repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
chengduoZH/Paddle
python/paddle/dataset/uci_housing.py
2
4214
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ UCI Housing dataset. This module will download dataset from https://archive.ics.uci.edu/ml/machine-learning-databases/housing/ and parse training set and test set into paddle reader creators. """ from __future__ import print_function import numpy as np import six import tempfile import tarfile import os import paddle.dataset.common __all__ = ['train', 'test'] URL = 'http://paddlemodels.bj.bcebos.com/uci_housing/housing.data' MD5 = 'd4accdce7a25600298819f8e28e8d593' feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT' ] UCI_TRAIN_DATA = None UCI_TEST_DATA = None FLUID_URL_MODEL = 'https://github.com/PaddlePaddle/book/raw/develop/01.fit_a_line/fluid/fit_a_line.fluid.tar' FLUID_MD5_MODEL = '6e6dd637ccd5993961f68bfbde46090b' def feature_range(maximums, minimums): import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt fig, ax = plt.subplots() feature_num = len(maximums) ax.bar(list(range(feature_num)), maximums - minimums, color='r', align='center') ax.set_title('feature scale') plt.xticks(list(range(feature_num)), feature_names) plt.xlim([-1, feature_num]) fig.set_figheight(6) fig.set_figwidth(10) if not os.path.exists('./image'): os.makedirs('./image') fig.savefig('image/ranges.png', dpi=48) plt.close(fig) def load_data(filename, feature_num=14, ratio=0.8): global UCI_TRAIN_DATA, UCI_TEST_DATA if UCI_TRAIN_DATA is not None and UCI_TEST_DATA is not None: return data = np.fromfile(filename, sep=' ') data = data.reshape(data.shape[0] // feature_num, feature_num) maximums, minimums, avgs = data.max(axis=0), data.min(axis=0), data.sum( axis=0) / data.shape[0] feature_range(maximums[:-1], minimums[:-1]) for i in six.moves.range(feature_num - 1): data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i]) offset = int(data.shape[0] * ratio) UCI_TRAIN_DATA = data[:offset] UCI_TEST_DATA = data[offset:] def train(): """ UCI_HOUSING training set creator. It returns a reader creator, each sample in the reader is features after normalization and price number. :return: Training reader creator :rtype: callable """ global UCI_TRAIN_DATA load_data(paddle.dataset.common.download(URL, 'uci_housing', MD5)) def reader(): for d in UCI_TRAIN_DATA: yield d[:-1], d[-1:] return reader def test(): """ UCI_HOUSING test set creator. It returns a reader creator, each sample in the reader is features after normalization and price number. :return: Test reader creator :rtype: callable """ global UCI_TEST_DATA load_data(paddle.dataset.common.download(URL, 'uci_housing', MD5)) def reader(): for d in UCI_TEST_DATA: yield d[:-1], d[-1:] return reader def fluid_model(): parameter_tar = paddle.dataset.common.download( FLUID_URL_MODEL, 'uci_housing', FLUID_MD5_MODEL, 'fit_a_line.fluid.tar') tar = tarfile.TarFile(parameter_tar, mode='r') dirpath = tempfile.mkdtemp() tar.extractall(path=dirpath) return dirpath def predict_reader(): """ It returns just one tuple data to do inference. :return: one tuple data :rtype: tuple """ global UCI_TEST_DATA load_data(paddle.dataset.common.download(URL, 'uci_housing', MD5)) return (UCI_TEST_DATA[0][:-1], ) def fetch(): paddle.dataset.common.download(URL, 'uci_housing', MD5)
apache-2.0
trankmichael/scipy
scipy/interpolate/interpolate.py
25
80287
""" Classes for interpolating values. """ from __future__ import division, print_function, absolute_import __all__ = ['interp1d', 'interp2d', 'spline', 'spleval', 'splmake', 'spltopp', 'ppform', 'lagrange', 'PPoly', 'BPoly', 'RegularGridInterpolator', 'interpn'] import itertools from numpy import (shape, sometrue, array, transpose, searchsorted, ones, logical_or, atleast_1d, atleast_2d, ravel, dot, poly1d, asarray, intp) import numpy as np import scipy.linalg import scipy.special as spec from scipy.special import comb import math import warnings import functools import operator from scipy._lib.six import xrange, integer_types from . import fitpack from . import dfitpack from . import _fitpack from .polyint import _Interpolator1D from . import _ppoly from .fitpack2 import RectBivariateSpline from .interpnd import _ndim_coords_from_arrays def reduce_sometrue(a): all = a while len(shape(all)) > 1: all = sometrue(all, axis=0) return all def prod(x): """Product of a list of numbers; ~40x faster vs np.prod for Python tuples""" if len(x) == 0: return 1 return functools.reduce(operator.mul, x) def lagrange(x, w): """ Return a Lagrange interpolating polynomial. Given two 1-D arrays `x` and `w,` returns the Lagrange interpolating polynomial through the points ``(x, w)``. Warning: This implementation is numerically unstable. Do not expect to be able to use more than about 20 points even if they are chosen optimally. Parameters ---------- x : array_like `x` represents the x-coordinates of a set of datapoints. w : array_like `w` represents the y-coordinates of a set of datapoints, i.e. f(`x`). Returns ------- lagrange : numpy.poly1d instance The Lagrange interpolating polynomial. """ M = len(x) p = poly1d(0.0) for j in xrange(M): pt = poly1d(w[j]) for k in xrange(M): if k == j: continue fac = x[j]-x[k] pt *= poly1d([1.0, -x[k]])/fac p += pt return p # !! Need to find argument for keeping initialize. If it isn't # !! found, get rid of it! class interp2d(object): """ interp2d(x, y, z, kind='linear', copy=True, bounds_error=False, fill_value=nan) Interpolate over a 2-D grid. `x`, `y` and `z` are arrays of values used to approximate some function f: ``z = f(x, y)``. This class returns a function whose call method uses spline interpolation to find the value of new points. If `x` and `y` represent a regular grid, consider using RectBivariateSpline. Methods ------- __call__ Parameters ---------- x, y : array_like Arrays defining the data point coordinates. If the points lie on a regular grid, `x` can specify the column coordinates and `y` the row coordinates, for example:: >>> x = [0,1,2]; y = [0,3]; z = [[1,2,3], [4,5,6]] Otherwise, `x` and `y` must specify the full coordinates for each point, for example:: >>> x = [0,1,2,0,1,2]; y = [0,0,0,3,3,3]; z = [1,2,3,4,5,6] If `x` and `y` are multi-dimensional, they are flattened before use. z : array_like The values of the function to interpolate at the data points. If `z` is a multi-dimensional array, it is flattened before use. The length of a flattened `z` array is either len(`x`)*len(`y`) if `x` and `y` specify the column and row coordinates or ``len(z) == len(x) == len(y)`` if `x` and `y` specify coordinates for each point. kind : {'linear', 'cubic', 'quintic'}, optional The kind of spline interpolation to use. Default is 'linear'. copy : bool, optional If True, the class makes internal copies of x, y and z. If False, references may be used. The default is to copy. bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data (x,y), a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If omitted (None), values outside the domain are extrapolated. Returns ------- values_x : ndarray, shape xi.shape[:-1] + values.shape[ndim:] Interpolated values at input coordinates. See Also -------- RectBivariateSpline : Much faster 2D interpolation if your input data is on a grid bisplrep, bisplev : Spline interpolation based on FITPACK BivariateSpline : a more recent wrapper of the FITPACK routines interp1d : one dimension version of this function Notes ----- The minimum number of data points required along the interpolation axis is ``(k+1)**2``, with k=1 for linear, k=3 for cubic and k=5 for quintic interpolation. The interpolator is constructed by `bisplrep`, with a smoothing factor of 0. If more control over smoothing is needed, `bisplrep` should be used directly. Examples -------- Construct a 2-D grid and interpolate on it: >>> from scipy import interpolate >>> x = np.arange(-5.01, 5.01, 0.25) >>> y = np.arange(-5.01, 5.01, 0.25) >>> xx, yy = np.meshgrid(x, y) >>> z = np.sin(xx**2+yy**2) >>> f = interpolate.interp2d(x, y, z, kind='cubic') Now use the obtained interpolation function and plot the result: >>> import matplotlib.pyplot as plt >>> xnew = np.arange(-5.01, 5.01, 1e-2) >>> ynew = np.arange(-5.01, 5.01, 1e-2) >>> znew = f(xnew, ynew) >>> plt.plot(x, z[0, :], 'ro-', xnew, znew[0, :], 'b-') >>> plt.show() """ def __init__(self, x, y, z, kind='linear', copy=True, bounds_error=False, fill_value=None): x = ravel(x) y = ravel(y) z = asarray(z) rectangular_grid = (z.size == len(x) * len(y)) if rectangular_grid: if z.ndim == 2: if z.shape != (len(y), len(x)): raise ValueError("When on a regular grid with x.size = m " "and y.size = n, if z.ndim == 2, then z " "must have shape (n, m)") if not np.all(x[1:] >= x[:-1]): j = np.argsort(x) x = x[j] z = z[:, j] if not np.all(y[1:] >= y[:-1]): j = np.argsort(y) y = y[j] z = z[j, :] z = ravel(z.T) else: z = ravel(z) if len(x) != len(y): raise ValueError( "x and y must have equal lengths for non rectangular grid") if len(z) != len(x): raise ValueError( "Invalid length for input z for non rectangular grid") try: kx = ky = {'linear': 1, 'cubic': 3, 'quintic': 5}[kind] except KeyError: raise ValueError("Unsupported interpolation type.") if not rectangular_grid: # TODO: surfit is really not meant for interpolation! self.tck = fitpack.bisplrep(x, y, z, kx=kx, ky=ky, s=0.0) else: nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth( x, y, z, None, None, None, None, kx=kx, ky=ky, s=0.0) self.tck = (tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)], kx, ky) self.bounds_error = bounds_error self.fill_value = fill_value self.x, self.y, self.z = [array(a, copy=copy) for a in (x, y, z)] self.x_min, self.x_max = np.amin(x), np.amax(x) self.y_min, self.y_max = np.amin(y), np.amax(y) def __call__(self, x, y, dx=0, dy=0, assume_sorted=False): """Interpolate the function. Parameters ---------- x : 1D array x-coordinates of the mesh on which to interpolate. y : 1D array y-coordinates of the mesh on which to interpolate. dx : int >= 0, < kx Order of partial derivatives in x. dy : int >= 0, < ky Order of partial derivatives in y. assume_sorted : bool, optional If False, values of `x` and `y` can be in any order and they are sorted first. If True, `x` and `y` have to be arrays of monotonically increasing values. Returns ------- z : 2D array with shape (len(y), len(x)) The interpolated values. """ x = atleast_1d(x) y = atleast_1d(y) if x.ndim != 1 or y.ndim != 1: raise ValueError("x and y should both be 1-D arrays") if not assume_sorted: x = np.sort(x) y = np.sort(y) if self.bounds_error or self.fill_value is not None: out_of_bounds_x = (x < self.x_min) | (x > self.x_max) out_of_bounds_y = (y < self.y_min) | (y > self.y_max) any_out_of_bounds_x = np.any(out_of_bounds_x) any_out_of_bounds_y = np.any(out_of_bounds_y) if self.bounds_error and (any_out_of_bounds_x or any_out_of_bounds_y): raise ValueError("Values out of range; x must be in %r, y in %r" % ((self.x_min, self.x_max), (self.y_min, self.y_max))) z = fitpack.bisplev(x, y, self.tck, dx, dy) z = atleast_2d(z) z = transpose(z) if self.fill_value is not None: if any_out_of_bounds_x: z[:, out_of_bounds_x] = self.fill_value if any_out_of_bounds_y: z[out_of_bounds_y, :] = self.fill_value if len(z) == 1: z = z[0] return array(z) class interp1d(_Interpolator1D): """ Interpolate a 1-D function. `x` and `y` are arrays of values used to approximate some function f: ``y = f(x)``. This class returns a function whose call method uses interpolation to find the value of new points. Parameters ---------- x : (N,) array_like A 1-D array of real values. y : (...,N,...) array_like A N-D array of real values. The length of `y` along the interpolation axis must be equal to the length of `x`. kind : str or int, optional Specifies the kind of interpolation as a string ('linear', 'nearest', 'zero', 'slinear', 'quadratic, 'cubic' where 'slinear', 'quadratic' and 'cubic' refer to a spline interpolation of first, second or third order) or as an integer specifying the order of the spline interpolator to use. Default is 'linear'. axis : int, optional Specifies the axis of `y` along which to interpolate. Interpolation defaults to the last axis of `y`. copy : bool, optional If True, the class makes internal copies of x and y. If False, references to `x` and `y` are used. The default is to copy. bounds_error : bool, optional If True, a ValueError is raised any time interpolation is attempted on a value outside of the range of x (where extrapolation is necessary). If False, out of bounds values are assigned `fill_value`. By default, an error is raised. fill_value : float, optional If provided, then this value will be used to fill in for requested points outside of the data range. If not provided, then the default is NaN. assume_sorted : bool, optional If False, values of `x` can be in any order and they are sorted first. If True, `x` has to be an array of monotonically increasing values. Methods ------- __call__ See Also -------- splrep, splev Spline interpolation/smoothing based on FITPACK. UnivariateSpline : An object-oriented wrapper of the FITPACK routines. interp2d : 2-D interpolation Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy import interpolate >>> x = np.arange(0, 10) >>> y = np.exp(-x/3.0) >>> f = interpolate.interp1d(x, y) >>> xnew = np.arange(0, 9, 0.1) >>> ynew = f(xnew) # use interpolation function returned by `interp1d` >>> plt.plot(x, y, 'o', xnew, ynew, '-') >>> plt.show() """ def __init__(self, x, y, kind='linear', axis=-1, copy=True, bounds_error=True, fill_value=np.nan, assume_sorted=False): """ Initialize a 1D linear interpolation class.""" _Interpolator1D.__init__(self, x, y, axis=axis) self.copy = copy self.bounds_error = bounds_error self.fill_value = fill_value if kind in ['zero', 'slinear', 'quadratic', 'cubic']: order = {'nearest': 0, 'zero': 0,'slinear': 1, 'quadratic': 2, 'cubic': 3}[kind] kind = 'spline' elif isinstance(kind, int): order = kind kind = 'spline' elif kind not in ('linear', 'nearest'): raise NotImplementedError("%s is unsupported: Use fitpack " "routines for other types." % kind) x = array(x, copy=self.copy) y = array(y, copy=self.copy) if not assume_sorted: ind = np.argsort(x) x = x[ind] y = np.take(y, ind, axis=axis) if x.ndim != 1: raise ValueError("the x array must have exactly one dimension.") if y.ndim == 0: raise ValueError("the y array must have at least one dimension.") # Force-cast y to a floating-point type, if it's not yet one if not issubclass(y.dtype.type, np.inexact): y = y.astype(np.float_) # Backward compatibility self.axis = axis % y.ndim # Interpolation goes internally along the first axis self.y = y y = self._reshape_yi(y) # Adjust to interpolation kind; store reference to *unbound* # interpolation methods, in order to avoid circular references to self # stored in the bound instance methods, and therefore delayed garbage # collection. See: http://docs.python.org/2/reference/datamodel.html if kind in ('linear', 'nearest'): # Make a "view" of the y array that is rotated to the interpolation # axis. minval = 2 if kind == 'nearest': self.x_bds = (x[1:] + x[:-1]) / 2.0 self._call = self.__class__._call_nearest else: self._call = self.__class__._call_linear else: minval = order + 1 self._spline = splmake(x, y, order=order) self._call = self.__class__._call_spline if len(x) < minval: raise ValueError("x and y arrays must have at " "least %d entries" % minval) self._kind = kind self.x = x self._y = y def _call_linear(self, x_new): # 2. Find where in the orignal data, the values to interpolate # would be inserted. # Note: If x_new[n] == x[m], then m is returned by searchsorted. x_new_indices = searchsorted(self.x, x_new) # 3. Clip x_new_indices so that they are within the range of # self.x indices and at least 1. Removes mis-interpolation # of x_new[n] = x[0] x_new_indices = x_new_indices.clip(1, len(self.x)-1).astype(int) # 4. Calculate the slope of regions that each x_new value falls in. lo = x_new_indices - 1 hi = x_new_indices x_lo = self.x[lo] x_hi = self.x[hi] y_lo = self._y[lo] y_hi = self._y[hi] # Note that the following two expressions rely on the specifics of the # broadcasting semantics. slope = (y_hi - y_lo) / (x_hi - x_lo)[:, None] # 5. Calculate the actual value for each entry in x_new. y_new = slope*(x_new - x_lo)[:, None] + y_lo return y_new def _call_nearest(self, x_new): """ Find nearest neighbour interpolated y_new = f(x_new).""" # 2. Find where in the averaged data the values to interpolate # would be inserted. # Note: use side='left' (right) to searchsorted() to define the # halfway point to be nearest to the left (right) neighbour x_new_indices = searchsorted(self.x_bds, x_new, side='left') # 3. Clip x_new_indices so that they are within the range of x indices. x_new_indices = x_new_indices.clip(0, len(self.x)-1).astype(intp) # 4. Calculate the actual value for each entry in x_new. y_new = self._y[x_new_indices] return y_new def _call_spline(self, x_new): return spleval(self._spline, x_new) def _evaluate(self, x_new): # 1. Handle values in x_new that are outside of x. Throw error, # or return a list of mask array indicating the outofbounds values. # The behavior is set by the bounds_error variable. x_new = asarray(x_new) out_of_bounds = self._check_bounds(x_new) y_new = self._call(self, x_new) if len(y_new) > 0: y_new[out_of_bounds] = self.fill_value return y_new def _check_bounds(self, x_new): """Check the inputs for being in the bounds of the interpolated data. Parameters ---------- x_new : array Returns ------- out_of_bounds : bool array The mask on x_new of values that are out of the bounds. """ # If self.bounds_error is True, we raise an error if any x_new values # fall outside the range of x. Otherwise, we return an array indicating # which values are outside the boundary region. below_bounds = x_new < self.x[0] above_bounds = x_new > self.x[-1] # !! Could provide more information about which values are out of bounds if self.bounds_error and below_bounds.any(): raise ValueError("A value in x_new is below the interpolation " "range.") if self.bounds_error and above_bounds.any(): raise ValueError("A value in x_new is above the interpolation " "range.") # !! Should we emit a warning if some values are out of bounds? # !! matlab does not. out_of_bounds = logical_or(below_bounds, above_bounds) return out_of_bounds class _PPolyBase(object): """ Base class for piecewise polynomials. """ __slots__ = ('c', 'x', 'extrapolate', 'axis') def __init__(self, c, x, extrapolate=None, axis=0): self.c = np.asarray(c) self.x = np.ascontiguousarray(x, dtype=np.float64) if extrapolate is None: extrapolate = True self.extrapolate = bool(extrapolate) if not (0 <= axis < self.c.ndim - 1): raise ValueError("%s must be between 0 and %s" % (axis, c.ndim-1)) self.axis = axis if axis != 0: # roll the interpolation axis to be the first one in self.c # More specifically, the target shape for self.c is (k, m, ...), # and axis !=0 means that we have c.shape (..., k, m, ...) # ^ # axis # So we roll two of them. self.c = np.rollaxis(self.c, axis+1) self.c = np.rollaxis(self.c, axis+1) if self.x.ndim != 1: raise ValueError("x must be 1-dimensional") if self.x.size < 2: raise ValueError("at least 2 breakpoints are needed") if self.c.ndim < 2: raise ValueError("c must have at least 2 dimensions") if self.c.shape[0] == 0: raise ValueError("polynomial must be at least of order 0") if self.c.shape[1] != self.x.size-1: raise ValueError("number of coefficients != len(x)-1") if np.any(self.x[1:] - self.x[:-1] < 0): raise ValueError("x-coordinates are not in increasing order") dtype = self._get_dtype(self.c.dtype) self.c = np.ascontiguousarray(self.c, dtype=dtype) def _get_dtype(self, dtype): if np.issubdtype(dtype, np.complexfloating) \ or np.issubdtype(self.c.dtype, np.complexfloating): return np.complex_ else: return np.float_ @classmethod def construct_fast(cls, c, x, extrapolate=None, axis=0): """ Construct the piecewise polynomial without making checks. Takes the same parameters as the constructor. Input arguments `c` and `x` must be arrays of the correct shape and type. The `c` array can only be of dtypes float and complex, and `x` array must have dtype float. """ self = object.__new__(cls) self.c = c self.x = x self.axis = axis if extrapolate is None: extrapolate = True self.extrapolate = extrapolate return self def _ensure_c_contiguous(self): """ c and x may be modified by the user. The Cython code expects that they are C contiguous. """ if not self.x.flags.c_contiguous: self.x = self.x.copy() if not self.c.flags.c_contiguous: self.c = self.c.copy() def extend(self, c, x, right=True): """ Add additional breakpoints and coefficients to the polynomial. Parameters ---------- c : ndarray, size (k, m, ...) Additional coefficients for polynomials in intervals ``self.x[-1] <= x < x_right[0]``, ``x_right[0] <= x < x_right[1]``, ..., ``x_right[m-2] <= x < x_right[m-1]`` x : ndarray, size (m,) Additional breakpoints. Must be sorted and either to the right or to the left of the current breakpoints. right : bool, optional Whether the new intervals are to the right or to the left of the current intervals. """ c = np.asarray(c) x = np.asarray(x) if c.ndim < 2: raise ValueError("invalid dimensions for c") if x.ndim != 1: raise ValueError("invalid dimensions for x") if x.shape[0] != c.shape[1]: raise ValueError("x and c have incompatible sizes") if c.shape[2:] != self.c.shape[2:] or c.ndim != self.c.ndim: raise ValueError("c and self.c have incompatible shapes") if right: if x[0] < self.x[-1]: raise ValueError("new x are not to the right of current ones") else: if x[-1] > self.x[0]: raise ValueError("new x are not to the left of current ones") if c.size == 0: return dtype = self._get_dtype(c.dtype) k2 = max(c.shape[0], self.c.shape[0]) c2 = np.zeros((k2, self.c.shape[1] + c.shape[1]) + self.c.shape[2:], dtype=dtype) if right: c2[k2-self.c.shape[0]:, :self.c.shape[1]] = self.c c2[k2-c.shape[0]:, self.c.shape[1]:] = c self.x = np.r_[self.x, x] else: c2[k2-self.c.shape[0]:, :c.shape[1]] = c c2[k2-c.shape[0]:, c.shape[1]:] = self.c self.x = np.r_[x, self.x] self.c = c2 def __call__(self, x, nu=0, extrapolate=None): """ Evaluate the piecewise polynomial or its derivative Parameters ---------- x : array_like Points to evaluate the interpolant at. nu : int, optional Order of derivative to evaluate. Must be non-negative. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Returns ------- y : array_like Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ if extrapolate is None: extrapolate = self.extrapolate x = np.asarray(x) x_shape, x_ndim = x.shape, x.ndim x = np.ascontiguousarray(x.ravel(), dtype=np.float_) out = np.empty((len(x), prod(self.c.shape[2:])), dtype=self.c.dtype) self._ensure_c_contiguous() self._evaluate(x, nu, extrapolate, out) out = out.reshape(x_shape + self.c.shape[2:]) if self.axis != 0: # transpose to move the calculated values to the interpolation axis l = list(range(out.ndim)) l = l[x_ndim:x_ndim+self.axis] + l[:x_ndim] + l[x_ndim+self.axis:] out = out.transpose(l) return out class PPoly(_PPolyBase): """ Piecewise polynomial in terms of coefficients and breakpoints The polynomial in the ith interval is ``x[i] <= xp < x[i+1]``:: S = sum(c[m, i] * (xp - x[i])**(k-m) for m in range(k+1)) where ``k`` is the degree of the polynomial. This representation is the local power basis. Parameters ---------- c : ndarray, shape (k, m, ...) Polynomial coefficients, order `k` and `m` intervals x : ndarray, shape (m+1,) Polynomial breakpoints. These must be sorted in increasing order. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. axis : int, optional Interpolation axis. Default is zero. Attributes ---------- x : ndarray Breakpoints. c : ndarray Coefficients of the polynomials. They are reshaped to a 3-dimensional array with the last dimension representing the trailing dimensions of the original coefficient array. axis : int Interpolation axis. Methods ------- __call__ derivative antiderivative integrate roots extend from_spline from_bernstein_basis construct_fast See also -------- BPoly : piecewise polynomials in the Bernstein basis Notes ----- High-order polynomials in the power basis can be numerically unstable. Precision problems can start to appear for orders larger than 20-30. """ def _evaluate(self, x, nu, extrapolate, out): _ppoly.evaluate(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, x, nu, bool(extrapolate), out) def derivative(self, nu=1): """ Construct a new piecewise polynomial representing the derivative. Parameters ---------- nu : int, optional Order of derivative to evaluate. (Default: 1) If negative, the antiderivative is returned. Returns ------- pp : PPoly Piecewise polynomial of order k2 = k - n representing the derivative of this polynomial. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ if nu < 0: return self.antiderivative(-nu) # reduce order if nu == 0: c2 = self.c.copy() else: c2 = self.c[:-nu,:].copy() if c2.shape[0] == 0: # derivative of order 0 is zero c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype) # multiply by the correct rising factorials factor = spec.poch(np.arange(c2.shape[0], 0, -1), nu) c2 *= factor[(slice(None),) + (None,)*(c2.ndim-1)] # construct a compatible polynomial return self.construct_fast(c2, self.x, self.extrapolate, self.axis) def antiderivative(self, nu=1): """ Construct a new piecewise polynomial representing the antiderivative. Antiderivativative is also the indefinite integral of the function, and derivative is its inverse operation. Parameters ---------- nu : int, optional Order of antiderivative to evaluate. (Default: 1) If negative, the derivative is returned. Returns ------- pp : PPoly Piecewise polynomial of order k2 = k + n representing the antiderivative of this polynomial. Notes ----- The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up to floating point rounding error. """ if nu <= 0: return self.derivative(-nu) c = np.zeros((self.c.shape[0] + nu, self.c.shape[1]) + self.c.shape[2:], dtype=self.c.dtype) c[:-nu] = self.c # divide by the correct rising factorials factor = spec.poch(np.arange(self.c.shape[0], 0, -1), nu) c[:-nu] /= factor[(slice(None),) + (None,)*(c.ndim-1)] # fix continuity of added degrees of freedom self._ensure_c_contiguous() _ppoly.fix_continuity(c.reshape(c.shape[0], c.shape[1], -1), self.x, nu - 1) # construct a compatible polynomial return self.construct_fast(c, self.x, self.extrapolate, self.axis) def integrate(self, a, b, extrapolate=None): """ Compute a definite integral over a piecewise polynomial. Parameters ---------- a : float Lower integration bound b : float Upper integration bound extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Returns ------- ig : array_like Definite integral of the piecewise polynomial over [a, b] """ if extrapolate is None: extrapolate = self.extrapolate # Swap integration bounds if needed sign = 1 if b < a: a, b = b, a sign = -1 # Compute the integral range_int = np.empty((prod(self.c.shape[2:]),), dtype=self.c.dtype) self._ensure_c_contiguous() _ppoly.integrate(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, a, b, bool(extrapolate), out=range_int) # Return range_int *= sign return range_int.reshape(self.c.shape[2:]) def roots(self, discontinuity=True, extrapolate=None): """ Find real roots of the piecewise polynomial. Parameters ---------- discontinuity : bool, optional Whether to report sign changes across discontinuities at breakpoints as roots. extrapolate : bool, optional Whether to return roots from the polynomial extrapolated based on first and last intervals. Returns ------- roots : ndarray Roots of the polynomial(s). If the PPoly object describes multiple polynomials, the return value is an object array whose each element is an ndarray containing the roots. Notes ----- This routine works only on real-valued polynomials. If the piecewise polynomial contains sections that are identically zero, the root list will contain the start point of the corresponding interval, followed by a ``nan`` value. If the polynomial is discontinuous across a breakpoint, and there is a sign change across the breakpoint, this is reported if the `discont` parameter is True. Examples -------- Finding roots of ``[x**2 - 1, (x - 1)**2]`` defined on intervals ``[-2, 1], [1, 2]``: >>> from scipy.interpolate import PPoly >>> pp = PPoly(np.array([[1, -4, 3], [1, 0, 0]]).T, [-2, 1, 2]) >>> pp.roots() array([-1., 1.]) """ if extrapolate is None: extrapolate = self.extrapolate self._ensure_c_contiguous() if np.issubdtype(self.c.dtype, np.complexfloating): raise ValueError("Root finding is only for " "real-valued polynomials") r = _ppoly.real_roots(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, bool(discontinuity), bool(extrapolate)) if self.c.ndim == 2: return r[0] else: r2 = np.empty(prod(self.c.shape[2:]), dtype=object) # this for-loop is equivalent to ``r2[...] = r``, but that's broken # in numpy 1.6.0 for ii, root in enumerate(r): r2[ii] = root return r2.reshape(self.c.shape[2:]) @classmethod def from_spline(cls, tck, extrapolate=None): """ Construct a piecewise polynomial from a spline Parameters ---------- tck A spline, as returned by `splrep` extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. """ t, c, k = tck cvals = np.empty((k + 1, len(t)-1), dtype=c.dtype) for m in xrange(k, -1, -1): y = fitpack.splev(t[:-1], tck, der=m) cvals[k - m, :] = y/spec.gamma(m+1) return cls.construct_fast(cvals, t, extrapolate) @classmethod def from_bernstein_basis(cls, bp, extrapolate=None): """ Construct a piecewise polynomial in the power basis from a polynomial in Bernstein basis. Parameters ---------- bp : BPoly A Bernstein basis polynomial, as created by BPoly extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. """ dx = np.diff(bp.x) k = bp.c.shape[0] - 1 # polynomial order rest = (None,)*(bp.c.ndim-2) c = np.zeros_like(bp.c) for a in range(k+1): factor = (-1)**(a) * comb(k, a) * bp.c[a] for s in range(a, k+1): val = comb(k-a, s-a) * (-1)**s c[k-s] += factor * val / dx[(slice(None),)+rest]**s if extrapolate is None: extrapolate = bp.extrapolate return cls.construct_fast(c, bp.x, extrapolate, bp.axis) class BPoly(_PPolyBase): """ Piecewise polynomial in terms of coefficients and breakpoints The polynomial in the ``i``-th interval ``x[i] <= xp < x[i+1]`` is written in the Bernstein polynomial basis:: S = sum(c[a, i] * b(a, k; x) for a in range(k+1)) where ``k`` is the degree of the polynomial, and:: b(a, k; x) = comb(k, a) * t**k * (1 - t)**(k - a) with ``t = (x - x[i]) / (x[i+1] - x[i])``. Parameters ---------- c : ndarray, shape (k, m, ...) Polynomial coefficients, order `k` and `m` intervals x : ndarray, shape (m+1,) Polynomial breakpoints. These must be sorted in increasing order. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. axis : int, optional Interpolation axis. Default is zero. Attributes ---------- x : ndarray Breakpoints. c : ndarray Coefficients of the polynomials. They are reshaped to a 3-dimensional array with the last dimension representing the trailing dimensions of the original coefficient array. axis : int Interpolation axis. Methods ------- __call__ extend derivative antiderivative integrate construct_fast from_power_basis from_derivatives See also -------- PPoly : piecewise polynomials in the power basis Notes ----- Properties of Bernstein polynomials are well documented in the literature. Here's a non-exhaustive list: .. [1] http://en.wikipedia.org/wiki/Bernstein_polynomial .. [2] Kenneth I. Joy, Bernstein polynomials, http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf .. [3] E. H. Doha, A. H. Bhrawy, and M. A. Saker, Boundary Value Problems, vol 2011, article ID 829546, doi:10.1155/2011/829543 Examples -------- >>> from scipy.interpolate import BPoly >>> x = [0, 1] >>> c = [[1], [2], [3]] >>> bp = BPoly(c, x) This creates a 2nd order polynomial .. math:: B(x) = 1 \\times b_{0, 2}(x) + 2 \\times b_{1, 2}(x) + 3 \\times b_{2, 2}(x) \\\\ = 1 \\times (1-x)^2 + 2 \\times 2 x (1 - x) + 3 \\times x^2 """ def _evaluate(self, x, nu, extrapolate, out): _ppoly.evaluate_bernstein( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, x, nu, bool(extrapolate), out) def derivative(self, nu=1): """ Construct a new piecewise polynomial representing the derivative. Parameters ---------- nu : int, optional Order of derivative to evaluate. (Default: 1) If negative, the antiderivative is returned. Returns ------- bp : BPoly Piecewise polynomial of order k2 = k - nu representing the derivative of this polynomial. """ if nu < 0: return self.antiderivative(-nu) if nu > 1: bp = self for k in range(nu): bp = bp.derivative() return bp # reduce order if nu == 0: c2 = self.c.copy() else: # For a polynomial # B(x) = \sum_{a=0}^{k} c_a b_{a, k}(x), # we use the fact that # b'_{a, k} = k ( b_{a-1, k-1} - b_{a, k-1} ), # which leads to # B'(x) = \sum_{a=0}^{k-1} (c_{a+1} - c_a) b_{a, k-1} # # finally, for an interval [y, y + dy] with dy != 1, # we need to correct for an extra power of dy rest = (None,)*(self.c.ndim-2) k = self.c.shape[0] - 1 dx = np.diff(self.x)[(None, slice(None))+rest] c2 = k * np.diff(self.c, axis=0) / dx if c2.shape[0] == 0: # derivative of order 0 is zero c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype) # construct a compatible polynomial return self.construct_fast(c2, self.x, self.extrapolate, self.axis) def antiderivative(self, nu=1): """ Construct a new piecewise polynomial representing the antiderivative. Parameters ---------- nu : int, optional Order of derivative to evaluate. (Default: 1) If negative, the derivative is returned. Returns ------- bp : BPoly Piecewise polynomial of order k2 = k + nu representing the antiderivative of this polynomial. """ if nu <= 0: return self.derivative(-nu) if nu > 1: bp = self for k in range(nu): bp = bp.antiderivative() return bp # Construct the indefinite integrals on individual intervals c, x = self.c, self.x k = c.shape[0] c2 = np.zeros((k+1,) + c.shape[1:], dtype=c.dtype) c2[1:, ...] = np.cumsum(c, axis=0) / k delta = x[1:] - x[:-1] c2 *= delta[(None, slice(None)) + (None,)*(c.ndim-2)] # Now fix continuity: on the very first interval, take the integration # constant to be zero; on an interval [x_j, x_{j+1}) with j>0, # the integration constant is then equal to the jump of the `bp` at x_j. # The latter is given by the coefficient of B_{n+1, n+1} # *on the previous interval* (other B. polynomials are zero at the breakpoint) # Finally, use the fact that BPs form a partition of unity. c2[:,1:] += np.cumsum(c2[k,:], axis=0)[:-1] return self.construct_fast(c2, x, self.extrapolate, axis=self.axis) def integrate(self, a, b, extrapolate=None): """ Compute a definite integral over a piecewise polynomial. Parameters ---------- a : float Lower integration bound b : float Upper integration bound extrapolate : bool, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Defaults to ``self.extrapolate``. Returns ------- array_like Definite integral of the piecewise polynomial over [a, b] """ # XXX: can probably use instead the fact that # \int_0^{1} B_{j, n}(x) \dx = 1/(n+1) ib = self.antiderivative() if extrapolate is not None: ib.extrapolate = extrapolate return ib(b) - ib(a) def extend(self, c, x, right=True): k = max(self.c.shape[0], c.shape[0]) self.c = self._raise_degree(self.c, k - self.c.shape[0]) c = self._raise_degree(c, k - c.shape[0]) return _PPolyBase.extend(self, c, x, right) extend.__doc__ = _PPolyBase.extend.__doc__ @classmethod def from_power_basis(cls, pp, extrapolate=None): """ Construct a piecewise polynomial in Bernstein basis from a power basis polynomial. Parameters ---------- pp : PPoly A piecewise polynomial in the power basis extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. """ dx = np.diff(pp.x) k = pp.c.shape[0] - 1 # polynomial order rest = (None,)*(pp.c.ndim-2) c = np.zeros_like(pp.c) for a in range(k+1): factor = pp.c[a] / comb(k, k-a) * dx[(slice(None),)+rest]**(k-a) for j in range(k-a, k+1): c[j] += factor * comb(j, k-a) if extrapolate is None: extrapolate = pp.extrapolate return cls.construct_fast(c, pp.x, extrapolate, pp.axis) @classmethod def from_derivatives(cls, xi, yi, orders=None, extrapolate=None): """Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and derivatives at breakpoints. Parameters ---------- xi : array_like sorted 1D array of x-coordinates yi : array_like or list of array_likes ``yi[i][j]`` is the ``j``-th derivative known at ``xi[i]`` orders : None or int or array_like of ints. Default: None. Specifies the degree of local polynomials. If not None, some derivatives are ignored. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. Notes ----- If ``k`` derivatives are specified at a breakpoint ``x``, the constructed polynomial is exactly ``k`` times continuously differentiable at ``x``, unless the ``order`` is provided explicitly. In the latter case, the smoothness of the polynomial at the breakpoint is controlled by the ``order``. Deduces the number of derivatives to match at each end from ``order`` and the number of derivatives available. If possible it uses the same number of derivatives from each end; if the number is odd it tries to take the extra one from y2. In any case if not enough derivatives are available at one end or another it draws enough to make up the total from the other end. If the order is too high and not enough derivatives are available, an exception is raised. Examples -------- >>> from scipy.interpolate import BPoly >>> BPoly.from_derivatives([0, 1], [[1, 2], [3, 4]]) Creates a polynomial `f(x)` of degree 3, defined on `[0, 1]` such that `f(0) = 1, df/dx(0) = 2, f(1) = 3, df/dx(1) = 4` >>> BPoly.from_derivatives([0, 1, 2], [[0, 1], [0], [2]]) Creates a piecewise polynomial `f(x)`, such that `f(0) = f(1) = 0`, `f(2) = 2`, and `df/dx(0) = 1`. Based on the number of derivatives provided, the order of the local polynomials is 2 on `[0, 1]` and 1 on `[1, 2]`. Notice that no restriction is imposed on the derivatives at `x = 1` and `x = 2`. Indeed, the explicit form of the polynomial is:: f(x) = | x * (1 - x), 0 <= x < 1 | 2 * (x - 1), 1 <= x <= 2 So that f'(1-0) = -1 and f'(1+0) = 2 """ xi = np.asarray(xi) if len(xi) != len(yi): raise ValueError("xi and yi need to have the same length") if np.any(xi[1:] - xi[:1] <= 0): raise ValueError("x coordinates are not in increasing order") # number of intervals m = len(xi) - 1 # global poly order is k-1, local orders are <=k and can vary try: k = max(len(yi[i]) + len(yi[i+1]) for i in range(m)) except TypeError: raise ValueError("Using a 1D array for y? Please .reshape(-1, 1).") if orders is None: orders = [None] * m else: if isinstance(orders, integer_types): orders = [orders] * m k = max(k, max(orders)) if any(o <= 0 for o in orders): raise ValueError("Orders must be positive.") c = [] for i in range(m): y1, y2 = yi[i], yi[i+1] if orders[i] is None: n1, n2 = len(y1), len(y2) else: n = orders[i]+1 n1 = min(n//2, len(y1)) n2 = min(n - n1, len(y2)) n1 = min(n - n2, len(y2)) if n1+n2 != n: raise ValueError("Point %g has %d derivatives, point %g" " has %d derivatives, but order %d requested" % (xi[i], len(y1), xi[i+1], len(y2), orders[i])) if not (n1 <= len(y1) and n2 <= len(y2)): raise ValueError("`order` input incompatible with" " length y1 or y2.") b = BPoly._construct_from_derivatives(xi[i], xi[i+1], y1[:n1], y2[:n2]) if len(b) < k: b = BPoly._raise_degree(b, k - len(b)) c.append(b) c = np.asarray(c) return cls(c.swapaxes(0, 1), xi, extrapolate) @staticmethod def _construct_from_derivatives(xa, xb, ya, yb): """Compute the coefficients of a polynomial in the Bernstein basis given the values and derivatives at the edges. Return the coefficients of a polynomial in the Bernstein basis defined on `[xa, xb]` and having the values and derivatives at the endpoints ``xa`` and ``xb`` as specified by ``ya`` and ``yb``. The polynomial constructed is of the minimal possible degree, i.e., if the lengths of ``ya`` and ``yb`` are ``na`` and ``nb``, the degree of the polynomial is ``na + nb - 1``. Parameters ---------- xa : float Left-hand end point of the interval xb : float Right-hand end point of the interval ya : array_like Derivatives at ``xa``. ``ya[0]`` is the value of the function, and ``ya[i]`` for ``i > 0`` is the value of the ``i``-th derivative. yb : array_like Derivatives at ``xb``. Returns ------- array coefficient array of a polynomial having specified derivatives Notes ----- This uses several facts from life of Bernstein basis functions. First of all, .. math:: b'_{a, n} = n (b_{a-1, n-1} - b_{a, n-1}) If B(x) is a linear combination of the form .. math:: B(x) = \sum_{a=0}^{n} c_a b_{a, n}, then :math: B'(x) = n \sum_{a=0}^{n-1} (c_{a+1} - c_{a}) b_{a, n-1}. Iterating the latter one, one finds for the q-th derivative .. math:: B^{q}(x) = n!/(n-q)! \sum_{a=0}^{n-q} Q_a b_{a, n-q}, with .. math:: Q_a = \sum_{j=0}^{q} (-)^{j+q} comb(q, j) c_{j+a} This way, only `a=0` contributes to :math: `B^{q}(x = xa)`, and `c_q` are found one by one by iterating `q = 0, ..., na`. At `x = xb` it's the same with `a = n - q`. """ ya, yb = np.asarray(ya), np.asarray(yb) if ya.shape[1:] != yb.shape[1:]: raise ValueError('ya and yb have incompatible dimensions.') dta, dtb = ya.dtype, yb.dtype if (np.issubdtype(dta, np.complexfloating) or np.issubdtype(dtb, np.complexfloating)): dt = np.complex_ else: dt = np.float_ na, nb = len(ya), len(yb) n = na + nb c = np.empty((na+nb,) + ya.shape[1:], dtype=dt) # compute coefficients of a polynomial degree na+nb-1 # walk left-to-right for q in range(0, na): c[q] = ya[q] / spec.poch(n - q, q) * (xb - xa)**q for j in range(0, q): c[q] -= (-1)**(j+q) * comb(q, j) * c[j] # now walk right-to-left for q in range(0, nb): c[-q-1] = yb[q] / spec.poch(n - q, q) * (-1)**q * (xb - xa)**q for j in range(0, q): c[-q-1] -= (-1)**(j+1) * comb(q, j+1) * c[-q+j] return c @staticmethod def _raise_degree(c, d): """Raise a degree of a polynomial in the Bernstein basis. Given the coefficients of a polynomial degree `k`, return (the coefficients of) the equivalent polynomial of degree `k+d`. Parameters ---------- c : array_like coefficient array, 1D d : integer Returns ------- array coefficient array, 1D array of length `c.shape[0] + d` Notes ----- This uses the fact that a Bernstein polynomial `b_{a, k}` can be identically represented as a linear combination of polynomials of a higher degree `k+d`: .. math:: b_{a, k} = comb(k, a) \sum_{j=0}^{d} b_{a+j, k+d} \ comb(d, j) / comb(k+d, a+j) """ if d == 0: return c k = c.shape[0] - 1 out = np.zeros((c.shape[0] + d,) + c.shape[1:], dtype=c.dtype) for a in range(c.shape[0]): f = c[a] * comb(k, a) for j in range(d+1): out[a+j] += f * comb(d, j) / comb(k+d, a+j) return out class RegularGridInterpolator(object): """ Interpolation on a regular grid in arbitrary dimensions The data must be defined on a regular grid; the grid spacing however may be uneven. Linear and nearest-neighbour interpolation are supported. After setting up the interpolator object, the interpolation method (*linear* or *nearest*) may be chosen at each evaluation. Parameters ---------- points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, ) The points defining the regular grid in n dimensions. values : array_like, shape (m1, ..., mn, ...) The data on the regular grid in n dimensions. method : str, optional The method of interpolation to perform. Supported are "linear" and "nearest". This parameter will become the default for the object's ``__call__`` method. Default is "linear". bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Methods ------- __call__ Notes ----- Contrary to LinearNDInterpolator and NearestNDInterpolator, this class avoids expensive triangulation of the input data by taking advantage of the regular grid structure. .. versionadded:: 0.14 Examples -------- Evaluate a simple example function on the points of a 3D grid: >>> from scipy.interpolate import RegularGridInterpolator >>> def f(x,y,z): ... return 2 * x**3 + 3 * y**2 - z >>> x = np.linspace(1, 4, 11) >>> y = np.linspace(4, 7, 22) >>> z = np.linspace(7, 9, 33) >>> data = f(*np.meshgrid(x, y, z, indexing='ij', sparse=True)) ``data`` is now a 3D array with ``data[i,j,k] = f(x[i], y[j], z[k])``. Next, define an interpolating function from this data: >>> my_interpolating_function = RegularGridInterpolator((x, y, z), data) Evaluate the interpolating function at the two points ``(x,y,z) = (2.1, 6.2, 8.3)`` and ``(3.3, 5.2, 7.1)``: >>> pts = np.array([[2.1, 6.2, 8.3], [3.3, 5.2, 7.1]]) >>> my_interpolating_function(pts) array([ 125.80469388, 146.30069388]) which is indeed a close approximation to ``[f(2.1, 6.2, 8.3), f(3.3, 5.2, 7.1)]``. See also -------- NearestNDInterpolator : Nearest neighbour interpolation on unstructured data in N dimensions LinearNDInterpolator : Piecewise linear interpolant on unstructured data in N dimensions References ---------- .. [1] Python package *regulargrid* by Johannes Buchner, see https://pypi.python.org/pypi/regulargrid/ .. [2] Trilinear interpolation. (2013, January 17). In Wikipedia, The Free Encyclopedia. Retrieved 27 Feb 2013 01:28. http://en.wikipedia.org/w/index.php?title=Trilinear_interpolation&oldid=533448871 .. [3] Weiser, Alan, and Sergio E. Zarantonello. "A note on piecewise linear and multilinear table interpolation in many dimensions." MATH. COMPUT. 50.181 (1988): 189-196. http://www.ams.org/journals/mcom/1988-50-181/S0025-5718-1988-0917826-0/S0025-5718-1988-0917826-0.pdf """ # this class is based on code originally programmed by Johannes Buchner, # see https://github.com/JohannesBuchner/regulargrid def __init__(self, points, values, method="linear", bounds_error=True, fill_value=np.nan): if method not in ["linear", "nearest"]: raise ValueError("Method '%s' is not defined" % method) self.method = method self.bounds_error = bounds_error if not hasattr(values, 'ndim'): # allow reasonable duck-typed values values = np.asarray(values) if len(points) > values.ndim: raise ValueError("There are %d point arrays, but values has %d " "dimensions" % (len(points), values.ndim)) if hasattr(values, 'dtype') and hasattr(values, 'astype'): if not np.issubdtype(values.dtype, np.inexact): values = values.astype(float) self.fill_value = fill_value if fill_value is not None: fill_value_dtype = np.asarray(fill_value).dtype if (hasattr(values, 'dtype') and not np.can_cast(fill_value_dtype, values.dtype, casting='same_kind')): raise ValueError("fill_value must be either 'None' or " "of a type compatible with values") for i, p in enumerate(points): if not np.all(np.diff(p) > 0.): raise ValueError("The points in dimension %d must be strictly " "ascending" % i) if not np.asarray(p).ndim == 1: raise ValueError("The points in dimension %d must be " "1-dimensional" % i) if not values.shape[i] == len(p): raise ValueError("There are %d points and %d values in " "dimension %d" % (len(p), values.shape[i], i)) self.grid = tuple([np.asarray(p) for p in points]) self.values = values def __call__(self, xi, method=None): """ Interpolation at coordinates Parameters ---------- xi : ndarray of shape (..., ndim) The coordinates to sample the gridded data at method : str The method of interpolation to perform. Supported are "linear" and "nearest". """ method = self.method if method is None else method if method not in ["linear", "nearest"]: raise ValueError("Method '%s' is not defined" % method) ndim = len(self.grid) xi = _ndim_coords_from_arrays(xi, ndim=ndim) if xi.shape[-1] != len(self.grid): raise ValueError("The requested sample points xi have dimension " "%d, but this RegularGridInterpolator has " "dimension %d" % (xi.shape[1], ndim)) xi_shape = xi.shape xi = xi.reshape(-1, xi_shape[-1]) if self.bounds_error: for i, p in enumerate(xi.T): if not np.logical_and(np.all(self.grid[i][0] <= p), np.all(p <= self.grid[i][-1])): raise ValueError("One of the requested xi is out of bounds " "in dimension %d" % i) indices, norm_distances, out_of_bounds = self._find_indices(xi.T) if method == "linear": result = self._evaluate_linear(indices, norm_distances, out_of_bounds) elif method == "nearest": result = self._evaluate_nearest(indices, norm_distances, out_of_bounds) if not self.bounds_error and self.fill_value is not None: result[out_of_bounds] = self.fill_value return result.reshape(xi_shape[:-1] + self.values.shape[ndim:]) def _evaluate_linear(self, indices, norm_distances, out_of_bounds): # slice for broadcasting over trailing dimensions in self.values vslice = (slice(None),) + (None,)*(self.values.ndim - len(indices)) # find relevant values # each i and i+1 represents a edge edges = itertools.product(*[[i, i + 1] for i in indices]) values = 0. for edge_indices in edges: weight = 1. for ei, i, yi in zip(edge_indices, indices, norm_distances): weight *= np.where(ei == i, 1 - yi, yi) values += np.asarray(self.values[edge_indices]) * weight[vslice] return values def _evaluate_nearest(self, indices, norm_distances, out_of_bounds): idx_res = [] for i, yi in zip(indices, norm_distances): idx_res.append(np.where(yi <= .5, i, i + 1)) return self.values[idx_res] def _find_indices(self, xi): # find relevant edges between which xi are situated indices = [] # compute distance to lower edge in unity units norm_distances = [] # check for out of bounds xi out_of_bounds = np.zeros((xi.shape[1]), dtype=bool) # iterate through dimensions for x, grid in zip(xi, self.grid): i = np.searchsorted(grid, x) - 1 i[i < 0] = 0 i[i > grid.size - 2] = grid.size - 2 indices.append(i) norm_distances.append((x - grid[i]) / (grid[i + 1] - grid[i])) if not self.bounds_error: out_of_bounds += x < grid[0] out_of_bounds += x > grid[-1] return indices, norm_distances, out_of_bounds def interpn(points, values, xi, method="linear", bounds_error=True, fill_value=np.nan): """ Multidimensional interpolation on regular grids. Parameters ---------- points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, ) The points defining the regular grid in n dimensions. values : array_like, shape (m1, ..., mn, ...) The data on the regular grid in n dimensions. xi : ndarray of shape (..., ndim) The coordinates to sample the gridded data at method : str, optional The method of interpolation to perform. Supported are "linear" and "nearest", and "splinef2d". "splinef2d" is only supported for 2-dimensional data. bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Extrapolation is not supported by method "splinef2d". Returns ------- values_x : ndarray, shape xi.shape[:-1] + values.shape[ndim:] Interpolated values at input coordinates. Notes ----- .. versionadded:: 0.14 See also -------- NearestNDInterpolator : Nearest neighbour interpolation on unstructured data in N dimensions LinearNDInterpolator : Piecewise linear interpolant on unstructured data in N dimensions RegularGridInterpolator : Linear and nearest-neighbor Interpolation on a regular grid in arbitrary dimensions RectBivariateSpline : Bivariate spline approximation over a rectangular mesh """ # sanity check 'method' kwarg if method not in ["linear", "nearest", "splinef2d"]: raise ValueError("interpn only understands the methods 'linear', " "'nearest', and 'splinef2d'. You provided %s." % method) if not hasattr(values, 'ndim'): values = np.asarray(values) ndim = values.ndim if ndim > 2 and method == "splinef2d": raise ValueError("The method spline2fd can only be used for " "2-dimensional input data") if not bounds_error and fill_value is None and method == "splinef2d": raise ValueError("The method spline2fd does not support extrapolation.") # sanity check consistency of input dimensions if len(points) > ndim: raise ValueError("There are %d point arrays, but values has %d " "dimensions" % (len(points), ndim)) if len(points) != ndim and method == 'splinef2d': raise ValueError("The method spline2fd can only be used for " "scalar data with one point per coordinate") # sanity check input grid for i, p in enumerate(points): if not np.all(np.diff(p) > 0.): raise ValueError("The points in dimension %d must be strictly " "ascending" % i) if not np.asarray(p).ndim == 1: raise ValueError("The points in dimension %d must be " "1-dimensional" % i) if not values.shape[i] == len(p): raise ValueError("There are %d points and %d values in " "dimension %d" % (len(p), values.shape[i], i)) grid = tuple([np.asarray(p) for p in points]) # sanity check requested xi xi = _ndim_coords_from_arrays(xi, ndim=len(grid)) if xi.shape[-1] != len(grid): raise ValueError("The requested sample points xi have dimension " "%d, but this RegularGridInterpolator has " "dimension %d" % (xi.shape[1], len(grid))) for i, p in enumerate(xi.T): if bounds_error and not np.logical_and(np.all(grid[i][0] <= p), np.all(p <= grid[i][-1])): raise ValueError("One of the requested xi is out of bounds " "in dimension %d" % i) # perform interpolation if method == "linear": interp = RegularGridInterpolator(points, values, method="linear", bounds_error=bounds_error, fill_value=fill_value) return interp(xi) elif method == "nearest": interp = RegularGridInterpolator(points, values, method="nearest", bounds_error=bounds_error, fill_value=fill_value) return interp(xi) elif method == "splinef2d": xi_shape = xi.shape xi = xi.reshape(-1, xi.shape[-1]) # RectBivariateSpline doesn't support fill_value; we need to wrap here idx_valid = np.all((grid[0][0] <= xi[:, 0], xi[:, 0] <= grid[0][-1], grid[1][0] <= xi[:, 1], xi[:, 1] <= grid[1][-1]), axis=0) result = np.empty_like(xi[:, 0]) # make a copy of values for RectBivariateSpline interp = RectBivariateSpline(points[0], points[1], values[:]) result[idx_valid] = interp.ev(xi[idx_valid, 0], xi[idx_valid, 1]) result[np.logical_not(idx_valid)] = fill_value return result.reshape(xi_shape[:-1]) # backward compatibility wrapper class ppform(PPoly): """ Deprecated piecewise polynomial class. New code should use the `PPoly` class instead. """ def __init__(self, coeffs, breaks, fill=0.0, sort=False): warnings.warn("ppform is deprecated -- use PPoly instead", category=DeprecationWarning) if sort: breaks = np.sort(breaks) else: breaks = np.asarray(breaks) PPoly.__init__(self, coeffs, breaks) self.coeffs = self.c self.breaks = self.x self.K = self.coeffs.shape[0] self.fill = fill self.a = self.breaks[0] self.b = self.breaks[-1] def __call__(self, x): return PPoly.__call__(self, x, 0, False) def _evaluate(self, x, nu, extrapolate, out): PPoly._evaluate(self, x, nu, extrapolate, out) out[~((x >= self.a) & (x <= self.b))] = self.fill return out @classmethod def fromspline(cls, xk, cvals, order, fill=0.0): # Note: this spline representation is incompatible with FITPACK N = len(xk)-1 sivals = np.empty((order+1, N), dtype=float) for m in xrange(order, -1, -1): fact = spec.gamma(m+1) res = _fitpack._bspleval(xk[:-1], xk, cvals, order, m) res /= fact sivals[order-m, :] = res return cls(sivals, xk, fill=fill) def _dot0(a, b): """Similar to numpy.dot, but sum over last axis of a and 1st axis of b""" if b.ndim <= 2: return dot(a, b) else: axes = list(range(b.ndim)) axes.insert(-1, 0) axes.pop(0) return dot(a, b.transpose(axes)) def _find_smoothest(xk, yk, order, conds=None, B=None): # construct Bmatrix, and Jmatrix # e = J*c # minimize norm(e,2) given B*c=yk # if desired B can be given # conds is ignored N = len(xk)-1 K = order if B is None: B = _fitpack._bsplmat(order, xk) J = _fitpack._bspldismat(order, xk) u, s, vh = scipy.linalg.svd(B) ind = K-1 V2 = vh[-ind:,:].T V1 = vh[:-ind,:].T A = dot(J.T,J) tmp = dot(V2.T,A) Q = dot(tmp,V2) p = scipy.linalg.solve(Q, tmp) tmp = dot(V2,p) tmp = np.eye(N+K) - tmp tmp = dot(tmp,V1) tmp = dot(tmp,np.diag(1.0/s)) tmp = dot(tmp,u.T) return _dot0(tmp, yk) def _setdiag(a, k, v): if not a.ndim == 2: raise ValueError("Input array should be 2-D.") M,N = a.shape if k > 0: start = k num = N - k else: num = M + k start = abs(k)*N end = start + num*(N+1)-1 a.flat[start:end:(N+1)] = v # Return the spline that minimizes the dis-continuity of the # "order-th" derivative; for order >= 2. def _find_smoothest2(xk, yk): N = len(xk) - 1 Np1 = N + 1 # find pseudo-inverse of B directly. Bd = np.empty((Np1, N)) for k in range(-N,N): if (k < 0): l = np.arange(-k, Np1) v = (l+k+1) if ((k+1) % 2): v = -v else: l = np.arange(k,N) v = N - l if ((k % 2)): v = -v _setdiag(Bd, k, v) Bd /= (Np1) V2 = np.ones((Np1,)) V2[1::2] = -1 V2 /= math.sqrt(Np1) dk = np.diff(xk) b = 2*np.diff(yk, axis=0)/dk J = np.zeros((N-1,N+1)) idk = 1.0/dk _setdiag(J,0,idk[:-1]) _setdiag(J,1,-idk[1:]-idk[:-1]) _setdiag(J,2,idk[1:]) A = dot(J.T,J) val = dot(V2,dot(A,V2)) res1 = dot(np.outer(V2,V2)/val,A) mk = dot(np.eye(Np1)-res1, _dot0(Bd,b)) return mk def _get_spline2_Bb(xk, yk, kind, conds): Np1 = len(xk) dk = xk[1:]-xk[:-1] if kind == 'not-a-knot': # use banded-solver nlu = (1,1) B = ones((3,Np1)) alpha = 2*(yk[1:]-yk[:-1])/dk zrs = np.zeros((1,)+yk.shape[1:]) row = (Np1-1)//2 b = np.concatenate((alpha[:row],zrs,alpha[row:]),axis=0) B[0,row+2:] = 0 B[2,:(row-1)] = 0 B[0,row+1] = dk[row-1] B[1,row] = -dk[row]-dk[row-1] B[2,row-1] = dk[row] return B, b, None, nlu else: raise NotImplementedError("quadratic %s is not available" % kind) def _get_spline3_Bb(xk, yk, kind, conds): # internal function to compute different tri-diagonal system # depending on the kind of spline requested. # conds is only used for 'second' and 'first' Np1 = len(xk) if kind in ['natural', 'second']: if kind == 'natural': m0, mN = 0.0, 0.0 else: m0, mN = conds # the matrix to invert is (N-1,N-1) # use banded solver beta = 2*(xk[2:]-xk[:-2]) alpha = xk[1:]-xk[:-1] nlu = (1,1) B = np.empty((3,Np1-2)) B[0,1:] = alpha[2:] B[1,:] = beta B[2,:-1] = alpha[1:-1] dyk = yk[1:]-yk[:-1] b = (dyk[1:]/alpha[1:] - dyk[:-1]/alpha[:-1]) b *= 6 b[0] -= m0 b[-1] -= mN def append_func(mk): # put m0 and mN into the correct shape for # concatenation ma = array(m0,copy=0,ndmin=yk.ndim) mb = array(mN,copy=0,ndmin=yk.ndim) if ma.shape[1:] != yk.shape[1:]: ma = ma*(ones(yk.shape[1:])[np.newaxis,...]) if mb.shape[1:] != yk.shape[1:]: mb = mb*(ones(yk.shape[1:])[np.newaxis,...]) mk = np.concatenate((ma,mk),axis=0) mk = np.concatenate((mk,mb),axis=0) return mk return B, b, append_func, nlu elif kind in ['clamped', 'endslope', 'first', 'not-a-knot', 'runout', 'parabolic']: if kind == 'endslope': # match slope of lagrange interpolating polynomial of # order 3 at end-points. x0,x1,x2,x3 = xk[:4] sl_0 = (1./(x0-x1)+1./(x0-x2)+1./(x0-x3))*yk[0] sl_0 += (x0-x2)*(x0-x3)/((x1-x0)*(x1-x2)*(x1-x3))*yk[1] sl_0 += (x0-x1)*(x0-x3)/((x2-x0)*(x2-x1)*(x3-x2))*yk[2] sl_0 += (x0-x1)*(x0-x2)/((x3-x0)*(x3-x1)*(x3-x2))*yk[3] xN3,xN2,xN1,xN0 = xk[-4:] sl_N = (1./(xN0-xN1)+1./(xN0-xN2)+1./(xN0-xN3))*yk[-1] sl_N += (xN0-xN2)*(xN0-xN3)/((xN1-xN0)*(xN1-xN2)*(xN1-xN3))*yk[-2] sl_N += (xN0-xN1)*(xN0-xN3)/((xN2-xN0)*(xN2-xN1)*(xN3-xN2))*yk[-3] sl_N += (xN0-xN1)*(xN0-xN2)/((xN3-xN0)*(xN3-xN1)*(xN3-xN2))*yk[-4] elif kind == 'clamped': sl_0, sl_N = 0.0, 0.0 elif kind == 'first': sl_0, sl_N = conds # Now set up the (N+1)x(N+1) system of equations beta = np.r_[0,2*(xk[2:]-xk[:-2]),0] alpha = xk[1:]-xk[:-1] gamma = np.r_[0,alpha[1:]] B = np.diag(alpha,k=-1) + np.diag(beta) + np.diag(gamma,k=1) d1 = alpha[0] dN = alpha[-1] if kind == 'not-a-knot': d2 = alpha[1] dN1 = alpha[-2] B[0,:3] = [d2,-d1-d2,d1] B[-1,-3:] = [dN,-dN1-dN,dN1] elif kind == 'runout': B[0,:3] = [1,-2,1] B[-1,-3:] = [1,-2,1] elif kind == 'parabolic': B[0,:2] = [1,-1] B[-1,-2:] = [-1,1] elif kind == 'periodic': raise NotImplementedError elif kind == 'symmetric': raise NotImplementedError else: B[0,:2] = [2*d1,d1] B[-1,-2:] = [dN,2*dN] # Set up RHS (b) b = np.empty((Np1,)+yk.shape[1:]) dyk = (yk[1:]-yk[:-1])*1.0 if kind in ['not-a-knot', 'runout', 'parabolic']: b[0] = b[-1] = 0.0 elif kind == 'periodic': raise NotImplementedError elif kind == 'symmetric': raise NotImplementedError else: b[0] = (dyk[0]/d1 - sl_0) b[-1] = -(dyk[-1]/dN - sl_N) b[1:-1,...] = (dyk[1:]/alpha[1:]-dyk[:-1]/alpha[:-1]) b *= 6.0 return B, b, None, None else: raise ValueError("%s not supported" % kind) # conds is a tuple of an array and a vector # giving the left-hand and the right-hand side # of the additional equations to add to B def _find_user(xk, yk, order, conds, B): lh = conds[0] rh = conds[1] B = np.concatenate((B, lh), axis=0) w = np.concatenate((yk, rh), axis=0) M, N = B.shape if (M > N): raise ValueError("over-specification of conditions") elif (M < N): return _find_smoothest(xk, yk, order, None, B) else: return scipy.linalg.solve(B, w) # If conds is None, then use the not_a_knot condition # at K-1 farthest separated points in the interval def _find_not_a_knot(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # If conds is None, then ensure zero-valued second # derivative at K-1 farthest separated points def _find_natural(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # If conds is None, then ensure zero-valued first # derivative at K-1 farthest separated points def _find_clamped(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) def _find_fixed(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # If conds is None, then use coefficient periodicity # If conds is 'function' then use function periodicity def _find_periodic(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # Doesn't use conds def _find_symmetric(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # conds is a dictionary with multiple values def _find_mixed(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) def splmake(xk, yk, order=3, kind='smoothest', conds=None): """ Return a representation of a spline given data-points at internal knots Parameters ---------- xk : array_like The input array of x values of rank 1 yk : array_like The input array of y values of rank N. `yk` can be an N-d array to represent more than one curve, through the same `xk` points. The first dimension is assumed to be the interpolating dimension and is the same length of `xk`. order : int, optional Order of the spline kind : str, optional Can be 'smoothest', 'not_a_knot', 'fixed', 'clamped', 'natural', 'periodic', 'symmetric', 'user', 'mixed' and it is ignored if order < 2 conds : optional Conds Returns ------- splmake : tuple Return a (`xk`, `cvals`, `k`) representation of a spline given data-points where the (internal) knots are at the data-points. """ yk = np.asanyarray(yk) order = int(order) if order < 0: raise ValueError("order must not be negative") if order == 0: return xk, yk[:-1], order elif order == 1: return xk, yk, order try: func = eval('_find_%s' % kind) except: raise NotImplementedError # the constraint matrix B = _fitpack._bsplmat(order, xk) coefs = func(xk, yk, order, conds, B) return xk, coefs, order def spleval(xck, xnew, deriv=0): """ Evaluate a fixed spline represented by the given tuple at the new x-values The `xj` values are the interior knot points. The approximation region is `xj[0]` to `xj[-1]`. If N+1 is the length of `xj`, then `cvals` should have length N+k where `k` is the order of the spline. Parameters ---------- (xj, cvals, k) : tuple Parameters that define the fixed spline xj : array_like Interior knot points cvals : array_like Curvature k : int Order of the spline xnew : array_like Locations to calculate spline deriv : int Deriv Returns ------- spleval : ndarray If `cvals` represents more than one curve (`cvals.ndim` > 1) and/or `xnew` is N-d, then the result is `xnew.shape` + `cvals.shape[1:]` providing the interpolation of multiple curves. Notes ----- Internally, an additional `k`-1 knot points are added on either side of the spline. """ (xj,cvals,k) = xck oldshape = np.shape(xnew) xx = np.ravel(xnew) sh = cvals.shape[1:] res = np.empty(xx.shape + sh, dtype=cvals.dtype) for index in np.ndindex(*sh): sl = (slice(None),)+index if issubclass(cvals.dtype.type, np.complexfloating): res[sl].real = _fitpack._bspleval(xx,xj,cvals.real[sl],k,deriv) res[sl].imag = _fitpack._bspleval(xx,xj,cvals.imag[sl],k,deriv) else: res[sl] = _fitpack._bspleval(xx,xj,cvals[sl],k,deriv) res.shape = oldshape + sh return res def spltopp(xk, cvals, k): """Return a piece-wise polynomial object from a fixed-spline tuple. """ return ppform.fromspline(xk, cvals, k) def spline(xk, yk, xnew, order=3, kind='smoothest', conds=None): """ Interpolate a curve at new points using a spline fit Parameters ---------- xk, yk : array_like The x and y values that define the curve. xnew : array_like The x values where spline should estimate the y values. order : int Default is 3. kind : string One of {'smoothest'} conds : Don't know Don't know Returns ------- spline : ndarray An array of y values; the spline evaluated at the positions `xnew`. """ return spleval(splmake(xk,yk,order=order,kind=kind,conds=conds),xnew)
