text
stringlengths
1.18k
92.5k
lang
stringclasses
39 values
cimport numpy as np cimport cython cimport set_ops as so from libc.stdlib cimport malloc, free from dealloc cimport dealloc_matrix_2 from dealloc cimport dealloc_matrix from dealloc cimport dealloc_vector from dealloc cimport dealloc_vec_int from libc.stdlib cimport malloc, free, realloc from libc.math cimport sqrt ctypedef np.int32_t INT_t ctypedef unsigned int unint ctypedef double FLOAT cpdef double bcubed_rec(object wordsAndClusters, object clusters_lengths, object wordsAndClasses, object classes_lengths, int numClusters, int numClasses) cpdef double bcubed_prec(object wordsAndClusters, object clusters_lengths, object wordsAndClasses, object classes_lengths, int numClusters, int numClasses) <|end_of_text|>cdef extern from "hello.h": int hello() cdef extern from "echo.h": int echo(int) cpdef int addone(int)<|end_of_text|>from khash cimport * # prototypes for sharing # cdef class StringHashTable: # cdef kh_str_t *table # cdef inline int check_type(self, object) # cpdef get_item(self, object) # cpdef set_item(self, object, Py_ssize_t) # cdef class Int32HashTable: # cdef kh_int32_t *table # cdef inline int check_type(self, object) # cpdef get_item(self, int32_t) # cpdef set_item(self, int32_t, Py_ssize_t) # cdef class Int64HashTable: # cdef kh_int64_t *table # cdef inline bint has_key(self, int64_t) # cpdef get_item(self, int64_t) # cpdef set_item(self, int64_t, Py_ssize_t) # cdef class Float64HashTable: # cdef kh_float64_t *table # cpdef get_labels(self, ndarray, list, Py_ssize_t, int32_t) # cdef class PyObjectHashTable: # cdef kh_pymap_t *table # cdef destroy(self) # cpdef get_item(self, object) # cpdef set_item(self, object, Py_ssize_t) # cpdef get_labels(self, ndarray, list, Py_ssize_t, int32_t) # cdef class Factorizer: # cdef public PyObjectHashTable table # cdef public uniques # cdef public Py_ssize_t count # cdef class Int64Factorizer: # cdef public Int64HashTable table # cdef public list uniques # cdef public Py_ssize_t count <|end_of_text|># cython: infer_types=True cimport cython from libc.math cimport exp, fabs, sqrt, fmin, fmax import numpy as np @cython.boundscheck(False) @cython.wraparound(False) cpdef void scalar_square_add_constant(float[:, :] field, float[:] x, float[:] y, float[:] width, float[:] v) nogil: cdef long minx, miny, maxx, maxy cdef Py_ssize_t i, xx, yy cdef float cx, cy, cv, cwidth for i in range(x.shape[0]): cx = x[i] cy = y[i] cv = v[i] cwidth = width[i] minx = (<long>clip(cx - cwidth, 0, field.shape[1] - 1)) maxx = (<long>clip(cx + cwidth, minx + 1, field.shape[1])) miny = (<long>clip(cy - cwidth, 0, field.shape[0] - 1)) maxy = (<long>clip(cy + cwidth, miny + 1, field.shape[0])) for xx in range(minx, maxx): for yy in range(miny, maxy): field[yy, xx] += cv @cython.boundscheck(False) @cython.wraparound(False) @cython.cdivision(True) cpdef void cumulative_average(float[:, :] cuma, float[:, :] cumw, float[:] x, float[:] y, float[:] width, float[:] v, float[:] w) nogil: cdef long minx, miny, maxx, maxy cdef float cv, cw, cx, cy, cwidth cdef Py_ssize_t i, xx, yy for i in range(x.shape[0]): cw = w[i] if cw <= 0.0: continue cv = v[i] cx = x[i] cy = y[i] cwidth = width[i] minx = (<long>clip(cx - cwidth, 0, cuma.shape[1] - 1)) maxx = (<long>clip(cx + cwidth, minx + 1, cuma.shape[1])) miny = (<long>clip(cy - cwidth, 0, cuma.shape[0] - 1)) maxy = (<long>clip(cy + cwidth, miny + 1, cuma.shape[0])) for xx in range(minx, maxx): for yy in range(miny, maxy): cuma[yy, xx] = (cw * cv + cumw[yy, xx] * cuma[yy, xx]) / (cumw[yy, xx] + cw) cumw[yy, xx] += cw cdef inline float approx_exp(float x) nogil: if x > 2.0 or x < -2.0: return 0.0 x = 1.0 + x / 8.0 x *= x x *= x x *= x return x cdef inline float clip(float v, float minv, float maxv) nogil: return fmax(minv, fmin(maxv, v)) @cython.boundscheck(False) @cython.wraparound(False) @cython.cdivision(True) cpdef void scalar_square_add_gauss(float[:, :] field, float[:] x, float[:] y, float[:] sigma, float[:] v, float truncate=2.0) nogil: cdef Py_ssize_t i, xx, yy cdef float vv, deltax2, deltay2 cdef float cv, cx, cy, csigma, csigma2 cdef long minx, miny, maxx, maxy for i in range(x.shape[0]): csigma = sigma[i] csigma2 = csigma * csigma cx = x[i] cy = y[i] cv = v[i] minx = (<long>clip(cx - truncate * csigma, 0, field.shape[1] - 1)) maxx = (<long>clip(cx + truncate * csigma, minx + 1, field.shape[1])) miny = (<long>clip(cy - truncate * csigma, 0, field.shape[0] - 1)) maxy = (<long>clip(cy + truncate * csigma, miny + 1, field.shape[0])) for xx in range(minx, maxx): deltax2 = (xx - cx)**2 for yy in range(miny, maxy): deltay2 = (yy - cy)**2 vv = cv * approx_exp(-0.5 * (deltax2 + deltay2) / csigma2) field[yy, xx] += vv @cython.boundscheck(False) @cython.wraparound(False) @cython.cdivision(True) def weiszfeld_nd(x_np, y_np, float[:] weights=None, float epsilon=1e-8, Py_ssize_t max_steps=20): """Weighted Weiszfeld algorithm.""" if weights is None: weights = np.ones(x_np.shape[0]) cdef float[:, :] x = x_np cdef float[:] y = y_np cdef float[:, :] weights_x = np.zeros_like(x) for i in range(weights_x.shape[0]): for j in range(weights_x.shape[1]): weights_x[i, j] = weights[i] * x[i, j] cdef float[:] prev_y = np.zeros_like(y) cdef float[:] y_top = np.zeros_like(y) cdef float y_bottom denom_np = np.zeros_like(weights) cdef float[:] denom = denom_np for s in range(max_steps): prev_y[:] = y for i in range(denom.shape[0]): denom[i] = sqrt((x[i][0] - prev_y[0])**2 + (x[i][1] - prev_y[1])**2) + epsilon y_top[:] = 0.0 y_bottom = 0.0 for j in range(denom.shape[0]): y_top[0] += weights_x[j, 0] / denom[j] y_top[1] += weights_x[j, 1] / denom[j] y_bottom += weights[j] / denom[j] y[0] = y_top[0] / y_bottom y[1] = y_top[1] / y_bottom if fabs(y[0] - prev_y[0
Cython
]) + fabs(y[1] - prev_y[1]) < 1e-2: return y_np, denom_np return y_np, denom_np @cython.boundscheck(False) @cython.wraparound(False) def paf_mask_center(float[:, :] paf_field, float x, float y, float sigma=1.0): mask_np = np.zeros((paf_field.shape[1],), dtype=np.uint8) cdef unsigned char[:] mask = mask_np for i in range(mask.shape[0]): mask[i] = ( paf_field[1, i] > x - sigma * paf_field[3, i] and paf_field[1, i] < x + sigma * paf_field[3, i] and paf_field[2, i] > y - sigma * paf_field[3, i] and paf_field[2, i] < y + sigma * paf_field[3, i] ) return mask_np!= 0 @cython.boundscheck(False) @cython.wraparound(False) def scalar_values(float[:, :] field, float[:] x, float[:] y, float default=-1): values_np = np.full((x.shape[0],), default, dtype=np.float32) cdef float[:] values = values_np cdef float maxx = <float>field.shape[1] - 1, maxy = <float>field.shape[0] - 1 for i in range(values.shape[0]): if x[i] < 0.0 or y[i] < 0.0 or x[i] > maxx or y[i] > maxy: continue values[i] = field[<Py_ssize_t>y[i], <Py_ssize_t>x[i]] return values_np @cython.boundscheck(False) @cython.wraparound(False) def scalar_value(float[:, :] field, float x, float y, float default=-1): if x < 0.0 or y < 0.0 or x > field.shape[1] - 1 or y > field.shape[0] - 1: return default return field[<Py_ssize_t>y, <Py_ssize_t>x] @cython.boundscheck(False) @cython.wraparound(False) def scalar_value_clipped(float[:, :] field, float x, float y): x = clip(x, 0.0, field.shape[1] - 1) y = clip(y, 0.0, field.shape[0] - 1) return field[<Py_ssize_t>y, <Py_ssize_t>x] @cython.boundscheck(False) @cython.wraparound(False) def scalar_nonzero(unsigned char[:, :] field, float x, float y, unsigned char default=0): if x < 0.0 or y < 0.0 or x > field.shape[1] - 1 or y > field.shape[0] - 1: return default return field[<Py_ssize_t>y, <Py_ssize_t>x] @cython.boundscheck(False) @cython.wraparound(False) def scalar_nonzero_clipped(unsigned char[:, :] field, float x, float y): x = clip(x, 0.0, field.shape[1] - 1) y = clip(y, 0.0, field.shape[0] - 1) return field[<Py_ssize_t>y, <Py_ssize_t>x] @cython.boundscheck(False) @cython.wraparound(False) def paf_center(float[:, :] paf_field, float x, float y, float sigma=1.0): result_np = np.empty_like(paf_field) cdef float[:, :] result = result_np cdef unsigned int result_i = 0 cdef bint take for i in range(paf_field.shape[1]): take = ( paf_field[1, i] > x - sigma * paf_field[3, i] and paf_field[1, i] < x + sigma * paf_field[3, i] and paf_field[2, i] > y - sigma * paf_field[3, i] and paf_field[2, i] < y + sigma * paf_field[3, i] ) if not take: continue result[:, result_i] = paf_field[:, i] result_i += 1 return result_np[:, :result_i] <|end_of_text|>import numpy as np cimport numpy as np #from scipy.special import gammaln ctypedef np.float64_t DTYPE_t cdef extern from "quad_utils.h": void _quad1d "_quad1d" (int N, double* mu, double* var, double* Y, int Ngh, double* gh_x, double* gh_w, double* F, double* dF_dm, double* dF_dv) cdef extern from "quad_utils.h": void _quad2d_stut "_quad2d_stut" (int N, double* muf, double* varf, double* mug, double* varg, double* Y, int Ngh, double v, double* gh_x, double* gh_w, double* F, double* dF_dmf, double* dF_dvf, double* dF_dmg, double* dF_dvg, double* dF_ddf) cdef extern from "math.h": double exp(double x) cdef extern from "math.h": double sqrt(double x) def quad2d_stut(int N, np.ndarray[DTYPE_t, ndim=1] _muf, np.ndarray[DTYPE_t, ndim=1] _varf, np.ndarray[DTYPE_t, ndim=1] _mug, np.ndarray[DTYPE_t, ndim=1] _varg, np.ndarray[DTYPE_t, ndim=1] _Y, int Ngh, double df, np.ndarray[DTYPE_t, ndim=1] _gh_x, np.ndarray[DTYPE_t, ndim=1] _gh_w, np.ndarray[DTYPE_t, ndim=1] _F, np.ndarray[DTYPE_t, ndim=1] _dF_dmf, np.ndarray[DTYPE_t, ndim=1] _dF_dvf, np.ndarray[DTYPE_t, ndim=1] _dF_dmg, np.ndarray[DTYPE_t, ndim=1] _dF_dvg, np.ndarray[DTYPE_t, ndim=1] _dF_ddf ): cdef double *muf = <double*> _muf.data cdef double *varf = <double*> _varf.data cdef double *mug = <double*> _mug.data cdef double *varg = <double*> _varg.data cdef double *Y = <double*> _Y.data cdef double *gh_x = <double*> _gh_x.data cdef double *gh_w = <double*> _gh_w.data cdef double *F = <double*> _F.data cdef double *dF_dmf = <double*> _dF_dmf.data cdef double *dF_dvf = <double*> _dF_dvf.data cdef double *dF_dmg = <double*> _dF_dmg.data cdef double *dF_dvg = <double*> _dF_dvg.data cdef double *dF_ddf = <double*> _dF_ddf.data _quad2d_stut(N, muf, varf, mug, varg, Y, Ngh, df, gh_x, gh_w, F, dF_dmf, dF_dvf, dF_dmg, dF_dvg, dF_ddf) def quad2d_beta(double[:, :] muf, double[:, :] varf, double[:, :] mug, double[:, :] varg, double[:, :] Y, double[:] gh_x, double[:] gh_w, double[:, :] F, double[:, :] dF_dmf, double[:, :] dF_dvf, double[:, :] dF_dmg, double[:, :] dF_dvg, ): cdef int N = Y.shape[0] cdef int D = Y.shape[1] cdef int Ngh = gh_x.shape[0] cdef int n, i, j for d in range(D): for n in range(N): stdfi = sqrt(2.0*varf[n, d]) stdgi = sqrt(2.0*varg[n, d]) mugi = mug[n, d] mufi = muf[n, d] Yi = Y[n, d] for i in range(Ngh): #Use c sqrt instead of numpy gi = mugi + stdgi*gh_x[i] e_gi = exp(gi) for j in range(Ngh): fj = mufi + stdfi*gh_x[j] #Get the location in f scale e_fj = exp(fj) #logpdf = -lgam(e_fj) -lgam(e_gi) + lg
Cython
am(e_fj + e_gi) raise NotImplementedError logpdf = Gamma(Yi) dlogpdf_df = polygamma(0, Yi) d2logpdf_df2 = 0.0 dlogpdf_dg = 0.0 d2logpdf_dg2 = 0.0 F[n, d] += gh_w[i]*gh_w[j]*logpdf dF_dmf[n, d] += gh_w[i]*gh_w[j]*dlogpdf_df dF_dvf[n, d] += gh_w[i]*gh_w[j]*d2logpdf_df2 dF_dmg[n, d] += gh_w[i]*gh_w[j]*dlogpdf_dg dF_dvg[n, d] += gh_w[i]*gh_w[j]*d2logpdf_dg2 return F, dF_dmf, dF_dvf, dF_dmg, dF_dvg <|end_of_text|>from godot_headers.gdnative_api cimport GODOT_PROPERTY_HINT_NONE, GODOT_PROPERTY_USAGE_DEFAULT from.defs cimport * cdef class SignalArgument: def __init__(self, str name, godot_property_hint hint=GODOT_PROPERTY_HINT_NONE, str hint_string='', godot_property_usage_flags usage=GODOT_PROPERTY_USAGE_DEFAULT, object default_value=None): self.name = name self.hint = hint self.hint_string = hint_string self.usage = usage self.default_value = default_value def as_dict(self): return {self.name: self.type} cdef class SignalArgumentNil(SignalArgument): def __cinit__(self, str name): self.name = name self.type = <godot_int>VARIANT_NIL cdef class SignalArgumentBool(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_BOOL cdef class SignalArgumentInt(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_INT cdef class SignalArgumentReal(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_REAL cdef class SignalArgumentString(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_STRING cdef class SignalArgumentVector2(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_VECTOR2 cdef class SignalArgumentRect2(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_RECT3 cdef class SignalArgumentVector3(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_VECTOR3 cdef class SignalArgumentTransform2D(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_TRANSFORM2D cdef class SignalArgumentPlane(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_PLANE cdef class SignalArgumentQuat(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_QUAT cdef class SignalArgumentRect3(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_RECT3 cdef class SignalArgumentBasis(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_BASIS cdef class SignalArgumentTransform(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_TRANSFORM cdef class SignalArgumentColor(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_COLOR cdef class SignalArgumentNodePath(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_NODE_PATH cdef class SignalArgumentRID(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT__RID cdef class SignalArgumentObject(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_OBJECT def __init__(self, str name, godot_property_hint hint=GODOT_PROPERTY_HINT_NONE, str hint_string='', godot_property_usage_flags usage=GODOT_PROPERTY_USAGE_DEFAULT, object default_value=-1): self.name = name self.hint = hint self.hint_string = hint_string self.usage = usage self.default_value = default_value cdef class SignalArgumentDictionary(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_DICTIONARY cdef class SignalArgumentArray(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_ARRAY cdef class SignalArgumentPoolByteArray(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_POOL_BYTE_ARRAY cdef class SignalArgumentPoolIntArray(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_POOL_INT_ARRAY cdef class SignalArgumentPoolRealArray(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_POOL_REAL_ARRAY cdef class SignalArgumentPoolStringArray(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_POOL_STRING_ARRAY cdef class SignalArgumentPoolVector2Array(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_POOL_VECTOR2_ARRAY cdef class SignalArgumentPoolVector3Array(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_POOL_VECTOR3_ARRAY cdef class SignalArgumentPoolColorArray(SignalArgument): def __cinit__(self, name): self.name = name self.type = <godot_int>VARIANT_POOL_COLOR_ARRAY <|end_of_text|>cimport openmp from cython.parallel import prange import numpy as np from scipy.linalg.cython_blas cimport dgemm from threadpoolctl import threadpool_info def check_nested_prange_blas(double[:, ::1] A, double[:, ::1] B, int nthreads): """Run multithreaded BLAS calls within OpenMP parallel loop""" cdef: int m = A.shape[0] int n = B.shape[0] int k = A.shape[1] double[:, ::1] C = np.empty((m, n)) int n_chunks = 100 int chunk_size = A.shape[0] // n_chunks char* trans = 't' char* no_trans = 'n' double alpha = 1.0 double beta = 0.0 int i int prange_num_threads threadpool_infos = None for i in prange(n_chunks, num_threads=nthreads, nogil=True): dgemm(trans, no_trans, &n, &chunk_size, &k, &alpha, &B[0, 0], &k, &A[i * chunk_size, 0], &k, &beta, &C[i * chunk_size, 0], &n) prange_num_threads = openmp.omp_get_num_threads() if i == 0: with gil: threadpool_infos = threadpool_info() return np.asarray(C), prange_num_threads, threadpool_infos <|end_of_text|># Copyright (c) 2019, NVIDIA CORPORATION. # cython: profile=False # distutils: language = c++ # cython: embedsignature = True # cython: language_level = 3 from cudf.bindings.cudf_cpp cimport * from cudf.bindings.cudf_cpp import * from cudf.bindings.unaryops cimport * from libc.stdlib cimport free from librmm_cffi import librmm as rmm _MATH_OP = { 'sin' : GDF_SIN, 'cos' : GDF_COS, 'tan' : GDF_TAN, 'asin' : GDF_ARCSIN, 'acos' : GDF_ARCCOS, 'atan' : GDF_ARCTAN, 'exp' : GDF_EXP, 'log' : GDF_LOG, 'sqrt' : GDF_SQRT,
Cython
'ceil' : GDF_CEIL, 'floor' : GDF_FLOOR, 'abs' : GDF_ABS, 'not' : GDF_BIT_INVERT, } def apply_math_op(incol, outcol, op): """ Call Unary math ops. """ check_gdf_compatibility(incol) check_gdf_compatibility(outcol) cdef gdf_column* c_incol = column_view_from_column(incol) cdef gdf_column* c_outcol = column_view_from_column(outcol) cdef gdf_error result cdef gdf_unary_math_op c_op = _MATH_OP[op] with nogil: result = gdf_unary_math( <gdf_column*>c_incol, <gdf_column*>c_outcol, c_op) free(c_incol) free(c_outcol) check_gdf_error(result) def apply_dt_extract_op(incol, outcol, op): """ Call a datetime extraction op """ check_gdf_compatibility(incol) check_gdf_compatibility(outcol) cdef gdf_column* c_incol = column_view_from_column(incol) cdef gdf_column* c_outcol = column_view_from_column(outcol) cdef gdf_error result = GDF_CUDA_ERROR with nogil: if op == 'year': result = gdf_extract_datetime_year( <gdf_column*>c_incol, <gdf_column*>c_outcol ) elif op =='month': result = gdf_extract_datetime_month( <gdf_column*>c_incol, <gdf_column*>c_outcol ) elif op == 'day': result = gdf_extract_datetime_day( <gdf_column*>c_incol, <gdf_column*>c_outcol ) elif op == 'hour': result = gdf_extract_datetime_hour( <gdf_column*>c_incol, <gdf_column*>c_outcol ) elif op =='minute': result = gdf_extract_datetime_minute( <gdf_column*>c_incol, <gdf_column*>c_outcol ) elif op =='second': result = gdf_extract_datetime_second( <gdf_column*>c_incol, <gdf_column*>c_outcol ) free(c_incol) free(c_outcol) check_gdf_error(result) <|end_of_text|># -*- coding: utf-8 -*- """ Cython linker with C solver """ # Author: Remi Flamary <[email protected]> # # License: MIT License import numpy as np cimport numpy as np from..utils import dist cimport cython cimport libc.math as math from libc.stdint cimport uint64_t import warnings cdef extern from "EMD.h": int EMD_wrap(int n1,int n2, double *X, double *Y,double *D, double *G, double* alpha, double* beta, double *cost, uint64_t maxIter) nogil int EMD_wrap_omp(int n1,int n2, double *X, double *Y,double *D, double *G, double* alpha, double* beta, double *cost, uint64_t maxIter, int numThreads) nogil cdef enum ProblemType: INFEASIBLE, OPTIMAL, UNBOUNDED, MAX_ITER_REACHED def check_result(result_code): if result_code == OPTIMAL: return None if result_code == INFEASIBLE: message = "Problem infeasible. Check that a and b are in the simplex" elif result_code == UNBOUNDED: message = "Problem unbounded" elif result_code == MAX_ITER_REACHED: message = "numItermax reached before optimality. Try to increase numItermax." warnings.warn(message) return message @cython.boundscheck(False) @cython.wraparound(False) def emd_c(np.ndarray[double, ndim=1, mode="c"] a, np.ndarray[double, ndim=1, mode="c"] b, np.ndarray[double, ndim=2, mode="c"] M, uint64_t max_iter, int numThreads): """ Solves the Earth Movers distance problem and returns the optimal transport matrix gamm=emd(a,b,M) .. math:: \gamma = arg\min_\gamma <\gamma,M>_F s.t. \gamma 1 = a \gamma^T 1= b \gamma\geq 0 where : - M is the metric cost matrix - a and b are the sample weights .. warning:: Note that the M matrix needs to be a C-order :py.cls:`numpy.array` .. warning:: The C++ solver discards all samples in the distributions with zeros weights. This means that while the primal variable (transport matrix) is exact, the solver only returns feasible dual potentials on the samples with weights different from zero. Parameters ---------- a : (ns,) numpy.ndarray, float64 source histogram b : (nt,) numpy.ndarray, float64 target histogram M : (ns,nt) numpy.ndarray, float64 loss matrix max_iter : uint64_t The maximum number of iterations before stopping the optimization algorithm if it has not converged. Returns ------- gamma: (ns x nt) numpy.ndarray Optimal transportation matrix for the given parameters """ cdef int n1= M.shape[0] cdef int n2= M.shape[1] cdef int nmax=n1+n2-1 cdef int result_code = 0 cdef int nG=0 cdef double cost=0 cdef np.ndarray[double, ndim=1, mode="c"] alpha=np.zeros(n1) cdef np.ndarray[double, ndim=1, mode="c"] beta=np.zeros(n2) cdef np.ndarray[double, ndim=2, mode="c"] G=np.zeros([0, 0]) cdef np.ndarray[double, ndim=1, mode="c"] Gv=np.zeros(0) if not len(a): a=np.ones((n1,))/n1 if not len(b): b=np.ones((n2,))/n2 # init OT matrix G=np.zeros([n1, n2]) # calling the function with nogil: if numThreads == 1: result_code = EMD_wrap(n1, n2, <double*> a.data, <double*> b.data, <double*> M.data, <double*> G.data, <double*> alpha.data, <double*> beta.data, <double*> &cost, max_iter) else: result_code = EMD_wrap_omp(n1, n2, <double*> a.data, <double*> b.data, <double*> M.data, <double*> G.data, <double*> alpha.data, <double*> beta.data, <double*> &cost, max_iter, numThreads) return G, cost, alpha, beta, result_code @cython.boundscheck(False) @cython.wraparound(False) def emd_1d_sorted(np.ndarray[double, ndim=1, mode="c"] u_weights, np.ndarray[double, ndim=1, mode="c"] v_weights, np.ndarray[double, ndim=1, mode="c"] u, np.ndarray[double, ndim=1, mode="c"] v, str metric='sqeuclidean', double p=1.): r""" Solves the Earth Movers distance problem between sorted 1d measures and returns the OT matrix and the associated cost Parameters ---------- u_weights : (ns,) ndarray, float64 Source histogram v_weights : (nt,) ndarray, float64 Target histogram u : (ns,) ndarray, float64 Source dirac locations (on the real line) v : (nt,) ndarray, float64 Target dirac locations (on the real line) metric: str, optional (default='sqeuclidean') Metric to be used. Only strings listed in :func:`ot.dist` are accepted. Due to implementation details, this function runs faster when `'sqeuclidean'`, `'minkowski'`, `'cityblock'`, or `'euclidean'` metrics are used. p: float, optional (default=1.0) The p-norm to apply for if metric='minkowski' Returns ------- gamma: (n, ) ndarray, float64 Values in the Optimal transportation matrix indices: (n, 2) ndarray, int64 Indices of the values stored in gamma for the Optimal transportation matrix cost cost associated to the optimal transportation """ cdef double cost = 0. cdef Py_ssize_t n = u_weights.shape[0] cdef Py_ssize_t m = v_weights.shape[0] cdef Py_ssize_t i = 0
Cython
cdef double w_i = u_weights[0] cdef Py_ssize_t j = 0 cdef double w_j = v_weights[0] cdef double m_ij = 0. cdef np.ndarray[double, ndim=1, mode="c"] G = np.zeros((n + m - 1, ), dtype=np.float64) cdef np.ndarray[long long, ndim=2, mode="c"] indices = np.zeros((n + m - 1, 2), dtype=np.int64) cdef Py_ssize_t cur_idx = 0 while True: if metric =='sqeuclidean': m_ij = (u[i] - v[j]) * (u[i] - v[j]) elif metric == 'cityblock' or metric == 'euclidean': m_ij = math.fabs(u[i] - v[j]) elif metric =='minkowski': m_ij = math.pow(math.fabs(u[i] - v[j]), p) else: m_ij = dist(u[i].reshape((1, 1)), v[j].reshape((1, 1)), metric=metric)[0, 0] if w_i < w_j or j == m - 1: cost += m_ij * w_i G[cur_idx] = w_i indices[cur_idx, 0] = i indices[cur_idx, 1] = j i += 1 if i == n: break w_j -= w_i w_i = u_weights[i] else: cost += m_ij * w_j G[cur_idx] = w_j indices[cur_idx, 0] = i indices[cur_idx, 1] = j j += 1 if j == m: break w_i -= w_j w_j = v_weights[j] cur_idx += 1 cur_idx += 1 return G[:cur_idx], indices[:cur_idx], cost <|end_of_text|>cpdef int recip(int n) <|end_of_text|>from _shared cimport SharedArray, SharedItem cdef extern from "lb.h": enum: DQ_d enum: DQ_q cdef cppclass LBParams: double cs2 double w[DQ_q] double xi[DQ_q][DQ_d] int ci[DQ_q][DQ_d] double Q[DQ_q][DQ_d][DQ_d] int complement[DQ_q] double norms[DQ_q] double mm[DQ_q][DQ_q] double mmi[DQ_q][DQ_q] double tau_s double tau_b cdef cppclass LatticeAddressing: int size[DQ_d] int strides[DQ_d] int n # cdef cppclass LDView: # double* rho # double* u # double* force # double* fOld # double* fNew cdef cppclass LatticeData: SharedArray[double] rho SharedArray[double] u SharedArray[double] force SharedArray[double] fOld SharedArray[double] fNew cdef cppclass Lattice: Lattice(int, int, int, double, double) void Step() void CalcHydro() void InitFromHydro() void ZeroForce() LatticeData* data SharedItem[LBParams] params SharedItem[LatticeAddressing] addr int time_step <|end_of_text|># cython: language_level=3, boundscheck=False, wraparound=False import cython cimport numpy as np ctypedef fused T_INPUT: np.uint16_t np.uint8_t ctypedef np.uint8_t T_OUTPUT cdef int index_4d(int dim, int r, int g, int b, int c): return c + 3 * (b + dim * (g + dim * r)) @cython.cdivision(True) cpdef void lut_apply(T_INPUT[::1] pixels, T_OUTPUT[:, :, :, ::1] lut, float binsize, T_OUTPUT[::1] output) nogil: cdef: int pxcount = pixels.shape[0] // 3 int px, plane T_INPUT r, g, b float rf, gf, bf int r_id, g_id, b_id float r_d, g_d, b_d T_OUTPUT[:] lutid000, lutid100, lutid010, lutid110, lutid001, lutid101, lutid011, lutid111 float w000, w100, w010, w110, w001, w101, w011, w111 double tmp for px in range(pxcount): # get pixels in lut-float rf = pixels[3 * px] / binsize gf = pixels[3 * px + 1] / binsize bf = pixels[3 * px + 2] / binsize # integer bin r_id = int(rf) g_id = int(gf) b_id = int(bf) # fraction to neighbor r_d = rf - r_id g_d = gf - g_id b_d = bf - b_id # trilinear interpolation for plane in range(3): tmp = 0 tmp += (1 - r_d) * (1 - g_d) * (1 - b_d) * lut[r_id, g_id, b_id, plane] tmp += r_d * (1 - g_d) * (1 - b_d) * lut[r_id + 1, g_id, b_id, plane] tmp += (1 - r_d) * g_d * (1 - b_d) * lut[r_id, g_id + 1, b_id, plane] tmp += r_d * g_d * (1 - b_d) * lut[r_id + 1, g_id + 1, b_id, plane] tmp += (1 - r_d) * (1 - g_d) * b_d * lut[r_id, g_id, b_id + 1, plane] tmp += r_d * (1 - g_d) * b_d * lut[r_id + 1, g_id, b_id + 1, plane] tmp += (1 - r_d) * g_d * b_d * lut[r_id, g_id + 1, b_id + 1, plane] tmp += r_d * g_d * b_d * lut[r_id + 1, g_id + 1, b_id + 1, plane] output[3 * px + plane] = int(tmp) <|end_of_text|>from mpi4py import MPI from data_handler import * def scrub(configs): logger = get_logger() comm = MPI.COMM_WORLD rank = comm.Get_rank() num_process = comm.Get_size() data_file = configs['data_file'] noise_file = configs['noise_file'] size_notation = configs['size_notation'] verbose = configs['verbose'] ticks_per_iteration = configs['ticks_per_iteration'] memory_per_iteration = configs['memory_per_iteration'] ret_threshold = configs['ret_threshold'] time_drift_threshold = configs['time_drift_threshold'] size_mult = configs['size_mult'] size_per_process = int(float(memory_per_iteration)/num_process) buffer_per_process = bytearray(size_per_process) if rank == 0: logger.info('Configs|memoryPerIteration=%i M|ticksPeriteration=%i|sizeNotation=%s|inputFile=%s|verbose=%i' %(memory_per_iteration>>size_mult, ticks_per_iteration, size_notation, data_file, verbose)) if verbose: logger.setLevel(logging.DEBUG) else: logger.setLevel(logging.INFO) comm.Barrier() file_ = MPI.File.Open(comm, data_file, MPI.MODE_RDONLY) noise_file = MPI.File.Open(comm, noise_file, MPI.MODE_WRONLY|MPI.MODE_CREATE) size = file_.Get_size() load_iterations = int(float(size) / memory_per_iteration) if rank == 0: logger.info('Initializing|fileSize=%i %s|totalLoadIterations=%i|numberOfProcesses=%i|bufferSize=%i %s' %(size>>size_mult, size_notation, load_iterations, num_process, len(buffer_per_process)>>size_mult, size_notation)) total_time = 0 load_file_time = 0 process_file_time = 0 write_file_time = 0 bad_data_records = '' total_start_time = MPI.Wtime() for i in range(load_iterations): file_offset = i * memory_per_iteration offset_per_process = rank * size_per_process + file_offset load_file_start_time = MPI.Wtime() raw_data = read_data(file_, offset_per_process, buffer_per_process) data = format_data(raw_data) load_file_time += MPI.Wtime() - load_file_start_time if rank == 0:
Cython
logger.info('Processing file|iteration=%i|totalIterations=%i|numLines=%i' % (i, load_iterations, len(data))) process_file_start_time = MPI.Wtime() bad_data_records += scrub_data(rank, data, ticks_per_iteration, ret_threshold) process_file_time += MPI.Wtime() - process_file_start_time write_file_start_time = MPI.Wtime() if rank == 0: logger.info("Writing data start") write_data(noise_file, bad_data_records) if rank == 0: logger.info("Writing data done") total_time += MPI.Wtime() - total_start_time write_file_time += MPI.Wtime() - write_file_start_time total_time = np.array([total_time]) load_file_time = np.array([load_file_time]) process_file_time = np.array([process_file_time]) write_file_time = np.array([write_file_time]) num_bad_ticks = np.array([float(len(bad_data_records.split('\n')))]) max_execution_time = np.zeros(1) min_execution_time = np.zeros(1) max_write_file_time = np.zeros(1) min_write_file_time = np.zeros(1) max_process_file_time = np.zeros(1) min_process_file_time = np.zeros(1) max_load_file_time = np.zeros(1) min_load_file_time = np.zeros(1) sum_num_bad_ticks = np.zeros(1) comm.Barrier() file_.Close() noise_file.Close() comm.Reduce([total_time, MPI.DOUBLE], [max_execution_time, MPI.DOUBLE], op=MPI.MAX, root=0) comm.Reduce([total_time, MPI.DOUBLE], [min_execution_time, MPI.DOUBLE], op=MPI.MIN, root=0) comm.Reduce([process_file_time, MPI.DOUBLE], [max_process_file_time, MPI.DOUBLE], op=MPI.MAX, root=0) comm.Reduce([process_file_time, MPI.DOUBLE], [min_process_file_time, MPI.DOUBLE], op=MPI.MIN, root=0) comm.Reduce([load_file_time, MPI.DOUBLE], [max_load_file_time, MPI.DOUBLE], op=MPI.MAX, root=0) comm.Reduce([load_file_time, MPI.DOUBLE], [min_load_file_time, MPI.DOUBLE], op=MPI.MIN, root=0) comm.Reduce([write_file_time, MPI.DOUBLE], [max_write_file_time, MPI.DOUBLE], op=MPI.MAX, root=0) comm.Reduce([write_file_time, MPI.DOUBLE], [min_write_file_time, MPI.DOUBLE], op=MPI.MIN, root=0) comm.Reduce([num_bad_ticks, MPI.DOUBLE], [sum_num_bad_ticks, MPI.DOUBLE], op=MPI.SUM, root=0) if rank == 0: logger.info("Timer: total max - %f, min - %f" % (max_execution_time, min_execution_time)) logger.info("Timer: load file max - %f, min - %f" % (max_load_file_time, min_load_file_time)) logger.info("Timer: process file max - %f, min - %f" % (max_process_file_time, min_process_file_time)) logger.info("Timer: write file max - %f, min - %f" % (max_write_file_time, min_write_file_time)) logger.info("Counter: bad ticks sum - %i" % (sum_num_bad_ticks)) <|end_of_text|># -------------------------------------------------------------------- cdef extern from * nogil: ctypedef enum PetscDMPlexReorderDefaultFlag "DMPlexReorderDefaultFlag": DMPLEX_REORDER_DEFAULT_NOTSET DMPLEX_REORDER_DEFAULT_FALSE DMPLEX_REORDER_DEFAULT_TRUE ctypedef const char* PetscDMPlexTransformType "DMPlexTransformType" PetscDMPlexTransformType DMPLEXREFINEREGULAR PetscDMPlexTransformType DMPLEXREFINEALFELD PetscDMPlexTransformType DMPLEXREFINEPOWELLSABIN PetscDMPlexTransformType DMPLEXREFINEBOUNDARYLAYER PetscDMPlexTransformType DMPLEXREFINESBR PetscDMPlexTransformType DMPLEXREFINETOBOX PetscDMPlexTransformType DMPLEXREFINETOSIMPLEX PetscDMPlexTransformType DMPLEXREFINE1D PetscDMPlexTransformType DMPLEXEXTRUDE PetscDMPlexTransformType DMPLEXTRANSFORMFILTER PetscErrorCode DMPlexCreate(MPI_Comm,PetscDM*) PetscErrorCode DMPlexCreateCohesiveSubmesh(PetscDM,PetscBool,const char[],PetscInt,PetscDM*) PetscErrorCode DMPlexCreateFromCellListPetsc(MPI_Comm,PetscInt,PetscInt,PetscInt,PetscInt,PetscBool,PetscInt[],PetscInt,PetscReal[],PetscDM*) #int DMPlexCreateFromDAG(PetscDM,PetscInt,const PetscInt[],const PetscInt[],const PetscInt[],const PetscInt[],const PetscScalar[]) PetscErrorCode DMPlexGetChart(PetscDM,PetscInt*,PetscInt*) PetscErrorCode DMPlexSetChart(PetscDM,PetscInt,PetscInt) PetscErrorCode DMPlexGetConeSize(PetscDM,PetscInt,PetscInt*) PetscErrorCode DMPlexSetConeSize(PetscDM,PetscInt,PetscInt) PetscErrorCode DMPlexGetCone(PetscDM,PetscInt,const PetscInt*[]) PetscErrorCode DMPlexSetCone(PetscDM,PetscInt,const PetscInt[]) PetscErrorCode DMPlexInsertCone(PetscDM,PetscInt,PetscInt,PetscInt) PetscErrorCode DMPlexInsertConeOrientation(PetscDM,PetscInt,PetscInt,PetscInt) PetscErrorCode DMPlexGetConeOrientation(PetscDM,PetscInt,const PetscInt*[]) PetscErrorCode DMPlexSetConeOrientation(PetscDM,PetscInt,const PetscInt[]) PetscErrorCode DMPlexSetCellType(PetscDM,PetscInt,PetscDMPolytopeType) PetscErrorCode DMPlexGetCellType(PetscDM,PetscInt,PetscDMPolytopeType*) PetscErrorCode DMPlexGetCellTypeLabel(PetscDM,PetscDMLabel*) PetscErrorCode DMPlexGetSupportSize(PetscDM,PetscInt,PetscInt*) PetscErrorCode DMPlexSetSupportSize(PetscDM,PetscInt,PetscInt) PetscErrorCode DMPlexGetSupport(PetscDM,PetscInt,const PetscInt*[]) PetscErrorCode DMPlexSetSupport(PetscDM,PetscInt,const PetscInt[]) #int DMPlexInsertSupport(PetscDM,PetscInt,PetscInt,PetscInt) #int DMPlexGetConeSection(PetscDM,PetscSection*) #int DMPlexGetSupportSection(PetscDM,PetscSection*) #int DMPlexGetCones(PetscDM,PetscInt*[]) #int DMPlexGetConeOrientations(PetscDM,PetscInt*[]) PetscErrorCode DMPlexGetMaxSizes(PetscDM,PetscInt*,PetscInt*) PetscErrorCode DMPlexSymmetrize(PetscDM) PetscErrorCode DMPlexStratify(PetscDM) #int DMPlexEqual(PetscDM,PetscDM,PetscBool*) PetscErrorCode DMPlexOrient(PetscDM) PetscErrorCode DMPlexInterpolate(PetscDM,PetscDM*) PetscErrorCode DMPlexUninterpolate(PetscDM,PetscDM*) #int DMPlexLoad(PetscViewer,PetscDM) #int DMPlexSetPreallocationCenterDimension(PetscDM,PetscInt) #int DMPlexGetPreallocationCenterDimension(PetscDM,PetscInt*) #int DMPlexPreallocateOperator(PetscDM,PetscInt,PetscSection,PetscSection,PetscInt[],PetscInt[],PetscInt[],PetscInt[],Mat,PetscBool) PetscErrorCode DMPlexGetPointLocal(PetscDM,PetscInt,PetscInt*,PetscInt*) #int DMPlexPointLocalRef(PetscDM,PetscInt,PetscScalar*,void*) #int DMPlexPointLocalRead(PetscDM,PetscInt,const PetscScalar*,const void*) PetscErrorCode DMPlexGetPointGlobal(PetscDM,PetscInt,PetscInt*,PetscInt*) #int DMPlexPointGlobalRef(PetscDM,PetscInt,PetscScalar*,void*) #int DMPlexPointGlobalRead(PetscDM,PetscInt,const PetscScalar*,const void*) PetscErrorCode DMPlexGetPointLocalField(PetscDM,PetscInt,PetscInt,P
Cython
etscInt*,PetscInt*) PetscErrorCode DMPlexGetPointGlobalField(PetscDM,PetscInt,PetscInt,PetscInt*,PetscInt*) PetscErrorCode DMPlexCreateClosureIndex(PetscDM,PetscSection) #int PetscSectionCreateGlobalSectionLabel(PetscSection,PetscSF,PetscBool,PetscDMLabel,PetscInt,PetscSection*) PetscErrorCode DMPlexGetCellNumbering(PetscDM,PetscIS*) PetscErrorCode DMPlexGetVertexNumbering(PetscDM,PetscIS*) PetscErrorCode DMPlexCreatePointNumbering(PetscDM,PetscIS*) PetscErrorCode DMPlexGetDepth(PetscDM,PetscInt*) #int DMPlexGetDepthLabel(PetscDM,PetscDMLabel*) PetscErrorCode DMPlexGetDepthStratum(PetscDM,PetscInt,PetscInt*,PetscInt*) PetscErrorCode DMPlexGetHeightStratum(PetscDM,PetscInt,PetscInt*,PetscInt*) PetscErrorCode DMPlexGetPointDepth(PetscDM,PetscInt,PetscInt*) PetscErrorCode DMPlexGetPointHeight(PetscDM,PetscInt,PetscInt*) PetscErrorCode DMPlexGetMeet(PetscDM,PetscInt,const PetscInt[],PetscInt*,const PetscInt**) #int DMPlexGetFullMeet(PetscDM,PetscInt,const PetscInt[],PetscInt*,const PetscInt**) PetscErrorCode DMPlexRestoreMeet(PetscDM,PetscInt,const PetscInt[],PetscInt*,const PetscInt**) PetscErrorCode DMPlexGetJoin(PetscDM,PetscInt,const PetscInt[],PetscInt*,const PetscInt**) PetscErrorCode DMPlexGetFullJoin(PetscDM,PetscInt,const PetscInt[],PetscInt*,const PetscInt**) PetscErrorCode DMPlexRestoreJoin(PetscDM,PetscInt,const PetscInt[],PetscInt*,const PetscInt**) PetscErrorCode DMPlexGetTransitiveClosure(PetscDM,PetscInt,PetscBool,PetscInt*,PetscInt*[]) PetscErrorCode DMPlexRestoreTransitiveClosure(PetscDM,PetscInt,PetscBool,PetscInt*,PetscInt*[]) PetscErrorCode DMPlexVecGetClosure(PetscDM,PetscSection,PetscVec,PetscInt,PetscInt*,PetscScalar*[]) PetscErrorCode DMPlexVecRestoreClosure(PetscDM,PetscSection,PetscVec,PetscInt,PetscInt*,PetscScalar*[]) PetscErrorCode DMPlexVecSetClosure(PetscDM,PetscSection,PetscVec,PetscInt,PetscScalar[],PetscInsertMode) PetscErrorCode DMPlexMatSetClosure(PetscDM,PetscSection,PetscSection,PetscMat,PetscInt,PetscScalar[],PetscInsertMode) PetscErrorCode DMPlexGenerate(PetscDM,const char[],PetscBool,PetscDM*) PetscErrorCode DMPlexTriangleSetOptions(PetscDM,const char*) PetscErrorCode DMPlexTetgenSetOptions(PetscDM,const char*) #int DMPlexCopyCoordinates(PetscDM,PetscDM) #int DMPlexCreateDoublet(MPI_Comm,PetscInt,PetscBool,PetscBool,PetscBool,PetscReal,PetscDM*) PetscErrorCode DMPlexCreateBoxMesh(MPI_Comm,PetscInt,PetscBool,PetscInt[],PetscReal[],PetscReal[],PetscDMBoundaryType[],PetscBool,PetscDM*) PetscErrorCode DMPlexCreateBoxSurfaceMesh(MPI_Comm,PetscInt,PetscInt[],PetscReal[],PetscReal[],PetscBool,PetscDM*) PetscErrorCode DMPlexCreateFromFile(MPI_Comm,const char[],const char[],PetscBool,PetscDM*) PetscErrorCode DMPlexCreateCGNS(MPI_Comm,PetscInt,PetscBool,PetscDM*) PetscErrorCode DMPlexCreateCGNSFromFile(MPI_Comm,const char[],PetscBool,PetscDM*) PetscErrorCode DMPlexCreateExodus(MPI_Comm,PetscInt,PetscBool,PetscDM*) PetscErrorCode DMPlexCreateExodusFromFile(MPI_Comm,const char[],PetscBool,PetscDM*) PetscErrorCode DMPlexCreateGmsh(MPI_Comm,PetscViewer,PetscBool,PetscDM*) #int DMPlexInvertCell(PetscInt,PetscInt,int[]) #int DMPlexCheckSymmetry(PetscDM) #int DMPlexCheckSkeleton(PetscDM,PetscBool,PetscInt) #int DMPlexCheckFaces(PetscDM,PetscBool,PetscInt) PetscErrorCode DMPlexSetAdjacencyUseAnchors(PetscDM,PetscBool) PetscErrorCode DMPlexGetAdjacencyUseAnchors(PetscDM,PetscBool*) PetscErrorCode DMPlexGetAdjacency(PetscDM,PetscInt,PetscInt*,PetscInt*[]) #int DMPlexCreateNeighborCSR(PetscDM,PetscInt,PetscInt*,PetscInt**,PetscInt**) PetscErrorCode DMPlexRebalanceSharedPoints(PetscDM,PetscInt,PetscBool,PetscBool,PetscBool*) PetscErrorCode DMPlexDistribute(PetscDM,PetscInt,PetscSF*,PetscDM*) PetscErrorCode DMPlexDistributeOverlap(PetscDM,PetscInt,PetscSF*,PetscDM*) PetscErrorCode DMPlexDistributeGetDefault(PetscDM,PetscBool*) PetscErrorCode DMPlexDistributeSetDefault(PetscDM,PetscBool) PetscErrorCode DMPlexSetPartitioner(PetscDM,PetscPartitioner) PetscErrorCode DMPlexGetPartitioner(PetscDM,PetscPartitioner*) PetscErrorCode DMPlexDistributeField(PetscDM,PetscSF,PetscSection,PetscVec,PetscSection,PetscVec) #int DMPlexDistributeData(PetscDM,PetscSF,PetscSection,MPI_Datatype,void*,PetscSection,void**) PetscErrorCode DMPlexIsDistributed(PetscDM,PetscBool*) PetscErrorCode DMPlexIsSimplex(PetscDM,PetscBool*) PetscErrorCode DMPlexDistributionSetName(PetscDM,const char[]) PetscErrorCode DMPlexDistributionGetName(PetscDM,const char*[]) PetscErrorCode DMPlexGetOrdering(PetscDM,PetscMatOrderingType,PetscDMLabel,PetscIS*) PetscErrorCode DMPlexPermute(PetscDM,PetscIS,PetscDM*) PetscErrorCode DMPlexReorderGetDefault(PetscDM,PetscDMPlexReorderDefaultFlag*) PetscErrorCode DMPlexReorderSetDefault(PetscDM,PetscDMPlexReorderDefaultFlag) #int DMPlexCreateSubmesh(PetscDM,PetscDMLabel,PetscInt,PetscDM*) #int DMPlexCreateHybridMesh(PetscDM,PetscDMLabel,PetscDMLabel,PetscInt,PetscDMLabel*,PetscDMLabel*,PetscDM *,PetscDM *) #int DMPlexGetSubpointMap(PetscDM,PetscDMLabel*) #int DMPlexSetSubpointMap(PetscDM,PetscDMLabel) #int DMPlexCreateSubpointIS(PetscDM,PetscIS*) PetscErrorCode DMPlexCreateCoarsePointIS(PetscDM,PetscIS*) PetscErrorCode DMPlexMarkBoundaryFaces(PetscDM,PetscInt,PetscDMLabel) PetscErrorCode DMPlexLabelComplete(PetscDM,PetscDMLabel) PetscErrorCode DMPlexLabelCohesiveComplete(PetscDM,PetscDMLabel,PetscDMLabel,PetscInt,PetscBool,PetscDM) PetscErrorCode DMPlexGetRefinementLimit(PetscDM,PetscReal*) PetscErrorCode DMPlexSetRefinementLimit(PetscDM,PetscReal) PetscErrorCode DMPlexGetRefinementUniform(PetscDM,PetscBool*) PetscErrorCode DMPlexSetRefinementUniform(PetscDM,PetscBool) PetscErrorCode DMPlexGetMinRadius(PetscDM, PetscReal*) #int DMPlexGetNumFaceVertices(PetscDM,PetscInt,PetscInt,PetscInt*) #int DMPlexGetOrientedFace(PetscDM,PetscInt,PetscInt,const PetscInt[],PetscInt,PetscInt[],PetscInt[],PetscInt[],PetscBool*) PetscErrorCode DMPlexCreateSection(PetscDM,PetscDMLabel[],const PetscInt[],const PetscInt[],PetscInt,const PetscInt[],const PetscIS[],const PetscIS[],PetscIS,PetscSection*) PetscErrorCode DMPlexComputeCellGeometryFVM(PetscDM,PetscInt,PetscReal*,Petsc
Cython
Real[],PetscReal[]) PetscErrorCode DMPlexConstructGhostCells(PetscDM,const char[],PetscInt*,PetscDM*) PetscErrorCode DMPlexMetricSetFromOptions(PetscDM) PetscErrorCode DMPlexMetricSetUniform(PetscDM,PetscBool) PetscErrorCode DMPlexMetricIsUniform(PetscDM,PetscBool*) PetscErrorCode DMPlexMetricSetIsotropic(PetscDM,PetscBool) PetscErrorCode DMPlexMetricIsIsotropic(PetscDM,PetscBool*) PetscErrorCode DMPlexMetricSetRestrictAnisotropyFirst(PetscDM,PetscBool) PetscErrorCode DMPlexMetricRestrictAnisotropyFirst(PetscDM,PetscBool*) PetscErrorCode DMPlexMetricSetNoInsertion(PetscDM,PetscBool) PetscErrorCode DMPlexMetricNoInsertion(PetscDM,PetscBool*) PetscErrorCode DMPlexMetricSetNoSwapping(PetscDM,PetscBool) PetscErrorCode DMPlexMetricNoSwapping(PetscDM,PetscBool*) PetscErrorCode DMPlexMetricSetNoMovement(PetscDM,PetscBool) PetscErrorCode DMPlexMetricNoMovement(PetscDM,PetscBool*) PetscErrorCode DMPlexMetricSetNoSurf(PetscDM,PetscBool) PetscErrorCode DMPlexMetricNoSurf(PetscDM,PetscBool*) PetscErrorCode DMPlexMetricSetVerbosity(PetscDM,PetscInt) PetscErrorCode DMPlexMetricGetVerbosity(PetscDM,PetscInt*) PetscErrorCode DMPlexMetricSetNumIterations(PetscDM,PetscInt) PetscErrorCode DMPlexMetricGetNumIterations(PetscDM,PetscInt*) PetscErrorCode DMPlexMetricSetMinimumMagnitude(PetscDM,PetscReal) PetscErrorCode DMPlexMetricGetMinimumMagnitude(PetscDM,PetscReal*) PetscErrorCode DMPlexMetricSetMaximumMagnitude(PetscDM,PetscReal) PetscErrorCode DMPlexMetricGetMaximumMagnitude(PetscDM,PetscReal*) PetscErrorCode DMPlexMetricSetMaximumAnisotropy(PetscDM,PetscReal) PetscErrorCode DMPlexMetricGetMaximumAnisotropy(PetscDM,PetscReal*) PetscErrorCode DMPlexMetricSetTargetComplexity(PetscDM,PetscReal) PetscErrorCode DMPlexMetricGetTargetComplexity(PetscDM,PetscReal*) PetscErrorCode DMPlexMetricSetNormalizationOrder(PetscDM,PetscReal) PetscErrorCode DMPlexMetricGetNormalizationOrder(PetscDM,PetscReal*) PetscErrorCode DMPlexMetricSetGradationFactor(PetscDM,PetscReal) PetscErrorCode DMPlexMetricGetGradationFactor(PetscDM,PetscReal*) PetscErrorCode DMPlexMetricSetHausdorffNumber(PetscDM,PetscReal) PetscErrorCode DMPlexMetricGetHausdorffNumber(PetscDM,PetscReal*) PetscErrorCode DMPlexMetricCreate(PetscDM,PetscInt,PetscVec*) PetscErrorCode DMPlexMetricCreateUniform(PetscDM,PetscInt,PetscReal,PetscVec*) PetscErrorCode DMPlexMetricCreateIsotropic(PetscDM,PetscInt,PetscVec,PetscVec*) PetscErrorCode DMPlexMetricDeterminantCreate(PetscDM,PetscInt,PetscVec*,PetscDM*) PetscErrorCode DMPlexMetricEnforceSPD(PetscDM,PetscVec,PetscBool,PetscBool,PetscVec,PetscVec) PetscErrorCode DMPlexMetricNormalize(PetscDM,PetscVec,PetscBool,PetscBool,PetscVec,PetscVec) PetscErrorCode DMPlexMetricAverage2(PetscDM,PetscVec,PetscVec,PetscVec) PetscErrorCode DMPlexMetricAverage3(PetscDM,PetscVec,PetscVec,PetscVec,PetscVec) PetscErrorCode DMPlexMetricIntersection2(PetscDM,PetscVec,PetscVec,PetscVec) PetscErrorCode DMPlexMetricIntersection3(PetscDM,PetscVec,PetscVec,PetscVec,PetscVec) PetscErrorCode DMPlexComputeGradientClementInterpolant(PetscDM,PetscVec,PetscVec) PetscErrorCode DMPlexTopologyView(PetscDM,PetscViewer) PetscErrorCode DMPlexCoordinatesView(PetscDM,PetscViewer) PetscErrorCode DMPlexLabelsView(PetscDM,PetscViewer) PetscErrorCode DMPlexSectionView(PetscDM,PetscViewer,PetscDM) PetscErrorCode DMPlexGlobalVectorView(PetscDM,PetscViewer,PetscDM,PetscVec) PetscErrorCode DMPlexLocalVectorView(PetscDM,PetscViewer,PetscDM,PetscVec) PetscErrorCode DMPlexTopologyLoad(PetscDM,PetscViewer,PetscSF*) PetscErrorCode DMPlexCoordinatesLoad(PetscDM,PetscViewer,PetscSF) PetscErrorCode DMPlexLabelsLoad(PetscDM,PetscViewer,PetscSF) PetscErrorCode DMPlexSectionLoad(PetscDM,PetscViewer,PetscDM,PetscSF,PetscSF*,PetscSF*) PetscErrorCode DMPlexGlobalVectorLoad(PetscDM,PetscViewer,PetscDM,PetscSF,PetscVec) PetscErrorCode DMPlexLocalVectorLoad(PetscDM,PetscViewer,PetscDM,PetscSF,PetscVec) PetscErrorCode DMPlexTransformApply(PetscDMPlexTransform, PetscDM, PetscDM *); PetscErrorCode DMPlexTransformCreate(MPI_Comm, PetscDMPlexTransform *); PetscErrorCode DMPlexTransformDestroy(PetscDMPlexTransform*); PetscErrorCode DMPlexTransformGetType(PetscDMPlexTransform, PetscDMPlexTransformType *); PetscErrorCode DMPlexTransformSetType(PetscDMPlexTransform tr, PetscDMPlexTransformType method); PetscErrorCode DMPlexTransformSetFromOptions(PetscDMPlexTransform); PetscErrorCode DMPlexTransformSetDM(PetscDMPlexTransform, PetscDM); PetscErrorCode DMPlexTransformSetUp(PetscDMPlexTransform); PetscErrorCode DMPlexTransformView(PetscDMPlexTransform tr, PetscViewer v); <|end_of_text|>#'Test generation' from tempmin import * from math import * import numpy def test_test_snow1(): params= tempmin( P_prof = 10.0, P_tminseuil = -0.5, P_tmaxseuil = 0.0, Sdepth_cm = 91.2, tmin = 0.279, ) tminrec_estimated = round(params, 2) tminrec_computed = 45.6 assert (tminrec_estimated == tminrec_computed)<|end_of_text|>#distutils: language = c++ from libcpp cimport bool cdef extern from "../sucpp/api.hpp": struct mat: double* condensed_form unsigned int n_samples unsigned int cf_size char** sample_ids struct results_vec: unsigned int n_samples double* values char** sample_ids enum compute_status: okay, tree_missing, table_missing, table_empty, unknown_method, table_and_tree_do_not_overlap, output_error compute_status one_off(const char* biom_filename, const char* tree_filename, const char* unifrac_method, bool variance_adjust, double alpha, bool bypass_tips, unsigned int threads, mat** result) compute_status faith_pd_one_off(const char* biom_filename, const char* tree_filename, results_vec** result) void destroy_mat(mat** result) void destroy_results_vec(results_vec** result) compute_status unifrac_to_file(const char* biom_filename, const char* tree_filename, const char* out_filename, const char* unifrac_method, bool variance_adjust, double alpha, bool bypass_tips, unsigned int threads, const char* format, unsigned int pcoa_dims, const char *mmap_dir) <|end_of_text|> import os from libc cimport stdint cdef extern from "ext/batch_jaro_winkler.h": ctypedef struct bjw_result: void *candidate float score stdint.uint32_t candidate_length void *bjw_build_exportable_model(void **candidates, stdint.uint32_t char_width, stdint.uint32_t *candidates_lengths, stdint.uint32_t nb_candidates, float *min_scores, stdint.uint32_t nb_runtime_threads, stdint.uint32_t *res_model_size); void *bjw_build_runtime_model(void *exportable_model); void bjw_free_runtime_model(void *runtime_model); bjw_result *bjw_jaro_winkler_distance(void *runtime_model, void *input, stdint.uint32_t input_length, float min_score, float weight, float threshold, stdint.uint32_t n_best_results, stdint.uint32_t *nb_results) nog
Cython
il;<|end_of_text|># distutils: extra_compile_args = -O3 -w # distutils: include_dirs = pylds/ # cython: boundscheck = False, nonecheck = False, wraparound = False, cdivision = True import scipy.linalg.blas import scipy.linalg.lapack cdef extern from "f2pyptr.h": void *f2py_pointer(object) except NULL cdef: # BLAS dcopy_t *dcopy = <dcopy_t*>f2py_pointer(scipy.linalg.blas.dcopy._cpointer) dnrm2_t *dnrm2 = <dnrm2_t*>f2py_pointer(scipy.linalg.blas.dnrm2._cpointer) daxpy_t *daxpy = <daxpy_t*>f2py_pointer(scipy.linalg.blas.daxpy._cpointer) srotg_t *srotg = <srotg_t*>f2py_pointer(scipy.linalg.blas.srotg._cpointer) srot_t *srot = <srot_t*>f2py_pointer(scipy.linalg.blas.srot._cpointer) drotg_t *drotg = <drotg_t*>f2py_pointer(scipy.linalg.blas.drotg._cpointer) drot_t *drot = <drot_t*>f2py_pointer(scipy.linalg.blas.drot._cpointer) ddot_t *ddot = <ddot_t*>f2py_pointer(scipy.linalg.blas.ddot._cpointer) dsymv_t *dsymv = <dsymv_t*>f2py_pointer(scipy.linalg.blas.dsymv._cpointer) dgemv_t *dgemv = <dgemv_t*>f2py_pointer(scipy.linalg.blas.dgemv._cpointer) dger_t *dger = <dger_t*>f2py_pointer(scipy.linalg.blas.dger._cpointer) dtrmv_t *dtrmv = <dtrmv_t*>f2py_pointer(scipy.linalg.blas.dtrmv._cpointer) dgemm_t *dgemm = <dgemm_t*>f2py_pointer(scipy.linalg.blas.dgemm._cpointer) dsymm_t *dsymm = <dsymm_t*>f2py_pointer(scipy.linalg.blas.dsymm._cpointer) dsyrk_t *dsyrk = <dsyrk_t*>f2py_pointer(scipy.linalg.blas.dsyrk._cpointer) # LAPACK dposv_t *dposv = <dposv_t*>f2py_pointer(scipy.linalg.lapack.dposv._cpointer) dpotrf_t *dpotrf = <dpotrf_t*>f2py_pointer(scipy.linalg.lapack.dpotrf._cpointer) dpotrs_t *dpotrs = <dpotrs_t*>f2py_pointer(scipy.linalg.lapack.dpotrs._cpointer) dtrtrs_t *dtrtrs = <dtrtrs_t*>f2py_pointer(scipy.linalg.lapack.dtrtrs._cpointer) dpotri_t *dpotri = <dpotri_t*>f2py_pointer(scipy.linalg.lapack.dpotri._cpointer) <|end_of_text|># This source code is part of the # PyQuante quantum chemistry suite # # Written by Gabriele Lanaro, 2009-2010 # Copyright (c) 2009-2010, Gabriele Lanaro # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. cimport contracted_gto import contracted_gto from primitive_gto cimport PrimitiveGTO, cPrimitiveGTO #from primitive_gto import PrimitiveGTO from stdlib cimport * cdef class ContractedGTO: ''' Class that represents a linear combination of PrimitiveGTOs ''' def __cinit__(self, origin, powers, atid=0): self.this = contracted_gto.contracted_gto_new() def __init__(self,origin, powers, atid=0): x,y,z = origin l,m,n = powers contracted_gto.contracted_gto_init(self.this, x, y, z, l, m, n, atid) @classmethod def from_primitives(cls, pgtos, coefs, atid=0): raise NotImplementedError() cdef cPrimitiveGTO **pgto_array cdef int n,i cdef PrimitiveGTO cy_pgto n = <int>len(pgtos) # this array will be free in the cgto destructor pgto_array = <cPrimitiveGTO **>malloc(n * sizeof(cPrimitiveGTO*)) # Constructing the PrimitiveGTO** array... for i in range(n): cy_pgto = <PrimitiveGTO> pgtos[i] cy_pgto.this.coef = <double>coefs[i] # set the coef pgto_array[i] = <cPrimitiveGTO *> cy_pgto.this #obj = ContractedGTO(x,y,z,l,m,n,atid) #contracted_gto.contracted_gto_from_primitives(obj.this, pgto_array, n) #return obj def __dealloc__(self): contracted_gto.contracted_gto_free(self.this) def add_primitive(self, primitive_gto.PrimitiveGTO pgto, double coeff): contracted_gto.contracted_gto_add_primitive(self.this, pgto.this, coeff) def amp(self,double x,double y,double z): ''' given a point in the space it returns the amplitude of the GTO ''' return contracted_gto.contracted_gto_amp(self.this,x,y,z) def normalize(self): contracted_gto.contracted_gto_normalize(self.this) property norm: def __get__(self): return self.this.norm def __set__(self, double value): self.this.norm = value property primitives: def __get__(self): cdef cPrimitiveGTO* prim ret = [] for i in range(self.this.nprims): prim = <cPrimitiveGTO *>self.this.primitives[i] ret.append(PrimitiveGTO(prim.alpha, (prim.x0,prim.y0,prim.z0), (prim.l,prim.m,prim.n), prim.coef)) return ret ''' cpdef double coulomb( ContractedGTO a, ContractedGTO b, ContractedGTO c, ContractedGTO d ): return contracted_gto.contracted_gto_coulomb(a.this, b.this, c.this, d.this) ''' <|end_of_text|>from quantlib.handle cimport shared_ptr from quantlib.indexes.interest_rate_index cimport InterestRateIndex cdef class SwapIndex(InterestRateIndex): pass <|end_of_text|> ctypedef unsigned char uint8_t cdef extern from "embed/usart.h": void usart_puts(const char *data) int usart_gets(char *data) void isr_USART_UDRE_vect() void isr_USART_RX_vect() ctypedef struct buffer_t: char data[64] uint8_t head, tail buffer_t _buffer_debug(char buf, char debug) cdef extern from "avr/io.h": uint8_t UBRR0H uint8_t UBRR0L uint8_t RXCIE0 uint8_t UCSR0B uint8_t UDRIE0 uint8_t RXC0 uint8_t UCSR0A uint8_t UDRE0 uint8_t UDR0 <|end_of_text|>cimport cython # This file must not cimport anything from gevent. cdef get_objects cdef wref cdef BlockingSwitchOutError cdef extern from "greenlet/greenlet.h": ctypedef class greenlet.greenlet [object PyGreenlet]: pass # These are actually macros and so much be included # (defined) in each.pxd, as are the two functions # that call them. greenlet PyGreenlet_GetCurrent() object PyGreenlet_Switch(greenlet self, void* args, void* kwargs) void PyGreenlet_Import() @cython.final cdef inline greenlet getcurrent(): return PyGreenlet_GetCurrent() cdef bint _greenlet_imported cdef inline void greenlet_init(): global _greenlet_imported if not _greenlet_imported: PyGreenlet_Import() _greenlet_imported = True cdef inline object _greenlet_switch(greenlet self): return PyGreenlet_Switch(self, NULL, NULL) cdef class TrackedRawGreenlet(greenlet): pass cdef class SwitchOutGreenletWithLoop(TrackedRawGreenlet): cdef public loop cpdef switch(self) cpdef switch_out(self) cpdef list get_reachable_greenlets() <|end_of_text|># POSIX additions to <stdlib
Cython
.h> # https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/stdlib.h.html cdef extern from "<stdlib.h>" nogil: void _Exit(int) double drand48() double erand48(unsigned short *) int getsubopt(char **, char *const *, char **) void lcong48(unsigned short *) long lrand() char *mkdtemp(char *) int mkstemp(char *) long mrand() long nrand48(unsigned short *) int posix_memalign(void **, size_t, size_t) int posix_openpt(int) char *ptsname(int) int putenv(char *) int rand_r(unsigned *) long random() char *realpath(const char *, char *) unsigned short *seed48(unsigned short *) int setenv(const char *, const char *, int) void setkey(const char *) char *setstate(char *) void srand48(long) void srandom(unsigned) int unlockpt(int) int unsetenv(const char *) <|end_of_text|>import numpy as np cimport numpy as np ctypedef np.double_t DTYPE_t cdef extern from "stdlib.h": ctypedef void const_void "const void" void qsort(void *base, int nmemb, int size, int(*compar)(const_void *, const_void *)) nogil cdef int mycmp(const_void * pa, const_void * pb): cdef double a = (<double *>pa)[0] cdef double b = (<double *>pb)[0] if a < b: return -1 elif a > b: return 1 else: return 0 cdef void myfunc(double * y, ssize_t l) nogil: qsort(y, l, sizeof(double), mycmp) def sortArray(np.ndarray[DTYPE_t,ndim=1] inpArray): cdef int lengthArr=inpArray.shape[0] cdef double* ArrPtr=&inpArray[0] myfunc(ArrPtr,lengthArr) # Usage #import numpy as np #inpArray=np.array([1.,2.,3.,7.,4.]) #cythonSort.sortArray(inpArray) #print(inpArray) # [1. 2. 3. 4. 7.] <|end_of_text|>#cython: boundscheck=False #cython: wraparound=False #cython: cdivision=True #cython: embedsignature=True # cython: profile=False # ============================================================== import numpy as np # from libc.math cimport floor # cimport cython from cython.parallel cimport prange # ============================================================== def translate_2D(double[:,:] in_arr, double dX, double dY): """ dX, dY --> Amount of translation """ # ========================================================== cdef: ssize_t x, nX=in_arr.shape[0] ssize_t y, nY=in_arr.shape[1] ssize_t x_lo, y_lo # ssize_t x_hi, y_hi # double x_est, y_est # Estimates of where (x,y) in # the out-array corresponds to # in the input array double Wx_lo, Wy_lo, Wx_hi, Wy_hi double W_LL, W_LH, W_HL, W_HH double eps = 1E-6 double[:,:] arr = np.zeros((nX,nY), dtype=np.float64) # ========================================================== with nogil: for x in prange(nX): for y in range(nY): # translate (x,y) by (dX,dY) x_est = <double> x - dX y_est = <double> y - dY # interpolate x_lo = <int> floor(x_est) y_lo = <int> floor(y_est) x_hi = x_lo + 1 #ceil(x_est) y_hi = y_lo + 1 #ceil(y_est) # 1D interpolation weights Wx_lo = - x_est + <double> x_hi + eps Wy_lo = - y_est + <double> y_hi + eps Wx_hi = + x_est - <double> x_lo + eps Wy_hi = + y_est - <double> y_lo + eps # 2D interpolation weights W_LL = Wx_lo * Wy_lo W_LH = Wx_lo * Wy_hi W_HL = Wx_hi * Wy_lo W_HH = Wx_hi * Wy_hi # if ((x_lo >= 0) and (x_hi < nX) and (y_lo >= 0) and (y_hi < nY)): arr[x,y] = W_LL * in_arr[x_lo, y_lo] + \ W_LH * in_arr[x_lo, y_hi] + \ W_HL * in_arr[x_hi, y_lo] + \ W_HH * in_arr[x_hi, y_hi] # end for y loop # end for x loop return np.asarray(arr) # ============================================================== <|end_of_text|>class java_method(object): def __init__(self, signature, name=None): super(java_method, self).__init__() self.signature = signature self.name = name def __get__(self, instance, instancetype): return partial(self.__call__, instance) def __call__(self, f): f.__javasignature__ = self.signature f.__javaname__ = self.name return f cdef class PythonJavaClass(object): ''' Base class to create a java class from python ''' cdef jclass j_cls cdef public object j_self def __cinit__(self, *args): self.j_cls = NULL self.j_self = None def __init__(self, *args, **kwargs): self._init_j_self_ptr() def _init_j_self_ptr(self): javacontext ='system' if hasattr(self, '__javacontext__'): javacontext = self.__javacontext__ self.j_self = create_proxy_instance(get_jnienv(), self, self.__javainterfaces__, javacontext) # discover all the java method implemented self.__javamethods__ = {} for x in dir(self): attr = getattr(self, x) if not callable(attr): continue if not hasattr(attr, '__javasignature__'): continue signature = parse_definition(attr.__javasignature__) self.__javamethods__[(attr.__javaname__ or x, signature)] = attr def invoke(self, method, *args): try: ret = self._invoke(method, *args) return ret except Exception: traceback.print_exc() return None def _invoke(self, method, *args): from.reflect import get_signature # search the java method ret_signature = get_signature(method.getReturnType()) args_signature = tuple([get_signature(x) for x in method.getParameterTypes()]) method_name = method.getName() key = (method_name, (ret_signature, args_signature)) py_method = self.__javamethods__.get(key, None) if not py_method: print(''.join([ '\n===== Python/java method missing ======', '\nPython class:', repr(self), '\nJava method name:', method_name, '\nSignature: ({}){}'.format(''.join(args_signature), ret_signature), '\n=======================================\n'])) raise NotImplementedError('The method {} is not implemented'.format(key)) return py_method(*args) cdef jobject py_invoke0(JNIEnv *j_env, jobject j_this, jobject j_proxy, jobject j_method, jobjectArray args) except * with gil: from.reflect import get_signature, Method cdef jfieldID ptrField cdef jlong jptr cdef object py_obj cdef JavaClass method cdef jobject j_arg # get the python object ptrField = j_env[0].GetFieldID(j_env, j_env[0].GetObjectClass(j_env, j_this), "ptr", "J") jptr = j_env[0].GetLongField(j_env, j_this, ptrField) py_obj = <object><void *>jptr # extract the method information method = Method(noinstance=True) method.instanciate_from(create_local_ref(j_env, j_method)) ret_signature = get_signature(method.getReturnType()) args_signature = [get_signature(x) for x in method.getParameterTypes()] # convert java argument to python object # native java type are given with java.lang.*, even if the signature say # it's a native type. py_args = [] convert_signature = { 'Z': 'Ljava/lang/Boolean;', 'B': 'Ljava/lang/Byte;', 'C': 'Ljava/lang/Character;', 'S': 'Ljava/lang/Short;', 'I': 'Ljava/lang/Integer;', 'J': 'Ljava/lang/Long;', 'F': 'Ljava/lang/Float;',
Cython
'D': 'Ljava/lang/Double;'} for index, arg_signature in enumerate(args_signature): arg_signature = convert_signature.get(arg_signature, arg_signature) j_arg = j_env[0].GetObjectArrayElement(j_env, args, index) py_arg = convert_jobject_to_python(j_env, arg_signature, j_arg) j_env[0].DeleteLocalRef(j_env, j_arg) py_args.append(py_arg) # really invoke the python method name = method.getName() ret = py_obj.invoke(method, *py_args) # convert back to the return type # use the populate_args(), but in the reverse way :) t = ret_signature[:1] # did python returned a "native" type? jtype = None if ret_signature == 'Ljava/lang/Object;': # generic object, try to manually convert it tp = type(ret) if tp == int: jtype = 'J' elif tp == float: jtype = 'D' elif tp == bool: jtype = 'Z' elif len(ret_signature) == 1: jtype = ret_signature try: return convert_python_to_jobject(j_env, jtype or ret_signature, ret) except Exception: traceback.print_exc() cdef jobject invoke0(JNIEnv *j_env, jobject j_this, jobject j_proxy, jobject j_method, jobjectArray args) with gil: try: return py_invoke0(j_env, j_this, j_proxy, j_method, args) except Exception: traceback.print_exc() return NULL # now we need to create a proxy and pass it an invocation handler cdef create_proxy_instance(JNIEnv *j_env, py_obj, j_interfaces, javacontext): from.reflect import autoclass Proxy = autoclass('java.lang.reflect.Proxy') NativeInvocationHandler = autoclass('org.jnius.NativeInvocationHandler') # convert strings to Class j_interfaces = [find_javaclass(x) for x in j_interfaces] cdef JavaClass nih = NativeInvocationHandler(<long long><void *>py_obj) cdef JNINativeMethod invoke_methods[1] invoke_methods[0].name = 'invoke0' invoke_methods[0].signature = '(Ljava/lang/Object;Ljava/lang/reflect/Method;[Ljava/lang/Object;)Ljava/lang/Object;' invoke_methods[0].fnPtr = <void *>&invoke0 j_env[0].RegisterNatives(j_env, nih.j_cls, <JNINativeMethod *>invoke_methods, 1) # create the proxy and pass it the invocation handler cdef JavaClass j_obj if javacontext == 'app': Thread = autoclass('java.lang.Thread') classLoader = Thread.currentThread().getContextClassLoader() j_obj = Proxy.newProxyInstance( classLoader, j_interfaces, nih) elif javacontext =='system': ClassLoader = autoclass('java.lang.ClassLoader') classLoader = ClassLoader.getSystemClassLoader() j_obj = Proxy.newProxyInstance( classLoader, j_interfaces, nih) else: raise Exception( 'Invalid __javacontext__ {}, must be app or system.'.format( javacontext)) return j_obj <|end_of_text|>""" Symbolic matrices Matrices with symbolic entries. The underlying representation is a pointer to a Maxima object. EXAMPLES:: sage: matrix(SR, 2, 2, range(4)) [0 1] [2 3] sage: matrix(SR, 2, 2, var('t')) [t 0] [0 t] Arithmetic:: sage: -matrix(SR, 2, range(4)) [ 0 -1] [-2 -3] sage: m = matrix(SR, 2, [1..4]); sqrt(2)*m [ sqrt(2) 2*sqrt(2)] [3*sqrt(2) 4*sqrt(2)] sage: m = matrix(SR, 4, [1..4^2]) sage: m * m [ 90 100 110 120] [202 228 254 280] [314 356 398 440] [426 484 542 600] sage: m = matrix(SR, 3, [1, 2, 3]); m [1] [2] [3] sage: m.transpose() * m [14] Computing inverses:: sage: M = matrix(SR, 2, var('a,b,c,d')) sage: ~M [1/a - b*c/(a^2*(b*c/a - d)) b/(a*(b*c/a - d))] [ c/(a*(b*c/a - d)) -1/(b*c/a - d)] sage: (~M*M).simplify_rational() [1 0] [0 1] sage: M = matrix(SR, 3, 3, range(9)) - var('t') sage: (~M * M).simplify_rational() [1 0 0] [0 1 0] [0 0 1] sage: matrix(SR, 1, 1, 1).inverse() [1] sage: matrix(SR, 0, 0).inverse() [] sage: matrix(SR, 3, 0).inverse() Traceback (most recent call last): ... ArithmeticError: self must be a square matrix Transposition:: sage: m = matrix(SR, 2, [sqrt(2), -1, pi, e^2]) sage: m.transpose() [sqrt(2) pi] [ -1 e^2] ``.T`` is a convenient shortcut for the transpose:: sage: m.T [sqrt(2) pi] [ -1 e^2] Test pickling:: sage: m = matrix(SR, 2, [sqrt(2), 3, pi, e]); m [sqrt(2) 3] [ pi e] sage: TestSuite(m).run() Comparison:: sage: m = matrix(SR, 2, [sqrt(2), 3, pi, e]) sage: cmp(m,m) 0 sage: cmp(m,3)!= 0 True sage: m = matrix(SR,2,[1..4]); n = m^2 sage: (exp(m+n) - exp(m)*exp(n)).simplify_rational() == 0 # indirect test True Determinant:: sage: M = matrix(SR, 2, 2, [x,2,3,4]) sage: M.determinant() 4*x - 6 sage: M = matrix(SR, 3,3,range(9)) sage: M.det() 0 sage: t = var('t') sage: M = matrix(SR, 2, 2, [cos(t), sin(t), -sin(t), cos(t)]) sage: M.det() cos(t)^2 + sin(t)^2 sage: M = matrix([[sqrt(x),0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]]) sage: det(M) sqrt(x) Permanents:: sage: M = matrix(SR, 2, 2, [x,2,3,4]) sage: M.permanent() 4*x + 6 Rank:: sage: M = matrix(SR, 5, 5, range(25)) sage: M.rank() 2 sage: M = matrix(SR, 5, 5, range(25)) - var('t') sage: M.rank() 5 .. warning:: :meth:`rank` may return the wrong answer if it cannot determine that a matrix element that is equivalent to zero is indeed so. Copying symbolic matrices:: sage: m = matrix(SR, 2, [sqrt(2), 3, pi, e]) sage: n = copy(m) sage: n[0,0] = sin(1) sage: m [sqrt(2) 3] [ pi e] sage: n [sin(1) 3] [ pi e] Conversion to Maxima:: sage: m = matrix(SR, 2, [sqrt(2), 3, pi, e]) sage: m._maxima_() matrix([sqrt(2),3],[%pi,%e]) """ from sage.rings.polynomial.all import PolynomialRing from sage.structure.element cimport ModuleElement, RingElement, Element from sage.structure.factorization import Factorization from matrix_generic_dense cimport Matrix_generic_dense cimport matrix cdef maxima from sage.calculus.calculus import symbolic_expression_from_maxima_string, maxima cdef class Matrix_symbolic_dense(Matrix_generic_dense): def eigenvalues(self): """ Compute the eigenvalues
Cython
by solving the characteristic polynomial in maxima EXAMPLES:: sage: a=matrix(SR,[[1,2],[3,4]]) sage: a.eigenvalues() [-1/2*sqrt(33) + 5/2, 1/2*sqrt(33) + 5/2] """ maxima_evals = self._maxima_(maxima).eigenvalues()._sage_() if len(maxima_evals)==0: raise ArithmeticError("could not determine eigenvalues exactly using symbolic matrices; try using a different type of matrix via self.change_ring(), if possible") return sum([[eval]*int(mult) for eval,mult in zip(*maxima_evals)],[]) def eigenvectors_left(self): r""" Compute the left eigenvectors of a matrix. For each distinct eigenvalue, returns a list of the form (e,V,n) where e is the eigenvalue, V is a list of eigenvectors forming a basis for the corresponding left eigenspace, and n is the algebraic multiplicity of the eigenvalue. EXAMPLES:: sage: A = matrix(SR,3,3,range(9)); A [0 1 2] [3 4 5] [6 7 8] sage: es = A.eigenvectors_left(); es [(-3*sqrt(6) + 6, [(1, -1/5*sqrt(6) + 4/5, -2/5*sqrt(3)*sqrt(2) + 3/5)], 1), (3*sqrt(6) + 6, [(1, 1/5*sqrt(6) + 4/5, 2/5*sqrt(3)*sqrt(2) + 3/5)], 1), (0, [(1, -2, 1)], 1)] sage: eval, [evec], mult = es[0] sage: delta = eval*evec - evec*A sage: abs(abs(delta)) < 1e-10 sqrt(abs(1/25*(3*(2*sqrt(3)*sqrt(2) - 3)*(sqrt(6) - 2) + 16*sqrt(3)*sqrt(2) + 5*sqrt(6) - 54)^2 + 1/25*(3*(sqrt(6) - 2)*(sqrt(6) - 4) + 14*sqrt(3)*sqrt(2) + 4*sqrt(6) - 42)^2 + 144/25*(sqrt(3)*sqrt(2) - sqrt(6))^2)) < (1.00000000000000e-10) sage: abs(abs(delta)).n() < 1e-10 True :: sage: A = matrix(SR, 2, 2, var('a,b,c,d')) sage: A.eigenvectors_left() [(1/2*a + 1/2*d - 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2), [(1, -1/2*(a - d + sqrt(a^2 + 4*b*c - 2*a*d + d^2))/c)], 1), (1/2*a + 1/2*d + 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2), [(1, -1/2*(a - d - sqrt(a^2 + 4*b*c - 2*a*d + d^2))/c)], 1)] sage: es = A.eigenvectors_left(); es [(1/2*a + 1/2*d - 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2), [(1, -1/2*(a - d + sqrt(a^2 + 4*b*c - 2*a*d + d^2))/c)], 1), (1/2*a + 1/2*d + 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2), [(1, -1/2*(a - d - sqrt(a^2 + 4*b*c - 2*a*d + d^2))/c)], 1)] sage: eval, [evec], mult = es[0] sage: delta = eval*evec - evec*A sage: delta.apply_map(lambda x: x.full_simplify()) (0, 0) This routine calls Maxima and can struggle with even small matrices with a few variables, such as a `3\times 3` matrix with three variables. However, if the entries are integers or rationals it can produce exact values in a reasonable time. These examples create 0-1 matrices from the adjacency matrices of graphs and illustrate how the format and type of the results differ when the base ring changes. First for matrices over the rational numbers, then the same matrix but viewed as a symbolic matrix. :: sage: G=graphs.CycleGraph(5) sage: am = G.adjacency_matrix() sage: spectrum = am.eigenvectors_left() sage: qqbar_evalue = spectrum[2][0] sage: type(qqbar_evalue) <class'sage.rings.qqbar.AlgebraicNumber'> sage: qqbar_evalue 0.618033988749895? sage: am = G.adjacency_matrix().change_ring(SR) sage: spectrum = am.eigenvectors_left() sage: symbolic_evalue = spectrum[2][0] sage: type(symbolic_evalue) <type'sage.symbolic.expression.Expression'> sage: symbolic_evalue 1/2*sqrt(5) - 1/2 sage: bool(qqbar_evalue == symbolic_evalue) True A slightly larger matrix with a "nice" spectrum. :: sage: G=graphs.CycleGraph(6) sage: am = G.adjacency_matrix().change_ring(SR) sage: am.eigenvectors_left() [(-1, [(1, 0, -1, 1, 0, -1), (0, 1, -1, 0, 1, -1)], 2), (1, [(1, 0, -1, -1, 0, 1), (0, 1, 1, 0, -1, -1)], 2), (-2, [(1, -1, 1, -1, 1, -1)], 1), (2, [(1, 1, 1, 1, 1, 1)], 1)] """ from sage.modules.free_module_element import vector from sage.all import ZZ [evals,mults],evecs=self.transpose()._maxima_(maxima).eigenvectors()._sage_() result=[] for e,evec,m in zip(evals,evecs,mults): result.append((e,[vector(v) for v in evec], ZZ(m))) return result def eigenvectors_right(self): r""" Compute the right eigenvectors of a matrix. For each distinct eigenvalue, returns a list of the form (e,V,n) where e is the eigenvalue, V is a list of eigenvectors forming a basis for the corresponding right eigenspace, and n is the algebraic multiplicity of the eigenvalue. EXAMPLES:: sage: A = matrix(SR,2,2,range(4)); A [0 1] [2 3] sage: right = A.eigenvectors_right(); right [(-1/2*sqrt(17) + 3/2, [(1, -1/2*sqrt(17) + 3/2)], 1), (1/2*sqrt(17) + 3/2, [(1, 1/2*sqrt(17) + 3/2)], 1)] The right eigenvectors are nothing but the left eigenvectors of the transpose matrix:: sage: left = A.transpose().eigenvectors_left(); left [(-1/2*sqrt(17) + 3/2, [(1, -1/2*sqrt(17) + 3/2)], 1), (1/2*sqrt(17) + 3/2, [(1, 1/2*sqrt(17) + 3/2)], 1)] sage: right[0][1] == left[0][1] True """ return self.transpose().eigenvectors_left() def exp(self): r""" Return the matrix exponential of this matrix $X$, which is the matrix .. math:: e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}. This function depends on maxima's matrix exponentiation function, which does not deal well with floating point numbers. If the matrix has floating point numbers, they will be rounded automatically to rational numbers during the computation.
