016LL DEF TNG_GMX_ENERGY_BOX_Z = 0x1000000010000017LL DEF TNG_GMX_ENERGY_BOXXX = 0x1000000010000018LL DEF TNG_GMX_ENERGY_BOXYY = 0x1000000010000019LL DEF TNG_GMX_ENERGY_BOXZZ = 0x1000000010000020LL DEF TNG_GMX_ENERGY_BOXYX = 0x1000000010000021LL DEF TNG_GMX_ENERGY_BOXZX = 0x1000000010000022LL DEF TNG_GMX_ENERGY_BOXZY = 0x1000000010000023LL DEF TNG_GMX_ENERGY_BOXVELXX = 0x1000000010000024LL DEF TNG_GMX_ENERGY_BOXVELYY = 0x1000000010000025LL DEF TNG_GMX_ENERGY_BOXVELZZ = 0x1000000010000026LL DEF TNG_GMX_ENERGY_BOXVELYX = 0x1000000010000027LL DEF TNG_GMX_ENERGY_BOX
Cython
VELZX = 0x1000000010000028LL DEF TNG_GMX_ENERGY_BOXVELZY = 0x1000000010000029LL DEF TNG_GMX_ENERGY_VOLUME = 0x1000000010000030LL DEF TNG_GMX_ENERGY_DENSITY = 0x1000000010000031LL DEF TNG_GMX_ENERGY_PV = 0x1000000010000032LL DEF TNG_GMX_ENERGY_ENTHALPY = 0x1000000010000033LL DEF TNG_GMX_ENERGY_VIR_XX = 0x1000000010000034LL DEF TNG_GMX_ENERGY_VIR_XY = 0x1000000010000035LL DEF TNG_GMX_ENERGY_VIR_XZ = 0x1000000010000036LL DEF TNG_GMX_ENERGY_VIR_YX = 0x1000000010000037LL DEF TNG_GMX_ENERGY_VIR_YY = 0x1000000010000038LL DEF TNG_GMX_ENERGY_VIR_YZ = 0x1000000010000039LL DEF TNG_GMX_ENERGY_VIR_ZX = 0x1000000010000040LL DEF TNG_GMX_ENERGY_VIR_ZY = 0x1000000010000041LL DEF TNG_GMX_ENERGY_VIR_ZZ = 0x1000000010000042LL DEF TNG_GMX_ENERGY_SHAKEVIR_XX = 0x1000000010000043LL DEF TNG_GMX_ENERGY_SHAKEVIR_XY = 0x1000000010000044LL DEF TNG_GMX_ENERGY_SHAKEVIR_XZ = 0x1000000010000045LL DEF TNG_GMX_ENERGY_SHAKEVIR_YX = 0x1000000010000046LL DEF TNG_GMX_ENERGY_SHAKEVIR_YY = 0x1000000010000047LL DEF TNG_GMX_ENERGY_SHAKEVIR_YZ = 0x1000000010000048LL DEF TNG_GMX_ENERGY_SHAKEVIR_ZX = 0x1000000010000049LL DEF TNG_GMX_ENERGY_SHAKEVIR_ZY = 0x1000000010000050LL DEF TNG_GMX_ENERGY_SHAKEVIR_ZZ = 0x1000000010000051LL DEF TNG_GMX_ENERGY_FORCEVIR_XX = 0x1000000010000052LL DEF TNG_GMX_ENERGY_FORCEVIR_XY = 0x1000000010000053LL DEF TNG_GMX_ENERGY_FORCEVIR_XZ = 0x1000000010000054LL DEF TNG_GMX_ENERGY_FORCEVIR_YX = 0x1000000010000055LL DEF TNG_GMX_ENERGY_FORCEVIR_YY = 0x1000000010000056LL DEF TNG_GMX_ENERGY_FORCEVIR_YZ = 0x1000000010000057LL DEF TNG_GMX_ENERGY_FORCEVIR_ZX = 0x1000000010000058LL DEF TNG_GMX_ENERGY_FORCEVIR_ZY = 0x1000000010000059LL DEF TNG_GMX_ENERGY_FORCEVIR_ZZ = 0x1000000010000060LL DEF TNG_GMX_ENERGY_PRES_XX = 0x1000000010000061LL DEF TNG_GMX_ENERGY_PRES_XY = 0x1000000010000062LL DEF TNG_GMX_ENERGY_PRES_XZ = 0x1000000010000063LL DEF TNG_GMX_ENERGY_PRES_YX = 0x1000000010000064LL DEF TNG_GMX_ENERGY_PRES_YY = 0x1000000010000065LL DEF TNG_GMX_ENERGY_PRES_YZ = 0x1000000010000066LL DEF TNG_GMX_ENERGY_PRES_ZX = 0x1000000010000067LL DEF TNG_GMX_ENERGY_PRES_ZY = 0x1000000010000068LL DEF TNG_GMX_ENERGY_PRES_ZZ = 0x1000000010000069LL DEF TNG_GMX_ENERGY_SURFXSURFTEN = 0x1000000010000070LL DEF TNG_GMX_ENERGY_MUX = 0x1000000010000071LL DEF TNG_GMX_ENERGY_MUY = 0x1000000010000072LL DEF TNG_GMX_ENERGY_MUZ = 0x1000000010000073LL DEF TNG_GMX_ENERGY_VCOS = 0x1000000010000074LL DEF TNG_GMX_ENERGY_VISC = 0x1000000010000075LL DEF TNG_GMX_ENERGY_BAROSTAT = 0x1000000010000076LL DEF TNG_GMX_ENERGY_T_SYSTEM = 0x1000000010000077LL DEF TNG_GMX_ENERGY_LAMB_SYSTEM = 0x1000000010000078LL DEF TNG_GMX_SELECTION_GROUP_NAMES = 0x1000000010000079LL DEF TNG_GMX_ATOM_SELECTION_GROUP = 0x1000000010000080LL cdef extern from "tng/tng_io.h": cdef enum: TNG_MAX_STR_LEN TNG_MD5_HASH_LEN # note that the _t suffix is a typedef mangle for a pointer to the struct ctypedef struct tng_molecule_t: pass struct tng_particle_mapping: # The index number of the first particle in this mapping block int64_t num_first_particle # The number of particles list in this mapping block int64_t n_particles # the mapping of index numbers to the real particle numbers in the # trajectory. real_particle_numbers[0] is the real particle number # (as it is numbered in the molecular system) of the first particle # in the data blocks covered by this particle mapping block int64_t * real_particle_numbers struct tng_trajectory_frame_set: # The number of different particle mapping blocks present. int64_t n_mapping_blocks # The atom mappings of this frame set tng_particle_mapping * mappings # The first frame of this frame set int64_t first_frame # The number of frames in this frame set int64_t n_frames # The number of written frames in this frame set (used when writing # *one frame at a time). int64_t n_written_frames # The number of frames not yet written to file in this frame set # (used from the utility functions to finish the writing properly. int64_t n_unwritten_frames # A list of the number of each molecule type - only used when using # variable number of atoms int64_t * molecule_cnt_list # The number of particles/atoms - only used when using variable # number of atoms int64_t n_particles # The file position of the next frame set int64_t next_frame_set_file_pos # The file position of the previous frame set int64_t prev_frame_set_file_pos # The file position of the frame set one long stride step ahead int64_t medium_stride_next_frame_set_file_pos # The file position of the frame set one long stride step behind int64_t medium_stride_prev_frame_set_file_pos # The file position of the frame set one long stride step ahead int64_t long_stride_next_frame_set_file_pos # The file position of the frame set one long stride step behind int64_t long_stride_prev_frame_set_file_pos # Time stamp (in seconds) of first frame in frame set double first_frame_time # The data blocks in a frame set are trajectory data blocks # The number of trajectory data blocks of particle dependent data int n_particle_data_blocks # A list of data blocks containing particle dependent data tng_data * tr_particle_data # The number of trajectory data blocks independent of particles int n_data_blocks # A list of data blocks containing particle indepdendent data tng_data * tr_data struct tng_data: # The block ID of the data block containing this particle data. # This is used to determine the kind of data that is stored int64_t block_id # The name of the data block. This is used to determine the kind of # data that is stored char * block_name # The type of data stored. char datatype # A flag to indicate if this data block contains frame # and/or particle dependent data char dependency # The frame number of the first data value int64_t first_frame_with_data # The number of frames in this frame set int64_t n_frames # The number of values stored per frame int64_t n_values_per_frame # The number of frames
Cython
between each data point - e.g. when # storing sparse data. int64_t stride_length # ID of the CODEC used for compression 0 == no compression. int64_t codec_id # If reading one frame at a time this is the last read frame int64_t last_retrieved_frame # The multiplier used for getting integer values for compression double compression_multiplier # A 1-dimensional array of values of length # [sizeof (datatype)] * n_frames * n_particles*n_values_per_frame void * values # If storing character data store it in a 3-dimensional array char**** strings struct tng_trajectory: # The path of the input trajectory file char * input_file_path # A handle to the input file FILE * input_file # The length of the input file int64_t input_file_len # The path of the output trajectory file char * output_file_path # A handle to the output file FILE * output_file # Function to swap 32 bit values to and from the endianness of the # * input file tng_function_status(*input_endianness_swap_func_32)(const tng_trajectory*, uint32_t*) # Function to swap 64 bit values to and from the endianness of the # input file tng_function_status(*input_endianness_swap_func_64)(const tng_trajectory*, uint64_t*) # Function to swap 32 bit values to and from the endianness of the # input file tng_function_status(*output_endianness_swap_func_32)(const tng_trajectory*, uint32_t*) # Function to swap 64 bit values to and from the endianness of the # input file tng_function_status(*output_endianness_swap_func_64)(const tng_trajectory*, uint64_t*) # The endianness of 32 bit values of the current computer char endianness_32 # The endianness of 64 bit values of the current computer char endianness_64 # The name of the program producing this trajectory char * first_program_name # The forcefield used in the simulations char * forcefield_name # The name of the user running the simulations char * first_user_name # The name of the computer on which the simulations were performed char * first_computer_name # The PGP signature of the user creating the file. char * first_pgp_signature # The name of the program used when making last modifications # to the file char * last_program_name # The name of the user making the last modifications to the file char * last_user_name # The name of the computer on which the last modifications were made char * last_computer_name # The PGP signature of the user making the last modifications to the # file. char * last_pgp_signature # The time (n seconds since 1970) when the file was created int64_t time # The exponential of the value of the distance unit used. The default # distance unit is nm (1e-9), i.e. distance_unit_exponential = -9. If # the measurements are in Å the distance_unit_exponential = -10. int64_t distance_unit_exponential # A flag indicating if the number of atoms can vary throughout the # simulation, e.g. using a grand canonical ensemble. char var_num_atoms_flag # The number of frames in a frame set. It is allowed to have frame sets # with fewer frames, but this will help searching for specific frames int64_t frame_set_n_frames # The number of frame sets in a medium stride step int64_t medium_stride_length # The number of frame sets in a long stride step int64_t long_stride_length # The current (can change from one frame set to another) time length # (in seconds) of one frame. double time_per_frame # The number of different kinds of molecules in the trajectory int64_t n_molecules # A list of molecules in the trajectory tng_molecule_t molecules # A list of the count of each molecule - if using variable number of # particles this will be specified in each frame set int64_t * molecule_cnt_list # The total number of particles/atoms. If using variable number of # particles this will be specified in each frame set int64_t n_particles # The pos in the src file of the first frame set int64_t first_trajectory_frame_set_input_file_pos # The pos in the dest file of the first frame set int64_t first_trajectory_frame_set_output_file_pos # The pos in the src file of the last frame set int64_t last_trajectory_frame_set_input_file_pos # The pos in the dest file of the last frame set int64_t last_trajectory_frame_set_output_file_pos # The currently active frame set tng_trajectory_frame_set current_trajectory_frame_set # The pos in the src file of the current frame set int64_t current_trajectory_frame_set_input_file_pos # The pos in the dest file of the current frame set int64_t current_trajectory_frame_set_output_file_pos # The number of frame sets in the trajectory N.B. Not saved in file and # cannot be trusted to be up-to-date int64_t n_trajectory_frame_sets # These data blocks are non-trajectory data blocks # The number of non-frame dependent particle dependent data blocks int n_particle_data_blocks # A list of data blocks containing particle dependent data tng_data * non_tr_particle_data # The number of frame and particle independent data blocks int n_data_blocks # A list of frame and particle indepdendent data blocks tng_data * non_tr_data # TNG compression algorithm for compressing positions int * compress_algo_pos # TNG compression algorithm for compressing velocities int * compress_algo_vel # The precision used for lossy compression double compression_precision struct tng_gen_block: # The size of the block header in bytes int64_t header_contents_size # The size of the block contents in bytes int64_t block_contents_size # The ID of the block to determine its type int64_t id # The MD5 hash of the block to verify integrity char md5_hash[16] # TNG_MD5_HASH_LEN == 16 # The name of the block char * name # The library version used to write the block int64_t block_version int64_t alt_hash_type int64_t alt_hash_len char * alt_hash int64_t signature_type int64_t signature_len char * signature # The full block header contents char * header_contents # The full block contents char * block_contents tng_function_status tng_util_trajectory_open( const char * filename, const char mode, tng_trajectory * * tng_data_p) nogil tng_function_status tng_util_trajectory_close( tng_trajectory * * tng_data_p) nogil tng_function_status tng_num_frames_get( const tng_trajectory * tng_data, int64_t * n) nogil tng_function_status tng_num_particles_get( const tng_trajectory * tng_data, int64_t * n) nogil tng_function_status tng_distance_unit_exponential_get( const tng_trajectory * tng_data, int64_t * exp) nogil tng_function_status tng_util_time_of_frame_get( const tng_trajectory * tng_data, const int64_t frame_nr, double * time) nogil tng_function_status tng_block_read_next( tng_trajectory * tng_data, tng_gen_block * block_data, char hash_mode) nogil tng_function_status tng_block_init( tng_gen_block ** block_p) nogil tng_function_status tng_block_header_read( tng_trajectory * tng_data, tng_gen_block * block) nogil tng_function_status tng_num_frame_sets_get( tng_trajectory * tng_data, int64_t * n) nogil tng_function_status tng_block_destroy( tng_gen_block ** block_p) nogil tng_function_status tng_data_get_stride_length( tng_trajectory * tng_data, int64_t block_id, int64_t frame, int64_t * stride_length) nogil tng_function_status tng_util_trajectory_next_frame_present_data_blocks_find( tng_trajectory * tng_data, int64_t current_frame, int64_t n_requested_data_block_ids, int64_t * requested_data_block_ids, int64_t * next_frame, int64_t * n_data_blocks_in_next_frame, int64_t ** data_block_ids_in_next_frame
Cython
) nogil tng_function_status tng_data_block_name_get( tng_trajectory * tng_data, const int64_t block_id, char * name, const int max_len) nogil tng_function_status tng_data_block_dependency_get( tng_trajectory * tng_data, const int64_t block_id, int * block_dependency) nogil tng_function_status tng_util_particle_data_next_frame_read( tng_trajectory * tng_data, const int64_t block_id, void ** values, char * data_type, int64_t * retrieved_frame_number, double * retrieved_time) nogil tng_function_status tng_util_non_particle_data_next_frame_read( tng_trajectory * tng_data, const int64_t block_id, void ** values, char * data_type, int64_t * retrieved_frame_number, double * retrieved_time) nogil tng_function_status tng_data_block_num_values_per_frame_get( tng_trajectory * tng_data, int64_t block_id, int64_t * n_values_per_frame) nogil tng_function_status tng_util_frame_current_compression_get( tng_trajectory * tng_data, int64_t block_id, int64_t * codec_id, double * factor) nogil tng_function_status tng_util_num_frames_with_data_of_block_id_get( tng_trajectory * tng_data, int64_t block_id, int64_t * n_frames) nogil tng_function_status tng_gen_data_vector_interval_get( tng_trajectory * tng_data, const int64_t block_id, const tng_bool is_particle_data, const int64_t start_frame_nr, const int64_t end_frame_nr, const char hash_mode, void ** values, int64_t * n_particles, int64_t * stride_length, int64_t * n_values_per_frame, char * type) nogil tng_function_status tng_num_particles_variable_get( tng_trajectory * tng_data, char * variable) nogil cdef int64_t gcd(int64_t a, int64_t b): cdef int64_t temp while b < 0: temp = b b = a % b a = temp return a cdef int64_t gcd_list(list a): cdef int size = len(a) cdef int i cdef int64_t result = a[0] for i in range(1, size): result = gcd(result, a[i]) return result cdef class TrajectoryWrapper: """A wrapper class for a tng_trajectory""" cdef tng_trajectory * _ptr cdef bint ptr_owner def __cinit__(self): self.ptr_owner = False def __dealloc__(self): # De-allocate if not null and flag is set if self._ptr is not NULL and self.ptr_owner is True: free(self._ptr) self._ptr = NULL @staticmethod cdef TrajectoryWrapper from_ptr(tng_trajectory * _ptr, bint owner=False): """Factory function to create WrapperClass objects from given tng_trajectory pointer. Setting ``owner`` flag to ``True`` causes the extension type to ``free`` the structure pointed to by ``_ptr`` when the wrapper object is deallocated.""" # Call to __new__ bypasses __init__ constructor cdef TrajectoryWrapper wrapper = \ TrajectoryWrapper.__new__(TrajectoryWrapper) wrapper._ptr = _ptr wrapper.ptr_owner = owner return wrapper @staticmethod cdef TrajectoryWrapper new_struct(): """Factory function to create WrapperClass objects with newly allocated tng_trajectory""" cdef tng_trajectory * _ptr = \ <tng_trajectory * >malloc(sizeof(tng_trajectory)) if _ptr is NULL: raise MemoryError return TrajectoryWrapper.from_ptr(_ptr, owner=True) cdef class TNGFileIterator: """File handle object for TNG files Supports use as a context manager ("with" blocks). """ # tng_trajectory pointer cdef tng_trajectory * _traj_p # trajectory wrapper cdef TrajectoryWrapper _traj # filename cdef readonly fname # mode (r,w,a) cdef str mode # enable/disable debug output cdef bint debug # mark trajectory to be closed/open cdef int is_open # have we reached the end of the file cdef int reached_eof # integrator timestep cdef int64_t step # number of integrator timesteps cdef int64_t _n_steps # number of particles cdef int64_t _n_particles # distance unit cdef float _distance_scale # stride at which each block is written cdef dict _frame_strides # same but indexed by block id cdef dict _frame_strides_blockid # number of actual frames with data for each block cdef dict _n_data_frames # the number of values per frame for each data block cdef dict _values_per_frame # particle dependencies for each data block cdef dict _particle_dependencies # greatest common divisor of data strides cdef int64_t _gcd # holds data at the current trajectory timestep cdef TNGCurrentIntegratorStep current_step def __cinit__(self, fname, mode='r', debug=False): self._traj = TrajectoryWrapper.from_ptr(self._traj_p, owner=True) self.fname = fname self.debug = debug self.step = 0 self._n_steps = -1 self._n_particles = -1 self._distance_scale = 0.0 self._frame_strides = {} self._n_data_frames = {} self._values_per_frame = {} self._particle_dependencies = {} self._gcd = -1 self._open(self.fname, mode) def __dealloc__(self): self._close() def _open(self, fname, mode): """Open a file handle Parameters ---------- fname : str path to the file mode : str mode to open the file in, 'r' for read, 'w' for write """ self.mode = mode cdef char _mode cdef char var_natoms_flag if self.mode == 'r': _mode = 'r' elif self.mode == 'w': _mode = 'w' raise NotImplementedError('Writing is not implemented yet.') elif self.mode == 'a': _mode = 'a' raise NotImplementedError('Appending is not implemented yet') else: raise ValueError('mode must be one of "r", "w", or "a" you ' 'supplied {}'.format(mode)) # handle file not existing at python level, if self.mode == 'r' and not os.path.isfile(fname): raise IOError("File '{}' does not exist".format(fname)) cdef tng_function_status stat fname_bytes = fname.encode('UTF-8') # open the trajectory stat = tng_util_trajectory_open(fname_bytes, _mode, & self._traj._ptr) if stat!= TNG_SUCCESS: raise IOError("File '{}' cannot be opened".format(fname)) # check if the number of particles can vary stat = tng_num_particles_variable_get(self._traj._ptr, & var_natoms_flag) if stat!= TNG_SUCCESS: raise IOError("Particle variability cannot be read") if var_natoms_flag!= TNG_CONSTANT_N_ATOMS: raise IOError("Variable numbers of particles not supported") # get the number of integrator timesteps stat = tng_num_frames_get(self._traj._ptr, & self._n_steps) if stat!= TNG_SUCCESS: raise IOError("Number of frames cannot be read") # get the number of particles stat = tng_num_particles_get(self._traj._ptr, & self._n_particles) if stat!= TNG_SUCCESS: raise IOError("Number of particles cannot be read") # get the unit scale cdef int64_t exponent stat = tng_distance_unit_exponential_get(self._traj._ptr, & exponent) if stat!= TNG_SUCCESS: raise IOError("Distance exponent cannot be read") # fill out dictionaries of block metadata stat = self._get_block_metadata() if stat!= TNG_SUCCESS: raise IOError("Strides for each data block cannot be read") self._sanitise_block_metadata() self._distance_scale = 10.0**(exponent+9) self.is_open = True self.reached_eof = False # close the file def _close(self): """Make sure the file handle is closed""" if self.is_open: tng_util_trajectory_close(& self._traj._ptr) self.is_open = False self.reached_eof = True self._n_steps = -1 @property
Cython
def n_steps(self): """The number of integrator steps in the TNG file Returns ------- n_steps : int number of integrator steps """ if not self.is_open: raise IOError("File is not yet open") return self._n_steps @property def n_atoms(self): """The number of atoms in the TNG file Returns ------- n_atoms : int number of atoms """ if not self.is_open: raise IOError("File is not yet open") return self._n_particles @property def block_strides(self): """Dictionary of block names and the strides (in integrator steps) at which they are written in the TNG file Returns ------- block_strides : dict dictionary of block names (keys) and strides of each block (values) """ if not self.is_open: raise IOError("File is not yet open") return self._frame_strides @property def block_ids(self): """Dictionary of block names and block ids (long longs) in the TNG file Returns ------- block_ids : dict dictionary of block names (keys) and block ids (values) """ if not self.is_open: raise IOError("File is not yet open") block_id_dict = {} for k in self._frame_strides.keys(): block_id_dict[k] = block_id_dictionary[k] return block_id_dict @property def n_data_frames(self): """Dictionary of block names and the number of actual steps with data for that block in the TNG file Returns ------- n_data_frames : dict dictionary of block names (keys) and number of steps with data (values) """ if not self.is_open: raise IOError("File is not yet open") return self._n_data_frames @property def values_per_frame(self): """Dictionary of block names and the number of values per frame for the block Returns ------- values_per_frame : dict dictionary of block names (keys) and number of values per frame (values) """ if not self.is_open: raise IOError("File is not yet open") return self._values_per_frame @property def particle_dependencies(self): """Dictionary of block names and whether the block is particle dependent Returns ------- particle_dependencies : dict dictionary of block names (keys) and particle dependencies (values) """ if not self.is_open: raise IOError("File is not yet open") return self._particle_dependencies cpdef np.ndarray make_ndarray_for_block_from_name(self, str block_name): """Make a NumPy array that can hold a specified block from the block name Parameters ---------- block_name : str a block name Returns ------- target : :class:`np.ndarray` A NumPy array that can hold the data values for a specified block See Also -------- block_ids : dict dictionary of block names (keys) and block ids (values) available in this TNG file """ if block_name not in block_dictionary.values(): raise ValueError("Block name {} not recognised".format(block_name)) if self._particle_dependencies[block_name]: ax0 = self._n_particles else: ax0 = 1 ax1 = self._values_per_frame[block_name] target = np.ndarray(shape=(ax0, ax1), dtype=np.float32, order='C') return target cpdef np.ndarray make_ndarray_for_block_from_id(self, int64_t block_id): """Make a NumPy array that can hold a specified block from the block id Parameters ---------- block_id : int64_t a block id Returns ------- target : :class:`np.ndarray` A NumPy array that can hold the data values for a specified block See Also -------- block_ids : dict dictionary of block names (keys) and block ids (values) available in this TNG file """ return self.make_ndarray_for_block_from_name(block_id_dictionary[block_id]) @property def step(self): """The current integrator step being read Returns ------- step : int the current step in the TNG file """ if not self.is_open: raise IOError("File is not yet open") return self.step @property def current_integrator_step(self): """Class that retrieves data from the file at the current integrator step Returns ------- current_integrator_step : :class:`TNGCurrentIntegratorStep` The data accessor at the current integrator step """ if not self.is_open: raise IOError("File is not yet open") return self.current_step cpdef TNGCurrentIntegratorStep read_step(self, step): """Read a step (integrator step) from the file Parameters ---------- step : int step to read from the file Returns ------- current_integrator_step : :class:`TNGCurrentIntegratorStep` The data accessor at the current integrator step Raises ------ ValueError attempt to read a negative step or step number greater than that in the input file """ if not self.is_open: raise IOError('File is not yet open') if step >= self._n_steps: raise ValueError("""frame specified is greater than number of steps in input file {}""".format(self._n_steps)) if step < 0: step = self._n_steps - np.abs(step) self.step = step self.current_step = TNGCurrentIntegratorStep( self._traj, step, self._frame_strides_blockid, debug=self.debug) return self.current_step def _sanitise_block_metadata(self): """ Check that the strides and number of frames makes sense Raises ------ ValueError Any of the blocks contain 0 data frames """ for block, stride in self._frame_strides.items(): if stride > self._n_steps: self._frame_strides[block] = 1 self._n_data_frames[block] = self._n_steps -1 warnings.warn(f"Stride of block {block} is larger than the" " number of steps in the TNG file. This can" " sometimes occur for the trajectories produced" " with `gmx trjconv`. Setting" " stride for block to one.") for block, nframes in self._n_data_frames.items(): if nframes == 0: raise ValueError(f"Block {block} has no frames contaning data") self._frame_strides_blockid = {block_id_dictionary[k]:v for k, v in self._frame_strides.items()} # NOTE here we assume that the first frame has all the blocks # that are present in the whole traj cdef tng_function_status _get_block_metadata(self): """Gets the ids, strides and number of frames with actual data from the trajectory""" cdef int64_t step, n_blocks cdef int64_t nframes, stride_length, n_values_per_frame cdef int64_t block_counter = 0 cdef int64_t * block_ids = NULL cdef int block_dependency cdef bint particle_dependent cdef tng_function_status read_stat = \ tng_util_trajectory_next_frame_present_data_blocks_find( self._traj._ptr, -1, 0, NULL, & step, & n_blocks, & block_ids) for i in range(n_blocks): read_stat = tng_data_get_stride_length( self._traj._ptr, block_ids[i], -1, & stride_length) if read_stat!= TNG_SUCCESS: return TNG_CRITICAL read_stat = tng_util_num_frames_with_data_of_block_id_get( self._traj._ptr, block_ids[i], & nframes) if read_stat!= TNG_SUCCESS: return TNG_CRITICAL read_stat = tng_data_block_num_values_per_frame_get( self._traj._ptr, block_ids[i], & n_values_per_frame) read_stat = tng_data_block_dependency_get(self._traj._ptr, block_ids[i], & block_dependency) if read_stat!= TNG_SUCCESS: return TNG_CRITICAL if block_dependency & TNG_PARTICLE_DEPENDENT: particle_dependent = True else: particle_dependent = False # stride length for the block self._frame_strides[block_dictionary[block_ids[i]]] = stride_length # number of actual data frames for the block self._n_data_frames[block_dictionary[block_ids[i]]] = nframes # number of values per frame self._values_per_frame[block_dictionary[block_ids[i]] ] = n_values_per_frame self._particle_dependencies[block_dictionary[block_ids[i]] ] = particle_dependent # TODO we will use this if we want to instead iterate # over the greatest common divisor of the data strides
Cython