bsd-3-clause
AstroVPK/kali
python/kali/mbhbcarma.py
2
72863
#!/usr/bin/env python """ Module to perform modulated C-ARMA modelling where the presence of a MBHB causes beaming. """ import numpy as np import math as math import scipy.stats as spstats import cmath as cmath import operator as operator import sys as sys import abc as abc import psutil as psutil import types as types import os as os import reprlib as reprlib import copy as copy from scipy.interpolate import UnivariateSpline import scipy.signal.spectral import warnings as warnings import matplotlib.pyplot as plt import random import pdb as pdb from matplotlib import cm import multi_key_dict import gatspy.periodic try: import rand import MBHBCARMATask_cython as MBHBCARMATask_cython import kali.lc from kali.util.mpl_settings import set_plot_params import kali.util.classproperty import kali.util.triangle except ImportError: print('kali is not setup. Setup kali by sourcing bin/setup.sh') sys.exit(1) fhgt = 10 fwid = 16 set_plot_params(useTex=True) COLORX = r'#984ea3' COLORY = r'#ff7f00' COLORS = [r'#4daf4a', r'#ccebc5'] ln10 = math.log(10) def pogsonFlux(mag, magErr): flux = 3631.0*math.pow(10.0, (-1.0*mag)/2.5) fluxErr = (ln10/2.5)*flux*magErr return flux, fluxErr def _f7(seq): """http://tinyurl.com/angxm5""" seen = set() seen_add = seen.add return [x for x in seq if not (x in seen or seen_add(x))] def MAD(self, a): medianVal = np.median(a) b = np.copy(a) for i in range(a.shape[0]): b[i] = abs(b[i] - medianVal) return np.median(b) def roots(p, q, Theta): """! \brief Theta -> Roots """ r = MBHBCARMATask.r ARPoly = np.zeros(p + 1) ARPoly[0] = 1.0 for i in range(p): ARPoly[i + 1] = Theta[r + i] ARRoots = np.array(np.roots(ARPoly)) MAPoly = np.zeros(q + 1) for i in range(q + 1): MAPoly[i] = Theta[r + p + q - i] MARoots = np.array(np.roots(MAPoly)) Rho = np.zeros(r + p + q + 1, dtype='complex128') for i in range(r): Rho[i] = Theta[i] for i in range(p): Rho[r + i] = ARRoots[i] for i in range(q): Rho[r + p + i] = MARoots[i] Sigma = np.require(np.zeros(p*p), requirements=['F', 'A', 'W', 'O', 'E']) ThetaC = np.require(np.array(Theta), requirements=['F', 'A', 'W', 'O', 'E']) MBHBCARMATask_cython.get_Sigma(r, p, q, ThetaC, Sigma) Rho[r + p + q] = math.sqrt(Sigma[0]) return Rho def coeffs(p, q, Rho): """! \brief Roots -> Coeffs """ r = MBHBCARMATask.r ARRoots = np.zeros(p, dtype='complex128') for i in range(p): ARRoots[i] = Rho[r + i] ARPoly = np.array(np.poly(ARRoots)) MARoots = np.zeros(q, dtype='complex128') for i in range(q): MARoots[i] = Rho[r + p + i] if q == 0: MAPoly = np.ones(1) else: MAPoly = np.array(np.poly(MARoots)) ThetaPrime = np.require( np.array(Rho[0:r].tolist() + ARPoly[1:].tolist() + MAPoly.tolist()[::-1]), requirements=['F', 'A', 'W', 'O', 'E']) SigmaPrime = np.require(np.zeros(p*p), requirements=['F', 'A', 'W', 'O', 'E']) MBHBCARMATask_cython.get_Sigma(r, p, q, ThetaPrime, SigmaPrime) with warnings.catch_warnings(): warnings.simplefilter('ignore') Sigma00 = math.pow(Rho[r + p + q], 2.0) try: bQ = math.sqrt(Sigma00/SigmaPrime[0]) except ValueError: bQ = 1.0 with warnings.catch_warnings(): warnings.simplefilter('ignore') for i in range(q + 1): MAPoly[i] = bQ*MAPoly[i] Theta = np.zeros(r + p + q + 1, dtype='float64') for i in range(r): Theta[i] = Rho[i] for i in range(p): Theta[r + i] = ARPoly[i + 1].real for i in range(q + 1): Theta[r + p + i] = MAPoly[q - i].real return Theta def timescales(p, q, Rho): """! \brief Roots -> Timescales """ r = MBHBCARMATask.r imagPairs = 0 for i in range(p): if Rho[r + i].imag != 0.0: imagPairs += 1 numImag = imagPairs/2 numReal = numImag + (p - imagPairs) decayTimescales = np.zeros(numReal) oscTimescales = np.zeros(numImag) realRoots = set(Rho[r:r + p].real) imagRoots = set(abs(Rho[r:r + p].imag)).difference(set([0.0])) realAR = sorted([1.0/abs(x) for x in realRoots]) imagAR = sorted([(2.0*math.pi)/abs(x) for x in imagRoots]) imagPairs = 0 for i in range(q): if Rho[r + p + i].imag != 0.0: imagPairs += 1 numImag = imagPairs/2 numReal = numImag + (q - imagPairs) decayTimescales = np.zeros(numReal) oscTimescales = np.zeros(numImag) realRoots = set(Rho[r + p:r + p + q].real) imagRoots = set(abs(Rho[r + p:r + p + q].imag)).difference(set([0.0])) realMA = sorted([1.0/abs(x) for x in realRoots]) imagMA = sorted([(2.0*math.pi)/abs(x) for x in imagRoots]) return np.array(Rho[0:r].tolist() + realAR + imagAR + realMA + imagMA + [Rho[r + p + q]]) class MBHBCARMATask(object): _type = 'kali.mbhbcarma' _r = 8 G = 6.67408e-11 c = 299792458.0 pi = 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067 twoPi = 2.0*pi fourPi = 4.0*pi fourPiSq = 4.0*math.pow(pi, 2.0) Parsec = 3.0857e16 Day = 86164.090530833 Year = 31557600.0 SolarMass = 1.98855e30 kms2ms = 1.0e3 SolarMassPerCubicParsec = SolarMass/math.pow(Parsec, 3.0) sigmaStars = 200.0 rhoStars = 1000.0 H = 16.0 _dict = multi_key_dict.multi_key_dict() _dict[r'$a_{1}$ (pc)', 0, r'0', r'a1', r'a_1', r'$a_{1}$', r'$a_{1}~\mathrm{(pc)}$', 'semi-major axis 1', 'semimajor axis 1'] = 0 _dict[r'$a_{2}$ (pc)', 1, r'1', r'a2', r'a_2', r'$a_{2}$', r'$a_{2}~\mathrm{(pc)}$', 'semi-major axis 2', 'semimajor axis 2'] = 1 _dict[r'$T$ (d)', 2, r'2', r'T', r'$T$', r'$T~\mathrm{(d)}$', 'period'] = 2 _dict[r'$e$', 3, r'3', r'e', 'ellipticity', 'eccentricity'] = 3 _dict[r'$\Omega$ (deg.)', 4, r'4', r'$\Omega~\mathrm{(deg.)}$', r'Omega', r'omega'] = 4 _dict[r'$i$ (deg.)', 5, r'5', r'$i~\mathrm{(deg.)}$', r'Inclination', r'inclination'] = 5 _dict[r'$\tau$ (d)', 6, r'6', r'$\tau~\mathrm{(d)}$', r'Tau', r'tau'] = 6 _dict[r'$F$', 7, r'7', r'Flux', r'flux'] = 7 def __init__(self, p, q, nthreads=psutil.cpu_count(logical=True), nburn=1000000, nwalkers=25*psutil.cpu_count(logical=True), nsteps=250, maxEvals=10000, xTol=0.001, mcmcA=2.0): try: assert p > q, r'p must be greater than q' assert p >= 1, r'p must be greater than or equal to 1' assert isinstance(p, int), r'p must be an integer' assert q >= 0, r'q must be greater than or equal to 0' assert isinstance(q, int), r'q must be an integer' assert nthreads > 0, r'nthreads must be greater than 0' assert isinstance(nthreads, int), r'nthreads must be an integer' assert nburn >= 0, r'nburn must be greater than or equal to 0' assert isinstance(nburn, int), r'nburn must be an integer' assert nwalkers > 0, r'nwalkers must be greater than 0' assert isinstance(nwalkers, int), r'nwalkers must be an integer' assert nsteps > 0, r'nsteps must be greater than 0' assert isinstance(nsteps, int), r'nsteps must be an integer' assert maxEvals > 0, r'maxEvals must be greater than 0' assert isinstance(maxEvals, int), r'maxEvals must be an integer' assert xTol > 0.0, r'xTol must be greater than 0' assert isinstance(xTol, float), r'xTol must be a float' self._p = p self._q = q self._ndims = self._r + self._p + self._q + 1 self._nthreads = nthreads self._nburn = nburn self._nwalkers = nwalkers self._nsteps = nsteps self._maxEvals = maxEvals self._xTol = xTol self._mcmcA = mcmcA self._Chain = np.require( np.zeros(self._ndims*self._nwalkers*self._nsteps), requirements=['F', 'A', 'W', 'O', 'E']) self._LnPrior = np.require( np.zeros(self._nwalkers*self._nsteps), requirements=['F', 'A', 'W', 'O', 'E']) self._LnLikelihood = np.require( np.zeros(self._nwalkers*self._nsteps), requirements=['F', 'A', 'W', 'O', 'E']) self._taskCython = MBHBCARMATask_cython.MBHBCARMATask_cython(self._p, self._q, self._nthreads, self._nburn) self._pDIC = None self._dic = None self._name = 'kali.MBHBCARMATask(%d, %d)'%(self.p, self.q) except AssertionError as err: raise AttributeError(str(err)) def __getstate__(self): """! \brief Trim the c-pointer from the task and return the remaining __dict__ for pickling. """ state = copy.copy(self.__dict__) del state['_taskCython'] return state def __setstate__(self, state): """! \brief Restore an un-pickled task completely by setting the c-pointer to the right Cython class. """ self.__dict__ = copy.copy(state) self._taskCython = MBHBCARMATask_cython.MBHBCARMATask_cython(self._p, self._q, self._nthreads, self._nburn) @kali.util.classproperty.ClassProperty @classmethod def type(self): return self._type @property def name(self): return self._name @kali.util.classproperty.ClassProperty @classmethod def r(self): return self._r @property def p(self): return self._p @p.setter def p(self, value): try: assert value > self._q, r'p must be greater than q' assert value >= 1, r'p must be greater than or equal to 1' assert isinstance(value, int), r'p must be an integer' self._taskCython.reset_CARMATask(value, self._q, self._nburn) self._p = value self._ndims = self._p + self._q + 1 self._Chain = np.require(np.zeros(self._ndims*self._nwalkers*self._nsteps), requirements=['F', 'A', 'W', 'O', 'E']) except AssertionError as err: raise AttributeError(str(err)) @property def q(self): return self._q @q.setter def q(self, value): try: assert value > self._q, r'p must be greater than q' assert value >= 0, r'q must be greater than or equal to 0' assert isinstance(value, int), r'q must be an integer' self._taskCython.reset_CARMATask(self._p, value, self._nburn) self._q = value self._ndims = self._p + self._q + 1 self._Chain = np.require(np.zeros(self._ndims*self._nwalkers*self._nsteps), requirements=['F', 'A', 'W', 'O', 'E']) except AssertionError as err: raise AttributeError(str(err)) @property def id(self): return self.type + '.' + str(self.p) + '.' + str(self.q) @property def nthreads(self): return self._nthreads @property def nburn(self): return self._nburn @nburn.setter def nburn(self, nburnVal): try: assert value >= 0, r'nburn must be greater than or equal to 0' assert isinstance(value, int), r'nburn must be an integer' self._taskCython.reset_CARMATask(self._p, self._q, value) self._nburn = value except AssertionError as err: raise AttributeError(str(err)) @property def ndims(self): return self._ndims @property def nwalkers(self): return self._nwalkers @nwalkers.setter def nwalkers(self, value): try: assert value >= 0, r'nwalkers must be greater than or equal to 0' assert isinstance(value, int), r'nwalkers must be an integer' self._nwalkers = value self._Chain = np.require(np.zeros(self._ndims*self._nwalkers*self._nsteps), requirements=['F', 'A', 'W', 'O', 'E']) self._LnPrior = np.require(np.zeros(self._nwalkers*self._nsteps), requirements=['F', 'A', 'W', 'O', 'E']) self._LnLikelihood = np.require(np.zeros(self._nwalkers*self._nsteps), requirements=['F', 'A', 'W', 'O', 'E']) except AssertionError as err: raise AttributeError(str(err)) @property def nsteps(self): return self._nsteps @nsteps.setter def nsteps(self, value): try: assert value >= 0, r'nsteps must be greater than or equal to 0' assert isinstance(value, int), r'nsteps must be an integer' self._nsteps = value self._Chain = np.require(np.zeros(self._ndims*self._nwalkers*self._nsteps), requirements=['F', 'A', 'W', 'O', 'E']) self._LnPrior = np.require(np.zeros(self._nwalkers*self._nsteps), requirements=['F', 'A', 'W', 'O', 'E']) self._LnLikelihood = np.require(np.zeros(self._nwalkers*self._nsteps), requirements=['F', 'A', 'W', 'O', 'E']) except AssertionError as err: raise AttributeError(str(err)) @property def maxEvals(self): return self._maxEvals @maxEvals.setter def maxEvals(self, value): try: assert value >= 0, r'maxEvals must be greater than or equal to 0' assert isinstance(value, int), r'maxEvals must be an integer' self._maxEvals = value except AssertionError as err: raise AttributeError(str(err)) @property def xTol(self): return self._xTol @xTol.setter def xTol(self, value): try: assert value >= 0, r'xTol must be greater than or equal to 0' assert isinstance(value, float), r'xTol must be a float' self._xTol = value except AssertionError as err: raise AttributeError(str(err)) @property def mcmcA(self): return self._mcmcA @mcmcA.setter def mcmcA(self, value): try: assert value >= 0, r'mcmcA must be greater than or equal to 0.0' assert isinstance(value, float), r'mcmcA must be a float' self._mcmcA = value except AssertionError as err: raise AttributeError(str(err)) @property def Chain(self): return np.reshape(self._Chain, newshape=(self._ndims, self._nwalkers, self._nsteps), order='F') @property def rootChain(self): if hasattr(self, '_rootChain'): return self._rootChain else: Chain = self.Chain self._rootChain = np.require( np.zeros((self._ndims, self._nwalkers, self._nsteps), dtype='complex128'), requirements=['F', 'A', 'W', 'O', 'E']) for stepNum in range(self._nsteps): for walkerNum in range(self._nwalkers): self._rootChain[:, walkerNum, stepNum] = roots( self._p, self._q, Chain[:, walkerNum, stepNum]) return self._rootChain @property def timescaleChain(self): if hasattr(self, '_timescaleChain'): return self._timescaleChain else: rootChain = self.rootChain self._timescaleChain = np.require( np.zeros((self._ndims, self._nwalkers, self._nsteps), dtype='float64'), requirements=['F', 'A', 'W', 'O', 'E']) with warnings.catch_warnings(): warnings.simplefilter('ignore') for stepNum in range(self._nsteps): for walkerNum in range(self._nwalkers): self._timescaleChain[:, walkerNum, stepNum] = timescales( self._p, self._q, rootChain[:, walkerNum, stepNum]) return self._timescaleChain @property def LnPrior(self): return np.reshape(self._LnPrior, newshape=(self._nwalkers, self._nsteps), order='F') @property def LnLikelihood(self): return np.reshape(self._LnLikelihood, newshape=(self._nwalkers, self._nsteps), order='F') @property def LnPosterior(self): return self.LnPrior + self.LnLikelihood @property def pDIC(self): return self._pDIC @property def dic(self): return self._dic def __repr__(self): return "kali.mbhbcarma.MBHBCARMATask(%d, %d, %d, %d, %d, %d, %d, %f)"%(self._p, self._q, self._nthreads, self._nburn, self._nwalkers, self._nsteps, self._maxEvals, self._xTol) def __str__(self): line = 'r: %d; p: %d; q: %d; ndims: %d\n'%(self._r, self._p, self._q, self._ndims) line += 'nthreads (Number of hardware threads to use): %d\n'%(self._nthreads) line += 'nburn (Number of light curve steps to burn): %d\n'%(self._nburn) line += 'nwalkers (Number of MCMC walkers): %d\n'%(self._nwalkers) line += 'nsteps (Number of MCMC steps): %d\n'%(self.nsteps) line += 'maxEvals (Maximum number of evaluations when attempting to find starting location for MCMC):\ %d\n'%(self._maxEvals) line += 'xTol (Fractional tolerance in optimized parameter value): %f'%(self._xTol) return line def __eq__(self, other): if self.__class__ == other.__class__: if ((self._r == other._r) and (self._p == other.p) and (self._q == other.q) and (self._nthreads == other.nthreads) and (self._nburn == other.nburn) and (self._nwalkers == other.nwalkers) and (self._nsteps == other.nsteps) and (self._maxEvals == other.maxEvals) and (self.xTol == other.xTol)): return True else: return False else: return False def __neq__(self, other): if self == other: return False else: return True def reset(self, p=None, q=None, nburn=None, nwalkers=None, nsteps=None): if p is None: p = self._p if q is None: q = self._q if nburn is None: nburn = self._nburn if nwalkers is None: nwalkers = self._nwalkers if nsteps is None: nsteps = self._nsteps try: assert p > q, r'p must be greater than q' assert p >= 1, r'p must be greater than or equal to 1' assert isinstance(p, int), r'p must be an integer' assert q >= 0, r'q must be greater than or equal to 0' assert isinstance(q, int), r'q must be an integer' assert nburn >= 0, r'nburn must be greater than or equal to 0' assert isinstance(nburn, int), r'nburn must be an integer' assert nwalkers > 0, r'nwalkers must be greater than 0' assert isinstance(nwalkers, int), r'nwalkers must be an integer' assert nsteps > 0, r'nsteps must be greater than 0' assert isinstance(nsteps, int), r'nsteps must be an integer' self._taskCython.reset_MBHBCARMATask(p, q, nburn) self._p = p self._q = q self._ndims = self._p + self._q + 1 self._nburn = nburn self._nwalkers = nwalkers self._nsteps = nsteps self._Chain = np.require(np.zeros(self._ndims*self._nwalkers*self._nsteps), requirements=['F', 'A', 'W', 'O', 'E']) self._LnPrior = np.require(np.zeros(self._nwalkers*self._nsteps), requirements=['F', 'A', 'W', 'O', 'E']) self._LnLikelihood = np.require(np.zeros(self._nwalkers*self._nsteps), requirements=['F', 'A', 'W', 'O', 'E']) except AssertionError as err: raise AttributeError(str(err)) def check(self, Theta, tnum=None): if tnum is None: tnum = 0 assert Theta.shape == (self._ndims,), r'Too many coefficients in Theta' return bool(self._taskCython.check_Theta(Theta, tnum)) def set(self, dt, Theta, tnum=None): if tnum is None: tnum = 0 assert dt > 0.0, r'dt must be greater than 0.0' assert isinstance(dt, float), r'dt must be a float' assert Theta.shape == (self._ndims,), r'Too many coefficients in Theta' return self._taskCython.set_System(dt, Theta, tnum) def dt(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_dt(tnum) def Theta(self, tnum=None): if tnum is None: tnum = 0 Theta = np.require(np.zeros(self._ndims), requirements=['F', 'A', 'W', 'O', 'E']) self._taskCython.get_Theta(Theta, tnum) return Theta def list(self): setSystems = np.require( np.zeros(self._nthreads, dtype='int32'), requirements=['F', 'A', 'W', 'O', 'E']) self._taskCython.get_setSystemsVec(setSystems) return setSystems.astype(np.bool_) def show(self, tnum=None): if tnum is None: tnum = 0 self._taskCython.print_System(tnum) def Sigma(self, tnum=None): if tnum is None: tnum = 0 Sigma = np.require(np.zeros(self._p*self._p), requirements=['F', 'A', 'W', 'O', 'E']) self._taskCython.get_Sigma(Sigma, tnum) return np.reshape(Sigma, newshape=(self._p, self._p), order='F') def X(self, newX=None, tnum=None): if tnum is None: tnum = 0 if not newX: X = np.zeros(self._p) self._taskCython.get_X(X, tnum) return np.reshape(X, newshape=(self._p), order='F') else: self._taskCython.set_X(np.reshape(X, newshape=(self._p), order='F'), tnum) return newX def P(self, newP=None, tnum=None): if tnum is None: tnum = 0 if not newP: P = np.zeros(self._p*self._p) self._taskCython.get_P(P, tnum) return np.reshape(P, newshape=(self._p, self._p), order='F') else: self._taskCython.set_P(np.reshape(P, newshape=(self._p*self._p), order='F'), tnum) return newP def epoch(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_Epoch(tnum) def period(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_Period(tnum) def a1(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_A1(tnum) def a2(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_A2(tnum) def m1(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_M1(tnum) def m2(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_M2(tnum) def m12(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_M12(tnum) def mratio(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_M2OverM1(tnum) def rPeribothron1(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_RPeribothron1(tnum) def rPeribothron2(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_RPeribothron2(tnum) def rApobothron1(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_RApobothron1(tnum) def rApobothron2(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_RApobothron2(tnum) def rPeribothron(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_RPeribothronTot(tnum) def rApobothron(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_RApobothronTot(tnum) def rS1(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_RS1(tnum) def rS2(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_RS2(tnum) def eccentricity(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_Eccentricity(tnum) def omega1(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_Omega1(tnum) def omega2(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_Omega2(tnum) def inclination(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_Inclination(tnum) def tau(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_Tau(tnum) def M(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_MeanAnomoly(tnum) def E(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_EccentricAnomoly(tnum) def nu(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_TrueAnomoly(tnum) def r1(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_R1(tnum) def r2(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_R2(tnum) def theta1(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_Theta1(tnum) def theta2(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_Theta2(tnum) def Beta1(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_Beta1(tnum) def Beta2(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_Beta2(tnum) def radialBeta1(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_RadialBeta1(tnum) def radialBeta2(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_RadialBeta2(tnum) def dopplerFactor1(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_DopplerFactor1(tnum) def dopplerFactor2(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_DopplerFactor2(tnum) def beamingFactor1(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_BeamingFactor1(tnum) def beamingFactor2(self, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_BeamingFactor2(tnum) def aH(self, sigmaStars=200.0, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_aH(sigmaStars, tnum) def aGW(self, sigmaStars=200.0, rhoStars=1000.0, H=16, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_aGW(sigmaStars, rhoStars, H, tnum) def durationInHardState(self, sigmaStars=200.0, rhoStars=1000.0, H=16, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_durationInHardState(sigmaStars, rhoStars, H, tnum) def ejectedMass(self, sigmaStars=200.0, rhoStars=1000.0, H=16, tnum=None): if tnum is None: tnum = 0 return self._taskCython.get_ejectedMass(sigmaStars, rhoStars, H, tnum) def beam(self, duration=None, tIn=None, tnum=None, tolIR=1.0e-3, startT=0.0, fracIntrinsicVar=0.15, fracNoiseToSignal=0.001, maxSigma=2.0, minTimescale=2.0, maxTimescale=0.5): if tnum is None: tnum = 0 if tIn is None and duration is not None: numCadences = int(round(float(duration)/self._taskCython.get_dt(threadNum=tnum))) intrinsicLC = kali.lc.mockLC(name='', band='', numCadences=numCadences, deltaT=self._taskCython.get_dt(threadNum=tnum), tolIR=tolIR, startT=startT, fracIntrinsicVar=fracIntrinsicVar, fracNoiseToSignal=fracNoiseToSignal, maxSigma=maxSigma, minTimescale=minTimescale, maxTimescale=maxTimescale, pSim=self._p, qSim=self._q) elif duration is None and tIn is not None: numCadences = tIn.shape[0] t = np.require(np.array(tIn), requirements=['F', 'A', 'W', 'O', 'E']) intrinsicLC = kali.lc.mockLC(name='', band='', tIn=t, startT=startT, fracIntrinsicVar=fracIntrinsicVar, fracNoiseToSignal=fracNoiseToSignal, tolIR=tolIR, maxSigma=maxSigma, minTimescale=minTimescale, maxTimescale=maxTimescale, pSim=self._p, qSim=self._q) self._taskCython.make_BeamedLC( intrinsicLC.numCadences, intrinsicLC.tolIR, intrinsicLC.startT, intrinsicLC.fracIntrinsicVar, intrinsicLC.fracNoiseToSignal, intrinsicLC.t, intrinsicLC.x, intrinsicLC.y, intrinsicLC.yerr, intrinsicLC.mask, intrinsicLC.XSim, intrinsicLC.PSim, threadNum=tnum) intrinsicLC._simulatedCadenceNum = numCadences - 1 intrinsicLC._T = intrinsicLC.t[-1] - intrinsicLC.t[0] return intrinsicLC def simulate(self, duration=None, tIn=None, tolIR=1.0e-3, startT=0.0, fracIntrinsicVar=0.15, fracNoiseToSignal=0.001, maxSigma=2.0, minTimescale=2.0, maxTimescale=0.5, burnSeed=None, distSeed=None, tnum=None): if tnum is None: tnum = 0 if tIn is None and duration is not None: numCadences = int(round(float(duration)/self._taskCython.get_dt(threadNum=tnum))) intrinsicLC = kali.lc.mockLC(name='', band='', numCadences=numCadences, deltaT=self._taskCython.get_dt(threadNum=tnum), tolIR=tolIR, startT=startT, fracIntrinsicVar=fracIntrinsicVar, fracNoiseToSignal=fracNoiseToSignal, maxSigma=maxSigma, minTimescale=minTimescale, maxTimescale=maxTimescale, pSim=self._p, qSim=self._q) elif duration is None and tIn is not None: numCadences = tIn.shape[0] t = np.require(np.array(tIn), requirements=['F', 'A', 'W', 'O', 'E']) intrinsicLC = kali.lc.mockLC(name='', band='', tIn=t, startT=startT, fracIntrinsicVar=fracIntrinsicVar, fracNoiseToSignal=fracNoiseToSignal, tolIR=tolIR, maxSigma=maxSigma, minTimescale=minTimescale, maxTimescale=maxTimescale, pSim=self._p, qSim=self._q) for i in range(intrinsicLC.numCadences): intrinsicLC.mask[i] = 1.0 randSeed = np.zeros(1, dtype='uint32') if burnSeed is None: rand.rdrand(randSeed) burnSeed = randSeed[0] if distSeed is None: rand.rdrand(randSeed) distSeed = randSeed[0] self._taskCython.make_IntrinsicLC( intrinsicLC.numCadences, intrinsicLC.tolIR, intrinsicLC.startT, intrinsicLC.fracIntrinsicVar, intrinsicLC.fracNoiseToSignal, intrinsicLC.t, intrinsicLC.x, intrinsicLC.y, intrinsicLC.yerr, intrinsicLC.mask, intrinsicLC.XSim, intrinsicLC.PSim, burnSeed, distSeed, threadNum=tnum) intrinsicLC._simulatedCadenceNum = numCadences - 1 intrinsicLC._T = intrinsicLC.t[-1] - intrinsicLC.t[0] return intrinsicLC '''def extend( self, intrinsicLC, duration=None, tIn=None, gap=None, distSeed=None, noiseSeed=None, tnum=None): if tnum is None: tnum = 0 randSeed = np.zeros(1, dtype='uint32') if distSeed is None: rand.rdrand(randSeed) distSeed = randSeed[0] if noiseSeed is None: rand.rdrand(randSeed) noiseSeed = randSeed[0] if intrinsicLC.pSim != self.p: intrinsicLC.pSim = self.p if intrinsicLC.qSim != self.q: intrinsicLC.qSim = self.q if gap is None: gapSize = 0.0 else: gapSize = gap oldNumCadences = intrinsicLC.numCadences gapNumCadences = int(round(float(gapSize)/self._taskCython.get_dt(threadNum=tnum))) if tIn is None and duration is not None: extraNumCadences = int(round(float(duration + gapSize)/self._taskCython.get_dt(threadNum=tnum))) elif duration is None and gap is None and tIn is not None: extraNumCadences = np.array(tIn).shape[0] else: raise ValueError('Cannot specify both tIn and gap at the same time') newNumCadences = intrinsicLC.numCadences + extraNumCadences newt = np.require(np.zeros(newNumCadences), requirements=['F', 'A', 'W', 'O', 'E']) newx = np.require(np.zeros(newNumCadences), requirements=['F', 'A', 'W', 'O', 'E']) newy = np.require(np.zeros(newNumCadences), requirements=['F', 'A', 'W', 'O', 'E']) newyerr = np.require(np.zeros(newNumCadences), requirements=['F', 'A', 'W', 'O', 'E']) newmask = np.require(np.zeros(newNumCadences), requirements=['F', 'A', 'W', 'O', 'E']) for i in range(intrinsicLC.numCadences): newt[i] = intrinsicLC.t[i] newx[i] = intrinsicLC.x[i] newy[i] = intrinsicLC.y[i] newyerr[i] = intrinsicLC.yerr[i] newmask[i] = intrinsicLC.mask[i] if tIn is None and duration is not None: for i in range(intrinsicLC.numCadences, newNumCadences): newt[i] = newt[intrinsicLC.numCadences - 1] + gapSize + \ (i - intrinsicLC.numCadences + 1)*self._taskCython.get_dt(threadNum=tnum) newmask[i] = 1.0 elif duration is None and gap is None and tIn is not None: for i in range(intrinsicLC.numCadences, newNumCadences): newt[i] = tIn[i - intrinsicLC.numCadences] newmask[i] = 1.0 else: raise ValueError('Cannot specify both tIn and gap at the same time') intrinsicLC._numCadences = newNumCadences self._taskCython.extend_IntrinsicLC( intrinsicLC.numCadences, intrinsicLC._simulatedCadenceNum, intrinsicLC._tolIR, intrinsicLC._fracIntrinsicVar, intrinsicLC._fracNoiseToSignal, newt, newx, newy, newyerr, newmask, intrinsicLC.XSim, intrinsicLC.PSim, distSeed, noiseSeed, threadNum=tnum) if gap is not None: old, gap, new = np.split(newt, [oldNumCadences, oldNumCadences + gapNumCadences]) newt = np.require(np.concatenate((old, new)), requirements=['F', 'A', 'W', 'O', 'E']) old, gap, new = np.split(newx, [oldNumCadences, oldNumCadences + gapNumCadences]) newx = np.require(np.concatenate((old, new)), requirements=['F', 'A', 'W', 'O', 'E']) old, gap, new = np.split(newy, [oldNumCadences, oldNumCadences + gapNumCadences]) newy = np.require(np.concatenate((old, new)), requirements=['F', 'A', 'W', 'O', 'E']) old, gap, new = np.split(newyerr, [oldNumCadences, oldNumCadences + gapNumCadences]) newyerr = np.require(np.concatenate((old, new)), requirements=['F', 'A', 'W', 'O', 'E']) old, gap, new = np.split(newmask, [oldNumCadences, oldNumCadences + gapNumCadences]) newmask = np.require(np.concatenate((old, new)), requirements=['F', 'A', 'W', 'O', 'E']) intrinsicLC._simulatedCadenceNum = newt.shape[0] - 1 intrinsicLC._numCadences = newt.shape[0] intrinsicLC.t = newt intrinsicLC.x = newx intrinsicLC.y = newy intrinsicLC.yerr = newyerr intrinsicLC.mask = newmask count = int(np.sum(intrinsicLC.mask)) y_meanSum = 0.0 yerr_meanSum = 0.0 for i in range(intrinsicLC.numCadences): y_meanSum += intrinsicLC.mask[i]*intrinsicLC.y[i] yerr_meanSum += intrinsicLC.mask[i]*intrinsicLC.yerr[i] if count > 0.0: intrinsicLC._mean = y_meanSum/count intrinsicLC._meanerr = yerr_meanSum/count else: intrinsicLC._mean = 0.0 intrinsicLC._meanerr = 0.0 y_stdSum = 0.0 yerr_stdSum = 0.0 for i in range(intrinsicLC.numCadences): y_stdSum += math.pow(intrinsicLC.mask[i]*intrinsicLC.y[i] - intrinsicLC._mean, 2.0) yerr_stdSum += math.pow(intrinsicLC.mask[i]*intrinsicLC.yerr[i] - intrinsicLC._meanerr, 2.0) if count > 0.0: intrinsicLC._std = math.sqrt(y_stdSum/count) intrinsicLC._stderr = math.sqrt(yerr_stdSum/count) else: intrinsicLC._std = 0.0 intrinsicLC._stderr = 0.0''' def observe(self, intrinsicLC, noiseSeed=None, tnum=None): if tnum is None: tnum = 0 randSeed = np.zeros(1, dtype='uint32') if noiseSeed is None: rand.rdrand(randSeed) noiseSeed = randSeed[0] if intrinsicLC._observedCadenceNum == -1: self._taskCython.add_ObservationNoise( intrinsicLC.numCadences, intrinsicLC.tolIR, intrinsicLC.fracIntrinsicVar, intrinsicLC.fracNoiseToSignal, intrinsicLC.t, intrinsicLC.x, intrinsicLC.y, intrinsicLC.yerr, intrinsicLC.mask, noiseSeed, threadNum=tnum) '''else: self._taskCython.extend_ObservationNoise( intrinsicLC.numCadences, intrinsicLC.observedCadenceNum, intrinsicLC.tolIR, intrinsicLC.fracIntrinsicVar, intrinsicLC.fracNoiseToSignal, intrinsicLC.t, intrinsicLC.x, intrinsicLC.y, intrinsicLC.yerr, intrinsicLC.mask, noiseSeed, threadNum=tnum) intrinsicLC._observedCadenceNum = intrinsicLC._numCadences - 1''' intrinsicLC._statistics() def logPrior(self, observedLC, forced=True, widthT=0.01, widthF=0.05, tnum=None): if tnum is None: tnum = 0 periodEst = self.estimate(observedLC) observedLC._logPrior = self._taskCython.compute_LnPrior(observedLC.numCadences, observedLC.meandt, observedLC.tolIR, observedLC.startT, observedLC.maxSigma*observedLC.std, observedLC.minTimescale*observedLC.mindt, observedLC.maxTimescale*observedLC.T, np.min(observedLC.y), np.max(observedLC.y), observedLC.t, observedLC.x, observedLC.y, observedLC.yerr, observedLC.mask, periodEst, widthT*periodEst, observedLC.mean, widthF*observedLC.mean, tnum) return observedLC._logPrior def logLikelihood(self, observedLC, widthT=0.01, widthF=0.05, forced=True, tnum=None): if tnum is None: tnum = 0 observedLC.pComp = self.p observedLC.qComp = self.q periodEst = self.estimate(observedLC) observedLC._logPrior = self.logPrior(observedLC, widthT=widthT, widthF=widthF, forced=forced, tnum=tnum) if forced is True: observedLC._computedCadenceNum = -1 if observedLC._computedCadenceNum == -1: for rowCtr in range(observedLC.pComp): observedLC.XComp[rowCtr] = 0.0 for colCtr in range(observedLC.pComp): observedLC.PComp[rowCtr + observedLC.pComp*colCtr] = 0.0 observedLC._logLikelihood = self._taskCython.compute_LnLikelihood( observedLC.numCadences, observedLC._computedCadenceNum, observedLC.tolIR, observedLC.startT, observedLC.t, observedLC.x, observedLC.y, observedLC.yerr, observedLC.mask, observedLC.XComp, observedLC.PComp, periodEst, widthT*periodEst, observedLC.mean, widthF*observedLC.mean, tnum) observedLC._logPosterior = observedLC._logPrior + observedLC._logLikelihood observedLC._computedCadenceNum = observedLC.numCadences - 1 elif observedLC._computedCadenceNum == observedLC.numCadences - 1: pass '''else: observedLC._logLikelihood = self._taskCython.update_LnLikelihood( observedLC.numCadences, observedLC._computedCadenceNum, observedLC._logLikelihood, observedLC.tolIR, observedLC.t, observedLC.x, observedLC.y - observedLC.mean, observedLC.yerr, observedLC.mask, observedLC.XComp, observedLC.PComp, tnum) observedLC._logPosterior = observedLC._logPrior + observedLC._logLikelihood observedLC._computedCadenceNum = observedLC.numCadences - 1''' return observedLC._logLikelihood def logPosterior(self, observedLC, forced=True, tnum=None): lnLikelihood = self.logLikelihood(observedLC, forced=forced, tnum=tnum) return observedLC._logPosterior '''def acvf(self, start=0.0, stop=100.0, num=100, endpoint=True, base=10.0, spacing='linear'): if spacing.lower() in ['log', 'logarithm', 'ln', 'log10']: lags = np.logspace(np.log10(start)/np.log10(base), np.log10( stop)/np.log10(base), num=num, endpoint=endpoint, base=base) elif spacing.lower() in ['linear', 'lin']: lags = np.linspace(start, stop, num=num, endpoint=endpoint) else: raise RuntimeError('Unable to parse spacing') acvf = np.zeros(num) self._taskCython.compute_ACVF(num, lags, acvf) return lags, acvf def acf(self, start=0.0, stop=100.0, num=100, endpoint=True, base=10.0, spacing='linear'): if spacing.lower() in ['log', 'logarithm', 'ln', 'log10']: lags = np.logspace(np.log10(start)/np.log10(base), np.log10( stop)/np.log10(base), num=num, endpoint=endpoint, base=base) elif spacing.lower() in ['linear', 'lin']: lags = np.linspace(start, stop, num=num, endpoint=endpoint) else: raise RuntimeError('Unable to parse spacing') acvf = np.zeros(num) acf = np.zeros(num) self._taskCython.compute_ACVF(num, lags, acvf) acf = acvf/acvf[0] return lags, acf def sf(self, start=0.0, stop=100.0, num=100, endpoint=True, base=10.0, spacing='linear'): if spacing.lower() in ['log', 'logarithm', 'ln', 'log10']: lags = np.logspace(np.log10(start)/np.log10(base), np.log10( stop)/np.log10(base), num=num, endpoint=endpoint, base=base) elif spacing.lower() in ['linear', 'lin']: lags = np.linspace(start, stop, num=num, endpoint=endpoint) else: raise RuntimeError('Unable to parse spacing') acvf = np.zeros(num) sf = np.zeros(num) self._taskCython.compute_ACVF(num, lags, acvf) sf = 2.0*(acvf[0] - acvf) return lags, sf def plotacvf(self, fig=-2, LC=None, newdt=None, doShow=False, clearFig=True): newFig = plt.figure(fig, figsize=(fwid, fhgt)) if clearFig: plt.clf() if LC is not None: lagsM, acvfM = self.acvf(start=LC.dt, stop=LC.T, num=1000, spacing='linear') else: lagsM, acvfM = self.acvf(start=0.0, stop=1000.0, num=1000, spacing='linear') plt.plot(lagsM, acvfM, label=r'model Autocovariance Function', color='#984ea3', zorder=5) if LC is not None: if np.sum(LC.y) != 0.0: lagsE, acvfE, acvferrE = LC.acvf(newdt) if np.sum(acvfE) != 0.0: plt.errorbar(lagsE[1:], acvfE[1:], acvferrE[1:], label=r'obs. Autocovariance Function', fmt='o', capsize=0, color='#ff7f00', markeredgecolor='none', zorder=0) plt.xlim(lagsE[1], lagsE[-1]) plt.xlabel(r'$\delta t$') plt.ylabel(r'$\log ACVF$') plt.title(r'Autocovariance Function') plt.legend(loc=3) if doShow: plt.show(False) return newFig def plotacf(self, fig=-3, LC=None, newdt=None, doShow=False, clearFig=True): newFig = plt.figure(fig, figsize=(fwid, fhgt)) if clearFig: plt.clf() if LC is not None: lagsM, acfM = self.acf(start=LC.dt, stop=LC.T, num=1000, spacing='linear') else: lagsM, acfM = self.acf(start=0.0, stop=1000.0, num=1000, spacing='linear') plt.plot(lagsM, acfM, label=r'model Autocorrelation Function', color='#984ea3', zorder=5) if LC is not None: if np.sum(LC.y) != 0.0: lagsE, acfE, acferrE = LC.acf(newdt) if np.sum(acfE) != 0.0: plt.errorbar(lagsE[1:], acfE[1:], acferrE[1:], label=r'obs. Autocorrelation Function', fmt='o', capsize=0, color='#ff7f00', markeredgecolor='none', zorder=0) plt.xlim(lagsE[1], lagsE[-1]) plt.xlabel(r'$\delta t$') plt.ylabel(r'$\log ACF$') plt.title(r'Autocorrelation Function') plt.legend(loc=3) plt.ylim(-1.0, 1.0) if doShow: plt.show(False) return newFig def plotsf(self, fig=-4, LC=None, newdt=None, doShow=False, clearFig=True): newFig = plt.figure(fig, figsize=(fwid, fhgt)) if clearFig: plt.clf() if LC is not None and np.sum(LC.y) != 0.0: lagsE, sfE, sferrE = LC.sf(newdt) lagsM, sfM = self.sf(start=lagsE[1], stop=lagsE[-1], num=1000, spacing='log') else: lagsM, sfM = self.sf(start=0.001, stop=1000.0, num=1000, spacing='log') plt.plot(np.log10(lagsM[1:]), np.log10( sfM[1:]), label=r'model Structure Function', color='#984ea3', zorder=5) if LC is not None: if np.sum(LC.y) != 0.0: if np.sum(sfE) != 0.0: plt.scatter( np.log10(lagsE[np.where(sfE != 0.0)[0]]), np.log10(sfE[np.where(sfE != 0.0)[0]]), marker='o', label=r'obs. Structure Function', color='#ff7f00', edgecolors='none', zorder=0) plt.xlim(math.log10(lagsM[1]), math.log10(lagsM[-1])) plt.xlabel(r'$\delta t$') plt.ylabel(r'$\log SF$') plt.title(r'Structure Function') plt.legend(loc=2) if doShow: plt.show(False) return newFig def _psddenominator(self, freqs, order): nfreqs = freqs.shape[0] aList = self.Theta()[0:self.p].tolist() aList.insert(0, 1.0) psddenominator = np.zeros(nfreqs) if ((order % 2 == 1) or (order <= -1) or (order > 2*self.p)): aList.pop(0) return PSDVals else: for freq in range(nfreqs): val = 0.0 for i in range(self.p + 1): j = 2*self.p - i - order if ((j >= 0) and (j < self.p + 1)): val += (aList[i]*aList[j]*((2.0*math.pi*1j*freqs[freq])**( 2*self.p - (i + j)))*pow(-1.0, self.p - j)).real psddenominator[freq] = val aList.pop(0) return psddenominator def _psdnumerator(self, freqs, order): nfreqs = freqs.shape[0] bList = self.Theta()[self.p:self.p+self.q+1].tolist() psdnumerator = np.zeros(nfreqs) if ((order % 2 == 1) or (order <= -1) or (order > 2*self.q)): return psdnumerator else: for freq in range(nfreqs): val = 0.0 for i in range(self.q + 1): j = 2*self.q - i - order if ((j >= 0) and (j < self.q + 1)): val += (bList[i]*bList[j]*((2.0*math.pi*1j*freqs[freq])**( 2*self.q - (i + j)))*pow(-1.0, self.q - j)).real psdnumerator[freq] = val return psdnumerator def psd(self, start=0.1, stop=100.0, num=100, endpoint=True, base=10.0, spacing='log'): if spacing.lower() in ['log', 'logarithm', 'ln', 'log10']: freqs = np.logspace(np.log10(start)/np.log10(base), np.log10( stop)/np.log10(base), num=num, endpoint=endpoint, base=base) elif spacing.lower() in ['linear', 'lin']: freqs = np.linspace(start, stop, num=num, endpoint=endpoint) else: raise RuntimeError('Unable to parse spacing') maxDenomOrder = 2*self.p maxNumerOrder = 2*self.q psdnumeratorcomponent = np.zeros((num, (maxNumerOrder/2) + 1)) psddenominatorcomponent = np.zeros((num, (maxDenomOrder/2) + 1)) psdnumerator = np.zeros(num) psddenominator = np.zeros(num) psd = np.zeros(num) for orderVal in range(0, maxNumerOrder + 1, 2): psdnumeratorcomponent[:, orderVal/2] = self._psdnumerator(freqs, orderVal) for orderVal in range(0, maxDenomOrder + 1, 2): psddenominatorcomponent[:, orderVal/2] = self._psddenominator(freqs, orderVal) for freq in range(num): for orderVal in range(0, maxNumerOrder + 1, 2): psdnumerator[freq] += psdnumeratorcomponent[freq, orderVal/2] for orderVal in range(0, maxDenomOrder + 1, 2): psddenominator[freq] += psddenominatorcomponent[freq, orderVal/2] psd[freq] = psdnumerator[freq]/psddenominator[freq] return freqs, psd, psdnumerator, psddenominator, psdnumeratorcomponent, psddenominatorcomponent def plotpsd(self, fig=-5, LC=None, doShow=False, clearFig=True): newFig = plt.figure(fig, figsize=(fwid, fhgt)) if clearFig: plt.clf() if LC is not None: start = LC.mindt stop = LC.T else: start = 1.0e-4 stop = 1.0e3 freqsM, psdM, psdNumer, psdDenom, psdNumerComp, psdDenomComp = self.psd( start=start, stop=stop, num=1000, spacing='log') plt.plot(np.log10(freqsM[1:]), np.log10( psdM[1:]), label=r'$\ln PSD$', color='#000000', zorder=5, linewidth=6) plt.plot(np.log10(freqsM[1:]), np.log10(psdNumer[1:]), label=r'$\ln PSD_{\mathrm{numerator}}$', color='#1f78b4', zorder=0, linewidth=4) plt.plot(np.log10(freqsM[1:]), -np.log10(psdDenom[1:]), label=r'$-\ln PSD_{\mathrm{denominator}}$', color='#e31a1c', zorder=0, linewidth=4) for i in range(psdNumerComp.shape[1]): plt.plot(np.log10(freqsM[1:]), np.log10(psdNumerComp[1:, i]), color='#a6cee3', zorder=0, linewidth=2, linestyle=r'dashed') plt.annotate( r'$\nu^{%d}$'%(2*i), xy=(np.log10(freqsM[25]), np.log10(psdNumerComp[25, i])), xycoords='data', xytext=(np.log10(freqsM[25]) + 0.25, np.log10(psdNumerComp[25, i]) + 0.5), textcoords='data', arrowprops=dict( arrowstyle='->', connectionstyle='angle3, angleA = 0, angleB = 90'), ha='center', va='center', multialignment='center', zorder=100) for i in range(psdDenomComp.shape[1]): plt.plot(np.log10(freqsM[1:]), -np.log10(psdDenomComp[1:, i]), color='#fb9a99', zorder=0, linewidth=2, linestyle=r'dashed') plt.annotate( r'$\nu^{%d}$'%(-2*i), xy=(np.log10(freqsM[-25]), -np.log10(psdDenomComp[-25, i])), xycoords='data', xytext=(np.log10(freqsM[-25]) - 0.25, -np.log10(psdDenomComp[-25, i]) - 0.5), textcoords='data', arrowprops=dict( arrowstyle='->', connectionstyle='angle3, angleA = 0, angleB = 90'), ha='center', va='center', multialignment='center', zorder=100) plt.xlim(math.log10(freqsM[1]), math.log10(freqsM[-1])) plt.xlabel(r'$\log \nu$') plt.ylabel(r'$\log PSD$') plt.title(r'Power Spectral Density') plt.legend(loc=3) if doShow: plt.show(False) return newFig''' def estimate(self, observedLC): """! Estimate period using gatspy or scipy.spectral.periodogram """ if observedLC.numCadences > 50: model = gatspy.periodic.LombScargleFast() else: model = gatspy.periodic.LombScargle() model.optimizer.set(quiet=True, period_range=(2.0*observedLC.meandt, observedLC.T)) model.fit(observedLC.t, observedLC.y, observedLC.yerr) periodEst = model.best_period if periodEst < 2.0*observedLC.meandt or periodEst > observedLC.T: scaled_y = (observedLC.y - observedLC.mean)/observedLC.std angFreqs = np.logspace(math.log10((2.0*math.pi)/(observedLC.T)), math.log10((2.0*math.pi)/(2.0*observedLC.meandt)), 10000) periodogram = scipy.signal.spectral.lombscargle(observedLC.t, scaled_y, angFreqs) periodEst = 2.0*math.pi/angFreqs[np.argmax(periodogram)] return periodEst def guess(self, periodEst): notGood = True while notGood: eccentricityGuess = random.uniform(0.0, 1.0) m1Val = math.pow(10.0, random.uniform(4.0, 10.0)) m2Val = math.pow(10.0, random.uniform(4.0, math.log10(m1Val))) totalMassVal = m1Val + m2Val axisRatioVal = m2Val/m1Val aTotCube = (self.G*math.pow(periodEst*self.Day, 2.0)*totalMassVal*self.SolarMass)/self.fourPiSq totalAxisVal = math.pow(aTotCube, 1.0/3.0) a1Guess = ((axisRatioVal*totalAxisVal)/(1 + axisRatioVal))/self.Parsec a2Guess = (totalAxisVal/(1 + axisRatioVal))/self.Parsec rS1Val = (2.0*self.G*m1Val*self.SolarMass)/(pow(self.c, 2.0)) rS2Val = (2.0*self.G*m2Val*self.SolarMass)/(pow(self.c, 2.0)) rPeribothronTotVal = (a1Guess + a2Guess)*self.Parsec*(1.0 - eccentricityGuess) if rPeribothronTotVal > 10.0*(rS1Val + rS2Val): notGood = False break return a1Guess, a2Guess, eccentricityGuess def fit(self, observedLC, widthT=0.01, widthF=0.05, zSSeed=None, walkerSeed=None, moveSeed=None, xSeed=None): observedLC.pComp = self.p observedLC.qComp = self.q randSeed = np.zeros(1, dtype='uint32') if zSSeed is None: rand.rdrand(randSeed) zSSeed = randSeed[0] if walkerSeed is None: rand.rdrand(randSeed) walkerSeed = randSeed[0] if moveSeed is None: rand.rdrand(randSeed) moveSeed = randSeed[0] if xSeed is None: rand.rdrand(randSeed) xSeed = randSeed[0] xStart = np.require(np.zeros(self.ndims*self.nwalkers), requirements=['F', 'A', 'W', 'O', 'E']) minT = observedLC.mindt*observedLC.minTimescale maxT = observedLC.T*observedLC.maxTimescale minTLog10 = math.log10(minT) maxTLog10 = math.log10(maxT) periodEst = self.estimate(observedLC) for walkerNum in range(self.nwalkers): noSuccess = True sigmaFactor = 1.0e0 expVal = ((maxTLog10 - minTLog10)*np.random.random(self._p + self._q + 1) + minTLog10) a1Guess, a2Guess, eccentricityGuess = self.guess(periodEst) RhoGuess = np.require(np.array([a1Guess, a2Guess, periodEst, eccentricityGuess, random.uniform(0.0, 360.0), random.uniform(0.0, 90.0), random.uniform(observedLC.startT, observedLC.startT + periodEst), observedLC.mean] + (-1.0/np.power(10.0, expVal)).tolist()), requirements=['F', 'A', 'W', 'O', 'E']) while noSuccess: RhoGuess[self._r + self._p + self._q] = sigmaFactor*observedLC.std ThetaGuess = coeffs(self._p, self._q, RhoGuess) res = self.set(observedLC.dt, ThetaGuess) lnPrior = self.logPrior(observedLC, widthT=widthT, widthF=widthF) if res == 0 and not np.isinf(lnPrior): noSuccess = False else: sigmaFactor *= 0.31622776601 # sqrt(0.1) for dimNum in range(self.ndims): xStart[dimNum + walkerNum*self.ndims] = ThetaGuess[dimNum] res = self._taskCython.fit_CARMAModel( observedLC.dt, observedLC.numCadences, observedLC.meandt, observedLC.tolIR, observedLC.maxSigma*observedLC.std, observedLC.minTimescale*observedLC.mindt, observedLC.maxTimescale*observedLC.T, np.min(observedLC.y), np.max(observedLC.y), observedLC.startT, observedLC.t, observedLC.x, observedLC.y, observedLC.yerr, observedLC.mask, self.nwalkers, self.nsteps, self.maxEvals, self.xTol, self.mcmcA, zSSeed, walkerSeed, moveSeed, xSeed, xStart, self._Chain, self._LnPrior, self._LnLikelihood, periodEst, widthT*periodEst, observedLC.mean, widthF*observedLC.mean) meanTheta = list() for dimNum in range(self.ndims): meanTheta.append(np.mean(self.Chain[dimNum, :, self.nsteps/2:])) meanTheta = np.require(meanTheta, requirements=['F', 'A', 'W', 'O', 'E']) self.set(observedLC.dt, meanTheta) devianceThetaBar = -2.0*self.logLikelihood(observedLC) barDeviance = np.mean(-2.0*self.LnLikelihood[:, self.nsteps/2:]) self._pDIC = barDeviance - devianceThetaBar self._dic = devianceThetaBar + 2.0*self.pDIC self.rootChain self.timescaleChain self.bestTheta self.bestRho self.bestTau self.auxillaryChain return res @property def bestTheta(self): if hasattr(self, '_bestTheta'): return self._bestTheta else: bestWalker = np.where(np.max(self.LnPosterior) == self.LnPosterior)[0][0] bestStep = np.where(np.max(self.LnPosterior) == self.LnPosterior)[1][0] self._bestTheta = copy.copy(self.Chain[:, bestWalker, bestStep]) return self._bestTheta @property def bestRho(self): if hasattr(self, '_bestRho'): return self._bestRho else: bestWalker = np.where(np.max(self.LnPosterior) == self.LnPosterior)[0][0] bestStep = np.where(np.max(self.LnPosterior) == self.LnPosterior)[1][0] self._bestRho = copy.copy(self.rootChain[:, bestWalker, bestStep]) return self._bestRho @property def bestTau(self): if hasattr(self, '_bestTau'): return self._bestTau else: bestWalker = np.where(np.max(self.LnPosterior) == self.LnPosterior)[0][0] bestStep = np.where(np.max(self.LnPosterior) == self.LnPosterior)[1][0] self._bestTau = copy.copy(self.timescaleChain[:, bestWalker, bestStep]) return self._bestTau def clear(self): if hasattr(self, '_rootChain'): del self._rootChain if hasattr(self, '_timescaleChain'): del self._timescaleChain if hasattr(self, '_bestTheta'): del self._bestTheta if hasattr(self, '_bestRho'): del self._bestRho if hasattr(self, '_bestTau'): del self._bestTau def smooth(self, observedLC, startT=None, stopT=None, tnum=None): if tnum is None: tnum = 0 if observedLC.dtSmooth is None or observedLC.dtSmooth == 0.0: observedLC.dtSmooth = observedLC.mindt/10.0 observedLC.pComp = self.p observedLC.qComp = self.q if not startT: startT = observedLC.t[0] if not stopT: stopT = observedLC.t[-1] t = sorted(observedLC.t.tolist() + np.linspace(start=startT, stop=stopT, num=int(math.ceil((stopT - startT)/observedLC.dtSmooth)), endpoint=False).tolist()) t = _f7(t) # remove duplicates observedLC.numCadencesSmooth = len(t) observedLC.tSmooth = np.require(np.array(t), requirements=[ 'F', 'A', 'W', 'O', 'E']) observedLC.xSmooth = np.require(np.zeros(observedLC.numCadencesSmooth), requirements=[ 'F', 'A', 'W', 'O', 'E']) observedLC.xerrSmooth = np.require(np.zeros(observedLC.numCadencesSmooth), requirements=[ 'F', 'A', 'W', 'O', 'E']) observedLC.ySmooth = np.require(np.zeros(observedLC.numCadencesSmooth), requirements=[ 'F', 'A', 'W', 'O', 'E']) observedLC.yerrSmooth = np.require( np.zeros(observedLC.numCadencesSmooth), requirements=['F', 'A', 'W', 'O', 'E']) observedLC.maskSmooth = np.require( np.zeros(observedLC.numCadencesSmooth), requirements=['F', 'A', 'W', 'O', 'E']) observedLC.XSmooth = np.require(np.zeros(observedLC.numCadencesSmooth*observedLC.pComp), requirements=['F', 'A', 'W', 'O', 'E']) observedLC.PSmooth = np.require(np.zeros( observedLC.numCadencesSmooth*observedLC.pComp*observedLC.pComp), requirements=['F', 'A', 'W', 'O', 'E']) unObsErr = math.sqrt(sys.float_info.max) obsCtr = 0 for i in range(observedLC.numCadencesSmooth): if observedLC.tSmooth[i] == observedLC.t[obsCtr]: observedLC.xSmooth[i] = 0.0 observedLC.xerrSmooth[i] = unObsErr observedLC.ySmooth[i] = observedLC.y[obsCtr] observedLC.yerrSmooth[i] = observedLC.yerr[obsCtr] observedLC.maskSmooth[i] = observedLC.mask[obsCtr] if obsCtr < observedLC.numCadences - 1: obsCtr += 1 else: observedLC.xSmooth[i] = 0.0 observedLC.xerrSmooth[i] = unObsErr observedLC.ySmooth[i] = 0.0 observedLC.yerrSmooth[i] = unObsErr observedLC.maskSmooth[i] = 0.0 res = self._taskCython.smooth_RTS( observedLC.numCadencesSmooth, -1, observedLC.tolIR, observedLC.startT, observedLC.tSmooth, observedLC.xSmooth, observedLC.ySmooth, observedLC.yerrSmooth, observedLC.maskSmooth, observedLC.XComp, observedLC.PComp, observedLC.XSmooth, observedLC.PSmooth, observedLC.xSmooth, observedLC.xerrSmooth, tnum) observedLC._isSmoothed = True return res @property def auxillaryChain(self): if hasattr(self, '_auxillaryChain'): return np.reshape(self._auxillaryChain, newshape=(13, self._nwalkers, self._nsteps), order='F') else: self._auxillaryChain = np.require(np.zeros(13*self.nwalkers*self.nsteps), requirements=['F', 'A', 'W', 'O', 'E']) MBHBCARMATask_cython.compute_Aux(self.ndims, self.nwalkers, self.nsteps, self.sigmaStars, self.H, self.rhoStars, self._Chain, self._auxillaryChain) return np.reshape(self._auxillaryChain, newshape=(13, self._nwalkers, self._nsteps), order='F') def plotscatter(self, dimx, dimy, truthx=None, truthy=None, labelx=None, labely=None, best=False, median=False, fig=-6, doShow=False, clearFig=True): newFig = plt.figure(fig, figsize=(fwid, fhgt)) if clearFig: plt.clf() if dimx < self.ndims and dimy < self.ndims: plt.scatter(self.timescaleChain[dimx, :, self.nsteps/2:], self.timescaleChain[dimy, :, self.nsteps/2:], c=self.LnPosterior[:, self.nsteps/2:], edgecolors='none') plt.colorbar() if best: loc0 = np.where(self.LnPosterior[self.nsteps/2:] == np.max(self.LnPosterior[self.nsteps/2:]))[0][0] loc1 = np.where(self.LnPosterior[self.nsteps/2:] == np.max(self.LnPosterior[self.nsteps/2:]))[1][0] plt.axvline(x=self.timescaleChain[dimx, loc0, loc1], c=r'#ffff00', label=r'Best %s'%(labelx)) plt.axhline(y=self.timescaleChain[dimy, loc0, loc1], c=r'#ffff00', label=r'Best %s'%(labely)) if median: medx = np.median(self.timescaleChain[dimx, :, self.nsteps/2:]) medy = np.median(self.timescaleChain[dimy, :, self.nsteps/2:]) plt.axvline(x=medx, c=r'#ff00ff', label=r'Median %s'%(labelx)) plt.axhline(y=medy, c=r'#ff00ff', labely=r'Median %s'%(labely)) if truthx is not None: plt.axvline(x=truthx, c=r'#000000') if truthy is not None: plt.axhline(y=truthy, c=r'#000000') if labelx is not None: plt.xlabel(labelx) if labely is not None: plt.ylabel(labely) if doShow: plt.show(False) return newFig def plotwalkers(self, dim, truth=None, label=None, fig=-7, doShow=False, clearFig=True): newFig = plt.figure(fig, figsize=(fwid, fhgt)) if clearFig: plt.clf() if dim < self.ndims: for i in range(self.nwalkers): plt.plot(self.timescaleChain[dim, i, :], c=r'#0000ff', alpha=0.1) plt.plot(np.median(self.timescaleChain[dim, :, :], axis=0), c=r'#ff0000') plt.fill_between(range(self.nsteps), np.median(self.timescaleChain[dim, :, :], axis=0) - np.std(self.timescaleChain[dim, :, :], axis=0), np.median(self.timescaleChain[dim, :, :], axis=0) + np.std(self.timescaleChain[dim, :, :], axis=0), color=r'#ff0000', alpha=0.1) if truth is not None: plt.axhline(truth, c=r'#000000') plt.xlabel(r'step \#') if label is not None: plt.ylabel(label) if doShow: plt.show(False) return newFig def plottriangle(self, doShow=False, plot_contours=True, cmap='cubehelix'): orbitChain = copy.copy(self.timescaleChain[0:self.r, :, self.nsteps/2:]) flatOrbitChain = np.swapaxes(orbitChain.reshape((self.r, -1), order='F'), axis1=0, axis2=1) orbitLabels = [r'$a_{1}$ (pc)', r'$a_{2}$ (pc)', r'$T$ (d)', r'$e$', r'$\Omega$ (deg.)', r'$i$ (deg)', r'$\tau$ (d)', r'$F$'] orbitExtents = [0.9, 0.9, (0.95*np.min(self.timescaleChain[2, :, self.nsteps/2:]), 1.05*np.max(self.timescaleChain[2, :, self.nsteps/2:])), 0.9, 0.9, 0.9, 0.9, (0.85*np.min(self.timescaleChain[7, :, self.nsteps/2:]), 1.15*np.max(self.timescaleChain[7, :, self.nsteps/2:]))] newFigOrb = kali.util.triangle.corner(flatOrbitChain, labels=orbitLabels, show_titles=True, title_fmt='.2e', quantiles=[0.16, 0.5, 0.84], extents=orbitExtents, plot_contours=plot_contours, plot_datapoints=False, plot_contour_lines=False, pcolor_cmap=cm.get_cmap(cmap), verbose=False) stochasticChain = copy.copy(self.timescaleChain[self.r:, :, self.nsteps/2:]) flatStochasticChain = np.swapaxes(stochasticChain.reshape((self.ndims - self.r, -1), order='F'), axis1=0, axis2=1) stochasticLabels = [] for i in range(self.p): stochasticLabels.append(r'$\tau_{\mathrm{AR,} %d}$ (d)'%(i + 1)) for i in range(self.q): stochasticLabels.append(r'$\tau_{\mathrm{MA,} %d}$ (d)'%(i + 1)) stochasticLabels.append(r'$\mathrm{Amp.}$') newFigSto = kali.util.triangle.corner(flatStochasticChain, labels=stochasticLabels, show_titles=True, title_fmt='.2e', quantiles=[0.16, 0.5, 0.84], plot_contours=plot_contours, plot_datapoints=False, plot_contour_lines=False, pcolor_cmap=cm.get_cmap(cmap), verbose=False) auxChain = copy.copy(self.auxillaryChain[:, :, self.nsteps/2:]) flatAuxChain = np.swapaxes(auxChain.reshape((13, -1), order='F'), axis1=0, axis2=1) auxLabels = [r'$a_{1}$ (pc)', r'$a_{2}$ (pc)', r'$T$ (d)', r'$e$', r'$M_{12}$ ($10^{6} \times M_{\odot}$)', r'$M_{2}/M_{1}$', r'$r_{\mathrm{Peribothron}}$ (pc)', r'$r_{\mathrm{Apobothron}}$ (pc)', r'$r_{\mathrm{Schwarzschild}}$ (pc)', r'$a_{\mathrm{Hard}}$ (pc)', r'$a_{\mathrm{GW}}$ (pc)', r'$T_{\mathrm{Hard}}$ (yr)', r'$M_{\mathrm{Eject}}$ ($10^{6} \times M_{\odot}$)'] auxExtents = [0.9, 0.9, (0.95*np.min(self.auxillaryChain[2, :, self.nsteps/2:]), 1.05*np.max(self.auxillaryChain[2, :, self.nsteps/2:])), 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9] newFigAux = kali.util.triangle.corner(flatAuxChain, labels=auxLabels, show_titles=True, title_fmt='.2e', quantiles=[0.16, 0.5, 0.84], extents=auxExtents, plot_contours=plot_contours, plot_datapoints=False, plot_contour_lines=False, pcolor_cmap=cm.get_cmap(cmap), verbose=False) if doShow: plt.show(False) return newFigSto, newFigOrb, newFigAux