Cython
EXAMPLES:: sage: m = matrix(SR,2, [0,x,x,0]); m [0 x] [x 0] sage: m.exp() [1/2*(e^(2*x) + 1)*e^(-x) 1/2*(e^(2*x) - 1)*e^(-x)] [1/2*(e^(2*x) - 1)*e^(-x) 1/2*(e^(2*x) + 1)*e^(-x)] sage: exp(m) [1/2*(e^(2*x) + 1)*e^(-x) 1/2*(e^(2*x) - 1)*e^(-x)] [1/2*(e^(2*x) - 1)*e^(-x) 1/2*(e^(2*x) + 1)*e^(-x)] Exp works on 0x0 and 1x1 matrices:: sage: m = matrix(SR,0,[]); m [] sage: m.exp() [] sage: m = matrix(SR,1,[2]); m [2] sage: m.exp() [e^2] Commuting matrices $m, n$ have the property that `e^{m+n} = e^m e^n` (but non-commuting matrices need not):: sage: m = matrix(SR,2,[1..4]); n = m^2 sage: m*n [ 37 54] [ 81 118] sage: n*m [ 37 54] [ 81 118] sage: a = exp(m+n) - exp(m)*exp(n) sage: a.simplify_rational() == 0 True The input matrix must be square:: sage: m = matrix(SR,2,3,[1..6]); exp(m) Traceback (most recent call last): ... ValueError: exp only defined on square matrices In this example we take the symbolic answer and make it numerical at the end:: sage: exp(matrix(SR, [[1.2, 5.6], [3,4]])).change_ring(RDF) # rel tol 1e-15 [ 346.5574872980695 661.7345909344504] [354.50067371488416 677.4247827652946] Another example involving the reversed identity matrix, which we clumsily create:: sage: m = identity_matrix(SR,4); m = matrix(list(reversed(m.rows()))) * x sage: exp(m) [1/2*(e^(2*x) + 1)*e^(-x) 0 0 1/2*(e^(2*x) - 1)*e^(-x)] [ 0 1/2*(e^(2*x) + 1)*e^(-x) 1/2*(e^(2*x) - 1)*e^(-x) 0] [ 0 1/2*(e^(2*x) - 1)*e^(-x) 1/2*(e^(2*x) + 1)*e^(-x) 0] [1/2*(e^(2*x) - 1)*e^(-x) 0 0 1/2*(e^(2*x) + 1)*e^(-x)] """ if not self.is_square(): raise ValueError("exp only defined on square matrices") if self.nrows() == 0: return self # Maxima's matrixexp function chokes on floating point numbers # so we automatically convert floats to rationals by passing # keepfloat: false m = self._maxima_(maxima) z = maxima('matrixexp(%s), keepfloat: false'%m.name()) if self.nrows() == 1: # We do the following, because Maxima stupidly exp's 1x1 # matrices into non-matrices! z = maxima('matrix([%s])'%z.name()) return z._sage_() def charpoly(self, var='x', algorithm=None): """ Compute the characteristic polynomial of self, using maxima. EXAMPLES:: sage: M = matrix(SR, 2, 2, var('a,b,c,d')) sage: M.charpoly('t') t^2 + (-a - d)*t - b*c + a*d sage: matrix(SR, 5, [1..5^2]).charpoly() x^5 - 65*x^4 - 250*x^3 TESTS: The cached polynomial should be independent of the ``var`` argument (:trac:`12292`). We check (indirectly) that the second call uses the cached value by noting that its result is not cached:: sage: M = MatrixSpace(SR, 2) sage: A = M(range(0, 2^2)) sage: type(A) <type'sage.matrix.matrix_symbolic_dense.Matrix_symbolic_dense'> sage: A.charpoly('x') x^2 - 3*x - 2 sage: A.charpoly('y') y^2 - 3*y - 2 sage: A._cache['charpoly'] x^2 - 3*x - 2 Ensure the variable name of the polynomial does not conflict with variables used within the matrix (:trac:`14403`):: sage: Matrix(SR, [[sqrt(x), x],[1,x]]).charpoly().list() [x^(3/2) - x, -x - sqrt(x), 1] Test that :trac:`13711` is fixed:: sage: matrix([[sqrt(2), -1], [pi, e^2]]).charpoly() x^2 + (-sqrt(2) - e^2)*x + pi + sqrt(2)*e^2 """ cache_key = 'charpoly' cp = self.fetch(cache_key) if cp is not None: return cp.change_variable_name(var) from sage.symbolic.ring import SR # We must not use a variable name already present in the matrix vname = 'do_not_use_this_name_in_a_matrix_youll_compute_a_charpoly_of' vsym = SR(vname) cp = self._maxima_(maxima).charpoly(vname)._sage_().expand() cp = [cp.coefficient(vsym, i) for i in range(self.nrows() + 1)] cp = SR[var](cp) # Maxima has the definition det(matrix-xI) instead of # det(xI-matrix), which is what Sage uses elsewhere. We # correct for the discrepancy. if self.nrows() % 2 == 1: cp = -cp self.cache(cache_key, cp) return cp def minpoly(self, var='x'): """ Return the minimal polynomial of ``self``. EXAMPLES:: sage: M = Matrix.identity(SR, 2) sage: M.minpoly() x - 1 sage: t = var('t') sage: m = matrix(2, [1, 2, 4, t]) sage: m.minimal_polynomial() x^2 + (-t - 1)*x + t - 8 TESTS: Check that the variable `x` can occur in the matrix:: sage: m = matrix([[x]]) sage: m.minimal_polynomial('y') y - x """ mp = self.fetch('minpoly') if mp is None: mp = self._maxima_lib_().jordan().minimalPoly().expand() d = mp.hipow('x') mp = [mp.coeff('x', i) for i in xrange(0, d + 1)] mp = PolynomialRing(self.base_ring(), 'x')(mp) self.cache('minpoly', mp) return mp.change_variable_name(var) def fcp(self, var='x'): """ Return the factorization of the characteristic polynomial of self. INPUT: - ``var`` - (default: 'x') name of variable of charpoly EXAMPLES:: sage: a = matrix(SR,[[1,2],[3,4]]) sage: a.fcp() x^2 - 5*x - 2 sage: [i for i in a.fcp()] [(x^2 - 5*x - 2, 1)] sage: a = matrix(SR,[[1,0],[0,2]]) sage: a.fcp() (x - 2) * (x - 1) sage: [i for i in a.fcp()] [(x - 2, 1), (x - 1, 1)] sage: a = matrix(SR, 5, [1..5^2]) sage: a.fcp() (x^2 - 65*x - 250) * x^3
Cython
sage: list(a.fcp()) [(x^2 - 65*x - 250, 1), (x, 3)] """ from sage.symbolic.ring import SR sub_dict = {var: SR.var(var)} return Factorization(self.charpoly(var).subs(**sub_dict).factor_list()) def jordan_form(self, subdivide=True, transformation=False): """ Return a Jordan normal form of ``self``. INPUT: - ``self`` -- a square matrix - ``subdivide`` -- boolean (default: ``True``) - ``transformation`` -- boolean (default: ``False``) OUTPUT: If ``transformation`` is ``False``, only a Jordan normal form (unique up to the ordering of the Jordan blocks) is returned. Otherwise, a pair ``(J, P)`` is returned, where ``J`` is a Jordan normal form and ``P`` is an invertible matrix such that ``self`` equals ``P * J * P^(-1)``. If ``subdivide`` is ``True``, the Jordan blocks in the returned matrix ``J`` are indicated by a subdivision in the sense of :meth:`~sage.matrix.matrix2.subdivide`. EXAMPLES: We start with some examples of diagonalisable matrices:: sage: a,b,c,d = var('a,b,c,d') sage: matrix([a]).jordan_form() [a] sage: matrix([[a, 0], [1, d]]).jordan_form(subdivide=True) [d|0] [-+-] [0|a] sage: matrix([[a, 0], [1, d]]).jordan_form(subdivide=False) [d 0] [0 a] sage: matrix([[a, x, x], [0, b, x], [0, 0, c]]).jordan_form() [c|0|0] [-+-+-] [0|b|0] [-+-+-] [0|0|a] In the following examples, we compute Jordan forms of some non-diagonalisable matrices:: sage: matrix([[a, a], [0, a]]).jordan_form() [a 1] [0 a] sage: matrix([[a, 0, b], [0, c, 0], [0, 0, a]]).jordan_form() [c|0 0] [-+---] [0|a 1] [0|0 a] The following examples illustrate the ``transformation`` flag. Note that symbolic expressions may need to be simplified to make consistency checks succeed:: sage: A = matrix([[x - a*c, a^2], [-c^2, x + a*c]]) sage: J, P = A.jordan_form(transformation=True) sage: J, P ( [x 1] [-a*c 1] [0 x], [-c^2 0] ) sage: A1 = P * J * ~P; A1 [ -a*c + x (a*c - x)*a/c + a*x/c] [ -c^2 a*c + x] sage: A1.simplify_rational() == A True sage: B = matrix([[a, b, c], [0, a, d], [0, 0, a]]) sage: J, T = B.jordan_form(transformation=True) sage: J, T ( [a 1 0] [b*d c 0] [0 a 1] [ 0 d 0] [0 0 a], [ 0 0 1] ) sage: (B * T).simplify_rational() == T * J True Finally, some examples involving square roots:: sage: matrix([[a, -b], [b, a]]).jordan_form() [a - I*b| 0] [-------+-------] [ 0|a + I*b] sage: matrix([[a, b], [c, d]]).jordan_form(subdivide=False) [1/2*a + 1/2*d - 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2) 0] [ 0 1/2*a + 1/2*d + 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2)] """ A = self._maxima_lib_() jordan_info = A.jordan() J = jordan_info.dispJordan()._sage_() if subdivide: v = [x[1] for x in jordan_info] w = [sum(v[0:i]) for i in xrange(1, len(v))] J.subdivide(w, w) if transformation: P = A.diag_mode_matrix(jordan_info)._sage_() return J, P else: return J def simplify(self): """ Simplifies self. EXAMPLES:: sage: var('x,y,z') (x, y, z) sage: m = matrix([[z, (x+y)/(x+y)], [x^2, y^2+2]]); m [ z 1] [ x^2 y^2 + 2] sage: m.simplify() [ z 1] [ x^2 y^2 + 2] """ return self.parent()([x.simplify() for x in self.list()]) def simplify_trig(self): """ EXAMPLES:: sage: theta = var('theta') sage: M = matrix(SR, 2, 2, [cos(theta), sin(theta), -sin(theta), cos(theta)]) sage: ~M [1/cos(theta) - sin(theta)^2/((sin(theta)^2/cos(theta) + cos(theta))*cos(theta)^2) -sin(theta)/((sin(theta)^2/cos(theta) + cos(theta))*cos(theta))] [ sin(theta)/((sin(theta)^2/cos(theta) + cos(theta))*cos(theta)) 1/(sin(theta)^2/cos(theta) + cos(theta))] sage: (~M).simplify_trig() [ cos(theta) -sin(theta)] [ sin(theta) cos(theta)] """ return self._maxima_(maxima).trigexpand().trigsimp()._sage_() def simplify_rational(self): """ EXAMPLES:: sage: M = matrix(SR, 3, 3, range(9)) - var('t') sage: (~M*M)[0,0] t*(3*(2/t + (6/t + 7)/((t - 3/t - 4)*t))*(2/t + (6/t + 5)/((t - 3/t - 4)*t))/(t - (6/t + 7)*(6/t + 5)/(t - 3/t - 4) - 12/t - 8) + 1/t + 3/((t - 3/t - 4)*t^2)) - 6*(2/t + (6/t + 5)/((t - 3/t - 4)*t))/(t - (6/t + 7)*(6/t + 5)/(t - 3/t - 4) - 12/t - 8) - 3*(6/t + 7)*(2/t + (6/t + 5)/((t - 3/t - 4)*t))/((t - (6/t + 7)*(6/t + 5)/(t - 3/t - 4) - 12/t - 8)*(t - 3/t - 4)) - 3/((t - 3/t - 4)*t) sage: expand((~M*M)[0,0]) 1 sage: (~M * M).simplify_rational() [1 0 0] [0 1 0] [0 0 1] """ return self._maxima_(maxima).fullratsimp()._sage_() def simplify_full(self): """ Simplify a symbolic matrix by calling :meth:`Expression.simplify_full()` componentwise. INPUT: - ``self`` - The matrix whose entries we should simplify. OUTPUT: A copy of ``self`` with all of its entries simplified. EXAMPLES: Symbolic matrices will have their entries simplified:: sage: a,n,k = SR.var('a,n,k') sage: f1 = sin(x)^2 + cos(x)^2 sage: f2 = sin(x/(x^2 + x)) sage: f3 = binomial(n,k)*factorial(k)*factorial(n-k) sage: f4 = x*sin(2)/(x^a) sage: A = matrix(SR, [[f1,f2],[f3,f4]]) sage: A.simplify_full() [ 1 sin(1/(x + 1))] [
Cython
factorial(n) x^(-a + 1)*sin(2)] """ M = self.parent() return M([expr.simplify_full() for expr in self]) def canonicalize_radical(self): r""" Choose a canonical branch of each entrie of ``self`` by calling :meth:`Expression.canonicalize_radical()` componentwise. EXAMPLES:: sage: var('x','y') (x, y) sage: l1 = [sqrt(2)*sqrt(3)*sqrt(6), log(x*y)] sage: l2 = [sin(x/(x^2 + x)), 1] sage: m = matrix([l1, l2]) sage: m [sqrt(6)*sqrt(3)*sqrt(2) log(x*y)] [ sin(x/(x^2 + x)) 1] sage: m.canonicalize_radical() [ 6 log(x) + log(y)] [ sin(1/(x + 1)) 1] """ M = self.parent() return M([expr.canonicalize_radical() for expr in self]) def factor(self): """ Operates point-wise on each element. EXAMPLES:: sage: M = matrix(SR, 2, 2, x^2 - 2*x + 1); M [x^2 - 2*x + 1 0] [ 0 x^2 - 2*x + 1] sage: M.factor() [(x - 1)^2 0] [ 0 (x - 1)^2] """ return self._maxima_(maxima).factor()._sage_() def expand(self): """ Operates point-wise on each element. EXAMPLES:: sage: M = matrix(2, 2, range(4)) - var('x') sage: M*M [ x^2 + 2 -2*x + 3] [ -4*x + 6 (x - 3)^2 + 2] sage: (M*M).expand() [ x^2 + 2 -2*x + 3] [ -4*x + 6 x^2 - 6*x + 11] """ from sage.misc.misc import attrcall return self.apply_map(attrcall('expand')) def variables(self): """ Returns the variables of self. EXAMPLES:: sage: var('a,b,c,x,y') (a, b, c, x, y) sage: m = matrix([[x, x+2], [x^2, x^2+2]]); m [ x x + 2] [ x^2 x^2 + 2] sage: m.variables() (x,) sage: m = matrix([[a, b+c], [x^2, y^2+2]]); m [ a b + c] [ x^2 y^2 + 2] sage: m.variables() (a, b, c, x, y) """ vars = set(sum([op.variables() for op in self.list()], ())) return tuple(sorted(vars, key=repr)) def arguments(self): """ Returns a tuple of the arguments that self can take. EXAMPLES:: sage: var('x,y,z') (x, y, z) sage: M = MatrixSpace(SR,2,2) sage: M(x).arguments() (x,) sage: M(x+sin(x)).arguments() (x,) """ return self.variables() def number_of_arguments(self): """ Returns the number of arguments that self can take. EXAMPLES:: sage: var('a,b,c,x,y') (a, b, c, x, y) sage: m = matrix([[a, (x+y)/(x+y)], [x^2, y^2+2]]); m [ a 1] [ x^2 y^2 + 2] sage: m.number_of_arguments() 3 """ return len(self.variables()) def __call__(self, *args, **kwargs): """ EXAMPLES:: sage: var('x,y,z') (x, y, z) sage: M = MatrixSpace(SR,2,2) sage: h = M(sin(x)+cos(x)) sage: h [cos(x) + sin(x) 0] [ 0 cos(x) + sin(x)] sage: h(x=1) [cos(1) + sin(1) 0] [ 0 cos(1) + sin(1)] sage: h(x=x) [cos(x) + sin(x) 0] [ 0 cos(x) + sin(x)] sage: h = M((sin(x)+cos(x)).function(x)) sage: h [cos(x) + sin(x) 0] [ 0 cos(x) + sin(x)] sage: h(1) doctest:...: DeprecationWarning: Substitution using function-call syntax and unnamed arguments is deprecated and will be removed from a future release of Sage; you can use named arguments instead, like EXPR(x=..., y=...) See http://trac.sagemath.org/4513 for details. doctest:...: DeprecationWarning: Substitution using function-call syntax and unnamed arguments is deprecated and will be removed from a future release of Sage; you can use named arguments instead, like EXPR(x=..., y=...) See http://trac.sagemath.org/5930 for details. [cos(1) + sin(1) 0] [ 0 cos(1) + sin(1)] sage: h(x) [cos(x) + sin(x) 0] [ 0 cos(x) + sin(x)] sage: f = M([0,x,y,z]); f [0 x] [y z] sage: f.arguments() (x, y, z) sage: f() [0 x] [y z] sage: f(1) [0 1] [y z] sage: f(1,2) [0 1] [2 z] sage: f(1,2,3) [0 1] [2 3] sage: f(x=1) [0 1] [y z] sage: f(x=1,y=2) [0 1] [2 z] sage: f(x=1,y=2,z=3) [0 1] [2 3] sage: f({x:1,y:2,z:3}) [0 1] [2 3] sage: f(1, x=2) Traceback (most recent call last): ... ValueError: args and kwargs cannot both be specified sage: f(1,2,3,4) Traceback (most recent call last): ... ValueError: the number of arguments must be less than or equal to 3 """ if kwargs and args: raise ValueError("args and kwargs cannot both be specified") if len(args) == 1 and isinstance(args[0], dict): kwargs = dict([(repr(x[0]), x[1]) for x in args[0].iteritems()]) if kwargs: #Handle the case where kwargs are specified new_entries = [] for entry in self.list(): try: new_entries.append( entry(**kwargs) ) except ValueError: new_entries.append(entry) else: #Handle the case where args are specified if args: from sage.misc.superseded import deprecation deprecation(4513, "Substitution using function-call syntax and unnamed arguments is deprecated and will be removed from a future release of Sage; you can use named arguments instead, like EXPR(x=..., y=...)") #Get all the variables variables = list( self.arguments() ) if len(args) > self.number_of_arguments(): raise ValueError("the number of arguments must be less than or equal to %s" % self.number_of_arguments()) new_entries = [] for entry in self.list(): try: entry_vars = entry.variables() if len(entry_vars) == 0: if len(args)!= 0: new_entries.append( entry(args[0]) ) else: new_entries.append( entry ) continue else: indices = [i for i in map(variables.index, entry_vars) if i < len(args)] if len(indices) == 0: new_entries.append( entry ) else: new_entries.append( entry(*[args[i] for i in indices]) ) except ValueError: new_entries.append( entry ) return self.parent(new_entries) <|end_of_text|> ctypes_struct_cache = [] def partition_array(array, dim): chunks = lambda l, n: [l[i:i + n] for i in range(0, len(l), n)] sol
Cython
= chunks(array, dim[len(dim) - 1]) dim.pop() while dim: sol = chunks(sol, dim[len(dim) - 1]) dim.pop() return sol[0] def dereference(py_ptr, **kwargs): ''' Function for casting python object of one type, to another (supported type) Args: obj_to_cast: Python object which will be casted into some other type type: type in which object will be casted return_count: if it's a pointer with multiple values, indicate the size of the array Returns: Casted Python object Note: All types aren't implemented! ''' if py_ptr is None: return None cdef unsigned long long *c_addr cdef void *struct_res_ptr = NULL if isinstance(py_ptr, ObjcReferenceToType): c_addr = <unsigned long long*><unsigned long long>py_ptr.arg_ref else: c_addr = <unsigned long long*><unsigned long long>py_ptr if 'of_type' in kwargs: of_type = kwargs['of_type'] if issubclass(of_type, ctypes.Structure) or issubclass(of_type, ctypes.Union): return ctypes.cast(<unsigned long long>c_addr, ctypes.POINTER(of_type)).contents elif issubclass(of_type, ObjcClassInstance): return convert_to_cy_cls_instance(<id>c_addr) elif issubclass(of_type, CArray) and "return_count" in kwargs: dprint("Returning CArray from c_addr, size={0}, type={1}".format(kwargs['return_count'], py_ptr.of_type)) dprint("{}".format(str(py_ptr.of_type))) return_count = kwargs["return_count"] if isinstance(return_count, ctypes._SimpleCData): return_count = return_count.value return CArray().get_from_ptr(py_ptr.arg_ref, py_ptr.of_type, return_count) elif issubclass(of_type, CArray) and "partition" in kwargs: partitions = kwargs["partition"] total_count = partitions[0] for i in xrange(1, len(partitions)): total_count *= int(partitions[i]) dprint("Total count for {} is {}".format(partitions, total_count)) array = CArray().get_from_ptr(py_ptr.arg_ref, py_ptr.of_type, total_count) return partition_array(array, partitions) elif issubclass(of_type, CArray): # search for return count in ObjcReferenceToType object dprint("Returning CArray, calculating returned value by'reference'") for item in py_ptr.reference_return_values: if type(item) == CArrayCount: dprint("CArray().get_from_ptr({0}, {1}, {2})".format(py_ptr.arg_ref, py_ptr.of_type, item.value)) return CArray().get_from_ptr(py_ptr.arg_ref, py_ptr.of_type, item.value) py_ptr.of_type = of_type.enc # TODO: other types # elif issubclass(type, MissingTypes....): # pass return convert_cy_ret_to_py(<id*>c_addr, py_ptr.of_type, py_ptr.size) cdef void* cast_to_cy_data_type(id *py_obj, size_t size, char* of_type, by_value=True, py_val=None): ''' Function for casting Python data type (struct, union) to some Cython type Args: py_obj: address of Python data type which need to be converted to Cython data type size: size in bypes of data type type: string containing name of data type by_value: boolean value, indicate wheather we need pass data type by value or by reference Returns: void* to eqvivalent Cython data type ''' cdef void *val_ptr = malloc(size) cdef CGRect rect cdef CGRect *rect_ptr cdef CGSize sz cdef CGPoint point cdef bytes b_of_type = <bytes>of_type dprint("of_type={!r} {!r}".format(str(of_type), of_type)) if b_of_type == b'_NSRange': if by_value: (<CFRange*>val_ptr)[0] = (<CFRange*>py_obj)[0] else: (<CFRange**>val_ptr)[0] = <CFRange*>py_obj elif b_of_type == b'CGPoint': if by_value: (<CGPoint*>val_ptr)[0] = (<CGPoint*>py_obj)[0] else: (<CGPoint**>val_ptr)[0] = <CGPoint*>py_obj elif b_of_type == b'CGSize': if by_value: (<CGSize*>val_ptr)[0] = (<CGSize*>py_obj)[0] else: (<CGSize**>val_ptr)[0] = <CGSize*>py_obj elif b_of_type == b'CGRect': IF PLATFORM == 'darwin': if by_value: (<CGRect*>val_ptr)[0] = (<CGRect*>py_obj)[0] else: (<CGRect**>val_ptr)[0] = <CGRect*>py_obj ELIF PLATFORM == 'ios': if py_val: point.x = py_val.origin.x point.y = py_val.origin.y sz.width = py_val.size.width sz.height = py_val.size.height if by_value and py_val: rect.origin = point rect.size = sz (<CGRect*>val_ptr)[0] = rect # TODO: find appropriate method and test these cases on iOS elif not by_value and py_val: rect_ptr = <CGRect*>malloc(sizeof(CGRect)) rect_ptr.origin = point rect_ptr.size = sz (<CGRect**>val_ptr)[0] = rect_ptr elif not by_value and not py_val: (<CGRect**>val_ptr)[0] = <CGRect*>py_obj else: if by_value: (<id*>val_ptr)[0] = (<id*>py_obj)[0] else: (<id**>val_ptr)[0] = (<id*>py_obj) dprint("Possible problems with casting, in pyobjus_conversionx.pxi", of_type='w') return val_ptr cdef convert_to_cy_cls_instance(id ret_id, main_cls_name=None): ''' Function for converting C pointer into Cython ObjcClassInstance type Args: ret_id: C pointer Returns: ObjcClassInstance type ''' dprint("convert_to_cy_cls_instance: {0}".format(pr(ret_id))) cdef ObjcClassInstance cret bret = <bytes><char *>object_getClassName(ret_id) dprint(' - object_getClassName(f_result) =', bret) if bret == b'nil': dprint('<-- returned pointer value:', pr(ret_id), of_type="w") return None load_instance_methods = None if bret in omethod_partial_register: key = bret else: key = main_cls_name if key in omethod_partial_register: load_instance_methods = omethod_partial_register[key] omethod_partial_register[bret] = load_instance_methods cret = autoclass(bret, new_instance=True, load_instance_methods=load_instance_methods)(noinstance=True) cret.instanciate_from(ret_id) dprint('<-- return object', cret) return cret cdef object convert_cy_ret_to_py(id *f_result, sig, size_t size, members=None, objc_prop=False, main_cls_name=None): cdef CGRect rect if f_result is NULL: dprint('null pointer in convert_cy_ret_to_py function', of_type='w') return None if sig.startswith((b'(', b'{')): return_type = sig[1:-1].split(b'=', 1) elif sig == b'c': # this should be a char. Most of the time, a BOOL is also # implemented as a char. So it's not a string, but just the numeric # value of the char. if <int>f_result[0] in [1, 0]: return ctypes.c_bool(<int>f_result[0]).value return chr(<int><char>f_result[0]) elif sig == b'i': return (<int>f_result[0]) elif sig == b's': return (<short>f_result[0]) elif sig == b'l': return (<long>f_result[0]) elif sig == b'q': return (<long long>f_result[0]) elif sig == b'C': return (<unsigned char>f_result[0]) elif sig == b'I': return (<unsigned int>f_result[0]) elif sig == b'S': return (<unsigned short>f_result[0]) elif sig == b'L': return (<unsigned long>f_result[0]) elif sig == b'Q': return (<unsigned long long>f_result[0]) elif sig == b'f': return (<float>ctypes.cast(<unsigned long long>f_result, ctypes.POINTER(ctypes.c_float)).contents.value) elif sig == b'd': return (<double>ctypes.cast(<unsigned long long>f_result, ctypes.POINTER(ctypes.c_double)).contents.value) elif sig == b'B': if <int
Cython
>f_result[0]: return True return False elif sig == b'v': return None elif sig == b'*': if f_result[0] is not NULL: return <bytes>(<char*>f_result[0]) else: return None # return type -> id if sig == b'@': return convert_to_cy_cls_instance(<id>f_result[0], main_cls_name) # return type -> class elif sig == b'#': ocls = ObjcClass() ocls.o_cls = <Class>object_getClass(<id>f_result[0]) return ocls # return type -> selector elif sig == b':': osel = ObjcSelector() osel.selector = <SEL>f_result[0] return osel elif sig.startswith(b'['): # array pass # return type -> struct OR union elif sig.startswith((b'(', b'{')): #NOTE: This need to be tested more! Does this way work in all cases? TODO: Find better solution for this! if <unsigned long long>f_result[0] in ctypes_struct_cache: val = ctypes.cast(<unsigned long long>f_result[0], ctypes.POINTER(factory.find_object(return_type, members=members))).contents else: if return_type[0]!= b'CGRect' or dev_platform == 'darwin': val = ctypes.cast(<unsigned long long>f_result, ctypes.POINTER(factory.find_object(return_type, members=members))).contents else: # NOTE: this is hardcoded case for CGRect on iOS # For some reason CGRect with ctypes don't work as it should work on arm rect = (<CGRect*>f_result)[0] val = NSRect() val.size = NSSize(rect.size.width, rect.size.height) val.origin = NSPoint(rect.origin.x, rect.origin.y) factory.empty_cache() return val # TODO: return type -> bit field elif sig == b'b': raise ObjcException("Bit fields aren't supported in pyobjus!") # return type --> pointer to type elif sig.startswith(b'^'): if objc_prop: c_addr = <unsigned long long>f_result else: c_addr = <unsigned long long>f_result[0] return ObjcReferenceToType(c_addr, sig[1:], size) # return type --> unknown type elif sig == b'?': # TODO: Check is this possible at all? dprint('Returning unknown type by value...') assert(0) else: assert(0) cdef char convert_py_bool_to_objc(arg): ''' Function for converting python bool value (True, False, 0, 1) to objc BOOL type (YES, NO) Args: arg: argument to convert to objc equivalent bool value Returns: Returns objective c boolean value (YES or NO) ''' if arg == True or arg == 1: return YES return NO def remove_dimensions(array): """ Function for flattening multidimensional list to one dimensional """ result = list() if isinstance(array, list): for item in array: result.extend(remove_dimensions(item)) else: result.append(array) return result cdef void *parse_array(sig, arg, size, multidimension=False): cdef void *val_ptr = malloc(size) sig = sig[1:len(sig) - 1] sig_split = re.split(b'(\d+)', sig) array_size = int(sig_split[1]) array_type = sig_split[2] dprint("..[+] parse_array(array_type={}, array_size={}, {}, {})".format( array_type, array_size, arg, size)) if array_size!= len(arg) and not multidimension: dprint("DyLib is accepting array of size {0}, but you are forwarding {1} args.".format( array_size, len(arg))) raise TypeError() elif array_type == b"i": dprint(" [+]...array is integer!") (<int **>val_ptr)[0] = CArray(arg).as_int() elif array_type == b"c": dprint(" [+]...array is char!") (<char **>val_ptr)[0] = CArray(arg).as_char() elif array_type == b"s": dprint(" [+]...array is short") (<short **>val_ptr)[0] = CArray(arg).as_short() elif array_type == b"l": dprint(" [+]...array is long") (<long **>val_ptr)[0] = CArray(arg).as_long() elif array_type == b"q": dprint(" [+]...array is long long") (<long long**>val_ptr)[0] = CArray(arg).as_longlong() elif array_type == b"f": dprint(" [+]...array is float") (<float**>val_ptr)[0] = CArray(arg).as_float() elif array_type == b"d": dprint(" [+]...array is double") (<double**>val_ptr)[0] = CArray(arg).as_double() elif array_type == b"I": dprint(" [+]...array is unsigned int") (<unsigned int**>val_ptr)[0] = CArray(arg).as_uint() elif array_type == b"S": dprint(" [+]...array is unsigned short") (<unsigned short**>val_ptr)[0] = CArray(arg).as_ushort() elif array_type == b"L": dprint(" [+]...array is unsigned long") (<unsigned long**>val_ptr)[0] = CArray(arg).as_ulong() elif array_type == b"Q": dprint(" [+]...array is unsigned long long") (<unsigned long long**>val_ptr)[0] = CArray(arg).as_ulonglong() elif array_type == b"C": dprint(" [+]...array is unsigned char") (<unsigned char**>val_ptr)[0] = CArray(arg).as_uchar() elif array_type == b"B": dprint(" [+]...array is bool") (<bool**>val_ptr)[0] = CArray(arg).as_bool() elif array_type == b"*": dprint(" [+]...array is char*") (<char***>val_ptr)[0] = CArray(arg).as_char_ptr() elif array_type == b"@": dprint(" [+]...array is object(@)") (<id**>val_ptr)[0] = CArray(arg).as_object_array() elif array_type == b"#": dprint(" [+]...array is class(#)") (<Class**>val_ptr)[0] = CArray(arg).as_class_array() elif array_type == b":": dprint(" [+]...array is sel(:)") (<SEL**>val_ptr)[0] = CArray(arg).as_sel_array() elif array_type.startswith(b"["): dprint(" [+]...array is array({})".format(sig)) parse_position = sig.find(b"[") depth = int(sig[0:parse_position]) sig = sig[parse_position:] dprint("Entering recursion for signature {}".format(sig)) return parse_array(sig, remove_dimensions(arg), size, multidimension=True) elif array_type.startswith((b"{", b"(")): arg_type = array_type[1:-1].split(b'=', 1) dprint(" [+]...array is struct: {}".format(arg_type)) (<id**>val_ptr)[0] = CArray(arg).as_struct_array(size, arg_type) elif array_type == b"b": pass elif array_type == b"^": pass elif array_type == b"?": pass return val_ptr cdef extern from "objc/objc.h": cdef id *nil cpdef object convert_py_to_nsobject(arg): if arg is None or isinstance(arg, ObjcClassInstance): return arg elif arg in (True, False): return autoclass('NSNumber').alloc().initWithBool_(int(arg)) elif isinstance(arg, (str, unicode)): return autoclass('NSString').alloc().initWithUTF8String_(arg) elif isinstance(arg, long): return autoclass('NSNumber').alloc().initWithInt_(arg) elif isinstance(arg, int): return autoclass('NSNumber').alloc().initWithLong_(arg) elif isinstance(arg, float): return autoclass('NSNumber').alloc().initWithFloat_(arg) elif isinstance(arg, list): args = arg + [None] return autoclass('NSArray').alloc().initWithObjects_(*args) elif isinstance(arg, dict): items = [] for key, value in arg.items(): items.append(key) items.append(value) items.append(None) return autoclass('NSDictionary').alloc().initWithObjectsAndKeys_(*items) # maybe it's a delegate? dprint('construct a delegate!') d = objc_create_delegate(arg) dprint('delegate is', d) return d cdef void* convert_py_arg_to_cy(arg, sig, by_value, size_t size) except *: ''' Function for converting Python argument to
Cython
Cython, by given method signature Args: arg: argument to convert sig: method signature by_value: True or False, are we passing argument by value or by reference size: size of argument in memory Returns: Pointer (void*) to converted Cython object ''' cdef void *val_ptr = malloc(size) cdef void *arg_val_ptr = NULL cdef object del_arg_val_ptr = False cdef object objc_ref = False dprint( "convert_py_arg_to_cy arg={!r} sig={!r} by_value={!r} size={!r}".format( arg, sig, by_value, size)) if by_value: bytype = 'value' else: if type(arg) is ObjcReferenceToType: arg_val_ptr = <unsigned long long*><unsigned long long>arg.arg_ref objc_ref = True elif isinstance(arg, ctypes._SimpleCData): arg_val_ptr = <unsigned long long*><unsigned long long>( ctypes.addressof(arg)) objc_ref = True elif not isinstance(arg, ctypes.Structure): arg_val_ptr = malloc(size) del_arg_val_ptr = True bytype ='reference' dprint("passing argument {} by {} (sig={})".format( arg, bytype, sig), of_type='i') # method is accepting char (or BOOL, which is also interpreted as char) if sig == b'c': if by_value: if arg in [True, False, 1, 0]: (<char*>val_ptr)[0] = convert_py_bool_to_objc(arg) else: (<char*>val_ptr)[0] = <char>ord(arg) else: if not objc_ref: if arg in [True, False, 1, 0]: (<char*>arg_val_ptr)[0] = convert_py_bool_to_objc(arg) else: (<char*>arg_val_ptr)[0] = <char>bytes(arg) (<char**>val_ptr)[0] = <char*>arg_val_ptr # method is accepting int elif sig == b'i': if by_value: (<int*>val_ptr)[0] = <int> int(arg) else: if not objc_ref: (<int*>arg_val_ptr)[0] = <int>int(arg) (<int**>val_ptr)[0] = <int*>arg_val_ptr # method is accepting short elif sig == b's': if by_value: (<short*>val_ptr)[0] = <short> int(arg) else: if not objc_ref: (<short*>arg_val_ptr)[0] = <short>int(arg) (<short**>val_ptr)[0] = <short*>arg_val_ptr # method is accepting long elif sig == b'l': if by_value: (<long*>val_ptr)[0] = <long>long(arg) else: if not objc_ref: (<long*>arg_val_ptr)[0] = <long>long(arg) (<long**>val_ptr)[0] = <long*>arg_val_ptr # method is accepting long long elif sig == b'q': if by_value: (<long long*>val_ptr)[0] = <long long>ctypes.c_longlong(arg).value else: if not objc_ref: (<long long*>arg_val_ptr)[0] = <long long>ctypes.c_ulonglong(arg).value (<long long**>val_ptr)[0] = <long long*>arg_val_ptr # method is accepting unsigned char elif sig == b'C': (<unsigned char*>val_ptr)[0] = <unsigned char>arg # method is accepting unsigned integer elif sig == b'I': if by_value: (<unsigned int*>val_ptr)[0] = <unsigned int>ctypes.c_uint32(arg).value else: if not objc_ref: (<unsigned int*>arg_val_ptr)[0] = <unsigned int>ctypes.c_uint32(arg).value (<unsigned int**>val_ptr)[0] = <unsigned int*>arg_val_ptr # method is accepting unsigned short elif sig == b'S': if by_value: (<unsigned short*>val_ptr)[0] = <unsigned short>ctypes.c_ushort(arg).value else: if not objc_ref: (<unsigned short*>arg_val_ptr)[0] = <unsigned short>ctypes.c_ushort(arg).value (<unsigned short**>val_ptr)[0] = <unsigned short*>arg_val_ptr # method is accepting unsigned long elif sig == b'L': if by_value: (<unsigned long*>val_ptr)[0] = <unsigned long>ctypes.c_ulong(arg).value else: if not objc_ref: (<unsigned long*>arg_val_ptr)[0] = <unsigned long>ctypes.c_ulong(arg).value (<unsigned long**>val_ptr)[0] = <unsigned long*>arg_val_ptr # method is accepting unsigned long long elif sig == b'Q': if by_value: (<unsigned long long*>val_ptr)[0] = <unsigned long long>ctypes.c_ulonglong(arg).value else: if not objc_ref: (<unsigned long long*>arg_val_ptr)[0] = <unsigned long long>ctypes.c_ulonglong(arg).value (<unsigned long long**>val_ptr)[0] = <unsigned long long*>arg_val_ptr # method is accepting float elif sig == b'f': if by_value: (<float*>val_ptr)[0] = <float>float(arg) else: if not objc_ref: (<float*>arg_val_ptr)[0] = <float>float(arg) (<float**>val_ptr)[0] = <float*>arg_val_ptr # method is accepting double elif sig == b'd': if by_value: (<double*>val_ptr)[0] = <double>ctypes.c_double(arg).value else: if not objc_ref: (<double*>arg_val_ptr)[0] = <double>ctypes.c_double(arg).value (<double**>val_ptr)[0] = <double*>arg_val_ptr # method is accepting bool elif sig == b'B': if by_value: (<bool*>val_ptr)[0] = <bool>ctypes.c_bool(arg).value else: if not objc_ref: (<bool*>arg_val_ptr)[0] = <bool>ctypes.c_bool(arg).value (<bool**>val_ptr)[0] = <bool*>arg_val_ptr # method is accepting character string (char *) elif sig == b'*': if isinstance(arg, bytes): b_arg = arg else: b_arg = <bytes>arg.encode("utf8") # FIXME clear leaks here, must found a way to fix it. Py_INCREF(b_arg) (<char **>val_ptr)[0] = <char *>b_arg # method is accepting an object elif sig == b'@': dprint('====> ARG', <ObjcClassInstance>arg) arg = convert_py_to_nsobject(arg) if arg == None: (<id*>val_ptr)[0] = <id>NULL else: ocl = <ObjcClassInstance>arg (<id*>val_ptr)[0] = <id>ocl.o_instance # method is accepting class elif sig == b'#': if by_value: dprint('==> Class arg', <ObjcClass>arg) ocls = <ObjcClass>arg (<Class*>val_ptr)[0] = <Class>ocls.o_cls else: if not objc_ref: ocls = <ObjcClass>arg (<Class*>arg_val_ptr)[0] = <Class>ocls.o_cls (<Class**>val_ptr)[0] = <Class*>arg_val_ptr # method is accepting selector elif sig == b":": if by_value: dprint("==> Selector arg", <ObjcSelector>arg) osel = <ObjcSelector>arg (<SEL*>val_ptr)[0] = <SEL>osel.selector else: if not objc_ref: osel = <ObjcSelector>arg (<SEL*>arg_val_ptr)[0] = <SEL>osel.selector (<SEL**>val_ptr)[0] = <SEL*>arg_val_ptr # TODO: array elif sig.startswith(b'['): dprint("==> Array signature for: {0}".format(list(arg))) val_ptr = parse_array(sig, arg, size) # method is accepting structure OR union # NOTE: Support for passing union as arguments by value wasn't supported with libffi, # in time of writing this version of pyobjus. # However we can pass union as argument if function accepts pointer to union type # Return types for union are working (both, returned union is value, or returned union is pointer) # NOTE: There are no problems with structs, only unions, reason -> libffi
Cython
# TODO: ADD SUPPORT FOR PASSING UNIONS AS ARGUMENTS BY VALUE elif sig.startswith((b'(', b'{')): dprint("==> Structure arg", arg, sig) arg_type = sig[1:-1].split(b'=', 1)[0] if arg is None: (<void**>val_ptr)[0] = nil elif by_value: str_long_ptr = <unsigned long long*><unsigned long long>ctypes.addressof(arg) ctypes_struct_cache.append(<unsigned long long>str_long_ptr) val_ptr = cast_to_cy_data_type(<id*>str_long_ptr, size, arg_type, by_value=True, py_val=arg) else: if not objc_ref: str_long_ptr = <unsigned long long*><unsigned long long>ctypes.addressof(arg) val_ptr = cast_to_cy_data_type(<id*>str_long_ptr, size, arg_type, by_value=False, py_val=arg) else: val_ptr = cast_to_cy_data_type(<id*>arg_val_ptr, size, arg_type, by_value=False) # method is accepting void pointer (void*) # XXX is the signature changed or never works? elif sig == b'v': if isinstance(arg, ctypes.Structure) or isinstance(arg, ctypes.Union): (<void**>val_ptr)[0] = <void*><unsigned long long>ctypes.addressof(arg) elif isinstance(arg, ObjcReferenceToType): (<unsigned long long**>val_ptr)[0] = <unsigned long long*>arg_val_ptr elif isinstance(arg, ObjcClassInstance): ocl = <ObjcClassInstance>arg (<void**>val_ptr)[0] = <void*>ocl.o_instance elif isinstance(arg, ObjcClass): ocls = <ObjcClass>arg (<void**>val_ptr)[0] = <void*>ocls.o_cls elif isinstance(arg, ObjcSelector): osel = <ObjcSelector>arg (<void**>val_ptr)[0] = <void*>osel.selector # TODO: Add other types.. # elif: # ARRAY, ETC. else: # TODO: Add better conversion between primitive types! if type(arg) is long: (<void**>val_ptr)[0] = <void*><unsigned long long>arg elif type(arg) is str: # passing bytes as void* is the same as for char* b_arg = <bytes>arg.encode("utf8") Py_INCREF(b_arg) (<char **>val_ptr)[0] = <char *>b_arg else: if type(arg) is float: (<float*>arg_val_ptr)[0] = <float>arg elif type(arg) is int: (<int*>arg_val_ptr)[0] = <int>arg (<void**>val_ptr)[0] = <void*>arg_val_ptr # TODO: method is accepting bit field elif sig.startswith(b'b'): raise ObjcException("Bit fields aren't supported in pyobjus!") # method is accepting unknown type (^?) elif sig.startswith(b'?'): if by_value: assert(0) else: (<void**>val_ptr)[0] = arg_val_ptr else: dprint("WARNING: Unknown signature component, passing nil") (<int*>val_ptr)[0] = 0 # TODO: Find best time to dealloc memory used by this pointer # if arg_val_ptr!= NULL and del_arg_val_ptr: # free(arg_val_ptr) # arg_val_ptr = NULL return val_ptr <|end_of_text|># distutils: language = c++ # distutils: sources = mt19937.cpp from cython.operator cimport dereference as deref from cpython.array cimport array cdef extern from "mt19937.h" namespace "mtrandom": unsigned int N cdef cppclass MT_RNG: MT_RNG() MT_RNG(unsigned long s) MT_RNG(unsigned long init_key[], int key_length) void init_genrand(unsigned long s) unsigned long genrand_int32() double genrand_real1() double operator()() def make_random_list(unsigned long seed, unsigned int len): cdef list randlist = [0] * len cdef MT_RNG rng # calls default ctor. cdef unsigned int i rng.init_genrand(seed) for i in range(len): randlist[i] = rng.genrand_int32() return randlist <|end_of_text|># cython: language_level=3 import numpy as np import torch import torch.multiprocessing as mp from MCTS import MCTS class SelfPlayAgent(mp.Process): def __init__(self, id, game, ready_queue, batch_ready, batch_tensor, policy_tensor, value_tensor, output_queue, result_queue, complete_count, games_played, args): super().__init__() self.id = id self.game = game self.ready_queue = ready_queue self.batch_ready = batch_ready self.batch_tensor = batch_tensor self.batch_size = self.batch_tensor.shape[0] self.policy_tensor = policy_tensor self.value_tensor = value_tensor self.output_queue = output_queue self.result_queue = result_queue self.games = [] self.canonical = [] self.histories = [] self.player = [] self.turn = [] self.mcts = [] self.games_played = games_played self.complete_count = complete_count self.args = args self.valid = torch.zeros_like(self.policy_tensor) self.fast = False for _ in range(self.batch_size): self.games.append(self.game.getInitBoard()) self.histories.append([]) self.player.append(1) self.turn.append(1) self.mcts.append(MCTS(self.game, None, self.args)) self.canonical.append(None) def run(self): np.random.seed() while self.games_played.value < self.args.gamesPerIteration: self.generateCanonical() self.fast = np.random.random_sample() < self.args.probFastSim if self.fast: for i in range(self.args.numFastSims): self.generateBatch() self.processBatch() else: for i in range(self.args.numMCTSSims): self.generateBatch() self.processBatch() self.playMoves() with self.complete_count.get_lock(): self.complete_count.value += 1 self.output_queue.close() self.output_queue.join_thread() def generateBatch(self): for i in range(self.batch_size): board = self.mcts[i].findLeafToProcess(self.canonical[i], True) if board is not None: self.batch_tensor[i] = torch.from_numpy(board) self.ready_queue.put(self.id) def processBatch(self): self.batch_ready.wait() self.batch_ready.clear() for i in range(self.batch_size): self.mcts[i].processResults( self.policy_tensor[i].data.numpy(), self.value_tensor[i][0]) def playMoves(self): for i in range(self.batch_size): temp = int(self.turn[i] < self.args.tempThreshold) policy = self.mcts[i].getExpertProb( self.canonical[i], temp, not self.fast) action = np.random.choice(len(policy), p=policy) if not self.fast: self.histories[i].append((self.canonical[i], self.mcts[i].getExpertProb(self.canonical[i], prune=True), self.mcts[i].getExpertValue(self.canonical[i]), self.player[i])) self.games[i], self.player[i] = self.game.getNextState( self.games[i], self.player[i], action) self.turn[i] += 1 winner = self.game.getGameEnded(self.games[i], 1) if winner!= 0: self.result_queue.put(winner) lock = self.games_played.get_lock() lock.acquire() if self.games_played.value < self.args.gamesPerIteration: self.games_played.value += 1 lock.release() for hist in self.histories[i]: if self.args.symmetricSamples: sym = self.game.getSymmetries(hist[0], hist[1]) for b, p in sym: self.output_queue.put((b, p, winner * hist[3] * (1 - self.args.expertValueWeight.current) + self.args.expertValueWeight.current * hist[2])) else: self.output_queue.put((hist[0], hist[1], winner * hist[3] * (1 - self.args.expertValueWeight.current) + self.args.expertValueWeight.current * hist[2])) self.games[i] = self.game.getInitBoard() self.histories[i] = [] self.player[i] = 1 self.turn[i] = 1 self.mcts[i] = MCTS(self.game, None, self.args) else: lock.release() def generateCanonical(self): for i in range(self.batch_size): self.canonical[i] = self.game.getCanonicalForm( self.games[i], self.player[i]) <|end_of_text|>cimport cython cimport numpy as np import numpy as np import ctypes from ibex.transforms import distance, seg2
Cython
seg from cremi_python.cremi.evaluation.voi import voi from cremi_python.cremi.evaluation import border_mask import scipy.sparse as sparse cdef extern from 'cpp-comparestacks.h': void CppEvaluate(long *segmentation, long *gold, long resolution[3], unsigned char mask_ground_truth) def adapted_rand(seg, gt, all_stats=False, dilate_ground_truth=1, filtersize=0): """Compute Adapted Rand error as defined by the SNEMI3D contest [1] Formula is given as 1 - the maximal F-score of the Rand index (excluding the zero component of the original labels). Adapted from the SNEMI3D MATLAB script, hence the strange style. Parameters ---------- seg : np.ndarray the segmentation to score, where each value is the label at that point gt : np.ndarray, same shape as seg the groundtruth to score against, where each value is a label all_stats : boolean, optional whether to also return precision and recall as a 3-tuple with rand_error Returns ------- are : float The adapted Rand error; equal to $1 - \frac{2pr}{p + r}$, where $p$ and $r$ are the precision and recall described below. prec : float, optional The adapted Rand precision. (Only returned when `all_stats` is ``True``.) rec : float, optional The adapted Rand recall. (Only returned when `all_stats` is ``True``.) References ---------- [1]: http://brainiac2.mit.edu/SNEMI3D/evaluation """ # remove all small connected components if filtersize > 0: seg = seg2seg.RemoveSmallConnectedComponents(seg, filtersize) gt = seg2seg.RemoveSmallConnectedComponents(gt, filtersize) if dilate_ground_truth > 0: gt = distance.DilateData(gt, dilate_ground_truth) # segA is truth, segB is query segA = np.ravel(gt) segB = np.ravel(seg) n = segA.size n_labels_A = np.amax(segA) + 1 n_labels_B = np.amax(segB) + 1 ones_data = np.ones(n) p_ij = sparse.csr_matrix((ones_data, (segA[:], segB[:])), shape=(n_labels_A, n_labels_B)) a = p_ij[1:n_labels_A,:] b = p_ij[1:n_labels_A,1:n_labels_B] c = p_ij[1:n_labels_A,0].todense() d = b.multiply(b) a_i = np.array(a.sum(1)) b_i = np.array(b.sum(0)) sumA = np.sum(a_i * a_i) sumB = np.sum(b_i * b_i) + (np.sum(c) / n) sumAB = np.sum(d) + (np.sum(c) / n) precision = sumAB / sumB recall = sumAB / sumA fScore = 2.0 * precision * recall / (precision + recall) are = 1.0 - fScore if all_stats: return (are, precision, recall) else: return are def PrincetonEvaluate(segmentation, gold, dilate_ground_truth=1, mask_ground_truth=True, filtersize=0): # make sure these elements are the same size assert (segmentation.shape == gold.shape) assert (np.amin(segmentation) >= 0 and np.amin(gold) >= 0) # remove all small connected components if filtersize > 0: segmentation = seg2seg.RemoveSmallConnectedComponents(segmentation, filtersize) gold = seg2seg.RemoveSmallConnectedComponents(gold, filtersize) if dilate_ground_truth > 0: gold = distance.DilateData(gold, dilate_ground_truth) # convert to c++ arrays cdef np.ndarray[long, ndim=3, mode='c'] cpp_segmentation cpp_segmentation = np.ascontiguousarray(segmentation, dtype=ctypes.c_int64) cdef np.ndarray[long, ndim=3, mode='c'] cpp_gold cpp_gold = np.ascontiguousarray(gold, dtype=ctypes.c_int64) zres, yres, xres = segmentation.shape CppEvaluate(&(cpp_segmentation[0,0,0]), &(cpp_gold[0,0,0]), [zres, yres, xres], mask_ground_truth) def CremiEvaluate(segmentation, gold, dilate_ground_truth=1, mask_ground_truth=True, mask_segmentation=False, filtersize=0): # make sure these elements are the same size assert (segmentation.shape == gold.shape) assert (np.amin(segmentation) >= 0 and np.amin(gold) >= 0) # remove all small connected components if filtersize > 0: segmentation = seg2seg.RemoveSmallConnectedComponents(segmentation, filtersize) gold = seg2seg.RemoveSmallConnectedComponents(gold, filtersize) if dilate_ground_truth > 0: gold = distance.DilateData(gold, 1) vi_split, vi_merge = voi(segmentation, gold) print 'Variation of Information Full: {}'.format(vi_split + vi_merge) print 'Variation of Information Merge: {}'.format(vi_merge) print 'Variation of Information Split: {}'.format(vi_split)<|end_of_text|>cimport numpy as np import numpy as np cdef extern from "opencv2/opencv.hpp": cdef int CV_WINDOW_AUTOSIZE cdef int CV_8UC3 cdef int CV_8UC1 cdef int CV_32FC1 cdef int CV_16UC1 cdef int CV_8U cdef int CV_32F cdef extern from "opencv2/opencv.hpp" namespace "cv": cdef cppclass Mat: Mat() except + void create(int, int, int) void* data int rows int cols int channels() int depth() size_t elemSize() # For Buffer usage cdef extern from "Python.h": ctypedef struct PyObject object PyMemoryView_FromBuffer(Py_buffer *view) int PyBuffer_FillInfo(Py_buffer *view, PyObject *obj, void *buf, Py_ssize_t len, int readonly, int infoflags) enum: PyBUF_FULL_RO PyBUF_CONTIG cdef Mat np2Mat(np.ndarray ary) cdef object Mat2np(Mat mat)<|end_of_text|>from kivy.properties import (NumericProperty, BooleanProperty, ListProperty, StringProperty, ObjectProperty, BoundedNumericProperty) from kivy.graphics import (Color, Callback, Rotate, PushMatrix, PopMatrix, Translate, Quad, Scale, Point) from libc.math cimport pow as power from libc.math cimport sqrt, sin, cos, fmax, fmin from random import random from kivy.event import EventDispatcher EMITTER_TYPE_GRAVITY = 0 EMITTER_TYPE_RADIAL = 1 cdef inline double calc_distance(tuple point_1, tuple point_2): cdef double x_dist2 = power(point_2[0] - point_1[0], 2) cdef double y_dist2 = power(point_2[1] - point_1[1], 2) return sqrt(x_dist2 + y_dist2) cdef inline double random_variance(double base, double variance): return base + variance * (random() * 2.0 - 1.0) cdef inline list random_color_variance(list base, list variance): return [fmin(fmax(0.0, (random_variance(base[i], variance[i]))), 1.0) for i in range(4)] class ParticleEmitter(EventDispatcher): max_num_particles = NumericProperty(200) adjusted_num_particles = NumericProperty(200) life_span = NumericProperty(2) texture = ObjectProperty(None) texture_path = StringProperty(None) life_span_variance = NumericProperty(0) start_size = NumericProperty(16) start_size_variance = NumericProperty(0) end_size = NumericProperty(16) end_size_variance = NumericProperty(0) emit_angle = NumericProperty(0) emit_angle_variance = NumericProperty(0) start_rotation = NumericProperty(0) start_rotation_variance = NumericProperty(0) end_rotation = NumericProperty(0) end_rotation_variance = NumericProperty(0) emitter_x_variance = NumericProperty(100) emitter_y_variance = NumericProperty(100) gameworld = ObjectProperty(None) particle_manager = ObjectProperty(None) fbo = ObjectProperty(None) gravity_x = NumericProperty(0) gravity_y = NumericProperty(0) speed = NumericProperty(0) speed_variance = NumericProperty(0) radial_acceleration = NumericProperty(100) radial_acceleration_variance = NumericProperty(0) tangential_acceleration = NumericProperty(0) tangential_acceleration_variance = NumericProperty(0) max_radius = NumericProperty(100) max_radius_variance = NumericProperty(
Cython
0) min_radius = NumericProperty(50) rotate_per_second = NumericProperty(0) rotate_per_second_variance = NumericProperty(0) start_color = ListProperty([1.,1.,1.,1.]) start_color_variance = ListProperty([1.,1.,1.,1.]) end_color = ListProperty([1.,1.,1.,1.]) end_color_variance = ListProperty([1.,1.,1.,1.]) emitter_type = NumericProperty(0) current_scroll = ListProperty((0, 0)) friction = NumericProperty(0.0) _is_paused = BooleanProperty(False) def __init__(self, fbo, **kwargs): self.particles = list() self.fbo = fbo self.frame_time = 0 super(ParticleEmitter, self).__init__(**kwargs) def on_adjusted_num_particles(self, instance, value): self.emission_rate = value / self.life_span def on_max_number_particles(self, instance, value): self.emission_rate = value / self.life_span def receive_particle(self, int entity_id): cdef dict entity = self.gameworld.entities[entity_id] cdef list particles = self.particles particles.append(entity_id) cdef dict particle_manager = entity['particle_manager'] cdef Particle particle = particle_manager['particle'] particle_manager['color'] = None particle_manager['translate'] = None particle_manager['scale'] = None particle_manager['rotate'] = None particle_manager['point'] = None self.init_particle(particle) self.draw_particle(entity) def draw_particle(self, dict entity): cdef dict particle_manager = entity['particle_manager'] cdef Particle particle = particle_manager['particle'] group_id = str(entity['id']) current_scroll = self.current_scroll cdef list color = particle.color[:] with self.particle_manager.canvas: #with self.fbo: PushMatrix(group=group_id) particle_manager['color'] = Color(color[0], color[1], color[2], color[3], group=group_id) particle_manager['translate'] = Translate(group=group_id) particle_manager['scale'] = Scale(x=particle.scale, y=particle.scale, group=group_id) particle_manager['rotate'] = Rotate(group=group_id) particle_manager['rotate'].set(particle.rotation, 0, 0, 1) particle_manager['rect'] = Point(texture=self.texture, points=(0,0), group=group_id) particle_manager['translate'].xy = (particle.x + current_scroll[0], particle.y + current_scroll[1]) PopMatrix(group=group_id) def render_particle(self, dict entity): cdef dict particle_manager = entity['particle_manager'] cdef Particle particle = particle_manager['particle'] current_scroll = self.current_scroll particle_manager['rotate'].angle = particle.rotation particle_manager['scale'].x = particle.scale particle_manager['scale'].y = particle.scale particle_manager['translate'].xy = (particle.x + current_scroll[0], particle.y + current_scroll[1]) particle_manager['color'].rgba = particle.color def free_all_particles(self): cdef list particles_to_free = [particle for particle in self.particles] cdef int entity_id for entity_id in particles_to_free: self.free_particle(entity_id) def free_particle(self, int entity_id): cdef list particles = self.particles self.particle_manager.canvas.remove_group(str(entity_id)) self.particle_manager.free_particle(particles.pop(particles.index(entity_id))) def on_life_span(self,instance,value): self.emission_rate = self.max_num_particles/value def init_particle(self, Particle particle): cdef double life_span = random_variance(self.life_span, self.life_span_variance) if life_span <= 0.0: return pos = self.pos particle.current_time = 0.0 particle.total_time = life_span particle.x = random_variance(pos[0], self.emitter_x_variance) particle.y = random_variance(pos[1], self.emitter_y_variance) particle.start_x = pos[0] particle.start_y = pos[1] cdef double angle = random_variance(self.emit_angle, self.emit_angle_variance) cdef double speed = random_variance(self.speed, self.speed_variance) particle.velocity_x = speed * cos(angle) particle.velocity_y = speed * sin(angle) particle.emit_radius = random_variance(self.max_radius, self.max_radius_variance) particle.emit_radius_delta = (self.max_radius - self.min_radius) / life_span particle.emit_rotation = random_variance(self.emit_angle, self.emit_angle_variance) particle.emit_rotation_delta = random_variance(self.rotate_per_second, self.rotate_per_second_variance) particle.radial_acceleration = random_variance( self.radial_acceleration, self.radial_acceleration_variance) particle.tangent_acceleration = random_variance( self.tangential_acceleration, self.tangential_acceleration_variance) cdef double start_size = random_variance(self.start_size, self.start_size_variance) cdef double end_size = random_variance(self.end_size, self.end_size_variance) start_size = max(0.1, start_size) end_size = max(0.1, end_size) particle.scale = start_size / 2. particle.scale_delta = ((end_size - start_size) / life_span) / 2. # colors cdef list start_color = random_color_variance(self.start_color[:], self.start_color_variance[:]) cdef list end_color = random_color_variance(self.end_color[:], self.end_color_variance[:]) particle.color_delta = [(end_color[i] - start_color[i]) / life_span for i in range(4)] particle.color = start_color # rotation cdef double start_rotation = random_variance(self.start_rotation, self.start_rotation_variance) cdef double end_rotation = random_variance(self.end_rotation, self.end_rotation_variance) particle.rotation = start_rotation particle.rotation_delta = (end_rotation - start_rotation) / life_span def advance_particle_gravity(self, Particle particle, float passed_time): cdef double distance_x = particle.x - particle.start_x cdef double distance_y = particle.y - particle.start_y cdef tuple start_pos = (particle.start_x, particle.start_y) cdef tuple current_pos = (particle.x, particle.y) cdef double distance_scalar = calc_distance(start_pos, current_pos) if distance_scalar < 0.01: distance_scalar = 0.01 cdef double radial_x = distance_x / distance_scalar cdef double radial_y = distance_y / distance_scalar cdef double tangential_x = radial_x cdef double tangential_y = radial_y radial_x *= particle.radial_acceleration radial_y *= particle.radial_acceleration cdef double new_y = tangential_x tangential_x = -tangential_y * particle.tangent_acceleration tangential_y = new_y * particle.tangent_acceleration particle.velocity_x += passed_time * (self.gravity_x + radial_x + tangential_x) particle.velocity_y += passed_time * (self.gravity_y + radial_y + tangential_y) particle.velocity_x -= particle.velocity_x * self.friction particle.velocity_y -= particle.velocity_y * self.friction particle.x += particle.velocity_x * passed_time particle.y += particle.velocity_y * passed_time def advance_particle(self, Particle particle, float passed_time): passed_time = min(passed_time, particle.total_time - particle.current_time) particle.current_time += passed_time if self.emitter_type == EMITTER_TYPE_RADIAL: pos = self.pos particle.emit_rotation += (particle.emit_rotation_delta * passed_time) particle.emit_radius -= particle.emit_radius_delta * passed_time particle.x = (pos[0] - cos(particle.emit_rotation) * particle.emit_radius) particle.y = (pos[1] - sin(particle.emit_rotation) * particle.emit_radius) if particle.emit_radius < self.min_radius: particle.current_time = particle.total_time else: self.advance_particle_gravity(particle, passed_time) particle.scale += particle.scale_delta * passed_time particle.rotation += particle.rotation_delta * passed_time particle.color = [particle.color[i] + particle.color_delta[i] * passed_time for i in range(4)] def update(self, float dt): ''' loop through particles if total_time < current_time: free particle else: advance_particle ''' gameworld = self.gameworld cdef list entities = gameworld.entities cdef Particle particle cdef dict entity cdef list particles = self.particles for entity_id in particles: entity = entities[entity_id] particle = entity['particle_manager']['particle'] if particle.total_time <= particle.current_time: self.free_particle(entity_id) else: self.advance_particle(particle, dt) self.render_particle(entity)
Cython
<|end_of_text|># -*- coding: utf-8 -*- # distutils: language = c++ # distutils: sources = dtw.cpp import numpy as np cimport numpy as np cimport cython from libc.math cimport fabs, sqrt, INFINITY from libcpp.vector cimport vector import warnings ctypedef double (*metric_ptr)(double[::1] a, double[::1]) cdef inline double d_min(double a, double b, double c): if a < b and a < c: return a elif b < c: return b else: return c cdef inline int d_argmin(double a, double b, double c): if a <= b and a <= c: return 0 elif b <= c: return 1 else: return 2 @cython.boundscheck(False) @cython.wraparound(False) cdef double euclidean_distance(double[::1] a, double[::1] b): cdef int i cdef double tmp, d d = 0 for i in range(a.shape[0]): tmp = a[i] - b[i] d += tmp * tmp return sqrt(d) @cython.boundscheck(False) @cython.wraparound(False) def check_constraint(a_shape, b_shape, constraint=0, warn=True): cdef int min_size = abs(a_shape - b_shape) + 1 if constraint < min_size: if warn: warnings.warn("Constraint {} too small for sequences length {} and {}; using {}".format(constraint, a_shape, b_shape, min_size)) constraint = min_size return constraint @cython.boundscheck(False) @cython.wraparound(False) def dtw1d(np.ndarray[np.float64_t, ndim=1, mode="c"] a, np.ndarray[np.float64_t, ndim=1, mode="c"] b, penalty): cdef int constraint = abs(a.shape[0] - b.shape[0]) + 1 cost_mat, cost, align_a, align_b = __dtw1d(a, b, constraint, penalty) return cost_mat, cost, align_a, align_b @cython.boundscheck(False) @cython.wraparound(False) def constrained_dtw1d(np.ndarray[np.float64_t, ndim=1, mode="c"] a, np.ndarray[np.float64_t, ndim=1, mode="c"] b, double penalty, constraint=0): constraint = check_constraint(a.shape[0],b.shape[0],constraint) cost_mat, cost, align_a, align_b = __dtw1d(a, b, constraint, penalty) return cost_mat, cost, align_a, align_b @cython.boundscheck(False) @cython.wraparound(False) cdef __dtw1d(np.ndarray[np.float64_t, ndim=1, mode="c"] a, np.ndarray[np.float64_t, ndim=1, mode="c"] b, int constraint, double penalty): cdef double[:, ::1] cost_mat = create_cost_mat_1d(a, b, constraint) align_a, align_b, cost = traceback(cost_mat, a.shape[0], b.shape[0], penalty) align_a.reverse() align_b.reverse() return cost_mat, cost, align_a, align_b @cython.boundscheck(False) @cython.wraparound(False) cdef double[:, ::1] create_cost_mat_1d(double[::1] a, double[::1]b, int constraint): cdef double[:, ::1] cost_mat = np.empty((a.shape[0] + 1, b.shape[0] + 1), dtype=np.float64) cost_mat[:] = INFINITY cost_mat[0, 0] = 0 cdef int i, j for i in range(1, cost_mat.shape[0]): for j in range(max(1, i-constraint), min(cost_mat.shape[1], i+constraint+1)): cost_mat[i, j] = fabs(a[i - 1] - b[j - 1]) +\ d_min(cost_mat[i - 1, j], cost_mat[i, j - 1], cost_mat[i - 1, j - 1]) return cost_mat[1:, 1:] @cython.boundscheck(False) @cython.wraparound(False) def dtw2d(np.ndarray[np.float64_t, ndim=2, mode="c"] a, np.ndarray[np.float64_t, ndim=2, mode="c"] b, double penalty, metric="euclidean"): cdef int constraint = abs(a.shape[0] - b.shape[0]) + 1 cost_mat, cost, align_a, align_b = __dtw2d(a, b, constraint, metric,penalty) return cost_mat, cost, align_a, align_b @cython.boundscheck(False) @cython.wraparound(False) def constrained_dtw2d(np.ndarray[np.float64_t, ndim=2, mode="c"] a, np.ndarray[np.float64_t, ndim=2, mode="c"] b, double penalty, constraint=0, metric="euclidean"): constraint = check_constraint(a.shape[0],b.shape[0],constraint) cost_mat, cost, align_a, align_b = __dtw2d(a, b, constraint, metric, penalty) return cost_mat, cost, align_a, align_b @cython.boundscheck(False) @cython.wraparound(False) cdef __dtw2d(np.ndarray[np.float64_t, ndim=2, mode="c"] a, np.ndarray[np.float64_t, ndim=2, mode="c"] b, int constraint, metric, double penalty): assert a.shape[1] == b.shape[1], 'Matrices must have same dimention. a={}, b={}'.format(a.shape[1], b.shape[1]) cdef metric_ptr dist_func if metric == 'euclidean': dist_func = &euclidean_distance else: raise ValueError("unrecognized metric") cdef double[:, ::1] cost_mat = create_cost_mat_2d(a, b, constraint, dist_func) align_a, align_b, cost = traceback(cost_mat, a.shape[0], b.shape[0], penalty) align_a.reverse() align_b.reverse() return cost_mat, cost, align_a, align_b @cython.boundscheck(False) @cython.wraparound(False) cdef double[:, ::1] create_cost_mat_2d(double[:, ::1] a, double[:, ::1] b, int constraint, metric_ptr dist_func): cdef double[:, ::1] cost_mat = np.empty((a.shape[0] + 1, b.shape[0] + 1), dtype=np.float64) cost_mat[:] = INFINITY cost_mat[0, 0] = 0 cdef int i, j for i in range(1, cost_mat.shape[0]): for j in range(max(1, i-constraint), min(cost_mat.shape[1], i+constraint+1)): cost_mat[i, j] = dist_func(a[i - 1], b[j - 1]) +\ d_min(cost_mat[i - 1, j], cost_mat[i, j - 1], cost_mat[i - 1, j - 1]) return cost_mat[1:, 1:] @cython.boundscheck(False) @cython.wraparound(False) cdef traceback(double[:, ::1] cost_mat, int ilen, int jlen, double penalty): cdef int i, j i = ilen - 1 j = jlen - 1 cdef double cost = cost_mat[i, j] cdef vector[int] a cdef vector[int] b a.push_back(i) b.push_back(j) cdef int match while (i > 0 or j > 0): match = d_argmin(cost_mat[i - 1, j - 1], cost_mat[i - 1, j], cost_mat[i, j - 1]) if match == 0: i -= 1 j -= 1 elif match == 1: i -= 1 cost_mat[i,j] = cost_mat[i,j] * penalty penalty = penalty * penalty else: j -= 1 cost_mat[i, j] = cost_mat[i, j] * penalty penalty = penalty * penalty a.push_back(i) b.push_back(j) return a, b, cost <|end_of_text|>from collections import defaultdict from bisect import bisect_left from blist import blist cdef class Node(object): cpdef public object value cpdef public object key cpdef public float order def __init__(self, key, value): self.key = key self.value = value def __repr__(self): return f"<{self.key}>{self.value}" cdef class Nearset(object): cpdef public object cmp cpdef public set keys cpdef public Node start_value cpdef public object nodes cpdef public object index_node_order cp
Cython
def public int max_size def __init__(self, cmp, max_size=-1): self.cmp = cmp self.keys = set() self.nodes = blist() self.index_node_order = blist() self.max_size = max_size def __len__(self): return len(self.keys) def __setitem__(self, key, value): self.add(key, value) cpdef add(self, object key, object value=None): cpdef Node node # if no key is provided, key is the value if value is None: value = key # if element already exists, ignore if key in self.keys: return # create Node element and compute sort value node = Node(key, value) node.order = self.cmp(node.value) if self.max_size > 0 \ and len(self.keys) >= self.max_size \ and node.order > self.nodes[self.max_size - 1].order: return # if the node is the first element to be inserted, insert immediately if len(self.keys) == 0: # add the key for later references self.keys.add(key) # add the node index to list self.nodes.append(node) self.index_node_order.append(node.order) else: # insert node using the standard method self.insert(node) cpdef insert(self, Node node): idx = bisect_left(self.index_node_order, node.order) self.nodes.insert(idx, node) self.index_node_order.insert(idx, node.order) self.keys.add(node.key) if self.max_size > 0: self.index_node_order = self.index_node_order[:self.max_size] self.nodes = self.nodes[:self.max_size] cpdef pop(self): self.index_node_order.pop() node = self.nodes.pop() self.keys.remove(node.key) return node cpdef items(self): return [(item.key, item.value) for item in self.nodes] def __iter__(self): for node in self.nodes: yield node.key, node.value, node.order def __repr__(self): return str([item.value for item in self.nodes]) def __getitem__(self, key): if isinstance(key, int): return self.nodes[key].value elif isinstance(key, slice): return [item.value for item in self.nodes[key]] raise KeyError(key) <|end_of_text|>from cupy._core._carray cimport shape_t from cupy._core.core cimport _ndarray_base cpdef compute_type_to_str(compute_type) cpdef get_compute_type(dtype) cpdef _ndarray_base dot(_ndarray_base a, _ndarray_base b, _ndarray_base out=*) cpdef _ndarray_base tensordot_core( _ndarray_base a, _ndarray_base b, _ndarray_base out, Py_ssize_t n, Py_ssize_t m, Py_ssize_t k, const shape_t& ret_shape) cpdef _ndarray_base matmul( _ndarray_base a, _ndarray_base b, _ndarray_base out=*) cpdef enum: COMPUTE_TYPE_TBD = 0 COMPUTE_TYPE_DEFAULT = 1 # default COMPUTE_TYPE_PEDANTIC = 2 # disable algorithmic optimizations COMPUTE_TYPE_FP16 = 3 # allow converting inputs to FP16 COMPUTE_TYPE_FP32 = 4 # allow converting inputs to FP32 COMPUTE_TYPE_FP64 = 5 # allow converting inputs to FP64 COMPUTE_TYPE_BF16 = 6 # allow converting inputs to BF16 COMPUTE_TYPE_TF32 = 7 # allow converting inputs to TF32 <|end_of_text|># -*- coding: utf-8 -*- from _pcl cimport PointCloud from _pcl cimport PointCloud_PointWithViewpoint cimport pcl_defs as cpp cimport pcl_range_image_180 as pcl_rim cimport eigen as eigen3 from boost_shared_ptr cimport sp_assign from cython.operator cimport dereference as deref, preincrement as inc cimport pcl_common_180 as common def copyPointCloud (PCLPointCloud2 cloud_in, PCLPointCloud2 cloud_out): common.copyPointCloud (deref(cloud_in.thisptr()), deref(cloud_out.thisptr())) def copyPointCloud (PCLPointCloud2 cloud_in, object indices, PCLPointCloud2 cloud_out): cdef vector[int] vect for i in indices: vect.push_back(i) common.copyPointCloud (deref(cloud_in.thisptr()), vect, deref(cloud_out.thisptr())) <|end_of_text|># Copyright (c) 2010 Jean-Pascal Mercier # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following # conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. cdef extern from *: ctypedef char * const_char_ptr "const char *" cdef extern from "CL/cl.h": ctypedef signed char cl_char ctypedef unsigned char cl_uchar ctypedef signed short cl_short ctypedef unsigned short cl_ushort ctypedef signed int cl_int ctypedef unsigned int cl_uint ctypedef signed long long cl_long ctypedef unsigned long long cl_ulong ctypedef unsigned short cl_half ctypedef float cl_float ctypedef double cl_double ctypedef cl_uint cl_bool ctypedef cl_int * cl_context_properties ctypedef void *cl_platform_id ctypedef void *cl_device_id ctypedef void *cl_context ctypedef void *cl_command_queue ctypedef void *cl_mem ctypedef void *cl_program ctypedef void *cl_kernel ctypedef void *cl_event ctypedef void *cl_sampler ctypedef cl_ulong cl_bitfield ctypedef cl_bitfield cl_device_type ctypedef cl_uint cl_platform_info ctypedef cl_uint cl_device_info ctypedef cl_bitfield cl_device_address_info ctypedef cl_bitfield cl_device_fp_config ctypedef cl_uint cl_device_mem_cache_type ctypedef cl_uint cl_device_local_mem_type ctypedef cl_bitfield cl_device_exec_capabilities ctypedef cl_bitfield cl_command_queue_properties ctypedef cl_uint cl_filter_mode ctypedef cl_uint cl_addressing_mode ctypedef cl_uint cl_profiling_info ctypedef cl_uint cl_kernel_work_group_info ctypedef enum cl_device_info_enum: CL_DEVICE_TYPE = 0x1000 CL_DEVICE_VENDOR_ID = 0x1001 CL_DEVICE_MAX_COMPUTE_UNITS = 0x1002 CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS = 0x1003 CL_DEVICE_MAX_WORK_GROUP_SIZE = 0x1004 CL_DEVICE_MAX_WORK_ITEM_SIZES = 0x1005 CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR = 0x1006 CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT = 0x1007 CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT = 0x1008 CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG = 0x1009 CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT = 0x100A CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE = 0x100B CL_DEVICE_MAX_CLOCK_FREQUENCY = 0x100C CL_DEVICE_ADDRESS_BITS = 0x100D CL_DEVICE_MAX_READ_IMAGE_ARGS = 0x100E CL_DEVICE_MAX_WRITE_IMAGE_ARGS = 0x100F CL_DEVICE_MAX_MEM_ALLOC_SIZE = 0x1010 CL_DEVICE_IMAGE2D_MAX_WIDTH = 0x1011 CL_DEVICE_IMAGE2D_MAX_HEIGHT = 0x1012 CL_DEVICE_IMAGE3D_MAX_WIDTH = 0x1013 CL_DEVICE_IMAGE3D_MAX_HEIGHT = 0x1014 CL_DEVICE_IMAGE3D_MAX_DEPTH = 0x1015 CL_DEVICE_IMAGE_SUPPORT = 0x1016 CL_DEVICE_MAX_PARAMETER_SIZE = 0x1017 CL_DEVICE_MAX_SAMPLERS = 0x1018 CL_DEVICE_MEM_BASE_ADDR_ALIGN = 0x1019 CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE = 0
Cython
x101A CL_DEVICE_SINGLE_FP_CONFIG = 0x101B CL_DEVICE_GLOBAL_MEM_CACHE_TYPE = 0x101C CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE = 0x101D CL_DEVICE_GLOBAL_MEM_CACHE_SIZE = 0x101E CL_DEVICE_GLOBAL_MEM_SIZE = 0x101F CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE = 0x1020 CL_DEVICE_MAX_CONSTANT_ARGS = 0x1021 CL_DEVICE_LOCAL_MEM_TYPE = 0x1022 CL_DEVICE_LOCAL_MEM_SIZE = 0x1023 CL_DEVICE_ERROR_CORRECTION_SUPPORT = 0x1024 CL_DEVICE_PROFILING_TIMER_RESOLUTION = 0x1025 CL_DEVICE_ENDIAN_LITTLE = 0x1026 CL_DEVICE_AVAILABLE = 0x1027 CL_DEVICE_COMPILER_AVAILABLE = 0x1028 CL_DEVICE_EXECUTION_CAPABILITIES = 0x1029 CL_DEVICE_QUEUE_PROPERTIES = 0x102A CL_DEVICE_NAME = 0x102B CL_DEVICE_VENDOR = 0x102C CL_DRIVER_VERSION = 0x102D CL_DEVICE_PROFILE = 0x102E CL_DEVICE_VERSION = 0x102F CL_DEVICE_EXTENSIONS = 0x1030 CL_DEVICE_PLATFORM = 0x1031 ctypedef enum cl_platform_info_enum: CL_PLATFORM_PROFILE = 0x0900 CL_PLATFORM_VERSION = 0x0901 CL_PLATFORM_NAME = 0x0902 CL_PLATFORM_VENDOR = 0x0903 CL_PLATFORM_EXTENSIONS = 0x0904 ctypedef enum cl_device_type_enum: CL_DEVICE_TYPE_DEFAULT = (1 << 0) CL_DEVICE_TYPE_CPU = (1 << 1) CL_DEVICE_TYPE_GPU = (1 << 2) CL_DEVICE_TYPE_ACCELERATOR = (1 << 3) CL_DEVICE_TYPE_ALL = 0xFFFFFFFF ctypedef enum cl_error_codes_enum: CL_SUCCESS = 0 CL_DEVICE_NOT_FOUND = -1 CL_DEVICE_NOT_AVAILABLE = -2 CL_COMPILER_NOT_AVAILABLE = -3 CL_MEM_OBJECT_ALLOCATION_FAILURE = -4 CL_OUT_OF_RESOURCES = -5 CL_OUT_OF_HOST_MEMORY = -6 CL_PROFILING_INFO_NOT_AVAILABLE = -7 CL_MEM_COPY_OVERLAP = -8 CL_IMAGE_FORMAT_MISMATCH = -9 CL_IMAGE_FORMAT_NOT_SUPPORTED = -10 CL_BUILD_PROGRAM_FAILURE = -11 CL_MAP_FAILURE = -12 CL_INVALID_VALUE = -30 CL_INVALID_DEVICE_TYPE = -31 CL_INVALID_PLATFORM = -32 CL_INVALID_DEVICE = -33 CL_INVALID_CONTEXT = -34 CL_INVALID_QUEUE_PROPERTIES = -35 CL_INVALID_COMMAND_QUEUE = -36 CL_INVALID_HOST_PTR = -37 CL_INVALID_MEM_OBJECT = -38 CL_INVALID_IMAGE_FORMAT_DESCRIPTOR = -39 CL_INVALID_IMAGE_SIZE = -40 CL_INVALID_SAMPLER = -41 CL_INVALID_BINARY = -42 CL_INVALID_BUILD_OPTIONS = -43 CL_INVALID_PROGRAM = -44 CL_INVALID_PROGRAM_EXECUTABLE = -45 CL_INVALID_KERNEL_NAME = -46 CL_INVALID_KERNEL_DEFINITION = -47 CL_INVALID_KERNEL = -48 CL_INVALID_ARG_INDEX = -49 CL_INVALID_ARG_VALUE = -50 CL_INVALID_ARG_SIZE = -51 CL_INVALID_KERNEL_ARGS = -52 CL_INVALID_WORK_DIMENSION = -53 CL_INVALID_WORK_GROUP_SIZE = -54 CL_INVALID_WORK_ITEM_SIZE = -55 CL_INVALID_GLOBAL_OFFSET = -56 CL_INVALID_EVENT_WAIT_LIST = -57 CL_INVALID_EVENT = -58 CL_INVALID_OPERATION = -59 CL_INVALID_GL_OBJECT = -60 CL_INVALID_BUFFER_SIZE = -61 CL_INVALID_MIP_LEVEL = -62 CL_INVALID_GLOBAL_WORK_SIZE = -63 ctypedef enum cl_mem_flags: CL_MEM_READ_WRITE = (1 << 0) CL_MEM_WRITE_ONLY = (1 << 1) CL_MEM_READ_ONLY = (1 << 2) CL_MEM_USE_HOST_PTR = (1 << 3) CL_MEM_ALLOC_HOST_PTR = (1 << 4) CL_MEM_COPY_HOST_PTR = (1 << 5) ctypedef enum cl_channel_order: CL_R = 0x10B0 CL_A = 0x10B1 CL_RG = 0x10B2 CL_RA = 0x10B3 CL_RGB = 0x10B4 CL_RGBA = 0x10B5 CL_BGRA = 0x10B6 CL_ARGB = 0x10B7 CL_INTENSITY = 0x10B8 CL_LUMINANCE = 0x10B9 ctypedef enum cl_channel_type: CL_SNORM_INT8 = 0x10D0 CL_SNORM_INT16 = 0x10D1 CL_UNORM_INT8 = 0x10D2 CL_UNORM_INT16 = 0x10D3 CL_UNORM_SHORT_565 = 0x10D4 CL_UNORM_SHORT_555 = 0x10D5 CL_UNORM_INT_101010 = 0x10D6 CL_SIGNED_INT8 = 0x10D7 CL_SIGNED_INT16 = 0x10D8 CL_SIGNED_INT32 = 0x10D9 CL_UNSIGNED_INT8 = 0x10DA CL_UNSIGNED_INT16 = 0x10DB CL_UNSIGNED_INT32 = 0x10DC CL_HALF_FLOAT = 0x10DD CL_FLOAT = 0x10DE ctypedef enum cl_image_info: CL_IMAGE_FORMAT = 0x1110 CL_IMAGE_ELEMENT_SIZE = 0x1111 CL_IMAGE_ROW_PITCH = 0x1112 CL_IMAGE_SLICE_PITCH = 0x1113 CL_IMAGE_WIDTH = 0x1114 CL_IMAGE_HEIGHT = 0x1115 CL_IMAGE_DEPTH = 0x1116 ctypedef enum cl_mem_info: CL_MEM_TYPE = 0x1100 CL_MEM_FLAGS = 0x1101 CL_MEM_SIZE = 0x1102 CL_MEM_HOST_PTR = 0x1103 CL_MEM_MAP_COUNT = 0x1104 CL_MEM_REFERENCE_COUNT = 0x1105 CL_MEM_CONTEXT = 0x1106 ctypedef enum cl_program_build_info: CL_PROGRAM_BUILD_STATUS = 0x1181 CL_PROGRAM_BUILD_OPTIONS = 0x1182 CL_PROGRAM_BUILD_LOG = 0x1183 ctypedef enum cl_program_info: CL_PROGRAM_REFERENCE_COUNT = 0x1160 CL_PROGRAM_CONTEXT = 0x1161 CL_PROGRAM_NUM_DEVICES = 0x1162 CL_PROGRAM_DEVICES = 0x1163 CL_PROGRAM_SOURCE = 0x1164 CL_PROGRAM_BINARY_SIZES = 0x1165 CL_PROGRAM_BINARIES = 0x1166 ctypedef enum cl_kernel_info: CL_KERNEL_FUNCTION_NAME = 0x1190 CL_KERNEL_NUM_ARGS = 0x1191 CL_KERNEL_REFERENCE_COUNT = 0x1192 CL_KERNEL_CONTEXT = 0x1193 CL_KERNEL_PROGRAM = 0x1194 ctypedef enum cl_command_type: CL_COMMAND_NDRANGE_KERNEL = 0x11F0 CL_COMMAND_TASK = 0x11F1 CL_COMMAND_NATIVE_KERNEL = 0x11F2 CL_COMMAND_READ_BUFFER = 0x11F3 CL_COMMAND_WRITE_BUFFER = 0x11F4 CL_COMMAND_COPY_BUFFER = 0x11F5 CL_COMMAND_READ_IMAGE = 0x11F6 CL_COMMAND_WRITE_IMAGE = 0x11F7 CL_COMMAND_COPY_IMAGE = 0x11F8 CL_COMMAND_COPY_IMAGE_TO_BUFFER = 0x11F9 CL_COMMAND_COPY_BUFFER_TO_IMAGE = 0x11FA CL_COMMAND_MAP_BUFFER = 0x11FB CL_COMMAND_MAP_IMAGE = 0x11FC CL_COMMAND_UNMAP_MEM_OBJECT = 0x11FD CL_COMMAND_MARKER = 0x11FE CL_COMMAND_ACQUIRE_GL_OBJECTS = 0x11FF CL_COMMAND_RELEASE_GL_OBJECTS =
Cython
0x1200 ctypedef enum cl_addressing_mode: CL_ADDRESS_NONE = 0x1130 CL_ADDRESS_CLAMP_TO_EDGE = 0x1131 CL_ADDRESS_CLAMP = 0x1132 CL_ADDRESS_REPEAT = 0x1133 ctypedef enum cl_command_queue_properties: CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE = (1 << 0) CL_QUEUE_PROFILING_ENABLE = (1 << 1) ctypedef enum cl_filter_mode: CL_FILTER_NEAREST = 0x1140 CL_FILTER_LINEAR = 0x1141 ctypedef enum cl_sampler_info: CL_SAMPLER_REFERENCE_COUNT = 0x1150 CL_SAMPLER_CONTEXT = 0x1151 CL_SAMPLER_NORMALIZED_COORDS = 0x1152 CL_SAMPLER_ADDRESSING_MODE = 0x1153 CL_SAMPLER_FILTER_MODE = 0x1154 ctypedef enum cl_event_info: CL_EVENT_COMMAND_QUEUE = 0x11D0 CL_EVENT_COMMAND_TYPE = 0x11D1 CL_EVENT_REFERENCE_COUNT = 0x11D2 CL_EVENT_COMMAND_EXECUTION_STATUS = 0x11D3 ctypedef enum cl_kernel_work_group_info: CL_KERNEL_WORK_GROUP_SIZE = 0x11B0 CL_KERNEL_COMPILE_WORK_GROUP_SIZE = 0x11B1 CL_KERNEL_LOCAL_MEM_SIZE = 0x11B2 ctypedef enum cl_profiling_info: CL_PROFILING_COMMAND_QUEUED = 0x1280 CL_PROFILING_COMMAND_SUBMIT = 0x1281 CL_PROFILING_COMMAND_START = 0x1282 CL_PROFILING_COMMAND_END = 0x1283 ctypedef enum cl_execution_status: CL_COMPLETE = 0x0 CL_RUNNING = 0x1 CL_SUBMITTED = 0x2 CL_QUEUED = 0x3 ctypedef enum cl_map_flags: CL_MAP_READ = (1 << 0) CL_MAP_WRITE = (1 << 1) ctypedef enum cl_context_properties: CL_CONTEXT_PLATFORM = 0x1084 ctypedef enum cl_kernel_work_group_info: CL_KERNEL_WORK_GROUP_SIZE = 0x11B0 CL_KERNEL_COMPILE_WORK_GROUP_SIZE = 0x11B1 CL_KERNEL_LOCAL_MEM_SIZE = 0x11B2 ctypedef struct cl_image_format: cl_channel_order image_channel_order cl_channel_type image_channel_data_type # Device API cdef cl_int clGetDeviceInfo(cl_device_id, cl_device_info, size_t, void *, size_t *) nogil # Platform API cdef cl_int clGetPlatformIDs(cl_uint, cl_platform_id *, cl_uint *) nogil cdef cl_int clGetDeviceIDs(cl_platform_id, cl_device_type, cl_uint, cl_device_id *, cl_uint *) nogil cdef cl_int clGetPlatformInfo(cl_platform_id, cl_platform_info, size_t, void *, size_t *) nogil cdef cl_context clCreateContext(cl_context_properties *, cl_uint, cl_device_id *, void (*pfn_notify) (char *, void *, size_t, void *), void *, cl_int *) cdef cl_int clGetContextInfo(cl_context, cl_context_info, size_t, void *, size_t *) # Context API #cdef cl_context clCreateContext(cl_context_properties *, #cl_uint, #cl_device_id *, #void *, #void *, #cl_int *) nogil cdef cl_int clReleaseContext(cl_context) nogil # Memory API cdef cl_mem clCreateBuffer(cl_context context, cl_mem_flags, size_t, void *, cl_int *) nogil cdef cl_mem clCreateImage2D(cl_context, cl_mem_flags, cl_image_format *, size_t, size_t, size_t, void *, cl_int *) nogil cdef cl_mem clCreateImage3D(cl_context, cl_mem_flags, cl_image_format *, size_t, size_t, size_t, size_t, size_t, void *, cl_int *) nogil cdef cl_int clReleaseMemObject(cl_mem) nogil cdef cl_int clGetImageInfo(cl_mem, cl_image_info, size_t, void *, size_t *) nogil cdef cl_int clGetMemObjectInfo(cl_mem, cl_mem_info, size_t, void *, size_t *) nogil # Program API cdef cl_program clCreateProgramWithSource(cl_context, cl_uint, char **, size_t *, cl_int *) nogil cdef cl_int clReleaseProgram(cl_program) nogil cdef cl_int clBuildProgram(cl_program, cl_uint, cl_device_id *, char *, void (*pfn_notify)(cl_program, void *user_data), void *) nogil cdef cl_int clCreateKernelsInProgram(cl_program, cl_uint, cl_kernel *, cl_uint *) nogil # Kernel API cdef cl_int clReleaseKernel(cl_kernel) nogil cdef cl_kernel clCreateKernel(cl_program, char *, cl_int *) nogil cdef cl_int clGetProgramBuildInfo(cl_program, cl_device_id, cl_program_build_info, size_t, void *, size_t *) nogil cdef cl_int clGetProgramInfo(cl_program program, cl_program_info, size_t, void *, size_t *) nogil cdef cl_int clGetKernelInfo(cl_kernel, cl_kernel_info, size_t, void *, size_t *) nogil cdef cl_int clGetKernelWorkGroupInfo(cl_kernel, cl_device_id, cl_kernel_work_group_info, size_t, void *, size_t *) nogil cdef cl_int clSetKernelArg(cl_kernel, cl_uint, size_t, void *) nogil # Command Queue API cdef cl_command_queue clCreateCommandQueue(cl_context, cl_device_id, cl_command_queue_properties, cl_int *) nogil cdef cl_int clReleaseCommandQueue(cl_command_queue) nogil cdef cl_int clFinish(cl_command_queue) nogil cdef cl_int clFlush(cl_command_queue) nogil cdef cl_int clEnqueueNDRangeKernel(cl_command_queue, cl_kernel, cl_uint, size_t *, size_t *, size_t *, cl_uint, cl_event *, cl_event *) nogil cdef cl_int clEnqueueCopyImageToBuffer(cl_command_queue, cl_mem, cl_mem, size_t *, size_t *, size_t, cl_uint, cl_event *, cl_event *) nogil cdef cl_int clEnqueueCopyBufferToImage(cl_command_queue, cl_mem, cl_mem, size_t, size_t *, size_t *, cl_uint, cl_event *, cl_event *) nogil cdef cl_int clEnqueueWriteBuffer(cl_command_queue, cl_mem, cl_bool, size_t, size_t, void *, cl_uint, cl_event *, cl_event *) nogil cdef cl_int clEnqueueReadBuffer(cl_command_queue, cl_mem, cl_bool, size_t, size_t, void *, cl_uint, cl_event *, cl_event *) nogil cdef cl_int clEnqueueCopyBuffer(cl_command_queue, cl_mem, cl_mem, size_t, size_t, size_t, cl_uint, cl_event *, cl_event *) nogil cdef void * clEnqueueMapBuffer (cl_command_queue command_queue, cl_mem buffer, cl_bool blocking_map, cl_map_flags map_flags, size_t offset, size_t cb, cl_uint num_events_in_wait_list, cl_event *event_wait_list, cl_event *event, cl_int *errcode_ret) cdef cl_int clEnqueueBarrier(cl_command_queue) nogil cdef cl_int clEnqueueMarker(cl_command_queue, cl_event *) nogil cdef cl_int clEnqueueWaitForEvents(cl_command_queue, cl_uint, cl_event *) nogil # Sampler API cdef cl_int clReleaseSampler(cl_sampler) nogil cdef cl_sampler clCreateSampler(cl_context, cl_bool, cl_addressing_mode, cl_filter_mode, cl_int *) nogil cdef cl_int clGetSamplerInfo(cl_sampler, cl_sampler_info, size_t, void *, size_t *) nogil # Event API cdef cl_int clReleaseEvent(cl_event) nogil cdef cl_int clGetEventInfo(cl_event, cl_event_info, size_t, void *, size_t *) nogil c
Cython