self._gcd = gcd_list(list(self._frame_strides.values())) if self.debug: printf("PYTNG INFO: gcd of strides %ld \n", self._gcd) return TNG_SUCCESS def __enter__(self): # Support context manager return self def __exit__(self, exc_type, exc_val, exc_tb): self._close() # always propagate exceptions forward return False def __len__(self): return self._n_steps def __iter__(self): self._close() self._open(self.fname, self.mode) self.read_step(self.step) return self def __next__(self): if self.step == self._n_steps - 1: raise StopIteration self.read_step(self.step) self.step += 1 return self.current_integrator_step def __getitem__(self, frame): cdef int64_t start, stop, step, i if isinstance(frame, numbers.Integral): if self.debug: print("slice is a number") self.read_step(frame) return self.current_integrator_step elif isinstance(frame, (list, np.ndarray)): if self.debug: print("slice is a list or array") if isinstance(frame[0], (bool, np.bool_)): if not (len(frame) == len(self)): raise TypeError( "Boolean index must match length of trajectory") # Avoid having list of bools frame = np.asarray(frame, dtype=np.bool_) # Convert bool array to int array frame = np.arange(len(self))[frame] def listiter(frames): for f in frames: if not isinstance(f, numbers.Integral): raise TypeError("Frames indices must be integers") self.read_step(f) yield self.current_integrator_step return listiter(frame) elif isinstance(frame, slice): start = frame.start if frame.start is not None else 0 stop = frame.stop if frame.stop is not None else self._n_steps step = frame.step if frame.step is not None else 1 def sliceiter(start, stop, step): for i in range(start, stop, step): self.read_step(i) yield self.current_integrator_step return sliceiter(start, stop, step) else: raise TypeError("Trajectories must be an indexed using an integer," " slice or list of indices") cdef class TNGCurrentIntegratorStep: """Retrieves data at the curent trajectory step""" cdef bint debug cdef public dict _frame_strides_blockid cdef int64_t _n_blocks cdef tng_trajectory * _traj cdef int64_t step cdef bint read_success def __cinit__(self, TrajectoryWrapper traj, int64_t step, dict frame_strides, bint debug=False): self.debug = debug self._frame_strides_blockid = frame_strides self._traj = traj._ptr self.step = step self.read_success = False def __dealloc__(self): pass @property def step(self): """The current integrator step being read Returns ------- step : int the current step in the TNG file """ return self.step @property def read_success(self): """Indicates whether the last attempt to read data was successful Returns ------- read_success : bool Whether the last attempt to read data was successful """ return self.read_success @property def frame_strides_blockid(self): """Dictionary of blockid:frame_stride Returns ------- frame_strides_blockid : dict Dictionary of frame strides """ return self._frame_strides_blockid cpdef get_time(self): """Get the time of the current integrator step being read from the file Returns ------- time : int the time of the current step """ cdef tng_function_status read_stat cdef double _step_time read_stat = self._get_step_time(& _step_time) if read_stat!= TNG_SUCCESS: return None else: return _step_time cpdef np.ndarray get_positions(self, np.ndarray data): """Get the positions present at the current step and read them into a NumPy array Parameters ---------- data : np.ndarray NumPy array to read the data into. As this is a particle dependent block, the shape should be (n_atoms, n_values_per_frame) ie (n_atoms, 3). """ self.get_blockid(TNG_TRAJ_POSITIONS, data) return data cpdef np.ndarray get_box(self, np.ndarray data): """Get the box vectors present at the current step and read them into a NumPy array. The box vectors are a (3,3) matrix comprised of 3 three-dimensional basis vectors for the coordinate system of the simulation. The vectors can be accessed in their proper shape by reshaping the resulting (1,9) matrix to be (3,3) with ndarray.reshape(3,3). Parameters ---------- data : np.ndarray NumPy array to read the data into. As this is NOT a particle dependent block, the shape should be (1, n_values_per_frame) ie (1,9) """ self.get_blockid(TNG_TRAJ_BOX_SHAPE, data) return data cpdef np.ndarray get_velocities(self, np.ndarray data): """Get the velocities present at the current step and read them into a NumPy array Parameters ---------- data : np.ndarray NumPy array to read the data into. As this is a particle dependent block, the shape should be (n_atoms, n_values_per_frame) ie (n_atoms, 3). """ self.get_blockid(TNG_TRAJ_VELOCITIES, data) return data cpdef np.ndarray get_forces(self, np.ndarray data): """Get the forces present at the current step and read them into a NumPy array Parameters ---------- data : np.ndarray NumPy array to read the data into. As this is a particle dependent block, the shape should be (n_atoms, n_values_per_frame) ie (n_atoms, 3). """ self.get_blockid(TNG_TRAJ_FORCES, data) return data cpdef get_blockid(self, int64_t block_id, np.ndarray data): """Get a block ID present at the current step and read it into a NumPy array Parameters ---------- block_id : int64_t TNG block id to read from the current step data : np.ndarray NumPy array to read the data into, the required shape is determined by the block dependency and the number of values per frame. Raises ------ TypeError The dtype of the numpy array provided is not supported by TNG datatypes or does not match the underlying datatype. IOError The block data type cannot be understood. IndexError The shape of the numpy array provided does not match the shape of the data to be read from disk. """ shape = data.shape dtype = data.dtype if dtype not in [np.int64, np.float32, np.float64]: raise TypeError( "PYTNG ERROR: datatype of numpy array not supported\n") cdef void * values = NULL cdef int64_t n_values_per_frame = -1 cdef int64_t n_atoms = -1 cdef double precision = -1 cdef char datatype = -1 cdef tng_function_status read_stat = TNG_CRITICAL cdef np.float32_t[::1] _float_view cdef int64_t[::1] _int64_t_view cdef double[::1] _double_view cdef int i, j with nogil: read_stat = self._get_data_current_step(block_id, self.step, & values, & n_values_per_frame, & n_atoms, & precision, & datatype, self.debug) if read_stat == TNG_CRITICAL: self.read_success = False warnings.warn(f"Failed read for block " f"{block_dictionary[block_id]}") # NOTE nan fill on blank read data[:, :] = np.nan return data elif read_stat == TNG_FAILURE: # possibly off stride, perhaps the stride in file is > nstep and # we sorted it out in _sanitise_block_metadata? if (self.step % self._frame_strides_blockid[block_id]): self.read_success = False warnings.warn(f"Off stride read for block " f"{block_dictionary[block_id]}") # NOTE nan fill on blank read data[:, :] = np.nan return data else: self.read_success = True else: self.read_success = True if data.ndim > 2: raise IndexError( """PYTNG ERROR: Numpy array must be 2 dimensional,
Cython
you supplied a {} dimensional ndarray""".format(data.ndim)) if shape[0]!= n_atoms: raise IndexError( """PYTNG ERROR: First axis must be n_atoms long, you supplied {}""".format(shape[0])) if shape[1]!= n_values_per_frame: raise IndexError( """PYTNG ERROR: Second axis must be n_values_per_frame long, you supplied {}""".format(shape[1])) cdef int64_t n_vals = n_atoms * n_values_per_frame if datatype == TNG_FLOAT_DATA: if dtype!= np.float32: raise TypeError( "PYTNG ERROR: dtype of array {} does not match TNG dtype float".format(dtype)) _float_view = <np.float32_t[:n_vals] > ( < float*> values) data[:, :] = np.asarray(_float_view, dtype=np.float32).reshape( n_atoms, n_values_per_frame) elif datatype == TNG_INT_DATA: if dtype!= np.int64: raise TypeError( "PYTNG ERROR: dtype of array {} does not match TNG dtype int64_t".format(dtype)) _int64_t_view = <int64_t[:n_vals] > ( < int64_t*> values) data[:, :] = np.asarray(_int64_t_view, dtype=np.int64).reshape( n_atoms, n_values_per_frame) elif datatype == TNG_DOUBLE_DATA: if dtype!= np.float64: raise TypeError( "PYTNG ERROR: dtype of array {} does not match TNG dtype double".format(dtype)) _double_view = <double[:n_vals] > ( < double*> values) data[:, :] = np.asarray(_double_view, dtype=np.float64).reshape( n_atoms, n_values_per_frame) else: raise IOError("PYTNG ERROR: block datatype not understood") return data cdef tng_function_status _get_data_current_step(self, int64_t block_id, int64_t step, void ** values, int64_t * n_values_per_frame, int64_t * n_atoms, double * prec, char * datatype, bint debug) nogil: """Gets the frame data off disk and into C level arrays Parameters ---------- block_id : int64_t block id to read step : int64_t integrator step to read values : void ** NULL void pointer to hook the data onto n_values_per_frame : int64_t * set to the number of values per frame for the block n_atoms : int64_t * set to the number of atoms or 1 if particle dependent prec : double * set to the precision of the block datatype : char * set to the datatype of the block debug : bint debug the block read Notes ----- This function is private. Additionally, this function is marked nogil and called without the GIL so cannot contain python or python exceptions. Instead failure is marked by returning :data:`TNG_CRITICAL`. Success is indicated by returning :data:`TNG_SUCCESS`. Cleanup is then be done by the calling code in :method:`get_blockid` so the user should not have to deal with C level exceptions """ cdef tng_function_status stat = TNG_CRITICAL cdef int64_t codec_id cdef int block_dependency cdef void * data = NULL cdef double local_prec cdef int64_t stride_length # is this a particle dependent block? stat = tng_data_block_dependency_get(self._traj, block_id, & block_dependency) if stat!= TNG_SUCCESS: return TNG_CRITICAL if block_dependency & TNG_PARTICLE_DEPENDENT: # bitwise & due to enums tng_num_particles_get(self._traj, n_atoms) # read particle data off disk with hash checking stat = tng_gen_data_vector_interval_get(self._traj, block_id, TNG_TRUE, self.step, self.step, TNG_USE_HASH, values, n_atoms, & stride_length, n_values_per_frame, datatype) else: n_atoms[0] = 1 # still used for some allocs # read non particle data off disk with hash checking stat = tng_gen_data_vector_interval_get(self._traj, block_id, TNG_FALSE, self.step, self.step, TNG_USE_HASH, values, NULL, & stride_length, n_values_per_frame, datatype) if stat!= TNG_SUCCESS: return TNG_CRITICAL # get the compression of the current frame stat = tng_util_frame_current_compression_get(self._traj, block_id, & codec_id, & local_prec) if stat!= TNG_SUCCESS: return TNG_CRITICAL if codec_id!= TNG_TNG_COMPRESSION: prec[0] = -1.0 else: prec[0] = local_prec # possible blank read, but nothing complained, we will warn in caller if self.step % stride_length!= 0: return TNG_FAILURE # if we reached here read was succesfull return TNG_SUCCESS cdef tng_function_status _get_step_time(self, double * step_time): stat = tng_util_time_of_frame_get(self._traj, self.step, step_time) if stat!= TNG_SUCCESS: return TNG_CRITICAL block_dictionary = {} # group 1 block_dictionary[TNG_GENERAL_INFO] = "TNG_GENERAL_INFO" block_dictionary[TNG_MOLECULES] = "TNG_MOLECULES" block_dictionary[TNG_TRAJECTORY_FRAME_SET] = "TNG_TRAJECTORY_FRAME_SET" block_dictionary[TNG_PARTICLE_MAPPING] = "TNG_PARTICLE_MAPPING" # group 2 block_dictionary[TNG_TRAJ_BOX_SHAPE] = "TNG_TRAJ_BOX_SHAPE" block_dictionary[TNG_TRAJ_POSITIONS] = "TNG_TRAJ_POSITIONS" block_dictionary[TNG_TRAJ_VELOCITIES] = "TNG_TRAJ_VELOCITIES" block_dictionary[TNG_TRAJ_FORCES] = "TNG_TRAJ_FORCES" block_dictionary[TNG_TRAJ_PARTIAL_CHARGES] = "TNG_TRAJ_PARTIAL_CHARGES" block_dictionary[TNG_TRAJ_FORMAL_CHARGES] = "TNG_TRAJ_FORMAL_CHARGES" block_dictionary[TNG_TRAJ_B_FACTORS] = "TNG_TRAJ_B_FACTORS" block_dictionary[TNG_TRAJ_ANISOTROPIC_B_FACTORS] = "TNG_TRAJ_ANISOTROPIC_B_FACTORS" block_dictionary[TNG_TRAJ_OCCUPANCY] = "TNG_TRAJ_OCCUPANCY" block_dictionary[TNG_TRAJ_GENERAL_COMMENTS] = "TNG_TRAJ_GENERAL_COMMENTS" block_dictionary[TNG_TRAJ_MASSES] = "TNG_TRAJ_MASSES" # group 3 block_dictionary[TNG_GMX_LAMBDA] = "TNG_GMX_LAMBDA" block_dictionary[TNG_GMX_ENERGY_ANGLE] = "TNG_GMX_ENERGY_ANGLE" block_dictionary[TNG_GMX_ENERGY_RYCKAERT_BELL] = "TNG_GMX_ENERGY_RYCKAERT_BELL" block_dictionary[TNG_GMX_ENERGY_LJ_14] = "TNG_GMX_ENERGY_LJ_14" block_dictionary[TNG_GMX_ENERGY_COULOMB_14] = "TNG_GMX_ENERGY_COULOMB_14" block_dictionary[TNG_GMX_ENERGY_LJ_SR] = "TNG_GMX_ENERGY_LJ_SR" block_dictionary[TNG_GMX_ENERGY_COULOMB_SR] = "TNG_GMX_ENERGY_COULOMB_SR" block_dictionary[TNG_GMX_ENERGY_COUL_RECIP] = "TNG_GMX_ENERGY_COUL_RECIP" block_dictionary[TNG_GMX_ENERGY_POTENTIAL] = "TNG_GMX_ENERGY_POTENTIAL" block_dictionary[TNG_GMX_ENERGY_KINETIC_EN] = "TNG_GMX_ENERGY_KINETIC_EN" block_dictionary[TNG_GMX_ENERGY_TOTAL_ENERGY] = "TNG_GMX_ENERGY_TOTAL_ENERGY" block_dictionary[TNG_GMX_ENERGY_TEMPERATURE] = "TNG_GMX_ENERGY_TEMPERATURE" block_dictionary[TNG_GMX_ENERGY_PRESSURE] = "TNG_GMX_ENERGY_PRESSURE" block_dictionary[TNG_GMX_ENERGY_CONSTR_RMSD] = "TNG_GMX_ENERGY_CONSTR_RMSD" block_dictionary[TNG_GMX_ENERGY_CONSTR2_RMSD] = "TNG_GMX_ENERGY_CONSTR2_RMSD" block_dictionary[TNG_GMX_ENERGY_BOX_X] = "TNG_GMX_ENERGY_BOX_X" block_dictionary[TNG_GMX_ENERGY_BOX_Y] = "TNG_GMX_ENERGY_BOX_Y" block_dictionary[TNG_GMX_ENERGY_BOX_Z] = "TNG_GMX_ENERGY_BOX_Z" block_dictionary[TNG_GMX_ENERGY_BOXXX] = "TNG_GMX_ENERGY_BOXXX" block_dictionary[TNG_GMX_ENERGY_BOXYY] = "TNG_GMX_ENERGY_BOXYY" block_dictionary[TNG_GMX_ENERGY_BOXZZ
Cython
] = "TNG_GMX_ENERGY_BOXZZ" block_dictionary[TNG_GMX_ENERGY_BOXYX] = "TNG_GMX_ENERGY_BOXYX" block_dictionary[TNG_GMX_ENERGY_BOXZX] = "TNG_GMX_ENERGY_BOXZX" block_dictionary[TNG_GMX_ENERGY_BOXZY] = "TNG_GMX_ENERGY_BOXZY" block_dictionary[TNG_GMX_ENERGY_BOXVELXX] = "TNG_GMX_ENERGY_BOXVELXX" block_dictionary[TNG_GMX_ENERGY_BOXVELYY] = "TNG_GMX_ENERGY_BOXVELYY" block_dictionary[TNG_GMX_ENERGY_BOXVELZZ] = "TNG_GMX_ENERGY_BOXVELZZ" block_dictionary[TNG_GMX_ENERGY_BOXVELYX] = "TNG_GMX_ENERGY_BOXVELYX" block_dictionary[TNG_GMX_ENERGY_BOXVELZX] = "TNG_GMX_ENERGY_BOXVELZX" block_dictionary[TNG_GMX_ENERGY_BOXVELZY] = "TNG_GMX_ENERGY_BOXVELZY" block_dictionary[TNG_GMX_ENERGY_VOLUME] = "TNG_GMX_ENERGY_VOLUME" block_dictionary[TNG_GMX_ENERGY_DENSITY] = "TNG_GMX_ENERGY_DENSITY" block_dictionary[TNG_GMX_ENERGY_PV] = "TNG_GMX_ENERGY_PV" block_dictionary[TNG_GMX_ENERGY_ENTHALPY] = "TNG_GMX_ENERGY_ENTHALPY" block_dictionary[TNG_GMX_ENERGY_VIR_XX] = "TNG_GMX_ENERGY_VIR_XX" block_dictionary[TNG_GMX_ENERGY_VIR_XY] = "TNG_GMX_ENERGY_VIR_XY" block_dictionary[TNG_GMX_ENERGY_VIR_XZ] = "TNG_GMX_ENERGY_VIR_XZ" block_dictionary[TNG_GMX_ENERGY_VIR_YX] = "TNG_GMX_ENERGY_VIR_YX" block_dictionary[TNG_GMX_ENERGY_VIR_YY] = "TNG_GMX_ENERGY_VIR_YY" block_dictionary[TNG_GMX_ENERGY_VIR_YZ] = "TNG_GMX_ENERGY_VIR_YZ" block_dictionary[TNG_GMX_ENERGY_VIR_ZX] = "TNG_GMX_ENERGY_VIR_ZX" block_dictionary[TNG_GMX_ENERGY_VIR_ZY] = "TNG_GMX_ENERGY_VIR_ZY" block_dictionary[TNG_GMX_ENERGY_VIR_ZZ] = "TNG_GMX_ENERGY_VIR_ZZ" block_dictionary[TNG_GMX_ENERGY_SHAKEVIR_XX] = "TNG_GMX_ENERGY_SHAKEVIR_XX" block_dictionary[TNG_GMX_ENERGY_SHAKEVIR_XY] = "TNG_GMX_ENERGY_SHAKEVIR_XY" block_dictionary[TNG_GMX_ENERGY_SHAKEVIR_XZ] = "TNG_GMX_ENERGY_SHAKEVIR_XZ" block_dictionary[TNG_GMX_ENERGY_SHAKEVIR_YX] = "TNG_GMX_ENERGY_SHAKEVIR_YX" block_dictionary[TNG_GMX_ENERGY_SHAKEVIR_YY] = "TNG_GMX_ENERGY_SHAKEVIR_YY" block_dictionary[TNG_GMX_ENERGY_SHAKEVIR_YZ] = "TNG_GMX_ENERGY_SHAKEVIR_YZ" block_dictionary[TNG_GMX_ENERGY_SHAKEVIR_ZX] = "TNG_GMX_ENERGY_SHAKEVIR_ZX" block_dictionary[TNG_GMX_ENERGY_SHAKEVIR_ZY] = "TNG_GMX_ENERGY_SHAKEVIR_ZY" block_dictionary[TNG_GMX_ENERGY_SHAKEVIR_ZZ] = "TNG_GMX_ENERGY_SHAKEVIR_ZZ" block_dictionary[TNG_GMX_ENERGY_FORCEVIR_XX] = "TNG_GMX_ENERGY_FORCEVIR_XX" block_dictionary[TNG_GMX_ENERGY_FORCEVIR_XY] = "TNG_GMX_ENERGY_FORCEVIR_XY" block_dictionary[TNG_GMX_ENERGY_FORCEVIR_XZ] = "TNG_GMX_ENERGY_FORCEVIR_XZ" block_dictionary[TNG_GMX_ENERGY_FORCEVIR_YX] = "TNG_GMX_ENERGY_FORCEVIR_YX" block_dictionary[TNG_GMX_ENERGY_FORCEVIR_YY] = "TNG_GMX_ENERGY_FORCEVIR_YY" block_dictionary[TNG_GMX_ENERGY_FORCEVIR_YZ] = "TNG_GMX_ENERGY_FORCEVIR_YZ" block_dictionary[TNG_GMX_ENERGY_FORCEVIR_ZX] = "TNG_GMX_ENERGY_FORCEVIR_ZX" block_dictionary[TNG_GMX_ENERGY_FORCEVIR_ZY] = "TNG_GMX_ENERGY_FORCEVIR_ZY" block_dictionary[TNG_GMX_ENERGY_FORCEVIR_ZZ] = "TNG_GMX_ENERGY_FORCEVIR_ZZ" block_dictionary[TNG_GMX_ENERGY_PRES_XX] = "TNG_GMX_ENERGY_PRES_XX" block_dictionary[TNG_GMX_ENERGY_PRES_XY] = "TNG_GMX_ENERGY_PRES_XY" block_dictionary[TNG_GMX_ENERGY_PRES_XZ] = "TNG_GMX_ENERGY_PRES_XZ" block_dictionary[TNG_GMX_ENERGY_PRES_YX] = "TNG_GMX_ENERGY_PRES_YX" block_dictionary[TNG_GMX_ENERGY_PRES_YY] = "TNG_GMX_ENERGY_PRES_YY" block_dictionary[TNG_GMX_ENERGY_PRES_YZ] = "TNG_GMX_ENERGY_PRES_YZ" block_dictionary[TNG_GMX_ENERGY_PRES_ZX] = "TNG_GMX_ENERGY_PRES_ZX" block_dictionary[TNG_GMX_ENERGY_PRES_ZY] = "TNG_GMX_ENERGY_PRES_ZY" block_dictionary[TNG_GMX_ENERGY_PRES_ZZ] = "TNG_GMX_ENERGY_PRES_ZZ" block_dictionary[TNG_GMX_ENERGY_SURFXSURFTEN] = "TNG_GMX_ENERGY_SURFXSURFTEN" block_dictionary[TNG_GMX_ENERGY_MUX] = "TNG_GMX_ENERGY_MUX" block_dictionary[TNG_GMX_ENERGY_MUY] = "TNG_GMX_ENERGY_MUY" block_dictionary[TNG_GMX_ENERGY_MUZ] = "TNG_GMX_ENERGY_MUZ" block_dictionary[TNG_GMX_ENERGY_VCOS] = "TNG_GMX_ENERGY_VCOS" block_dictionary[TNG_GMX_ENERGY_VISC] = "TNG_GMX_ENERGY_VISC" block_dictionary[TNG_GMX_ENERGY_BAROSTAT] = "TNG_GMX_ENERGY_BAROSTAT" block_dictionary[TNG_GMX_ENERGY_T_SYSTEM] = "TNG_GMX_ENERGY_T_SYSTEM" block_dictionary[TNG_GMX_ENERGY_LAMB_SYSTEM] = "TNG_GMX_ENERGY_LAMB_SYSTEM" block_dictionary[TNG_GMX_SELECTION_GROUP_NAMES] = "TNG_GMX_SELECTION_GROUP_NAMES" block_dictionary[TNG_GMX_ATOM_SELECTION_GROUP] = "TNG_GMX_ATOM_SELECTION_GROUP" # reverse the mapping block_id_dictionary = {v: k for k, v in block_dictionary.items()} <|end_of_text|>""" Cython wrapper around the NASA TRMM RSL library. """ cimport pyart.io._rsl_h as _rsl_h # the next line is required so that RSL_F_LIST and RSL_INVF_LIST can be # properly wrapped as Cython does not export the typedef from _rsl_h # define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-W#warnings] ctypedef unsigned short Range import numpy as np cimport numpy as np from datetime import datetime, timedelta _RSL_VERSION_STR = _rsl_h._RSL_VERSION_STR cpdef copy_volume(_RslVolume volume): """ copy_volume(volume) Return a copy of a _RslVolume object. Parameters ---------- volume : _RslVolume _RslVolume object to create a copy of. Returns ------- nvolume : _RslVolume Copy of volume. """ volume_copy = _rsl_h.RSL_copy_volume(volume._Volume) rslvolume = _RslVolume() rslvolume.load(volume_copy) rslvolume._dealloc = 1 return rslvolume cpdef create_volume( np.ndarray[np.float32_t, ndim=2] arr, np.ndarray[np.int32_t, ndim=1] rays_per_sweep, int vol_num=1): """ create_volume(arr, rays_per_sweep, vol_num=1) Create a _RslVolume object from a 2D float32 array. No headers parameters except nsweeps, nrays and nbins are not set in the resulting _RslVolume object. Parameters ---------- arr : array, 2D, float32 Two dimensional float32 array. rays_per_sweep: array, 1D, int32 Array listing number of rays in each sweep. vol_num : int Volume number used to set f and invf in the header. The default is for velocity fields. Useful values are 0 for reflectivity and 1 for velocity. Returns ------- volumes : _RslVolume _RslVolume containing
Cython
array data. """ # these variables can be moved to the module level if used elsewhere cdef (float (*)(_rsl_h.Range) noexcept) * RSL_F_LIST = [ _rsl_h.DZ_F, _rsl_h.VR_F, _rsl_h.SW_F, _rsl_h.CZ_F, _rsl_h.ZT_F, _rsl_h.DR_F, _rsl_h.LR_F, _rsl_h.ZD_F, _rsl_h.DM_F, _rsl_h.RH_F, _rsl_h.PH_F, _rsl_h.XZ_F, _rsl_h.CD_F, _rsl_h.MZ_F, _rsl_h.MD_F, _rsl_h.ZE_F, _rsl_h.VE_F, _rsl_h.KD_F, _rsl_h.TI_F, _rsl_h.DX_F, _rsl_h.CH_F, _rsl_h.AH_F, _rsl_h.CV_F, _rsl_h.AV_F, _rsl_h.SQ_F, _rsl_h.VS_F, _rsl_h.VL_F, _rsl_h.VG_F, _rsl_h.VT_F, _rsl_h.NP_F, _rsl_h.HC_F, _rsl_h.VC_F, _rsl_h.VR_F, _rsl_h.SW_F, _rsl_h.VR_F, _rsl_h.SW_F, _rsl_h.DZ_F, _rsl_h.CZ_F, _rsl_h.PH_F, _rsl_h.SD_F, _rsl_h.DZ_F, _rsl_h.DZ_F] cdef (_rsl_h.Range (*)(float) noexcept) * RSL_INVF_LIST = [ _rsl_h.DZ_INVF, _rsl_h.VR_INVF, _rsl_h.SW_INVF, _rsl_h.CZ_INVF, _rsl_h.ZT_INVF, _rsl_h.DR_INVF, _rsl_h.LR_INVF, _rsl_h.ZD_INVF, _rsl_h.DM_INVF, _rsl_h.RH_INVF, _rsl_h.PH_INVF, _rsl_h.XZ_INVF, _rsl_h.CD_INVF, _rsl_h.MZ_INVF, _rsl_h.MD_INVF, _rsl_h.ZE_INVF, _rsl_h.VE_INVF, _rsl_h.KD_INVF, _rsl_h.TI_INVF, _rsl_h.DX_INVF, _rsl_h.CH_INVF, _rsl_h.AH_INVF, _rsl_h.CV_INVF, _rsl_h.AV_INVF, _rsl_h.SQ_INVF, _rsl_h.VS_INVF, _rsl_h.VL_INVF, _rsl_h.VG_INVF, _rsl_h.VT_INVF, _rsl_h.NP_INVF, _rsl_h.HC_INVF, _rsl_h.VC_INVF, _rsl_h.VR_INVF, _rsl_h.SW_INVF, _rsl_h.VR_INVF, _rsl_h.SW_INVF, _rsl_h.DZ_INVF, _rsl_h.CZ_INVF, _rsl_h.PH_INVF, _rsl_h.SD_INVF, _rsl_h.DZ_INVF, _rsl_h.DZ_INVF] cdef _rsl_h.Volume * volume cdef _rsl_h.Sweep * sweep cdef _rsl_h.Ray * ray cdef int ray_i nsweeps = rays_per_sweep.shape[0] nbins = arr.shape[1] volume = _rsl_h.RSL_new_volume(nsweeps) volume.h.nsweeps = nsweeps ray_index = 0 for nsweep in range(nsweeps): nrays = rays_per_sweep[nsweep] sweep = _rsl_h.RSL_new_sweep(nrays) volume.sweep[nsweep] = sweep sweep.h.nrays = nrays for nray in range(nrays): ray = _rsl_h.RSL_new_ray(nbins) sweep.ray[nray] = ray ray.h.nbins = nbins ray.h.f = RSL_F_LIST[vol_num] ray.h.invf = RSL_INVF_LIST[vol_num] for nbin in range(nbins): ray.range[nbin] = ray.h.invf(arr[ray_index, nbin]) ray_index += 1 rslvolume = _RslVolume() rslvolume.load(volume) rslvolume._dealloc = 1 return rslvolume cpdef _label_volume(_RslVolume volume, radar): """ _label_volume(volume, radar) Add labels for dealiasing to a _RslVolume object from a radar object. This function does not set all parameter in the _RslVolume suitable for writing out the volume, rather it set those parameters which must be set prior to using :py:func:`pyart.correct._fourdd_interface.fourdd_dealias`. Parameters ---------- volume : _RslVolume Volume object to which parameters will be set as needed prior to dealiasing. Object is manipulated in-place. radar : Radar Radar object from which parameters are taken. """ cdef _rsl_h.Sweep * sweep cdef _rsl_h.Ray * ray cdef int ray_index vol = volume._Volume nsweeps = vol.h.nsweeps nbins = vol.sweep[0].ray[0].h.nbins gate_size = int(radar.range['meters_between_gates']) range_bin1 = int(radar.range['meters_to_center_of_first_gate']) if'shape' in dir(radar.altitude['data']): if radar.altitude['data'].shape == (): alt = float(radar.altitude['data']) else: alt = radar.altitude['data'][0] else: alt = radar.altitude['data'] nyq_vels = radar.instrument_parameters['nyquist_velocity']['data'] azimuths = radar.azimuth['data'] elevs = radar.elevation['data'] # label the volume ray_index = 0 vol.h.nsweeps = nsweeps for nsweep in range(nsweeps): sweep = vol.sweep[nsweep] nrays = sweep.h.nrays for nray in range(nrays): ray = sweep.ray[nray] ray.h.azimuth = azimuths[ray_index] ray.h.elev = elevs[ray_index] ray.h.nyq_vel = nyq_vels[ray_index] ray.h.range_bin1 = range_bin1 ray.h.gate_size = gate_size ray.h.alt = alt ray_index += 1 return cdef class _RslRay: """ A object for accessing RSL Ray data and header information This class should not be initalized from within Python. _RslRay object are returned from the :py:func:`_RslSweep.get_ray` method. Attributes ---------- month : int Date for this ray, month (1-12). day : int Date for this ray, day (1-31). year : int Date for this ray, year (eg. 1993). hour : int Time for this ray, hour (0-23). minute : int Time for this ray, minute (0-59). sec : float Time for this ray, second + fractor of second. unam_rng : float Unambiguous range in km. azimuth : float Mean azimuth angle in degrees for the ray, must be positive. 0 for north, 90 for east, 270 for west. ray_num : int Ray number within a scan. elev : float Elevation angle in degrees. elev_num : int Elevation number within the volume scan. range_bin1 : int Range to first gate in meters. gate_size : int Gate size in meters. vel_res : float Doppler velocity resolution. sweep_rate : float Sweep rate, full sweeps / minute. prf : int Pulse repetition frequency in Hz. prf2 : int Second pulse repition frequenct for dual PRF data. azim_rate : float Sweep rate in degrees / second. fix_angle : float Elevation angle for the sweep in degrees. pitch : float Pitch angle. roll : float Roll angle. heading : float Heading. pitch_rate : float Pitch rate in angle / sec. roll_rate : float Roll rate in angle / sec. heading_rate : float Heading rate in angle / sec. lat : float Latitude in degrees. lon : float
Cython
Longitude in degrees. alt : int Altitude in meters. rvs : float Radial velocity correction in meters / second. vel_east : float Platform velocity to the east in meters / second. Negative values for velocity to the west. vel_north : float Platform velocity to the north in meters / second. Negative values for velocity to the south. vel_up : float Platform velocity upward in meters / second. Negative values for velocity downward. pulse_count : int Pulses used in a single dwell time. pulse_width : float Pulse width in microseconds. beam_width : float Beamwidth in degrees. frequency : float Carrier frequency in GHz. wavelength : float Wavelength in meters. nyq_vel : float Nyquist velocity in meters / second. nbins : int Number of array elements in ray data. """ cdef _rsl_h.Ray * _Ray cdef int _dealloc def __dealloc__(self): if self._dealloc == 1: _rsl_h.RSL_free_ray(self._Ray) cdef load(self, _rsl_h.Ray * Ray): """ Load the _RslRay object, must be called after creation. """ if Ray is NULL: raise ValueError('cannot load _RslRay with NULL') self._Ray = Ray self._dealloc = 0 def get_datetime(self): """ get_datetime() Return a datetime describing the date and time of the ray. """ s = self full_seconds, fractional_seconds = divmod(s.sec, 1) microseconds = int(fractional_seconds * 1e6) # Some UF writers incorrectly specify midnight as 24:00:00 rather # than 00:00:00. Handle this case explicitly if s.hour == 24: s.hour = 23 s.minute = 0 full_seconds = 0 dt = datetime(s.year, s.month, s.day, s.hour, s.minute, full_seconds, microseconds) return dt + timedelta(seconds=1) return datetime(s.year, s.month, s.day, s.hour, s.minute, int(full_seconds), microseconds) def get_data(self): """ get_data() Return the one-dimensional data contained in the ray. """ cdef _rsl_h.Range raw cdef np.ndarray[np.float32_t, ndim = 1] data shape = (self._Ray.h.nbins) data = np.zeros(shape, dtype='float32') + 1.31072000e+05 for nbin in range(self._Ray.h.nbins): raw = self._Ray.range[nbin] data[nbin] = self._Ray.h.f(raw) return data # header properties mapped to class attributes. property month: def __get__(self): return self._Ray.h.month def __set__(self, int month): self._Ray.h.month = month property day: def __get__(self): return self._Ray.h.day def __set__(self, int day): self._Ray.h.day = day property year: def __get__(self): return self._Ray.h.year def __set__(self, int year): self._Ray.h.year = year property hour: def __get__(self): return self._Ray.h.hour def __set__(self, int hour): self._Ray.h.hour = hour property minute: def __get__(self): return self._Ray.h.minute def __set__(self, int minute): self._Ray.h.minute = minute property sec: def __get__(self): return self._Ray.h.sec def __set__(self, float sec): self._Ray.h.sec = sec property unam_rng: def __get__(self): return self._Ray.h.unam_rng def __set__(self, float unam_rng): self._Ray.h.unam_rng = unam_rng property azimuth: def __get__(self): return self._Ray.h.azimuth def __set__(self, float azimuth): self._Ray.h.azimuth = azimuth property ray_num: def __get__(self): return self._Ray.h.ray_num def __set__(self, int ray_num): self._Ray.h.ray_num = ray_num property elev: def __get__(self): return self._Ray.h.elev def __set__(self, float elev): self._Ray.h.elev = elev property elev_num: def __get__(self): return self._Ray.h.elev_num def __set__(self, int elev_num): self._Ray.h.elev_num = elev_num property range_bin1: def __get__(self): return self._Ray.h.range_bin1 def __set__(self, int range_bin1): self._Ray.h.range_bin1 = range_bin1 property gate_size: def __get__(self): return self._Ray.h.gate_size def __set__(self, int gate_size): self._Ray.h.gate_size = gate_size property vel_res: def __get__(self): return self._Ray.h.vel_res def __set__(self, float vel_res): self._Ray.h.vel_res = vel_res property sweep_rate: def __get__(self): return self._Ray.h.sweep_rate def __set__(self, float sweep_rate): self._Ray.h.sweep_rate = sweep_rate property prf: def __get__(self): return self._Ray.h.prf def __set__(self, int prf): self._Ray.h.prf = prf property prf2: def __get__(self): return self._Ray.h.prf2 def __set__(self, int prf2): self._Ray.h.prf2 = prf2 property azim_rate: def __get__(self): return self._Ray.h.azim_rate def __set__(self, float azim_rate): self._Ray.h.azim_rate = azim_rate property fix_angle: def __get__(self): return self._Ray.h.fix_angle def __set__(self, float fix_angle): self._Ray.h.fix_angle = fix_angle property pitch: def __get__(self): return self._Ray.h.pitch def __set__(self, float pitch): self._Ray.h.pitch = pitch property roll: def __get__(self): return self._Ray.h.roll def __set__(self, float roll): self._Ray.h.roll = roll property heading: def __get__(self): return self._Ray.h.heading def __set__(self, float heading): self._Ray.h.heading = heading property pitch_rate: def __get__(self): return self._Ray.h.pitch_rate def __set__(self, float pitch_rate): self._Ray.h.pitch_rate = pitch_rate property roll_rate: def __get__(self): return self._Ray.h.roll_rate def __set__(self, float roll_rate): self._Ray.h.roll_rate = roll_rate property heading_rate: def __get__(self): return self._Ray.h.heading_rate def __set__(self, float heading_rate): self._Ray.h.heading_rate = heading_rate property lat: def __get__(self): return self._Ray.h.lat def __set__(self, float lat): self._Ray.h.lat = lat property lon: def __get__(self): return self._Ray.h.lon def __set__(self, float lon): self._Ray.h.lon = lon property alt: def __get__(self): return self._Ray.h.alt def __set__(self, int alt): self._Ray.h.alt = alt property rvc: def __get__(self): return self._Ray.h.rvc def __set__(self, float rvc): self._Ray.h.rvc = rvc property vel_east: def __get__(self): return self._Ray.h.vel_east def __set__(self, float vel_east): self._Ray.h.vel_east = vel_east property vel_north: def __get__(self): return self._Ray.h.vel_north def __set__(self, float vel_north): self._Ray.h.vel_north = vel_north property vel_up: def __get__(self): return self._Ray.h.vel_up def __set__(self, float vel_up): self._Ray.h.vel_up = vel_up property pulse_count: def __get__(self): return self._Ray.h.pulse_count def __set__(self, int pulse_count): self._Ray.h.pulse_count = pulse_count property pulse_width: def __