gpl-2.0
mrshu/scikit-learn
benchmarks/bench_sample_without_replacement.py
2
7902
""" Benchmarks for sampling without replacement of integer. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import operator import matplotlib.pyplot as plt import numpy as np import random from sklearn.utils.random import sample_without_replacement def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_sample(sampling, n_population, n_samples): gc.collect() # start time t_start = datetime.now() sampling(n_population, n_samples) delta = (datetime.now() - t_start) # stop time time = compute_time(t_start, delta) return time if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Bench results are average over n_times experiments") op.add_option("--n-population", dest="n_population", default=100000, type=int, help="Size of the population to sample from.") op.add_option("--n-step", dest="n_steps", default=5, type=int, help="Number of step interval between 0 and n_population.") default_algorithms = "custom-tracking-selection,custom-auto," \ "custom-reservoir-sampling,custom-pool,"\ "python-core-sample,numpy-permutation" op.add_option("--algorithm", dest="selected_algorithm", default=default_algorithms, type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. \nAvailable: %default") # op.add_option("--random-seed", # dest="random_seed", default=13, type=int, # help="Seed used by the random number generators.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) selected_algorithm = opts.selected_algorithm.split(',') for key in selected_algorithm: if key not in default_algorithms.split(','): raise ValueError("Unknown sampling algorithm \"%s\" not in (%s)." % (key, default_algorithms)) ########################################################################### # List sampling algorithm ########################################################################### # We assume that sampling algorithm has the following signature: # sample(n_population, n_sample) # sampling_algorithm = {} ########################################################################### # Set Python core input sampling_algorithm["python-core-sample"] = \ lambda n_population, n_sample: \ random.sample(xrange(n_population), n_sample) ########################################################################### # Set custom automatic method selection sampling_algorithm["custom-auto"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="auto", random_state=random_state) ########################################################################### # Set custom tracking based method sampling_algorithm["custom-tracking-selection"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="tracking_selection", random_state=random_state) ########################################################################### # Set custom reservoir based method sampling_algorithm["custom-reservoir-sampling"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="reservoir_sampling", random_state=random_state) ########################################################################### # Set custom reservoir based method sampling_algorithm["custom-pool"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="pool", random_state=random_state) ########################################################################### # Numpy permutation based sampling_algorithm["numpy-permutation"] = \ lambda n_population, n_sample: \ np.random.permutation(n_population)[:n_sample] ########################################################################### # Remove unspecified algorithm sampling_algorithm = dict((key, value) for key, value in sampling_algorithm.items() if key in selected_algorithm) ########################################################################### # Perform benchmark ########################################################################### time = {} n_samples = np.linspace(start=0, stop=opts.n_population, num=opts.n_steps).astype(np.int) ratio = n_samples / opts.n_population print('Benchmarks') print("===========================") for name in sorted(sampling_algorithm): print("Perform benchmarks for %s..." % name, end="") time[name] = np.zeros(shape=(opts.n_steps, opts.n_times)) for step in xrange(opts.n_steps): for it in xrange(opts.n_times): time[name][step, it] = bench_sample(sampling_algorithm[name], opts.n_population, n_samples[step]) print("done") print("Averaging results...", end="") for name in sampling_algorithm: time[name] = np.mean(time[name], axis=1) print("done\n") # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Sampling algorithm performance:") print("===============================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") fig = plt.figure() plt.title("n_population = %s, n_times = %s" % (opts.n_population, opts.n_times)) ax = fig.add_subplot(111) for name in sampling_algorithm: ax.plot(ratio, time[name], label=name) ax.set_xlabel('ratio of n_sample / n_population') ax.set_ylabel('time [s]') ax.legend() # Sort legend labels handles, labels = ax.get_legend_handles_labels() hl = sorted(zip(handles, labels), key=operator.itemgetter(1)) handles2, labels2 = zip(*hl) ax.legend(handles2, labels2, loc=0) plt.show()
bsd-3-clause
albietz/stochs
examples/curves.py
1
3062
import math import pickle import numpy as np import matplotlib.pyplot as plt smoothing_wsize = 10 # must be odd for savgol_filter smooth = False def smoothing(epochs, accs): accs = accs.copy() ws = smoothing_wsize for i in range(accs.shape[1]): accs[ws//2:-ws//2,i] = np.convolve(accs[:,i], np.ones(ws)/ws, 'same')[ws//2:-ws//2] # accs[:,i] = savgol_filter(accs[:,i], smoothing_wsize, 1) return epochs[ws//2:-ws//2], accs[ws//2:-ws//2,:] def algo_label(name, lr): s = '' if name.startswith('miso'): s += 'S-MISO' elif name.startswith('saga'): s += 'N-SAGA' else: s += 'SGD' if '_avg' in name: s += '-AVG' if '_nonu' in name: s += '-NU' if lr: s += ' $\eta = {}$'.format(lr) return s def plot_test_acc(res, step=1, last=-10): accs = np.array(res['test_accs']) epochs = res['epochs'] if smooth: epochs, accs = smoothing(epochs, accs) plt.figure(figsize=(10, 7)) for i in range(accs.shape[1]): p = res['params'][i] plt.plot(epochs[:last:step], accs[:last:step,i], label='{}{}'.format(p['name'], '_lr' + str(p['lr']) if 'lr' in p else '')) plt.title('$\mu = {}$'.format(res['params'][0]['lmbda'])) plt.xlabel('epoch') plt.ylabel('test accuracy') plt.legend(loc='lower right') def plot_loss(res, ty='train', log=False, step=1, last=-10, legend=True, ylabel=None, small=True, fname=None, title='STL-10 ckn', filter_fn=None): accs = np.array(res['{}_losses'.format(ty)]) if 'regs' in res and ty == 'train': accs += np.array(res['regs']) epochs = res['epochs'] if smooth: epochs, accs = smoothing(epochs, accs) # best = accs[:,2].min() best = accs[:,:].min() # if fname is None: # plt.figure(figsize=(10, 7)) # else: if small: plt.figure(figsize=(4,2.2)) else: plt.figure(figsize=(10,7)) for i in range(accs.shape[1]): p = res['params'][i] if filter_fn and filter_fn(p): print('skipping', p['name'], p['lr']) continue if log: plt.semilogy(epochs[:last:step], accs[:last:step,i] - best, label=algo_label(p['name'], p.get('lr')), linewidth=1.5) else: plt.plot(epochs[:last:step], accs[:last:step,i], label=algo_label(p['name'], p.get('lr'))) plt.title(title) plt.xlabel('epochs') if ty == 'train': plt.ylabel(ylabel or 'f - f*') else: plt.ylabel('{} {}loss'.format(ty, 'excess ' if log else '')) if legend: plt.legend(loc='upper right', fontsize=7) if fname is not None: plt.savefig(fname, format='pdf', bbox_inches='tight', pad_inches=0) def plot_all(res, log=False, step=1, last=None): plot_test_acc(res, step=step, last=last) plot_loss(res, ty='train', log=log, step=step, last=last) plot_loss(res, ty='test', log=log, step=step, last=last)
mit
dgasmith/EEX_scratch
eex/translators/gromacs/gromacs_read.py
1
2673
""" GROMACS EEX I/O """ import pandas as pd import os import numpy as np import eex import logging logger = logging.getLogger(__name__) def read_gromacs_gro_file(dl, gro_folder, ffdir=None): if ffdir is None: if "GROMACS_DIR" in os.environ: ffdir = os.environ["GROMACS_DIR"] else: raise KeyError("GROMACS read: Must provide `ffdir` if 'GROMACS_DIR' not in environmental variables.") if not os.path.exists(ffdir): raise OSError("GROMACS read: Could not find FF folder, expected at '%s'." % ffdir) ### Read in conf.gro file first conf_fname = os.path.join(gro_folder, "conf.gro") if not os.path.exists(conf_fname): raise OSError("GROMACS read: Could not find conf.gro file, expected at '%s'." % conf_fname) with open(conf_fname, 'r') as conf_file: conf_title = next(conf_file) conf_read_size = int(next(conf_file)) reader = pd.read_table( conf_fname, header=None, iterator=True, names=["atom_name", "atomic_symbol", "atom_index", "X", "Y", "Z"], engine="c", comment=";", delim_whitespace=True, skiprows=2) data = reader.get_chunk(conf_read_size).dropna(axis=1, how="all") data["atomic_number"] = 0 data.set_index("atom_index", inplace=True, drop=True) for val, idx in data.groupby("atomic_symbol"): data.loc[idx.index, "atomic_number"] = eex.metadata.atom_symbol_to_number[val] dl.add_atoms(data) # Get the box size size = reader.get_chunk(1).dropna(axis=1, how="all") half_box_length = size.values[0] / 2 box_size = {k: (-v, v) for k, v in zip(["x", "y", "z"], half_box_length)} dl.set_box_size(box_size) ### Read in topol.top file next top_fname = os.path.join(gro_folder, "topol.top") if not os.path.exists(conf_fname): raise OSError("GROMACS read: Could not find topol.top file, expected at '%s'." % conf_fname) data = pd.read_table( top_fname, header=None, # iterator=True, names=range(9), engine="c", comment=";", delim_whitespace=True) print("") data = data.loc[~data.iloc[:, 0].str.contains("#")] indices = np.where(data.iloc[:, 0].str.contains("\["))[0] for indx in range(indices.shape[0] - 1): start = indices[indx] end = indices[indx + 1] label = data.iloc[start, 1] tmp = data.iloc[(start + 1):end].convert_objects(convert_numeric=True).dropna(axis=1, how="all") print(label) print(tmp) print('----') # print(indices) # print("") # print(data) print(os.environ)
bsd-3-clause
josephhardinee/PyDisdrometer
pydsd/tests/test_plot.py
3
2491
import numpy as np import unittest import matplotlib.pyplot as plt from ..plot import plot from ..aux_readers import ARM_JWD_Reader, NASA_2DVD_reader class TestPlot(unittest.TestCase): "Test module for the plot scripts" def setUp(self): filename = "testdata/sgpdisdrometerC1.b1.20110427.000000_test_jwd_b1.cdf" self.dsd = ARM_JWD_Reader.read_arm_jwd_b1(filename) def test_plot_dsd(self): fig, ax = plot.plot_dsd(self.dsd) plt.close() def test_plot_dsd_nasa_2dvd(self): filename = "testdata/nasa_gv_mc3e_2dvd_test.txt" self.dsd = NASA_2DVD_reader.read_2dvd_dsd_nasa_gv(filename) fig, ax = plot.plot_dsd(self.dsd) plt.close() def test_plot_NwD0(self): self.dsd.calculate_dsd_parameterization() # Bad form to rely on this, but not a better way right now. fig, ax = plot.plot_NwD0(self.dsd) plt.close() def test_plot_ZR(self): self.dsd.calculate_radar_parameters() fig, ax = plot.plot_ZR(self.dsd) plt.close() def test_plot_ZR_hist2d(self): self.dsd.calculate_radar_parameters() fig, ax = plot.plot_ZR_hist2d(self.dsd) plt.close() def test_scatter(self): x = self.dsd.fields["rain_rate"][ "data" ] # Visually not the best example, but avoids call to dsd parameterization y = self.dsd.fields["rain_rate"]["data"] fig, ax = plot.scatter(x, y) plt.close() def test_plot_hist2d(self): x = self.dsd.fields["rain_rate"]["data"] y = self.dsd.fields["rain_rate"]["data"] fig, ax = plot.plot_hist2d(x, y) plt.close() def test_plot_ts(self): fig, ax = plot.plot_ts(self.dsd, "Nd") plt.close() # def test_plotHov(self): # self.dsd.calculate_dsd_parameterization() # Bad form to rely on this, but not a better way right now. # fig, ax = plot.plotHov(self.dsd, 'D0', 'Nd') # plt.close() # # def test_plot_hexbin(self): # self.dsd.calculate_dsd_parameterization() # Bad form to rely on this, but not a better way right now. # x = self.dsd.fields['Nd']['data'] # y = self.dsd.fields['D0']['data'] # fig, ax = plot.plot_hexbin(x, y) # plt.close() def test_methods(self): # Should we test every submethod? fig, ax = plot.plot_dsd(self.dsd) plot.set_ax_limits(xlim=(0, 100), ylim=(0, 100), ax=ax) plt.close()
lgpl-2.1
bionet/ted.python
demos/asdm_rt_demo.py
1
2449
#!/usr/bin/env python """ Demos for real-time ASDM time encoding and decoding algorithms. """ # Copyright (c) 2009-2015, Lev Givon # All rights reserved. # Distributed under the terms of the BSD license: # http://www.opensource.org/licenses/bsd-license import sys import numpy as np # Set matplotlib backend so that plots can be generated without a # display: import matplotlib matplotlib.use('AGG') from bionet.utils.misc import func_timer import bionet.utils.band_limited as bl import bionet.utils.plotting as pl import bionet.ted.asdm as asdm import bionet.ted.rt as rt # For determining output plot file names: output_name = 'asdm_rt_demo_' output_count = 0 output_ext = '.png' # Define algorithm parameters and input signal: dur = 0.1 dt = 1e-6 f = 32 bw = 2*np.pi*f t = np.arange(0, dur, dt) np.random.seed(0) noise_power = None if noise_power == None: fig_title = 'ASDM Input Signal with No Noise' else: fig_title = 'ASDM Input Signal with %d dB of Noise' % noise_power print fig_title u = func_timer(bl.gen_band_limited)(dur, dt, f, noise_power) pl.plot_signal(t, u, fig_title, output_name + str(output_count) + output_ext) # Define encoding parameters: dte = dt quad_method = 'trapz' b = 3.5 # bias d = 0.7 # threshold k = 0.01 # scaling factor # Define real time decoder stitching parameters: N = 10 M = 2 K = 1 try: asdm.asdm_recoverable(u, bw, b, d, k) except ValueError('reconstruction condition not satisfied'): sys.exit() output_count += 1 fig_title = 'Signal Encoded Using Real-Time ASDM Encoder' print fig_title encoder = rt.ASDMRealTimeEncoder(dt, b, d, k) s = func_timer(encoder)(u) pl.plot_encoded(t, u, s, fig_title, output_name + str(output_count) + output_ext) output_count += 1 fig_title = 'Signal Decoded Using Real-Time ASDM Decoder' print fig_title decoder = rt.ASDMRealTimeDecoder(dt, bw, b, d, k, N, M, K) u_rec = func_timer(decoder)(s) end = min(len(u), len(u_rec)) pl.plot_compare(t[:end], u[:end], u_rec[:end], fig_title, output_name + str(output_count) + output_ext) output_count += 1 fig_title = 'Signal Decoded Using Real-Time\nThreshold-Insensitive ASDM Decoder' print fig_title decoder = rt.ASDMRealTimeDecoderIns(dt, bw, b, N, M, K) u_rec_ins = func_timer(decoder)(s) end = min(len(u), len(u_rec_ins)) pl.plot_compare(t[:end], u[:end], u_rec_ins[:end], fig_title, output_name + str(output_count) + output_ext)
bsd-3-clause
arasuarun/shogun
examples/undocumented/python_modular/graphical/classifier_perceptron_graphical.py
26
2311
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import latex_plot_inits parameter_list = [[20, 5, 1., 1000, 1, None, 5], [100, 5, 1., 1000, 1, None, 10]] def classifier_perceptron_graphical(n=100, distance=5, learn_rate=1., max_iter=1000, num_threads=1, seed=None, nperceptrons=5): from modshogun import RealFeatures, BinaryLabels from modshogun import Perceptron from modshogun import MSG_INFO # 2D data _DIM = 2 # To get the nice message that the perceptron has converged dummy = BinaryLabels() dummy.io.set_loglevel(MSG_INFO) np.random.seed(seed) # Produce some (probably) linearly separable training data by hand # Two Gaussians at a far enough distance X = np.array(np.random.randn(_DIM,n))+distance Y = np.array(np.random.randn(_DIM,n)) label_train_twoclass = np.hstack((np.ones(n), -np.ones(n))) fm_train_real = np.hstack((X,Y)) feats_train = RealFeatures(fm_train_real) labels = BinaryLabels(label_train_twoclass) perceptron = Perceptron(feats_train, labels) perceptron.set_learn_rate(learn_rate) perceptron.set_max_iter(max_iter) perceptron.set_initialize_hyperplane(False) # Find limits for visualization x_min = min(np.min(X[0,:]), np.min(Y[0,:])) x_max = max(np.max(X[0,:]), np.max(Y[0,:])) y_min = min(np.min(X[1,:]), np.min(Y[1,:])) y_max = max(np.max(X[1,:]), np.max(Y[1,:])) for i in xrange(nperceptrons): # Initialize randomly weight vector and bias perceptron.set_w(np.random.random(2)) perceptron.set_bias(np.random.random()) # Run the perceptron algorithm perceptron.train() # Construct the hyperplane for visualization # Equation of the decision boundary is w^T x + b = 0 b = perceptron.get_bias() w = perceptron.get_w() hx = np.linspace(x_min-1,x_max+1) hy = -w[1]/w[0] * hx plt.plot(hx, -1/w[1]*(w[0]*hx+b)) # Plot the two-class data plt.scatter(X[0,:], X[1,:], s=40, marker='o', facecolors='none', edgecolors='b') plt.scatter(Y[0,:], Y[1,:], s=40, marker='s', facecolors='none', edgecolors='r') # Customize the plot plt.axis([x_min-1, x_max+1, y_min-1, y_max+1]) plt.title('Rosenblatt\'s Perceptron Algorithm') plt.xlabel('x') plt.ylabel('y') plt.show() return perceptron if __name__=='__main__': print('Perceptron graphical') classifier_perceptron_graphical(*parameter_list[0])
gpl-3.0
febert/DeepRL
PolicyGradient/pg_function_approx_actor_critic.py
1
18451
from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d import time import math import cPickle import gym as gym class mountain_car(): def __init__(self, gamma=0.99, init_alpha=1e-4, constant_alpha=False, type_features=2, init_epsilon=1.0, update_epsilon=True, policy_mode='stochastic', N_0=50., random_init_theta=False, negative_gradient = False, environment = 'MountainCar-v0', lambda_ = 0.5 ): if negative_gradient: self.baseline_enable = 0 self.gradient_sign = -1 else: self.baseline_enable = 1 self.gradient_sign = 1 self.env = gym.make(environment) self.num_actions = self.env.action_space.n self.statedim = self.env.observation_space.shape[0] self.type_features = type_features ## learning rate self.init_alpha = init_alpha self.alpha = init_alpha self.constant_alpha = constant_alpha # lengths of all the played episodes self.episode_lengths = [] # running average of the mean value of the episodes' steps self.mean_value_fcn = 0.0 # lengths of all the tested episodes TODO self.test_lengths = [] ## policy parameters initialization #tile features: self.tile_resolution = 10 self.num_tile_features = pow(self.tile_resolution,self.statedim)*2 #for the value function estimation: self.v = np.zeros(self.num_tile_features) self.eligibility_vector = np.zeros(self.num_tile_features) self.eligibility_vector_theta = np.zeros(self.num_tile_features*self.num_actions) self.lambda_ = lambda_ if random_init_theta: # random initialization self.theta = np.random.randn(self.num_tile_features * self.num_actions)*0.1 else: # zero initialization self.theta = np.zeros(self.num_tile_features * self.num_actions) ## stochastic or deterministic softmax-based actions self.policy_mode = policy_mode ## exploration parameters # too much exploration is wrong!!! self.epsilon = init_epsilon # explore probability self.update_epsilon = update_epsilon self.total_runs = 0. # too long episodes give too much negative reward!!!! # self.max_episode_length = 1000000 # ----> Use gamma!!!!! TODO: slower decrease? self.gamma = gamma #similar to 0.9 self.N_0 = N_0 print('N_0',self.N_0) print('init alpha',self.init_alpha) print('Constant Alpha', constant_alpha) print('lambda',self.lambda_) def get_tile_feature(self, state): high = self.env.observation_space.high obs_dim = self.env.observation_space.shape[0] #dimension of observation space low = self.env.observation_space.low numactions = self.env.action_space.n stepsize = (high - low)/self.tile_resolution ind = np.floor((state-low)/stepsize).astype(int) ind[ind>=self.tile_resolution]=self.tile_resolution-1 #bound the index so that it doesn't exceed bounds ind = tuple(ind) ind_shift = np.floor((state-low+stepsize/2)/stepsize).astype(int) ind_shift[ind_shift>=self.tile_resolution]=self.tile_resolution-1 #bound the index so that it doesn't exceed bounds ind_shift = tuple(ind_shift) grid = np.zeros(np.ones(obs_dim)*self.tile_resolution) try: grid[ind] = 1 except IndexError, error: print(error) print("ind", ind) print("state", state) print("high", high) print("low", low) return grid_shift = np.zeros(np.ones(obs_dim)*self.tile_resolution) grid_shift[ind_shift] = 1 flatgrid = np.concatenate((grid,grid_shift), axis= 0).flatten() return flatgrid def get_full_feature(self,state): flatgrid = self.get_tile_feature(state) length_flatgrid = flatgrid.shape[0] full_feature = np.zeros((self.num_actions,length_flatgrid*self.num_actions)) for action in range(self.num_actions): full_feature[action,length_flatgrid*action: (action+1)*length_flatgrid] = flatgrid return full_feature # TODO: better solution to over-/underflows? Maybe not needed if proper learning? def eval_action_softmax_probabilities(self, full_feature): #softmax probability activation = full_feature.dot(self.theta) activation-= np.max(activation) # trying to workaround over and underflows solved = False while (not solved): solved = True try: prob_distrib = np.exp(activation) prob_distrib /= np.sum(prob_distrib) except FloatingPointError, error: solved = False # print("potential error in softmax") print(error) # print(".", end="") prob_distrib[np.log(prob_distrib)<-100] =0 # print("activation ", activation) return prob_distrib #epsilon-greedy but deterministic or stochastic is a choice def policy(self, state, mode='deterministic'): explore = bool(np.random.choice([1,0],p=[self.epsilon, 1-self.epsilon])) features = self.get_full_feature(state) # print(explore, features, end="") if mode=='deterministic' and not explore: # print('deterministic') return np.argmax(features.dot(self.theta)) elif mode=='stochastic' and not explore: prob_distrib = self.eval_action_softmax_probabilities(self.get_full_feature(state)) # print('stochastic', prob_distrib) return np.random.choice(np.arange(self.num_actions),p=prob_distrib) elif explore: # print('explore') return self.env.action_space.sample() def run_episode(self, enable_render=False, limit=100000): episode = [] state = self.env.reset() count = 0 done = False while ( not done ): if len(episode)>limit: return [] count += 1 action = self.policy(state, mode=self.policy_mode) state, reward, done, info = self.env.step(action) episode.append((state, action, reward)) if enable_render: self.env.render() # if count > self.max_episode_length: break; if enable_render: print("This episode took {} steps".format(count)) return episode # gradient of the policy function def score_function(self, state, action): full_features = self.get_full_feature(state) prob_distrib = self.eval_action_softmax_probabilities(full_features) try: score = full_features[action] - prob_distrib.dot(full_features) # print("score neg") # print(score) except FloatingPointError, error: print(error) print("features", full_features) print("prob_distrib", prob_distrib) return score def numerical_score_function(self, state, action, delta=1e-8): # backup value save_theta = np.array(self.theta) # base value log_prob = np.log(self.eval_action_softmax_probabilities(state))[action] score = np.zeros_like(self.theta) # apply delta to every component of theta for index, th in np.ndenumerate(self.theta): self.theta[index] += delta score[index] = ( np.log(self.eval_action_softmax_probabilities(state))[action] - log_prob ) / delta # restore value self.theta[index] = save_theta[index] return score def train(self, iter=1000, dataname = 'unnamed_data', save = False): # fig = plt.figure() for it in range(iter): print(it, end=" ") # run episode episode = self.run_episode(enable_render=False) self.total_runs += 1.0 # keep track of training episode lengths self.episode_lengths.append(len(episode)) if (it+1)%1 == 0: # output training info print("EPISODE #{}".format(self.total_runs)) print("with a exploration of {}%".format(self.epsilon*100)) print("and learning rate of {}".format(self.alpha)) print("lasted {0} steps".format(len(episode))) # do a test run save_policy_mode = self.policy_mode save_epsilon = self.epsilon # print(self.policy_mode) self.policy_mode = "deterministic" self.epsilon = 0. limit = 10000 det_episode = self.run_episode(limit=limit) if det_episode == []: len_episode = limit else: len_episode = len(det_episode) self.test_lengths.append(len_episode) self.policy_mode = save_policy_mode self.epsilon = save_epsilon tile_features_mat = np.zeros((len(episode), self.num_tile_features)) for idx in range(len(episode)): tile_features_mat[idx,:] = self.get_tile_feature(episode[idx][0]) #offline td-lambda for estimating the value function if not(len(episode)==0): (state, action, reward) = episode[0] self.eligibiltiy_vector = np.zeros(self.num_tile_features) self.eligibility_vector_theta = np.zeros(self.num_tile_features*self.num_actions) for idx in range(1,len(episode)): (state, action, reward) = episode[idx] Vs = tile_features_mat[idx-1].dot(self.v) Vs_prime = tile_features_mat[idx].dot(self.v) delta_t = reward + self.gamma*Vs_prime - Vs self.eligibiltiy_vector = self.eligibiltiy_vector*self.gamma*self.lambda_ + tile_features_mat[idx] self.v += 1e-3*delta_t*self.eligibiltiy_vector self.eligibility_vector_theta = self.eligibility_vector_theta*self.lambda_ + self.score_function(state,action) self.theta += self.alpha*self.eligibility_vector_theta*delta_t if (it+1)%1 == 0: print("theta") print(self.theta) self.plot_policy(mode= 'stochastic') self.plot_policy(mode= 'deterministic') self.plot_eligibility() self.plot_value_function() if (it+1)%100 == 0: self.plot_training() self.plot_testing() self.plot_value_function() # decrease exploration if self.update_epsilon: self.epsilon = self.N_0 / (self.N_0 + self.total_runs) # decrease alpha if not self.constant_alpha: self.alpha = self.init_alpha / np.sqrt(self.total_runs) if save: self.savedata(dataname=dataname) return self.theta def plot_eligibility(self): e_vector = self.eligibiltiy_vector[0:self.num_tile_features/2] #just visualize first half print('plotting the eligibility traces') obs_low = self.env.observation_space.low obs_high = self.env.observation_space.high # values to evaluate policy at x_range = np.linspace(obs_low[0], obs_high[0], self.tile_resolution) v_range = np.linspace(obs_low[1], obs_high[1], self.tile_resolution) # get actions in a grid e_mat = e_vector.reshape((self.tile_resolution,self.tile_resolution)) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') X, Y = np.meshgrid(x_range, v_range) ax.plot_wireframe(X,Y, e_mat) ax.set_xlabel("x") ax.set_ylabel("v") ax.set_zlabel("eligibility") plt.show() def plot_value_function(self): print('plotting the value function') obs_low = self.env.observation_space.low obs_high = self.env.observation_space.high # values to evaluate policy at x_range = np.linspace(obs_low[0], obs_high[0]-0.01, self.tile_resolution*3) v_range = np.linspace(obs_low[1], obs_high[1]-0.01, self.tile_resolution*3) # get actions in a grid value_func = np.zeros((x_range.shape[0], v_range.shape[0])) for i, state1 in enumerate(x_range): for j, state2 in enumerate(v_range): # print(np.argmax(self.get_features((x,v)).dot(self.theta)), end="") value_func[i,j] = -self.v.dot(self.get_tile_feature((state1,state2))) print("") fig = plt.figure() ax = fig.add_subplot(111, projection='3d') X, Y = np.meshgrid(x_range, v_range) ax.plot_wireframe(X,Y, value_func) ax.set_xlabel("x") ax.set_ylabel("v") ax.set_zlabel("negative value") plt.show() def savedata(self, dataname): output = open(dataname, 'wb') cPickle.dump(self.theta, output) cPickle.dump(self.episode_lengths, output) cPickle.dump(self.test_lengths, output) cPickle.dump(self.v,output) output.close() def loaddata(self, dataname): pkl_file = open(dataname, 'rb') self.theta = cPickle.load(pkl_file) self.episode_lengths = cPickle.load(pkl_file) self.test_lengths = cPickle.load(pkl_file) self.v = cPickle.load(pkl_file) print( self.theta) print( self.episode_lengths) print( self.episode_lengths) pkl_file.close() def plot_policy(self, resolution=100, mode= 'stochastic'): # backup of value save_epsilon = self.epsilon self.epsilon = 0.0 # no exploration obs_low = self.env.observation_space.low obs_high = self.env.observation_space.high # values to evaluate policy at x_range = np.linspace(obs_low[0], obs_high[0], resolution) v_range = np.linspace(obs_low[1], obs_high[1], resolution) # get actions in a grid greedy_policy = np.zeros((resolution, resolution)) for i, x in enumerate(x_range): for j, v in enumerate(v_range): # print(np.argmax(self.get_features((x,v)).dot(self.theta)), end="") greedy_policy[i,j] = self.policy((x,v),mode) print("") # plot policy fig = plt.figure() plt.imshow(greedy_policy, cmap=plt.get_cmap('gray'), interpolation='none', extent=[obs_low[1],obs_high[1],obs_high[0],obs_low[0]], aspect="auto") plt.xlabel("velocity") plt.ylabel("position") plt.show() # restore value self.epsilon = save_epsilon def plot_training(self): fig = plt.figure() plt.plot(self.episode_lengths) plt.yscale('log') plt.show() def plot_testing(self): fig = plt.figure() plt.plot(self.test_lengths) plt.yscale('log') plt.show() def compare_gradients(self,): self.theta = np.array([[-0.01338339, -0.01746333 , 0.03084672],[-0.38015887 , 0.00830843, 0.37185044]]) numepisodes = 200 self.epsilon = 0 #the exploration has to be set to zero! self.policy_mode = 'deterministic' # could work with stocastic as well self.compute_with_policy_gradient_theorem(numepisodes) self.compute_numeric_gradient(numepisodes) def compute_with_policy_gradient_theorem(self, numepisodes): accum_values = np.zeros_like(self.theta) for epi_number in range(numepisodes): episode = self.run_episode() #print(self.policy_mode) value_fcn = 0 for idx in range(len(episode),0,-1): (state, action, reward) = episode[idx-1] value_fcn = reward + self.gamma*value_fcn accum_values += self.score_function(state,action)*value_fcn #print(len(episode)) average_gradient = accum_values/numepisodes print('average gradient computed with policy gradient theorem') print('result after %d episodes:'%(numepisodes)) print(average_gradient) def compute_numeric_gradient(self,numepisodes): average_numeric_gradient = np.zeros_like(self.theta) numeric_gradient_accum = np.zeros_like(self.theta) theta_saved = np.array(self.theta) before = 0.0 for epi_number in range(numepisodes): before -= len(self.run_episode()) # compute length of episode before applying perturbations before=float(before)/numepisodes print('average episode length before perturbation',before) for i in range(self.theta.shape[0]): for j in range(self.theta.shape[1]): for epi_number in range(numepisodes): perturbation = 1e-5 # perturb the selected parameter self.theta = np.array(theta_saved) self.theta[i][j]+= perturbation after = -len(self.run_episode()) #print('episode length after perturbing element %d,%d : %d' % (i,j,after) ) numeric_gradient_accum[i][j]+= float(after-before)/perturbation print(i, j) print( numeric_gradient_accum) average_numeric_gradient[i][j] = numeric_gradient_accum[i][j] /numepisodes print('average gradient computed numerically') print('result after %d episodes:'% (numepisodes)) print(average_numeric_gradient) self.theta = np.array(theta_saved) #car1 = mountain_car(init_alpha=1e-3) #state = (1,1) #action = 0 #print('grad theorm score:',car1.score_function(state,action)) #print('numeric score:',car1.numerical_score_function(state,action)) #car1.train(iter=1000)
gpl-3.0
alistairewj/reproducibility-mimic
notebooks/mp_utils.py
1
24707
# Import libraries import numpy as np import pandas as pd import psycopg2 import sys import datetime as dt from sklearn import metrics import matplotlib.pyplot as plt # default colours for prettier plots col = [[0.9047, 0.1918, 0.1988], [0.2941, 0.5447, 0.7494], [0.3718, 0.7176, 0.3612], [1.0000, 0.5482, 0.1000], [0.4550, 0.4946, 0.4722], [0.6859, 0.4035, 0.2412], [0.9718, 0.5553, 0.7741], [0.5313, 0.3359, 0.6523]]; marker = ['v','o','d','^','s','o','+'] ls = ['-','-','-','-','-','s','--','--'] def generate_times(df, T=None, T_to_death=None, seed=None, censor=False): # generate a dictionary based off of the analysis type desired # creates "windowtime" - the time at the end of the window # df needs to have the following fields: # icustay_id (not as an index) # dischtime_hours # deathtime_hours # censortime_hours (if censoring with censor=True) # these times are relative to ICU intime ("_hours" means hours after ICU admit) if seed is None: print('Using default seed 111.') seed=111 # create endtime: this is the last allowable time for our window df['endtime'] = df['dischtime_hours'] # if they die before discharge, set the end time to the time of death idx = (~df['deathtime_hours'].isnull()) & (df['deathtime_hours']<df['dischtime_hours']) df.loc[idx,'endtime'] = df.loc[idx,'deathtime_hours'] # optionally censor the data # this involves updating the endtime to an even earlier time, if present # e.g. the first time a patient was made DNR if censor: idx = (~df['censortime_hours'].isnull()) & (df['censortime_hours']<df['endtime']) df.loc[idx,'endtime'] = df.loc[idx,'censortime_hours'] # now generate the end of the window # this is X hours np.random.seed(seed) tau = np.random.rand(df.shape[0]) # T adds a bit of fuzziness to prevent information leakage if T is not None: # extract window at least T hours before discharge/death df['windowtime'] = np.floor(tau*(df['endtime']-T)) # if the stay is shorter than T hours, the interval can be negative # in this case, we set the interval to 0 # usually, this will mean we only have lab data df.loc[df['windowtime']<0, 'windowtime'] = 0 else: df['windowtime'] = np.floor(tau*(df['endtime'])) if T_to_death is not None: # fix the time for those who die to be T_to_death hours from death # first, isolate patients where they were in the ICU T hours before death idxInICU = (df['deathtime_hours'] - df['dischtime_hours'])<=T_to_death # for these patients, set the time to be T_to_death hours df.loc[idxInICU, 'windowtime'] = df.loc[idxInICU,'deathtime_hours'] - T_to_death windowtime_dict = df.set_index('icustay_id')['windowtime'].to_dict() return windowtime_dict def generate_times_before_death(df, T=None, T_to_death=None, seed=None): # generate a dictionary based off of the analysis type desired # creates "windowtime" - the time at the end of the window # df needs to have the following fields: # icustay_id (not as an index) # dischtime_hours # deathtime_hours if seed is None: print('Using default seed 111.') seed=111 df['endtime'] = df['dischtime_hours'] idx = (~df['deathtime_hours'].isnull()) & (df['deathtime_hours']<df['dischtime_hours']) df.loc[idx,'endtime'] = df.loc[idx,'deathtime_hours'] np.random.seed(seed) # df is centered on intime (as t=0) # we need to ensure a random time is at least T hours from death/discharge tau = np.random.rand(df.shape[0]) if T is not None: # extract window at least T hours before discharge/death df['windowtime'] = np.floor(tau*(df['endtime']-T)) # if the stay is shorter than T hours, the interval can be negative # in this case, we set the interval to 0 df.loc[df['windowtime']<0, 'windowtime'] = 0 else: df['windowtime'] = np.floor(tau*(df['endtime'])) if T_to_death is not None: # fix the time for those who die to be T_to_death hours from death # first, isolate patients where they were in the ICU T hours before death idxInICU = (df['deathtime_hours'] - df['dischtime_hours'])<=T_to_death # for these patients, set the time to be T_to_death hours df.loc[idxInICU, 'windowtime'] = df.loc[idxInICU,'deathtime_hours'] - T_to_death windowtime_dict = df.set_index('icustay_id')['windowtime'].to_dict() return windowtime_dict # pretty confusion matrices! def print_cm(y, yhat): print('\nConfusion matrix') cm = metrics.confusion_matrix(y, yhat) TN = cm[0,0] FP = cm[0,1] FN = cm[1,0] TP = cm[1,1] N = TN+FP+FN+TP print(' \t{:6s}\t{:6s}').format('yhat=0','yhat=1') print('y=0\t{:6g}\t{:6g}\tSpec={:2.2f}').format(cm[0,0],cm[0,1], 100.0*TN/(TN+FP)) # Spec print('y=1\t{:6g}\t{:6g}\tSens={:2.2f}').format(cm[1,0],cm[1,1], 100.0*TP/(TP+FN)) # Sens # add sensitivity/specificity as the bottom line print(' \t{:2.2f}\t{:2.2f}\t Acc={:2.2f}').format(100.0*TN / (TN+FN), 100.0*TP / (TP+FP), 100.0*(TP+TN)/N) print(' \tNPV\tPPV') # these define 5 lists of variable names # these are the variables later used for prediction def vars_of_interest(): # we extract the min/max for these covariates var_min = ['heartrate', 'sysbp', 'diasbp', 'meanbp', 'resprate', 'tempc', 'spo2'] var_max = var_min var_min.append('gcs') #var_max.extend(['rrt','vasopressor','vent']) # we extract the first/last value for these covariates var_first = ['heartrate', 'sysbp', 'diasbp', 'meanbp', 'resprate', 'tempc', 'spo2'] var_last = var_first var_last.extend(['gcsmotor','gcsverbal','gcseyes','endotrachflag','gcs']) var_first_early = ['bg_po2', 'bg_pco2', #'bg_so2' #'bg_fio2_chartevents', 'bg_aado2_calc', #'bg_fio2', 'bg_aado2', 'bg_pao2fio2ratio', 'bg_ph', 'bg_baseexcess', #'bg_bicarbonate', 'bg_totalco2', #'bg_hematocrit', 'bg_hemoglobin', 'bg_carboxyhemoglobin', 'bg_methemoglobin', #'bg_chloride', 'bg_calcium', 'bg_temperature', #'bg_potassium', 'bg_sodium', 'bg_lactate', #'bg_glucose', # 'bg_tidalvolume', 'bg_intubated', 'bg_ventilationrate', 'bg_ventilator', # 'bg_peep', 'bg_o2flow', 'bg_requiredo2', # begin lab values 'aniongap', 'albumin', 'bands', 'bicarbonate', 'bilirubin', 'creatinine', 'chloride', 'glucose', 'hematocrit', 'hemoglobin', 'lactate', 'platelet', 'potassium', 'ptt', 'inr', 'sodium', 'bun', 'wbc'] var_last_early = var_first_early # fourth set of variables # we have special rules for these... var_sum = ['urineoutput'] var_static = [u'is_male', u'emergency_admission', u'age', # services u'service_any_noncard_surg', u'service_any_card_surg', u'service_cmed', u'service_traum', u'service_nmed', # ethnicities u'race_black',u'race_hispanic',u'race_asian',u'race_other', # demographics u'height', u'weight', u'bmi'] return var_min, var_max, var_first, var_last, var_sum, var_first_early, var_last_early, var_static def vars_of_interest_streaming(): # define the covariates to be used in the model # these covariates are available in the hospital stream at the moment # biggest exclusion compared to the above is no GCS. var_min = ['heartrate', 'systolicbp', 'diastolicbp', 'meanbp', 'resprate', 'spo2'] # , 'temp', 'glucosecharted' var_max = var_min #var_max.extend(['rrt','vasopressor','vent']) #var_min.append('gcs') # we extract the first/last value for these covariates var_first = ['heartrate', 'systolicbp', 'diastolicbp', 'meanbp', 'resprate', 'spo2'] # , 'temp', 'glucosecharted' var_last = var_first #var_last.extend(['gcsmotor','gcsverbal','gcseyes','endotrachflag','gcs']) var_first_early = ['bg_so2', 'bg_po2', 'bg_pco2', #'bg_fio2_chartevents', 'bg_aado2_calc', 'bg_fio2', 'bg_aado2', 'bg_pao2fio2', 'bg_ph', 'bg_baseexcess', 'bg_bicarbonate', 'bg_totalco2', 'bg_hematocrit', 'bg_hemoglobin', 'bg_carboxyhemoglobin', 'bg_methemoglobin', 'bg_chloride', 'bg_calcium', 'bg_temperature', 'bg_potassium', 'bg_sodium', 'bg_lactate', 'bg_glucose', # 'bg_intubated', 'bg_ventilationrate', 'bg_ventilator', # these vars are usually NaN # 'bg_tidalvolume', 'bg_peep', 'bg_o2flow', 'bg_requiredo2', # begin lab values 'aniongap', 'albumin', 'bands', 'bicarbonate', 'bilirubin', 'creatinine', 'chloride', 'glucose', 'hematocrit', 'hemoglobin', 'lactate', 'platelet', 'potassium', 'ptt', 'inr', 'pt', 'sodium', 'bun', 'wbc'] var_last_early = var_first_early # fourth set of variables # we have special rules for these... var_sum = None #['urineoutput'] return var_min, var_max, var_first, var_last, var_sum, var_first_early, var_last_early def get_design_matrix(df, time_dict, W=8, W_extra=24): # W_extra is the number of extra hours to look backward for labs # e.g. if W_extra=24 we look back an extra 24 hours for lab values # timing info for icustay_id < 200100: # 5 loops, best of 3: 877 ms per loop # timing info for all icustay_id: # 5 loops, best of 3: 1.48 s per loop # get the hardcoded variable names var_min, var_max, var_first, var_last, var_sum, var_first_early, var_last_early, var_static = vars_of_interest() tmp = np.asarray(time_dict.items()).astype(int) N = tmp.shape[0] M = W+W_extra # create a vector of [0,...,M] to represent the hours we need to subtract for each icustay_id hr = np.linspace(0,M,M+1,dtype=int) hr = np.reshape(hr,[1,M+1]) hr = np.tile(hr,[N,1]) hr = np.reshape(hr, [N*(M+1),], order='F') # duplicate tmp to M+1, as we will be creating T+1 rows for each icustay_id tmp = np.tile(tmp,[M+1,1]) tmp_early_flag = np.copy(tmp[:,1]) # adding hr to tmp[:,1] gives us what we want: integers in the range [Tn-T, Tn] tmp = np.column_stack([tmp[:,0], tmp[:,1]-hr, hr>W]) # create dataframe with tmp df_time = pd.DataFrame(data=tmp, index=None, columns=['icustay_id','hr','early_flag']) df_time.sort_values(['icustay_id','hr'],inplace=True) # merge df_time with df to filter down to a subset of rows df = df.merge(df_time, left_on=['icustay_id','hr'], right_on=['icustay_id','hr'],how='inner') # apply functions to groups of vars df_first_early = df.groupby('icustay_id')[var_first_early].first() df_last_early = df.groupby('icustay_id')[var_last_early].last() # slice down df_time by removing early times # isolate only have data from [t - W, t - W + 1, ..., t] df = df.loc[df['early_flag']==0,:] df_first = df.groupby('icustay_id')[var_first].first() df_last = df.groupby('icustay_id')[var_last].last() df_min = df.groupby('icustay_id')[var_min].min() df_max = df.groupby('icustay_id')[var_max].max() df_sum = df.groupby('icustay_id')[var_sum].sum() # update the column names df_first.columns = [x + '_first' for x in df_first.columns] df_last.columns = [x + '_last' for x in df_last.columns] df_first_early.columns = [x + '_first_early' for x in df_first_early.columns] df_last_early.columns = [x + '_last_early' for x in df_last_early.columns] df_min.columns = [x + '_min' for x in df_min.columns] df_max.columns = [x + '_max' for x in df_max.columns] df_sum.columns = [x + '_sum' for x in df_sum.columns] # now combine all the arrays together df_data = pd.concat([df_first, df_first_early, df_last, df_last_early, df_min, df_max, df_sum], axis=1) return df_data # this function is used to print out data for a single pt # mainly used for debugging weird inconsistencies in data extraction # e.g. "wait why does this icustay_id not have heart rate?" def debug_for_iid(df, time_dict, iid, T=8, W_extra=24): #tmp = np.asarray(time_dict.items()).astype(int) tmp = np.asarray([iid, time_dict[iid]]).astype(int) tmp = np.reshape(tmp,[1,2]) N = tmp.shape[0] M = W+W_extra # create a vector of [0,...,M] to represent the hours we need to subtract for each icustay_id hr = np.linspace(0,M,M+1,dtype=int) hr = np.reshape(hr,[1,M+1]) hr = np.tile(hr,[N,1]) hr = np.reshape(hr, [N*(M+1),], order='F') # duplicate tmp to M+1, as we will be creating T+1 rows for each icustay_id tmp = np.tile(tmp,[M+1,1]) tmp_early_flag = np.copy(tmp[:,1]) # adding hr to tmp[:,1] gives us what we want: integers in the range [Tn-T, Tn] tmp = np.column_stack([tmp[:,0], tmp[:,1]-hr, hr>T]) # create dataframe with tmp df_time = pd.DataFrame(data=tmp, index=None, columns=['icustay_id','hr','early_flag']) df_time.sort_values(['icustay_id','hr'],inplace=True) # display the data for this icustay_id print('\n\n ALL DATA FOR THIS ICUSTAY_ID \n\n') display(HTML(df.loc[df['icustay_id']==iid,:].to_html().replace('NaN',''))) # display the times selected for this icustay_id print('\n\n TIMES FOR THIS ICUSTAY_ID \n\n') display(HTML(df_time.loc[df_time['icustay_id']==iid].to_html().replace('NaN',''))) # merge df_time with df to filter down to a subset of rows df = df.loc[df['icustay_id']==iid,:].merge(df_time, left_on=['icustay_id','hr'], right_on=['icustay_id','hr'],how='inner') df = df.loc[df['early_flag']==0,:] display(HTML(df.to_html().replace('NaN',''))) print('\n\nFIRST\n\n') display(HTML(df_tmp.groupby('icustay_id')[var_first].first().to_html().replace('NaN',''))) print('\n\nLAST\n\n') display(HTML(df_tmp.groupby('icustay_id')[var_first].last().to_html().replace('NaN',''))) def collapse_data(data): # this collapses a dictionary of dataframes into a single dataframe # joins them together on icustay_id and charttime files = data.keys() initFlag = False # tells the function to create a new dataframe # dictionary mapping table names to column name of interest colNameMap = {'vent': 'vent', 'vasopressor': 'vasopressor', 'rrt_range': 'rrt'} rangeTbl = ['vent','vasopressor','rrt_range'] # merge all data from above dictionary into a single data frame for i, f in enumerate(files): df_tmp = data[f] if 'subject_id' in df_tmp.columns: df_tmp.drop('subject_id',axis=1,inplace=True) if 'hadm_id' in df_tmp.columns: df_tmp.drop('hadm_id',axis=1,inplace=True) if 'storetime' in df_tmp.columns: df_tmp.drop('storetime',axis=1,inplace=True) print('{:20s}... finished.'.format(f)) if f in rangeTbl: continue # these are rangesignal tables.. need to be handled separately if initFlag == False: df = df_tmp.copy() initFlag = True continue else: df = df.merge(df_tmp, on=['icustay_id','charttime_elapsed'], how='outer') return df def plot_xgb_importance_fmap(xgb_model, X_header=None, ax=None, height=0.2, xlim=None, ylim=None, title='Feature importance', xlabel='F score', ylabel='Features', importance_type='weight', grid=True, **kwargs): fmap = xgb_model.booster().get_score(importance_type=importance_type) if X_header is not None: feat_map = {} for i in range(len(X_header)): feat_map['f' + str(i)] = X_header[i] importance = {} for i in fmap: importance[ feat_map[i] ] = fmap[i] else: importance = fmap tuples = [(k, importance[k]) for k in importance] tuples = sorted(tuples, key=lambda x: x[1]) labels, values = zip(*tuples) if ax is None: _, ax = plt.subplots(1, 1) ylocs = np.arange(len(values)) ax.barh(ylocs, values, align='center', height=height, **kwargs) for x, y in zip(values, ylocs): ax.text(x + 1, y, x, va='center') ax.set_yticks(ylocs) ax.set_yticklabels(labels) if xlim is not None: if not isinstance(xlim, tuple) or len(xlim) != 2: raise ValueError('xlim must be a tuple of 2 elements') else: xlim = (0, max(values) * 1.1) ax.set_xlim(xlim) if ylim is not None: if not isinstance(ylim, tuple) or len(ylim) != 2: raise ValueError('ylim must be a tuple of 2 elements') else: ylim = (-1, len(importance)) ax.set_ylim(ylim) if title is not None: ax.set_title(title) if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) ax.grid(grid) return ax def plot_vitals(df, iid, df_death=None, df_censor=None): plt.figure(figsize=[14,10]) idx = df['icustay_id']==iid plt.plot( df.loc[idx, 'hr'], df.loc[idx, 'heartrate'], 'ro-', label='Heart rate' ) plt.plot( df.loc[idx, 'hr'], df.loc[idx, 'sysbp'], 'b^', label='Systolic BP', alpha=0.5 ) plt.plot( df.loc[idx, 'hr'], df.loc[idx, 'diasbp'], 'bv', label='Diastolic BP', alpha=0.5 ) plt.plot( df.loc[idx, 'hr'], df.loc[idx, 'meanbp'], 'bd', label='Mean BP', alpha=0.8 ) plt.plot( df.loc[idx, 'hr'], df.loc[idx, 'resprate'], 'go', label='Respiratory rate', alpha=0.5 ) if df_death is not None: # add in discharge/death time idx = df_death['icustay_id']==iid plt.plot( np.ones([2,])*df_death.loc[idx, 'dischtime_hours'].values, [0,200], 'k--', linewidth=2, label='Time of discharge' ) if df_death.loc[idx,'deathtime_hours'] is not np.nan: plt.plot( np.ones([2,])*df_death.loc[idx, 'deathtime_hours'].values, [0,200], 'k-', linewidth=2, label='Time of death' ) plt.plot( np.ones([2,])*df_death.loc[idx, 'deathtime_hours'].values-24, [0,200], 'k:', linewidth=2, label='24 hr before death' ) plt.title('Died in hospital',fontsize=20) plt.xlim([-1, df_death.loc[idx, 'dischtime_hours'].values+6]) if df_censor is not None: idx = df_censor['icustay_id']==iid if np.any(idx): plt.plot( np.ones([2,])*df_censor.loc[idx, 'censortime_hours'].values, [0,200], 'm--', alpha=0.8, linewidth=3, label='DNR' ) plt.xlabel('Hours since ICU admission', fontsize=20) plt.ylabel('Vital sign value', fontsize=20) plt.grid() plt.legend(loc='best') plt.show() def plot_model_results(results, pretty_labels=None): if pretty_labels is None: pretty_labels = {'xgb': 'GB', 'rf': 'RF', 'logreg': 'LR', 'lasso': 'LASSO'} # make sure pretty_labels has all model names as a key for x in results.keys(): if x not in pretty_labels: pretty_labels[x] = x plt.figure(figsize=[12,8]) for m, mdl in enumerate(results): curr_score = results[mdl] plt.plot(m*np.ones(len(curr_score)), curr_score, marker=marker[m], color=col[m], markersize=10, linewidth=2, linestyle=':', label=pretty_labels[mdl]) plt.ylabel('AUROC',fontsize=18) plt.xlim([-1,m+1]) plt.ylim([0.7,1.0]) plt.grid() plt.gca().set_xticks(np.linspace(0,m,m+1)) plt.gca().set_xticklabels([pretty_labels[x] for x in results.keys()]) for tick in plt.gca().xaxis.get_major_ticks(): tick.label.set_fontsize(20) for tick in plt.gca().yaxis.get_major_ticks(): tick.label.set_fontsize(16) #plt.legend(loc='lower right',fontsize=18) plt.show() def load_design_matrix(co, df_additional_data=None, data_ext='', path=None, diedWithin=None): # this function loads in the data from csv # co is a dataframe with: # - patients to include (all the icustay_ids in the index) # - the outcome (first and only column) if path is None: path = '' if data_ext != '' and data_ext[0] != '_': data_ext = '_' + data_ext df_offset = pd.read_csv(path + 'icustays_offset' + data_ext + '.csv') df_offset['intime'] = pd.to_datetime(df_offset['intime']) df_offset['outtime'] = pd.to_datetime(df_offset['outtime']) df_offset['deathtime'] = pd.to_datetime(df_offset['deathtime']) df_offset['icustay_id'] = df_offset['icustay_id'].astype(int) df_offset = df_offset.loc[:,['icustay_id','intime','outtime','starttime','deathtime']] df_offset.set_index('icustay_id',inplace=True) # load in the design matrix df_design = pd.read_csv(path + 'design_matrix' + data_ext + '.csv') df_design['icustay_id'] = df_design['icustay_id'].astype(int) df_design.set_index('icustay_id',inplace=True) # join these dfs together, add in the static vars df = co.merge(df_design, how='left', left_index=True, right_index=True) if df_additional_data is not None: df = df.merge(df_additional_data,how='left', left_index=True, right_index=True) # change y to be "died within X seconds", where X is specified by the user if diedWithin is not None: df = df.merge(df_offset[['intime','deathtime','starttime']], how='left', left_index=True, right_index=True) df['hospital_expire_flag'] = np.zeros(df.shape[0],dtype=int) idxUpdate = ~df['deathtime'].isnull() df.loc[idxUpdate,'hospital_expire_flag'] = (df.loc[idxUpdate,'deathtime'] < (df.loc[idxUpdate,'intime'] + pd.to_timedelta(df.loc[idxUpdate,'starttime'], 's') + np.timedelta64(diedWithin, 's'))) # drop the columns temporarily added to redefine the outcome df.drop('intime',axis=1,inplace=True) df.drop('starttime',axis=1,inplace=True) df.drop('deathtime',axis=1,inplace=True) # HACK: drop some variables here we are not interested in # they should be removed from vars_of_interest and data extraction re-run vars_to_delete = ['bg_intubated_first', 'bg_ventilationrate_first', 'bg_ventilator_first', 'bg_intubated_last', 'bg_ventilationrate_last', 'bg_ventilator_last', 'rrt_min', 'vasopressor_min', 'vent_min', 'rrt_max', 'vasopressor_max', 'vent_max'] for v in vars_to_delete: if v in df.columns: df.drop(v, axis=1, inplace=True) # move from a data frame into a numpy array X = df.values.astype(float) y = X[:,0] icustay_id = df.index.values # delete first column: the outcome X = np.delete(X,0,axis=1) # get a header row X_header = [xval for x, xval in enumerate(df.columns) if x > 0] return X, y, X_header def get_predictions(df, df_static, mdl, iid): df = df.loc[df['icustay_id']==iid,:] tm = df['hr'].values prob = list() var_min, var_max, var_first, var_last, var_sum, var_first_early, var_last_early, var_static = vars_of_interest() for t in tm: time_dict = {iid: t} X = get_design_matrix(df, time_dict, W=4, W_extra=24) # first, the data from static vars from df_static X = X.merge(df_static.set_index('icustay_id')[var_static], how='left', left_index=True, right_index=True) # convert to numpy data X = X.values curr_prob = mdl.predict_proba(X) prob.append(curr_prob[0,1]) return tm, prob def get_data_at_time(df, df_static, iid, hour=0): df = df.loc[df['icustay_id']==iid,:] tm = df['hr'].values var_min, var_max, var_first, var_last, var_sum, var_first_early, var_last_early, var_static = vars_of_interest() idx = [i for i, tval in enumerate(tm) if tval==hour] if len(idx)==0: idx = [i for i,j in enumerate(tm) if i<hour] if len(idx)==0: idx = 0 else: idx = idx[-1] print('Hour not found! Using closest previous value: {}.'.format(tm[idx])) else: idx=idx[0] t=tm[idx] time_dict = {iid: t} X = get_design_matrix(df, time_dict, W=4, W_extra=24) # first, the data from static vars from df_static X = X.merge(df_static.set_index('icustay_id')[var_static], how='left', left_index=True, right_index=True) # convert to numpy data X = X.values return X
mit