def cl_int clWaitForEvents(cl_uint, cl_event *) nogil cdef cl_int clGetEventProfilingInfo(cl_event, cl_profiling_info, size_t, void *, size_t *) nogil cdef cl_int clEnqueueUnmapMemObject(cl_command_queue, cl_mem, void *, cl_uint, cl_event *, cl_event *) nogil cdef cl_int clEnqueueReadImage (cl_command_queue queue, cl_mem image, cl_bool blocking, size_t origin[3], size_t region[3], size_t row_pitch, size_t slice_pitch, void *ptr, cl_uint num_events_in_wait_list, cl_event *event_wait_list, cl_event *event) nogil cdef cl_int clEnqueueWriteImage (cl_command_queue command_queue, cl_mem image, cl_bool blocking_write, size_t origin[3], size_t region[3], size_t input_row_pitch, size_t input_slice_pitch, void *ptr, cl_uint num_events_in_wait_list, cl_event *event_wait_list, cl_event *event) nogil <|end_of_text|>#Libraries from __future__ import division cimport cython cimport numpy as np import numpy as np from libcpp.vector cimport vector from sklearn.linear_model import RANSACRegressor from operator import itemgetter import time np.import_array() #Defining functions #Ransac function def ransac_polyfit(np.ndarray[np.npy_int64, ndim=1] x, np.ndarray[np.npy_int64, ndim=1] y, np.npy_intp order, np.npy_float32 t, np.npy_float32 n=0.8, np.npy_intp k=100, np.npy_float32 f=0.9): cdef np.npy_intp kk, i, ransac_control cdef np.npy_float64 thiserr, besterr = -1.0 cdef np.ndarray[np.npy_int64, ndim=1] maybeinliers cdef np.ndarray[np.npy_bool, ndim=1] alsoinliers cdef np.ndarray[np.npy_float64, ndim=1] bestfit = np.array([0.0]), bestfitderi = np.array([0.0]), maybemodel, res_th, bettermodel cdef list polyderi for kk in range(k): maybeinliers = np.random.randint(len(x), size=int(n*len(x))) maybemodel = np.polyfit(x[maybeinliers], y[maybeinliers], order) polyderi = [] for i in range(order): polyderi.append(maybemodel[i]*(order-i)) res_th = t / np.cos(np.arctan(np.polyval(np.array(polyderi),x))) alsoinliers = np.abs(np.polyval(maybemodel, x)-y) < res_th if sum(alsoinliers) > len(x)*f: bettermodel = np.polyfit(x[alsoinliers], y[alsoinliers], order) polyderi = [] for i in range(order): polyderi.append(maybemodel[i]*(order-i)) thiserr = np.sum(np.abs(np.polyval(bettermodel, x[alsoinliers])-y[alsoinliers])) if (thiserr < besterr) or (besterr == -1.0): bestfit = bettermodel besterr = thiserr bestfitderi = np.array(polyderi) if (besterr == -1.0): ransac_control = 0 return ransac_control, bestfit, bestfitderi else: ransac_control = 1 return ransac_control, bestfit, bestfitderi #ddbscan_inner function def ddbscaninner(np.ndarray[np.npy_intp, ndim=2] data, np.ndarray[np.uint8_t, ndim=1] is_core, np.ndarray[object, ndim=1] neighborhoods, np.ndarray[object, ndim=1] neighborhoods2, np.ndarray[np.npy_intp, ndim=1] labels): #Parameters of the ddbscan_inner cdef np.npy_float32 acc_th = 0.80 #Accuracy of the RANSAC to save one point of the cluster for the directional search cdef np.npy_int32 points_th = 70 #Minimum number of points to test the ransac cdef np.npy_float32 t = 5 #The thickness of the track cdef np.npy_float32 time_threshold = 600 #Maximum ammount of time that the directional search is enabled for each cluster (marked as infinite to see the results) #Beginning of the algorithm - DBSCAN check part cdef np.npy_intp i, label_num = 0, v, l1, ransac_control, control, j cdef np.npy_int64 pts0, pts1 cdef np.npy_float32 accuracy, t1, t2 cdef np.ndarray[np.npy_intp, ndim=1] neighb, moment_lab, inliers cdef np.ndarray[np.npy_intp, ndim=2] la_aux = np.zeros([labels.shape[0], 2], dtype = np.intp) cdef list acc = [], clu_stra = [], length = [], auxiliar_points = [], clu_coordinates, stack = [] cdef np.ndarray[np.npy_int64, ndim=2] uniques cdef np.ndarray[np.npy_int64, ndim=1] x, y cdef np.ndarray[np.npy_float64, ndim = 2] vet_aux cdef np.ndarray[np.npy_float64, ndim = 1] fit_model, fit_deri, res_th cdef np.ndarray[np.npy_bool, ndim=1] lt, inliers_bool cdef object ransac for i in range(labels.shape[0]): if labels[i]!= -1 or not is_core[i]: continue # Depth-first search starting from i, ending at the non-core points. # This is very similar to the classic algorithm for computing connected # components, the difference being that we label non-core points as # part of a cluster (component), but don't expand their neighborhoods. while True: if labels[i] == -1: labels[i] = label_num if is_core[i]: neighb = neighborhoods[i] for i in range(neighb.shape[0]): v = neighb[i] if labels[v] == -1: stack.append(v) if len(stack) == 0: break i = stack[len(stack)-1] del(stack[len(stack)-1]) #Ransac part if sum(labels==label_num) > points_th: x = data[labels==label_num][:,0] y = data[labels==label_num][:,1] if (np.median(np.abs(y - np.median(y))) == 0): ransac = RANSACRegressor(min_samples=0.8, residual_threshold = 0.1) ransac.fit(np.expand_dims(x, axis=1), y) else: ransac = RANSACRegressor(min_samples=0.8) ransac.fit(np.expand_dims(x, axis=1), y) accuracy = sum(ransac.inlier_mask_)/len(y) if accuracy > acc_th: clu_stra.append(label_num) acc.append(accuracy) length.append(sum(labels==label_num)) label_num += 1 #End of DBSCAN loop - check if directional part is viable print("Clusters found in DBSCAN: %d" %(len(set(labels)) - (1 if -1 in labels else 0))) if (len(clu_stra) == 0): #If no cluster has a good fit model, the output will be the same of the DBSCAN la_aux[:,0] = np.copy(labels) return la_aux else: #If any cluster has a good fit model, it'll be marked from the worst fitted cluster to the best, each of them respecting the accuracy threshold vet_aux = np.zeros([len(clu_stra),3]) vet_aux[:,0] = np.asarray(clu_stra) vet_aux[:,1] = np.asarray(acc) vet_aux[:,2] = np.asarray(length) vet_aux = np.asarray(sorted(vet_aux,key=itemgetter(1),reverse=1)) if (sum(vet_aux[:,1]==1) > 1): l1 = sum(vet_aux[:,1]==1) vet_aux[0:l1,:] = np.asarray(sorted(vet_aux[0:l1,:],key=itemgetter(2),reverse=1)) for u in range(len(clu_stra)): lt = (labels==vet_aux[u][0])*is_core auxiliar_points.append(np.where(lt)[0][0]) print("The point %d has been assigned as part of a good fit" %(np.where(lt)[0][0])) #Now the clusterization will begin from zero with directionality enabled for the
Cython
clusters that have a good fit model label_num = 0 labels = np.full(data.shape[0], -1, dtype=np.intp) stack = [] for i in auxiliar_points: if labels[i]!= -1 or not is_core[i]: continue while True: if labels[i] == -1: labels[i] = label_num if is_core[i]: neighb = neighborhoods[i] for i in range(neighb.shape[0]): v = neighb[i] if labels[v] == -1: stack.append(v) if len(stack) == 0: break i = stack[len(stack)-1] del(stack[len(stack)-1]) #Now that the provisional cluster has been found, directional search begins if sum(labels==label_num) > points_th: #Taking unique points to use on the ransac clu_coordinates = [tuple(row) for row in data[labels==label_num]] uniques = np.unique(clu_coordinates,axis=0) x = uniques[:,0] y = uniques[:,1] #RANSAC fit ransac_control, fit_model, fit_deri = ransac_polyfit(x,y,order=1, t = t) counter = 1 #Adding new points to the cluster (If the fit_model output is None, then no model was found) if ransac_control == 1: control = 1 pts1 = 0 t1 = time.time() while True: #Filling stack list with possible new points to be added (start point) pts0 = pts1 moment_lab = np.where(labels==label_num)[0] stack = [] for j in moment_lab: #if is_core[j]: neig2 = neighborhoods2[j] for k in neig2: if labels[k]!= label_num: #if (labels[k]!= label_num) or 1: stack.append(k) stack = np.unique(stack).tolist() if len(stack) == 0: break res_th = t / np.cos(np.arctan(np.polyval(fit_deri,data[:,0]))) inliers_bool = np.abs(np.polyval(fit_model, data[:,0])-data[:,1]) < res_th inliers = np.where(inliers_bool)[0] i = stack[len(stack)-1] #Adding the inliers points from stack list and filling stack with more possible points while True: if i in inliers and (labels[i]!= label_num): #if i in inliers: labels[i] = label_num #if is_core[i]: neig2 = neighborhoods2[i] for i in range(neig2.shape[0]): v = neig2[i] if labels[v]!= label_num: stack.append(v) if len(stack) == 0: break i = stack[len(stack)-1] del(stack[len(stack)-1]) #Checking current cluster for possible fit model update clu_coordinates = [tuple(row) for row in data[labels==label_num]] uniques = np.unique(clu_coordinates,axis=0) x = uniques[:,0] y = uniques[:,1] #Updating the ransac model if control == 1: ransac_control, fit_model, fit_deri = ransac_polyfit(x,y,order=1, t = t) else: ransac_control, fit_model, fit_deri = ransac_polyfit(x,y,order=3, t = t) pts1 = sum(labels==label_num) #Stop criteria - time t2 = time.time() if (t2 - t1) > time_threshold: break #Stop criteria - When there is no more point to be added or if the fit is not good anymore counter = counter + 1 if (pts1 == pts0) or (ransac_control!= 1): if control == 0: print('The cluster %d' %(label_num) +'needed %d attempts' %(counter)) break else: ransac_control, fit_model, fit_deri = ransac_polyfit(x,y,order=3, t = t) control = 0 if ransac_control!= 1: break #label_num += 1 if sum(labels==label_num) > 29: label_num += 1 else: labels[labels==label_num] = len(data) #Now that the clusters with good fit models were found, the rest of the data will be clustered with the standard DBSCAN logic for i in range(labels.shape[0]): if labels[i]!= -1 or not is_core[i]: continue while True: if labels[i] == -1: labels[i] = label_num if is_core[i]: #Only core points are expanded neighb = neighborhoods[i] for i in range(neighb.shape[0]): v = neighb[i] if labels[v] == -1: stack.append(v) if len(stack) == 0: break i = stack[len(stack)-1] del(stack[len(stack)-1]) if sum(labels==label_num) > 29: label_num += 1 else: labels[labels==label_num] = len(data) #False clusters remotion labels[labels==len(data)] = -1 #Clusterization has finished, now the clusters found with ransac fit model will be marked la_aux[:,0] = np.copy(labels) la_aux[auxiliar_points,1] = 1 return la_aux <|end_of_text|># cython: language_level=3, boundscheck=False, wraparound=False, cdivision=True, embedsignature=True cimport cython from cython.operator cimport dereference as deref import numpy as np cimport numpy as np import scipy.stats as sps from enum import Enum from addict import Dict as edict from numpy.math cimport NAN, isnan, PI, isinf, INFINITY from libc.stdint cimport uint8_t, uint16_t, uint32_t, uint64_t from libc.math cimport atan2, sqrt, fabs from libcpp.vector cimport vector from libcpp.unordered_map cimport unordered_map from libcpp.unordered_set cimport unordered_set from libcpp.pair cimport pair from d3d.abstraction cimport Target3DArray, TransformSet, ObjectTarget3D from d3d.tracking.matcher cimport ScoreMatcher, DistanceTypes from d3d.math cimport wmean, diffnorm3, cross3 cdef inline int bisect(vector[float] &arr, float x) nogil: '''Cython version of bisect.bisect_left''' cdef int lo=0, hi=arr.size(), mid while lo < hi: mid = (lo+hi)//2 if arr[mid] < x: lo = mid+1 else: hi = mid return lo cdef inline float calc_precision(int tp, int fp) nogil: if fp == 0: return 1 else: return <float>tp / (tp + fp) cdef inline float calc_recall(int tp, int fn) nogil: if fn == 0: return 1 else: return <float>tp / (tp + fn) cdef inline float calc_fscore(int tp, int fp, int fn, float b2) nogil: return (1+b2) * tp / ((1+b2)*tp + b2*fn + fp) @cython.boundscheck(False) @cython.wraparound(False) cdef inline float quatdiff( # calculate |inv(p) * q| const float[:] p, const float[:] q ) nogil: cdef float cx, cy, cz cx, cy, cz = cross3(p, q) cdef float rx, ry, rz, rw rx = p[3]*q[0] - q[3]*p[0] + cx ry = p[3]*q[1] - q[3]*p[1] + cy rz = p[3]*q[2] - q[3]*p[2] + cz rw = -p[3]*q[3] - p[0]*q[0] - p[1]*q[1] - p[2]*q[2] cdef float angle angle = 2 * atan2(sqrt(rx*rx + ry*ry + rz*rz), fabs(rw)) return angle @cython.auto_pickle(True) cdef class DetectionEvalStats: ''' Detection stats summary of a evaluation step ''' cdef public unordered_map[int, int] ngt cdef public unordered_map[int, vector[int]] tp, fp, fn, ndt cdef public unordered_map[int, vector[float]] acc_iou, acc_angular, acc_dist, acc_box, acc_var cdef void initialize(self, unordered_set[int] &classes, int nsamples):
Cython
for k in classes: self.ngt[k] = 0 self.ndt[k] = vector[int](nsamples, 0) self.tp[k] = vector[int](nsamples, 0) self.fp[k] = vector[int](nsamples, 0) self.fn[k] = vector[int](nsamples, 0) self.acc_angular[k] = vector[float](nsamples, NAN) self.acc_iou[k] = vector[float](nsamples, NAN) self.acc_box[k] = vector[float](nsamples, NAN) self.acc_dist[k] = vector[float](nsamples, NAN) self.acc_var[k] = vector[float](nsamples, NAN) def as_object(self): return dict(ngt=self.ngt, tp=self.tp, fp=self.fp, fn=self.fn, ndt=self.ndt, acc_iou=self.acc_iou, acc_angular=self.acc_angular, acc_dist=self.acc_dist, acc_box=self.acc_box, acc_var=self.acc_var ) @cython.auto_pickle(True) cdef class DetectionEvaluator: '''Benchmark for object detection''' # member declarations cdef int _pr_nsamples cdef float _min_score cdef unordered_set[int] _classes cdef object _class_type cdef unordered_map[int, float] _max_distance cdef vector[float] _pr_thresholds cdef DetectionEvalStats _stats # aggregated statistics declarations def __init__(self, classes, min_overlaps, int pr_sample_count=40, float min_score=0, str pr_sample_scale="log10"): ''' Object detection benchmark. Targets association is done by score sorting. :param classes: Object classes to consider :param min_overlaps: Min overlaps per class for two boxes being considered as overlap. If single value is provided, all class will use the same overlap threshold :param min_score: Min score for precision-recall samples :param pr_sample_count: Number of precision-recall sample points (expect for p=1,r=0 and p=0,r=1) :param pr_sample_scale: PR sample type, {lin: linspace, log: logspace 1~10, logX: logspace 1~X} ''' # parse parameters if isinstance(classes, (list, tuple)): assert len(classes) > 0 self._class_type = type(classes[0]) for c in classes: self._classes.insert(c.value) else: self._class_type = type(classes) self._classes.insert(classes.value) if isinstance(min_overlaps, (list, tuple)): self._max_distance = {classes[i].value: 1 - v for i, v in enumerate(min_overlaps)} elif isinstance(min_overlaps, (int, float)): self._max_distance = {c: 1 - min_overlaps for c in self._classes} else: raise ValueError("min_overlaps should be a list or a single value") self._pr_nsamples = pr_sample_count self._min_score = min_score # generate score thresholds cdef np.ndarray thresholds if pr_sample_scale == "lin": thresholds = np.linspace(min_score, 1, pr_sample_count, endpoint=False, dtype=np.float32) elif pr_sample_scale.startswith("log"): logstart, logend = 1, int(pr_sample_scale[3:] or "10") thresholds = np.geomspace(logstart, logend, pr_sample_count+1, dtype=np.float32) thresholds = (thresholds - logstart) * (1 - min_score) / (logend - logstart) thresholds = (1 - thresholds)[:0:-1] else: raise ValueError("Unrecognized PR sample type") self._pr_thresholds = thresholds # initialize maps self._stats = DetectionEvalStats() self._stats.initialize(self._classes, self._pr_nsamples) cpdef void reset(self): self._stats.initialize(self._classes, self._pr_nsamples) cdef inline unordered_map[int, vector[float]] _aggregate_stats(self, vector[unordered_map[int, float]]& acc, vector[int]& gt_tags) nogil: '''Help put accuracy values into categories''' # init intermediate vars cdef unordered_map[int, vector[float]] sorted_sum, aggregated cdef unordered_map[int, vector[int]] sorted_count for k in self._classes: sorted_sum[k] = vector[float](self._pr_nsamples, 0) sorted_count[k] = vector[int](self._pr_nsamples, 0) aggregated[k] = vector[float](self._pr_nsamples, 0) # sort accuracies into categories for score_idx in range(self._pr_nsamples): for diter in acc[score_idx]: sorted_sum[gt_tags[diter.first]][score_idx] += diter.second sorted_count[gt_tags[diter.first]][score_idx] += 1 # aggregate for k in self._classes: for score_idx in range(self._pr_nsamples): # assert sorted_count[k][score_idx] == tp[k][score_idx] if sorted_count[k][score_idx] > 0: aggregated[k][score_idx] = sorted_sum[k][score_idx] / sorted_count[k][score_idx] else: aggregated[k][score_idx] = NAN return aggregated cpdef DetectionEvalStats calc_stats(self, Target3DArray gt_boxes, Target3DArray dt_boxes, TransformSet calib=None): # convert boxes to the same frame if gt_boxes.frame!= dt_boxes.frame: if calib is None: raise ValueError("Calibration is not provided when dt_boxes and gt_boxes are in different frames!") gt_boxes = calib.transform_objects(gt_boxes, frame_to=dt_boxes.frame) # forward definitions cdef int gt_idx, gt_tag, dt_idx, dt_tag cdef float score_thres, angular_acc_cur, var_acc_cur # initialize matcher cdef ScoreMatcher matcher = ScoreMatcher() matcher.prepare_boxes(dt_boxes, gt_boxes, DistanceTypes.RIoU) # initialize statistics cdef DetectionEvalStats summary = DetectionEvalStats() cdef vector[unordered_map[int, float]] iou_acc, angular_acc, dist_acc, box_acc, var_acc for k in self._classes: summary.ngt[k] = 0 summary.ndt[k] = vector[int](self._pr_nsamples, 0) summary.tp[k] = vector[int](self._pr_nsamples, 0) summary.fp[k] = vector[int](self._pr_nsamples, 0) summary.fn[k] = vector[int](self._pr_nsamples, 0) iou_acc.resize(self._pr_nsamples) angular_acc.resize(self._pr_nsamples) dist_acc.resize(self._pr_nsamples) box_acc.resize(self._pr_nsamples) var_acc.resize(self._pr_nsamples) # select ground-truth boxes to match cdef vector[int] gt_indices, dt_indices for gt_idx in range(gt_boxes.size()): gt_tag = gt_boxes.get(gt_idx).tag.labels[0] if self._classes.find(gt_tag) == self._classes.end(): continue # skip objects within ignored category summary.ngt[gt_tag] += 1 gt_indices.push_back(gt_idx) # loop over score thres cdef ObjectTarget3D gt_box, dt_box for score_idx in range(self._pr_nsamples): score_thres = self._pr_thresholds[score_idx] # select detection boxes to match dt_indices.clear() for dt_idx in range(dt_boxes.size()): dt_box = dt_boxes.get(dt_idx) dt_tag = dt_box.tag.labels[0] if self._classes.find(dt_tag) == self._classes.end(): continue # skip objects within ignored category if dt_boxes.get(dt_idx).tag.scores[0] < score_thres: continue # skip objects with lower scores summary.ndt[dt_tag][score_idx] += 1 dt_indices.push_back(dt_idx) # match boxes matcher.clear_match() matcher.match(dt_indices, gt_indices, self._max_distance) # process ground-truth match results for gt_idx in gt_indices: gt_box = gt_boxes.get(gt_idx) gt_tag = gt_box.tag.labels[0] dt_idx = matcher.query_dst_match(gt_idx) if dt_idx < 0: summary.fn[gt_tag][score_idx] += 1 continue summary.tp[gt_tag][score_idx] += 1 dt_box = dt_boxes.get(dt_idx) # caculate accuracy values for various criteria iou_acc[score_idx][gt_idx] = 1 - matcher._distance_cache[dt_idx, gt_idx] # FIXME: not elegant here dist_acc[score_idx][gt_idx] = diffnorm3(gt_box.position_, dt_box.position_) box_acc[score_idx][gt_idx] = diffnorm3(gt_box.dimension_, dt_box.dimension_) angular_acc_cur = quatdiff(gt_box.orientation_, dt_box.orientation_) angular_acc[score_idx][gt_idx] = angular_acc_cur / PI if dt_boxes[dt_idx].orientation
Cython
_var > 0: # FIXME: these operations slow down the evaluator var_acc_cur = sps.multivariate_normal.logpdf(gt_boxes[gt_idx].position, dt_boxes[dt_idx].position, cov=dt_boxes[dt_idx].position_var) var_acc_cur += sps.multivariate_normal.logpdf(gt_boxes[gt_idx].dimension, dt_boxes[dt_idx].dimension, cov=dt_boxes[dt_idx].dimension_var) var_acc_cur += sps.vonmises.logpdf(angular_acc_cur, kappa=1/dt_boxes[dt_idx].orientation_var) var_acc[score_idx][gt_idx] = var_acc_cur else: var_acc[score_idx][gt_idx] = -INFINITY # process detection match results for dt_idx in dt_indices: dt_tag = dt_boxes.get(dt_idx).tag.labels[0] if matcher.query_src_match(dt_idx) < 0: summary.fp[dt_tag][score_idx] += 1 # aggregate accuracy metrics cdef vector[int] gt_tags gt_tags.reserve(gt_boxes.size()) for gt_idx in range(gt_boxes.size()): gt_tags.push_back(gt_boxes.get(gt_idx).tag.labels[0]) summary.acc_iou = self._aggregate_stats(iou_acc, gt_tags) summary.acc_angular = self._aggregate_stats(angular_acc, gt_tags) summary.acc_dist = self._aggregate_stats(dist_acc, gt_tags) summary.acc_box = self._aggregate_stats(box_acc, gt_tags) summary.acc_var = self._aggregate_stats(var_acc, gt_tags) return summary cpdef void add_stats(self, DetectionEvalStats stats) except*: ''' Add statistics from calc_stats into database ''' cdef int otp, ntp for k in self._classes: self._stats.ngt[k] += stats.ngt[k] for i in range(self._pr_nsamples): # aggregate accuracies otp, ntp = self._stats.tp[k][i], stats.tp[k][i] self._stats.acc_angular[k][i] = wmean( self._stats.acc_angular[k][i], otp, stats.acc_angular[k][i], ntp) self._stats.acc_box[k][i] = wmean( self._stats.acc_box[k][i], otp, stats.acc_box[k][i], ntp) self._stats.acc_iou[k][i] = wmean( self._stats.acc_iou[k][i], otp, stats.acc_iou[k][i], ntp) self._stats.acc_dist[k][i] = wmean( self._stats.acc_dist[k][i], otp, stats.acc_dist[k][i], ntp) self._stats.acc_var[k][i] = wmean( self._stats.acc_var[k][i], otp, stats.acc_var[k][i], ntp) # aggregate common stats self._stats.ndt[k][i] = self._stats.ndt[k][i] + stats.ndt[k][i] self._stats.tp[k][i] = self._stats.tp[k][i] + stats.tp[k][i] self._stats.fp[k][i] = self._stats.fp[k][i] + stats.fp[k][i] self._stats.fn[k][i] = self._stats.fn[k][i] + stats.fn[k][i] cpdef DetectionEvalStats get_stats(self): ''' Summarize current state of the benchmark counters ''' return self._stats cdef inline int _get_score_idx(self, float score) nogil: if isnan(score): return self._pr_nsamples // 2 else: return bisect(self._pr_thresholds, score) @property def score_thresholds(self): return np.asarray(self._pr_thresholds) def gt_count(self): return self._stats.ngt def dt_count(self, float score=NAN): cdef int score_idx = self._get_score_idx(score) return {self._class_type(diter.first): diter.second[score_idx] for diter in self._stats.ndt} def tp(self, float score=NAN): '''Return true positive count. If score is not specified, return the median value''' cdef int score_idx = self._get_score_idx(score) return {self._class_type(diter.first): diter.second[score_idx] for diter in self._stats.tp} def fp(self, float score=NAN): '''Return false positive count. If score is not specified, return the median value''' cdef int score_idx = self._get_score_idx(score) return {self._class_type(diter.first): diter.second[score_idx] for diter in self._stats.fp} def fn(self, float score=NAN): '''Return false negative count. If score is not specified, return the median value''' cdef int score_idx = self._get_score_idx(score) return {self._class_type(diter.first): diter.second[score_idx] for diter in self._stats.fn} def precision(self, float score=NAN, bint return_all=False): cdef int score_idx if return_all: p = {self._class_type(k): [None] * self._pr_nsamples for k in self._classes} for k in self._classes: for i in range(self._pr_nsamples): p[self._class_type(k)][i] = calc_precision(self._stats.tp[k][i], self._stats.fp[k][i]) else: score_idx = self._get_score_idx(score) p = {self._class_type(k): calc_precision(self._stats.tp[k][score_idx], self._stats.fp[k][score_idx]) for k in self._classes} return p def recall(self, float score=NAN, bint return_all=False): cdef int score_idx if return_all: r = {self._class_type(k): [None] * self._pr_nsamples for k in self._classes} for k in self._classes: for i in range(self._pr_nsamples): r[self._class_type(k)][i] = calc_recall(self._stats.tp[k][i], self._stats.fn[k][i]) else: score_idx = self._get_score_idx(score) r = {self._class_type(k): calc_recall(self._stats.tp[k][score_idx], self._stats.fn[k][score_idx]) for k in self._classes} return r def fscore(self, float score=NAN, float beta=1, bint return_all=False): cdef float b2 = beta * beta cdef int score_idx if return_all: fs = {self._class_type(k): [None] * self._pr_nsamples for k in self._classes} for k in self._classes: for i in range(self._pr_nsamples): fs[self._class_type(k)][i] = calc_fscore(self._stats.tp[k][i], self._stats.fp[k][i], self._stats.fn[k][i], b2) else: score_idx = self._get_score_idx(score) fs = {self._class_type(k): calc_fscore(self._stats.tp[k][score_idx], self._stats.fp[k][score_idx], self._stats.fn[k][score_idx], b2) for k in self._classes} return fs def ap(self): '''Calculate (mean) average precision''' p, r = self.precision(return_all=True), self.recall(return_all=True) # usually pr curve grows from bottom right to top left as score threshold # increases, so the area can be negative typed_classes = (self._class_type(k) for k in self._classes) area = {k: -np.trapz(p[k], r[k]) for k in typed_classes} return area def acc_iou(self, float score=NAN): cdef int score_idx = self._get_score_idx(score) return {self._class_type(diter.first): diter.second[score_idx] for diter in self._stats.acc_iou} def acc_box(self, float score=NAN): cdef int score_idx = self._get_score_idx(score) return {self._class_type(diter.first): diter.second[score_idx] for diter in self._stats.acc_box} def acc_dist(self, float score=NAN): cdef int score_idx = self._get_score_idx(score) return {self._class_type(diter.first): diter.second[score_idx] for diter in self._stats.acc_dist} def acc_angular(self, float score=NAN): cdef int score_idx = self._get_score_idx(score) return {self._class_type(diter.first): diter.second[score_idx] for diter in self._stats.acc_angular} def summary(self, float score_thres = 0.8, bint verbose = False): ''' Print default summary (into returned string) ''' cdef int score_idx = self._get_score_idx(score_thres) cdef list lines = [''] # prepend an empty line precision, recall = self.precision(score_thres), self.recall(score_thres) fscore, ap = self.fscore(return_all=True), self
Cython
.ap() lines.append("========== Benchmark Summary ==========") for k in self._classes: typed_k = self._class_type(k) if verbose: lines.append("Results for %s:" % typed_k.name) lines.append("\tTotal processed targets:\t%d gt boxes, %d dt boxes" % ( self._stats.ngt[k], max(self._stats.ndt[k]) )) lines.append("\tPrecision (score > %.2f):\t%.3f" % (score_thres, precision[typed_k])) lines.append("\tRecall (score > %.2f):\t\t%.3f" % (score_thres, recall[typed_k])) lines.append("\tMax F1:\t\t\t\t%.3f" % max(fscore[typed_k])) lines.append("\tAP:\t\t\t\t%.3f" % ap[typed_k]) lines.append("") lines.append("\tMean IoU (score > %.2f):\t\t%.3f" % (score_thres, self._stats.acc_iou[k][score_idx])) lines.append("\tMean angular error (score > %.2f):\t%.3f" % (score_thres, self._stats.acc_angular[k][score_idx])) lines.append("\tMean distance (score > %.2f):\t\t%.3f" % (score_thres, self._stats.acc_dist[k][score_idx])) lines.append("\tMean box error (score > %.2f):\t\t%.3f" % (score_thres, self._stats.acc_box[k][score_idx])) if not isinf(self._stats.acc_var[k][score_idx]): lines.append("\tMean variance error (score > %.2f):\t%.3f" % (score_thres, self._stats.acc_var[k][score_idx])) else: lines.append("\tResults for %s: AP=%.3f" % (typed_k.name, ap[typed_k])) lines.append("mAP: %.3f" % np.mean(list(ap.values()))) lines.append("========== Summary End ==========") return '\n'.join(lines) @cython.auto_pickle(True) cdef class TrackingEvalStats(DetectionEvalStats): ''' Tracking stats summary of a evaluation step ''' cdef public unordered_map[int, vector[int]] id_switches ''' Number of tracked trajectory matched to different ground-truth trajectories ''' cdef public unordered_map[int, vector[int]] fragments ''' Number of ground-truth trajectory matched to different tracked tracjetories ''' cdef public unordered_map[int, unordered_map[uint64_t, int]] ngt_ids ''' Frame count of all ground-truth targets (represented by their IDs) ''' cdef public unordered_map[int, vector[unordered_map[uint64_t, int]]] ngt_tracked ''' Frame count of ground-truth targets being tracked ''' cdef public unordered_map[int, vector[unordered_map[uint64_t, int]]] ndt_ids ''' Frame count of all proposal targets (represented by their IDs) ''' cdef void initialize(self, unordered_set[int] &classes, int nsamples): DetectionEvalStats.initialize(self, classes, nsamples) for k in classes: self.id_switches[k] = vector[int](nsamples, 0) self.fragments[k] = vector[int](nsamples, 0) self.ngt_ids[k] = unordered_map[uint64_t, int]() self.ngt_tracked[k] = vector[unordered_map[uint64_t, int]](nsamples) self.ndt_ids[k] = vector[unordered_map[uint64_t, int]](nsamples) def as_object(self): ret = dict(ngt=self.ngt, tp=self.tp, fp=self.fp, fn=self.fn, ndt=self.ndt, acc_iou=self.acc_iou, acc_angular=self.acc_angular, acc_dist=self.acc_dist, acc_box=self.acc_box, acc_var=self.acc_var, id_switches=self.id_switches, fragments=self.fragments, ngt_ids={i.first: list(i.second) for i in self.ngt_ids}, ngt_tracked={i.first: [list(s) for s in i.second] for i in self.ngt_tracked}, ndt_ids={i.first: [list(s) for s in i.second] for i in self.ndt_ids} ) @cython.auto_pickle(True) cdef class TrackingEvaluator(DetectionEvaluator): '''Benchmark for object tracking''' cdef TrackingEvalStats _tstats # temporary variables for tracking cdef vector[unordered_map[uint64_t, uint64_t]] _last_gt_assignment, _last_dt_assignment cdef vector[unordered_map[uint64_t, int]] _last_gt_tags, _last_dt_tags def __init__(self, classes, min_overlaps, int pr_sample_count=40, float min_score=0, str pr_sample_scale="log10"): ''' Object tracking benchmark. Targets association is done by score sorting. :param classes: Object classes to consider :param min_overlaps: Min overlaps per class for two boxes being considered as overlap. If single value is provided, all class will use the same overlap threshold :param min_score: Min score for precision-recall samples :param pr_sample_count: Number of precision-recall sample points (expect for p=1,r=0 and p=0,r=1) :param pr_sample_scale: PR sample type, {lin: linspace, log: logspace 1~10, logX: logspace 1~X} ''' super().__init__(classes, min_overlaps, min_score=min_score, pr_sample_count=pr_sample_count, pr_sample_scale=pr_sample_scale) self._last_gt_assignment.resize(self._pr_nsamples) self._last_dt_assignment.resize(self._pr_nsamples) self._last_gt_tags.resize(self._pr_nsamples) self._last_dt_tags.resize(self._pr_nsamples) self._tstats = TrackingEvalStats() self._tstats.initialize(self._classes, self._pr_nsamples) self._stats = self._tstats cpdef void reset(self): DetectionEvaluator.reset(self) for k in self._classes: self._tstats.id_switches[k].assign(self._pr_nsamples, 0) self._tstats.fragments[k].assign(self._pr_nsamples, 0) self._tstats.ngt_ids[k].clear() for i in range(self._pr_nsamples): self._tstats.ngt_tracked[k][i].clear() for i in range(self._pr_nsamples): self._last_gt_assignment[i].clear() self._last_dt_assignment[i].clear() self._last_gt_tags[i].clear() self._last_dt_tags[i].clear() cpdef TrackingEvalStats calc_stats(self, Target3DArray gt_boxes, Target3DArray dt_boxes, TransformSet calib=None): # convert boxes to the same frame if gt_boxes.frame!= dt_boxes.frame: if calib is None: raise ValueError("Calibration is not provided when dt_boxes and gt_boxes are in different frames!") dt_boxes = calib.transform_objects(dt_boxes, frame_to=gt_boxes.frame) # forward definitions cdef int gt_idx, gt_tag, dt_idx, dt_tag cdef uint64_t dt_tid, gt_tid cdef float score_thres, angular_acc_cur, var_acc_cur cdef unordered_map[uint64_t, int] gt_assignment_idx, dt_assignment_idx # store tid -> matched idx mapping cdef unordered_set[uint64_t] gt_tid_set, dt_tid_set # initialize matcher cdef ScoreMatcher matcher = ScoreMatcher() matcher.prepare_boxes(dt_boxes, gt_boxes, DistanceTypes.RIoU) # initialize statistics cdef TrackingEvalStats summary = TrackingEvalStats() summary.initialize(self._classes, self._pr_nsamples) cdef vector[unordered_map[int, float]] iou_acc, angular_acc, dist_acc, box_acc, var_acc for k in self._classes: iou_acc.resize(self._pr_nsamples) angular_acc.resize(self._pr_nsamples) dist_acc.resize(self._pr_nsamples) box_acc.resize(self._pr_nsamples) var_acc.resize(self._pr_nsamples) # select ground-truth boxes to match cdef vector[int] gt_indices, dt_indices for gt_idx in range(gt_boxes.size()): gt_tag = gt_boxes.get(gt_idx).tag.labels[0] if self._classes.find(gt_tag) == self._classes.end(): continue # skip objects within ignored category gt_tid = gt_boxes.get(gt_idx).tid summary.ngt[gt_tag] += 1 summary.ngt_ids[gt_tag][gt_tid] = 1 gt_tid_set.insert(gt_tid) gt_indices.push_back(gt_idx) # loop over score thres cdef ObjectTarget3D gt_box, dt_box for score_idx in range(self._pr_nsamples): score_thres = self._pr_thresholds[score_idx] # select detection boxes to match dt_indices.clear() dt_tid_set.clear() for dt_idx in range(dt_boxes.size()): dt_box = dt_boxes.get(dt_idx) dt_tag = dt_box
Cython
.tag.labels[0] if self._classes.find(dt_tag) == self._classes.end(): continue # skip objects within ignored category if dt_box.tag.scores[0] < score_thres: continue # skip objects with lower scores dt_tid = dt_box.tid assert dt_tid > 0, "Tracking id should be greater than 0 for a valid object!" dt_tid_set.insert(dt_tid) summary.ndt[dt_tag][score_idx] += 1 summary.ndt_ids[dt_tag][score_idx][dt_tid] = 1 if self._last_dt_assignment[score_idx].find(dt_tid) == self._last_dt_assignment[score_idx].end(): dt_indices.push_back(dt_idx) # match objects without previous assignment else: # preserve previous assignments as many as possible gt_tid = self._last_dt_assignment[score_idx][dt_tid] for gt_idx in range(gt_boxes.size()): if gt_tid == gt_boxes.get(gt_idx).tid: # find the gt boxes with stored tid if matcher._distance_cache[dt_idx, gt_idx] > self._max_distance[dt_tag]: dt_indices.push_back(dt_idx) # also match objects that are apart from previous assignment else: gt_assignment_idx[gt_tid] = dt_idx dt_assignment_idx[dt_tid] = gt_idx break # match boxes matcher.clear_match() matcher.match(dt_indices, gt_indices, self._max_distance) # process ground-truth match results (gt_indices will always have all objects) for gt_idx in gt_indices: gt_box = gt_boxes.get(gt_idx) gt_tag = gt_box.tag.labels[0] gt_tid = gt_box.tid # update assignment dt_idx = matcher.query_dst_match(gt_idx) if dt_idx >= 0: dt_box = dt_boxes.get(dt_idx) dt_tid = dt_box.tid if gt_assignment_idx.find(gt_tid)!= gt_assignment_idx.end(): # overwrite previous matching dt_assignment_idx.erase(dt_boxes.get(gt_assignment_idx[gt_tid]).tid) dt_tag = dt_box.tag.labels[0] summary.fp[dt_tag][score_idx] += 1 gt_assignment_idx[gt_tid] = dt_idx dt_assignment_idx[dt_tid] = gt_idx if gt_assignment_idx.find(gt_tid) == gt_assignment_idx.end(): summary.fn[gt_tag][score_idx] += 1 continue dt_idx = gt_assignment_idx[gt_tid] dt_box = dt_boxes.get(dt_idx) summary.tp[gt_tag][score_idx] += 1 summary.ngt_tracked[gt_tag][score_idx][gt_tid] = 1 # caculate accuracy values for various criteria iou_acc[score_idx][gt_idx] = 1 - matcher._distance_cache[dt_idx, gt_idx] # FIXME: not elegant here dist_acc[score_idx][gt_idx] = diffnorm3(gt_box.position_, dt_box.position_) box_acc[score_idx][gt_idx] = diffnorm3(gt_box.dimension_, dt_box.dimension_) angular_acc_cur = quatdiff(gt_box.orientation_, dt_box.orientation_) angular_acc[score_idx][gt_idx] = angular_acc_cur / PI if dt_boxes[dt_idx].orientation_var > 0: var_acc_cur = sps.multivariate_normal.logpdf(gt_boxes[gt_idx].position, dt_boxes[dt_idx].position, cov=dt_boxes[dt_idx].position_var) var_acc_cur += sps.multivariate_normal.logpdf(gt_boxes[gt_idx].dimension, dt_boxes[dt_idx].dimension, cov=dt_boxes[dt_idx].dimension_var) var_acc_cur += sps.vonmises.logpdf(angular_acc_cur, kappa=1/dt_boxes[dt_idx].orientation_var) var_acc[score_idx][gt_idx] = var_acc_cur else: var_acc[score_idx][gt_idx] = -INFINITY # process detection match results for dt_idx in dt_indices: dt_tag = dt_boxes.get(dt_idx).tag.labels[0] dt_tid = dt_boxes.get(dt_idx).tid if dt_assignment_idx.find(dt_tid) == dt_assignment_idx.end(): summary.fp[dt_tag][score_idx] += 1 # calculate id_switches and fragments for aiter in self._last_gt_assignment[score_idx]: gt_tid, dt_tid = aiter.first, aiter.second gt_tag = self._last_gt_tags[score_idx][gt_tid] if gt_assignment_idx.find(gt_tid) == gt_assignment_idx.end(): if gt_tid_set.find(gt_tid)!= gt_tid_set.end(): summary.id_switches[gt_tag][score_idx] += 1 elif dt_boxes.get(gt_assignment_idx[gt_tid]).tid!= dt_tid: summary.id_switches[gt_tag][score_idx] += 1 for aiter in self._last_dt_assignment[score_idx]: dt_tid, gt_tid = aiter.first, aiter.second dt_tag = self._last_dt_tags[score_idx][dt_tid] if dt_assignment_idx.find(dt_tid) == dt_assignment_idx.end(): if dt_tid_set.find(dt_tid)!= dt_tid_set.end(): summary.fragments[dt_tag][score_idx] += 1 elif gt_boxes.get(dt_assignment_idx[dt_tid]).tid!= gt_tid: summary.fragments[dt_tag][score_idx] += 1 # update assignment storage self._last_gt_assignment[score_idx].clear() self._last_dt_assignment[score_idx].clear() self._last_gt_tags[score_idx].clear() self._last_dt_tags[score_idx].clear() for giter in gt_assignment_idx: gt_tid, dt_idx = giter.first, giter.second dt_tag = dt_boxes.get(dt_idx).tag.labels[0] dt_tid = dt_boxes.get(dt_idx).tid gt_idx = dt_assignment_idx[dt_tid] gt_tag = gt_boxes.get(gt_idx).tag.labels[0] self._last_gt_assignment[score_idx][gt_tid] = dt_tid self._last_dt_assignment[score_idx][dt_tid] = gt_tid self._last_gt_tags[score_idx][gt_tid] = gt_tag self._last_dt_tags[score_idx][dt_tid] = dt_tag gt_assignment_idx.clear() dt_assignment_idx.clear() # aggregates accuracy metrics cdef vector[int] gt_tags gt_tags.reserve(gt_boxes.size()) for gt_idx in range(gt_boxes.size()): gt_tags.push_back(gt_boxes.get(gt_idx).tag.labels[0]) summary.acc_iou = self._aggregate_stats(iou_acc, gt_tags) summary.acc_angular = self._aggregate_stats(angular_acc, gt_tags) summary.acc_dist = self._aggregate_stats(dist_acc, gt_tags) summary.acc_box = self._aggregate_stats(box_acc, gt_tags) summary.acc_var = self._aggregate_stats(var_acc, gt_tags) return summary cpdef void add_stats(self, DetectionEvalStats stats) except*: DetectionEvaluator.add_stats(self, stats) cdef TrackingEvalStats tstats = <TrackingEvalStats> stats cdef uint64_t gt_tid, dt_tid cdef int gt_count, dt_count for k in self._classes: for giter in tstats.ngt_ids[k]: gt_tid, gt_count = giter.first, giter.second if self._tstats.ngt_ids[k].find(gt_tid) == self._tstats.ngt_ids[k].end(): self._tstats.ngt_ids[k][gt_tid] = gt_count else: self._tstats.ngt_ids[k][gt_tid] += gt_count for i in range(self._pr_nsamples): self._tstats.id_switches[k][i] += tstats.id_switches[k][i] self._tstats.fragments[k][i] += tstats.fragments[k][i] for giter in tstats.ngt_tracked[k][i]: gt_tid, gt_count = giter.first, giter.second if self._tstats.ngt_tracked[k][i].find(gt_tid) == self._tstats.ngt_tracked[k][i].end(): self._tstats.ngt_tracked[k][i][gt_tid] = gt_count else: self._tstats.ngt_tracked[k][i][gt_tid] += gt_count for diter in tstats.ndt_ids[k][i]: dt_tid, dt_count = diter.first, diter.second if self._tstats.ndt_ids[k][i].find(dt_tid) == self._tstats.ndt_ids[k][i].end(): self._tstats.ndt_ids[k][i][dt_tid] = dt_count else: self._tstats.ndt_ids[k][i][dt_tid] += dt_count cpdef TrackingEvalStats get_stats(self): ''' Summarize current state of the benchmark counters ''' return self._tstats def id_switches(self, float score=NAN): '''Return ID switch count. If score is not specified, return the median value''' cdef int score_idx = self._get_score_idx(score) return {self._class
Cython
_type(diter.first): diter.second[score_idx] for diter in self._tstats.id_switches} def fragments(self, float score=NAN): '''Return fragments count. If score is not specified, return the median value''' cdef int score_idx = self._get_score_idx(score) return {self._class_type(diter.first): diter.second[score_idx] for diter in self._tstats.fragments} def gt_traj_count(self): '''Return total ground-truth trajectory count. gt() will return total bounding box count''' return {self._class_type(diter.first): diter.second.size() for diter in self._tstats.ngt_ids} cdef dict _calc_frame_ratio(self, float score, float frame_ratio_threshold, bint high_pass, bint return_all): # helper function for tracked_ratio and lost_ratio cdef int score_idx cdef float frame_ratio if return_all: r = {k: [0] * self._pr_nsamples for k in self._classes} for k in self._classes: for i in range(self._pr_nsamples): for diter in self._tstats.ngt_tracked[k][i]: frame_ratio = float(diter.second) / self._tstats.ngt_ids[k][diter.first] if high_pass and frame_ratio > frame_ratio_threshold: r[k][i] += 1 if not high_pass and frame_ratio < frame_ratio_threshold: r[k][i] += 1 r = {self._class_type(k): [ float(v) / self._tstats.ngt_ids[k].size() for v in l ] for k, l in r.items()} else: score_idx = self._get_score_idx(score) r = {k: 0 for k in self._classes} for k in self._classes: for diter in self._tstats.ngt_tracked[k][score_idx]: frame_ratio = float(diter.second) / self._tstats.ngt_ids[k][diter.first] if high_pass and frame_ratio > frame_ratio_threshold: r[k] += 1 if not high_pass and frame_ratio < frame_ratio_threshold: r[k] += 1 r = {self._class_type(k): float(v) / self._tstats.ngt_ids[k].size() for k, v in r.items()} return r def tracked_ratio(self, float score=NAN, float frame_ratio_threshold=0.8, bint return_all=False): ''' Return the ratio of mostly tracked trajectories. :param frame_ratio_threshold: The threshold of ratio of tracked frames over total frames. A trajectory with higher tracked frames ratio will be counted as mostly tracked ''' return self._calc_frame_ratio(score, frame_ratio_threshold, high_pass=True, return_all=return_all) def lost_ratio(self, float score=NAN, float frame_ratio_threshold=0.2, bint return_all=False): ''' Return the ratio of mostly lost trajectories. :param frame_ratio_threshold: The threshold of ratio of tracked frames over total frames. A trajectory with lower tracked frames ratio will be counted as mostly tracked ''' return self._calc_frame_ratio(score, frame_ratio_threshold, high_pass=False, return_all=return_all) def mota(self, float score=NAN): '''Return the MOTA metric defined by the CLEAR MOT metrics. For MOTP equivalents, see acc_* properties''' # TODO: is this yielding negative value correct? cdef int score_idx = self._get_score_idx(score) ret = {self._class_type(k): 1 - float(self._stats.fp[k][score_idx] + self._stats.fn[k][score_idx] + self._tstats.id_switches[k][score_idx]) / self._stats.ngt[k] for k in self._classes} return ret def summary(self, float score_thres = 0.8, float tracked_ratio_thres = 0.8, float lost_ratio_thres = 0.2, str note = None, bint verbose = False): ''' Print default summary (into returned string) ''' cdef int score_idx = self._get_score_idx(score_thres) cdef list lines = [''] # prepend an empty line precision, recall = self.precision(score_thres), self.recall(score_thres) fscore, ap = self.fscore(return_all=True), self.ap() mlt = self.tracked_ratio(score_thres, tracked_ratio_thres) mll = self.lost_ratio(score_thres, lost_ratio_thres) mota = self.mota(score_thres) if note: lines.append("========== Benchmark Summary (%s) ==========" % note) else: lines.append("========== Benchmark Summary ==========") for k in self._classes: typed_k = self._class_type(k) if verbose: lines.append("Results for %s:" % typed_k.name) lines.append("\tTotal processed targets:\t%d gt boxes, %d dt boxes" % ( self._stats.ngt[k], max(self._stats.ndt[k]) )) lines.append("\tTotal processed trajectories:\t%d gt tracklets, %d dt tracklets" % ( self.gt_traj_count()[typed_k], max(len(self._tstats.ndt_ids[k][i]) for i in range(self._pr_nsamples)) )) lines.append("\tPrecision (score > %.2f):\t%.3f" % (score_thres, precision[typed_k])) lines.append("\tRecall (score > %.2f):\t\t%.3f" % (score_thres, recall[typed_k])) lines.append("\tMax F1:\t\t\t\t%.3f" % max(fscore[typed_k])) lines.append("\tAP:\t\t\t\t%.3f" % ap[typed_k]) lines.append("") lines.append("\tID switches (score > %.2f):\t\t\t%d" % (score_thres, self._tstats.id_switches[k][score_idx])) lines.append("\tFragments (score > %.2f):\t\t\t%d" % (score_thres, self._tstats.fragments[k][score_idx])) lines.append("\tMOTA (score > %.2f):\t\t\t\t%.2f" % (score_thres, mota[typed_k])) lines.append("\tMostly tracked (score > %.2f, ratio > %.2f):\t%.3f" % ( score_thres, tracked_ratio_thres, mlt[typed_k])) lines.append("\tMostly lost (score > %.2f, ratio < %.2f):\t%.3f" % ( score_thres, lost_ratio_thres, mll[typed_k])) lines.append("") lines.append("\tMean IoU (score > %.2f):\t\t%.3f" % (score_thres, self._stats.acc_iou[k][score_idx])) lines.append("\tMean angular error (score > %.2f):\t%.3f" % (score_thres, self._stats.acc_angular[k][score_idx])) lines.append("\tMean distance (score > %.2f):\t\t%.3f" % (score_thres, self._stats.acc_dist[k][score_idx])) lines.append("\tMean box error (score > %.2f):\t\t%.3f" % (score_thres, self._stats.acc_box[k][score_idx])) if not isinf(self._stats.acc_var[k][score_idx]): lines.append("\tMean variance error (score > %.2f):\t%.3f" % (score_thres, self._stats.acc_var[k][score_idx])) else: lines.append("Results for %s: AP=%.3f, MOTA=%.3f" % (typed_k.name, ap[typed_k], mota[typed_k])) lines.append("mAP: %.3f" % np.mean(list(ap.values()))) lines.append("========== Summary End ==========") return '\n'.join(lines) @cython.auto_pickle(True) cdef class SegmentationStats: ''' Tracking stats summary of a data frame ''' cdef public unordered_map[uint8_t, int] tp ''' Number of true negative data points in semantic segmentation''' cdef public unordered_map[uint8_t, int] fp ''' Number of false positive data points in semantic segmentation ''' cdef public unordered_map[uint8_t, int] fn ''' Number of false negative data points in semantic segmentation ''' cdef public unordered_map[uint8_t, int] itp ''' Number of true negative data segments in instance segmentation''' cdef public unordered_map[uint8_t, int] ifp ''' Number of false positives data segments in instance segmentation ''' cdef public unordered_map[uint8_t, int] ifn ''' Number of false negative data segments in instance segmentation ''' cdef public unordered_map[uint8_t, float] cumiou ''' Summation of IoU of TP segments in instance segmentation ''' cdef void initialize(self, unordered_set[uint8_t] &classes): for k in classes: self.tp[k] = 0 self.fp[k] = 0 self.fn[k] = 0 self.itp[k] = 0
Cython
self.ifp[k] = 0 self.ifn[k] = 0 self.cumiou[k] = 0 def as_object(self): return dict(tp=self.tp, fp=self.fp, fn=self.fn, itp=self.itp, ifp=self.ifp, ifn=self.ifn, cumiou=self.cumiou) @cython.auto_pickle(True) cdef class SegmentationEvaluator: '''Benchmark for semgentation''' # REF: https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/evaluation/evalPanopticSemanticLabeling.py cdef unordered_set[uint8_t] _classes cdef SegmentationStats _stats cdef uint8_t _background cdef int _min_points cdef object _class_type def __init__(self, classes, background=0, min_points=0): ''' :param classes: classes to be considered during evaluation, other classes are all considered as background :param background: class to be considered as background class :param min_points: minimum number of points when calculating segments in panoptic evaluation ''' # parse parameters if not isinstance(classes, (list, tuple)): classes = [classes] assert len(classes) > 0 if isinstance(classes[0], Enum): self._class_type = type(classes[0]) self._classes = set(c.value for c in classes) elif isinstance(classes[0], int): self._class_type = None self._classes = set(classes) else: raise ValueError("Classes should be int or Enum") if isinstance(background, Enum): background = background.value self._background = background if background >= 0 else 256 + background self._min_points = min_points self._stats = SegmentationStats() self._stats.initialize(self._classes) if len(self._classes) > 255: raise ValueError("Only support up to 255 different categories!") cpdef void reset(self): self._stats.initialize(self._classes) @cython.boundscheck(False) @cython.wraparound(False) cdef void collect_labels(self, SegmentationStats stats, const uint8_t[:] gt_labels, const uint8_t[:] pred_labels) nogil: for i in range(len(gt_labels)): if gt_labels[i]!= self._background and self._classes.find(gt_labels[i])!= self._classes.end(): if gt_labels[i] == pred_labels[i]: stats.tp[gt_labels[i]] += 1 else: stats.fn[gt_labels[i]] += 1 if pred_labels[i]!= self._background and self._classes.find(pred_labels[i])!= self._classes.end() and gt_labels[i]!= pred_labels[i]: stats.fp[pred_labels[i]] += 1 @cython.boundscheck(False) @cython.wraparound(False) cdef void collect_labels_pano(self, SegmentationStats stats, const uint8_t[:] gt_labels, const uint8_t[:] pred_labels, const uint16_t[:] gt_ids, const uint16_t[:] pred_ids) nogil: self.collect_labels(stats, gt_labels, pred_labels) # collect mappings cdef unordered_map[uint32_t, int] gt_counter, pred_counter cdef unordered_set[uint32_t] pred_unmatched # (gt_label + gt_id) -> {(dt_label + dt_id) -> count} cdef unordered_map[uint32_t, unordered_map[uint32_t, int]] counter = unordered_map[uint32_t, unordered_map[uint32_t, int]]() cdef unordered_map[uint32_t, unordered_map[uint32_t, int]].iterator gt_iter cdef unordered_map[uint32_t, int].iterator pred_iter cdef uint32_t gt_key, pred_key, bg_key = self._background << 16 for i in range(len(gt_labels)): if self._classes.find(gt_labels[i]) == self._classes.end(): gt_key = bg_key else: gt_key = gt_labels[i] << 16 | gt_ids[i] if self._classes.find(pred_labels[i]) == self._classes.end(): pred_key = bg_key else: pred_key = pred_labels[i] << 16 | pred_ids[i] # increase counter gt_iter = counter.find(gt_key) if gt_iter == counter.end(): gt_iter = counter.insert(gt_iter, pair[uint32_t, unordered_map[uint32_t, int]](gt_key, unordered_map[uint32_t, int]())) gt_counter[gt_key] = 0 gt_counter[gt_key] += 1 pred_iter = deref(gt_iter).second.find(pred_key) if pred_iter == deref(gt_iter).second.end(): pred_iter = deref(gt_iter).second.insert(pred_iter, pair[uint32_t, int](pred_key, 0)) deref(pred_iter).second = deref(pred_iter).second + 1 if pred_counter.find(pred_key) == pred_counter.end(): pred_counter[pred_key] = 0 pred_counter[pred_key] += 1 # collect predictions if pred_unmatched.find(pred_key) == pred_unmatched.end(): pred_unmatched.insert(pred_key) # collect tp cdef uint8_t gt_label, pred_label cdef float total, iou cdef bint matched for citer in counter: matched = False gt_key = citer.first gt_label = gt_key >> 16 if gt_label == self._background: continue if gt_counter[gt_key] < self._min_points: # ignore segments with too few points continue for piter in citer.second: pred_key = piter.first pred_label = pred_key >> 16 if pred_label == self._background: continue if gt_label!= pred_label: continue total = gt_counter[gt_key] + pred_counter[pred_key] - piter.second if counter[bg_key].find(pred_key) == counter[bg_key].end(): total -= counter[bg_key][pred_key] # TODO: is this necessary? iou = piter.second / total if iou > 0.5: stats.itp[gt_label] += 1 stats.cumiou[gt_label] += iou matched = True if pred_unmatched.find(pred_key)!= pred_unmatched.end(): pred_unmatched.erase(pred_key) if not matched: stats.ifn[gt_label] += 1 for pred_key in pred_unmatched: if pred_counter[pred_key] < self._min_points: continue pred_label = pred_key >> 16 if pred_label!= self._background: stats.ifp[pred_label] += 1 cpdef SegmentationStats calc_stats(self, np.ndarray[ndim=1, dtype=uint8_t] gt_labels, np.ndarray[ndim=1, dtype=uint8_t] pred_labels, np.ndarray gt_ids=None, np.ndarray pred_ids=None): ''' Please make sure the id are 0 if the label is in stuff category ''' cdef SegmentationStats stats = SegmentationStats() stats.initialize(self._classes) if gt_ids is None or pred_ids is None: self.collect_labels(stats, gt_labels, pred_labels) else: if gt_ids.dtype!= np.uint16 or pred_ids.dtype!= np.uint16: raise ValueError("Please convert ids to uint16!") self.collect_labels_pano(stats, gt_labels, pred_labels, gt_ids, pred_ids) return stats cpdef void add_stats(self, SegmentationStats stats) except*: for k in self._classes: self._stats.tp[k] += stats.tp[k] self._stats.fp[k] += stats.fp[k] self._stats.fn[k] += stats.fn[k] self._stats.itp[k] += stats.itp[k] self._stats.ifp[k] += stats.ifp[k] self._stats.ifn[k] += stats.ifn[k] self._stats.cumiou[k] += stats.cumiou[k] cpdef SegmentationStats get_stats(self): ''' Summarize current state of the benchmark counters ''' return self._stats def tp(self, bint instance=False): if instance: if self._class_type is None: return self._stats.itp return {self._class_type(diter.first): diter.second for diter in self._stats.itp} else: if self._class_type is None: return self._stats.tp return {self._class_type(diter.first): diter.second for diter in self._stats.tp} def fp(self, bint instance=False): if instance: if self._class_type is None: return self._stats.ifp return {self._class_type(diter.first): diter.second for diter in self._stats.ifp} else: if self._class_type is None: return self._stats.fp return {self._class_type(diter.first): diter.second for diter in self._stats.fp
Cython
} def fn(self, bint instance=False): if instance: if self._class_type is None: return self._stats.ifn return {self._class_type(diter.first): diter.second for diter in self._stats.ifn} else: if self._class_type is None: return self._stats.fn return {self._class_type(diter.first): diter.second for diter in self._stats.fn} def iou(self, bint instance=False): cdef float iou, d result = {} for k in self._classes: if instance: d = self._stats.itp[k] iou = (self._stats.cumiou[k] / d) if self._stats.itp[k] > 0 else NAN else: d = self._stats.tp[k] + self._stats.fp[k] + self._stats.fn[k] iou = (self._stats.tp[k] / d) if d > 0 else NAN if self._class_type is None: result[k] = iou else: result[self._class_type(k)] = iou return result def sq(self): ''' Segmentation Quality (SQ) in panoptic segmentation ''' return self.iou(instance=True) def rq(self): ''' Recognition Quality (RQ) in panoptic segmentation ''' cdef float rq, d result = {} for k in self._classes: d = self._stats.itp[k] + self._stats.ifp[k] * 0.5 + self._stats.ifn[k] * 0.5 rq = (self._stats.itp[k] / d) if d > 0 else NAN if self._class_type is None: result[k] = rq else: result[self._class_type(k)] = rq return result def pq(self): ''' Panoptic Quality (PQ) in panoptic segmentation ''' sq, rq = self.sq(), self.rq() return {k: sq[k] * rq[k] for k in sq} def summary(self): lines = [] def mean_wo_nan(values): valid = [v for v in values if not isnan(v)] if len(valid) == 0: return NAN return sum(valid) / len(valid) lines.append("========== Benchmark Summary ==========") iou = self.iou() sq, rq, pq = self.sq(), self.rq(), self.pq() for k in self._classes: if k == self._background: continue typed_k = k if self._class_type is None else self._class_type(k) name = str(k).rjust(4, " ") if self._class_type is None else typed_k.name.rjust(20, " ") if isnan(pq[typed_k]): lines.append("%s: iou=%.3f" % (name, iou[typed_k])) else: lines.append("%s: iou=%.3f, sq=%.3f, rq=%.3f, pq=%.3f" % (name, iou[typed_k], sq[typed_k], rq[typed_k], pq[typed_k])) lines.append("mean IoU: %.4f" % mean_wo_nan(iou.values())) if not isnan(mean_wo_nan(pq.values())): lines.append("mean SQ: %.4f" % mean_wo_nan(sq.values())) lines.append("mean RQ: %.4f" % mean_wo_nan(rq.values())) lines.append("mean PQ: %.4f" % mean_wo_nan(pq.values())) lines.append("========== Summary End ==========") return '\n'.join(lines) <|end_of_text|># cython: language_level=3 from os.path import abspath, expanduser from cpython cimport bool as py_bool from libc.stdlib cimport malloc, free from libc.string cimport const_char from libc.stdint cimport uint64_t from libcpp cimport bool as c_bool from libcpp.string cimport string cimport leveldb from pycomparator cimport PyComparator_FromPyFunction from weakref import ref as weak_ref # status handling class NotFoundError(Exception): pass class CorruptionError(Exception): pass class IOError(Exception): pass class NotSupportedError(Exception): pass class InvalidArgumentError(Exception): pass cdef int check_status(leveldb.Status& st) except -1: if st.ok(): return 0 elif st.IsNotFound(): raise NotFoundError(st.ToString().decode('UTF-8')) elif st.IsCorruption(): raise CorruptionError(st.ToString().decode('UTF-8')) elif st.IsIOError(): raise IOError(st.ToString().decode('UTF-8')) elif st.IsNotSupportedError(): raise NotSupportedError(st.ToString().decode('UTF-8')) elif st.IsInvalidArgument(): raise InvalidArgumentError(st.ToString().decode('UTF-8')) return -1 # Option wrapper cdef class Options: cdef leveldb.Options _options def __cinit__(self, compare_function=None, py_bool create_if_missing=True, py_bool error_if_exists=None, py_bool paranoid_checks=None, write_buffer_size=None, max_open_files=None, block_restart_interval=None, max_file_size=None, compression=None): if compare_function is None: self._options.comparator = leveldb.BytewiseComparator() else: self._options.comparator = PyComparator_FromPyFunction( compare_function, compare_function.__name__.encode('UTF-8') ) if create_if_missing is not None: self._options.create_if_missing = create_if_missing if error_if_exists is not None: self._options.error_if_exists = error_if_exists if paranoid_checks is not None: self._options.paranoid_checks = paranoid_checks if write_buffer_size is not None: self._options.write_buffer_size = write_buffer_size if max_open_files is not None: self._options.max_open_files = max_open_files if block_restart_interval is not None: self._options.write_buffer_size = write_buffer_size if max_file_size is not None: self._options.max_file_size = max_file_size if compression is None: compression = leveldb.CompressionType.kNoCompression elif compression in (leveldb.CompressionType.kNoCompression, leveldb.CompressionType.kSnappyCompression): self._options.compression = compression elif isinstance(compression, bytes): compression_str = compression.decode('UTF-8') if compression_str == u'snappy': self._options.compression = leveldb.CompressionType.kSnappyCompression else: raise RuntimeError(f'Unknown compression type {compression}') cdef class WriteOptions: cdef leveldb.WriteOptions _writeOptions def __cinit__(self, py_bool sync=None): if sync is not None: self._writeOptions.sync = sync cdef class ReadOptions: cdef leveldb.ReadOptions _readOptions cdef Snapshot _snapshot_handler def __cinit__(self, py_bool verify_checksums=None, py_bool fill_cache=None): if verify_checksums is not None: self._readOptions.verify_checksums = verify_checksums if fill_cache is not None: self._readOption.fill_cache = fill_cache def register_snapshot(self, Snapshot snapshot not None): self._readOptions.snapshot = snapshot._snapshot_ptr self._snapshot_handler = snapshot def release_snapshot(self): if self._readOptions.snapshot!= NULL: self._readOptions.snapshot = NULL self._snapshot_handler = None cdef class Snapshot: cdef DB _db_handler cdef const leveldb.Snapshot* _snapshot_ptr def __cinit__(self): pass cdef _set(self, DB db, const leveldb.Snapshot* snapshot): self._db_handler = db self._snapshot_ptr = snapshot cdef _close(self): if self._snapshot_ptr == NULL or self._db_handler.closed: return self._db_handler._db.ReleaseSnapshot(self._snapshot_ptr) self._snapshot_ptr = NULL self._db_handler = None def __dealloc__(self): self._close() # Write batch wrapper cdef class WriteBatch: cdef leveldb.WriteBatch _batch def __cinit__(self): pass def put(self, str key not None, str value not None): cdef string keyEncoded = key.encode('UTF-8') cdef string valueEncoded = value.encode('UTF-8') self._batch.Put(leveldb.Slice(keyEncoded), leveldb.Slice(valueEncoded)) def delete(self, str key not None): cdef string keyEncoded = key.encode('UTF-8') self._batch.Delete(leveldb.Slice(keyEncoded)) def clear(self): self._batch.Clear() def size(self): return self._batch.ApproximateSize() def append(self, WriteBatch other): self._batch.Append(other._batch) # DB iterator wrapper cdef class Iterator: cdef leveldb.Iterator* _iter_ptr cdef c_bool reversed cdef
Cython
_set_iter(self, leveldb.Iterator* iter, py_bool reversed): self._iter_ptr = iter self.reversed = reversed if not reversed: self._iter_ptr.SeekToFirst() else: self._iter_ptr.SeekToLast() def __next__(self): if not self._iter_ptr.Valid(): raise StopIteration cdef str key = self._iter_ptr.key().ToString().decode('UTF-8') cdef str value = self._iter_ptr.value().ToString().decode('UTF-8') if not self.reversed: self._iter_ptr.Next() else: self._iter_ptr.Prev() cdef leveldb.Status st = self._iter_ptr.status() check_status(st) return key, value def seek(self, str key not None, py_bool sanity_check=False): cdef string keyEncoded = key.encode('UTF-8') cdef leveldb.Slice keySlice = leveldb.Slice(keyEncoded) cdef leveldb.Slice seeked self._iter_ptr.Seek(keySlice) if self.reversed: seeked = self._iter_ptr.key() if seeked.compare(keySlice)!= 0: self._iter_ptr.Prev() cdef leveldb.Status st if sanity_check: st = self._iter_ptr.status() check_status(st) def seek_first(self, py_bool sanity_check=False): if not self.reversed: self._iter_ptr.SeekToFirst() else: self._iter_ptr.SeekToLast() cdef leveldb.Status st if sanity_check: st = self._iter_ptr.status() check_status(st) def seek_last(self, py_bool sanity_check=False): if not self.reversed: self._iter_ptr.SeekToLast() else: self._iter_ptr.SeekToFirst() cdef leveldb.Status st if sanity_check: st = self._iter_ptr.status() check_status(st) def move_forward(self, py_bool sanity_check=False): if not self.reversed: self._iter_ptr.Next() else: self._iter_ptr.Prev() cdef leveldb.Status st if sanity_check: st = self._iter_ptr.status() check_status(st) def move_backward(self, py_bool sanity_check=False): if not self.reversed: self._iter_ptr.Prev() else: self._iter_ptr.Next() cdef leveldb.Status st if sanity_check: st = self._iter_ptr.status() check_status(st) def __iter__(self): return self cdef _close(self): if self._iter_ptr!= NULL: del self._iter_ptr self._iter_ptr = NULL def __dealloc__(self): self._close() # DB wrapper cdef class DB: cdef leveldb.DB* _db cdef list _snapshots cdef list _iterators def __cinit__(self, str name not None, Options options=None): if options is None: options = Options() cdef leveldb.Status st cdef str full_path = abspath(expanduser(name)) cdef string full_path_encoded = full_path.encode('UTF-8') st = leveldb.DB.Open(options._options, full_path_encoded, &self._db) check_status(st) self._snapshots = list() self._iterators = list() def __setitem__(self, str key not None, str value): if value is None: # delete self.delete(key) else: self.put(key, value) def put(self, str key not None, str value not None, WriteOptions options=None): if options is None: options = WriteOptions() cdef leveldb.Status st cdef string keyEncoded = key.encode('UTF-8') cdef string valueEncoded = value.encode('UTF-8') st = self._db.Put(options._writeOptions, leveldb.Slice(keyEncoded), leveldb.Slice(valueEncoded)) check_status(st) def delete(self, str key not None, WriteOptions options=None): if options is None: options = WriteOptions() cdef string keyEncoded = key.encode('UTF-8') cdef leveldb.Status st st = self._db.Delete(options._writeOptions, leveldb.Slice(keyEncoded)) check_status(st) def write_batch(self, WriteBatch batch not None, WriteOptions options=None): cdef leveldb.Status st if options is None: options = WriteOptions() st = self._db.Write(options._writeOptions, &batch._batch) check_status(st) def __getitem__(self, str key not None): return self.get(key) def get(self, str key not None, ReadOptions options=None, str default=None): cdef string keyEncoded = key.encode('UTF-8') cdef leveldb.Status st cdef string result if options is None: options = ReadOptions() st = self._db.Get(options._readOptions, leveldb.Slice(keyEncoded), &result) if st.IsNotFound(): return default check_status(st) return result.decode('UTF-8') def get_iterator(self, ReadOptions options=None, py_bool reversed=False): cdef Iterator it = Iterator() if options is None: options = ReadOptions() cdef leveldb.Iterator* it_ptr = self._db.NewIterator(options._readOptions) it._set_iter(it_ptr, reversed) self._iterators.append(it) return it def __iter__(self): # default iterator return self.get_iterator() def get_snapshot(self): cdef const leveldb.Snapshot* snapshot = self._db.GetSnapshot() cdef Snapshot ret = Snapshot() ret._set(self, snapshot) self._snapshots.append(ret) return ret def get_property(self, str property not None): cdef string propName = property.encode('UTF-8') cdef string result cdef c_bool hasProperty = self._db.GetProperty(leveldb.Slice(propName), &result) if hasProperty: return result.decode('UTF-8') else: return None def get_size(self, str begin not None, str end not None): cdef string beginEncoded = begin.encode('UTF-8') cdef string endEncoded = end.encode('UTF-8') cdef uint64_t* size = <uint64_t*>malloc(sizeof(uint64_t)) cdef leveldb.Range* range = new leveldb.Range(leveldb.Slice(beginEncoded), leveldb.Slice(endEncoded)) self._db.GetApproximateSizes(range, 1, size) cdef uint64_t ret = size[0] free(size) return ret def compact_range(self, str begin, str end): cdef leveldb.Slice *beginSlice cdef leveldb.Slice *endSlice cdef string beginEncoded, endEncoded if begin is not None: beginEncoded = begin.encode('UTF-8') beginSlice = new leveldb.Slice(beginEncoded) else: beginSlice = NULL if end is not None: endEncoded = end.encode('UTF-8') endSlice = new leveldb.Slice(endEncoded) else: endSlice = NULL self._db.CompactRange(beginSlice, endSlice) del beginSlice, endSlice def __dealloc__(self): self.close() def close(self): cdef Snapshot snapshot cdef Iterator iterator if self._db!= NULL: for snapshot in self._snapshots: snapshot._close() for iterator in self._iterators: iterator._close() del self._db self._db = NULL @property def closed(self): return self._db == NULL # DB static function wrapper def destroy_DB(str name not None, Options options): cdef string nameEncoded = name.encode('UTF-8') if options is None: options = Options() leveldb.DestroyDB(nameEncoded, options._options) def repair_DB(str name not None, Options options): cdef string nameEncoded = name.encode('UTF-8') if options is None: options = Options() leveldb.RepairDB(nameEncoded, options._options) <|end_of_text|>from exception.custom_exception cimport raise_py_error from base.cgcbase cimport gcstring from libcpp cimport bool from libc.stdint cimport int64_t from baslerpylon.genapi.enum cimport EAccessMode cdef extern from "GenApi/IBase.h" namespace 'GENAPI_NAMESPACE': cdef cppclass IBase: EAccessMode GetAccessMode() except +raise_py_error # Virtual destructor enforcing virtual destructor on all derived classes void delete "~IBase"() except +raise_py_error <|end_of_text|> from cython.operator cimport dereference as deref import sys # referenced from # http://stackoverflow.com/questions/5242051/cython-implementing-callbacks ctypedef double (*method_type)(void *param, void *user_data) cdef extern from "backend.hpp": cdef cppclass
Cython
Callback: Callback(method_type method, void *user_data) double cy_execute(void *parameter) cdef double callback_template(void *parameter, void *method): return (<object>method)(<object>parameter) cdef class PyCallback: cdef Callback *thisptr def __cinit__(self, method): self.thisptr = new Callback(callback_template, <void*>method) def __dealloc__(self): if self.thisptr: del self.thisptr cpdef double execute(self, parameter): return self.thisptr.cy_execute(<void*>parameter) <|end_of_text|># Copyright (c) 2021, NVIDIA CORPORATION. from libcpp.memory cimport unique_ptr from cudf._lib.cpp.column.column cimport column from cudf._lib.cpp.column.column_view cimport column_view from cudf._lib.cpp.scalar.scalar cimport string_scalar cdef extern from "cudf/strings/convert/convert_lists.hpp" namespace \ "cudf::strings" nogil: cdef unique_ptr[column] format_list_column( column_view input_col, string_scalar na_rep, column_view separators) except + <|end_of_text|># Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved. # Copyright (c) 2020-2021, UT-Battelle, LLC. All rights reserved. # See file LICENSE for terms. # cython: language_level=3 import logging import warnings from libc.stdint cimport uintptr_t from libc.stdio cimport FILE from.ucx_api_dep cimport * from..exceptions import UCXConnectionReset, UCXError logger = logging.getLogger("ucx") cdef void _err_cb(void *arg, ucp_ep_h ep, ucs_status_t status): cdef UCXEndpoint ucx_ep = <UCXEndpoint> arg assert ucx_ep.worker.initialized cdef ucs_status_t *ep_status = <ucs_status_t *> <uintptr_t>ucx_ep._status ep_status[0] = status cdef str status_str = ucs_status_string(status).decode("utf-8") cdef str msg = ( "Error callback for endpoint %s called with status %d: %s" % ( hex(int(<uintptr_t>ep)), status, status_str ) ) logger.debug(msg) cdef (ucp_err_handler_cb_t, uintptr_t) _get_error_callback( str tls, bint endpoint_error_handling ) except *: cdef ucp_err_handler_cb_t err_cb = <ucp_err_handler_cb_t>NULL cdef ucs_status_t *cb_status = <ucs_status_t *>NULL if endpoint_error_handling: if get_ucx_version() < (1, 11, 0) and "cuda_ipc" in tls: warnings.warn( "CUDA IPC endpoint error handling is only supported in " "UCX 1.11 and above, CUDA IPC will be disabled!", RuntimeWarning ) err_cb = <ucp_err_handler_cb_t>_err_cb cb_status = <ucs_status_t *> malloc(sizeof(ucs_status_t)) cb_status[0] = UCS_OK return (err_cb, <uintptr_t> cb_status) def _ucx_endpoint_finalizer( uintptr_t handle_as_int, uintptr_t status_handle_as_int, bint endpoint_error_handling, worker, set inflight_msgs ): assert worker.initialized cdef ucp_ep_h handle = <ucp_ep_h>handle_as_int cdef ucs_status_ptr_t status cdef ucs_status_t ep_status if <void *>status_handle_as_int == NULL: ep_status = UCS_OK else: ep_status = (<ucs_status_t *>status_handle_as_int)[0] free(<void *>status_handle_as_int) # Cancel all inflight messages cdef UCXRequest req cdef dict req_info cdef str name for req in list(inflight_msgs): assert not req.closed() req_info = <dict>req._handle.info name = req_info["name"] logger.debug("Future cancelling: %s" % name) # Notice, `request_cancel()` evoke the send/recv callback functions worker.request_cancel(req) # Close the endpoint cdef str msg cdef unsigned close_mode = UCP_EP_CLOSE_MODE_FLUSH if (endpoint_error_handling and <void *>ep_status!= NULL and ep_status!= UCS_OK): # We force close endpoint if endpoint error handling is enabled and # the endpoint status is not UCS_OK close_mode = UCP_EP_CLOSE_MODE_FORCE status = ucp_ep_close_nb(handle, close_mode) if UCS_PTR_IS_PTR(status): while ucp_request_check_status(status) == UCS_INPROGRESS: worker.progress() ucp_request_free(status) elif UCS_PTR_STATUS(status)!= UCS_OK: msg = ucs_status_string(UCS_PTR_STATUS(status)).decode("utf-8") raise UCXError("Error while closing endpoint: %s" % msg) cdef class UCXEndpoint(UCXObject): """Python representation of `ucp_ep_h`""" cdef: ucp_ep_h _handle uintptr_t _status bint _endpoint_error_handling set _inflight_msgs cdef readonly: UCXWorker worker def __init__( self, UCXWorker worker, uintptr_t params_as_int, bint endpoint_error_handling ): """The Constructor""" assert worker.initialized self.worker = worker self._inflight_msgs = set() cdef ucp_err_handler_cb_t err_cb cdef uintptr_t ep_status err_cb, ep_status = ( _get_error_callback(worker._context._config["TLS"], endpoint_error_handling) ) cdef ucp_ep_params_t *params = <ucp_ep_params_t *>params_as_int if err_cb == NULL: params.err_mode = UCP_ERR_HANDLING_MODE_NONE else: params.err_mode = UCP_ERR_HANDLING_MODE_PEER params.err_handler.cb = err_cb params.err_handler.arg = <void *>self cdef ucp_ep_h ucp_ep cdef ucs_status_t status = ucp_ep_create(worker._handle, params, &ucp_ep) assert_ucs_status(status) self._handle = ucp_ep self._status = <uintptr_t>ep_status self._endpoint_error_handling = endpoint_error_handling self.add_handle_finalizer( _ucx_endpoint_finalizer, int(<uintptr_t>ucp_ep), int(<uintptr_t>ep_status), endpoint_error_handling, worker, self._inflight_msgs ) worker.add_child(self) @classmethod def create( cls, UCXWorker worker, str ip_address, uint16_t port, bint endpoint_error_handling ): assert worker.initialized cdef ucp_ep_params_t *params = ( <ucp_ep_params_t *>malloc(sizeof(ucp_ep_params_t)) ) ip_address = socket.gethostbyname(ip_address) params.field_mask = ( UCP_EP_PARAM_FIELD_FLAGS | UCP_EP_PARAM_FIELD_SOCK_ADDR | UCP_EP_PARAM_FIELD_ERR_HANDLING_MODE | UCP_EP_PARAM_FIELD_ERR_HANDLER ) params.flags = UCP_EP_PARAMS_FLAGS_CLIENT_SERVER if c_util_set_sockaddr(&params.sockaddr, ip_address.encode(), port): raise MemoryError("Failed allocation of sockaddr") try: return cls(worker, <uintptr_t>params, endpoint_error_handling) finally: c_util_sockaddr_free(&params.sockaddr) free(<void *>params) @classmethod def create_from_worker_address( cls, UCXWorker worker, UCXAddress address, bint endpoint_error_handling ): assert worker.initialized cdef ucp_ep_params_t *params = ( <ucp_ep_params_t *>malloc(sizeof(ucp_ep_params_t)) ) params.field_mask = ( UCP_EP_PARAM_FIELD_REMOTE_ADDRESS | UCP_EP_PARAM_FIELD_ERR_HANDLING_MODE | UCP_EP_PARAM_FIELD_ERR_HANDLER ) params.address = address._address try: return cls(worker, <uintptr_t>params, endpoint_error_handling) finally: free(<void *>params) @classmethod def create_from_conn_request( cls, UCXWorker worker, uintptr_t conn_request, bint endpoint_error_handling ): assert worker.initialized cdef ucp_ep_params_t *params = ( <ucp_ep_params_t *>malloc(sizeof(ucp_ep_params_t)) ) params.field_mask = ( UCP_EP_PARAM_FIELD_FLAGS | UCP_EP_PARAM_FIELD_CONN_REQUEST | UCP_EP_PARAM_FIELD_ERR_HANDLING_MODE | UCP_EP_PARAM_FIELD_ERR_HANDLER ) params.flags = UCP_EP_PARAMS_FLAGS_NO_LOOPBACK params.conn_request = <ucp_conn_request_h> conn_request try: return cls(worker, <uintptr_t>params, endpoint_error_handling) finally: free(<void *>params) def info(self): assert self.initialized cdef FILE *text_fd = create_text_fd() ucp_ep_print_info(self._handle, text
Cython
_fd) return decode_text_fd(text_fd) def _get_status_and_str(self): cdef ucs_status_t *_status = <ucs_status_t *>self._status cdef str status_str = ucs_status_string(_status[0]).decode("utf-8") status = int(_status[0]) return (status, str(status_str)) def is_alive(self): if not self._endpoint_error_handling: return True status, _ = self._get_status_and_str() return status == UCS_OK def raise_on_error(self): if not self._endpoint_error_handling: return status, status_str = self._get_status_and_str() if status == UCS_OK: return ep_str = str(hex(int(<uintptr_t>self._handle))) error_msg = f"Endpoint {ep_str} error: {status_str}" if status == UCS_ERR_CONNECTION_RESET: raise UCXConnectionReset(error_msg) else: raise UCXError(error_msg) @property def handle(self): assert self.initialized return int(<uintptr_t>self._handle) def flush(self, cb_func, tuple cb_args=None, dict cb_kwargs=None): if cb_args is None: cb_args = () if cb_kwargs is None: cb_kwargs = {} cdef ucs_status_ptr_t req cdef ucp_send_callback_t _send_cb = <ucp_send_callback_t>_send_callback cdef ucs_status_ptr_t status = ucp_ep_flush_nb(self._handle, 0, _send_cb) return _handle_status( status, 0, cb_func, cb_args, cb_kwargs, u'flush', self._inflight_msgs ) def unpack_rkey(self, rkey): return UCXRkey(self, rkey) <|end_of_text|>import proteus import numpy from math import fabs cimport numpy import os from proteus import cfemIntegrals, Quadrature, Norms, Comm from proteus.NonlinearSolvers import NonlinearEquation from proteus.FemTools import (DOFBoundaryConditions, FluxBoundaryConditions, C0_AffineLinearOnSimplexWithNodalBasis) from proteus.flcbdfWrappers import globalMax from proteus.Profiling import memory from proteus.Profiling import logEvent as log from proteus.Transport import OneLevelTransport from proteus.TransportCoefficients import TC_base from proteus.SubgridError import SGE_base from proteus.ShockCapturing import ShockCapturing_base cdef extern from "mprans/NCLS3P.h" namespace "proteus": cdef cppclass cppNCLS3P_base: void calculateResidual(double * mesh_trial_ref, double * mesh_grad_trial_ref, double * mesh_dof, double * mesh_velocity_dof, double MOVING_DOMAIN, int * mesh_l2g, double * dV_ref, double * u_trial_ref, double * u_grad_trial_ref, double * u_test_ref, double * u_grad_test_ref, double * mesh_trial_trace_ref, double * mesh_grad_trial_trace_ref, double * dS_ref, double * u_trial_trace_ref, double * u_grad_trial_trace_ref, double * u_test_trace_ref, double * u_grad_test_trace_ref, double * normal_ref, double * boundaryJac_ref, int nElements_global, double useMetrics, double alphaBDF, int lag_shockCapturing, double shockCapturingDiffusion, double sc_uref, double sc_alpha, int * u_l2g, double * elementDiameter, double * u_dof, double * u_dof_old, double * velocity, double * q_m, double * q_u, double * q_n, double * q_dH, double * q_m_betaBDF, double * q_dV, double * q_dV_last, double * cfl, double * q_numDiff_u, double * q_numDiff_u_last, int offset_u, int stride_u, double * globalResidual, int nExteriorElementBoundaries_global, int * exteriorElementBoundariesArray, int * elementBoundaryElementsArray, int * elementBoundaryLocalElementBoundariesArray, double * ebqe_velocity_ext, int * isDOFBoundary_u, double * ebqe_rd_u_ext, double * ebqe_bc_u_ext, double * ebqe_u) void calculateJacobian(double * mesh_trial_ref, double * mesh_grad_trial_ref, double * mesh_dof, double * mesh_velocity_dof, double MOVING_DOMAIN, int * mesh_l2g, double * dV_ref, double * u_trial_ref, double * u_grad_trial_ref, double * u_test_ref, double * u_grad_test_ref, double * mesh_trial_trace_ref, double * mesh_grad_trial_trace_ref, double * dS_ref, double * u_trial_trace_ref, double * u_grad_trial_trace_ref, double * u_test_trace_ref, double * u_grad_test_trace_ref, double * normal_ref, double * boundaryJac_ref, int nElements_global, double useMetrics, double alphaBDF, int lag_shockCapturing, double shockCapturingDiffusion, int * u_l2g, double * elementDiameter, double * u_dof, double * velocity, double * q_m_betaBDF, double * cfl, double * q_numDiff_u_last, int * csrRowIndeces_u_u, int * csrColumnOffsets_u_u, double * globalJacobian, int nExteriorElementBoundaries_global, int * exteriorElementBoundariesArray, int * elementBoundaryElementsArray, int * elementBoundaryLocalElementBoundariesArray, double * ebqe_velocity_ext, int * isDOFBoundary_u, double * ebqe_rd_u_ext, double * ebqe_bc_u_ext, int * csrColumnOffsets_eb_u_u) void calculateWaterline( int * wlc, double * waterline, double * mesh_trial_ref, double * mesh_grad_trial_ref, double * mesh_dof, double * mesh_velocity_dof, double MOVING_DOMAIN, int * mesh_l2g, double * dV_ref, double * u_trial_ref, double * u_grad_trial_ref, double * u_test_ref, double * u_grad_test_ref, double * mesh_trial_trace_ref, double * mesh_grad_trial_trace_ref, double * dS_ref, double * u_trial_trace_ref, double * u_grad_trial_trace_ref, double * u_test_trace_ref, double * u_grad_test_trace_ref, double * normal_ref, double * boundaryJac_ref, int nElements_global, double useMetrics, double alphaBDF, int lag_shockCapturing, double shockCapturingDiffusion, double sc_uref, double sc_alpha, int * u_l2g, double * elementDiameter, double * u_dof, double * u_dof_old, double * velocity, double * q_m, double * q_u, double * q_n, double * q_dH, double * q_m_betaBDF, double * cfl, double * q_numDiff_u, double * q_numDiff_u_last, int offset_u, int stride_u, int nExteriorElementBoundaries_global, int * exteriorElementBoundariesArray, int * elementBoundaryElementsArray, int * elementBoundaryLocalElementBoundariesArray, int * elementBoundaryMaterialTypes, double * ebqe_velocity_ext, int * isDOFBoundary_u, double * ebqe_bc_u_ext, double * ebqe_u) cppNCLS3P_base * newNCLS3P(int nSpaceIn, int nQuadraturePoints_elementIn, int nDOF_mesh_trial_elementIn, int nDOF_trial_elementIn, int nDOF_test_elementIn, int nQuadraturePoints_elementBoundaryIn, int CompKernelFlag) cdef class NCLS3P: cdef cppNCLS3P_base * thisptr def __cinit__(self, int nSpaceIn, int nQuadraturePoints_elementIn, int nDOF_mesh_trial_elementIn, int nDOF_trial_elementIn, int nDOF_test_elementIn, int nQuadraturePoints_elementBoundaryIn, int CompKernelFlag): self.thisptr = newNCLS3P(nSpaceIn, nQuadraturePoints_elementIn, nDOF_mesh_trial_elementIn, nDOF_trial_elementIn, nDOF_test_elementIn, nQuadraturePoints_elementBoundaryIn, CompKernelFlag) def __dealloc__(self): del self.thisptr def calculateResidual(self, numpy.ndarray mesh_trial_ref, numpy.ndarray mesh_grad_trial_ref, numpy.ndarray mesh_dof, numpy.ndarray mesh_velocity_dof, double MOVING_DOMAIN, numpy.ndarray mesh_l2g, numpy.ndarray dV_ref, numpy.ndarray u_trial_ref, numpy.ndarray u_grad_trial_ref,
Cython