Cython
get__(self): return self._Ray.h.pulse_width def __set__(self, float pulse_width): self._Ray.h.pulse_width = pulse_width property beam_width: def __get__(self): return self._Ray.h.beam_width def __set__(self, float beam_width): self._Ray.h.beam_width = beam_width property frequency: def __get__(self): return self._Ray.h.frequency def __set__(self, float frequency): self._Ray.h.frequency = frequency property wavelength: def __get__(self): return self._Ray.h.wavelength def __set__(self, float wavelength): self._Ray.h.wavelength = wavelength property nyq_vel: def __get__(self): return self._Ray.h.nyq_vel def __set__(self, float nyq_vel): self._Ray.h.nyq_vel = nyq_vel property nbins: def __get__(self): return self._Ray.h.nbins def __set__(self, int nbins): self._Ray.h.nbins = nbins cdef class _RslSweep: """ A object for accessing RSL Sweep data and header information. This class should not be initalized from within Python. _RslSweep objects are returned from the :py:func:`_RslVolume.get_sweep` method. Attributes ---------- sweep_num : int Interger sweep number. elev : float Mean elevation angle for thr sweep. -999.0 for RHI sweeps. azimuth : float Azumuth for the sweep. -999.0 for PPI scans. beam_width : float Beam width in degrees. Can also be found in _RslRay objects. vert_half_bw : float Vertical beam width divided by 2. horz_half_bw : float Horizontal beam width divided by 2. nrays : int Number of rays in the sweep. """ cdef _rsl_h.Sweep * _Sweep cdef int _dealloc def __dealloc__(self): if self._dealloc == 1: _rsl_h.RSL_free_sweep(self._Sweep) cdef load(self, _rsl_h.Sweep * Sweep): """ Load the _RslSweep object, must be called after creation. """ if Sweep is NULL: raise ValueError("cannot load _RslSweep with NULL") self._Sweep = Sweep self._dealloc = 0 def get_ray(self, int ray_number): """ get_ray(ray_number) Return a _RslRay for a given ray. Parameters ---------- ray_number : int Ray number to retrieve Returns ------- ray : _RslRay _RslRay object containing the requested ray. """ if ray_number < 0 or ray_number >= self._Sweep.h.nrays: raise ValueError('invalid ray_number') rslray = _RslRay() rslray.load(self._Sweep.ray[ray_number]) return rslray def get_data(self): """ get_data() Return the two-dimensional data contained in the sweep. If a given ray has few bins than the first ray, the missing bins will be filled with 131072.0 """ cdef _rsl_h.Range raw cdef _rsl_h.Ray * ray cdef np.ndarray[np.float32_t, ndim = 2] data sweep = self._Sweep nrays = sweep.h.nrays nbins = sweep.ray[0].h.nbins shape = (nrays, nbins) data = np.zeros(shape, dtype='float32') + 1.31072000e+05 for nray in range(nrays): ray = sweep.ray[nray] assert ray is not NULL nbins = ray.h.nbins for nbin in range(nbins): raw = ray.range[nbin] data[nray, nbin] = ray.h.f(raw) return data # header properties mapped to class attributes. property sweep_num: def __get__(self): return self._Sweep.h.sweep_num def __set__(self, int sweep_num): self._Sweep.h.sweep_num = sweep_num property elev: def __get__(self): return self._Sweep.h.elev def __set__(self, float elev): self._Sweep.h.elev = elev property azimuth: def __get__(self): return self._Sweep.h.azimuth def __set__(self, float azimuth): self._Sweep.h.azimuth = azimuth property beam_width: def __get__(self): return self._Sweep.h.beam_width def __set__(self, float beam_width): self._Sweep.h.beam_width = beam_width property vert_half_bw: def __get__(self): return self._Sweep.h.vert_half_bw def __set__(self, float vert_half_bw): self._Sweep.h.vert_half_bw = vert_half_bw property horz_half_bw: def __get__(self): return self._Sweep.h.horz_half_bw def __set__(self, float horz_half_bw): self._Sweep.h.horz_half_bw = horz_half_bw property nrays: def __get__(self): return self._Sweep.h.nrays def __set__(self, int nrays): self._Sweep.h.nrays = nrays cdef class _RslVolume: """ A object for accessing RSL Volume data and header information. This class should not be initalized from within Python. _RslVolume objects are returned from the :py:func:`RslFile.get_volume` and other functions/methods. Attributes ---------- nsweeps : int Sweep number. calibr_const : float Calibration constant. """ def __dealloc__(self): if self._dealloc == 1: _rsl_h.RSL_free_volume(self._Volume) cdef load(self, _rsl_h.Volume * Volume): """ Load the _RslVolume object, must be called after creation. """ if Volume is NULL: raise ValueError('cannot load _RslVolume with NULL') self._Volume = Volume self._dealloc = 0 def total_rays(self): """ total_rays() Return the total number of rays present in all sweeps of the volume. """ return np.sum(self.get_nray_array()) def get_nray_array(self): """ get_nray_array() Return an array of the number of rays for each sweep. """ cdef _rsl_h.Sweep * sweep nrays = np.empty((self.nsweeps), dtype='int32') for i in range(self.nsweeps): sweep = self._Volume.sweep[i] assert sweep is not NULL nrays[i] = sweep.h.nrays return nrays def get_sweep(self, int sweep_number): """ get_sweep(sweep_numer) Return a _RslSweep for a given sweep number. Parameters ---------- sweep_number : int Sweep number to retrieve Returns ------- sweep : _RslSweep _RslSweep object containing the requested sweep. """ if sweep_number < 0 or sweep_number >= self._Volume.h.nsweeps: raise ValueError('invalid sweep_number') rslsweep = _RslSweep() rslsweep.load(self._Volume.sweep[sweep_number]) return rslsweep def get_azimuth_and_elev_array(self): """ get_azimuth_and_elev_array() Return azimuth and elevation array for each sweep and ray. """ cdef int nrays = self._Volume.sweep[0].h.nrays cdef int ray_count cdef _rsl_h.Sweep * sweep cdef _rsl_h.Ray * ray # create empty azimuth and elev output arrays total_rays = self.total_rays() azimuth = np.empty([total_rays], dtype='float32') elev = np.empty([total_rays], dtype='float32') # loop over the sweeps and rays storing azimuth and elev ray_count = 0 for i in range(self.nsweeps): sweep = self._Volume.sweep[i] assert sweep is not NULL nrays = sweep.h.nrays for j in range(nrays): ray = sweep.ray[j] assert ray is not NULL azimuth[ray_count + j] = ray.h.azimuth elev[ray_count + j] = ray.h.elev ray_count += nrays return azimuth, elev def get_sweep_fix_angles(self): """ get_sweep_fix_angles() Return array of fix angle for each sweep. Angles determined from the first ray in each sweep. """ cdef _r
Cython
sl_h.Sweep * sweep cdef _rsl_h.Ray * ray fix_angles = np.empty((self.nsweeps), dtype='float32') for i in range(self.nsweeps): sweep = self._Volume.sweep[i] assert sweep is not NULL ray = sweep.ray[0] assert ray is not NULL fix_angles[i] = ray.h.fix_angle return fix_angles def get_sweep_azimuths(self): """ get_sweep_azimuths() Return azimuth array for each sweep. """ cdef _rsl_h.Sweep * sweep azimuth = np.empty((self.nsweeps), dtype='float32') for i in range(self.nsweeps): sweep = self._Volume.sweep[i] assert sweep is not NULL azimuth[i] = sweep.h.azimuth return azimuth def get_sweep_elevs(self): """ get_sweep_elevs() Return elevation array for each sweep. """ cdef _rsl_h.Sweep * sweep elev = np.empty((self.nsweeps), dtype='float32') for i in range(self.nsweeps): sweep = self._Volume.sweep[i] assert sweep is not NULL elev[i] = sweep.h.elev return elev def get_instr_params(self): """ get_instr_params() Return instrumental parameter for the volume. Returns ------- pm_data : array, (nsweeps) Array of prt modes. nv_data : array, (total_rays) Array of nyquist velocities. pr_data : array, (total_rays) Array of pulse repetition frequency in Hz. ur_data : array, (total_rays) Array of unambiguous ranges, in km. """ cdef int nrays = self._Volume.sweep[0].h.nrays cdef int ray_count cdef _rsl_h.Sweep * sweep cdef _rsl_h.Ray * ray # calculate the total number of rays in the volume # initalize empty instrument parameter arrays total_rays = self.total_rays() nyq_vel = self._Volume.sweep[0].ray[0].h.nyq_vel valid_nyq_vel = abs(nyq_vel) > 0.1 pm_data = np.empty(self.nsweeps, dtype='|S24') nv_data = np.empty((total_rays), dtype='float32') pr_data = np.empty((total_rays), dtype='float32') ur_data = np.empty((total_rays), dtype='float32') # loop over sweeps and rays storing instrument parameters ray_count = 0 for i in range(self.nsweeps): sweep = self._Volume.sweep[i] assert sweep is not NULL nrays = sweep.h.nrays for j in range(nrays): ray = sweep.ray[j] assert ray is not NULL if j == 0: pm_data[i] = self._prtmode(ray.h) if valid_nyq_vel: nv_data[ray_count + j] = ray.h.nyq_vel else: nv_data[ray_count + j] = (ray.h.wavelength * ray.h.prf / 4.0) if ray.h.prf == 0: pr_data[ray_count + j] = -999. else: pr_data[ray_count + j] = 1. / ray.h.prf ur_data[ray_count + j] = ray.h.unam_rng * 1000.0 ray_count += nrays return pm_data, nv_data, pr_data, ur_data def get_data(self): """ get_data() Return the two-dimensional data contained in the volume. If a given ray has few bins than the first ray, the missing bins will be filled with 131072.0 """ cdef _rsl_h.Range raw cdef _rsl_h.Sweep * sweep cdef _rsl_h.Ray * ray cdef int ray_count, nsweeps, nrays, nbins, nray, nsweep, nbin cdef np.ndarray[np.float32_t, ndim = 2] data vol = self._Volume nbins = vol.sweep[0].ray[0].h.nbins total_rays = self.total_rays() shape = (total_rays, nbins) data = np.zeros(shape, dtype='float32') + 1.31072000e+05 ray_count = 0 nsweeps = vol.h.nsweeps for nsweep in range(nsweeps): sweep = vol.sweep[nsweep] assert sweep is not NULL nrays = sweep.h.nrays for nray in range(nrays): ray = sweep.ray[nray] assert ray is not NULL nbins = ray.h.nbins for nbin in range(nbins): raw = ray.range[nbin] data[ray_count + nray, nbin] = ray.h.f(raw) ray_count += nrays return data def is_range_bins_uniform(self): """ is_range_bins_uniform() Return True is the locations of the range bin are identical for all rays, False if locations change in one or more rays. """ cdef int nrays = self._Volume.sweep[0].h.nrays cdef _rsl_h.Sweep * sweep cdef _rsl_h.Ray * ray # loop over the sweeps and rays checking that the gate_size and # range_bin1 are the same as the that in the first ray sweep = self._Volume.sweep[0] assert sweep is not NULL ray = sweep.ray[0] assert ray is not NULL ref_gate_size = ray.h.gate_size ref_range_bin1 = ray.h.range_bin1 for i in range(self.nsweeps): sweep = self._Volume.sweep[i] assert sweep is not NULL nrays = sweep.h.nrays for j in range(nrays): ray = sweep.ray[j] assert ray is not NULL if ray.h.gate_size!= ref_gate_size: return False if ray.h.range_bin1!= ref_range_bin1: return False return True cdef _prtmode(self, _rsl_h.Ray_header h): """ Return the prt mode of a given Ray header. """ # TODO need to add additional logic here if h.prf2!= h.prf: mode = 'dual ' else: mode = 'fixed ' return mode # header properties mapped to class attributes. property nsweeps: def __get__(self): return self._Volume.h.nsweeps def __set__(self, int nsweeps): self._Volume.h.nsweeps = nsweeps property calibr_const: def __get__(self): return self._Volume.h.calibr_const def __set__(self, float calibr_const): self._Volume.h.calibr_const = calibr_const cdef class RslFile: """ RslFile(filename) A object for accessing Radar data and parameter using the RSL library. Parameters ---------- filename : str Radar file to read. Attributes ---------- month : int Date, month (1-12). day : int Date, day (1-31). year : int Date, year (eg. 1993). hour : int Time, hour (0-23). minute : int Time, minute (0-59). sec : float Time, second + fractions of second. nvolumes : int Number of volume slots in the file. number : int Arbitrary number for this radar site. latd, latm, lats : int Latitude degrees, minutes and seconds for the site. lond, lonm, lons : int Longitude degrees, minutes and seconds for the site. height : int Height of site in meters above sea level. spulse : int Length of short pulse in ns. lpulse : int Length of long pulse in ns. scan_mode : int Scan mode, 0 for PPI, 1 for RHI. vcp : int Volume coverage pattern, WSR-88D only. """ cdef _rsl_h.Radar * _Radar cdef _rsl_h.Volume * _Volume cdef _rsl_h.Sweep * _Sweep cdef _rsl_h.Ray * _Ray def __cinit__(self, filename, radar_format=None, callid=None): """ Initalize the _RslFile object. """ if radar_format == 'wsr88d': if callid is None: raise ValueError('callid must be provided.') self._Radar = _rsl_h.RSL_wsr88d_to_radar(filename, callid) elif radar_format is None:
Cython
self._Radar = _rsl_h.RSL_anyformat_to_radar(filename) else: raise ValueError('invalid radar_format:', radar_format) if self._Radar is NULL: raise IOError('file cannot be read.') def __dealloc__(self): """ Free memory used by object. """ _rsl_h.RSL_free_radar(self._Radar) def get_volume(self, int volume_number): """ get_volume(volume_number) Return a _RslVolume for a given volume number. Parameters ---------- volume_number : int Volume number to retrieve Returns ------- volume : _RslVolume _RslVolume object containing requested volume. """ if volume_number < 0 or volume_number >= self._Radar.h.nvolumes: raise ValueError('invalid volume_number') rslvolume = _RslVolume() rslvolume.load(self._Radar.v[volume_number]) return rslvolume def available_moments(self): """ available_moments() Return a list of available volume moments. """ av = [] for i in range(self._Radar.h.nvolumes): if self._Radar.v[i] is not NULL: av.append(i) return av def get_radar_header(self): """ get_radar_headers() Return a dictionary of radar header parameters. """ return self._Radar.h def get_volume_array(self, int volume_num): """ get_volume_array(volume_number) Return the three-dimensional data contained in a given volume. Parameters ---------- volume_number : int Returns ------- volume : array (nsweep, nrays, nbins), float32 Array containing data for the given volume. """ return self.get_volume(volume_num).get_data() # header properties mapped to class attributes. property month: def __get__(self): return self._Radar.h.month def __set__(self, int month): self._Radar.h.month = month property day: def __get__(self): return self._Radar.h.day def __set__(self, int day): self._Radar.h.day = day property year: def __get__(self): return self._Radar.h.year def __set__(self, int year): self._Radar.h.year = year property hour: def __get__(self): return self._Radar.h.hour def __set__(self, int hour): self._Radar.h.hour = hour property minute: def __get__(self): return self._Radar.h.minute def __set__(self, int minute): self._Radar.h.minute = minute property sec: def __get__(self): return self._Radar.h.sec def __set__(self, float sec): self._Radar.h.sec = sec property nvolumes: def __get__(self): return self._Radar.h.nvolumes def __set__(self, int nvolumes): self._Radar.h.nvolumes = nvolumes property number: def __get__(self): return self._Radar.h.number def __set__(self, int number): self._Radar.h.number = number property latd: def __get__(self): return self._Radar.h.latd def __set__(self, int latd): self._Radar.h.latd = latd property latm: def __get__(self): return self._Radar.h.latm def __set__(self, int latm): self._Radar.h.latm = latm property lats: def __get__(self): return self._Radar.h.lats def __set__(self, int lats): self._Radar.h.lats = lats property lond: def __get__(self): return self._Radar.h.lond def __set__(self, int lond): self._Radar.h.lond = lond property lonm: def __get__(self): return self._Radar.h.lonm def __set__(self, int lonm): self._Radar.h.lonm = lonm property lons: def __get__(self): return self._Radar.h.lons def __set__(self, int lons): self._Radar.h.lons = lons property height: def __get__(self): return self._Radar.h.height def __set__(self, int height): self._Radar.h.height = height property spulse: def __get__(self): return self._Radar.h.spulse def __set__(self, int spulse): self._Radar.h.spulse = spulse property lpulse: def __get__(self): return self._Radar.h.lpulse def __set__(self, int lpulse): self._Radar.h.lpulse = lpulse property scan_mode: def __get__(self): return self._Radar.h.scan_mode def __set__(self, int scan_mode): self._Radar.h.scan_mode = scan_mode property vcp: def __get__(self): return self._Radar.h.vcp def __set__(self, int vcp): self._Radar.h.vcp = vcp <|end_of_text|># -*- coding: utf-8 -*- import numpy as np cimport numpy as np import scipy.sparse as ss from libc.stdlib cimport malloc, free from libcpp.pair cimport pair from libcpp.vector cimport vector cdef extern from "wrapper/xgboost_wrapper.h": ctypedef unsigned long bst_ulong void *XGDMatrixCreateFromMat( const float *data, bst_ulong nrow, bst_ulong ncol, float missing) void *XGDMatrixCreateFromCSR( const bst_ulong *indptr, const unsigned *indices, const float *data, bst_ulong nindptr, bst_ulong nelem) void XGDMatrixSetFloatInfo( void *handle, const char *field, const float *array, bst_ulong length) void XGDMatrixFree(void *handle) void XGBoosterSetParam(void *handle, const char *k, const char *v) void *XGBoosterCreate(void *dmats[], bst_ulong length) void XGBoosterFree(void *handle) void XGBoosterUpdateOneIter(void *handle, int it, void *dtrain) const char *XGBoosterEvalOneIter( void *handle, int iteration, void *dmats[], const char *evnames[], bst_ulong length) const float *XGBoosterPredict( void *handle, void *dmat, int option_mask, unsigned ntree_limit, bst_ulong *length) cdef class XGBoost: cdef void *booster cdef object params cdef void *dmats[2] # 0: train, 1: test cdef object num_round cdef object y_test def __cinit__(self, **cons_params): self.params = cons_params self.num_round = cons_params.get('num_round', 10) self.y_test = None def __del__(self): XGBoosterFree(self.booster) XGDMatrixFree(self.dmats[0]) XGDMatrixFree(self.dmats[1]) def load_nd(self, X, y, idx, missing=0.0): cdef np.ndarray[float, ndim=1, mode='c'] data = np.array( X.reshape(X.size), dtype='float32') cdef void *dmat = XGDMatrixCreateFromMat( &data[0], X.shape[0], X.shape[1], missing) cdef np.ndarray[float, ndim=1, mode='c'] labels = np.array( y.reshape(y.size), dtype='float32') XGDMatrixSetFloatInfo(dmat, "label", &labels[0], y.size) self.dmats[idx] = dmat def load_ss(self, X, y, idx): assert len(X.indices) == len(X.data) nindptr = len(X.indptr) nelem = len(X.data) cdef bst_ulong *col_ptr = <bst_ulong*>malloc(len(X.indptr) * sizeof(bst_ulong)) for i in range(len(X.indptr)): col_ptr[i] = X.indptr[i] cdef np.ndarray[unsigned, ndim=1, mode='c'] indices = np.array( X.indices, dtype='uint32') cdef np.ndarray[float, ndim=1, mode='c'] data = np.array( X.data, dtype='float32') cdef void *dmat = XGDMatrixCreateFromCSR( col_ptr, &indices[0], &data[0], nindptr, nelem) cdef np.ndarray[float, ndim=1, mode='c'] labels
Cython
= np.array(y, dtype='float32') XGDMatrixSetFloatInfo(dmat, "label", &labels[0], y.size) self.dmats[idx] = dmat def set_test_label(self, y): self.y_test = y def set_param(self, k_str, v_str): k_byte_string = k_str.encode('utf-8') v_byte_string = v_str.encode('utf-8') cdef const char* param_k = k_byte_string cdef const char* param_v = v_byte_string XGBoosterSetParam(self.booster, param_k, param_v) def set_params(self): if isinstance(self.params, dict): for k, v in self.params.items(): self.set_param(str(k), str(v)) def setup_cache(self, X_tr, y_tr, X_ts): if isinstance(X_tr, np.ndarray): self.load_nd(X_tr, y_tr, 0) elif isinstance(X_tr, ss.csr_matrix): self.load_ss(X_tr, y_tr, 0) else: raise NotImplementedError("Unsupported data type") y_ts = np.zeros(X_ts.shape[0]) if self.y_test is not None: y_ts = self.y_test if isinstance(X_ts, np.ndarray): self.load_nd(X_ts, y_ts, 1) elif isinstance(X_ts, ss.csr_matrix): self.load_ss(X_ts, y_ts, 1) else: raise NotImplementedError("Unsupported data type") self.booster = XGBoosterCreate(self.dmats, 2) self.set_param('seed', '0') self.set_params() def eval_set(self, it): k_byte_string = "train".encode('utf-8') v_byte_string = "test".encode('utf-8') cdef const char* param_k = k_byte_string cdef const char* param_v = v_byte_string cdef const char* setnames[2] setnames[0] = param_k setnames[1] = param_v length = 2 if self.y_test is None: length = 1 s = XGBoosterEvalOneIter( self.booster, it, self.dmats, setnames, length) print(s.decode('utf-8','strict')) def fit_predict(self, X_tr, y_tr, X_ts): self.setup_cache(X_tr, y_tr, X_ts) for i in range(self.num_round): XGBoosterUpdateOneIter(self.booster, i, self.dmats[0]) if int(self.params.get('silent', 1)) < 2: self.eval_set(i) # Options ntree_limit = 0 option_mask = 0x00 cdef const float* preds_raw; cdef bst_ulong length; preds_raw = XGBoosterPredict( self.booster, self.dmats[1], option_mask, ntree_limit, &length) preds = np.array([preds_raw[i] for i in range(length)]) num_class = self.params.get('num_class', 1) n_samples = length / num_class return preds.reshape((n_samples, num_class)) <|end_of_text|>cdef extern int performWTP(unsigned char *inputFilename, unsigned char *outputFilename, int image_width, int image_height, int to_extend_image, int extend_by_pixels, int use_FFT, int wavelet_type, int ridge_alg, double starting_scale, double scale_step, double ending_scale, double Morlet_sigma) def perform_WTP(unsigned char *inputFilename, unsigned char *outputFilename, int image_width, int image_height, int to_extend_image, int extend_by_pixels, int use_FFT, int wavelet_type, int ridge_alg, double starting_scale, double scale_step, double ending_scale, double Morlet_sigma): performWTP(inputFilename, outputFilename, image_width, image_height, to_extend_image, extend_by_pixels, use_FFT, wavelet_type, ridge_alg, starting_scale, scale_step, ending_scale, Morlet_sigma) <|end_of_text|>from cec2006 import CFunction import numpy as np import scipy.stats as ss import random import operator from libc.math cimport sin, cos, pi, e, exp, sqrt, log, tan from libc.stdlib cimport rand, RAND_MAX, srand from libc.time cimport time cimport cython ##generate a random number by normal distribution cdef double rand_normal(double mu, double sigma): cdef: double z, uniform uniform = random.random() z = sqrt(- 2.0 * log(uniform)) * sin(2.0 * pi * uniform) z = mu + sigma * z return z ##generate a random number by cauchy distribution cdef double rand_cauchy(double mu, double gamma): cdef: double z, uniform uniform = random.random() z = mu + gamma * tan(pi * (uniform - 0.5)) return z cdef class EECO: params = {'H': 5, #historical memory size 'num_stg': 4 #number of strategies } cdef public: list lb, ub #lower, upper bounds o M, M1, M2 tuple mat def __init__(self, benchID, D): self.lb = CFunction().get_LB(benchID, D) self.ub = CFunction().get_UB(benchID, D) mat = CFunction().load_mat(benchID, D) self.o, self.M, self.M1, self.M2 = (mat[_] for _ in range(4)) ##Initialize population P cdef void init_P(self, double[:, ::1] P_X, int NP, int benchID, int D): for i in range(NP): CFunction().evaluate(benchID, D, P_X[i, :], self.o, self.M, self.M1, self.M2) ##Initialize population Q cdef list init_Q(self, double[:, ::1] P_X, double[:, ::1] Q_X, int NP, int Lambda, int benchID, int D): cdef: list sel_idx sel_idx = random.sample(range(NP), Lambda) for i in range(len(sel_idx)): Q_X[i, :] = P_X[sel_idx[i], :] return sel_idx ##Initiallize memory for f and cr cdef tuple initMemory(self): cdef: int H, n, j, num_stg list M_CR, M_F, Temp_1, Temp_2 H = self.params['H'] num_stg = self.params['num_stg'] M_CR = [] M_F = [] for i in range(num_stg): Temp_1, Temp_2 = [], [] for j in range(H): Temp_1.append(0.5) M_CR.append(Temp_1) for j in range(H): Temp_2.append(0.5) M_F.append(Temp_2) return M_CR, M_F ##strategy decision cdef int chooseStrategy(self, list ql, list Num_Success_n): cdef: int n_sum, k, l, Strategy double wheel n_sum = 0 Strategy = 0 for k in range(4): n_sum += Num_Success_n[k] + 2 if n_sum!= 0: for k in range(4): ql[k] = <double>(Num_Success_n[k] + 2) / n_sum for k in range(4): if ql[k] < 0.05: for l in range(4): ql[l] = 0.25 Num_Success_n[l] = 0 break wheel = random.random() if wheel <= ql[0]: Strategy = 0 elif wheel <= sum(ql[:2]) and wheel > ql[0]: Strategy = 1 elif wheel <= sum(ql[:3]) and wheel > sum(ql[:2]): Strategy = 2 elif wheel <= sum(ql[:4]) and wheel > sum(ql[:3]): Strategy = 3 return Strategy ##generate F and CR in DE cdef tuple generate_F_CR(self, int Stg, list Memory_CR, list Memory_F, list Success_CR, list CR, list F): cdef: int H, i, j, ri, num_stg double cr, f list muCR, muF H = self.params['H'] num_stg = self.params['num_stg'] ri = random.randint(0, H - 1) muCR = [] for i in range(num_stg): muCR.append(0.5) muF = []
Cython
for i in range(num_stg): muF.append(0.5) if Success_CR[Stg]!= []: if muCR[Stg] == -1.0 or max(Success_CR[Stg]) == 0.0: muCR[Stg] == 0.0 else: muCR[Stg] = Memory_CR[Stg][ri] else: muCR[Stg] = Memory_CR[Stg][ri] muF[Stg] = Memory_F[Stg][ri] cr = rand_normal(muCR[Stg], 0.1) f = rand_cauchy(muF[Stg], 0.1) if cr < 0.0: cr = 0.0 elif cr > 1.0: cr = 1.0 while f <= 0.0: f = rand_cauchy(muF[Stg], 0.1) if f > 1.0: f = 1.0 CR.append(cr) F.append(f) return cr, f ##current-to-Qbest/1 cdef void mutation_1(self, double[:, ::1] QParent, double[:, ::1] QChild, list A, int Lambda, int D, double f, int idx, int bestEqIndex, double grate): cdef: int x_r1, x_r2 x_r1 = random.randint(0, Lambda - 1) x_r2 = random.randint(0, Lambda + <int>len(A) - 1) while x_r1 == idx: x_r1 = random.randint(0, Lambda - 1) while x_r2 ==x_r1 or x_r2 == idx: x_r2 = random.randint(0, Lambda + <int>len(A) - 1) for j in range(D): if x_r2 < Lambda: QChild[idx, j] = QParent[idx, j] + f * (QParent[bestEqIndex, j] - QParent[idx, j]) + f * (QParent[x_r1, j] - QParent[x_r2, j]) else: QChild[idx, j] = QParent[idx, j] + f * (QParent[bestEqIndex, j] - QParent[idx, j]) + f * (QParent[x_r1, j] - A[x_r2 - Lambda][j]) if QChild[idx, j] < self.lb[j]: QChild[idx, j] = min(self.ub[j], 2 * self.lb[j] - QChild[idx, j]) elif QChild[idx, j] > self.ub[j]: QChild[idx, j] = max(self.lb[j], 2 * self.ub[j] - QChild[idx, j]) ##randr1/1 cdef void mutation_2(self, double[:, ::1] QParent, double[:, ::1] QChild, int Lambda, int D, double f, int idx): cdef: int x_1, x_2, x_3 x_1 = random.randint(0, Lambda - 1) x_2 = random.randint(0, Lambda - 1) x_3 = random.randint(0, Lambda - 1) while x_1 == x_2: x_2 = random.randint(0, Lambda - 1) while x_1 == x_3 or x_2 == x_3: x_3 = random.randint(0, Lambda - 1) for j in range(D): QChild[idx, j] = QParent[x_1, j] + f * (QParent[x_2, j] - QParent[x_3, j]) if QChild[idx, j] < self.lb[j]: QChild[idx, j] = min(self.ub[j], 2 * self.lb[j] - QChild[idx, j]) elif QChild[idx, j] > self.ub[j]: QChild[idx, j] = max(self.lb[j], 2 * self.ub[j] - QChild[idx, j]) ##binomial crossover cdef void crossover_1(self, double[:, ::1] QParent, double[:, ::1] QChild, int D, double cr, int idx): cdef: int jRand, j jRand = random.randint (0, D - 1) for j in range(D): if jRand!= j and random.random() <= cr: QChild[idx, j] = QParent[idx, j] ##exponential crossover cdef void crossover_2(self, double[:, ::1] QParent, double[:, ::1] QChild, int D, double cr, int idx): cdef: int n, L n = random.randint (0, D - 1) L = 0 while random.random() <= cr and L < D: QChild[idx, (n + L) % D] = QParent[idx, (n + L) % D] L += 1 ##DE cdef tuple DE(self, double[:, ::1] QParent, double[:, ::1] QChild, list A, int Lambda, int D, int Stg, int idx, int bestEqIndex, double f, double cr, double grate): if Stg == 0: self.mutation_1(QParent, QChild, A, Lambda, D, f, idx, bestEqIndex, grate) self.crossover_1(QParent, QChild, D, cr, idx) elif Stg == 1: self.mutation_1(QParent, QChild, A, Lambda, D, f, idx, bestEqIndex, grate) self.crossover_2(QParent, QChild, D, cr, idx) elif Stg == 2: self.mutation_2(QParent, QChild, Lambda, D, f, idx) self.crossover_1(QParent, QChild, D, cr, idx) elif Stg == 3: self.mutation_2(QParent, QChild, Lambda, D, f, idx) self.crossover_2(QParent, QChild, D, cr, idx) ##equivalent function - feasible rule cdef void Equ_FR(self, double[:, ::1] Q, int Lambda, int D): cdef: int jugg, len_Q double Fea_min, IF_min jugg = 1 Fea_max = -RAND_MAX len_Q = Q.shape[0] for i in range(len_Q): if Q[i, D + 1] > 0.0: jugg = -1 break if jugg == -1: for i in range(len_Q): if Q[i, D + 1] == 0.0: jugg = 0 break if jugg == 1: for i in range(len_Q): Q[i, D + 2] = Q[i, D] elif jugg == -1: for i in range(len_Q): Q[i, D + 2] = Q[i, D + 1] else: for i in range(len_Q): if Q[i, D + 1] == 0.0: if Fea_max > Q[i, D]: Fea_max = Q[i, D] for i in range(len_Q): if Q[i, D + 1] > 0.0: Q[i, D + 2] = Fea_max + Q[i, D + 1] else: Q[i, D + 2] = Q[i, D] ##new equivalent function cdef void Equ_New(self, double[:, ::1] Q, int Lambda, int D): len_Q = Q.shape[0] bestIndex = self.find_FR_Best(Q, len_Q, D) for i in range(len_Q): Q[i, D + 2] = abs(Q[i, D] - Q[bestIndex, D]) ##calculate fi(x) = w1 * e(x) + w2 * v(x) + w3 * f(x) cdef void Hl_Eq(self, double[:, ::1] Q, int Lambda, int D, int idx, double para, double gamma): cdef: double f_max, f_min, v_max, v_min, eq_max, eq_min, w_t, n, w_i, w1, w2, w3 int len_Q ##normalization f_max = self.np_max(Q, D) f_min = self.np_min(Q, D) v_max = self.np_max(Q, D + 1) v_min = self.np_min(Q, D + 1) # self.EquFR(Q, Lambda, D) self.Equ_New(Q, Lambda, D) eq_max = self.np_max(Q, D + 2) eq_min = self.np_min(Q, D + 2) w_t = para w_i = (<double>idx + 1)/ Lambda w1 = w