deepesch/Data-Science-45min-Intros
support-vector-machines-101/kernel-examples.py
26
2054
#!/usr/bin/env python # -*- coding: UTF-8 -*- __author__="Josh Montague" __license__="MIT License" import sys import json import matplotlib.pyplot as plt try: import seaborn as sns except ImportError as e: sys.stderr.write("seaborn not installed. Using default matplotlib templates.") import numpy as np from sklearn.svm import SVC # adapted from: # http://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html # Our dataset and targets X = np.c_[(.4, -.7), (-1.5, -1), (-1.4, -.9), (-1.3, -1.2), (-1.1, -.2), (-1.2, -.4), (-.5, 1.2), (-1.5, 2.1), (1, 1), # -- (1.3, .8), (1.2, .5), (.2, -2), (.5, -2.4), (.2, -2.3), (0, -2.7), (1.3, 2.1)].T Y = [0] * 8 + [1] * 8 # figure number fignum = 1 # fit the model for kernel in ('linear', 'poly', 'rbf', 'sigmoid'): #clf = SVC(kernel=kernel) clf = SVC(kernel=kernel, gamma=2) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(8, 6)) plt.clf() plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], facecolors='none', zorder=10, s=300) plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired, s=100) plt.axis('tight') x_min = -3 x_max = 3 y_min = -3 y_max = 3 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) #plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired) plt.pcolormesh(XX, YY, Z > 0, alpha=0.1) plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'], levels=[-.5, 0, .5]) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.title('{}'.format(kernel)) #plt.xticks(()) #plt.yticks(()) fignum = fignum + 1 plt.show()
unlicense
tosolveit/scikit-learn
examples/cluster/plot_dbscan.py
346
2479
# -*- coding: utf-8 -*- """ =================================== Demo of DBSCAN clustering algorithm =================================== Finds core samples of high density and expands clusters from them. """ print(__doc__) import numpy as np from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.datasets.samples_generator import make_blobs from sklearn.preprocessing import StandardScaler ############################################################################## # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4, random_state=0) X = StandardScaler().fit_transform(X) ############################################################################## # Compute DBSCAN db = DBSCAN(eps=0.3, min_samples=10).fit(X) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) core_samples_mask[db.core_sample_indices_] = True labels = db.labels_ # Number of clusters in labels, ignoring noise if present. n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) print('Estimated number of clusters: %d' % n_clusters_) print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels)) print("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels)) ############################################################################## # Plot result import matplotlib.pyplot as plt # Black removed and is used for noise instead. unique_labels = set(labels) colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels))) for k, col in zip(unique_labels, colors): if k == -1: # Black used for noise. col = 'k' class_member_mask = (labels == k) xy = X[class_member_mask & core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) xy = X[class_member_mask & ~core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
scr4t/rep
rep/estimators/tmva.py
3
15341
""" These classes are wrappers for physics machine learning library TMVA used .root format files (c++ library). Now you can simply use it in python. TMVA contains classification and regression algorithms, including neural networks. `TMVA guide <http://mirror.yandex.ru/gentoo-distfiles/distfiles/TMVAUsersGuide-v4.03.pdf>`_ """ from __future__ import division, print_function, absolute_import from abc import ABCMeta from logging import getLogger import os import tempfile import subprocess from subprocess import PIPE import shutil import sys from .interface import Classifier, Regressor from .utils import check_inputs, score_to_proba, proba_to_two_dimension from six.moves import cPickle __author__ = 'Tatiana Likhomanenko' logger = getLogger(__name__) # those parameters that shall not be passed to options of TMVA classifier _PASS_PARAMETERS = {'random_state'} __all__ = ['TMVABase', 'TMVAClassifier', 'TMVARegressor'] class _AdditionalInformation(): """ Additional information for tmva factory (used in training) """ def __init__(self, directory, model_type='classification'): self.directory = directory self.tmva_root = 'result.root' self.tmva_job = "TMVAEstimation" self.model_type = model_type class _AdditionalInformationPredict(): """ Additional information for tmva factory (used in predictions) """ def __init__(self, directory, xml_file, method_name, model_type=('classification', None)): self.directory = directory self.xml_file = xml_file self.method_name = method_name self.model_type = model_type self.result_filename = os.path.join(directory, 'dump_predictions.pkl') class TMVABase(object): """ TMVABase - base estimator for tmva wrappers. Parameters: ----------- :param str method: algorithm method (default='kBDT') :param features: features used in training :type features: list[str] or None :param str factory_options: system options :param dict method_parameters: estimator options .. note:: TMVA doesn't support staged predictions and features importances =(( """ __metaclass__ = ABCMeta def __init__(self, factory_options="", method='kBDT', **method_parameters): self.method = method self._method_name = 'REP_Estimator' self.factory_options = factory_options self.method_parameters = method_parameters # contents of xml file with formula, read into memory self.formula_xml = None @staticmethod def _create_tmp_directory(): return tempfile.mkdtemp(dir=os.getcwd()) @staticmethod def _remove_tmp_directory(directory): shutil.rmtree(directory, ignore_errors=True) def _fit(self, X, y, sample_weight=None, model_type='classification'): """ Train the classifier :param pandas.DataFrame X: data shape [n_samples, n_features] :param list | numpy.array y: values - array-like of shape [n_samples] :param list | numpy.array sample_weight: weight of events, array-like of shape [n_samples] or None if all weights are equal :return: self """ # saving data to 2 different root files. directory = self._create_tmp_directory() add_info = _AdditionalInformation(directory, model_type=model_type) try: self._run_tmva_training(add_info, X, y, sample_weight) finally: self._remove_tmp_directory(directory) return self def _run_tmva_training(self, info, X, y, sample_weight): """ Run subprocess to train tmva factory :param info: class with additional information """ tmva_process = subprocess.Popen( 'cd {directory}; {executable} -c "from rep.estimators import _tmvaFactory; _tmvaFactory.main()"'.format( directory=info.directory, executable=sys.executable), stdin=PIPE, stdout=PIPE, stderr=subprocess.STDOUT, shell=True) cPickle.dump(self, tmva_process.stdin) cPickle.dump(info, tmva_process.stdin) cPickle.dump(X, tmva_process.stdin) cPickle.dump(y, tmva_process.stdin) cPickle.dump(sample_weight, tmva_process.stdin) stdout, stderr = tmva_process.communicate() assert tmva_process.returncode == 0, \ 'ERROR: TMVA process is incorrect finished \n LOG: %s \n %s' % (stderr, stdout) xml_filename = os.path.join(info.directory, 'weights', '{job}_{name}.weights.xml'.format(job=info.tmva_job, name=self._method_name)) with open(xml_filename, 'r') as xml_file: self.formula_xml = xml_file.read() def _check_fitted(self): assert self.formula_xml is not None, "Classifier wasn't fitted, please call `fit` first" def _predict(self, X, model_type=('classification', None)): """ Predict data :param pandas.DataFrame X: data shape [n_samples, n_features] :return: predicted values of shape n_samples """ self._check_fitted() directory = self._create_tmp_directory() try: with tempfile.NamedTemporaryFile(mode="w", suffix='.xml', dir=directory, delete=True) as file_xml: file_xml.write(self.formula_xml) file_xml.flush() add_info = _AdditionalInformationPredict(directory, file_xml.name, self._method_name, model_type=model_type) prediction = self._run_tmva_predict(add_info, X) finally: self._remove_tmp_directory(directory) return prediction def _run_tmva_predict(self, info, data): """ Run subprocess to train tmva factory :param info: class with additional information """ tmva_process = subprocess.Popen( 'cd {directory}; {executable} -c "from rep.estimators import _tmvaReader; _tmvaReader.main()"'.format( directory=info.directory, executable=sys.executable), stdin=PIPE, stdout=PIPE, stderr=subprocess.STDOUT, shell=True) cPickle.dump(info, tmva_process.stdin) cPickle.dump(data, tmva_process.stdin) stdout, stderr = tmva_process.communicate() assert tmva_process.returncode == 0, \ 'ERROR: TMVA process is incorrect finished \n LOG: %s \n %s' % (stderr, stdout) with open(info.result_filename, 'rb') as predictions_file: predictions = cPickle.load(predictions_file) return predictions class TMVAClassifier(TMVABase, Classifier): """ TMVAClassifier wraps classifiers from TMVA (CERN library for machine learning) Parameters: ----------- :param str method: algorithm method (default='kBDT') :param features: features used in training :type features: list[str] or None :param str factory_options: options, for example:: "!V:!Silent:Color:Transformations=I;D;P;G,D" :param str sigmoid_function: function which is used to convert TMVA output to probabilities; * *identity* (use for svm, mlp) --- the same output, use this for methods returning class probabilities * *sigmoid* --- sigmoid transformation, use it if output varies in range [-infinity, +infinity] * *bdt* (for bdt algorithms output varies in range [-1, 1]) * *sig_eff=0.4* --- for rectangular cut optimization methods, for instance, here 0.4 will be used as signal efficiency to evaluate MVA, (put any float number from [0, 1]) :param dict method_parameters: estimator options, example: NTrees=100, BoostType='Grad' .. warning:: TMVA doesn't support *staged_predict_proba()* and *feature_importances__* .. warning:: TMVA doesn't support multiclassification, only two-class classification `TMVA guide <http://mirror.yandex.ru/gentoo-distfiles/distfiles/TMVAUsersGuide-v4.03.pdf>`_ """ def __init__(self, method='kBDT', features=None, factory_options="", sigmoid_function='bdt', **method_parameters): # !V:!Silent:Color:Transformations=I;D;P;G,D TMVABase.__init__(self, factory_options=factory_options, method=method, **method_parameters) Classifier.__init__(self, features=features) self.sigmoid_function = sigmoid_function def _set_classes_special(self, y): self._set_classes(y) assert self.n_classes_ == 2, "Support only 2 classes (data contain {})".format(self.n_classes_) def set_params(self, **params): """ Set the parameters of this estimator. :param dict params: parameters to set in model """ for k, v in params.items(): if hasattr(self, k): setattr(self, k, v) else: if k in _PASS_PARAMETERS: continue self.method_parameters[k] = v def get_params(self, deep=True): """ Get parameters for this estimator. deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. params : mapping of string to any Parameter names mapped to their values. """ parameters = self.method_parameters.copy() parameters['method'] = self.method parameters['factory_options'] = self.factory_options parameters['features'] = self.features return parameters def fit(self, X, y, sample_weight=None): """ Train the classifier :param pandas.DataFrame X: data shape [n_samples, n_features] :param y: labels of events - array-like of shape [n_samples] :param sample_weight: weight of events, array-like of shape [n_samples] or None if all weights are equal :return: self """ X, y, sample_weight = check_inputs(X, y, sample_weight=sample_weight, allow_none_weights=False) X = self._get_features(X).copy() self._set_classes_special(y) if self.n_classes_ == 2: self.factory_options = '{}:AnalysisType=Classification'.format(self.factory_options) else: self.factory_options = '{}:AnalysisType=Multiclass'.format(self.factory_options) return self._fit(X, y, sample_weight=sample_weight) def predict_proba(self, X): """ Predict probabilities for new data. :param pandas.DataFrame X: data shape [n_samples, n_features] :rtype: numpy.array of shape [n_samples, n_classes] with probabilities """ X = self._get_features(X) prediction = self._predict(X, model_type=('classification', self.sigmoid_function)) return self._convert_output(prediction) def _convert_output(self, prediction): variants = {'bdt', 'sigmoid', 'identity'} if 'sig_eff' in self.sigmoid_function: return proba_to_two_dimension(prediction) assert self.sigmoid_function in variants, \ 'sigmoid_function parameter must be one of {}, instead of {}'.format(variants, self.sigmoid_function) if self.sigmoid_function == 'sigmoid': return score_to_proba(prediction) elif self.sigmoid_function == 'bdt': return proba_to_two_dimension((prediction + 1.) / 2.) else: return proba_to_two_dimension(prediction) def staged_predict_proba(self, X): """ Predicts probabilities on each stage :param pandas.DataFrame X: data shape [n_samples, n_features] :return: iterator .. warning:: Not supported for TMVA (**AttributeError** will be thrown) """ raise AttributeError("Not supported for TMVA") class TMVARegressor(TMVABase, Regressor): """ TMVARegressor wraps regressors from TMVA (CERN library for machine learning) Parameters: ----------- :param str method: algorithm method (default='kBDT') :param features: features used in training :type features: list[str] or None :param str factory_options: options, for example:: "!V:!Silent:Color:Transformations=I;D;P;G,D" :param dict method_parameters: estimator options, example: NTrees=100, BoostType=Grad .. note:: TMVA doesn't support *staged_predict()* and *feature_importances__* `TMVA guide <http://mirror.yandex.ru/gentoo-distfiles/distfiles/TMVAUsersGuide-v4.03.pdf>`_ """ def __init__(self, method='kBDT', features=None, factory_options="", **method_parameters): TMVABase.__init__(self, factory_options=factory_options, method=method, **method_parameters) Regressor.__init__(self, features=features) def set_params(self, **params): """ Set the parameters of this estimator. :param dict params: parameters to set in model """ for k, v in params.items(): if hasattr(self, k): setattr(self, k, v) else: if k in _PASS_PARAMETERS: continue self.method_parameters[k] = v def get_params(self, deep=True): """ Get parameters for this estimator. deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. params : mapping of string to any Parameter names mapped to their values. """ parameters = self.method_parameters.copy() parameters['method'] = self.method parameters['factory_options'] = self.factory_options parameters['features'] = self.features return parameters def fit(self, X, y, sample_weight=None): """ Train the classifier :param pandas.DataFrame X: data shape [n_samples, n_features] :param y: values - array-like of shape [n_samples] :param sample_weight: weight of events, array-like of shape [n_samples] or None if all weights are equal :return: self """ X, y, sample_weight = check_inputs(X, y, sample_weight=sample_weight, allow_none_weights=False) X = self._get_features(X).copy() self.factory_options = '{}:AnalysisType=Regression'.format(self.factory_options) return self._fit(X, y, sample_weight=sample_weight, model_type='regression') def predict(self, X): """ Predict data :param pandas.DataFrame X: data shape [n_samples, n_features] :return: numpy.array of shape n_samples with values """ X = self._get_features(X) return self._predict(X, model_type=('regression', None)) def staged_predict(self, X): """ Predicts values on each stage :param pandas.DataFrame X: data shape [n_samples, n_features] :return: iterator .. warning:: Not supported for TMVA (**AttributeError** will be thrown) """ raise AttributeError("Not supported for TMVA")
apache-2.0
yangautumn/turing_pattern
amorphous_pattern/test.py
1
1800
""" # demo of plotting squared subfigures """ # import matplotlib.pyplot as plt # fig, ax = plt.subplots() # x = [0, 0.2, 0.4, 0.6, 0.8] # y = [0, 0.5, 1, 1.5, 2.0] # colors = ['k']*len(x) # ax.scatter(x, y, c=colors, alpha=0.5) # ax.set_xlim((0,2)) # ax.set_ylim((0,2)) # x0,x1 = ax.get_xlim() # y0,y1 = ax.get_ylim() # ax.set_aspect(abs(x1-x0)/abs(y1-y0)) # ax.grid(b=True, which='major', color='k', linestyle='--') # fig.savefig('test.png', dpi=600) # plt.close(fig) """ # demo of plotting ellipse """ # import matplotlib.pyplot as plt # import numpy.random as rnd # from matplotlib.patches import Ellipse # NUM = 250 # ells = [Ellipse(xy=rnd.rand(2)*10, width=rnd.rand(), height=rnd.rand(), angle=rnd.rand()*360) # for i in range(NUM)] # fig = plt.figure(0) # ax = fig.add_subplot(111, aspect='equal') # for e in ells: # ax.add_artist(e) # e.set_clip_box(ax.bbox) # e.set_alpha(rnd.rand()) # e.set_facecolor(rnd.rand(3)) # ax.set_xlim(0, 10) # ax.set_ylim(0, 10) # plt.show() import os, sys, time # interval = 10 # while True: # for i in range(interval, 0, -1): # sys.stdout.write("\033[K") # Clear to the end of line # print("{} model(s) are being recorded. Next check in {} seconds".format(i%3+1, i)) # sys.stdout.write("\033[K") # time.sleep(1) # print("the following models are being recorded: {}".format(i), end="\r") # time.sleep(1) # sys.stdout.write("\033[F") # Cursor up one line while True: print("Yang Li", end='\r') time.sleep(1) sys.stdout.write("\033[K") # Clear to the end of line time.sleep(1) print("Zhang") time.sleep(1) print('Wenxin', end='\r') time.sleep(1) sys.stdout.write("\033[K") # Clear to the end of line sys.stdout.write("\033[F") # Cursor up one line
gpl-3.0
mrshu/scikit-learn
benchmarks/bench_plot_svd.py
3
2806
"""Benchmarks of Singular Values Decomposition (Exact and Approximate) The data is mostly low rank but is a fat infinite tail. """ import gc from time import time import numpy as np from collections import defaultdict from scipy.linalg import svd from sklearn.utils.extmath import randomized_svd from sklearn.datasets.samples_generator import make_low_rank_matrix def compute_bench(samples_range, features_range, n_iter=3, rank=50): it = 0 results = defaultdict(lambda: []) max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print '====================' print 'Iteration %03d of %03d' % (it, max_it) print '====================' X = make_low_rank_matrix(n_samples, n_features, effective_rank=rank, tail_strength=0.2) gc.collect() print "benching scipy svd: " tstart = time() svd(X, full_matrices=False) results['scipy svd'].append(time() - tstart) gc.collect() print "benching scikit-learn randomized_svd: n_iter=0" tstart = time() randomized_svd(X, rank, n_iter=0) results['scikit-learn randomized_svd (n_iter=0)'].append( time() - tstart) gc.collect() print ("benching scikit-learn randomized_svd: n_iter=%d " % n_iter) tstart = time() randomized_svd(X, rank, n_iter=n_iter) results['scikit-learn randomized_svd (n_iter=%d)' % n_iter].append(time() - tstart) return results if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection import matplotlib.pyplot as plt samples_range = np.linspace(2, 1000, 4).astype(np.int) features_range = np.linspace(2, 1000, 4).astype(np.int) results = compute_bench(samples_range, features_range) fig = plt.figure() ax = fig.gca(projection='3d') for c, (label, timings) in zip('rbg', sorted(results.iteritems())): X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3, color=c) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') ax.set_zlabel('time (s)') ax.legend() plt.show()
bsd-3-clause
alexeyum/scikit-learn
sklearn/grid_search.py
3
38523
""" The :mod:`sklearn.grid_search` includes utilities to fine-tune the parameters of an estimator. """ from __future__ import print_function # Author: Alexandre Gramfort <[email protected]>, # Gael Varoquaux <[email protected]> # Andreas Mueller <[email protected]> # Olivier Grisel <[email protected]> # License: BSD 3 clause from abc import ABCMeta, abstractmethod from collections import Mapping, namedtuple, Sized from functools import partial, reduce from itertools import product import operator import warnings import numpy as np from .base import BaseEstimator, is_classifier, clone from .base import MetaEstimatorMixin from .cross_validation import check_cv from .cross_validation import _fit_and_score from .externals.joblib import Parallel, delayed from .externals import six from .utils import check_random_state from .utils.random import sample_without_replacement from .utils.validation import _num_samples, indexable from .utils.metaestimators import if_delegate_has_method from .metrics.scorer import check_scoring from .exceptions import ChangedBehaviorWarning __all__ = ['GridSearchCV', 'ParameterGrid', 'fit_grid_point', 'ParameterSampler', 'RandomizedSearchCV'] warnings.warn("This module has been deprecated in favor of the " "model_selection module into which all the refactored classes " "and functions are moved. This module will be removed in 0.20.", DeprecationWarning) class ParameterGrid(object): """Grid of parameters with a discrete number of values for each. Can be used to iterate over parameter value combinations with the Python built-in function iter. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- param_grid : dict of string to sequence, or sequence of such The parameter grid to explore, as a dictionary mapping estimator parameters to sequences of allowed values. An empty dict signifies default parameters. A sequence of dicts signifies a sequence of grids to search, and is useful to avoid exploring parameter combinations that make no sense or have no effect. See the examples below. Examples -------- >>> from sklearn.grid_search import ParameterGrid >>> param_grid = {'a': [1, 2], 'b': [True, False]} >>> list(ParameterGrid(param_grid)) == ( ... [{'a': 1, 'b': True}, {'a': 1, 'b': False}, ... {'a': 2, 'b': True}, {'a': 2, 'b': False}]) True >>> grid = [{'kernel': ['linear']}, {'kernel': ['rbf'], 'gamma': [1, 10]}] >>> list(ParameterGrid(grid)) == [{'kernel': 'linear'}, ... {'kernel': 'rbf', 'gamma': 1}, ... {'kernel': 'rbf', 'gamma': 10}] True >>> ParameterGrid(grid)[1] == {'kernel': 'rbf', 'gamma': 1} True See also -------- :class:`GridSearchCV`: uses ``ParameterGrid`` to perform a full parallelized parameter search. """ def __init__(self, param_grid): if isinstance(param_grid, Mapping): # wrap dictionary in a singleton list to support either dict # or list of dicts param_grid = [param_grid] self.param_grid = param_grid def __iter__(self): """Iterate over the points in the grid. Returns ------- params : iterator over dict of string to any Yields dictionaries mapping each estimator parameter to one of its allowed values. """ for p in self.param_grid: # Always sort the keys of a dictionary, for reproducibility items = sorted(p.items()) if not items: yield {} else: keys, values = zip(*items) for v in product(*values): params = dict(zip(keys, v)) yield params def __len__(self): """Number of points on the grid.""" # Product function that can handle iterables (np.product can't). product = partial(reduce, operator.mul) return sum(product(len(v) for v in p.values()) if p else 1 for p in self.param_grid) def __getitem__(self, ind): """Get the parameters that would be ``ind``th in iteration Parameters ---------- ind : int The iteration index Returns ------- params : dict of string to any Equal to list(self)[ind] """ # This is used to make discrete sampling without replacement memory # efficient. for sub_grid in self.param_grid: # XXX: could memoize information used here if not sub_grid: if ind == 0: return {} else: ind -= 1 continue # Reverse so most frequent cycling parameter comes first keys, values_lists = zip(*sorted(sub_grid.items())[::-1]) sizes = [len(v_list) for v_list in values_lists] total = np.product(sizes) if ind >= total: # Try the next grid ind -= total else: out = {} for key, v_list, n in zip(keys, values_lists, sizes): ind, offset = divmod(ind, n) out[key] = v_list[offset] return out raise IndexError('ParameterGrid index out of range') class ParameterSampler(object): """Generator on parameters sampled from given distributions. Non-deterministic iterable over random candidate combinations for hyper- parameter search. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Note that as of SciPy 0.12, the ``scipy.stats.distributions`` do not accept a custom RNG instance and always use the singleton RNG from ``numpy.random``. Hence setting ``random_state`` will not guarantee a deterministic iteration whenever ``scipy.stats`` distributions are used to define the parameter search space. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- param_distributions : dict Dictionary where the keys are parameters and values are distributions from which a parameter is to be sampled. Distributions either have to provide a ``rvs`` function to sample from them, or can be given as a list of values, where a uniform distribution is assumed. n_iter : integer Number of parameter settings that are produced. random_state : int or RandomState Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. Returns ------- params : dict of string to any **Yields** dictionaries mapping each estimator parameter to as sampled value. Examples -------- >>> from sklearn.grid_search import ParameterSampler >>> from scipy.stats.distributions import expon >>> import numpy as np >>> np.random.seed(0) >>> param_grid = {'a':[1, 2], 'b': expon()} >>> param_list = list(ParameterSampler(param_grid, n_iter=4)) >>> rounded_list = [dict((k, round(v, 6)) for (k, v) in d.items()) ... for d in param_list] >>> rounded_list == [{'b': 0.89856, 'a': 1}, ... {'b': 0.923223, 'a': 1}, ... {'b': 1.878964, 'a': 2}, ... {'b': 1.038159, 'a': 2}] True """ def __init__(self, param_distributions, n_iter, random_state=None): self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state def __iter__(self): # check if all distributions are given as lists # in this case we want to sample without replacement all_lists = np.all([not hasattr(v, "rvs") for v in self.param_distributions.values()]) rnd = check_random_state(self.random_state) if all_lists: # look up sampled parameter settings in parameter grid param_grid = ParameterGrid(self.param_distributions) grid_size = len(param_grid) if grid_size < self.n_iter: raise ValueError( "The total space of parameters %d is smaller " "than n_iter=%d." % (grid_size, self.n_iter) + " For exhaustive searches, use GridSearchCV.") for i in sample_without_replacement(grid_size, self.n_iter, random_state=rnd): yield param_grid[i] else: # Always sort the keys of a dictionary, for reproducibility items = sorted(self.param_distributions.items()) for _ in six.moves.range(self.n_iter): params = dict() for k, v in items: if hasattr(v, "rvs"): params[k] = v.rvs() else: params[k] = v[rnd.randint(len(v))] yield params def __len__(self): """Number of points that will be sampled.""" return self.n_iter def fit_grid_point(X, y, estimator, parameters, train, test, scorer, verbose, error_score='raise', **fit_params): """Run fit on one set of parameters. Parameters ---------- X : array-like, sparse matrix or list Input data. y : array-like or None Targets for input data. estimator : estimator object A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. parameters : dict Parameters to be set on estimator for this grid point. train : ndarray, dtype int or bool Boolean mask or indices for training set. test : ndarray, dtype int or bool Boolean mask or indices for test set. scorer : callable or None. If provided must be a scorer callable object / function with signature ``scorer(estimator, X, y)``. verbose : int Verbosity level. **fit_params : kwargs Additional parameter passed to the fit function of the estimator. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Returns ------- score : float Score of this parameter setting on given training / test split. parameters : dict The parameters that have been evaluated. n_samples_test : int Number of test samples in this split. """ score, n_samples_test, _ = _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, error_score) return score, parameters, n_samples_test def _check_param_grid(param_grid): if hasattr(param_grid, 'items'): param_grid = [param_grid] for p in param_grid: for v in p.values(): if isinstance(v, np.ndarray) and v.ndim > 1: raise ValueError("Parameter array should be one-dimensional.") check = [isinstance(v, k) for k in (list, tuple, np.ndarray)] if True not in check: raise ValueError("Parameter values should be a list.") if len(v) == 0: raise ValueError("Parameter values should be a non-empty " "list.") class _CVScoreTuple (namedtuple('_CVScoreTuple', ('parameters', 'mean_validation_score', 'cv_validation_scores'))): # A raw namedtuple is very memory efficient as it packs the attributes # in a struct to get rid of the __dict__ of attributes in particular it # does not copy the string for the keys on each instance. # By deriving a namedtuple class just to introduce the __repr__ method we # would also reintroduce the __dict__ on the instance. By telling the # Python interpreter that this subclass uses static __slots__ instead of # dynamic attributes. Furthermore we don't need any additional slot in the # subclass so we set __slots__ to the empty tuple. __slots__ = () def __repr__(self): """Simple custom repr to summarize the main info""" return "mean: {0:.5f}, std: {1:.5f}, params: {2}".format( self.mean_validation_score, np.std(self.cv_validation_scores), self.parameters) class BaseSearchCV(six.with_metaclass(ABCMeta, BaseEstimator, MetaEstimatorMixin)): """Base class for hyper parameter search with cross-validation.""" @abstractmethod def __init__(self, estimator, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): self.scoring = scoring self.estimator = estimator self.n_jobs = n_jobs self.fit_params = fit_params if fit_params is not None else {} self.iid = iid self.refit = refit self.cv = cv self.verbose = verbose self.pre_dispatch = pre_dispatch self.error_score = error_score @property def _estimator_type(self): return self.estimator._estimator_type def score(self, X, y=None): """Returns the score on the given data, if the estimator has been refit. This uses the score defined by ``scoring`` where provided, and the ``best_estimator_.score`` method otherwise. Parameters ---------- X : array-like, shape = [n_samples, n_features] Input data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. Returns ------- score : float Notes ----- * The long-standing behavior of this method changed in version 0.16. * It no longer uses the metric provided by ``estimator.score`` if the ``scoring`` parameter was set when fitting. """ if self.scorer_ is None: raise ValueError("No score function explicitly defined, " "and the estimator doesn't provide one %s" % self.best_estimator_) if self.scoring is not None and hasattr(self.best_estimator_, 'score'): warnings.warn("The long-standing behavior to use the estimator's " "score function in {0}.score has changed. The " "scoring parameter is now used." "".format(self.__class__.__name__), ChangedBehaviorWarning) return self.scorer_(self.best_estimator_, X, y) @if_delegate_has_method(delegate='estimator') def predict(self, X): """Call predict on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict(X) @if_delegate_has_method(delegate='estimator') def predict_proba(self, X): """Call predict_proba on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict_proba``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict_proba(X) @if_delegate_has_method(delegate='estimator') def predict_log_proba(self, X): """Call predict_log_proba on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict_log_proba``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict_log_proba(X) @if_delegate_has_method(delegate='estimator') def decision_function(self, X): """Call decision_function on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``decision_function``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.decision_function(X) @if_delegate_has_method(delegate='estimator') def transform(self, X): """Call transform on the estimator with the best found parameters. Only available if the underlying estimator supports ``transform`` and ``refit=True``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.transform(X) @if_delegate_has_method(delegate='estimator') def inverse_transform(self, Xt): """Call inverse_transform on the estimator with the best found parameters. Only available if the underlying estimator implements ``inverse_transform`` and ``refit=True``. Parameters ----------- Xt : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.transform(Xt) def _fit(self, X, y, parameter_iterable): """Actual fitting, performing the search over parameters.""" estimator = self.estimator cv = self.cv self.scorer_ = check_scoring(self.estimator, scoring=self.scoring) n_samples = _num_samples(X) X, y = indexable(X, y) if y is not None: if len(y) != n_samples: raise ValueError('Target variable (y) has a different number ' 'of samples (%i) than data (X: %i samples)' % (len(y), n_samples)) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) if self.verbose > 0: if isinstance(parameter_iterable, Sized): n_candidates = len(parameter_iterable) print("Fitting {0} folds for each of {1} candidates, totalling" " {2} fits".format(len(cv), n_candidates, n_candidates * len(cv))) base_estimator = clone(self.estimator) pre_dispatch = self.pre_dispatch out = Parallel( n_jobs=self.n_jobs, verbose=self.verbose, pre_dispatch=pre_dispatch )( delayed(_fit_and_score)(clone(base_estimator), X, y, self.scorer_, train, test, self.verbose, parameters, self.fit_params, return_parameters=True, error_score=self.error_score) for parameters in parameter_iterable for train, test in cv) # Out is a list of triplet: score, estimator, n_test_samples n_fits = len(out) n_folds = len(cv) scores = list() grid_scores = list() for grid_start in range(0, n_fits, n_folds): n_test_samples = 0 score = 0 all_scores = [] for this_score, this_n_test_samples, _, parameters in \ out[grid_start:grid_start + n_folds]: all_scores.append(this_score) if self.iid: this_score *= this_n_test_samples n_test_samples += this_n_test_samples score += this_score if self.iid: score /= float(n_test_samples) else: score /= float(n_folds) scores.append((score, parameters)) # TODO: shall we also store the test_fold_sizes? grid_scores.append(_CVScoreTuple( parameters, score, np.array(all_scores))) # Store the computed scores self.grid_scores_ = grid_scores # Find the best parameters by comparing on the mean validation score: # note that `sorted` is deterministic in the way it breaks ties best = sorted(grid_scores, key=lambda x: x.mean_validation_score, reverse=True)[0] self.best_params_ = best.parameters self.best_score_ = best.mean_validation_score if self.refit: # fit the best estimator using the entire dataset # clone first to work around broken estimators best_estimator = clone(base_estimator).set_params( **best.parameters) if y is not None: best_estimator.fit(X, y, **self.fit_params) else: best_estimator.fit(X, **self.fit_params) self.best_estimator_ = best_estimator return self class GridSearchCV(BaseSearchCV): """Exhaustive search over specified parameter values for an estimator. Important members are fit, predict. GridSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated grid-search over a parameter grid. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- estimator : estimator object. A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. param_grid : dict or list of dictionaries Dictionary with parameters names (string) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored. This enables searching over any sequence of parameter settings. scoring : string, callable or None, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. If ``None``, the ``score`` method of the estimator is used. fit_params : dict, optional Parameters to pass to the fit method. n_jobs : int, default=1 Number of jobs to run in parallel. .. versionchanged:: 0.17 Upgraded to joblib 0.9.3. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`sklearn.model_selection.StratifiedKFold` is used. In all other cases, :class:`sklearn.model_selection.KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. refit : boolean, default=True Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this GridSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Examples -------- >>> from sklearn import svm, grid_search, datasets >>> iris = datasets.load_iris() >>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]} >>> svr = svm.SVC() >>> clf = grid_search.GridSearchCV(svr, parameters) >>> clf.fit(iris.data, iris.target) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS GridSearchCV(cv=None, error_score=..., estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=..., decision_function_shape=None, degree=..., gamma=..., kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=..., verbose=False), fit_params={}, iid=..., n_jobs=1, param_grid=..., pre_dispatch=..., refit=..., scoring=..., verbose=...) Attributes ---------- grid_scores_ : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes: * ``parameters``, a dict of parameter settings * ``mean_validation_score``, the mean score over the cross-validation folds * ``cv_validation_scores``, the list of scores for each fold best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. scorer_ : function Scorer function used on the held out data to choose the best parameters for the model. Notes ------ The parameters selected are those that maximize the score of the left out data, unless an explicit score is passed in which case it is used instead. If `n_jobs` was set to a value higher than one, the data is copied for each point in the grid (and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also --------- :class:`ParameterGrid`: generates all the combinations of a hyperparameter grid. :func:`sklearn.cross_validation.train_test_split`: utility function to split the data into a development set usable for fitting a GridSearchCV instance and an evaluation set for its final evaluation. :func:`sklearn.metrics.make_scorer`: Make a scorer from a performance metric or loss function. """ def __init__(self, estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): super(GridSearchCV, self).__init__( estimator, scoring, fit_params, n_jobs, iid, refit, cv, verbose, pre_dispatch, error_score) self.param_grid = param_grid _check_param_grid(param_grid) def fit(self, X, y=None): """Run fit with all sets of parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ return self._fit(X, y, ParameterGrid(self.param_grid)) class RandomizedSearchCV(BaseSearchCV): """Randomized search on hyper parameters. RandomizedSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated search over parameter settings. In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter settings is sampled from the specified distributions. The number of parameter settings that are tried is given by n_iter. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Read more in the :ref:`User Guide <randomized_parameter_search>`. Parameters ---------- estimator : estimator object. A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. param_distributions : dict Dictionary with parameters names (string) as keys and distributions or lists of parameters to try. Distributions must provide a ``rvs`` method for sampling (such as those from scipy.stats.distributions). If a list is given, it is sampled uniformly. n_iter : int, default=10 Number of parameter settings that are sampled. n_iter trades off runtime vs quality of the solution. scoring : string, callable or None, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. If ``None``, the ``score`` method of the estimator is used. fit_params : dict, optional Parameters to pass to the fit method. n_jobs : int, default=1 Number of jobs to run in parallel. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`sklearn.model_selection.StratifiedKFold` is used. In all other cases, :class:`sklearn.model_selection.KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. refit : boolean, default=True Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this RandomizedSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. random_state : int or RandomState Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Attributes ---------- grid_scores_ : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes: * ``parameters``, a dict of parameter settings * ``mean_validation_score``, the mean score over the cross-validation folds * ``cv_validation_scores``, the list of scores for each fold best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. Notes ----- The parameters selected are those that maximize the score of the held-out data, according to the scoring parameter. If `n_jobs` was set to a value higher than one, the data is copied for each parameter setting(and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also -------- :class:`GridSearchCV`: Does exhaustive search over a grid of parameters. :class:`ParameterSampler`: A generator over parameter settings, constructed from param_distributions. """ def __init__(self, estimator, param_distributions, n_iter=10, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', random_state=None, error_score='raise'): self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state super(RandomizedSearchCV, self).__init__( estimator=estimator, scoring=scoring, fit_params=fit_params, n_jobs=n_jobs, iid=iid, refit=refit, cv=cv, verbose=verbose, pre_dispatch=pre_dispatch, error_score=error_score) def fit(self, X, y=None): """Run fit on the estimator with randomly drawn parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ sampled_params = ParameterSampler(self.param_distributions, self.n_iter, random_state=self.random_state) return self._fit(X, y, sampled_params)
bsd-3-clause
LFPy/LFPy
LFPy/inputgenerators.py
1
4009
#!/usr/bin/env python """Copyright (C) 2012 Computational Neuroscience Group, NMBU. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. """ import numpy as np import scipy.stats def get_activation_times_from_distribution(n, tstart=0., tstop=1.E6, distribution=scipy.stats.expon, rvs_args=dict(loc=0, scale=1), maxiter=1E6): """ Construct a length n list of ndarrays containing continously increasing random numbers on the interval [tstart, tstop], with intervals drawn from a chosen continuous random variable distribution subclassed from scipy.stats.rv_continous, e.g., scipy.stats.expon or scipy.stats.gamma. The most likely initial first entry is ``tstart + method.rvs(size=inf, **rvs_args).mean()`` Parameters ---------- n: int number of ndarrays in list tstart: float minimum allowed value in ndarrays tstop: float maximum allowed value in ndarrays distribution: object subclass of scipy.stats.rv_continous. Distributions producing negative values should be avoided if continously increasing values should be obtained, i.e., the probability density function ``(distribution.pdf(**rvs_args))`` should be ``0`` for ``x < 0``, which is not explicitly tested for. rvs_args: dict parameters for method.rvs method. If "size" is in dict, then tstop will be ignored, and each ndarray in output list will be ``distribution.rvs(**rvs_args).cumsum() + tstart``. If size is not given in dict, then values up to tstop will be included maxiter: int maximum number of iterations Returns ------- list of ndarrays length n list of arrays containing data Raises ------ AssertionError if distribution does not have the 'rvs' attribute StopIteration if number of while-loop iterations reaches maxiter Examples -------- Create n sets of activation times with intervals drawn from the exponential distribution, with rate expectation lambda 10 s^-1 (thus scale=1000 / lambda). Here we assume output in units of ms >>> from LFPy.inputgenerators import get_activation_times_from_distribution >>> import scipy.stats as st >>> import matplotlib.pyplot as plt >>> times = get_activation_times_from_distribution(n=10, tstart=0., >>> tstop=1000., >>> distribution=st.expon, >>> rvs_args=dict(loc=0., >>> scale=100.)) """ assert hasattr(distribution, 'rvs'), \ 'distribution={} must have the attribute "rvs"'.format(distribution) times = [] if 'size' in rvs_args.keys(): for i in range(n): times += [distribution.rvs(**rvs_args).cumsum() + tstart] else: for i in range(n): values = distribution.rvs(size=1000, **rvs_args).cumsum() + tstart iter = 0 while values[-1] < tstop and iter < maxiter: values = np.r_[values, distribution.rvs( size=1000, **rvs_args).cumsum() + values[-1]] iter += 1 if iter == maxiter: raise StopIteration('maximum number of iterations reach. Con') times += [values[values < tstop]] return times
gpl-3.0
JensWehner/votca-scripts
xtp/xtp_energielevels.py
2
3385
#!/usr/bin/env python import sys import numpy as np import matplotlib.pyplot as plt if len(sys.argv)==2: infile=sys.argv[1] export=False elif len(sys.argv)==3: infile=sys.argv[1] gnufile=sys.argv[2] export=True else: print "Wrong number of arguments simply specify first the profile.dat file and then optionally a file for output.Exiting" sys.exit() z=[] EA=[] IP=[] dEA=[] dIP=[] with open (infile,"r") as f: for line in f: if "#" not in line: lineparts=line.split() IPblocked=False dIPblocked=False EAblocked=False dEAblocked=False #print lineparts for i in range(len(lineparts)): if lineparts[i]!='-nan' and i>0: #print i%4,i,lineparts[i],lineparts[0],line if i%4==1: if not IPblocked: IP.append(float(lineparts[i])) IPblocked=True else: print "Two elements at same position" elif i%4==3: if not dIPblocked: dIP.append(float(lineparts[i])) dIPblocked=True elif i%4==2: if not EAblocked: EA.append(float(lineparts[i])) EAblocked=True elif i%4==0: if not dEAblocked: dEA.append(float(lineparts[i])) dEAblocked=True else: print i if IPblocked+dIPblocked+EAblocked+dEAblocked!=0: z.append(float(lineparts[0])) profile=np.array([z,IP,dIP,EA,dEA]) plt.errorbar(profile[0],profile[1],profile[2],marker="o") plt.errorbar(profile[0],-profile[3],profile[4],marker="x") plt.axis('tight') plt.show() if export==True: np.savetxt(gnufile, profile.T, delimiter="\t")
apache-2.0
Akshay0724/scikit-learn
examples/svm/plot_separating_hyperplane.py
294
1273
""" ========================================= SVM: Maximum margin separating hyperplane ========================================= Plot the maximum margin separating hyperplane within a two-class separable dataset using a Support Vector Machine classifier with linear kernel. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # fit the model clf = svm.SVC(kernel='linear') clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors b = clf.support_vectors_[0] yy_down = a * xx + (b[1] - a * b[0]) b = clf.support_vectors_[-1] yy_up = a * xx + (b[1] - a * b[0]) # plot the line, the points, and the nearest vectors to the plane plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none') plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.axis('tight') plt.show()
bsd-3-clause
NirBenTalLab/proorigami-cde-package
cde-root/usr/lib64/python2.4/site-packages/numpy/lib/polynomial.py
2
35562