numpy.ndarray u_test_ref, numpy.ndarray u_grad_test_ref, numpy.ndarray mesh_trial_trace_ref, numpy.ndarray mesh_grad_trial_trace_ref, numpy.ndarray dS_ref, numpy.ndarray u_trial_trace_ref, numpy.ndarray u_grad_trial_trace_ref, numpy.ndarray u_test_trace_ref, numpy.ndarray u_grad_test_trace_ref, numpy.ndarray normal_ref, numpy.ndarray boundaryJac_ref, int nElements_global, double useMetrics, double alphaBDF, int lag_shockCapturing, double shockCapturingDiffusion, double sc_uref, double sc_alpha, numpy.ndarray u_l2g, numpy.ndarray elementDiameter, numpy.ndarray u_dof, numpy.ndarray u_dof_old, numpy.ndarray velocity, numpy.ndarray q_m, numpy.ndarray q_u, numpy.ndarray q_n, numpy.ndarray q_dH, numpy.ndarray q_m_betaBDF, numpy.ndarray q_dV, numpy.ndarray q_dV_last, numpy.ndarray cfl, numpy.ndarray q_numDiff_u, numpy.ndarray q_numDiff_u_last, int offset_u, int stride_u, numpy.ndarray globalResidual, int nExteriorElementBoundaries_global, numpy.ndarray exteriorElementBoundariesArray, numpy.ndarray elementBoundaryElementsArray, numpy.ndarray elementBoundaryLocalElementBoundariesArray, numpy.ndarray ebqe_velocity_ext, numpy.ndarray isDOFBoundary_u, numpy.ndarray ebqe_rd_u_ext, numpy.ndarray ebqe_bc_u_ext, numpy.ndarray ebqe_u): self.thisptr.calculateResidual( < double*>mesh_trial_ref.data, < double * >mesh_grad_trial_ref.data, < double * >mesh_dof.data, < double * >mesh_velocity_dof.data, MOVING_DOMAIN, < int * >mesh_l2g.data, < double * >dV_ref.data, < double * >u_trial_ref.data, < double * >u_grad_trial_ref.data, < double * >u_test_ref.data, < double * >u_grad_test_ref.data, < double * >mesh_trial_trace_ref.data, < double * >mesh_grad_trial_trace_ref.data, < double * >dS_ref.data, < double * >u_trial_trace_ref.data, < double * >u_grad_trial_trace_ref.data, < double * >u_test_trace_ref.data, < double * >u_grad_test_trace_ref.data, < double * >normal_ref.data, < double * >boundaryJac_ref.data, nElements_global, useMetrics, alphaBDF, lag_shockCapturing, shockCapturingDiffusion, sc_uref, sc_alpha, < int * >u_l2g.data, < double * >elementDiameter.data, < double * >u_dof.data, < double * >u_dof_old.data, < double * >velocity.data, < double * >q_m.data, < double * >q_u.data, < double * >q_n.data, < double * >q_dH.data, < double * >q_m_betaBDF.data, < double * > q_dV.data, < double * > q_dV_last.data, < double * >cfl.data, < double * >q_numDiff_u.data, < double * >q_numDiff_u_last.data, offset_u, stride_u, < double * >globalResidual.data, nExteriorElementBoundaries_global, < int * >exteriorElementBoundariesArray.data, < int * >elementBoundaryElementsArray.data, < int * >elementBoundaryLocalElementBoundariesArray.data, < double * >ebqe_velocity_ext.data, < int * >isDOFBoundary_u.data, < double * >ebqe_rd_u_ext.data, < double * >ebqe_bc_u_ext.data, < double * >ebqe_u.data) def calculateJacobian(self, numpy.ndarray mesh_trial_ref, numpy.ndarray mesh_grad_trial_ref, numpy.ndarray mesh_dof, numpy.ndarray mesh_velocity_dof, double MOVING_DOMAIN, numpy.ndarray mesh_l2g, numpy.ndarray dV_ref, numpy.ndarray u_trial_ref, numpy.ndarray u_grad_trial_ref, numpy.ndarray u_test_ref, numpy.ndarray u_grad_test_ref, numpy.ndarray mesh_trial_trace_ref, numpy.ndarray mesh_grad_trial_trace_ref, numpy.ndarray dS_ref, numpy.ndarray u_trial_trace_ref, numpy.ndarray u_grad_trial_trace_ref, numpy.ndarray u_test_trace_ref, numpy.ndarray u_grad_test_trace_ref, numpy.ndarray normal_ref, numpy.ndarray boundaryJac_ref, int nElements_global, double useMetrics, double alphaBDF, int lag_shockCapturing, double shockCapturingDiffusion, numpy.ndarray u_l2g, numpy.ndarray elementDiameter, numpy.ndarray u_dof, numpy.ndarray velocity, numpy.ndarray q_m_betaBDF, numpy.ndarray cfl, numpy.ndarray q_numDiff_u_last, numpy.ndarray csrRowIndeces_u_u, numpy.ndarray csrColumnOffsets_u_u, globalJacobian, int nExteriorElementBoundaries_global, numpy.ndarray exteriorElementBoundariesArray, numpy.ndarray elementBoundaryElementsArray, numpy.ndarray elementBoundaryLocalElementBoundariesArray, numpy.ndarray ebqe_velocity_ext, numpy.ndarray isDOFBoundary_u, numpy.ndarray ebqe_rd_u_ext, numpy.ndarray ebqe_bc_u_ext, numpy.ndarray csrColumnOffsets_eb_u_u): cdef numpy.ndarray rowptr, colind, globalJacobian_a (rowptr, colind, globalJacobian_a) = globalJacobian.getCSRrepresentation() self.thisptr.calculateJacobian( < double*>mesh_trial_ref.data, < double * >mesh_grad_trial_ref.data, < double * >mesh_dof.data, < double * >mesh_velocity_dof.data, MOVING_DOMAIN, < int * >mesh_l2g.data, < double * >dV_ref.data, < double * >u_trial_ref.data, < double * >u_grad_trial_ref.data, < double * >u_test_ref.data, < double * >u_grad_test_ref.data, < double * >mesh_trial_trace_ref.data, < double * >mesh_grad_trial_trace_ref.data, < double * >dS_ref.data, < double * >u_trial_trace_ref.data, < double * >u_grad_trial_trace_ref.data, < double * >u_test_trace_ref.data, < double * >u_grad_test_trace_ref.data, < double * >normal_ref.data, < double * >boundaryJac_ref.data, nElements_global, useMetrics, alphaBDF, lag_shockCapturing, shockCapturingDiffusion, < int * >u_l2g.data, < double * >elementDiameter.data, < double * >u_dof.data, < double * >velocity.data, < double * >q_m_betaBDF.data, < double * >cfl.data, < double * >q_numDiff_u_last.data, < int*>csrRowIndeces_u_u.data, < int*>csrColumnOffsets_u_u.data, < double * >globalJacobian_a.data, nExteriorElementBoundaries_global, < int * >exteriorElementBoundariesArray.data, < int * >elementBoundaryElementsArray.data, < int * >elementBoundaryLocalElementBoundariesArray.data, < double * >ebqe_velocity_ext.data, < int * >isDOFBoundary_u.data, < double * >ebqe_rd_u_ext.data, < double * >ebqe_bc_u_ext.data, < int * >csrColumnOffsets_eb_u_u.data) def calculateWaterline(self, numpy.ndarray wlc, numpy.ndarray waterline, numpy.ndarray mesh_trial_ref, numpy.ndarray mesh_grad_trial_ref, numpy.ndarray mesh_dof, numpy.ndarray mesh_velocity_dof, double MOVING_DOMAIN, numpy.ndarray mesh_l2g, numpy.ndarray dV_ref, numpy.ndarray u_trial_ref, numpy.ndarray u_grad_trial_ref, numpy.ndarray u_test_ref, numpy.ndarray u_grad_test_ref, numpy.ndarray mesh_trial_trace_ref, numpy.ndarray mesh_grad_trial_trace_ref, numpy.ndarray dS_ref, numpy.ndarray u_trial_trace_ref, numpy.ndarray u_grad_trial_trace_ref, numpy.ndarray u_test_trace_ref, numpy.ndarray u_grad_test_trace_ref, numpy.ndarray normal_ref, numpy.ndarray boundaryJac_ref, int nElements_global, double useMetrics, double alphaBDF, int lag_shockCapturing, double shockCapturingDiffusion, double sc_uref, double sc_alpha, numpy.ndarray u_l2g, numpy.ndarray elementDiameter, numpy.ndarray u_dof, numpy.ndarray u_dof_old, numpy.ndarray velocity, numpy.ndarray q_m, numpy.ndarray q_u, numpy.ndarray q_n, numpy.ndarray q_dH, numpy.ndarray q_m_betaBDF, numpy.ndarray cfl, numpy.ndarray q_numDiff_u, numpy.ndarray q_numDiff_u_last, int offset_u, int stride_u, int nExteriorElementBoundaries_global, numpy.ndarray exteriorElementBoundariesArray, numpy.ndarray elementBoundaryElementsArray, numpy.ndarray element
Cython
BoundaryLocalElementBoundariesArray, numpy.ndarray elementBoundaryMaterialTypes, numpy.ndarray ebqe_velocity_ext, numpy.ndarray isDOFBoundary_u, numpy.ndarray ebqe_bc_u_ext, numpy.ndarray ebqe_u): self.thisptr.calculateWaterline( < int*>wlc.data, < double * >waterline.data, < double * >mesh_trial_ref.data, < double * >mesh_grad_trial_ref.data, < double * >mesh_dof.data, < double * >mesh_velocity_dof.data, MOVING_DOMAIN, < int * >mesh_l2g.data, < double * >dV_ref.data, < double * >u_trial_ref.data, < double * >u_grad_trial_ref.data, < double * >u_test_ref.data, < double * >u_grad_test_ref.data, < double * >mesh_trial_trace_ref.data, < double * >mesh_grad_trial_trace_ref.data, < double * >dS_ref.data, < double * >u_trial_trace_ref.data, < double * >u_grad_trial_trace_ref.data, < double * >u_test_trace_ref.data, < double * >u_grad_test_trace_ref.data, < double * >normal_ref.data, < double * >boundaryJac_ref.data, nElements_global, useMetrics, alphaBDF, lag_shockCapturing, shockCapturingDiffusion, sc_uref, sc_alpha, < int * >u_l2g.data, < double * >elementDiameter.data, < double * >u_dof.data, < double * >u_dof_old.data, < double * >velocity.data, < double * >q_m.data, < double * >q_u.data, < double * >q_n.data, < double * >q_dH.data, < double * >q_m_betaBDF.data, < double * >cfl.data, < double * >q_numDiff_u.data, < double * >q_numDiff_u_last.data, offset_u, stride_u, nExteriorElementBoundaries_global, < int * >exteriorElementBoundariesArray.data, < int * >elementBoundaryElementsArray.data, < int * >elementBoundaryLocalElementBoundariesArray.data, < int * >elementBoundaryMaterialTypes.data, < double * >ebqe_velocity_ext.data, < int * >isDOFBoundary_u.data, < double * >ebqe_bc_u_ext.data, < double * >ebqe_u.data) class SubgridError(proteus.SubgridError.SGE_base): def __init__(self, coefficients, nd): proteus.SubgridError.SGE_base.__init__(self, coefficients, nd, False) def initializeElementQuadrature(self, mesh, t, cq): for ci in range(self.nc): cq[('dH_sge', ci, ci)] = cq[('dH', ci, ci)] def calculateSubgridError(self, q): pass def updateSubgridErrorHistory(self, initializationPhase=False): pass class ShockCapturing(proteus.ShockCapturing.ShockCapturing_base): def __init__( self, coefficients, nd, shockCapturingFactor=0.25, lag=True, nStepsToDelay=None): proteus.ShockCapturing.ShockCapturing_base.__init__( self, coefficients, nd, shockCapturingFactor, lag) self.nStepsToDelay = nStepsToDelay self.nSteps = 0 if self.lag: log("NCLS3P.ShockCapturing: lagging requested but must lag the first step; switching lagging off and delaying") self.nStepsToDelay = 1 self.lag = False def initializeElementQuadrature(self, mesh, t, cq): self.mesh = mesh self.numDiff = [] self.numDiff_last = [] for ci in range(self.nc): self.numDiff.append(cq[('numDiff', ci, ci)]) self.numDiff_last.append(cq[('numDiff', ci, ci)]) def updateShockCapturingHistory(self): self.nSteps += 1 if self.lag: for ci in range(self.nc): self.numDiff_last[ci][:] = self.numDiff[ci] if self.lag == False and self.nStepsToDelay!= None and self.nSteps > self.nStepsToDelay: log("NCLS3P.ShockCapturing: switched to lagged shock capturing") self.lag = True self.numDiff_last = [] for ci in range(self.nc): self.numDiff_last.append(self.numDiff[ci].copy()) log("NCLS3P: max numDiff %e" % (globalMax(self.numDiff_last[0].max()),)) class NumericalFlux( proteus.NumericalFlux.HamiltonJacobi_DiagonalLesaintRaviart): def __init__(self, vt, getPointwiseBoundaryConditions, getAdvectiveFluxBoundaryConditions, getDiffusiveFluxBoundaryConditions): proteus.NumericalFlux.HamiltonJacobi_DiagonalLesaintRaviart.__init__( self, vt, getPointwiseBoundaryConditions, getAdvectiveFluxBoundaryConditions, getDiffusiveFluxBoundaryConditions) class Coefficients(proteus.TransportCoefficients.TC_base): from proteus.ctransportCoefficients import ncLevelSetCoefficientsEvaluate from proteus.UnstructuredFMMandFSWsolvers import FMMEikonalSolver, FSWEikonalSolver from proteus.NonlinearSolvers import EikonalSolver def __init__(self, V_model=0, RD_model=None, ME_model=1, EikonalSolverFlag=0, checkMass=True, epsFact=1.5, useMetrics=0.0, sc_uref=1.0, sc_beta=1.0, waterline_interval=-1, movingDomain=False): self.movingDomain = movingDomain self.useMetrics = useMetrics self.epsFact = epsFact self.variableNames = ['phi'] nc = 1 mass = {0: {0: 'linear'}} hamiltonian = {0: {0: 'linear'}} advection = {} diffusion = {} potential = {} reaction = {} TC_base.__init__(self, nc, mass, advection, diffusion, potential, reaction, hamiltonian, ['phi'], movingDomain=movingDomain) self.flowModelIndex = V_model self.modelIndex = ME_model self.RD_modelIndex = RD_model # mwf added self.eikonalSolverFlag = EikonalSolverFlag if self.eikonalSolverFlag >= 1: # FMM assert self.RD_modelIndex is None, "no redistance with eikonal solver too" self.checkMass = checkMass self.sc_uref = sc_uref self.sc_beta = sc_beta self.waterline_interval = waterline_interval def attachModels(self, modelList): # the level set model self.model = modelList[self.modelIndex] #self.u_old_dof = numpy.zeros(self.model.u[0].dof.shape,'d') self.u_old_dof = self.model.u[0].dof.copy() # the velocity if self.flowModelIndex >= 0: self.flowModel = modelList[self.flowModelIndex] self.q_v = modelList[self.flowModelIndex].q[('velocity', 0)] self.ebqe_v = modelList[self.flowModelIndex].ebqe[('velocity', 0)] if modelList[self.flowModelIndex].ebq.has_key(('velocity', 0)): self.ebq_v = modelList[ self.flowModelIndex].ebq[ ('velocity', 0)] else: self.ebq_v = None if not self.model.ebq.has_key( ('u', 0)) and self.flowModel.ebq.has_key( ('u', 0)): self.model.ebq[('u', 0)] = numpy.zeros( self.flowModel.ebq[('u', 0)].shape, 'd') self.model.ebq[('grad(u)', 0)] = numpy.zeros( self.flowModel.ebq[('grad(u)', 0)].shape, 'd') if self.flowModel.ebq.has_key(('v', 1)): self.model.u[0].getValuesTrace( self.flowModel.ebq[ ('v', 1)], self.model.ebq[ ('u', 0)]) self.model.u[0].getGradientValuesTrace( self.flowModel.ebq[ ('grad(v)', 1)], self.model.ebq[ ('grad(u)', 0)]) if self.RD_modelIndex is not None: # print self.RD_modelIndex,len(modelList) self.rdModel = modelList[self.RD_modelIndex] if self.eikonalSolverFlag == 2: # FSW self.resDummy = numpy.zeros(self.model.u[0].dof.shape, 'd') e
Cython
ikonalSolverType = self.FSWEikonalSolver self.eikonalSolver = self.EikonalSolver(eikonalSolverType, self.model, relativeTolerance=0.0, absoluteTolerance=1.0e-12, frontTolerance=1.0e-8, # default 1.0e-4 frontInitType='frontIntersection') #,#'frontIntersection',#or'magnitudeOnly' elif self.eikonalSolverFlag == 1: # FMM self.resDummy = numpy.zeros(self.model.u[0].dof.shape, 'd') eikonalSolverType = self.FMMEikonalSolver self.eikonalSolver = self.EikonalSolver(eikonalSolverType, self.model, frontTolerance=1.0e-8, # default 1.0e-4 frontInitType='frontIntersection') #,#'frontIntersection',#or'magnitudeOnly' # if self.checkMass: # self.m_pre = Norms.scalarSmoothedHeavisideDomainIntegral(self.epsFact, # self.model.mesh.elementDiametersArray, # self.model.q['dV'], # self.model.q[('u',0)], # self.model.mesh.nElements_owned) # log("Attach Models NCLS3P: Phase 0 mass before NCLS3P step = %12.5e" % (self.m_pre,),level=2) # self.totalFluxGlobal=0.0 # self.lsGlobalMassArray = [self.m_pre] # self.lsGlobalMassErrorArray = [0.0] # self.fluxArray = [0.0] # self.timeArray = [self.model.timeIntegration.t] def initializeElementQuadrature(self, t, cq): if self.flowModelIndex is None: self.q_v = numpy.zeros(cq[('grad(u)', 0)].shape, 'd') def initializeElementBoundaryQuadrature(self, t, cebq, cebq_global): if self.flowModelIndex is None: self.ebq_v = numpy.zeros(cebq[('grad(u)', 0)].shape, 'd') def initializeGlobalExteriorElementBoundaryQuadrature(self, t, cebqe): if self.flowModelIndex is None: self.ebqe_v = numpy.zeros(cebqe[('grad(u)', 0)].shape, 'd') def preStep(self, t, firstStep=False): # if self.checkMass: # self.m_pre = Norms.scalarSmoothedHeavisideDomainIntegral(self.epsFact, # self.model.mesh.elementDiametersArray, # self.model.q['dV'], # self.model.q[('m',0)], # self.model.mesh.nElements_owned) # log("Phase 0 mass before NCLS3P step = %12.5e" % (self.m_pre,),level=2) # self.m_last = Norms.scalarSmoothedHeavisideDomainIntegral(self.epsFact, # self.model.mesh.elementDiametersArray, # self.model.q['dV'], # self.model.timeIntegration.m_last[0], # self.model.mesh.nElements_owned) # log("Phase 0 mass before NCLS3P step (m_last) = %12.5e" % (self.m_last,),level=2) # #cek todo why is this here # if self.flowModelIndex >= 0 and self.flowModel.ebq.has_key(('v',1)): # self.model.u[0].getValuesTrace(self.flowModel.ebq[('v',1)],self.model.ebq[('u',0)]) # self.model.u[0].getGradientValuesTrace(self.flowModel.ebq[('grad(v)',1)],self.model.ebq[('grad(u)',0)]) copyInstructions = {} return copyInstructions def postStep(self, t, firstStep=False): self.u_old_dof[:] = self.model.u[0].dof self.model.q['dV_last'][:] = self.model.q['dV'] # if self.checkMass: # self.m_post = Norms.scalarSmoothedHeavisideDomainIntegral(self.epsFact, # self.model.mesh.elementDiametersArray, # self.model.q['dV'], # self.model.q[('u',0)], # self.model.mesh.nElements_owned) # log("Phase 0 mass after NCLS3P step = %12.5e" % (self.m_post,),level=2) # #need a flux here not a velocity # self.fluxIntegral = Norms.fluxDomainBoundaryIntegralFromVector(self.flowModel.ebqe['dS'], # self.flowModel.ebqe[('velocity',0)], # self.flowModel.ebqe['n'], # self.model.mesh) # log("Flux integral = %12.5e" % (self.fluxIntegral,),level=2) # log("Phase 0 mass conservation after NCLS3P step = %12.5e" % (self.m_post - self.m_last + self.model.timeIntegration.dt*self.fluxIntegral,),level=2) # self.lsGlobalMass = self.m_post # self.fluxGlobal = self.fluxIntegral*self.model.timeIntegration.dt # self.totalFluxGlobal += self.fluxGlobal # self.lsGlobalMassArray.append(self.lsGlobalMass) # self.lsGlobalMassErrorArray.append(self.lsGlobalMass - self.lsGlobalMassArray[0] + self.totalFluxGlobal) # self.fluxArray.append(self.fluxIntegral) # self.timeArray.append(self.model.timeIntegration.t) # if self.flowModelIndex >= 0 and self.flowModel.ebq.has_key(('v',1)): # self.model.u[0].getValuesTrace(self.flowModel.ebq[('v',1)],self.model.ebq[('u',0)]) # self.model.u[0].getGradientValuesTrace(self.flowModel.ebq[('grad(v)',1)],self.model.ebq[('grad(u)',0)]) copyInstructions = {} return copyInstructions def updateToMovingDomain(self, t, c): # in a moving domain simulation the velocity coming in is already for # the moving domain pass def evaluate(self, t, c): v = None if c[('dH', 0, 0)].shape == self.q_v.shape: v = self.q_v elif c[('dH', 0, 0)].shape == self.ebqe_v.shape: v = self.ebqe_v elif self.ebq_v is not None and c[('dH', 0, 0)].shape == self.ebq_v.shape: v = self.ebq_v else: raise RuntimeError, "don't have v for NC Level set of shape = " + \ `c[('dH', 0, 0)].shape` if v is not None: self.ncLevelSetCoefficientsEvaluate(v, c[('u', 0)], c[('grad(u)', 0)], c[('m', 0)], c[('dm', 0, 0)], c[('H', 0)], c[('dH', 0, 0)]) class LevelModel(OneLevelTransport): nCalls = 0 def __init__(self, uDict, phiDict, testSpaceDict, matType, dofBoundaryConditionsDict, dofBoundaryConditionsSetterDict, coefficients, elementQuadrature, elementBoundaryQuadrature, fluxBoundaryConditionsDict=None, advectiveFluxBoundaryConditionsSetterDict=None, diffusiveFluxBoundaryConditionsSetterDictDict=None, stressTraceBoundaryConditionsSetterDict=None, stabilization=None, shockCapturing=None, conservativeFluxDict=None, numericalFluxType=None, TimeIntegrationClass=None, massLumping=False, reactionLumping=False, options=None, name='defaultName', reuse_trial_and_test_quadrature=True, sd=True, movingDomain=False): # # set the objects describing the method and boundary conditions # self.movingDomain = movingDomain self.tLast_mesh = None # self.name = name self.sd = sd self.Hess = False self.lowmem = True self.timeTerm = True # allow turning off the time derivative # self.lowmem=False self.testIsTrial = True self.phiTrialIsTrial = True self.u = uDict self.ua = {} # analytical solutions self.phi = phiDict self.dphi = {} self.matType = matType # mwf try to reuse test and trial information across components if # spaces are the same self.reuse_test_trial_quadrature = reuse_trial_and_test_quadrature # True#False if self.reuse_test_trial_quadrature: for ci in range(
Cython
1, coefficients.nc): assert self.u[ci].femSpace.__class__.__name__ == self.u[ 0].femSpace.__class__.__name__, "to reuse_test_trial_quad all femSpaces must be the same!" # Simplicial Mesh # assume the same mesh for all components for now self.mesh = self.u[0].femSpace.mesh self.testSpace = testSpaceDict self.dirichletConditions = dofBoundaryConditionsDict # explicit Dirichlet conditions for now, no Dirichlet BC constraints self.dirichletNodeSetList = None self.coefficients = coefficients self.coefficients.initializeMesh(self.mesh) self.nc = self.coefficients.nc self.stabilization = stabilization self.shockCapturing = shockCapturing # no velocity post-processing for now self.conservativeFlux = conservativeFluxDict self.fluxBoundaryConditions = fluxBoundaryConditionsDict self.advectiveFluxBoundaryConditionsSetterDict = advectiveFluxBoundaryConditionsSetterDict self.diffusiveFluxBoundaryConditionsSetterDictDict = diffusiveFluxBoundaryConditionsSetterDictDict # determine whether the stabilization term is nonlinear self.stabilizationIsNonlinear = False # cek come back if self.stabilization is not None: for ci in range(self.nc): if coefficients.mass.has_key(ci): for flag in coefficients.mass[ci].values(): if flag == 'nonlinear': self.stabilizationIsNonlinear = True if coefficients.advection.has_key(ci): for flag in coefficients.advection[ci].values(): if flag == 'nonlinear': self.stabilizationIsNonlinear = True if coefficients.diffusion.has_key(ci): for diffusionDict in coefficients.diffusion[ci].values(): for flag in diffusionDict.values(): if flag!= 'constant': self.stabilizationIsNonlinear = True if coefficients.potential.has_key(ci): for flag in coefficients.potential[ci].values(): if flag == 'nonlinear': self.stabilizationIsNonlinear = True if coefficients.reaction.has_key(ci): for flag in coefficients.reaction[ci].values(): if flag == 'nonlinear': self.stabilizationIsNonlinear = True if coefficients.hamiltonian.has_key(ci): for flag in coefficients.hamiltonian[ci].values(): if flag == 'nonlinear': self.stabilizationIsNonlinear = True # determine if we need element boundary storage self.elementBoundaryIntegrals = {} for ci in range(self.nc): self.elementBoundaryIntegrals[ci] = ( (self.conservativeFlux is not None) or ( numericalFluxType is not None) or ( self.fluxBoundaryConditions[ci] == 'outFlow') or ( self.fluxBoundaryConditions[ci] =='mixedFlow') or ( self.fluxBoundaryConditions[ci] =='setFlow')) # # calculate some dimensions # # assume same space dim for all variables self.nSpace_global = self.u[0].femSpace.nSpace_global self.nDOF_trial_element = [ u_j.femSpace.max_nDOF_element for u_j in self.u.values()] self.nDOF_phi_trial_element = [ phi_k.femSpace.max_nDOF_element for phi_k in self.phi.values()] self.n_phi_ip_element = [ phi_k.femSpace.referenceFiniteElement.interpolationConditions.nQuadraturePoints for phi_k in self.phi.values()] self.nDOF_test_element = [ femSpace.max_nDOF_element for femSpace in self.testSpace.values()] self.nFreeDOF_global = [ dc.nFreeDOF_global for dc in self.dirichletConditions.values()] self.nVDOF_element = sum(self.nDOF_trial_element) self.nFreeVDOF_global = sum(self.nFreeDOF_global) # NonlinearEquation.__init__(self, self.nFreeVDOF_global) # # build the quadrature point dictionaries from the input (this # is just for convenience so that the input doesn't have to be # complete) # elementQuadratureDict = {} elemQuadIsDict = isinstance(elementQuadrature, dict) if elemQuadIsDict: # set terms manually for I in self.coefficients.elementIntegralKeys: if elementQuadrature.has_key(I): elementQuadratureDict[I] = elementQuadrature[I] else: elementQuadratureDict[I] = elementQuadrature['default'] else: for I in self.coefficients.elementIntegralKeys: elementQuadratureDict[I] = elementQuadrature if self.stabilization is not None: for I in self.coefficients.elementIntegralKeys: if elemQuadIsDict: if elementQuadrature.has_key(I): elementQuadratureDict[ ('stab',) + I[1:]] = elementQuadrature[I] else: elementQuadratureDict[ ('stab',) + I[1:]] = elementQuadrature['default'] else: elementQuadratureDict[ ('stab',) + I[1:]] = elementQuadrature if self.shockCapturing is not None: for ci in self.shockCapturing.components: if elemQuadIsDict: if elementQuadrature.has_key(('numDiff', ci, ci)): elementQuadratureDict[('numDiff', ci, ci)] = elementQuadrature[ ('numDiff', ci, ci)] else: elementQuadratureDict[('numDiff', ci, ci)] = elementQuadrature[ 'default'] else: elementQuadratureDict[ ('numDiff', ci, ci)] = elementQuadrature if massLumping: for ci in self.coefficients.mass.keys(): elementQuadratureDict[('m', ci)] = Quadrature.SimplexLobattoQuadrature( self.nSpace_global, 1) for I in self.coefficients.elementIntegralKeys: elementQuadratureDict[ ('stab',) + I[1:]] = Quadrature.SimplexLobattoQuadrature(self.nSpace_global, 1) if reactionLumping: for ci in self.coefficients.mass.keys(): elementQuadratureDict[('r', ci)] = Quadrature.SimplexLobattoQuadrature( self.nSpace_global, 1) for I in self.coefficients.elementIntegralKeys: elementQuadratureDict[ ('stab',) + I[1:]] = Quadrature.SimplexLobattoQuadrature(self.nSpace_global, 1) elementBoundaryQuadratureDict = {} if isinstance(elementBoundaryQuadrature, dict): # set terms manually for I in self.coefficients.elementBoundaryIntegralKeys: if elementBoundaryQuadrature.has_key(I): elementBoundaryQuadratureDict[ I] = elementBoundaryQuadrature[I] else: elementBoundaryQuadratureDict[ I] = elementBoundaryQuadrature['default'] else: for I in self.coefficients.elementBoundaryIntegralKeys: elementBoundaryQuadratureDict[I] = elementBoundaryQuadrature # # find the union of all element quadrature points and # build a quadrature rule for each integral that has a # weight at each point in the union # mwf include tag telling me which indices are which quadrature rule? (self.elementQuadraturePoints, self.elementQuadratureWeights, self.elementQuadratureRuleIndeces) = Quadrature.buildUnion(elementQuadratureDict) self.nQuadraturePoints_element = self.elementQuadraturePoints.shape[0] self.nQuadraturePoints_global = self.nQuadraturePoints_element * \ self.mesh.nElements_global # # Repeat the same thing for the element boundary quadrature # (self.elementBoundaryQuadraturePoints, self.elementBoundaryQuadratureWeights, self.elementBoundaryQuadratureRuleIndeces) = Quadrature.buildUnion(elementBoundaryQuadratureDict) self.nElementBoundaryQuadraturePoints_elementBoundary = self.elementBoundaryQuadraturePoints.shape[ 0] self.nElementBoundaryQuadraturePoints_global = ( self.mesh.nElements_global * self.mesh.nElementBoundaries_element * self.nElementBoundaryQuadraturePoints_elementBoundary) # if isinstance(self.u[0].femSpace,C0_AffineLinearOnSimplexWithNodalBasis): # print self.nQuadraturePoints_element # if self.nSpace_global == 3: # assert(self.nQuadraturePoints_element == 5) # elif self.nSpace_global == 2: # assert(self.nQuadraturePoints_element == 6) # elif self.nSpace_global == 1: # assert(self.nQuadraturePoints_element == 3) # # print self.nElementBoundaryQuadraturePoints_elementBoundary # if self.nSpace_global == 3: # assert(self.nElementBoundaryQuadraturePoints_elementBoundary == 4) # elif self.nSpace_global == 2: # assert(self.nElement
Cython
BoundaryQuadraturePoints_elementBoundary == 4) # elif self.nSpace_global == 1: # assert(self.nElementBoundaryQuadraturePoints_elementBoundary == 1) # # simplified allocations for test==trial and also check if space is mixed or not # self.q = {} self.ebq = {} self.ebq_global = {} self.ebqe = {} self.phi_ip = {} # mesh self.q['x'] = numpy.zeros( (self.mesh.nElements_global, self.nQuadraturePoints_element, 3), 'd') self.ebqe['x'] = numpy.zeros( (self.mesh.nExteriorElementBoundaries_global, self.nElementBoundaryQuadraturePoints_elementBoundary, 3), 'd') self.q[('dV_u', 0)] = (1.0 / self.mesh.nElements_global) * \ numpy.ones((self.mesh.nElements_global, self.nQuadraturePoints_element), 'd') self.q[('u', 0)] = numpy.zeros( (self.mesh.nElements_global, self.nQuadraturePoints_element), 'd') self.q[ ('grad(u)', 0)] = numpy.zeros( (self.mesh.nElements_global, self.nQuadraturePoints_element, self.nSpace_global), 'd') self.q[('m_last', 0)] = numpy.zeros( (self.mesh.nElements_global, self.nQuadraturePoints_element), 'd') self.q[('mt', 0)] = numpy.zeros( (self.mesh.nElements_global, self.nQuadraturePoints_element), 'd') self.q['dV'] = numpy.zeros( (self.mesh.nElements_global, self.nQuadraturePoints_element), 'd') self.q['dV_last'] = -1000 * \ numpy.ones((self.mesh.nElements_global, self.nQuadraturePoints_element), 'd') # numpy.zeros((self.mesh.nElements_global,self.nQuadraturePoints_element),'d') self.q[('m_tmp', 0)] = self.q[('u', 0)] # numpy.zeros((self.mesh.nElements_global,self.nQuadraturePoints_element),'d') self.q[('m', 0)] = self.q[('u', 0)] # cek todo for NCLS3P we really don't need dH because it's just q_v # from the flow model self.q[('dH', 0, 0)] = numpy.zeros((self.mesh.nElements_global, self.nQuadraturePoints_element, self.nSpace_global), 'd') self.q[ ('dH_sge', 0, 0)] = numpy.zeros( (self.mesh.nElements_global, self.nQuadraturePoints_element, self.nSpace_global), 'd') self.q[('cfl', 0)] = numpy.zeros( (self.mesh.nElements_global, self.nQuadraturePoints_element), 'd') self.q[('numDiff', 0, 0)] = numpy.zeros( (self.mesh.nElements_global, self.nQuadraturePoints_element), 'd') self.ebqe[ ('u', 0)] = numpy.zeros( (self.mesh.nExteriorElementBoundaries_global, self.nElementBoundaryQuadraturePoints_elementBoundary), 'd') self.ebqe[ ('grad(u)', 0)] = numpy.zeros( (self.mesh.nExteriorElementBoundaries_global, self.nElementBoundaryQuadraturePoints_elementBoundary, self.nSpace_global), 'd') # mwf for running as standalone self.ebqe[ ('dH', 0, 0)] = numpy.zeros( (self.mesh.nExteriorElementBoundaries_global, self.nElementBoundaryQuadraturePoints_elementBoundary, self.nSpace_global), 'd') self.q[('dm', 0, 0)] = numpy.zeros( (self.mesh.nElements_global, self.nQuadraturePoints_element), 'd') self.q[('H', 0)] = numpy.zeros( (self.mesh.nElements_global, self.nQuadraturePoints_element), 'd') self.points_elementBoundaryQuadrature = set() self.scalars_elementBoundaryQuadrature = set( [('u', ci) for ci in range(self.nc)]) self.vectors_elementBoundaryQuadrature = set() self.tensors_elementBoundaryQuadrature = set() # # allocate residual and Jacobian storage # self.inflowBoundaryBC = {} self.inflowBoundaryBC_values = {} self.inflowFlux = {} for cj in range(self.nc): self.inflowBoundaryBC[cj] = numpy.zeros( (self.mesh.nExteriorElementBoundaries_global,), 'i') self.inflowBoundaryBC_values[cj] = numpy.zeros( (self.mesh.nExteriorElementBoundaries_global, self.nDOF_trial_element[cj]), 'd') self.inflowFlux[cj] = numpy.zeros( (self.mesh.nExteriorElementBoundaries_global, self.nElementBoundaryQuadraturePoints_elementBoundary), 'd') self.internalNodes = set(range(self.mesh.nNodes_global)) # identify the internal nodes this is ought to be in mesh # \todo move this to mesh for ebNE in range(self.mesh.nExteriorElementBoundaries_global): ebN = self.mesh.exteriorElementBoundariesArray[ebNE] eN_global = self.mesh.elementBoundaryElementsArray[ebN, 0] ebN_element = self.mesh.elementBoundaryLocalElementBoundariesArray[ ebN, 0] for i in range(self.mesh.nNodes_element): if i!= ebN_element: I = self.mesh.elementNodesArray[eN_global, i] self.internalNodes -= set([I]) self.nNodes_internal = len(self.internalNodes) self.internalNodesArray = numpy.zeros((self.nNodes_internal,), 'i') for nI, n in enumerate(self.internalNodes): self.internalNodesArray[nI] = n # del self.internalNodes self.internalNodes = None log("Updating local to global mappings", 2) self.updateLocal2Global() log("Building time integration object", 2) log(memory("inflowBC, internalNodes,updateLocal2Global", "OneLevelTransport"), level=4) # mwf for interpolating subgrid error for gradients etc if self.stabilization and self.stabilization.usesGradientStabilization: self.timeIntegration = TimeIntegrationClass( self, integrateInterpolationPoints=True) else: self.timeIntegration = TimeIntegrationClass(self) if options is not None: self.timeIntegration.setFromOptions(options) log(memory("TimeIntegration", "OneLevelTransport"), level=4) log("Calculating numerical quadrature formulas", 2) self.calculateQuadrature() self.setupFieldStrides() comm = Comm.get() self.comm = comm if comm.size() > 1: assert numericalFluxType is not None and numericalFluxType.useWeakDirichletConditions, "You must use a numerical flux to apply weak boundary conditions for parallel runs" log(memory("stride+offset", "OneLevelTransport"), level=4) if numericalFluxType is not None: if options is None or options.periodicDirichletConditions is None: self.numericalFlux = numericalFluxType( self, dofBoundaryConditionsSetterDict, advectiveFluxBoundaryConditionsSetterDict, diffusiveFluxBoundaryConditionsSetterDictDict) else: self.numericalFlux = numericalFluxType( self, dofBoundaryConditionsSetterDict, advectiveFluxBoundaryConditionsSetterDict, diffusiveFluxBoundaryConditionsSetterDictDict, options.periodicDirichletConditions) else: self.numericalFlux = None # set penalty terms # cek todo move into numerical flux initialization if self.ebq_global.has_key('penalty'): for ebN in range(self.mesh.nElementBoundaries_global): for k in range( self.nElementBoundaryQuadraturePoints_elementBoundary): self.ebq_global['penalty'][ebN, k] = self.numericalFlux.penalty_constant / ( self.mesh.elementBoundaryDiametersArray[ebN]**self.numericalFlux.penalty_power) # penalty term # cek move to Numerical flux initialization if self.ebqe.has_key('penalty'): for ebNE in range(self.mesh.nExteriorElementBoundaries_global): ebN = self.mesh.exteriorElementBoundariesArray[ebNE] for k in range( self.nElementBoundaryQuadraturePoints_elementBoundary): self.ebqe['penalty'][ebNE, k] = self.numericalFlux.penalty_constant / \ self.mesh.elementBoundaryDiametersArray[ebN]**self.numericalFlux.penalty_power log(memory("numericalFlux", "OneLevelTransport"), level=4) self.elementEffectiveDiametersArray = self.mesh.elementInnerDiametersArray # use post processing tools to get conservative fluxes, None by
Cython
default from proteus import PostProcessingTools self.velocityPostProcessor = PostProcessingTools.VelocityPostProcessingChooser( self) log(memory("velocity postprocessor", "OneLevelTransport"), level=4) # helper for writing out data storage from proteus import Archiver self.elementQuadratureDictionaryWriter = Archiver.XdmfWriter() self.elementBoundaryQuadratureDictionaryWriter = Archiver.XdmfWriter() self.exteriorElementBoundaryQuadratureDictionaryWriter = Archiver.XdmfWriter() # TODO get rid of this # for ci,fbcObject in self.fluxBoundaryConditionsObjectsDict.iteritems(): # self.ebqe[('advectiveFlux_bc_flag',ci)] = numpy.zeros(self.ebqe[('advectiveFlux_bc',ci)].shape,'i') # for t,g in fbcObject.advectiveFluxBoundaryConditionsDict.iteritems(): # if self.coefficients.advection.has_key(ci): # self.ebqe[('advectiveFlux_bc',ci)][t[0],t[1]] = g(self.ebqe[('x')][t[0],t[1]],self.timeIntegration.t) # self.ebqe[('advectiveFlux_bc_flag',ci)][t[0],t[1]] = 1 if hasattr(self.numericalFlux,'setDirichletValues'): self.numericalFlux.setDirichletValues(self.ebqe) if not hasattr(self.numericalFlux, 'isDOFBoundary'): self.numericalFlux.isDOFBoundary = { 0: numpy.zeros(self.ebqe[('u', 0)].shape, 'i')} if not hasattr(self.numericalFlux, 'ebqe'): self.numericalFlux.ebqe = { ('u', 0): numpy.zeros(self.ebqe[('u', 0)].shape, 'd')} # TODO how to handle redistancing calls for # calculateCoefficients,calculateElementResidual etc self.globalResidualDummy = None compKernelFlag = 0 self.ncls3p = NCLS3P( self.nSpace_global, self.nQuadraturePoints_element, self.u[0].femSpace.elementMaps.localFunctionSpace.dim, self.u[0].femSpace.referenceFiniteElement.localFunctionSpace.dim, self.testSpace[0].referenceFiniteElement.localFunctionSpace.dim, self.nElementBoundaryQuadraturePoints_elementBoundary, compKernelFlag) self.forceStrongConditions = False if self.forceStrongConditions: self.dirichletConditionsForceDOF = DOFBoundaryConditions( self.u[0].femSpace, dofBoundaryConditionsSetterDict[0], weakDirichletConditions=False) if self.movingDomain: self.MOVING_DOMAIN = 1.0 else: self.MOVING_DOMAIN = 0.0 if self.mesh.nodeVelocityArray is None: self.mesh.nodeVelocityArray = numpy.zeros( self.mesh.nodeArray.shape, 'd') self.waterline_calls = 0 self.waterline_prints = 0 # mwf these are getting called by redistancing classes, def calculateCoefficients(self): pass def calculateElementResidual(self): if self.globalResidualDummy is not None: self.getResidual(self.u[0].dof, self.globalResidualDummy) def getResidual(self, u, r): import pdb import copy """ Calculate the element residuals and add in to the global residual """ # mwf debug # pdb.set_trace() r.fill(0.0) # Load the unknowns into the finite element dof self.timeIntegration.calculateCoefs() self.timeIntegration.calculateU(u) self.setUnknowns(self.timeIntegration.u) # cek can put in logic to skip of BC's don't depend on t or u # Dirichlet boundary conditions # if hasattr(self.numericalFlux,'setDirichletValues'): self.numericalFlux.setDirichletValues(self.ebqe) # flux boundary conditions, SHOULDN'T HAVE # cNCLS3P.calculateResidual(self.mesh.nElements_global, # try to use 1d,2d,3d specific modules if self.forceStrongConditions: for dofN, g in self.dirichletConditionsForceDOF.DOFBoundaryConditionsDict.iteritems(): self.u[0].dof[dofN] = g( self.dirichletConditionsForceDOF.DOFBoundaryPointDict[dofN], self.timeIntegration.t) self.ncls3p.calculateResidual( # element self.u[0].femSpace.elementMaps.psi, self.u[0].femSpace.elementMaps.grad_psi, self.mesh.nodeArray, self.mesh.nodeVelocityArray, self.MOVING_DOMAIN, self.mesh.elementNodesArray, self.elementQuadratureWeights[('u', 0)], self.u[0].femSpace.psi, self.u[0].femSpace.grad_psi, self.u[0].femSpace.psi, self.u[0].femSpace.grad_psi, # element boundary self.u[0].femSpace.elementMaps.psi_trace, self.u[0].femSpace.elementMaps.grad_psi_trace, self.elementBoundaryQuadratureWeights[('u', 0)], self.u[0].femSpace.psi_trace, self.u[0].femSpace.grad_psi_trace, self.u[0].femSpace.psi_trace, self.u[0].femSpace.grad_psi_trace, self.u[0].femSpace.elementMaps.boundaryNormals, self.u[0].femSpace.elementMaps.boundaryJacobians, # physics self.mesh.nElements_global, self.coefficients.useMetrics, self.timeIntegration.alpha_bdf, # mwf was self.timeIntegration.dt, self.shockCapturing.lag, self.shockCapturing.shockCapturingFactor, self.coefficients.sc_uref, self.coefficients.sc_beta, self.u[0].femSpace.dofMap.l2g, self.mesh.elementDiametersArray, self.u[0].dof, self.coefficients.u_old_dof, self.coefficients.q_v, self.timeIntegration.m_tmp[0], self.q[('u', 0)], self.q[('grad(u)', 0)], self.q[('dH_sge', 0, 0)], # mwf was self.timeIntegration.m_last[0], self.timeIntegration.beta_bdf[0], self.q['dV'], self.q['dV_last'], self.q[('cfl', 0)], self.shockCapturing.numDiff[0], self.shockCapturing.numDiff_last[0], self.offset[0], self.stride[0], r, self.mesh.nExteriorElementBoundaries_global, self.mesh.exteriorElementBoundariesArray, self.mesh.elementBoundaryElementsArray, self.mesh.elementBoundaryLocalElementBoundariesArray, self.coefficients.ebqe_v, self.numericalFlux.isDOFBoundary[0], self.coefficients.rdModel.ebqe[('u', 0)], self.numericalFlux.ebqe[('u', 0)], self.ebqe[('u', 0)]) if self.forceStrongConditions: for dofN, g in self.dirichletConditionsForceDOF.DOFBoundaryConditionsDict.iteritems(): r[dofN] = 0 # print "velocity in ncls",self.coefficients.q_v, # print "cfl",self.q[('cfl',0)] if self.stabilization: self.stabilization.accumulateSubgridMassHistory(self.q) log("Global residual", level=9, data=r) # mwf debug # pdb.set_trace() # mwf decide if this is reasonable for keeping solver statistics self.nonlinear_function_evaluations += 1 if self.globalResidualDummy is None: self.globalResidualDummy = numpy.zeros(r.shape, 'd') def getJacobian(self, jacobian): #import superluWrappers #import numpy import pdb cfemIntegrals.zeroJacobian_CSR(self.nNonzerosInJacobian, jacobian) # mwf debug # pdb.set_trace() # cNCLS3P.calculateJacobian(self.mesh.nElements_global, self.ncls3p.calculateJacobian( # element self.u[0].femSpace.elementMaps.psi, self.u[0].femSpace.elementMaps.grad_psi, self.mesh.nodeArray, self.mesh.nodeVelocityArray, self.MOVING_DOMAIN, self.mesh.elementNodesArray, self.elementQuadratureWeights[('u', 0)], self.u[0].femSpace.psi, self.u[0].femSpace.grad_psi, self.u[0].femSpace.psi, self.u[0].femSpace.grad_psi, # element boundary self.u[0].femSpace.elementMaps.psi
Cython
_trace, self.u[0].femSpace.elementMaps.grad_psi_trace, self.elementBoundaryQuadratureWeights[('u', 0)], self.u[0].femSpace.psi_trace, self.u[0].femSpace.grad_psi_trace, self.u[0].femSpace.psi_trace, self.u[0].femSpace.grad_psi_trace, self.u[0].femSpace.elementMaps.boundaryNormals, self.u[0].femSpace.elementMaps.boundaryJacobians, self.mesh.nElements_global, self.coefficients.useMetrics, self.timeIntegration.alpha_bdf, # mwf was dt self.shockCapturing.lag, self.shockCapturing.shockCapturingFactor, self.u[0].femSpace.dofMap.l2g, self.mesh.elementDiametersArray, self.u[0].dof, self.coefficients.q_v, # mwf was self.timeIntegration.m_last[0], self.timeIntegration.beta_bdf[0], self.q[('cfl', 0)], self.shockCapturing.numDiff_last[0], self.csrRowIndeces[(0, 0)], self.csrColumnOffsets[(0, 0)], jacobian, self.mesh.nExteriorElementBoundaries_global, self.mesh.exteriorElementBoundariesArray, self.mesh.elementBoundaryElementsArray, self.mesh.elementBoundaryLocalElementBoundariesArray, self.coefficients.ebqe_v, self.numericalFlux.isDOFBoundary[0], self.coefficients.rdModel.ebqe[('u', 0)], self.numericalFlux.ebqe[('u', 0)], self.csrColumnOffsets_eb[(0, 0)]) # Load the Dirichlet conditions directly into residual if self.forceStrongConditions: scaling = 1.0 # probably want to add some scaling to match non-dirichlet diagonals in linear system for dofN in self.dirichletConditionsForceDOF.DOFBoundaryConditionsDict.keys(): global_dofN = dofN for i in range( self.rowptr[global_dofN], self.rowptr[ global_dofN + 1]): if (self.colind[i] == global_dofN): # print "RBLES forcing residual cj = %s dofN= %s # global_dofN= %s was self.nzval[i]= %s now =%s " % # (cj,dofN,global_dofN,self.nzval[i],scaling) self.nzval[i] = scaling else: self.nzval[i] = 0.0 # print "RBLES zeroing residual cj = %s dofN= %s # global_dofN= %s " % (cj,dofN,global_dofN) log("Jacobian ", level=10, data=jacobian) # mwf decide if this is reasonable for solver statistics self.nonlinear_function_jacobian_evaluations += 1 return jacobian def calculateElementQuadrature(self): """ Calculate the physical location and weights of the quadrature rules and the shape information at the quadrature points. This function should be called only when the mesh changes. """ self.u[0].femSpace.elementMaps.getValues(self.elementQuadraturePoints, self.q['x']) self.u[0].femSpace.elementMaps.getBasisValuesRef( self.elementQuadraturePoints) self.u[0].femSpace.elementMaps.getBasisGradientValuesRef( self.elementQuadraturePoints) self.u[0].femSpace.getBasisValuesRef(self.elementQuadraturePoints) self.u[0].femSpace.getBasisGradientValuesRef( self.elementQuadraturePoints) self.coefficients.initializeElementQuadrature( self.timeIntegration.t, self.q) if self.stabilization is not None: self.stabilization.initializeElementQuadrature( self.mesh, self.timeIntegration.t, self.q) self.stabilization.initializeTimeIntegration(self.timeIntegration) if self.shockCapturing is not None: self.shockCapturing.initializeElementQuadrature( self.mesh, self.timeIntegration.t, self.q) def calculateElementBoundaryQuadrature(self): pass def calculateExteriorElementBoundaryQuadrature(self): """ Calculate the physical location and weights of the quadrature rules and the shape information at the quadrature points on global element boundaries. This function should be called only when the mesh changes. """ # # get physical locations of element boundary quadrature points # # assume all components live on the same mesh self.u[0].femSpace.elementMaps.getBasisValuesTraceRef( self.elementBoundaryQuadraturePoints) self.u[0].femSpace.elementMaps.getBasisGradientValuesTraceRef( self.elementBoundaryQuadraturePoints) self.u[0].femSpace.getBasisValuesTraceRef( self.elementBoundaryQuadraturePoints) self.u[0].femSpace.getBasisGradientValuesTraceRef( self.elementBoundaryQuadraturePoints) self.u[0].femSpace.elementMaps.getValuesGlobalExteriorTrace( self.elementBoundaryQuadraturePoints, self.ebqe['x']) self.fluxBoundaryConditionsObjectsDict = dict([(cj, FluxBoundaryConditions(self.mesh, self.nElementBoundaryQuadraturePoints_elementBoundary, self.ebqe[('x')], self.advectiveFluxBoundaryConditionsSetterDict[cj], self.diffusiveFluxBoundaryConditionsSetterDictDict[cj])) for cj in self.advectiveFluxBoundaryConditionsSetterDict.keys()]) self.coefficients.initializeGlobalExteriorElementBoundaryQuadrature( self.timeIntegration.t, self.ebqe) def estimate_mt(self): pass def calculateSolutionAtQuadrature(self): pass def calculateAuxiliaryQuantitiesAfterStep(self): pass def computeWaterline(self, t): self.waterline_calls += 1 if self.coefficients.waterline_interval > 0 and self.waterline_calls % self.coefficients.waterline_interval == 0: self.waterline_npoints = numpy.zeros((1,), 'i') self.waterline_data = numpy.zeros( (self.mesh.nExteriorElementBoundaries_global, self.nSpace_global), 'd') self.ncls3p.calculateWaterline( # element self.waterline_npoints, self.waterline_data, self.u[0].femSpace.elementMaps.psi, self.u[0].femSpace.elementMaps.grad_psi, self.mesh.nodeArray, self.mesh.nodeVelocityArray, self.MOVING_DOMAIN, self.mesh.elementNodesArray, self.elementQuadratureWeights[('u', 0)], self.u[0].femSpace.psi, self.u[0].femSpace.grad_psi, self.u[0].femSpace.psi, self.u[0].femSpace.grad_psi, # element boundary self.u[0].femSpace.elementMaps.psi_trace, self.u[0].femSpace.elementMaps.grad_psi_trace, self.elementBoundaryQuadratureWeights[('u', 0)], self.u[0].femSpace.psi_trace, self.u[0].femSpace.grad_psi_trace, self.u[0].femSpace.psi_trace, self.u[0].femSpace.grad_psi_trace, self.u[0].femSpace.elementMaps.boundaryNormals, self.u[0].femSpace.elementMaps.boundaryJacobians, # physics self.mesh.nElements_global, self.coefficients.useMetrics, self.timeIntegration.alpha_bdf, # mwf was self.timeIntegration.dt, self.shockCapturing.lag, self.shockCapturing.shockCapturingFactor, self.coefficients.sc_uref, self.coefficients.sc_beta, self.u[0].femSpace.dofMap.l2g, self.mesh.elementDiametersArray, self.u[0].dof, self.coefficients.u_old_dof, self.coefficients.q_v, self.timeIntegration.m_tmp[0], self.q[('u', 0)], self.q[('grad(u)', 0)], self.q[('dH_sge', 0, 0)], # mwf was self.timeIntegration.m_last[0], self.timeIntegration.beta_bdf[0], self.q[('cfl', 0)], self.shockCapturing.numDiff[0], self.shockCapturing.numDiff_last[0], self.offset[0], self.stride[0], self.mesh.nExteriorElementBoundaries_global, self.mesh.exteriorElementBoundariesArray, self.mesh.elementBoundaryElementsArray, self.mesh.elementBoundaryLocalElementBoundariesArray, self.mesh.elementBoundaryMaterialTypes, self.coefficients.ebqe_v, self.numericalFlux.isDOFBoundary[0], self.numericalFlux.ebqe[('u', 0)], self.ebqe[('u', 0)]) from proteus import Comm comm = Comm.get() filename = os.path.join
Cython
(self.coefficients.opts.dataDir, "waterline." + str(comm.rank()) + "." + str(self.waterline_prints)) numpy.save( filename, self.waterline_data[ 0:self.waterline_npoints[0]]) self.waterline_prints += 1 def updateAfterMeshMotion(self): pass <|end_of_text|># Copyright 2018 The Cornac Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # cython: language_level=3 import multiprocessing cimport cython from cython.parallel import prange from cython cimport floating, integral from libcpp cimport bool from libc.math cimport abs import numpy as np cimport numpy as np from tqdm.auto import trange from..recommender import Recommender from...exception import ScoreException from...utils import fast_dot from...utils import get_rng from...utils.init_utils import normal, zeros class MF(Recommender): """Matrix Factorization. Parameters ---------- k: int, optional, default: 10 The dimension of the latent factors. max_iter: int, optional, default: 100 Maximum number of iterations or the number of epochs for SGD. learning_rate: float, optional, default: 0.01 The learning rate. lambda_reg: float, optional, default: 0.001 The lambda value used for regularization. use_bias: boolean, optional, default: True When True, user, item, and global biases are used. early_stop: boolean, optional, default: False When True, delta loss will be checked after each iteration to stop learning earlier. num_threads: int, optional, default: 0 Number of parallel threads for training. If num_threads=0, all CPU cores will be utilized. If seed is not None, num_threads=1 to remove randomness from parallelization. trainable: boolean, optional, default: True When False, the model will not be re-trained, and input of pre-trained parameters are required. verbose: boolean, optional, default: True When True, running logs are displayed. init_params: dictionary, optional, default: None Initial parameters, e.g., init_params = {'U': user_factors, 'V': item_factors, 'Bu': user_biases, 'Bi': item_biases} seed: int, optional, default: None Random seed for weight initialization. If specified, training will take longer because of single-thread (no parallelization). References ---------- * Koren, Y., Bell, R., & Volinsky, C. Matrix factorization techniques for recommender systems. \ In Computer, (8), 30-37. 2009. """ def __init__( self, name='MF', k=10, max_iter=20, learning_rate=0.01, lambda_reg=0.02, use_bias=True, early_stop=False, num_threads=0, trainable=True, verbose=False, init_params=None, seed=None ): super().__init__(name=name, trainable=trainable, verbose=verbose) self.k = k self.max_iter = max_iter self.learning_rate = learning_rate self.lambda_reg = lambda_reg self.use_bias = use_bias self.early_stop = early_stop self.seed = seed if seed is not None: self.num_threads = 1 elif num_threads > 0 and num_threads < multiprocessing.cpu_count(): self.num_threads = num_threads else: self.num_threads = multiprocessing.cpu_count() # Init params if provided self.init_params = {} if init_params is None else init_params self.u_factors = self.init_params.get('U', None) self.i_factors = self.init_params.get('V', None) self.u_biases = self.init_params.get('Bu', None) self.i_biases = self.init_params.get('Bi', None) self.global_mean = 0.0 def _init(self): rng = get_rng(self.seed) n_users, n_items = self.train_set.num_users, self.train_set.num_items if self.u_factors is None: self.u_factors = normal([n_users, self.k], std=0.01, random_state=rng) if self.i_factors is None: self.i_factors = normal([n_items, self.k], std=0.01, random_state=rng) self.u_biases = zeros(n_users) if self.u_biases is None else self.u_biases self.i_biases = zeros(n_items) if self.i_biases is None else self.i_biases self.global_mean = self.train_set.global_mean if self.use_bias else 0.0 def fit(self, train_set, val_set=None): """Fit the model to observations. Parameters ---------- train_set: :obj:`cornac.data.Dataset`, required User-Item preference data as well as additional modalities. val_set: :obj:`cornac.data.Dataset`, optional, default: None User-Item preference data for model selection purposes (e.g., early stopping). Returns ------- self : object """ Recommender.fit(self, train_set, val_set) self._init() if self.trainable: (rid, cid, val) = train_set.uir_tuple self._fit_sgd(rid, cid, val.astype(np.float32), self.u_factors, self.i_factors, self.u_biases, self.i_biases) return self @cython.boundscheck(False) @cython.wraparound(False) def _fit_sgd(self, integral[:] rid, integral[:] cid, floating[:] val, floating[:, :] U, floating[:, :] V, floating[:] Bu, floating[:] Bi): """Fit the model parameters (U, V, Bu, Bi) with SGD """ cdef: long num_users = self.train_set.num_users long num_items = self.train_set.num_items long num_ratings = val.shape[0] int num_factors = self.k int max_iter = self.max_iter int num_threads = self.num_threads floating reg = self.lambda_reg floating mu = self.global_mean bool use_bias = self.use_bias bool early_stop = self.early_stop bool verbose = self.verbose floating lr = self.learning_rate floating loss = 0 floating last_loss = 0 floating r, r_pred, error, u_f, i_f, delta_loss integral u, i, f, j floating * user floating * item progress = trange(max_iter, disable=not self.verbose) for epoch in progress: last_loss = loss loss = 0 for j in prange(num_ratings, nogil=True, schedule='static', num_threads=num_threads): u, i, r = rid[j], cid[j], val[j] user, item = &U[u, 0], &V[i, 0] # predict rating r_pred = mu + Bu[u] + Bi[i] for f in range(num_factors): r_pred = r_pred + user[f] * item[f] error = r - r_pred loss += error * error # update factors for f in range(num_factors): u_f, i_f = user[f], item[f] user[f] += lr * (error * i_f - reg * u_f) item[f] += lr * (error * u_f - reg * i_f) # update biases if use_bias: Bu[u] += lr * (error - reg * Bu[u]) Bi[i] += lr * (error - reg * Bi[i]) loss = 0.5 * loss progress.update(1) progress.set_postfix({"loss": "%.2f" % loss}) delta_loss = loss - last_loss if early_stop and abs(delta_loss) < 1e-5: if verbose: print('Early stopping, delta_loss = %.4f' % delta_loss) break progress.close() if verbose: print('Optimization finished!') def score(self, user_idx, item_idx=None): """Predict the scores/ratings of a user for an item. Parameters ---------- user_idx: int, required The index of the user for whom to perform score prediction. item_idx: int, optional, default: None The index of the item for which to perform score prediction. If None, scores for all known items will be returned. Returns ------- res : A scalar or a Numpy array Relative scores that the user
Cython
gives to the item or to all known items """ unk_user = self.train_set.is_unk_user(user_idx) if item_idx is None: known_item_scores = np.add(self.i_biases, self.global_mean) if not unk_user: known_item_scores = np.add(known_item_scores, self.u_biases[user_idx]) fast_dot(self.u_factors[user_idx], self.i_factors, known_item_scores) return known_item_scores else: unk_item = self.train_set.is_unk_item(item_idx) if self.use_bias: item_score = self.global_mean if not unk_user: item_score += self.u_biases[user_idx] if not unk_item: item_score += self.i_biases[item_idx] if not unk_user and not unk_item: item_score += np.dot(self.u_factors[user_idx], self.i_factors[item_idx]) else: if unk_user or unk_item: raise ScoreException("Can't make score prediction for (user_id=%d, item_id=%d)" % (user_idx, item_idx)) item_score = np.dot(self.u_factors[user_idx], self.i_factors[item_idx]) return item_score <|end_of_text|>cimport cvad cimport numpy as np from spokestack.extensions.webrtc import ProcessError cdef class WebRtcVad: cdef cvad.VadInst* _vad cdef int _sample_rate def __dealloc__(self): cvad.WebRtcVad_Free(self._vad) def __init__(self, sample_rate, mode): self._vad = NULL self._sample_rate = sample_rate result = cvad.WebRtcVad_Create(&self._vad) if result!= 0: raise MemoryError("out_of_memory") result = cvad.WebRtcVad_Init(self._vad) if result!= 0: raise ValueError("invalid_config") result = cvad.WebRtcVad_set_mode(self._vad, mode) if result!= 0: raise ValueError("invalid_config") def is_speech(self, frame): result = cvad.WebRtcVad_Process( self._vad, self._sample_rate, <short*> np.PyArray_DATA(frame), len(frame) ) return result <|end_of_text|>include "config.pxi" from api_types_hdf5 cimport * from api_types_ext cimport * cdef herr_t H5open() except * cdef herr_t H5close() except * cdef herr_t H5get_libversion(unsigned *majnum, unsigned *minnum, unsigned *relnum) except * cdef hid_t H5Dcreate2(hid_t loc_id, char *name, hid_t type_id, hid_t space_id, hid_t lcpl_id, hid_t dcpl_id, hid_t dapl_id) except * cdef hid_t H5Dcreate_anon(hid_t file_id, hid_t type_id, hid_t space_id, hid_t plist_id, hid_t dapl_id) except * cdef hid_t H5Dopen(hid_t file_id, char *name) except * cdef hid_t H5Dopen2(hid_t loc_id, char *name, hid_t dapl_id ) except * cdef herr_t H5Dclose(hid_t dset_id) except * cdef hid_t H5Dget_space(hid_t dset_id) except * cdef herr_t H5Dget_space_status(hid_t dset_id, H5D_space_status_t *status) except * cdef hid_t H5Dget_type(hid_t dset_id) except * cdef hid_t H5Dget_create_plist(hid_t dataset_id) except * cdef hid_t H5Dget_access_plist(hid_t dataset_id) except * cdef haddr_t H5Dget_offset(hid_t dset_id) except * cdef hsize_t H5Dget_storage_size(hid_t dset_id) except * cdef herr_t H5Dread(hid_t dset_id, hid_t mem_type_id, hid_t mem_space_id, hid_t file_space_id, hid_t plist_id, void *buf) except * cdef herr_t H5Dwrite(hid_t dset_id, hid_t mem_type, hid_t mem_space, hid_t file_space, hid_t xfer_plist, void* buf) except * cdef herr_t H5Dextend(hid_t dataset_id, hsize_t *size) except * cdef herr_t H5Dfill(void *fill, hid_t fill_type_id, void *buf, hid_t buf_type_id, hid_t space_id ) except * cdef herr_t H5Dvlen_get_buf_size(hid_t dset_id, hid_t type_id, hid_t space_id, hsize_t *size) except * cdef herr_t H5Dvlen_reclaim(hid_t type_id, hid_t space_id, hid_t plist, void *buf) except * cdef herr_t H5Diterate(void *buf, hid_t type_id, hid_t space_id, H5D_operator_t op, void* operator_data) except * cdef herr_t H5Dset_extent(hid_t dset_id, hsize_t* size) except * cdef hid_t H5Fcreate(char *filename, unsigned int flags, hid_t create_plist, hid_t access_plist) except * cdef hid_t H5Fopen(char *name, unsigned flags, hid_t access_id) except * cdef herr_t H5Fclose(hid_t file_id) except * cdef htri_t H5Fis_hdf5(char *name) except * cdef herr_t H5Fflush(hid_t object_id, H5F_scope_t scope) except * cdef hid_t H5Freopen(hid_t file_id) except * cdef herr_t H5Fmount(hid_t loc_id, char *name, hid_t child_id, hid_t plist_id) except * cdef herr_t H5Funmount(hid_t loc_id, char *name) except * cdef herr_t H5Fget_filesize(hid_t file_id, hsize_t *size) except * cdef hid_t H5Fget_create_plist(hid_t file_id ) except * cdef hid_t H5Fget_access_plist(hid_t file_id) except * cdef hssize_t H5Fget_freespace(hid_t file_id) except * cdef ssize_t H5Fget_name(hid_t obj_id, char *name, size_t size) except * cdef int H5Fget_obj_count(hid_t file_id, unsigned int types) except * cdef int H5Fget_obj_ids(hid_t file_id, unsigned int types, int max_objs, hid_t *obj_id_list) except * cdef herr_t H5Fget_vfd_handle(hid_t file_id, hid_t fapl_id, void **file_handle) except * cdef herr_t H5Fget_intent(hid_t file_id, unsigned int *intent) except * cdef herr_t H5Fget_mdc_config(hid_t file_id, H5AC_cache_config_t *config_ptr) except * cdef herr_t H5Fget_mdc_hit_rate(hid_t file_id, double *hit_rate_ptr) except * cdef herr_t H5Fget_mdc_size(hid_t file_id, size_t *max_size_ptr, size_t *min_clean_size_ptr, size_t *cur_size_ptr, int *cur_num_entries_ptr) except * cdef herr_t H5Freset_mdc_hit_rate_stats(hid_t file_id) except * cdef herr_t H5Fset_mdc_config(hid_t file_id, H5AC_cache_config_t *config_ptr) except * cdef hid_t H5Gcreate(hid_t loc_id, char *name, size_t size_hint) except * cdef hid_t H5Gopen(hid_t loc_id, char *name) except * cdef herr_t H5Gclose(hid_t group_id) except * cdef herr_t H5Glink2( hid_t curr_loc_id, char *current_name, H5G_link_t link_type, hid_t new_loc_id, char *new_name) except * cdef herr_t H5Gunlink(hid_t file_id, char *name) except * cdef herr_t H5Gmove2(hid_t src_loc_id, char *src_name, hid_t dst_loc_id, char *dst_name) except * cdef herr_t H5Gget_num_objs(hid_t loc_id, hsize_t* num_obj) except * cdef int H5Gget_objname_by_idx(hid_t loc_id, hsize_t idx, char *name, size_t size) except * cdef int H5Gget_objtype_by_idx(hid_t loc_id, hsize_t idx) except * cdef herr_t H5Giterate(hid_t loc_id, char *name, int *idx, H5G_iterate_t op, void* data) except * cdef herr_t H5Gget_objinfo(hid_t loc_id, char* name, int follow_link, H5G_stat_t *statbuf) except * cdef herr_t H5Gget_linkval(hid_t loc_id, char *name, size_t size, char *value) except * cdef herr_t H5Gset_comment(hid_t loc_id, char *name, char *comment)
Cython
except * cdef int H5Gget_comment(hid_t loc_id, char *name, size_t bufsize, char *comment) except * cdef hid_t H5Gcreate_anon( hid_t loc_id, hid_t gcpl_id, hid_t gapl_id) except * cdef hid_t H5Gcreate2(hid_t loc_id, char *name, hid_t lcpl_id, hid_t gcpl_id, hid_t gapl_id) except * cdef hid_t H5Gopen2( hid_t loc_id, char * name, hid_t gapl_id) except * cdef herr_t H5Gget_info( hid_t group_id, H5G_info_t *group_info) except * cdef herr_t H5Gget_info_by_name( hid_t loc_id, char *group_name, H5G_info_t *group_info, hid_t lapl_id) except * cdef hid_t H5Gget_create_plist(hid_t group_id) except * cdef H5I_type_t H5Iget_type(hid_t obj_id) except * cdef ssize_t H5Iget_name( hid_t obj_id, char *name, size_t size) except * cdef hid_t H5Iget_file_id(hid_t obj_id) except * cdef int H5Idec_ref(hid_t obj_id) except * cdef int H5Iget_ref(hid_t obj_id) except * cdef int H5Iinc_ref(hid_t obj_id) except * cdef herr_t H5Lmove(hid_t src_loc, char *src_name, hid_t dst_loc, char *dst_name, hid_t lcpl_id, hid_t lapl_id) except * cdef herr_t H5Lcopy(hid_t src_loc, char *src_name, hid_t dst_loc, char *dst_name, hid_t lcpl_id, hid_t lapl_id) except * cdef herr_t H5Lcreate_hard(hid_t cur_loc, char *cur_name, hid_t dst_loc, char *dst_name, hid_t lcpl_id, hid_t lapl_id) except * cdef herr_t H5Lcreate_soft(char *link_target, hid_t link_loc_id, char *link_name, hid_t lcpl_id, hid_t lapl_id) except * cdef herr_t H5Ldelete(hid_t loc_id, char *name, hid_t lapl_id) except * cdef herr_t H5Ldelete_by_idx(hid_t loc_id, char *group_name, H5_index_t idx_type, H5_iter_order_t order, hsize_t n, hid_t lapl_id) except * cdef herr_t H5Lget_val(hid_t loc_id, char *name, void *bufout, size_t size, hid_t lapl_id) except * cdef herr_t H5Lget_val_by_idx(hid_t loc_id, char *group_name, H5_index_t idx_type, H5_iter_order_t order, hsize_t n, void *bufout, size_t size, hid_t lapl_id) except * cdef htri_t H5Lexists(hid_t loc_id, char *name, hid_t lapl_id) except * cdef herr_t H5Lget_info(hid_t loc_id, char *name, H5L_info_t *linfo, hid_t lapl_id) except * cdef herr_t H5Lget_info_by_idx(hid_t loc_id, char *group_name, H5_index_t idx_type, H5_iter_order_t order, hsize_t n, H5L_info_t *linfo, hid_t lapl_id) except * cdef ssize_t H5Lget_name_by_idx(hid_t loc_id, char *group_name, H5_index_t idx_type, H5_iter_order_t order, hsize_t n, char *name, size_t size, hid_t lapl_id) except * cdef herr_t H5Literate(hid_t grp_id, H5_index_t idx_type, H5_iter_order_t order, hsize_t *idx, H5L_iterate_t op, void *op_data) except * cdef herr_t H5Literate_by_name(hid_t loc_id, char *group_name, H5_index_t idx_type, H5_iter_order_t order, hsize_t *idx, H5L_iterate_t op, void *op_data, hid_t lapl_id) except * cdef herr_t H5Lvisit(hid_t grp_id, H5_index_t idx_type, H5_iter_order_t order, H5L_iterate_t op, void *op_data) except * cdef herr_t H5Lvisit_by_name(hid_t loc_id, char *group_name, H5_index_t idx_type, H5_iter_order_t order, H5L_iterate_t op, void *op_data, hid_t lapl_id) except * cdef herr_t H5Lunpack_elink_val(void *ext_linkval, size_t link_size, unsigned *flags, char **filename, char **obj_path) except * cdef herr_t H5Lcreate_external(char *file_name, char *obj_name, hid_t link_loc_id, char *link_name, hid_t lcpl_id, hid_t lapl_id) except * cdef hid_t H5Oopen(hid_t loc_id, char *name, hid_t lapl_id) except * cdef hid_t H5Oopen_by_addr(hid_t loc_id, haddr_t addr) except * cdef hid_t H5Oopen_by_idx(hid_t loc_id, char *group_name, H5_index_t idx_type, H5_iter_order_t order, hsize_t n, hid_t lapl_id) except * cdef herr_t H5Oget_info(hid_t loc_id, H5O_info_t *oinfo) except * cdef herr_t H5Oget_info_by_name(hid_t loc_id, char *name, H5O_info_t *oinfo, hid_t lapl_id) except * cdef herr_t H5Oget_info_by_idx(hid_t loc_id, char *group_name, H5_index_t idx_type, H5_iter_order_t order, hsize_t n, H5O_info_t *oinfo, hid_t lapl_id) except * IF HDF5_VERSION >= (1, 8, 5): cdef htri_t H5Oexists_by_name(hid_t loc_id, char * name, hid_t lapl_id ) except * cdef herr_t H5Olink(hid_t obj_id, hid_t new_loc_id, char *new_name, hid_t lcpl_id, hid_t lapl_id) except * cdef herr_t H5Ocopy(hid_t src_loc_id, char *src_name, hid_t dst_loc_id, char *dst_name, hid_t ocpypl_id, hid_t lcpl_id) except * cdef herr_t H5Oincr_refcount(hid_t object_id) except * cdef herr_t H5Odecr_refcount(hid_t object_id) except * cdef herr_t H5Oset_comment(hid_t obj_id, char *comment) except * cdef herr_t H5Oset_comment_by_name(hid_t loc_id, char *name, char *comment, hid_t lapl_id) except * cdef ssize_t H5Oget_comment(hid_t obj_id, char *comment, size_t bufsize) except * cdef ssize_t H5Oget_comment_by_name(hid_t loc_id, char *name, char *comment, size_t bufsize, hid_t lapl_id) except * cdef herr_t H5Ovisit(hid_t obj_id, H5_index_t idx_type, H5_iter_order_t order, H5O_iterate_t op, void *op_data) except * cdef herr_t H5Ovisit_by_name(hid_t loc_id, char *obj_name, H5_index_t idx_type, H5_iter_order_t order, H5O_iterate_t op, void *op_data, hid_t lapl_id) except * cdef herr_t H5Oclose(hid_t object_id) except * cdef hid_t H5Pcreate(hid_t plist_id) except * cdef hid_t H5Pcopy(hid_t plist_id) except * cdef int H5Pget_class(hid_t plist_id) except * cdef herr_t H5Pclose(hid_t plist_id) except * cdef htri_t H5Pequal( hid_t id1, hid_t id2 ) except * cdef herr_t H5Pclose_class(hid_t id) except * cdef herr_t H5Pget_version(hid_t plist, unsigned int *super_, unsigned int* freelist, unsigned int *stab, unsigned int *shhdr) except * cdef herr_t H5Pset_userblock(hid_t plist, hsize_t size) except * cdef herr_t H5Pget_userblock(hid_t plist, hsize_t * size) except * cdef herr_t H5Pset_sizes(hid_t plist, size_t sizeof_addr, size_t sizeof_size) except * cdef herr_t H5Pget_sizes(hid_t plist, size_t *sizeof_addr, size_t *sizeof_size) except * cdef herr_t H5Pset_sym_k(hid_t plist, unsigned int ik, unsigned int lk) except * cdef herr_t H5Pget_sym_k(hid_t plist, unsigned int *ik, unsigned int *lk) except * cdef herr_t H5Pset
Cython
_istore_k(hid_t plist, unsigned int ik) except * cdef herr_t H5Pget_istore_k(hid_t plist, unsigned int *ik) except * cdef herr_t H5Pset_fclose_degree(hid_t fapl_id, H5F_close_degree_t fc_degree) except * cdef herr_t H5Pget_fclose_degree(hid_t fapl_id, H5F_close_degree_t *fc_degree) except * cdef herr_t H5Pset_fapl_core( hid_t fapl_id, size_t increment, hbool_t backing_store) except * cdef herr_t H5Pget_fapl_core( hid_t fapl_id, size_t *increment, hbool_t *backing_store) except * cdef herr_t H5Pset_fapl_family( hid_t fapl_id, hsize_t memb_size, hid_t memb_fapl_id ) except * cdef herr_t H5Pget_fapl_family( hid_t fapl_id, hsize_t *memb_size, hid_t *memb_fapl_id ) except * cdef herr_t H5Pset_family_offset( hid_t fapl_id, hsize_t offset) except * cdef herr_t H5Pget_family_offset( hid_t fapl_id, hsize_t *offset) except * cdef herr_t H5Pset_fapl_log(hid_t fapl_id, char *logfile, unsigned int flags, size_t buf_size) except * cdef herr_t H5Pset_fapl_multi(hid_t fapl_id, H5FD_mem_t *memb_map, hid_t *memb_fapl, char **memb_name, haddr_t *memb_addr, hbool_t relax) except * cdef herr_t H5Pset_cache(hid_t plist_id, int mdc_nelmts, int rdcc_nelmts, size_t rdcc_nbytes, double rdcc_w0) except * cdef herr_t H5Pget_cache(hid_t plist_id, int *mdc_nelmts, int *rdcc_nelmts, size_t *rdcc_nbytes, double *rdcc_w0) except * cdef herr_t H5Pset_fapl_sec2(hid_t fapl_id) except * cdef herr_t H5Pset_fapl_stdio(hid_t fapl_id) except * cdef hid_t H5Pget_driver(hid_t fapl_id) except * cdef herr_t H5Pget_mdc_config(hid_t plist_id, H5AC_cache_config_t *config_ptr) except * cdef herr_t H5Pset_mdc_config(hid_t plist_id, H5AC_cache_config_t *config_ptr) except * cdef herr_t H5Pset_layout(hid_t plist, int layout) except * cdef H5D_layout_t H5Pget_layout(hid_t plist) except * cdef herr_t H5Pset_chunk(hid_t plist, int ndims, hsize_t * dim) except * cdef int H5Pget_chunk(hid_t plist, int max_ndims, hsize_t * dims ) except * cdef herr_t H5Pset_deflate( hid_t plist, int level) except * cdef herr_t H5Pset_fill_value(hid_t plist_id, hid_t type_id, void *value ) except * cdef herr_t H5Pget_fill_value(hid_t plist_id, hid_t type_id, void *value ) except * cdef herr_t H5Pfill_value_defined(hid_t plist_id, H5D_fill_value_t *status ) except * cdef herr_t H5Pset_fill_time(hid_t plist_id, H5D_fill_time_t fill_time ) except * cdef herr_t H5Pget_fill_time(hid_t plist_id, H5D_fill_time_t *fill_time ) except * cdef herr_t H5Pset_alloc_time(hid_t plist_id, H5D_alloc_time_t alloc_time ) except * cdef herr_t H5Pget_alloc_time(hid_t plist_id, H5D_alloc_time_t *alloc_time ) except * cdef herr_t H5Pset_filter(hid_t plist, H5Z_filter_t filter, unsigned int flags, size_t cd_nelmts, unsigned int* cd_values ) except * cdef htri_t H5Pall_filters_avail(hid_t dcpl_id) except * cdef int H5Pget_nfilters(hid_t plist) except * cdef H5Z_filter_t H5Pget_filter(hid_t plist, unsigned int filter_number, unsigned int *flags, size_t *cd_nelmts, unsigned int* cd_values, size_t namelen, char* name ) except * cdef herr_t H5Pget_filter_by_id( hid_t plist_id, H5Z_filter_t filter, unsigned int *flags, size_t *cd_nelmts, unsigned int* cd_values, size_t namelen, char* name) except * cdef herr_t H5Pmodify_filter(hid_t plist, H5Z_filter_t filter, unsigned int flags, size_t cd_nelmts, unsigned int *cd_values) except * cdef herr_t H5Premove_filter(hid_t plist, H5Z_filter_t filter ) except * cdef herr_t H5Pset_fletcher32(hid_t plist) except * cdef herr_t H5Pset_shuffle(hid_t plist_id) except * cdef herr_t H5Pset_szip(hid_t plist, unsigned int options_mask, unsigned int pixels_per_block) except * cdef herr_t H5Pset_scaleoffset(hid_t plist, H5Z_SO_scale_type_t scale_type, int scale_factor) except * cdef herr_t H5Pset_edc_check(hid_t plist, H5Z_EDC_t check) except * cdef H5Z_EDC_t H5Pget_edc_check(hid_t plist) except * cdef herr_t H5Pset_chunk_cache( hid_t dapl_id, size_t rdcc_nslots, size_t rdcc_nbytes, double rdcc_w0 ) except * cdef herr_t H5Pget_chunk_cache( hid_t dapl_id, size_t *rdcc_nslots, size_t *rdcc_nbytes, double *rdcc_w0 ) except * cdef herr_t H5Pset_sieve_buf_size(hid_t fapl_id, size_t size) except * cdef herr_t H5Pget_sieve_buf_size(hid_t fapl_id, size_t *size) except * cdef herr_t H5Pset_nlinks(hid_t plist_id, size_t nlinks) except * cdef herr_t H5Pget_nlinks(hid_t plist_id, size_t *nlinks) except * cdef herr_t H5Pset_elink_prefix(hid_t plist_id, char *prefix) except * cdef ssize_t H5Pget_elink_prefix(hid_t plist_id, char *prefix, size_t size) except * cdef hid_t H5Pget_elink_fapl(hid_t lapl_id) except * cdef herr_t H5Pset_elink_fapl(hid_t lapl_id, hid_t fapl_id) except * cdef herr_t H5Pset_create_intermediate_group(hid_t plist_id, unsigned crt_intmd) except * cdef herr_t H5Pget_create_intermediate_group(hid_t plist_id, unsigned *crt_intmd) except * cdef herr_t H5Pset_copy_object(hid_t plist_id, unsigned crt_intmd) except * cdef herr_t H5Pget_copy_object(hid_t plist_id, unsigned *crt_intmd) except * cdef herr_t H5Pset_char_encoding(hid_t plist_id, H5T_cset_t encoding) except * cdef herr_t H5Pget_char_encoding(hid_t plist_id, H5T_cset_t *encoding) except * cdef herr_t H5Pset_obj_track_times( hid_t ocpl_id, hbool_t track_times ) except * cdef herr_t H5Pget_obj_track_times( hid_t ocpl_id, hbool_t *track_times ) except * cdef herr_t H5Pset_local_heap_size_hint(hid_t plist_id, size_t size_hint) except * cdef herr_t H5Pget_local_heap_size_hint(hid_t plist_id, size_t *size_hint) except * cdef herr_t H5Pset_link_phase_change(hid_t plist_id, unsigned max_compact, unsigned min_dense) except * cdef herr_t H5Pget_link_phase_change(hid_t plist_id, unsigned *max_compact, unsigned *min_dense) except * cdef herr_t H5Pset_est_link_info(hid_t plist_id, unsigned est_num_entries, unsigned est_name_len) except * cdef herr_t H5Pget_est_link_info(hid_t plist_id, unsigned *est_num_entries, unsigned *est_name_len) except * cdef herr_t H5Pset_link_creation_order(hid_t plist_id, unsigned crt_order_flags) except * cdef herr_t H5Pget_link_creation_order(hid_t plist_id, unsigned *crt_order_flags) except * cdef herr_t H5Pset_libver_bounds(hid_t fapl_id, H5F_libver_t libver_low, H5F_libver_t libver_high) except * cdef herr_t H5Pget_libver_bounds(hid_t fapl_id, H5F_libver_t *libver_low, H5F_lib
Cython
ver_t *libver_high) except * cdef herr_t H5Rcreate(void *ref, hid_t loc_id, char *name, H5R_type_t ref_type, hid_t space_id) except * cdef hid_t H5Rdereference(hid_t obj_id, H5R_type_t ref_type, void *ref) except * cdef hid_t H5Rget_region(hid_t dataset, H5R_type_t ref_type, void *ref) except * cdef H5G_obj_t H5Rget_obj_type(hid_t id, H5R_type_t ref_type, void *ref) except * cdef ssize_t H5Rget_name(hid_t loc_id, H5R_type_t ref_type, void *ref, char *name, size_t size) except * cdef hid_t H5Screate(H5S_class_t type) except * cdef hid_t H5Scopy(hid_t space_id ) except * cdef herr_t H5Sclose(hid_t space_id) except * cdef hid_t H5Screate_simple(int rank, hsize_t *dims, hsize_t *maxdims) except * cdef htri_t H5Sis_simple(hid_t space_id) except * cdef herr_t H5Soffset_simple(hid_t space_id, hssize_t *offset ) except * cdef int H5Sget_simple_extent_ndims(hid_t space_id) except * cdef int H5Sget_simple_extent_dims(hid_t space_id, hsize_t *dims, hsize_t *maxdims) except * cdef hssize_t H5Sget_simple_extent_npoints(hid_t space_id) except * cdef H5S_class_t H5Sget_simple_extent_type(hid_t space_id) except * cdef herr_t H5Sextent_copy(hid_t dest_space_id, hid_t source_space_id ) except * cdef herr_t H5Sset_extent_simple(hid_t space_id, int rank, hsize_t *current_size, hsize_t *maximum_size ) except * cdef herr_t H5Sset_extent_none(hid_t space_id) except * cdef H5S_sel_type H5Sget_select_type(hid_t space_id) except * cdef hssize_t H5Sget_select_npoints(hid_t space_id) except * cdef herr_t H5Sget_select_bounds(hid_t space_id, hsize_t *start, hsize_t *end) except * cdef herr_t H5Sselect_all(hid_t space_id) except * cdef herr_t H5Sselect_none(hid_t space_id) except * cdef htri_t H5Sselect_valid(hid_t space_id) except * cdef hssize_t H5Sget_select_elem_npoints(hid_t space_id) except * cdef herr_t H5Sget_select_elem_pointlist(hid_t space_id, hsize_t startpoint, hsize_t numpoints, hsize_t *buf) except * cdef herr_t H5Sselect_elements(hid_t space_id, H5S_seloper_t op, size_t num_elements, hsize_t **coord) except * cdef hssize_t H5Sget_select_hyper_nblocks(hid_t space_id ) except * cdef herr_t H5Sget_select_hyper_blocklist(hid_t space_id, hsize_t startblock, hsize_t numblocks, hsize_t *buf ) except * cdef herr_t H5Sselect_hyperslab(hid_t space_id, H5S_seloper_t op, hsize_t *start, hsize_t *_stride, hsize_t *count, hsize_t *_block) except * cdef herr_t H5Sencode(hid_t obj_id, void *buf, size_t *nalloc) except * cdef hid_t H5Sdecode(void *buf) except * cdef hid_t H5Tcreate(H5T_class_t type, size_t size) except * cdef hid_t H5Topen(hid_t loc, char* name) except * cdef herr_t H5Tcommit(hid_t loc_id, char* name, hid_t type) except * cdef htri_t H5Tcommitted(hid_t type) except * cdef hid_t H5Tcopy(hid_t type_id) except * cdef htri_t H5Tequal(hid_t type_id1, hid_t type_id2 ) except * cdef herr_t H5Tlock(hid_t type_id) except * cdef H5T_class_t H5Tget_class(hid_t type_id) except * cdef size_t H5Tget_size(hid_t type_id) except * cdef hid_t H5Tget_super(hid_t type) except * cdef htri_t H5Tdetect_class(hid_t type_id, H5T_class_t dtype_class) except * cdef herr_t H5Tclose(hid_t type_id) except * cdef hid_t H5Tget_native_type(hid_t type_id, H5T_direction_t direction) except * cdef herr_t H5Tconvert(hid_t src_id, hid_t dst_id, size_t nelmts, void *buf, void *background, hid_t plist_id) except * cdef herr_t H5Tset_size(hid_t type_id, size_t size) except * cdef H5T_order_t H5Tget_order(hid_t type_id) except * cdef herr_t H5Tset_order(hid_t type_id, H5T_order_t order) except * cdef hsize_t H5Tget_precision(hid_t type_id) except * cdef herr_t H5Tset_precision(hid_t type_id, size_t prec) except * cdef int H5Tget_offset(hid_t type_id) except * cdef herr_t H5Tset_offset(hid_t type_id, size_t offset) except * cdef herr_t H5Tget_pad(hid_t type_id, H5T_pad_t * lsb, H5T_pad_t * msb ) except * cdef herr_t H5Tset_pad(hid_t type_id, H5T_pad_t lsb, H5T_pad_t msb ) except * cdef H5T_sign_t H5Tget_sign(hid_t type_id) except * cdef herr_t H5Tset_sign(hid_t type_id, H5T_sign_t sign) except * cdef herr_t H5Tget_fields(hid_t type_id, size_t *spos, size_t *epos, size_t *esize, size_t *mpos, size_t *msize ) except * cdef herr_t H5Tset_fields(hid_t type_id, size_t spos, size_t epos, size_t esize, size_t mpos, size_t msize ) except * cdef size_t H5Tget_ebias(hid_t type_id) except * cdef herr_t H5Tset_ebias(hid_t type_id, size_t ebias) except * cdef H5T_norm_t H5Tget_norm(hid_t type_id) except * cdef herr_t H5Tset_norm(hid_t type_id, H5T_norm_t norm) except * cdef H5T_pad_t H5Tget_inpad(hid_t type_id) except * cdef herr_t H5Tset_inpad(hid_t type_id, H5T_pad_t inpad) except * cdef H5T_cset_t H5Tget_cset(hid_t type_id) except * cdef herr_t H5Tset_cset(hid_t type_id, H5T_cset_t cset) except * cdef H5T_str_t H5Tget_strpad(hid_t type_id) except * cdef herr_t H5Tset_strpad(hid_t type_id, H5T_str_t strpad) except * cdef hid_t H5Tvlen_create(hid_t base_type_id) except * cdef htri_t H5Tis_variable_str(hid_t dtype_id) except * cdef int H5Tget_nmembers(hid_t type_id) except * cdef H5T_class_t H5Tget_member_class(hid_t type_id, int member_no) except * cdef char* H5Tget_member_name(hid_t type_id, unsigned membno) except * cdef hid_t H5Tget_member_type(hid_t type_id, unsigned membno) except * cdef int H5Tget_member_offset(hid_t type_id, int membno) except * cdef int H5Tget_member_index(hid_t type_id, char* name) except * cdef herr_t H5Tinsert(hid_t parent_id, char *name, size_t offset, hid_t member_id) except * cdef herr_t H5Tpack(hid_t type_id) except * cdef hid_t H5Tenum_create(hid_t base_id) except * cdef herr_t H5Tenum_insert(hid_t type, char *name, void *value) except * cdef herr_t H5Tenum_nameof( hid_t type, void *value, char *name, size_t size ) except * cdef herr_t H5Tenum_valueof( hid_t type, char *name, void *value ) except * cdef herr_t H5Tget_member_value(hid_t type, unsigned int memb_no, void *value ) except * cdef hid_t H5Tarray_create(hid_t base_id, int ndims,
Cython
hsize_t *dims, int *perm) except * cdef int H5Tget_array_ndims(hid_t type_id) except * cdef int H5Tget_array_dims(hid_t type_id, hsize_t *dims, int *perm) except * cdef herr_t H5Tset_tag(hid_t type_id, char* tag) except * cdef char* H5Tget_tag(hid_t type_id) except * cdef hid_t H5Tdecode(unsigned char *buf) except * cdef herr_t H5Tencode(hid_t obj_id, unsigned char *buf, size_t *nalloc) except * cdef herr_t H5Tcommit2(hid_t loc_id, char *name, hid_t dtype_id, hid_t lcpl_id, hid_t tcpl_id, hid_t tapl_id) except * cdef H5T_conv_t H5Tfind(hid_t src_id, hid_t dst_id, H5T_cdata_t **pcdata) except * cdef herr_t H5Tregister(H5T_pers_t pers, char *name, hid_t src_id, hid_t dst_id, H5T_conv_t func) except * cdef herr_t H5Tunregister(H5T_pers_t pers, char *name, hid_t src_id, hid_t dst_id, H5T_conv_t func) except * cdef htri_t H5Zfilter_avail(H5Z_filter_t id_) except * cdef herr_t H5Zget_filter_info(H5Z_filter_t filter_, unsigned int *filter_config_flags) except * cdef hid_t H5Acreate(hid_t loc_id, char *name, hid_t type_id, hid_t space_id, hid_t create_plist) except * cdef hid_t H5Aopen_idx(hid_t loc_id, unsigned int idx) except * cdef hid_t H5Aopen_name(hid_t loc_id, char *name) except * cdef herr_t H5Aclose(hid_t attr_id) except * cdef herr_t H5Adelete(hid_t loc_id, char *name) except * cdef herr_t H5Aread(hid_t attr_id, hid_t mem_type_id, void *buf) except * cdef herr_t H5Awrite(hid_t attr_id, hid_t mem_type_id, void *buf ) except * cdef int H5Aget_num_attrs(hid_t loc_id) except * cdef ssize_t H5Aget_name(hid_t attr_id, size_t buf_size, char *buf) except * cdef hid_t H5Aget_space(hid_t attr_id) except * cdef hid_t H5Aget_type(hid_t attr_id) except * cdef herr_t H5Aiterate(hid_t loc_id, unsigned * idx, H5A_operator_t op, void* op_data) except * cdef herr_t H5Adelete_by_name(hid_t loc_id, char *obj_name, char *attr_name, hid_t lapl_id) except * cdef herr_t H5Adelete_by_idx(hid_t loc_id, char *obj_name, H5_index_t idx_type, H5_iter_order_t order, hsize_t n, hid_t lapl_id) except * cdef hid_t H5Acreate_by_name(hid_t loc_id, char *obj_name, char *attr_name, hid_t type_id, hid_t space_id, hid_t acpl_id, hid_t aapl_id, hid_t lapl_id) except * cdef herr_t H5Aopen(hid_t obj_id, char *attr_name, hid_t aapl_id) except * cdef herr_t H5Aopen_by_name( hid_t loc_id, char *obj_name, char *attr_name, hid_t aapl_id, hid_t lapl_id) except * cdef herr_t H5Aopen_by_idx(hid_t loc_id, char *obj_name, H5_index_t idx_type, H5_iter_order_t order, hsize_t n, hid_t aapl_id, hid_t lapl_id) except * cdef htri_t H5Aexists_by_name( hid_t loc_id, char *obj_name, char *attr_name, hid_t lapl_id) except * cdef htri_t H5Aexists(hid_t obj_id, char *attr_name) except * cdef herr_t H5Arename(hid_t loc_id, char *old_attr_name, char *new_attr_name) except * cdef herr_t H5Arename_by_name(hid_t loc_id, char *obj_name, char *old_attr_name, char *new_attr_name, hid_t lapl_id) except * cdef herr_t H5Aget_info( hid_t attr_id, H5A_info_t *ainfo) except * cdef herr_t H5Aget_info_by_name(hid_t loc_id, char *obj_name, char *attr_name, H5A_info_t *ainfo, hid_t lapl_id) except * cdef herr_t H5Aget_info_by_idx(hid_t loc_id, char *obj_name, H5_index_t idx_type, H5_iter_order_t order, hsize_t n, H5A_info_t *ainfo, hid_t lapl_id) except * cdef herr_t H5Aiterate2(hid_t obj_id, H5_index_t idx_type, H5_iter_order_t order, hsize_t *n, H5A_operator2_t op, void *op_data) except * cdef hsize_t H5Aget_storage_size(hid_t attr_id) except * IF MPI: cdef herr_t H5Pset_fapl_mpio(hid_t fapl_id, MPI_Comm comm, MPI_Info info) except * IF MPI: cdef herr_t H5Pget_fapl_mpio(hid_t fapl_id, MPI_Comm *comm, MPI_Info *info) except * IF HDF5_VERSION >= (1, 8, 9): IF MPI: cdef herr_t H5Fset_mpi_atomicity(hid_t file_id, hbool_t flag) except * IF HDF5_VERSION >= (1, 8, 9): IF MPI: cdef herr_t H5Fget_mpi_atomicity(hid_t file_id, hbool_t *flag) except * cdef herr_t H5DSattach_scale(hid_t did, hid_t dsid, unsigned int idx) except * cdef herr_t H5DSdetach_scale(hid_t did, hid_t dsid, unsigned int idx) except * cdef herr_t H5DSset_scale(hid_t dsid, char *dimname) except * cdef int H5DSget_num_scales(hid_t did, unsigned int dim) except * cdef herr_t H5DSset_label(hid_t did, unsigned int idx, char *label) except * cdef ssize_t H5DSget_label(hid_t did, unsigned int idx, char *label, size_t size) except * cdef ssize_t H5DSget_scale_name(hid_t did, char *name, size_t size) except * cdef htri_t H5DSis_scale(hid_t did) except * cdef herr_t H5DSiterate_scales(hid_t did, unsigned int dim, int *idx, H5DS_iterate_t visitor, void *visitor_data) except * cdef htri_t H5DSis_attached(hid_t did, hid_t dsid, unsigned int idx) except * <|end_of_text|>__doc__ = """ Basic model typedefs, constants and common methods. """ cdef bytes buffer_dump(const Buffer* buf): """ Return a buffer's content as a string. :param const Buffer* buf Pointer to a buffer to be read. :rtype: str """ cdef unsigned char* buf_stream = (<unsigned char*>buf.addr) return buf_stream[:buf.sz] <|end_of_text|>import cython from cpython.mem cimport PyMem_Malloc, PyMem_Realloc, PyMem_Free from dendropy import Tree from random import sample from itertools import combinations import numpy as np cimport numpy as np import pandas as pd from scipy.linalg.cython_lapack cimport dsyev from numbers import Integral, Real # if igraph is available, enable # SuchLinkedTrees.to_igraph() try : from igraph import Graph, ADJ_UNDIRECTED with_igraph = True except ImportError : with_igraph = False cdef extern from'stdint.h' : ctypedef unsigned long int uint64_t uint64_t UINT64_MAX # Trees are built from arrays of Node structs. 'parent', 'left_child' # and 'right_child' attributes represent integer offsets within the # array that specify other Node structs. # # WARNING : When part of a SuchLinkedTree, the right_child is used to # store the column ID for leaf nodes. Check *ONLY* left_child == -1 to # to see if a Node is a leaf! cdef struct Node : int parent int left_child int right_child float distance @cython.boundscheck(False) cdef double _pearson( double[:] x, double[:] y, unsigned int n ) nogil : #cdef unsigned int n = len(x) cdef unsigned long j cdef float yt, xt, t, df cdef float syy=0.0, sxy=0.0, sxx=0.0, ay=0.0, ax=0.0