Cython
_t * w_i w2 = w_t * w_i + gamma w3 = (1.0 - w_t) * (1.0 - w_i) len_Q = Q.shape[0] for _ in range(len_Q): Q[_, D + 3] = w1 * (Q[_, D + 2] - eq_min) / (eq_max - eq_min + 10.0**-100) Q[_, D + 3] += w2 * (Q[_, D + 1] - v_min) / (v_max - v_min + 10.0**-100) Q[_, D + 3] += w3 * (Q[_, D] - f_min) / (f_max - f_min + 10.0**-100) ##minimum value of e, v or f with axis_n cdef double np_min(self, double[:, ::1] P, int axis_n): cdef: double min_value Py_ssize_t bound min_value = P[0, axis_n] bound = P.shape[0] for i in range(bound): if min_value > P[i, axis_n]: min_value = P[i, axis_n] return min_value ##maximum value of e, v or f with axis_n cdef double np_max(self, double[:, ::1] P, int axis_n): cdef: double max_value Py_ssize_t bound max_value = P[0, axis_n] bound = P.shape[0] for i in range(bound): if max_value < P[i, axis_n]: max_value = P[i, axis_n] return max_value ##selection/updating subpopulation Q cdef void selection(self, double[:, ::1] QSum, double[:, ::1] QParent, double[:, ::1] QChild, list A, int Lambda, int D, int idx, int stg, list CR, list F, list Success_cr, list Success_F, list fit_improve, list Num_Success_n): if QSum[idx, D + 3] > QSum[Lambda, D + 3]: Success_cr[stg].append(CR[len(CR) - 1]) Success_F[stg].append(F[len(F) - 1]) Num_Success_n[stg] += 1 fit_improve[stg].append(QSum[idx, D + 3] - QSum[Lambda, D + 3]) A.append(QParent[idx, :]) QParent[idx, :] = QChild[idx, :] ##|A| < |A|_max cdef void stableA(self, list A, int ASize): if len(A) > ASize: for i in range(<int>len(A) - ASize): A.remove(A[random.randint(0, <int>len(A) - 1)]) ##Updateing Memory cdef void UpdateMemory(self, list Memory_cr, list Memory_F, list Success_cr, list Success_F, list fit_improve, int H, list pos): cdef: int n, k, num_Scr, num_SF, num_stg double f1, f3, f4, weight_1, weight_2, meanScr, meanSF num_stg = self.params['num_stg'] for k in range(num_stg): if Success_cr[k]!= [] and Success_F[k]!= []: num_Scr = <int>len(Success_cr[k]) num_SF = <int>len(Success_F[k]) meanScr = 0.0 meanSF = 0.0 weight_1 = 0.0 f1 = 0.0 for i in range(num_Scr): weight_1 += abs(fit_improve[k][i]) for i in range(num_Scr): f1 += abs(fit_improve[k][i]) / (weight_1 + 10.0**-100) * (Success_cr[k][i]) meanScr = f1 # Memory_cr[k][pos[k]] = (meanScr + Success_cr[k][num_Scr - 1]) / 2 Memory_cr[k][pos[k]] = meanScr weight_2 = 0.0 f3 = 0.0 f4 = 0.0 for i in range(num_SF): weight_2 += abs(fit_improve[k][i]) for i in range(num_SF): f3 += abs(fit_improve[k][i]) / (weight_2 + 10.0**-100) * np.power(Success_F[k][i], 2) f4 += abs(fit_improve[k][i]) / (weight_2 + 10.0**-100) * Success_F[k][i] meanSF = f3 / (f4 + 10.0**-100) # Memory_F[k][pos[k]] = (meanSF + Success_F[k][num_SF - 1]) / 2 Memory_F[k][pos[k]] = meanSF pos[k] = pos[k] + 1 if pos[k] > H - 1: pos[k] = 0 ##the index of best solution of feasibility rule cdef int find_FR_Best(self, double[:, ::1] P, int NP, int D): cdef: int bestIndex bestIndex = 0 for i in range(NP): if P[bestIndex, D + 1] > P[i, D + 1]: bestIndex = i elif P[bestIndex, D + 1] == P[i, D + 1] and P[bestIndex, D] > P[i, D]: bestIndex = i return bestIndex ##the index of best solution of e, v or f or fi cdef int findBest(self, double[:, ::1] Q, int Lambda, int D, int axis_n): cdef: int bestIndex bestIndex = 0 for i in range(Lambda): if Q[bestIndex, D + axis_n] > Q[i, D + axis_n]: bestIndex = i return bestIndex ##the main process of HECO-DE cdef tuple _optimize(self, int benchID, int D, int Lambda, double gamma): cdef: int NP, NPinit, NPmin, NPlast, H, num_stg, FES, FES_MAX, gen_count, Srun, stg, bestEqIndex, bestIndex, bestFIndex, worstIndex, worstFIndex, Success list sel_idx, A, M_CR, M_F, CR, F, Num_Success_n, pos, ql, S_CR, S_F, fit_improve double para, cr, f double[::1] narr_eq, narr_f, narr_v double[:, ::1] P, QParent, QChild tuple Init_M NPinit = 450 NP = NPinit ##the size of P NPmin = Lambda NPlast = 0 H = self.params['H'] num_stg = self.params['num_stg'] FES = NP gen_count = 1 Srun = 0 ##the FES needed when saftisfy the condition of sucess run Success = 0 FES_MAX = 500000 ##population P, 0~D-1 are the solutions, D~D+7 are solution's value of f, v, e, fi, c1, c2 and c3 respectively narr_P = np.zeros((NP, D + 7), dtype = np.float64) P = narr_P ##initialize solutions for i in range(NP): for j in range(D): P[i, j] = self.lb[j] + random.random() * (self.ub[j] - self.lb[j]) self.init_P(P, NP, benchID, D) narr_QParent = np.zeros((Lambda, D + 7), dtype = np.float64) narr_QChild = np.zeros((Lambda, D + 7), dtype = np.float64) narr_QSum = np.zeros((Lambda + 1, D + 7), dtype = np.float64) QParent = narr_QParent QChild = narr_QChild QSum = narr_QSum ##QSum is Q + i_th child bestEqIndex = 0 A = [] ## archive A Init_M = self.initMemory() M_CR = Init_M[0] M_F = Init_M[1] CR = [] F = [] Num_Success_n = [] pos = [] ql = [] for i in range(num_stg): Num_Success_n.append(0) pos.append(0) ql.append(0.25) while FES < FES_MAX: ASize = round(4.0 * NP) S_CR = [] S_F = [] fit_improve = [] for i in range(num_stg): S
Cython
_CR.append([]) S_F.append([]) fit_improve.append([]) sel_idx = self.init_Q(P, QParent, NP, Lambda, benchID, D) para = <double>FES / FES_MAX ##t/T_MAX for idx in range(Lambda): stg = self.chooseStrategy(ql, Num_Success_n) f_cr = self.generate_F_CR(stg, M_CR, M_F, S_CR, CR, F) cr = f_cr[0] f = f_cr[1] self.Hl_Eq(QParent, Lambda, D, idx, para, gamma) bestEqIndex = self.findBest(QParent, Lambda, D, 3) self.DE(QParent, QChild, A, Lambda, D, stg, idx, bestEqIndex, f, cr, para) CFunction().evaluate(benchID, D, QChild[idx, :], self.o, self.M, self.M1, self.M2) QSum[:Lambda, :] = QParent[:, :] QSum[Lambda, :] = QChild[idx, :] self.Hl_Eq(QSum, Lambda, D, idx, para, gamma) self.selection(QSum, QParent, QChild, A, Lambda, D, idx, stg, CR, F, S_CR, S_F, fit_improve, Num_Success_n) self.stableA(A, ASize) FES += 1 for i in range(len(sel_idx)): P[sel_idx[i], :] = QParent[i, :] self.UpdateMemory(M_CR, M_F, S_CR, S_F, fit_improve, H, pos) gen_count += 1 ##get the FES needed for arriving sucess condition bestIndex = self.find_FR_Best(P, NP, D) if P[bestIndex, D] < 0.0001 and P[bestIndex, D + 1] == 0.0 and Success == 0: Srun = FES Success = 1 ##population size reduction NPlast = narr_P.shape[0] if NP > Lambda: NP = round(<double>(NPmin - NPinit) / (FES_MAX) * FES + NPinit) if NP < NPlast and NP >= Lambda: for i in range(NPlast - NP): r = random.randint(0, narr_P.shape[0] - 1) while r == bestIndex: r = random.randint(0, narr_P.shape[0] - 1) narr_P = np.delete(narr_P, r, 0) P = narr_P S_CR.clear() S_F.clear() fit_improve.clear() return P[bestIndex, D], P[bestIndex, D + 1], <int>P[bestIndex, D + 4], <int>P[bestIndex, D + 5], <int>P[bestIndex, D + 6], Srun def optimize(self, benchID, D, Lambda, gamma): return self._optimize(benchID, D, Lambda, gamma) <|end_of_text|>from libc.stdlib cimport malloc, free from cpython cimport array from pyjkstra cimport dijkstra as c_dijkstra from pyjkstra cimport graph_t, createGraph, freeGraph from pyjkstra cimport printGraph, printNode, addEdge, INT_MAX cdef class c_Graph: '''Cython class that exposes a graph''' cdef graph_t * thisptr def __cinit__(self, int n): ''' Initialises a C pointer to the graph structure.''' self.thisptr = createGraph(n) if self.thisptr is NULL: raise MemoryError def __dealloc__(self): ''' Free the malloced memory. ''' if self.thisptr is not NULL: freeGraph(self.thisptr) def __str__(self): ''' Print a representation of self.''' # Bad hack, it prints but returns an empty string … printGraph(self.thisptr) return "" @property def nb_vertices(self): return self.thisptr.nb_vertices def get(self, int n): printNode(self.thisptr, n) def addEdge(self, int src, int dest, double weight): addEdge(self.thisptr, src, dest, weight) def dijkstra (self, int s): ''' Converts the Python objects to and from C variables and call the algorithm. ''' cdef int l = self.thisptr.nb_vertices # Malloc arrays for return values of the dijkstra algorithm cdef int* prev_arg = <int*>malloc(sizeof(int)*l) cdef double* dist_arg = <double*>malloc(sizeof(double)*l) # Call the algorithm c_dijkstra(self.thisptr, s, prev_arg, dist_arg) prev_out = [] dist_out = [] # Convert back from C-types to python object for i in range(l): if (prev_arg[i] == INT_MAX): val = None else: val = prev_arg[i] prev_out.append(val) if (dist_arg[i] == INT_MAX): val = None else: val = dist_arg[i] dist_out.append(val) # Free C arrays free(dist_arg) free(prev_arg) return (prev_out, dist_out) # This is the pure Python class that implements all "methods" of our graph class Graph: ''' A graph represented as an adjacency list.''' c_graph = None def __init__(self, int n): ''' n is the number of vertices.''' self.c_graph = c_Graph(n) def __del__(self): del self.c_graph def __str__(self): return self.c_graph.__str__() @property def nb_vertices(self): return self.c_graph.nb_vertices def addEdge(self, int src, int dest, double weight): ''' Adds an edge to the graph from `src` to `dest` with weight `weight`.''' self.c_graph.addEdge(src, dest, weight) def get(self, int n): return self.c_graph.get(n) def dijkstra (self, int s): ''' Implement the dijkstra path-finding algorithm. Parameters: G dijkstra.Graph a python representation of a graph s int the starting point of the algorithm Returns: (prev, dist) with prev the antecedent in the path and dist the distance of each node from the start ''' return self.c_graph.dijkstra(s) <|end_of_text|># -*- coding: utf-8 -*- """ `p`-adic distributions spaces This module implements p-adic distributions, a `p`-adic Banach space dual to locally analytic functions on a disc. EXAMPLES:: sage: D = OverconvergentDistributions(5, 7, 15) sage: v = D([7,14,21,28,35]); v (7 + O(7^5), 2*7 + O(7^4), 3*7 + O(7^3), 4*7 + O(7^2), O(7)) REFERENCES: .. [PS] Overconvergent modular symbols and p-adic L-functions Robert Pollack, Glenn Stevens Annales Scientifiques de l'Ecole Normale Superieure, serie 4, 44 fascicule 1 (2011), 1--42. """ #***************************************************************************** # Copyright (C) 2012 Robert Pollack <[email protected]> # # Distributed under the terms of the GNU General Public License (GPL) # as published by the Free Software Foundation; either version 2 of # the License, or (at your option) any later version. # http://www.gnu.org/licenses/ #***************************************************************************** from __future__ import print_function from sage.structure.sage_object import SageObject from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ from sage.rings.power_series_ring import PowerSeriesRing from sage.rings.finite_rings.integer_mod_ring import Zmod from sage.arith.all import binomial, bernoulli from sage.modules.free_module_element import vector, zero_vector from sage.matrix.matrix cimport Matrix from sage.matrix.matrix_space import MatrixSpace from sage.matrix.all import matrix from sage.misc.prandom import random from sage.functions.other import floor from sage.structure.element cimport RingElement, Element import operator from sage.rings.padics.padic_generic import pAdicGeneric from sage.rings.padics.padic_capped_absolute_element cimport pAdicCappedAbsoluteElement from sage.rings.padics.padic_capped_relative_element cimport pAdicCappedRelativeElement from sage.rings.padics.padic_fixed_mod_element cimport pAdicFixedModElement from sage.rings.integer cimport Integer from sage.rings.rational cimport Rational from sage.misc.misc import verbose, cputime from sage.rings.infinity import Infinity include "sage/ext/cdefs.pxi" include "cysignals/signals.pxi" include "sage/ext/stdsage.pxi" from sage.libs.flint.nmod_poly cimport (n
Cython
mod_poly_init2_preinv, nmod_poly_set_coeff_ui, nmod_poly_inv_series, nmod_poly_mullow, nmod_poly_pow_trunc, nmod_poly_get_coeff_ui, nmod_poly_t) #from sage.libs.flint.ulong_extras cimport * from sigma0 import Sigma0 cdef long overflow = 1 << (4 * sizeof(long) - 1) cdef long underflow = -overflow cdef long maxordp = (1L << (sizeof(long) * 8 - 2)) - 1 def get_dist_classes(p, prec_cap, base, symk, implementation): r""" Determine the element and action classes to be used for given inputs. INPUT: - ``p`` -- prime - ``prec_cap`` -- The `p`-adic precision cap - ``base`` -- The base ring - ``symk`` -- An element of Symk - ``implementation`` - string - If not None, override the automatic choice of implementation. May be 'long' or'vector', otherwise raise a ``NotImplementedError`` OUTPUT: - Either a Dist_vector and WeightKAction_vector, or a Dist_vector_long and WeightKAction_vector_long EXAMPLES:: sage: D = OverconvergentDistributions(2, 3, 5); D # indirect doctest Space of 3-adic distributions with k=2 action and precision cap 5 """ if implementation is not None: if implementation == 'long': raise NotImplementedError('The optimized implementation -using longs- has been disabled and may return wrong results.') #if base.is_field(): # raise NotImplementedError('The implementation "long" does' # 'not support fields as base rings') #if (isinstance(base, pAdicGeneric) and base.degree() > 1): # raise NotImplementedError('The implementation "long" does not ' # 'support extensions of p-adics') #if p is None: # raise NotImplementedError('The implementation "long" supports' # 'only p-adic rings') #return Dist_long, WeightKAction_long elif implementation =='vector': return Dist_vector, WeightKAction_vector else: raise NotImplementedError('The implementation "%s" does not exist yet' % (implementation)) return Dist_vector, WeightKAction_vector # We return always the "slow" (but safe) implementation. # if symk or p is None or base.is_field() or (isinstance(base, pAdicGeneric) and base.degree() > 1): # return Dist_vector, WeightKAction_vector # if 7 * p ** (prec_cap) < ZZ(2) ** (4 * sizeof(long) - 1): # return Dist_long, WeightKAction_long # else: # return Dist_vector, WeightKAction_vector cdef class Dist(ModuleElement): r""" The main `p`-adic distribution class, implemented as per the paper [PS]__. """ def moment(self, n): r""" Return the `n`-th moment. INPUT: - ``n`` -- an integer or slice, to be passed on to moments. OUTPUT: - the `n`-th moment, or a list of moments in the case that `n` is a slice. EXAMPLES:: sage: D = OverconvergentDistributions(4, 7, 10) sage: v = D([7,14,21,28,35]); sage: v.moment(3) 4*7 + O(7^2) sage: v.moment(0) 7 + O(7^5) """ return self.parent().prime() ** (self.ordp) * self._unscaled_moment(n) def moments(self): r""" Return the vector of moments. OUTPUT: - the vector of moments EXAMPLES:: sage: D = OverconvergentDistributions(4, 5, 10, base = Qp(5)); sage: v = D([1,7,4,2,-1]) sage: v = 1/5^3 * v sage: v 5^-3 * (1 + O(5^5), 2 + 5 + O(5^4), 4 + O(5^3), 2 + O(5^2), 4 + O(5)) sage: v.moments() (5^-3 + O(5^2), 2*5^-3 + 5^-2 + O(5), 4*5^-3 + O(5^0), 2*5^-3 + O(5^-1), 4*5^-3 + O(5^-2)) """ return self.parent().prime() ** (self.ordp) * self._moments cpdef normalize(self): r""" Normalize so that the precision of the `i`-th moment is `n-i`, where `n` is the number of moments. OUTPUT: - Normalized entries of the distribution EXAMPLES:: sage: D = OverconvergentDistributions(5, 7, 15); D Space of 7-adic distributions with k=5 action and precision cap 15 sage: v = D([1,2,3,4,5]); v (1 + O(7^5), 2 + O(7^4), 3 + O(7^3), 4 + O(7^2), 5 + O(7)) sage: v.normalize() (1 + O(7^5), 2 + O(7^4), 3 + O(7^3), 4 + O(7^2), 5 + O(7)) """ raise NotImplementedError cdef long _relprec(self): raise NotImplementedError cdef _unscaled_moment(self, long i): raise NotImplementedError cpdef long _ord_p(self): r""" Return power of `p` by which the moments are shifted. .. NOTE: This is not necessarily the same as the valuation, since the moments could all be divisible by `p`. EXAMPLES:: sage: D = OverconvergentDistributions(5, 7, 15) sage: v = D([7,14,21,28,35]); v (7 + O(7^5), 2*7 + O(7^4), 3*7 + O(7^3), 4*7 + O(7^2), O(7)) sage: v._ord_p() 0 """ return self.ordp def scale(self, left): r""" Scale the moments of the distribution by ``left`` INPUT: - ``left`` -- scalar OUTPUT: - Scales the moments by ``left`` EXAMPLES:: sage: D = OverconvergentDistributions(5, 7, 15) sage: v = D([1,2,3,4,5]); v (1 + O(7^5), 2 + O(7^4), 3 + O(7^3), 4 + O(7^2), 5 + O(7)) sage: v.scale(2) (2 + O(7^5), 4 + O(7^4), 6 + O(7^3), 1 + 7 + O(7^2), 3 + O(7)) """ # if isinstance(self, Dist_long) and isinstance(left, (Integer, pAdicCappedRelativeElement, pAdicCappedAbsoluteElement, pAdicFixedModElement)): # return self._lmul_(left) R = left.parent() base = self.parent().base_ring() if base is R: return self._lmul_(left) elif base.has_coerce_map_from(R): return self._lmul_(base(left)) else: from sage.categories.pushout import pushout new_base = pushout(base, R) V = self.parent().change_ring(new_base) scalar = new_base(left) return V([scalar * new_base(self.moment(i)) for i in range(self.precision_absolute())]) def is_zero(self, p=None, M=None): r""" Return True if the `i`-th moment is zero for all `i` (case ``M`` is None) or zero modulo `p^{M-i}` for all `i` (when ``M`` is not None). Note that some moments are not known to precision ``M``, in which case they are only checked to be equal to zero modulo the precision to which they are defined. INPUT: - ``p`` -- prime - ``M`` -- precision OUTPUT: - True/False EXAMPLES:: sage: D = OverconvergentDistributions(5, 7, 15) sage: v = D([1,2,3,4,5]); v (1 + O(7^5), 2 + O
Cython
(7^4), 3 + O(7^3), 4 + O(7^2), 5 + O(7)) sage: v.is_zero() False sage: v = D(5*[0]) sage: v.is_zero() True :: sage: D = Symk(0) sage: v = D([0]) sage: v.is_zero(5,3) True """ n = self.precision_relative() aprec = self.precision_absolute() if M is None: M = n # elif M > aprec: # DEBUG # return False elif M < aprec: n -= (aprec - M) M -= self.ordp if p is None: p = self.parent().prime() cdef bint usearg = True if n == 0: return True else: try: z = self._unscaled_moment(0).is_zero(M) except TypeError: z = self._unscaled_moment(0).is_zero() use_arg = False if not z: return False for a in xrange(1, n): if usearg: try: z = self._unscaled_moment(a).is_zero(M - a) except TypeError: z = self._unscaled_moment(a).is_zero() use_arg = False else: z = self._unscaled_moment(a).is_zero() if not z: return False return True def find_scalar(self, _other, p, M=None, check=True): r""" Return an ``alpha`` with ``other = self * alpha``, or raises a ``ValueError``. It will also raise a ``ValueError`` if this distribution is zero. INPUT: - ``other`` -- another distribution - ``p`` -- an integral prime (only used if the parent is not a Symk) - ``M`` -- (default: None) an integer, the relative precision to which the scalar must be determined - ``check`` -- (default: True) boolean, whether to validate that ``other`` is actually a multiple of this element. OUTPUT: - A scalar ``alpha`` with ``other = self * alpha``. EXAMPLES:: sage: D = OverconvergentDistributions(5, 7, 15) sage: v = D([1,2,3,4,5]) sage: w = D([3,6,9,12,15]) sage: v.find_scalar(w,p=7) 3 + O(7^5) sage: v.find_scalar(w,p=7,M=4) 3 + O(7^4) sage: u = D([1,4,9,16,25]) sage: v.find_scalar(u,p=7) Traceback (most recent call last): ... ValueError: not a scalar multiple """ cdef Dist other = _other i = 0 n = self.precision_relative() other_pr = other.precision_relative() if n == 0: raise ValueError("self is zero") verbose("n = %s" % n, level = 2) verbose("moment 0", level = 2) a = self._unscaled_moment(i) verbose("a = %s" % a, level = 2) padic = isinstance(a.parent(), pAdicGeneric) if self.parent().is_symk(): while a == 0: if other._unscaled_moment(i)!= 0: raise ValueError("not a scalar multiple") i += 1 verbose("moment %s" % i, level = 2) try: a = self._unscaled_moment(i) except IndexError: raise ValueError("self is zero") alpha = other._unscaled_moment(i) / a if check: i += 1 while i < n: verbose("comparing moment %s" % i, level = 2) if alpha * self._unscaled_moment(i)!= other._unscaled_moment(i): raise ValueError("not a scalar multiple") i += 1 else: p = self.parent().prime() v = a.valuation(p) while v >= n - i: i += 1 verbose("p moment %s" % i, level = 2) try: a = self._unscaled_moment(i) except IndexError: raise ValueError("self is zero") v = a.valuation(p) relprec = n - i - v # verbose("p=%s, n-i=%s\nself.moment=%s, other.moment=%s" % (p, n-i, a, other._unscaled_moment(i)),level=2) ## RP: This code was crashing because other may have too few moments -- so I added this bound with other's relative precision if padic: if i < other_pr: alpha = (other._unscaled_moment(i) / a).add_bigoh(n - i) else: alpha = (0 * a).add_bigoh(other_pr - i) else: if i < other_pr: alpha = (other._unscaled_moment(i) / a) % p ** (n - i) else: alpha = 0 verbose("alpha = %s" % alpha, level = 2) ## RP: This code was crashing because other may have too few moments -- so I added this bound with other's relative precision while i < other_pr - 1: i += 1 verbose("comparing p moment %s" % i, level = 2) a = self._unscaled_moment(i) if check: # verbose("self.moment=%s, other.moment=%s" % (a, other._unscaled_moment(i))) if (padic and other._unscaled_moment(i)!= alpha * a) or \ (not padic and other._unscaled_moment(i) % p ** (n - i)!= alpha * a % p ** (n - i)): raise ValueError("not a scalar multiple") v = a.valuation(p) if n - i - v > relprec: verbose("Reseting alpha: relprec=%s, n-i=%s, v=%s" % (relprec, n - i, v), level = 2) relprec = n - i - v if padic: alpha = (other._unscaled_moment(i) / a).add_bigoh(n - i) else: alpha = (other._unscaled_moment(i) / a) % p ** (n - i) verbose("alpha=%s" % alpha, level = 2) if relprec < M: raise ValueError("result not determined to high enough precision") alpha = alpha * self.parent().prime() ** (other.ordp - self.ordp) verbose("alpha=%s" % alpha, level = 2) try: alpha = self.parent().base_ring()(alpha) if M is not None: alpha = alpha.add_bigoh(M) except (ValueError, AttributeError): pass return alpha def find_scalar_from_zeroth_moment(self, _other, p, M=None, check=True): r""" Return an ``alpha`` with ``other = self * alpha`` using only the zeroth moment, or raises a ``ValueError``. It will also raise a ``ValueError`` if the zeroth moment of the distribution is zero. INPUT: - ``other`` -- another distribution - ``p`` -- an integral prime (only used if the parent is not a Symk) - ``M`` -- (default: None) an integer, the relative precision to which the scalar must be determined - ``check`` -- (default: True) boolean, whether to validate that ``other`` is actually a multiple of this element. OUTPUT: - A scalar ``alpha`` with ``other = self * alpha``. EXAMPLES:: sage: D = OverconvergentDistributions(5, 7, 15) sage: v = D([1,2,3,4,5]) sage: w = D([3,6,9,12,15]) sage: v.find_scalar_from_zeroth_moment(w,p=7) 3 + O(7^5) sage: v.find_scalar_from_zeroth_moment(w,p=7,M=4) 3 + O(7^4) sage: u = D([1,4,9,16,25]) sage: v.find_scalar_from_zeroth_moment(u,p=7) Traceback (most recent call last): ... ValueError: not a scalar multiple """ cdef Dist other = _other n = self.precision_relative() other_pr = other.precision_relative() if n == 0: raise ValueError("zeroth moment is zero") verbose("n = %s" % n, level = 2) a = self.moment(0
Cython
) if a.is_zero(): raise ValueError("zeroth moment is zero") padic = isinstance(a.parent(), pAdicGeneric) alpha = other.moment(0) / a if check: for i in range(1, n): verbose("comparing moment %s" % i, level = 2) if alpha * self.moment(i)!= other.moment(i): raise ValueError("not a scalar multiple") alpha = self.parent().base_ring()(alpha) if M is not None: try: absprec = alpha.precision_absolute() if absprec < M: raise ValueError("result not determined to high " "enough precision") verbose("alpha=%s" % (alpha), level = 2) alpha = alpha.add_bigoh(M) except AttributeError: pass return alpha cpdef int _cmp_(_left, _right) except -2: r""" Comparison. EXAMPLES: Equality of two distributions:: sage: D = OverconvergentDistributions(0, 5, 10) sage: D([1, 2]) == D([1]) True sage: D([1]) == D([1, 2]) True sage: v = D([1+O(5^3),2+O(5^2),3+O(5)]) sage: w = D([1+O(5^2),2+O(5)]) sage: v == w True sage: D = Symk(0,Qp(5,5)) sage: v = 5 * D([4*5^-1+3+O(5^2)]) sage: w = D([4+3*5+O(5^2)]) sage: v == w True """ cdef Dist left = _left cdef Dist right = _right left.normalize() right.normalize() cdef long rprec = min(left._relprec(), right._relprec()) cdef long i, c p = left.parent().prime() if left.ordp > right.ordp: shift = p ** (left.ordp - right.ordp) for i in range(rprec): c = cmp(shift * left._unscaled_moment(i), right._unscaled_moment(i)) if c: return c elif left.ordp < right.ordp: shift = p ** (right.ordp - left.ordp) for i in range(rprec): c = cmp(left._unscaled_moment(i), shift * right._unscaled_moment(i)) if c: return c else: for i in range(rprec): c = cmp(left.moment(i), right.moment(i)) if c: return c return 0 def diagonal_valuation(self, p=None): """ Return the largest `m` so that this distribution lies in `Fil^m`. INPUT: - ``p`` -- (default: None) a positive integral prime OUTPUT: - the largest integer `m` so that `p^m` divides the `0`-th moment, `p^{m-1}` divides the first moment, etc. EXAMPLES:: sage: D = OverconvergentDistributions(8, 7, 15) sage: v = D([7^(5-i) for i in range(1,5)]) sage: v (O(7^4), O(7^3), O(7^2), O(7)) sage: v.diagonal_valuation(7) 4 """ if p is None: p = self.parent()._p n = self.precision_relative() return self.ordp + min([n] + [a + self._unscaled_moment(a).valuation(p) for a in range(n)]) def valuation(self, p=None): """ Return the minimum valuation of any moment. INPUT: - ``p`` -- (default: None) a positive integral prime OUTPUT: - an integer .. WARNING:: Since only finitely many moments are computed, this valuation may be larger than the actual valuation of this distribution. Moreover, this valuation may be smaller than the actual valuation if all entries are zero to the known precision. EXAMPLES:: sage: D = OverconvergentDistributions(8, 7, 15) sage: v = D([7^(5-i) for i in range(1,5)]) sage: v (O(7^4), O(7^3), O(7^2), O(7)) sage: v.valuation(7) 4 """ if p is None: p = self.parent()._p n = self.precision_relative() if self.parent().is_symk(): return self.ordp + min([self._unscaled_moment(a).valuation(p) for a in range(n)]) else: return self.ordp + min([n] + [self._unscaled_moment(a).valuation(p) for a in range(n) if not self._unscaled_moment(a).is_zero()]) def specialize(self, new_base_ring=None): """ Return the image of this overconvergent distribution under the canonical projection from distributions of weight `k` to `Sym^k`. INPUT: - ``new_base_ring`` -- (default: None) a ring giving the desired base ring of the result. OUTPUT: - An element of `Sym^k(K)`, where `K` is the specified base ring. EXAMPLES:: sage: D = OverconvergentDistributions(4, 13) sage: d = D([0,2,4,6,8,10,12]) sage: d.specialize() (O(13^7), 2 + O(13^6), 4 + O(13^5), 6 + O(13^4), 8 + O(13^3)) """ # self.normalize() # This method should not change self k = self.parent()._k if k < 0: raise ValueError("negative weight") if self.precision_absolute() < k + 1: raise ValueError("not enough moments") V = self.parent().specialize(new_base_ring) new_base_ring = V.base_ring() if self.precision_relative() == 0: return V.zero() return V([new_base_ring.coerce(self.moment(j)) for j in range(k + 1)]) def lift(self, p=None, M=None, new_base_ring=None): r""" Lift a distribution or element of `Sym^k` to an overconvergent distribution. INPUT: - ``p`` -- (default: None) a positive integral prime. If None then ``p`` must be available in the parent. - ``M`` -- (default: None) a positive integer giving the desired number of moments. If None, returns a distribution having one more moment than this one. - ``new_base_ring`` -- (default: None) a ring giving the desired base ring of the result. If None, a base ring is chosen automatically. OUTPUT: - An overconvergent distribution with `M` moments whose image under the specialization map is this element. EXAMPLES:: sage: V = Symk(0) sage: x = V(1/4) sage: y = x.lift(17, 5) sage: y (13 + 12*17 + 12*17^2 + 12*17^3 + 12*17^4 + O(17^5), O(17^4), O(17^3), O(17^2), O(17)) sage: y.specialize()._moments == x._moments True """ V = self.parent().lift(p, M, new_base_ring) k = V._k p = V.prime() M = V.precision_cap() R = V.base_ring() moments = [R(self.moment(j)) for j in range(k + 1)] zero = R(0) moments.extend([zero] * (M - k - 1)) mu = V(moments) #val = mu.valuation() #if val < 0: # # This seems unnatural # print("scaling by ", p, "^", -val, " to keep things integral") # mu *= p**(-val) return mu def _is_malformed(self): r""" Check that the precision of ``self`` is sensible. EXAMPLE:: sage: D = sage.modular.pollack_stevens.distributions.Symk(2, base=Qp(5)) sage: v = D([1, 2, 3]) sage: v._is_malformed() False sage: v = D([1 + O(5), 2, 3]) sage: v._is_malformed() True """ n = self.precision_absolute() for i in range