""" Functions to operate on polynomials. """ __all__ = ['poly', 'roots', 'polyint', 'polyder', 'polyadd', 'polysub', 'polymul', 'polydiv', 'polyval', 'poly1d', 'polyfit', 'RankWarning'] import re import warnings import numpy.core.numeric as NX from numpy.core import isscalar, abs, finfo, atleast_1d, hstack from numpy.lib.twodim_base import diag, vander from numpy.lib.function_base import trim_zeros, sort_complex from numpy.lib.type_check import iscomplex, real, imag from numpy.linalg import eigvals, lstsq class RankWarning(UserWarning): """ Issued by `polyfit` when the Vandermonde matrix is rank deficient. For more information, a way to suppress the warning, and an example of `RankWarning` being issued, see `polyfit`. """ pass def poly(seq_of_zeros): """ Find the coefficients of a polynomial with the given sequence of roots. Returns the coefficients of the polynomial whose leading coefficient is one for the given sequence of zeros (multiple roots must be included in the sequence as many times as their multiplicity; see Examples). A square matrix (or array, which will be treated as a matrix) can also be given, in which case the coefficients of the characteristic polynomial of the matrix are returned. Parameters ---------- seq_of_zeros : array_like, shape (N,) or (N, N) A sequence of polynomial roots, or a square array or matrix object. Returns ------- c : ndarray 1D array of polynomial coefficients from highest to lowest degree: ``c[0] * x**(N) + c[1] * x**(N-1) + ... + c[N-1] * x + c[N]`` where c[0] always equals 1. Raises ------ ValueError If input is the wrong shape (the input must be a 1-D or square 2-D array). See Also -------- polyval : Evaluate a polynomial at a point. roots : Return the roots of a polynomial. polyfit : Least squares polynomial fit. poly1d : A one-dimensional polynomial class. Notes ----- Specifying the roots of a polynomial still leaves one degree of freedom, typically represented by an undetermined leading coefficient. [1]_ In the case of this function, that coefficient - the first one in the returned array - is always taken as one. (If for some reason you have one other point, the only automatic way presently to leverage that information is to use ``polyfit``.) The characteristic polynomial, :math:`p_a(t)`, of an `n`-by-`n` matrix **A** is given by :math:`p_a(t) = \\mathrm{det}(t\\, \\mathbf{I} - \\mathbf{A})`, where **I** is the `n`-by-`n` identity matrix. [2]_ References ---------- .. [1] M. Sullivan and M. Sullivan, III, "Algebra and Trignometry, Enhanced With Graphing Utilities," Prentice-Hall, pg. 318, 1996. .. [2] G. Strang, "Linear Algebra and Its Applications, 2nd Edition," Academic Press, pg. 182, 1980. Examples -------- Given a sequence of a polynomial's zeros: >>> np.poly((0, 0, 0)) # Multiple root example array([1, 0, 0, 0]) # i.e., z**3 + 0*z**2 + 0*z + 0 >>> np.poly((-1./2, 0, 1./2)) array([ 1. , 0. , -0.25, 0. ]) # z**3 - z/4 >>> np.poly((np.random.random(1.)[0], 0, np.random.random(1.)[0])) array([ 1. , -0.77086955, 0.08618131, 0. ]) Given a square array object: >>> P = np.array([[0, 1./3], [-1./2, 0]]) >>> np.poly(P) array([ 1. , 0. , 0.16666667]) Or a square matrix object: >>> np.poly(np.matrix(P)) array([ 1. , 0. , 0.16666667]) Note how in all cases the leading coefficient is always 1. """ seq_of_zeros = atleast_1d(seq_of_zeros) sh = seq_of_zeros.shape if len(sh) == 2 and sh[0] == sh[1]: seq_of_zeros = eigvals(seq_of_zeros) elif len(sh) ==1: pass else: raise ValueError, "input must be 1d or square 2d array." if len(seq_of_zeros) == 0: return 1.0 a = [1] for k in range(len(seq_of_zeros)): a = NX.convolve(a, [1, -seq_of_zeros[k]], mode='full') if issubclass(a.dtype.type, NX.complexfloating): # if complex roots are all complex conjugates, the roots are real. roots = NX.asarray(seq_of_zeros, complex) pos_roots = sort_complex(NX.compress(roots.imag > 0, roots)) neg_roots = NX.conjugate(sort_complex( NX.compress(roots.imag < 0,roots))) if (len(pos_roots) == len(neg_roots) and NX.alltrue(neg_roots == pos_roots)): a = a.real.copy() return a def roots(p): """ Return the roots of a polynomial with coefficients given in p. The values in the rank-1 array `p` are coefficients of a polynomial. If the length of `p` is n+1 then the polynomial is described by p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n] Parameters ---------- p : array_like of shape(M,) Rank-1 array of polynomial co-efficients. Returns ------- out : ndarray An array containing the complex roots of the polynomial. Raises ------ ValueError: When `p` cannot be converted to a rank-1 array. See also -------- poly : Find the coefficients of a polynomial with a given sequence of roots. polyval : Evaluate a polynomial at a point. polyfit : Least squares polynomial fit. poly1d : A one-dimensional polynomial class. Notes ----- The algorithm relies on computing the eigenvalues of the companion matrix [1]_. References ---------- .. [1] Wikipedia, "Companion matrix", http://en.wikipedia.org/wiki/Companion_matrix Examples -------- >>> coeff = [3.2, 2, 1] >>> np.roots(coeff) array([-0.3125+0.46351241j, -0.3125-0.46351241j]) """ # If input is scalar, this makes it an array p = atleast_1d(p) if len(p.shape) != 1: raise ValueError,"Input must be a rank-1 array." # find non-zero array entries non_zero = NX.nonzero(NX.ravel(p))[0] # Return an empty array if polynomial is all zeros if len(non_zero) == 0: return NX.array([]) # find the number of trailing zeros -- this is the number of roots at 0. trailing_zeros = len(p) - non_zero[-1] - 1 # strip leading and trailing zeros p = p[int(non_zero[0]):int(non_zero[-1])+1] # casting: if incoming array isn't floating point, make it floating point. if not issubclass(p.dtype.type, (NX.floating, NX.complexfloating)): p = p.astype(float) N = len(p) if N > 1: # build companion matrix and find its eigenvalues (the roots) A = diag(NX.ones((N-2,), p.dtype), -1) A[0, :] = -p[1:] / p[0] roots = eigvals(A) else: roots = NX.array([]) # tack any zeros onto the back of the array roots = hstack((roots, NX.zeros(trailing_zeros, roots.dtype))) return roots def polyint(p, m=1, k=None): """ Return an antiderivative (indefinite integral) of a polynomial. The returned order `m` antiderivative `P` of polynomial `p` satisfies :math:`\\frac{d^m}{dx^m}P(x) = p(x)` and is defined up to `m - 1` integration constants `k`. The constants determine the low-order polynomial part .. math:: \\frac{k_{m-1}}{0!} x^0 + \\ldots + \\frac{k_0}{(m-1)!}x^{m-1} of `P` so that :math:`P^{(j)}(0) = k_{m-j-1}`. Parameters ---------- p : {array_like, poly1d} Polynomial to differentiate. A sequence is interpreted as polynomial coefficients, see `poly1d`. m : int, optional Order of the antiderivative. (Default: 1) k : {None, list of `m` scalars, scalar}, optional Integration constants. They are given in the order of integration: those corresponding to highest-order terms come first. If ``None`` (default), all constants are assumed to be zero. If `m = 1`, a single scalar can be given instead of a list. See Also -------- polyder : derivative of a polynomial poly1d.integ : equivalent method Examples -------- The defining property of the antiderivative: >>> p = np.poly1d([1,1,1]) >>> P = np.polyint(p) poly1d([ 0.33333333, 0.5 , 1. , 0. ]) >>> np.polyder(P) == p True The integration constants default to zero, but can be specified: >>> P = np.polyint(p, 3) >>> P(0) 0.0 >>> np.polyder(P)(0) 0.0 >>> np.polyder(P, 2)(0) 0.0 >>> P = np.polyint(p, 3, k=[6,5,3]) >>> P poly1d([ 0.01666667, 0.04166667, 0.16666667, 3., 5., 3. ]) Note that 3 = 6 / 2!, and that the constants are given in the order of integrations. Constant of the highest-order polynomial term comes first: >>> np.polyder(P, 2)(0) 6.0 >>> np.polyder(P, 1)(0) 5.0 >>> P(0) 3.0 """ m = int(m) if m < 0: raise ValueError, "Order of integral must be positive (see polyder)" if k is None: k = NX.zeros(m, float) k = atleast_1d(k) if len(k) == 1 and m > 1: k = k[0]*NX.ones(m, float) if len(k) < m: raise ValueError, \ "k must be a scalar or a rank-1 array of length 1 or >m." truepoly = isinstance(p, poly1d) p = NX.asarray(p) if m == 0: if truepoly: return poly1d(p) return p else: # Note: this must work also with object and integer arrays y = NX.concatenate((p.__truediv__(NX.arange(len(p), 0, -1)), [k[0]])) val = polyint(y, m - 1, k=k[1:]) if truepoly: return poly1d(val) return val def polyder(p, m=1): """ Return the derivative of the specified order of a polynomial. Parameters ---------- p : poly1d or sequence Polynomial to differentiate. A sequence is interpreted as polynomial coefficients, see `poly1d`. m : int, optional Order of differentiation (default: 1) Returns ------- der : poly1d A new polynomial representing the derivative. See Also -------- polyint : Anti-derivative of a polynomial. poly1d : Class for one-dimensional polynomials. Examples -------- The derivative of the polynomial :math:`x^3 + x^2 + x^1 + 1` is: >>> p = np.poly1d([1,1,1,1]) >>> p2 = np.polyder(p) >>> p2 poly1d([3, 2, 1]) which evaluates to: >>> p2(2.) 17.0 We can verify this, approximating the derivative with ``(f(x + h) - f(x))/h``: >>> (p(2. + 0.001) - p(2.)) / 0.001 17.007000999997857 The fourth-order derivative of a 3rd-order polynomial is zero: >>> np.polyder(p, 2) poly1d([6, 2]) >>> np.polyder(p, 3) poly1d([6]) >>> np.polyder(p, 4) poly1d([ 0.]) """ m = int(m) truepoly = isinstance(p, poly1d) p = NX.asarray(p) n = len(p)-1 y = p[:-1] * NX.arange(n, 0, -1) if m < 0: raise ValueError, "Order of derivative must be positive (see polyint)" if m == 0: return p else: val = polyder(y, m-1) if truepoly: val = poly1d(val) return val def polyfit(x, y, deg, rcond=None, full=False): """ Least squares polynomial fit. Fit a polynomial ``p(x) = p[0] * x**deg + ... + p[deg]`` of degree `deg` to points `(x, y)`. Returns a vector of coefficients `p` that minimises the squared error. Parameters ---------- x : array_like, shape (M,) x-coordinates of the M sample points ``(x[i], y[i])``. y : array_like, shape (M,) or (M, K) y-coordinates of the sample points. Several data sets of sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset per column. deg : int Degree of the fitting polynomial rcond : float, optional Relative condition number of the fit. Singular values smaller than this relative to the largest singular value will be ignored. The default value is len(x)*eps, where eps is the relative precision of the float type, about 2e-16 in most cases. full : bool, optional Switch determining nature of return value. When it is False (the default) just the coefficients are returned, when True diagnostic information from the singular value decomposition is also returned. Returns ------- p : ndarray, shape (M,) or (M, K) Polynomial coefficients, highest power first. If `y` was 2-D, the coefficients for `k`-th data set are in ``p[:,k]``. residuals, rank, singular_values, rcond : present only if `full` = True Residuals of the least-squares fit, the effective rank of the scaled Vandermonde coefficient matrix, its singular values, and the specified value of `rcond`. For more details, see `linalg.lstsq`. Warns ----- RankWarning The rank of the coefficient matrix in the least-squares fit is deficient. The warning is only raised if `full` = False. The warnings can be turned off by >>> import warnings >>> warnings.simplefilter('ignore', np.RankWarning) See Also -------- polyval : Computes polynomial values. linalg.lstsq : Computes a least-squares fit. scipy.interpolate.UnivariateSpline : Computes spline fits. Notes ----- The solution minimizes the squared error .. math :: E = \\sum_{j=0}^k |p(x_j) - y_j|^2 in the equations:: x[0]**n * p[n] + ... + x[0] * p[1] + p[0] = y[0] x[1]**n * p[n] + ... + x[1] * p[1] + p[0] = y[1] ... x[k]**n * p[n] + ... + x[k] * p[1] + p[0] = y[k] The coefficient matrix of the coefficients `p` is a Vandermonde matrix. `polyfit` issues a `RankWarning` when the least-squares fit is badly conditioned. This implies that the best fit is not well-defined due to numerical error. The results may be improved by lowering the polynomial degree or by replacing `x` by `x` - `x`.mean(). The `rcond` parameter can also be set to a value smaller than its default, but the resulting fit may be spurious: including contributions from the small singular values can add numerical noise to the result. Note that fitting polynomial coefficients is inherently badly conditioned when the degree of the polynomial is large or the interval of sample points is badly centered. The quality of the fit should always be checked in these cases. When polynomial fits are not satisfactory, splines may be a good alternative. References ---------- .. [1] Wikipedia, "Curve fitting", http://en.wikipedia.org/wiki/Curve_fitting .. [2] Wikipedia, "Polynomial interpolation", http://en.wikipedia.org/wiki/Polynomial_interpolation Examples -------- >>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) >>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0]) >>> z = np.polyfit(x, y, 3) array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254]) It is convenient to use `poly1d` objects for dealing with polynomials: >>> p = np.poly1d(z) >>> p(0.5) 0.6143849206349179 >>> p(3.5) -0.34732142857143039 >>> p(10) 22.579365079365115 High-order polynomials may oscillate wildly: >>> p30 = np.poly1d(np.polyfit(x, y, 30)) /... RankWarning: Polyfit may be poorly conditioned... >>> p30(4) -0.80000000000000204 >>> p30(5) -0.99999999999999445 >>> p30(4.5) -0.10547061179440398 Illustration: >>> import matplotlib.pyplot as plt >>> xp = np.linspace(-2, 6, 100) >>> plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--') >>> plt.ylim(-2,2) >>> plt.show() """ order = int(deg) + 1 x = NX.asarray(x) + 0.0 y = NX.asarray(y) + 0.0 # check arguments. if deg < 0 : raise ValueError, "expected deg >= 0" if x.ndim != 1: raise TypeError, "expected 1D vector for x" if x.size == 0: raise TypeError, "expected non-empty vector for x" if y.ndim < 1 or y.ndim > 2 : raise TypeError, "expected 1D or 2D array for y" if x.shape[0] != y.shape[0] : raise TypeError, "expected x and y to have same length" # set rcond if rcond is None : rcond = len(x)*finfo(x.dtype).eps # scale x to improve condition number scale = abs(x).max() if scale != 0 : x /= scale # solve least squares equation for powers of x v = vander(x, order) c, resids, rank, s = lstsq(v, y, rcond) # warn on rank reduction, which indicates an ill conditioned matrix if rank != order and not full: msg = "Polyfit may be poorly conditioned" warnings.warn(msg, RankWarning) # scale returned coefficients if scale != 0 : if c.ndim == 1 : c /= vander([scale], order)[0] else : c /= vander([scale], order).T if full : return c, resids, rank, s, rcond else : return c def polyval(p, x): """ Evaluate a polynomial at specific values. If `p` is of length N, this function returns the value: ``p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1]`` If `x` is a sequence, then `p(x)` is returned for each element of `x`. If `x` is another polynomial then the composite polynomial `p(x(t))` is returned. Parameters ---------- p : array_like or poly1d object 1D array of polynomial coefficients (including coefficients equal to zero) from highest degree to the constant term, or an instance of poly1d. x : array_like or poly1d object A number, a 1D array of numbers, or an instance of poly1d, "at" which to evaluate `p`. Returns ------- values : ndarray or poly1d If `x` is a poly1d instance, the result is the composition of the two polynomials, i.e., `x` is "substituted" in `p` and the simplified result is returned. In addition, the type of `x` - array_like or poly1d - governs the type of the output: `x` array_like => `values` array_like, `x` a poly1d object => `values` is also. See Also -------- poly1d: A polynomial class. Notes ----- Horner's scheme [1]_ is used to evaluate the polynomial. Even so, for polynomials of high degree the values may be inaccurate due to rounding errors. Use carefully. References ---------- .. [1] I. N. Bronshtein, K. A. Semendyayev, and K. A. Hirsch (Eng. trans. Ed.), *Handbook of Mathematics*, New York, Van Nostrand Reinhold Co., 1985, pg. 720. Examples -------- >>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1 76 >>> np.polyval([3,0,1], np.poly1d(5)) poly1d([ 76.]) >>> np.polyval(np.poly1d([3,0,1]), 5) 76 >>> np.polyval(np.poly1d([3,0,1]), np.poly1d(5)) poly1d([ 76.]) """ p = NX.asarray(p) if isinstance(x, poly1d): y = 0 else: x = NX.asarray(x) y = NX.zeros_like(x) for i in range(len(p)): y = x * y + p[i] return y def polyadd(a1, a2): """ Find the sum of two polynomials. Returns the polynomial resulting from the sum of two input polynomials. Each input must be either a poly1d object or a 1D sequence of polynomial coefficients, from highest to lowest degree. Parameters ---------- a1, a2 : array_like or poly1d object Input polynomials. Returns ------- out : ndarray or poly1d object The sum of the inputs. If either input is a poly1d object, then the output is also a poly1d object. Otherwise, it is a 1D array of polynomial coefficients from highest to lowest degree. See Also -------- poly1d : A one-dimensional polynomial class. poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval Examples -------- >>> np.polyadd([1, 2], [9, 5, 4]) array([9, 6, 6]) Using poly1d objects: >>> p1 = np.poly1d([1, 2]) >>> p2 = np.poly1d([9, 5, 4]) >>> print p1 1 x + 2 >>> print p2 2 9 x + 5 x + 4 >>> print np.polyadd(p1, p2) 2 9 x + 6 x + 6 """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1 = atleast_1d(a1) a2 = atleast_1d(a2) diff = len(a2) - len(a1) if diff == 0: val = a1 + a2 elif diff > 0: zr = NX.zeros(diff, a1.dtype) val = NX.concatenate((zr, a1)) + a2 else: zr = NX.zeros(abs(diff), a2.dtype) val = a1 + NX.concatenate((zr, a2)) if truepoly: val = poly1d(val) return val def polysub(a1, a2): """ Difference (subtraction) of two polynomials. Given two polynomials `a1` and `a2`, returns ``a1 - a2``. `a1` and `a2` can be either array_like sequences of the polynomials' coefficients (including coefficients equal to zero), or `poly1d` objects. Parameters ---------- a1, a2 : array_like or poly1d Minuend and subtrahend polynomials, respectively. Returns ------- out : ndarray or poly1d Array or `poly1d` object of the difference polynomial's coefficients. See Also -------- polyval, polydiv, polymul, polyadd Examples -------- .. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2) >>> np.polysub([2, 10, -2], [3, 10, -4]) array([-1, 0, 2]) """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1 = atleast_1d(a1) a2 = atleast_1d(a2) diff = len(a2) - len(a1) if diff == 0: val = a1 - a2 elif diff > 0: zr = NX.zeros(diff, a1.dtype) val = NX.concatenate((zr, a1)) - a2 else: zr = NX.zeros(abs(diff), a2.dtype) val = a1 - NX.concatenate((zr, a2)) if truepoly: val = poly1d(val) return val def polymul(a1, a2): """ Find the product of two polynomials. Finds the polynomial resulting from the multiplication of the two input polynomials. Each input must be either a poly1d object or a 1D sequence of polynomial coefficients, from highest to lowest degree. Parameters ---------- a1, a2 : array_like or poly1d object Input polynomials. Returns ------- out : ndarray or poly1d object The polynomial resulting from the multiplication of the inputs. If either inputs is a poly1d object, then the output is also a poly1d object. Otherwise, it is a 1D array of polynomial coefficients from highest to lowest degree. See Also -------- poly1d : A one-dimensional polynomial class. poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval Examples -------- >>> np.polymul([1, 2, 3], [9, 5, 1]) array([ 9, 23, 38, 17, 3]) Using poly1d objects: >>> p1 = np.poly1d([1, 2, 3]) >>> p2 = np.poly1d([9, 5, 1]) >>> print p1 2 1 x + 2 x + 3 >>> print p2 2 9 x + 5 x + 1 >>> print np.polymul(p1, p2) 4 3 2 9 x + 23 x + 38 x + 17 x + 3 """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1,a2 = poly1d(a1),poly1d(a2) val = NX.convolve(a1, a2) if truepoly: val = poly1d(val) return val def polydiv(u, v): """ Returns the quotient and remainder of polynomial division. The input arrays are the coefficients (including any coefficients equal to zero) of the "numerator" (dividend) and "denominator" (divisor) polynomials, respectively. Parameters ---------- u : array_like or poly1d Dividend polynomial's coefficients. v : array_like or poly1d Divisor polynomial's coefficients. Returns ------- q : ndarray Coefficients, including those equal to zero, of the quotient. r : ndarray Coefficients, including those equal to zero, of the remainder. See Also -------- poly, polyadd, polyder, polydiv, polyfit, polyint, polymul, polysub, polyval Notes ----- Both `u` and `v` must be 0-d or 1-d (ndim = 0 or 1), but `u.ndim` need not equal `v.ndim`. In other words, all four possible combinations - ``u.ndim = v.ndim = 0``, ``u.ndim = v.ndim = 1``, ``u.ndim = 1, v.ndim = 0``, and ``u.ndim = 0, v.ndim = 1`` - work. Examples -------- .. math:: \\frac{3x^2 + 5x + 2}{2x + 1} = 1.5x + 1.75, remainder 0.25 >>> x = np.array([3.0, 5.0, 2.0]) >>> y = np.array([2.0, 1.0]) >>> np.polydiv(x, y) >>> (array([ 1.5 , 1.75]), array([ 0.25])) """ truepoly = (isinstance(u, poly1d) or isinstance(u, poly1d)) u = atleast_1d(u) + 0.0 v = atleast_1d(v) + 0.0 # w has the common type w = u[0] + v[0] m = len(u) - 1 n = len(v) - 1 scale = 1. / v[0] q = NX.zeros((max(m - n + 1, 1),), w.dtype) r = u.copy() for k in range(0, m-n+1): d = scale * r[k] q[k] = d r[k:k+n+1] -= d*v while NX.allclose(r[0], 0, rtol=1e-14) and (r.shape[-1] > 1): r = r[1:] if truepoly: return poly1d(q), poly1d(r) return q, r _poly_mat = re.compile(r"[*][*]([0-9]*)") def _raise_power(astr, wrap=70): n = 0 line1 = '' line2 = '' output = ' ' while 1: mat = _poly_mat.search(astr, n) if mat is None: break span = mat.span() power = mat.groups()[0] partstr = astr[n:span[0]] n = span[1] toadd2 = partstr + ' '*(len(power)-1) toadd1 = ' '*(len(partstr)-1) + power if ((len(line2)+len(toadd2) > wrap) or \ (len(line1)+len(toadd1) > wrap)): output += line1 + "\n" + line2 + "\n " line1 = toadd1 line2 = toadd2 else: line2 += partstr + ' '*(len(power)-1) line1 += ' '*(len(partstr)-1) + power output += line1 + "\n" + line2 return output + astr[n:] class poly1d(object): """ A one-dimensional polynomial class. A convenience class, used to encapsulate "natural" operations on polynomials so that said operations may take on their customary form in code (see Examples). Parameters ---------- c_or_r : array_like The polynomial's coefficients, in decreasing powers, or if the value of the second parameter is True, the polynomial's roots (values where the polynomial evaluates to 0). For example, ``poly1d([1, 2, 3])`` returns an object that represents :math:`x^2 + 2x + 3`, whereas ``poly1d([1, 2, 3], True)`` returns one that represents :math:`(x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x -6`. r : bool, optional If True, `c_or_r` specifies the polynomial's roots; the default is False. variable : str, optional Changes the variable used when printing `p` from `x` to `variable` (see Examples). Examples -------- Construct the polynomial :math:`x^2 + 2x + 3`: >>> p = np.poly1d([1, 2, 3]) >>> print np.poly1d(p) 2 1 x + 2 x + 3 Evaluate the polynomial at :math:`x = 0.5`: >>> p(0.5) 4.25 Find the roots: >>> p.r array([-1.+1.41421356j, -1.-1.41421356j]) >>> p(p.r) array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j]) # i.e., (0, 0) Show the coefficients: >>> p.c array([1, 2, 3]) Display the order (the leading zero-coefficients are removed): >>> p.order 2 Show the coefficient of the k-th power in the polynomial (which is equivalent to ``p.c[-(i+1)]``): >>> p[1] 2 Polynomials can be added, subtracted, multiplied, and divided (returns quotient and remainder): >>> p * p poly1d([ 1, 4, 10, 12, 9]) >>> (p**3 + 4) / p (poly1d([ 1., 4., 10., 12., 9.]), poly1d([4])) ``asarray(p)`` gives the coefficient array, so polynomials can be used in all functions that accept arrays: >>> p**2 # square of polynomial poly1d([ 1, 4, 10, 12, 9]) >>> np.square(p) # square of individual coefficients array([1, 4, 9]) The variable used in the string representation of `p` can be modified, using the `variable` parameter: >>> p = np.poly1d([1,2,3], variable='z') >>> print p 2 1 z + 2 z + 3 Construct a polynomial from its roots: >>> np.poly1d([1, 2], True) poly1d([ 1, -3, 2]) This is the same polynomial as obtained by: >>> np.poly1d([1, -1]) * np.poly1d([1, -2]) poly1d([ 1, -3, 2]) """ coeffs = None order = None variable = None def __init__(self, c_or_r, r=0, variable=None): if isinstance(c_or_r, poly1d): for key in c_or_r.__dict__.keys(): self.__dict__[key] = c_or_r.__dict__[key] if variable is not None: self.__dict__['variable'] = variable return if r: c_or_r = poly(c_or_r) c_or_r = atleast_1d(c_or_r) if len(c_or_r.shape) > 1: raise ValueError, "Polynomial must be 1d only." c_or_r = trim_zeros(c_or_r, trim='f') if len(c_or_r) == 0: c_or_r = NX.array([0.]) self.__dict__['coeffs'] = c_or_r self.__dict__['order'] = len(c_or_r) - 1 if variable is None: variable = 'x' self.__dict__['variable'] = variable def __array__(self, t=None): if t: return NX.asarray(self.coeffs, t) else: return NX.asarray(self.coeffs) def __repr__(self): vals = repr(self.coeffs) vals = vals[6:-1] return "poly1d(%s)" % vals def __len__(self): return self.order def __str__(self): thestr = "0" var = self.variable # Remove leading zeros coeffs = self.coeffs[NX.logical_or.accumulate(self.coeffs != 0)] N = len(coeffs)-1 def fmt_float(q): s = '%.4g' % q if s.endswith('.0000'): s = s[:-5] return s for k in range(len(coeffs)): if not iscomplex(coeffs[k]): coefstr = fmt_float(real(coeffs[k])) elif real(coeffs[k]) == 0: coefstr = '%sj' % fmt_float(imag(coeffs[k])) else: coefstr = '(%s + %sj)' % (fmt_float(real(coeffs[k])), fmt_float(imag(coeffs[k]))) power = (N-k) if power == 0: if coefstr != '0': newstr = '%s' % (coefstr,) else: if k == 0: newstr = '0' else: newstr = '' elif power == 1: if coefstr == '0': newstr = '' elif coefstr == 'b': newstr = var else: newstr = '%s %s' % (coefstr, var) else: if coefstr == '0': newstr = '' elif coefstr == 'b': newstr = '%s**%d' % (var, power,) else: newstr = '%s %s**%d' % (coefstr, var, power) if k > 0: if newstr != '': if newstr.startswith('-'): thestr = "%s - %s" % (thestr, newstr[1:]) else: thestr = "%s + %s" % (thestr, newstr) else: thestr = newstr return _raise_power(thestr) def __call__(self, val): return polyval(self.coeffs, val) def __neg__(self): return poly1d(-self.coeffs) def __pos__(self): return self def __mul__(self, other): if isscalar(other): return poly1d(self.coeffs * other) else: other = poly1d(other) return poly1d(polymul(self.coeffs, other.coeffs)) def __rmul__(self, other): if isscalar(other): return poly1d(other * self.coeffs) else: other = poly1d(other) return poly1d(polymul(self.coeffs, other.coeffs)) def __add__(self, other): other = poly1d(other) return poly1d(polyadd(self.coeffs, other.coeffs)) def __radd__(self, other): other = poly1d(other) return poly1d(polyadd(self.coeffs, other.coeffs)) def __pow__(self, val): if not isscalar(val) or int(val) != val or val < 0: raise ValueError, "Power to non-negative integers only." res = [1] for _ in range(val): res = polymul(self.coeffs, res) return poly1d(res) def __sub__(self, other): other = poly1d(other) return poly1d(polysub(self.coeffs, other.coeffs)) def __rsub__(self, other): other = poly1d(other) return poly1d(polysub(other.coeffs, self.coeffs)) def __div__(self, other): if isscalar(other): return poly1d(self.coeffs/other) else: other = poly1d(other) return polydiv(self, other) def __rdiv__(self, other): if isscalar(other): return poly1d(other/self.coeffs) else: other = poly1d(other) return polydiv(other, self) def __eq__(self, other): return NX.alltrue(self.coeffs == other.coeffs) def __ne__(self, other): return NX.any(self.coeffs != other.coeffs) def __setattr__(self, key, val): raise ValueError, "Attributes cannot be changed this way." def __getattr__(self, key): if key in ['r', 'roots']: return roots(self.coeffs) elif key in ['c','coef','coefficients']: return self.coeffs elif key in ['o']: return self.order else: try: return self.__dict__[key] except KeyError: raise AttributeError("'%s' has no attribute '%s'" % (self.__class__, key)) def __getitem__(self, val): ind = self.order - val if val > self.order: return 0 if val < 0: return 0 return self.coeffs[ind] def __setitem__(self, key, val): ind = self.order - key if key < 0: raise ValueError, "Does not support negative powers." if key > self.order: zr = NX.zeros(key-self.order, self.coeffs.dtype) self.__dict__['coeffs'] = NX.concatenate((zr, self.coeffs)) self.__dict__['order'] = key ind = 0 self.__dict__['coeffs'][ind] = val return def __iter__(self): return iter(self.coeffs) def integ(self, m=1, k=0): """ Return an antiderivative (indefinite integral) of this polynomial. Refer to `polyint` for full documentation. See Also -------- polyint : equivalent function """ return poly1d(polyint(self.coeffs, m=m, k=k)) def deriv(self, m=1): """ Return a derivative of this polynomial. Refer to `polyder` for full documentation. See Also -------- polyder : equivalent function """ return poly1d(polyder(self.coeffs, m=m)) # Stuff to do on module import warnings.simplefilter('always',RankWarning)
mit
PlayUAV/MissionPlanner
Lib/site-packages/numpy/lib/npyio.py
53
59490
__all__ = ['savetxt', 'loadtxt', 'genfromtxt', 'ndfromtxt', 'mafromtxt', 'recfromtxt', 'recfromcsv', 'load', 'loads', 'save', 'savez', 'savez_compressed', 'packbits', 'unpackbits', 'fromregex', 'DataSource'] import numpy as np import format import sys import os import sys import itertools import warnings from operator import itemgetter from cPickle import load as _cload, loads from _datasource import DataSource if sys.platform != 'cli': from _compiled_base import packbits, unpackbits else: def packbits(*args, **kw): raise NotImplementedError() def unpackbits(*args, **kw): raise NotImplementedError() from _iotools import LineSplitter, NameValidator, StringConverter, \ ConverterError, ConverterLockError, ConversionWarning, \ _is_string_like, has_nested_fields, flatten_dtype, \ easy_dtype, _bytes_to_name from numpy.compat import asbytes, asstr, asbytes_nested, bytes if sys.version_info[0] >= 3: from io import BytesIO else: from cStringIO import StringIO as BytesIO _string_like = _is_string_like def seek_gzip_factory(f): """Use this factory to produce the class so that we can do a lazy import on gzip. """ import gzip class GzipFile(gzip.GzipFile): def seek(self, offset, whence=0): # figure out new position (we can only seek forwards) if whence == 1: offset = self.offset + offset if whence not in [0, 1]: raise IOError, "Illegal argument" if offset < self.offset: # for negative seek, rewind and do positive seek self.rewind() count = offset - self.offset for i in range(count // 1024): self.read(1024) self.read(count % 1024) def tell(self): return self.offset if isinstance(f, str): f = GzipFile(f) elif isinstance(f, gzip.GzipFile): # cast to our GzipFile if its already a gzip.GzipFile g = GzipFile(fileobj=f.fileobj) g.name = f.name g.mode = f.mode f = g return f class BagObj(object): """ BagObj(obj) Convert attribute look-ups to getitems on the object passed in. Parameters ---------- obj : class instance Object on which attribute look-up is performed. Examples -------- >>> from numpy.lib.npyio import BagObj as BO >>> class BagDemo(object): ... def __getitem__(self, key): # An instance of BagObj(BagDemo) ... # will call this method when any ... # attribute look-up is required ... result = "Doesn't matter what you want, " ... return result + "you're gonna get this" ... >>> demo_obj = BagDemo() >>> bagobj = BO(demo_obj) >>> bagobj.hello_there "Doesn't matter what you want, you're gonna get this" >>> bagobj.I_can_be_anything "Doesn't matter what you want, you're gonna get this" """ def __init__(self, obj): self._obj = obj def __getattribute__(self, key): try: return object.__getattribute__(self, '_obj')[key] except KeyError: raise AttributeError, key def zipfile_factory(*args, **kwargs): import zipfile if sys.version_info >= (2, 5): kwargs['allowZip64'] = True return zipfile.ZipFile(*args, **kwargs) class NpzFile(object): """ NpzFile(fid) A dictionary-like object with lazy-loading of files in the zipped archive provided on construction. `NpzFile` is used to load files in the NumPy ``.npz`` data archive format. It assumes that files in the archive have a ".npy" extension, other files are ignored. The arrays and file strings are lazily loaded on either getitem access using ``obj['key']`` or attribute lookup using ``obj.f.key``. A list of all files (without ".npy" extensions) can be obtained with ``obj.files`` and the ZipFile object itself using ``obj.zip``. Attributes ---------- files : list of str List of all files in the archive with a ".npy" extension. zip : ZipFile instance The ZipFile object initialized with the zipped archive. f : BagObj instance An object on which attribute can be performed as an alternative to getitem access on the `NpzFile` instance itself. Parameters ---------- fid : file or str The zipped archive to open. This is either a file-like object or a string containing the path to the archive. own_fid : bool, optional Whether NpzFile should close the file handle. Requires that `fid` is a file-like object. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npz = np.load(outfile) >>> isinstance(npz, np.lib.io.NpzFile) True >>> npz.files ['y', 'x'] >>> npz['x'] # getitem access array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> npz.f.x # attribute lookup array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ def __init__(self, fid, own_fid=False): # Import is postponed to here since zipfile depends on gzip, an optional # component of the so-called standard library. _zip = zipfile_factory(fid) self._files = _zip.namelist() self.files = [] for x in self._files: if x.endswith('.npy'): self.files.append(x[:-4]) else: self.files.append(x) self.zip = _zip self.f = BagObj(self) if own_fid: self.fid = fid else: self.fid = None def close(self): """ Close the file. """ if self.zip is not None: self.zip.close() self.zip = None if self.fid is not None: self.fid.close() self.fid = None def __del__(self): self.close() def __getitem__(self, key): # FIXME: This seems like it will copy strings around # more than is strictly necessary. The zipfile # will read the string and then # the format.read_array will copy the string # to another place in memory. # It would be better if the zipfile could read # (or at least uncompress) the data # directly into the array memory. member = 0 if key in self._files: member = 1 elif key in self.files: member = 1 key += '.npy' if member: bytes = self.zip.read(key) if bytes.startswith(format.MAGIC_PREFIX): value = BytesIO(bytes) return format.read_array(value) else: return bytes else: raise KeyError, "%s is not a file in the archive" % key def __iter__(self): return iter(self.files) def items(self): """ Return a list of tuples, with each tuple (filename, array in file). """ return [(f, self[f]) for f in self.files] def iteritems(self): """Generator that returns tuples (filename, array in file).""" for f in self.files: yield (f, self[f]) def keys(self): """Return files in the archive with a ".npy" extension.""" return self.files def iterkeys(self): """Return an iterator over the files in the archive.""" return self.__iter__() def __contains__(self, key): return self.files.__contains__(key) def load(file, mmap_mode=None): """ Load a pickled, ``.npy``, or ``.npz`` binary file. Parameters ---------- file : file-like object or string The file to read. It must support ``seek()`` and ``read()`` methods. If the filename extension is ``.gz``, the file is first decompressed. mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, optional If not None, then memory-map the file, using the given mode (see `numpy.memmap`). The mode has no effect for pickled or zipped files. A memory-mapped array is stored on disk, and not directly loaded into memory. However, it can be accessed and sliced like any ndarray. Memory mapping is especially useful for accessing small fragments of large files without reading the entire file into memory. Returns ------- result : array, tuple, dict, etc. Data stored in the file. Raises ------ IOError If the input file does not exist or cannot be read. See Also -------- save, savez, loadtxt memmap : Create a memory-map to an array stored in a file on disk. Notes ----- - If the file contains pickle data, then whatever is stored in the pickle is returned. - If the file is a ``.npy`` file, then an array is returned. - If the file is a ``.npz`` file, then a dictionary-like object is returned, containing ``{filename: array}`` key-value pairs, one for each file in the archive. Examples -------- Store data to disk, and load it again: >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) >>> np.load('/tmp/123.npy') array([[1, 2, 3], [4, 5, 6]]) Mem-map the stored array, and then access the second row directly from disk: >>> X = np.load('/tmp/123.npy', mmap_mode='r') >>> X[1, :] memmap([4, 5, 6]) """ import gzip own_fid = False if isinstance(file, basestring): fid = open(file, "rb") own_fid = True elif isinstance(file, gzip.GzipFile): fid = seek_gzip_factory(file) own_fid = True else: fid = file try: # Code to distinguish from NumPy binary files and pickles. _ZIP_PREFIX = asbytes('PK\x03\x04') N = len(format.MAGIC_PREFIX) magic = fid.read(N) fid.seek(-N, 1) # back-up if magic.startswith(_ZIP_PREFIX): # zip-file (assume .npz) own_fid = False return NpzFile(fid, own_fid=True) elif magic == format.MAGIC_PREFIX: # .npy file if mmap_mode: return format.open_memmap(file, mode=mmap_mode) else: return format.read_array(fid) else: # Try a pickle try: return _cload(fid) except: raise IOError, \ "Failed to interpret file %s as a pickle" % repr(file) finally: if own_fid: fid.close() def save(file, arr): """ Save an array to a binary file in NumPy ``.npy`` format. Parameters ---------- file : file or str File or filename to which the data is saved. If file is a file-object, then the filename is unchanged. If file is a string, a ``.npy`` extension will be appended to the file name if it does not already have one. arr : array_like Array data to be saved. See Also -------- savez : Save several arrays into a ``.npz`` archive savetxt, load Notes ----- For a description of the ``.npy`` format, see `format`. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> np.save(outfile, x) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> np.load(outfile) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ own_fid = False if isinstance(file, basestring): if not file.endswith('.npy'): file = file + '.npy' fid = open(file, "wb") own_fid = True else: fid = file try: arr = np.asanyarray(arr) format.write_array(fid, arr) finally: if own_fid: fid.close() def savez(file, *args, **kwds): """ Save several arrays into a single file in uncompressed ``.npz`` format. If arguments are passed in with no keywords, the corresponding variable names, in the .npz file, are 'arr_0', 'arr_1', etc. If keyword arguments are given, the corresponding variable names, in the ``.npz`` file will match the keyword names. Parameters ---------- file : str or file Either the file name (string) or an open file (file-like object) where the data will be saved. If file is a string, the ``.npz`` extension will be appended to the file name if it is not already there. *args : Arguments, optional Arrays to save to the file. Since it is not possible for Python to know the names of the arrays outside `savez`, the arrays will be saved with names "arr_0", "arr_1", and so on. These arguments can be any expression. **kwds : Keyword arguments, optional Arrays to save to the file. Arrays will be saved in the file with the keyword names. Returns ------- None See Also -------- save : Save a single array to a binary file in NumPy format. savetxt : Save an array to a file as plain text. Notes ----- The ``.npz`` file format is a zipped archive of files named after the variables they contain. The archive is not compressed and each file in the archive contains one variable in ``.npy`` format. For a description of the ``.npy`` format, see `format`. When opening the saved ``.npz`` file with `load` a `NpzFile` object is returned. This is a dictionary-like object which can be queried for its list of arrays (with the ``.files`` attribute), and for the arrays themselves. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) Using `savez` with *args, the arrays are saved with default names. >>> np.savez(outfile, x, y) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> npzfile = np.load(outfile) >>> npzfile.files ['arr_1', 'arr_0'] >>> npzfile['arr_0'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Using `savez` with **kwds, the arrays are saved with the keyword names. >>> outfile = TemporaryFile() >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npzfile = np.load(outfile) >>> npzfile.files ['y', 'x'] >>> npzfile['x'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) See Also -------- numpy.savez_compressed : Save several arrays into a compressed .npz file format """ _savez(file, args, kwds, False) def savez_compressed(file, *args, **kwds): """ Save several arrays into a single file in compressed ``.npz`` format. If keyword arguments are given, then filenames are taken from the keywords. If arguments are passed in with no keywords, then stored file names are arr_0, arr_1, etc. Parameters ---------- file : string File name of .npz file. args : Arguments Function arguments. kwds : Keyword arguments Keywords. See Also -------- numpy.savez : Save several arrays into an uncompressed .npz file format """ _savez(file, args, kwds, True) def _savez(file, args, kwds, compress): # Import is postponed to here since zipfile depends on gzip, an optional # component of the so-called standard library. import zipfile # Import deferred for startup time improvement import tempfile if isinstance(file, basestring): if not file.endswith('.npz'): file = file + '.npz' namedict = kwds for i, val in enumerate(args): key = 'arr_%d' % i if key in namedict.keys(): raise ValueError, "Cannot use un-named variables and keyword %s" % key namedict[key] = val if compress: compression = zipfile.ZIP_DEFLATED else: compression = zipfile.ZIP_STORED zip = zipfile_factory(file, mode="w", compression=compression) # Stage arrays in a temporary file on disk, before writing to zip. fd, tmpfile = tempfile.mkstemp(suffix='-numpy.npy') os.close(fd) try: for key, val in namedict.iteritems(): fname = key + '.npy' fid = open(tmpfile, 'wb') try: format.write_array(fid, np.asanyarray(val)) fid.close() fid = None zip.write(tmpfile, arcname=fname) finally: if fid: fid.close() finally: os.remove(tmpfile) zip.close() # Adapted from matplotlib def _getconv(dtype): typ = dtype.type if issubclass(typ, np.bool_): return lambda x: bool(int(x)) if issubclass(typ, np.integer): return lambda x: int(float(x)) elif issubclass(typ, np.floating): return float elif issubclass(typ, np.complex): return complex elif issubclass(typ, np.bytes_): return bytes else: return str def loadtxt(fname, dtype=float, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False): """ Load data from a text file. Each row in the text file must have the same number of values. Parameters ---------- fname : file or str File or filename to read. If the filename extension is ``.gz`` or ``.bz2``, the file is first decompressed. dtype : data-type, optional Data-type of the resulting array; default: float. If this is a record data-type, the resulting array will be 1-dimensional, and each row will be interpreted as an element of the array. In this case, the number of columns used must match the number of fields in the data-type. comments : str, optional The character used to indicate the start of a comment; default: '#'. delimiter : str, optional The string used to separate values. By default, this is any whitespace. converters : dict, optional A dictionary mapping column number to a function that will convert that column to a float. E.g., if column 0 is a date string: ``converters = {0: datestr2num}``. Converters can also be used to provide a default value for missing data: ``converters = {3: lambda s: float(s or 0)}``. Default: None. skiprows : int, optional Skip the first `skiprows` lines; default: 0. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns. The default, None, results in all columns being read. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)``. The default is False. Returns ------- out : ndarray Data read from the text file. See Also -------- load, fromstring, fromregex genfromtxt : Load data with missing values handled as specified. scipy.io.loadmat : reads MATLAB data files Notes ----- This function aims to be a fast reader for simply formatted files. The `genfromtxt` function provides more sophisticated handling of, e.g., lines with missing values. Examples -------- >>> from StringIO import StringIO # StringIO behaves like a file object >>> c = StringIO("0 1\\n2 3") >>> np.loadtxt(c) array([[ 0., 1.], [ 2., 3.]]) >>> d = StringIO("M 21 72\\nF 35 58") >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), ... 'formats': ('S1', 'i4', 'f4')}) array([('M', 21, 72.0), ('F', 35, 58.0)], dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')]) >>> c = StringIO("1,0,2\\n3,0,4") >>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) >>> x array([ 1., 3.]) >>> y array([ 2., 4.]) """ # Type conversions for Py3 convenience comments = asbytes(comments) if delimiter is not None: delimiter = asbytes(delimiter) user_converters = converters if usecols is not None: usecols = list(usecols) own_fh = False if _is_string_like(fname): own_fh = True if fname.endswith('.gz'): fh = seek_gzip_factory(fname) elif fname.endswith('.bz2'): import bz2 fh = bz2.BZ2File(fname) else: fh = open(fname, 'U') elif hasattr(fname, 'readline'): fh = fname else: raise ValueError('fname must be a string or file handle') X = [] def flatten_dtype(dt): """Unpack a structured data-type.""" if dt.names is None: # If the dtype is flattened, return. # If the dtype has a shape, the dtype occurs # in the list more than once. return [dt.base] * int(np.prod(dt.shape)) else: types = [] for field in dt.names: tp, bytes = dt.fields[field] flat_dt = flatten_dtype(tp) types.extend(flat_dt) return types def split_line(line): """Chop off comments, strip, and split at delimiter.""" line = asbytes(line).split(comments)[0].strip() if line: return line.split(delimiter) else: return [] try: # Make sure we're dealing with a proper dtype dtype = np.dtype(dtype) defconv = _getconv(dtype) # Skip the first `skiprows` lines for i in xrange(skiprows): fh.readline() # Read until we find a line with some values, and use # it to estimate the number of columns, N. first_vals = None while not first_vals: first_line = fh.readline() if not first_line: # EOF reached raise IOError('End-of-file reached before encountering data.') first_vals = split_line(first_line) N = len(usecols or first_vals) dtype_types = flatten_dtype(dtype) if len(dtype_types) > 1: # We're dealing with a structured array, each field of # the dtype matches a column converters = [_getconv(dt) for dt in dtype_types] else: # All fields have the same dtype converters = [defconv for i in xrange(N)] # By preference, use the converters specified by the user for i, conv in (user_converters or {}).iteritems(): if usecols: try: i = usecols.index(i) except ValueError: # Unused converter specified continue converters[i] = conv # Parse each line, including the first for i, line in enumerate(itertools.chain([first_line], fh)): vals = split_line(line) if len(vals) == 0: continue if usecols: vals = [vals[i] for i in usecols] # Convert each value according to its column and store X.append(tuple([conv(val) for (conv, val) in zip(converters, vals)])) finally: if own_fh: fh.close() if len(dtype_types) > 1: # We're dealing with a structured array, with a dtype such as # [('x', int), ('y', [('s', int), ('t', float)])] # # First, create the array using a flattened dtype: # [('x', int), ('s', int), ('t', float)] # # Then, view the array using the specified dtype. try: X = np.array(X, dtype=np.dtype([('', t) for t in dtype_types])) X = X.view(dtype) except TypeError: # In the case we have an object dtype X = np.array(X, dtype=dtype) else: X = np.array(X, dtype) X = np.squeeze(X) if unpack: return X.T else: return X def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n'): """ Save an array to a text file. Parameters ---------- fname : filename or file handle If the filename ends in ``.gz``, the file is automatically saved in compressed gzip format. `loadtxt` understands gzipped files transparently. X : array_like Data to be saved to a text file. fmt : str or sequence of strs A single format (%10.5f), a sequence of formats, or a multi-format string, e.g. 'Iteration %d -- %10.5f', in which case `delimiter` is ignored. delimiter : str Character separating columns. newline : str .. versionadded:: 1.5.0 Character separating lines. See Also -------- save : Save an array to a binary file in NumPy ``.npy`` format savez : Save several arrays into a ``.npz`` compressed archive Notes ----- Further explanation of the `fmt` parameter (``%[flag]width[.precision]specifier``): flags: ``-`` : left justify ``+`` : Forces to preceed result with + or -. ``0`` : Left pad the number with zeros instead of space (see width). width: Minimum number of characters to be printed. The value is not truncated if it has more characters. precision: - For integer specifiers (eg. ``d,i,o,x``), the minimum number of digits. - For ``e, E`` and ``f`` specifiers, the number of digits to print after the decimal point. - For ``g`` and ``G``, the maximum number of significant digits. - For ``s``, the maximum number of characters. specifiers: ``c`` : character ``d`` or ``i`` : signed decimal integer ``e`` or ``E`` : scientific notation with ``e`` or ``E``. ``f`` : decimal floating point ``g,G`` : use the shorter of ``e,E`` or ``f`` ``o`` : signed octal ``s`` : string of characters ``u`` : unsigned decimal integer ``x,X`` : unsigned hexadecimal integer This explanation of ``fmt`` is not complete, for an exhaustive specification see [1]_. References ---------- .. [1] `Format Specification Mini-Language <http://docs.python.org/library/string.html# format-specification-mini-language>`_, Python Documentation. Examples -------- >>> x = y = z = np.arange(0.0,5.0,1.0) >>> np.savetxt('test.out', x, delimiter=',') # X is an array >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation """ # Py3 conversions first if isinstance(fmt, bytes): fmt = asstr(fmt) delimiter = asstr(delimiter) own_fh = False if _is_string_like(fname): own_fh = True if fname.endswith('.gz'): import gzip fh = gzip.open(fname, 'wb') else: if sys.version_info[0] >= 3: fh = open(fname, 'wb') else: fh = open(fname, 'w') elif hasattr(fname, 'seek'): fh = fname else: raise ValueError('fname must be a string or file handle') try: X = np.asarray(X) # Handle 1-dimensional arrays if X.ndim == 1: # Common case -- 1d array of numbers if X.dtype.names is None: X = np.atleast_2d(X).T ncol = 1 # Complex dtype -- each field indicates a separate column else: ncol = len(X.dtype.descr) else: ncol = X.shape[1] # `fmt` can be a string with multiple insertion points or a # list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d') if type(fmt) in (list, tuple): if len(fmt) != ncol: raise AttributeError('fmt has wrong shape. %s' % str(fmt)) format = asstr(delimiter).join(map(asstr, fmt)) elif type(fmt) is str: if fmt.count('%') == 1: fmt = [fmt, ]*ncol format = delimiter.join(fmt) elif fmt.count('%') != ncol: raise AttributeError('fmt has wrong number of %% formats. %s' % fmt) else: format = fmt for row in X: fh.write(asbytes(format % tuple(row) + newline)) finally: if own_fh: fh.close() import re def fromregex(file, regexp, dtype): """ Construct an array from a text file, using regular expression parsing. The returned array is always a structured array, and is constructed from all matches of the regular expression in the file. Groups in the regular expression are converted to fields of the structured array. Parameters ---------- file : str or file File name or file object to read. regexp : str or regexp Regular expression used to parse the file. Groups in the regular expression correspond to fields in the dtype. dtype : dtype or list of dtypes Dtype for the structured array. Returns ------- output : ndarray The output array, containing the part of the content of `file` that was matched by `regexp`. `output` is always a structured array. Raises ------ TypeError When `dtype` is not a valid dtype for a structured array. See Also -------- fromstring, loadtxt Notes ----- Dtypes for structured arrays can be specified in several forms, but all forms specify at least the data type and field name. For details see `doc.structured_arrays`. Examples -------- >>> f = open('test.dat', 'w') >>> f.write("1312 foo\\n1534 bar\\n444 qux") >>> f.close() >>> regexp = r"(\\d+)\\s+(...)" # match [digits, whitespace, anything] >>> output = np.fromregex('test.dat', regexp, ... [('num', np.int64), ('key', 'S3')]) >>> output array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')], dtype=[('num', '<i8'), ('key', '|S3')]) >>> output['num'] array([1312, 1534, 444], dtype=int64) """ own_fh = False if not hasattr(file, "read"): file = open(file, 'rb') own_fh = True try: if not hasattr(regexp, 'match'): regexp = re.compile(asbytes(regexp)) if not isinstance(dtype, np.dtype): dtype = np.dtype(dtype) seq = regexp.findall(file.read()) if seq and not isinstance(seq[0], tuple): # Only one group is in the regexp. # Create the new array as a single data-type and then # re-interpret as a single-field structured array. newdtype = np.dtype(dtype[dtype.names[0]]) output = np.array(seq, dtype=newdtype) output.dtype = dtype else: output = np.array(seq, dtype=dtype) return output finally: if own_fh: fh.close() #####-------------------------------------------------------------------------- #---- --- ASCII functions --- #####-------------------------------------------------------------------------- def genfromtxt(fname, dtype=float, comments='#', delimiter=None, skiprows=0, skip_header=0, skip_footer=0, converters=None, missing='', missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=None, replace_space='_', autostrip=False, case_sensitive=True, defaultfmt="f%i", unpack=None, usemask=False, loose=True, invalid_raise=True): """ Load data from a text file, with missing values handled as specified. Each line past the first `skiprows` lines is split at the `delimiter` character, and characters following the `comments` character are discarded. Parameters ---------- fname : file or str File or filename to read. If the filename extension is `.gz` or `.bz2`, the file is first decompressed. dtype : dtype, optional Data type of the resulting array. If None, the dtypes will be determined by the contents of each column, individually. comments : str, optional The character used to indicate the start of a comment. All the characters occurring on a line after a comment are discarded delimiter : str, int, or sequence, optional The string used to separate values. By default, any consecutive whitespaces act as delimiter. An integer or sequence of integers can also be provided as width(s) of each field. skip_header : int, optional The numbers of lines to skip at the beginning of the file. skip_footer : int, optional The numbers of lines to skip at the end of the file converters : variable or None, optional The set of functions that convert the data of a column to a value. The converters can also be used to provide a default value for missing data: ``converters = {3: lambda s: float(s or 0)}``. missing_values : variable or None, optional The set of strings corresponding to missing data. filling_values : variable or None, optional The set of values to be used as default when the data are missing. usecols : sequence or None, optional Which columns to read, with 0 being the first. For example, ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns. names : {None, True, str, sequence}, optional If `names` is True, the field names are read from the first valid line after the first `skiprows` lines. If `names` is a sequence or a single-string of comma-separated names, the names will be used to define the field names in a structured dtype. If `names` is None, the names of the dtype fields will be used, if any. excludelist : sequence, optional A list of names to exclude. This list is appended to the default list ['return','file','print']. Excluded names are appended an underscore: for example, `file` would become `file_`. deletechars : str, optional A string combining invalid characters that must be deleted from the names. defaultfmt : str, optional A format used to define default field names, such as "f%i" or "f_%02i". autostrip : bool, optional Whether to automatically strip white spaces from the variables. replace_space : char, optional Character(s) used in replacement of white spaces in the variables names. By default, use a '_'. case_sensitive : {True, False, 'upper', 'lower'}, optional If True, field names are case sensitive. If False or 'upper', field names are converted to upper case. If 'lower', field names are converted to lower case. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)`` usemask : bool, optional If True, return a masked array. If False, return a regular array. invalid_raise : bool, optional If True, an exception is raised if an inconsistency is detected in the number of columns. If False, a warning is emitted and the offending lines are skipped. Returns ------- out : ndarray Data read from the text file. If `usemask` is True, this is a masked array. See Also -------- numpy.loadtxt : equivalent function when no data is missing. Notes ----- * When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any missing data between two fields. * When the variables are named (either by a flexible dtype or with `names`, there must not be any header in the file (else a ValueError exception is raised). * Individual values are not stripped of spaces by default. When using a custom converter, make sure the function does remove spaces. Examples --------- >>> from StringIO import StringIO >>> import numpy as np Comma delimited file with mixed dtype >>> s = StringIO("1,1.3,abcde") >>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), ... ('mystring','S5')], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Using dtype = None >>> s.seek(0) # needed for StringIO example only >>> data = np.genfromtxt(s, dtype=None, ... names = ['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Specifying dtype and names >>> s.seek(0) >>> data = np.genfromtxt(s, dtype="i8,f8,S5", ... names=['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) An example with fixed-width columns >>> s = StringIO("11.3abcde") >>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'], ... delimiter=[1,3,5]) >>> data array((1, 1.3, 'abcde'), dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')]) """ # Py3 data conversions to bytes, for convenience comments = asbytes(comments) if isinstance(delimiter, unicode): delimiter = asbytes(delimiter) if isinstance(missing, unicode): missing = asbytes(missing) if isinstance(missing_values, (unicode, list, tuple)): missing_values = asbytes_nested(missing_values) # if usemask: from numpy.ma import MaskedArray, make_mask_descr # Check the input dictionary of converters user_converters = converters or {} if not isinstance(user_converters, dict): errmsg = "The input argument 'converter' should be a valid dictionary "\ "(got '%s' instead)" raise TypeError(errmsg % type(user_converters)) # Initialize the filehandle, the LineSplitter and the NameValidator own_fhd = False if isinstance(fname, basestring): fhd = np.lib._datasource.open(fname, 'U') own_fhd = True elif not hasattr(fname, 'read'): raise TypeError("The input should be a string or a filehandle. "\ "(got %s instead)" % type(fname)) else: fhd = fname split_line = LineSplitter(delimiter=delimiter, comments=comments, autostrip=autostrip)._handyman validate_names = NameValidator(excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Get the first valid lines after the first skiprows ones .. if skiprows: warnings.warn("The use of `skiprows` is deprecated.\n"\ "Please use `skip_header` instead.", DeprecationWarning) skip_header = skiprows # Skip the first `skip_header` rows for i in xrange(skip_header): fhd.readline() # Keep on until we find the first valid values first_values = None while not first_values: first_line = fhd.readline() if not first_line: raise IOError('End-of-file reached before encountering data.') if names is True: if comments in first_line: first_line = asbytes('').join(first_line.split(comments)[1:]) first_values = split_line(first_line) # Should we take the first values as names ? if names is True: fval = first_values[0].strip() if fval in comments: del first_values[0] # Check the columns to use: make sure `usecols` is a list if usecols is not None: try: usecols = [_.strip() for _ in usecols.split(",")] except AttributeError: try: usecols = list(usecols) except TypeError: usecols = [usecols, ] nbcols = len(usecols or first_values) # Check the names and overwrite the dtype.names if needed if names is True: names = validate_names([_bytes_to_name(_.strip()) for _ in first_values]) first_line = asbytes('') elif _is_string_like(names): names = validate_names([_.strip() for _ in names.split(',')]) elif names: names = validate_names(names) # Get the dtype if dtype is not None: dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names) # Make sure the names is a list (for 2.5) if names is not None: names = list(names) if usecols: for (i, current) in enumerate(usecols): # if usecols is a list of names, convert to a list of indices if _is_string_like(current): usecols[i] = names.index(current) elif current < 0: usecols[i] = current + len(first_values) # If the dtype is not None, make sure we update it if (dtype is not None) and (len(dtype) > nbcols): descr = dtype.descr dtype = np.dtype([descr[_] for _ in usecols]) names = list(dtype.names) # If `names` is not None, update the names elif (names is not None) and (len(names) > nbcols): names = [names[_] for _ in usecols] elif (names is not None) and (dtype is not None): names = dtype.names # Process the missing values ............................... # Rename missing_values for convenience user_missing_values = missing_values or () # Define the list of missing_values (one column: one list) missing_values = [list([asbytes('')]) for _ in range(nbcols)] # We have a dictionary: process it field by field if isinstance(user_missing_values, dict): # Loop on the items for (key, val) in user_missing_values.items(): # Is the key a string ? if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped, then continue # Redefine the key as needed if it's a column number if usecols: try: key = usecols.index(key) except ValueError: pass # Transform the value as a list of string if isinstance(val, (list, tuple)): val = [str(_) for _ in val] else: val = [str(val), ] # Add the value(s) to the current list of missing if key is None: # None acts as default for miss in missing_values: miss.extend(val) else: missing_values[key].extend(val) # We have a sequence : each item matches a column elif isinstance(user_missing_values, (list, tuple)): for (value, entry) in zip(user_missing_values, missing_values): value = str(value) if value not in entry: entry.append(value) # We have a string : apply it to all entries elif isinstance(user_missing_values, bytes): user_value = user_missing_values.split(asbytes(",")) for entry in missing_values: entry.extend(user_value) # We have something else: apply it to all entries else: for entry in missing_values: entry.extend([str(user_missing_values)]) # Process the deprecated `missing` if missing != asbytes(''): warnings.warn("The use of `missing` is deprecated.