Cython
../cython/cy_cpp_utils.pxd<|end_of_text|># distutils: language = c++ from libcpp.string cimport string from pytraj.NameType cimport * cdef extern from "MaskToken.h": # MaskToken.h ctypedef enum MaskTokenType "MaskToken::MaskTokenType": OP_NONE "MaskToken::OP_NONE" ResNum "MaskToken::ResNum" ResName "MaskToken::ResName" AtomNum "MaskToken::AtomNum" AtomName "MaskToken::AtomName" AtomType "MaskToken::AtomType" AtomElement "MaskToken::AtomElement" SelectAll "MaskToken::SelectAll" OP_AND "MaskToken::OP_AND" OP_OR "MaskToken::OP_OR" OP_NEG "MaskToken::OP_NEG" OP_DIST "MaskToken::OP_DIST" cdef cppclass _MaskToken "MaskToken": _MaskToken() const char* MaskTypeString[] const char * TypeName() const void Print() const int SetToken(MaskTokenType, const string&) int SetDistance(string&) void SetOperator(MaskTokenType) inline MaskTokenType Type() const inline int Res1() const inline int Res2() const inline const _NameType& Name() const inline bint OnStack() const inline bint Within() const inline bint ByAtom() const inline double Distance() const void SetOnStack() cdef class MaskToken: cdef _MaskToken* thisptr <|end_of_text|># -*- coding: utf-8 -*- # Copyright © 2017 Apple Inc. All rights reserved. # # Use of this source code is governed by a BSD-3-clause license that can # be found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause cdef extern from "stdlib.h": void abort() <|end_of_text|> ## def __iter__(self): ## _r = self.inst.get().getSequence() ## cdef libcpp_vector[const _Ribonucleotide *].iterator it__r = _r.begin() ## cdef Ribonucleotide item_py_result ## while it__r!= _r.end(): ## item_py_result = Ribonucleotide.__new__(Ribonucleotide) ## item_py_result.inst = shared_ptr[_Ribonucleotide](new _Ribonucleotide(deref(deref(it__r)))) ## yield py_result ## inc(it__r) def __iter__(self): for r in self.getSequence(): yield r <|end_of_text|>../cython/cy_flexible_type.pxd<|end_of_text|>""" Copyright (C) 2011, Enthought Inc Copyright (C) 2011, Patrick Henaff This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the license for more details. """ include '../../types.pxi' cimport pybg.version from libcpp cimport bool from pybg.quantlib.handle cimport shared_ptr, Handle, RelinkableHandle from pybg.quantlib._quote cimport Quote from pybg.quantlib.time._calendar cimport BusinessDayConvention, Calendar from pybg.quantlib.time._date cimport Date from pybg.quantlib.time._daycounter cimport DayCounter from pybg.quantlib.time._period cimport Period, Frequency from _flat_forward cimport YieldTermStructure from pybg.quantlib.indexes._ibor_index cimport IborIndex cimport pybg.quantlib.indexes._ibor_index as _ib cdef extern from 'ql/termstructures/bootstraphelper.hpp' namespace 'QuantLib': cdef cppclass BootstrapHelper[T]: BootstrapHelper(Handle[Quote]& quote) BoostrapHelper(Real quote) cdef cppclass RelativeDateBootstrapHelper[T](BootstrapHelper): pass cdef extern from 'ql/termstructures/yield/ratehelpers.hpp' namespace 'QuantLib': # Cython does not support this ctypedef - thus trying to expose a class #ctypedef BootstrapHelper[YieldTermStructure] RateHelper cdef cppclass RateHelper: Handle[Quote] quote() cdef cppclass RelativeDateRateHelper: Handle[Quote] quote() cdef cppclass DepositRateHelper(RateHelper): DepositRateHelper(Handle[Quote]& rate, Period& tenor, Natural fixingDays, Calendar& calendar, BusinessDayConvention convention, bool endOfMonth, DayCounter& dayCounter) DepositRateHelper(Rate rate, Period& tenor, Natural fixingDays, Calendar& calendar, BusinessDayConvention convention, bool endOfMonth, DayCounter& dayCounter) # Not supporting IborIndex at this stage DepositRateHelper(Handle[Quote]& rate, shared_ptr[IborIndex]& iborIndex) DepositRateHelper(Rate rate, shared_ptr[IborIndex]& iborIndex) cdef cppclass FraRateHelper(RelativeDateRateHelper): FraRateHelper(Handle[Quote]& rate, Natural monthsToStart, Natural monthsToEnd, Natural fixingDays, Calendar& calendar, BusinessDayConvention convention, bool endOfMonth, DayCounter& dayCounter) cdef cppclass SwapRateHelper(RelativeDateRateHelper): SwapRateHelper(Handle[Quote]& rate, Period& tenor, Calendar& calendar, Frequency& fixedFrequency, BusinessDayConvention fixedConvention, DayCounter& fixedDayCount, shared_ptr[_ib.IborIndex]& iborIndex, Handle[Quote]& spread, Period& fwdStart) cdef cppclass FuturesRateHelper(RateHelper): FuturesRateHelper(Handle[Quote]& price, Date& immDate, Natural lengthInMonths, Calendar& calendar, BusinessDayConvention convention, bool endOfMonth, DayCounter& dayCounter) except + <|end_of_text|>from sklearn.tree._criterion cimport ClassificationCriterion from sklearn.tree._criterion cimport SIZE_t from libc.math cimport sqrt, pow from libc.math cimport abs cdef class BetaEntropy(ClassificationCriterion): cdef double beta = 0.001 cdef double node_impurity(self) nogil: """Evaluate the impurity of the current node, i.e. the impurity of samples[start:end], using the cross-entropy criterion.""" cdef SIZE_t* n_classes = self.n_classes cdef double* sum_total = self.sum_total cdef double entropy = 0.0 cdef double count_k cdef SIZE_t k cdef SIZE_t c for k in range(self.n_outputs): for c in range(n_classes[k]): count_k = sum_total[c] if count_k > 0.0: count_k /= self.weighted_n_node_samples entropy += pow(count_k,beta) sum_total += self.sum_stride entropy = (1-entropy)/(1-pow(2,float(1-beta))) return entropy / self.n_outputs cdef void children_impurity(self, double* impurity_left, double* impurity_right) nogil: cdef SIZE_t* n_classes = self.n_classes cdef double* sum_left = self.sum_left cdef double* sum_right = self.sum_right cdef double entropy_left = 0.0 cdef double entropy_right = 0.0 cdef double count_k cdef SIZE_t k cdef SIZE_t c for k in range(self.n_outputs): for c in range(n_classes[k]): count_k = sum_left[c] if count_k > 0.0: count_k /= self.weighted_n_left entropy_left += pow(count_k,beta) count_k = sum_right[c] if count_k > 0.0: count_k /= self.weighted_n_right entropy_right += pow(count_k,beta) sum_left += self.sum_stride sum_right += self.sum_stride entropy_left = (1-entropy_left)/(1-pow(2,float(1-beta))) entropy_right = (1-entropy_right)/(1-pow(2,float(1-beta))) impurity_left[0] = entropy_left / self.n_outputs impurity_right[0] = entropy_right / self.n_outputs <|end_of_text|>from hummingbot.core.event.event_reporter cimport EventReporter from hummingbot.core.event.event_logger cimport EventLogger from hummingbot.core.data_type.order_book cimport OrderBook from hummingbot.connector.connector_base cimport ConnectorBase from hummingbot.core.data_type.order_book_query_result cimport( OrderBookQueryResult, ClientOrderBookQueryResult ) cdef class ExchangeBase(ConnectorBase): cdef: object _order_book_tracker cdef str c_buy(self, str trading_pair, object amount, object order_type=*, object price=*, dict kwargs=*) cdef str c_sell(self, str trading_pair, object amount, object order_type=*, object price=*, dict kwargs=*) cdef c_cancel(self, str trading_pair, str client_order_id) cdef c_stop_tracking_order(self, str order_id) cdef OrderBook c_get_order_book(self, str trading_pair) cdef object c_get_price(self,
Cython
str trading_pair, bint is_buy) cdef ClientOrderBookQueryResult c_get_quote_volume_for_base_amount(self, str trading_pair, bint is_buy, object base_amount) cdef ClientOrderBookQueryResult c_get_volume_for_price(self, str trading_pair, bint is_buy, object price) cdef ClientOrderBookQueryResult c_get_quote_volume_for_price(self, str trading_pair, bint is_buy, object price) cdef ClientOrderBookQueryResult c_get_vwap_for_volume(self, str trading_pair, bint is_buy, object volume) cdef ClientOrderBookQueryResult c_get_price_for_volume(self, str trading_pair, bint is_buy, object volume) cdef object c_get_fee(self, str base_currency, str quote_currency, object order_type, object order_side, object amount, object price) <|end_of_text|># -*- coding: utf-8 -*- cimport pcl_defs as cpp cimport pcl_octree_defs_172 as pcloct # include "PointXYZtoPointXYZ.pxi" --> multiple define ng # include "OctreePointCloud.pxi" cdef class OctreePointCloudSearch(OctreePointCloud): """ Octree pointcloud search """ cdef pcloct.OctreePointCloudSearch_t *me2 def __cinit__(self, double resolution): """ Constructs octree pointcloud with given resolution at lowest octree level """ self.me2 = NULL self.me = NULL if resolution <= 0.: raise ValueError("Expected resolution > 0., got %r" % resolution) self.me2 = <pcloct.OctreePointCloudSearch_t*> new pcloct.OctreePointCloudSearch_t(resolution) self.me = <pcloct.OctreePointCloud_t*> self.me2 def __dealloc__(self): del self.me2 self.me2 = NULL self.me = NULL # nearestKSearch ### def nearest_k_search_for_cloud(self, PointCloud pc not None, int k=1): """ Find the k nearest neighbours and squared distances for all points in the pointcloud. Results are in ndarrays, size (pc.size, k) Returns: (k_indices, k_sqr_distances) """ cdef cnp.npy_intp n_points = pc.size cdef cnp.ndarray[float, ndim=2] sqdist = np.zeros((n_points, k), dtype=np.float32) cdef cnp.ndarray[int, ndim=2] ind = np.zeros((n_points, k), dtype=np.int32) for i in range(n_points): self._nearest_k(pc, i, k, ind[i], sqdist[i]) return ind, sqdist def nearest_k_search_for_point(self, PointCloud pc not None, int index, int k=1): """ Find the k nearest neighbours and squared distances for the point at pc[index]. Results are in ndarrays, size (k) Returns: (k_indices, k_sqr_distances) """ cdef cnp.ndarray[float] sqdist = np.zeros(k, dtype=np.float32) cdef cnp.ndarray[int] ind = np.zeros(k, dtype=np.int32) self._nearest_k(pc, index, k, ind, sqdist) return ind, sqdist @cython.boundscheck(False) cdef void _nearest_k(self, PointCloud pc, int index, int k, cnp.ndarray[ndim=1, dtype=int, mode='c'] ind, cnp.ndarray[ndim=1, dtype=float, mode='c'] sqdist ) except +: # k nearest neighbors query for a single point. cdef vector[int] k_indices cdef vector[float] k_sqr_distances k_indices.resize(k) k_sqr_distances.resize(k) # self.me.nearestKSearch(pc.thisptr()[0], index, k, k_indices, k_sqr_distances) (<pcloct.OctreePointCloudSearch_t*>self.me).nearestKSearch(pc.thisptr()[0], index, k, k_indices, k_sqr_distances) for i in range(k): sqdist[i] = k_sqr_distances[i] ind[i] = k_indices[i] ### # radius Search ### def radius_search (self, point, double radius, unsigned int max_nn = 0): """ Search for all neighbors of query point that are within a given radius. Returns: (k_indices, k_sqr_distances) """ cdef vector[int] k_indices cdef vector[float] k_sqr_distances if max_nn > 0: k_indices.resize(max_nn) k_sqr_distances.resize(max_nn) cdef int k = (<pcloct.OctreePointCloudSearch_t*>self.me).radiusSearch(to_point_t(point), radius, k_indices, k_sqr_distances, max_nn) cdef cnp.ndarray[float] np_k_sqr_distances = np.zeros(k, dtype=np.float32) cdef cnp.ndarray[int] np_k_indices = np.zeros(k, dtype=np.int32) for i in range(k): np_k_sqr_distances[i] = k_sqr_distances[i] np_k_indices[i] = k_indices[i] return np_k_indices, np_k_sqr_distances ### # Voxel Search ### def VoxelSearch (self, PointCloud pc): """ Search for all neighbors of query point that are within a given voxel. Returns: (v_indices) """ cdef vector[int] v_indices # cdef bool isVexelSearch = (<pcloct.OctreePointCloudSearch_t*>self.me).voxelSearch(pc.thisptr()[0], v_indices) # self._VoxelSearch(pc, v_indices) result = pc.to_array() cdef cpp.PointXYZ point point.x = result[0, 0] point.y = result[0, 1] point.z = result[0, 2] print ('VoxelSearch at (' + str(point.x) +'' + str(point.y) +'' + str(point.z) + ')') # print('before v_indices count ='+ str(v_indices.size())) self._VoxelSearch(point, v_indices) v = v_indices.size() # print('after v_indices count ='+ str(v)) cdef cnp.ndarray[int] np_v_indices = np.zeros(v, dtype=np.int32) for i in range(v): np_v_indices[i] = v_indices[i] return np_v_indices @cython.boundscheck(False) cdef void _VoxelSearch(self, cpp.PointXYZ point, vector[int] &v_indices) except +: cdef vector[int] voxel_indices # k = 10 # voxel_indices.resize(k) (<pcloct.OctreePointCloudSearch_t*>self.me).voxelSearch(point, voxel_indices) # print('_VoxelSearch k ='+ str(k)) # print('_VoxelSearch voxel_indices ='+ str(voxel_indices.size())) k = voxel_indices.size() for i in range(k): v_indices.push_back(voxel_indices[i]) ### # def radius_search_for_cloud(self, PointCloud pc not None, double radius): # """ # Find the radius and squared distances for all points # in the pointcloud. Results are in ndarrays, size (pc.size, k) # Returns: (radius_indices, radius_distances) # """ # k = 10 # cdef cnp.npy_intp n_points = pc.size # cdef cnp.ndarray[float, ndim=2] sqdist = np.zeros((n_points, k), # dtype=np.float32) # cdef cnp.ndarray[int, ndim=2] ind = np.zeros((n_points, k), # dtype=np.int32) # # for i in range(n_points): # self._search_radius(pc, i, k, radius, ind[i], sqdist[i]) # return ind, sqdist # # @cython.boundscheck(False) # cdef void _search_radius(self, PointCloud pc, int index, int k, double radius, # cnp.ndarray[ndim=1, dtype=int, mode='c'] ind, # cnp.ndarray[ndim=1, dtype=float, mode='c'] sqdist # ) except +: # # radius query for a single point. # cdef vector[int] radius_indices # cdef vector[float] radius_distances # radius_indices.resize(k) # radius_distances.resize(k) # # self.me.radiusSearch(pc.thisptr()[0], index, radius, radius_indices, radius_distances) # k = (<pcloct.OctreePointCloudSearch_t*>self.me).radiusSearch(pc.thisptr()[0], index, radius, radius_indices, radius_distances, 10) # # for i in range(k): # sqdist[i] = radius_distances[i] # ind[i] = radius_indices[i] # base OctreePointCloud def define_bounding_box(self): """ Investigate dimensions of pointcloud data set and define corresponding bounding box for octree. """ self.me2.defineBoundingBox
Cython
() # def define_bounding_box(self, double min_x, double min_y, double min_z, double max_x, double max_y, double max_z): # """ # Define bounding box for octree. Bounding box cannot be changed once the octree contains elements. # """ # self.me2.defineBoundingBox(min_x, min_y, min_z, max_x, max_y, max_z) def add_points_from_input_cloud(self): """ Add points from input point cloud to octree. """ self.me2.addPointsFromInputCloud() def is_voxel_occupied_at_point(self, point): """ Check if voxel at given point coordinates exist. """ return self.me2.isVoxelOccupiedAtPoint(point[0], point[1], point[2]) def get_occupied_voxel_centers(self): """ Get list of centers of all occupied voxels. """ cdef eig.AlignedPointTVector_t points_v cdef int num = self.me2.getOccupiedVoxelCenters (points_v) return [(points_v[i].x, points_v[i].y, points_v[i].z) for i in range(num)] def delete_voxel_at_point(self, point): """ Delete leaf node / voxel at given point. """ self.me2.deleteVoxelAtPoint(to_point_t(point)) cdef class OctreePointCloudSearch_PointXYZI(OctreePointCloud_PointXYZI): """ Octree pointcloud search """ cdef pcloct.OctreePointCloudSearch_PointXYZI_t *me2 def __cinit__(self, double resolution): """ Constructs octree pointcloud with given resolution at lowest octree level """ self.me2 = NULL self.me = NULL if resolution <= 0.: raise ValueError("Expected resolution > 0., got %r" % resolution) self.me2 = <pcloct.OctreePointCloudSearch_PointXYZI_t*> new pcloct.OctreePointCloudSearch_PointXYZI_t(resolution) self.me = <pcloct.OctreePointCloud_PointXYZI_t*> self.me2 def __dealloc__(self): del self.me2 self.me2 = NULL self.me = NULL def radius_search (self, point, double radius, unsigned int max_nn = 0): """ Search for all neighbors of query point that are within a given radius. Returns: (k_indices, k_sqr_distances) """ cdef vector[int] k_indices cdef vector[float] k_sqr_distances if max_nn > 0: k_indices.resize(max_nn) k_sqr_distances.resize(max_nn) cdef int k = (<pcloct.OctreePointCloudSearch_PointXYZI_t*>self.me).radiusSearch(to_point2_t(point), radius, k_indices, k_sqr_distances, max_nn) cdef cnp.ndarray[float] np_k_sqr_distances = np.zeros(k, dtype=np.float32) cdef cnp.ndarray[int] np_k_indices = np.zeros(k, dtype=np.int32) for i in range(k): np_k_sqr_distances[i] = k_sqr_distances[i] np_k_indices[i] = k_indices[i] return np_k_indices, np_k_sqr_distances # base OctreePointCloud def define_bounding_box(self): """ Investigate dimensions of pointcloud data set and define corresponding bounding box for octree. """ self.me2.defineBoundingBox() # def define_bounding_box(self, double min_x, double min_y, double min_z, double max_x, double max_y, double max_z): # """ # Define bounding box for octree. Bounding box cannot be changed once the octree contains elements. # """ # self.me2.defineBoundingBox(min_x, min_y, min_z, max_x, max_y, max_z) def add_points_from_input_cloud(self): """ Add points from input point cloud to octree. """ self.me2.addPointsFromInputCloud() def is_voxel_occupied_at_point(self, point): """ Check if voxel at given point coordinates exist. """ return self.me2.isVoxelOccupiedAtPoint(point[0], point[1], point[2]) def get_occupied_voxel_centers(self): """ Get list of centers of all occupied voxels. """ cdef eig.AlignedPointTVector_PointXYZI_t points_v cdef int num = self.me2.getOccupiedVoxelCenters (points_v) return [(points_v[i].x, points_v[i].y, points_v[i].z) for i in range(num)] def delete_voxel_at_point(self, point): """ Delete leaf node / voxel at given point. """ self.me2.deleteVoxelAtPoint(to_point2_t(point)) cdef class OctreePointCloudSearch_PointXYZRGB(OctreePointCloud_PointXYZRGB): """ Octree pointcloud search """ cdef pcloct.OctreePointCloudSearch_PointXYZRGB_t *me2 def __cinit__(self, double resolution): """ Constructs octree pointcloud with given resolution at lowest octree level """ self.me2 = NULL self.me = NULL if resolution <= 0.: raise ValueError("Expected resolution > 0., got %r" % resolution) self.me2 = <pcloct.OctreePointCloudSearch_PointXYZRGB_t*> new pcloct.OctreePointCloudSearch_PointXYZRGB_t(resolution) self.me = <pcloct.OctreePointCloud_PointXYZRGB_t*> self.me2 def __dealloc__(self): del self.me2 self.me2 = NULL self.me = NULL def radius_search (self, point, double radius, unsigned int max_nn = 0): """ Search for all neighbors of query point that are within a given radius. Returns: (k_indices, k_sqr_distances) """ cdef vector[int] k_indices cdef vector[float] k_sqr_distances if max_nn > 0: k_indices.resize(max_nn) k_sqr_distances.resize(max_nn) cdef int k = (<pcloct.OctreePointCloudSearch_PointXYZRGB_t*>self.me).radiusSearch(to_point3_t(point), radius, k_indices, k_sqr_distances, max_nn) cdef cnp.ndarray[float] np_k_sqr_distances = np.zeros(k, dtype=np.float32) cdef cnp.ndarray[int] np_k_indices = np.zeros(k, dtype=np.int32) for i in range(k): np_k_sqr_distances[i] = k_sqr_distances[i] np_k_indices[i] = k_indices[i] return np_k_indices, np_k_sqr_distances # base OctreePointCloud def define_bounding_box(self): """ Investigate dimensions of pointcloud data set and define corresponding bounding box for octree. """ self.me2.defineBoundingBox() # def define_bounding_box(self, double min_x, double min_y, double min_z, double max_x, double max_y, double max_z): # """ # Define bounding box for octree. Bounding box cannot be changed once the octree contains elements. # """ # self.me2.defineBoundingBox(min_x, min_y, min_z, max_x, max_y, max_z) def add_points_from_input_cloud(self): """ Add points from input point cloud to octree. """ self.me2.addPointsFromInputCloud() def is_voxel_occupied_at_point(self, point): """ Check if voxel at given point coordinates exist. """ return self.me2.isVoxelOccupiedAtPoint(point[0], point[1], point[2]) def get_occupied_voxel_centers(self): """ Get list of centers of all occupied voxels. """ cdef eig.AlignedPointTVector_PointXYZRGB_t points_v cdef int num = self.me2.getOccupiedVoxelCenters (points_v) return [(points_v[i].x, points_v[i].y, points_v[i].z) for i in range(num)] def delete_voxel_at_point(self, point): """ Delete leaf node / voxel at given point. """ self.me2.deleteVoxelAtPoint(to_point3_t(point)) cdef class OctreePointCloudSearch_PointXYZRGBA(OctreePointCloud_PointXYZRGBA): """ Octree pointcloud search """ cdef pcloct.OctreePointCloudSearch_PointXYZRGBA_t *me2 def __cinit__(self, double resolution): """ Constructs octree pointcloud with given resolution at lowest octree level """ self.me2 = NULL self.me = NULL if resolution <= 0.: raise ValueError("Expected resolution > 0., got %r" % resolution) self.me2 = <pcloct.OctreePointCloudSearch_PointXYZRGBA_t*> new pcloct.OctreePointCloudSearch_PointXYZRGBA_t(resolution) self.me = <pcloct.OctreePointCloud_PointXYZRGBA_t*> self.me2 def __dealloc__(self): del self.me2 self.me2 = NULL self.me = NULL
Cython
def radius_search (self, point, double radius, unsigned int max_nn = 0): """ Search for all neighbors of query point that are within a given radius. Returns: (k_indices, k_sqr_distances) """ cdef vector[int] k_indices cdef vector[float] k_sqr_distances if max_nn > 0: k_indices.resize(max_nn) k_sqr_distances.resize(max_nn) cdef int k = (<pcloct.OctreePointCloudSearch_PointXYZRGBA_t*>self.me).radiusSearch(to_point4_t(point), radius, k_indices, k_sqr_distances, max_nn) cdef cnp.ndarray[float] np_k_sqr_distances = np.zeros(k, dtype=np.float32) cdef cnp.ndarray[int] np_k_indices = np.zeros(k, dtype=np.int32) for i in range(k): np_k_sqr_distances[i] = k_sqr_distances[i] np_k_indices[i] = k_indices[i] return np_k_indices, np_k_sqr_distances # base OctreePointCloud def define_bounding_box(self): """ Investigate dimensions of pointcloud data set and define corresponding bounding box for octree. """ self.me2.defineBoundingBox() # def define_bounding_box(self, double min_x, double min_y, double min_z, double max_x, double max_y, double max_z): # """ # Define bounding box for octree. Bounding box cannot be changed once the octree contains elements. # """ # self.me2.defineBoundingBox(min_x, min_y, min_z, max_x, max_y, max_z) def add_points_from_input_cloud(self): """ Add points from input point cloud to octree. """ self.me2.addPointsFromInputCloud() def is_voxel_occupied_at_point(self, point): """ Check if voxel at given point coordinates exist. """ return self.me2.isVoxelOccupiedAtPoint(point[0], point[1], point[2]) def get_occupied_voxel_centers(self): """ Get list of centers of all occupied voxels. """ cdef eig.AlignedPointTVector_PointXYZRGBA_t points_v cdef int num = self.me2.getOccupiedVoxelCenters (points_v) return [(points_v[i].x, points_v[i].y, points_v[i].z) for i in range(num)] def delete_voxel_at_point(self, point): """ Delete leaf node / voxel at given point. """ self.me2.deleteVoxelAtPoint(to_point4_t(point)) <|end_of_text|># cython: profile=True cimport cython cimport numpy as np import numpy as np import scipy.sparse as sps @cython.boundscheck(False) def calculate_error_matrix(R, P, Q): cdef double [:] err_data = np.zeros(R.data.shape[0], dtype=np.float64), r_data = R.data tup = R.nonzero() cdef int [:]rows = tup[0], cols = tup[1] cdef int i, n_inters = R.data.shape[0] for i in range(n_inters): err_data[i] = r_data[i] - P[rows[i], :].dot(Q[cols[i], :]) return sps.csr_matrix((err_data, (rows, cols)), R.shape, dtype=np.float64)<|end_of_text|>cpdef int incr(int i): i = i + 1 return i <|end_of_text|>#declare c-style function by cdef argument # except? -2: usually followed after function declaration. # except? -2: means an error will be checked for if -2 is returned # Warning: using cdef to declare function causes that python can't call it again. # if you use cpdef keyword, that will create a python wrapper cpdef double f(double x) except? -2: return x ** 2 - x def integrate_f(double a, double b, int N): cdef int i cdef double s, dx s = 0 dx = (b - a) / N for i in range(N): s += f(a + i * dx) return s * dx <|end_of_text|># coding: utf-8 #from __future__ import division, unicode_literals """ Utilities for manipulating coordinates or list of coordinates, under periodic boundary conditions or otherwise. """ from six.moves import zip __author__ = "Will Richards" __copyright__ = "Copyright 2011, The Materials Project" __version__ = "1.0" __maintainer__ = "Will Richards" __email__ = "[email protected]" __date__ = "Nov 27, 2011" import numpy as np from libc.stdlib cimport malloc, free from libc.math cimport round, fabs, sqrt, acos, M_PI, cos, sin cimport numpy as np cimport cython #create images, 2d array of all length 3 combinations of [-1,0,1] r = np.arange(-1, 2, dtype=np.float_) arange = r[:, None] * np.array([1, 0, 0])[None, :] brange = r[:, None] * np.array([0, 1, 0])[None, :] crange = r[:, None] * np.array([0, 0, 1])[None, :] images_t = arange[:, None, None] + brange[None, :, None] + \ crange[None, None, :] images = images_t.reshape((27, 3)) cdef np.float_t[:, ::1] images_view = images @cython.boundscheck(False) @cython.wraparound(False) cdef void dot_2d(np.float_t[:, ::1] a, np.float_t[:, ::1] b, np.float_t[:, ::1] o) nogil: cdef int i, j, k, I, J, K I = a.shape[0] J = b.shape[1] K = a.shape[1] for j in range(J): for i in range(I): o[i, j] = 0 for k in range(K): for i in range(I): o[i, j] += a[i, k] * b[k, j] @cython.boundscheck(False) @cython.wraparound(False) cdef void dot_2d_mod(np.float_t[:, ::1] a, np.float_t[:, ::1] b, np.float_t[:, ::1] o) nogil: cdef int i, j, k, I, J, K I = a.shape[0] J = b.shape[1] K = a.shape[1] for j in range(J): for i in range(I): o[i, j] = 0 for k in range(K): for i in range(I): o[i, j] += a[i, k] % 1 * b[k, j] @cython.boundscheck(False) @cython.wraparound(False) @cython.initializedcheck(False) def pbc_shortest_vectors(lattice, fcoords1, fcoords2, mask=None, return_d2=False, lll_frac_tol=None): """ Returns the shortest vectors between two lists of coordinates taking into account periodic boundary conditions and the lattice. Args: lattice: lattice to use fcoords1: First set of fractional coordinates. e.g., [0.5, 0.6, 0.7] or [[1.1, 1.2, 4.3], [0.5, 0.6, 0.7]]. Must be np.float_ fcoords2: Second set of fractional coordinates. mask (int_ array): Mask of matches that are not allowed. i.e. if mask[1,2] == True, then subset[1] cannot be matched to superset[2] lll_frac_tol (float_ array of length 3): Fractional tolerance (per LLL lattice vector) over which the calculation of minimum vectors will be skipped. Can speed up calculation considerably for large structures. Returns: array of displacement vectors from fcoords1 to fcoords2 first index is fcoords1 index, second is fcoords2 index """ #ensure correct shape fcoords1, fcoords2 = np.atleast_2d(fcoords1, fcoords2) fcoords1 = lattice.get_lll_frac_coords(fcoords1) fcoords2 = lattice.get_lll_frac_coords(fcoords2) cdef np.float_t[:, ::1] lat = np.array(lattice.lll_matrix, dtype=np.float_, copy=False, order='C') cdef int i, j, k, l, I, J, bestK I = len(fcoords1) J = len(fcoords2) cdef np.float_t[:, ::1] fc1 = fcoords1 cdef np.float_t[:, ::1] fc2 = fcoords2 cdef np.float_t[:, ::1] cart_f1 = <np.float_t[:I, :3]> malloc(3 * I * sizeof(np.float_t)) cdef np.float_t[:, ::1] cart_f2 = <np.float_t[:J
Cython
, :3]> malloc(3 * J * sizeof(np.float_t)) cdef np.float_t[:, ::1] cart_im = <np.float_t[:27, :3]> malloc(81 * sizeof(np.float_t)) cdef bint has_mask = mask is not None cdef np.int_t[:, :] m if has_mask: m = np.array(mask, dtype=np.int_, copy=False, order='C') cdef bint has_ftol = (lll_frac_tol is not None) cdef np.float_t[:] ftol if has_ftol: ftol = np.array(lll_frac_tol, dtype=np.float_, order='C', copy=False) dot_2d_mod(fc1, lat, cart_f1) dot_2d_mod(fc2, lat, cart_f2) dot_2d(images_view, lat, cart_im) vectors = np.empty((I, J, 3)) d2 = np.empty((I, J)) cdef np.float_t[:, :, ::1] vs = vectors cdef np.float_t[:, ::1] ds = d2 cdef np.float_t best, d, inc_d, da, db, dc, fdist cdef bint within_frac = True cdef np.float_t[:] pre_im = <np.float_t[:3]> malloc(3 * sizeof(np.float_t)) for i in range(I): for j in range(J): within_frac = False if (not has_mask) or (m[i, j] == 0): within_frac = True if has_ftol: for l in range(3): fdist = fc2[j, l] - fc1[i, l] if fabs(fdist - round(fdist)) > ftol[l]: within_frac = False break if within_frac: for l in range(3): pre_im[l] = cart_f2[j, l] - cart_f1[i, l] best = 1e100 for k in range(27): # compilers have a hard time unrolling this da = pre_im[0] + cart_im[k, 0] db = pre_im[1] + cart_im[k, 1] dc = pre_im[2] + cart_im[k, 2] d = da * da + db * db + dc * dc if d < best: best = d bestk = k ds[i, j] = best for l in range(3): vs[i, j, l] = pre_im[l] + cart_im[bestk, l] if not within_frac: ds[i, j] = 1e20 for l in range(3): vs[i, j, l] = 1e20 free(&cart_f1[0,0]) free(&cart_f2[0,0]) free(&cart_im[0,0]) free(&pre_im[0]) if return_d2: return vectors, d2 else: return vectors @cython.boundscheck(False) @cython.wraparound(False) @cython.initializedcheck(False) def is_coord_subset_pbc(subset, superset, atol, mask): """ Tests if all fractional coords in subset are contained in superset. Allows specification of a mask determining pairs that are not allowed to match to each other Args: subset, superset: List of fractional coords Returns: True if all of subset is in superset. """ cdef np.float_t[:, :] fc1 = subset cdef np.float_t[:, :] fc2 = superset cdef np.float_t[:] t = atol cdef np.int_t[:, :] m = np.array(mask, dtype=np.int_, copy=False, order='C') cdef int i, j, k, I, J cdef np.float_t d cdef bint ok I = fc1.shape[0] J = fc2.shape[0] for i in range(I): ok = False for j in range(J): if m[i, j]: continue ok = True for k in range(3): d = fc1[i, k] - fc2[j, k] if fabs(d - round(d)) > t[k]: ok = False break if ok: break if not ok: break return bool(ok) @cython.boundscheck(False) @cython.wraparound(False) @cython.initializedcheck(False) def coord_list_mapping_pbc(subset, superset, atol=1e-8): """ Gives the index mapping from a subset to a superset. Superset cannot contain duplicate matching rows Args: subset, superset: List of frac_coords Returns: list of indices such that superset[indices] = subset """ inds = np.zeros(len(subset), dtype=np.int) - 1 subset = np.atleast_2d(subset) superset = np.atleast_2d(superset) cdef np.float_t[:, :] fc1 = subset cdef np.float_t[:, :] fc2 = superset cdef np.float_t[:] t = atol cdef np.int_t[:] c_inds = inds cdef np.float_t d cdef bint ok_inner, ok_outer I = fc1.shape[0] J = fc2.shape[0] for i in range(I): ok_outer = False for j in range(J): ok_inner = True for k in range(3): d = fc1[i, k] - fc2[j, k] if fabs(d - round(d)) > t[k]: ok_inner = False break if ok_inner: if c_inds[i] >= 0: raise ValueError("Something wrong with the inputs, likely duplicates " "in superset") c_inds[i] = j ok_outer = True # we don't break here so we can check for duplicates in superset if not ok_outer: break if not ok_outer: raise ValueError("subset is not a subset of superset") return inds <|end_of_text|>from numpy import zeros from scipy import weave from timeit import default_timer as clock cimport numpy as np dx = 0.1 dy = 0.1 dx2 = dx*dx dy2 = dy*dy def cy_update(np.ndarray[double, ndim=2] u, double dx2, double dy2): cdef unsigned int i, j for i in xrange(1,u.shape[0]-1): for j in xrange(1, u.shape[1]-1): u[i,j] = ((u[i+1, j] + u[i-1, j]) * dy2 + (u[i, j+1] + u[i, j-1]) * dx2) / (2*(dx2+dy2)) def calc(N, Niter=100, func=cy_update, args=()): u = zeros([N, N]) u[0] = 1 for i in range(Niter): func(u,*args) return u def run(): t = clock() u = calc(100, 8000, args=(dx2, dy2)) t = clock() - t print t print u[1, 1] print sum(u.flat) print sum((u**2).flat) <|end_of_text|>cdef extern from "complex_numbers_c89_T398.h": pass include "complex_numbers_T305.pyx" <|end_of_text|>include '../types.pxi' from libcpp cimport bool from _instrument cimport Instrument from quantlib.time._calendar cimport BusinessDayConvention from quantlib.time._date cimport Date from quantlib.time._daycounter cimport DayCounter from quantlib.time._schedule cimport Schedule cdef extern from 'ql/default.hpp' namespace 'QuantLib::Protection': enum Side: Buyer Seller cdef extern from 'ql/instruments/creditdefaultswap.hpp' namespace 'QuantLib': cdef cppclass CreditDefaultSwap(Instrument): CreditDefaultSwap(Side side, Real notional, Rate spread, Schedule& schedule, BusinessDayConvention paymentConvention, DayCounter& dayCounter, bool settlesAccrual, # = true, bool paysAtDefaultTime, # = true, Date& protectionStart #= Date(), #const boost::shared_ptr<Claim>& = # boost::shared_ptr<Claim>()); ) Rate fairUpfront() Rate fairSpread() Real couponLegBPS() Real upfrontBPS() Real couponLegNPV() Real defaultLegNPV() Real upfrontNPV() <|end_of_text|>#cython: boundscheck=False #cython: nonecheck=False #cython: wraparound=False #cython: cdivision=True import numpy cimport numpy from constants cimport * cimport cython import matplotlib.pyplot as mpl from matplotlib import rc cdef extern from "math.h": double exp(double x) double sqrt(double x) double atan2(double y,
Cython
double x) double fabs(double x) double sin(double x) double cos(double x) cdef class FieldMap: cdef: object intObj double brho, chargeOverMass, v0Abs, dt, angIn unsigned int nSteps, nStepsPerCell double[:,:] particleRefData double[:,:] particleEnv1Data double[:,:] particleEnv2Data double[:,:] multipoleData double[:] x0Ref double[:] v0Ref def __init__(self, object intObj): self.set(intObj) cpdef set(self, object intObj): self.intObj = intObj cpdef doRef(self, double[:] x0, double[:] v0, double[:] bScale, double angOut, unsigned int nStepsPerCell = 10, double chargeOverMass = elementary_charge/m_p): cdef: double bScale1 unsigned int ii double[:] ddir = numpy.empty(2) self.v0Abs = sqrt(v0[0]*v0[0]+v0[1]*v0[1]) self.brho = self.v0Abs/chargeOverMass/sqrt(1.-(self.v0Abs/c)**2) self.x0Ref = x0 self.v0Ref = v0 self.angIn = atan2(v0[1], v0[0]) self.chargeOverMass = chargeOverMass self.nStepsPerCell = nStepsPerCell self.dt = min(self.intObj.getDx(),self.intObj.getDy())/self.v0Abs/self.nStepsPerCell bScale1 = _findBScale(x0, v0, bScale, angOut, self.dt, chargeOverMass, self.intObj) self.intObj.setBScalePerma(bScale1) self.nSteps = _findNSteps(x0, v0, self.intObj, self.dt, self.chargeOverMass) self.particleRefData = numpy.empty((self.nSteps,4)) self.particleRefData[0,0] = x0[0] self.particleRefData[0,1] = x0[1] self.particleRefData[0,2] = v0[0] self.particleRefData[0,3] = v0[1] _trackAndSave(self.particleRefData, self.intObj, self.dt, self.chargeOverMass, self.nSteps) self.multipoleData = numpy.empty((self.nSteps,6)) for ii in range(self.nSteps): ddir[0] = self.particleRefData[ii,3]/self.v0Abs ddir[1] = -self.particleRefData[ii,2]/self.v0Abs self.intObj.interpolateD(self.particleRefData[ii,:2], ddir, self.multipoleData[ii,:]) # for jj in range(1,6): # self.multipoleData[ii,jj] /= self.multipoleData[ii,0] # self.multipoleData[ii,2]*= 2. # self.multipoleData[ii,3]*= 6. # self.multipoleData[ii,4]*= 24. # self.multipoleData[ii,5]*= 120. cpdef doEnv(self, double dx, double da, double delta): cdef: double gammar, chi, vFac1 gammar = 1./sqrt(1.-(self.v0Abs/c)**2) chi = (delta+1.)*gammar*self.v0Abs vFac2 = chi/sqrt(1.+(chi/c)**2)/self.v0Abs chi = (-delta+1.)*gammar*self.v0Abs vFac1 = chi/sqrt(1.+(chi/c)**2)/self.v0Abs self.particleEnv1Data = numpy.empty((self.nSteps,4)) self.particleEnv1Data[0,0] = self.x0Ref[0]-dx*cos(self.angIn+0.5*pi) self.particleEnv1Data[0,1] = self.x0Ref[1]-dx*sin(self.angIn+0.5*pi) self.particleEnv1Data[0,2] = self.v0Ref[0]*cos(da) + self.v0Ref[1]*sin(da) self.particleEnv1Data[0,2]*= vFac1 self.particleEnv1Data[0,3] = -self.v0Ref[0]*sin(da) + self.v0Ref[1]*cos(da) self.particleEnv1Data[0,3]*= vFac1 _trackAndSave(self.particleEnv1Data, self.intObj, self.dt, self.chargeOverMass, self.nSteps) self.particleEnv2Data = numpy.empty((self.nSteps,4)) self.particleEnv2Data[0,0] = self.x0Ref[0]+dx*cos(self.angIn+0.5*pi) self.particleEnv2Data[0,1] = self.x0Ref[1]+dx*sin(self.angIn+0.5*pi) self.particleEnv2Data[0,2] = self.v0Ref[0]*cos(-da) + self.v0Ref[1]*sin(-da) self.particleEnv2Data[0,2]*= vFac2 self.particleEnv2Data[0,3] = -self.v0Ref[0]*sin(-da) + self.v0Ref[1]*cos(-da) self.particleEnv2Data[0,3]*= vFac2 _trackAndSave(self.particleEnv2Data, self.intObj, self.dt, self.chargeOverMass, self.nSteps) cpdef plotMultipoles(self, subPlotObj = None, scale = None, xlim = None): rc('text', usetex=True) rc('font', family='Helvetica') rc('xtick', labelsize=15) rc('ytick', labelsize=15) if scale is None: scale = [1., 1., 1., 1., 1., 1.] s = numpy.linspace(0,self.nSteps*self.v0Abs*self.dt,self.nSteps) if subPlotObj is None: figObj = mpl.figure() subPlotObj = figObj.add_subplot(111) subPlotObj.plot(s, scale[0]*numpy.asarray(self.multipoleData[:,0]),'-', label='dipole ('+str(numpy.int(scale[0]))+'$\cdot$b$_1$)') subPlotObj.plot(s, scale[1]*numpy.asarray(self.multipoleData[:,1]),'--', label='quadrupole ('+str(numpy.int(scale[1]))+'$\cdot$b$_2$)') subPlotObj.plot(s, scale[2]*numpy.asarray(self.multipoleData[:,2]),'-.', label='sextupole ('+str(numpy.int(scale[2]))+'$\cdot$b$_3$)') subPlotObj.plot(s, scale[3]*numpy.asarray(self.multipoleData[:,3]),':', label='octupole ('+str(numpy.int(scale[3]))+'$\cdot$b$_4$)') subPlotObj.plot(s, scale[4]*numpy.asarray(self.multipoleData[:,4]),'-', label='decapole ('+str(numpy.int(scale[4]))+'$\cdot$b$_5$)') subPlotObj.plot(s, scale[5]*numpy.asarray(self.multipoleData[:,5]),'--', label='dodecapole ('+str(numpy.int(scale[5]))+'$\cdot$b$_6$)') subPlotObj.set_xlabel(r'$s\;\mathrm{in}\;\mathrm{m}$', fontsize=25) subPlotObj.set_ylabel(r'$b_n\;\mathrm{in}\;\mathrm{T}\mathrm{m}^{-n}$', fontsize=25) subPlotObj.legend(fancybox=True) if xlim is not None: subPlotObj.set_xlim(xlim) return subPlotObj cpdef plotRef(self, subPlotObj = None): rc('text', usetex=True) rc('font', family='Helvetica') rc('xtick', labelsize=15) rc('ytick', labelsize=15) if subPlotObj is None: figObj = mpl.figure() subPlotObj = figObj.add_subplot(111) plot = subPlotObj.plot(self.particleRefData[:,1],self.particleRefData[:,0],'w') plot = subPlotObj.plot(self.particleRefData[:,1],self.particleRefData[:,0],'k--', label='reference particle') subPlotObj.set_xlabel(r'$z\;\mathrm{in}\;\mathrm{m}$', fontsize=25) subPlotObj.set_ylabel(r'$x\;\mathrm{in}\;\mathrm{m}$', fontsize=25) subPlotObj.legend(fancybox=True) return subPlotObj cpdef plotEnv(self, subPlotObj = None): rc('text', usetex=True) rc('font', family='
Cython
Helvetica') rc('xtick', labelsize=15) rc('ytick', labelsize=15) if subPlotObj is None: figObj = mpl.figure() subPlotObj = figObj.add_subplot(111) subPlotObj.plot(self.particleEnv1Data[:,1],self.particleEnv1Data[:,0],'k:') subPlotObj.plot(self.particleEnv2Data[:,1],self.particleEnv2Data[:,0],'k:', label='beam envelope') subPlotObj.set_xlabel(r'$z\;\mathrm{in}\;\mathrm{m}$', fontsize=25) subPlotObj.set_ylabel(r'$x\;\mathrm{in}\;\mathrm{m}$', fontsize=25) subPlotObj.legend(fancybox=True) return subPlotObj cdef double _findBScale(double[:] x0, double[:] v0, double[:] bScale, double angOut, double dt, double chargeOverMass, object intObj): cdef: double[2] x double[2] v double[:] vTemp double v0Abs, bScale0, bScale1, bScale2, angErr1, angErr0, angErr2 x[1] = x0[1] x[0] = x0[0] v[0] = v0[0] v[1] = v0[1] v0Abs = sqrt(v0[0]*v0[0]+v0[1]*v0[1]) bScale2 = bScale[1] intObj.setBScale(bScale2) vTemp = _trackFinDir(x, v, intObj, dt, chargeOverMass) angErr2 = atan2(vTemp[0],vTemp[1])-angOut bScale0 = bScale[0] intObj.setBScale(bScale0) vTemp = _trackFinDir(x, v, intObj, dt, chargeOverMass) angErr0 = atan2(vTemp[0],vTemp[1])-angOut for ii in range(100): bScale1 = (bScale2+bScale0)*0.5 intObj.setBScale(bScale1) vTemp = _trackFinDir(x, v, intObj, dt, chargeOverMass) angErr1 = atan2(vTemp[0],vTemp[1])-angOut if angErr1*angErr2 > 0.: bScale2 = bScale1 else: bScale0 = bScale1 # print bScale1, angErr1, angErr2 if fabs(angErr1)<1.e-9: break if ii>=99: raise ValueError('WARNING: Angle search has not converged. Try different bScale interval.') bScale1 = (bScale2+bScale0)*0.5 return bScale1 cdef void _trackAndSave(double[:,:] particleData, object intObj, double dt, double chargeOverMass, unsigned int nSteps): cdef: double by, ts1, vs0, vs1, vAbsi double chargeDtOverMassGammaHalf = 0.5*chargeOverMass*dt*sqrt(1.-(particleData[0,2]*particleData[0,2]+particleData[0,3]*particleData[0,3])/c**2) for ii in range(nSteps-1): by = intObj.interpolate(particleData[ii,0],particleData[ii,1]) ts1 = chargeDtOverMassGammaHalf*by vs0 = particleData[ii,2] - particleData[ii,3]*ts1 vs2 = particleData[ii,3] + particleData[ii,2]*ts1 ts1 *= 2./(1. + ts1*ts1) particleData[(ii+1),2] = particleData[ii,2] - vs2*ts1 particleData[(ii+1),3] = particleData[ii,3] + vs0*ts1 particleData[(ii+1),0] = particleData[ii,0] + dt*particleData[(ii+1),2] particleData[(ii+1),1] = particleData[ii,1] + dt*particleData[(ii+1),3] return cdef double[::1] _trackFinDir(double[:] x0, double[:] v0, object intObj, double dt, double chargeOverMass): cdef: double by, ts1, vs0, vs1, vAbsi double[2] xOld double[2] xNew double[2] vOld double[::1] vNew = numpy.empty(2) double[::1] xMinMax = intObj.getXMinMax() double[::1] zMinMax = intObj.getYMinMax() double chargeDtOverMassGammaHalf = 0.5*chargeOverMass*dt*sqrt(1-(v0[0]*v0[0]+v0[1]*v0[1])/c**2) vNew[0] = v0[0] vNew[1] = v0[1] xNew[0] = x0[0] xNew[1] = x0[1] # mpl.figure() while not (xNew[0]<xMinMax[0] or xNew[0]>xMinMax[1] or xNew[1]>zMinMax[1]):# or xNew[1]<zExt[0] xOld[0] = xNew[0] xOld[1] = xNew[1] vOld[0] = vNew[0] vOld[1] = vNew[1] by = intObj.interpolate(xOld[0],xOld[1]) ts1 = chargeDtOverMassGammaHalf*by vs0 = vOld[0] - vOld[1]*ts1 vs2 = vOld[1] + vOld[0]*ts1 ts1 *= 2./(1. + ts1*ts1) vNew[0] = vOld[0] - vs2*ts1 vNew[1] = vOld[1] + vs0*ts1 xNew[0] = xOld[0] + dt*vNew[0] xNew[1] = xOld[1] + dt*vNew[1] # mpl.plot(xNew[0],xNew[1],'.') # mpl.show() return vNew cdef unsigned int _findNSteps(double[:] x0, double[:] v0, object intObj, double dt, double chargeOverMass): cdef: double by, ts1, vs0, vs1, vAbsi double[2] xOld double[2] xNew double[2] vOld double[::1] vNew = numpy.empty(2) double[::1] xMinMax = intObj.getXMinMax() double[::1] zMinMax = intObj.getYMinMax() double chargeDtOverMassGammaHalf = 0.5*chargeOverMass*dt*sqrt(1-(v0[0]*v0[0]+v0[1]*v0[1])/c**2) unsigned int ii = 0 vNew[0] = v0[0] vNew[1] = v0[1] xNew[0] = x0[0] xNew[1] = x0[1] while not (xNew[0]<xMinMax[0] or xNew[0]>xMinMax[1] or xNew[1]>zMinMax[1]):# or xNew[1]<zExt[0] xOld[0] = xNew[0] xOld[1] = xNew[1] vOld[0] = vNew[0] vOld[1] = vNew[1] by = intObj.interpolate(xOld[0],xOld[1]) ts1 = chargeDtOverMassGammaHalf*by vs0 = vOld[0] - vOld[1]*ts1 vs2 = vOld[1] + vOld[0]*ts1 ts1 *= 2./(1. + ts1*ts1) vNew[0] = vOld[0] - vs2*ts1 vNew[1] = vOld[1] + vs0*ts1 xNew[0] = xNew[0] + dt*vNew[0] xNew[1] = xNew[1] + dt*vNew[1] ii += 1 return ii cdef class GaussianWavelet: cdef: double[::1] tempFx # Preallocate temporary arrays for interpolation double[::1] tempFy double[::1] xRedTemp, yRedTemp double[::1] x, y, z double[::1] xExt, yExt, zExt double[::1]
Cython
xMinMax, yMinMax double S, dx, dy, dxi, dyi, bScale unsigned int nx, ny, np, dn, nxExt, nyExt, npExt, dnExt def __init__(self, x, y, double[::1] z, double S = 1.4): self.make(x, y, z, S = S) cpdef make(self, x, y, double[::1] z, double S = 1.4): cdef: unsigned int ii, jj unsigned int dn3Half self.bScale = 1. self.x = numpy.array(x[:2]) self.y = numpy.array(y[:2]) self.z = z self.nx = <unsigned int> x[2] self.ny = <unsigned int> y[2] self.np = self.z.shape[0] self.dn = <unsigned int> (S*16.+1.) self.dn += (self.dn % 2) self.dnExt = <unsigned int> (S*2.+0.5) self.nxExt = self.nx+2*self.dn+2*self.dnExt self.nyExt = self.ny+2*self.dn+2*self.dnExt self.npExt = self.nxExt*self.nyExt self.S = S self.zExt = numpy.zeros(self.npExt, dtype=numpy.double) dn3Half = self.dn + self.dnExt for ii in range(self.nx): for jj in range(self.ny): self.zExt[(jj+dn3Half)*self.nxExt+ii+dn3Half] = self.z[jj*self.nx+ii] for ii in range(self.nx): for jj in range(self.dnExt): self.zExt[(jj+self.dn)*self.nxExt+ii+dn3Half] = (self.zExt[dn3Half*self.nxExt+ii+dn3Half] - (self.zExt[(dn3Half+1)*self.nxExt+ii+dn3Half]-self.zExt[dn3Half*self.nxExt+ii+dn3Half])*(dn3Half-(jj+self.dn)) ) self.zExt[(jj+self.nyExt-dn3Half)*self.nxExt+ii+dn3Half] = (self.zExt[(self.nyExt-dn3Half-1)*self.nxExt+ii+dn3Half] + (self.zExt[(self.nyExt-dn3Half-1)*self.nxExt+ii+dn3Half]-self.zExt[(self.nyExt-dn3Half-2)*self.nxExt+ii+dn3Half])* ((jj+self.nyExt-dn3Half)-(self.nyExt-dn3Half-1)) ) for ii in range(self.dnExt): for jj in range(self.nyExt): self.zExt[jj*self.nxExt+ii+self.dn] = (self.zExt[jj*self.nxExt+dn3Half] - (self.zExt[jj*self.nxExt+dn3Half+1]-self.zExt[jj*self.nxExt+dn3Half])*(dn3Half-(ii+self.dn)) ) self.zExt[jj*self.nxExt+ii+self.nxExt-dn3Half] = (self.zExt[jj*self.nxExt+self.nxExt-dn3Half-1] + (self.zExt[jj*self.nxExt+self.nxExt-dn3Half-1]-self.zExt[jj*self.nxExt+self.nxExt-dn3Half-2])* ((ii+self.nxExt-dn3Half)-(self.nxExt-dn3Half-1)) ) self.dx = (self.x[1]-self.x[0])/(self.nx-1) self.dy = (self.y[1]-self.y[0])/(self.ny-1) self.dxi = 1./self.dx self.dyi = 1./self.dy self.xExt = self.x.copy() self.xExt[0] -= (self.dnExt+self.dn)*self.dx self.xExt[1] += (self.dnExt+self.dn)*self.dx self.yExt = self.y.copy() self.yExt[0] -= (self.dnExt+self.dn)*self.dy self.yExt[1] += (self.dnExt+self.dn)*self.dy self.xMinMax = self.x.copy() self.xMinMax[0] -= (self.dnExt+0.5*self.dn)*self.dx self.xMinMax[1] += (self.dnExt+0.5*self.dn)*self.dx self.yMinMax = self.y.copy() self.yMinMax[0] -= (self.dnExt+0.5*self.dn)*self.dy self.yMinMax[1] += (self.dnExt+0.5*self.dn)*self.dy self.tempFx = numpy.empty(self.dn, dtype=numpy.double) self.tempFy = numpy.empty(self.dn, dtype=numpy.double) self.xRedTemp = numpy.empty(self.dn, dtype=numpy.double) self.yRedTemp = numpy.empty(self.dn, dtype=numpy.double) cpdef double interpolate(self, double xVal, double yVal): if (xVal<=self.xMinMax[0] or xVal>=self.xMinMax[1] or yVal<=self.yMinMax[0] or yVal>=self.yMinMax[1]): return 0. else: return self.bScale*_gwint(xVal, yVal, self.xExt, self.yExt, self.zExt, self.S, self.dxi, self.dyi, self.dn, self.nxExt, self.tempFx, self.tempFy) cpdef double[:] interpolateD(self, double[:] pos, double[:] ddir, double[:] derivatives): _gwintdtill5(pos[0], pos[1], self.xExt, self.yExt, self.zExt, self.S, self.dxi, self.dyi, self.dn, self.nxExt, self.tempFx, self.tempFy, self.xRedTemp, self.yRedTemp, derivatives, ddir) return derivatives cpdef numpy.ndarray getXExt(self): return numpy.asarray(self.xExt) cpdef numpy.ndarray getYExt(self): return numpy.asarray(self.yExt) cpdef numpy.ndarray getXMinMax(self): return numpy.asarray(self.xMinMax) cpdef numpy.ndarray getYMinMax(self): return numpy.asarray(self.yMinMax) cpdef numpy.ndarray getX(self): return numpy.asarray(self.x) cpdef numpy.ndarray getY(self): return numpy.asarray(self.y) cpdef numpy.ndarray getZExt(self): return numpy.asarray(self.zExt) cpdef unsigned int getNxExt(self): return self.nxExt cpdef unsigned int getNyExt(self): return self.nyExt cpdef setBScale(self, double bScale): self.bScale = bScale cpdef setBScalePerma(self, double bScale): cdef: unsigned int ii, jj for ii in range(self.nx): for jj in range(self.ny): self.z[jj*self.nx+ii] *= bScale for ii in range(self.nxExt): for jj in range(self.nyExt): self.zExt[jj*self.nxExt+ii] *= bScale self.bScale = 1. cpdef double getDx(self): return self.dx cpdef double getDy(self): return self.dy cpdef plot(self, xIn = None, yIn = None, object subPlotObj = None, unsigned int nMulti = 5): cdef: unsigned int nx, ny, np numpy.ndarray x, y, vals, extend nx = nMulti*self.nx; ny = nMulti*self.ny; np = nx*ny; if xIn is None: x = numpy.linspace(self.x[0],self.x[1],nx) else: x = numpy.linspace(xIn[0],xIn[1],nx) if yIn is None: y = numpy.linspace(self.y[0],self.y[1],ny) else: y = numpy.linspace(yIn[0],yIn[1],ny) vals = numpy.empty(np) for ii in range(nx): for jj in range(ny): vals[jj*nx+ii] = self.interpolate(x[ii],y[jj]) extent = numpy.array([y[0], y[ny-1], x[0], x[nx-1]]) rc('text', usetex=True) rc('font', family='Helvetica') rc('xtick', labelsize=15) rc('ytick', labelsize=15) if subPlotObj is None: figObj = mpl.figure() subPlotObj = figObj.add_subplot(111) img = subPlotObj.imshow(numpy.reshape(vals,(ny,nx)).transpose(), extent=extent, origin='lower') subPlotObj.set_xlabel(r'$z\;\mathrm{in}\;\mathrm{m}$',
Cython
fontsize=25) subPlotObj.set_ylabel(r'$x\;\mathrm{in}\;\mathrm{m}$', fontsize=25) cbar = mpl.colorbar(img, shrink=0.75) cbar.set_label(r'$B_y\;\mathrm{in}\;\mathrm{T}$', fontsize=25, rotation=90) subPlotObj.set_xlim(extent[:2]) subPlotObj.set_ylim(extent[2:]) return subPlotObj # See Berz book. cdef double _gwint(double xVal, double yVal, double[:] x, double[:] y, double[:] z, double S, double dxi, double dyi, unsigned int dn, unsigned int nx, double[::1] fx, double[::1] fy): cdef: unsigned int ii, jj double res = 0. double Ssqrt2inv = S*sqrt2inv double xValRed, yValRed unsigned int indx0, indy0 indx0 = (<unsigned int> ((xVal-x[0])*dxi)) - dn/2 + 1 indy0 = (<unsigned int> ((yVal-y[0])*dyi)) - dn/2 + 1 xValRed = (xVal-x[0])*dxi - indx0 yValRed = (yVal-y[0])*dyi - indy0 for ii in range(dn): fx[ii] = _gnd((xValRed-ii)/Ssqrt2inv)/Ssqrt2inv fy[ii] = _gnd((yValRed-ii)/Ssqrt2inv)/Ssqrt2inv for ii in range(dn): for jj in range(dn): res += z[(indy0+jj)*nx+(indx0+ii)]*fx[ii]*fy[jj] return res cdef double _gnd(double x): return pi2invsqrt*exp(-0.5*x*x) cdef _gwintdtill5(double xVal, double yVal, double[:] x, double[:] y, double[:] z, double S, double dxi, double dyi, unsigned int dn, unsigned int nx, double[::1] fx, double[::1] fy, double[::1] xRedTemp, double[::1] yRedTemp, double[:] res, double[:] u):#In): cdef: unsigned int ii, jj double xValRed, yValRed, temp unsigned int indx0, indy0 # double[:] u = uIn.copy() # double uAbsi = 1./sqrt(u[0]*u[0]+u[1]*u[1]) # # u[0] *= uAbsi # u[1] *= uAbsi sig = S*sqrt2inv sigi = 1./sig; sigi2 = sigi*sigi; sigi3 = sigi2*sigi; sigi4 = sigi3*sigi; sigi5 = sigi4*sigi; indx0 = (<unsigned int> ((xVal-x[0])*dxi)) - dn/2 + 1 indy0 = (<unsigned int> ((yVal-y[0])*dyi)) - dn/2 + 1 xValRed = (xVal-x[0])*dxi - indx0 yValRed = (yVal-y[0])*dyi - indy0 for ii in range(dn): xRedTemp[ii] = (xValRed-ii)*sigi yRedTemp[ii] = (yValRed-ii)*sigi fx[ii] = _gnd(xRedTemp[ii])*sigi fy[ii] = _gnd(yRedTemp[ii])*sigi for ii in range(6): res[ii] = 0. for ii in range(dn): for jj in range(dn): t = u[0]*xRedTemp[ii] + u[1]*yRedTemp[jj] temp = z[(indy0+jj)*nx+(indx0+ii)]*fx[ii]*fy[jj] res[0] += temp res[1] += -t*temp*sigi res[2] += (t**2-1.)*sigi2*temp res[3] += (-t**3+3.*t)*sigi3*temp res[4] += (t**4-6.*t**2+3.)*sigi4*temp res[5] += (-t**5+10.*t**3-15.*t)*sigi5*temp <|end_of_text|># coding=utf-8 """ Cython declaration file specifying what function(s) we are using from which external C header. """ cdef extern from "fibonacci.h": int compute_fibonacci(int n) <|end_of_text|> cdef extern from "regression_kernels.hpp": cdef cppclass RegressionKernel: double evaluate(double x) double deriv(double x) object to_dict() void from_dict(object dict_repr) except+<|end_of_text|># # Copyright (c) 2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # cython: profile=False # distutils: language = c++ # cython: embedsignature = True # cython: language_level = 3 import io import numpy as np from cpython.object cimport PyObject from cython.operator cimport dereference as deref from libc.stddef cimport size_t from libc.stdint cimport int8_t, int32_t, int64_t, uint8_t, uint32_t, uintptr_t from pylibraft.common.cpp.mdspan cimport ( col_major, device_matrix_view, host_matrix_view, host_mdspan, make_device_matrix_view, make_host_matrix_view, matrix_extent, ostream, ostringstream, row_major, serialize_mdspan, ) from pylibraft.common.handle cimport device_resources from pylibraft.common.optional cimport make_optional, optional from pylibraft.common import DeviceResources cdef extern from "Python.h": Py_buffer* PyMemoryView_GET_BUFFER(PyObject* mview) def run_roundtrip_test_for_mdspan(X, fortran_order=False): if not isinstance(X, np.ndarray) or len(X.shape)!= 2: raise ValueError("Please call this function with a NumPy array with" "2 dimensions") handle = DeviceResources() cdef device_resources * handle_ = \ <device_resources *> <size_t> handle.getHandle() cdef ostringstream oss if X.dtype == np.float32: if fortran_order: serialize_mdspan[float, matrix_extent[size_t], col_major]( deref(handle_), <ostream&>oss, <const host_mdspan[float, matrix_extent[size_t], col_major] &> make_host_matrix_view[float, size_t, col_major]( <float *><uintptr_t>PyMemoryView_GET_BUFFER( <PyObject *> X.data).buf, X.shape[0], X.shape[1])) else: serialize_mdspan[float, matrix_extent[size_t], row_major]( deref(handle_), <ostream&>oss, <const host_mdspan[float, matrix_extent[size_t], row_major]&> make_host_matrix_view[float, size_t, row_major]( <float *><uintptr_t>PyMemoryView_GET_BUFFER( <PyObject *> X.data).buf, X.shape[0], X.shape[1])) elif X.dtype == np.float64: if fortran_order: serialize_mdspan[double, matrix_extent[size_t], col_major]( deref(handle_), <ostream&>oss, <const host_mdspan[double, matrix_extent[size_t], col_major]&> make_host_matrix_view[double, size_t, col_major]( <double *><uintptr_t>PyMemoryView_GET_BUFFER( <PyObject *> X.data).buf, X.shape[0], X.shape[1])) else: serialize_mdspan[double, matrix_extent[size_t], row_major]( deref(handle_), <ostream&>oss, <const host_mdspan[double, matrix_extent[size_t], row_major]&> make_host_matrix_view[double, size_t, row_major]( <double *><uintptr_t>PyMemoryView_GET_BUFFER( <PyObject *> X.data).buf, X.shape[0], X.shape[1])) elif X.dtype == np.int32: if fortran_order: serialize_mdspan[int32_t, matrix_extent[size_t], col_major]( deref(handle_), <ostream&>oss, <const host_mdspan[int32_t,
Cython
matrix_extent[size_t], col_major]&> make_host_matrix_view[int32_t, size_t, col_major]( <int32_t *><uintptr_t>PyMemoryView_GET_BUFFER( <PyObject *> X.data).buf, X.shape[0], X.shape[1])) else: serialize_mdspan[int32_t, matrix_extent[size_t], row_major]( deref(handle_), <ostream&>oss, <const host_mdspan[int32_t, matrix_extent[size_t], row_major]&> make_host_matrix_view[int32_t, size_t, row_major]( <int32_t *><uintptr_t>PyMemoryView_GET_BUFFER( <PyObject *> X.data).buf, X.shape[0], X.shape[1])) elif X.dtype == np.uint32: if fortran_order: serialize_mdspan[uint32_t, matrix_extent[size_t], col_major]( deref(handle_), <ostream&>oss, <const host_mdspan[uint32_t, matrix_extent[size_t], col_major]&> make_host_matrix_view[uint32_t, size_t, col_major]( <uint32_t *><uintptr_t>PyMemoryView_GET_BUFFER( <PyObject *> X.data).buf, X.shape[0], X.shape[1])) else: serialize_mdspan[uint32_t, matrix_extent[size_t], row_major]( deref(handle_), <ostream&>oss, <const host_mdspan[uint32_t, matrix_extent[size_t], row_major]&> make_host_matrix_view[uint32_t, size_t, row_major]( <uint32_t *><uintptr_t>PyMemoryView_GET_BUFFER( <PyObject *> X.data).buf, X.shape[0], X.shape[1])) else: raise NotImplementedError() f = io.BytesIO(oss.str()) X2 = np.load(f) assert np.all(X.shape == X2.shape) assert np.all(X == X2) cdef device_matrix_view[float, int64_t, row_major] \ get_dmv_float(cai, check_shape) except *: if cai.dtype!= np.float32: raise TypeError("dtype %s not supported" % cai.dtype) if check_shape and len(cai.shape)!= 2: raise ValueError("Expected a 2D array, got %d D" % len(cai.shape)) shape = (cai.shape[0], cai.shape[1] if len(cai.shape) == 2 else 1) return make_device_matrix_view[float, int64_t, row_major]( <float*><uintptr_t>cai.data, shape[0], shape[1]) cdef device_matrix_view[uint8_t, int64_t, row_major] \ get_dmv_uint8(cai, check_shape) except *: if cai.dtype!= np.uint8: raise TypeError("dtype %s not supported" % cai.dtype) if check_shape and len(cai.shape)!= 2: raise ValueError("Expected a 2D array, got %d D" % len(cai.shape)) shape = (cai.shape[0], cai.shape[1] if len(cai.shape) == 2 else 1) return make_device_matrix_view[uint8_t, int64_t, row_major]( <uint8_t*><uintptr_t>cai.data, shape[0], shape[1]) cdef device_matrix_view[int8_t, int64_t, row_major] \ get_dmv_int8(cai, check_shape) except *: if cai.dtype!= np.int8: raise TypeError("dtype %s not supported" % cai.dtype) if check_shape and len(cai.shape)!= 2: raise ValueError("Expected a 2D array, got %d D" % len(cai.shape)) shape = (cai.shape[0], cai.shape[1] if len(cai.shape) == 2 else 1) return make_device_matrix_view[int8_t, int64_t, row_major]( <int8_t*><uintptr_t>cai.data, shape[0], shape[1]) cdef device_matrix_view[int64_t, int64_t, row_major] \ get_dmv_int64(cai, check_shape) except *: if cai.dtype!= np.int64: raise TypeError("dtype %s not supported" % cai.dtype) if check_shape and len(cai.shape)!= 2: raise ValueError("Expected a 2D array, got %d D" % len(cai.shape)) shape = (cai.shape[0], cai.shape[1] if len(cai.shape) == 2 else 1) return make_device_matrix_view[int64_t, int64_t, row_major]( <int64_t*><uintptr_t>cai.data, shape[0], shape[1]) cdef device_matrix_view[const_float, int64_t, row_major] \ get_const_dmv_float(cai, check_shape) except *: if cai.dtype!= np.float32: raise TypeError("dtype %s not supported" % cai.dtype) if check_shape and len(cai.shape)!= 2: raise ValueError("Expected a 2D array, got %d D" % len(cai.shape)) shape = (cai.shape[0], cai.shape[1] if len(cai.shape) == 2 else 1) return make_device_matrix_view[const_float, int64_t, row_major]( <const float*><uintptr_t>cai.data, shape[0], shape[1]) cdef device_matrix_view[const_uint8_t, int64_t, row_major] \ get_const_dmv_uint8(cai, check_shape) except *: if cai.dtype!= np.uint8: raise TypeError("dtype %s not supported" % cai.dtype) if check_shape and len(cai.shape)!= 2: raise ValueError("Expected a 2D array, got %d D" % len(cai.shape)) shape = (cai.shape[0], cai.shape[1] if len(cai.shape) == 2 else 1) return make_device_matrix_view[const_uint8_t, int64_t, row_major]( <const uint8_t*><uintptr_t>cai.data, shape[0], shape[1]) cdef device_matrix_view[const_int8_t, int64_t, row_major] \ get_const_dmv_int8(cai, check_shape) except *: if cai.dtype!= np.int8: raise TypeError("dtype %s not supported" % cai.dtype) if check_shape and len(cai.shape)!= 2: raise ValueError("Expected a 2D array, got %d D" % len(cai.shape)) shape = (cai.shape[0], cai.shape[1] if len(cai.shape) == 2 else 1) return make_device_matrix_view[const_int8_t, int64_t, row_major]( <const int8_t*><uintptr_t>cai.data, shape[0], shape[1]) cdef optional[device_matrix_view[int64_t, int64_t, row_major]] \ make_optional_view_int64(device_matrix_view[int64_t, int64_t, row_major]& dmv) except *: # noqa: E501 return make_optional[device_matrix_view[int64_t, int64_t, row_major]](dmv) # todo(dantegd): we can unify and simplify this functions a little bit # defining extra functions as-is is the quickest way to get what we need for # cagra.pyx cdef device_matrix_view[uint32_t, int64_t, row_major] \ get_dmv_uint32(cai, check_shape) except *: if cai.dtype!= np.uint32: raise TypeError("dtype %s not supported" % cai.dtype) if check_shape and len(cai.shape)!= 2: raise ValueError("Expected a 2D array, got %d D" % len(cai.shape)) shape = (cai.shape[0], cai.shape[1] if len(cai.shape) == 2 else 1) return make_device_matrix_view[uint32_t, int64_t, row_major]( <uint32_t*><uintptr_t>cai.data, shape[0], shape[1]) cdef host_matrix_view[float, int64_t, row_major] \ get_hmv_float(cai, check_shape) except *: if cai.dtype!= np.float32: raise TypeError("dtype %s not supported" % cai.dtype) if check_shape and len(cai.shape)!= 2: raise ValueError("Expected a 2D array, got %d D" % len(cai.shape)) shape = (cai.shape[0], cai.shape[1] if len(cai.shape) == 2 else 1) return make_host_matrix_view[float, int64_t, row_major]( <float*><uintptr_t>cai.data, shape[0], shape[1]) cdef host_matrix_view[uint8_t, int64_t, row_major] \ get_hmv_uint8(cai, check_shape) except *: if cai.dtype!= np.uint8: raise TypeError("dtype %s not supported" % cai.dtype) if check_shape and len(cai.shape
Cython
)!= 2: raise ValueError("Expected a 2D array, got %d D" % len(cai.shape)) shape = (cai.shape[0], cai.shape[1] if len(cai.shape) == 2 else 1) return make_host_matrix_view[uint8_t, int64_t, row_major]( <uint8_t*><uintptr_t>cai.data, shape[0], shape[1]) cdef host_matrix_view[int8_t, int64_t, row_major] \ get_hmv_int8(cai, check_shape) except *: if cai.dtype!= np.int8: raise TypeError("dtype %s not supported" % cai.dtype) if check_shape and len(cai.shape)!= 2: raise ValueError("Expected a 2D array, got %d D" % len(cai.shape)) shape = (cai.shape[0], cai.shape[1] if len(cai.shape) == 2 else 1) return make_host_matrix_view[int8_t, int64_t, row_major]( <int8_t*><uintptr_t>cai.data, shape[0], shape[1]) cdef host_matrix_view[int64_t, int64_t, row_major] \ get_hmv_int64(cai, check_shape) except *: if cai.dtype!= np.int64: raise TypeError("dtype %s not supported" % cai.dtype) if check_shape and len(cai.shape)!= 2: raise ValueError("Expected a 2D array, got %d D" % len(cai.shape)) shape = (cai.shape[0], cai.shape[1] if len(cai.shape) == 2 else 1) return make_host_matrix_view[int64_t, int64_t, row_major]( <int64_t*><uintptr_t>cai.data, shape[0], shape[1]) cdef host_matrix_view[uint32_t, int64_t, row_major] \ get_hmv_uint32(cai, check_shape) except *: if cai.dtype!= np.int64: raise TypeError("dtype %s not supported" % cai.dtype) if check_shape and len(cai.shape)!= 2: raise ValueError("Expected a 2D array, got %d D" % len(cai.shape)) shape = (cai.shape[0], cai.shape[1] if len(cai.shape) == 2 else 1) return make_host_matrix_view[uint32_t, int64_t, row_major]( <uint32_t*><uintptr_t>cai.data, shape[0], shape[1]) cdef host_matrix_view[const_float, int64_t, row_major] \ get_const_hmv_float(cai, check_shape) except *: if cai.dtype!= np.float32: raise TypeError("dtype %s not supported" % cai.dtype) if check_shape and len(cai.shape)!= 2: raise ValueError("Expected a 2D array, got %d D" % len(cai.shape)) shape = (cai.shape[0], cai.shape[1] if len(cai.shape) == 2 else 1) return make_host_matrix_view[const_float, int64_t, row_major]( <const float*><uintptr_t>cai.data, shape[0], shape[1]) cdef host_matrix_view[const_uint8_t, int64_t, row_major] \ get_const_hmv_uint8(cai, check_shape) except *: if cai.dtype!= np.uint8: raise TypeError("dtype %s not supported" % cai.dtype) if check_shape and len(cai.shape)!= 2: raise ValueError("Expected a 2D array, got %d D" % len(cai.shape)) shape = (cai.shape[0], cai.shape[1] if len(cai.shape) == 2 else 1) return make_host_matrix_view[const_uint8_t, int64_t, row_major]( <const uint8_t*><uintptr_t>cai.data, shape[0], shape[1]) cdef host_matrix_view[const_int8_t, int64_t, row_major] \ get_const_hmv_int8(cai, check_shape) except *: if cai.dtype!= np.int8: raise TypeError("dtype %s not supported" % cai.dtype) if check_shape and len(cai.shape)!= 2: raise ValueError("Expected a 2D array, got %d D" % len(cai.shape)) shape = (cai.shape[0], cai.shape[1] if len(cai.shape) == 2 else 1) return make_host_matrix_view[const_int8_t, int64_t, row_major]( <const_int8_t*><uintptr_t>cai.data, shape[0], shape[1]) <|end_of_text|>#Copyright (c) 2010-2012, Gabriel Jacobo #All rights reserved. #Permission to use this file is granted under the conditions of the Ignifuga Game Engine License #whose terms are available in the LICENSE file or at http://www.ignifuga.org/license include "../include/config.pxi" cdef extern from "SDL_joystick.h": cdef struct SDL_Joystick cdef int SDL_HAT_CENTERED = 0x00 cdef int SDL_HAT_UP = 0x01 cdef int SDL_HAT_RIGHT = 0x02 cdef int SDL_HAT_DOWN = 0x04 cdef int SDL_HAT_LEFT = 0x08 cdef extern from "SDL.h": ctypedef unsigned char Uint8 ctypedef unsigned long Uint32 ctypedef signed long Sint32 ctypedef unsigned long long Uint64 ctypedef signed long long Sint64 ctypedef signed short Sint16 ctypedef unsigned short Uint16 ctypedef void *SDL_GLContext ctypedef Uint32 SDL_Keycode ctypedef Sint32 SDL_JoystickID int SDL_WINDOWPOS_UNDEFINED ctypedef enum: SDL_PIXELFORMAT_BGRA8888 SDL_PIXELFORMAT_ARGB8888 SDL_PIXELFORMAT_RGBA8888 SDL_PIXELFORMAT_ABGR8888 SDL_PIXELFORMAT_RGB24 SDL_PIXELFORMAT_BGR24 ctypedef enum SDL_GLattr: SDL_GL_RED_SIZE SDL_GL_GREEN_SIZE SDL_GL_BLUE_SIZE SDL_GL_ALPHA_SIZE SDL_GL_BUFFER_SIZE SDL_GL_DOUBLEBUFFER SDL_GL_DEPTH_SIZE SDL_GL_STENCIL_SIZE SDL_GL_ACCUM_RED_SIZE SDL_GL_ACCUM_GREEN_SIZE SDL_GL_ACCUM_BLUE_SIZE SDL_GL_ACCUM_ALPHA_SIZE SDL_GL_STEREO SDL_GL_MULTISAMPLEBUFFERS SDL_GL_MULTISAMPLESAMPLES SDL_GL_ACCELERATED_VISUAL SDL_GL_RETAINED_BACKING SDL_GL_CONTEXT_MAJOR_VERSION SDL_GL_CONTEXT_MINOR_VERSION SDL_GL_CONTEXT_EGL SDL_GL_CONTEXT_FLAGS SDL_GL_CONTEXT_PROFILE_MASK ctypedef enum SDL_SystemCursor: SDL_SYSTEM_CURSOR_ARROW SDL_SYSTEM_CURSOR_IBEAM SDL_SYSTEM_CURSOR_WAIT SDL_SYSTEM_CURSOR_CROSSHAIR SDL_SYSTEM_CURSOR_WAITARROW SDL_SYSTEM_CURSOR_SIZENWSE SDL_SYSTEM_CURSOR_SIZENESW SDL_SYSTEM_CURSOR_SIZEWE SDL_SYSTEM_CURSOR_SIZENS SDL_SYSTEM_CURSOR_SIZEALL SDL_SYSTEM_CURSOR_NO SDL_SYSTEM_CURSOR_HAND ctypedef enum SDL_BlendMode: SDL_BLENDMODE_NONE = 0x00000000 SDL_BLENDMODE_BLEND = 0x00000001 SDL_BLENDMODE_ADD = 0x00000002 SDL_BLENDMODE_MOD = 0x00000004 ctypedef enum SDL_TextureAccess: SDL_TEXTUREACCESS_STATIC SDL_TEXTUREACCESS_STREAMING SDL_TEXTUREACCESS_TARGET ctypedef enum SDL_RendererFlags: SDL_RENDERER_SOFTWARE = 0x00000001 SDL_RENDERER_ACCELERATED = 0x00000002 SDL_RENDERER_PRESENTVSYNC = 0x00000004 ctypedef enum SDL_bool: SDL_FALSE = 0 SDL_TRUE = 1 cdef struct SDL_version: Uint8 major Uint8 minor Uint8 patch cdef struct SDL_Rect: int x, y int w, h ctypedef struct SDL_Point: int x, y cdef struct SDL_Color: Uint8 r Uint8 g Uint8 b Uint8 a cdef struct SDL_Palette: int ncolors SDL_Color *colors Uint32 version int refcount cdef struct SDL_PixelFormat: Uint32 format SDL_Palette *palette Uint8 BitsPerPixel Uint8 BytesPerPixel Uint8 padding[2] Uint32 Rmask Uint32 Gmask Uint32 Bmask Uint32 Amask Uint8 Rloss Uint8 Gloss Uint8 Bloss Uint8 Aloss Uint8 Rshift Uint8 Gshift Uint8 Bshift Uint8 Ashift int refcount SDL_PixelFormat *next cdef struct SDL_BlitMap cdef struct SDL_C
Cython
ursor cdef struct SDL_Surface: Uint32 flags SDL_PixelFormat *format int w, h int pitch void *pixels void *userdata int locked void *lock_data SDL_Rect clip_rect SDL_BlitMap *map int refcount ctypedef enum SDL_EventType: SDL_FIRSTEVENT = 0, SDL_DROPFILE = 0x1000, SDL_DROPTEXT SDL_DROPBEGIN SDL_DROPCOMPLETE SDL_QUIT = 0x100 SDL_WINDOWEVENT = 0x200 SDL_SYSWMEVENT SDL_KEYDOWN = 0x300 SDL_KEYUP SDL_TEXTEDITING SDL_TEXTINPUT SDL_MOUSEMOTION = 0x400 SDL_MOUSEBUTTONDOWN = 0x401 SDL_MOUSEBUTTONUP = 0x402 SDL_MOUSEWHEEL = 0x403 SDL_INPUTMOTION = 0x500 SDL_INPUTBUTTONDOWN SDL_INPUTBUTTONUP SDL_INPUTWHEEL SDL_INPUTPROXIMITYIN SDL_INPUTPROXIMITYOUT SDL_JOYAXISMOTION = 0x600 SDL_JOYBALLMOTION SDL_JOYHATMOTION SDL_JOYBUTTONDOWN SDL_JOYBUTTONUP SDL_FINGERDOWN = 0x700 SDL_FINGERUP SDL_FINGERMOTION SDL_TOUCHBUTTONDOWN SDL_TOUCHBUTTONUP SDL_DOLLARGESTURE = 0x800 SDL_DOLLARRECORD SDL_MULTIGESTURE SDL_CLIPBOARDUPDATE = 0x900 SDL_EVENT_COMPAT1 = 0x7000 SDL_EVENT_COMPAT2 SDL_EVENT_COMPAT3 SDL_USEREVENT = 0x8000 SDL_LASTEVENT = 0xFFFF SDL_APP_TERMINATING SDL_APP_LOWMEMORY SDL_APP_WILLENTERBACKGROUND SDL_APP_DIDENTERBACKGROUND SDL_APP_WILLENTERFOREGROUND SDL_APP_DIDENTERFOREGROUND ctypedef enum SDL_WindowEventID: SDL_WINDOWEVENT_NONE #< Never used */ SDL_WINDOWEVENT_SHOWN #< Window has been shown */ SDL_WINDOWEVENT_HIDDEN #< Window has been hidden */ SDL_WINDOWEVENT_EXPOSED #< Window has been exposed and should be # redrawn */ SDL_WINDOWEVENT_MOVED #< Window has been moved to data1, data2 # */ SDL_WINDOWEVENT_RESIZED #< Window has been resized to data1xdata2 */ SDL_WINDOWEVENT_SIZE_CHANGED #< The window size has changed, either as a result of an API call or through the system or user changing the window size. */ SDL_WINDOWEVENT_MINIMIZED #< Window has been minimized */ SDL_WINDOWEVENT_MAXIMIZED #< Window has been maximized */ SDL_WINDOWEVENT_RESTORED #< Window has been restored to normal size # and position */ SDL_WINDOWEVENT_ENTER #< Window has gained mouse focus */ SDL_WINDOWEVENT_LEAVE #< Window has lost mouse focus */ SDL_WINDOWEVENT_FOCUS_GAINED #< Window has gained keyboard focus */ SDL_WINDOWEVENT_FOCUS_LOST #< Window has lost keyboard focus */ SDL_WINDOWEVENT_CLOSE #< The window manager requests that the # window be closed */ SDL_WINDOWEVENT_TAKE_FOCUS #< Window is being offered a focus (should SetWindowInputFocus() on itself or a subwindow, or ignore) */ SDL_WINDOWEVENT_HIT_TEST #< Window had a hit test that wasn't SDL_HITTEST_NORMAL */ SDL_WINDOWEVENT_ICCPROF_CHANGED # [Added in SDL 2.0.18] < The ICC profile of the window's display has changed. */ SDL_WINDOWEVENT_DISPLAY_CHANGED # [Added in SDL 2.0.18] < Window has been moved to display data1. */ ctypedef enum SDL_HintPriority: SDL_HINT_DEFAULT SDL_HINT_NORMAL SDL_HINT_OVERRIDE ctypedef enum SDL_RendererFlip: SDL_FLIP_NONE = 0x00000000 SDL_FLIP_HORIZONTAL = 0x00000001 SDL_FLIP_VERTICAL = 0x00000002 ctypedef enum SDL_WindowFlags: SDL_WINDOW_FULLSCREEN = 0x00000001 #, /**< fullscreen window */ SDL_WINDOW_OPENGL = 0x00000002 #, /**< window usable with OpenGL context */ SDL_WINDOW_SHOWN = 0x00000004 #, /**< window is visible */ SDL_WINDOW_HIDDEN = 0x00000008 #, /**< window is not visible */ SDL_WINDOW_BORDERLESS = 0x00000010 #, /**< no window decoration */ SDL_WINDOW_RESIZABLE = 0x00000020 #, /**< window can be resized */ SDL_WINDOW_MINIMIZED = 0x00000040 #, /**< window is minimized */ SDL_WINDOW_MAXIMIZED = 0x00000080 #, /**< window is maximized */ SDL_WINDOW_INPUT_GRABBED = 0x00000100 #, /**< window has grabbed input focus */ SDL_WINDOW_INPUT_FOCUS = 0x00000200 #, /**< window has input focus */ SDL_WINDOW_MOUSE_FOCUS = 0x00000400 #, /**< window has mouse focus */ SDL_WINDOW_FOREIGN = 0x00000800 # /**< window not created by SDL */ SDL_WINDOW_FULLSCREEN_DESKTOP SDL_WINDOW_ALLOW_HIGHDPI SDL_WINDOW_SKIP_TASKBAR = 0x00010000 #, /**< window should not be added to the taskbar */ ctypedef enum SDL_HitTestResult: SDL_HITTEST_NORMAL SDL_HITTEST_DRAGGABLE SDL_HITTEST_RESIZE_TOPLEFT SDL_HITTEST_RESIZE_TOP SDL_HITTEST_RESIZE_TOPRIGHT SDL_HITTEST_RESIZE_RIGHT SDL_HITTEST_RESIZE_BOTTOMRIGHT SDL_HITTEST_RESIZE_BOTTOM SDL_HITTEST_RESIZE_BOTTOMLEFT SDL_HITTEST_RESIZE_LEFT cdef struct SDL_DropEvent: Uint32 type Uint32 timestamp char* file cdef struct SDL_MouseMotionEvent: Uint32 type Uint32 timestamp Uint32 windowID Uint32 which Uint32 state Sint32 x Sint32 y Sint32 xrel Sint32 yrel cdef struct SDL_MouseButtonEvent: Uint32 type Uint32 timestamp Uint32 windowID Uint32 which Uint8 button Uint8 state Uint8 clicks Sint32 x Sint32 y cdef struct SDL_WindowEvent: Uint32 type Uint32 timestamp Uint32 windowID Uint8 event Sint32 data1 Sint32 data2 ctypedef Sint64 SDL_TouchID ctypedef Sint64 SDL_FingerID cdef struct SDL_TouchFingerEvent: Uint32 type Uint32 windowID SDL_TouchID touchId SDL_FingerID fingerId float x float y float dx float dy float pressure cdef struct SDL_Keysym: SDL_Scancode scancode # SDL physical key code - see ::SDL_Scancode for details */ SDL_Keycode sym # SDL virtual key code - see ::SDL_Keycode for details */ Uint16 mod # current key modifiers */ Uint32 unused cdef struct SDL_KeyboardEvent: Uint32 type # ::SDL_KEYDOWN or ::SDL_KEYUP Uint32 timestamp Uint32 windowID # The window with keyboard focus, if any Uint8 state # ::SDL_PRESSED or ::SDL_RELEASED Uint8 repeat # Non-zero if this is a key repeat SDL_Keysym keysym # The key that was pressed or released cdef struct SDL_TextEditingEvent: Uint32 type # ::SDL_TEXTEDITING */ Uint32 timestamp Uint32 windowID # The window with keyboard focus, if any */ char *text # The editing text */ Sint32 start # The start cursor of selected editing text */ Sint32 length # The length of selected editing text */ cdef struct SDL_TextInputEvent: Uint32 type # ::SDL_TEXTINPUT */ Uint32 timestamp Uint32 windowID # The window with keyboard focus, if any */ char *text # The input text */ cdef struct SDL_MouseWheelEvent: Uint32 type Uint32 windowID int x int y cdef struct SDL_JoyAxisEvent: Uint32 type Uint32 timestamp SDL_JoystickID which Uint8 axis Sint16 value cdef struct SDL_JoyBallEvent: Uint32 type Uint32 timestamp SDL_JoystickID which Uint8 ball Sint16 xrel Sint16 yrel cdef struct SDL_JoyHatEvent:
Cython
Uint32 type Uint32 timestamp SDL_JoystickID which Uint8 hat Uint8 value cdef struct SDL_JoyButtonEvent: Uint32 type Uint32 timestamp SDL_JoystickID which Uint8 button Uint8 state cdef struct SDL_QuitEvent: pass cdef struct SDL_UserEvent: Uint32 type Uint32 timestamp Uint32 windowID int code void *data1 void *data2 cdef struct SDL_SysWMEvent: pass cdef struct SDL_TouchButtonEvent: pass cdef struct SDL_MultiGestureEvent: pass cdef struct SDL_DollarGestureEvent: pass cdef union SDL_Event: Uint32 type SDL_WindowEvent window SDL_KeyboardEvent key SDL_TextEditingEvent edit SDL_TextInputEvent text SDL_MouseMotionEvent motion SDL_MouseButtonEvent button SDL_DropEvent drop SDL_MouseWheelEvent wheel SDL_JoyAxisEvent jaxis SDL_JoyBallEvent jball SDL_JoyHatEvent jhat SDL_JoyButtonEvent jbutton SDL_QuitEvent quit SDL_UserEvent user SDL_SysWMEvent syswm SDL_TouchFingerEvent tfinger SDL_TouchButtonEvent tbutton SDL_MultiGestureEvent mgesture SDL_DollarGestureEvent dgesture cdef struct SDL_RendererInfo: char *name Uint32 flags Uint32 num_texture_formats Uint32 texture_formats[16] int max_texture_width int max_texture_height ctypedef struct SDL_Texture ctypedef struct SDL_Renderer ctypedef struct SDL_Window ctypedef struct SDL_DisplayMode: Uint32 format int w int h int refresh_rate void *driverdata cdef struct SDL_RWops_union_unknown: void *data1 cdef union SDL_RWops_union: SDL_RWops_union_unknown unknown cdef struct SDL_RWops: Sint64 (* seek) (SDL_RWops * context, Sint64 offset,int whence) size_t(* read) ( SDL_RWops * context, void *ptr, size_t size, size_t maxnum) size_t(* write) (SDL_RWops * context, void *ptr,size_t size, size_t num) int (* close) (SDL_RWops * context) int type SDL_RWops_union hidden cdef enum SDL_Keymod: KMOD_NONE KMOD_LSHIFT KMOD_RSHIFT KMOD_LCTRL KMOD_RCTRL KMOD_LALT KMOD_RALT KMOD_LGUI KMOD_RGUI KMOD_NUM KMOD_CAPS KMOD_MODE KMOD_RESERVED ctypedef enum SDL_Scancode: pass ctypedef int SDL_EventFilter(void* userdata, SDL_Event* event) # for windows only see # https://github.com/LuaDist/sdl/blob/master/include/begin_code.h#L68 IF UNAME_SYSNAME == 'Windows': ctypedef SDL_HitTestResult (__cdecl *SDL_HitTest) (SDL_Window *win, const SDL_Point *area, void *data) ELSE: ctypedef SDL_HitTestResult (*SDL_HitTest)(SDL_Window *win, const SDL_Point *area, void *data) cdef char *SDL_HINT_ORIENTATIONS cdef char *SDL_HINT_VIDEO_WIN_D3DCOMPILER cdef char *SDL_HINT_ACCELEROMETER_AS_JOYSTICK cdef char *SDL_HINT_ANDROID_TRAP_BACK_BUTTON cdef char *SDL_HINT_WINDOWS_DPI_AWARENESS cdef char *SDL_HINT_WINDOWS_DPI_SCALING cdef int SDL_QUERY = -1 cdef int SDL_IGNORE = 0 cdef int SDL_DISABLE = 0 cdef int SDL_ENABLE = 1 cdef int SDL_INIT_TIMER = 0x00000001 cdef int SDL_INIT_AUDIO = 0x00000010 cdef int SDL_INIT_VIDEO = 0x00000020 # SDL_INIT_VIDEO implies SDL_INIT_EVENTS */ cdef int SDL_INIT_JOYSTICK = 0x00000200 # SDL_INIT_JOYSTICK implies SDL_INIT_EVENTS */ cdef int SDL_INIT_HAPTIC = 0x00001000 cdef int SDL_INIT_GAMECONTROLLER = 0x00002000 # SDL_INIT_GAMECONTROLLER implies SDL_INIT_JOYSTICK */ cdef int SDL_INIT_EVENTS = 0x00004000 cdef int SDL_INIT_NOPARACHUTE = 0x00100000 # Don't catch fatal signals */ cdef void SDL_GetVersion(SDL_version * ver) cdef SDL_Renderer * SDL_CreateRenderer(SDL_Window * window, int index, Uint32 flags) cdef void SDL_DestroyRenderer (SDL_Renderer * renderer) cdef SDL_Texture * SDL_CreateTexture(SDL_Renderer * renderer, Uint32 format, int access, int w, int h) cdef SDL_Texture * SDL_CreateTextureFromSurface(SDL_Renderer * renderer, SDL_Surface * surface) cdef SDL_Surface * SDL_CreateRGBSurface(Uint32 flags, int width, int height, int depth, Uint32 Rmask, Uint32 Gmask, Uint32 Bmask, Uint32 Amask) nogil cdef int SDL_RenderCopy(SDL_Renderer * renderer, SDL_Texture * texture, SDL_Rect * srcrect, SDL_Rect * dstrect) cdef int SDL_RenderCopyEx(SDL_Renderer * renderer, SDL_Texture * texture, SDL_Rect * srcrect, SDL_Rect * dstrect, double angle, SDL_Point *center, SDL_RendererFlip flip) cdef void SDL_RenderPresent(SDL_Renderer * renderer) cdef SDL_bool SDL_RenderTargetSupported(SDL_Renderer *renderer) cdef int SDL_SetRenderTarget(SDL_Renderer *renderer, SDL_Texture *texture) cdef void SDL_DestroyTexture(SDL_Texture * texture) cdef void SDL_FreeSurface(SDL_Surface * surface) nogil cdef int SDL_SetSurfaceBlendMode(SDL_Surface * surface, int blendMode) cdef int SDL_SetSurfaceAlphaMod(SDL_Surface * surface, char alpha) cdef int SDL_UpperBlit (SDL_Surface * src, SDL_Rect * srcrect, SDL_Surface * dst, SDL_Rect * dstrect) cdef int SDL_BlitSurface(SDL_Surface * src, SDL_Rect * srcrect, SDL_Surface * dst, SDL_Rect * dstrect) cdef int SDL_LockTexture(SDL_Texture * texture, SDL_Rect * rect, void **pixels, int *pitch) cdef void SDL_UnlockTexture(SDL_Texture * texture) cdef void SDL_GetWindowSize(SDL_Window * window, int *w, int *h) cdef Uint32 SDL_GetWindowFlags(SDL_Window * window) cdef SDL_Window * SDL_CreateWindow(char *title, int x, int y, int w, int h, Uint32 flags) cdef void SDL_DestroyWindow (SDL_Window * window) cdef int SDL_SetRenderDrawColor(SDL_Renderer * renderer, Uint8 r, Uint8 g, Uint8 b, Uint8 a) cdef int SDL_RenderClear(SDL_Renderer * renderer) cdef int SDL_SetTextureBlendMode(SDL_Texture * texture, SDL_BlendMode blendMode) cdef int SDL_GetTextureBlendMode(SDL_Texture * texture, SDL_BlendMode *blendMode) cdef SDL_Surface * SDL_CreateRGBSurfaceFrom(void *pixels, int width, int height, int depth, int pitch, Uint32 Rmask, Uint32 Gmask, Uint32 Bmask, Uint32 Amask) cdef SDL_Surface* SDL_ConvertSurfaceFormat(SDL_Surface* src, Uint32 pixel_format, Uint32 flags) nogil cdef const char* SDL_GetPixelFormatName(Uint32 format) cdef int SDL_GetColorKey(SDL_Surface *surface, Uint32 *key) cdef int SDL_Init(Uint32 flags) cdef void SDL_Quit() cdef int SDL_EnableUNICODE(int enable) cdef Uint32 SDL_GetTicks() cdef void SDL_Delay(Uint32 ms) nogil cdef Uint8 SDL_EventState(Uint32 type, int state) cdef int SDL_PollEvent(SDL_Event * event) nogil cdef void SDL_SetEventFilter(SDL_EventFilter *filter, void* userdata) cdef SDL_RWops * SDL_RWFromFile(char *file, char *mode) cdef SDL_RWops * SDL_RWFromMem(void *mem, int size) cdef SDL_RWops * SDL_RWFromConstMem(void *mem, int size) cdef SDL_RWops * SDL_AllocRW() cdef void SDL_FreeRW(SDL_RWops *area) cdef int SDL_GetRendererInfo(SDL_Renderer *renderer, SDL_RendererInfo *info) cdef int SDL_RenderSetViewport(SDL_Renderer * renderer, SDL_Rect * rect) cdef int SDL_GetCurrentDisplayMode(int displayIndex, SDL_DisplayMode * mode) cdef int SDL_GetDesktopDisplayMode(int displayIndex, SDL_DisplayMode * mode) cdef int SDL_SetTextureColorMod(SDL_Texture * texture, Uint8 r, Uint8