Cython
(n): if self.moment(i).precision_absolute() < n - i: return True return False def act_right(self, gamma): r""" The image of this element under the right action by a `2 \times 2` matrix. INPUT: - ``gamma`` -- the matrix by which to act OUTPUT: - ``self | gamma`` .. NOTE:: You may also just use multiplication ``self * gamma``. EXAMPLES:: sage: D = OverconvergentDistributions(4, 7, 10) sage: v = D([98,49,21,28,35]) sage: M = matrix([[1,0], [7,1]]) sage: v.act_right(M) (2*7^2 + 7^3 + 5*7^4 + O(7^5), 3*7^2 + 6*7^3 + O(7^4), 3*7 + 7^2 + O(7^3), 4*7 + O(7^2), O(7)) """ return self.parent()._act(self, gamma) cdef class Dist_vector(Dist): r""" A distribution is stored as a vector whose `j`-th entry is the `j`-th moment of the distribution. The `j`-th entry is stored modulo `p^{N-j}` where `N` is the total number of moments. (This is the accuracy that is maintained after acting by `\Gamma_0(p)`.) INPUTS: - ``moments`` -- the list of moments. If ``check == False`` it must be a vector in the appropriate approximation module. - ``parent`` -- a :class:`distributions.OverconvergentDistributions_class` or :class:`distributions.Symk_class` instance - ``ordp`` -- an integer. This MUST be zero in the case of Symk of an exact ring. - ``check`` -- (default: True) boolean, whether to validate input EXAMPLES:: sage: D = OverconvergentDistributions(3,5,6) # indirect doctest sage: v = D([1,1,1]) """ def __init__(self, moments, parent, ordp=0, check=True): """ Initialization. TESTS:: sage: Symk(4)(0) (0, 0, 0, 0, 0) """ # if not hasattr(parent,'Element'): # parent, moments = moments, parent Dist.__init__(self, parent) if check: # case 1: input is a distribution already if isinstance(moments, Dist): ordp = moments._ord_p() moments = moments._moments.change_ring(parent.base_ring()) # case 2: input is a vector, or something with a len elif hasattr(moments, '__len__'): M = len(moments) moments = parent.approx_module(M)(moments) # case 3: input is zero elif moments == 0: moments = parent.approx_module(parent.precision_cap())(moments) # case 4: everything else else: moments = parent.approx_module(1)([moments]) # TODO: This is not quite right if the input is an inexact zero. if ordp!= 0 and parent.prime() == 0: raise ValueError("can not specify a valuation shift for an exact ring") self._moments = moments self.ordp = ordp self.normalize() # DEBUG def __reduce__(self): r""" Used for pickling. EXAMPLE:: sage: D = sage.modular.pollack_stevens.distributions.Symk(2) sage: x = D([2,3,4]) sage: x.__reduce__() (<type'sage.modular.pollack_stevens.dist.Dist_vector'>, ((2, 3, 4), Sym^2 Q^2, 0, False)) """ return (self.__class__, (self._moments, self.parent(), self.ordp, False)) cdef Dist_vector _new_c(self): r""" Creates an empty distribution. Note that you MUST fill in the ordp attribute on the resulting distribution. OUTPUT: - A distribution with no moments. The moments are then filled in by the calling function. EXAMPLES:: sage: D = OverconvergentDistributions(3,5,4) # indirect doctest sage: v = D([1,1,1]) """ cdef Dist_vector ans = PY_NEW(Dist_vector) ans._parent = self._parent return ans def _repr_(self): r""" String representation. EXAMPLES:: sage: D = OverconvergentDistributions(5, 7, 15) sage: v = D([1,2,3,4,5]); v (1 + O(7^5), 2 + O(7^4), 3 + O(7^3), 4 + O(7^2), 5 + O(7)) sage: repr(v) '(1 + O(7^5), 2 + O(7^4), 3 + O(7^3), 4 + O(7^2), 5 + O(7))' """ # self.normalize() # Should normalize only when absolutely needed. valstr = "" if self.ordp == 1: valstr = "%s * " % (self.parent().prime()) elif self.ordp!= 0: valstr = "%s^%s * " % (self.parent().prime(), self.ordp) if len(self._moments) == 1: return valstr + repr(self._moments[0]) else: return valstr + repr(self._moments) def _rational_(self): """ Convert to a rational number. EXAMPLES:: sage: D = Symk(0); d = D(4/3); d 4/3 sage: QQ(d) 4/3 We get a TypeError if there is more than 1 moment:: sage: D = Symk(1); d = D([1,2]); d (1, 2) sage: QQ(d) Traceback (most recent call last): ... TypeError: k must be 0 """ if len(self._moments) == 1: return QQ(self.moment(0)) raise TypeError("k must be 0") cdef long _relprec(self): """ Return the number of moments. EXAMPLES:: sage: D = Symk(4) sage: d = D([1,2,3,4,5]); e = D([2,3,4,5,6]) sage: d == e # indirect doctest False """ return len(self._moments) cdef _unscaled_moment(self, long n): r""" Return the `n`-th moment, unscaled by the overall power of `p` stored in ``self.ordp``. EXAMPLES:: sage: D = OverconvergentDistributions(4,3,5) sage: d = D([3,3,3,3,3]) sage: d.moment(2) # indirect doctest 3 + O(3^3) """ return self._moments[n] cdef Dist_vector _addsub(self, Dist_vector right, bint negate): r""" Common code for the sum and the difference of two distributions EXAMPLES:: sage: D = Symk(2) sage: u = D([1,2,3]); v = D([4,5,6]) sage: u + v # indirect doctest (5, 7, 9) sage: u - v # indirect doctest (-3, -3, -3) """ cdef Dist_vector ans = self._new_c() cdef long aprec = min(self.ordp + len(self._moments), right.ordp + len(right._moments)) ans.ordp = min(self.ordp, right.ordp) cdef long rprec = aprec - ans.ordp # In the case of symk, rprec will always be k V = ans.parent().approx_module(rprec) R = V.base_ring() smoments = self._moments rmoments = right._moments # We truncate if the moments are too long; extend by zero if too short if smoments.parent() is not V: vec = smoments.list(copy=False)[:rprec] + ([R(0)] * (rprec - len(smoments)) if rprec > len(smoments) else []) smoments = V(vec) if rmoments.parent() is not V: vec = rmoments.list(copy=False)[:rprec] + ([R(0
Cython
)] * (rprec - len(rmoments)) if rprec > len(rmoments) else []) rmoments = V(vec) # We multiply by the relative power of p if self.ordp > right.ordp: smoments *= self.parent().prime() ** (self.ordp - right.ordp) elif self.ordp < right.ordp: rmoments *= self.parent().prime() ** (right.ordp - self.ordp) if negate: rmoments = -rmoments ans._moments = smoments + rmoments return ans cpdef _add_(self, _right): r""" Sum of two distributions. EXAMPLES:: sage: D = OverconvergentDistributions(5, 7, 15) sage: v = D([1,2,3,4,5]); w = D([3,6,9,12,15]) sage: v+w (4 + O(7^5), 1 + 7 + O(7^4), 5 + 7 + O(7^3), 2 + 2*7 + O(7^2), 6 + O(7)) """ return self._addsub(<Dist_vector>_right, False) cpdef _sub_(self, _right): r""" Difference of two distributions. EXAMPLES:: sage: D = OverconvergentDistributions(5, 7, 15) sage: v = D([1,2,3,4,5]); w = D([1,1,1,8,8]) sage: v-w (O(7^5), 1 + O(7^4), 2 + O(7^3), 3 + 6*7 + O(7^2), 4 + O(7)) """ return self._addsub(<Dist_vector>_right, True) cpdef _lmul_(self, RingElement right): r""" Scalar product of a distribution with a ring element that coerces into the base ring. EXAMPLES:: sage: D = OverconvergentDistributions(5, 7, 15) sage: v = D([1,2,3,4,5]); v (1 + O(7^5), 2 + O(7^4), 3 + O(7^3), 4 + O(7^2), 5 + O(7)) sage: 3*v; 7*v (3 + O(7^5), 6 + O(7^4), 2 + 7 + O(7^3), 5 + 7 + O(7^2), 1 + O(7)) 7 * (1 + O(7^5), 2 + O(7^4), 3 + O(7^3), 4 + O(7^2), 5 + O(7)) sage: v*3; v*7 (3 + O(7^5), 6 + O(7^4), 2 + 7 + O(7^3), 5 + 7 + O(7^2), 1 + O(7)) 7 * (1 + O(7^5), 2 + O(7^4), 3 + O(7^3), 4 + O(7^2), 5 + O(7)) """ cdef Dist_vector ans = self._new_c() p = self.parent().prime() if p == 0: ans._moments = self._moments * right ans.ordp = self.ordp elif right.valuation(p) == Infinity: ans._moments = self.parent().approx_module(0)([]) ans.ordp += self.precision_relative() else: try: v, u = right.val_unit(p) except TypeError: # bug in p-adics: they should accept p here v, u = right.val_unit() ans._moments = self._moments * u ans.ordp = self.ordp + v # if the relative precision of u is less than that of self, ans may not be normalized. return ans def precision_relative(self): r""" Return the relative precision of this distribution. The precision is just the number of moments stored, which is also `k+1` in the case of `Sym^k(R)`. For overconvergent distributions, the precision is the integer `m` so that the sequence of moments is known modulo `Fil^m`. OUTPUT: - An integer giving the number of moments. EXAMPLES:: sage: D = OverconvergentDistributions(2, 11, 15) sage: v = D([1,1,10,9,6,15]) sage: v.precision_relative() 6 sage: v = v.reduce_precision(4); v.precision_relative() 4 sage: D = Symk(10) sage: v = D.random_element() sage: v.precision_relative() 11 """ return Integer(len(self._moments)) def precision_absolute(self): r""" Return the absolute precision of this distribution. The absolute precision is the sum of the relative precision (number of moments) and the valuation. EXAMPLES:: sage: D = OverconvergentDistributions(3, 7, base = Qp(7)) sage: v = D([3,1,10,0]) sage: v.precision_absolute() 4 sage: v *= 7 sage: v.precision_absolute() 5 sage: v = 1/7^10 * v sage: v.precision_absolute() -5 """ return Integer(len(self._moments) + self.ordp) cpdef normalize(self, include_zeroth_moment = True): r""" Normalize by reducing modulo `Fil^N`, where `N` is the number of moments. If the parent is Symk, then normalize has no effect. If the parent is a space of distributions, then normalize reduces the `i`-th moment modulo `p^{N-i}`. OUTPUT: - this distribtion, after normalizing. .. WARNING:: This function modifies the distribution in place as well as returning it. EXAMPLES:: sage: D = OverconvergentDistributions(3,7,10) sage: v = D([1,2,3,4,5]) ; v (1 + O(7^5), 2 + O(7^4), 3 + O(7^3), 4 + O(7^2), 5 + O(7)) sage: w = v.reduce_precision(3) ; w (1 + O(7^5), 2 + O(7^4), 3 + O(7^3)) sage: w.normalize() (1 + O(7^3), 2 + O(7^2), 3 + O(7)) sage: w (1 + O(7^3), 2 + O(7^2), 3 + O(7)) sage: v.reduce_precision(3).normalize(include_zeroth_moment=False) (1 + O(7^5), 2 + O(7^2), 3 + O(7)) """ if not self.parent().is_symk() and self._moments!= 0: # non-classical if len(self._moments) == 0: return self V = self._moments.parent() R = V.base_ring() n = self.precision_relative() p = self.parent()._p shift = self.ordp if include_zeroth_moment: if isinstance(R, pAdicGeneric): self._moments = V([self._moments[i].add_bigoh(n -shift - i) for i in range(n)]) else: self._moments = V([self._moments[i] % (p ** (n -shift - i)) for i in range(n)]) else: if isinstance(R, pAdicGeneric): self._moments = V([self._moments[0]] + [self._moments[i].add_bigoh(n -shift - i) for i in range(1, n)]) # Don't normalize the zeroth moment else: self._moments = V([self._moments[0]] + [self._moments[i] % (p ** (n -shift- i)) for i in range(1, n)]) # Don't normalize the zeroth moment return self def reduce_precision(self, M): r""" Only hold on to `M` moments. INPUT: - ``M`` -- a positive integer less than the precision of this distribution. OUTPUT: - a new distribution with `M` moments equal to the first `M` moments of this distribution. EXAMPLES:: sage: D = OverconvergentDistributions(3,7,10)
Cython
sage: v = D([3,4,5]) sage: v (3 + O(7^3), 4 + O(7^2), 5 + O(7)) sage: v.reduce_precision(2) (3 + O(7^3), 4 + O(7^2)) """ assert M <= self.precision_relative(), "not enough moments" cdef Dist_vector ans = self._new_c() ans._moments = self._moments[:M] ans.ordp = self.ordp return ans def solve_difference_equation(self): r""" Solve the difference equation. `self = v | \Delta`, where `\Delta = [1, 1; 0, 1] - 1`. See Theorem 4.5 and Lemma 4.4 of [PS]_. OUTPUT: - a distribution `v` so that `self = v | Delta`, assuming ``self.moment(0) == 0``. Otherwise solves the difference equation for ``self - (self.moment(0),0,...,0)``. EXAMPLES:: sage: D = OverconvergentDistributions(5,7,15) sage: v = D(([0,2,3,4,5])) sage: g = D._act.actor()(Matrix(ZZ,2,2,[1,1,0,1])) sage: w = v.solve_difference_equation() sage: v - (w*g - w) (O(7^4), O(7^3), O(7^2), O(7)) sage: v = D(([7,2,3,4,5])) sage: w = v.solve_difference_equation() sage: v - (w*g - w) (7 + O(7^4), O(7^3), O(7^2), O(7)) """ # assert self._moments[0][0]==0, "not total measure zero" # print("result accurate modulo p^",self.moment(0).valuation(self.p) ) #v=[0 for j in range(0,i)]+[binomial(j,i)*bernoulli(j-i) for j in range(i,M)] M = self.precision_relative() R = self.parent().base_ring() K = R.fraction_field() V = self._moments.parent() v = [K(0) for i in range(M)] bern = [bernoulli(i) for i in range(0, M, 2)] minhalf = ~K(-2) for m in range(1, M): scalar = K(self.moment(m) / m) # bernoulli(1) = -1/2; the only nonzero odd bernoulli number v[m] += m * minhalf * scalar for j in range(m - 1, M, 2): v[j] += binomial(j, m - 1) * bern[(j - m + 1) // 2] * scalar p = self.parent().prime() cdef Dist_vector ans if p == 0: if R.is_field(): ans = self._new_c() ans.ordp = 0 ans._moments = V(v) else: newparent = self.parent().change_ring(K) ans = newparent(v) else: ans = self._new_c() try: ans.ordp = min(a.valuation(p) for a in v) except TypeError: ans.ordp = 0 if ans.ordp < 0: scalar = K(p) ** (-ans.ordp) ans._moments = V([R(a * scalar) for a in v]) elif ans.ordp > 0: scalar = K(p) ** ans.ordp ans._moments = V([R(a // scalar) for a in v]) else: ans._moments = V([R(a) for a in v]) v = ans._moments N = len(ans._moments) prec_loss = max([N - j - v[j].precision_absolute() for j in range(N)]) # print("precision loss = ", prec_loss) if prec_loss > 0: ans._moments = ans._moments[:(N - prec_loss)] return ans # cdef class Dist_long(Dist): # r""" # A class for distributions implemented using a C array of longs. # INPUT: # - ``moments`` -- the list of moments. If ``check == False`` it # must be a vector in the appropriate approximation module. # - ``parent`` -- a :class:`distributions.OverconvergentDistributions_class` or # :class:`distributions.Symk_class` instance # - ``check`` -- (default: True) boolean, whether to validate input # EXAMPLES:: # sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk # """ # def __init__(self, moments, parent, ordp=0, check=True): # """ # Initialization. # TESTS:: # sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk # """ # # if not hasattr(parent,'Element'): # # parent, moments = moments, parent # Dist.__init__(self, parent) # p = parent._p # cdef int i # if check: # # case 1: input is a distribution already # if isinstance(moments, Dist): # M = len(moments) # moments = [ZZ(moments.moment(i)) for i in range(M)] # # case 2: input is a vector, or something with a len # elif hasattr(moments, '__len__'): # M = len(moments) # moments = [ZZ(a) for a in parent.approx_module(M)(moments)] # # case 3: input is zero # elif moments == 0: # M = parent.precision_cap() # moments = [ZZ(0)] * M # else: # M = 1 # moments = [ZZ(moments)] # if M > 100 or 7 * p ** M > ZZ(2) ** (4 * sizeof(long) - 1): # 6 is so that we don't overflow on gathers # raise ValueError("moments too long") # else: # M = len(moments) # for i in range(len(moments)): # self._moments[i] = moments[i] # self.relprec = M # self.prime_pow = <PowComputer_class?>parent.prime_pow # self.normalize() # cdef Dist_long _new_c(self): # r""" # OUTPUT: # - # EXAMPLES:: # sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk # """ # cdef Dist_long ans = PY_NEW(Dist_long) # ans._parent = self._parent # ans.prime_pow = self.prime_pow # return ans # def _repr_(self): # r""" # OUTPUT: # - # EXAMPLES:: # sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk # """ # valstr = "" # if self.ordp == 1: # valstr = "%s * " % (self.prime_pow.prime) # elif self.ordp!= 0: # valstr = "%s^%s * " % (self.prime_pow.prime, self.ordp) # if self.relprec == 1: # return valstr + repr(self._moments[0]) # else: # return valstr + "(" + ", ".join([repr(self._moments[i]) for i in range(self.relprec)]) + ")" # cdef int quasi_normalize(self) except -1: # r""" # OUTPUT: # - # EXAMPLES:: # sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk # """ # cdef int i # for i in range(self.relprec): # if self._moments[i] > overflow: # self._moments[i] = self._moments[i] % self.prime_pow(self.relprec - i) # elif self._moments[i] < underflow: # self._moments[i] = self._moments[i] % self.prime_pow(self.relprec - i) # self._moments[i] += self.prime_pow(self.relprec - i) # cpdef normalize(self): # r""" # OUTPUT: # - # EXAMPLES:: # sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk # """ # cdef int
Cython
i # for i in range(1, self.relprec): # Don't normalize the zeroth moment # if self._moments[i] < 0: # self._moments[i] = self._moments[i] % self.prime_pow(self.relprec - i) # self._moments[i] += self.prime_pow(self.relprec - i) # elif self._moments[i] >= self.prime_pow(self.relprec - i): # self._moments[i] = self._moments[i] % self.prime_pow(self.relprec - i) # return self # cdef long _relprec(self): # return self.relprec # cdef _unscaled_moment(self, long _n): # r""" # INPUT: # - ``_n`` -- an integer or slice giving an index into the # moments. # OUTPUT: # - # EXAMPLES:: # sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk # """ # if isinstance(_n, slice): # a, b, c = _n.indices(self.relprec) # return [self.moment(i) for i in range(a, b, c)] # cdef int n = _n # if n < 0: # n += self.relprec # if n < 0 or n >= self.relprec: # raise IndexError("list index out of range") # return self._moments[n] # cdef Dist_long _addsub(self, Dist_long right, bint negate): # r""" # Common code for the sum and the difference of two distributions # """ # cdef Dist_long ans = self._new_c() # cdef long aprec = min(self.ordp + self.relprec, right.ordp + right.relprec) # ans.ordp = min(self.ordp, right.ordp) # ans.relprec = aprec - ans.ordp # # In the case of symk, rprec will always be k # cdef int i, n # cdef long diff, cutoff # # The following COULD overflow, but it would require 2^32 # # additions (on a 64-bit machine), since we restrict p^k to be # # less than 2^31/7. # if self.ordp == right.ordp: # n = min(self.relprec, right.relprec) # for i in range(n): # ans._moments[i] = self._moments[i] - right._moments[i] if negate else self._moments[i] + right._moments[i] # if self.relprec < ans.relprec: # for i in range(n, ans.relprec): # ans._moments[i] = -right._moments[i] if negate else right._moments[i] # elif ans.relprec < self.relprec: # for i in range(n, ans.relprec): # ans._moments[i] = self._moments[i] # elif self.ordp < right.ordp: # diff = right.ordp - self.ordp # n = min(right.relprec, ans.relprec - diff) # for i in range(n): # ans._moments[i] = self.prime_pow(diff) * (right._moments[i] % self.prime_pow(ans.relprec - diff - i)) # ans._moments[i] = self._moments[i] - ans._moments[i] if negate else self._moments[i] + ans._moments[i] # if n < ans.relprec: # for i in range(n, ans.relprec): # ans._moments[i] = self._moments[i] # else: # self.ordp > right.ordp # diff = self.ordp - right.ordp # n = min(self.relprec, ans.relprec - diff) # for i in range(n): # ans._moments[i] = self.prime_pow(diff) * (self._moments[i] % self.prime_pow(ans.relprec - diff - i)) # ans._moments[i] += -right._moments[i] if negate else right._moments[i] # if n < ans.relprec: # for i in range(n, ans.relprec): # ans._moments[i] = -right._moments[i] if negate else right._moments[i] # return ans # cpdef _add_(self, ModuleElement right): # r""" # EXAMPLES:: # sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk # """ # return self._addsub(<Dist_long?> right, False) # cpdef _sub_(self, ModuleElement right): # r""" # EXAMPLES:: # sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk # """ # return self._addsub(<Dist_long?> right, True) # cpdef _lmul_(self, RingElement _right): # r""" # EXAMPLES:: # sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk # """ # cdef Dist_long ans = self._new_c() # ans.relprec = self.relprec # self.quasi_normalize() # cdef long scalar, absprec, ordp # cdef Integer iright, unit, ppow, p = self.prime_pow.prime # cdef Rational qright, qunit # cdef pAdicCappedAbsoluteElement pcaright # cdef pAdicCappedRelativeElement pcrright # cdef pAdicFixedModElement pfmright # if isinstance(_right, Integer): # iright = <Integer>_right # if mpz_sgn(iright.value) == 0: # ans.ordp = maxordp # ans.relprec = 0 # return ans # unit = PY_NEW(Integer) # ordp = mpz_remove(unit.value, iright.value, p.value) # if mpz_fits_slong_p(unit.value): # scalar = mpz_get_si(iright.value) % self.prime_pow(self.relprec) # else: # scalar = mpz_fdiv_ui(iright.value, self.prime_pow(self.relprec)) # elif isinstance(_right, Rational): # qright = <Rational>_right # if mpq_sgn(qright.value) == 0: # ans.ordp = maxordp # ans.relprec = 0 # return ans # qunit = PY_NEW(Rational) # ordp = mpz_remove(mpq_numref(qunit.value), mpq_numref(qright.value), p.value) # if ordp == 0: # ordp = -mpz_remove(mpq_denref(qunit.value), mpq_denref(qright.value), p.value) # else: # mpz_set(mpq_denref(qunit.value), mpq_denref(qright.value)) # ppow = PY_NEW(Integer) # mpz_set_ui(ppow.value, self.prime_pow(self.relprec)) # # We reuse the pointers inside qunit, since we're going to discard it. # mpz_invert(mpq_denref(qunit.value), mpq_denref(qunit.value), ppow.value) # mpz_mul(mpq_numref(qunit.value), mpq_numref(qunit.value), mpq_denref(qunit.value)) # scalar = mpz_fdiv_ui(mpq_numref(qunit.value), self.prime_pow(self.relprec)) # # qunit should not be used now (it's unnormalized) # elif isinstance(_right, pAdicCappedAbsoluteElement): # pcaright = <pAdicCappedAbsoluteElement>_right # unit = PY_NEW(Integer) # ordp = mpz_remove(unit.value, pcaright.value, p.value) # if pcaright.absprec - ordp <= self.relprec: # ans.relprec = pcaright.absprec - ordp # scalar = mpz_get_si(unit.value) # else: # scalar = mpz_fdiv_ui(unit.value, self.prime_pow(self.relprec)) # elif isinstance(_right, pAdicCappedRelativeElement): # pcrright = <pAdicCappedRelativeElement>_right # ordp = pcrright.ordp # if pcrright.relprec <= self.relprec: # ans.relprec = pcrright.relprec # scalar = mpz_get_si(pcrright.unit) # else: # scalar = mpz_fdiv_ui(pcrright.unit, self.prime_pow(self.relprec)) # elif isinstance(_right, pAdicFixedModElement): # pfmright = <pAdicFixedModElement>_right # scalar = mpz_get_si(pfmright.value) # ordp = 0 # cdef int i # for i
Cython
in range(self.relprec): # ans._moments[i] = self._moments[i] * scalar # ans.ordp = self.ordp + ordp # ans.quasi_normalize() # return ans # def precision_relative(self): # return Integer(self.relprec) # def precision_absolute(self): # r""" # OUTPUT: # - # EXAMPLES:: # sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk # """ # return Integer(self.relprec + self.ordp) # def reduce_precision(self, M): # r""" # INPUT: # - ``M`` -- a positive integer less than the precision of this # distribution. # OUTPUT: # - # EXAMPLES:: # sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk # """ # if M > self.relprec: # raise ValueError("not enough moments") # if M < 0: # raise ValueError("precision must be non-negative") # cdef Dist_long ans = self._new_c() # ans.relprec = M # cdef int i # for i in range(ans.relprec): # ans._moments[i] = self._moments[i] # ans.ordp = self.ordp # return ans # def solve_diff_eqn(self): # r""" # OUTPUT: # - # EXAMPLES:: # sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk # """ # raise NotImplementedError # def __reduce__(self): # r""" # Used in pickling. # EXAMPLE:: # sage: D = OverconvergentDistributions(0, 5, 10) # sage: D([1,2,3,4]).__reduce__() # (<type'sage.modular.pollack_stevens.dist.Dist_long'>, ([1, 2, 3, 4], Space of 5-adic distributions with k=0 action and precision cap 10, 0, False)) # """ # return (self.__class__, ([self._moments[i] # for i in xrange(self.relprec)], # self.parent(), self.ordp, False)) cdef class WeightKAction(Action): r""" Encode the action of the monoid `\Sigma_0(N)` on the space of distributions. INPUT: - ``Dk`` -- a space of distributions - ``character`` -- data specifying a Dirichlet character to apply to the top right corner, and a power of the determinant by which to scale. See the documentation of :class:`sage.modular.pollack_stevens.distributions.OverconvergentDistributions_factory` for more details. - ``adjuster`` -- a callable object that turns matrices into 4-tuples. - ``on_left`` -- whether this action should be on the left. - ``dettwist`` -- a power of the determinant to twist by - ``padic`` -- if True, define an action of `p`-adic matrices (not just integer ones) EXAMPLES:: sage: D = OverconvergentDistributions(4,5,10,base = Qp(5,20)); D Space of 5-adic distributions with k=4 action and precision cap 10 sage: D._act Right action by Monoid Sigma0(5) with coefficients in 5-adic Field with capped relative precision 20 on Space of 5-adic distributions with k=4 action and precision cap 10 """ def __init__(self, Dk, character, adjuster, on_left, dettwist, padic=False): r""" Initialization. TESTS:: sage: D = OverconvergentDistributions(4,5,10,base = Qp(5,20)); D # indirect doctest Space of 5-adic distributions with k=4 action and precision cap 10 sage: D = Symk(10) # indirect doctest """ self._k = Dk._k # if self._k < 0: raise ValueError("k must not be negative") self._adjuster = adjuster self._character = character self._dettwist = dettwist self._p = Dk._p self._symk = Dk.is_symk() self._actmat = {} self._maxprecs = {} if character is None: self._Np = ZZ(1) # all of M2Z acts else: self._Np = character.modulus() if not self._symk: self._Np = self._Np.lcm(self._p) if padic: self._Sigma0 = Sigma0(self._Np, base_ring=Dk.base_ring(), adjuster=self._adjuster) else: self._Sigma0 = Sigma0(self._Np, base_ring=ZZ, adjuster=self._adjuster) Action.__init__(self, self._Sigma0, Dk, on_left, operator.mul) def clear_cache(self): r""" Clear the cached matrices which define the action of `U_p` (these depend on the desired precision) and the dictionary that stores the maximum precisions computed so far. EXAMPLES:: sage: D = OverconvergentDistributions(4,5,4) sage: D([1,2,5,3]) * D._act.actor()(Matrix(ZZ,2,2,[1,1,0,1])) (1 + O(5^4), 3 + O(5^3), 2*5 + O(5^2), O(5)) sage: D._act.clear_cache() """ self._actmat = {} self._maxprecs = {} cpdef acting_matrix(self, g, M): r""" The matrix defining the action of ``g`` at precision ``M``. INPUT: - ``g`` -- an instance of :class:`sage.matrix.matrix_generic_dense.Matrix_generic_dense` - ``M`` -- a positive integer giving the precision at which ``g`` should act. OUTPUT: - An `M \times M` matrix so that the action of `g` on a distribution with `M` moments is given by a vector-matrix multiplication. .. NOTE:: This function caches its results. To clear the cache use :meth:`clear_cache`. EXAMPLES:: sage: D = Symk(3) sage: v = D([5,2,7,1]) sage: g = Matrix(ZZ,2,2,[1,3,0,1]) sage: v * D._act.actor()(g) # indirect doctest (5, 17, 64, 253) """ g = g.matrix() if not g in self._maxprecs: A = self._compute_acting_matrix(g, M) self._actmat[g] = {M: A} self._maxprecs[g] = M return A else: mats = self._actmat[g] if M in mats: return mats[M] maxprec = self._maxprecs[g] if M < maxprec: A = mats[maxprec][:M, :M] # submatrix; might want to reduce precisions mats[M] = A return A if M < 30: # This should not be hard-coded maxprec = max([M, 2 * maxprec]) # This may be wasting memory else: maxprec = M self._maxprecs[g] = maxprec mats[maxprec] = self._compute_acting_matrix(g, maxprec) # could lift from current maxprec if M == maxprec: return mats[maxprec] A = mats[maxprec][:M, :M] # submatrix; might want to reduce precisions mats[M] = A return A cpdef _compute_acting_matrix(self, g, M): r""" Compute the matrix defining the action of ``g`` at precision ``M``. INPUT: - ``g`` -- a `2 \times 2` instance of :class:`sage.matrices.matrix_integer_dense.Matrix_integer_dense` - ``M`` -- a positive integer giving the precision at which ``g`` should act. OUTPUT: - ``G`` -- an `M \times M` matrix. If `v `is the vector of moments of a distribution `\mu`, then `v*G` is the vector of moments of `\mu|[a,b;c,d]` EXAMPLES:: sage: D = Symk(3) sage: v = D([5,2,7,1]) sage: g = Matrix(ZZ,2,2,[-2,1,-1,0]) sage: v * D._act.actor()(g) # indirect doctest (-107,