\n"\ "Please use `missing_values` instead.", DeprecationWarning) values = [str(_) for _ in missing.split(asbytes(","))] for entry in missing_values: entry.extend(values) # Process the filling_values ............................... # Rename the input for convenience user_filling_values = filling_values or [] # Define the default filling_values = [None] * nbcols # We have a dictionary : update each entry individually if isinstance(user_filling_values, dict): for (key, val) in user_filling_values.items(): if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped, then continue # Redefine the key if it's a column number and usecols is defined if usecols: try: key = usecols.index(key) except ValueError: pass # Add the value to the list filling_values[key] = val # We have a sequence : update on a one-to-one basis elif isinstance(user_filling_values, (list, tuple)): n = len(user_filling_values) if (n <= nbcols): filling_values[:n] = user_filling_values else: filling_values = user_filling_values[:nbcols] # We have something else : use it for all entries else: filling_values = [user_filling_values] * nbcols # Initialize the converters ................................ if dtype is None: # Note: we can't use a [...]*nbcols, as we would have 3 times the same # ... converter, instead of 3 different converters. converters = [StringConverter(None, missing_values=miss, default=fill) for (miss, fill) in zip(missing_values, filling_values)] else: dtype_flat = flatten_dtype(dtype, flatten_base=True) # Initialize the converters if len(dtype_flat) > 1: # Flexible type : get a converter from each dtype zipit = zip(dtype_flat, missing_values, filling_values) converters = [StringConverter(dt, locked=True, missing_values=miss, default=fill) for (dt, miss, fill) in zipit] else: # Set to a default converter (but w/ different missing values) zipit = zip(missing_values, filling_values) converters = [StringConverter(dtype, locked=True, missing_values=miss, default=fill) for (miss, fill) in zipit] # Update the converters to use the user-defined ones uc_update = [] for (i, conv) in user_converters.items(): # If the converter is specified by column names, use the index instead if _is_string_like(i): try: i = names.index(i) except ValueError: continue elif usecols: try: i = usecols.index(i) except ValueError: # Unused converter specified continue # Find the value to test: if len(first_line): testing_value = first_values[i] else: testing_value = None converters[i].update(conv, locked=True, testing_value=testing_value, default=filling_values[i], missing_values=missing_values[i],) uc_update.append((i, conv)) # Make sure we have the corrected keys in user_converters... user_converters.update(uc_update) miss_chars = [_.missing_values for _ in converters] # Initialize the output lists ... # ... rows rows = [] append_to_rows = rows.append # ... masks if usemask: masks = [] append_to_masks = masks.append # ... invalid invalid = [] append_to_invalid = invalid.append # Parse each line for (i, line) in enumerate(itertools.chain([first_line, ], fhd)): values = split_line(line) nbvalues = len(values) # Skip an empty line if nbvalues == 0: continue # Select only the columns we need if usecols: try: values = [values[_] for _ in usecols] except IndexError: append_to_invalid((i + skip_header + 1, nbvalues)) continue elif nbvalues != nbcols: append_to_invalid((i + skip_header + 1, nbvalues)) continue # Store the values append_to_rows(tuple(values)) if usemask: append_to_masks(tuple([v.strip() in m for (v, m) in zip(values, missing_values)])) if own_fhd: fhd.close() # Upgrade the converters (if needed) if dtype is None: for (i, converter) in enumerate(converters): current_column = map(itemgetter(i), rows) try: converter.iterupgrade(current_column) except ConverterLockError: errmsg = "Converter #%i is locked and cannot be upgraded: " % i current_column = itertools.imap(itemgetter(i), rows) for (j, value) in enumerate(current_column): try: converter.upgrade(value) except (ConverterError, ValueError): errmsg += "(occurred line #%i for value '%s')" errmsg %= (j + 1 + skip_header, value) raise ConverterError(errmsg) # Check that we don't have invalid values nbinvalid = len(invalid) if nbinvalid > 0: nbrows = len(rows) + nbinvalid - skip_footer # Construct the error message template = " Line #%%i (got %%i columns instead of %i)" % nbcols if skip_footer > 0: nbinvalid_skipped = len([_ for _ in invalid if _[0] > nbrows + skip_header]) invalid = invalid[:nbinvalid - nbinvalid_skipped] skip_footer -= nbinvalid_skipped # # nbrows -= skip_footer # errmsg = [template % (i, nb) # for (i, nb) in invalid if i < nbrows] # else: errmsg = [template % (i, nb) for (i, nb) in invalid] if len(errmsg): errmsg.insert(0, "Some errors were detected !") errmsg = "\n".join(errmsg) # Raise an exception ? if invalid_raise: raise ValueError(errmsg) # Issue a warning ? else: warnings.warn(errmsg, ConversionWarning) # Strip the last skip_footer data if skip_footer > 0: rows = rows[:-skip_footer] if usemask: masks = masks[:-skip_footer] # Convert each value according to the converter: # We want to modify the list in place to avoid creating a new one... # if loose: # conversionfuncs = [conv._loose_call for conv in converters] # else: # conversionfuncs = [conv._strict_call for conv in converters] # for (i, vals) in enumerate(rows): # rows[i] = tuple([convert(val) # for (convert, val) in zip(conversionfuncs, vals)]) if loose: rows = zip(*[map(converter._loose_call, map(itemgetter(i), rows)) for (i, converter) in enumerate(converters)]) else: rows = zip(*[map(converter._strict_call, map(itemgetter(i), rows)) for (i, converter) in enumerate(converters)]) # Reset the dtype data = rows if dtype is None: # Get the dtypes from the types of the converters column_types = [conv.type for conv in converters] # Find the columns with strings... strcolidx = [i for (i, v) in enumerate(column_types) if v in (type('S'), np.string_)] # ... and take the largest number of chars. for i in strcolidx: column_types[i] = "|S%i" % max(len(row[i]) for row in data) # if names is None: # If the dtype is uniform, don't define names, else use '' base = set([c.type for c in converters if c._checked]) if len(base) == 1: (ddtype, mdtype) = (list(base)[0], np.bool) else: ddtype = [(defaultfmt % i, dt) for (i, dt) in enumerate(column_types)] if usemask: mdtype = [(defaultfmt % i, np.bool) for (i, dt) in enumerate(column_types)] else: ddtype = zip(names, column_types) mdtype = zip(names, [np.bool] * len(column_types)) output = np.array(data, dtype=ddtype) if usemask: outputmask = np.array(masks, dtype=mdtype) else: # Overwrite the initial dtype names if needed if names and dtype.names: dtype.names = names # Case 1. We have a structured type if len(dtype_flat) > 1: # Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])] # First, create the array using a flattened dtype: # [('a', int), ('b1', int), ('b2', float)] # Then, view the array using the specified dtype. if 'O' in (_.char for _ in dtype_flat): if has_nested_fields(dtype): errmsg = "Nested fields involving objects "\ "are not supported..." raise NotImplementedError(errmsg) else: output = np.array(data, dtype=dtype) else: rows = np.array(data, dtype=[('', _) for _ in dtype_flat]) output = rows.view(dtype) # Now, process the rowmasks the same way if usemask: rowmasks = np.array(masks, dtype=np.dtype([('', np.bool) for t in dtype_flat])) # Construct the new dtype mdtype = make_mask_descr(dtype) outputmask = rowmasks.view(mdtype) # Case #2. We have a basic dtype else: # We used some user-defined converters if user_converters: ishomogeneous = True descr = [] for (i, ttype) in enumerate([conv.type for conv in converters]): # Keep the dtype of the current converter if i in user_converters: ishomogeneous &= (ttype == dtype.type) if ttype == np.string_: ttype = "|S%i" % max(len(row[i]) for row in data) descr.append(('', ttype)) else: descr.append(('', dtype)) # So we changed the dtype ? if not ishomogeneous: # We have more than one field if len(descr) > 1: dtype = np.dtype(descr) # We have only one field: drop the name if not needed. else: dtype = np.dtype(ttype) # output = np.array(data, dtype) if usemask: if dtype.names: mdtype = [(_, np.bool) for _ in dtype.names] else: mdtype = np.bool outputmask = np.array(masks, dtype=mdtype) # Try to take care of the missing data we missed names = output.dtype.names if usemask and names: for (name, conv) in zip(names or (), converters): missing_values = [conv(_) for _ in conv.missing_values if _ != asbytes('')] for mval in missing_values: outputmask[name] |= (output[name] == mval) # Construct the final array if usemask: output = output.view(MaskedArray) output._mask = outputmask if unpack: return output.squeeze().T return output.squeeze() def ndfromtxt(fname, **kwargs): """ Load ASCII data stored in a file and return it as a single array. Complete description of all the optional input parameters is available in the docstring of the `genfromtxt` function. See Also -------- numpy.genfromtxt : generic function. """ kwargs['usemask'] = False return genfromtxt(fname, **kwargs) def mafromtxt(fname, **kwargs): """ Load ASCII data stored in a text file and return a masked array. For a complete description of all the input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. """ kwargs['usemask'] = True return genfromtxt(fname, **kwargs) def recfromtxt(fname, **kwargs): """ Load ASCII data from a file and return it in a record array. If ``usemask=False`` a standard `recarray` is returned, if ``usemask=True`` a MaskedRecords array is returned. Complete description of all the optional input parameters is available in the docstring of the `genfromtxt` function. See Also -------- numpy.genfromtxt : generic function Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ kwargs.update(dtype=kwargs.get('dtype', None)) usemask = kwargs.get('usemask', False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output def recfromcsv(fname, **kwargs): """ Load ASCII data stored in a comma-separated file. The returned array is a record array (if ``usemask=False``, see `recarray`) or a masked record array (if ``usemask=True``, see `ma.mrecords.MaskedRecords`). For a complete description of all the input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. """ case_sensitive = kwargs.get('case_sensitive', "lower") or "lower" names = kwargs.get('names', True) if names is None: names = True kwargs.update(dtype=kwargs.get('update', None), delimiter=kwargs.get('delimiter', ",") or ",", names=names, case_sensitive=case_sensitive) usemask = kwargs.get("usemask", False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output
gpl-3.0
wlamond/scikit-learn
sklearn/calibration.py
37
20332
"""Calibration of predicted probabilities.""" # Author: Alexandre Gramfort <[email protected]> # Balazs Kegl <[email protected]> # Jan Hendrik Metzen <[email protected]> # Mathieu Blondel <[email protected]> # # License: BSD 3 clause from __future__ import division import warnings from math import log import numpy as np from scipy.optimize import fmin_bfgs from sklearn.preprocessing import LabelEncoder from .base import BaseEstimator, ClassifierMixin, RegressorMixin, clone from .preprocessing import label_binarize, LabelBinarizer from .utils import check_X_y, check_array, indexable, column_or_1d from .utils.validation import check_is_fitted, check_consistent_length from .utils.fixes import signature from .isotonic import IsotonicRegression from .svm import LinearSVC from .model_selection import check_cv from .metrics.classification import _check_binary_probabilistic_predictions class CalibratedClassifierCV(BaseEstimator, ClassifierMixin): """Probability calibration with isotonic regression or sigmoid. With this class, the base_estimator is fit on the train set of the cross-validation generator and the test set is used for calibration. The probabilities for each of the folds are then averaged for prediction. In case that cv="prefit" is passed to __init__, it is assumed that base_estimator has been fitted already and all data is used for calibration. Note that data for fitting the classifier and for calibrating it must be disjoint. Read more in the :ref:`User Guide <calibration>`. Parameters ---------- base_estimator : instance BaseEstimator The classifier whose output decision function needs to be calibrated to offer more accurate predict_proba outputs. If cv=prefit, the classifier must have been fit already on data. method : 'sigmoid' or 'isotonic' The method to use for calibration. Can be 'sigmoid' which corresponds to Platt's method or 'isotonic' which is a non-parametric approach. It is not advised to use isotonic calibration with too few calibration samples ``(<<1000)`` since it tends to overfit. Use sigmoids (Platt's calibration) in this case. cv : integer, cross-validation generator, iterable or "prefit", optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`sklearn.model_selection.StratifiedKFold` is used. If ``y`` is neither binary nor multiclass, :class:`sklearn.model_selection.KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. If "prefit" is passed, it is assumed that base_estimator has been fitted already and all data is used for calibration. Attributes ---------- classes_ : array, shape (n_classes) The class labels. calibrated_classifiers_ : list (len() equal to cv or 1 if cv == "prefit") The list of calibrated classifiers, one for each crossvalidation fold, which has been fitted on all but the validation fold and calibrated on the validation fold. References ---------- .. [1] Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001 .. [2] Transforming Classifier Scores into Accurate Multiclass Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002) .. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods, J. Platt, (1999) .. [4] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005 """ def __init__(self, base_estimator=None, method='sigmoid', cv=3): self.base_estimator = base_estimator self.method = method self.cv = cv def fit(self, X, y, sample_weight=None): """Fit the calibrated model Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) Target values. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Returns ------- self : object Returns an instance of self. """ X, y = check_X_y(X, y, accept_sparse=['csc', 'csr', 'coo'], force_all_finite=False) X, y = indexable(X, y) le = LabelBinarizer().fit(y) self.classes_ = le.classes_ # Check that each cross-validation fold can have at least one # example per class n_folds = self.cv if isinstance(self.cv, int) \ else self.cv.n_folds if hasattr(self.cv, "n_folds") else None if n_folds and \ np.any([np.sum(y == class_) < n_folds for class_ in self.classes_]): raise ValueError("Requesting %d-fold cross-validation but provided" " less than %d examples for at least one class." % (n_folds, n_folds)) self.calibrated_classifiers_ = [] if self.base_estimator is None: # we want all classifiers that don't expose a random_state # to be deterministic (and we don't want to expose this one). base_estimator = LinearSVC(random_state=0) else: base_estimator = self.base_estimator if self.cv == "prefit": calibrated_classifier = _CalibratedClassifier( base_estimator, method=self.method) if sample_weight is not None: calibrated_classifier.fit(X, y, sample_weight) else: calibrated_classifier.fit(X, y) self.calibrated_classifiers_.append(calibrated_classifier) else: cv = check_cv(self.cv, y, classifier=True) fit_parameters = signature(base_estimator.fit).parameters estimator_name = type(base_estimator).__name__ if (sample_weight is not None and "sample_weight" not in fit_parameters): warnings.warn("%s does not support sample_weight. Samples" " weights are only used for the calibration" " itself." % estimator_name) base_estimator_sample_weight = None else: if sample_weight is not None: sample_weight = check_array(sample_weight, ensure_2d=False) check_consistent_length(y, sample_weight) base_estimator_sample_weight = sample_weight for train, test in cv.split(X, y): this_estimator = clone(base_estimator) if base_estimator_sample_weight is not None: this_estimator.fit( X[train], y[train], sample_weight=base_estimator_sample_weight[train]) else: this_estimator.fit(X[train], y[train]) calibrated_classifier = _CalibratedClassifier( this_estimator, method=self.method, classes=self.classes_) if sample_weight is not None: calibrated_classifier.fit(X[test], y[test], sample_weight[test]) else: calibrated_classifier.fit(X[test], y[test]) self.calibrated_classifiers_.append(calibrated_classifier) return self def predict_proba(self, X): """Posterior probabilities of classification This function returns posterior probabilities of classification according to each class on an array of test vectors X. Parameters ---------- X : array-like, shape (n_samples, n_features) The samples. Returns ------- C : array, shape (n_samples, n_classes) The predicted probas. """ check_is_fitted(self, ["classes_", "calibrated_classifiers_"]) X = check_array(X, accept_sparse=['csc', 'csr', 'coo'], force_all_finite=False) # Compute the arithmetic mean of the predictions of the calibrated # classifiers mean_proba = np.zeros((X.shape[0], len(self.classes_))) for calibrated_classifier in self.calibrated_classifiers_: proba = calibrated_classifier.predict_proba(X) mean_proba += proba mean_proba /= len(self.calibrated_classifiers_) return mean_proba def predict(self, X): """Predict the target of new samples. Can be different from the prediction of the uncalibrated classifier. Parameters ---------- X : array-like, shape (n_samples, n_features) The samples. Returns ------- C : array, shape (n_samples,) The predicted class. """ check_is_fitted(self, ["classes_", "calibrated_classifiers_"]) return self.classes_[np.argmax(self.predict_proba(X), axis=1)] class _CalibratedClassifier(object): """Probability calibration with isotonic regression or sigmoid. It assumes that base_estimator has already been fit, and trains the calibration on the input set of the fit function. Note that this class should not be used as an estimator directly. Use CalibratedClassifierCV with cv="prefit" instead. Parameters ---------- base_estimator : instance BaseEstimator The classifier whose output decision function needs to be calibrated to offer more accurate predict_proba outputs. No default value since it has to be an already fitted estimator. method : 'sigmoid' | 'isotonic' The method to use for calibration. Can be 'sigmoid' which corresponds to Platt's method or 'isotonic' which is a non-parametric approach based on isotonic regression. classes : array-like, shape (n_classes,), optional Contains unique classes used to fit the base estimator. if None, then classes is extracted from the given target values in fit(). References ---------- .. [1] Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001 .. [2] Transforming Classifier Scores into Accurate Multiclass Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002) .. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods, J. Platt, (1999) .. [4] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005 """ def __init__(self, base_estimator, method='sigmoid', classes=None): self.base_estimator = base_estimator self.method = method self.classes = classes def _preproc(self, X): n_classes = len(self.classes_) if hasattr(self.base_estimator, "decision_function"): df = self.base_estimator.decision_function(X) if df.ndim == 1: df = df[:, np.newaxis] elif hasattr(self.base_estimator, "predict_proba"): df = self.base_estimator.predict_proba(X) if n_classes == 2: df = df[:, 1:] else: raise RuntimeError('classifier has no decision_function or ' 'predict_proba method.') idx_pos_class = self.label_encoder_.\ transform(self.base_estimator.classes_) return df, idx_pos_class def fit(self, X, y, sample_weight=None): """Calibrate the fitted model Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) Target values. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Returns ------- self : object Returns an instance of self. """ self.label_encoder_ = LabelEncoder() if self.classes is None: self.label_encoder_.fit(y) else: self.label_encoder_.fit(self.classes) self.classes_ = self.label_encoder_.classes_ Y = label_binarize(y, self.classes_) df, idx_pos_class = self._preproc(X) self.calibrators_ = [] for k, this_df in zip(idx_pos_class, df.T): if self.method == 'isotonic': calibrator = IsotonicRegression(out_of_bounds='clip') elif self.method == 'sigmoid': calibrator = _SigmoidCalibration() else: raise ValueError('method should be "sigmoid" or ' '"isotonic". Got %s.' % self.method) calibrator.fit(this_df, Y[:, k], sample_weight) self.calibrators_.append(calibrator) return self def predict_proba(self, X): """Posterior probabilities of classification This function returns posterior probabilities of classification according to each class on an array of test vectors X. Parameters ---------- X : array-like, shape (n_samples, n_features) The samples. Returns ------- C : array, shape (n_samples, n_classes) The predicted probas. Can be exact zeros. """ n_classes = len(self.classes_) proba = np.zeros((X.shape[0], n_classes)) df, idx_pos_class = self._preproc(X) for k, this_df, calibrator in \ zip(idx_pos_class, df.T, self.calibrators_): if n_classes == 2: k += 1 proba[:, k] = calibrator.predict(this_df) # Normalize the probabilities if n_classes == 2: proba[:, 0] = 1. - proba[:, 1] else: proba /= np.sum(proba, axis=1)[:, np.newaxis] # XXX : for some reason all probas can be 0 proba[np.isnan(proba)] = 1. / n_classes # Deal with cases where the predicted probability minimally exceeds 1.0 proba[(1.0 < proba) & (proba <= 1.0 + 1e-5)] = 1.0 return proba def _sigmoid_calibration(df, y, sample_weight=None): """Probability Calibration with sigmoid method (Platt 2000) Parameters ---------- df : ndarray, shape (n_samples,) The decision function or predict proba for the samples. y : ndarray, shape (n_samples,) The targets. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Returns ------- a : float The slope. b : float The intercept. References ---------- Platt, "Probabilistic Outputs for Support Vector Machines" """ df = column_or_1d(df) y = column_or_1d(y) F = df # F follows Platt's notations tiny = np.finfo(np.float).tiny # to avoid division by 0 warning # Bayesian priors (see Platt end of section 2.2) prior0 = float(np.sum(y <= 0)) prior1 = y.shape[0] - prior0 T = np.zeros(y.shape) T[y > 0] = (prior1 + 1.) / (prior1 + 2.) T[y <= 0] = 1. / (prior0 + 2.) T1 = 1. - T def objective(AB): # From Platt (beginning of Section 2.2) E = np.exp(AB[0] * F + AB[1]) P = 1. / (1. + E) l = -(T * np.log(P + tiny) + T1 * np.log(1. - P + tiny)) if sample_weight is not None: return (sample_weight * l).sum() else: return l.sum() def grad(AB): # gradient of the objective function E = np.exp(AB[0] * F + AB[1]) P = 1. / (1. + E) TEP_minus_T1P = P * (T * E - T1) if sample_weight is not None: TEP_minus_T1P *= sample_weight dA = np.dot(TEP_minus_T1P, F) dB = np.sum(TEP_minus_T1P) return np.array([dA, dB]) AB0 = np.array([0., log((prior0 + 1.) / (prior1 + 1.))]) AB_ = fmin_bfgs(objective, AB0, fprime=grad, disp=False) return AB_[0], AB_[1] class _SigmoidCalibration(BaseEstimator, RegressorMixin): """Sigmoid regression model. Attributes ---------- a_ : float The slope. b_ : float The intercept. """ def fit(self, X, y, sample_weight=None): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples,) Training data. y : array-like, shape (n_samples,) Training target. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Returns ------- self : object Returns an instance of self. """ X = column_or_1d(X) y = column_or_1d(y) X, y = indexable(X, y) self.a_, self.b_ = _sigmoid_calibration(X, y, sample_weight) return self def predict(self, T): """Predict new data by linear interpolation. Parameters ---------- T : array-like, shape (n_samples,) Data to predict from. Returns ------- T_ : array, shape (n_samples,) The predicted data. """ T = column_or_1d(T) return 1. / (1. + np.exp(self.a_ * T + self.b_)) def calibration_curve(y_true, y_prob, normalize=False, n_bins=5): """Compute true and predicted probabilities for a calibration curve. Calibration curves may also be referred to as reliability diagrams. Read more in the :ref:`User Guide <calibration>`. Parameters ---------- y_true : array, shape (n_samples,) True targets. y_prob : array, shape (n_samples,) Probabilities of the positive class. normalize : bool, optional, default=False Whether y_prob needs to be normalized into the bin [0, 1], i.e. is not a proper probability. If True, the smallest value in y_prob is mapped onto 0 and the largest one onto 1. n_bins : int Number of bins. A bigger number requires more data. Returns ------- prob_true : array, shape (n_bins,) The true probability in each bin (fraction of positives). prob_pred : array, shape (n_bins,) The mean predicted probability in each bin. References ---------- Alexandru Niculescu-Mizil and Rich Caruana (2005) Predicting Good Probabilities With Supervised Learning, in Proceedings of the 22nd International Conference on Machine Learning (ICML). See section 4 (Qualitative Analysis of Predictions). """ y_true = column_or_1d(y_true) y_prob = column_or_1d(y_prob) if normalize: # Normalize predicted values into interval [0, 1] y_prob = (y_prob - y_prob.min()) / (y_prob.max() - y_prob.min()) elif y_prob.min() < 0 or y_prob.max() > 1: raise ValueError("y_prob has values outside [0, 1] and normalize is " "set to False.") y_true = _check_binary_probabilistic_predictions(y_true, y_prob) bins = np.linspace(0., 1. + 1e-8, n_bins + 1) binids = np.digitize(y_prob, bins) - 1 bin_sums = np.bincount(binids, weights=y_prob, minlength=len(bins)) bin_true = np.bincount(binids, weights=y_true, minlength=len(bins)) bin_total = np.bincount(binids, minlength=len(bins)) nonzero = bin_total != 0 prob_true = (bin_true[nonzero] / bin_total[nonzero]) prob_pred = (bin_sums[nonzero] / bin_total[nonzero]) return prob_true, prob_pred
bsd-3-clause
zfrenchee/pandas
pandas/core/reshape/concat.py
1
21480
""" concat routines """ import numpy as np from pandas import compat, DataFrame, Series, Index, MultiIndex from pandas.core.index import (_get_objs_combined_axis, _ensure_index, _get_consensus_names, _all_indexes_same) from pandas.core.categorical import (_factorize_from_iterable, _factorize_from_iterables) from pandas.core.internals import concatenate_block_managers from pandas.core import common as com from pandas.core.generic import NDFrame import pandas.core.dtypes.concat as _concat # --------------------------------------------------------------------- # Concatenate DataFrame objects def concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True): """ Concatenate pandas objects along a particular axis with optional set logic along the other axes. Can also add a layer of hierarchical indexing on the concatenation axis, which may be useful if the labels are the same (or overlapping) on the passed axis number. Parameters ---------- objs : a sequence or mapping of Series, DataFrame, or Panel objects If a dict is passed, the sorted keys will be used as the `keys` argument, unless it is passed, in which case the values will be selected (see below). Any None objects will be dropped silently unless they are all None in which case a ValueError will be raised axis : {0/'index', 1/'columns'}, default 0 The axis to concatenate along join : {'inner', 'outer'}, default 'outer' How to handle indexes on other axis(es) join_axes : list of Index objects Specific indexes to use for the other n - 1 axes instead of performing inner/outer set logic ignore_index : boolean, default False If True, do not use the index values along the concatenation axis. The resulting axis will be labeled 0, ..., n - 1. This is useful if you are concatenating objects where the concatenation axis does not have meaningful indexing information. Note the index values on the other axes are still respected in the join. keys : sequence, default None If multiple levels passed, should contain tuples. Construct hierarchical index using the passed keys as the outermost level levels : list of sequences, default None Specific levels (unique values) to use for constructing a MultiIndex. Otherwise they will be inferred from the keys names : list, default None Names for the levels in the resulting hierarchical index verify_integrity : boolean, default False Check whether the new concatenated axis contains duplicates. This can be very expensive relative to the actual data concatenation copy : boolean, default True If False, do not copy data unnecessarily Returns ------- concatenated : object, type of objs When concatenating all ``Series`` along the index (axis=0), a ``Series`` is returned. When ``objs`` contains at least one ``DataFrame``, a ``DataFrame`` is returned. When concatenating along the columns (axis=1), a ``DataFrame`` is returned. Notes ----- The keys, levels, and names arguments are all optional. A walkthrough of how this method fits in with other tools for combining pandas objects can be found `here <http://pandas.pydata.org/pandas-docs/stable/merging.html>`__. See Also -------- Series.append DataFrame.append DataFrame.join DataFrame.merge Examples -------- Combine two ``Series``. >>> s1 = pd.Series(['a', 'b']) >>> s2 = pd.Series(['c', 'd']) >>> pd.concat([s1, s2]) 0 a 1 b 0 c 1 d dtype: object Clear the existing index and reset it in the result by setting the ``ignore_index`` option to ``True``. >>> pd.concat([s1, s2], ignore_index=True) 0 a 1 b 2 c 3 d dtype: object Add a hierarchical index at the outermost level of the data with the ``keys`` option. >>> pd.concat([s1, s2], keys=['s1', 's2',]) s1 0 a 1 b s2 0 c 1 d dtype: object Label the index keys you create with the ``names`` option. >>> pd.concat([s1, s2], keys=['s1', 's2'], ... names=['Series name', 'Row ID']) Series name Row ID s1 0 a 1 b s2 0 c 1 d dtype: object Combine two ``DataFrame`` objects with identical columns. >>> df1 = pd.DataFrame([['a', 1], ['b', 2]], ... columns=['letter', 'number']) >>> df1 letter number 0 a 1 1 b 2 >>> df2 = pd.DataFrame([['c', 3], ['d', 4]], ... columns=['letter', 'number']) >>> df2 letter number 0 c 3 1 d 4 >>> pd.concat([df1, df2]) letter number 0 a 1 1 b 2 0 c 3 1 d 4 Combine ``DataFrame`` objects with overlapping columns and return everything. Columns outside the intersection will be filled with ``NaN`` values. >>> df3 = pd.DataFrame([['c', 3, 'cat'], ['d', 4, 'dog']], ... columns=['letter', 'number', 'animal']) >>> df3 letter number animal 0 c 3 cat 1 d 4 dog >>> pd.concat([df1, df3]) animal letter number 0 NaN a 1 1 NaN b 2 0 cat c 3 1 dog d 4 Combine ``DataFrame`` objects with overlapping columns and return only those that are shared by passing ``inner`` to the ``join`` keyword argument. >>> pd.concat([df1, df3], join="inner") letter number 0 a 1 1 b 2 0 c 3 1 d 4 Combine ``DataFrame`` objects horizontally along the x axis by passing in ``axis=1``. >>> df4 = pd.DataFrame([['bird', 'polly'], ['monkey', 'george']], ... columns=['animal', 'name']) >>> pd.concat([df1, df4], axis=1) letter number animal name 0 a 1 bird polly 1 b 2 monkey george Prevent the result from including duplicate index values with the ``verify_integrity`` option. >>> df5 = pd.DataFrame([1], index=['a']) >>> df5 0 a 1 >>> df6 = pd.DataFrame([2], index=['a']) >>> df6 0 a 2 >>> pd.concat([df5, df6], verify_integrity=True) Traceback (most recent call last): ... ValueError: Indexes have overlapping values: ['a'] """ op = _Concatenator(objs, axis=axis, join_axes=join_axes, ignore_index=ignore_index, join=join, keys=keys, levels=levels, names=names, verify_integrity=verify_integrity, copy=copy) return op.get_result() class _Concatenator(object): """ Orchestrates a concatenation operation for BlockManagers """ def __init__(self, objs, axis=0, join='outer', join_axes=None, keys=None, levels=None, names=None, ignore_index=False, verify_integrity=False, copy=True): if isinstance(objs, (NDFrame, compat.string_types)): raise TypeError('first argument must be an iterable of pandas ' 'objects, you passed an object of type ' '"{name}"'.format(name=type(objs).__name__)) if join == 'outer': self.intersect = False elif join == 'inner': self.intersect = True else: # pragma: no cover raise ValueError('Only can inner (intersect) or outer (union) ' 'join the other axis') if isinstance(objs, dict): if keys is None: keys = sorted(objs) objs = [objs[k] for k in keys] else: objs = list(objs) if len(objs) == 0: raise ValueError('No objects to concatenate') if keys is None: objs = list(com._not_none(*objs)) else: # #1649 clean_keys = [] clean_objs = [] for k, v in zip(keys, objs): if v is None: continue clean_keys.append(k) clean_objs.append(v) objs = clean_objs name = getattr(keys, 'name', None) keys = Index(clean_keys, name=name) if len(objs) == 0: raise ValueError('All objects passed were None') # consolidate data & figure out what our result ndim is going to be ndims = set() for obj in objs: if not isinstance(obj, NDFrame): msg = ('cannot concatenate object of type "{0}";' ' only pd.Series, pd.DataFrame, and pd.Panel' ' (deprecated) objs are valid'.format(type(obj))) raise TypeError(msg) # consolidate obj._consolidate(inplace=True) ndims.add(obj.ndim) # get the sample # want the highest ndim that we have, and must be non-empty # unless all objs are empty sample = None if len(ndims) > 1: max_ndim = max(ndims) for obj in objs: if obj.ndim == max_ndim and np.sum(obj.shape): sample = obj break else: # filter out the empties if we have not multi-index possibilities # note to keep empty Series as it affect to result columns / name non_empties = [obj for obj in objs if sum(obj.shape) > 0 or isinstance(obj, Series)] if (len(non_empties) and (keys is None and names is None and levels is None and join_axes is None and not self.intersect)): objs = non_empties sample = objs[0] if sample is None: sample = objs[0] self.objs = objs # Standardize axis parameter to int if isinstance(sample, Series): axis = DataFrame()._get_axis_number(axis) else: axis = sample._get_axis_number(axis) # Need to flip BlockManager axis in the DataFrame special case self._is_frame = isinstance(sample, DataFrame) if self._is_frame: axis = 1 if axis == 0 else 0 self._is_series = isinstance(sample, Series) if not 0 <= axis <= sample.ndim: raise AssertionError("axis must be between 0 and {ndim}, input was" " {axis}".format(ndim=sample.ndim, axis=axis)) # if we have mixed ndims, then convert to highest ndim # creating column numbers as needed if len(ndims) > 1: current_column = 0 max_ndim = sample.ndim self.objs, objs = [], self.objs for obj in objs: ndim = obj.ndim if ndim == max_ndim: pass elif ndim != max_ndim - 1: raise ValueError("cannot concatenate unaligned mixed " "dimensional NDFrame objects") else: name = getattr(obj, 'name', None) if ignore_index or name is None: name = current_column current_column += 1 # doing a row-wise concatenation so need everything # to line up if self._is_frame and axis == 1: name = 0 obj = sample._constructor({name: obj}) self.objs.append(obj) # note: this is the BlockManager axis (since DataFrame is transposed) self.axis = axis self.join_axes = join_axes self.keys = keys self.names = names or getattr(keys, 'names', None) self.levels = levels self.ignore_index = ignore_index self.verify_integrity = verify_integrity self.copy = copy self.new_axes = self._get_new_axes() def get_result(self): # series only if self._is_series: # stack blocks if self.axis == 0: name = com._consensus_name_attr(self.objs) mgr = self.objs[0]._data.concat([x._data for x in self.objs], self.new_axes) cons = _concat._get_series_result_type(mgr, self.objs) return cons(mgr, name=name).__finalize__(self, method='concat') # combine as columns in a frame else: data = dict(zip(range(len(self.objs)), self.objs)) cons = _concat._get_series_result_type(data) index, columns = self.new_axes df = cons(data, index=index) df.columns = columns return df.__finalize__(self, method='concat') # combine block managers else: mgrs_indexers = [] for obj in self.objs: mgr = obj._data indexers = {} for ax, new_labels in enumerate(self.new_axes): if ax == self.axis: # Suppress reindexing on concat axis continue obj_labels = mgr.axes[ax] if not new_labels.equals(obj_labels): indexers[ax] = obj_labels.reindex(new_labels)[1] mgrs_indexers.append((obj._data, indexers)) new_data = concatenate_block_managers( mgrs_indexers, self.new_axes, concat_axis=self.axis, copy=self.copy) if not self.copy: new_data._consolidate_inplace() cons = _concat._get_frame_result_type(new_data, self.objs) return (cons._from_axes(new_data, self.new_axes) .__finalize__(self, method='concat')) def _get_result_dim(self): if self._is_series and self.axis == 1: return 2 else: return self.objs[0].ndim def _get_new_axes(self): ndim = self._get_result_dim() new_axes = [None] * ndim if self.join_axes is None: for i in range(ndim): if i == self.axis: continue new_axes[i] = self._get_comb_axis(i) else: if len(self.join_axes) != ndim - 1: raise AssertionError("length of join_axes must not be equal " "to {length}".format(length=ndim - 1)) # ufff... indices = compat.lrange(ndim) indices.remove(self.axis) for i, ax in zip(indices, self.join_axes): new_axes[i] = ax new_axes[self.axis] = self._get_concat_axis() return new_axes def _get_comb_axis(self, i): data_axis = self.objs[0]._get_block_manager_axis(i) try: return _get_objs_combined_axis(self.objs, axis=data_axis, intersect=self.intersect) except IndexError: types = [type(x).__name__ for x in self.objs] raise TypeError("Cannot concatenate list of {types}" .format(types=types)) def _get_concat_axis(self): """ Return index to be used along concatenation axis. """ if self._is_series: if self.axis == 0: indexes = [x.index for x in self.objs] elif self.ignore_index: idx = com._default_index(len(self.objs)) return idx elif self.keys is None: names = [None] * len(self.objs) num = 0 has_names = False for i, x in enumerate(self.objs): if not isinstance(x, Series): raise TypeError("Cannot concatenate type 'Series' " "with object of type {type!r}" .format(type=type(x).__name__)) if x.name is not None: names[i] = x.name has_names = True else: names[i] = num num += 1 if has_names: return Index(names) else: return com._default_index(len(self.objs)) else: return _ensure_index(self.keys) else: indexes = [x._data.axes[self.axis] for x in self.objs] if self.ignore_index: idx = com._default_index(sum(len(i) for i in indexes)) return idx if self.keys is None: concat_axis = _concat_indexes(indexes) else: concat_axis = _make_concat_multiindex(indexes, self.keys, self.levels, self.names) self._maybe_check_integrity(concat_axis) return concat_axis def _maybe_check_integrity(self, concat_index): if self.verify_integrity: if not concat_index.is_unique: overlap = concat_index.get_duplicates() raise ValueError('Indexes have overlapping values: ' '{overlap!s}'.format(overlap=overlap)) def _concat_indexes(indexes): return indexes[0].append(indexes[1:]) def _make_concat_multiindex(indexes, keys, levels=None, names=None): if ((levels is None and isinstance(keys[0], tuple)) or (levels is not None and len(levels) > 1)): zipped = compat.lzip(*keys) if names is None: names = [None] * len(zipped) if levels is None: _, levels = _factorize_from_iterables(zipped) else: levels = [_ensure_index(x) for x in levels] else: zipped = [keys] if names is None: names = [None] if levels is None: levels = [_ensure_index(keys)] else: levels = [_ensure_index(x) for x in levels] if not _all_indexes_same(indexes): label_list = [] # things are potentially different sizes, so compute the exact labels # for each level and pass those to MultiIndex.from_arrays for hlevel, level in zip(zipped, levels): to_concat = [] for key, index in zip(hlevel, indexes): try: i = level.get_loc(key) except KeyError: raise ValueError('Key {key!s} not in level {level!s}' .format(key=key, level=level)) to_concat.append(np.repeat(i, len(index))) label_list.append(np.concatenate(to_concat)) concat_index = _concat_indexes(indexes) # these go at the end if isinstance(concat_index, MultiIndex): levels.extend(concat_index.levels) label_list.extend(concat_index.labels) else: codes, categories = _factorize_from_iterable(concat_index) levels.append(categories) label_list.append(codes) if len(names) == len(levels): names = list(names) else: # make sure that all of the passed indices have the same nlevels if not len({idx.nlevels for idx in indexes}) == 1: raise AssertionError("Cannot concat indices that do" " not have the same number of levels") # also copies names = names + _get_consensus_names(indexes) return MultiIndex(levels=levels, labels=label_list, names=names, verify_integrity=False) new_index = indexes[0] n = len(new_index) kpieces = len(indexes) # also copies new_names = list(names) new_levels = list(levels) # construct labels new_labels = [] # do something a bit more speedy for hlevel, level in zip(zipped, levels): hlevel = _ensure_index(hlevel) mapped = level.get_indexer(hlevel) mask = mapped == -1 if mask.any(): raise ValueError('Values not found in passed level: {hlevel!s}' .format(hlevel=hlevel[mask])) new_labels.append(np.repeat(mapped, n)) if isinstance(new_index, MultiIndex): new_levels.extend(new_index.levels) new_labels.extend([np.tile(lab, kpieces) for lab in new_index.labels]) else: new_levels.append(new_index) new_labels.append(np.tile(np.arange(n), kpieces)) if len(new_names) < len(new_levels): new_names.extend(new_index.names) return MultiIndex(levels=new_levels, labels=new_labels, names=new_names, verify_integrity=False)
bsd-3-clause
ndardenne/pymatgen
pymatgen/io/abinit/abitimer.py
2
26477
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ This module provides objects for extracting timing data from the ABINIT output files It also provides tools to analye and to visualize the parallel efficiency. """ from __future__ import unicode_literals, division import sys import collections import numpy as np from six.moves import zip from monty.string import is_string, list_strings from pymatgen.util.num_utils import minloc from pymatgen.util.plotting_utils import add_fig_kwargs, get_ax_fig_plt import logging logger = logging.getLogger(__name__) def alternate(*iterables): """ [a[0], b[0], ... , a[1], b[1], ..., a[n], b[n] ...] >>> alternate([1,4], [2,5], [3,6]) [1, 2, 3, 4, 5, 6] """ items = [] for tup in zip(*iterables): items.extend([item for item in tup]) return items class AbinitTimerParserError(Exception): """Errors raised by AbinitTimerParser""" class AbinitTimerParser(collections.Iterable): """ Responsible for parsing a list of output files, and managing the parsed database. """ # The markers enclosing the data. BEGIN_TAG = "-<BEGIN_TIMER" END_TAG = "-<END_TIMER>" Error = AbinitTimerParserError #DEFAULT_MPI_RANK = "0" def __init__(self): # List of files that have been parsed. self._filenames = [] # timers[filename][mpi_rank] # contains the timer extracted from the file filename associated to the MPI rank mpi_rank. self._timers = collections.OrderedDict() def __iter__(self): return self._timers.__iter__() def __len__(self): return len(self._timers) def parse(self, filenames): """ Read and parse a filename or a list of filenames. Files that cannot be opened are ignored. A single filename may also be given. Return list of successfully read files. """ filenames = list_strings(filenames) read_ok = [] for fname in filenames: try: fh = open(fname) except IOError: logger.warning("Cannot open file %s" % fname) continue try: self._read(fh, fname) read_ok.append(fname) except self.Error as e: logger.warning("exception while parsing file %s:\n%s" % (fname, str(e))) continue finally: fh.close() # Add read_ok to the list of files that have been parsed. self._filenames.extend(read_ok) return read_ok def _read(self, fh, fname): """Parse the TIMER section""" if fname in self._timers: raise self.Error("Cannot overwrite timer associated to: %s " % fname) data = {} def parse_line(line): name, vals = line[:25], line[25:].split() ctime, cfract, wtime, wfract, ncalls, gflops = vals return AbinitTimerSection(name, ctime, cfract, wtime, wfract, ncalls, gflops) inside, has_timer = 0, False for line in fh: #print(line.strip()) if line.startswith(self.BEGIN_TAG): has_timer = True sections = [] info = {} inside = 1 line = line[len(self.BEGIN_TAG):].strip()[:-1] info["fname"] = fname for tok in line.split(","): (key, val) = [s.strip() for s in tok.split("=")] info[key] = val elif line.startswith(self.END_TAG): inside = 0 timer = AbinitTimer(sections, info, cpu_time, wall_time) mpi_rank = info["mpi_rank"] data[mpi_rank] = timer elif inside: inside += 1 line = line[1:].strip() if inside == 2: d = dict() for tok in line.split(","): (key, val) = [s.strip() for s in tok.split("=")] d[key] = float(val) cpu_time, wall_time = d["cpu_time"], d["wall_time"] elif inside > 5: sections.append(parse_line(line)) else: try: parse_line(line) except: parser_failed = True if not parser_failed: raise self.Error("line should be empty: " + str(inside) + line) if not has_timer: raise self.Error("%s: No timer section found" % fname) # Add it to the dict self._timers[fname] = data #def set_default_mpi_rank(mpi_rank): self._default_mpi_rank = mpi_rank #def get_default_mpi_rank(mpi_rank): return self._default_mpi_rank def timers(self, filename=None, mpi_rank="0"): """Return the list of timers associated to the given filename and MPI rank mpi_rank.""" if filename is not None: timers = [self._timers[filename][mpi_rank]] else: timers = [self._timers[filename][mpi_rank] for filename in self._filenames] return timers def section_names(self, ordkey="wall_time"): """Return the names of sections ordered by ordkey.""" section_names = [] # Avoid UnboundLocalError # FIXME this is not trivial for idx, timer in enumerate(self.timers()): if idx == 0: section_names = [s.name for s in timer.order_sections(ordkey)] #check = section_names #else: # new_set = set( [s.name for s in timer.order_sections(ordkey)]) # section_names.intersection_update(new_set) # check = check.union(new_set) #if check != section_names: # print("sections", section_names) # print("check",check) return section_names def get_sections(self, section_name): """ Return the list of sections stored in self.timers() whose name is section_name A fake section is returned if the timer does not have sectio_name. """ sections = [] for timer in self.timers(): for sect in timer.sections: if sect.name == section_name: sections.append(sect) break else: sections.append(AbinitTimerSection.fake()) return sections def pefficiency(self): """ Analyze the parallel efficiency. """ timers = self.timers() # Number of CPUs employed in each calculation. ncpus = [timer.ncpus for timer in timers] # Find the minimum number of cpus used and its index in timers. min_idx = minloc(ncpus) min_ncpus = ncpus[min_idx] # Reference timer ref_t = timers[min_idx] # Compute the parallel efficiency (total efficieny and the efficiency of each section) peff = {} ctime_peff = [(min_ncpus * ref_t.wall_time) / (t.wall_time * ncp) for (t, ncp) in zip(timers, ncpus)] wtime_peff = [(min_ncpus * ref_t.cpu_time) / (t.cpu_time * ncp) for (t, ncp) in zip(timers, ncpus)] n = len(timers) peff["total"] = {} peff["total"]["cpu_time"] = ctime_peff peff["total"]["wall_time"] = wtime_peff peff["total"]["cpu_fract"] = n * [100] peff["total"]["wall_fract"] = n * [100] for sect_name in self.section_names(): #print(sect_name) ref_sect = ref_t.get_section(sect_name) sects = [t.get_section(sect_name) for t in timers] try: ctime_peff = [(min_ncpus * ref_sect.cpu_time) / (s.cpu_time * ncp) for (s, ncp) in zip(sects, ncpus)] wtime_peff = [(min_ncpus * ref_sect.wall_time) / (s.wall_time * ncp) for (s, ncp) in zip(sects, ncpus)] except ZeroDivisionError: ctime_peff = n * [-1] wtime_peff = n * [-1] assert sect_name not in peff peff[sect_name] = {} peff[sect_name]["cpu_time"] = ctime_peff peff[sect_name]["wall_time"] = wtime_peff peff[sect_name]["cpu_fract"] = [s.cpu_fract for s in sects] peff[sect_name]["wall_fract"] = [s.wall_fract for s in sects] return ParallelEfficiency(self._filenames, min_idx, peff) def summarize(self, **kwargs): """ Return pandas DataFrame """ import pandas as pd colnames = ["fname", "wall_time", "cpu_time", "mpi_nprocs", "omp_nthreads", "mpi_rank"] frame = pd.DataFrame(columns=colnames) for i, timer in enumerate(self.timers()): frame = frame.append({k: getattr(timer, k) for k in colnames}, ignore_index=True) frame["tot_ncpus"] = frame["mpi_nprocs"] * frame["omp_nthreads"] # Compute parallel efficiency (use the run with min number of cpus to normalize). i = frame["tot_ncpus"].idxmin() ref_wtime = frame.ix[i]["wall_time"] ref_ncpus = frame.ix[i]["tot_ncpus"] frame["peff"] = (ref_ncpus * ref_wtime) / (frame["wall_time"] * frame["tot_ncpus"]) return frame @add_fig_kwargs def plot_efficiency(self, key="wall_time", what="gb", nmax=5, ax=None, **kwargs): ax, fig, plt = get_ax_fig_plt(ax=ax) timers = self.timers() peff = self.pefficiency() # Table with the parallel efficiency for all the sections. #pprint_table(peff.totable()) n = len(timers) xx = np.arange(n) ax.set_color_cycle(['g', 'b', 'c', 'm', 'y', 'k']) legend_entries = [] # Plot sections with good efficiency. lines = [] if "g" in what: good = peff.good_sections(key=key, nmax=nmax) for g in good: #print(g, peff[g]) yy = peff[g][key] line, = ax.plot(xx, yy, "-->", linewidth=3.0, markersize=10) lines.append(line) legend_entries.append(g) # Plot sections with bad efficiency. if "b" in what: bad = peff.bad_sections(key=key, nmax=nmax) for b in bad: #print(b, peff[b]) yy = peff[b][key] line, = ax.plot(xx, yy, "-.<", linewidth=3.0, markersize=10) lines.append(line) legend_entries.append(b) if "total" not in legend_entries: yy = peff["total"][key] total_line, = ax.plot(xx, yy, "r", linewidth=3.0, markersize=10) lines.append(total_line) legend_entries.append("total") ax.legend(lines, legend_entries, loc="best", shadow=True) #ax.set_title(title) ax.set_xlabel('Total_NCPUs') ax.set_ylabel('Efficiency') ax.grid(True) # Set xticks and labels. labels = ["MPI = %d, OMP = %d" % (t.mpi_nprocs, t.omp_nthreads) for t in timers] ax.set_xticks(xx) ax.set_xticklabels(labels, fontdict=None, minor=False, rotation=15) return fig @add_fig_kwargs def plot_pie(self, key="wall_time", minfract=0.05, ax=None, **kwargs): """Pie charts of the different timers.""" ax, fig, plt = get_ax_fig_plt(ax=ax) timers = self.timers() n = len(timers) # Make square figures and axes the_grid = plt.GridSpec(n, 1) fig = plt.figure(1, figsize=(6, 6)) for idx, timer in enumerate(timers): plt.subplot(the_grid[idx, 0]) plt.title(str(timer)) timer.pie(key=key, minfract=minfract) return fig @add_fig_kwargs def plot_stacked_hist(self, key="wall_time", nmax=5, ax=None, **kwargs): """Stacked histogram of the different timers.""" ax, fig, plt = get_ax_fig_plt(ax=ax) mpi_rank = "0" timers = self.timers(mpi_rank=mpi_rank) n = len(timers) names, values = [], [] rest = np.zeros(n) for idx, sname in enumerate(self.section_names(ordkey=key)): sections = self.get_sections(sname) svals = np.asarray([s.__dict__[key] for s in sections]) if idx < nmax: names.append(sname) values.append(svals) else: rest += svals names.append("others (nmax = %d)" % nmax) values.append(rest) #for (n, vals) in zip(names, values): print(n, vals) # The dataset is stored in values. # Now create the stacked histogram. ind = np.arange(n) # the locations for the groups width = 0.35 # the width of the bars # this does not work with matplotlib < 1.0 #plt.rcParams['axes.color_cycle'] = ['r', 'g', 'b', 'c'] colors = nmax * ['r', 'g', 'b', 'c', 'k', 'y', 'm'] bars = [] bottom = np.zeros(n) for idx, vals in enumerate(values): color = colors[idx] bar = plt.bar(ind, vals, width, color=color, bottom=bottom) bars.append(bar) bottom += vals ax.set_ylabel(key) #ax.title("Stacked histogram for the %d most important sections" % nmax) labels = ["MPI = %d, OMP = %d" % (t.mpi_nprocs, t.omp_nthreads) for t in timers] plt.xticks(ind + width / 2.0, labels, rotation=15) #plt.yticks(np.arange(0,81,10)) ax.legend([bar[0] for bar in bars], names, loc="best") return fig def plot_all(self, **kwargs): figs = []; app = figs.append app(self.plot_efficiency()) app(self.plot_pie()) app(self.plot_stacked_hist()) return figs class ParallelEfficiency(dict): def __init__(self, filenames, ref_idx, *args, **kwargs): self.update(*args, **kwargs) self.filenames = filenames self._ref_idx = ref_idx def _order_by_peff(self, key, criterion, reverse=True): estimators = { "min": min, "max": max, "mean": lambda items: sum(items) / len(items) } self.estimator = estimators[criterion] data = [] for (sect_name, peff) in self.items(): # Ignore values where we had a division by zero. if all([v != -1 for v in peff[key]]): values = peff[key][:] #print(sect_name, values) if len(values) > 1: ref_value = values.pop(self._ref_idx) assert ref_value == 1.0 data.append((sect_name, self.estimator(values))) fsort = lambda t: t[1] data.sort(key=fsort, reverse=reverse) return tuple([sect_name for (sect_name, e) in data]) def totable(self, stop=None, reverse=True): osects = self._order_by_peff("wall_time", criterion="mean", reverse=reverse) n = len(self.filenames) table = [["AbinitTimerSection"] + alternate(self.filenames, n * ["%"])] for sect_name in osects: peff = self[sect_name]["wall_time"] fract = self[sect_name]["wall_fract"] vals = alternate(peff, fract) table.append([sect_name] + ["%.2f" % val for val in vals]) return table def good_sections(self, key="wall_time", criterion="mean", nmax=5): good_sections = self._order_by_peff(key, criterion=criterion) return good_sections[:nmax] def bad_sections(self, key="wall_time", criterion="mean", nmax=5): bad_sections = self._order_by_peff(key, criterion=criterion, reverse=False) return bad_sections[:nmax] class AbinitTimerSection(object): """Record with the timing results associated to a section of code.""" STR_FIELDS = [ "name" ] NUMERIC_FIELDS = [ "wall_time", "wall_fract", "cpu_time", "cpu_fract", "ncalls", "gflops", ] FIELDS = tuple(STR_FIELDS + NUMERIC_FIELDS) @classmethod def fake(cls): return AbinitTimerSection("fake", 0.0, 0.0, 0.0, 0.0, -1, 0.0) def __init__(self, name, cpu_time, cpu_fract, wall_time, wall_fract, ncalls, gflops): self.name = name.strip() self.cpu_time = float(cpu_time) self.cpu_fract = float(cpu_fract) self.wall_time = float(wall_time) self.wall_fract = float(wall_fract) self.ncalls = int(ncalls) self.gflops = float(gflops) def to_tuple(self): return tuple([self.__dict__[at] for at in AbinitTimerSection.FIELDS]) def to_dict(self): return {at: self.__dict__[at] for at in AbinitTimerSection.FIELDS} def to_csvline(self, with_header=False): """Return a string with data in CSV format""" string = "" if with_header: string += "# " + " ".join(at for at in AbinitTimerSection.FIELDS) + "\n" string += ", ".join(str(v) for v in self.to_tuple()) + "\n" return string def __str__(self): string = "" for a in AbinitTimerSection.FIELDS: string += a + " = " + self.__dict__[a] + "," return string[:-1] class AbinitTimer(object): """Container class storing the timing results.""" def __init__(self, sections, info, cpu_time, wall_time): # Store sections and names self.sections = tuple(sections) self.section_names = tuple([s.name for s in self.sections]) self.info = info self.cpu_time = float(cpu_time) self.wall_time = float(wall_time) self.mpi_nprocs = int(info["mpi_nprocs"]) self.omp_nthreads = int(info["omp_nthreads"]) self.mpi_rank = info["mpi_rank"].strip() self.fname = info["fname"].strip() def __str__(self): string = "file = %s, wall_time = %.1f, mpi_nprocs = %d, omp_nthreads = %d" % ( self.fname, self.wall_time, self.mpi_nprocs, self.omp_nthreads ) #string += ", rank = " + self.mpi_rank return string def __cmp__(self, other): return cmp(self.wall_time, other.wall_time) @property def ncpus(self): """Total number of CPUs employed.""" return self.mpi_nprocs * self.omp_nthreads def get_section(self, section_name): try: idx = self.section_names.index(section_name) except: raise sect = self.sections[idx] assert sect.name == section_name return sect def to_csv(self, fileobj=sys.stdout): """Write data on file fileobj using CSV format.""" openclose = is_string(fileobj) if openclose: fileobj = open(fileobj, "w") for (idx, section) in enumerate(self.sections): fileobj.write(section.to_csvline(with_header=(idx == 0))) fileobj.flush() if openclose: fileobj.close() def to_table(self, sort_key="wall_time", stop=None): """Return a table (list of lists) with timer data""" table = [list(AbinitTimerSection.FIELDS), ] ord_sections = self.order_sections(sort_key) if stop is not None: ord_sections = ord_sections[:stop] for osect in ord_sections: row = [str(item) for item in osect.to_tuple()] table.append(row) return table # Maintain old API totable = to_table def get_dataframe(self, sort_key="wall_time", **kwargs): """ Return pandas DataFrame """ import pandas as pd frame = pd.DataFrame(columns=AbinitTimerSection.FIELDS) for osect in self.order_sections(sort_key): frame = frame.append(osect.to_dict(), ignore_index=True) # Monkey patch frame.info = self.info frame.cpu_time = self.cpu_time frame.wall_time = self.wall_time frame.mpi_nprocs = self.mpi_nprocs frame.omp_nthreads = self.omp_nthreads frame.mpi_rank = self.mpi_rank frame.fname = self.fname return frame def get_values(self, keys): """Return a list of values associated to a particular list of keys""" if is_string(keys): return [s.__dict__[keys] for s in self.sections] else: values = [] for k in keys: values.append([s.__dict__[k] for s in self.sections]) return values def names_and_values(self, key, minval=None, minfract=None, sorted=True): """ Select the entries whose value[key] is >= minval or whose fraction[key] is >= minfract Return the names of the sections and the correspoding value """ values = self.get_values(key) names = self.get_values("name") new_names, new_values = [], [] other_val = 0.0 if minval is not None: assert minfract is None for n, v in zip(names, values): if v >= minval: new_names.append(n) new_values.append(v) else: other_val += v new_names.append("below minval " + str(minval)) new_values.append(other_val) elif minfract is not None: assert minval is None total = self.sum_sections(key) for n, v in zip(names, values): if v / total >= minfract: new_names.append(n) new_values.append(v) else: other_val += v new_names.append("below minfract " + str(minfract)) new_values.append(other_val) else: # all values new_names, new_values = names, values if sorted: # Sort new_values and rearrange new_names. fsort = lambda t: t[1] nandv = [nv for nv in zip(new_names, new_values)] nandv.sort(key=fsort) new_names, new_values = [n[0] for n in nandv], [n[1] for n in nandv] return new_names, new_values def _reduce_sections(self, keys, operator): return operator(self.get_values(keys)) def sum_sections(self, keys): return self._reduce_sections(keys, sum) def order_sections(self, key, reverse=True): """Sort sections according to the value of key.""" fsort = lambda s: s.__dict__[key] return sorted(self.sections, key=fsort, reverse=reverse) @add_fig_kwargs def cpuwall_histogram(self, ax=None, **kwargs): ax, fig, plt = get_ax_fig_plt(ax=ax) nk = len(self.sections) ind = np.arange(nk) # the x locations for the groups width = 0.35 # the width of the bars cpu_times = self.get_values("cpu_time") rects1 = plt.bar(ind, cpu_times, width, color='r') wall_times = self.get_values("wall_time") rects2 = plt.bar(ind + width, wall_times, width, color='y') # Add ylable and title ax.set_ylabel('Time (s)') #if title: # plt.title(title) #else: # plt.title('CPU-time and Wall-time for the different sections of the code') ticks = self.get_values("name") ax.set_xticks(ind + width, ticks) ax.legend((rects1[0], rects2[0]), ('CPU', 'Wall'), loc="best") return fig #def hist2(self, key1="wall_time", key2="cpu_time"): # labels = self.get_values("name") # vals1, vals2 = self.get_values([key1, key2]) # N = len(vals1) # assert N == len(vals2) # plt.figure(1) # plt.subplot(2, 1, 1) # 2 rows, 1 column, figure 1 # n1, bins1, patches1 = plt.hist(vals1, N, facecolor="m") # plt.xlabel(labels) # plt.ylabel(key1) # plt.subplot(2, 1, 2) # n2, bins2, patches2 = plt.hist(vals2, N, facecolor="y") # plt.xlabel(labels) # plt.ylabel(key2) # plt.show() def pie(self, key="wall_time", minfract=0.05, title=None): import matplotlib.pyplot as plt # Don't show section whose value is less that minfract labels, vals = self.names_and_values(key, minfract=minfract) return plt.pie(vals, explode=None, labels=labels, autopct='%1.1f%%', shadow=True) def scatter_hist(self, ax=None, **kwargs): import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable ax, fig, plt = get_ax_fig_plt(ax=ax) #title = kwargs.pop("title", None) #show = kwargs.pop("show", True) #savefig = kwargs.pop("savefig", None) #fig = plt.figure(1, figsize=(5.5, 5.5)) x = np.asarray(self.get_values("cpu_time")) y = np.asarray(self.get_values("wall_time")) # the scatter plot: axScatter = plt.subplot(1, 1, 1) axScatter.scatter(x, y) axScatter.set_aspect("auto") # create new axes on the right and on the top of the current axes # The first argument of the new_vertical(new_horizontal) method is # the height (width) of the axes to be created in inches. divider = make_axes_locatable(axScatter) axHistx = divider.append_axes("top", 1.2, pad=0.1, sharex=axScatter) axHisty = divider.append_axes("right", 1.2, pad=0.1, sharey=axScatter) # make some labels invisible plt.setp(axHistx.get_xticklabels() + axHisty.get_yticklabels(), visible=False) # now determine nice limits by hand: binwidth = 0.25 xymax = np.max([np.max(np.fabs(x)), np.max(np.fabs(y))]) lim = (int(xymax / binwidth) + 1) * binwidth bins = np.arange(-lim, lim + binwidth, binwidth) axHistx.hist(x, bins=bins) axHisty.hist(y, bins=bins, orientation='horizontal') # the xaxis of axHistx and yaxis of axHisty are shared with axScatter, # thus there is no need to manually adjust the xlim and ylim of these axis. #axHistx.axis["bottom"].major_ticklabels.set_visible(False) for tl in axHistx.get_xticklabels(): tl.set_visible(False) axHistx.set_yticks([0, 50, 100]) #axHisty.axis["left"].major_ticklabels.set_visible(False) for tl in axHisty.get_yticklabels(): tl.set_visible(False) axHisty.set_xticks([0, 50, 100]) plt.draw() return fig