Cython
g, Uint8 b) cdef int SDL_SetTextureAlphaMod(SDL_Texture * texture, Uint8 alpha) cdef char * SDL_GetError() cdef SDL_bool SDL_SetHint(char *name, char *value) cdef SDL_bool SDL_SetHintWithPriority(char *name, char *value, SDL_HintPriority priority) cdef Uint32 SDL_GetMouseState(int* x,int* y) cdef Uint32 SDL_GetGlobalMouseState(int *x, int *y) cdef SDL_GLContext SDL_GL_CreateContext(SDL_Window* window) cdef int SDL_GetNumVideoDisplays() cdef int SDL_GetNumDisplayModes(int displayIndex) cdef int SDL_GetDisplayMode(int displayIndex, int index, SDL_DisplayMode * mode) cdef SDL_bool SDL_HasIntersection(SDL_Rect * A, SDL_Rect * B) nogil cdef SDL_bool SDL_IntersectRect(SDL_Rect * A, SDL_Rect * B, SDL_Rect * result) nogil cdef void SDL_UnionRect(SDL_Rect * A, SDL_Rect * B, SDL_Rect * result) nogil cdef Uint64 SDL_GetPerformanceCounter() nogil cdef Uint64 SDL_GetPerformanceFrequency() nogil cdef int SDL_GL_SetAttribute(SDL_GLattr attr, int value) cdef int SDL_GetNumRenderDrivers() cdef int SDL_GetRenderDriverInfo(int index, SDL_RendererInfo* info) cdef int SDL_GL_BindTexture(SDL_Texture *texture, float *texw, float *texh) cdef int SDL_GL_UnbindTexture(SDL_Texture *texture) cdef int SDL_RenderReadPixels(SDL_Renderer * renderer, SDL_Rect * rect, Uint32 format, void *pixels, int pitch) nogil cdef int SDL_PushEvent(SDL_Event * event) nogil cdef int SDL_WaitEvent(SDL_Event * event) nogil cdef void SDL_SetClipboardText(char * text) cdef const char * SDL_GetClipboardText() cdef SDL_bool SDL_HasClipboardText() cdef int SDL_GetNumVideoDrivers() cdef const char *SDL_GetVideoDriver(int index) cdef int SDL_VideoInit(const char *driver_name) cdef void SDL_VideoQuit() cdef const char *SDL_GetCurrentVideoDriver() cdef int SDL_GetNumVideoDisplays() cdef const char * SDL_GetDisplayName(int displayIndex) cdef int SDL_GetDisplayBounds(int displayIndex, SDL_Rect * rect) cdef int SDL_GetNumDisplayModes(int displayIndex) cdef int SDL_GetDesktopDisplayMode(int displayIndex, SDL_DisplayMode * mode) cdef int SDL_GetCurrentDisplayMode(int displayIndex, SDL_DisplayMode * mode) cdef SDL_DisplayMode * SDL_GetClosestDisplayMode(int displayIndex, const SDL_DisplayMode * mode, SDL_DisplayMode * closest) cdef int SDL_SetWindowDisplayMode(SDL_Window * window, SDL_DisplayMode * mode) cdef int SDL_GetWindowDisplayMode(SDL_Window * window, SDL_DisplayMode * mode) cdef int SDL_GetWindowDisplayIndex(SDL_Window * window) cdef Uint32 SDL_GetWindowPixelFormat(SDL_Window * window) cdef SDL_Window * SDL_CreateWindowFrom(const void *data) cdef Uint32 SDL_GetWindowID(SDL_Window * window) cdef SDL_Window * SDL_GetWindowFromID(Uint32 id) cdef Uint32 SDL_GetWindowFlags(SDL_Window * window) cdef void SDL_SetWindowTitle(SDL_Window * window, char *title) cdef const char *SDL_GetWindowTitle(SDL_Window * window) cdef void SDL_SetWindowIcon(SDL_Window * window, SDL_Surface *icon) cdef void* SDL_SetWindowData(SDL_Window * window, char *name, void *data) cdef void *SDL_GetWindowData(SDL_Window * window, char *name) cdef void SDL_SetWindowPosition(SDL_Window * window, int x, int y) cdef void SDL_GetWindowPosition(SDL_Window * window, int *x, int *y) cdef void SDL_SetWindowSize(SDL_Window * window, int w, int h) cdef void SDL_GetWindowSize(SDL_Window * window, int *w, int *h) cdef void SDL_SetWindowMinimumSize(SDL_Window * window, int min_w, int min_h) cdef void SDL_SetWindowBordered(SDL_Window * window, SDL_bool bordered) cdef void SDL_SetWindowAlwaysOnTop(SDL_Window * window, SDL_bool on_top) cdef void SDL_ShowWindow(SDL_Window * window) cdef int SDL_ShowCursor(int toggle) cdef void SDL_SetCursor(SDL_Cursor * cursor) cdef SDL_Cursor* SDL_CreateSystemCursor(SDL_SystemCursor id) cdef void SDL_HideWindow(SDL_Window * window) cdef void SDL_RaiseWindow(SDL_Window * window) cdef void SDL_MaximizeWindow(SDL_Window * window) cdef void SDL_MinimizeWindow(SDL_Window * window) cdef void SDL_RestoreWindow(SDL_Window * window) cdef int SDL_SetWindowFullscreen(SDL_Window * window, SDL_bool fullscreen) cdef SDL_Surface * SDL_GetWindowSurface(SDL_Window * window) cdef int SDL_UpdateWindowSurface(SDL_Window * window) cdef void SDL_SetWindowGrab(SDL_Window * window, SDL_bool grabbed) cdef SDL_bool SDL_GetWindowGrab(SDL_Window * window) cdef int SDL_SetWindowBrightness(SDL_Window * window, float brightness) cdef float SDL_GetWindowBrightness(SDL_Window * window) cdef void SDL_DestroyWindow(SDL_Window * window) cdef SDL_bool SDL_IsScreenSaverEnabled() cdef void SDL_EnableScreenSaver() cdef void SDL_DisableScreenSaver() cdef int SDL_GL_LoadLibrary(const char *path) cdef void *SDL_GL_GetProcAddress(const char *proc) cdef void SDL_GL_UnloadLibrary() cdef int SDL_GL_SetAttribute(SDL_GLattr attr, int value) cdef int SDL_GL_GetAttribute(SDL_GLattr attr, int *value) cdef int SDL_GL_MakeCurrent(SDL_Window * window, SDL_GLContext context) cdef SDL_Window* SDL_GL_GetCurrentWindow() cdef SDL_GLContext SDL_GL_GetCurrentContext() cdef int SDL_GL_SetSwapInterval(int interval) cdef int SDL_GL_GetSwapInterval() cdef void SDL_GL_SwapWindow(SDL_Window * window) nogil cdef void SDL_GL_DeleteContext(SDL_GLContext context) cdef int SDL_NumJoysticks() cdef SDL_Joystick * SDL_JoystickOpen(int index) cdef SDL_Window * SDL_GetKeyboardFocus() cdef Uint8 *SDL_GetKeyboardState(int *numkeys) cdef SDL_Keymod SDL_GetModState() cdef void SDL_SetModState(SDL_Keymod modstate) cdef SDL_Keycode SDL_GetKeyFromScancode(SDL_Scancode scancode) cdef SDL_Scancode SDL_GetScancodeFromKey(SDL_Keycode key) cdef char *SDL_GetScancodeName(SDL_Scancode scancode) cdef SDL_Scancode SDL_GetScancodeFromName(char *name) cdef char *SDL_GetKeyName(SDL_Keycode key) cdef SDL_Keycode SDL_GetKeyFromName(char *name) cdef void SDL_StartTextInput() cdef SDL_bool SDL_IsTextInputActive() cdef void SDL_StopTextInput() cdef void SDL_SetTextInputRect(SDL_Rect *rect) cdef SDL_bool SDL_HasScreenKeyboardSupport() cdef SDL_bool SDL_IsScreenKeyboardShown(SDL_Window *window) cdef void SDL_GL_GetDrawableSize(SDL_Window *window, int *w, int *h) cdef int SDL_SetWindowHitTest(SDL_Window *window, SDL_HitTest callback, void *callback_data) # Sound audio formats Uint16 AUDIO_U8 #0x0008 /**< Unsigned 8-bit samples */ Uint16 AUDIO_S8 #0x8008 /**< Signed 8-bit samples */ Uint16 AUDIO_U16LSB #0x0010 /**< Unsigned 16-bit samples */ Uint16 AUDIO_S16LSB #0x8010 /**< Signed 16-bit samples */ Uint16 AUDIO_U16MSB #0x1010 /**< As above, but big-endian byte order */ Uint16 AUDIO_S16MSB #0x9010 /**< As above, but big-endian byte order */ Uint16 AUDIO_U16 #AUDIO_U16LSB Uint16 AUDIO_S16 #AUDIO_S16LSB Uint16 AUDIO_S32LSB #0x8020 /**< 32-bit Uint16eger samples */ Uint16 AUDIO_S32MSB #0x9020 /**< As above, but big-endian byte order */ Uint16 AUDIO_S32 #AUDIO_S32LSB Uint16 AUDIO_F32LSB #0x8120 /**< 32-bit floating point samples */ Uint16 AUDIO_F32MSB #0x9120 /**< As above, but big-endian byte order */ Uint16 AUDIO_F32 #AUDIO_F32LSB # Endianness Uint16 SDL_BYTEORDER Uint16 SDL_LIL_ENDIAN Uint16 SDL_BIG_ENDIAN cdef extern from "SDL_shape.h": cdef SDL_Window * SDL_CreateShapedWindow( char *title, unsigned int x, unsigned
Cython
int y, unsigned int w, unsigned int h, Uint32 flags ) # properties, flags, etc ctypedef enum WindowShapeMode: ShapeModeDefault ShapeModeBinarizeAlpha ShapeModeReverseBinarizeAlpha ShapeModeColorKey ctypedef union SDL_WindowShapeParams: Uint8 binarizationCutoff SDL_Color colorKey ctypedef struct SDL_WindowShapeMode: WindowShapeMode mode SDL_WindowShapeParams parameters int SDL_NONSHAPEABLE_WINDOW int SDL_INVALID_SHAPE_ARGUMENT int SDL_WINDOW_LACKS_SHAPE # set & get cdef SDL_bool SDL_IsShapedWindow(SDL_Window * window) int SDL_SetWindowShape( SDL_Window * window, SDL_Surface * shape, SDL_WindowShapeMode * shape_mode ) int SDL_GetShapedWindowMode( SDL_Window * window, SDL_WindowShapeMode * shape_mode ) cdef extern from "SDL_image.h": ctypedef enum IMG_InitFlags: IMG_INIT_JPG IMG_INIT_PNG IMG_INIT_TIF IMG_INIT_WEBP cdef int IMG_Init(IMG_InitFlags flags) cdef char *IMG_GetError() cdef SDL_Surface *IMG_Load(char *file) cdef SDL_Surface *IMG_Load_RW(SDL_RWops *src, int freesrc) cdef SDL_Surface *IMG_LoadTyped_RW(SDL_RWops *src, int freesrc, char *type) cdef int IMG_SavePNG(SDL_Surface *src, char *file) cdef int IMG_SavePNG_RW(SDL_Surface *surface, SDL_RWops *dst, int freedst) cdef int IMG_SaveJPG(SDL_Surface *surface, const char *file, int quality) cdef int IMG_SaveJPG_RW(SDL_Surface *surface, SDL_RWops *dst, int freedst, int quality) cdef extern from "SDL_ttf.h": ctypedef struct TTF_Font cdef int TTF_Init() cdef TTF_Font * TTF_OpenFont( char *file, int ptsize) cdef TTF_Font * TTF_OpenFontIndex( char *file, int ptsize, long index) cdef TTF_Font * TTF_OpenFontRW(SDL_RWops *src, int freesrc, int ptsize) cdef TTF_Font * TTF_OpenFontIndexRW(SDL_RWops *src, int freesrc, int ptsize, long index) #Set and retrieve the font style ##define TTF_STYLE_NORMAL 0x00 ##define TTF_STYLE_BOLD 0x01 ##define TTF_STYLE_ITALIC 0x02 ##define TTF_STYLE_UNDERLINE 0x04 ##define TTF_STYLE_STRIKETHROUGH 0x08 cdef int TTF_STYLE_NORMAL cdef int TTF_STYLE_BOLD cdef int TTF_STYLE_ITALIC cdef int TTF_STYLE_UNDERLINE cdef int TTF_STYLE_STRIKETHROUGH cdef int TTF_GetFontStyle( TTF_Font *font) cdef void TTF_SetFontStyle(TTF_Font *font, int style) cdef int TTF_GetFontOutline( TTF_Font *font) cdef void TTF_SetFontOutline(TTF_Font *font, int outline) cdef int TTF_SetFontDirection(TTF_Font *font, int direction) cdef int TTF_SetFontScriptName(TTF_Font *font, const char *script) #Set and retrieve FreeType hinter settings */ ##define TTF_HINTING_NORMAL 0 ##define TTF_HINTING_LIGHT 1 ##define TTF_HINTING_MONO 2 ##define TTF_HINTING_NONE 3 cdef int TTF_HINTING_NORMAL cdef int TTF_HINTING_LIGHT cdef int TTF_HINTING_MONO cdef int TTF_HINTING_NONE cdef int TTF_GetFontHinting( TTF_Font *font) cdef void TTF_SetFontHinting(TTF_Font *font, int hinting) cdef int TTF_DIRECTION_LTR cdef int TTF_DIRECTION_RTL cdef int TTF_DIRECTION_TTB cdef int TTF_DIRECTION_BTT #Get the total height of the font - usually equal to point size cdef int TTF_FontHeight( TTF_Font *font) ## Get the offset from the baseline to the top of the font #This is a positive value, relative to the baseline. #*/ cdef int TTF_FontAscent( TTF_Font *font) ## Get the offset from the baseline to the bottom of the font # This is a negative value, relative to the baseline. # */ cdef int TTF_FontDescent( TTF_Font *font) ## Get the recommended spacing between lines of text for this font */ cdef int TTF_FontLineSkip( TTF_Font *font) ## Get/Set whether or not kerning is allowed for this font */ cdef int TTF_GetFontKerning( TTF_Font *font) cdef void TTF_SetFontKerning(TTF_Font *font, int allowed) ## Get the number of faces of the font */ cdef long TTF_FontFaces( TTF_Font *font) ## Get the font face attributes, if any */ cdef int TTF_FontFaceIsFixedWidth( TTF_Font *font) cdef char * TTF_FontFaceFamilyName( TTF_Font *font) cdef char * TTF_FontFaceStyleName( TTF_Font *font) ## Check whether a glyph is provided by the font or not */ cdef int TTF_GlyphIsProvided( TTF_Font *font, Uint16 ch) ## Get the metrics (dimensions) of a glyph # To understand what these metrics mean, here is a useful link: # http://freetype.sourceforge.net/freetype2/docs/tutorial/step2.html # */ cdef int TTF_GlyphMetrics(TTF_Font *font, Uint16 ch,int *minx, int *maxx, int *miny, int *maxy, int *advance) ## Get the dimensions of a rendered string of text */ cdef int TTF_SizeText(TTF_Font *font, char *text, int *w, int *h) cdef int TTF_SizeUTF8(TTF_Font *font, char *text, int *w, int *h) cdef int TTF_SizeUNICODE(TTF_Font *font, Uint16 *text, int *w, int *h) # Create an 8-bit palettized surface and render the given text at # fast quality with the given font and color. The 0 pixel is the # colorkey, giving a transparent background, and the 1 pixel is set # to the text color. # This function returns the new surface, or NULL if there was an error. #*/ cdef SDL_Surface * TTF_RenderText_Solid(TTF_Font *font, char *text, SDL_Color fg) cdef SDL_Surface * TTF_RenderUTF8_Solid(TTF_Font *font, char *text, SDL_Color fg) cdef SDL_Surface * TTF_RenderUNICODE_Solid(TTF_Font *font, Uint16 *text, SDL_Color fg) # Create an 8-bit palettized surface and render the given glyph at # fast quality with the given font and color. The 0 pixel is the # colorkey, giving a transparent background, and the 1 pixel is set # to the text color. The glyph is rendered without any padding or # centering in the X direction, and aligned normally in the Y direction. # This function returns the new surface, or NULL if there was an error. #*/ cdef SDL_Surface * TTF_RenderGlyph_Solid(TTF_Font *font, Uint16 ch, SDL_Color fg) # Create an 8-bit palettized surface and render the given text at # high quality with the given font and colors. The 0 pixel is background, # while other pixels have varying degrees of the foreground color. # This function returns the new surface, or NULL if there was an error. #*/ cdef SDL_Surface * TTF_RenderText_Shaded(TTF_Font *font, char *text, SDL_Color fg, SDL_Color bg) cdef SDL_Surface * TTF_RenderUTF8_Shaded(TTF_Font *font, char *text, SDL_Color fg, SDL_Color bg) cdef SDL_Surface * TTF_RenderUNICODE_Shaded(TTF_Font *font, Uint16 *text, SDL_Color fg, SDL_Color bg) # Create an 8-bit palettized surface and render the given glyph at # high quality with the given font and colors. The 0 pixel is background, # while other pixels have varying degrees of the foreground color. # The glyph is rendered without
Cython
any padding or centering in the X # direction, and aligned normally in the Y direction. # This function returns the new surface, or NULL if there was an error. # cdef SDL_Surface * TTF_RenderGlyph_Shaded(TTF_Font *font, Uint16 ch, SDL_Color fg, SDL_Color bg) # Create a 32-bit ARGB surface and render the given text at high quality, # using alpha blending to dither the font with the given color. # This function returns the new surface, or NULL if there was an error. #*/ cdef SDL_Surface * TTF_RenderText_Blended(TTF_Font *font, char *text, SDL_Color fg) cdef SDL_Surface * TTF_RenderUTF8_Blended(TTF_Font *font, char *text, SDL_Color fg) cdef SDL_Surface * TTF_RenderUNICODE_Blended(TTF_Font *font, Uint16 *text, SDL_Color fg) # Create a 32-bit ARGB surface and render the given glyph at high quality, # using alpha blending to dither the font with the given color. # The glyph is rendered without any padding or centering in the X # direction, and aligned normally in the Y direction. # This function returns the new surface, or NULL if there was an error. #*/ cdef SDL_Surface * TTF_RenderGlyph_Blended(TTF_Font *font, Uint16 ch, SDL_Color fg) # For compatibility with previous versions, here are the old functions */ ##define TTF_RenderText(font, text, fg, bg) \ # TTF_RenderText_Shaded(font, text, fg, bg) ##define TTF_RenderUTF8(font, text, fg, bg) \ # TTF_RenderUTF8_Shaded(font, text, fg, bg) ##define TTF_RenderUNICODE(font, text, fg, bg) \ # TTF_RenderUNICODE_Shaded(font, text, fg, bg) # Close an opened font file */ cdef void TTF_CloseFont(TTF_Font *font) # De-initialize the TTF engine */ cdef void TTF_Quit() # Check if the TTF engine is initialized */ cdef int TTF_WasInit() # Get the kerning size of two glyphs */ cdef int TTF_GetFontKerningSize(TTF_Font *font, int prev_index, int index) cdef extern from "SDL_audio.h": cdef int AUDIO_S16SYS ctypedef struct SDL_AudioFilter: pass ctypedef struct SDL_AudioCVT: int needed int src_format int dst_format double rate_incr Uint8 *buf int len int len_cvt int len_mult double len_ratio SDL_AudioFilter filters[10] int filter_index cdef int SDL_BuildAudioCVT( SDL_AudioCVT *cvt, int src_format, Uint8 src_channels, int src_rate, int dst_format, Uint8 dst_channels, int dst_rate ) cdef int SDL_ConvertAudio(SDL_AudioCVT *cvt) cdef extern from "SDL_mixer.h": cdef struct Mix_Chunk: int allocated Uint8 *abuf Uint32 alen Uint8 volume ctypedef struct Mix_Music: pass ctypedef enum Mix_Fading: MIX_NO_FADING MIX_FADING_OUT MIX_FADING_IN ctypedef enum Mix_MusicType: MUS_NONE MUS_CMD MUS_WAV MUS_MOD MUS_MID MUS_OGG MUS_MP3 MUS_MP3_MAD MUS_FLAC MUS_MODPLUG ctypedef enum MIX_InitFlags: MIX_INIT_FLAC = 0x00000001 MIX_INIT_MOD = 0x00000002 MIX_INIT_MODPLUG = 0x00000004 # Removed in mixer 2.0.2 MIX_INIT_MP3 = 0x00000008 MIX_INIT_OGG = 0x00000010 MIX_INIT_MID = 0x00000020 # Previously _FLUIDSYNTH cdef int MIX_MAX_VOLUME cdef int Mix_Init(int flags) cdef void Mix_Quit() cdef int Mix_OpenAudio(int frequency, Uint16 format, int channels, int chunksize) cdef int Mix_AllocateChannels(int numchans) cdef int Mix_QuerySpec(int *frequency,Uint16 *format,int *channels) cdef Mix_Chunk * Mix_LoadWAV_RW(SDL_RWops *src, int freesrc) cdef Mix_Chunk * Mix_LoadWAV(char *file) cdef Mix_Music * Mix_LoadMUS(char *file) cdef Mix_Music * Mix_LoadMUS_RW(SDL_RWops *rw) cdef Mix_Music * Mix_LoadMUSType_RW(SDL_RWops *rw, Mix_MusicType type, int freesrc) cdef Mix_Chunk * Mix_QuickLoad_WAV(Uint8 *mem) cdef Mix_Chunk * Mix_QuickLoad_RAW(Uint8 *mem, Uint32 len) cdef void Mix_FreeChunk(Mix_Chunk *chunk) cdef void Mix_FreeMusic(Mix_Music *music) cdef int Mix_GetNumChunkDecoders() cdef char * Mix_GetChunkDecoder(int index) cdef int Mix_GetNumMusicDecoders() cdef char * Mix_GetMusicDecoder(int index) cdef Mix_MusicType Mix_GetMusicType( Mix_Music *music) cdef void Mix_SetPostMix(void (*mix_func)(void *udata, Uint8 *stream, int len), void *arg) cdef void Mix_HookMusic(void (*mix_func) (void *udata, Uint8 *stream, int len), void *arg) cdef void Mix_HookMusicFinished(void (*music_finished)()) cdef void * Mix_GetMusicHookData() cdef void Mix_ChannelFinished(void (*channel_finished)(int channel)) # typedef void (*Mix_EffectFunc_t)(int chan, void *stream, int len, void *udata) # typedef void (*Mix_EffectDone_t)(int chan, void *udata) # cdef int Mix_RegisterEffect(int chan, Mix_EffectFunc_t f, # cdef int Mix_UnregisterEffect(int channel, Mix_EffectFunc_t f) cdef int Mix_UnregisterAllEffects(int channel) cdef int Mix_SetPanning(int channel, Uint8 left, Uint8 right) cdef int Mix_SetPosition(int channel, Sint16 angle, Uint8 distance) cdef int Mix_SetDistance(int channel, Uint8 distance) cdef int Mix_SetReverseStereo(int channel, int flip) cdef int Mix_ReserveChannels(int num) cdef int Mix_GroupChannel(int which, int tag) cdef int Mix_GroupChannels(int _from, int to, int tag) cdef int Mix_GroupAvailable(int tag) cdef int Mix_GroupCount(int tag) cdef int Mix_GroupOldest(int tag) cdef int Mix_GroupNewer(int tag) cdef int Mix_PlayChannel(int channel, Mix_Chunk *chunk, int loops) cdef int Mix_PlayChannelTimed(int channel, Mix_Chunk *chunk, int loops, int ticks) cdef int Mix_PlayMusic(Mix_Music *music, int loops) cdef int Mix_FadeInMusic(Mix_Music *music, int loops, int ms) cdef int Mix_FadeInMusicPos(Mix_Music *music, int loops, int ms, double position) cdef int Mix_FadeInChannel(int channel, Mix_Chunk *chunk, int loops, int ms) cdef int Mix_FadeInChannelTimed(int channel, Mix_Chunk *chunk, int loops, int ms, int ticks) cdef int Mix_Volume(int channel, int volume) cdef int Mix_VolumeChunk(Mix_Chunk *chunk, int volume) cdef int Mix_VolumeMusic(int volume) cdef int Mix_HaltChannel(int channel) cdef int Mix_HaltGroup(int tag) cdef int Mix_HaltMusic() cdef int Mix_ExpireChannel(int channel, int ticks) cdef int Mix_FadeOutChannel(int which, int ms) cdef int Mix_FadeOutGroup(int tag, int ms) cdef int Mix_FadeOutMusic(int ms) cdef Mix_Fading Mix_FadingMusic() cdef Mix_Fading Mix_FadingChannel(int which) cdef void Mix_Pause(int channel) cdef void Mix_Resume(int channel) cdef int Mix
Cython
_Paused(int channel) cdef void Mix_PauseMusic() cdef void Mix_ResumeMusic() cdef void Mix_RewindMusic() cdef int Mix_PausedMusic() cdef int Mix_SetMusicPosition(double position) cdef int Mix_Playing(int channel) cdef int Mix_PlayingMusic() cdef int Mix_SetMusicCMD( char *command) cdef int Mix_SetSynchroValue(int value) cdef int Mix_GetSynchroValue() cdef int Mix_SetSoundFonts( char *paths) cdef char* Mix_GetSoundFonts() #cdef int Mix_EachSoundFont(int (*function)( char*, void*), void *data) cdef Mix_Chunk * Mix_GetChunk(int channel) cdef void Mix_CloseAudio() cdef char * Mix_GetError() include '../core/window/window_attrs.pxi' cdef extern from "SDL_syswm.h": cdef enum SDL_SYSWM_TYPE: SDL_SYSWM_UNKNOWN SDL_SYSWM_WINDOWS SDL_SYSWM_X11 SDL_SYSWM_DIRECTFB SDL_SYSWM_COCOA SDL_SYSWM_UIKIT SDL_SYSWM_WAYLAND SDL_SYSWM_MIR SDL_SYSWM_WINRT SDL_SYSWM_ANDROID SDL_SYSWM_VIVANTE SDL_SYSWM_OS2 IF UNAME_SYSNAME == 'Windows': cdef struct _wm_info_win: HWND window HDC hdc ELSE: cdef struct _wm_info_win: int dummy IF USE_WAYLAND: cdef struct _wm_info_wl: wl_display *display wl_surface *surface wl_shell_surface *shell_surface ELSE: cdef struct _wm_info_wl: int dummy IF USE_X11: cdef struct _wm_info_x11: Display *display Window window ELSE: cdef struct _wm_info_x11: int dummy cdef union _wm_info: _wm_info_win win _wm_info_wl wl _wm_info_x11 x11 cdef struct SDL_SysWMinfo: SDL_version version SDL_SYSWM_TYPE subsystem _wm_info info cdef SDL_bool SDL_GetWindowWMInfo(SDL_Window *window, SDL_SysWMinfo *info) <|end_of_text|>include '../../types.pxi' from libcpp.vector cimport vector from quantlib.termstructures._yield_term_structure cimport YieldTermStructure from quantlib.time._date cimport Date from quantlib.time._daycounter cimport DayCounter from quantlib.time._calendar cimport Calendar from quantlib.math.interpolation cimport LogLinear cdef extern from 'ql/termstructures/yield/discountcurve.hpp' namespace 'QuantLib': cdef cppclass InterpolatedDiscountCurve[T](YieldTermStructure): InterpolatedDiscountCurve(const vector[Date]& dates, const vector[DiscountFactor]& dfs, const DayCounter& dayCounter, const Calendar& cal # = Calendar() ) except + const vector[Time]& times() const vector[Real]& data() const vector[DiscountFactor]& discounts() const vector[Date]& dates() ctypedef InterpolatedDiscountCurve[LogLinear] DiscountCurve <|end_of_text|> cpdef fib(int n): if n==0 or n==1 : return n result = fib(n-1) + fib(n-2) return result <|end_of_text|>from libc.stdint cimport uint8_t, uint16_t, uint32_t, uint64_t, int8_t, int16_t, int32_t, int64_t from libcpp cimport bool cdef extern from "json.h": ctypedef enum JsonTag: JSON_NULL, JSON_BOOL, JSON_STRING, JSON_NUMBER, JSON_ARRAY, JSON_OBJECT ctypedef struct JsonNode #ctypedef struct JsonNode: #/* only if parent is an object or array (NULL otherwise) */ #JsonNode *parent; #JsonNode *prev, *next; #/* only if parent is an object (NULL otherwise) */ #char *key; #/* Must be valid UTF-8. */ #JsonTag tag; #union { #/* JSON_BOOL */ #bool bool_; #/* JSON_STRING */ #char *string_; #/* Must be valid UTF-8. */ #/* JSON_NUMBER */ #double number_; #/* JSON_ARRAY */ #/* JSON_OBJECT */ #struct children: #JsonNode *head, *tail; #}; cdef extern from "imtq-config.h": cdef extern from "json.h": ctypedef enum JsonTag: JSON_NULL, JSON_BOOL, JSON_STRING, JSON_NUMBER, JSON_ARRAY, JSON_OBJECT ctypedef struct JsonNode ctypedef union imtq_config_value: int8_t int8_val; #*< Storage for signed single-byte values */ uint8_t uint8_val; #*< Storage for unsigned single-byte values */ int16_t int16_val; #*< Storage for signed byte-pair values */ uint16_t uint16_val; #*< Storage for unsigned byte-pair values */ int32_t int32_val; #*< Storage for signed four-byte values */ uint32_t uint32_val; #*< Storage for unsigned four-byte values */ float float_val; #*< Storage for IEEE754 single-precision floating point values (four bytes) */ int64_t int64_val; #*< Storage for signed eight-byte values */ uint64_t uint64_val; #*< Storage for unsigned eight-byte values */ double double_val #*< Storage for IEEE754 double-precision floating point values (eight bytes) */ ctypedef struct imtq_resp_header: uint8_t cmd; uint8_t status; ctypedef struct imtq_config_resp: imtq_resp_header hdr; #*< Response message header */ uint16_t param; #*< Echo of requested parameter ID */ imtq_config_value value #*< Current value of requested parameter */ KADCSStatus k_adcs_configure(const JsonNode * config) KADCSStatus k_imtq_get_param(uint16_t param, imtq_config_resp * response) KADCSStatus k_imtq_set_param(uint16_t param, const imtq_config_value * value, imtq_config_resp * response) KADCSStatus k_imtq_reset_param(uint16_t param, imtq_config_resp * response) cdef extern from "imtq-data.h": ctypedef enum ADCSTelemType: NOMINAL, #*< System state, all system measurements */ DEBUG #*< System state, current configuration, last test results */ ctypedef struct imtq_axis_data: int16_t x; #*< X-axis */ int16_t y; #*< Y-axis */ int16_t z #*< Z-axis */ ctypedef uint32_t adcs_power_status ctypedef struct imtq_state: imtq_resp_header hdr; #*< Response message header */ uint8_t mode; #*< Current system mode */ uint8_t error; #*< Error encountered during previous interation */ uint8_t config; #*< Parameter updated since system startup? 0 - No, 1 - Yes */ uint32_t uptime #*< System uptime in seconds */ ctypedef struct imtq_mtm_data: int32_t x; #*< X-axis */ int32_t y; #*< Y-axis */ int32_t z #*< Z-axis */ ctypedef struct imtq_mtm_msg: imtq_resp_header hdr; #*< Response message header */ imtq_mtm_data data; #*< MTM measurement data. Units dependent on function used */ uint8_t act_status #*< Coils actuation status during measurement. 0 - Not actuating, 1 - Actuating */ ctypedef struct imtq_axis_msg: imtq_resp_header hdr; #*< Response message header */ imtq_axis_data data #*< Axes data */ ctypedef imtq_axis_msg imtq_coil_current #*< Coil currents in [10<sup>-4</sup> A] returned by ::k_imtq_get_coil_current */ ctypedef imtq_axis_msg imtq_coil_temp #*< Coil temperatures in [<sup>o</sup>C] returned by ::k_imtq_get_coil_temps */ ctypedef imtq_axis_msg imtq_dipole ctypedef struct imtq_test_result: imtq_resp_header hdr; #*< Response message header */ uint8_t error; #*< Return code for the step */ uint8_t step; #*< Axis being tested */ imtq_mtm_data mtm_raw; #*< Raw MTM data in [7.5*10<sup>-9</
Cython
sup> T] per count */ imtq_mtm_data mtm_calib; #*< Calibrated MTM data in [10<sup>-9</sup> T] */ imtq_axis_data coil_current; #*< Coil currents in [10<sup>-4</sup> A] */ imtq_axis_data coil_temp #*< Coil temperatures in [<sup>o</sup>C] */ ctypedef struct imtq_test_result_single: imtq_test_result init; #*< Measurements before actuation */ imtq_test_result step; #*< Measurements during actuation of requested axis */ imtq_test_result final #*< Measurements after actuation */ ctypedef struct imtq_test_result_all: imtq_test_result init; #*< Measurements before actuation */ imtq_test_result x_pos; #*< Measurements during actuation of positive x-axis */ imtq_test_result x_neg; #*< Measurements during actuation of negative x-axis */ imtq_test_result y_pos; #*< Measurements during actuation of positive y-axis */ imtq_test_result y_neg; #*< Measurements during actuation of negative y-axis */ imtq_test_result z_pos; #*< Measurements during actuation of positive z-axis */ imtq_test_result z_neg; #*< Measurements during actuation of negative z-axis */ imtq_test_result final #*< Measurements after actuation */ ctypedef struct imtq_detumble: imtq_resp_header hdr; #*< Response message header */ imtq_mtm_data mtm_calib; #*< Calibrated MTM data in [10<sup>-9</sup> T] */ imtq_mtm_data mtm_filter; #*< Filtered MTM data in [10<sup>-9</sup> T] */ imtq_mtm_data bdot; #*< B-Dot in [10<sup>-9</sup> T*s<sup>-1</sup>] */ imtq_axis_data dipole; #*< Commanded actuation dipole in [10<sup>-4</sup> Am<sup>2</sup>] */ imtq_axis_data cmd_current; #*< Command current in [10<sup>-4</sup> A] */ imtq_axis_data coil_current #*< Coil currents in [10<sup>-4</sup> A] */ ctypedef struct imtq_axis_data_raw: int16_t x; #*< X-axis */ int16_t y; #*< Y-axis */ int16_t z #*< Z-axis */ ctypedef struct imtq_housekeeping_raw: imtq_resp_header hdr; #*< Response message header */ uint16_t voltage_d; #*< Digital supply voltage */ uint16_t voltage_a; #*< Analog supply voltage */ uint16_t current_d; #*< Digital supply current */ uint16_t current_a; #*< Analog supply current */ imtq_axis_data_raw coil_current; #*< Coil currents */ imtq_axis_data_raw coil_temp; #*< Coil temperatures */ uint16_t mcu_temp #*< MCU temperature */ ctypedef struct imtq_housekeeping_eng: imtq_resp_header hdr; #*< Response message header */ uint16_t voltage_d; #*< Digital supply voltage in [mV] */ uint16_t voltage_a; #*< Analog supply voltage in [mV] */ uint16_t current_d; #*< Digital supply current in [10<sup>-4</sup> A] */ uint16_t current_a; #*< Analog supply current in [10<sup>-4</sup> A] */ imtq_axis_data coil_current; #*< Coil currents in [10<sup>-4</sup> A] */ imtq_axis_data coil_temp; #*< Coil temperatures in [<sup>o</sup>C] */ int16_t mcu_temp #*< MCU temperature in [<sup>o</sup>C] */ ctypedef struct adcs_orient ctypedef struct adcs_spin KADCSStatus k_adcs_get_power_status(adcs_power_status * data) KADCSStatus k_adcs_get_mode(ADCSMode * mode) KADCSStatus k_adcs_get_orientation(adcs_orient * data) KADCSStatus k_adcs_get_spin(adcs_spin * data) KADCSStatus k_adcs_get_telemetry(ADCSTelemType type, JsonNode * buffer) KADCSStatus k_imtq_get_system_state(imtq_state * state) KADCSStatus k_imtq_get_raw_mtm(imtq_mtm_msg * data) KADCSStatus k_imtq_get_calib_mtm(imtq_mtm_msg * data) KADCSStatus k_imtq_get_coil_current(imtq_coil_current * data) KADCSStatus k_imtq_get_coil_temps(imtq_coil_temp * data) KADCSStatus k_imtq_get_dipole(imtq_dipole * data) KADCSStatus k_imtq_get_test_results_single(imtq_test_result_single * data) KADCSStatus k_imtq_get_test_results_all(imtq_test_result_all * data) KADCSStatus k_imtq_get_detumble(imtq_detumble * data) KADCSStatus k_imtq_get_raw_housekeeping(imtq_housekeeping_raw * data) KADCSStatus k_imtq_get_eng_housekeeping(imtq_housekeeping_eng * data) KADCSStatus kprv_adcs_get_status_telemetry(JsonNode * buffer) KADCSStatus kprv_adcs_get_nominal_telemetry(JsonNode * buffer) KADCSStatus kprv_adcs_get_debug_telemetry(JsonNode * buffer) void kprv_adcs_process_test(JsonNode * parent, imtq_test_result test) cdef extern from "imtq-ops.h": ctypedef enum KADCSReset: SOFT_RESET #*< Software reset */ ctypedef enum ADCSTestType: TEST_ALL, #*< Test all axes */ TEST_X_POS, #*< Test positive x-axis */ TEST_X_NEG, #*< Test negative x-axis */ TEST_Y_POS, #*< Test positive y-axis */ TEST_Y_NEG, #*< Test negative y-axis */ TEST_Z_POS, #*< Test positive z-axis */ TEST_Z_NEG #*< Test negative z-axis */ ctypedef uint16_t adcs_mode_param ctypedef JsonNode * adcs_test_results KADCSStatus k_adcs_noop() KADCSStatus k_adcs_reset(KADCSReset type) KADCSStatus k_adcs_set_mode(ADCSMode mode, const adcs_mode_param * params) KADCSStatus k_adcs_run_test(ADCSTestType test, adcs_test_results buffer) KADCSStatus k_imtq_cancel_op() KADCSStatus k_imtq_start_measurement() KADCSStatus k_imtq_start_actuation_current(imtq_axis_data current, uint16_t time) KADCSStatus k_imtq_start_actuation_dipole(imtq_axis_data dipole, uint16_t time) KADCSStatus k_imtq_start_actuation_PWM(imtq_axis_data pwm, uint16_t time) KADCSStatus k_imtq_start_test(ADCSTestType axis) KADCSStatus k_imtq_start_detumble(uint16_t time) cdef extern from "imtq.h": ctypedef enum KADCSStatus: ADCS_OK, ADCS_ERROR, #*< Generic error */ ADCS_ERROR_CONFIG, #*< Configuration error */ ADCS_ERROR_NO_RESPONSE, #*< No response received from subsystem */ ADCS_ERROR_INTERNAL, #*< An error was thrown by the subsystem */ ADCS_ERROR_MUTEX, #*< Mutex-related error */ ADCS_ERROR_NOT_IMPLEMENTED #*< Requested function has not been implemented for the subsystem */ ctypedef enum KIMTQStatus: IMTQ_OK, IMTQ_ERROR = 0x01, #*< Generic error */ IMTQ_ERROR_BAD_CMD = 0x02, #*< Invalid command */ IMTQ_ERROR_NO_PARAM = 0x03, #*< Parameter missing */ IMTQ_ERROR_BAD_PARAM = 0x04, #*< Parameter invalid */ IMTQ_ERROR_MODE = 0x05, #*< Command unavailable in current mode */ IMTQ_ERROR_RESERVED = 0x06, #*< (Internal reserved value) */ IMTQ_ERROR_INTERNAL = 0x07 #*< Internal error */ ctypedef struct imtq_resp_header: uint8_t cmd; uint8_t status;#*< Command which produced this response */ # * #
Cython
* Status byte # * # * Contains command response flags, like ::RESP_IVA_X, and a return code # * which can be extracted with ::kprv_imtq_check_error # */ ctypedef struct imtq_axis_data: int16_t x; #*< X-axis */ int16_t y; #*< Y-axis */ int16_t z #*< Z-axis */ ctypedef enum ADCSMode: IDLE, #*< Idle mode */ SELFTEST, #*< Self-test mode */ DETUMBLE #*< Detumble mode */ ctypedef struct adcs_orient # Not an implemented structure/function. Need for compliance with generic API */ ctypedef struct adcs_spin # Not an implemented structure/function. Need for compliance with generic API */ #ctypedef struct timespec KADCSStatus k_adcs_init(char * bus, uint16_t addr, int timeout) void k_adcs_terminate() KADCSStatus k_imtq_watchdog_start() KADCSStatus k_imtq_watchdog_stop() KADCSStatus k_imtq_reset() #KADCSStatus k_adcs_passthrough(const uint8_t * tx, int tx_len, uint8_t * rx, int rx_len, const timespec * delay) #KADCSStatus kprv_imtq_transfer(const uint8_t * tx, int tx_len, uint8_t * rx, int rx_len, const timespec * delay) def py_k_adcs_init(char * bus, addr, int timeout): return k_adcs_init(bus, <uint16_t>addr, timeout) def py_k_adcs_terminate(): return k_adcs_terminate() def py_k_imtq_watchdog_start(): return k_imtq_watchdog_start() def py_k_imtq_watchdog_stop(): return k_imtq_watchdog_stop() def py_k_imtq_reset(): return k_imtq_reset() def py_k_imtq_get_param(param, response): return k_imtq_get_param(<uint16_t>param, <imtq_config_resp *>response) #def py_k_imtq_set_param(param,value,response): #return k_imtq_set_param(<uint16_t>param, <const imtq_config_value *>value, <imtq_config_resp *>response) def py_k_imtq_reset_param(param, response): return k_imtq_reset_param(<uint16_t>param, <imtq_config_resp *>response) #def py_k_adcs_get_power_status(data): #return k_adcs_get_power_status(<adcs_power_status *>data) #def py_k_adcs_get_mode(mode): # k_adcs_get_mode(<ADCSMode *>mode) def py_k_adcs_get_orientation(data): return k_adcs_get_orientation(<adcs_orient *>data) def py_k_adcs_get_spin(data): return k_adcs_get_spin(<adcs_spin *>data) def py_k_adcs_get_telemetry(type, buffer): return k_adcs_get_telemetry(<ADCSTelemType>type, <JsonNode *>buffer) def py_k_imtq_get_system_state(state): return k_imtq_get_system_state(<imtq_state *>state) def py_k_imtq_get_raw_mtm(data): return k_imtq_get_raw_mtm(<imtq_mtm_msg *>data) def py_k_imtq_get_calib_mtm(data): return k_imtq_get_calib_mtm(<imtq_mtm_msg *>data) def py_k_imtq_get_coil_current(data): return k_imtq_get_coil_current(<imtq_coil_current *>data) def py_k_imtq_get_coil_temps(data): return k_imtq_get_coil_temps(<imtq_coil_temp *>data) def py_k_imtq_get_dipole(data): return k_imtq_get_dipole(<imtq_dipole *>data) def py_k_imtq_get_test_results_single(data): return k_imtq_get_test_results_single(<imtq_test_result_single *>data) def py_k_imtq_get_test_results_all(data): return k_imtq_get_test_results_all(<imtq_test_result_all *>data) def py_k_imtq_get_detumble(data): return k_imtq_get_detumble(<imtq_detumble *>data) def py_k_imtq_get_raw_housekeeping(data): return k_imtq_get_raw_housekeeping(<imtq_housekeeping_raw *>data) def py_k_imtq_get_eng_housekeeping(data): return k_imtq_get_eng_housekeeping(<imtq_housekeeping_eng *>data) def py_kprv_adcs_get_status_telemetry(buffer): return kprv_adcs_get_status_telemetry(<JsonNode *>buffer) def py_kprv_adcs_get_nominal_telemetry(buffer): return kprv_adcs_get_nominal_telemetry(<JsonNode *>buffer) def py_kprv_adcs_get_debug_telemetry(buffer): return kprv_adcs_get_debug_telemetry(<JsonNode *>buffer) def py_kprv_adcs_process_test(parent, test): return kprv_adcs_process_test(<JsonNode *>parent, <imtq_test_result>test) def py_k_adcs_noop(): return k_adcs_noop() def py_k_adcs_reset(type): return k_adcs_reset(<KADCSReset>type) #def py_k_adcs_set_mode(mode, params): #return k_adcs_set_mode(<ADCSMode>mode, <const adcs_mode_param *>params) def py_k_adcs_run_test(test, buffer): return k_adcs_run_test(<ADCSTestType>test, <adcs_test_results>buffer) def py_k_imtq_cancel_op(): return k_imtq_cancel_op() def py_k_imtq_start_measurement(): return k_imtq_start_measurement() def py_k_imtq_start_actuation_current(current, time): return k_imtq_start_actuation_current(<imtq_axis_data>current, <uint16_t>time) def py_k_imtq_start_actuation_dipole(dipole, time): return k_imtq_start_actuation_dipole(<imtq_axis_data>dipole, <uint16_t>time) def py_k_imtq_start_actuation_PWM(pwm, time): return k_imtq_start_actuation_PWM(<imtq_axis_data>pwm, <uint16_t>time) def py_k_imtq_start_test(axis): return k_imtq_start_test(<ADCSTestType>axis) def py_k_imtq_start_detumble(time): return k_imtq_start_detumble(<uint16_t>time) <|end_of_text|>cimport libav as lib from av.stream cimport Stream from av.video.frame cimport VideoFrame from av.video.swscontext cimport SwsContextProxy cdef class VideoStream(Stream): cdef readonly int buffer_size # Hold onto the frames that we will decode until we have a full one. cdef lib.AVFrame *raw_frame cdef SwsContextProxy sws_proxy cdef int last_w cdef int last_h cdef int encoded_frame_count cpdef encode(self, VideoFrame frame=*) <|end_of_text|>""" flowfilter.gpu.update -------------------- :copyright: 2015, Juan David Adarve, ANU. See AUTHORS for more details :license: 3-clause BSD, see LICENSE for more details """ cimport flowfilter.gpu.image as gimg import flowfilter.gpu.image as gimg cdef class FlowUpdate: def __cinit__(self, gimg.GPUImage inputFlow = None, gimg.GPUImage inputImage = None, gimg.GPUImage inputImageGradient = None, float gamma = 1.0, float maxflow = 1.0): if inputFlow == None or inputImage == None or inputImageGradient == None: self.flowUpd.setGamma(gamma) self.flowUpd.setMaxFlow(maxflow) return self.flowUpd = FlowUpdate_cpp(inputFlow.img, inputImage.img, inputImageGradient.img, gamma, maxflow) def __dealloc__(self): # nothing to do pass def configure(self): self.flowUpd.configure() def compute(self): self.flowUpd.compute() def elapsedTime(self): return self.flowUpd.elapsedTime() def setInputFlow(self, gimg.GPUImage inputFlow): self.flowUpd.setInputFlow(inputFlow.img) def setInputImage(self, gimg.GPUImage image): self.flowUpd.setInputImage(image.img) def setInputImageGradient(self, gimg.GPUImage imageGradient): self.flowUpd.setInputImageGradient(imageGradient.img) def getUpdatedFlow(self): cdef gimg.GPUImage updFlow = gimg.GPUImage() updFlow.img = self.flowUpd.getUpdatedFlow() return updFlow def getUpdatedImage(self): cdef gimg.GPUImage updImg = gimg.GPUImage() updImg.img = self.flowUpd.getUpdatedImage() return updImg
Cython
property gamma: def __get__(self): return self.flowUpd.getGamma() def __set__(self, float value): self.flowUpd.setGamma(value) def __del__(self): pass property maxflow: def __get__(self): return self.flowUpd.getMaxFlow() def __set__(self, float value): self.flowUpd.setMaxFlow(value) def __del__(self): pass cdef class DeltaFlowUpdate: def __cinit__(self, gimg.GPUImage inputFlow = None, gimg.GPUImage inputDeltaFlow = None, gimg.GPUImage inputImageOld = None, gimg.GPUImage inputImage = None, gimg.GPUImage inputImageGradient = None, float gamma = 1.0, float maxflow = 1.0): if (inputFlow == None or inputDeltaFlow == None or inputImageOld == None or inputImage == None or inputImageGradient == None): self.deltaFlowUpd.setGamma(gamma) self.deltaFlowUpd.setMaxFlow(maxflow) return self.deltaFlowUpd = DeltaFlowUpdate_cpp(inputFlow.img, inputDeltaFlow.img, inputImageOld.img, inputImage.img, inputImageGradient.img, gamma, maxflow) def __dealloc__(self): # nothing to do pass def configure(self): self.deltaFlowUpd.configure() def compute(self): self.deltaFlowUpd.compute() def elapsedTime(self): return self.deltaFlowUpd.elapsedTime() def setInputFlow(self, gimg.GPUImage inputFlow): self.deltaFlowUpd.setInputFlow(inputFlow.img) def setInputDeltaFlow(self, gimg.GPUImage inputDeltaFlow): self.deltaFlowUpd.setInputDeltaFlow(inputDeltaFlow.img) def setInputImage(self, gimg.GPUImage image): self.deltaFlowUpd.setInputImage(image.img) def setInputImageGradient(self, gimg.GPUImage imageGradient): self.deltaFlowUpd.setInputImageGradient(imageGradient.img) def getUpdatedFlow(self): cdef gimg.GPUImage updFlow = gimg.GPUImage() updFlow.img = self.deltaFlowUpd.getUpdatedFlow() return updFlow def getUpdatedDeltaFlow(self): cdef gimg.GPUImage updFlow = gimg.GPUImage() updFlow.img = self.deltaFlowUpd.getUpdatedDeltaFlow() return updFlow def getUpdatedImage(self): cdef gimg.GPUImage updImg = gimg.GPUImage() updImg.img = self.deltaFlowUpd.getUpdatedImage() return updImg property gamma: def __get__(self): return self.deltaFlowUpd.getGamma() def __set__(self, float value): self.deltaFlowUpd.setGamma(value) def __del__(self): pass property maxflow: def __get__(self): return self.deltaFlowUpd.getMaxFlow() def __set__(self, float value): self.deltaFlowUpd.setMaxFlow(value) def __del__(self): pass<|end_of_text|>from exception.custom_exception cimport raise_py_error from genapi.cinode cimport INode from baslerpylon.genapi.enum cimport ECallbackType cdef extern from "GenApi/NodeCallBack.h" namespace 'GENAPI_NAMESPACE': cdef cppclass CNodeCallback: CNodeCallback(INode *pNode, ECallbackType CallbackType ) void delete "~CNodeCallback"() except +raise_py_error #fires the callback if the type is right void operator()( ECallbackType CallbackType ) except +raise_py_error #destroys the object void Destroy() except +raise_py_error #returns the node the callback is registered to INode* GetNode()<|end_of_text|># mode: run # ticket: t723 # tag: lambda def t723(a): """ >>> t723(2)() 4 >>> t723(2)(3) 9 """ return lambda x=a: x * x <|end_of_text|>""" lluvia.core.image.image_filter_mode ----------------------------------- :copyright: 2021, Juan David Adarve Bermudez. See AUTHORS for more details. :license: Apache-2 license, see LICENSE for more details. """ from libc.stdint cimport uint32_t cdef extern from 'lluvia/core/image/ImageFilterMode.h' namespace 'll': cdef cppclass _ImageFilterMode 'll::ImageFilterMode': pass cdef enum _ImageFilterModeBits 'll::ImageFilterMode': _ImageFilterModeBits_Nearest 'll::ImageFilterMode::Nearest' _ImageFilterModeBits_Linear 'll::ImageFilterMode::Linear' cpdef enum ImageFilterMode: Nearest = <uint32_t> _ImageFilterModeBits_Nearest Linear = <uint32_t> _ImageFilterModeBits_Linear <|end_of_text|># ----------------------------------------------------------------------------- cdef extern from "Python.h": bint PyBytes_CheckExact(object) char* PyBytes_AsString(object) except NULL Py_ssize_t PyBytes_Size(object) except -1 object PyBytes_FromStringAndSize(char*,Py_ssize_t) object PyBytes_Join"_PyBytes_Join"(object,object) # ----------------------------------------------------------------------------- cdef object PyPickle_dumps = None cdef object PyPickle_loads = None cdef object PyPickle_PROTOCOL = None cdef object PyPickle_THRESHOLD = 1024**2 // 4 # 0.25 MiB from pickle import dumps as PyPickle_dumps from pickle import loads as PyPickle_loads from pickle import HIGHEST_PROTOCOL as PyPickle_PROTOCOL if Py_GETENV(b"MPI4PY_PICKLE_PROTOCOL")!= NULL: PyPickle_PROTOCOL = int(Py_GETENV(b"MPI4PY_PICKLE_PROTOCOL")) if Py_GETENV(b"MPI4PY_PICKLE_THRESHOLD")!= NULL: PyPickle_THRESHOLD = int(Py_GETENV(b"MPI4PY_PICKLE_THRESHOLD")) cdef class Pickle: """ Pickle/unpickle Python objects. """ cdef object ob_dumps cdef object ob_loads cdef object ob_PROTO cdef object ob_THRES def __cinit__(self, *args, **kwargs): <void> args # unused <void> kwargs # unused self.ob_dumps = PyPickle_dumps self.ob_loads = PyPickle_loads self.ob_PROTO = PyPickle_PROTOCOL self.ob_THRES = PyPickle_THRESHOLD def __init__( self, dumps: Callable[[Any, int], bytes] | None = None, loads: Callable[[Buffer], Any] | None = None, protocol: int | None = None, threshold: int | None = None, ) -> None: if dumps is None: dumps = PyPickle_dumps if loads is None: loads = PyPickle_loads if protocol is None: if dumps is PyPickle_dumps: protocol = PyPickle_PROTOCOL if threshold is None: threshold = PyPickle_THRESHOLD self.ob_dumps = dumps self.ob_loads = loads self.ob_PROTO = protocol self.ob_THRES = threshold def dumps( self, obj: Any, ) -> bytes: """ Serialize object to pickle data stream. """ return cdumps(self, obj) def loads( self, data: Buffer, ) -> Any: """ Deserialize object from pickle data stream. """ return cloads(self, data) def dumps_oob( self, obj: Any, ) -> tuple[bytes, list[memory]]: """ Serialize object to pickle data stream and out-of-band buffers. """ return cdumps_oob(self, obj) def loads_oob( self, data: Buffer, buffers: Iterable[Buffer], ) -> Any: """ Deserialize object from pickle data stream and out-of-band buffers. """ return cloads_oob(self, data, buffers) property PROTOCOL: """Protocol version.""" def __get__(self) -> int | None: return self.ob_PROTO def __set__(self, protocol: int | None): if protocol is None: if self.ob_dumps is PyPickle_dumps: protocol = PyPickle_PROTOCOL self.ob_PROTO = protocol property THRESHOLD: """Out-of-band threshold.""" def __get__(self) -> int: return self.ob_THRES def __set__(self, threshold: int | None): if threshold is None: threshold = PyPickle_THRESHOLD self.ob_THRES = threshold cdef Pickle PyMPI_PICKLE = Pickle() pickle = PyMPI_PICKLE # ----------------------------------------------------------------------------- cdef int have_pickle5 = -1 #~> legacy cdef object PyPickle5_dumps = None #~> legacy cdef object PyPickle5_loads = None #~> legacy cdef int import_pickle5() except -1: #~> legacy global
Cython
have_pickle5 #~> legacy global PyPickle5_dumps #~> legacy global PyPickle5_loads #~> legacy if have_pickle5 < 0: #~> legacy try: #~> legacy from pickle5 import dumps as PyPickle5_dumps #~> legacy from pickle5 import loads as PyPickle5_loads #~> legacy have_pickle5 = 1 #~> legacy except ImportError: #~> legacy PyPickle5_dumps = None #~> legacy PyPickle5_loads = None #~> legacy have_pickle5 = 0 #~> legacy return have_pickle5 #~> legacy cdef object get_buffer_callback(list buffers, Py_ssize_t threshold): def buffer_callback(ob): cdef memory buf = getbuffer(ob, 1, 0) if buf.view.len >= threshold: buffers.append(buf) return False else: return True return buffer_callback cdef object cdumps_oob(Pickle pkl, object obj): cdef object pkl_dumps = pkl.ob_dumps if PY_VERSION_HEX < 0x03080000: #~> legacy if pkl_dumps is PyPickle_dumps: #~> legacy if not import_pickle5(): #~> legacy return cdumps(pkl, obj), [] #~> legacy pkl_dumps = PyPickle5_dumps #~> legacy cdef object protocol = pkl.ob_PROTO if protocol is None: protocol = PyPickle_PROTOCOL #~> uncovered protocol = max(protocol, 5) cdef list buffers = [] cdef Py_ssize_t threshold = pkl.ob_THRES cdef object buf_cb = get_buffer_callback(buffers, threshold) cdef object data = pkl_dumps(obj, protocol, buffer_callback=buf_cb) return data, buffers cdef object cloads_oob(Pickle pkl, object data, object buffers): cdef object pkl_loads = pkl.ob_loads if PY_VERSION_HEX < 0x03080000: #~> legacy if pkl_loads is PyPickle_loads: #~> legacy if not import_pickle5(): #~> legacy return cloads(pkl, data) #~> legacy pkl_loads = PyPickle5_loads #~> legacy return pkl_loads(data, buffers=buffers) # ----------------------------------------------------------------------------- cdef object cdumps(Pickle pkl, object obj): if pkl.ob_PROTO is not None: return pkl.ob_dumps(obj, pkl.ob_PROTO) else: return pkl.ob_dumps(obj) cdef object cloads(Pickle pkl, object buf): return pkl.ob_loads(buf) cdef object pickle_dump(Pickle pkl, object obj, void **p, MPI_Count *n): cdef object buf = cdumps(pkl, obj) p[0] = PyBytes_AsString(buf) n[0] = PyBytes_Size(buf) return buf cdef object pickle_load(Pickle pkl, void *p, MPI_Count n): if p == NULL or n == 0: return None return cloads(pkl, mpibuf(p, n)) cdef object pickle_dumpv(Pickle pkl, object obj, void **p, int n, MPI_Count cnt[], MPI_Aint dsp[]): cdef Py_ssize_t m=n cdef object items if obj is None: items = [None] * m else: items = list(obj) m = len(items) if m!= n: raise ValueError(f"expecting {n} items, got {m}") cdef MPI_Count c=0 cdef MPI_Aint d=0 for i in range(m): items[i] = pickle_dump(pkl, items[i], p, &c) cnt[i] = c; dsp[i] = d; d = d + <MPI_Aint>c cdef object buf = PyBytes_Join(b'', items) p[0] = PyBytes_AsString(buf) return buf cdef object pickle_loadv(Pickle pkl, void *p, int n, MPI_Count cnt[], MPI_Aint dsp[]): cdef Py_ssize_t m=n cdef object items = [None] * m if p == NULL: return items for i in range(m): items[i] = pickle_load(pkl, <char*>p + dsp[i], cnt[i]) return items cdef object pickle_alloc(void **p, MPI_Count n): cdef object buf = PyBytes_FromStringAndSize(NULL, <MPI_Aint>n) p[0] = PyBytes_AsString(buf) return buf cdef object pickle_allocv(void **p, int n, MPI_Count cnt[], MPI_Aint dsp[]): cdef MPI_Count d=0 for i in range(n): dsp[i] = <MPI_Aint> d d += cnt[i] return pickle_alloc(p, d) cdef inline object allocate_count_displ(int n, MPI_Count **p, MPI_Aint **q): cdef object mem1 = allocate(n, sizeof(MPI_Count), p) cdef object mem2 = allocate(n, sizeof(MPI_Aint), q) return (mem1, mem2) # ----------------------------------------------------------------------------- cdef object PyMPI_send(object obj, int dest, int tag, MPI_Comm comm): cdef Pickle pickle = PyMPI_PICKLE # cdef void *sbuf = NULL cdef MPI_Count scount = 0 cdef MPI_Datatype stype = MPI_BYTE # cdef object tmps = None if dest!= MPI_PROC_NULL: tmps = pickle_dump(pickle, obj, &sbuf, &scount) with nogil: CHKERR( MPI_Send_c( sbuf, scount, stype, dest, tag, comm) ) return None cdef object PyMPI_bsend(object obj, int dest, int tag, MPI_Comm comm): cdef Pickle pickle = PyMPI_PICKLE # cdef void *sbuf = NULL cdef MPI_Count scount = 0 cdef MPI_Datatype stype = MPI_BYTE # cdef object tmps = None if dest!= MPI_PROC_NULL: tmps = pickle_dump(pickle, obj, &sbuf, &scount) with nogil: CHKERR( MPI_Bsend_c( sbuf, scount, stype, dest, tag, comm) ) return None cdef object PyMPI_ssend(object obj, int dest, int tag, MPI_Comm comm): cdef Pickle pickle = PyMPI_PICKLE # cdef void *sbuf = NULL cdef MPI_Count scount = 0 cdef MPI_Datatype stype = MPI_BYTE # cdef object tmps = None if dest!= MPI_PROC_NULL: tmps = pickle_dump(pickle, obj, &sbuf, &scount) with nogil: CHKERR( MPI_Ssend_c( sbuf, scount, stype, dest, tag, comm) ) return None # ----------------------------------------------------------------------------- cdef object PyMPI_recv_obarg(object obj, int source, int tag, MPI_Comm comm, MPI_Status *status): cdef Pickle pickle = PyMPI_PICKLE # cdef void *rbuf = NULL cdef MPI_Count rcount = 0 cdef MPI_Datatype rtype = MPI_BYTE cdef MPI_Status rsts cdef object rmsg = None cdef MPI_Aint rlen = 0 # PyErr_WarnFormat( UserWarning, 1, b"%s", b"the 'buf' argument is deprecated", ) # if source!= MPI_PROC_NULL: if is_integral(obj): rcount = <MPI_Count> obj rmsg = pickle_alloc(&rbuf, rcount) else: rmsg = asbuffer_w(obj, &rbuf, &rlen) rcount = <MPI_Count> rlen if status == MPI_STATUS_IGNORE: status = &rsts <void> rmsg with nogil: CHKERR( MPI_Recv_c( rbuf, rcount, rtype, source, tag, comm, status) ) if source!= MPI_PROC_NULL: CHKERR( MPI_Get_count_c(status, rtype, &rcount) ) # if rcount <= 0: return None return pickle_load(pickle, rbuf, rcount) cdef object PyMPI_recv_match(object obj, int source, int tag, MPI_Comm comm, MPI_Status *status): cdef Pickle pickle = PyMPI_PICKLE # cdef void *rbuf = NULL cdef MPI_Count rcount = 0 cdef MPI_Datatype rtype = MPI_BYTE
Cython
# cdef MPI_Message match = MPI_MESSAGE_NULL cdef MPI_Status rsts <void> obj # unused # with nogil: CHKERR( MPI_Mprobe(source, tag, comm, &match, &rsts) ) CHKERR( MPI_Get_count_c(&rsts, rtype, &rcount) ) cdef object tmpr = pickle_alloc(&rbuf, rcount) with nogil: CHKERR( MPI_Mrecv_c( rbuf, rcount, rtype, &match, status) ) # if rcount <= 0: return None return pickle_load(pickle, rbuf, rcount) cdef object PyMPI_recv_probe(object obj, int source, int tag, MPI_Comm comm, MPI_Status *status): cdef Pickle pickle = PyMPI_PICKLE # cdef void *rbuf = NULL cdef MPI_Count rcount = 0 cdef MPI_Datatype rtype = MPI_BYTE # cdef MPI_Status rsts cdef object tmpr <void> obj # unused # with PyMPI_Lock(comm, "recv"): with nogil: CHKERR( MPI_Probe(source, tag, comm, &rsts) ) CHKERR( MPI_Get_count_c(&rsts, rtype, &rcount) ) CHKERR( PyMPI_Status_get_source(&rsts, &source) ) CHKERR( PyMPI_Status_get_tag(&rsts, &tag) ) tmpr = pickle_alloc(&rbuf, rcount) with nogil: CHKERR( MPI_Recv_c( rbuf, rcount, rtype, source, tag, comm, status) ) # if rcount <= 0: return None return pickle_load(pickle, rbuf, rcount) cdef object PyMPI_recv(object obj, int source, int tag, MPI_Comm comm, MPI_Status *status): if obj is not None: return PyMPI_recv_obarg(obj, source, tag, comm, status) elif options.recv_mprobe: return PyMPI_recv_match(obj, source, tag, comm, status) else: return PyMPI_recv_probe(obj, source, tag, comm, status) # ----------------------------------------------------------------------------- cdef object PyMPI_isend(object obj, int dest, int tag, MPI_Comm comm, MPI_Request *request): cdef Pickle pickle = PyMPI_PICKLE # cdef void *sbuf = NULL cdef MPI_Count scount = 0 cdef MPI_Datatype stype = MPI_BYTE # cdef object smsg = None if dest!= MPI_PROC_NULL: smsg = pickle_dump(pickle, obj, &sbuf, &scount) with nogil: CHKERR( MPI_Isend_c( sbuf, scount, stype, dest, tag, comm, request) ) return smsg cdef object PyMPI_ibsend(object obj, int dest, int tag, MPI_Comm comm, MPI_Request *request): cdef Pickle pickle = PyMPI_PICKLE # cdef void *sbuf = NULL cdef MPI_Count scount = 0 cdef MPI_Datatype stype = MPI_BYTE # cdef object smsg = None if dest!= MPI_PROC_NULL: smsg = pickle_dump(pickle, obj, &sbuf, &scount) with nogil: CHKERR( MPI_Ibsend_c( sbuf, scount, stype, dest, tag, comm, request) ) return smsg cdef object PyMPI_issend(object obj, int dest, int tag, MPI_Comm comm, MPI_Request *request): cdef Pickle pickle = PyMPI_PICKLE # cdef void *sbuf = NULL cdef MPI_Count scount = 0 cdef MPI_Datatype stype = MPI_BYTE # cdef object smsg = None if dest!= MPI_PROC_NULL: smsg = pickle_dump(pickle, obj, &sbuf, &scount) with nogil: CHKERR( MPI_Issend_c( sbuf, scount, stype, dest, tag, comm, request) ) return smsg cdef object PyMPI_irecv(object obj, int source, int tag, MPI_Comm comm, MPI_Request *request): # cdef void *rbuf = NULL cdef MPI_Aint rlen = 0 cdef MPI_Count rcount = 0 cdef MPI_Datatype rtype = MPI_BYTE # cdef object rmsg = None if source!= MPI_PROC_NULL: if obj is None: rcount = options.irecv_bufsz obj = pickle_alloc(&rbuf, rcount) rmsg = asbuffer_r(obj, NULL, NULL) elif is_integral(obj): rcount = <MPI_Count> obj obj = pickle_alloc(&rbuf, rcount) rmsg = asbuffer_r(obj, NULL, NULL) else: rmsg = asbuffer_w(obj, &rbuf, &rlen) rcount = <MPI_Count> rlen with nogil: CHKERR( MPI_Irecv_c( rbuf, rcount, rtype, source, tag, comm, request) ) return rmsg # ----------------------------------------------------------------------------- cdef object PyMPI_sendrecv(object sobj, int dest, int sendtag, object robj, int source, int recvtag, MPI_Comm comm, MPI_Status *status): cdef MPI_Request request = MPI_REQUEST_NULL sobj = PyMPI_isend(sobj, dest, sendtag, comm, &request) robj = PyMPI_recv (robj, source, recvtag, comm, status) with nogil: CHKERR( MPI_Wait(&request, MPI_STATUS_IGNORE) ) return robj # ----------------------------------------------------------------------------- cdef object PyMPI_load(MPI_Status *status, object ob): cdef Pickle pickle = PyMPI_PICKLE cdef MPI_Count rcount = 0 cdef MPI_Datatype rtype = MPI_BYTE if type(ob) is not memory: return None CHKERR( MPI_Get_count_c(status, rtype, &rcount) ) if rcount <= 0: return None cdef void *rbuf = (<memory>ob).view.buf return pickle_load(pickle, rbuf, rcount) cdef object PyMPI_wait(Request request, Status status): cdef object buf # cdef MPI_Status rsts with nogil: CHKERR( MPI_Wait(&request.ob_mpi, &rsts) ) buf = request.ob_buf if status is not None: status.ob_mpi = rsts if request.ob_mpi == MPI_REQUEST_NULL: request.ob_buf = None # return PyMPI_load(&rsts, buf) cdef object PyMPI_test(Request request, int *flag, Status status): cdef object buf = None # cdef MPI_Status rsts with nogil: CHKERR( MPI_Test(&request.ob_mpi, flag, &rsts) ) if flag[0]: buf = request.ob_buf if status is not None: status.ob_mpi = rsts if request.ob_mpi == MPI_REQUEST_NULL: request.ob_buf = None # if not flag[0]: return None return PyMPI_load(&rsts, buf) cdef object PyMPI_waitany(requests, int *index, Status status): cdef object buf = None # cdef int count = 0 cdef MPI_Request *irequests = NULL cdef MPI_Status rsts # cdef tmp = acquire_rs(requests, None, &count, &irequests, NULL) try: with nogil: CHKERR( MPI_Waitany(count, irequests, index, &rsts) ) if index[0]!= MPI_UNDEFINED: buf = (<Request>requests[index[0]]).ob_buf if status is not None: status.ob_mpi = rsts finally: release_rs(requests, None, count, irequests, 0, NULL) # if index[0] == MPI_UNDEFINED: return None return PyMPI_load(&rsts, buf) cdef object PyMPI_testany(requests, int *index, int *flag, Status status): cdef object buf = None # cdef int count = 0 cdef MPI_Request *irequests = NULL cdef MPI_Status rsts # cdef tmp = acquire_rs(requests, None, &count, &irequests, NULL) try: with nogil: CHKERR( MPI_Testany(count, irequests, index, flag, &rsts) ) if index[0]!= MPI_UNDEFINED: buf = (<Request>requests[index[0]]).ob_buf if status is not None: status.ob_mpi = rsts finally: release_rs(requests, None, count, irequests, 0, NULL) # if index[0] == MPI_UNDEFINED: return None if not
Cython
flag[0]: return None return PyMPI_load(&rsts, buf) cdef object PyMPI_waitall(requests, statuses): cdef object bufs = None # cdef int count = 0 cdef MPI_Request *irequests = NULL cdef MPI_Status *istatuses = MPI_STATUSES_IGNORE # cdef tmp = acquire_rs(requests, True, &count, &irequests, &istatuses) try: with nogil: CHKERR( MPI_Waitall(count, irequests, istatuses) ) bufs = [(<Request>requests[i]).ob_buf for i in range(count)] finally: release_rs(requests, statuses, count, irequests, count, istatuses) # return [PyMPI_load(&istatuses[i], bufs[i]) for i in range(count)] cdef object PyMPI_testall(requests, int *flag, statuses): cdef object bufs = None # cdef int count = 0 cdef MPI_Request *irequests = NULL cdef MPI_Status *istatuses = MPI_STATUSES_IGNORE # cdef tmp = acquire_rs(requests, True, &count, &irequests, &istatuses) try: with nogil: CHKERR( MPI_Testall(count, irequests, flag, istatuses) ) if flag[0]: bufs = [(<Request>requests[i]).ob_buf for i in range(count)] finally: release_rs(requests, statuses, count, irequests, count, istatuses) # if not flag[0]: return None return [PyMPI_load(&istatuses[i], bufs[i]) for i in range(count)] cdef object PyMPI_waitsome(requests, statuses): cdef object bufs = None cdef object indices = None cdef object objects = None # cdef int incount = 0 cdef MPI_Request *irequests = NULL cdef int outcount = MPI_UNDEFINED, *iindices = NULL cdef MPI_Status *istatuses = MPI_STATUSES_IGNORE # cdef tmp1 = acquire_rs(requests, True, &incount, &irequests, &istatuses) cdef tmp2 = newarray(incount, &iindices) try: with nogil: CHKERR( MPI_Waitsome( incount, irequests, &outcount, iindices, istatuses) ) if outcount!= MPI_UNDEFINED: bufs = [ (<Request>requests[iindices[i]]).ob_buf for i in range(outcount) ] finally: release_rs(requests, statuses, incount, irequests, outcount, istatuses) # if outcount!= MPI_UNDEFINED: indices = [iindices[i] for i in range(outcount)] objects = [PyMPI_load(&istatuses[i], bufs[i]) for i in range(outcount)] return (indices, objects) cdef object PyMPI_testsome(requests, statuses): cdef object bufs = None cdef object indices = None cdef object objects = None # cdef int incount = 0 cdef MPI_Request *irequests = NULL cdef int outcount = MPI_UNDEFINED, *iindices = NULL cdef MPI_Status *istatuses = MPI_STATUSES_IGNORE # cdef tmp1 = acquire_rs(requests, True, &incount, &irequests, &istatuses) cdef tmp2 = newarray(incount, &iindices) try: with nogil: CHKERR( MPI_Testsome( incount, irequests, &outcount, iindices, istatuses) ) if outcount!= MPI_UNDEFINED: bufs = [ (<Request>requests[iindices[i]]).ob_buf for i in range(outcount) ] finally: release_rs(requests, statuses, incount, irequests, outcount, istatuses) # if outcount!= MPI_UNDEFINED: indices = [iindices[i] for i in range(outcount)] objects = [PyMPI_load(&istatuses[i], bufs[i])for i in range(outcount)] return (indices, objects) # ----------------------------------------------------------------------------- cdef object PyMPI_probe(int source, int tag, MPI_Comm comm, MPI_Status *status): with nogil: CHKERR( MPI_Probe(source, tag, comm, status) ) return True cdef object PyMPI_iprobe(int source, int tag, MPI_Comm comm, MPI_Status *status): cdef int flag = 0 with nogil: CHKERR( MPI_Iprobe(source, tag, comm, &flag, status) ) return <bint>flag cdef object PyMPI_mprobe(int source, int tag, MPI_Comm comm, MPI_Message *message, MPI_Status *status): cdef void* rbuf = NULL cdef MPI_Count rcount = 0 cdef MPI_Datatype rtype = MPI_BYTE cdef MPI_Status rsts if (status == MPI_STATUS_IGNORE): status = &rsts with nogil: CHKERR( MPI_Mprobe(source, tag, comm, message, status) ) if message[0] == MPI_MESSAGE_NO_PROC: return None CHKERR( MPI_Get_count_c(status, rtype, &rcount) ) cdef object rmsg = pickle_alloc(&rbuf, rcount) return rmsg cdef object PyMPI_improbe(int source, int tag, MPI_Comm comm, int *flag, MPI_Message *message, MPI_Status *status): cdef void* rbuf = NULL cdef MPI_Count rcount = 0 cdef MPI_Datatype rtype = MPI_BYTE cdef MPI_Status rsts if (status == MPI_STATUS_IGNORE): status = &rsts with nogil: CHKERR( MPI_Improbe(source, tag, comm, flag, message, status) ) if flag[0] == 0 or message[0] == MPI_MESSAGE_NO_PROC: return None CHKERR( MPI_Get_count_c(status, rtype, &rcount) ) cdef object rmsg = pickle_alloc(&rbuf, rcount) return rmsg cdef object PyMPI_mrecv(object rmsg, MPI_Message *message, MPI_Status *status): cdef Pickle pickle = PyMPI_PICKLE cdef void* rbuf = NULL cdef MPI_Aint rlen = 0 cdef MPI_Datatype rtype = MPI_BYTE if message[0] == MPI_MESSAGE_NO_PROC: rmsg = None elif rmsg is None: pass elif PyBytes_CheckExact(rmsg): rmsg = asbuffer_r(rmsg, &rbuf, &rlen) else: rmsg = asbuffer_w(rmsg, &rbuf, &rlen) #~> unreachable cdef MPI_Count rcount = <MPI_Count> rlen with nogil: CHKERR( MPI_Mrecv_c( rbuf, rcount, rtype, message, status) ) rmsg = pickle_load(pickle, rbuf, rcount) return rmsg cdef object PyMPI_imrecv(object rmsg, MPI_Message *message, MPI_Request *request): cdef void* rbuf = NULL cdef MPI_Aint rlen = 0 cdef MPI_Datatype rtype = MPI_BYTE if message[0] == MPI_MESSAGE_NO_PROC: rmsg = None elif rmsg is None: pass elif PyBytes_CheckExact(rmsg): rmsg = asbuffer_r(rmsg, &rbuf, &rlen) else: rmsg = asbuffer_w(rmsg, &rbuf, &rlen) #~> unreachable cdef MPI_Count rcount = <MPI_Count> rlen with nogil: CHKERR( MPI_Imrecv_c( rbuf, rcount, rtype, message, request) ) return rmsg # ----------------------------------------------------------------------------- cdef object PyMPI_barrier(MPI_Comm comm): with nogil: CHKERR( MPI_Barrier(comm) ) return None cdef object PyMPI_bcast(object obj, int root, MPI_Comm comm): cdef Pickle pickle = PyMPI_PICKLE # cdef void *buf = NULL cdef MPI_Count count = 0 cdef MPI_Datatype dtype = MPI_BYTE # cdef int dosend=0, dorecv=0 cdef int inter=0, rank=0 CHKERR( MPI_Comm_test_inter(comm, &inter) ) if inter: if root == MPI_PROC_NULL: dosend=0; dorecv=0; elif root == MPI_ROOT: dosend=1; dorecv=0; else: dosend=0; dorecv=1; else: CHKERR( MPI_Comm_rank(comm, &rank) ) if root == rank: dosend=1; dorecv=1; else: dosend=0; dorecv=1; # cdef object
Cython
smsg = None cdef object rmsg = None # if dosend: smsg = pickle_dump(pickle, obj, &buf, &count) if dosend and dorecv: rmsg = smsg with PyMPI_Lock(comm, "bcast"): with nogil: CHKERR( MPI_Bcast_c( &count, 1, MPI_COUNT, root, comm) ) if dorecv and not dosend: rmsg = pickle_alloc(&buf, count) with nogil: CHKERR( MPI_Bcast_c( buf, count, dtype, root, comm) ) if dorecv: rmsg = pickle_load(pickle, buf, count) # return rmsg cdef object PyMPI_gather(object sendobj, int root, MPI_Comm comm): cdef Pickle pickle = PyMPI_PICKLE # cdef void *sbuf = NULL cdef MPI_Count scount = 0 cdef MPI_Datatype stype = MPI_BYTE cdef void *rbuf = NULL cdef MPI_Count *rcounts = NULL cdef MPI_Aint *rdispls = NULL cdef MPI_Datatype rtype = MPI_BYTE # cdef int dosend=0, dorecv=0 cdef int inter=0, size=0, rank=0 CHKERR( MPI_Comm_test_inter(comm, &inter) ) if inter: CHKERR( MPI_Comm_remote_size(comm, &size) ) if root == MPI_PROC_NULL: dosend=0; dorecv=0; elif root == MPI_ROOT: dosend=0; dorecv=1; else: dosend=1; dorecv=0; else: CHKERR( MPI_Comm_size(comm, &size) ) CHKERR( MPI_Comm_rank(comm, &rank) ) if root == rank: dosend=1; dorecv=1; else: dosend=1; dorecv=0; # cdef object tmps = None cdef object rmsg = None cdef object tmp1 # if dorecv: tmp1 = allocate_count_displ(size, &rcounts, &rdispls) if dosend: tmps = pickle_dump(pickle, sendobj, &sbuf, &scount) with PyMPI_Lock(comm, "gather"): with nogil: CHKERR( MPI_Gather_c( &scount, 1, MPI_COUNT, rcounts, 1, MPI_COUNT, root, comm) ) if dorecv: rmsg = pickle_allocv(&rbuf, size, rcounts, rdispls) with nogil: CHKERR( MPI_Gatherv_c( sbuf, scount, stype, rbuf, rcounts, rdispls, rtype, root, comm) ) if dorecv: rmsg = pickle_loadv(pickle, rbuf, size, rcounts, rdispls) # return rmsg cdef object PyMPI_scatter(object sendobj, int root, MPI_Comm comm): cdef Pickle pickle = PyMPI_PICKLE # cdef void *sbuf = NULL cdef MPI_Count *scounts = NULL cdef MPI_Aint *sdispls = NULL cdef MPI_Datatype stype = MPI_BYTE cdef void *rbuf = NULL cdef MPI_Count rcount = 0 cdef MPI_Datatype rtype = MPI_BYTE # cdef int dosend=0, dorecv=0 cdef int inter=0, size=0, rank=0 CHKERR( MPI_Comm_test_inter(comm, &inter) ) if inter: CHKERR( MPI_Comm_remote_size(comm, &size) ) if root == MPI_PROC_NULL: dosend=0; dorecv=0; elif root == MPI_ROOT: dosend=1; dorecv=0; else: dosend=0; dorecv=1; else: CHKERR( MPI_Comm_size(comm, &size) ) CHKERR( MPI_Comm_rank(comm, &rank) ) if root == rank: dosend=1; dorecv=1; else: dosend=0; dorecv=1; # cdef object tmps = None cdef object rmsg = None cdef object tmp1 # if dosend: tmp1 = allocate_count_displ(size, &scounts, &sdispls) if dosend: tmps = pickle_dumpv(pickle, sendobj, &sbuf, size, scounts, sdispls) with PyMPI_Lock(comm, "scatter"): with nogil: CHKERR( MPI_Scatter_c( scounts, 1, MPI_COUNT, &rcount, 1, MPI_COUNT, root, comm) ) if dorecv: rmsg = pickle_alloc(&rbuf, rcount) with nogil: CHKERR( MPI_Scatterv_c( sbuf, scounts, sdispls, stype, rbuf, rcount, rtype, root, comm) ) if dorecv: rmsg = pickle_load(pickle, rbuf, rcount) # return rmsg cdef object PyMPI_allgather(object sendobj, MPI_Comm comm): cdef Pickle pickle = PyMPI_PICKLE # cdef void *sbuf = NULL cdef MPI_Count scount = 0 cdef MPI_Datatype stype = MPI_BYTE cdef void *rbuf = NULL cdef MPI_Count *rcounts = NULL cdef MPI_Aint *rdispls = NULL cdef MPI_Datatype rtype = MPI_BYTE # cdef int inter=0, size=0 CHKERR( MPI_Comm_test_inter(comm, &inter) ) if inter: CHKERR( MPI_Comm_remote_size(comm, &size) ) else: CHKERR( MPI_Comm_size(comm, &size) ) # cdef object tmps = None cdef object rmsg = None cdef object tmp1 # tmp1 = allocate_count_displ(size, &rcounts, &rdispls) tmps = pickle_dump(pickle, sendobj, &sbuf, &scount) with PyMPI_Lock(comm, "allgather"): with nogil: CHKERR( MPI_Allgather_c( &scount, 1, MPI_COUNT, rcounts, 1, MPI_COUNT, comm) ) rmsg = pickle_allocv(&rbuf, size, rcounts, rdispls) with nogil: CHKERR( MPI_Allgatherv_c( sbuf, scount, stype, rbuf, rcounts, rdispls, rtype, comm) ) rmsg = pickle_loadv(pickle, rbuf, size, rcounts, rdispls) # return rmsg cdef object PyMPI_alltoall(object sendobj, MPI_Comm comm): cdef Pickle pickle = PyMPI_PICKLE # cdef void *sbuf = NULL cdef MPI_Count *scounts = NULL cdef MPI_Aint *sdispls = NULL cdef MPI_Datatype stype = MPI_BYTE cdef void *rbuf = NULL cdef MPI_Count *rcounts = NULL cdef MPI_Aint *rdispls = NULL cdef MPI_Datatype rtype = MPI_BYTE # cdef int inter=0, size=0 CHKERR( MPI_Comm_test_inter(comm, &inter) ) if inter: CHKERR( MPI_Comm_remote_size(comm, &size) ) else: CHKERR( MPI_Comm_size(comm, &size) ) # cdef object tmps = None cdef object rmsg = None cdef object tmp1, tmp2 # tmp1 = allocate_count_displ(size, &scounts, &sdispls) tmp2 = allocate_count_displ(size, &rcounts, &rdispls) tmps = pickle_dumpv(pickle, sendobj, &sbuf, size, scounts, sdispls) with PyMPI_Lock(comm, "alltoall"): with nogil: CHKERR( MPI_Alltoall_c( scounts, 1, MPI_COUNT, rcounts, 1, MPI_COUNT, comm) ) rmsg = pickle_allocv(&rbuf, size, rcounts, rdispls) with nogil: CHKERR( MPI_Alltoallv_c( sbuf, scounts, sdispls, stype, rbuf, rcounts, rdispls, rtype, comm) ) rmsg = pickle_loadv(pickle, rbuf, size, rcounts, rdispls) # return rmsg cdef object PyMPI_neighbor_allgather(object sendobj, MPI_Comm comm):
Cython
cdef Pickle pickle = PyMPI_PICKLE # cdef void *sbuf = NULL cdef MPI_Count scount = 0 cdef MPI_Datatype stype = MPI_BYTE cdef void *rbuf = NULL cdef MPI_Count *rcounts = NULL cdef MPI_Aint *rdispls = NULL cdef MPI_Datatype rtype = MPI_BYTE # cdef int rsize=0 comm_neighbors_count(comm, &rsize, NULL) # cdef object tmps = None cdef object rmsg = None cdef object tmp1 # tmp1 = allocate_count_displ(rsize, &rcounts, &rdispls) for i in range(rsize): rcounts[i] = 0 tmps = pickle_dump(pickle, sendobj, &sbuf, &scount) with PyMPI_Lock(comm, "neighbor_allgather"): with nogil: CHKERR( MPI_Neighbor_allgather_c( &scount, 1, MPI_COUNT, rcounts, 1, MPI_COUNT, comm) ) rmsg = pickle_allocv(&rbuf, rsize, rcounts, rdispls) with nogil: CHKERR( MPI_Neighbor_allgatherv_c( sbuf, scount, stype, rbuf, rcounts, rdispls, rtype, comm) ) rmsg = pickle_loadv(pickle, rbuf, rsize, rcounts, rdispls) # return rmsg cdef object PyMPI_neighbor_alltoall(object sendobj, MPI_Comm comm): cdef Pickle pickle = PyMPI_PICKLE # cdef void *sbuf = NULL cdef MPI_Count *scounts = NULL cdef MPI_Aint *sdispls = NULL cdef MPI_Datatype stype = MPI_BYTE cdef void *rbuf = NULL cdef MPI_Count *rcounts = NULL cdef MPI_Aint *rdispls = NULL cdef MPI_Datatype rtype = MPI_BYTE # cdef int ssize=0, rsize=0 comm_neighbors_count(comm, &rsize, &ssize) # cdef object tmps = None cdef object rmsg = None cdef object tmp1, tmp2 # tmp1 = allocate_count_displ(ssize, &scounts, &sdispls) tmp2 = allocate_count_displ(rsize, &rcounts, &rdispls) for i in range(rsize): rcounts[i] = 0 tmps = pickle_dumpv(pickle, sendobj, &sbuf, ssize, scounts, sdispls) with PyMPI_Lock(comm, "neighbor_alltoall"): with nogil: CHKERR( MPI_Neighbor_alltoall_c( scounts, 1, MPI_COUNT, rcounts, 1, MPI_COUNT, comm) ) rmsg = pickle_allocv(&rbuf, rsize, rcounts, rdispls) with nogil: CHKERR( MPI_Neighbor_alltoallv_c( sbuf, scounts, sdispls, stype, rbuf, rcounts, rdispls, rtype, comm) ) rmsg = pickle_loadv(pickle, rbuf, rsize, rcounts, rdispls) # return rmsg # ----------------------------------------------------------------------------- cdef inline object _py_reduce(object seq, object op): if seq is None: return None cdef Py_ssize_t i, n = len(seq) cdef object res = seq[0] for i in range(1, n): res = op(res, seq[i]) return res cdef inline object _py_scan(object seq, object op): if seq is None: return None cdef Py_ssize_t i, n = len(seq) for i in range(1, n): seq[i] = op(seq[i-1], seq[i]) return seq cdef inline object _py_exscan(object seq, object op): if seq is None: return None seq = _py_scan(seq, op) seq.pop(-1) seq.insert(0, None) return seq cdef object PyMPI_reduce_naive(object sendobj, object op, int root, MPI_Comm comm): cdef object items = PyMPI_gather(sendobj, root, comm) return _py_reduce(items, op) cdef object PyMPI_allreduce_naive(object sendobj, object op, MPI_Comm comm): cdef object items = PyMPI_allgather(sendobj, comm) return _py_reduce(items, op) cdef object PyMPI_scan_naive(object sendobj, object op, MPI_Comm comm): cdef object items = PyMPI_gather(sendobj, 0, comm) items = _py_scan(items, op) return PyMPI_scatter(items, 0, comm) cdef object PyMPI_exscan_naive(object sendobj, object op, MPI_Comm comm): cdef object items = PyMPI_gather(sendobj, 0, comm) items = _py_exscan(items, op) return PyMPI_scatter(items, 0, comm) # ----- cdef inline object PyMPI_copy(object obj): cdef Pickle pickle = PyMPI_PICKLE cdef void *buf = NULL cdef MPI_Count count = 0 obj = pickle_dump(pickle, obj, &buf, &count) return pickle_load(pickle, buf, count) cdef object PyMPI_send_p2p(object obj, int dst, int tag, MPI_Comm comm): cdef Pickle pickle = PyMPI_PICKLE cdef void *sbuf = NULL cdef MPI_Count scount = 0 cdef MPI_Datatype stype = MPI_BYTE cdef object tmps = pickle_dump(pickle, obj, &sbuf, &scount) with nogil: CHKERR( MPI_Send_c(&scount, 1, MPI_COUNT, dst, tag, comm) ) with nogil: CHKERR( MPI_Send_c(sbuf, scount, stype, dst, tag, comm) ) return None cdef object PyMPI_recv_p2p(int src, int tag, MPI_Comm comm): cdef Pickle pickle = PyMPI_PICKLE cdef void *rbuf = NULL cdef MPI_Count rcount = 0 cdef MPI_Datatype rtype = MPI_BYTE cdef MPI_Status *status = MPI_STATUS_IGNORE with nogil: CHKERR( MPI_Recv_c(&rcount, 1, MPI_COUNT, src, tag, comm, status) ) cdef object tmpr = pickle_alloc(&rbuf, rcount) with nogil: CHKERR( MPI_Recv_c(rbuf, rcount, rtype, src, tag, comm, status) ) return pickle_load(pickle, rbuf, rcount) cdef object PyMPI_sendrecv_p2p(object obj, int dst, int stag, int src, int rtag, MPI_Comm comm): cdef Pickle pickle = PyMPI_PICKLE cdef void *sbuf = NULL, *rbuf = NULL cdef MPI_Count scount = 0, rcount = 0 cdef MPI_Datatype dtype = MPI_BYTE cdef object tmps = pickle_dump(pickle, obj, &sbuf, &scount) with nogil: CHKERR( MPI_Sendrecv_c( &scount, 1, MPI_COUNT, dst, stag, &rcount, 1, MPI_COUNT, src, rtag, comm, MPI_STATUS_IGNORE) ) cdef object tmpr = pickle_alloc(&rbuf, rcount) with nogil: CHKERR( MPI_Sendrecv_c( sbuf, scount, dtype, dst, stag, rbuf, rcount, dtype, src, rtag, comm, MPI_STATUS_IGNORE) ) return pickle_load(pickle, rbuf, rcount) cdef object PyMPI_bcast_p2p(object obj, int root, MPI_Comm comm): cdef Pickle pickle = PyMPI_PICKLE cdef void *buf = NULL cdef MPI_Count count = 0 cdef MPI_Datatype dtype = MPI_BYTE cdef int rank = MPI_PROC_NULL CHKERR( MPI_Comm_rank(comm, &rank) ) if root == rank: obj = pickle_dump(pickle, obj, &buf, &count) with PyMPI_Lock(comm, "@bcast_p2p@"): with nogil: CHKERR( MPI_Bcast_c(&count, 1, MPI_COUNT, root, comm) ) if root!= rank: obj = pickle_alloc(&buf, count) with nogil: CHKERR( MPI_Bcast_c(buf, count, dtype, root, comm) ) return pickle_load(pickle, buf, count) cdef object PyMPI_reduce_p2p(object sendobj, object op, int root, MPI_Comm comm, int tag): # Get communicator size and rank cdef int size =
Cython
MPI_UNDEFINED cdef int rank = MPI_PROC_NULL CHKERR( MPI_Comm_size(comm, &size) ) CHKERR( MPI_Comm_rank(comm, &rank) ) # Check root argument if root < 0 or root >= size: <void>MPI_Comm_call_errhandler(comm, MPI_ERR_ROOT) raise MPIException(MPI_ERR_ROOT) # cdef object result = PyMPI_copy(sendobj) cdef object tmp # Compute reduction at process 0 cdef unsigned int umask = <unsigned int> 1 cdef unsigned int usize = <unsigned int> size cdef unsigned int urank = <unsigned int> rank cdef int target = 0 while umask < usize: if (umask & urank)!= 0: target = <int> ((urank & ~umask) % usize) PyMPI_send_p2p(result, target, tag, comm) else: target = <int> (urank | umask) if target < size: tmp = PyMPI_recv_p2p(target, tag, comm) result = op(result, tmp) umask <<= 1 # Send reduction to root if root!= 0: if rank == 0: PyMPI_send_p2p(result, root, tag, comm) elif rank == root: result = PyMPI_recv_p2p(0, tag, comm) if rank!= root: result = None # return result cdef object PyMPI_scan_p2p(object sendobj, object op, MPI_Comm comm, int tag): # Get communicator size and rank cdef int size = MPI_UNDEFINED cdef int rank = MPI_PROC_NULL CHKERR( MPI_Comm_size(comm, &size) ) CHKERR( MPI_Comm_rank(comm, &rank) ) # cdef object result = PyMPI_copy(sendobj) cdef object partial = result cdef object tmp # Compute prefix reduction cdef unsigned int umask = <unsigned int> 1 cdef unsigned int usize = <unsigned int> size cdef unsigned int urank = <unsigned int> rank cdef int target = 0 while umask < usize: target = <int> (urank ^ umask) if target < size: tmp = PyMPI_sendrecv_p2p(partial, target, tag, target, tag, comm) if rank > target: partial = op(tmp, partial) result = op(tmp, result) else: tmp = op(partial, tmp) partial = tmp umask <<= 1 # return result cdef object PyMPI_exscan_p2p(object sendobj, object op, MPI_Comm comm, int tag): # Get communicator size and rank cdef int size = MPI_UNDEFINED cdef int rank = MPI_PROC_NULL CHKERR( MPI_Comm_size(comm, &size) ) CHKERR( MPI_Comm_rank(comm, &rank) ) # cdef object result = PyMPI_copy(sendobj) cdef object partial = result cdef object tmp # Compute prefix reduction cdef unsigned int umask = <unsigned int> 1 cdef unsigned int usize = <unsigned int> size cdef unsigned int urank = <unsigned int> rank cdef unsigned int uflag = <unsigned int> 0 cdef int target = 0 while umask < usize: target = <int> (urank ^ umask) if target < size: tmp = PyMPI_sendrecv_p2p(partial, target, tag, target, tag, comm) if rank > target: partial = op(tmp, partial) if uflag == 0: result = tmp; uflag = 1 else: result = op(tmp, result) else: tmp = op(partial, tmp) partial = tmp umask <<= 1 # if rank == 0: result = None return result # ----- cdef extern from * nogil: int PyMPI_Commctx_intra(MPI_Comm,MPI_Comm*,int*) int PyMPI_Commctx_inter(MPI_Comm,MPI_Comm*,int*,MPI_Comm*,int*) cdef int PyMPI_Commctx_INTRA(MPI_Comm comm, MPI_Comm *dupcomm, int *tag) except -1: with PyMPI_Lock(comm, "@commctx_intra"): CHKERR( PyMPI_Commctx_intra(comm, dupcomm, tag) ) return 0 cdef int PyMPI_Commctx_INTER(MPI_Comm comm, MPI_Comm *dupcomm, int *tag, MPI_Comm *localcomm, int *low_group) except -1: with PyMPI_Lock(comm, "@commctx_inter"): CHKERR( PyMPI_Commctx_inter(comm, dupcomm, tag, localcomm, low_group) ) return 0 def _commctx_intra( Intracomm comm: Intracomm, ) -> tuple[Intracomm, int]: """ Create/get intracommunicator duplicate. """ cdef int tag = MPI_UNDEFINED cdef Intracomm dupcomm = <Intracomm>New(Intracomm) PyMPI_Commctx_INTRA(comm.ob_mpi, &dupcomm.ob_mpi, &tag) return (dupcomm, tag) def _commctx_inter( Intercomm comm: Intercomm, ) -> tuple[Intercomm, int, Intracomm, bool]: """ Create/get intercommunicator duplicate. """ cdef int tag = MPI_UNDEFINED, low_group = 0 cdef Intercomm dupcomm = <Intercomm>New(Intercomm) cdef Intracomm localcomm = <Intracomm>New(Intracomm) PyMPI_Commctx_INTER(comm.ob_mpi, &dupcomm.ob_mpi, &tag, &localcomm.ob_mpi, &low_group) return (dupcomm, tag, localcomm, <bint>low_group) # ----- cdef object PyMPI_reduce_intra(object sendobj, object op, int root, MPI_Comm comm): cdef int tag = MPI_UNDEFINED PyMPI_Commctx_INTRA(comm, &comm, &tag) return PyMPI_reduce_p2p(sendobj, op, root, comm, tag) cdef object PyMPI_reduce_inter(object sendobj, object op, int root, MPI_Comm comm): cdef int tag = MPI_UNDEFINED cdef MPI_Comm localcomm = MPI_COMM_NULL PyMPI_Commctx_INTER(comm, &comm, &tag, &localcomm, NULL) # Get communicator remote size and rank cdef int size = MPI_UNDEFINED cdef int rank = MPI_PROC_NULL CHKERR( MPI_Comm_remote_size(comm, &size) ) CHKERR( MPI_Comm_rank(comm, &rank) ) if root >= 0 and root < size: # Reduce in local group and send to remote root sendobj = PyMPI_reduce_p2p(sendobj, op, 0, localcomm, tag) if rank == 0: PyMPI_send_p2p(sendobj, root, tag, comm) return None elif root == MPI_ROOT: # Receive from remote group return PyMPI_recv_p2p(0, tag, comm) elif root == MPI_PROC_NULL: # This process does nothing return None else: # Wrong root argument <void>MPI_Comm_call_errhandler(comm, MPI_ERR_ROOT) raise MPIException(MPI_ERR_ROOT) cdef object PyMPI_allreduce_intra(object sendobj, object op, MPI_Comm comm): cdef int tag = MPI_UNDEFINED PyMPI_Commctx_INTRA(comm, &comm, &tag) sendobj = PyMPI_reduce_p2p(sendobj, op, 0, comm, tag) return PyMPI_bcast_p2p(sendobj, 0, comm) cdef object PyMPI_allreduce_inter(object sendobj, object op, MPI_Comm comm): cdef int tag = MPI_UNDEFINED cdef int rank = MPI_PROC_NULL cdef MPI_Comm localcomm = MPI_COMM_NULL PyMPI_Commctx_INTER(comm, &comm, &tag, &localcomm, NULL) CHKERR( MPI_Comm_rank(comm, &rank) ) # Reduce in local group, exchange, and broadcast in local group sendobj = PyMPI_reduce_p2p(sendobj, op, 0, localcomm, tag) if rank == 0: sendobj = PyMPI_sendrecv_p2p(sendobj, 0, tag, 0, tag, comm) return PyMPI_bcast_p2p(sendobj, 0, localcomm) cdef object PyMPI_scan_intra(object sendobj, object op, MPI_Comm comm): cdef int tag = MPI_UNDEFINED PyMPI_Commctx_INTRA(comm, &comm, &tag) return PyMPI_scan_p2p(sendobj, op, comm, tag) cdef object PyMPI_exscan_intra(object sendobj, object op, MPI_Comm comm): cdef int tag = MPI_UNDEFINED PyMPI_Commctx_INTRA(comm, &comm, &tag) return Py