Cython
35, -12, 5) """ raise NotImplementedError cdef class WeightKAction_vector(WeightKAction): cpdef _compute_acting_matrix(self, g, M): r""" Compute the matrix defining the action of ``g`` at precision ``M``. INPUT: - ``g`` -- a `2 \times 2` instance of :class:`sage.matrix.matrix_generic_dense.Matrix_generic_dense` - ``M`` -- a positive integer giving the precision at which ``g`` should act. OUTPUT: - ``G`` -- an `M \times M` matrix. If `v` is the vector of moments of a distribution `\mu`, then `v*G` is the vector of moments of `\mu|[a,b;c,d]` EXAMPLES:: sage: D = Symk(3) sage: v = D([5,2,7,1]) sage: g = Matrix(ZZ,2,2,[-2,1,-1,0]) sage: v * D._act.actor()(g) # indirect doctest (-107, 35, -12, 5) """ #tim = verbose("Starting") a, b, c, d = self._adjuster(g) # if g.parent().base_ring().is_exact(): # self._check_mat(a, b, c, d) k = self._k if g.parent().base_ring() is ZZ: if self._symk: base_ring = QQ else: base_ring = Zmod(self._p ** M) else: base_ring = self.underlying_set().base_ring() cdef Matrix B = matrix(base_ring, M, M) if M == 0: return B.change_ring(self.codomain().base_ring()) R = PowerSeriesRing(base_ring, 'y', default_prec=M) y = R.gen() #tim = verbose("Checked, made R",tim) # special case for small precision, large weight scale = (b + d * y) / (a + c * y) t = (a + c * y) ** k # will already have precision M cdef long row, col #tim = verbose("Made matrix",tim) for col in range(M): for row in range(M): B.set_unsafe(row, col, t[row]) t *= scale #verbose("Finished loop",tim) # the changering here is annoying, but otherwise we have to # change ring each time we multiply B = B.change_ring(self.codomain().base_ring()) if self._character is not None: B *= self._character(a) if self._dettwist is not None: B *= (a * d - b * c) ** (self._dettwist) return B cpdef _call_(self, _v, g): r""" The right action of ``g`` on a distribution. INPUT: - ``_v`` -- a :class:`Dist_vector` instance, the distribution on which to act. - ``g`` -- a `2 \times 2` instance of :class:`sage.matrix.matrix_integer_dense.Matrix_integer_dense`. OUTPUT: - the distribution ``_v * g``. EXAMPLES:: sage: D = sage.modular.pollack_stevens.distributions.Symk(2) sage: v = D([2,3,4]) sage: g = Matrix(ZZ,2,2,[3,-1,1,0]) sage: v * D._act.actor()(g) # indirect doctest (40, -9, 2) """ # if g is a matrix it needs to be immutable # hashing on arithmetic_subgroup_elements is by str if self.is_left(): _v, g = g, _v if g == 1: return _v cdef Dist_vector v = <Dist_vector?>_v cdef Dist_vector ans = v._new_c() try: g.set_immutable() except AttributeError: pass coeffmodule = v._moments.parent() v_moments = v._moments ans._moments = v_moments * self.acting_matrix(g, len(v_moments)) ans.ordp = v.ordp ans.normalize() return ans # cdef inline long mymod(long a, unsigned long pM): # """ # Returns the remainder ``a % pM``. # INPUT: # - ``a`` -- a long # - ``pM`` -- an unsigned long # OUTPUT: # - ``a % pM`` as a positive integer. # """ # a = a % pM # if a < 0: # a += pM # return a # cdef class SimpleMat(SageObject): # r""" # A simple class emulating a square matrix that holds its values as # a C array of longs. # INPUT: # - ``M`` -- a positive integer, the dimension of the matrix # EXAMPLES:: # sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk # """ # def __cinit__(self, unsigned long M): # r""" # Memory initialization. # TESTS:: # sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk # """ # self._inited = False # self.M = M # self._mat = <long*>sage_malloc(M * M * sizeof(long)) # if self._mat == NULL: # raise MemoryError # self._inited = True # def __getitem__(self, i): # r""" # INPUT: # - ``i`` -- a tuple containing two slices, each from `0` to `M'` for some `M' < M` # OUTPUT: # - A new SimpleMat of size `M'` with the top left `M' \times # M'` block of values copied over. # EXAMPLES:: # sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk # """ # cdef Py_ssize_t r, c, Mnew, Morig = self.M # cdef SimpleMat ans # if isinstance(i,tuple) and len(i) == 2: # a, b = i # if isinstance(a, slice) and isinstance(b, slice): # r0, r1, rs = a.indices(Morig) # c0, c1, cs = b.indices(Morig) # if r0!= 0 or c0!= 0 or rs!= 1 or cs!= 1: # raise NotImplementedError # Mr = r1 # Mc = c1 # if Mr!= Mc: # raise ValueError("result not square") # Mnew = Mr # if Mnew > Morig: # raise IndexError("index out of range") # ans = SimpleMat(Mnew) # for r in range(Mnew): # for c in range(Mnew): # ans._mat[Mnew * c + r] = self._mat[Morig * c + r] # return ans # raise NotImplementedError # def __dealloc__(self): # r""" # Deallocation. # TESTS:: # sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk # """ # sage_free(self._mat) # cdef class WeightKAction_long(WeightKAction): # cpdef _compute_acting_matrix(self, g, _M): # r""" # INPUT: # - ``g`` -- a `2 \times 2` instance of # :class:`sage.matrices.matrix_integer_dense.Matrix_integer_dense` # - ``_M`` -- a positive integer giving the precision at which # ``g`` should act. # OUTPUT: # - A :class:`SimpleMat` that gives the action of ``g`` at # precision ``_M`` in the sense that the moments of the result # are obtained from the moments of the input by a # vector-matrix multiplication. # EXAMPLES:: # sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk # """ # _a, _b, _c, _d = self._adjuster(g) # #if self._character is not None: raise NotImplementedError # # self._check_mat(_a, _b, _c, _d) # cdef long k = self._k # cdef Py_ssize_t row, col, M = _M # cdef nmod_poly_t t, scale, xM, bdy # cdef mp_limb_t pM = self._p ** M # unsigned long # cdef long a, b, c, d # a = mymod(ZZ
Cython
(_a), pM) # b = mymod(ZZ(_b), pM) # c = mymod(ZZ(_c), pM) # d = mymod(ZZ(_d), pM) # cdef mp_limb_t pMinv = 1 / pM # n_preinvert_limb(pM) # DEBUG!!! was pM # nmod_poly_init2_preinv(t, pM, pMinv, M) # nmod_poly_init2_preinv(scale, pM, pMinv, M) # nmod_poly_init2_preinv(xM, pM, pMinv, M) # nmod_poly_init2_preinv(bdy, pM, pMinv, 2) # nmod_poly_set_coeff_ui(xM, M, 1) # nmod_poly_set_coeff_ui(t, 0, a) # nmod_poly_set_coeff_ui(t, 1, c) # nmod_poly_inv_series(scale, t, M) # nmod_poly_set_coeff_ui(bdy, 0, b) # nmod_poly_set_coeff_ui(bdy, 1, d) # nmod_poly_mullow(scale, scale, bdy, M) # scale = (b+dy)/(a+cy) # nmod_poly_pow_trunc(t, t, k, M) # t = (a+cy)^k # cdef SimpleMat B = SimpleMat(M) # for col in range(M): # for row in range(M): # B._mat[M * col + row] = nmod_poly_get_coeff_ui(t, row) # if col < M - 1: # nmod_poly_mullow(t, t, scale, M) # if self._character is not None: # B = B * self._character(_a, _b, _c, _d) # return B # cpdef _call_(self, _v, g): # r""" # Application of the action. # INPUT: # - ``_v`` -- a :class:`Dist_long` instance, the distribution on # which to act. # - ``g`` -- a `2 \times 2` instance of # :class:`sage.matrix.matrix_integer_dense.Matrix_integer_dense`. # OUTPUT: # - The image of ``_v`` under the action of ``g``. # EXAMPLES:: # sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk # """ # if self.is_left(): # _v, g = g, _v # cdef Dist_long v = <Dist_long?>_v # cdef Dist_long ans = v._new_c() # ans.relprec = v.relprec # ans.ordp = v.ordp # cdef long pM = self._p ** ans.relprec # cdef SimpleMat B = <SimpleMat>self.acting_matrix(g, ans.relprec) # cdef long row, col, entry = 0 # for col in range(ans.relprec): # ans._moments[col] = 0 # for row in range(ans.relprec): # mom = v._moments[row] # # DEBUG BELOW # # if not mom.parent().base_ring().is_exact(): # # try: # # mom = mom.apply_map(operator.methodcaller('lift')) # # except AttributeError: # # pass # ans._moments[col] += mymod(B._mat[entry] * mom, pM) # entry += 1 # ans.normalize() # return ans <|end_of_text|># -*- coding: utf-8 -*- """Random kit wrapper class. Implementation of a basic Cython wrapper class around the 'Random kit' library by Jean-Sebastien Roy. Intended for use in other Cython modules as a more robust replacement for C stdlib rand(). """ cimport randomkit_wrapper from libc cimport stdlib cdef class RandomKit: """ Basic wrapper around 'Random kit' for pseudorandom number generation. Intended for use in other Cython modules as a more robust replacement for C stdlib rand(). """ def __cinit__(RandomKit self): self.state = <rk_state*> stdlib.malloc(sizeof(rk_state)) if (self.state == NULL): raise MemoryError def __init__(RandomKit self, unsigned long seed): rk_seed(seed, self.state) def __dealloc__(RandomKit self): if self.state: stdlib.free(self.state) cdef unsigned long integer(RandomKit self, unsigned long maximum): """ Returns a random integer in range 0 and maximum inclusive. Parameters ---------- maximum : unsigned long Maximum of integer range to sample from. """ return rk_interval(maximum, self.state) cdef double uniform(RandomKit self): """ Returns a sample from a uniform distribution over [0,1]. """ return rk_double(self.state) cdef double gaussian(RandomKit self): """ Returns a sample from a zero-mean unit-variance Gaussian distribution. """ return rk_gauss(self.state) <|end_of_text|>import numpy as np cimport numpy as np cimport cython ctypedef fused DOUBLE_TYPES: float double cdef extern from "cpp/central_difference.h": void central_difference[T](const T* input, const Py_ssize_t rows, const Py_ssize_t cols, const Py_ssize_t n_channels, T* output) @cython.boundscheck(False) @cython.wraparound(False) cpdef gradient_cython(np.ndarray[DOUBLE_TYPES, ndim=3] input): cdef Py_ssize_t n_channels = input.shape[0] cdef Py_ssize_t rows = input.shape[1] cdef Py_ssize_t cols = input.shape[2] # Maintain the dtype that was passed in (float or double) dtype = input.dtype cdef np.ndarray[DOUBLE_TYPES, ndim=3] output = np.zeros((n_channels * 2, rows, cols), dtype=dtype) central_difference(&input[0,0,0], rows, cols, n_channels, &output[0,0,0]) return output <|end_of_text|># coding:utf-8 # TODO: batchでまんべんなくデータが含まれるようにする。 # TODO: オブジェクトだからこのファイルを実行しても何も起きないので、mainから実行する。 # sgf読み込みで新しい棋譜になったら盤面を初期化する import pyximport; pyximport.install() import sgf # Please install "sgf 0.5". You can install it by using the command of "pip install sgf". import re import os # osモジュールのインポート from game import Player from game import State from search import MontecarloSearch from go import Go from input_plane import MakeInputPlane import tensorflow as tf import math from go import GoVariable from go import GoStateObject from numpy import * import traceback # パスはどうする?forwardした結果一番良い答えがパスかもしれない import sys import datetime import numpy as np import tensorflow as tf import pickle #from tensorflow.python import control_flow_ops # デフォルトの文字コードを出力する # from guppy import hpy # h = hpy() class Train(GoVariable): character_list = [chr(i) for i in range(97, 97 + 26)] def __init__(self): # self.train() self.train() def reshape_board(self, board_array): reshaped_boards = [] for i in xrange(len(board_array)): reshaped_boards.append(reshape(board_array[i], 361)) return reshaped_boards def reshape_answer_board(self, board_array): return reshape(board_array, 361) def invert_board_input(self, board_array): for i in xrange(len(board_array)): board_array[i] = board_array[i][::-1] return board_array def invert_board_answer(self, board_array): board_array[::-1] return board_array def rotate90_input(self, board_array): for i in xrange(len(board_array)): board_array[i] = rot90(board_array[i]) return board_array def rotate90_answer(self, board_array): # 90度回転させるために、配列を2次元にした方が良い。input shapeもNone,1,361にする。 rot90(board_array) return board_array def make_rotated_train_batch(self, xTrain, yTrain, input_board, answer_board): xTrain.append(self.reshape_board(input_board)) yTrain.append(self.reshape_answer_board(answer_board)) # print self.reshape_answer_board(answer_board) # print self.reshape_answer_board(answer_board) input_board2 = self.rotate90_input(input_board) answer_board2 = self.rotate90_answer(answer_board) xTrain.append(self.reshape_board(input_board2)) yTrain.append(self.reshape_answer_board(answer_board2)) input_board3 = self.rotate90_input(input_board2) answer_board3
Cython
= self.rotate90_answer(answer_board2) xTrain.append(self.reshape_board(input_board3)) yTrain.append(self.reshape_answer_board(answer_board3)) input_board4 = self.rotate90_input(input_board3) answer_board4 = self.rotate90_answer(answer_board3) xTrain.append(self.reshape_board(input_board4)) yTrain.append(self.reshape_answer_board(answer_board4)) input_board5 = self.invert_board_input(input_board4) answer_board5 = self.invert_board_answer(answer_board4) xTrain.append(self.reshape_board(input_board5)) yTrain.append(self.reshape_answer_board(answer_board5)) input_board6 = self.rotate90_input(input_board5) answer_board6 = self.rotate90_answer(answer_board5) xTrain.append(self.reshape_board(input_board6)) yTrain.append(self.reshape_answer_board(answer_board6)) input_board7 = self.rotate90_input(input_board6) answer_board7 = self.rotate90_answer(answer_board6) xTrain.append(self.reshape_board(input_board7)) yTrain.append(self.reshape_answer_board(answer_board7)) input_board8 = self.rotate90_input(input_board7) answer_board8 = self.rotate90_answer(answer_board7) xTrain.append(self.reshape_board(input_board8)) yTrain.append(self.reshape_answer_board(answer_board8)) return xTrain, yTrain def train(self): players = [Player(0.0, 'human'), Player(1.0, 'human')] players[0].next_player = players[1] players[1].next_player = players[0] # player = players[0] rule = Go() files = os.listdir(os.getcwd() + "/../../kifu") print("kifu loaded!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") init = tf.global_variables_initializer() xTrain = [] yTrain = [] num = 0 batch_count_num = 0 train_count_num = 0 make_input = MakeInputPlane() step = 0 ckpt_num = 100 batch_count_sum_all = 0 character_list = [chr(i) for i in range(97, 97 + 26)] print("kifu passed") continue_kifu_num = 0 for file_name in files: # print h.heap() continue_kifu_num += 1 if continue_kifu_num < 150: continue step += 1 with open(os.getcwd() + "/../../kifu/" + file_name) as f: try: collection = sgf.parse(f.read()) flag = False except: continue try: go_state_obj = GoStateObject() # print "通過" for game in collection: for node in game: if flag == False: flag = True continue position = list(node.properties.values())[0] xpos = character_list.index(position[0][0]) ypos = character_list.index(position[0][1]) pos_tuple = (xpos, ypos) # print xpos,ypos #print(pos_tuple) color = list(node.properties.keys())[0] if color == "B": current_player = players[0] elif color == 'W': current_player = players[1] # print "move ends" num += 1 if num > 90: input_board = make_input.generate_input(go_state_obj, current_player) answer_board = make_input.generate_answer(pos_tuple) xTrain, yTrain = self.make_rotated_train_batch(xTrain, yTrain, input_board, answer_board) num = 0 batch_count_num += 1 # 注意 moveはinputを作成した後にすること。 go_state_obj = rule.move(go_state_obj, current_player, pos_tuple) rule.move(go_state_obj, current_player, pos_tuple) if batch_count_num > 50: np.savez_compressed('./npzkifu/kifu' + str(train_count_num) + '.npz', x=xTrain, y=yTrain) #train_step.run(feed_dict={x_input: xTrain, y_: yTrain, keep_prob: 0.5}) batch_count_sum_all += 1 batch_count_num = 0 train_count_num += 1 xTrain = [] yTrain = [] print(train_count_num) except: traceback.print_exc() f.close() pass <|end_of_text|>from._results cimport Result cdef: Result _clausen(double) nogil <|end_of_text|> cdef class ChanFactory: cdef: dict single_chans, vector_chans def __init__(self): self.single_chans = { 'double': DChan, 'int': IChan, 'int32': IChan } self.vector_chans = { 'str': StrChan, } def create_chan(self, name, dtype, dsize, **kwargs): if dtype not in cx_dtype_map: return None if dsize == 1: if dtype in self.single_chans: return self.single_chans[dtype](name, **kwargs) else: return Chan(name, cx_dtype_map[dtype]) elif dtype in self.vector_chans: return self.vector_chans[dtype](name, dsize) return VChan(name, cx_dtype_map[dtype], dsize, **kwargs) cfactory = ChanFactory() <|end_of_text|># distutils: language = c++ # cython: language_level=2 from libcpp.memory cimport unique_ptr from cython.operator cimport dereference as deref cimport numpy as np from rfbp cimport focusingBP from rfbp cimport nonbayes_test from Patterns cimport _Patterns from FocusingProtocol cimport _FocusingProtocol from MagP64 cimport MagP64 from MagT64 cimport MagT64 from misc cimport double_pointers_for_cython from enum import Enum class Mag (int, Enum): MagP64 = 0 MagT64 = 1 def _rfbp (int mag, _Patterns pattern, _FocusingProtocol protocol, long int hidden=3, long int max_iter=1000, long int max_steps=101, double randfact=1e-1, double damping=5e-1, double epsil=1e-1, accuracy=(b'accurate', b'exact'), long int seed=135, long int nth=1): acc1, acc2 = accuracy cdef long int ** weights if mag == Mag.MagP64: weights = focusingBP[MagP64](hidden, deref(pattern.thisptr.get()), max_iter, max_steps, seed, damping, acc1, acc2, randfact, deref(protocol.thisptr.get()), epsil, nth) elif mag == Mag.MagT64: weights = focusingBP[MagT64](hidden, deref(pattern.thisptr.get()), max_iter, max_steps, seed, damping, acc1, acc2, randfact, deref(protocol.thisptr.get()), epsil, nth) else: raise TypeError('Invalid Magnetization given. Possible values are stored in Mag Enum {magP, magT}') return [[int(weights[i][j]) for j in range(pattern.Ncol)] for i in range(hidden)] def _nonbayes_test (long int[::1] weights, long int row_size, long int column_size, _Patterns pattern, long int K): nlabel = pattern.Nrow cdef long int ** c_weights = double_pointers_for_cython['long int', 'long int'](&weights[0], row_size, column_size) cdef long int * predicted_labels = nonbayes_test(c_weights, pattern.thisptr.get()[0], K) return [int(predicted_labels[i]) for i in range(nlabel)] <|end_of_text|>############################################################################### ## ## Copyright (C) 2009-2012 Kyle Lutz <[email protected]> ## All rights reserved. ## ## This file is a part of the chemkit project. For more information ## see <http://www.chemkit.org>. ## ## Redistribution and use in source and binary forms, with or without ## modification, are permitted provided that the following conditions ## are met: ## ## * Redistributions of source code must retain the above copyright ## notice, this list of conditions and the following disclaimer. ## * Redistributions in binary form must reproduce the above copyright ## notice, this list of conditions and the following disclaimer in the ## documentation and/or other materials provided with the distribution. ## * Neither the name of the chemkit project nor the names of its ## contributors may be used to endorse or promote products derived ## from this software without specific prior written permission. ## ## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ## "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ## LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ## A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ## OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ## SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ## LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ## DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ## THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
Cython
TORT ## (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ## ############################################################################### import cython from libcpp cimport bool from libcpp.vector cimport vector from variant cimport _Variant from molecule cimport _Molecule from shared_ptr cimport shared_ptr cdef class Molecule: """The Molecule class represents a molecule.""" cdef _Molecule *_molecule cdef shared_ptr[_Molecule] *_moleculePointer ### Construction and Destruction ########################################## def __cinit__(self): self._molecule = NULL self._moleculePointer = NULL def __init__(self, char *formula = NULL, char *format = NULL): """Creates a new molecule.""" if formula and format: self._moleculePointer = new shared_ptr[_Molecule](new _Molecule(formula, format)) else: self._moleculePointer = new shared_ptr[_Molecule](new _Molecule()) self._molecule = self._moleculePointer.get() def __dealloc__(self): """Destroys the molecule object.""" if self._moleculePointer!= NULL: del self._moleculePointer ### Properties ############################################################ def setName(self, char *name): """Sets the name for the molecule.""" self._molecule.setName(name) def name(self): """Returns the name of the molecule.""" return self._molecule.name().c_str() def formula(self, char *format = NULL): """Returns the formula for the molecule.""" if format: return self._molecule.formula(format).c_str() else: return self._molecule.formula().c_str() def descriptor(self, char *name): """Returns the value of the molecule descriptor given by name.""" cdef _Variant value = self._molecule.descriptor(name) return value.toDouble() def size(self): """Returns the number of atoms in the molecule.""" return self._molecule.size() def isEmpty(self): """Returns True if the molecule is empty.""" return self._molecule.isEmpty() def mass(self): """Returns the molecular mass of the molecule.""" return self._molecule.mass() def data(self, char *name): """Returns the molecule data for name.""" cdef _Variant value = self._molecule.data(name) return value.toString().c_str() ### Structure ############################################################# def addAtom(self, element): """Adds a new atom to the molecule.""" e = Element(element) if not e.isValid(): return None cdef _Atom *_atom = self._molecule.addAtom(cython.operator.dereference(e._element)) return Atom_fromPointer(_atom) def removeAtom(self, Atom atom): """Removes the atom from the molecule.""" self._molecule.removeAtom(atom._atom) def atom(self, int index): """Returns the atom at index in the molecule.""" cdef _Atom *_atom = self._molecule.atom(index) return Atom_fromPointer(_atom) def atoms(self): """Returns a list of the atoms in the molecule.""" atoms = [] for i in range(self.atomCount()): atoms.append(self.atom(i)) return atoms def atomCount(self): """Returns the number of atoms in the molecule.""" return self._molecule.atomCount() def addBond(self, Atom a, Atom b, int order = Bond.Single): """Adds and returns a new bond between atoms a and b with order.""" cdef _Bond *_bond = self._molecule.addBond(a._atom, b._atom, order) return Bond_fromPointer(_bond) def removeBond(self, Bond bond): """Removes bond from the molecule.""" self._molecule.removeBond(bond._bond) def bond(self, int index): """Returns the bond at index in the molecule.""" cdef _Bond *_bond = self._molecule.bond(index) return Bond_fromPointer(_bond) def bonds(self): """Returns a list of the bonds in the molecule.""" bonds = [] for i in range(self.bondCount()): bonds.append(self.bond(i)) return bonds def bondCount(self): """Returns the number of bonds in the molecule.""" return self._molecule.bondCount() ### Ring Perception ####################################################### def ring(self, int index): """Returns the ring at index in the molecule.""" return Ring_fromPointer(self._molecule.ring(index)) def rings(self): """Returns a list of rings in the molecule.""" rings = [] for i in range(self.ringCount()): rings.append(self.ring(i)) return rings def ringCount(self): """Returns the number of rings in the molecule.""" return self._molecule.ringCount() ### Fragment Perception ################################################### def fragment(self, int index): """Returns the fragment at index in the molecule.""" return Fragment_fromPointer(self._molecule.fragment(index)) def fragments(self): """Returns a list of all the fragments in the molecule.""" fragments = [] for i in range(self.fragmentCount()): fragments.append(self.fragment(i)) return fragments def fragmentCount(self): """Returns the number of fragments in the molecule.""" return self._molecule.fragmentCount() def isFragmented(self): """Returns True if the molecule contains more than one fragment.""" return self._molecule.isFragmented() def removeFragment(self, Fragment fragment): """Removes the fragment from the molecule.""" self._molecule.removeFragment(fragment._fragment) cdef Molecule Molecule_fromPointer(_Molecule *_molecule): cdef Molecule molecule = Molecule.__new__(Molecule) molecule._molecule = _molecule molecule._moleculePointer = NULL return molecule cdef Molecule Molecule_fromSharedPointer(shared_ptr[_Molecule] *_molecule): cdef Molecule molecule = Molecule.__new__(Molecule) molecule._molecule = _molecule.get() molecule._moleculePointer = _molecule return molecule <|end_of_text|># distutils: language = c # cython: cdivision = True # cython: boundscheck = False # cython: wraparound = False # cython: profile = True import numpy as np cdef void c_hash_argmin(const double * d, const long n, const long m, const npy_intp * idx, const long el, const long size, long * out) nogil: cdef npy_intp i, j, k, r = 0 cdef long argmin cdef double best, current for i in range(n): j = 0 while j < el: best = INFINITY argmin = 0 for k in range(size): current = d[i * m + idx[j]] if current < best: best = current argmin = k j += 1 out[r] = argmin r += 1 cdef void c_encode_by_bits(const npy_intp n, const npy_intp m, const long * a, const long bitshift, unsigned long * out) nogil: cdef npy_intp i, j cdef long shift cdef unsigned long value for i in range(n): value = 0 shift = 0 for j in range(m): value += a[i * m + j] << shift shift += bitshift out[i] = value cdef void c_decode_by_bits(const npy_intp n, const npy_intp m, const unsigned long * a, const long bitshift, long * out) nogil: cdef npy_intp i, j, k cdef long shift, mask = (1 << bitshift) - 1 for i in range(n): shift = 0 for j in range(m): out[i * m + j] = (a[i] >> shift) & mask shift += bitshift cdef void c_encode_by_place(const npy_intp n, const npy_intp m, const long * a, const long width, unsigned long * out) nogil: cdef npy_intp i, j cdef long place, value, x, k for i in range(n): value = 0 place = 1 for j in range(m): x = a[i * m + j] x = 2 * x if x > 0 else -2 * x - 1 k = width while x > 0 and k > 0: value += (x % 10) * place x //= 10 place *= 10 k -= 1 while k > 0: place *= 10 k -= 1 out[i] = value cdef void c_decode_by_place(const npy_intp n, const npy_intp m, const unsigned long * a, const long width, long * out) nogil: cdef npy_intp i, j cdef long place, value, x, k
Cython