mit
vshtanko/scikit-learn
sklearn/decomposition/pca.py
192
23117
""" Principal Component Analysis """ # Author: Alexandre Gramfort <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis A. Engemann <[email protected]> # Michael Eickenberg <[email protected]> # # License: BSD 3 clause from math import log, sqrt import numpy as np from scipy import linalg from scipy.special import gammaln from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, as_float_array from ..utils import check_array from ..utils.extmath import fast_dot, fast_logdet, randomized_svd from ..utils.validation import check_is_fitted def _assess_dimension_(spectrum, rank, n_samples, n_features): """Compute the likelihood of a rank ``rank`` dataset The dataset is assumed to be embedded in gaussian noise of shape(n, dimf) having spectrum ``spectrum``. Parameters ---------- spectrum: array of shape (n) Data spectrum. rank: int Tested rank value. n_samples: int Number of samples. n_features: int Number of features. Returns ------- ll: float, The log-likelihood Notes ----- This implements the method of `Thomas P. Minka: Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604` """ if rank > len(spectrum): raise ValueError("The tested rank cannot exceed the rank of the" " dataset") pu = -rank * log(2.) for i in range(rank): pu += (gammaln((n_features - i) / 2.) - log(np.pi) * (n_features - i) / 2.) pl = np.sum(np.log(spectrum[:rank])) pl = -pl * n_samples / 2. if rank == n_features: pv = 0 v = 1 else: v = np.sum(spectrum[rank:]) / (n_features - rank) pv = -np.log(v) * n_samples * (n_features - rank) / 2. m = n_features * rank - rank * (rank + 1.) / 2. pp = log(2. * np.pi) * (m + rank + 1.) / 2. pa = 0. spectrum_ = spectrum.copy() spectrum_[rank:n_features] = v for i in range(rank): for j in range(i + 1, len(spectrum)): pa += log((spectrum[i] - spectrum[j]) * (1. / spectrum_[j] - 1. / spectrum_[i])) + log(n_samples) ll = pu + pl + pv + pp - pa / 2. - rank * log(n_samples) / 2. return ll def _infer_dimension_(spectrum, n_samples, n_features): """Infers the dimension of a dataset of shape (n_samples, n_features) The dataset is described by its spectrum `spectrum`. """ n_spectrum = len(spectrum) ll = np.empty(n_spectrum) for rank in range(n_spectrum): ll[rank] = _assess_dimension_(spectrum, rank, n_samples, n_features) return ll.argmax() class PCA(BaseEstimator, TransformerMixin): """Principal component analysis (PCA) Linear dimensionality reduction using Singular Value Decomposition of the data and keeping only the most significant singular vectors to project the data to a lower dimensional space. This implementation uses the scipy.linalg implementation of the singular value decomposition. It only works for dense arrays and is not scalable to large dimensional data. The time complexity of this implementation is ``O(n ** 3)`` assuming n ~ n_samples ~ n_features. Read more in the :ref:`User Guide <PCA>`. Parameters ---------- n_components : int, None or string Number of components to keep. if n_components is not set all components are kept:: n_components == min(n_samples, n_features) if n_components == 'mle', Minka\'s MLE is used to guess the dimension if ``0 < n_components < 1``, select the number of components such that the amount of variance that needs to be explained is greater than the percentage specified by n_components copy : bool If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead. whiten : bool, optional When True (False by default) the `components_` vectors are divided by n_samples times singular values to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometime improve the predictive accuracy of the downstream estimators by making there data respect some hard-wired assumptions. Attributes ---------- components_ : array, [n_components, n_features] Principal axes in feature space, representing the directions of maximum variance in the data. explained_variance_ratio_ : array, [n_components] Percentage of variance explained by each of the selected components. If ``n_components`` is not set then all components are stored and the sum of explained variances is equal to 1.0 mean_ : array, [n_features] Per-feature empirical mean, estimated from the training set. n_components_ : int The estimated number of components. Relevant when n_components is set to 'mle' or a number between 0 and 1 to select using explained variance. noise_variance_ : float The estimated noise covariance following the Probabilistic PCA model from Tipping and Bishop 1999. See "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf. It is required to computed the estimated data covariance and score samples. Notes ----- For n_components='mle', this class uses the method of `Thomas P. Minka: Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604` Implements the probabilistic PCA model from: M. Tipping and C. Bishop, Probabilistic Principal Component Analysis, Journal of the Royal Statistical Society, Series B, 61, Part 3, pp. 611-622 via the score and score_samples methods. See http://www.miketipping.com/papers/met-mppca.pdf Due to implementation subtleties of the Singular Value Decomposition (SVD), which is used in this implementation, running fit twice on the same matrix can lead to principal components with signs flipped (change in direction). For this reason, it is important to always use the same estimator object to transform data in a consistent fashion. Examples -------- >>> import numpy as np >>> from sklearn.decomposition import PCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> pca = PCA(n_components=2) >>> pca.fit(X) PCA(copy=True, n_components=2, whiten=False) >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244... 0.00755...] See also -------- RandomizedPCA KernelPCA SparsePCA TruncatedSVD """ def __init__(self, n_components=None, copy=True, whiten=False): self.n_components = n_components self.copy = copy self.whiten = whiten def fit(self, X, y=None): """Fit the model with X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ self._fit(X) return self def fit_transform(self, X, y=None): """Fit the model with X and apply the dimensionality reduction on X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ U, S, V = self._fit(X) U = U[:, :self.n_components_] if self.whiten: # X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples) U *= sqrt(X.shape[0]) else: # X_new = X * V = U * S * V^T * V = U * S U *= S[:self.n_components_] return U def _fit(self, X): """Fit the model on X Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- U, s, V : ndarrays The SVD of the input data, copied and centered when requested. """ X = check_array(X) n_samples, n_features = X.shape X = as_float_array(X, copy=self.copy) # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ U, S, V = linalg.svd(X, full_matrices=False) explained_variance_ = (S ** 2) / n_samples explained_variance_ratio_ = (explained_variance_ / explained_variance_.sum()) components_ = V n_components = self.n_components if n_components is None: n_components = n_features elif n_components == 'mle': if n_samples < n_features: raise ValueError("n_components='mle' is only supported " "if n_samples >= n_features") n_components = _infer_dimension_(explained_variance_, n_samples, n_features) elif not 0 <= n_components <= n_features: raise ValueError("n_components=%r invalid for n_features=%d" % (n_components, n_features)) if 0 < n_components < 1.0: # number of components for which the cumulated explained variance # percentage is superior to the desired threshold ratio_cumsum = explained_variance_ratio_.cumsum() n_components = np.sum(ratio_cumsum < n_components) + 1 # Compute noise covariance using Probabilistic PCA model # The sigma2 maximum likelihood (cf. eq. 12.46) if n_components < n_features: self.noise_variance_ = explained_variance_[n_components:].mean() else: self.noise_variance_ = 0. # store n_samples to revert whitening when getting covariance self.n_samples_ = n_samples self.components_ = components_[:n_components] self.explained_variance_ = explained_variance_[:n_components] explained_variance_ratio_ = explained_variance_ratio_[:n_components] self.explained_variance_ratio_ = explained_variance_ratio_ self.n_components_ = n_components return (U, S, V) def get_covariance(self): """Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances. Returns ------- cov : array, shape=(n_features, n_features) Estimated covariance of data. """ components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) cov = np.dot(components_.T * exp_var_diff, components_) cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov def get_precision(self): """Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data. """ n_features = self.components_.shape[1] # handle corner cases first if self.n_components_ == 0: return np.eye(n_features) / self.noise_variance_ if self.n_components_ == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ exp_var = self.explained_variance_ exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) precision = np.dot(components_, components_.T) / self.noise_variance_ precision.flat[::len(precision) + 1] += 1. / exp_var_diff precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= -(self.noise_variance_ ** 2) precision.flat[::len(precision) + 1] += 1. / self.noise_variance_ return precision def transform(self, X): """Apply the dimensionality reduction on X. X is projected on the first principal components previous extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'mean_') X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X_transformed = fast_dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed def inverse_transform(self, X): """Transform data back to its original space, i.e., return an input X_original whose transform would be X Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples is the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) """ check_is_fitted(self, 'mean_') if self.whiten: return fast_dot( X, np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_) + self.mean_ else: return fast_dot(X, self.components_) + self.mean_ def score_samples(self, X): """Return the log-likelihood of each sample See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters ---------- X: array, shape(n_samples, n_features) The data. Returns ------- ll: array, shape (n_samples,) Log-likelihood of each sample under the current model """ check_is_fitted(self, 'mean_') X = check_array(X) Xr = X - self.mean_ n_features = X.shape[1] log_like = np.zeros(X.shape[0]) precision = self.get_precision() log_like = -.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1) log_like -= .5 * (n_features * log(2. * np.pi) - fast_logdet(precision)) return log_like def score(self, X, y=None): """Return the average log-likelihood of all samples See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters ---------- X: array, shape(n_samples, n_features) The data. Returns ------- ll: float Average log-likelihood of the samples under the current model """ return np.mean(self.score_samples(X)) class RandomizedPCA(BaseEstimator, TransformerMixin): """Principal component analysis (PCA) using randomized SVD Linear dimensionality reduction using approximated Singular Value Decomposition of the data and keeping only the most significant singular vectors to project the data to a lower dimensional space. Read more in the :ref:`User Guide <RandomizedPCA>`. Parameters ---------- n_components : int, optional Maximum number of components to keep. When not given or None, this is set to n_features (the second dimension of the training data). copy : bool If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead. iterated_power : int, optional Number of iterations for the power method. 3 by default. whiten : bool, optional When True (False by default) the `components_` vectors are divided by the singular values to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometime improve the predictive accuracy of the downstream estimators by making their data respect some hard-wired assumptions. random_state : int or RandomState instance or None (default) Pseudo Random Number generator seed control. If None, use the numpy.random singleton. Attributes ---------- components_ : array, [n_components, n_features] Components with maximum variance. explained_variance_ratio_ : array, [n_components] Percentage of variance explained by each of the selected components. \ k is not set then all components are stored and the sum of explained \ variances is equal to 1.0 mean_ : array, [n_features] Per-feature empirical mean, estimated from the training set. Examples -------- >>> import numpy as np >>> from sklearn.decomposition import RandomizedPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> pca = RandomizedPCA(n_components=2) >>> pca.fit(X) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE RandomizedPCA(copy=True, iterated_power=3, n_components=2, random_state=None, whiten=False) >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244... 0.00755...] See also -------- PCA TruncatedSVD References ---------- .. [Halko2009] `Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909)` .. [MRT] `A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert` """ def __init__(self, n_components=None, copy=True, iterated_power=3, whiten=False, random_state=None): self.n_components = n_components self.copy = copy self.iterated_power = iterated_power self.whiten = whiten self.random_state = random_state def fit(self, X, y=None): """Fit the model with X by extracting the first principal components. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ self._fit(check_array(X)) return self def _fit(self, X): """Fit the model to the data X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- X : ndarray, shape (n_samples, n_features) The input data, copied, centered and whitened when requested. """ random_state = check_random_state(self.random_state) X = np.atleast_2d(as_float_array(X, copy=self.copy)) n_samples = X.shape[0] # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ if self.n_components is None: n_components = X.shape[1] else: n_components = self.n_components U, S, V = randomized_svd(X, n_components, n_iter=self.iterated_power, random_state=random_state) self.explained_variance_ = exp_var = (S ** 2) / n_samples full_var = np.var(X, axis=0).sum() self.explained_variance_ratio_ = exp_var / full_var if self.whiten: self.components_ = V / S[:, np.newaxis] * sqrt(n_samples) else: self.components_ = V return X def transform(self, X, y=None): """Apply dimensionality reduction on X. X is projected on the first principal components previous extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'mean_') X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X = fast_dot(X, self.components_.T) return X def fit_transform(self, X, y=None): """Fit the model with X and apply the dimensionality reduction on X. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ X = check_array(X) X = self._fit(X) return fast_dot(X, self.components_.T) def inverse_transform(self, X, y=None): """Transform data back to its original space. Returns an array X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples in the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform does not compute the exact inverse operation of transform. """ check_is_fitted(self, 'mean_') X_original = fast_dot(X, self.components_) if self.mean_ is not None: X_original = X_original + self.mean_ return X_original
bsd-3-clause
IntelLabs/hpat
examples/series/series_quantile.py
1
1768
# ***************************************************************************** # Copyright (c) 2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** import pandas as pd from numba import njit @njit def series_quantile(): s = pd.Series([1, 2, 3, 4]) median = .5 # compute median out_series = s.quantile(median) return out_series # Expect median value == 2.5 print(series_quantile())
bsd-2-clause
laugustyniak/textlytics
examples/sentiment_process_test.py
1
16579
# -*- coding: utf-8 -*- from pprint import pprint from sklearn.linear_model import LogisticRegression from textlytics.sentiment.document_preprocessing import \ DocumentPreprocessor __author__ = 'Lukasz Augustyniak' import glob import pickle import logging import pandas as pd from os import path from datetime import datetime from textlytics.sentiment.sentiment import Sentiment from textlytics.sentiment.io_sentiment import results_to_pickle logging.basicConfig(filename='processing.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') ALL_CLASSIFIERS = { # 'BernoulliNB': BernoulliNB(), # 'GaussianNB': GaussianNB(), # 'MultinomialNB': MultinomialNB(), # 'DecisionTreeClassifier': DecisionTreeClassifier(), # 'RandomForestClassifier': RandomForestClassifier(), 'LogisticRegression': LogisticRegression(), # 'LinearSVC': LinearSVC(), # 'Perceptron': Perceptron(), # 'SVC': SVC(), # 'AdaBoostClassifier': AdaBoostClassifier(), # 'SVR': SVR(), # 'NuSVC': NuSVC(), # 'NuSVR': NuSVR(), # 'OneClassSVM': OneClassSVM(), # 'ExtraTreeClassifier': ExtraTreeClassifier() } def test_ensemble(dataset, source): # ############################# LEXICONS ################################## # dictionary for all predicted values lexicons_predictions = {} sentiment = Sentiment() print datetime.datetime.now() # lexicons_files = [ # 'AFINN-96.txt', # 'AFINN-111.txt', # # 'amazon_movies_25.txt', # 'Bing-Liu.txt', # 'enchantedlearning.com.txt', # 'past_future_list.txt', # 'past_future_list_plus.txt', # 'simple_list.txt', # 'simple_list_plus.txt', # 'simplest.txt' # ] # # category_lexicons = [ # 'amazon_automotive_5.txt', # 'amazon_automotive_25.txt', # 'amazon_books_5.txt', # 'amazon_books_25.txt', # 'amazon_electronics_5.txt', # 'amazon_electronics_25.txt', # 'amazon_health_5.txt', # 'amazon_health_25.txt', # 'amazon_movies_5.txt'] # # for cl in category_lexicons: # if cl.split('_')[1] in dataset.lower(): # lexicons_files.append(cl) # print cl # df, lexicon_prediction, lexicon_result, classes = \ # sentiment.lexicon_based_sentiment( # f_name=dataset, # sentiment_level='Document', # lexicons_files=lexicons_files, # words_stem=False) # lexicons_predictions.update(lexicon_prediction) # to_pickle(dataset, 'predictions', lexicon_prediction) # to_pickle(dataset, 'lexicons', lexicon_result) # pprint(lexicon_result) # ############################# ENSEMBLE LEXICONS ######################### # ensemble_lexicons = SentimentEnsemble(classes=classes) # ensemble_results = ensemble_lexicons.sentiment_ensemble_lexi_ml( # lexicon_predictions=lexicons_predictions, # ml_predictions={}, # classifiers=ALL_CLASSIFIERS, # n_folds=2 # ) # to_pickle(dataset, 'ensemble-lexicons-only', ensemble_results) # ############################# features_ngrams ############################ # all n grams to test features_ngrams = { 'unigrams': (1, 1), # 'bigrams': (2, 2), # 'trigrams': (3, 3), # 'n_grams_1_2': (1, 2), # 'n_grams_1_3': (1, 3), # 'n_grams_2_3': (2, 3) } logging.info(features_ngrams) # dictionary for machine learning predictions (part of feature set for # second step in ensemble approach) ml_predictions = {} ############################# TfidfVectorizer ############################ # for n_gram_name, n_grams_range in features_ngrams.iteritems(): # print n_gram_name # print 'TfidfVectorizer' # f_name = n_gram_name + '_TfidfVectorizer' # classes, ml_prediction, results_ml = sentiment.machine_learning_sentiment( # file_name=dataset, # worksheet_name='Arkusz1', # n_gram_range=n_grams_range, # n_folds=10, # classifiers=ALL_CLASSIFIERS, # # classifiers={'GaussianNB': GaussianNB()}, # # classifiers=None, # all classifier available in sentiment class # amazon=True, # lowercase=True, # stop_words='english', # max_df=1.0, # min_df=0.0, # max_features=None, # results_filename=f_name, # vectorizer='TfidfVectorizer', # # tokenizer=document_preprocessor.tokenizer_with_stemming # ) # # add all prediction dictionaries into feature set # ml_predictions.update(ml_prediction) # to_pickle(dataset, n_gram_name + '-' + f_name, results_ml) # ############################# CountVectorizer ############################ for n_gram_name, n_grams_range in features_ngrams.iteritems(): print n_gram_name print 'CountVectorizer' f_name = n_gram_name + '_CountVectorizer' classes, ml_prediction, results_ml = sentiment.supervised_sentiment( dataset=dataset, # worksheet_name='Arkusz1', n_gram_range=n_grams_range, n_folds=10, # classifiers={'GaussianNB': GaussianNB()}, # classifiers=None, # all classifier available in sentiment class classifiers=ALL_CLASSIFIERS, # amazon=True, lowercase=True, stop_words='english', max_df=1.0, min_df=0.0, max_features=None, f_name_results=f_name, vectorizer='CountVectorizer', # tokenizer=document_preprocessor.tokenizer_with_stemming source=source ) ml_predictions.update(ml_prediction) results_to_pickle(dataset, n_gram_name + '-' + f_name, results_ml) pprint(results_ml) # pprint(lexicons_predictions) # pprint(ml_predictions) # ############################# ENSEMBLE ################################### # ensemble = SentimentEnsemble(classes=classes) # ensemble_results = ensemble.sentiment_ensemble_lexi_ml( # lexicon_predictions=lexicons_predictions, # ml_predictions=ml_predictions, # classifiers=ALL_CLASSIFIERS, # n_folds=10 # ) # to_pickle(dataset, 'ensemble', ensemble_results) # ############################# OTHER ###################################### # sentiment.machine_learning_sentiment( # file_name='Amazon-500x150-balanced.xlsx', # worksheet_name='Arkusz1', # n_gram_range=(1, 3), # # classifiers={'GaussianNB': GaussianNB()}, # # classifiers={}, # amazon=True) # # sentiment.machine_learning_sentiment( # file_name='Amazon-500x150-balanced.xlsx', # worksheet_name='Arkusz1', # n_gram_range=(1, 2), # classifiers={'GaussianNB': GaussianNB()}, # # classifiers={}, # amazon_dataset=True) # # sentiment.machine_learning_sentiment( # file_name='Amazon-500x150-balanced.xlsx', # worksheet_name='Arkusz1', # n_gram_range=(1, 1), # classifiers={'GaussianNB': GaussianNB()}, # # classifiers={}, # amazon_dataset=True) # # # tylko pozytywne i negatywne # sentiment.machine_learning_sentiment( # file_name=path.join('Amazon-4k-pos-neg.xls'), # # file_name=path.join('Amazon-500x150-balanced.xlsx'), # worksheet_name='Arkusz1', # # classifiers={'GaussianNB': GaussianNB()}, # classifiers={}, # amazon_dataset=True, # progress_interval=3) # ############################# TEST RUNNING ################################### # # parser = argparse.ArgumentParser() # parser.add_argument("dataset", help="path to dataset file") # args = parser.parse_args() # test_ensemble(dataset=args.dataset) # test_ensemble(dataset='Amazon-500x150-balanced.xlsx') # test_ensemble(dataset='Automotive9600.csv') # test_ensemble(dataset='Books9600.csv') # test_ensemble(dataset='Health & Personal Care9600.csv') # test_ensemble(dataset='Movies & TV9600.csv') # test_ensemble(dataset='Movies & TV3200.csv') # test_ensemble(dataset='Movies_&_TV1200.csv') # test_ensemble(dataset='Movies & TV-1-3-5-x-1000.csv') # test_ensemble(dataset='Music9600.csv') # test_ensemble(dataset='semeval2013.csv', source='semeval2013') # test_ensemble(dataset='semeval2014.csv', source='semeval2014') # test_ensemble(dataset='Automotive200.csv', source='amazon') # test_ensemble(dataset='Amazon-7.xlsx') # test_ensemble() # ############################# chosen kfolds ################################# # @memory_profiler.profile def get_dataset_with_kfolds_indexes_train(base_path='/home/engine/csv/', dataset_filter='', n_reviews=2000, source='amazon'): train_test_path = path.join(base_path, 'train_test_subsets') # pickle_pattern = path.join(train_test_path, '*%s*.pkl' % dataset_filter) # train_test_pickles = glob.glob(pickle_pattern) datasets = glob.glob( path.join(base_path, '*%s*.txt.gz.csv' % dataset_filter)) print 'Datasets:' pprint(datasets) for dataset in datasets: dataset_name = path.basename(dataset) print 'Dataset name: %s' % dataset_name dp = DocumentPreprocessor() df = pd.DataFrame.from_csv(dataset, sep=';', index_col=False) df, _ = dp.star_score_to_sentiment(df, score_column='review/score') # extract only Document and Sentiment columns df['Document'] = df['review/text'] df = df[['Sentiment', 'Document']] indexes_all = set(df.index) print 'all indexes: %s' % len(indexes_all) try: # load train/test sets folds f_path = path.join(train_test_path, 'train-test-%s-%s.pkl' '' % (n_reviews, dataset_name)) with open(f_path, 'rb') as f: train_test_indexes = pickle.load(f) sentiment = Sentiment() features_ngrams = { 'unigrams': (1, 1), # 'n_grams_1_2': (1, 2), # 'n_grams_1_3': (1, 3), } logging.info(features_ngrams) ml_predictions = {} # ############################# CountVectorizer ############################ for n_gram_name, n_grams_range in features_ngrams.iteritems(): print n_gram_name print 'CountVectorizer' f_name = n_gram_name + '_CountVectorizer' classes, ml_prediction, results_ml = sentiment.supervised_sentiment( dataset=df, n_gram_range=n_grams_range, classifiers=ALL_CLASSIFIERS, lowercase=True, stop_words='english', max_df=1.0, min_df=0.0, max_features=None, f_name_results=f_name, vectorizer='CountVectorizer', source=source, kfolds_indexes=train_test_indexes, dataset_name=dataset_name ) ml_predictions.update(ml_prediction) results_to_pickle(dataset=dataset_name, f_name=f_name, obj=results_ml) pprint(results_ml) except IOError as err: logging.error('%s not loaded' % dataset_name) print str(err) raise # get_dataset_with_kfolds_indexes_train( # # base_path='/mnt/sdc2/Lukasz/Datasets/amazon-cats/csv/', # # base_path='C:/Datasets/Amazon/csv/', # base_path='/home/engine/csv', # # dataset_filter='ell', # dataset_filter='Electr' # ) # @memory_profiler.profile def get_dataset_with_kfolds_indexes(base_path='/home/engine/csv/', dataset_filter='', n_reviews=2000, source='amazon', features_ngrams={'unigrams': (1, 1)}): datasets = glob.glob(path.join( base_path, '*%s*.txt.gz.csv' % dataset_filter)) print 'Datasets:' pprint(datasets) for dataset in datasets: dataset_name = path.basename(dataset) print 'Dataset name: %s' % dataset_name dp = DocumentPreprocessor() df = pd.DataFrame.from_csv(dataset, sep=';', index_col=False) df, _ = dp.star_score_to_sentiment(df, score_column='review/score') # extract only Document and Sentiment columns df['Document'] = df['review/text'] df = df[['Sentiment', 'Document']] try: sent = Sentiment() logging.info(features_ngrams) ml_predictions = {} results = [] for n_gram_name, n_grams_range in features_ngrams.iteritems(): print n_gram_name print 'CountVectorizer' f_name = n_gram_name + '_CountVectorizer' classes, ml_prediction, results_ml = sent.supervised_sentiment( dataset=df, n_gram_range=n_grams_range, classifiers=ALL_CLASSIFIERS, lowercase=True, stop_words='english', max_df=1.0, min_df=0.0, max_features=None, f_name_results=f_name, vectorizer='CountVectorizer', source=source, dataset_name=dataset_name, n_folds=5 ) results.append(results_ml) # ml_predictions.update(ml_prediction) results_to_pickle(dataset=dataset_name, f_name=f_name, obj=results) pprint(results_ml) except IOError as err: logging.error('%s not loaded' % dataset_name) print str(err) raise get_dataset_with_kfolds_indexes( # base_path='/mnt/sdc2/Lukasz/Datasets/amazon-cats/csv/', # base_path='C:/Datasets/Amazon/csv/', base_path='/home/engine/csv', # dataset_filter='ell', dataset_filter='Automo', features_ngrams={ 'unigrams': (1, 1), # 'n_grams_1_2': (1, 2), # 'n_grams_1_3': (1, 3), } ) # @memory_profiler.profile def lexicons_ensemble(dataset='semeval2013', source=None): sentiment = Sentiment() lexicons_predictions = {} lexicons_files = [ 'AFINN-96.txt', 'AFINN-111.txt', # 'amazon_movies_25.txt', 'Bing-Liu.txt', 'enchantedlearning.com.txt', 'past_future_list.txt', 'past_future_list_plus.txt', 'simple_list.txt', 'simple_list_plus.txt', 'simplest.txt' ] category_lexicons = [ 'amazon_automotive_5.txt', 'amazon_automotive_25.txt', 'amazon_books_5.txt', 'amazon_books_25.txt', 'amazon_electronics_5.txt', 'amazon_electronics_25.txt', 'amazon_health_5.txt', 'amazon_health_25.txt', 'amazon_movies_5.txt'] for cl in category_lexicons: if cl.split('_')[1] in dataset.lower(): lexicons_files.append(cl) print cl df, lexicon_prediction, lexicon_result, classes = \ sentiment.lexicon_based_sentiment( dataset=dataset, sentiment_level='Document', lexicons_files=lexicons_files, words_stem=False, n_jobs=None ) print print 'results: ' pprint(lexicon_result) print lexicons_predictions.update(lexicon_prediction) results_to_pickle(dataset, 'predictions', lexicon_prediction) results_to_pickle(dataset, 'lexicons', lexicon_result) # ############################ ENSEMBLE LEXICONS ######################### # ensemble_lexicons = SentimentEnsemble(classes=classes) # ensemble_results = ensemble_lexicons.sentiment_ensemble_lexi_ml( # lexicon_predictions=lexicons_predictions, # ml_predictions={}, # classifiers=ALL_CLASSIFIERS, # n_folds=2 # ) # results_to_pickle(dataset, 'ensemble-lexicons-only', ensemble_results) # lexicons_ensemble()
mit
leggitta/mne-python
mne/commands/mne_browse_raw.py
18
3986
#!/usr/bin/env python """Browse raw data You can do for example: $ mne browse_raw --raw sample_audvis_raw.fif \ --proj sample_audvis_ecg_proj.fif \ --eve sample_audvis_raw-eve.fif """ # Authors : Eric Larson, PhD import sys import mne def run(): import matplotlib.pyplot as plt from mne.commands.utils import get_optparser parser = get_optparser(__file__) parser.add_option("--raw", dest="raw_in", help="Input raw FIF file", metavar="FILE") parser.add_option("--proj", dest="proj_in", help="Projector file", metavar="FILE", default='') parser.add_option("--eve", dest="eve_in", help="Events file", metavar="FILE", default='') parser.add_option("-d", "--duration", dest="duration", type="float", help="Time window for plotting (sec)", default=10.0) parser.add_option("-t", "--start", dest="start", type="float", help="Initial start time for plotting", default=0.0) parser.add_option("-n", "--n_channels", dest="n_channels", type="int", help="Number of channels to plot at a time", default=20) parser.add_option("-o", "--order", dest="order", help="Order for plotting ('type' or 'original')", default='type') parser.add_option("-p", "--preload", dest="preload", help="Preload raw data (for faster navigaton)", default=False) parser.add_option("-s", "--show_options", dest="show_options", help="Show projection options dialog", default=False) parser.add_option("--allowmaxshield", dest="maxshield", help="Allow loading MaxShield processed data", action="store_true") parser.add_option("--highpass", dest="highpass", type="float", help="Display high-pass filter corner frequency", default=-1) parser.add_option("--lowpass", dest="lowpass", type="float", help="Display low-pass filter corner frequency", default=-1) parser.add_option("--filtorder", dest="filtorder", type="int", help="Display filtering IIR order", default=4) parser.add_option("--clipping", dest="clipping", help="Enable trace clipping mode, either 'clip' or " "'transparent'", default=None) options, args = parser.parse_args() raw_in = options.raw_in duration = options.duration start = options.start n_channels = options.n_channels order = options.order preload = options.preload show_options = options.show_options proj_in = options.proj_in eve_in = options.eve_in maxshield = options.maxshield highpass = options.highpass lowpass = options.lowpass filtorder = options.filtorder clipping = options.clipping if raw_in is None: parser.print_help() sys.exit(1) raw = mne.io.Raw(raw_in, preload=preload, allow_maxshield=maxshield) if len(proj_in) > 0: projs = mne.read_proj(proj_in) raw.info['projs'] = projs if len(eve_in) > 0: events = mne.read_events(eve_in) else: events = None highpass = None if highpass < 0 or filtorder <= 0 else highpass lowpass = None if lowpass < 0 or filtorder <= 0 else lowpass filtorder = 4 if filtorder <= 0 else filtorder raw.plot(duration=duration, start=start, n_channels=n_channels, order=order, show_options=show_options, events=events, highpass=highpass, lowpass=lowpass, filtorder=filtorder, clipping=clipping) plt.show(block=True) is_main = (__name__ == '__main__') if is_main: run()
bsd-3-clause
ssh0/growing-string
triangular_lattice/max_radius.py
1
1541
#!/usr/bin/env python # -*- coding:utf-8 -*- # # written by Shotaro Fujimoto # 2016-10-05 import time import numpy as np from tqdm import tqdm from multiprocessing import Pool from growing_string import Main import matplotlib.pyplot as plt max_dists = [] sample_num = 10 betas_num = 10 betas = np.linspace(0., 10., num=betas_num) frames = 400 L = 1000 params = { 'Lx': L, 'Ly': L, 'frames': frames, 'size': [3,] * 1, 'plot': False, 'save_image': False, 'strings': [{'id': 1, 'x': L/4, 'y': L/2, 'vec': [0, 4]}], } def calc_max_radius(beta): return max([_calc_max_radius(beta) for i in range(sample_num)]) def _calc_max_radius(beta): main = Main(beta=beta, **params) s = main.strings[0] N = float(len(s.vec) + 1) pos = list(s.pos.T) x = main.lattice_X[pos] y = main.lattice_Y[pos] X = main.lattice_X[L / 4, L / 2] Y = main.lattice_Y[L / 4, L / 2] r = np.sqrt((x - X) ** 2 + (y - Y) ** 2) return np.max(r) pool = Pool(6) ite = pool.imap(calc_max_radius, betas) for ret in tqdm(ite, total=betas_num): max_dists.append(ret) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(betas, max_dists) ax.set_title("Max distance from the starting point") ax.set_xlim(0, max(betas) + 1) ax.set_ylim(min(max_dists) - 0.1, max(1., max(max_dists) + 0.1)) ax.set_xlabel(r'$\beta$') ax.set_ylabel(r'$R$') fn = "./results/img/max_radius/" fn += "frames=%d" % frames + "_sample=%d" % sample_num fn += time.strftime("_%y%m%d_%H%M%S") fn += ".png" fig.savefig(fn) plt.close()
mit
ville-k/tensorflow
tensorflow/contrib/learn/python/learn/dataframe/dataframe.py
27
4836
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A DataFrame is a container for ingesting and preprocessing data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from .series import Series from .transform import Transform from tensorflow.python.util.deprecation import deprecated class DataFrame(object): """A DataFrame is a container for ingesting and preprocessing data.""" @deprecated("2017-06-15", "contrib/learn/dataframe/** is deprecated.") def __init__(self): self._columns = {} def columns(self): """Set of the column names.""" return frozenset(self._columns.keys()) def __len__(self): """The number of columns in the DataFrame.""" return len(self._columns) def assign(self, **kwargs): """Adds columns to DataFrame. Args: **kwargs: assignments of the form key=value where key is a string and value is an `inflow.Series`, a `pandas.Series` or a numpy array. Raises: TypeError: keys are not strings. TypeError: values are not `inflow.Series`, `pandas.Series` or `numpy.ndarray`. TODO(jamieas): pandas assign method returns a new DataFrame. Consider switching to this behavior, changing the name or adding in_place as an argument. """ for k, v in kwargs.items(): if not isinstance(k, str): raise TypeError("The only supported type for keys is string; got %s" % type(k)) if v is None: del self._columns[k] elif isinstance(v, Series): self._columns[k] = v elif isinstance(v, Transform) and v.input_valency() == 0: self._columns[k] = v() else: raise TypeError( "Column in assignment must be an inflow.Series, inflow.Transform," " or None; got type '%s'." % type(v).__name__) def select_columns(self, keys): """Returns a new DataFrame with a subset of columns. Args: keys: A list of strings. Each should be the name of a column in the DataFrame. Returns: A new DataFrame containing only the specified columns. """ result = type(self)() for key in keys: result[key] = self._columns[key] return result def exclude_columns(self, exclude_keys): """Returns a new DataFrame with all columns not excluded via exclude_keys. Args: exclude_keys: A list of strings. Each should be the name of a column in the DataFrame. These columns will be excluded from the result. Returns: A new DataFrame containing all columns except those specified. """ result = type(self)() for key, value in self._columns.items(): if key not in exclude_keys: result[key] = value return result def __getitem__(self, key): """Indexing functionality for DataFrames. Args: key: a string or an iterable of strings. Returns: A Series or list of Series corresponding to the given keys. """ if isinstance(key, str): return self._columns[key] elif isinstance(key, collections.Iterable): for i in key: if not isinstance(i, str): raise TypeError("Expected a String; entry %s has type %s." % (i, type(i).__name__)) return [self.__getitem__(i) for i in key] raise TypeError( "Invalid index: %s of type %s. Only strings or lists of strings are " "supported." % (key, type(key))) def __setitem__(self, key, value): if isinstance(key, str): key = [key] if isinstance(value, Series): value = [value] self.assign(**dict(zip(key, value))) def __delitem__(self, key): if isinstance(key, str): key = [key] value = [None for _ in key] self.assign(**dict(zip(key, value))) def build(self, **kwargs): # We do not allow passing a cache here, because that would encourage # working around the rule that DataFrames cannot be expected to be # synced with each other (e.g., they shuffle independently). cache = {} tensors = {name: c.build(cache, **kwargs) for name, c in self._columns.items()} return tensors
apache-2.0
simonsgit/bachelor_stuff
tests/first_test.py
1
3513
# -*- coding: utf-8 -*- """ Created on Thu Sep 24 18:02:05 2015 @author: stamylew """ from cut_block import cut_block from handle_h5 import read_h5 from handle_h5 import save_h5 from create_membrane import filter_membrane import numpy as np from binarize_labels import binarize_dense_labels from random_labels import get_number_of_labels, limit_label from quality import accuracy, precision, recall import matplotlib.pyplot as plt #create raw test block #a = read_h5("/mnt/CLAWS1/stamilev/data/d.h5") #b = cut_block(a, 25, 725, 0, 700, 0, 700) #save_h5(b, "/home/stamylew/volumes/test_data.h5", "useful", None) #c = read_h5("/home/stamylew/volumes/test_data.h5", "useful") #d = cut_block(c, 300, 375, 465, 540, 0, 75) #print d.shape #save_h5(d, "/home/stamylew/volumes/test_cube1.h5", "75cube_raw", None) #create gt and membrane test block #e = read_h5("/mnt/CLAWS1/stamilev/data/ids_i_c_manualbigignore.h5") #f = cut_block(e, 25, 725, 0, 700, 0, 700) #save_h5(f, "/home/stamylew/volumes/test_gt.h5", "useful", None) #g = read_h5("/home/stamylew/volumes/test_gt.h5", "useful") #h = cut_block(g, 300, 375, 465, 540, 0, 75) ##save_h5(h, "/home/stamylew/volumes/test_cube1.h5", "75cube_gt", None) # #i = filter_membrane(h) #save_h5(i, "/home/stamylew/volumes/test_cube1.h5", "75cube_memb", None) #binarize trained data # #j = read_h5("/home/stamylew/src/autocontext/training/cache/0000_test_cube1_probs.h5") #k = np.squeeze(j) #l = k[:,:,:,0] #m = binarize_dense_labels(l, 0.2, 0.8) #save_h5(m, "/home/stamylew/volumes/test_cube1a.h5", "rand500_n4", None) #label number #labels = read_h5("/home/stamylew/75cube_Labels.h5", "exported_data") #nol = get_number_of_labels(labels) #print nol #limited = limit_label(labels, 499) #save_h5(limited, "/home/stamylew/75cube_Labels_rand_500.h5", "", None) #compare gt to predict ##for different number of loops n = read_h5("/home/stamylew/volumes/test_cube1.h5", "75cube_memb") o = read_h5("/home/stamylew/volumes/test_cube1a.h5", "bin_n3") p = read_h5("/home/stamylew/volumes/test_cube1.h5", "bin_n4") q = read_h5("/home/stamylew/volumes/test_cube1.h5", "bin_n5") r = read_h5("/home/stamylew/volumes/test_cube1a.h5", "bin_n6") s = read_h5("/home/stamylew/volumes/test_cube1.h5", "bin_n7") t = read_h5("/home/stamylew/volumes/test_cube1.h5", "bin_n8") u = read_h5("/home/stamylew/volumes/test_cube1a.h5", "bin_n9") v = read_h5("/home/stamylew/volumes/test_cube1a.h5", "bin_n2") w = read_h5("/home/stamylew/volumes/test_cube1a.h5", "bin_n1") y = read_h5("/home/stamylew/volumes/test_cube1a.h5", "bin_n10") z = read_h5("/home/stamylew/volumes/test_cube1a.h5", "bin_n11") #x = read_h5("/home/stamylew/src/autocontext/training/cache/0000_test_cube1_probs.h5") #x = np.squeeze(x) #x = x[:,:,:,0] ##for different label limits #n = read_h5("/home/stamylew/volumes/test_cube1.h5", "75cube_memb") #o = read_h5("/home/stamylew/volumes/test_cube1a.h5", "rand500_n4") #plotting results a = accuracy b = precision c = recall plt.plot([1,2,3,4,5,6,7,8,9,10,11],[a(n,w),a(n,v),a(n,o),a(n,p),a(n,q),a(n,r),a(n,s),a(n,t),a(n,u),a(n,y),a(n,z)],'r-', [1,2,3,4,5,6,7,8,9,10,11],[b(n,w),b(n,v),b(n,o),b(n,p),b(n,q),b(n,r),b(n,s),b(n,t),b(n,u),b(n,y),b(n,z)],'b-', [1,2,3,4,5,6,7,8,9,10,11],[c(n,w),c(n,v),c(n,o),c(n,p),c(n,q),c(n,r),c(n,s),c(n,t),c(n,u),c(n,y),c(n,z)],'g-') plt.axis([-1,12,0,1]) plt.show() #plt.plot([0,1],[a(n,o),a(n,p)],'ro', [0,1],[b(n,o),b(n,p)],'bo', [0,1], [c(n,o),c(n,p)], 'go') #plt.axis([-1,2, 0,1]) #plt.show() print "done"
mit
kazemakase/scikit-learn
examples/cluster/plot_kmeans_digits.py
230
4524
""" =========================================================== A demo of K-Means clustering on the handwritten digits data =========================================================== In this example we compare the various initialization strategies for K-means in terms of runtime and quality of the results. As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the cluster labels to the ground truth. Cluster quality metrics evaluated (see :ref:`clustering_evaluation` for definitions and discussions of the metrics): =========== ======================================================== Shorthand full name =========== ======================================================== homo homogeneity score compl completeness score v-meas V measure ARI adjusted Rand index AMI adjusted mutual information silhouette silhouette coefficient =========== ======================================================== """ print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn.cluster import KMeans from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn.preprocessing import scale np.random.seed(42) digits = load_digits() data = scale(digits.data) n_samples, n_features = data.shape n_digits = len(np.unique(digits.target)) labels = digits.target sample_size = 300 print("n_digits: %d, \t n_samples %d, \t n_features %d" % (n_digits, n_samples, n_features)) print(79 * '_') print('% 9s' % 'init' ' time inertia homo compl v-meas ARI AMI silhouette') def bench_k_means(estimator, name, data): t0 = time() estimator.fit(data) print('% 9s %.2fs %i %.3f %.3f %.3f %.3f %.3f %.3f' % (name, (time() - t0), estimator.inertia_, metrics.homogeneity_score(labels, estimator.labels_), metrics.completeness_score(labels, estimator.labels_), metrics.v_measure_score(labels, estimator.labels_), metrics.adjusted_rand_score(labels, estimator.labels_), metrics.adjusted_mutual_info_score(labels, estimator.labels_), metrics.silhouette_score(data, estimator.labels_, metric='euclidean', sample_size=sample_size))) bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10), name="k-means++", data=data) bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10), name="random", data=data) # in this case the seeding of the centers is deterministic, hence we run the # kmeans algorithm only once with n_init=1 pca = PCA(n_components=n_digits).fit(data) bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1), name="PCA-based", data=data) print(79 * '_') ############################################################################### # Visualize the results on PCA-reduced data reduced_data = PCA(n_components=2).fit_transform(data) kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10) kmeans.fit(reduced_data) # Step size of the mesh. Decrease to increase the quality of the VQ. h = .02 # point in the mesh [x_min, m_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will assign a color to each x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1 y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Obtain labels for each point in mesh. Use last trained model. Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1) plt.clf() plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Paired, aspect='auto', origin='lower') plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2) # Plot the centroids as a white X centroids = kmeans.cluster_centers_ plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=169, linewidths=3, color='w', zorder=10) plt.title('K-means clustering on the digits dataset (PCA-reduced data)\n' 'Centroids are marked with white cross') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
NeurotechBerkeley/bci-course
lab6/rpeakdetect.py
1
3699
""" Copyright (c) 2013 Jami Pekkanen Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import sys import numpy as np import scipy.signal import scipy.ndimage def detect_beats( ecg, # The raw ECG signal rate, # Sampling rate in HZ # Window size in seconds to use for ransac_window_size=5.0, # Low frequency of the band pass filter lowfreq=5.0, # High frequency of the band pass filter highfreq=15.0, ): """ ECG heart beat detection based on http://link.springer.com/article/10.1007/s13239-011-0065-3/fulltext.html with some tweaks (mainly robust estimation of the rectified signal cutoff threshold). """ ransac_window_size = int(ransac_window_size*rate) lowpass = scipy.signal.butter(1, highfreq/(rate/2.0), 'low') highpass = scipy.signal.butter(1, lowfreq/(rate/2.0), 'high') # TODO: Could use an actual bandpass filter ecg_low = scipy.signal.filtfilt(*lowpass, x=ecg) ecg_band = scipy.signal.filtfilt(*highpass, x=ecg_low) # Square (=signal power) of the first difference of the signal decg = np.diff(ecg_band) decg_power = decg**2 # Robust threshold and normalizator estimation thresholds = [] max_powers = [] for i in range(int(len(decg_power)/ransac_window_size)): sample = slice(i*ransac_window_size, (i+1)*ransac_window_size) d = decg_power[sample] thresholds.append(0.5*np.std(d)) max_powers.append(np.max(d)) threshold = 0.5*np.std(decg_power) threshold = np.median(thresholds) max_power = np.median(max_powers) decg_power[decg_power < threshold] = 0 decg_power /= max_power decg_power[decg_power > 1.0] = 1.0 square_decg_power = decg_power**2 shannon_energy = -square_decg_power*np.log(square_decg_power) shannon_energy[~np.isfinite(shannon_energy)] = 0.0 mean_window_len = int(rate*0.125+1) lp_energy = np.convolve(shannon_energy, [1.0/mean_window_len]*mean_window_len, mode='same') #lp_energy = scipy.signal.filtfilt(*lowpass2, x=shannon_energy) lp_energy = scipy.ndimage.gaussian_filter1d(lp_energy, rate/8.0) lp_energy_diff = np.diff(lp_energy) zero_crossings = (lp_energy_diff[:-1] > 0) & (lp_energy_diff[1:] < 0) zero_crossings = np.flatnonzero(zero_crossings) zero_crossings -= 1 return zero_crossings def plot_peak_detection(ecg, rate): import matplotlib.pyplot as plt dt = 1.0/rate t = np.linspace(0, len(ecg)*dt, len(ecg)) plt.plot(t, ecg) peak_i = detect_beats(ecg, rate) plt.scatter(t[peak_i], ecg[peak_i], color='red') plt.show() if __name__ == '__main__': rate = float(sys.argv[1]) ecg = np.loadtxt(sys.stdin) if len(sys.argv) > 2 and sys.argv[2] == 'plot': plot_peak_detection(ecg, rate) else: peaks = detect_beats(ecg, rate) sys.stdout.write("\n".join(map(str, peaks))) sys.stdout.write("\n")
mit
CDNoyes/EDL-Py
EntryGuidance/HPC.py
1
15290