Cython
MPI_exscan_p2p(sendobj, op, comm, tag) # ----- cdef inline bint comm_is_intra(MPI_Comm comm) except -1 nogil: cdef int inter = 0 CHKERR( MPI_Comm_test_inter(comm, &inter) ) if inter: return 0 else: return 1 cdef object PyMPI_reduce(object sendobj, object op, int root, MPI_Comm comm): if not options.fast_reduce: return PyMPI_reduce_naive(sendobj, op, root, comm) elif comm_is_intra(comm): return PyMPI_reduce_intra(sendobj, op, root, comm) else: return PyMPI_reduce_inter(sendobj, op, root, comm) cdef object PyMPI_allreduce(object sendobj, object op, MPI_Comm comm): if not options.fast_reduce: return PyMPI_allreduce_naive(sendobj, op, comm) elif comm_is_intra(comm): return PyMPI_allreduce_intra(sendobj, op, comm) else: return PyMPI_allreduce_inter(sendobj, op, comm) cdef object PyMPI_scan(object sendobj, object op, MPI_Comm comm): if not options.fast_reduce: return PyMPI_scan_naive(sendobj, op, comm) else: return PyMPI_scan_intra(sendobj, op, comm) cdef object PyMPI_exscan(object sendobj, object op, MPI_Comm comm): if not options.fast_reduce: return PyMPI_exscan_naive(sendobj, op, comm) else: return PyMPI_exscan_intra(sendobj, op, comm) # ----------------------------------------------------------------------------- <|end_of_text|># ----------------------------------------------------------------------------- class MFNType(object): """ MFN type Action of a matrix function on a vector. - `KRYLOV`: Restarted Krylov solver. - `EXPOKIT`: Implementation of the method in Expokit. """ KRYLOV = S_(MFNKRYLOV) EXPOKIT = S_(MFNEXPOKIT) class MFNConvergedReason(object): CONVERGED_TOL = MFN_CONVERGED_TOL CONVERGED_ITS = MFN_CONVERGED_ITS DIVERGED_ITS = MFN_DIVERGED_ITS DIVERGED_BREAKDOWN = MFN_DIVERGED_BREAKDOWN CONVERGED_ITERATING = MFN_CONVERGED_ITERATING ITERATING = MFN_CONVERGED_ITERATING # ----------------------------------------------------------------------------- cdef class MFN(Object): """ MFN """ Type = MFNType ConvergedReason = MFNConvergedReason def __cinit__(self): self.obj = <PetscObject*> &self.mfn self.mfn = NULL def view(self, Viewer viewer=None): """ Prints the MFN data structure. Parameters ---------- viewer: Viewer, optional. Visualization context; if not provided, the standard output is used. """ cdef PetscViewer vwr = def_Viewer(viewer) CHKERR( MFNView(self.mfn, vwr) ) def destroy(self): """ Destroys the MFN object. """ CHKERR( MFNDestroy(&self.mfn) ) self.mfn = NULL return self def reset(self): """ Resets the MFN object. """ CHKERR( MFNReset(self.mfn) ) def create(self, comm=None): """ Creates the MFN object. Parameters ---------- comm: Comm, optional. MPI communicator. If not provided, it defaults to all processes. """ cdef MPI_Comm ccomm = def_Comm(comm, SLEPC_COMM_DEFAULT()) cdef SlepcMFN newmfn = NULL CHKERR( MFNCreate(ccomm, &newmfn) ) SlepcCLEAR(self.obj); self.mfn = newmfn return self def setType(self, mfn_type): """ Selects the particular solver to be used in the MFN object. Parameters ---------- mfn_type: `MFN.Type` enumerate The solver to be used. """ cdef SlepcMFNType cval = NULL mfn_type = str2bytes(mfn_type, &cval) CHKERR( MFNSetType(self.mfn, cval) ) def getType(self): """ Gets the MFN type of this object. Returns ------- type: `MFN.Type` enumerate The solver currently being used. """ cdef SlepcMFNType mfn_type = NULL CHKERR( MFNGetType(self.mfn, &mfn_type) ) return bytes2str(mfn_type) def getOptionsPrefix(self): """ Gets the prefix used for searching for all MFN options in the database. Returns ------- prefix: string The prefix string set for this MFN object. """ cdef const_char *prefix = NULL CHKERR( MFNGetOptionsPrefix(self.mfn, &prefix) ) return bytes2str(prefix) def setOptionsPrefix(self, prefix): """ Sets the prefix used for searching for all MFN options in the database. Parameters ---------- prefix: string The prefix string to prepend to all MFN option requests. """ cdef const_char *cval = NULL prefix = str2bytes(prefix, &cval) CHKERR( MFNSetOptionsPrefix(self.mfn, cval) ) def appendOptionsPrefix(self, prefix): """ Appends to the prefix used for searching for all MFN options in the database. Parameters ---------- prefix: string The prefix string to prepend to all MFN option requests. """ cdef const_char *cval = NULL prefix = str2bytes(prefix, &cval) CHKERR( MFNAppendOptionsPrefix(self.mfn, cval) ) def setFromOptions(self): """ Sets MFN options from the options database. This routine must be called before `setUp()` if the user is to be allowed to set the solver type. """ CHKERR( MFNSetFromOptions(self.mfn) ) def getTolerances(self): """ Gets the tolerance and maximum iteration count used by the default MFN convergence tests. Returns ------- tol: float The convergence tolerance. max_it: int The maximum number of iterations """ cdef PetscReal rval = 0 cdef PetscInt ival = 0 CHKERR( MFNGetTolerances(self.mfn, &rval, &ival) ) return (toReal(rval), toInt(ival)) def setTolerances(self, tol=None, max_it=None): """ Sets the tolerance and maximum iteration count used by the default MFN convergence tests. Parameters ---------- tol: float, optional The convergence tolerance. max_it: int, optional The maximum number of iterations """ cdef PetscReal rval = PETSC_DEFAULT cdef PetscInt ival = PETSC_DEFAULT if tol is not None: rval = asReal(tol) if max_it is not None: ival = asInt(max_it) CHKERR( MFNSetTolerances(self.mfn, rval, ival) ) def getDimensions(self): """ Gets the dimension of the subspace used by the solver. Returns ------- ncv: int Maximum dimension of the subspace to be used by the solver. """ cdef PetscInt ival = 0 CHKERR( MFNGetDimensions(self.mfn, &ival) ) return toInt(ival) def setDimensions(self, ncv): """ Sets the dimension of the subspace to be used by the solver. Parameters ---------- ncv: int Maximum dimension of the subspace to be used by the solver. """ cdef PetscInt ival = asInt(ncv) CHKERR( MFNSetDimensions(self.mfn, ival) ) def getFN(self): """ Obtain the math function object associated to the MFN object. Returns ------- fn: FN The math function context. """ cdef FN fn = FN() CHKERR( MFNGetFN(self.mfn, &fn.fn) ) PetscINCREF(fn.obj) return fn def setFN(self, FN fn): """ Associates a math function object to the MFN object. Parameters ---------- fn: FN The math function context. """ CHKERR( MFNSetFN(self.mfn, fn.fn) ) def getBV(self): """ Obtain the basis vector object associated to the MFN object. Returns ------- bv: BV The basis vectors context. """ cdef BV bv = BV() CHKERR( MFNGetBV(self.mfn, &bv.bv) ) PetscINCREF(bv.obj) return bv def setBV(self, BV bv): """ Associates a basis vector object to the MFN object. Parameters
Cython
---------- bv: BV The basis vectors context. """ CHKERR( MFNSetBV(self.mfn, bv.bv) ) def getOperator(self): """ Gets the matrix associated with the MFN object. Returns ------- A: Mat The matrix for which the matrix function is to be computed. """ cdef Mat A = Mat() CHKERR( MFNGetOperator(self.mfn, &A.mat) ) PetscINCREF(A.obj) return A def setOperator(self, Mat A): """ Sets the matrix associated with the MFN object. Parameters ---------- A: Mat The problem matrix. """ CHKERR( MFNSetOperator(self.mfn, A.mat) ) # def setMonitor(self, monitor, args=None, kargs=None): """ Appends a monitor function to the list of monitors. """ if monitor is None: return cdef object monitorlist = self.get_attr('__monitor__') if monitorlist is None: monitorlist = [] self.set_attr('__monitor__', monitorlist) CHKERR( MFNMonitorSet(self.mfn, MFN_Monitor, NULL, NULL) ) if args is None: args = () if kargs is None: kargs = {} monitorlist.append((monitor, args, kargs)) def getMonitor(self): """ Gets the list of monitor functions. """ return self.get_attr('__monitor__') def cancelMonitor(self): """ Clears all monitors for an `MFN` object. """ CHKERR( MFNMonitorCancel(self.mfn) ) self.set_attr('__monitor__', None) # def setUp(self): """ Sets up all the internal data structures necessary for the execution of the eigensolver. """ CHKERR( MFNSetUp(self.mfn) ) def solve(self, Vec b, Vec x): """ Solves the matrix function problem. Given a vector b, the vector x = f(A)*b is returned. Parameters ---------- b: Vec The right hand side vector. x: Vec The solution. """ CHKERR( MFNSolve(self.mfn, b.vec, x.vec) ) def solveTranspose(self, Vec b, Vec x): """ Solves the transpose matrix function problem. Given a vector b, the vector x = f(A^T)*b is returned. Parameters ---------- b: Vec The right hand side vector. x: Vec The solution. """ CHKERR( MFNSolveTranspose(self.mfn, b.vec, x.vec) ) def getIterationNumber(self): """ Gets the current iteration number. If the call to `solve()` is complete, then it returns the number of iterations carried out by the solution method. Returns ------- its: int Iteration number. """ cdef PetscInt ival = 0 CHKERR( MFNGetIterationNumber(self.mfn, &ival) ) return toInt(ival) def getConvergedReason(self): """ Gets the reason why the `solve()` iteration was stopped. Returns ------- reason: `MFN.ConvergedReason` enumerate Negative value indicates diverged, positive value converged. """ cdef SlepcMFNConvergedReason val = MFN_CONVERGED_ITERATING CHKERR( MFNGetConvergedReason(self.mfn, &val) ) return val def setErrorIfNotConverged(self, flg=True): """ Causes `solve()` to generate an error if the solver has not converged. Parameters ---------- flg: bool True indicates you want the error generated. """ cdef PetscBool tval = flg CHKERR( MFNSetErrorIfNotConverged(self.mfn, tval) ) def getErrorIfNotConverged(self): """ Return a flag indicating whether `solve()` will generate an error if the solver does not converge. Returns ------- flg: bool True indicates you want the error generated. """ cdef PetscBool tval = PETSC_FALSE CHKERR( MFNGetErrorIfNotConverged(self.mfn, &tval) ) return toBool(tval) # property tol: def __get__(self): return self.getTolerances()[0] def __set__(self, value): self.setTolerances(tol=value) property max_it: def __get__(self): return self.getTolerances()[1] def __set__(self, value): self.setTolerances(max_it=value) property fn: def __get__(self): return self.getFN() def __set__(self, value): self.setBV(value) property bv: def __get__(self): return self.getFN() def __set__(self, value): self.setBV(value) # ----------------------------------------------------------------------------- del MFNType del MFNConvergedReason # ----------------------------------------------------------------------------- <|end_of_text|>#cython: c_string_type=unicode, c_string_encoding=utf8 ''' TODO: - ensure that we correctly check allocation - remove compat sdl usage (like SDL_SetAlpha must be replaced with sdl 1.3 call, not 1.2) ''' include '../../lib/sdl2.pxi' from kivy.core.image import ImageData from kivy.compat import PY2 cdef dict sdl2_cache = {} cdef list sdl2_cache_order = [] cdef class _TTFContainer: cdef TTF_Font* font def __cinit__(self): self.font = NULL def __dealloc__(self): if self.font!= NULL: TTF_CloseFont(self.font) self.font = NULL cdef class _SurfaceContainer: cdef SDL_Surface* surface cdef int w, h def __cinit__(self, w, h): self.surface = NULL self.w = w self.h = h def __init__(self, w, h): # XXX check on OSX to see if little endian/big endian make a difference # here. self.surface = SDL_CreateRGBSurface(0, w, h, 32, 0x000000ff, 0x0000ff00, 0x00ff0000, 0xff000000) def __dealloc__(self): if self.surface!= NULL: SDL_FreeSurface(self.surface) self.surface = NULL def render(self, container, text, x, y): cdef TTF_Font *font = _get_font(container) cdef SDL_Color c cdef SDL_Color oc cdef SDL_Surface *st cdef SDL_Surface *fgst cdef SDL_Rect r cdef SDL_Rect fgr cdef list color = list(container.options['color']) cdef list outline_color = list(container.options['outline_color']) outline_width = container.options['outline_width'] if font == NULL: return c.a = oc.a = 255 c.r = <int>(color[0] * 255) c.g = <int>(color[1] * 255) c.b = <int>(color[2] * 255) bytes_text = <bytes>text.encode('utf-8') hinting = container.options['font_hinting'] if hinting == 'normal': if TTF_GetFontHinting(font)!= TTF_HINTING_NORMAL: TTF_SetFontHinting(font, TTF_HINTING_NORMAL) elif hinting == 'light': if TTF_GetFontHinting(font)!= TTF_HINTING_LIGHT: TTF_SetFontHinting(font, TTF_HINTING_LIGHT) elif hinting =='mono': if TTF_GetFontHinting(font)!= TTF_HINTING_MONO: TTF_SetFontHinting(font, TTF_HINTING_MONO) elif hinting is None: if TTF_GetFontHinting(font)!= TTF_HINTING_NONE: TTF_SetFontHinting(font, TTF_HINTING_NONE) if container.options['font_kerning']: if TTF_GetFontKerning(font) == 0: TTF_SetFontKerning(font, 1) else: if TTF_GetFontKerning(font)!= 0: TTF_SetFontKerning(font, 0) direction = container.options['font_direction'] if direction == 'ltr': TTF_SetFontDirection(font, TTF_DIRECTION_LTR) elif direction == 'rtl': TTF_SetFontDirection(font, TTF_DIRECTION_RTL) elif direction == 'ttb': TTF_SetFontDirection(font, TTF_DIRECTION_TTB) elif direction == 'btt': TTF_SetFontDirection(font, TTF_DIRECTION_BTT) fontscript = container.options['font_script_name'] TTF_SetFontScriptName(font, fontscript) if outline_width: TTF_SetFontOutline(font, outline_width) oc.r = <int>(outline_color[0] * 255) oc.g = <int>(outline_color[1] * 255
Cython
) oc.b = <int>(outline_color[2] * 255) st = ( TTF_RenderUTF8_Blended(font, <char *>bytes_text, oc) if container.options['font_blended'] else TTF_RenderUTF8_Solid(font, <char *>bytes_text, oc) ) TTF_SetFontOutline(font, 0) else: st = ( TTF_RenderUTF8_Blended(font, <char *>bytes_text, c) if container.options['font_blended'] else TTF_RenderUTF8_Solid(font, <char *>bytes_text, c) ) if st == NULL: return if outline_width: fgst = ( TTF_RenderUTF8_Blended(font, <char *>bytes_text, c) if container.options['font_blended'] else TTF_RenderUTF8_Solid(font, <char *>bytes_text, c) ) if fgst == NULL: SDL_FreeSurface(st) return fgr.x = outline_width fgr.y = outline_width fgr.w = fgst.w fgr.h = fgst.h SDL_SetSurfaceBlendMode(fgst, SDL_BLENDMODE_BLEND) SDL_BlitSurface(fgst, NULL, st, &fgr) SDL_FreeSurface(fgst) r.x = x r.y = y r.w = st.w r.h = st.h SDL_SetSurfaceAlphaMod(st, <int>(color[3] * 255)) if container.options['line_height'] < 1: """ We are using SDL_BLENDMODE_BLEND only when line_height < 1 as a workaround. Previously, We enabled SDL_BLENDMODE_BLEND also for text w/ line_height >= 1, but created an unexpected behavior (See PR #6507 and issue #6508). """ SDL_SetSurfaceBlendMode(st, SDL_BLENDMODE_BLEND) else: SDL_SetSurfaceBlendMode(st, SDL_BLENDMODE_NONE) SDL_BlitSurface(st, NULL, self.surface, &r) SDL_FreeSurface(st) def get_data(self): cdef int datalen = self.surface.w * self.surface.h * 4 cdef bytes pixels = (<char *>self.surface.pixels)[:datalen] data = ImageData(self.w, self.h, 'rgba', pixels) return data cdef TTF_Font *_get_font(self) except *: cdef TTF_Font *fontobject = NULL cdef _TTFContainer ttfc cdef char *error cdef str s_error cdef bytes bytes_fontname # fast path fontid = self._get_font_id() if fontid in sdl2_cache: ttfc = sdl2_cache[fontid] return ttfc.font # ensure ttf is init. if not TTF_WasInit(): TTF_Init() # try first the file if it's a filename fontname = self.options['font_name_r'] bytes_fontname = <bytes>fontname.encode('utf-8') ext = fontname.rsplit('.', 1) if len(ext) == 2: # try to open the font if it has an extension fontobject = TTF_OpenFont(bytes_fontname, int(self.options['font_size'])) # fallback to search a system font if fontobject == NULL: s_error = SDL_GetError() raise ValueError('{}: for font {}'.format(s_error, fontname)) # set underline and strikethrough style style = TTF_STYLE_NORMAL if self.options['underline']: style = style | TTF_STYLE_UNDERLINE if self.options['strikethrough']: style = style | TTF_STYLE_STRIKETHROUGH TTF_SetFontStyle(fontobject, style) sdl2_cache[fontid] = ttfc = _TTFContainer() ttfc.font = fontobject sdl2_cache_order.append(fontid) # to prevent too much file open, limit the number of opened fonts to 64 while len(sdl2_cache_order) > 64: popid = sdl2_cache_order.pop(0) ttfc = sdl2_cache[popid] del sdl2_cache[popid] ttfc = sdl2_cache[fontid] return ttfc.font def _get_extents(container, text): cdef TTF_Font *font = _get_font(container) cdef int w, h outline_width = container.options['outline_width'] if font == NULL: return 0, 0 if not PY2: text = text.encode('utf-8') bytes_text = <bytes>text if outline_width: TTF_SetFontOutline(font, outline_width) TTF_SizeUTF8(font, <char *>bytes_text, &w, &h) if outline_width: TTF_SetFontOutline(font, 0) return w, h def _get_fontdescent(container): return TTF_FontDescent(_get_font(container)) def _get_fontascent(container): return TTF_FontAscent(_get_font(container)) <|end_of_text|># cython wrapper for libstuff cimport cstuff def do_fast_stuff(a, b): return int(cstuff.doFastStuff(int(a), int(b))) <|end_of_text|># # Copyright (c) 2021 by Kristoffer Paulsson <[email protected]>. # # This software is available under the terms of the MIT license. Parts are licensed under # different terms if stated. The legal terms are attached to the LICENSE file and are # made available on: # # https://opensource.org/licenses/MIT # # SPDX-License-Identifier: MIT # # Contributors: # Kristoffer Paulsson - initial implementation # """Support classes for the ctl.""" import datetime import uuid from pathlib import Path from types import SimpleNamespace from angelos.bin.nacl import Signer from angelos.facade.facade import Facade from angelos.lib.const import Const from angelos.lib.policy.crypto import Crypto from angelos.portfolio.collection import PrivatePortfolio from angelos.portfolio.portfolio.setup import SetupPersonPortfolio, PersonData ADMIN_ENTITY = PersonData(**{ "given_name": "John", "names": ["John", "Admin"], "family_name": "Roe", "sex": "man", "born": datetime.date(1970, 1, 1) }) class AdminFacade(Facade): """Client admin facade to be used with the network authentication protocol.""" @classmethod def setup(cls, signer: Signer): """Setup the admin facade using a signer.""" portfolio = SetupPersonPortfolio().perform(ADMIN_ENTITY, role=Const.A_ROLE_PRIMARY, server=False) portfolio.privkeys.seed = signer.seed list(portfolio.keys)[0].verify = signer.vk for doc in portfolio.documents(): doc._fields["signature"].redo = True doc.signature = None if doc._fields["signature"].multiple: Crypto.sign(doc, portfolio, multiple=True) else: Crypto.sign(doc, portfolio) return cls(Path("~/"), None, portfolio=portfolio, role=Const.A_ROLE_PRIMARY, server=False) @classmethod def _setup( cls, home_dir: Path, secret: bytes, portfolio: PrivatePortfolio, vault_type: int, vault_role: int ) -> "VaultStorage": return SimpleNamespace( facade=None, close=lambda: None, archive=SimpleNamespace( stats=lambda: SimpleNamespace( node=uuid.UUID(int=0), ) ) ) @classmethod def _check_type(cls, portfolio: PrivatePortfolio, server: bool) -> None: return Const.A_TYPE_ADMIN_CLIENT <|end_of_text|>from quantlib.types cimport Real, Spread from libcpp cimport bool from libcpp.vector cimport vector from cython.operator cimport dereference as deref, preincrement as preinc from quantlib.handle cimport make_shared, shared_ptr, static_pointer_cast from quantlib.time.date cimport Date, date_from_qldate from quantlib.time.daycounter cimport DayCounter from quantlib.indexes.ibor_index cimport OvernightIndex cimport quantlib.indexes._ibor_index as _ii cimport quantlib._cashflow as _cf from.rateaveraging cimport RateAveraging from. cimport _overnight_indexed_coupon as _oic cdef class OvernightIndexedCoupon(FloatingRateCoupon): def __init__(self, Date payment_date not None, Real nominal, Date start_date not None, Date end_date not None, OvernightIndex index not None, Real gearing=1., Spread spread=0., Date ref_period_start=Date(), Date ref_period_end=Date(), DayCounter day_counter=DayCounter(), bool telescopic_values= False, RateAveraging averaging_method=RateAveraging.Compound): self._thisptr = make_shared[_oic.OvernightIndexedCoupon]( deref(payment_date._thisptr), nominal, deref(start_date._thisptr), deref(end_date._thisptr), static_pointer_cast[_ii.OvernightIndex](index._thisptr), gearing, spread, deref(ref_period_start._thisptr), deref(ref_period_end._thisptr), deref(day_counter._
Cython
thisptr), telescopic_values, averaging_method ) cdef class OvernightLeg(Leg): def __iter__(self): cdef OvernightIndexedCoupon oic cdef vector[shared_ptr[_cf.CashFlow]].iterator it = self._thisptr.begin() while it!= self._thisptr.end(): oic = OvernightIndexedCoupon.__new__(OvernightIndexedCoupon) oic._thisptr = deref(it) yield oic preinc(it) def __repr__(self): """ Pretty print cash flow schedule. """ header = "Cash Flow Schedule:\n" values = ("{0!s} {1:f}".format(ic.date, ic.amount) for ic in self) return header + '\n'.join(values) <|end_of_text|> from kivy.uix.widget import Widget from kivy.properties import (StringProperty, ListProperty, NumericProperty, DictProperty, BooleanProperty, ObjectProperty) from kivy.clock import Clock from math import fabs from kivy.core.window import Window class Component(object): pass cdef class RotateComponent: cdef float _r def __cinit__(self, float r): self._r = r property r: def __get__(self): return self._r def __set__(self, float value): self._r = value cdef class ScaleComponent: cdef float _s def __cinit__(self, float s): self._s = s property s: def __get__(self): return self._s def __set__(self, float value): self._s = value cdef class PositionComponent: cdef float _x cdef float _y def __cinit__(self, float x, float y): self._x = x self._y = y property x: def __get__(self): return self._x def __set__(self, float value): self._x = value property y: def __get__(self): return self._y def __set__(self, float value): self._y = value cdef class ColorComponent: cdef float _r cdef float _g cdef float _b cdef float _a def __cinit__(self, float r, float g, float b, float a): self._r = r self._g = g self._b = b self._a = a property r: def __get__(self): return self._r def __set__(self, float value): self._r = value property g: def __get__(self): return self._g def __set__(self, float value): self._g = value property b: def __get__(self): return self._b def __set__(self, float value): self._b = value property a: def __get__(self): return self._a def __set__(self, float value): self._a = value class GameSystem(Widget): '''GameSystem is the part of your game that holds the logic to operate on the data of your Entity's components. They keep track of the entity_id of each entity that has a component for the system. The GameSystem is responsible for the creation and deletion of its corresponding components. **Attributes:** **system_id** (StringProperty): Name of this gamesystem, used to name entity component attribute, and refer to system. **updateable** (BooleanProperty): Boolean to let gameworld know whether or not to run an update tick on this gamesystem. Defaults to False **paused** (BooleanProperty): Boolean used to determine whether or not this system should be updated on the current tickif updateable is True **gameworld** (ObjectProperty): Reference to the gameworld object, usually bound in kv **viewport** (StringProperty): Name of the GameView this system will be rendered too. **update_time** (NumericProperty): The 'tick' rate of this system's update. Defaults to 1./60. or 60 FPS **entity_ids** (list): a list of entities that have an active component for this GameSystem ''' system_id = StringProperty('default_id') updateable = BooleanProperty(False) paused = BooleanProperty(False) gameworld = ObjectProperty(None) viewport = StringProperty('default_gameview') update_time = NumericProperty(1./60.) def __init__(self, **kwargs): cdef list entity_ids cdef float frame_time super(GameSystem, self).__init__(**kwargs) self.entity_ids = list() self.frame_time = 0.0 def update(self, dt): ''' Args: dt (float): time argument passed in by Clock. Should be equivalent to update_time. Override this function to create your gamesystems update logic typically looks like: .. code-block:: python gameworld = self.gameworld entities = gameworld.entities for entity_id in self.entity_ids: entity = entities[entity_id] #Do your system logic per entity here ''' pass def _update(self, dt): ''' This function is called internally in order to ensure that no time is lost, excess time that is not quite another update_time is added to frame_time and consumed next tick. ''' self.frame_time += dt update_time = self.update_time while self.frame_time >= update_time: self.update(update_time) self.frame_time -= update_time def generate_component(self, args): '''This function is called to generate a component. The default behavior is to take in a dict and turn all the keys, val pairs to attributes of an Entity object. Override this to create a custom component or take in a different args format. ''' new_component = Component() for each in args: setattr(new_component, each, args[each]) return new_component def create_component(self, object entity, args): setattr(entity, self.system_id, self.generate_component(args)) self.entity_ids.append(entity.entity_id) def remove_entity(self, int entity_id): ''' Args: entity_id (int): the entity_id for the entity being removed from the GameSystem Function used by GameWorld to remove an entity, you should ensure all data related to your component is cleaned up or recycled here''' self.entity_ids.remove(entity_id) def on_remove_system(self): '''Function called when a system is removed during a gameworld state change ''' pass def on_add_system(self): '''Function called when a system is added during a gameworld state change''' pass def on_delete_system(self): '''Function called when a system is deleted by gameworld''' pass class PositionSystem(GameSystem): '''PositionSystem is optimized to hold 2d location data for your entities. The rendering systems will be able to interact with this data using the underlying C structures rather than the Python objects.''' def generate_component(self, tuple pos): ''' Args: pos (tuple): (float x, float y) Position system takes in a tuple: (x, y) and creates a component with x, y properties (_x, _y to access from cython) ''' x = pos[0] y = pos[1] new_component = PositionComponent.__new__(PositionComponent, x, y) return new_component class ScaleSystem(GameSystem): '''ScaleSystem is optimized to hold a single scale float for your entities. The rendering systems will be able to interact with this data using the underlying C structures rather than the Python objects. This object will potentially change in the future to support scaling at different rates in different directions.''' def generate_component(self, float s): ''' Args: s (float): scaling factor for the Entity Scale system takes in a float: s and creates a component with s property (_s to access from cython)''' new_component = ScaleComponent.__new__(ScaleComponent, s) return new_component class RotateSystem(GameSystem): '''RotateSystem is optimized to hold a single rotate float for your entities. The CymunkPhysics System and Renderers expect this to be an angle in radians. The rendering systems will be able to interact with this data using the underlying C structures rather than the Python objects. This object will potentially change in the future to support rotating around arbitrary axes ''' def generate_component(self, float r): ''' Args: r (float): rotation in radians for the Entity Rotate system takes in a float: r and creates a component with r property (_r to access from cython)''' new_component = RotateComponent.__new__(RotateComponent, r) return new_component class ColorSystem(GameSystem): '''ColorSystem is optimized to hold rgba data for your entities. Renderers expect this data to be between 0.0 and 1.0 for each float.
Cython
The rendering systems will be able to interact with this data using the underlying C structures rather than the Python objects.''' def generate_component(self, tuple color): ''' Args: color (tuple): color for entity (r, g, b, a) in 0.0 to 1.0 Color system takes in a 4 tuple of floats 0.0 to 1.0 (r, g, b, a) and creates r, g, b, a properties (_r, _g, _b, _a to access from cython)''' r = color[0] g = color[1] b = color[2] a = color[3] new_component = ColorComponent.__new__(ColorComponent, r, g, b, a) return new_component class GameMap(GameSystem): '''GameMap is a basic implementation of a map size for your GameWorld that limits the scrolling of GameView typically a GameMap does not actually have any entities, it simply holds some data and logic for use by other GameSystems **Attributes:** **map_size** (ListProperty): Sets the size of this map, used to determine scrolling bounds. If the map size is smaller than the window it will be centered inside the window. **margins** (ListProperty): The amount of scrolling beyond the size of the map in x, y directions to be allowed. If the map is smaller than the window. This value is calculated automatically. **default_margins** (ListProperty): The amount of margin if the map is larger than the window, defaults to (0, 0) which means no scrolling beyond edge of GameMap. ''' system_id = StringProperty('default_map') map_size = ListProperty((2000., 2000.)) window_size = ListProperty((0., 0.)) margins = ListProperty((0., 0.)) map_color = ListProperty((1., 1., 1., 1.)) default_margins = ListProperty((0., 0.)) def on_map_size(self, instance, value): self.check_margins() def on_size(self, instance, value): self.check_margins() def check_margins(self): map_size = self.map_size window_size = Window.size window_larger_x = False window_larger_y = False if window_size[0] > map_size[0]: margin_x = (window_size[0] - map_size[0])/2. window_larger_x = True if window_size[1] > map_size[1]: margin_y = (window_size[1] - map_size[1])/2. window_larger_y = True if window_larger_x: self.margins[0] = margin_x if window_larger_y: self.margins[1] = margin_y if not window_larger_x and not window_larger_y: self.margins = self.default_margins def on_add_system(self): super(GameMap, self).on_add_system() if self.gameworld: self.gameworld.currentmap = self def on_remove_system(self): super(GameMap, self).on_remove_system() if self.gameworld.currentmap == self: self.gameworld.currentmap = None class GameView(GameSystem): '''GameView is another entity-less system. It is intended to work with other systems in order to provide camera functionally. **The implementation for GameView is very messy at the moment, expect changes in the future to clean up the API and add functionality** **Attributes:** **do_scroll_lock** (BooleanProperty): If True the scrolling will be locked to the bounds of the GameWorld's currentmap. **camera_pos** (ListProperty): Current position of the camera **focus_entity** (BooleanProperty): If True the camera will follow the entity set in entity_to_focus **do_scroll** (BooleanProperty): If True touches will scroll the camera **entity_to_focus** (NumericProperty): Entity entity_id for the camera to focus on if focus_entity is True. **camera_speed_multiplier** (NumericProperty): Time it will take camera to reach focused entity, Speed will be 1.0/camera_speed_multiplier seconds to close the distance ''' system_id = StringProperty('default_gameview') do_scroll_lock = BooleanProperty(True) camera_pos = ListProperty((0, 0)) focus_entity = BooleanProperty(False) do_scroll = BooleanProperty(True) entity_to_focus = NumericProperty(None, allownone=True) updateable = BooleanProperty(True) camera_speed_multiplier = NumericProperty(1.0) def on_entity_to_focus(self, instance, value): if value == None: self.focus_entity = False else: self.focus_entity = True def update(self, dt): cdef int entity_to_focus cdef float dist_x cdef float dist_y cdef object entity cdef float camera_speed_multiplier cdef PositionComponent position_data gameworld = self.gameworld if self.focus_entity: entity_to_focus = self.entity_to_focus entity = gameworld.entities[entity_to_focus] position_data = entity.position camera_pos = self.camera_pos camera_speed_multiplier = self.camera_speed_multiplier size = self.size dist_x = -camera_pos[0] - position_data._x + size[0]*.5 dist_y = -camera_pos[1] - position_data._y + size[1]*.5 if self.do_scroll_lock: dist_x, dist_y = self.lock_scroll(dist_x, dist_y) self.camera_pos[0] += dist_x*camera_speed_multiplier*dt self.camera_pos[1] += dist_y*camera_speed_multiplier*dt gameworld.update_render_state(self) def on_size(self, instance, value): if self.do_scroll_lock and self.gameworld.currentmap: dist_x, dist_y = self.lock_scroll(0, 0) self.camera_pos[0] += dist_x self.camera_pos[1] += dist_y self.gameworld.update_render_state(self) def on_touch_move(self, touch): if not self.focus_entity and self.do_scroll: dist_x = touch.dx dist_y = touch.dy if fabs(dist_x) + fabs(dist_y) > 2: if self.do_scroll_lock and self.gameworld.currentmap: dist_x, dist_y = self.lock_scroll(dist_x, dist_y) self.camera_pos[0] += dist_x self.camera_pos[1] += dist_y def lock_scroll(self, float distance_x, float distance_y): currentmap = self.gameworld.currentmap size = self.size pos = self.pos map_size = currentmap.map_size margins = currentmap.margins camera_pos = self.camera_pos cdef float x= pos[0] cdef float y = pos[1] cdef float w = size[0] cdef float h = size[1] cdef float mw = map_size[0] cdef float mh = map_size[1] cdef float marg_x = margins[0] cdef float marg_y = margins[1] cdef float cx = camera_pos[0] cdef float cy = camera_pos[1] if cx + distance_x > x + marg_x: distance_x = x - cx + marg_x elif cx + mw + distance_x <= x + w - marg_x: distance_x = x + w - marg_x - cx - mw if cy + distance_y > y + marg_y: distance_y = y - cy + marg_y elif cy + mh + distance_y <= y + h - marg_y: distance_y = y + h - cy - mh - marg_y return distance_x, distance_y <|end_of_text|> cdef extern from 'git2/repository.h': ctypedef struct git_repository int git_repository_open(git_repository** repo_out, const char* path) void git_repository_free(git_repository* repo) cdef extern from'memcached_backend_adapter.h': int attach_memcached_to_repo(git_repository* repo, const char *host, int port) int give_me_five() def say_hello(): print "Hello World!" cdef int hand = give_me_five() class _Backend: def __init__(self, str host: str, int port: int, str str_path: str) -> None: """ Create a backend object :param host: The memcached host to connect to :type host: str :param port: The port on the host where memcached is running :type port: int :param str_path: path to the refs for this git repo :type str_path: str """ # Convert python string to ctype const char* py_byte_string = str_path.encode('UTF-8') cdef const char* path = py_byte_string print "repo path is at " + str_path print "init NULL repo object" c
Cython
def git_repository *repository = NULL; print "open repo object at " + str_path cdef int err = git_repository_open(&repository, path) if err < 0: print "error free" git_repository_free(repository) raise Exception("could not open the repo error {}".format(err)) print "attach backend" cdef int backend_err = attach_memcached_to_repo(repository, "localhost", 5000) if backend_err < 0: print "error free" git_repository_free(repository) raise Exception("got {}".format(backend_err)) <|end_of_text|># -*- coding: utf-8 -*- """ Created on Wed Jan 13 17:06:15 2021 @author: angus """ import numpy as np cimport numpy as np from libc.math cimport exp from libc.stdlib cimport rand import matplotlib.pyplot as plt import time cdef extern from "limits.h": int RAND_MAX cdef create_cells(int x_size, int y_size): # Creates array of given size filled with random distribution of # either +1 or -1 cdef long int[:, :] cells = np.random.choice([-1, 1], size = (y_size, x_size)) return cells cdef create_image(long[:, :] cells): # Takes the final array and converts it to an image plt.imshow(cells, aspect = 'equal', origin = 'lower', cmap = 'binary') plt.savefig('2D.png') cdef energy_diff(long int[:, :] cells, double inverse_temp): # Iterates over all the cells in the array, carrying out the energy # calculation on each one cdef: int row, column int y_size = cells.shape[0] int x_size = cells.shape[1] double energy for row in range(y_size): for column in range(x_size): energy = 2 * cells[row][column] * (cells[(row - 1) % y_size][column] + cells[(row + 1) % y_size][column] + cells[row][(column - 1) % x_size] + cells[row][(column + 1) % x_size]) if energy < 0 or exp(-energy * inverse_temp) * RAND_MAX > rand(): cells[row][column] *= -1 return cells def main(int array_size, float inverse_temp, int iterations): # Does any calculations # This is the function imported in the run file cdef: int count = 0 double start_time = time.time() long[:, :] cells = create_cells(array_size, array_size) while count < iterations: cells = energy_diff(cells, inverse_temp) count += 1 print(time.time() - start_time) create_image(cells)<|end_of_text|>import errno import logging import socket import gevent from gevent.event import AsyncResult, Event from libc.stdint cimport uint32_t, uint8_t from loqui.exceptions import NoEncoderAvailable, ConnectionTerminated, LoquiDecoderError, StreamDefunct, \ NotClientException, NotServerException, LoquiErrorReceived from opcodes cimport Request, Response, Ping, Pong, Push, Hello, GoAway, HelloAck, Error from socket_watcher cimport SocketWatcher from stream_handler cimport LoquiStreamHandler cdef size_t OUTBUF_MAX = 65535 class CloseReasons(object): NORMAL = 0 PING_TIMEOUT = 1 UNKNOWN_ENCODER = 2 NO_MUTUAL_ENCODERS = 3 DIDNT_STOP_IN_TIME = 4 DECODER_ERROR = 5 cdef class LoquiSocketSession: def __cinit__(self, object sock, object encoders, bint is_client=True, object on_request=None, object on_push=None): self._is_client = is_client self._stream_handler = LoquiStreamHandler() self._sock = sock self._watcher = SocketWatcher(self._sock.fileno()) self._inflight_requests = {} self._available_encoders = encoders self._available_compressors = {} self._shutdown_event = Event() self._close_event = Event() self._ready_event = Event() self._ping_interval = 5 self._is_ready = False self._shutting_down = False if not self._is_client: self._on_request = on_request self._on_push = on_push gevent.spawn(self._ping_loop) gevent.spawn(self._run_loop) if is_client: self._send_hello() cpdef set_push_handler(self, object push_handler): self._on_push = None cdef _resume_sending(self): if self._sock is None: return if self._stream_handler.write_buffer_len() == 0: return self._watcher.switch_if_write_unblocked() cdef shutdown(self): if self._shutting_down: return self._shutting_down = True cdef void _cleanup_socket(self): sock = self._sock self._sock = None if sock: sock.close() # Request a switch so that the socket event loop will exit. if sock: self._watcher.request_switch() self._cleanup_inflight_requests(ConnectionTerminated()) # Unblock anything waiting on ready event. if not self._ready_event.is_set(): self._ready_event.set() # Unblock anything waiting on stop event. if not self._shutdown_event.is_set(): self._shutdown_event.set() # Unblock anything waiting on the close event. if not self._close_event.is_set(): self._close_event.set() cpdef close(self, uint8_t code=CloseReasons.NORMAL, bytes reason=None, block=False, block_timeout=None, close_timeout=None, bint via_remote_goaway=False): if not self._shutting_down: self._shutting_down = True # Unblock anything waiting on ready event. if not self._ready_event.is_set(): self._ready_event.set() # Unblock anything waiting on stop event. if not self._shutdown_event.is_set(): self._shutdown_event.set() # Send goaway to the remote node. if not via_remote_goaway and self._sock: self._stream_handler.send_goaway(0, code, reason) # Spawn a greenlet that will wait gevent.spawn(self._close_timeout) # If we are blocking, wait on close event to succeed. if block: self.join(block_timeout) cpdef _close_timeout(self): if self._close_event.wait(self._ping_interval): return self._cleanup_socket() cpdef join(self, timeout=None): self._close_event.wait(timeout=timeout) cpdef terminate(self): self._cleanup_socket() cdef _cleanup_inflight_requests(self, close_exception): requests = self._inflight_requests.values() self._inflight_requests.clear() for request in requests: if isinstance(request, AsyncResult): request.set_exception(close_exception) cdef bint await_ready(self) except 1: if not self._is_ready: self._ready_event.wait() cdef bint is_ready(self): return self._is_ready cdef _encode_data(self, object data): if not self._is_ready: self._ready_event.wait() if not self._encoder_dumps: raise NoEncoderAvailable() return 0, self._encoder_dumps(data) cdef _decode_data(self, uint8_t flags, object data): if not self._is_ready: self._ready_event.wait() if not self._encoder_loads: raise NoEncoderAvailable() return self._encoder_loads(data) cpdef object send_request(self, object data): if not self._is_client: raise NotClientException() if self.defunct(): raise StreamDefunct cdef bytes encoded_data cdef uint8_t flags flags, encoded_data = self._encode_data(data) result = AsyncResult() cdef uint32_t seq = self._stream_handler.send_request(flags, encoded_data) self._inflight_requests[seq] = result self._resume_sending() return result cpdef object send_push(self, object data): if self.defunct(): raise StreamDefunct() cdef bytes encoded_data cdef uint8_t flags flags, encoded_data = self._encode_data(data) self._stream_handler.send_push(flags, encoded_data) self._resume_sending() cpdef object send_response(self, uint32_t seq, object data): if self._is_client: raise NotServerException() if self.defunct(): return cdef bytes encoded_data cdef uint8_t flags request = self._inflight_requests.pop(seq, None) if request: flags, encoded_data = self._encode_data(data) self._stream_handler.send_response(flags, seq, encoded_data) self._resume_sending() else: logging.error('Sending response for unknown seq %s', seq) return None cpdef object send_ping(self): if self.defunct(): raise StreamDefunct() result = AsyncResult()
Cython
cdef uint32_t seq = self._stream_handler.send_ping(0) self._inflight_requests[seq] = result self._resume_sending() return result cpdef object _send_hello_ack(self, bytes selected_encoding, bytes selected_compressor): if self._is_client: raise NotServerException() if self.defunct(): raise StreamDefunct() self._stream_handler.send_hello_ack(0, int(self._ping_interval * 1000), selected_encoding, selected_compressor) cpdef object _send_hello(self): if not self._is_client: raise NotClientException() self._stream_handler.send_hello(0, list(self._available_encoders.keys()), list(self._available_compressors.keys())) cdef _handle_ping_timeout(self): self.close(code=CloseReasons.PING_TIMEOUT) cdef _handle_data_received(self, data): try: events = self._stream_handler.on_bytes_received(data) except LoquiDecoderError as e: print e return self.close(code=CloseReasons.DECODER_ERROR) if not events: return if self._is_client: self._handle_client_events(events) else: self._handle_server_events(events) self._resume_sending() cdef _handle_client_events(self, list events): for event in events: if isinstance(event, Response): self._handle_response(event) elif isinstance(event, Push): self._handle_push(event) elif isinstance(event, Ping): self._handle_ping(event) elif isinstance(event, Pong): self._handle_pong(event) elif isinstance(event, GoAway): self._handle_go_away(event) elif isinstance(event, HelloAck): self._handle_hello_ack(event) elif isinstance(event, Error): self._handle_error(event) cdef _handle_server_events(self, list events): for event in events: if isinstance(event, Request): self._handle_request(event) elif isinstance(event, Push): self._handle_push(event) elif isinstance(event, Ping): self._handle_ping(event) elif isinstance(event, Pong): self._handle_pong(event) elif isinstance(event, GoAway): self._handle_go_away(event) elif isinstance(event, Hello): self._handle_hello(event) cdef _handle_request(self, Request request): if self._on_request: # In this case, we set the inflight requests to the given request. That way send_response # will know if the seq is valid or not. request.data = self._decode_data(request.flags, request.data) self._inflight_requests[request.seq] = request response = self._on_request(request, self) # If a response is given, we can return it to the sender right away. # Otherwise, it's the responsibility of the `_on_request` handler to eventually # call `send_response`. if response is not None: self.send_response(request.seq, response) cdef _handle_response(self, Response response): request = self._inflight_requests.pop(response.seq, None) if request: try: # If we've gotten a response for a request we've made. request.set(self._decode_data(response.flags, response.data)) except Exception as e: request.set_exception(e) cdef _handle_push(self, Push push): if self._on_push: push.data = self._decode_data(push.flags, push.data) self._on_push(push, self) cdef _handle_ping(self, Ping ping): # Nothing to do here - the stream handler handles sending pongs back for us. pass cdef _handle_pong(self, Pong pong): ping_request = self._inflight_requests.pop(pong.seq, None) if ping_request: ping_request.set(pong) cdef _handle_hello(self, Hello hello): encoding, encoder = self._pick_best_encoding(hello.supported_encodings) if not encoding: self.close(reason=CloseReasons.NO_MUTUAL_ENCODERS) else: self._encoder_dumps = encoder.dumps self._encoder_loads = encoder.loads self._encoding = encoding self._send_hello_ack(encoding, None) self._is_ready = True self._ready_event.set() cdef _handle_hello_ack(self, HelloAck hello_ack): encoder = self._available_encoders.get(hello_ack.selected_encoding) if not encoder: self.close(code=CloseReasons.UNKNOWN_ENCODER, reason=b'Unknown encoding %s' % hello_ack.selected_encoding) else: self._ping_interval = int(hello_ack.ping_interval / 1000) self._encoder_dumps = encoder.dumps self._encoder_loads = encoder.loads self._encoding = hello_ack.selected_encoding self._is_ready = True self._ready_event.set() cdef _handle_go_away(self, GoAway go_away): print "Got goaway on seq", self._stream_handler.current_seq(), go_away.code self.close(via_remote_goaway=True, reason=go_away.reason, code=go_away.code) cdef _handle_error(self, Error error): request = self._inflight_requests.pop(error.seq, None) if request: request.set_exception(LoquiErrorReceived(error.code, error.data)) cdef _pick_best_encoding(self, list encodings): for encoding in encodings: encoder = self._available_encoders.get(encoding) if encoder: return encoding, encoder return None, None cpdef _ping_loop(self): while self._sock: ping_result = self.send_ping() if self._shutdown_event.wait(self._ping_interval): return if not ping_result.ready(): self._handle_ping_timeout() return cpdef _run_loop(self): loop = gevent.get_hub().loop io = loop.io cdef int MAXPRI = loop.MAXPRI cdef int READ = 1 cdef int WRITE = 2 cdef bint write_watcher_started = False cdef bint sock_should_write = False cdef bint did_empty_buffer = False cdef object sock_recv = self._sock.recv cdef object sock_send = self._sock.send cdef object watcher_mark_ready = (<object> self._watcher).mark_ready cdef size_t write_bytes_remaining sock_read_watcher = io(self._watcher.sock_fileno, READ) sock_write_watcher = io(self._watcher.sock_fileno, WRITE) try: sock_read_watcher.start(watcher_mark_ready, self._watcher.sock_fileno, True) while self._sock: if write_watcher_started == False and self._stream_handler.write_buffer_len() > 0: sock_write_watcher.start(watcher_mark_ready, self._watcher.sock_fileno, False) self._watcher.wait() if not self._sock: return if self._watcher.sock_read_ready: try: data = sock_recv(65536) except socket.error as e: if e.errno in (errno.EAGAIN, errno.EINPROGRESS): continue data = None if not data: self.close() self._cleanup_socket() return else: self._handle_data_received(data) # We should attempt to write, if the watcher has notified us that the socket is ready # to accept more data, or we aren't write blocked yet - and we have a write buffer. sock_should_write = self._watcher.sock_write_ready or ( not self._watcher.sock_write_blocked and self._stream_handler.write_buffer_len() > 0 ) if sock_should_write: try: bytes_written = sock_send(self._stream_handler.write_buffer_get_bytes(OUTBUF_MAX, False)) except socket.error as e: if e.errno in (errno.EAGAIN, errno.EINPROGRESS): bytes_written = 0 else: self.close() self._cleanup_socket() # No bytes have been written. It's safe to assume the socket is still (somehow) blocked # and we don't need to do anything. if not bytes_written: self._watcher.sock_write_blocked = True continue write_bytes_remaining = self._stream_handler.write_buffer_consume_bytes(bytes_written) # Did we completely write the buffer? If so - the socket isn't blocked anymore. self._watcher.sock_write_blocked = write_bytes_remaining > 0 # If no data is available to send - we can stop the watcher. Otherwise, # we will leave the watcher open, so the data filled into the buffer # will attempt to be written upon the next tick of the event loop. if write_bytes_remaining == 0: sock_write_watcher.stop() write_watcher_started = False # If we are shutting down, have an empty write buffer, and no more in-flight requests, # it's safe to terminate the socket. if self._shutting_down and self._stream_handler.write_buffer_len() == 0 and not self._inflight_requests: print 'cleaning up socket because we are drained' self._cleanup_socket() self._watcher.reset() finally: sock_read_watcher.stop()
Cython
sock_write_watcher.stop() cdef bint defunct(self): if self._sock is None: return True if self._shutting_down: return True return False<|end_of_text|>cdef float Nsr, clearSkySolarRadiation, averageT, surfaceEmissivity, cloudCoverFactor, Nolr Nsr = (1 - albedoCoefficient) * solarRadiation clearSkySolarRadiation = (0.75 + 2 * pow(10, -5) * elevation) * extraSolarRadiation averageT = (pow(maxTair + 273.16, 4) + pow(minTair + 273.16, 4)) / 2 surfaceEmissivity = (0.34 - 0.14 * sqrt(vaporPressure / 10)) cloudCoverFactor = (1.35 * (solarRadiation / clearSkySolarRadiation) - 0.35) Nolr = stefanBoltzman * averageT * surfaceEmissivity * cloudCoverFactor netRadiation= Nsr - Nolr netOutGoingLongWaveRadiation = Nolr <|end_of_text|>from _memray.records cimport Allocation from libcpp cimport bool cdef extern from "hooks.h" namespace "memray::hooks": cdef cppclass Allocator: pass bool isDeallocator(const Allocator& allocator) <|end_of_text|>from numpy.lib.histograms import _ravel_and_check_weights from scipy.special import expit as sigmoid import numpy as np import util import copy import json import math import array class RandomlyTrue: def __bool__(self): return util.flipCoin(0.5) instance = None cdef class Connection: cdef unsigned int in_node, out_node cdef float weight cdef int enabled cdef unsigned int innov_number def __init__(self, unsigned int in_node, unsigned int out_node, float weight, int enabled, unsigned int innov): self.in_node = in_node self.out_node = out_node self.weight = weight self.enabled = enabled self.innov_number = innov def to_json(self): return [self.in_node, self.out_node, self.weight, self.enabled, self.innov_number] def get_innov(self): return self.innov_number RandomlyTrue.instance = RandomlyTrue() def random_uniform0(double half_range): # return np.random.normal(0, half_range) return np.random.uniform(-half_range, half_range) class Genes: class Metaparameters: def __init__(self, c1=1, c2=1, c3=3, perturbation_chance=0.8, perturbation_stdev=0.1, reset_weight_chance=0.1, new_link_chance=0.3, bias_link_chance=0.01, new_link_weight_stdev=1, new_node_chance=0.03, disable_mutation_chance=0.1, enable_mutation_chance=0.25, allow_recurrent=True, mutate_loop=1): self.innovation_number = 0 def none_or(value, default_value): return default_value if value is None else value self.c1 = none_or(c1, 0.1) self.c2 = none_or(c2, 0.1) self.c3 = none_or(c3, 0.1) self.new_link_chance = none_or(new_link_chance, 0.1) self.bias_link_chance = none_or(bias_link_chance, 0.1) self.new_link_weight_stdev = none_or(new_link_weight_stdev, 1) self.new_node_chance = none_or(new_node_chance, 0.1) self.perturbation_chance = none_or(perturbation_chance, 0.1) self.reset_weight_chance = none_or(reset_weight_chance, 0.5) self.perturbation_stdev = none_or(perturbation_stdev, 0.1) self.disable_mutation_chance = none_or(disable_mutation_chance, 0.1) self.enable_mutation_chance = none_or(enable_mutation_chance, 0.1) self.allow_recurrent = none_or(allow_recurrent, True) self.mutate_loop = none_or(mutate_loop, 1) self._connections = {} self._node_splits = {} def _increment_innovation(self): self.innovation_number += 1 return self.innovation_number def reset_tracking(self): self._connections = {} self._node_splits = {} def register_connection(self, in_node, out_node): pair = (in_node, out_node) innovation_number = self._connections.get(pair, None) if innovation_number is None: innovation_number = self._increment_innovation() self._connections[pair] = innovation_number return innovation_number def register_node_split(self, in_node, out_node, between_node): tuple = (in_node, out_node, between_node) innovation_numbers = self._node_splits.get(tuple, None) if innovation_numbers is None: leading = self._increment_innovation() trailing = self._increment_innovation() innovation_numbers = (leading, trailing) self._node_splits[tuple] = innovation_numbers return innovation_numbers def load_from_json(as_json): ret = Genes.Metaparameters( c1=as_json.get("c1"), c2=as_json.get("c2"), c3=as_json.get("c3"), perturbation_chance=as_json.get("perturbation_chance"), perturbation_stdev=as_json.get("perturbation_stdev"), reset_weight_chance=as_json.get("reset_weight_chance"), new_link_chance=as_json.get("new_link_chance"), bias_link_chance=as_json.get("bias_link_chance"), new_link_weight_stdev=as_json.get("new_link_weight_stdev"), new_node_chance=as_json.get("new_node_chance"), disable_mutation_chance=as_json.get("disable_mutation_chance"), enable_mutation_chance=as_json.get("enable_mutation_chance"), allow_recurrent=as_json.get("allow_recurrent"), mutate_loop=as_json.get("mutate_loop") ) if "innovation_number" in as_json: ret.innovation_number = as_json["innovation_number"] return ret def load(in_stream, decoder=json): as_json = decoder.load(in_stream) return Genes.Metaparameters.load_from_json(as_json) def as_json(self): return { "innovation_number": self.innovation_number, "c1": self.c1, "c2": self.c2, "c3": self.c3, "new_link_chance": self.new_link_chance, "bias_link_chance": self.bias_link_chance, "new_link_weight_stdev": self.new_link_weight_stdev, "new_node_chance": self.new_node_chance, "perturbation_chance": self.perturbation_chance, "perturbation_stdev": self.perturbation_stdev, "reset_weight_chance": self.reset_weight_chance, "disable_mutation_chance": self.disable_mutation_chance, "enable_mutation_chance": self.enable_mutation_chance, "allow_recurrent": self.allow_recurrent, "mutate_loop": self.mutate_loop } def save(self, out_stream, encoder=json): out = self.as_json() out_stream.write(encoder.dumps(out)) out_stream.flush() BIAS_INDEX = 0 def __init__(self, num_sensors_or_copy, num_outputs=None, metaparameters=None): if isinstance(num_sensors_or_copy, Genes): to_copy = num_sensors_or_copy self._num_sensors = to_copy._num_sensors self._num_outputs = to_copy._num_outputs self._dynamic_nodes = copy.deepcopy(to_copy._dynamic_nodes) self._connections = copy.deepcopy(to_copy._connections) self._metaparameters = to_copy._metaparameters self._connections_sorted = to_copy._connections_sorted self.fitness = copy.deepcopy(to_copy.fitness) else: self._num_sensors = num_sensors_or_copy self._num_outputs = num_outputs self._dynamic_nodes = [] for _ in range(num_outputs): self._dynamic_nodes.append(array.array("I")) self._connections = [] self._metaparameters = metaparameters self._connections_sorted = True self.fitness = 0 def feed_sensor_values(self, values, neurons=None): """ Run the network with the given input through the given neurons (creates them if not given), returns neuron values """ if neurons is None: neurons = [0 for _ in range(self.total_nodes() + 1)] assert len(values) == self._num_sensors, "invalid number of inputs" neurons[0] = 1.0 # BIAS node for i in range(self._num_sensors): neurons[i + 1] = values[i] def feed(unsigned long long node_index): node = self._dynamic_nodes[node_index] neuron_index = node_index + self._num_sensors + 1 has_connections = False cdef double sum = 0
Cython
cdef Connection connection = None for connection_index in node: connection = <Connection>self._connections[connection_index] # assert out_node = neuron_index if connection.enabled: has_connections = True sum += neurons[connection.in_node] * connection.weight if has_connections: neurons[neuron_index] = math.tanh(sum) cdef unsigned long long num_outputs = self._num_outputs cdef unsigned long long total_dynamic = len(self._dynamic_nodes) for hidden_node_index in range(num_outputs, total_dynamic): feed(hidden_node_index) for output_node_index in range(num_outputs): feed(output_node_index) return neurons def extract_output_values(self, neuron_values): """ Extracts the output values from the result of feed_sensor_values """ return neuron_values[self._num_sensors + 1:self._num_sensors + self._num_outputs + 1] def _node_by_index(self, index): return self._dynamic_nodes[index - self._num_sensors - 1] def total_nodes(self): return 1 + self._num_sensors + len(self._dynamic_nodes) def input_node_index(self, input_index): return 1 + input_index def output_node_index(self, index): return 1 + self._num_sensors + index def _is_hidden_node_index(self, index): return index >= 1 + self._num_sensors + self._num_outputs def _is_output_node_index(self, index): return index > self._num_sensors and index < 1 + self._num_sensors + self._num_outputs def add_connection(self, input_index, output_index): if not self._metaparameters.allow_recurrent: def swap(): return output_index, input_index if input_index == output_index: return if self._is_output_node_index(input_index): if output_index < input_index or self._is_hidden_node_index(output_index): input_index, output_index = swap() elif self._is_hidden_node_index(output_index) and output_index < input_index: # both hidden and output is earlier input_index, output_index = swap() incoming = self._node_by_index(output_index) cdef Connection connection for connection_index in incoming: connection = <Connection>self._connections[connection_index] if connection.in_node == input_index: return self innovation_number = self._metaparameters.register_connection(input_index, output_index) connection = Connection(input_index, output_index, random_uniform0(self._metaparameters.new_link_weight_stdev), True, innovation_number) incoming.append(len(self._connections)) cdef Connection last_connection if len(self._connections) > 0: last_connection = <Connection>self._connections[-1] if innovation_number < last_connection.innov_number: self._connections_sorted = False self._connections.append(connection) return self def _add_connection(self): total_nodes = self.total_nodes() input_index = 0 if util.flipCoin(self._metaparameters.bias_link_chance) else util.random.randint(0, total_nodes - 1) output_index = util.random.randint(self._num_sensors + 1, total_nodes - 1) self.add_connection(input_index, output_index) def _add_node(self): if len(self._connections) == 0: return cdef Connection connection if self._metaparameters.allow_recurrent: connection = <Connection>util.random.choice(self._connections) else: choices = [] for i in range(self._num_outputs): choices.extend(self._dynamic_nodes[i]) connection = <Connection>self._connections[util.random.choice(choices)] connection.enabled = False new_node = array.array("I") self._dynamic_nodes.append(new_node) leading_innov, trailing_innov = self._metaparameters.register_node_split(connection.in_node, connection.out_node, self.total_nodes() - 1) leading = Connection(connection.in_node, self.total_nodes() - 1, 1, True, leading_innov) trailing = Connection(self.total_nodes() - 1, connection.out_node, connection.weight, True, trailing_innov) cdef Connection last_connection if len(self._connections) > 0: last_connection = <Connection>(self._connections[-1]) if leading_innov < last_connection.innov_number: self._connections_sorted = False self._connections.append(leading) self._connections.append(trailing) new_node.append(len(self._connections) - 2) self._node_by_index(connection.out_node).append(len(self._connections) - 1) def perturb(self): cdef double reset_chance = self._metaparameters.reset_weight_chance cdef double new_link_weight_stdev = self._metaparameters.new_link_weight_stdev cdef double perturbation_stdev = self._metaparameters.perturbation_stdev cdef Connection connection for _connection in self._connections: connection = <Connection>_connection if util.flipCoin(reset_chance): connection.weight = random_uniform0(new_link_weight_stdev) else: connection.weight += random_uniform0(perturbation_stdev) return self def _enable_mutation(self, enable): if len(self._connections) == 0: return cdef Connection connection = <Connection>util.random.choice(self._connections) connection.enabled = enable def mutate(self): """ Mutate the genes in this genome, returns self """ for _ in range(self._metaparameters.mutate_loop): if util.flipCoin(self._metaparameters.new_link_chance): self._add_connection() if util.flipCoin(self._metaparameters.new_node_chance): self._add_node() if util.flipCoin(self._metaparameters.perturbation_chance): self.perturb() # if util.flipCoin(self._metaparameters.disable_mutation_chance): # self._enable_mutation(False) # if util.flipCoin(self._metaparameters.enable_mutation_chance): # self._enable_mutation(True) return self def _sorted_connections(self): if self._connections_sorted: return self._connections return sorted(self._connections, key=Connection.get_innov) def breed(self, other, self_more_fit=RandomlyTrue.instance): """ Creates a child from the result of breeding self and other genes, returns new child """ ret = Genes(self._num_sensors, self._num_outputs, self._metaparameters) sconnections = self._sorted_connections() oconnections = other._sorted_connections() slen = len(sconnections) olen = len(oconnections) i = 0 j = 0 def turn_on_maybe(Connection connection): if not connection.enabled and util.flipCoin(self._metaparameters.enable_mutation_chance): connection.enabled = True cdef Connection sc = None cdef Connection so = None while i < slen and j < olen: sc = <Connection>sconnections[i] so = <Connection>oconnections[j] sci = sc.innov_number soi = so.innov_number if sci == soi: ret._connections.append(copy.copy(sc if util.flipCoin(0.5) else so)) turn_on_maybe(ret._connections[-1]) i += 1 j += 1 elif sci < soi: i += 1 if self_more_fit: ret._connections.append(copy.copy(sc)) turn_on_maybe(ret._connections[-1]) else: j += 1 if not self_more_fit: ret._connections.append(copy.copy(so)) turn_on_maybe(ret._connections[-1]) while i < slen: if self_more_fit: ret._connections.append(copy.copy(sconnections[i])) turn_on_maybe(ret._connections[-1]) i += 1 while j < olen: if not self_more_fit: ret._connections.append(copy.copy(oconnections[j])) turn_on_maybe(ret._connections[-1]) j += 1 max_node = 0 cdef Connection connection for _connection in ret._connections: connection = <Connection>_connection max_node = max(max_node, connection.in_node, connection.out_node) i = ret.total_nodes() while i <= max_node: ret._dynamic_nodes.append(array.array("I")) i += 1 for index, _connection in enumerate(ret._connections): connection = <Connection>_connection ret._node_by_index(connection.out_node).append(index) return ret def distance(self, other): assert self._metaparameters is other._metaparameters c1 = self._metaparameters.c1 c2 = self._metaparameters.c2 c3 = self._metaparameters.c3 sconnections = self._sorted_connections() oconnections = other._sorted_connections() slen = len(sconnections) olen = len(oconnections) n = max(olen, slen) if n == 0: return 0 disjoint = 0 weight_difference = 0 shared
Cython
= 0 i = 0 j = 0 cdef Connection sc, so while i < slen and j < olen: sc = <Connection>sconnections[i] so = <Connection>oconnections[j] sci = sc.innov_number soi = so.innov_number if sci == soi: weight_difference += abs(sc.weight - so.weight) shared += 1 i += 1 j += 1 else: disjoint += 1 if sci < soi: i += 1 else: j += 1 excess = olen - j + slen - i return (c1 * excess / n) + (c2 * disjoint / n) + (0 if shared == 0 else c3 * weight_difference / shared) def clone(self): return Genes(self) def as_json(self): """ returns self as a dict """ return {"nodeCount": self.total_nodes(), "inputCount": self._num_sensors, "outputCount": self._num_outputs, "connections": [(<Connection>c).to_json() for c in self._connections], "fitness": self.fitness} def save(self, out_stream, encoder=json): """ save to the stream using the given encoder, encoder must define dumps function that takes in a JSON-like object""" as_json = self.as_json() out_stream.write(encoder.dumps(as_json)) out_stream.flush() def load_from_json(json_object, metaparameters): """ loads from a dict-like object """ ret = Genes(json_object["inputCount"], json_object["outputCount"], metaparameters) to_add = json_object["nodeCount"] - ret.total_nodes() for _ in range(to_add): ret._dynamic_nodes.append([]) connections = [Connection(c[0], c[1], c[2], c[3], c[4]) for c in json_object["connections"]] count = 0 ret._connections = connections connections.sort(key=Connection.get_innov) cdef Connection connection for _connection in connections: connection = <Connection>_connection ret._node_by_index(connection.out_node).append(count) count += 1 ret.fitness = json_object.get("fitness", 0) return ret def load(in_stream, metaparameters, decoder=json): """ load from stream using given decoder, decoder must define load function that takes in a stream and returns a dict-like object""" as_json = decoder.load(in_stream) return Genes.load_from_json(as_json, metaparameters) def setFitness(self, fitness): self.fitness = fitness def getFitness(self): return self.fitness <|end_of_text|>from Types cimport * from Param cimport * from TransformationModel cimport * from String cimport * from StringList cimport * from TransformationModel cimport TM_DataPoint cdef extern from "<OpenMS/ANALYSIS/MAPMATCHING/TransformationDescription.h>" namespace "OpenMS::TransformationDescription": cdef cppclass TransformationStatistics "OpenMS::TransformationDescription::TransformationStatistics": TransformationStatistics() nogil except + TransformationStatistics(TransformationStatistics &) nogil except + # libcpp_vector[ size_t ] percents # const double xmin double xmax double ymin double ymax libcpp_map[size_t, double ] percentiles_before libcpp_map[size_t, double ] percentiles_after cdef extern from "<OpenMS/ANALYSIS/MAPMATCHING/TransformationDescription.h>" namespace "OpenMS": cdef cppclass TransformationDescription: TransformationDescription() nogil except + TransformationDescription(TransformationDescription &) nogil except + libcpp_vector[TM_DataPoint] getDataPoints() nogil except + # wrap-doc:Returns the data points void setDataPoints(libcpp_vector[TM_DataPoint]& data) nogil except + # wrap-doc:Sets the data points. Removes the model that was previously fitted to the data (if any) void setDataPoints(libcpp_vector[libcpp_pair[double,double]]& data) nogil except + # wrap-doc:Sets the data points (backwards-compatible overload). Removes the model that was previously fitted to the data (if any) double apply(double) nogil except + # wrap-doc:Applies the transformation to `value` void fitModel(String model_type, Param params) nogil except + # wrap-doc:Fits a model to the data void fitModel(String model_type) nogil except + # wrap-doc:Fits a model to the data String getModelType() nogil except + # wrap-doc:Gets the type of the fitted model Param getModelParameters() nogil except + # wrap-doc:Returns the model parameters void invert() nogil except + # wrap-doc:Computes an (approximate) inverse of the transformation void getDeviations(libcpp_vector[double]& diffs, bool do_apply, bool do_sort) nogil except + # wrap-doc: # Get the deviations between the data pairs # ----- # :param diffs: Output # :param do_apply: Get deviations after applying the model? # :param do_sort: Sort `diffs` before returning? TransformationStatistics getStatistics() nogil except + # NAMESPACE # void printSummary(std::ostream & os) nogil except + cdef extern from "<OpenMS/ANALYSIS/MAPMATCHING/TransformationDescription.h>" namespace "OpenMS::TransformationDescription": void getModelTypes(StringList result) nogil except + # wrap-attach:TransformationDescription <|end_of_text|>cimport cspdylay from libc.stdlib cimport malloc, free from libc.string cimport memcpy, memset from libc.stdint cimport uint8_t, uint16_t, uint32_t, int32_t # Also update version in setup.py __version__ = '0.1.2' class EOFError(Exception): pass class CallbackFailureError(Exception): pass class TemporalCallbackFailureError(Exception): pass class InvalidArgumentError(Exception): pass class ZlibError(Exception): pass class UnsupportedVersionError(Exception): pass class StreamClosedError(Exception): pass class DataProvider: def __init__(self, source, read_cb): self.source = source self.read_cb = read_cb cdef class CtrlFrame: cdef uint16_t version cdef uint16_t frame_type cdef uint8_t flags cdef int32_t length cdef void fillhd(self, cspdylay.spdylay_ctrl_hd *hd): self.version = hd.version self.frame_type = hd.type self.flags = hd.flags self.length = hd.length property version: def __get__(self): return self.version property frame_type: def __get__(self): return self.frame_type property flags: def __get__(self): return self.flags property length: def __get__(self): return self.length cdef class SynStreamFrame(CtrlFrame): cdef int32_t stream_id cdef int32_t assoc_stream_id cdef uint8_t pri cdef uint8_t slot cdef object nv cdef fill(self, cspdylay.spdylay_syn_stream *frame): self.fillhd(&frame.hd) self.stream_id = frame.stream_id self.assoc_stream_id = frame.assoc_stream_id self.pri = frame.pri self.slot = frame.slot self.nv = cnv2pynv(frame.nv) property stream_id: def __get__(self): return self.stream_id property assoc_stream_id: def __get__(self): return self.assoc_stream_id property pri: def __get__(self): return self.pri property nv: def __get__(self): return self.nv cdef class SynReplyFrame(CtrlFrame): cdef int32_t stream_id cdef object nv cdef fill(self, cspdylay.spdylay_syn_reply *frame): self.fillhd(&frame.hd) self.stream_id = frame.stream_id self.nv = cnv2pynv(frame.nv) property stream_id: def __get__(self): return self.stream_id property nv: def __get__(self): return self.nv cdef class HeadersFrame(CtrlFrame): cdef int32_t stream_id cdef object nv cdef fill(self, cspdylay.spdylay_headers *frame): self.fillhd(&frame.hd) self.stream_id = frame.stream_id self.nv = cnv2pynv(frame.nv) property stream_id: def __get__(self): return self.stream_id property nv: def __get__(self): return self.nv cdef class RstStreamFrame(CtrlFrame): cdef int32_t stream_id cdef uint32_t status_code cdef fill(self, cspdylay.spdylay_rst_stream *frame): self.fillhd(&frame.hd) self.stream_id = frame.stream_id self.status_code = frame.status_code property stream_id:
Cython
def __get__(self): return self.stream_id property status_code: def __get__(self): return self.status_code cdef class SettingsFrame(CtrlFrame): cdef object iv cdef fill(self, cspdylay.spdylay_settings *frame): self.fillhd(&frame.hd) self.iv = csettings2pysettings(frame.niv, frame.iv) property iv: def __get__(self): return self.iv cdef class PingFrame(CtrlFrame): cdef uint32_t unique_id cdef fill(self, cspdylay.spdylay_ping *frame): self.fillhd(&frame.hd) self.unique_id = frame.unique_id property unique_id: def __get__(self): return self.unique_id cdef class GoawayFrame(CtrlFrame): cdef int32_t last_good_stream_id cdef uint32_t status_code cdef fill(self, cspdylay.spdylay_goaway *frame): self.fillhd(&frame.hd) self.last_good_stream_id = frame.last_good_stream_id self.status_code = frame.status_code property last_good_stream_id: def __get__(self): return self.last_good_stream_id property status_code: def __get__(self): return self.status_code cdef class WindowUpdateFrame(CtrlFrame): cdef int32_t stream_id cdef int32_t delta_window_size cdef fill(self, cspdylay.spdylay_window_update *frame): self.fillhd(&frame.hd) self.stream_id = frame.stream_id self.delta_window_size = frame.delta_window_size property stream_id: def __get__(self): return self.stream_id property delta_window_size: def __get__(self): return self.delta_window_size cdef cnv2pynv(char **nv): ''' Convert C-style name/value pairs ``nv`` to Python style pairs. We assume that strings in nv is UTF-8 encoded as per SPDY spec. In Python pairs, we use unicode string.''' cdef size_t i pynv = [] i = 0 while nv[i]!= NULL: pynv.append((nv[i].decode('UTF-8'), nv[i+1].decode('UTF-8'))) i += 2 return pynv cdef char** pynv2cnv(object nv) except *: ''' Convert Python style UTF-8 name/value pairs ``nv`` to C-style pairs. Python style name/value pairs are list of tuple (key, value).''' cdef char **cnv = <char**>malloc((len(nv)*2+1)*sizeof(char*)) cdef size_t i if cnv == NULL: raise MemoryError() i = 0 for n, v in nv: cnv[i] = n i += 1 cnv[i] = v i += 1 cnv[i] = NULL return cnv cdef pynv_encode(nv): res = [] for k, v in nv: res.append((k.encode('UTF-8'), v.encode('UTF-8'))) return res cdef object csettings2pysettings(size_t niv, cspdylay.spdylay_settings_entry *iv): cdef size_t i = 0 cdef cspdylay.spdylay_settings_entry *ent res = [] while i < niv: ent = &iv[i] res.append((ent.settings_id, ent.flags, ent.value)) i += 1 return res cdef cspdylay.spdylay_settings_entry* pysettings2csettings(object iv) except *: cdef size_t i cdef cspdylay.spdylay_settings_entry *civ =\ <cspdylay.spdylay_settings_entry*>malloc(\ len(iv)*sizeof(cspdylay.spdylay_settings_entry)) if civ == NULL: raise MemoryError() i = 0 for settings_id, flags, value in iv: civ[i].settings_id = settings_id civ[i].flags = flags civ[i].value = value i += 1 return civ cdef cspdylay.spdylay_data_provider create_c_data_prd\ (cspdylay.spdylay_data_provider *cdata_prd, object pydata_prd): cdata_prd.source.ptr = <void*>pydata_prd cdata_prd.read_callback = read_callback cdef object cframe2pyframe(cspdylay.spdylay_frame_type frame_type, cspdylay.spdylay_frame *frame): cdef SynStreamFrame syn_stream cdef SynReplyFrame syn_reply cdef HeadersFrame headers cdef RstStreamFrame rst_stream cdef SettingsFrame settings cdef PingFrame ping cdef GoawayFrame goaway cdef WindowUpdateFrame window_update cdef object pyframe = None if frame_type == cspdylay.SPDYLAY_SYN_STREAM: syn_stream = SynStreamFrame() syn_stream.fill(&frame.syn_stream) pyframe = syn_stream elif frame_type == cspdylay.SPDYLAY_SYN_REPLY: syn_reply = SynReplyFrame() syn_reply.fill(&frame.syn_reply) pyframe = syn_reply elif frame_type == cspdylay.SPDYLAY_HEADERS: headers = HeadersFrame() headers.fill(&frame.headers) pyframe = headers elif frame_type == cspdylay.SPDYLAY_RST_STREAM: rst_stream = RstStreamFrame() rst_stream.fill(&frame.rst_stream) pyframe = rst_stream elif frame_type == cspdylay.SPDYLAY_SETTINGS: settings = SettingsFrame() settings.fill(&frame.settings) pyframe = settings elif frame_type == cspdylay.SPDYLAY_PING: ping = PingFrame() ping.fill(&frame.ping) pyframe = ping elif frame_type == cspdylay.SPDYLAY_GOAWAY: goaway = GoawayFrame() goaway.fill(&frame.goaway) pyframe = goaway elif frame_type == cspdylay.SPDYLAY_WINDOW_UPDATE: window_update = WindowUpdateFrame() window_update.fill(&frame.window_update) pyframe = window_update return pyframe cdef void _call_frame_callback(Session pysession, cspdylay.spdylay_frame_type frame_type, cspdylay.spdylay_frame *frame, object callback): if not callback: return try: pyframe = cframe2pyframe(frame_type, frame) if pyframe: callback(pysession, pyframe) except Exception as e: pysession.error = e except BaseException as e: pysession.base_error = e cdef void on_ctrl_recv_callback(cspdylay.spdylay_session *session, cspdylay.spdylay_frame_type frame_type, cspdylay.spdylay_frame *frame, void *user_data): cdef Session pysession = <Session>user_data _call_frame_callback(pysession, frame_type, frame, pysession.on_ctrl_recv_cb) cdef void on_invalid_ctrl_recv_callback(cspdylay.spdylay_session *session, cspdylay.spdylay_frame_type frame_type, cspdylay.spdylay_frame *frame, uint32_t status_code, void *user_data): cdef Session pysession = <Session>user_data if not pysession.on_invalid_ctrl_recv_cb: return try: pyframe = cframe2pyframe(frame_type, frame) if pyframe: pysession.on_invalid_ctrl_recv_cb(pysession, pyframe, status_code) except Exception as e: pysession.error = e except BaseException as e: pysession.base_error = e cdef void before_ctrl_send_callback(cspdylay.spdylay_session *session, cspdylay.spdylay_frame_type frame_type, cspdylay.spdylay_frame *frame, void *user_data): cdef Session pysession = <Session>user_data _call_frame_callback(pysession, frame_type, frame, pysession.before_ctrl_send_cb) cdef void on_ctrl_send_callback(cspdylay.spdylay_session *session, cspdylay.spdylay_frame_type frame_type, cspdylay.spdylay_frame *frame, void *user_data): cdef Session pysession = <Session>user_data _call_frame_callback(pysession, frame_type, frame, pysession.on_ctrl_send_cb) cdef void on_ctrl_not_send_callback(cspdylay.spdylay_session *session, cspdylay.spdylay_frame_type frame_type, cspdylay.spdylay_frame *frame, int error_code, void *user_data): cdef Session pysession = <Session>
Cython