for i in range(n): shift = 0 x = a[i] while x > 0: j = m - 1 k = 0 place = 1 value = 0 while k < width: value += (x % 10) * place x //= 10 place *= 10 k += 1 value = value // 2 if value % 2 == 0 else -(value + 1) // 2 out[i * m + j] = value j -= 1 cdef char c_count_set_bits(unsigned long n) nogil: cdef char count while n > 0: n &= n - 1 count += 1 return count cdef void c_hash_dist(npy_intp n, const unsigned long * h, const unsigned long ref, const long b, char * out) nogil: cdef npy_intp i cdef unsigned long tmp cdef unsigned long mask cdef char x if b == 1: for i in range(n): out[i] = c_count_set_bits(h[i] ^ ref) else: mask = (2 << b) - 1 for i in range(n): tmp = h[i] ^ ref x = 0 while tmp > 0: if tmp & mask!= 0: x += 1 tmp >>= b out[i] = x def hash_argmin(const double[:,::1] d, const npy_intp[::1] idx, const long size, long[::1] out): with nogil: c_hash_argmin(&d[0,0], d.shape[0], d.shape[1], &idx[0], idx.shape[0], size, &out[0]) return np.asarray(out) def encode_by_bits(const long[:,::1] a, const long bitshift, unsigned long[::1] out): cdef npy_intp n = a.shape[0] cdef npy_intp m = a.shape[1] with nogil: c_encode_by_bits(n, m, &a[0,0], bitshift, &out[0]) return np.asarray(out) def encode_by_place(const long[:,::1] a, const long width, unsigned long[::1] out): cdef npy_intp n = a.shape[0] cdef npy_intp m = a.shape[1] with nogil: c_encode_by_place(n, m, &a[0,0], width, &out[0]) return np.asarray(out) def decode_by_bits(const unsigned long[::1] a, const npy_intp m, const long bitshift, long[:,::1] out): cdef npy_intp n = a.shape[0] with nogil: c_decode_by_bits(n, m, &a[0], bitshift, &out[0,0]) return np.asarray(out) def decode_by_place(const unsigned long[::1] a, const npy_intp m, const long width, long[:,::1] out): cdef npy_intp n = a.shape[0] with nogil: c_decode_by_place(n, m, &a[0], width, &out[0,0]) return np.asarray(out) def get_hash_distances(const unsigned long hashkey, const unsigned long[::1] hashlist, const long bitshift_or_width, char[::1] out=None): if out is None: out = np.empty(hashlist.shape[0], dtype=np.int8) elif out.shape[0]!= hashlist.shape[0]: raise ValueError("Output array has incorrect shape.") with nogil: c_hash_dist(hashlist.shape[0], &hashlist[0], hashkey, bitshift_or_width, &out[0]) return np.asarray(out)<|end_of_text|>''' Core qldate to pydate utilities from bg c++ library, including IMM date handling ''' import datetime from bgtools.utils.dates import parse_date from cython.operator cimport dereference as deref from libcpp cimport bool as bool from libcpp.string cimport string from pybg.version import version # Date Interfaces cdef object _pydate_from_qldate(_qldate.Date qdate): """c++ QuantLib::Date to python datetime.time """ cdef int m = qdate.month() cdef int d = qdate.dayOfMonth() cdef int y = qdate.year() return datetime.date(y, m, d) cpdef object pydate_from_qldate(qldate.Date qdate): """cython Date to python datetime.time """ cdef int m = qdate.month cdef int d = qdate.day cdef int y = qdate.year return datetime.date(y, m, d) cdef _qldate.Date _qldate_from_pydate(object pydate): pydate = parse_date(pydate) cdef qldate.Date qdate_ref if not pydate: raise ValueError else: qdate_ref = qldate.Date.from_datetime(pydate) cdef _qldate.Date* date_ref = <_qldate.Date*>qdate_ref._thisptr.get() return deref(date_ref) cpdef qldate.Date qldate_from_pydate(object pydate): pydate = parse_date(pydate) cdef qldate.Date qdate_ref if not pydate: raise ValueError else: qdate_ref = qldate.Date.from_datetime(pydate) return qdate_ref <|end_of_text|># Markov Logic Networks -- Inference # # (C) 2006-2013 by Daniel Nyga ([email protected]) # Dominik Jain ([email protected]) # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from dnutils import logs from dnutils.console import barstr from...logic.common import Logic from..database import Database from..constants import ALL from..mrfvars import MutexVariable, SoftMutexVariable, FuzzyVariable from..util import StopWatch, elapsed_time_str, headline, tty, edict import sys from..errors import NoSuchPredicateError from..mlnpreds import SoftFunctionalPredicate, FunctionalPredicate from functools import reduce logger = logs.getlogger(__name__) cdef class Inference(): """ Represents a super class for all inference methods. Also provides some convenience methods for collecting statistics about the inference process and nicely outputting results. :param mrf: the MRF inference is being applied to. :param queries: a query or list of queries, can be either instances of :class:`pracmln.logic.common.Logic` or string representations of them, or predicate names that get expanded to all of their ground atoms. If `ALL`, all ground atoms are subject to inference. Additional keyword parameters: :param cw: (bool) if `True`, the closed-world assumption will be applied to all but the query atoms. """ def __init__(self, mrf, queries=ALL, **params): self.mrf = mrf #print(self.mrf) self.mln = mrf.mln self._params = edict(params) if not queries: self.queries = [self.mln.logic.gnd_lit(ga, negated=False, mln=self.mln) for ga in self.mrf.gndatoms if self.mrf.evidence[ga.idx] is None] else: # check for single/multiple query and expand if type(queries) is not list: queries = [queries] self.queries = self._expand_queries(queries) # fill in the missing truth values of variables that have only one remaining value for variable in self.mrf.variables: if variable.valuecount(self.mrf.evidence_dicti()) == 1: # the var is fully determined by the evidence for _, value in variable.it
Cython
ervalues(self.mrf.evidence): break self.mrf.set_evidence(variable.value2dict(value), erase=False) # apply the closed world assumptions to the explicitly specified predicates if self.cwpreds: for pred in self.cwpreds: if isinstance(self.mln.predicate(pred), SoftFunctionalPredicate): if self.verbose: logger.warning('Closed world assumption will be applied to soft functional predicate %s' % pred) elif isinstance(self.mln.predicate(pred), FunctionalPredicate): raise Exception('Closed world assumption is inapplicable to functional predicate %s' % pred) for gndatom in self.mrf.gndatoms: if gndatom.predname!= pred: continue if self.mrf.evidence[gndatom.idx] is None: self.mrf.evidence[gndatom.idx] = 0 # apply the closed world assumption to all remaining ground atoms that are not in the queries if self.closedworld: qpreds = set() for q in self.queries: qpreds.update(q.prednames()) for gndatom in self.mrf.gndatoms: if isinstance(self.mln.predicate(gndatom.predname), FunctionalPredicate) \ or isinstance(self.mln.predicate(gndatom.predname), SoftFunctionalPredicate): continue if gndatom.predname not in qpreds and self.mrf.evidence[gndatom.idx] is None: self.mrf.evidence[gndatom.idx] = 0 for var in self.mrf.variables: if isinstance(var, FuzzyVariable): var.consistent(self.mrf.evidence, strict=True) self._watch = StopWatch() @property def verbose(self): return self._params.get('verbose', False) @property def results(self): if self._results is None: raise Exception('No results available. Run the inference first.') else: return self._results @property def elapsedtime(self): return self._watch['inference'].elapsedtime @property def multicore(self): return self._params.get('multicore') @property def resultdb(self): if '_resultdb' in self.__dict__: return self._resultdb db = Database(self.mrf.mln) for atom in sorted(self.results, key=str): db[str(atom)] = self.results[atom] return db @resultdb.setter def resultdb(self, db): self._resultdb = db @property def closedworld(self): return self._params.get('cw', False) @property def cwpreds(self): return self._params.get('cw_preds', []) def _expand_queries(self, queries): """ Expands the list of queries where necessary, e.g. queries that are just predicate names are expanded to the corresponding list of atoms. """ equeries = [] for query in queries: if type(query) == str: prevLen = len(equeries) if '(' in query: # a fully or partially grounded formula f = self.mln.logic.parse_formula(query) for gf in f.itergroundings(self.mrf): equeries.append(gf) else: # just a predicate name if query not in self.mln.prednames: raise NoSuchPredicateError('Unsupported query: %s is not among the admissible predicates.' % (query)) #continue for gndatom in self.mln.predicate(query).groundatoms(self.mln, self.mrf.domains): equeries.append(self.mln.logic.gnd_lit(self.mrf.gndatom(gndatom), negated=False, mln=self.mln)) if len(equeries) - prevLen == 0: raise Exception("String query '%s' could not be expanded." % query) elif isinstance(query, Logic.Formula): equeries.append(query) else: raise Exception("Received query of unsupported type '%s'" % str(type(query))) return equeries def _run(self): raise Exception('%s does not implement _run()' % self.__class__.__name__) def run(self): """ Starts the inference process. """ # perform actual inference (polymorphic) if self.verbose: print('Inference engine: %s' % self.__class__.__name__) self._watch.tag('inference', verbose=self.verbose) _weights_backup = list(self.mln.weights) self._results = self._run() self.mln.weights = _weights_backup self._watch.finish('inference') return self def write(self, stream=sys.stdout, color=None, sort='prob', group=True, reverse=True): cdef int barwidth = 30 if tty(stream) and color is None: color = 'yellow' if sort not in ('alpha', 'prob'): raise Exception('Unknown sorting: %s' % sort) results = dict(self.results) cdef bint wrote_results if group: wrote_results = False for var in sorted(self.mrf.variables, key=str): res = dict([(atom, prob) for atom, prob in results.items() if atom in list(map(str, var.gndatoms))]) if not res: continue if isinstance(var, MutexVariable) or isinstance(var, SoftMutexVariable): stream.write('%s:\n' % var) if sort == 'prob': res = sorted(res, key=self.results.__getitem__, reverse=reverse) elif sort == 'alpha': res = sorted(res, key=str) for atom in res: stream.write('%s %s\n' % (barstr(barwidth, self.results[atom], color=color), atom)) wrote_results = True if not wrote_results: max_len = max([len(str(q)) for q, p in list(results.items())]) result_tuples = list(results.items()) result_tuples.sort(key=lambda pair: pair[1], reverse=True) str_results = [("{:" + str(max_len) + "s} {:7.2f}").format(str(q), p) for q, p in result_tuples] stream.write(reduce(lambda a,b: a + "\n" + b, str_results, "")) return # first sort wrt to probability results = sorted(results, key=self.results.__getitem__, reverse=reverse) # then wrt gnd atoms results = sorted(results, key=str) for q in results: stream.write('%s %s\n' % (barstr(barwidth, self.results[q], color=color), q)) self._watch.printSteps() def write_elapsed_time(self, stream=sys.stdout, color=None): if stream is sys.stdout and color is None: color = True elif color is None: color = False if color: col = 'blue' else: col = None total = float(self._watch['inference'].elapsedtime) stream.write(headline('INFERENCE RUNTIME STATISTICS')) print() self._watch.finish() for t in sorted(list(self._watch.tags.values()), key=lambda t: t.elapsedtime, reverse=True): stream.write('%s %s %s\n' % (barstr(width=30, percent=t.elapsedtime / total, color=col), elapsed_time_str(t.elapsedtime), t.label)) <|end_of_text|>def primes(k_max): cdef int n,k,i cdef int p[1000] result = [] if k_max >1000: k_max = 1000 k=0 n=2 while k<k_max: i=0 while i<k and n % p[i]!=0: i = i+1 if i==k: p[k] =n k = k+1 result.append(n) n = n+1 return result<|end_of_text|>cimport cyminheap # import the declaration in cyminheap.pxd from libc.stdint cimport uint32_t # import the integer type from C # define a struct that would be stored in the heap. # NOTE THAT all structs, defined in pyx files, would not be exported # with this module. Rather, as it serves as the parameter type of the # exported class, MinHeap in this case, it could be substituted by # a python dictionary object wherever it's required. # e.g. heap.push({"id":1, "price":10.0}) cdef struct good_t: int id float price # define the required C functions for comparison, copy and swap of good_t cdef int good_cmp(void *self, void *other): cdef good_t *pself = <good_t *>self cdef good_t *pother = <good_t *>other # NOTE THAT <*type*> is the special form for coercion in cython if pself.price > pother.price: return 1 elif pself.price < pother.price: return -1 else: return 0 cdef void *good_copy(void *self, void *other): # NOTE THAT cython does NOT support unary operator * in C, # use some_pointer[0], instead of *some_pointer to reference # the pointer (<good_t *>self)[0] = (<good_t *>other)[0] return self
Cython
cdef void good_swap(void *self, void *other): if self == other: return cdef good_t temp = (<good_t *>self)[0] (<good_t *>self)[0] = (<good_t *>other)[0] (<good_t *>other)[0] = temp return cdef class MinHeap: """ Minimum heap container, a wrapper based on an implementation in C. >>>from minheap import MinHeap >>>heap=MinHeap() >>>heap.push({"id":1, "price":1.0}) >>>heap.peek() {"id":1, "price":1.0} >>>item=heap.pop() item == {"id":1, "price":1.0} >>>heap.peek() raise IndexError >>>heap.pop() raise IndexError """ cdef cyminheap.minheap_t *_c_minheap # cython garantees that __cinit__ would be called when a new # MinHeap object is instantiated. Likewise, when this object # is no longer referenced by any others, __dealloc__ would be # called before this object is reclaimed by python runtime def __cinit__(self): cdef uint32_t initial_number = 0 self._c_minheap = cyminheap.minheap_create(initial_number, sizeof(good_t), <cyminheap.compare>good_cmp, <cyminheap.copy>good_copy, <cyminheap.swap>good_swap) if self._c_minheap is NULL: raise MemoryError() def __dealloc__(self): if self._c_minheap is not NULL: cyminheap.minheap_free(self._c_minheap) # since __cinit__ has already created the heap itself, no further # operations need to be done in __init__ def __init__(self): pass cdef void _c_push(self, void *item): cyminheap.minheap_push(self._c_minheap, item) cpdef push(self, good_t item): self._c_push(&item) cdef good_t * _c_pop(self): return <good_t*>cyminheap.minheap_pop(self._c_minheap) # NOTE THAT by defining a function through 'def', it means it's a # regular python function. Therefore, whenever it encounters an exception # during the running of function, the exception would be automatically # propagated to the caller by cython. Howerver, if define a function # through 'cdef' or 'cpdef', in order to to propagate exception, you have to # declare it explcitely by 'except?/*/-1' statement, otherwise, the exception # would be ignored by default, and just posts a warning in the runtime def pop(self): cdef good_t *data = self._c_pop() if data is NULL: raise IndexError("Can not pop from an empty heap.") else: return data[0] cdef good_t * _c_peek(self): return <good_t*>cyminheap.minheap_min(self._c_minheap) def peek(self): cdef good_t *data = self._c_peek() if data is NULL: raise IndexError("Can not peek from an empty heap.") else: return data[0] <|end_of_text|># cython: language_level = 3, boundscheck = False cdef extern from "../../../src/objects/tests/ism.h": unsigned short test_ism_initialize() unsigned short test_ism_free() <|end_of_text|>#cython: language_level=3, boundscheck=False, wraparound=False, nonecheck=False, cdivision=True #distutils: define_macros=NPY_NO_DEPRECATED_API=NPY_1_7_API_VERSION #distutils: language = c++ # -*- coding: utf-8 -*- __version__="0.2" __doc__=''' ############## CYTHON RASTERIZATION & UTILS ############################# ### Author: Pedro Henrique A. Hasselmann, Dr. (OBSPM-Lesia) ### Last Modified: April, 2021 ### ### requirements: ### Cython, cpp compiler ### ### Main Functions: ### rebase_c ### ### ### ### ### ### ################################################################################ ''' # Cythonize import cython cimport cython from cython.parallel import prange, parallel from cython cimport view as cview from cpython cimport array from libc.math cimport ceil from libc.string cimport memcpy, memset #from libcpp.vector cimport vector import numpy as np cimport numpy as np from numpy import ndarray, uint8, uint16, uint32, uint64, int32, float32, float64, uint8 from numpy cimport ndarray, uint8_t, uint16_t, uint32_t, int32_t, int64_t, float32_t, float64_t from numpy.math cimport INFINITY np.import_array() # NUMBER OF THREADS cdef short thrn=4 ################ ### FUNCTIONS ## ################ cpdef rebase_c(double[:,::1] v, # Vertices N columns unsigned int[:,::1] fc, # Facet indexes ): cdef: ssize_t i, j ssize_t F = fc.shape[0] double[:,:,::1] R = np.empty((F,3,v.shape[1]), order='C', dtype=float64) double[:,::1] t = np.empty((3,v.shape[1]), order='C', dtype=float64) with nogil: for i in range(F): j = fc[i][0] R[i][0,...] = v[j,...] j = fc[i][1] R[i][1,...] = v[j,...] j = fc[i][2] R[i][2,...] = v[j,...] return np.asarray(R) cpdef weighted_average_c(float[:,::1] fpa, # Y X Facet Area float[::1] X, # Values to be broadcast ): cdef: ssize_t i unsigned int f=0 double value=0., a=0. ssize_t N = fpa.shape[0] float[:,::1] X_pix = np.empty((N,3), dtype=float32, order='C') X_pix[:,:] = -999. #ith nogil: a = fpa[0,3] #f = int(fpa[0,2]) value = a*X[0] for i in range(1,N): if (fpa[i,0] == fpa[i-1,0]) and (fpa[i,1] == fpa[i-1,1]): #f = int(fpa[i,2]) value += fpa[i,3]*X[i] a += fpa[i,3] else: #if a>0.99: # value = value/a X_pix[i,2] = value/a X_pix[i,1] = fpa[i-1,1] X_pix[i,0] = fpa[i-1,0] #print(i, N, np.asarray(X_pix[i,:])) a = fpa[i,3] #f = int(fpa[i,2]) value = a*X[i] return np.unique(np.asarray(X_pix), axis=0) #################################################################### #################### RASTERIZATION ################################# #################################################################### cdef float[:,::1] vc = np.empty((2,3), dtype=float32, order='C') cpdef raster_c((ssize_t, ssize_t) it, float[:,:,::1] V, unsigned int[::1] f, (short, short) frame, unicode mode=u'pixelation'): ''' Rasterization. Fill-in the area inside vertices (skimage.draw.polygon) -- DONE https://stackoverflow.com/questions/26807177/overlapping-polygons-in-python-pil https://stackoverflow.com/questions/42349587/cython-slow-numpy-arrays https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation Parameters ========== it : start & stop iteration (mutiprocessing.pool.map input) V : 2x3xN numpy.array, vertices triplet per facet facetid : N numpy.array, original facet id frame : frame size in pixels mode : 'pixelation' or 'occultation' Output ====== image : 2D int32 numpy.array facet_pix : 3xN numpy.array, X and Y pixel-coordinates alongside with facetid. ''' #from skimage.draw import polygon, polygon_perimeter cdef: ssize_t j pa = TriangleAccumulator(frame[1], frame[0], mem_fac=4) #with nogil: if mode == 'pixelation': for j in range(it[0],it[1]): # Tringular facet area projection (polygon filling) vc[...] = V[...,j] pa.superimpose_polygon(vc[0,:],vc[1,:],
Cython
f[j]) #print('v', j) #print('f', f[j]) #print('n', pa.n) #r = np.asarray(v[0,:], dtype=int32) #c = np.asarray(v[1,:], dtype=int32) #print(rr_area) #print(cc_area) #print(r) #print(c) #image[rr_area, cc_area]=n+1 #image[rr_peri, cc_peri]=n+1 #image[r,c]=n+1 #raw_input(image[np.min(r)-3:np.max(r)+3,np.min(c)-3:np.max(c)+3]) if mode == 'occultation': for j in range(it[0],it[1]): # Tringular facet area projection (polygon filling) vc[...] = V[...,j] pa.add_polygon(vc[0,:],vc[1,:], 1) return np.asarray(pa.image), np.stack((pa.rr, pa.cc, pa.ff), axis=-1).astype(uint32) ############################## ## DRAW.POLYGON ACCUMULATOR ## ############################## # https://stackoverflow.com/questions/2049582/how-to-determine-if-a-point-is-in-a-2d-triangle cdef bint point_in_triangle(float[::1] xp, float[::1] yp, float x, float y) nogil: cdef: float dX = x - xp[0] float dY = y - yp[0] float dX20 = xp[2] - xp[0] float dY20 = yp[2] - yp[0] float dX10 = xp[1] - xp[0] float dY10 = yp[1] - yp[0] float s = (dY20*dX) - (dX20*dY) float t = (dX10*dY) - (dY10*dX) float D = (dX10*dY20) - (dY10*dX20) if D<0: return (s<=0) & (t<=0) & ((s + t)>=D) else: return (s>=0) & (t>=0) & ((s + t)<=D) cdef (float, float) minmax(float[::1] arr) nogil: cdef float min = INFINITY cdef float max = -INFINITY cdef ssize_t i, L = arr.shape[0] for i in range(L): if arr[i] < min: min = arr[i] if arr[i] > max: max = arr[i] return min, max #https://stackoverflow.com/questions/26807177/overlapping-polygons-in-python-pil cdef class TriangleAccumulator: cdef: short width, height int n unsigned int[:, ::1] image unsigned short[::1] rr, cc unsigned int[::1] ff def __cinit__(self, short width, short height, short mem_fac): self.n = 0 self.width = width self.height = height shape = (height, width) self.image = np.zeros(shape, dtype=uint32) self.rr = np.empty(mem_fac*(self.width-1)*(self.height-1), dtype=uint16, order='C') self.cc = np.empty(mem_fac*(self.width-1)*(self.height-1), dtype=uint16, order='C') self.ff = np.empty(mem_fac*(self.width-1)*(self.height-1), dtype=uint32, order='C') def reset(self): self.image[:, :] = 0 # Rasterization of triangles in self.image are **summed** over the previous values cdef void add_polygon(self, float[::1] ya, float[::1] xa, unsigned int value) nogil: cdef float minya, maxya, minxa, maxxa minya, maxya = minmax(ya) minxa, maxxa = minmax(xa) cdef: ssize_t minr = int(max(0, minya)) ssize_t maxr = int(ceil(maxya)) ssize_t minc = int(max(0, minxa)) ssize_t maxc = int(ceil(maxxa)) unsigned short r, c maxr = min(self.height -1, maxr) maxc = min(self.width -1, maxc) #with nogil: for r in range(minr, maxr+1): for c in range(minc, maxc+1): if (point_in_triangle(xa, ya, c, r+0.5) or point_in_triangle(xa, ya, c+0.5, r) or point_in_triangle(xa, ya, c-0.5, r) or point_in_triangle(xa, ya, c, r-0.5) or point_in_triangle(xa, ya, c+0.5, r+0.5) or point_in_triangle(xa, ya, c-0.5, r-0.5) or point_in_triangle(xa, ya, c-0.5, r+0.5) or point_in_triangle(xa, ya, c+0.5, r-0.5) or point_in_triangle(xa, ya, c, r) ): self.image[r, c] += value self.rr[self.n] = r self.cc[self.n] = c self.ff[self.n] = value self.n +=1 #return rr, cc # Rasterization of triangles in self.image are **superimposed** over the previous values #@cython.boundscheck(False) # Deactivate bounds checking #@cython.wraparound(False) # Deactivate negative indexing. #@cython.nonecheck(False) #@cython.cdivision(True) cdef void superimpose_polygon(self, float[::1] ya, float[::1] xa, unsigned int value) nogil: cdef float minya, maxya, minxa, maxxa minya, maxya = minmax(ya) minxa, maxxa = minmax(xa) cdef: ssize_t minr = int(max(0, minya)) ssize_t maxr = int(ceil(maxya)) ssize_t minc = int(max(0, minxa)) ssize_t maxc = int(ceil(maxxa)) unsigned short r, c maxr = min(self.height -1, maxr) maxc = min(self.width -1, maxc) #with nogil: for r in range(minr, maxr+1): for c in range(minc, maxc+1): if (point_in_triangle(xa, ya, c, r+0.5) or point_in_triangle(xa, ya, c+0.5, r) or point_in_triangle(xa, ya, c-0.5, r) or point_in_triangle(xa, ya, c, r-0.5) or point_in_triangle(xa, ya, c+0.5, r+0.5) or point_in_triangle(xa, ya, c-0.5, r-0.5) or point_in_triangle(xa, ya, c-0.5, r+0.5) or point_in_triangle(xa, ya, c+0.5, r-0.5) or point_in_triangle(xa, ya, c, r) ): self.image[r, c] = value self.rr[self.n] = r self.cc[self.n] = c self.ff[self.n] = value self.n +=1 #print('sizes') #print(self.n) #print(maxc-minc+1) #print(maxr-minr+1) #print('pixel') #print(value) #print(r, self.rr[self.n-1]) #print(self.rr[self.n]) #input('raster pixel enter') #return rr, cc # END <|end_of_text|>from cpython cimport bool from libc.stdint cimport int64_t, int32_t from libc.stdlib cimport calloc, free from libc.string cimport memcpy, memcmp from collections import namedtuple cdef extern from "src/sophia.h" nogil: cdef void *sp_env() cdef void *sp_document(void *) cdef int sp_setstring(void*, const char*, const void*, int) cdef int sp_setint(void*, const char*, int64_t) cdef void *sp_getobject(void*, const char*) cdef void *sp_getstring(void*, const char*, int*) cdef int64_t sp_getint(void*, const char*) cdef int sp_open(void *) cdef int sp_destroy(void *) cdef int sp_set(void*, void*) cdef
Cython
int sp_upsert(void*, void*) cdef int sp_delete(void*, void*) cdef void *sp_get(void*, void*) cdef void *sp_cursor(void*) cdef void *sp_begin(void *) cdef int sp_prepare(void *) cdef int sp_commit(void *) class SophiaError(Exception): pass class SophiaClosed(SophiaError): pass class DocumentClosed(SophiaClosed): pass class BadQuery(SophiaError): pass class TransactionError(SophiaError): pass class TransactionRollback(TransactionError): pass class TransactionLocked(TransactionError): pass IndexType = namedtuple('IndexType', ('value', 'is_bytes')) cdef class Types: string = IndexType(b'string', True) u64 = IndexType(b'u64', False) u32 = IndexType(b'u32', False) u16 = IndexType(b'u16', False) u8 = IndexType(b'u8', False) u64_rev = IndexType(b'u64_rev', False) u32_rev = IndexType(b'u32_rev', False) u16_rev = IndexType(b'u16_rev', False) u8_rev = IndexType(b'u8_rev', False) cdef class cstring: """ Simple lazy string on dynamic memory """ cdef readonly char *c_str cdef readonly size_t size @classmethod def from_string(cls, str string): return cls(string.encode()) def __cinit__(self, bytes value): cdef char* cvalue = value self.size = len(value) with nogil: self.c_str = <char*> calloc(self.size + 1, sizeof(char)) memcpy(<void*> self.c_str, <void*> cvalue, self.size) def __dealloc__(self): if self.c_str!= NULL: free(self.c_str) def __str__(self): return "%r" % self.value def __repr__(self): return self.__str__() @property def value(self): return self.c_str[:self.size] def __eq__(self, cstring other): cdef int result if self.size!= other.size: return False with nogil: result = memcmp(self.c_str, other.c_str, self.size) return result == 0 cdef class Environment(object): cdef void *env cdef readonly bool _closed cdef readonly Configuration _configuration def __check_error(self, int rc): if rc!= -1: return rc try: error = self.get_string('sophia.error').decode('utf-8', 'ignore') except KeyError: error = 'unknown error occurred.' raise SophiaError(error) def check_closed(self): if self._closed: raise SophiaClosed("Environment closed") def __cinit__(self): self.env = sp_env() self._closed = None self._configuration = Configuration(self) @property def configuration(self) -> dict: return dict(self._configuration) @property def is_closed(self): return self._closed @property def is_opened(self): return self._closed is not None def open(self) -> int: self.check_closed() cdef int rc with nogil: rc = sp_open(self.env) return self.__check_error(rc) def close(self) -> int: self.check_closed() cdef int rc if self.is_opened and self.env!= NULL: rc = sp_destroy(self.env) self._closed = True return self.__check_error(rc) def __dealloc__(self): if not self._closed: self.close() def get_string(self, str key) -> bytes: self.check_closed() cdef char* buf cdef int nlen cdef cstring ckey = cstring.from_string(key) with nogil: buf = <char *>sp_getstring(self.env, ckey.c_str, &nlen) if buf == NULL: raise KeyError("Key %r not found in document" % key) value = buf[:nlen] return value def get_int(self, str key) -> int: self.check_closed() cdef cstring ckey = cstring.from_string(key) cdef int64_t result with nogil: result = sp_getint(self.env, ckey.c_str) return result def set_string(self, str key, bytes value) -> int: self.check_closed() cdef int rc cdef cstring ckey = cstring.from_string(key) cdef cstring cvalue = cstring(value) with nogil: rc = sp_setstring(self.env, ckey.c_str, cvalue.c_str, cvalue.size) self.__check_error(rc) return rc def set_int(self, str key, int value) -> int: self.check_closed() cdef cstring ckey = cstring.from_string(key) cdef int64_t cvalue = value cdef int rc with nogil: rc = sp_setint(self.env, ckey.c_str, cvalue) self.__check_error(rc) return rc def get_object(self, str name) -> Database: self.check_closed() cdef cstring cname = cstring.from_string(name) db = Database(self, name) with nogil: db.db = sp_getobject(self.env, cname.c_str) if db.db == NULL: self.__check_error(-1) return db def transaction(self) -> Transaction: return Transaction(self) cdef class Configuration: cdef readonly Environment env def __cinit__(self, Environment env): self.env = env def __iter__(self): self.env.check_closed() cdef void *cursor with nogil: cursor = sp_getobject(self.env.env, NULL) if cursor == NULL: try: error = self.env.get_string('sophia.error').decode('utf-8', 'ignore') except KeyError: error = 'unknown error occurred.' raise SophiaError(error) cdef char *key, *value cdef int key_len, value_len cdef void* obj try: while True: with nogil: obj = sp_get(cursor, obj) if obj == NULL: raise StopIteration with nogil: key = <char*> sp_getstring(obj, 'key', &key_len) value = <char*> sp_getstring(obj, 'value', &value_len) if key_len > 0: key_len -= 1 if value_len > 0: value_len -= 1 k = key[:key_len].decode() v = value[:value_len].decode() key_len = 0 value_len = 0 if v.isdigit(): v = int(v) yield k, v finally: if cursor!= NULL: with nogil: sp_destroy(cursor) cdef class Transaction: cdef void* tx cdef readonly Environment env cdef readonly bool closed cdef readonly list __refs def __check_error(self, int rc): if rc!= -1: return rc try: error = self.env.get_string('sophia.error').decode('utf-8', 'ignore') except KeyError: error = 'unknown error occurred.' raise SophiaError(error) def __check_closed(self): if self.closed: raise TransactionError('Transaction closed') self.env.check_closed() def __cinit__(self, Environment env): self.closed = True self.env = env with nogil: self.tx = sp_begin(env.env) if not self.tx: self.__check_error(-1) self.closed = False self.__refs = [] def set(self, Document document) -> int: self.__check_closed() if document.closed: raise DocumentClosed cdef int rc with nogil: rc = sp_set(self.tx, document.obj) document.obj = NULL self.__check_error(rc) self.__refs.append(Document) return rc def get(self, Document query) -> Document: cdef void* result_ptr = NULL cdef Database db = query.db with nogil: result_ptr = sp_get(self.tx, query.obj) # sp_get destroy object inside query.obj = NULL if result_ptr == NULL: raise LookupError result = Document(db, external=True, readonly=True) result.obj = result_ptr result.external = False return result def delete(self, Document query): cdef int rc with nogil: rc = sp_delete(self.tx, query.obj) query.obj = NULL return self.__check_error(rc) def commit(self) -> int: self.__check_closed() cdef int rc with nogil: rc = sp_commit(self.tx) self.__check_error(rc) self.closed = True self.tx = NULL if rc == 0: return 0 elif rc == 1: raise TransactionRollback elif rc ==