user_data if not pysession.on_ctrl_not_send_cb: return try: pyframe = cframe2pyframe(frame_type, frame) if pyframe: pysession.on_ctrl_not_send_cb(pysession, pyframe, error_code) except Exception as e: pysession.error = e except BaseException as e: pysession.base_error = e cdef void on_ctrl_recv_parse_error_callback(\ cspdylay.spdylay_session *session, cspdylay.spdylay_frame_type frame_type, uint8_t *head, size_t headlen, uint8_t *payload, size_t payloadlen, int error_code, void *user_data): cdef Session pysession = <Session>user_data if not pysession.on_ctrl_recv_parse_error_cb: return try: pysession.on_ctrl_recv_parse_error_cb(pysession, frame_type, (<char*>head)[:headlen], (<char*>payload)[:payloadlen], error_code) except Exception as e: pysession.error = e except BaseException as e: pysession.base_error = e cdef void on_unknown_ctrl_recv_callback(cspdylay.spdylay_session *session, uint8_t *head, size_t headlen, uint8_t *payload, size_t payloadlen, void *user_data): cdef Session pysession = <Session>user_data if not pysession.on_unknown_ctrl_recv_cb: return try: pysession.on_unknown_ctrl_recv_cb(pysession, (<char*>head)[:headlen], (<char*>payload)[:payloadlen]) except Exception as e: pysession.error = e except BaseException as e: pysession.base_error = e cdef ssize_t recv_callback(cspdylay.spdylay_session *session, uint8_t *buf, size_t length, int flags, void *user_data): cdef Session pysession = <Session>user_data if pysession.recv_callback: try: data = pysession.recv_callback(pysession, length) except EOFError as e: pysession.error = e return cspdylay.SPDYLAY_ERR_EOF except CallbackFailureError as e: pysession.error = e return cspdylay.SPDYLAY_ERR_CALLBACK_FAILURE except Exception as e: pysession.error = e return cspdylay.SPDYLAY_ERR_CALLBACK_FAILURE except BaseException as e: pysession.base_error = e return cspdylay.SPDYLAY_ERR_CALLBACK_FAILURE if data: if len(data) > length: return cspdylay.SPDYLAY_ERR_CALLBACK_FAILURE memcpy(buf, <char*>data, len(data)) return len(data) else: return cspdylay.SPDYLAY_ERR_WOULDBLOCK else: return cspdylay.SPDYLAY_ERR_CALLBACK_FAILURE cdef ssize_t send_callback(cspdylay.spdylay_session *session, uint8_t *data, size_t length, int flags, void *user_data): cdef Session pysession = <Session>user_data if pysession.send_callback: try: rv = pysession.send_callback(pysession, (<char*>data)[:length]) except CallbackFailureError as e: pysession.error = e return cspdylay.SPDYLAY_ERR_CALLBACK_FAILURE except Exception as e: pysession.error = e return cspdylay.SPDYLAY_ERR_CALLBACK_FAILURE except BaseException as e: pysession.base_error = e return cspdylay.SPDYLAY_ERR_CALLBACK_FAILURE if rv: return rv else: return cspdylay.SPDYLAY_ERR_WOULDBLOCK else: # If no send_callback is given, pretend all data were sent and # just return length return length cdef void on_data_chunk_recv_callback(cspdylay.spdylay_session *session, uint8_t flags, int32_t stream_id, uint8_t *data, size_t length, void *user_data): cdef Session pysession = <Session>user_data if pysession.on_data_chunk_recv_cb: try: pysession.on_data_chunk_recv_cb(pysession, flags, stream_id, (<char*>data)[:length]) except Exception as e: pysession.error = e except BaseException as e: pysession.base_error = e cdef void on_data_recv_callback(cspdylay.spdylay_session *session, uint8_t flags, int32_t stream_id, int32_t length, void *user_data): cdef Session pysession = <Session>user_data if pysession.on_data_recv_cb: try: pysession.on_data_recv_cb(pysession, flags, stream_id, length) except Exception as e: pysession.error = e except BaseException as e: pysession.base_error = e cdef void on_data_send_callback(cspdylay.spdylay_session *session, uint8_t flags, int32_t stream_id, int32_t length, void *user_data): cdef Session pysession = <Session>user_data if pysession.on_data_send_cb: try: pysession.on_data_send_cb(pysession, flags, stream_id, length) except Exception as e: pysession.error = e except BaseException as e: pysession.base_error = e cdef void on_stream_close_callback(cspdylay.spdylay_session *session, int32_t stream_id, cspdylay.spdylay_status_code status_code, void *user_data): cdef Session pysession = <Session>user_data if pysession.on_stream_close_cb: try: pysession.on_stream_close_cb(pysession, stream_id, status_code) except Exception as e: pysession.error = e except BaseException as e: pysession.base_error = e cdef void on_request_recv_callback(cspdylay.spdylay_session *session, int32_t stream_id, void *user_data): cdef Session pysession = <Session>user_data if pysession.on_request_recv_cb: try: pysession.on_request_recv_cb(pysession, stream_id) except Exception as e: pysession.error = e except BaseException as e: pysession.base_error = e cdef class ReadCtrl: cdef int flags def __cinit__(self): self.flags = 0 property flags: def __set__(self, value): self.flags = value cdef ssize_t read_callback(cspdylay.spdylay_session *session, int32_t stream_id, uint8_t *buf, size_t length, int *eof, cspdylay.spdylay_data_source *source, void *user_data): cdef Session pysession = <Session>user_data cdef ReadCtrl read_ctrl = ReadCtrl() data_prd = <object>source.ptr try: res = data_prd.read_cb(pysession, stream_id, length, read_ctrl, data_prd.source) except TemporalCallbackFailureError as e: return cspdylay.SPDYLAY_ERR_TEMPORAL_CALLBACK_FAILURE except CallbackFailureError as e: pysession.error = e return cspdylay.SPDYLAY_ERR_CALLBACK_FAILURE except Exception as e: pysession.error = e return cspdylay.SPDYLAY_ERR_CALLBACK_FAILURE except BaseException as e: pysession.base_error = e return cspdylay.SPDYLAY_ERR_CALLBACK_FAILURE if read_ctrl.flags & READ_EOF: eof[0] = 1 if res == cspdylay.SPDYLAY_ERR_DEFERRED: return res elif res: if len(res) > length: return cspdylay.SPDYLAY_ERR_CALLBACK_FAILURE memcpy(buf, <char*>res, len(res)) return len(res) else: return 0 cdef class Session: cdef cspdylay.spdylay_session *_c_session cdef object recv_callback cdef object send_callback cdef object on_ctrl_recv_cb cdef object on_invalid_ctrl_recv_cb cdef object on_data_chunk_recv_cb cdef object on_data_recv_cb cdef object before_ctrl_send_cb cdef object on_ctrl_send_cb cdef object on_ctrl_not_send_cb cdef object on_data_send_cb cdef object on_stream_close_cb cdef object on_request_recv_cb cdef object on_ctrl_recv_parse_error_cb cdef object on_unknown_ctrl_recv_cb cdef object user_data cdef object error cdef object base_error property user_data: def __get__(self): return self.user_data def __cinit__(self, side, version, config=None, send_cb=None, recv_cb=None, on_ctrl_recv_cb=None, on_invalid_ctrl_recv_cb=None, on_data
Cython
_chunk_recv_cb=None, on_data_recv_cb=None, before_ctrl_send_cb=None, on_ctrl_send_cb=None, on_ctrl_not_send_cb=None, on_data_send_cb=None, on_stream_close_cb=None, on_request_recv_cb=None, on_ctrl_recv_parse_error_cb=None, on_unknown_ctrl_recv_cb=None, user_data=None): cdef cspdylay.spdylay_session_callbacks c_session_callbacks cdef int rv self._c_session = NULL memset(&c_session_callbacks, 0, sizeof(c_session_callbacks)) c_session_callbacks.recv_callback = \ <cspdylay.spdylay_recv_callback>recv_callback c_session_callbacks.send_callback = \ <cspdylay.spdylay_send_callback>send_callback c_session_callbacks.on_ctrl_recv_callback = \ <cspdylay.spdylay_on_ctrl_recv_callback>on_ctrl_recv_callback c_session_callbacks.on_invalid_ctrl_recv_callback = \ <cspdylay.spdylay_on_invalid_ctrl_recv_callback>\ on_invalid_ctrl_recv_callback c_session_callbacks.on_data_chunk_recv_callback = \ <cspdylay.spdylay_on_data_chunk_recv_callback>\ on_data_chunk_recv_callback c_session_callbacks.on_data_recv_callback = \ <cspdylay.spdylay_on_data_recv_callback>on_data_recv_callback c_session_callbacks.before_ctrl_send_callback = \ <cspdylay.spdylay_before_ctrl_send_callback>\ before_ctrl_send_callback c_session_callbacks.on_ctrl_send_callback = \ <cspdylay.spdylay_on_ctrl_send_callback>on_ctrl_send_callback c_session_callbacks.on_ctrl_not_send_callback = \ <cspdylay.spdylay_on_ctrl_not_send_callback>\ on_ctrl_not_send_callback c_session_callbacks.on_data_send_callback = \ <cspdylay.spdylay_on_data_send_callback>on_data_send_callback c_session_callbacks.on_stream_close_callback = \ <cspdylay.spdylay_on_stream_close_callback>on_stream_close_callback c_session_callbacks.on_request_recv_callback = \ <cspdylay.spdylay_on_request_recv_callback>on_request_recv_callback # c_session_callbacks.get_credential_proof = NULL # c_session_callbacks.get_credential_ncerts = NULL # c_session_callbacks.get_credential_cert = NULL c_session_callbacks.on_ctrl_recv_parse_error_callback = \ <cspdylay.spdylay_on_ctrl_recv_parse_error_callback>\ on_ctrl_recv_parse_error_callback c_session_callbacks.on_unknown_ctrl_recv_callback = \ <cspdylay.spdylay_on_unknown_ctrl_recv_callback>\ on_unknown_ctrl_recv_callback self.recv_callback = recv_cb self.send_callback = send_cb self.on_ctrl_recv_cb = on_ctrl_recv_cb self.on_invalid_ctrl_recv_cb = on_invalid_ctrl_recv_cb self.on_data_chunk_recv_cb = on_data_chunk_recv_cb self.on_data_recv_cb = on_data_recv_cb self.before_ctrl_send_cb = before_ctrl_send_cb self.on_ctrl_send_cb = on_ctrl_send_cb self.on_ctrl_not_send_cb = on_ctrl_not_send_cb self.on_data_send_cb = on_data_send_cb self.on_stream_close_cb = on_stream_close_cb self.on_request_recv_cb = on_request_recv_cb self.on_ctrl_recv_parse_error_cb = on_ctrl_recv_parse_error_cb self.on_unknown_ctrl_recv_cb = on_unknown_ctrl_recv_cb self.user_data = user_data if side == CLIENT: rv = cspdylay.spdylay_session_client_new(&self._c_session, version, &c_session_callbacks, <void*>self) elif side == SERVER: rv = cspdylay.spdylay_session_server_new(&self._c_session, version, &c_session_callbacks, <void*>self) else: raise InvalidArgumentError('side must be either CLIENT or SERVER') if rv == 0: return elif rv == cspdylay.SPDYLAY_ERR_NOMEM: raise MemoryError() elif rv == cspdylay.SPDYLAY_ERR_ZLIB: raise ZlibError(_strerror(rv)) elif rv == cspdylay.SPDYLAY_ERR_UNSUPPORTED_VERSION: raise UnsupportedVersionError(_strerror(rv)) def __init__(self, side, version, config=None, send_cb=None, recv_cb=None, on_ctrl_recv_cb=None, on_invalid_ctrl_recv_cb=None, on_data_chunk_recv_cb=None, on_data_recv_cb=None, before_ctrl_send_cb=None, on_ctrl_send_cb=None, on_ctrl_not_send_cb=None, on_data_send_cb=None, on_stream_close_cb=None, on_request_recv_cb=None, on_ctrl_recv_parse_error_cb=None, user_data=None): pass def __dealloc__(self): cspdylay.spdylay_session_del(self._c_session) cpdef recv(self, data=None): cdef int rv cdef char *c_data self.error = self.base_error = None if data is None: rv = cspdylay.spdylay_session_recv(self._c_session) else: c_data = data rv = cspdylay.spdylay_session_mem_recv(self._c_session, <uint8_t*>c_data, len(data)) if self.base_error: raise self.base_error if self.error: raise self.error if rv >= 0: return elif rv == cspdylay.SPDYLAY_ERR_EOF: raise EOFError() elif rv == cspdylay.SPDYLAY_ERR_NOMEM: raise MemoryError() elif rv == cspdylay.SPDYLAY_ERR_CALLBACK_FAILURE: raise CallbackFailureError() cpdef send(self): cdef int rv self.error = self.base_error = None rv = cspdylay.spdylay_session_send(self._c_session) if self.base_error: raise self.base_error elif self.error: raise self.error if rv == 0: return elif rv == cspdylay.SPDYLAY_ERR_NOMEM: raise MemoryError() elif rv == cspdylay.SPDYLAY_ERR_CALLBACK_FAILURE: raise CallbackFailureError() cpdef resume_data(self, stream_id): cpdef int rv rv = cspdylay.spdylay_session_resume_data(self._c_session, stream_id) if rv == 0: return True elif rv == cspdylay.SPDYLAY_ERR_INVALID_ARGUMENT: return False elif rv == cspdylay.SPDYLAY_ERR_NOMEM: raise MemoryError() cpdef want_read(self): return cspdylay.spdylay_session_want_read(self._c_session) cpdef want_write(self): return cspdylay.spdylay_session_want_write(self._c_session) cpdef get_stream_user_data(self, stream_id): return <object>cspdylay.spdylay_session_get_stream_user_data(\ self._c_session, stream_id) cpdef get_outbound_queue_size(self): return cspdylay.spdylay_session_get_outbound_queue_size(\ self._c_session) cpdef get_pri_lowest(self): return cspdylay.spdylay_session_get_pri_lowest(self._c_session) cpdef fail_session(self, status_code): cdef int rv rv = cspdylay.spdylay_session_fail_session(self._c_session, status_code) if rv == 0: return elif rv == cspdylay.SPDYLAY_ERR_NOMEM: raise MemoryError() cpdef submit_request(self, pri, nv, data_prd=None, stream_user_data=None): cdef cspdylay.spdylay_data_provider c_data_prd cdef cspdylay.spdylay_data_provider *c_data_prd_ptr cpdef int rv cdef char **cnv nv = pynv_encode(nv) cnv = pynv2cnv(nv) if data_prd: create_c_data_prd(&c_data_prd, data_prd) c_data_prd_ptr = &c_data_prd else: c_data_prd_ptr = NULL rv = cspdylay.spdylay_submit_request(self._c_session, pri, cnv, c_data_prd_ptr, <void*>stream_user_data) free(cnv) if rv == 0: return elif rv == cspdylay.SPDYLAY_ERR_INVALID_ARGUMENT: raise InvalidArgumentError(_strerror(rv)) elif rv == cspdylay.SPDYLAY_ERR_NOMEM: raise MemoryError() cpdef submit_response(self, stream_id, nv, data_prd=None): cdef cspdylay.spdylay_data_provider c_data_prd cdef cspdylay.spdylay_data_provider *c_data_prd_ptr cpdef int rv cdef char **cnv nv = pynv_encode(nv) cnv = pynv2cnv(nv)
Cython
if data_prd: create_c_data_prd(&c_data_prd, data_prd) c_data_prd_ptr = &c_data_prd else: c_data_prd_ptr = NULL rv = cspdylay.spdylay_submit_response(self._c_session, stream_id, cnv, c_data_prd_ptr) free(cnv) if rv == 0: return elif rv == cspdylay.SPDYLAY_ERR_INVALID_ARGUMENT: raise InvalidArgumentError(_strerror(rv)) elif rv == cspdylay.SPDYLAY_ERR_NOMEM: raise MemoryError() cpdef submit_syn_stream(self, flags, pri, nv, assoc_stream_id=0, stream_user_data=None): cdef int rv cdef char **cnv nv = pynv_encode(nv) cnv = pynv2cnv(nv) rv = cspdylay.spdylay_submit_syn_stream(self._c_session, flags, assoc_stream_id, pri, cnv, <void*>stream_user_data) free(cnv) if rv == 0: return elif rv == cspdylay.SPDYLAY_ERR_INVALID_ARGUMENT: raise InvalidArgumentError(_strerror(rv)) elif rv == cspdylay.SPDYLAY_ERR_NOMEM: raise MemoryError() cpdef submit_syn_reply(self, flags, stream_id, nv): cdef int rv cdef char **cnv nv = pynv_encode(nv) cnv = pynv2cnv(nv) rv = cspdylay.spdylay_submit_syn_reply(self._c_session, flags, stream_id, cnv) free(cnv) if rv == 0: return elif rv == cspdylay.SPDYLAY_ERR_INVALID_ARGUMENT: raise InvalidArgumentError(_strerror(rv)) elif rv == cspdylay.SPDYLAY_ERR_NOMEM: raise MemoryError() cpdef submit_headers(self, flags, stream_id, nv): cdef int rv cdef char **cnv nv = pynv_encode(nv) cnv = pynv2cnv(nv) rv = cspdylay.spdylay_submit_headers(self._c_session, flags, stream_id, cnv) free(cnv) if rv == 0: return elif rv == cspdylay.SPDYLAY_ERR_INVALID_ARGUMENT: raise InvalidArgumentError(_strerror(rv)) elif rv == cspdylay.SPDYLAY_ERR_NOMEM: raise MemoryError() cpdef submit_data(self, stream_id, flags, data_prd): cdef cspdylay.spdylay_data_provider c_data_prd cdef cspdylay.spdylay_data_provider *c_data_prd_ptr cpdef int rv if data_prd: create_c_data_prd(&c_data_prd, data_prd) c_data_prd_ptr = &c_data_prd else: c_data_prd_ptr = NULL rv = cspdylay.spdylay_submit_data(self._c_session, stream_id, flags, c_data_prd_ptr) if rv == 0: return elif rv == cspdylay.SPDYLAY_ERR_NOMEM: raise MemoryError() cpdef submit_rst_stream(self, stream_id, status_code): cdef int rv rv = cspdylay.spdylay_submit_rst_stream(self._c_session, stream_id, status_code) if rv == 0: return elif rv == cspdylay.SPDYLAY_ERR_NOMEM: raise MemoryError() cpdef submit_ping(self): cdef int rv rv = cspdylay.spdylay_submit_ping(self._c_session) if rv == 0: return elif rv == cspdylay.SPDYLAY_ERR_NOMEM: raise MemoryError() cpdef submit_goaway(self, status_code): cdef int rv rv = cspdylay.spdylay_submit_goaway(self._c_session, status_code) if rv == 0: return elif rv == cspdylay.SPDYLAY_ERR_NOMEM: raise MemoryError() cpdef submit_window_update(self, stream_id, delta_window_size): cdef int rv rv = cspdylay.spdylay_submit_window_update(self._c_session, stream_id, delta_window_size) if rv == 0: return elif rv == cspdylay.SPDYLAY_ERR_INVALID_ARGUMENT: raise InvalidArgumentError() elif rv == cspdylay.SPDYLAY_ERR_STREAM_CLOSED: raise StreamClosedError() elif rv == cspdylay.SPDYLAY_ERR_NOMEM: raise MemoryError() cpdef submit_settings(self, flags, iv): ''' Submit SETTINGS frame. iv is list of tuple (settings_id, flag, value) ''' cdef int rv cdef cspdylay.spdylay_settings_entry *civ = pysettings2csettings(iv) rv = cspdylay.spdylay_submit_settings(self._c_session, flags, civ, len(iv)) free(civ) if rv == 0: return elif rv == cspdylay.SPDYLAY_ERR_INVALID_ARGUMENT: raise InvalidArgumentError(_strerror(rv)) elif rv == cspdylay.SPDYLAY_ERR_NOMEM: raise MemoryError() cdef _strerror(int error_code): return cspdylay.spdylay_strerror(error_code).decode('UTF-8') cpdef get_npn_protocols(): cdef size_t proto_list_len cdef cspdylay.spdylay_npn_proto *proto_list proto_list = cspdylay.spdylay_npn_get_proto_list(&proto_list_len) res = [] for i in range(proto_list_len): res.append((<char*>proto_list[i].proto)[:proto_list[i].len]\ .decode('UTF-8')) return res cpdef int npn_get_version(proto): cdef char *cproto if proto == None: return 0 proto = proto.encode('UTF-8') cproto = proto return cspdylay.spdylay_npn_get_version(<unsigned char*>cproto, len(proto)) # Side CLIENT = 1 SERVER = 2 # SPDY protocol version PROTO_SPDY2 = cspdylay.SPDYLAY_PROTO_SPDY2 PROTO_SPDY3 = cspdylay.SPDYLAY_PROTO_SPDY3 # Control frame flags CTRL_FLAG_NONE = cspdylay.SPDYLAY_CTRL_FLAG_NONE CTRL_FLAG_FIN = cspdylay.SPDYLAY_CTRL_FLAG_FIN CTRL_FLAG_UNIDIRECTIONAL = cspdylay.SPDYLAY_CTRL_FLAG_UNIDIRECTIONAL # Data frame flags DATA_FLAG_NONE = cspdylay.SPDYLAY_DATA_FLAG_NONE DATA_FLAG_FIN = cspdylay.SPDYLAY_DATA_FLAG_FIN # Error codes ERR_INVALID_ARGUMENT = cspdylay.SPDYLAY_ERR_INVALID_ARGUMENT ERR_ZLIB = cspdylay.SPDYLAY_ERR_ZLIB ERR_UNSUPPORTED_VERSION = cspdylay.SPDYLAY_ERR_UNSUPPORTED_VERSION ERR_WOULDBLOCK = cspdylay.SPDYLAY_ERR_WOULDBLOCK ERR_PROTO = cspdylay.SPDYLAY_ERR_PROTO ERR_INVALID_FRAME = cspdylay.SPDYLAY_ERR_INVALID_FRAME ERR_EOF = cspdylay.SPDYLAY_ERR_EOF ERR_DEFERRED = cspdylay.SPDYLAY_ERR_DEFERRED ERR_STREAM_ID_NOT_AVAILABLE = cspdylay.SPDYLAY_ERR_STREAM_ID_NOT_AVAILABLE ERR_STREAM_CLOSED = cspdylay.SPDYLAY_ERR_STREAM_CLOSED ERR_STREAM_CLOSING = cspdylay.SPDYLAY_ERR_STREAM_CLOSING ERR_STREAM_SHUT_WR = cspdylay.SPDYLAY_ERR_STREAM_SHUT_WR ERR_INVALID_STREAM_ID = cspdylay.SPDYLAY_ERR_INVALID_STREAM_ID ERR_INVALID_STREAM_STATE = cspdylay.SPDYLAY_ERR_INVALID_STREAM_STATE ERR_DEFERRED_DATA_EXIST = cspdylay.SPDYLAY_ERR_DEFERRED_DATA_EXIST ERR_SYN_STREAM_NOT_ALLOWED = cspdylay.SPDYLAY_ERR_SYN_STREAM_NOT_ALLOWED ERR_GOAWAY_ALREADY_SENT = cspdylay.SPDYLAY_ERR_GOAWAY_ALREADY_SENT ERR_INVALID_HEADER_BLOCK = cspdylay.SPDYLAY_ERR_INVALID_HEADER_BLOCK ERR_INVALID_STATE = cspdylay.SPDYLAY_ERR_INVALID_STATE ERR_GZIP = cspdylay.SPDYLAY_ERR_GZIP ERR_TEMPORAL_CALLBACK_FAILURE = cspdylay.SPDYLAY_ERR_TEMPORAL_CALLBACK_FAILURE ERR_FATAL = cspdylay.SPDYLAY_ERR_FATAL ERR_NOMEM = cspdylay.SPDYLAY_ERR_NOMEM ERR_CALLBACK_FAILURE = cspdylay.SPDYLAY_ERR_CALLBACK_FAILURE # Read Callback Flags READ_EOF = 1 # The status code for RST_STREAM OK = cspdylay.S
Cython
PDYLAY_OK PROTOCOL_ERROR = cspdylay.SPDYLAY_PROTOCOL_ERROR INVALID_STREAM = cspdylay.SPDYLAY_INVALID_STREAM REFUSED_STREAM = cspdylay.SPDYLAY_REFUSED_STREAM UNSUPPORTED_VERSION = cspdylay.SPDYLAY_UNSUPPORTED_VERSION CANCEL = cspdylay.SPDYLAY_CANCEL INTERNAL_ERROR = cspdylay.SPDYLAY_INTERNAL_ERROR FLOW_CONTROL_ERROR = cspdylay.SPDYLAY_FLOW_CONTROL_ERROR # Following status codes were introduced in SPDY/3 STREAM_IN_USE = cspdylay.SPDYLAY_STREAM_IN_USE STREAM_ALREADY_CLOSED = cspdylay.SPDYLAY_STREAM_ALREADY_CLOSED INVALID_CREDENTIALS = cspdylay.SPDYLAY_INVALID_CREDENTIALS FRAME_TOO_LARGE = cspdylay.SPDYLAY_FRAME_TOO_LARGE # The status codes for GOAWAY, introduced in SPDY/3. GOAWAY_OK = cspdylay.SPDYLAY_GOAWAY_OK GOAWAY_PROTOCOL_ERROR = cspdylay.SPDYLAY_GOAWAY_PROTOCOL_ERROR GOAWAY_INTERNAL_ERROR = cspdylay.SPDYLAY_GOAWAY_INTERNAL_ERROR # Frame types SYN_STREAM = cspdylay.SPDYLAY_SYN_STREAM SYN_REPLY = cspdylay.SPDYLAY_SYN_REPLY RST_STREAM = cspdylay.SPDYLAY_RST_STREAM SETTINGS = cspdylay.SPDYLAY_SETTINGS NOOP = cspdylay.SPDYLAY_NOOP PING = cspdylay.SPDYLAY_PING GOAWAY = cspdylay.SPDYLAY_GOAWAY HEADERS = cspdylay.SPDYLAY_HEADERS WINDOW_UPDATE = cspdylay.SPDYLAY_WINDOW_UPDATE CREDENTIAL = cspdylay.SPDYLAY_CREDENTIAL # The flags for the SETTINGS control frame. FLAG_SETTINGS_NONE = cspdylay.SPDYLAY_FLAG_SETTINGS_NONE FLAG_SETTINGS_CLEAR_SETTINGS = cspdylay.SPDYLAY_FLAG_SETTINGS_CLEAR_SETTINGS # The flags for SETTINGS ID/value pair. ID_FLAG_SETTINGS_NONE = cspdylay.SPDYLAY_ID_FLAG_SETTINGS_NONE ID_FLAG_SETTINGS_PERSIST_VALUE = cspdylay.SPDYLAY_ID_FLAG_SETTINGS_PERSIST_VALUE ID_FLAG_SETTINGS_PERSISTED = cspdylay.SPDYLAY_ID_FLAG_SETTINGS_PERSISTED # The SETTINGS ID. SETTINGS_UPLOAD_BANDWIDTH = cspdylay.SPDYLAY_SETTINGS_UPLOAD_BANDWIDTH SETTINGS_DOWNLOAD_BANDWIDTH = cspdylay.SPDYLAY_SETTINGS_DOWNLOAD_BANDWIDTH SETTINGS_ROUND_TRIP_TIME = cspdylay.SPDYLAY_SETTINGS_ROUND_TRIP_TIME SETTINGS_MAX_CONCURRENT_STREAMS = \ cspdylay.SPDYLAY_SETTINGS_MAX_CONCURRENT_STREAMS SETTINGS_CURRENT_CWND = cspdylay.SPDYLAY_SETTINGS_CURRENT_CWND SETTINGS_DOWNLOAD_RETRANS_RATE = \ cspdylay.SPDYLAY_SETTINGS_DOWNLOAD_RETRANS_RATE SETTINGS_INITIAL_WINDOW_SIZE = cspdylay.SPDYLAY_SETTINGS_INITIAL_WINDOW_SIZE SETTINGS_CLIENT_CERTIFICATE_VECTOR_SIZE = \ cspdylay.SPDYLAY_SETTINGS_CLIENT_CERTIFICATE_VECTOR_SIZE SETTINGS_MAX = cspdylay.SPDYLAY_SETTINGS_MAX try: # Simple SPDY Server implementation. We mimics the methods and # attributes of http.server.BaseHTTPRequestHandler. Since this # implementation uses TLS NPN, Python 3.3.0 or later is required. import socket import threading import socketserver import ssl import io import select import sys import time from xml.sax.saxutils import escape class Stream: def __init__(self, stream_id): self.stream_id = stream_id self.data_prd = None self.method = None self.path = None self.version = None self.scheme = None self.host = None self.headers = [] self.rfile = None self.wfile = None def process_headers(self, headers): for k, v in headers: if k == ':method': self.method = v elif k == ':scheme': self.scheme = v elif k == ':path': self.path = v elif k == ':version': self.version = v elif k == ':host': self.host = v else: self.headers.append((k, v)) class SessionCtrl: def __init__(self): self.streams = {} class BaseSPDYRequestHandler(socketserver.BaseRequestHandler): server_version = 'Python-spdylay' error_content_type = 'text/html; charset=UTF-8' # Same HTML from Apache error page error_message_format = '''\ <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN"> <html><head> <title>{code} {reason}</title> </head><body> <h1>{reason}</h1> <p>{explain}</p> <hr> <address>{server} at {hostname} Port {port}</address> </body></html> ''' def send_error(self, code, message=None): # Make sure that code is really int code = int(code) try: shortmsg, longmsg = self.responses[code] except KeyError: shortmsg, longmsg = '???', '???' if message is None: message = shortmsg explain = longmsg content = self.error_message_format.format(\ code=code, reason = escape(message), explain=escape(explain), server=escape(self.server_version), hostname=escape(socket.getfqdn()), port=self.server.server_address[1]).encode('UTF-8') self.send_response(code, message) self.send_header('content-type', self.error_content_type) self.send_header('content-length', str(len(content))) self.wfile.write(content) def send_response(self, code, message=None): if message is None: try: shortmsg, _ = self.responses[code] except KeyError: shortmsg = '???' message = shortmsg self._response_headers.append((':status', '{} {}'.format(code, message))) def send_header(self, keyword, value): self._response_headers.append((keyword, value)) def version_string(self): return self.server_version +'' + self.sys_version def handle_one_request(self, stream): self.stream = stream stream.wfile = io.BytesIO() self.command = stream.method self.path = stream.path self.request_version = stream.version self.headers = stream.headers self.rfile = stream.rfile self.wfile = stream.wfile self._response_headers = [] if stream.method is None: self.send_error(400) else: mname = 'do_' + stream.method if hasattr(self, mname): method = getattr(self, mname) if self.rfile is not None: self.rfile.seek(0) method() else: self.send_error(501, 'Unsupported method ({})'\ .format(stream.method)) self.wfile.seek(0) data_prd = DataProvider(self.wfile, self.read_cb) stream.data_prd = data_prd self.send_header(':version', 'HTTP/1.1') self.send_header('server', self.version_string()) self.send_header('date', self.date_time_string()) self.session.submit_response(stream.stream_id, self._response_headers, data_prd) def send_cb(self, session, data): return self.request.send(data) def read_cb(self, session, stream_id, length, read_ctrl, source): data = source.read(length) if not data: read_ctrl.flags = READ_EOF return data def on_ctrl_recv_cb(self, session, frame): if frame.frame_type == SYN_STREAM: stream = Stream(frame.stream_id) self.ssctrl.streams[frame.stream_id] = stream stream.process_headers(frame.nv) elif frame.frame_type == HEADERS: if frame.stream_id in self.ssctrl.streams: stream = self.ssctrl.streams[frame.stream_id] stream.process_headers(frame.nv) def on_data_chunk_recv_cb(self, session, flags, stream_id, data): if stream_id in self.ssctrl.streams: stream = self.ssctrl.streams[stream_id] if stream.method == 'POST': if not stream.rfile: stream.rfile = io.BytesIO() stream.rfile.write(data) else: # We don't allow request body if method is not POST session.submit_rst_stream(stream_id, PROTOCOL_ERROR) def on_stream_close_cb(self, session, stream_id, status_code): if stream_id in self.ssctrl.streams: del self.ssctrl.streams[stream_id] def on_request_recv_cb(self, session, stream_id): if stream_id in self.ssctrl.streams: stream = self.ssctrl.streams[stream_id] self.handle_one_request(stream) def handle(self): self.request.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, True) try: self.request.do_handshake() self.request.setblocking(False) version = npn_get_version(self.request.selected_npn_protocol()) if version == 0: return self.ssctrl = Session
Cython
Ctrl() self.session = Session(\ SERVER, version, send_cb=self.send_cb, on_ctrl_recv_cb=self.on_ctrl_recv_cb, on_data_chunk_recv_cb=self.on_data_chunk_recv_cb, on_stream_close_cb=self.on_stream_close_cb, on_request_recv_cb=self.on_request_recv_cb) self.session.submit_settings(\ FLAG_SETTINGS_NONE, [(SETTINGS_MAX_CONCURRENT_STREAMS, ID_FLAG_SETTINGS_NONE, 100)] ) while self.session.want_read() or self.session.want_write(): want_read = want_write = False try: data = self.request.recv(4096) if data: self.session.recv(data) else: break except ssl.SSLWantReadError: want_read = True except ssl.SSLWantWriteError: want_write = True try: self.session.send() except ssl.SSLWantReadError: want_read = True except ssl.SSLWantWriteError: want_write = True if want_read or want_write: select.select([self.request] if want_read else [], [self.request] if want_write else [], []) finally: self.request.setblocking(True) # The following methods and attributes are copied from # Lib/http/server.py of cpython source code def date_time_string(self, timestamp=None): """Return the current date and time formatted for a message header.""" if timestamp is None: timestamp = time.time() year, month, day, hh, mm, ss, wd, y, z = time.gmtime(timestamp) s = "%s, %02d %3s %4d %02d:%02d:%02d GMT" % ( self.weekdayname[wd], day, self.monthname[month], year, hh, mm, ss) return s weekdayname = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'] monthname = [None, 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] # The Python system version, truncated to its first component. sys_version = "Python/" + sys.version.split()[0] # Table mapping response codes to messages; entries have the # form {code: (shortmessage, longmessage)}. # See RFC 2616 and 6585. responses = { 100: ('Continue', 'Request received, please continue'), 101: ('Switching Protocols', 'Switching to new protocol; obey Upgrade header'), 200: ('OK', 'Request fulfilled, document follows'), 201: ('Created', 'Document created, URL follows'), 202: ('Accepted', 'Request accepted, processing continues off-line'), 203: ('Non-Authoritative Information', 'Request fulfilled from cache'), 204: ('No Content', 'Request fulfilled, nothing follows'), 205: ('Reset Content', 'Clear input form for further input.'), 206: ('Partial Content', 'Partial content follows.'), 300: ('Multiple Choices', 'Object has several resources -- see URI list'), 301: ('Moved Permanently', 'Object moved permanently -- see URI list'), 302: ('Found', 'Object moved temporarily -- see URI list'), 303: ('See Other', 'Object moved -- see Method and URL list'), 304: ('Not Modified', 'Document has not changed since given time'), 305: ('Use Proxy', 'You must use proxy specified in Location to access this ' 'resource.'), 307: ('Temporary Redirect', 'Object moved temporarily -- see URI list'), 400: ('Bad Request', 'Bad request syntax or unsupported method'), 401: ('Unauthorized', 'No permission -- see authorization schemes'), 402: ('Payment Required', 'No payment -- see charging schemes'), 403: ('Forbidden', 'Request forbidden -- authorization will not help'), 404: ('Not Found', 'Nothing matches the given URI'), 405: ('Method Not Allowed', 'Specified method is invalid for this resource.'), 406: ('Not Acceptable', 'URI not available in preferred format.'), 407: ('Proxy Authentication Required', 'You must authenticate with ' 'this proxy before proceeding.'), 408: ('Request Timeout', 'Request timed out; try again later.'), 409: ('Conflict', 'Request conflict.'), 410: ('Gone', 'URI no longer exists and has been permanently removed.'), 411: ('Length Required', 'Client must specify Content-Length.'), 412: ('Precondition Failed', 'Precondition in headers is false.'), 413: ('Request Entity Too Large', 'Entity is too large.'), 414: ('Request-URI Too Long', 'URI is too long.'), 415: ('Unsupported Media Type', 'Entity body in unsupported format.'), 416: ('Requested Range Not Satisfiable', 'Cannot satisfy request range.'), 417: ('Expectation Failed', 'Expect condition could not be satisfied.'), 428: ('Precondition Required', 'The origin server requires the request to be conditional.'), 429: ('Too Many Requests', 'The user has sent too many requests ' 'in a given amount of time ("rate limiting").'), 431: ('Request Header Fields Too Large', 'The server is unwilling to process ' 'the request because its header fields are too large.'), 500: ('Internal Server Error', 'Server got itself in trouble'), 501: ('Not Implemented', 'Server does not support this operation'), 502: ('Bad Gateway', 'Invalid responses from another server/proxy.'), 503: ('Service Unavailable', 'The server cannot process the request due to a high load'), 504: ('Gateway Timeout', 'The gateway server did not receive a timely response'), 505: ('HTTP Version Not Supported', 'Cannot fulfill request.'), 511: ('Network Authentication Required', 'The client needs to authenticate to gain network access.'), } class ThreadedSPDYServer(socketserver.ThreadingMixIn, socketserver.TCPServer): def __init__(self, server_address, RequestHandlerCalss, cert_file, key_file): self.allow_reuse_address = True self.ctx = ssl.SSLContext(ssl.PROTOCOL_SSLv23) self.ctx.options = ssl.OP_ALL | ssl.OP_NO_SSLv2 | \ ssl.OP_NO_COMPRESSION self.ctx.load_cert_chain(cert_file, key_file) self.ctx.set_npn_protocols(get_npn_protocols()) socketserver.TCPServer.__init__(self, server_address, RequestHandlerCalss) def start(self, daemon=False): server_thread = threading.Thread(target=self.serve_forever) server_thread.daemon = daemon server_thread.start() def process_request(self, request, client_address): # ThreadingMixIn.process_request() dispatches request and # client_address to separate thread. To cleanly shutdown # SSL/TLS wrapped socket, we wrap socket here. # SSL/TLS handshake is postponed to each thread. request = self.ctx.wrap_socket(\ request, server_side=True, do_handshake_on_connect=False) socketserver.ThreadingMixIn.process_request(self, request, client_address) # Simple SPDY client implementation. Since this implementation # uses TLS NPN, Python 3.3.0 or later is required. from urllib.parse import urlsplit class BaseSPDYStreamHandler: def __init__(self, url, fetcher): self.url = url self.fetcher = fetcher self.stream_id = None def on_header(self, nv): pass def on_data(self, data): pass def on_close(self, status_code): pass class UrlFetchError(Exception): pass class UrlFetcher: def __init__(self, server_address, urls, StreamHandlerClass): self.server_address = server_address self.handlers = [StreamHandlerClass(url, self) for url in urls] self.streams = {} self.finished = [] self.ctx = ssl.SSLContext(ssl.PROTOCOL_SSLv23) self.ctx.options = ssl.OP_ALL | ssl.OP_NO_SSLv2 | \ ssl.OP_NO_COMPRESSION self.ctx.set_npn_protocols(get_npn_protocols()) def send_cb(self, session, data): return self.sock.send(data) def before_ctrl_send_cb(self, session, frame): if frame.frame_type == SYN_STREAM: handler = session.get_stream_user_data(frame.stream_id) if handler: handler.stream_id = frame.stream_id self.streams[handler.stream_id] = handler def on_ctrl_recv_cb(self, session, frame): if frame.frame_type == SYN_REPLY or frame.frame_type == HEADERS: if frame.stream_id in self.streams: handler = self.streams[frame.stream_id] handler.on_header(frame.nv) def on_data_chunk_recv_cb(self, session, flags, stream_id, data): if stream_id in self.streams: handler = self.streams[stream_id] handler.on_data(data) def on_stream_close_cb(self, session, stream_id, status_code): if stream
Cython
_id in self.streams: handler = self.streams[stream_id] handler.on_close(status_code) del self.streams[stream_id] self.finished.append(handler) def connect(self, server_address): self.sock = None for res in socket.getaddrinfo(server_address[0], server_address[1], socket.AF_UNSPEC, socket.SOCK_STREAM): af, socktype, proto, canonname, sa = res try: self.sock = socket.socket(af, socktype, proto) except OSError as msg: self.sock = None continue try: self.sock.connect(sa) except OSError as msg: self.sock.close() self.sock = None continue break else: raise UrlFetchError('Could not connect to {}'\ .format(server_address)) def tls_handshake(self): self.sock = self.ctx.wrap_socket(self.sock, server_side=False, do_handshake_on_connect=False) self.sock.do_handshake() self.version = npn_get_version(self.sock.selected_npn_protocol()) if self.version == 0: raise UrlFetchError('NPN failed') def loop(self): self.connect(self.server_address) try: self._loop() finally: self.sock.shutdown(socket.SHUT_RDWR) self.sock.close() def _loop(self): self.tls_handshake() self.sock.setblocking(False) session = Session(CLIENT, self.version, send_cb=self.send_cb, on_ctrl_recv_cb=self.on_ctrl_recv_cb, on_data_chunk_recv_cb=self.on_data_chunk_recv_cb, before_ctrl_send_cb=self.before_ctrl_send_cb, on_stream_close_cb=self.on_stream_close_cb) session.submit_settings(\ FLAG_SETTINGS_NONE, [(SETTINGS_MAX_CONCURRENT_STREAMS, ID_FLAG_SETTINGS_NONE, 100)] ) if self.server_address[1] == 443: hostport = self.server_address[0] else: hostport = '{}:{}'.format(self.server_address[0], self.server_address[1]) for handler in self.handlers: res = urlsplit(handler.url) if res.path: path = res.path else: path = '/' if res.query: path = '?'.join([path, res.query]) session.submit_request(0, [(':method', 'GET'), (':scheme', 'https'), (':path', path), (':version', 'HTTP/1.1'), (':host', hostport), ('accept', '*/*'), ('user-agent', 'python-spdylay')], stream_user_data=handler) while (session.want_read() or session.want_write()) \ and not len(self.finished) == len(self.handlers): want_read = want_write = False try: data = self.sock.recv(4096) if data: session.recv(data) else: break except ssl.SSLWantReadError: want_read = True except ssl.SSLWantWriteError: want_write = True try: session.send() except ssl.SSLWantReadError: want_read = True except ssl.SSLWantWriteError: want_write = True if want_read or want_write: select.select([self.sock] if want_read else [], [self.sock] if want_write else [], []) def _urlfetch_session_one(urls, StreamHandlerClass): res = urlsplit(urls[0]) if res.scheme!= 'https': raise UrlFetchError('Unsupported scheme {}'.format(res.scheme)) hostname = res.hostname port = res.port if res.port else 443 f = UrlFetcher((hostname, port), urls, StreamHandlerClass) f.loop() def urlfetch(url_or_urls, StreamHandlerClass): if isinstance(url_or_urls, str): _urlfetch_session_one([url_or_urls], StreamHandlerClass) else: urls = [] prev_addr = (None, None) for url in url_or_urls: res = urlsplit(url) port = res.port if res.port else 443 if prev_addr!= (res.hostname, port): if urls: _urlfetch_session_one(urls, StreamHandlerClass) urls = [] prev_addr = (res.hostname, port) urls.append(url) if urls: _urlfetch_session_one(urls, StreamHandlerClass) except ImportError: # No server for 2.x because they lack TLS NPN. pass <|end_of_text|>__author__ = 'denislavrov' from action.jitrswitch.switch import SwitchLogic, Packet import struct from cpython cimport array IP_MF = 0x2000 # more fragments (not last frag) IP_OFFMASK = 0x1fff # mask for fragment offset cdef extern from "netinet/in.h": short ntohs(short netshort) short htons(short hostshort) cdef struct pshdr: unsigned int srcip unsigned int dstip char rsrv char proto unsigned short tcp_len cdef unsigned short checksumcy(array.array msg): cdef unsigned int s = 0 cdef unsigned int w = 0 cdef unsigned int i = 0 for i in range(0, len(msg), 2): w = msg[i] + (msg[i + 1] << 8) s += w s = (s >> 16) + (s & 0xffff) s += s >> 16 return ~s & 0xffff cdef unsigned short tcp_checksumcy(packet): cdef array.array pktdata = array.array("B", packet.pktdata) cdef unsigned char* data = pktdata.data.as_uchars cdef unsigned int* source_address = <unsigned int*> (data + 14 + 12) cdef unsigned int ihl = (<int>(data[14] & 0xf)) * 4 cdef unsigned short tcp_length = ntohs((<unsigned short *> (data + 14 + 2))[0]) - ihl tcp = <unsigned char*>(data + 14 + ihl) tcp[16] = 0 tcp[17] = 0 cdef pshdr phdr phdr.srcip = source_address[0] phdr.dstip = source_address[1] phdr.rsrv = 0 phdr.proto = 0x06 phdr.tcp_len = htons(tcp_length) cdef array.array tmp = array.array("B", []) array.extend_buffer(tmp, <char *>&phdr, sizeof(phdr)) array.extend_buffer(tmp, <char *>tcp, tcp_length) sum = checksumcy(tmp) data[14 + ihl + 16] = sum & 0xff data[14 + ihl + 17] = sum >> 8 packet.pktdata = bytes(pktdata) return sum class TCPChecksum(SwitchLogic): def process_packet(self, packet): if packet.srcport in self.interfaces and packet.pktdata[14 + 9] == 0x06: # check if TCP off = struct.unpack(">H", packet.pktdata[14 + 6: 14 + 8])[0] if (off & (IP_MF | IP_OFFMASK)) == 0: tcp_checksumcy(packet) def __init__(self, switch, interfaces): super().__init__(switch) self.interfaces = interfaces <|end_of_text|># cython: profile = True from libc.stdint cimport int8_t, int32_t, uint64_t from libc.string cimport memcpy from cpython.mem cimport PyMem_Malloc, PyMem_Free from cpython.array cimport array cimport cython from cython.parallel import prange, threadid import numpy as np cimport containers cdef int EMPTY = 0 cdef int WHITE = 1 cdef int BLACK = 2 cdef int FUTURE_MOVE = -1 cdef int PASS_MOVE = -2 cdef uint64_t rcol = 72340172838076673ULL cdef uint64_t lcol = 9259542123273814144ULL cdef uint64_t not_rcol = 18374403900871474942Ull cdef uint64_t not_lcol = 9187201950435737471ULL # Game Data # turn # WHITE (1) or BLACK (2) # board # 3 64-bit integers # 1-bits in "empties" indicate EMPTY squares # 1-bits in "whites" indicate WHITE squares # 1-bits in "blacks" indicate BLACK squares # # Data Structures # buckets of game states # search tree: # root node contains the current game state # each child node represents one of the possible valid moves cdef struct State: uint64_t empties uint64_t whites uint64_t blacks uint64_t turn cdef struct Search: containers.BucketList* l1 containers.BucketList* l2 containers.BucketList* last cdef void print_bits(uint64_t num, as_square=True): cdef uint64_t i b = [1 if ((num >> i) & 1) else 0 for i in range(64)] b = b[::-1]
Cython
if as_square: print(np.array(b).reshape((8,8))) else: print(np.array(b)) cdef void print_state(State* state): cdef uint64_t e, w, b print('board:') e = state.empties w = state.whites b = state.blacks board = [] for i in range(64): if (e >> i) % 2 == 1: board.append(EMPTY) elif (w >> i) % 2 == 1: board.append(WHITE) elif (b >> i) % 2 == 1: board.append(BLACK) board = board[::-1] print(np.array(board).reshape((8, 8))) print('turn: {}'.format(state.turn)) cdef void set_opening(State* state): state.empties = 18446743970227683327ULL state.whites = 68853694464ULL state.blacks = 34628173824ULL state.turn = BLACK cdef void add_child_states_of(containers.BucketList *bl, State *state) nogil: cdef uint64_t up_moves, dn_moves, lf_moves, rt_moves, ur_moves, ul_moves, dr_moves, dl_moves cdef uint64_t moves cdef uint64_t e, w, b cdef uint64_t mv, flip, tmp cdef int i, s cdef State *child e = state.empties w = state.whites b = state.blacks cdef uint64_t c1, c2, c1_mv, c2_mv, c2_run if state.turn == WHITE: c1 = w c2 = b else: c1 = b c2 = w c1_mv = (c1 << 56) c2_mv = (c2 << 48) up_moves = c2_mv & c1_mv for i in range(5, 0, -1): c1_mv = (c1 << (8 * (i + 1))) c2_mv = (c2 << (8 * i)) up_moves = c2_mv & (c1_mv | up_moves) up_moves = up_moves & e c1_mv = (c1 >> 56) c2_mv = (c2 >> 48) dn_moves = c2_mv & c1_mv for i in range(5, 0, -1): c1_mv = (c1 >> (8 * (i + 1))) c2_mv = (c2 >> (8 * i)) dn_moves = c2_mv & (c1_mv | dn_moves) dn_moves = dn_moves & e c1_mv = not_rcol & (c1 << 1) c1_mv = not_rcol & (c1_mv << 1) c2_run = not_rcol & (c2 << 1) lf_moves = c2_run & c1_mv for i in range(1, 7): c2_run = c2_run & not_rcol & (c2_run << 1) c1_mv = not_rcol & (c1_mv << 1) lf_moves = lf_moves | c2_run & c1_mv lf_moves = lf_moves & e c1_mv = not_lcol & (c1 >> 1) c1_mv = not_lcol & (c1_mv >> 1) c2_run = not_lcol & (c2 >> 1) rt_moves = c2_run & c1_mv for i in range(1, 7): c2_run = c2_run & not_lcol & (c2_run >> 1) c1_mv = not_lcol & (c1_mv >> 1) rt_moves = rt_moves | c2_run & c1_mv rt_moves = rt_moves & e c1_mv = not_lcol & (c1 << 7) c1_mv = not_lcol & (c1_mv << 7) c2_run = not_lcol & (c2 << 7) ur_moves = c2_run & c1_mv for i in range(1, 7): c2_run = c2_run & not_lcol & (c2_run << 7) c1_mv = not_lcol & (c1_mv << 7) ur_moves = ur_moves | c2_run & c1_mv ur_moves = ur_moves & e c1_mv = not_rcol & (c1 << 9) c1_mv = not_rcol & (c1_mv << 9) c2_run = not_rcol & (c2 << 9) ul_moves = c2_run & c1_mv for i in range(1, 7): c2_run = c2_run & not_rcol & (c2_run << 9) c1_mv = not_rcol & (c1_mv << 9) ul_moves = ul_moves | c2_run & c1_mv ul_moves = ul_moves & e c1_mv = not_lcol & (c1 >> 9) c1_mv = not_lcol & (c1_mv >> 9) c2_run = not_lcol & (c2 >> 9) dr_moves = c2_run & c1_mv for i in range(1, 7): c2_run = c2_run & not_lcol & (c2_run >> 9) c1_mv = not_lcol & (c1_mv >> 9) dr_moves = dr_moves | c2_run & c1_mv dr_moves = dr_moves & e c1_mv = not_rcol & (c1 >> 7) c1_mv = not_rcol & (c1_mv >> 7) c2_run = not_rcol & (c2 >> 7) dl_moves = c2_run & c1_mv for i in range(1, 7): c2_run = c2_run & not_rcol & (c2_run >> 7) c1_mv = not_rcol & (c1_mv >> 7) dl_moves = dl_moves | c2_run & c1_mv dl_moves = dl_moves & e moves = up_moves | dn_moves | lf_moves | rt_moves | ur_moves | ul_moves | dr_moves | dl_moves if moves == 0: child = <State *>containers.bucket_list_add_item(bl) child[0] = state[0] # OR memcpy(child, state, sizeof(State)) if child.turn == WHITE: child.turn = BLACK else: child.turn = WHITE return for i in range(64): mv = (1ULL << i) if (moves & mv) == 0: continue flip = mv if mv & up_moves: tmp = mv >> 8 while tmp & c2: flip = flip | tmp tmp = tmp >> 8 if mv & dn_moves: tmp = mv << 8 while tmp & c2: flip = flip | tmp tmp = tmp << 8 if mv & lf_moves: tmp = mv >> 1 while tmp & c2: flip = flip | tmp tmp = tmp >> 1 if mv & rt_moves: tmp = mv << 1 while tmp & c2: flip = flip | tmp tmp = tmp << 1 if mv & ur_moves: tmp = mv >> 7 while tmp & c2: flip = flip | tmp tmp = tmp >> 7 if mv & ul_moves: tmp = mv >> 9 while tmp & c2: flip = flip | tmp tmp = tmp >> 9 if mv & dr_moves: tmp = mv << 9 while tmp & c2: flip = flip | tmp tmp = tmp << 9 if mv & dl_moves: tmp = mv << 7 while tmp & c2: flip = flip | tmp tmp = tmp << 7 child = <State *>containers.bucket_list_add_item(bl) child[0] = state[0] # OR memcpy(child, state, sizeof(State)) child.empties = state.empties & ~mv if state.turn == WHITE: child.whites = state.whites | flip child.blacks = state.blacks & ~flip child.turn = BLACK else: child.whites = state.whites & ~flip child.blacks = state.blacks | flip child.turn = WHITE cdef Search* make_search(): cdef Search *search = <Search *>PyMem_Malloc(1 * sizeof(Search)) search.l1 = containers.bucket_list_make(sizeof(State)) search.l2 = containers.bucket_list_make(sizeof(State)) search.last = NULL return search cdef void del_search(Search* search): if search == NULL: return
Cython
containers.bucket_list_del(search.l1) containers.bucket_list_del(search.l2) search.last = NULL PyMem_Free(search) cdef void seed_search(Search* search, State* state=NULL): if search.l1.size!= 0: return cdef State *tmp = <State *>containers.bucket_list_add_item(search.l1) if state == NULL: set_opening(tmp) else: tmp[0] = state[0] # OR memcpy(tmp, state, sizeof(State)) search.last = search.l1 cdef int search_generations(Search* search, int num, int num_threads=4): if num <= 0 or search.last == NULL: return 1 if not (1 <= num_threads <= 16): return 2 cdef int i, n cdef long tid cdef containers.BucketList *prev cdef containers.BucketList *curr cdef containers.BucketList *thread_bl[16] cdef State *s if num_threads == 1: print(search.last.size) for n in range(num): prev = search.last curr = search.l2 if search.l1 == search.last else search.l1 containers.bucket_list_clear(curr) for i in range(prev.size): add_child_states_of(curr, <State *>containers.bucket_list_get_item(prev, i)) search.last = curr print(search.last.size) else: for i in range(num_threads): thread_bl[i] = containers.bucket_list_make(sizeof(State)) print(search.last.size) for n in range(num): prev = search.last curr = search.l2 if search.l1 == search.last else search.l1 containers.bucket_list_clear(curr) for i in range(num_threads): containers.bucket_list_clear(thread_bl[i]) for i in prange(prev.size, nogil=True, num_threads=num_threads): tid = threadid() add_child_states_of(thread_bl[tid], <State *>containers.bucket_list_get_item(prev, i)) for i in range(num_threads): containers.bucket_list_transfer_data(curr, thread_bl[i]) search.last = curr print(search.last.size) for i in range(num_threads): containers.bucket_list_del(thread_bl[i]) import time # TODO: there is a segfault that happens when the ITEMS_PER_BUCKET is too low and # multithreading is being used. # # NOTE: for single-threads a large ITEMS_PER_BUCKET really helps speed things up, # but for multi-threading a lower ITEMS_PER_BUCKET is better. cdef Search *search = make_search() seed_search(search) start = time.time() search_generations(search, 11, num_threads=16) print(time.time() - start) #cdef State s #cdef containers.BucketList *bl = containers.bucket_list_make(sizeof(State)) #set_opening(&s) #print_state(&s) #print(bl.size) #add_child_states_of(bl, &s) #print(bl.size) #cdef Search *search = make_search() #seed_search(search) <|end_of_text|>cdef extern from "yajl/yajl_common.h": ctypedef struct yajl_alloc_funcs: pass <|end_of_text|>from libc.stdlib cimport calloc from libc.stdlib cimport free from libc.string cimport memcpy from libc.string cimport memset from libc.math cimport fabs import numpy as np cimport numpy as np np.import_array() cimport _utils as ut from _utils cimport log from _utils cimport safe_realloc from _utils cimport sizet_ptr_to_ndarray #from _utils cimport WeightMedianCalculator cdef class Criterion: def __dealloc__(self): free(self.sum_total) free(self.sum_left) free(self.sum_right) def __getstate__(self): return() def __setstate__(self, d): pass cdef int init(self, const DOUBLE_t[:, ::1] y, DOUBLE_t* sample_weight, double weighted_n_samples, SIZE_t* samples, SIZE_t start, SIZE_t end) nogil except -1: pass cdef int reset(self) nogil except -1: pass cdef int reverse_reset(self) nogil except -1: pass cdef int update(self, SIZE_t new_pos) nogil except -1: pass cdef double node_impurity(self) nogil: pass cdef void children_impurity(self, double* impurity_left, double* impurity_right) nogil: pass cdef void node_value(self, double* dest) nogil: pass cdef double proxy_impurity_improvement(self) nogil: cdef double impurity_left cdef double impurity_right self.children_impurity(&impurity_left, &impurity_right) return (- self.weighted_n_right * impurity_right - self.weighted_n_left * impurity_left) cdef double impurity_improvement(self, double impurity) nogil: cdef double impurity_left cdef double impurity_right self.children_impurity(&impurity_left, &impurity_right) return ((self.weighted_n_node_samples / self.weighted_n_samples) * (impurity - (self.weighted_n_right / self.weighted_n_node_samples * impurity_right) - (self.weighted_n_left / self.weighted_n_node_samples * impurity_left))) cdef class ClassificationCriterion(Criterion): def __cinit__(self, SIZE_t n_outputs, np.ndarray[SIZE_t, ndim=1] n_classes): self.sample_weight = NULL self.samples = NULL self.start = 0 self.pos = 0 self.end = 0 self.n_outputs = n_outputs self.n_samples = 0 self.n_node_samples = 0 self.weighted_n_node_samples = 0.0 self.weighted_n_left = 0.0 self.weighted_n_right = 0.0 self.sum_total = NULL self.sum_left = NULL self.sum_right = NULL self.n_classes = NULL safe_realloc(&self.n_classes, n_outputs) cdef SIZE_t k = 0 cdef SIZE_t sum_stride = 0 for k in range(n_outputs): self.n_classes[k] = n_classes[k] if n_classes[k] > sum_stride: sum_stride = n_classes[k] self.sum_stride = sum_stride cdef SIZE_t n_elements = n_outputs * sum_stride self.sum_total = <double*> calloc(n_elements, sizeof(double)) self.sum_left = <double*> calloc(n_elements, sizeof(double)) self.sum_right = <double*> calloc(n_elements, sizeof(double)) if (self.sum_total == NULL or self.sum_left == NULL or self.sum_right == NULL): raise MemoryError() def __dealloc__(self): free(self.n_classes) def __reduce__(self): return (type(self), (self.n_outputs, sizet_ptr_to_ndarray(self.n_classes, self.n_outputs)), self.__getstate__()) cdef int init(self, const ut.DOUBLE_t[:, ::1] y, ut.DOUBLE_t* sample_weight, double weighted_n_samples, ut.SIZE_t* samples, ut.SIZE_t start, ut.SIZE_t end) nogil except -1: self.y = y self.sample_weight = sample_weight self.samples = samples self.start = start self.end = end self.n_node_samples = end - start self.weighted_n_samples = weighted_n_samples self.weighted_n_node_samples = 0.0 cdef SIZE_t* n_classes = self.n_classes cdef double* sum_total = self.sum_total cdef SIZE_t i cdef SIZE_t p cdef SIZE_t k cdef SIZE_t c cdef DOUBLE_t w = 1.0 cdef SIZE_t offset = 0 for k in range(self.n_outputs): memset(sum_total + offset, 0, n_classes[k] * sizeof(double)) offset += self.sum_stride for p in range(start, end): i = samples[p] if sample_weight!= NULL: w = sample_weight[i] for k in range(self.n_outputs): c = <SIZE_t> self.y[i, k] sum_total[k * self.sum_stride + c] += w self.weighted_n_node_samples += w self.reset() return 0 cdef int reset(self) nogil except -1: self.pos = self.start self.weighted_n_left = 0.0 self.weighted_n_right = self.weighted_n_node_samples cdef double* sum_total = self.sum_total cdef double* sum_left = self.sum_left cdef double* sum_right = self.sum_right cdef SIZE_t* n_classes = self.n_classes cdef SIZE_t k for k in range(self.n_outputs): memset(sum_left, 0, n_classes[k] * sizeof(double)) memcpy(sum_right, sum_total, n_classes[k] * sizeof(double)) sum_total += self.sum_stride sum_left
Cython
+= self.sum_stride sum_right += self.sum_stride return 0 cdef int reverse_reset(self) nogil except -1: """Reset the criterion at pos=end Returns -1 in case of failure to allocate memory (and raise MemoryError) or 0 otherwise. """ self.pos = self.end self.weighted_n_left = self.weighted_n_node_samples self.weighted_n_right = 0.0 cdef double* sum_total = self.sum_total cdef double* sum_left = self.sum_left cdef double* sum_right = self.sum_right cdef SIZE_t* n_classes = self.n_classes cdef SIZE_t k for k in range(self.n_outputs): memset(sum_right, 0, n_classes[k] * sizeof(double)) memcpy(sum_left, sum_total, n_classes[k] * sizeof(double)) sum_total += self.sum_stride sum_left += self.sum_stride sum_right += self.sum_stride return 0 cdef int update(self, ut.SIZE_t new_pos) nogil except -1: cdef SIZE_t pos = self.pos cdef SIZE_t end = self.end cdef double* sum_left = self.sum_left cdef double* sum_right = self.sum_right cdef double* sum_total = self.sum_total cdef SIZE_t* n_classes = self.n_classes cdef SIZE_t* samples = self.samples cdef DOUBLE_t* sample_weight = self.sample_weight cdef SIZE_t i cdef SIZE_t p cdef SIZE_t k cdef SIZE_t c cdef SIZE_t label_index cdef DOUBLE_t w = 1.0 if (new_pos - pos) <= (end - new_pos): for p in range(pos, new_pos): i = samples[p] if sample_weight!= NULL: w = sample_weight[i] for k in range(self.n_outputs): label_index = k * self.sum_stride + <SIZE_t> self.y[i, k] sum_left[label_index] += w self.weighted_n_left += w else: self.reverse_reset() for p in range(end - 1, new_pos - 1, -1): i = samples[p] if sample_weight!= NULL: w = sample_weight[i] for k in range(self.n_outputs): label_index = k * self.sum_stride + <SIZE_t> self.y[i, k] sum_left[label_index] -= w self.weighted_n_left -= w # Update right part statistics self.weighted_n_right = self.weighted_n_node_samples - self.weighted_n_left for k in range(self.n_outputs): for c in range(n_classes[k]): sum_right[c] = sum_total[c] - sum_left[c] sum_right += self.sum_stride sum_left += self.sum_stride sum_total += self.sum_stride self.pos = new_pos return 0 cdef double node_impurity(self) nogil: pass cdef void children_impurity(self, double* impurity_left, double* impurity_right) nogil: pass cdef void node_value(self, double* dest) nogil: cdef double* sum_total = self.sum_total cdef SIZE_t* n_classes = self.n_classes cdef SIZE_t k for k in range(self.n_outputs): memcpy(dest, sum_total, n_classes[k] * sizeof(double)) dest += self.sum_stride sum_total += self.sum_stride cdef class Entropy(ClassificationCriterion): cdef double node_impurity(self) nogil: cdef SIZE_t* n_classes = self.n_classes cdef double* sum_total = self.sum_total cdef double entropy = 0.0 cdef double count_k cdef SIZE_t k cdef SIZE_t c for k in range(self.n_outputs): for c in range(n_classes[k]): count_k = sum_total[c] if count_k > 0.0: count_k /= self.weighted_n_node_samples entropy -= count_k * log(count_k) sum_total += self.sum_stride return entropy / self.n_outputs cdef void children_impurity(self, double* impurity_left, double* impurity_right) nogil: cdef SIZE_t* n_classes = self.n_classes cdef double* sum_left = self.sum_left cdef double* sum_right = self.sum_right cdef double entropy_left = 0.0 cdef double entropy_right = 0.0 cdef double count_k cdef SIZE_t k cdef SIZE_t c for k in range(self.n_outputs): for c in range(n_classes[k]): count_k = sum_left[c] if count_k > 0.0: count_k /= self.weighted_n_left entropy_left -= count_k * log(count_k) count_k = sum_right[c] if count_k > 0.0: count_k /= self.weighted_n_right entropy_right -= count_k * log(count_k) sum_left += self.sum_stride sum_right += self.sum_stride impurity_left[0] = entropy_left / self.n_outputs impurity_right[0] = entropy_right / self.n_outputs cdef class Gini(ClassificationCriterion): cdef double node_impurity(self) nogil: cdef SIZE_t* n_classes = self.n_classes cdef double* sum_total = self.sum_total cdef double gini = 0.0 cdef double sq_count cdef double count_k cdef SIZE_t k cdef SIZE_t c for k in range(self.n_outputs): sq_count = 0.0 for c in range(n_classes[k]): count_k = sum_total[c] sq_count += count_k * count_k gini += 1.0 - sq_count / (self.weighted_n_node_samples * self.weighted_n_node_samples) sum_total += self.sum_stride return gini / self.n_outputs cdef void children_impurity(self, double* impurity_left, double* impurity_right) nogil: cdef SIZE_t* n_classes = self.n_classes cdef double* sum_left = self.sum_left cdef double* sum_right = self.sum_right cdef double gini_left = 0.0 cdef double gini_right = 0.0 cdef double sq_count_left cdef double sq_count_right cdef double count_k cdef SIZE_t k cdef SIZE_t c for k in range(self.n_outputs): sq_count_left = 0.0 sq_count_right = 0.0 for c in range(n_classes[k]): count_k = sum_left[c] sq_count_left += count_k * count_k count_k = sum_right[c] sq_count_right += count_k * count_k gini_left += 1.0 - sq_count_left/(self.weighted_n_left * self.weighted_n_left) gini_right += 1.0 - sq_count_right/(self.weighted_n_right * self.weighted_n_right) sum_left += self.sum_stride sum_right += self.sum_stride impurity_left[0] = gini_left/self.n_outputs impurity_right[0] = gini_right/self.n_outputs <|end_of_text|> #??? Surface #??? Boundary Conditions # Statistical Output: make different grouops of variables for Mean Var and Second Order Momenta import time import numpy as np cimport numpy as np import os # for self.outpath from Grid cimport Grid cimport TimeStepping cimport ReferenceState from Initialization import InitializationFactory cimport PrognosticVariables cimport MomentumAdvection cimport ScalarAdvection # from SGS_variante2 import SGSFactory from SGS import SGSFactory cimport MomentumDiffusion cimport ScalarDiffusion cimport NetCDFIO from Thermodynamics import ThermodynamicsFactory from TurbulenceScheme import TurbulenceFactory # cimport TurbulenceScheme class Simulation1d: def __init__(self, namelist): self.Gr = Grid(namelist) self.TS = TimeStepping.TimeStepping() self.Ref = ReferenceState.ReferenceState(self.Gr) self.Init = InitializationFactory(namelist) self.PV = PrognosticVariables.PrognosticVariables(self.Gr) self.M1 = PrognosticVariables.MeanVariables(self.Gr) self.M2 = PrognosticVariables.SecondOrderMomenta(self.Gr) self.Th = ThermodynamicsFactory(namelist) self.MA = MomentumAdvection.MomentumAdvection(namelist) self.SA = ScalarAdvection.ScalarAdvection(namelist) self.Turb = TurbulenceFactory(namelist) self.SGS = SGSFactory(namelist) self.MD = MomentumDiffusion.MomentumDiffusion() self.SD = ScalarDiffusion.ScalarDiffusion(nam
Cython
elist) self.StatsIO = NetCDFIO.NetCDFIO_Stats() return def initialize(self, namelist): uuid = str(namelist['meta']['uuid']) self.outpath = str(os.path.join(namelist['output']['output_root'] + 'Output.' + namelist['meta']['simname'] + '.' + uuid[-5:])) self.StatsIO.initialize(namelist, self.Gr) self.TS.initialize(namelist) # Add new prognostic variables self.PV.add_variable('phi','m/s', "velocity") # self.PV.add_variable('phi','m/s', "sym", "velocity") # cdef: # PV_ = self.PV # print(PV_.nv) #not accessible (also not as # print(self.PV.nv)) self.M1.add_variable('u','m/s', "velocity") self.M1.add_variable('v','m/s', "velocity") self.M1.add_variable('w','m/s', "velocity") self.M2.add_variable('uu', '(m/s)^2', "velocity") self.M2.add_variable('vv', '(m/s)^2', "velocity") self.M2.add_variable('wu', '(m/s)^2', "velocity") self.M2.add_variable('wv', '(m/s)^2', "velocity") self.M2.add_variable('ww', '(m/s)^2', "velocity") self.M2.add_variable('pu', '(m/s)^2', "velocity") self.M2.add_variable('pv', '(m/s)^2', "velocity") self.M2.add_variable('pw', '(m/s)^2', "velocity") # AuxillaryVariables(namelist, self.PV, self.DV, self.Pa) self.Th.initialize(self.Gr, self.M1, self.M2) # adding prognostic thermodynamic variables self.PV.initialize(self.Gr, self.StatsIO) self.M1.initialize(self.Gr, self.StatsIO) self.M2.initialize(self.Gr, self.StatsIO) self.Init.initialize_reference(self.Gr, self.Ref, self.StatsIO) self.Init.initialize_profiles(self.Gr, self.Ref, self.M1, self.M2, self.StatsIO) self.MA.initialize(self.Gr, self.M1) self.SA.initialize(self.Gr, self.M1) self.SGS.initialize(self.Gr, self.M1, self.M2) self.MD.initialize(self.Gr, self.M1) self.SD.initialize(self.Gr, self.M1) print('Initialization completed!') # self.plot() return def run(self): print('Sim: start run') while(self.TS.t < self.TS.t_max): # (0) update auxiliary fields self.SGS.update(self.Gr) # --> compute diffusivity / viscosity for M1 and M2 (being the same at the moment) self.M1.plot('beginning of timestep', self.Gr, self.TS) # (1) update mean field (M1) tendencies # self.Th.update() self.MA.update_M1_2nd(self.Gr, self.Ref, self.M1) # self.MA.update(self.Gr, self.Ref, self.M1) self.SA.update_M1_2nd(self.Gr, self.Ref, self.M1) # self.SA.update(self.Gr, self.Ref, self.M1) self.MD.update(self.Gr, self.Ref, self.M1, self.SGS) self.SD.update(self.Gr, self.Ref, self.M1, self.SGS) # self.M1.plot('after SD update', self.Gr, self.TS) self.Turb.update_M1(self.Gr, self.M1, self.M2) # --> add turbulent flux divergence to mean field tendencies: dz<w'phi'> #??? surface fluxes??? (--> in SGS or MD/SD scheme?) #??? update boundary conditions??? #??? pressure solver??? self.M1.plot('without tendency update', self.Gr, self.TS) # (2) update second order momenta (M2) tendencies # self.MA.update # --> self.MA.update_M2(): advection of M2 # self.SA.update # --> self.SA.update_M2(): advection of M2 # self.MD.update() # self.SD.update() # self.Turb.update_M2() # update higher order terms in M2 tendencies print('Sim: Turb update') self.Turb.update(self.Gr, self.M1, self.M2) # Turb.advect_M2_local(Gr, M1, M2) #??? update boundary conditions??? #??? pressure correlations??? #??? surface fluxes??? (--> in SGS or MD/SD scheme?) self.M1.update(self.Gr, self.TS) # --> updating values by adding tendencies self.M2.update(self.Gr, self.TS) # --> updating values by adding tendencies self.TS.update() return # def plot(self): # # plt.figure(1) # plt.plot() # plt.title(var + ','+ message) # # plt.show() # plt.savefig(self.outpath + '/' + var + '_' + message + '.png') # plt.close() def io(self): print('calling io') cdef: double stats_dt = 0.0 double condstats_dt = 0.0 double restart_dt = 0.0 double vis_dt = 0.0 double min_dt = 0.0 if self.TS.t > 0 and self.TS.rk_step == self.TS.n_rk_steps - 1: print('doing io:'+ str(self.TS.t) + ','+ str(self.TS.rk_step)) # Adjust time step for output if necessary stats_dt = self.StatsIO.last_output_time + self.StatsIO.frequency - self.TS.t condstats_dt = self.CondStatsIO.last_output_time + self.CondStatsIO.frequency - self.TS.t restart_dt = self.Restart.last_restart_time + self.Restart.frequency - self.TS.t vis_dt = self.VO.last_vis_time + self.VO.frequency - self.TS.t # dts = np.array([fields_dt, stats_dt, condstats_dt, restart_dt, vis_dt, # self.TS.dt, self.TS.dt_max, self.VO.frequency, self.Restart.frequency, # self.StatsIO.frequency, self.CondStatsIO.frequency, self.FieldsIO.frequency]) dts = np.array([stats_dt, condstats_dt, restart_dt, vis_dt, self.TS.dt, self.TS.dt_max, self.VO.frequency, self.Restart.frequency, self.StatsIO.frequency, self.CondStatsIO.frequency]) self.TS.dt = np.amin(dts[dts > 0.0]) # If time to ouput stats do output # self.Pa.root_print('StatsIO freq:'+ str(self.StatsIO.frequency) + ','+ str(self.StatsIO.last_output_time) + ','+ str(self.TS.t)) if self.StatsIO.last_output_time + self.StatsIO.frequency == self.TS.t: #if self.StatsIO.last_output_time + self.StatsIO.frequency == self.TS.t or self.StatsIO.last_output_time + self.StatsIO.frequency + 10.0 == self.TS.t: #if (1==1): self.Pa.root_print('Doing StatsIO') self.StatsIO.last_output_time = self.TS.t self.StatsIO.open_files(self.Pa) self.StatsIO.write_simulation_time(self.TS.t, self.Pa) self.Micro.stats_io(self.Gr, self.Ref, self.PV, self.DV, self.StatsIO, self.Pa) # do Micro.stats_io prior to DV.stats_io to get sedimentation velocity only in output self.PV.stats_io(self.Gr, self.Ref, self.StatsIO, self.Pa) self.DV.stats_io(self.Gr, self.StatsIO, self.Pa) self.Fo.stats_io(self.Gr, self.Ref, self.PV, self.DV, self.StatsIO, self.Pa) self.Th.stats_io(self.Gr, self.Ref, self.PV, self.DV, self.StatsIO, self.Pa) self.Sur.stats_io(self.Gr, self.StatsIO, self.Pa) self.SGS.stats_io(self.Gr,self.DV,self.PV,self.Ke,self.StatsIO,self.Pa) self.SA.stats_io(self.Gr, self.PV, self.StatsIO, self.Pa) self.MA.stats_io(self.Gr, self.PV, self.StatsIO, self.Pa) self.SD.stats_io(self.Gr, self.Ref,self.PV, self.DV, self.StatsIO, self.Pa) self.MD.stats_io(self.Gr, self.PV, self.DV, self.Ke, self.StatsIO, self.Pa) self.Ke.stats_io(self.Gr,self.Ref,self.PV,self.StatsIO,self.Pa) self.Tr.stats_io
Cython
( self.Gr, self.StatsIO, self.Pa) self.Ra.stats_io(self.Gr, self.DV, self.StatsIO, self.Pa) self.Budg.stats_io(self.Sur, self.StatsIO, self.Pa) self.Aux.stats_io(self.Gr, self.Ref, self.PV, self.DV, self.MA, self.MD, self.StatsIO, self.Pa) self.StatsIO.close_files(self.Pa) self.Pa.root_print('Finished Doing StatsIO') return <|end_of_text|>cimport cython from cpython.object cimport PyObject from cpython.dict cimport PyDict_GetItem, PyDict_SetItem from glycan_profiling._c.tandem.spectrum_match cimport ScoreSet DEF NUM_SCORES = 15 cdef class ModelScoreSet(ScoreSet): def __init__(self, glycopeptide_score=0., peptide_score=0., glycan_score=0., glycan_coverage=0., stub_glycopeptide_intensity_utilization=0., oxonium_ion_intensity_utilization=0., n_stub_glycopeptide_matches=0, peptide_coverage=0.0, total_signal_utilization=0.0, peptide_correlation=0.0, peptide_backbone_count=0, glycan_correlation=0.0, peptide_reliability_total=0.0, glycan_reliability_total=0.0, partition_label=0): self.glycopeptide_score = glycopeptide_score self.peptide_score = peptide_score self.glycan_score = glycan_score self.glycan_coverage = glycan_coverage self.stub_glycopeptide_intensity_utilization = stub_glycopeptide_intensity_utilization self.oxonium_ion_intensity_utilization = oxonium_ion_intensity_utilization self.n_stub_glycopeptide_matches = n_stub_glycopeptide_matches self.peptide_coverage = peptide_coverage self.total_signal_utilization = total_signal_utilization self.peptide_correlation = peptide_correlation self.peptide_backbone_count = peptide_backbone_count self.glycan_correlation = glycan_correlation self.peptide_reliability_total = peptide_reliability_total self.glycan_reliability_total = glycan_reliability_total self.partition_label = partition_label cpdef bytearray pack(self): cdef: float[NUM_SCORES] data data[0] = self.glycopeptide_score data[1] = self.peptide_score data[2] = self.glycan_score data[3] = self.glycan_coverage data[4] = self.stub_glycopeptide_intensity_utilization data[5] = self.oxonium_ion_intensity_utilization data[6] = <int>self.n_stub_glycopeptide_matches data[7] = self.peptide_coverage data[8] = self.total_signal_utilization data[9] = self.peptide_correlation data[10] = <int>self.peptide_backbone_count data[11] = self.glycan_correlation data[12] = self.peptide_reliability_total data[13] = self.glycan_reliability_total data[14] = <int>self.partition_label return ((<char*>data)[:sizeof(float) * NUM_SCORES]) @staticmethod def unpack(bytearray data): cdef: float* buff char* temp int n_stub_glycopeptide_matches float stub_utilization float oxonium_utilization float peptide_coverage float peptide_correlation int peptide_backbone_count float total_signal_utilization float glycan_correlation float peptide_reliability_total float glycan_reliability_total int partition_label temp = data buff = <float*>(temp) stub_utilization = buff[4] oxonium_utilization = buff[5] n_stub_glycopeptide_matches = <int>buff[6] peptide_coverage = buff[7] total_signal_utilization = buff[8] peptide_correlation = buff[9] peptide_backbone_count = <int>buff[10] glycan_correlation = buff[11] peptide_reliability_total = buff[12] glycan_reliability_total = buff[13] partition_label = <int>buff[14] return ModelScoreSet._create_model_score_set( buff[0], buff[1], buff[2], buff[3], stub_utilization, oxonium_utilization, n_stub_glycopeptide_matches, peptide_coverage, total_signal_utilization, peptide_correlation, peptide_backbone_count, glycan_correlation, peptide_reliability_total, glycan_reliability_total, partition_label) @staticmethod cdef ModelScoreSet _create_model_score_set(float glycopeptide_score, float peptide_score, float glycan_score, float glycan_coverage, float stub_glycopeptide_intensity_utilization, float oxonium_ion_intensity_utilization, int n_stub_glycopeptide_matches, float peptide_coverage, float total_signal_utilization, float peptide_correlation, int peptide_backbone_count, float glycan_correlation, float peptide_reliability_total, float glycan_reliability_total, int partition_label): cdef: ModelScoreSet self self = ModelScoreSet.__new__(ModelScoreSet) self.glycopeptide_score = glycopeptide_score self.peptide_score = peptide_score self.glycan_score = glycan_score self.glycan_coverage = glycan_coverage self.stub_glycopeptide_intensity_utilization = stub_glycopeptide_intensity_utilization self.oxonium_ion_intensity_utilization = oxonium_ion_intensity_utilization self.n_stub_glycopeptide_matches = n_stub_glycopeptide_matches self.peptide_coverage = peptide_coverage self.total_signal_utilization = total_signal_utilization self.peptide_correlation = peptide_correlation self.peptide_backbone_count = peptide_backbone_count self.glycan_correlation = glycan_correlation self.peptide_reliability_total = peptide_reliability_total self.glycan_reliability_total = glycan_reliability_total self.partition_label = partition_label return self def __repr__(self): template = ( "{self.__class__.__name__}({self.glycopeptide_score}, {self.peptide_score}," " {self.glycan_score}, {self.glycan_coverage}, {self.stub_glycopeptide_intensity_utilization}," " {self.oxonium_ion_intensity_utilization}, {self.n_stub_glycopeptide_matches}, {self.peptide_coverage}," " {self.total_signal_utilization}, {self.peptide_correlation}, {self.peptide_backbone_count}," " {self.glycan_correlation}, {self.peptide_reliability_total}, {self.glycan_reliability_total}," " {self.partition_label}" ")") return template.format(self=self) def __len__(self): return NUM_SCORES def __getitem__(self, int i): if i == 0: return self.glycopeptide_score elif i == 1: return self.peptide_score elif i == 2: return self.glycan_score elif i == 3: return self.glycan_coverage elif i == 4: return self.stub_glycopeptide_intensity_utilization elif i == 5: return self.oxonium_ion_intensity_utilization elif i == 6: return self.n_stub_glycopeptide_matches elif i == 7: return self.peptide_coverage elif i == 8: return self.total_signal_utilization elif i == 9: return self.peptide_correlation elif i == 10: return self.peptide_backbone_count elif i == 11: return self.glycan_correlation elif i == 12: return self.peptide_reliability_total elif i == 13: return self.glycan_reliability_total elif i == 14: return self.partition_label else: raise IndexError(i) def __iter__(self): yield self.glycopeptide_score yield self.peptide_score yield self.glycan_score yield self.glycan_coverage yield self.stub_glycopeptide_intensity_utilization yield self.oxonium_ion_intensity_utilization yield self.n_stub_glycopeptide_matches yield self.peptide_coverage yield self.total_signal_utilization yield self.peptide_correlation yield self.peptide_backbone_count yield self.glycan_correlation yield self.peptide_reliability_total yield self.glycan_reliability_total yield self.partition_label def __reduce__(self): return self.__class__, (self.glycopeptide_score, self.peptide_score, self.glycan_score, self.glycan_coverage, self.stub_glycopeptide_intensity_utilization, self.oxonium_
Cython
ion_intensity_utilization, self.n_stub_glycopeptide_matches, self.peptide_coverage, self.total_signal_utilization, self.peptide_correlation, self.peptide_backbone_count, self.glycan_correlation, self.peptide_reliability_total, self.glycan_reliability_total, self.partition_label) @classmethod def from_spectrum_matcher(cls, match): stub_utilization, stub_count, peptide_count, total_signal_utilization = match.count_peptide_Y_ion_utilization() oxonium_utilization = match.oxonium_ion_utilization() return cls(match.score, match.peptide_score(), match.glycan_score(), match.glycan_coverage(), stub_utilization, oxonium_utilization, stub_count, match.peptide_coverage(), total_signal_utilization, match.peptide_correlation(), peptide_count, match.glycan_correlation(), match.peptide_reliability().sum(), match.glycan_reliability().sum(), match.partition_key, ) @classmethod def field_names(cls): cdef list field_names = super(ModelScoreSet, cls).field_names() field_names.extend([ "peptide_correlation", "peptide_backbone_count", "glycan_correlation", "peptide_reliability_total", "glycan_reliability_total", "partition_label" ]) return field_names cpdef list values(self): cdef list values = super(ModelScoreSet, self).values() values.append(self.peptide_correlation) values.append(self.peptide_backbone_count) values.append(self.glycan_correlation) values.append(self.peptide_reliability_total) values.append(self.glycan_reliability_total) values.append(self.partition_label) return values<|end_of_text|># mode: error cimport cython @cython.autotestdict(False) def foo(): pass _ERRORS = u""" 5:0: The autotestdict compiler directive is not allowed in function scope """ <|end_of_text|>#cython: language_level=3 from pippi cimport defaults from pippi cimport dsp from pippi cimport fx from pippi cimport grains from pippi cimport interpolation from pippi cimport soundbuffer from pippi cimport soundpipe from pippi cimport wavetables <|end_of_text|>################################################ # WARNING! # # This file has been auto-generated by xdress. # # Do not modify!!! # # # # # # Come on, guys. I mean it! # ################################################ cimport _cproblem cimport dtypes cimport numpy as np cimport stlcontainers from cyclopts cimport cpp_exchange_instance from libcpp.map cimport map as cpp_map from libcpp.vector cimport vector as cpp_vector cdef class ExArc: cdef void * _inst cdef public bint _free_inst cdef public np.ndarray _ucaps cdef public np.ndarray _vcaps pass cdef class ExGroup: cdef void * _inst cdef public bint _free_inst cdef public np.ndarray _cap_dirs cdef public np.ndarray _caps pass cdef class ExNode: cdef void * _inst cdef public bint _free_inst pass cdef class ExSolution(_cproblem.ProbSolution): cdef public stlcontainers._MapIntDouble _flows pass {'cpppxd_footer': '', 'pyx_header': '', 'pxd_header': '', 'pxd_footer': '', 'cpppxd_header': '', 'pyx_footer': ''}<|end_of_text|># imagecodecs/_blosc.pyx # distutils: language = c # cython: language_level = 3 # cython: boundscheck=False # cython: wraparound=False # cython: cdivision=True # cython: nonecheck=False # Copyright (c) 2019-2023, Christoph Gohlke # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Blosc codec for the imagecodecs package.""" __version__ = '2023.3.16' include '_shared.pxi' from blosc cimport * class BLOSC: """BLOSC codec constants.""" available = True class SHUFFLE(enum.IntEnum): """BLOSC codec shuffle types.""" NOSHUFFLE = BLOSC_NOSHUFFLE SHUFFLE = BLOSC_SHUFFLE BITSHUFFLE = BLOSC_BITSHUFFLE class COMPRESSOR(enum.IntEnum): """BLOSC codec compressors.""" BLOSCLZ = BLOSC_BLOSCLZ LZ4 = BLOSC_LZ4 LZ4HC = BLOSC_LZ4HC SNAPPY = BLOSC_SNAPPY ZLIB = BLOSC_ZLIB ZSTD = BLOSC_ZSTD class BloscError(RuntimeError): """BLOSC codec exceptions.""" def blosc_version(): """Return C-Blosc library version string.""" return 'c-blosc'+ BLOSC_VERSION_STRING.decode() def blosc_check(data): """Return whether data is BLOSC encoded.""" def blosc_encode( data, level=None, compressor=None, shuffle=None, typesize=None, blocksize=None, numthreads=None, out=None ): """Return BLOSC encoded data.""" cdef: const uint8_t[::1] src const uint8_t[::1] dst # must be const to write to bytes ssize_t srcsize ssize_t dstsize size_t cblocksize size_t ctypesize char* compname = NULL int clevel = _default_value(level, 9, 0, 9) int numinternalthreads = <int> _default_threads(numthreads) int doshuffle int ret if data is out: raise ValueError('cannot encode in-place') try: src = data # common case: contiguous bytes ctypesize = 1 except Exception: view = memoryview(data) if view.contiguous: src = view.cast('B') # view as bytes else: src = view.tobytes() # copy non-contiguous ctypesize = view.itemsize srcsize = src.size if srcsize > 2147483647 - BLOSC_MAX_OVERHEAD: raise ValueError('data size larger than 2 GB') if blocksize is None: cblocksize = 0 else: cblocksize = blocksize if compressor is None: compname = BLOSC_BLOSCLZ_COMPNAME elif compressor == BLOSC_BLOSCLZ: compname = BLOSC_BLOSCLZ_COMPNAME elif compressor == BLOSC_LZ4: compname = BLOSC_LZ4_COMPNAME elif compressor == BLOSC_LZ4HC: compname = BLOSC_LZ4HC_COMPNAME elif compressor == BLOSC_SNAPPY: compname = BLOSC_SNAPPY_COMPNAME elif compressor == BLOSC_ZLIB: compname = BLOSC_ZLIB_COMPNAME elif compressor == BLOSC_ZSTD: compname = BLOSC_ZSTD_COMPNAME else: compressor = compressor.lower().encode() compname = compressor if shuffle is None: doshuffle = BLOSC_SHUFFLE elif not shuffle: doshuffle = BLOSC_NOSHUFFLE elif shuffle == BLOSC_NOSHUFFLE or shuffle == 'noshuffle': doshuffle = BLOSC_NOSHUFFLE elif shuffle == BLOSC_BITSHUFFLE or shuffle == 'bitshuffle': doshuffle = B
Cython
LOSC_BITSHUFFLE else: doshuffle = BLOSC_SHUFFLE out, dstsize, outgiven, outtype = _parse_output(out) if out is None: if dstsize < 0: dstsize = srcsize + BLOSC_MAX_OVERHEAD if dstsize < 17: dstsize = 17 out = _create_output(outtype, dstsize) dst = out dstsize = dst.size with nogil: if numinternalthreads == 0: numinternalthreads = blosc_get_nthreads() ret = blosc_compress_ctx( clevel, doshuffle, ctypesize, <size_t> srcsize, <const void*> &src[0], <void*> &dst[0], <size_t> dstsize, <const char*> compname, cblocksize, numinternalthreads ) if ret <= 0: raise BloscError(f'blosc_compress_ctx returned {ret}') del dst return _return_output(out, dstsize, ret, outgiven) def blosc_decode(data, numthreads=None, out=None): """Return decoded BLOSC data.""" cdef: const uint8_t[::1] src = data const uint8_t[::1] dst # must be const to write to bytes ssize_t dstsize ssize_t srcsize = src.size size_t nbytes, cbytes, blocksize int numinternalthreads = <int> _default_threads(numthreads) int ret if data is out: raise ValueError('cannot decode in-place') if src.size > 2147483647: raise ValueError('data size larger than 2 GB') out, dstsize, outgiven, outtype = _parse_output(out) if out is None: if dstsize < 0: blosc_cbuffer_sizes( <const void*> &src[0], &nbytes, &cbytes, &blocksize ) if nbytes == 0 and blocksize == 0: raise BloscError( 'blosc_cbuffer_sizes returned invalid blosc data' ) dstsize = <ssize_t> nbytes out = _create_output(outtype, dstsize) dst = out dstsize = dst.size if dstsize > 2147483647: raise ValueError('output size larger than 2 GB') with nogil: if numinternalthreads == 0: numinternalthreads = blosc_get_nthreads() ret = blosc_decompress_ctx( <const void*> &src[0], <void*> &dst[0], dstsize, numinternalthreads ) if ret < 0: raise BloscError(f'blosc_decompress_ctx returned {ret}') del dst return _return_output(out, dstsize, ret, outgiven) <|end_of_text|>import check_line def get_val(fileout,param,num,ini,fin,from_stt): with open(fileout) as fp: for cnt, line in enumerate(fp): if cnt == check_line(fileout,param,num,from_stt): return line[ini:fin] <|end_of_text|># -*- mode:cython -*- cdef extern from "Python.h": ctypedef int Py_ssize_t int PyObject_AsCharBuffer(object obj, char **buffer, Py_ssize_t *buffer_len) except -1 int PyObject_AsReadBuffer(object obj, char **buffer, Py_ssize_t *buffer_len) except -1 int PyObject_CheckReadBuffer(object o) int PyObject_AsWriteBuffer(object obj, char **buffer, Py_ssize_t *buffer_len) except -1 object PyBytes_FromStringAndSize(char *v, Py_ssize_t len) void *PyMem_Malloc(int) void PyMem_Free(void *p) cdef extern from "string.h": ctypedef int size_t void *memcpy(void *dest, void *src, size_t n) cdef extern from "math.h": double log(double x) double log1p(double x) double sqrt(double x) double fabs(double x) double pow(double x, double y) double M_LN2 cdef extern from "math_stuff.h": double inverse_erf(double x) import numpy cimport numpy cimport cython from libcpp.vector cimport vector from libcpp.algorithm cimport sort cdef extern from "cxx_gram.h": ctypedef unsigned int coordinate_t ctypedef int *const_int_ptr "const int *" struct c_CItemI1 "CountItem<1,int> ": int *addr int item ctypedef vector[c_CItemI1] c_VecI1 "std::vector<CountItem<1,int> >" ctypedef vector[c_CItemI1].iterator c_VecIterI1 "std::vector<CountItem<1,int> >::iterator" struct c_SmallerAddrI1 "smallerAddr<1,int> ": pass c_CItemI1 c_VecI1_get_pointer "get_pointer" (c_VecI1 *v, size_t k) void c_compactifyI1 "compactify"(c_VecI1 *v) int c_get_countI1 "get_count_v"(c_VecI1 *v, c_CItemI1) struct c_CItemI2 "CountItem<2,int> ": int *addr int item ctypedef vector[c_CItemI2] c_VecI2 "std::vector<CountItem<2,int> >" ctypedef vector[c_CItemI2].iterator c_VecIterI2 "std::vector<CountItem<2,int> >::iterator" struct c_SmallerAddrI2 "smallerAddr<2,int> ": pass c_CItemI2 c_VecI2_get_pointer "get_pointer" (c_VecI2 *v, size_t k) void c_compactifyI2 "compactify"(c_VecI2 *v) int c_get_countI2 "get_count_v"(c_VecI2 *v, c_CItemI2) struct c_CItemI3 "CountItem<3,int> ": int *addr int item ctypedef vector[c_CItemI3] c_VecI3 "std::vector<CountItem<3,int> >" ctypedef vector[c_CItemI3].iterator c_VecIterI3 "std::vector<CountItem<3,int> >::iterator" struct c_SmallerAddrI3 "smallerAddr<3,int> ": pass c_CItemI3 c_VecI3_get_pointer "get_pointer" (c_VecI3 *v, size_t k) void c_compactifyI3 "compactify"(c_VecI3 *v) int c_get_countI3 "get_count_v"(c_VecI3 *v, c_CItemI3) struct c_CSRMatrixI "CSRMatrix<int>": coordinate_t num_rows int *offsets coordinate_t *rightColumns int *values void write_binary(int fileno) c_CSRMatrixI *transpose() void compute_left_marginals(int *vec) void compute_right_marginals(int *vec) void compute_right_squared_marginals(int *vec) c_CSRMatrixI *new_CSRMatrixI "new CSRMatrix<int>" () c_CSRMatrixI *vec2csrI "vec2csr"(c_VecI2 *v) c_CSRMatrixI *add_csrI "add_csr"(c_CSRMatrixI *a,c_CSRMatrixI *b) int csrFromBufferI "csrFromBuffer"(void *buf, c_CSRMatrixI *m) c_CSRMatrixI *new_csrI "new_csr<int>"(int numRows, int numNonZero) void print_csrI "print_csr<int>"(c_CSRMatrixI *v) ctypedef float *const_float_ptr "const float *" struct c_CItemF1 "CountItem<1,float> ": int *addr float item ctypedef vector[c_CItemF1] c_VecF1 "std::vector<CountItem<1,float> >" ctypedef vector[c_CItemF1].iterator c_VecIterF1 "std::vector<CountItem<1,float> >::iterator" struct c_SmallerAddrF1 "smallerAddr<1,float> ": pass c_CItemF1 c_VecF1_get_pointer "get_pointer" (c_VecF1 *v, size_t k) void c_compactifyF1 "compactify"(c_VecF1 *v) float c_get_countF1 "get_count_v"(c_VecF1 *v, c_CItemF1) struct c_CItemF2 "CountItem<2,float> ": int *addr float item ctypedef vector[c_CItemF2] c_VecF2 "std::vector<CountItem<
Cython