Cython
2: raise TransactionLocked def rollback(self) -> int: self.__check_closed() if self.tx!= NULL: with nogil: sp_destroy(self.tx) self.tx = NULL self.closed = True def __enter__(self): self.__check_closed() return self def __exit__(self, exc_type, exc_val, exc_tb): if exc_type is not None: self.rollback() return self.commit() cdef class Database: cdef readonly str name cdef readonly Environment env cdef void* db def __cinit__(self, Environment env, str name): self.name = name self.env = env def __check_error(self, int rc): if rc!= -1: return rc try: error = self.env.get_string('sophia.error').decode('utf-8', 'ignore') except KeyError: error = 'unknown error occurred.' raise SophiaError(error) def document(self) -> Document: doc = Document(self) with nogil: doc.obj = sp_document(self.db) return doc def get(self, Document query) -> Document: cdef void* result_ptr = NULL with nogil: result_ptr = sp_get(self.db, query.obj) # sp_get destroy object inside query.obj = NULL if result_ptr == NULL: raise LookupError result = Document(self, external=True, readonly=True) result.obj = result_ptr result.external = False return result def set(self, Document document) -> int: cdef int rc if document.closed: raise DocumentClosed with nogil: rc = sp_set(self.db, document.obj) document.obj = NULL return self.__check_error(rc) def delete(self, Document document) -> int: cdef int rc with nogil: rc = sp_delete(self.db, document.obj) document.obj = NULL return self.__check_error(rc) cdef int32_t get_length(self) nogil: cdef void* obj cdef void* cursor cdef size_t result = 0 obj = sp_document(self.db) if obj == NULL: return -1 cursor = sp_cursor(self.env.env) if not cursor: return -1 while True: obj = sp_get(cursor, obj) if obj!= NULL: result += 1 else: break if cursor!= NULL: sp_destroy(cursor) return result def __len__(self) -> int: cdef int32_t result = 0 with nogil: result = self.get_length() return self.__check_error(result) def cursor(self, dict query) -> Cursor: return Cursor(self.env, query, self) def transaction(self) -> Transaction: self.env.check_closed() return self.env.transaction() def delete_many(self, **query): query.setdefault('order', '>=') if query['order'] not in ('>=', '<=', '>', '<'): raise ValueError('Invalid order') cdef void* obj with nogil: obj = sp_document(self.db) if obj == NULL: self.__check_error(-1) prefix = '%s.scheme.' % self.name key_fields = [] for key, value in self.env._configuration: if not key.startswith(prefix): continue if isinstance(value, int): continue if ',key(' not in value: continue key_fields.append(( key.replace(prefix, '').encode(), 'string' in value )) cdef size_t key_num = len(key_fields) cdef char **keys = <char**> calloc(sizeof(char*), key_num) cdef char *str_key = <char*> calloc(sizeof(char), key_num) for idx, item in enumerate(key_fields): key, is_str = item keys[idx] = key str_key[idx] = is_str document = Document(self, external=True) document.obj = obj for key, value in query.items(): if not isinstance(key, str): raise BadQuery("Bad key. Key must be str %r %r" % ( key, type(key) )) if isinstance(value, int): document.set_int(key, value) elif isinstance(value, bytes): document.set_string(key, value) elif isinstance(value, str): document.set_string(key, value.encode()) else: raise BadQuery( "Bad value. Value must be bytes or int not %r %r" % ( value, type(value) ) ) document.obj = NULL cdef void* tx cdef void* cursor with nogil: cursor = sp_cursor(self.env.env) tx = sp_begin(self.env.env) if tx == NULL or cursor == NULL: self.__check_error(-1) cdef size_t result = 0 cdef void *rm_obj cdef char* str_v cdef int64_t int_v cdef int nlen with nogil: while True: obj = sp_get(cursor, obj) if obj == NULL: if cursor!= NULL: sp_destroy(cursor) break rm_obj = sp_document(self.db) for i in range(key_num): k = keys[i] if str_key[i]: str_v = <char *>sp_getstring(obj, keys[i], &nlen) sp_setstring(rm_obj, keys[i], str_v, nlen) nlen = 0 else: int_v = sp_getint(obj, keys[i]) sp_setint(rm_obj, keys[i], int_v) str_v = b'' int_v = 0 sp_delete(tx, rm_obj) result += 1 sp_commit(tx) free(str_key) free(keys) return result cdef class Cursor: cdef readonly Environment env cdef readonly Database db cdef readonly dict query def __raise_error(self): try: error = self.env.get_string( 'sophia.error' ).decode('utf-8', 'ignore') except KeyError: error = 'unknown error occurred.' raise SophiaError(error) def __cinit__(self, Environment env, dict query, Database db): self.db = db self.env = env self.query = query def __init__(self, Environment env, dict query, Database db): self.query.setdefault('order', '>=') if self.query['order'] not in ('>=', '<=', '>', '<'): raise ValueError('Invalid order') def __iter__(self): document = Document(self.db, external=True) cdef void* obj with nogil: obj = sp_document(self.db.db) if obj == NULL: self.__raise_error() cdef void* cursor with nogil: cursor = sp_cursor(self.env.env) if not cursor: self.__raise_error() document.obj = obj for key, value in self.query.items(): if not isinstance(key, str): raise BadQuery("Bad key. Key must be str %r %r" % ( key, type(key) )) if isinstance(value, int): document.set_int(key, value) elif isinstance(value, bytes): document.set_string(key, value) elif isinstance(value, str): document.set_string(key, value.encode()) else: raise BadQuery( "Bad value. Value must be bytes or int not %r %r" % ( value, type(value) ) ) try: while True: with nogil: obj = sp_get(cursor, obj) if obj == NULL: raise StopIteration else: document.obj = obj yield document document.obj = NULL finally: if cursor!= NULL: with nogil: sp_destroy(cursor) cdef class Document: cdef void* obj cdef readonly Database db cdef char external cdef readonly list __refs cdef readonly bool readonly def __check_closed(self): if self.closed: raise DocumentClosed if self.db.env.is_closed: raise SophiaClosed def __cinit__(self, Database db, external=False, readonly=False): self.db = db self.external = 1 if external else 0 self.__refs = [] self.readonly = readonly if not self.external: with nogil: self.obj = sp_document(db.db) if self.obj == NULL: self.__check_error(-1) def __dealloc__(self): if self.obj!= NULL and not self.external: with nogil: sp_destroy(self.obj) self.__refs[:] = [] self.obj = NULL @property def closed(self) -> bool: return self.obj == NULL def __check_error(self, int rc): if rc!= -1: return try: error = self.db.env.get_string( 'sophia.error' ).decode('utf-8', 'ignore') except KeyError: error = 'unknown error occurred
Cython
.' raise SophiaError(error) def get_string(self, str key) -> bytes: self.__check_closed() cdef char* buf cdef int nlen cdef bytes bkey cdef cstring ckey = cstring.from_string(key) with nogil: buf = <char *>sp_getstring(self.obj, ckey.c_str, &nlen) if buf == NULL: raise KeyError('Key %r not found in the document' % key) cdef bytes value = buf[:nlen] return value def get_int(self, str key) -> int: self.__check_closed() cdef cstring ckey = cstring.from_string(key) cdef int64_t result with nogil: result = sp_getint(self.obj, ckey.c_str) return result def set_string(self, str key, bytes value) -> int: if self.readonly: raise RuntimeError('read-only document') self.__check_closed() cdef int rc cdef cstring ckey = cstring.from_string(key) cdef cstring cvalue = cstring(value) with nogil: rc = sp_setstring(self.obj, ckey.c_str, cvalue.c_str, cvalue.size) self.__check_error(rc) self.__refs.append(ckey) self.__refs.append(cvalue) return rc def set_int(self, str key, int value) -> int: if self.readonly: raise RuntimeError('read-only document') self.__check_closed() cdef int rc cdef cstring ckey = cstring.from_string(key) cdef int64_t cvalue = value with nogil: rc = sp_setint(self.obj, ckey.c_str, cvalue) return self.__check_error(rc) <|end_of_text|># -*- coding: utf-8 -*- # distutils: language=c # cython: initializedcheck=False # cython: nonecheck=False # cython: overflowcheck=False # cython: boundscheck=False from myawesomelib.types cimport data_t cimport numpy as cnp cimport libc.math cdef data_t _sigmoid(data_t x) nogil: return 1. / (1. + libc.math.exp(-x)) cdef data_t _logit(data_t x) nogil: return libc.math.log(x / (1. - x)) <|end_of_text|># cython: infer_types=True, profile=True from typing import Any, Callable, Dict, Iterable import srsly from cpython.exc cimport PyErr_SetFromErrno from libc.stdint cimport int32_t, int64_t from libc.stdio cimport fclose, feof, fopen, fread, fseek, fwrite from libcpp.vector cimport vector from preshed.maps cimport PreshMap import warnings from pathlib import Path from..tokens import Span from..typedefs cimport hash_t from.. import util from..errors import Errors, Warnings from..util import SimpleFrozenList, ensure_path from..vocab cimport Vocab from.kb cimport KnowledgeBase from.candidate import Candidate as Candidate cdef class InMemoryLookupKB(KnowledgeBase): """An `InMemoryLookupKB` instance stores unique identifiers for entities and their textual aliases, to support entity linking of named entities to real-world concepts. DOCS: https://spacy.io/api/inmemorylookupkb """ def __init__(self, Vocab vocab, entity_vector_length): """Create an InMemoryLookupKB.""" super().__init__(vocab, entity_vector_length) self._entry_index = PreshMap() self._alias_index = PreshMap() self._create_empty_vectors(dummy_hash=self.vocab.strings[""]) def _initialize_entities(self, int64_t nr_entities): self._entry_index = PreshMap(nr_entities + 1) self._entries = entry_vec(nr_entities + 1) def _initialize_vectors(self, int64_t nr_entities): self._vectors_table = float_matrix(nr_entities + 1) def _initialize_aliases(self, int64_t nr_aliases): self._alias_index = PreshMap(nr_aliases + 1) self._aliases_table = alias_vec(nr_aliases + 1) def is_empty(self): return len(self) == 0 def __len__(self): return self.get_size_entities() def get_size_entities(self): return len(self._entry_index) def get_entity_strings(self): return [self.vocab.strings[x] for x in self._entry_index] def get_size_aliases(self): return len(self._alias_index) def get_alias_strings(self): return [self.vocab.strings[x] for x in self._alias_index] def add_entity(self, str entity, float freq, vector[float] entity_vector): """ Add an entity to the KB, optionally specifying its log probability based on corpus frequency. Return the hash of the entity ID/name at the end. """ cdef hash_t entity_hash = self.vocab.strings.add(entity) # Return if this entity was added before if entity_hash in self._entry_index: warnings.warn(Warnings.W018.format(entity=entity)) return # Raise an error if the provided entity vector is not of the correct length if len(entity_vector)!= self.entity_vector_length: raise ValueError( Errors.E141.format( found=len(entity_vector), required=self.entity_vector_length ) ) vector_index = self.c_add_vector(entity_vector=entity_vector) new_index = self.c_add_entity( entity_hash=entity_hash, freq=freq, vector_index=vector_index, feats_row=-1 ) # Features table currently not implemented self._entry_index[entity_hash] = new_index return entity_hash cpdef set_entities(self, entity_list, freq_list, vector_list): if len(entity_list)!= len(freq_list) or len(entity_list)!= len(vector_list): raise ValueError(Errors.E140) nr_entities = len(set(entity_list)) self._initialize_entities(nr_entities) self._initialize_vectors(nr_entities) i = 0 cdef KBEntryC entry cdef hash_t entity_hash while i < len(entity_list): # only process this entity if its unique ID hadn't been added before entity_hash = self.vocab.strings.add(entity_list[i]) if entity_hash in self._entry_index: warnings.warn(Warnings.W018.format(entity=entity_list[i])) else: entity_vector = vector_list[i] if len(entity_vector)!= self.entity_vector_length: raise ValueError( Errors.E141.format( found=len(entity_vector), required=self.entity_vector_length ) ) entry.entity_hash = entity_hash entry.freq = freq_list[i] self._vectors_table[i] = entity_vector entry.vector_index = i entry.feats_row = -1 # Features table currently not implemented self._entries[i+1] = entry self._entry_index[entity_hash] = i+1 i += 1 def contains_entity(self, str entity): cdef hash_t entity_hash = self.vocab.strings.add(entity) return entity_hash in self._entry_index def contains_alias(self, str alias): cdef hash_t alias_hash = self.vocab.strings.add(alias) return alias_hash in self._alias_index def add_alias(self, str alias, entities, probabilities): """ For a given alias, add its potential entities and prior probabilies to the KB. Return the alias_hash at the end """ if alias is None or len(alias) == 0: raise ValueError(Errors.E890.format(alias=alias)) previous_alias_nr = self.get_size_aliases() # Throw an error if the length of entities and probabilities are not the same if not len(entities) == len(probabilities): raise ValueError( Errors.E132.format( alias=alias, entities_length=len(entities), probabilities_length=len(probabilities)) ) # Throw an error if the probabilities sum up to more than 1 (allow for # some rounding errors) prob_sum = sum(probabilities) if prob_sum > 1.00001: raise ValueError(Errors.E133.format(alias=alias, sum=prob_sum)) cdef hash_t alias_hash = self.vocab.strings.add(alias) # Check whether this alias was added before if alias_hash in self._alias_index: warnings.warn(Warnings.W017.format(alias=alias)) return cdef vector[int64_t] entry_indices cdef vector[float] probs for entity, prob in zip(entities, probabilities): entity_hash = self.vocab.strings[entity] if entity_hash not in self._entry_index: raise ValueError(Errors.E134.format(entity=entity)) entry_index = <int64_t>self._entry_index.get(entity_hash) entry_indices.push_back(int(entry_index)) probs.push_back(float(prob)) new_index = self.c_add_aliases( alias_hash=alias_hash, entry_indices=entry_indices, probs=probs ) self._alias_index[alias_hash] = new_index if previous_alias_nr + 1!= self.get_size_aliases(): raise RuntimeError(Errors.E891.format(alias=alias)) return alias_hash def
Cython
append_alias( self, str alias, str entity, float prior_prob, ignore_warnings=False ): """ For an alias already existing in the KB, extend its potential entities with one more. Throw a warning if either the alias or the entity is unknown, or when the combination is already previously recorded. Throw an error if this entity+prior prob would exceed the sum of 1. For efficiency, it's best to use the method `add_alias` as much as possible instead of this one. """ # Check if the alias exists in the KB cdef hash_t alias_hash = self.vocab.strings[alias] if alias_hash not in self._alias_index: raise ValueError(Errors.E176.format(alias=alias)) # Check if the entity exists in the KB cdef hash_t entity_hash = self.vocab.strings[entity] if entity_hash not in self._entry_index: raise ValueError(Errors.E134.format(entity=entity)) entry_index = <int64_t>self._entry_index.get(entity_hash) # Throw an error if the prior probabilities (including the new one) # sum up to more than 1 alias_index = <int64_t>self._alias_index.get(alias_hash) alias_entry = self._aliases_table[alias_index] current_sum = sum([p for p in alias_entry.probs]) new_sum = current_sum + prior_prob if new_sum > 1.00001: raise ValueError(Errors.E133.format(alias=alias, sum=new_sum)) entry_indices = alias_entry.entry_indices is_present = False for i in range(entry_indices.size()): if entry_indices[i] == int(entry_index): is_present = True if is_present: if not ignore_warnings: warnings.warn(Warnings.W024.format(entity=entity, alias=alias)) else: entry_indices.push_back(int(entry_index)) alias_entry.entry_indices = entry_indices probs = alias_entry.probs probs.push_back(float(prior_prob)) alias_entry.probs = probs self._aliases_table[alias_index] = alias_entry def get_candidates(self, mention: Span) -> Iterable[Candidate]: return self.get_alias_candidates(mention.text) # type: ignore def get_alias_candidates(self, str alias) -> Iterable[Candidate]: """ Return candidate entities for an alias. Each candidate defines the entity, the original alias, and the prior probability of that alias resolving to that entity. If the alias is not known in the KB, and empty list is returned. """ cdef hash_t alias_hash = self.vocab.strings[alias] if alias_hash not in self._alias_index: return [] alias_index = <int64_t>self._alias_index.get(alias_hash) alias_entry = self._aliases_table[alias_index] return [Candidate(kb=self, entity_hash=self._entries[entry_index].entity_hash, entity_freq=self._entries[entry_index].freq, entity_vector=self._vectors_table[ self._entries[entry_index].vector_index ], alias_hash=alias_hash, prior_prob=prior_prob) for (entry_index, prior_prob) in zip( alias_entry.entry_indices, alias_entry.probs ) if entry_index!= 0] def get_vector(self, str entity): cdef hash_t entity_hash = self.vocab.strings[entity] # Return an empty list if this entity is unknown in this KB if entity_hash not in self._entry_index: return [0] * self.entity_vector_length entry_index = self._entry_index[entity_hash] return self._vectors_table[self._entries[entry_index].vector_index] def get_prior_prob(self, str entity, str alias): """ Return the prior probability of a given alias being linked to a given entity, or return 0.0 when this combination is not known in the knowledge base.""" cdef hash_t alias_hash = self.vocab.strings[alias] cdef hash_t entity_hash = self.vocab.strings[entity] if entity_hash not in self._entry_index or alias_hash not in self._alias_index: return 0.0 alias_index = <int64_t>self._alias_index.get(alias_hash) entry_index = self._entry_index[entity_hash] alias_entry = self._aliases_table[alias_index] for (entry_index, prior_prob) in zip( alias_entry.entry_indices, alias_entry.probs ): if self._entries[entry_index].entity_hash == entity_hash: return prior_prob return 0.0 def to_bytes(self, **kwargs): """Serialize the current state to a binary string. """ def serialize_header(): header = ( self.get_size_entities(), self.get_size_aliases(), self.entity_vector_length ) return srsly.json_dumps(header) def serialize_entries(): i = 1 tuples = [] for entry_hash, entry_index in sorted( self._entry_index.items(), key=lambda x: x[1] ): entry = self._entries[entry_index] assert entry.entity_hash == entry_hash assert entry_index == i tuples.append((entry.entity_hash, entry.freq, entry.vector_index)) i = i + 1 return srsly.json_dumps(tuples) def serialize_aliases(): i = 1 headers = [] indices_lists = [] probs_lists = [] for alias_hash, alias_index in sorted( self._alias_index.items(), key=lambda x: x[1] ): alias = self._aliases_table[alias_index] assert alias_index == i candidate_length = len(alias.entry_indices) headers.append((alias_hash, candidate_length)) indices_lists.append(alias.entry_indices) probs_lists.append(alias.probs) i = i + 1 headers_dump = srsly.json_dumps(headers) indices_dump = srsly.json_dumps(indices_lists) probs_dump = srsly.json_dumps(probs_lists) return srsly.json_dumps((headers_dump, indices_dump, probs_dump)) serializers = { "header": serialize_header, "entity_vectors": lambda: srsly.json_dumps(self._vectors_table), "entries": serialize_entries, "aliases": serialize_aliases, } return util.to_bytes(serializers, []) def from_bytes(self, bytes_data, *, exclude=tuple()): """Load state from a binary string. """ def deserialize_header(b): header = srsly.json_loads(b) nr_entities = header[0] nr_aliases = header[1] entity_vector_length = header[2] self._initialize_entities(nr_entities) self._initialize_vectors(nr_entities) self._initialize_aliases(nr_aliases) self.entity_vector_length = entity_vector_length def deserialize_vectors(b): self._vectors_table = srsly.json_loads(b) def deserialize_entries(b): cdef KBEntryC entry tuples = srsly.json_loads(b) i = 1 for (entity_hash, freq, vector_index) in tuples: entry.entity_hash = entity_hash entry.freq = freq entry.vector_index = vector_index entry.feats_row = -1 # Features table currently not implemented self._entries[i] = entry self._entry_index[entity_hash] = i i += 1 def deserialize_aliases(b): cdef AliasC alias i = 1 all_data = srsly.json_loads(b) headers = srsly.json_loads(all_data[0]) indices = srsly.json_loads(all_data[1]) probs = srsly.json_loads(all_data[2]) for header, indices, probs in zip(headers, indices, probs): alias_hash, _candidate_length = header alias.entry_indices = indices alias.probs = probs self._aliases_table[i] = alias self._alias_index[alias_hash] = i i += 1 setters = { "header": deserialize_header, "entity_vectors": deserialize_vectors, "entries": deserialize_entries, "aliases": deserialize_aliases, } util.from_bytes(bytes_data, setters, exclude) return self def to_disk(self, path, exclude: Iterable[str] = SimpleFrozenList()): path = ensure_path(path) if not path.exists(): path.mkdir(parents=True) if not path.is_dir(): raise ValueError(Errors.E928.format(loc=path)) serialize = {} serialize["contents"] = lambda p: self.write_contents(p) serialize["strings.json"] = lambda p: self.vocab.strings.to_disk(p) util.to_disk(path, serialize, exclude) def from_disk(self, path, exclude: Iterable[str] = SimpleFrozenList()): path = ensure_path(path) if not path.exists(): raise ValueError(Errors.E929.format(loc=path)) if not path.is_dir(): raise ValueError(Errors.E928.format(loc=path)) deserialize: Dict[str, Callable[[Any], Any]] = {} deserialize["contents"] = lambda p: self.read_contents(p) deserialize["strings.json"] = lambda p: self.vocab.strings.from_disk(p) util.from_disk(path, deserialize, exclude) def write_contents(self, file_path): cdef Writer writer =
Cython
Writer(file_path) writer.write_header(self.get_size_entities(), self.entity_vector_length) # dumping the entity vectors in their original order i = 0 for entity_vector in self._vectors_table: for element in entity_vector: writer.write_vector_element(element) i = i+1 # dumping the entry records in the order in which they are in the # _entries vector. # index 0 is a dummy object not stored in the _entry_index and can # be ignored. i = 1 for entry_hash, entry_index in sorted( self._entry_index.items(), key=lambda x: x[1] ): entry = self._entries[entry_index] assert entry.entity_hash == entry_hash assert entry_index == i writer.write_entry(entry.entity_hash, entry.freq, entry.vector_index) i = i+1 writer.write_alias_length(self.get_size_aliases()) # dumping the aliases in the order in which they are in the _alias_index vector. # index 0 is a dummy object not stored in the _aliases_table and can be ignored. i = 1 for alias_hash, alias_index in sorted( self._alias_index.items(), key=lambda x: x[1] ): alias = self._aliases_table[alias_index] assert alias_index == i candidate_length = len(alias.entry_indices) writer.write_alias_header(alias_hash, candidate_length) for j in range(0, candidate_length): writer.write_alias(alias.entry_indices[j], alias.probs[j]) i = i+1 writer.close() def read_contents(self, file_path): cdef hash_t entity_hash cdef hash_t alias_hash cdef int64_t entry_index cdef float freq, prob cdef int32_t vector_index cdef KBEntryC entry cdef AliasC alias cdef float vector_element cdef Reader reader = Reader(file_path) # STEP 0: load header and initialize KB cdef int64_t nr_entities cdef int64_t entity_vector_length reader.read_header(&nr_entities, &entity_vector_length) self._initialize_entities(nr_entities) self._initialize_vectors(nr_entities) self.entity_vector_length = entity_vector_length # STEP 1: load entity vectors cdef int i = 0 cdef int j = 0 while i < nr_entities: entity_vector = float_vec(entity_vector_length) j = 0 while j < entity_vector_length: reader.read_vector_element(&vector_element) entity_vector[j] = vector_element j = j+1 self._vectors_table[i] = entity_vector i = i+1 # STEP 2: load entities # we assume that the entity data was written in sequence # index 0 is a dummy object not stored in the _entry_index and can be ignored. i = 1 while i <= nr_entities: reader.read_entry(&entity_hash, &freq, &vector_index) entry.entity_hash = entity_hash entry.freq = freq entry.vector_index = vector_index entry.feats_row = -1 # Features table currently not implemented self._entries[i] = entry self._entry_index[entity_hash] = i i += 1 # check that all entities were read in properly assert nr_entities == self.get_size_entities() # STEP 3: load aliases cdef int64_t nr_aliases reader.read_alias_length(&nr_aliases) self._initialize_aliases(nr_aliases) cdef int64_t nr_candidates cdef vector[int64_t] entry_indices cdef vector[float] probs i = 1 # we assume the alias data was written in sequence # index 0 is a dummy object not stored in the _entry_index and can be ignored. while i <= nr_aliases: reader.read_alias_header(&alias_hash, &nr_candidates) entry_indices = vector[int64_t](nr_candidates) probs = vector[float](nr_candidates) for j in range(0, nr_candidates): reader.read_alias(&entry_index, &prob) entry_indices[j] = entry_index probs[j] = prob alias.entry_indices = entry_indices alias.probs = probs self._aliases_table[i] = alias self._alias_index[alias_hash] = i i += 1 # check that all aliases were read in properly assert nr_aliases == self.get_size_aliases() cdef class Writer: def __init__(self, path): assert isinstance(path, Path) content = bytes(path) cdef bytes bytes_loc = content.encode('utf8') \ if type(content) == str else content self._fp = fopen(<char*>bytes_loc, 'wb') if not self._fp: raise IOError(Errors.E146.format(path=path)) fseek(self._fp, 0, 0) def close(self): cdef size_t status = fclose(self._fp) assert status == 0 cdef int write_header( self, int64_t nr_entries, int64_t entity_vector_length ) except -1: self._write(&nr_entries, sizeof(nr_entries)) self._write(&entity_vector_length, sizeof(entity_vector_length)) cdef int write_vector_element(self, float element) except -1: self._write(&element, sizeof(element)) cdef int write_entry( self, hash_t entry_hash, float entry_freq, int32_t vector_index ) except -1: self._write(&entry_hash, sizeof(entry_hash)) self._write(&entry_freq, sizeof(entry_freq)) self._write(&vector_index, sizeof(vector_index)) # Features table currently not implemented and not written to file cdef int write_alias_length(self, int64_t alias_length) except -1: self._write(&alias_length, sizeof(alias_length)) cdef int write_alias_header( self, hash_t alias_hash, int64_t candidate_length ) except -1: self._write(&alias_hash, sizeof(alias_hash)) self._write(&candidate_length, sizeof(candidate_length)) cdef int write_alias(self, int64_t entry_index, float prob) except -1: self._write(&entry_index, sizeof(entry_index)) self._write(&prob, sizeof(prob)) cdef int _write(self, void* value, size_t size) except -1: status = fwrite(value, size, 1, self._fp) assert status == 1, status cdef class Reader: def __init__(self, path): content = bytes(path) cdef bytes bytes_loc = content.encode('utf8') \ if type(content) == str else content self._fp = fopen(<char*>bytes_loc, 'rb') if not self._fp: PyErr_SetFromErrno(IOError) fseek(self._fp, 0, 0) # this can be 0 if there is no header def __dealloc__(self): fclose(self._fp) cdef int read_header( self, int64_t* nr_entries, int64_t* entity_vector_length ) except -1: status = self._read(nr_entries, sizeof(int64_t)) if status < 1: if feof(self._fp): return 0 # end of file raise IOError(Errors.E145.format(param="header")) status = self._read(entity_vector_length, sizeof(int64_t)) if status < 1: if feof(self._fp): return 0 # end of file raise IOError(Errors.E145.format(param="vector length")) cdef int read_vector_element(self, float* element) except -1: status = self._read(element, sizeof(float)) if status < 1: if feof(self._fp): return 0 # end of file raise IOError(Errors.E145.format(param="vector element")) cdef int read_entry( self, hash_t* entity_hash, float* freq, int32_t* vector_index ) except -1: status = self._read(entity_hash, sizeof(hash_t)) if status < 1: if feof(self._fp): return 0 # end of file raise IOError(Errors.E145.format(param="entity hash")) status = self._read(freq, sizeof(float)) if status < 1: if feof(self._fp): return 0 # end of file raise IOError(Errors.E145.format(param="entity freq")) status = self._read(vector_index, sizeof(int32_t)) if status < 1: if feof(self._fp): return 0 # end of file raise IOError(Errors.E145.format(param="vector index")) if feof(self._fp): return 0 else: return 1 cdef int read_alias_length(self, int64_t* alias_length) except -1: status = self._read(alias_length, sizeof(int64_t)) if status < 1: if feof(self._fp): return 0 # end of file raise IOError(Errors.E145.format(param
Cython