""" Differential algebra based replanning using the parametrized planning method. aka hybrid predictor corrector """ from Simulation import Simulation, Cycle, EntrySim, TimedSim from Triggers import SRPTrigger, AccelerationTrigger from InitialState import InitialState from Uncertainty import getUncertainty from ParametrizedPlanner import profile,profile2 import Apollo from pyaudi import gdual_double as gd from pyaudi import abs, sqrt import numpy as np import matplotlib.pyplot as plt from functools import partial from scipy.interpolate import interp1d import sys from os import path sys.path.append( path.dirname( path.dirname( path.abspath(__file__) ) ) ) from Utils.RK4 import RK4 from Utils import DA as da fs = 14 # Global fontsize for plotting class controllerState(object): def __init__(self): self.tReplan = 0 self.nReplan = 0 def reset(self): self.tReplan = 0 self.nReplan = 0 def controller(time, current_state, switch, bank0, reference, lon_target, lat_target, **kwargs): if not hasattr(controller, 'bank'): #or time < tReplan (we've gone back in time so its a new sim) # Perform a number of initializations print "Initializing HPC controller." controller.bankvars = ['bank{}'.format(i) for i,b in enumerate(bank0)] controller.bank = np.array([gd(val,var,2) for val,var in zip(bank0,controller.bankvars)]) controller.ref = reference # Also need to update the reference each time we replan states = ['RangeControl'] conditions = [SRPTrigger(0.0,700,100)] input = { 'states' : states, 'conditions' : conditions } # controller.sim = Simulation(cycle=Cycle(1), output=True, use_da=True, **EntrySim()) # So that the simulation doesn't get rebuilt unnecessarily controller.sim = Simulation(cycle=Cycle(1), output=False, use_da=True, **input) # So that the simulation doesn't get rebuilt unnecessarily controller.nReplan = 0 controller.tReplan = 0 r,theta,phi,v,gamma,psi,s,m=current_state # Determine if a replanning is needed nReplanMax = 5 tReplanMin = 30 # Minimum time between replannings # print "In HPC controller: Range Error {} km".format(np.abs(s-controller.ref(v))/1000) if v < 5300 and np.abs(s-controller.ref(v)) > 4e3 and controller.nReplan < nReplanMax and (time-controller.tReplan) > tReplanMin: # Don't check until velocity is monotonic, less than max replans, hasn't passed the last switch print "Replanning triggered" controller.nReplan += 1 controller.tReplan = time # One option is just to compare estimated range to go with the reference value at the same (velocity/energy/time) # Another option is to track using Apollo between plannings, and use the predicted range to go as the replanning tool # However, we should also be taking into account crossrange objective, so maybe a single quick integration to check sometimes? traj = predict(controller.sim, current_state, bankProfile = lambda **d: profile(d['time'], [sw-time for sw in switch], controller.bank), AR=kwargs['aero_ratios']) # Need to pass DA bank variables nInactive = np.sum(np.asarray(switch)<time) # The number of switches already passed (and therefore removed from optimization), but never remove the last element dbank = optimize(traj, lon_target, lat_target, controller.bankvars, nInactive) controller.bank += dbank # Need to evaluate traj at dbank, then use those states to update the reference vel = da.evaluate(traj[:,7], controller.bankvars, [dbank]).flatten() vel = np.flipud(vel) # Flipped to be increasing for interp1d limitation range = da.const(traj[:,10],array=True) range = da.evaluate(traj[:,10], controller.bankvars, [dbank]).flatten() rtg = np.flipud(range[-1]*1e3-range*1e3) # Range to go # plt.figure() # plt.plot(vel,controller.ref(vel)) try: controller.ref = interp1d(vel, rtg, fill_value=(rtg[0],rtg[-1]), assume_sorted=True, bounds_error=False, kind='linear') except: print "Updating controller reference failed, using previous reference" # plt.plot(da.const(traj[:,7]),(traj[-1,10].constant_cf - da.const(traj[:,10],array=True))[::-1]*1e3) # plt.plot(v,s,'r*') # plt.plot(vel, controller.ref(vel),'k--') # plt.show() # If not, or if replanning is done: # Simply evaluate profile bank = profile(time, switch, da.const(controller.bank),order=1) return bank def predict(sim, x0, bankProfile, AR): output = sim.run(x0,[bankProfile],StepsPerCycle=10,AeroRatios=AR) return output def optimize(DA_traj, longitude_target, latitude_target, bankvars, nInactive): # NOTICE: targets must be given in degrees!! xf = DA_traj[-1] print "Predicted final state: {}".format(da.const(xf)[4:10]) # Test some basic optimization: f = (xf[5]-longitude_target)**2 + (xf[6]-latitude_target)**2 # Lat/lon target - works well # f = ((xf[3]-6.4)**2 + (1/10000.)*(xf[7]-800.0)**2) # Alt/vel target - combination doesn't work well # f = (xf[3]-6.9)**2 # Alt target - works well # f = (xf[7]-840.0)**2 # Vel target - works well # f = -xf[3] # Maximizing altitude # Relaxed Newton Method: dopt = newton_step(f, bankvars, nInactive) dopt *= 15*np.pi/180/np.max(np.abs(dopt)) # Restricts the largest step size dopt = line_search(f, dopt, bankvars) # Estimates the best step size along dopt print "delta Bank: {}".format(dopt*180/np.pi) xf_opt = da.evaluate(xf,bankvars,[dopt])[0] print "New final state: {}".format(xf_opt[4:10]) return np.asarray(dopt) def newton_step(f, vars, nInactive): """ Returns the step direction based on gradient and hessian info """ g = da.gradient(f, vars) H = da.hessian(f, vars) nu = len(g) #TODO watch out for non-invertible hessians res = [0]*nInactive # Pad with zeros for the inactive segments d = -np.dot(np.linalg.inv(H[nInactive:nu,nInactive:nu]),g[nInactive:nu]) res.extend(d) return np.array(res) def line_search(f, dir, vars): """ Performs a "brute force" line search along a given direction by simply evaluating the function at a large number of points and taking the lowest value found. No further refinement is done. """ dirs = [a*dir for a in np.linspace(0,1,2000)] fnew = da.evaluate([f], vars, dirs).flatten() i = np.argmin(fnew) return dir*np.linspace(0,1,2000)[i] def grid_search(f,vars): from scipy.optimize import differential_evolution as DE # dopt = DE(__grid_search_fun, args=(f,vars), popsize=500, bounds=((0,np.pi/4),(-np.pi/4,0),(-np.pi/4,np.pi/18)),disp=True,tol=1e-5) # True reasonable bounds dopt = DE(__grid_search_fun, args=(f,vars), popsize=100, bounds=((-np.pi/18,np.pi/4.5),(-np.pi/4.5,np.pi/18),(-np.pi/4,np.pi/18)),disp=False,tol=1e-2) # Bigger bounds return dopt.x def __grid_search_fun(x, f, vars): return da.evaluate([f], vars, [x])[0,0] # def optimize_profile(): # ################################################# # ################ Test Functions ################# # ################################################# def test_profile(): """ Tests the bank profile for various numbers of switches using standard python variables. """ lw = 2 t = np.linspace(0,220,5000) label = ['Discontinuous','Continuous','Once Differentiable'] for order in range(3): bank = profile(t, [70,115,150],[-np.pi/2, np.pi/2,-np.pi/9,np.pi/9],order=order) plt.plot(t,np.array(bank)*180/np.pi,label=label[order],lineWidth=lw) plt.xlabel('Time (s)',fontsize=fs) plt.ylabel('Bank angle (deg)',fontsize=fs) plt.legend() plt.axis([0,220,-95,95]) plt.show() def test_da_profile2(): """ Performs the same tests but utilizing DA variables with profile2 """ t = np.linspace(0,200,500) order = 1 bank_inp = [gd(val,'bank{}'.format(i),order) for i,val in enumerate([-np.pi/2, np.pi/2,-np.pi/9,np.pi/9])] switch = [-10,70,115,] + [gd(val,'s{}'.format(i),order) for i,val in enumerate([150])] + [250] bank = np.array([profile2(ti, switch, bank_inp) for ti in t ]) plt.plot(t, da.const(bank, array=True)*180/np.pi,'k--') dbank = (-1+2*np.random.random([5,len(bank_inp)]))*np.pi/9 dswitch = (-1+2*np.random.random([5,len(bank_inp)-3]))*10. eval_pt = np.concatenate((dbank,dswitch),axis=1) vars = ['bank{}'.format(i) for i in range(4)] + ['s{}'.format(i) for i in range(1)] bank_new = da.evaluate(bank,vars,eval_pt) for bn in bank_new: plt.plot(t,bn*180/np.pi) plt.show() def test_da_profile(): """ Performs the same tests but utilizing DA variables """ t = np.linspace(0,200,500) bank_inp = [gd(val,'bank{}'.format(i),2) for i,val in enumerate([-np.pi/2, np.pi/2,-np.pi/9,np.pi/9])] bank = profile(t, [70,115,150], bank_inp) plt.plot(t, da.const(bank, array=True)*180/np.pi,'k--') dbank = (-1+2*np.random.random([5,len(bank_inp)]))*np.pi/9 bank_new = da.evaluate(bank,['bank{}'.format(i) for i,b in enumerate(bank_inp)],dbank) for bn in bank_new: plt.plot(t,bn*180/np.pi) plt.show() def test_expansion(): ''' Integrates a trajectory with nominal bank angle Then expands around different bank angles Then integrates true trajectories using those bank angles And compares ''' import time tf = 220 reference_sim = Simulation(cycle=Cycle(1),output=False,**TimedSim(tf)) da_sim = Simulation(cycle=Cycle(1), output=True, use_da=True, **TimedSim(tf)) banks = [-np.pi/2, np.pi/2,-np.pi/9] bankvars = ['bank{}'.format(i) for i,b in enumerate(banks)] bank_inp = [gd(val,'bank{}'.format(i),1) for i,val in enumerate(banks)] bankProfile = lambda **d: profile(d['time'],[89.3607, 136.276], bank_inp) x0 = InitialState() t0 = time.time() output = da_sim.run(x0,[bankProfile],StepsPerCycle=10) tda = time.time() print "DA integration time {}".format(tda-t0) xf = output[-1] # Test some basic optimization: # f = (xf[5]+71.5)**2 + (xf[6]+41.4)**2 # Lat/lon target - works well # f = ((xf[3]-6.4)**2 + (1/10000.)*(xf[7]-800.0)**2) # Alt/vel target - combination doesn't work well # f = (xf[3]-6.9)**2 # Alt target - works well # f = (xf[7]-840.0)**2 # Vel target - works well f = -xf[3] # Maximizing altitude # Relaxed Newton Method: # dopt = newton_step(f, bankvars) # dopt *= 15*np.pi/180/np.max(np.abs(dopt)) # Restricts the largest step size # dopt = line_search(f, dopt, bankvars) # Estimates the best step size along dopt # print "delta Bank from single newton step: {}".format(dopt*180/np.pi) dopt = np.zeros_like(banks) # dopt = grid_search(f, bankvars) # Brute force, could work well since evaluating is so fast # print "delta Bank from DE: {}".format(dopt*180/np.pi) xf_opt = da.evaluate(xf,bankvars,[dopt])[0] dbank = (-1+2*np.random.random([500,len(bank_inp)]))*np.pi/9 xf_new = da.evaluate(xf,bankvars,dbank) teval = time.time() print "DA evaluation time {}".format(teval-tda) plt.figure(1) plt.plot(xf[7].constant_cf,xf[3].constant_cf,'kx') # plt.plot(xf_opt[7],xf_opt[3],'k^') for xfn in xf_new: plt.plot(xfn[7],xfn[3],'o',fillstyle='none') plt.figure(2) plt.plot(xf[5].constant_cf,xf[6].constant_cf,'kx') # plt.plot(xf_opt[5],xf_opt[6],'k^') for xfn in xf_new: plt.plot(xfn[5],xfn[6],'o',fillstyle='none') plt.figure(3) plt.plot(xf[8].constant_cf,xf[9].constant_cf,'kx') # plt.plot(xf_opt[8],xf_opt[9],'k^') for xfn in xf_new: plt.plot(xfn[8],xfn[9],'o',fillstyle='none') if True: xf_new_true = [] t0 = time.time() for delta in dbank: bankProfile_double = lambda **d: profile(d['time'],[89.3607, 136.276], [a+b for a,b in zip(delta,banks)]) output = reference_sim.run(x0,[bankProfile_double]) xf_new_true.append(output[-1]) plt.figure(1) plt.plot(output[-1,7], output[-1,3],'x') plt.figure(2) plt.plot(output[-1,5], output[-1,6],'x') plt.figure(3) plt.plot(output[-1,8], output[-1,9],'x') tint = time.time() print "Integration times for truth comparison {} (includes plotting)".format(tint-t0) xf_new_true = np.array(xf_new_true) err = np.abs(xf_new-xf_new_true) dbanknorm = np.linalg.norm(dbank,axis=1) label =['Altitude error (m)','Longitude error (deg)','Latitude error (deg)','Velocity error (m/s)', 'Flight path error (deg)', 'Heading error (deg)'] # conversion = [1,np.pi/180,np.pi/180,1,np.pi/180,np.pi/180] for i in range(6): plt.figure(4+i) plt.plot(dbanknorm*180/np.pi,err[:,i+4],'ko') plt.xlabel('Norm of Bank Deviations (deg)',fontsize=fs) plt.ylabel(label[i],fontsize=fs) # Add labels to each plot plt.figure(1) plt.ylabel('Altitude (km)') plt.xlabel('Velocity (m/s)') plt.figure(2) plt.ylabel('Longitude (deg)') plt.xlabel('Latitude (deg)') plt.figure(3) plt.ylabel('Flight path angle (deg)') plt.xlabel('Heading angle (deg)') plt.show() def test_controller(): import MPC as mpc # Plan the nominal profile: reference_sim = Simulation(cycle=Cycle(1),output=False,**EntrySim()) switch = [129, 190] bank = [-np.radians(80), np.radians(80), -np.radians(30)] bankProfile = lambda **d: profile(d['time'],switch=switch, bank=bank,order=2) x0 = InitialState() output = reference_sim.run(x0,[bankProfile]) references = reference_sim.getRef() drag_ref = references['drag'] # Create the simulation model: states = ['PreEntry','RangeControl'] conditions = [AccelerationTrigger('drag',2), SRPTrigger(0,700,10)] # TODO: The final trigger should be an input input = { 'states' : states, 'conditions' : conditions } sim = Simulation(cycle=Cycle(1), output=True, **input) # Create guidance laws pre = partial(mpc.constant, value=bankProfile(time=0)) hpc = partial(controller, switch=switch, bank0=bank, reference=references['rangeToGo'], lon_target=output[-1,5], lat_target=output[-1,6]) controls = [pre, hpc] # Run the off-nominal simulation perturb = getUncertainty()['parametric'] sample = None # sample = perturb.sample() # print sample # sample = [.1,-.1,-.05,0] sample = [.133,-.133,.0368,.0014] # Worst case sample from Apollo runs # sample = [-0.12,0.0, 0,0] s0 = reference_sim.history[0,6]-reference_sim.history[-1,6] # This ensures the range to go is 0 at the target for the real simulation x0_full = InitialState(1, range=s0, bank=np.radians(-80)) # Single trajectory reference_sim.plot(plotEnergy=True, legend=False) output = sim.run(x0_full, controls, sample, FullEDL=True) sim.plot(compare=False) sim.show() if __name__ == "__main__": # test_da_profile() test_da_profile2() # test_expansion() # test_controller()
gpl-3.0
birdsarah/bokeh
examples/glyphs/trail.py
33
4656
# -*- coding: utf-8 -*- from __future__ import print_function from math import sin, cos, atan2, sqrt, radians import numpy as np import scipy.ndimage as im from bokeh.document import Document from bokeh.embed import file_html from bokeh.resources import INLINE from bokeh.browserlib import view from bokeh.models.glyphs import Line, Patches from bokeh.models.widgets import VBox from bokeh.models import ( Plot, GMapPlot, GMapOptions, DataRange1d, ColumnDataSource, LinearAxis, Grid, PanTool, WheelZoomTool, ResetTool) from bokeh.sampledata.mtb import obiszow_mtb_xcm def haversin(theta): return sin(0.5*theta)**2 def distance(p1, p2): """Distance between (lat1, lon1) and (lat2, lon2). """ R = 6371 lat1, lon1 = p1 lat2, lon2 = p2 phi1 = radians(lat1) phi2 = radians(lat2) delta_lat = radians(lat2 - lat1) delta_lon = radians(lon2 - lon1) a = haversin(delta_lat) + cos(phi1)*cos(phi2)*haversin(delta_lon) return 2*R*atan2(sqrt(a), sqrt(1-a)) def prep_data(dataset): df = dataset.copy() latlon = list(zip(df.lat, df.lon)) dist = np.array([ distance(latlon[i+1], latlon[i]) for i in range(len((latlon[:-1]))) ]) df["dist"] = np.concatenate(([0], np.cumsum(dist))) slope = np.abs(100*np.diff(df.alt)/(1000*dist)) slope[np.where( slope < 4) ] = 0 # "green" slope[np.where((slope >= 4) & (slope < 6))] = 1 # "yellow" slope[np.where((slope >= 6) & (slope < 10))] = 2 # "pink" slope[np.where((slope >= 10) & (slope < 15))] = 3 # "orange" slope[np.where( slope >= 15 )] = 4 # "red" slope = im.median_filter(slope, 6) colors = np.empty_like(slope, dtype=object) colors[np.where(slope == 0)] = "green" colors[np.where(slope == 1)] = "yellow" colors[np.where(slope == 2)] = "pink" colors[np.where(slope == 3)] = "orange" colors[np.where(slope == 4)] = "red" df["colors"] = list(colors) + [None] # NOTE: add [None] just make pandas happy return df title = "Obiszów MTB XCM" def trail_map(data): lon = (min(data.lon) + max(data.lon))/2 lat = (min(data.lat) + max(data.lat))/2 map_options = GMapOptions(lng=lon, lat=lat, zoom=13) plot = GMapPlot(title="%s - Trail Map" % title, map_options=map_options, plot_width=800, plot_height=800) xaxis = LinearAxis() plot.add_layout(xaxis, 'below') yaxis = LinearAxis() plot.add_layout(yaxis, 'left') xgrid = Grid(plot=plot, dimension=0, ticker=xaxis.ticker, grid_line_dash="dashed", grid_line_color="gray") ygrid = Grid(plot=plot, dimension=1, ticker=yaxis.ticker, grid_line_dash="dashed", grid_line_color="gray") plot.renderers.extend([xgrid, ygrid]) plot.add_tools(PanTool(), WheelZoomTool(), ResetTool()) line_source = ColumnDataSource(dict(x=data.lon, y=data.lat, dist=data.dist)) line = Line(x="x", y="y", line_color="blue", line_width=2) plot.add_glyph(line_source, line) plot.x_range = DataRange1d() plot.y_range = DataRange1d() return plot def altitude_profile(data): plot = Plot(title="%s - Altitude Profile" % title, plot_width=800, plot_height=400) xaxis = LinearAxis(axis_label="Distance (km)") plot.add_layout(xaxis, 'below') yaxis = LinearAxis(axis_label="Altitude (m)") plot.add_layout(yaxis, 'left') xgrid = Grid(plot=plot, dimension=0, ticker=xaxis.ticker) ygrid = Grid(plot=plot, dimension=1, ticker=yaxis.ticker) plot.renderers.extend([xgrid, ygrid]) plot.add_tools(PanTool(), WheelZoomTool(), ResetTool()) X, Y = data.dist, data.alt y0 = min(Y) patches_source = ColumnDataSource(dict( xs = [ [X[i], X[i+1], X[i+1], X[i]] for i in range(len(X[:-1])) ], ys = [ [y0, y0, Y[i+1], Y[i]] for i in range(len(Y[:-1])) ], color = data.colors[:-1] )) patches = Patches(xs="xs", ys="ys", fill_color="color", line_color="color") plot.add_glyph(patches_source, patches) line_source = ColumnDataSource(dict( x = data.dist, y = data.alt, )) line = Line(x='x', y='y', line_color="black", line_width=1) plot.add_glyph(line_source, line) plot.x_range = DataRange1d() plot.y_range = DataRange1d() return plot data = prep_data(obiszow_mtb_xcm) trail = trail_map(data) altitude = altitude_profile(data) layout = VBox(children=[altitude, trail]) doc = Document() doc.add(layout) if __name__ == "__main__": filename = "trail.html" with open(filename, "w") as f: f.write(file_html(doc, INLINE, "Trail map and altitude profile")) print("Wrote %s" % filename) view(filename)
bsd-3-clause
xiaoxiamii/scikit-learn
sklearn/manifold/tests/test_spectral_embedding.py
216
8091
from nose.tools import assert_true from nose.tools import assert_equal from scipy.sparse import csr_matrix from scipy.sparse import csc_matrix import numpy as np from numpy.testing import assert_array_almost_equal, assert_array_equal from nose.tools import assert_raises from nose.plugins.skip import SkipTest from sklearn.manifold.spectral_embedding_ import SpectralEmbedding from sklearn.manifold.spectral_embedding_ import _graph_is_connected from sklearn.manifold import spectral_embedding from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics import normalized_mutual_info_score from sklearn.cluster import KMeans from sklearn.datasets.samples_generator import make_blobs # non centered, sparse centers to check the centers = np.array([ [0.0, 5.0, 0.0, 0.0, 0.0], [0.0, 0.0, 4.0, 0.0, 0.0], [1.0, 0.0, 0.0, 5.0, 1.0], ]) n_samples = 1000 n_clusters, n_features = centers.shape S, true_labels = make_blobs(n_samples=n_samples, centers=centers, cluster_std=1., random_state=42) def _check_with_col_sign_flipping(A, B, tol=0.0): """ Check array A and B are equal with possible sign flipping on each columns""" sign = True for column_idx in range(A.shape[1]): sign = sign and ((((A[:, column_idx] - B[:, column_idx]) ** 2).mean() <= tol ** 2) or (((A[:, column_idx] + B[:, column_idx]) ** 2).mean() <= tol ** 2)) if not sign: return False return True def test_spectral_embedding_two_components(seed=36): # Test spectral embedding with two components random_state = np.random.RandomState(seed) n_sample = 100 affinity = np.zeros(shape=[n_sample * 2, n_sample * 2]) # first component affinity[0:n_sample, 0:n_sample] = np.abs(random_state.randn(n_sample, n_sample)) + 2 # second component affinity[n_sample::, n_sample::] = np.abs(random_state.randn(n_sample, n_sample)) + 2 # connection affinity[0, n_sample + 1] = 1 affinity[n_sample + 1, 0] = 1 affinity.flat[::2 * n_sample + 1] = 0 affinity = 0.5 * (affinity + affinity.T) true_label = np.zeros(shape=2 * n_sample) true_label[0:n_sample] = 1 se_precomp = SpectralEmbedding(n_components=1, affinity="precomputed", random_state=np.random.RandomState(seed)) embedded_coordinate = se_precomp.fit_transform(affinity) # Some numpy versions are touchy with types embedded_coordinate = \ se_precomp.fit_transform(affinity.astype(np.float32)) # thresholding on the first components using 0. label_ = np.array(embedded_coordinate.ravel() < 0, dtype="float") assert_equal(normalized_mutual_info_score(true_label, label_), 1.0) def test_spectral_embedding_precomputed_affinity(seed=36): # Test spectral embedding with precomputed kernel gamma = 1.0 se_precomp = SpectralEmbedding(n_components=2, affinity="precomputed", random_state=np.random.RandomState(seed)) se_rbf = SpectralEmbedding(n_components=2, affinity="rbf", gamma=gamma, random_state=np.random.RandomState(seed)) embed_precomp = se_precomp.fit_transform(rbf_kernel(S, gamma=gamma)) embed_rbf = se_rbf.fit_transform(S) assert_array_almost_equal( se_precomp.affinity_matrix_, se_rbf.affinity_matrix_) assert_true(_check_with_col_sign_flipping(embed_precomp, embed_rbf, 0.05)) def test_spectral_embedding_callable_affinity(seed=36): # Test spectral embedding with callable affinity gamma = 0.9 kern = rbf_kernel(S, gamma=gamma) se_callable = SpectralEmbedding(n_components=2, affinity=( lambda x: rbf_kernel(x, gamma=gamma)), gamma=gamma, random_state=np.random.RandomState(seed)) se_rbf = SpectralEmbedding(n_components=2, affinity="rbf", gamma=gamma, random_state=np.random.RandomState(seed)) embed_rbf = se_rbf.fit_transform(S) embed_callable = se_callable.fit_transform(S) assert_array_almost_equal( se_callable.affinity_matrix_, se_rbf.affinity_matrix_) assert_array_almost_equal(kern, se_rbf.affinity_matrix_) assert_true( _check_with_col_sign_flipping(embed_rbf, embed_callable, 0.05)) def test_spectral_embedding_amg_solver(seed=36): # Test spectral embedding with amg solver try: from pyamg import smoothed_aggregation_solver except ImportError: raise SkipTest("pyamg not available.") se_amg = SpectralEmbedding(n_components=2, affinity="nearest_neighbors", eigen_solver="amg", n_neighbors=5, random_state=np.random.RandomState(seed)) se_arpack = SpectralEmbedding(n_components=2, affinity="nearest_neighbors", eigen_solver="arpack", n_neighbors=5, random_state=np.random.RandomState(seed)) embed_amg = se_amg.fit_transform(S) embed_arpack = se_arpack.fit_transform(S) assert_true(_check_with_col_sign_flipping(embed_amg, embed_arpack, 0.05)) def test_pipeline_spectral_clustering(seed=36): # Test using pipeline to do spectral clustering random_state = np.random.RandomState(seed) se_rbf = SpectralEmbedding(n_components=n_clusters, affinity="rbf", random_state=random_state) se_knn = SpectralEmbedding(n_components=n_clusters, affinity="nearest_neighbors", n_neighbors=5, random_state=random_state) for se in [se_rbf, se_knn]: km = KMeans(n_clusters=n_clusters, random_state=random_state) km.fit(se.fit_transform(S)) assert_array_almost_equal( normalized_mutual_info_score( km.labels_, true_labels), 1.0, 2) def test_spectral_embedding_unknown_eigensolver(seed=36): # Test that SpectralClustering fails with an unknown eigensolver se = SpectralEmbedding(n_components=1, affinity="precomputed", random_state=np.random.RandomState(seed), eigen_solver="<unknown>") assert_raises(ValueError, se.fit, S) def test_spectral_embedding_unknown_affinity(seed=36): # Test that SpectralClustering fails with an unknown affinity type se = SpectralEmbedding(n_components=1, affinity="<unknown>", random_state=np.random.RandomState(seed)) assert_raises(ValueError, se.fit, S) def test_connectivity(seed=36): # Test that graph connectivity test works as expected graph = np.array([[1, 0, 0, 0, 0], [0, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 0, 1, 1]]) assert_equal(_graph_is_connected(graph), False) assert_equal(_graph_is_connected(csr_matrix(graph)), False) assert_equal(_graph_is_connected(csc_matrix(graph)), False) graph = np.array([[1, 1, 0, 0, 0], [1, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 0, 1, 1]]) assert_equal(_graph_is_connected(graph), True) assert_equal(_graph_is_connected(csr_matrix(graph)), True) assert_equal(_graph_is_connected(csc_matrix(graph)), True) def test_spectral_embedding_deterministic(): # Test that Spectral Embedding is deterministic random_state = np.random.RandomState(36) data = random_state.randn(10, 30) sims = rbf_kernel(data) embedding_1 = spectral_embedding(sims) embedding_2 = spectral_embedding(sims) assert_array_almost_equal(embedding_1, embedding_2)
bsd-3-clause
moutai/scikit-learn
sklearn/tests/test_multioutput.py
39
6609
import numpy as np import scipy.sparse as sp from sklearn.utils import shuffle from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.exceptions import NotFittedError from sklearn import datasets from sklearn.base import clone from sklearn.ensemble import GradientBoostingRegressor, RandomForestClassifier from sklearn.linear_model import Lasso from sklearn.svm import LinearSVC from sklearn.multiclass import OneVsRestClassifier from sklearn.multioutput import MultiOutputRegressor, MultiOutputClassifier def test_multi_target_regression(): X, y = datasets.make_regression(n_targets=3) X_train, y_train = X[:50], y[:50] X_test, y_test = X[50:], y[50:] references = np.zeros_like(y_test) for n in range(3): rgr = GradientBoostingRegressor(random_state=0) rgr.fit(X_train, y_train[:, n]) references[:,n] = rgr.predict(X_test) rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0)) rgr.fit(X_train, y_train) y_pred = rgr.predict(X_test) assert_almost_equal(references, y_pred) def test_multi_target_regression_one_target(): # Test multi target regression raises X, y = datasets.make_regression(n_targets=1) X_train, y_train = X[:50], y[:50] X_test, y_test = X[50:], y[50:] rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0)) assert_raises(ValueError, rgr.fit, X_train, y_train) def test_multi_target_sparse_regression(): X, y = datasets.make_regression(n_targets=3) X_train, y_train = X[:50], y[:50] X_test, y_test = X[50:], y[50:] for sparse in [sp.csr_matrix, sp.csc_matrix, sp.coo_matrix, sp.dok_matrix, sp.lil_matrix]: rgr = MultiOutputRegressor(Lasso(random_state=0)) rgr_sparse = MultiOutputRegressor(Lasso(random_state=0)) rgr.fit(X_train, y_train) rgr_sparse.fit(sparse(X_train), y_train) assert_almost_equal(rgr.predict(X_test), rgr_sparse.predict(sparse(X_test))) def test_multi_target_sample_weights_api(): X = [[1,2,3], [4,5,6]] y = [[3.141, 2.718], [2.718, 3.141]] w = [0.8, 0.6] rgr = MultiOutputRegressor(Lasso()) assert_raises_regex(ValueError, "does not support sample weights", rgr.fit, X, y, w) # no exception should be raised if the base estimator supports weights rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0)) rgr.fit(X, y, w) def test_multi_target_sample_weights(): # weighted regressor Xw = [[1,2,3], [4,5,6]] yw = [[3.141, 2.718], [2.718, 3.141]] w = [2., 1.] rgr_w = MultiOutputRegressor(GradientBoostingRegressor(random_state=0)) rgr_w.fit(Xw, yw, w) # unweighted, but with repeated samples X = [[1,2,3], [1,2,3], [4,5,6]] y = [[3.141, 2.718], [3.141, 2.718], [2.718, 3.141]] rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0)) rgr.fit(X, y) X_test = [[1.5,2.5,3.5], [3.5,4.5,5.5]] assert_almost_equal(rgr.predict(X_test), rgr_w.predict(X_test)) # Import the data iris = datasets.load_iris() # create a multiple targets by randomized shuffling and concatenating y. X = iris.data y1 = iris.target y2 = shuffle(y1, random_state=1) y3 = shuffle(y1, random_state=2) y = np.column_stack((y1, y2, y3)) n_samples, n_features = X.shape n_outputs = y.shape[1] n_classes = len(np.unique(y1)) def test_multi_output_classification(): # test if multi_target initializes correctly with base estimator and fit # assert predictions work as expected for predict, prodict_proba and score forest = RandomForestClassifier(n_estimators=10, random_state=1) multi_target_forest = MultiOutputClassifier(forest) # train the multi_target_forest and also get the predictions. multi_target_forest.fit(X, y) predictions = multi_target_forest.predict(X) assert_equal((n_samples, n_outputs), predictions.shape) predict_proba = multi_target_forest.predict_proba(X) assert_equal((n_samples, n_classes, n_outputs), predict_proba.shape) assert_array_equal(np.argmax(predict_proba, axis=1), predictions) # train the forest with each column and assert that predictions are equal for i in range(3): forest_ = clone(forest) # create a clone with the same state forest_.fit(X, y[:, i]) assert_equal(list(forest_.predict(X)), list(predictions[:, i])) assert_array_equal(list(forest_.predict_proba(X)), list(predict_proba[:, :, i])) def test_multiclass_multioutput_estimator(): # test to check meta of meta estimators svc = LinearSVC(random_state=0) multi_class_svc = OneVsRestClassifier(svc) multi_target_svc = MultiOutputClassifier(multi_class_svc) multi_target_svc.fit(X, y) predictions = multi_target_svc.predict(X) assert_equal((n_samples, n_outputs), predictions.shape) # train the forest with each column and assert that predictions are equal for i in range(3): multi_class_svc_ = clone(multi_class_svc) # create a clone multi_class_svc_.fit(X, y[:, i]) assert_equal(list(multi_class_svc_.predict(X)), list(predictions[:, i])) def test_multi_output_classification_sample_weights(): # weighted classifier Xw = [[1, 2, 3], [4, 5, 6]] yw = [[3, 2], [2, 3]] w = np.asarray([2., 1.]) forest = RandomForestClassifier(n_estimators=10, random_state=1) clf_w = MultiOutputClassifier(forest) clf_w.fit(Xw, yw, w) # unweighted, but with repeated samples X = [[1, 2, 3], [1, 2, 3], [4, 5, 6]] y = [[3, 2], [3, 2], [2, 3]] forest = RandomForestClassifier(n_estimators=10, random_state=1) clf = MultiOutputClassifier(forest) clf.fit(X, y) X_test = [[1.5, 2.5, 3.5], [3.5, 4.5, 5.5]] assert_almost_equal(clf.predict(X_test), clf_w.predict(X_test)) def test_multi_output_exceptions(): # NotFittedError when fit is not done but score, predict and # and predict_proba are called moc = MultiOutputClassifier(LinearSVC(random_state=0)) assert_raises(NotFittedError, moc.predict, y) assert_raises(NotFittedError, moc.predict_proba, y) assert_raises(NotFittedError, moc.score, X, y) # ValueError when number of outputs is different # for fit and score y_new = np.column_stack((y1, y2)) moc.fit(X, y) assert_raises(ValueError, moc.score, X, y_new)
bsd-3-clause
mhue/scikit-learn
sklearn/cross_decomposition/cca_.py
209
3150
from .pls_ import _PLS __all__ = ['CCA'] class CCA(_PLS): """CCA Canonical Correlation Analysis. CCA inherits from PLS with mode="B" and deflation_mode="canonical". Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, (default 2). number of components to keep. scale : boolean, (default True) whether to scale the data? max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop tol : non-negative real, default 1e-06. the tolerance used in the iterative algorithm copy : boolean Whether the deflation be done on a copy. Let the default value to True unless you don't care about side effects Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Notes ----- For each component k, find the weights u, v that maximizes max corr(Xk u, Yk v), such that ``|u| = |v| = 1`` Note that it maximizes only the correlations between the scores. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. Examples -------- >>> from sklearn.cross_decomposition import CCA >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [3.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> cca = CCA(n_components=1) >>> cca.fit(X, Y) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE CCA(copy=True, max_iter=500, n_components=1, scale=True, tol=1e-06) >>> X_c, Y_c = cca.transform(X, Y) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- PLSCanonical PLSSVD """ def __init__(self, n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="canonical", mode="B", norm_y_weights=True, algorithm="nipals", max_iter=max_iter, tol=tol, copy=copy)
bsd-3-clause
dkillick/cartopy
lib/cartopy/tests/mpl/test_examples.py
2
1636
# (C) British Crown Copyright 2011 - 2014, Met Office # # This file is part of cartopy. # # cartopy is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # cartopy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with cartopy. If not, see <http://www.gnu.org/licenses/>. from __future__ import (absolute_import, division, print_function) import numpy as np import matplotlib.pyplot as plt from cartopy.tests.mpl import ImageTesting class ExampleImageTesting(ImageTesting): """Subclasses ImageTesting to nullify the plt.show commands.""" def __call__(self, test_func): fn = ImageTesting.__call__(self, test_func) def new_fn(*args, **kwargs): try: show = plt.show plt.show = lambda *args, **kwargs: None r = fn(*args, **kwargs) finally: plt.show = show return r new_fn.__name__ = fn.__name__ return new_fn @ExampleImageTesting(['global_map']) def test_global_map(): import cartopy.examples.global_map as c c.main() if __name__ == '__main__': import nose nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
lgpl-3.0
henrynj/PMLMC
plot/euler_old/plot_fixed_ml.py
1
2278
#!/usr/bin/env python import sys import numpy as np import matplotlib.pyplot as plt def read_variance(): level = [] var_q = [] var_yl = [] filename = 'mlmc_convergence_test' fh = open(filename, 'r') for line in fh: # Recognise convergence test lines from # the fact that line[1] is an integer if line[0] == ' ' and '0' <= line[1] <= '9': splitline = [float(x) for x in line.split()] level.append(splitline[0]) var_q.append(splitline[5]) var_yl.append(splitline[7]) fh.close() var_q = np.array(var_q) var_yl = np.array(var_yl) return var_q, var_yl def calculate_optimal_number(level, var, eps, gamma = 1.4): """ calculate optimal number of samples on each level, based on eq.(3.1), Multilevel Monte Carlo methods, Giles, 2015. """ ### read var_l from mlmc_convergence_test cost = np.array( [4**(l*gamma) for l in level] ) NM_opt = np.ceil( 2 * np.sqrt( var / cost ) * \ sum( np.sqrt( var * cost ) ) / ( eps**2) ) return NM_opt.astype(int) def compute_mc_cost(v, eps, l, gamma): nm = int( np.ceil(2*v/(eps**2)) ) cost = nm * 4**(l*gamma) return cost def compute_mlmc_cost(nm, gamma, l0): cost_ml = 0 for l, n in enumerate(nm): if l==0: cost_ml += n * 4**( gamma*(l+l0) ) else: cost_ml += n * 4**( gamma*(l+l0)) #* ( 1+4**(-gamma) ) return cost_ml def estimate_c(L=3): """ calculate the eps that level L mesh grid can reach""" del3 = [] l = [] qoi_name = 'FlowAngleOut' filename = '../TestCase/su2_ls89/mc_data_%s.dat' %qoi_name fh = open(filename, 'r') for line in fh: if line[0] == ' ' and '0' <= line[1] <= '9': splitline = [float(x) for x in line.split()] l.append(splitline[0]) del3.append(splitline[3]) A = l[1:] B = np.log2( np.abs(del3[1:]) ) pa = np.polyfit(A, B, 1) alpha = -pa[0] / 2 c = 2**pa[1] eps = c * 2**(-2*L*alpha) print eps return eps if __name__ == '__main__': plot()
gpl-3.0
sgenoud/scikit-learn
sklearn/feature_extraction/tests/test_dict_vectorizer.py
3
2866
# Author: Lars Buitinck <[email protected]> # License: BSD-style. from random import Random import numpy as np import scipy.sparse as sp from nose.tools import assert_equal from nose.tools import assert_true from nose.tools import assert_false from numpy.testing import assert_array_equal from sklearn.feature_extraction import DictVectorizer from sklearn.feature_selection import SelectKBest, chi2 def test_dictvectorizer(): D = [{"foo": 1, "bar": 3}, {"bar": 4, "baz": 2}, {"bar": 1, "quux": 1, "quuux": 2}] for sparse in (True, False): for dtype in (int, np.float32, np.int16): v = DictVectorizer(sparse=sparse, dtype=dtype) X = v.fit_transform(D) assert_equal(sp.issparse(X), sparse) assert_equal(X.shape, (3, 5)) assert_equal(X.sum(), 14) assert_equal(v.inverse_transform(X), D) if sparse: # COO matrices can't be compared for equality assert_array_equal(X.A, v.transform(D).A) else: assert_array_equal(X, v.transform(D)) def test_feature_selection(): # make two feature dicts with two useful features and a bunch of useless # ones, in terms of chi2 d1 = dict([("useless%d" % i, 10) for i in xrange(20)], useful1=1, useful2=20) d2 = dict([("useless%d" % i, 10) for i in xrange(20)], useful1=20, useful2=1) for indices in (True, False): v = DictVectorizer().fit([d1, d2]) X = v.transform([d1, d2]) sel = SelectKBest(chi2, k=2).fit(X, [0, 1]) v.restrict(sel.get_support(indices=indices), indices=indices) assert_equal(v.get_feature_names(), ["useful1", "useful2"]) def test_one_of_k(): D_in = [{"version": "1", "ham": 2}, {"version": "2", "spam": .3}, {"version=3": True, "spam": -1}] v = DictVectorizer() X = v.fit_transform(D_in) assert_equal(X.shape, (3, 5)) D_out = v.inverse_transform(X) assert_equal(D_out[0], {"version=1": 1, "ham": 2}) names = v.get_feature_names() assert_true("version=2" in names) assert_false("version" in names) def test_unseen_features(): D = [{"camelot": 0, "spamalot": 1}] v = DictVectorizer(sparse=False).fit(D) X = v.transform({"push the pram a lot": 2}) assert_array_equal(X, np.zeros((1, 2))) def test_deterministic_vocabulary(): # Generate equal dictionaries with different memory layouts items = [("%03d" % i, i) for i in range(1000)] rng = Random(42) d_sorted = dict(items) rng.shuffle(items) d_shuffled = dict(items) # check that the memory layout does not impact the resulting vocabulary v_1 = DictVectorizer().fit([d_sorted]) v_2 = DictVectorizer().fit([d_shuffled]) assert_equal(v_1.vocabulary_, v_2.vocabulary_)
bsd-3-clause
kaichogami/scikit-learn
examples/feature_selection/plot_feature_selection.py
95
2847
""" =============================== Univariate Feature Selection =============================== An example showing univariate feature selection. Noisy (non informative) features are added to the iris data and univariate feature selection is applied. For each feature, we plot the p-values for the univariate feature selection and the corresponding weights of an SVM. We can see that univariate feature selection selects the informative features and that these have larger SVM weights. In the total set of features, only the 4 first ones are significant. We can see that they have the highest score with univariate feature selection. The SVM assigns a large weight to one of these features, but also Selects many of the non-informative features. Applying univariate feature selection before the SVM increases the SVM weight attributed to the significant features, and will thus improve classification. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, svm from sklearn.feature_selection import SelectPercentile, f_classif ############################################################################### # import some data to play with # The iris dataset iris = datasets.load_iris() # Some noisy data not correlated E = np.random.uniform(0, 0.1, size=(len(iris.data), 20)) # Add the noisy data to the informative features X = np.hstack((iris.data, E)) y = iris.target ############################################################################### plt.figure(1) plt.clf() X_indices = np.arange(X.shape[-1]) ############################################################################### # Univariate feature selection with F-test for feature scoring # We use the default selection function: the 10% most significant features selector = SelectPercentile(f_classif, percentile=10) selector.fit(X, y) scores = -np.log10(selector.pvalues_) scores /= scores.max() plt.bar(X_indices - .45, scores, width=.2, label=r'Univariate score ($-Log(p_{value})$)', color='darkorange') ############################################################################### # Compare to the weights of an SVM clf = svm.SVC(kernel='linear') clf.fit(X, y) svm_weights = (clf.coef_ ** 2).sum(axis=0) svm_weights /= svm_weights.max() plt.bar(X_indices - .25, svm_weights, width=.2, label='SVM weight', color='navy') clf_selected = svm.SVC(kernel='linear') clf_selected.fit(selector.transform(X), y) svm_weights_selected = (clf_selected.coef_ ** 2).sum(axis=0) svm_weights_selected /= svm_weights_selected.max() plt.bar(X_indices[selector.get_support()] - .05, svm_weights_selected, width=.2, label='SVM weights after selection', color='c') plt.title("Comparing feature selection") plt.xlabel('Feature number') plt.yticks(()) plt.axis('tight') plt.legend(loc='upper right') plt.show()
bsd-3-clause
svallaghe/libmesh
doc/statistics/libmesh_pagehits.py
1
9839
#!/usr/bin/env python import matplotlib.pyplot as plt import numpy as np # Import stuff for working with dates from datetime import datetime from matplotlib.dates import date2num # Hits/month, pages, and gigabytes served. # To get the Google analytics data: # .) Go to analytics.google.com. # .) There should be (as of July 2017) a "Google Analytics Home" box at the top left of the dashboard. # .) Click the "Audience Overview" link at the bottom right corner of this box. # .) Adjust date range to previous month. # .) Record the number of "Pageviews" in the "Hits" column below. # The data below are from the libmesh.github.io site, which uses the # number UA-24978333-1. # # Note: we do not have control over the analytics for the # https://www.github.com/libMesh/libmesh page. If you look at the page # source, analytics code UA-3769691-2 appears, but if I try to add # this property in my analytics account, Google assigns me the number # UA-24978333-{2,3,...} (where the last digit may change depending on # how many times you tried to add/remove this property in the # Analytics Dashboard) and there does not seem to be a straightforward # way of inserting this code into the source. There have been some # README.md based hacks for doing this in the past, but I don't think # they are particularly reliable... # Hits, pages, GB served data = [ # 'Jan 2003', 616, 616, 0 # 'Feb 2003', 2078, 2078, 0, # 'Mar 2003', 3157, 3157, 0, # 'Apr 2003', 7800, 7800, 0, # 'May 2003', 4627, 4627, 0, # 'Jun 2003', 6156, 6156, 0, # 'Jul 2003', 6389, 6389, 0, # 'Aug 2003', 10136, 10136, 0, # 'Sep 2003', 8871, 8871, 0, # 'Oct 2003', 9703, 9703, 0, # 'Nov 2003', 9802, 9802, 0, # 'Dec 2003', 9123, 9123, 0, # 'Jan 2004', 13599, 13599, 0, # 'Feb 2004', 11018, 11018, 0, # 'Mar 2004', 11713, 11713, 0, # 'Apr 2004', 14995, 14995, 0, # 'May 2004', 11285, 11285, 0, # 'Jun 2004', 12974, 12974, 0, # 'Jul 2004', 12939, 12939, 0, # 'Aug 2004', 9708, 9708, 0, # 'Sep 2004', 7994, 7994, 0, # 'Oct 2004', 6920, 6920, 0, # 'Nov 2004', 10261, 10261, 0, # 'Dec 2004', 7483, 7483, 0, # 'Jan 2005', 3184, 3184, 0, # 'Feb 2005', 37733, 14077, .4373, # 'Mar 2005', 43927, 16408, .5637, # 'Apr 2005', 29792, 8518, .2890, # 'May 2005', 51288, 17629, .5689, # 'Jun 2005', 40617, 16599, .5379, # 'Jul 2005', 29944, 10006, .3363, # 'Aug 2005', 39592, 14556, .4577, # 'Sep 2005', 57638, 14666, .4881, # 'Oct 2005', 48336, 17976, .5749, # 'Nov 2005', 49563, 15308, .5810, # 'Dec 2005', 90863, 40736, .9415, # 'Jan 2006', 46723, 13487, .5662, # 'Feb 2006', 62285, 26567, .8229, # 'Mar 2006', 47446, 14711, .6534, # 'Apr 2006', 90314, 29635, .9762, # 'May 2006', 68209, 20998, .7949, # 'Jun 2006', 50495, 17128, .6881, # 'Jul 2006', 42387, 10958, .6016, # 'Aug 2006', 55658, 11793, .6174, # 'Sep 2006', 54919, 20591, .9056, # 'Oct 2006', 52916, 17944, .9015, # 'Nov 2006', 55382, 19833, .9439, # 'Dec 2006', 54265, 22688, .9162, # 'Jan 2007', 53813, 19881, 1.0 , # 'Feb 2007', 52434, 17920, .9472, # 'Mar 2007', 61530, 21172, 1.2, # 'Apr 2007', 125578, 77539, 1.3, # 'May 2007', 182764, 129596, 1.6, # 'Jun 2007', 115730, 38571, 1.7, # 'Jul 2007', 121054, 42757, 1.8, # 'Aug 2007', 81192, 28187, 1.3, # 'Sep 2007', 143553, 39734, 2.3, # 'Oct 2007', 110449, 42111, 2.4, # 'Nov 2007', 128307, 57851, 2.3, # 'Dec 2007', 80584, 42631, 2.0, # 'Jan 2008', 69623, 34155, 2.0, # 'Feb 2008', 144881, 111751, 2.5, # 'Mar 2008', 69801, 29211, 1.9, # 'Apr 2008', 74023, 31149, 2.0, # 'May 2008', 63123, 23277, 1.8, # 'Jun 2008', 66055, 25418, 2.1, # 'Jul 2008', 60046, 22082, 2.0, # 'Aug 2008', 60206, 24543, 2.0, # 'Sep 2008', 53057, 18635, 1.6, # 'Oct 2008', 64828, 27042, 2.1, # 'Nov 2008', 72406, 29767, 2.3, # 'Dec 2008', 76248, 31690, 2.3, # 'Jan 2009', 73002, 29744, 2.0, # 'Feb 2009', 70801, 29156, 2.1, # 'Mar 2009', 78200, 31139, 2.1, # 'Apr 2009', 70888, 26182, 1.7, # 'May 2009', 67263, 26210, 1.8, # 'Jun 2009', 73146, 31328, 2.6, # 'Jul 2009', 77828, 33711, 2.4, # 'Aug 2009', 64378, 28542, 1.9, # 'Sep 2009', 76167, 33484, 2.2, # 'Oct 2009', 95727, 41062, 2.8, # 'Nov 2009', 88042, 38869, 2.5, # 'Dec 2009', 76148, 37609, 2.3, # 'Jan 2010', 268856, 45983, 3.2, # 'Feb 2010', 208210, 42680, 3.0, # 'Mar 2010', 116263, 42660, 2.6, # 'Apr 2010', 102493, 32942, 2.4, # 'May 2010', 117023, 37107, 2.5, # 'Jun 2010', 128589, 38019, 2.5, # 'Jul 2010', 87183, 34026, 2.2, # 'Aug 2010', 99161, 33199, 2.5, # 'Sep 2010', 81657, 32305, 2.5, # 'Oct 2010', 98236, 42091, 3.4, # 'Nov 2010', 115603, 48695, 3.4, # 'Dec 2010', 105030, 45570, 3.4, # 'Jan 2011', 133476, 43549, 3.1, # 'Feb 2011', 34483, 15002, 1.1, # 'Mar 2011', 0, 0, 0.0, # 'Apr 2011', 0, 0, 0.0, # 'May 2011', 0, 0, 0.0, # 'Jun 2011', 0, 0, 0.0, # 'Jul 2011', 0, 0, 0.0, 'Aug 2011', 10185, 0, 0.0, # New "Pageviews" data from google analytics, does not seem comparable to sf.net pagehits data 'Sep 2011', 10305, 0, 0.0, 'Oct 2011', 14081, 0, 0.0, 'Nov 2011', 13397, 0, 0.0, 'Dec 2011', 13729, 0, 0.0, 'Jan 2012', 11050, 0, 0.0, 'Feb 2012', 12779, 0, 0.0, 'Mar 2012', 12970, 0, 0.0, 'Apr 2012', 13051, 0, 0.0, 'May 2012', 11857, 0, 0.0, 'Jun 2012', 12584, 0, 0.0, 'Jul 2012', 12995, 0, 0.0, 'Aug 2012', 13204, 0, 0.0, 'Sep 2012', 13170, 0, 0.0, 'Oct 2012', 13335, 0, 0.0, 'Nov 2012', 11337, 0, 0.0, 'Dec 2012', 10108, 0, 0.0, # libmesh switched to github on December 10, 2012 'Jan 2013', 13029, 0, 0.0, 'Feb 2013', 10420, 0, 0.0, 'Mar 2013', 13400, 0, 0.0, 'Apr 2013', 14416, 0, 0.0, 'May 2013', 13875, 0, 0.0, 'Jun 2013', 13747, 0, 0.0, 'Jul 2013', 14019, 0, 0.0, 'Aug 2013', 10828, 0, 0.0, 'Sep 2013', 9969, 0, 0.0, 'Oct 2013', 13083, 0, 0.0, 'Nov 2013', 12938, 0, 0.0, 'Dec 2013', 9079, 0, 0.0, 'Jan 2014', 9736, 0, 0.0, 'Feb 2014', 11824, 0, 0.0, 'Mar 2014', 10861, 0, 0.0, 'Apr 2014', 12711, 0, 0.0, 'May 2014', 11177, 0, 0.0, 'Jun 2014', 10738, 0, 0.0, 'Jul 2014', 10349, 0, 0.0, 'Aug 2014', 8877, 0, 0.0, 'Sep 2014', 9226, 0, 0.0, 'Oct 2014', 8052, 0, 0.0, # Google analytics number moved over to libmesh.github.io in Oct 2014 'Nov 2014', 9243, 0, 0.0, 'Dec 2014', 10714, 0, 0.0, 'Jan 2015', 11508, 0, 0.0, 'Feb 2015', 11278, 0, 0.0, 'Mar 2015', 13305, 0, 0.0, 'Apr 2015', 12347, 0, 0.0, 'May 2015', 11368, 0, 0.0, 'Jun 2015', 11203, 0, 0.0, 'Jul 2015', 10419, 0, 0.0, 'Aug 2015', 11282, 0, 0.0, 'Sep 2015', 13535, 0, 0.0, 'Oct 2015', 12912, 0, 0.0, 'Nov 2015', 13894, 0, 0.0, 'Dec 2015', 11694, 0, 0.0, 'Jan 2016', 11837, 0, 0.0, 'Feb 2016', 14102, 0, 0.0, 'Mar 2016', 13212, 0, 0.0, 'Apr 2016', 13355, 0, 0.0, 'May 2016', 12486, 0, 0.0, 'Jun 2016', 13973, 0, 0.0, 'Jul 2016', 10688, 0, 0.0, 'Aug 2016', 10048, 0, 0.0, 'Sep 2016', 10847, 0, 0.0, 'Oct 2016', 10984, 0, 0.0, 'Nov 2016', 12233, 0, 0.0, 'Dec 2016', 11430, 0, 0.0, 'Jan 2017', 10327, 0, 0.0, 'Feb 2017', 11039, 0, 0.0, 'Mar 2017', 12986, 0, 0.0, 'Apr 2017', 9773, 0, 0.0, 'May 2017', 10880, 0, 0.0, 'Jun 2017', 9179, 0, 0.0, 'Jul 2017', 8344, 0, 0.0, 'Aug 2017', 8617, 0, 0.0, 'Sep 2017', 8576, 0, 0.0, ] # Extract number of hits/month n_hits_month = data[1::4] # Divide by 1000 for plotting... n_hits_month = np.divide(n_hits_month, 1000.) # Extract list of date strings date_strings = data[0::4] # Convert date strings into numbers date_nums = [] for d in date_strings: date_nums.append(date2num(datetime.strptime(d, '%b %Y'))) # Get a reference to the figure fig = plt.figure() # 111 is equivalent to Matlab's subplot(1,1,1) command ax = fig.add_subplot(111) # Make the bar chart. We have one number/month, there are about 30 # days in each month, this defines the bar width... # The color used comes from sns.color_palette("muted").as_hex() They # are the "same basic order of hues as the default matplotlib color # cycle but more attractive colors." ax.bar(date_nums, n_hits_month, width=30, color=u'#4878cf') # Create title fig.suptitle('LibMesh Page Hits/Month (in Thousands)') # Set up x-tick locations -- August of each year ticks_names = ['2012', '2013', '2014', '2015', '2016', '2017'] # Get numerical values for the names tick_nums = [] for x in ticks_names: tick_nums.append(date2num(datetime.strptime('Jan ' + x, '%b %Y'))) # Set tick labels and positions ax.set_xticks(tick_nums) ax.set_xticklabels(ticks_names) # Set x limits for the plot plt.xlim(date_nums[0], date_nums[-1]+30); # Make x-axis ticks point outward ax.get_xaxis().set_tick_params(direction='out') # Save as PDF plt.savefig('libmesh_pagehits.pdf') # Local Variables: # python-indent: 2 # End:
lgpl-2.1
clham/portfolio
portfolio.py
1
3609
import pandas as pd import numpy as np import scipy as sp class Portfolio(object): def __init__(self): '''establishes a portfolio class ''' import pandas as pd import numpy as np import scipy as sp self.Assets=pd.DataFrame(columns=['mu','vol','weight'], dtype='float') self.Assets.index.name='Asset' self.Rho=pd.DataFrame(columns=[], dtype='float') def add_asset(self, asset, mu, vol, weight): '''Adds an asset class to the portfolio ''' self.Assets.loc[asset]=[mu, vol, weight] self.Rho.ix[asset,asset]=1 def add_rho(self, asset1, asset2, rho): '''adds correlation coefficients to the table, also ensuring it remains symetric ''' if set([asset1, asset2]).issubset(self.Assets.index): self.Rho.ix[asset1, asset2]=rho self.Rho.ix[asset2, asset1]=rho else: print("One of the assets is not defined. Please add the asset before assigning correlation") def monte_carlo(self, time): '''performs an N period montecarlo simulation of the portfolio, without rebalanceing. Returns: end value factor ''' #convert everything germane into np arrays mu=self.Assets[['mu']].values vol=self.Assets[['vol']].values var=self.var_covar() #generate 1xN matrix of Nrand numbers Z=np.random.randn(len(self.Assets.index),1) #generate a matrix of multivariate normal numbers by Chol(VAR).T*Z Z_interaction=np.dot(np.linalg.cholesky(var).T,Z) drift=np.dot((mu-np.power(vol,2)/2), time) noise=Z_interaction*time**.5 #combine GBR value=np.exp(np.multiply(np.add(drift,noise), self.Assets[['weight']].values).sum()) return(value) def var_covar(self): '''Returns VAR_COVAR matrix of the portfolio ''' vold=np.diag(self.Assets['vol']) return(np.dot( np.dot(vold, self.Rho.values), vold)) def set_default_portfolio(self): '''sets up default portfolio''' equity=.60 domestic=.7 international=.3 debt=.35 reit=.1 #setup portfolio self.add_asset('large domestic', .0849, .1475, equity*domestic*.65) self.add_asset('mid domestic', .0919, .1775, equity*domestic*.27) self.add_asset('small domestic', .0924, .1975, equity*domestic*.08) self.add_asset('international equity', .087, .145, equity*international) self.add_asset('agg debt', .0435, .045, debt) self.add_asset('US REIT', .0855, .2, reit) self.add_rho('large domestic', 'mid domestic', .96) self.add_rho('large domestic', 'small domestic', .92) self.add_rho('large domestic', 'international equity', .88) self.add_rho('large domestic', 'agg debt', .04) self.add_rho('large domestic', 'US REIT', .77) self.add_rho('mid domestic', 'small domestic', .94) self.add_rho('mid domestic', 'international equity', .88) self.add_rho('mid domestic', 'agg debt', .03) self.add_rho('mid domestic', 'US REIT', .79) self.add_rho('small domestic', 'international equity', .82) self.add_rho('small domestic', 'agg debt', -.04) self.add_rho('small domestic', 'US REIT', .79) self.add_rho('international equity', 'agg debt', -.02) self.add_rho('international equity', 'US REIT', .66) self.add_rho('agg debt', 'US REIT', .22)
mit
anguoyang/SMQTK
MASIR/python/masir/search/EventContentDescriptor/cross_validation/perf_estimation.py
1
13789
# coding=utf-8 """ LICENCE ------- Copyright 2013 by Kitware, Inc. All Rights Reserved. Please refer to KITWARE_LICENSE.TXT for licensing information, or contact General Counsel, Kitware, Inc., 28 Corporate Drive, Clifton Park, NY 12065. """ import numpy as np import itertools def compute_errorRate(labels, scores, target_class=1): """ Compute prbability of false alarm (PFA) and probability of miss detection (PD) at every sample point. This is done by sorting the scores, and counting the miss/false alarms based on labels. @param labels: list of ground truth labels @type labels: iterable @param scores: scores generated by classifiers @type scores: numpy.iterable (includes most iterable) @target_class: the label of the target (positive) class (default = 1) @type target_class: int @return: (sorted) PFAs, PMDs, and sorted indices of the original inputs (increasing order) @rtype: tuple of (numpy.array of floats, numpy.array of floats, numpy.array of int) """ num_scores = len(scores) if not len(labels)==num_scores: print 'The number of labels and scores should be same...' return 0 sortedIndex = np.argsort(scores)[::-1] sortedLabels = [labels[idx] for idx in sortedIndex] # sortedScores = scores[sortedIndex] num_pos = 0 for i in range(num_scores): if labels[i]==target_class: num_pos += 1 num_neg = num_scores - num_pos pfas = np.zeros(num_scores) pmds = np.zeros(num_scores) fp, fn = 0, num_pos for i in range(num_scores): if sortedLabels[i]==target_class: fn -= 1 else: fp += 1 if not num_neg==0: pfas[i] = fp/float(num_neg) if not num_pos==0: pmds[i] = fn/float(num_pos) return pfas, pmds, sortedIndex def plot_yearly_goals(ax, goal_years): intercepts = [0.25, 0.50, 0.65, 0.75, 0.82] for idx, year in enumerate(goal_years): xs = np.arange(0, 1, 0.0001) ys = 12.5 * xs + intercepts[year-1] plot_label = 'Year %d Goal' % (year) ax.plot(xs*100, ys,'k--', label=plot_label) def average_precision_R0(inputs, plot_parameters = None): """ Compute Average Precision, R0, and maximum possible R0. For definition of metrics, look at ALADDIN program documentation on metrics for Year 3 and on. Also, plots curves if filename is specified. @param inputs: list of dictionary, each dictionary contains information regarding different event as follows input['scores']: series of scores in the same order as labels, with type iterable input['labels']: series of ground truth labels as labels input['gamma']: optional, default = 0.001, ratio of positives input['target_class']: target class label, integer input['threshold']: optional float, if exists, computes R0 (in addition to R0*), and also mark on curve input['topN']: optional, if exists, only use topN scores for results computing input['plot_parameters']: optional dictionary, if exists each input write its own plot file input['plot_parameters']['filename_plot']: string, write a plot file input['plot_parameters']['title']: optional, title of image input['plot_parameters']['name']: name of this curve to be included in legend input['plot_parameters']['color']: optional, color for this curve, input['plot_parameters']['linewidth']: optional, linewidth for this curve input['plot_parameters']['resolution']: optional, size of output image, default = (600.0, 600.0) input['plot_parameters']['use_log_xaxis']: optional boolean, default = False, if True use [10, 100, 1000,..] as uniformly spaced x tickmarks input['plot_parameters']['show_threshold']: optional boolean, default = True, if True and thrshold exists, mark the threshold on the curve input['plot_parameters']['show_R0_star']: optional boolean, default = True, if True, show R0* in legend @param plot_parameters: optional, dictionary, plotting parameters to draw multiple inputs together. input['plot_parameters']['filename_plot']: string, path for a plot file. input['plot_parameters']['title']: optional, title of image. input['plot_parameters']['resolution']: optional, size of output image, default = (600.0, 600.0). input['plot_parameters']['use_log_xaxis']: optional boolean, default = False, if True use [10, 100, 1000,..] as uniformly spaced x tickmarks. input['plot_parameters']['show_threshold']: optional boolean, default = True, if True, mark the thresholds (for those it exists) on the curves plot_parameters['show_R0_star']: optional boolean, default = True, if True, show R0* in legend For legends/colors/linewidths, use name/color/linewidth of each input plot parameters @return: list of dictionary, each with the following items outputs: list of output dictionary for each input output['ap_prime']: normalized ap output['ap']: traditional average precision output['R0_star']: maximum possible R0 output['R0']: optional, R0 at threshold """ #matplotlib.use('Agg') # this step makes it work on machines with GUI backend. import matplotlib.pyplot as plt colors = itertools.cycle([[1,0,0], "b", "g", "c", "m", "y", "k"]) outputs = [dict() for k in range(len(inputs))] # list of plot handles p = [0]*len(inputs) # if all the curves are to be plotted on same figure, initialize figure if plot_parameters is not None: fig = plt.figure() ax = fig.add_subplot(1,1,1) # iterate over list of inputs for idx, ip in enumerate(inputs): scores = ip['scores'] labels = ip['labels'] num_scores = len(scores) if not len(labels)==num_scores: print 'The number of labels and scores should be the same.' return 0 sortedIndex = np.argsort(scores)[::-1] sortedLabels = [labels[index] for index in sortedIndex] # set defaults target_class = 1 gamma = 0.001 dpi_value = 600 line_width = 2.0 show_threshold = True show_R0_star = True # input parameter options if 'target_class' in ip: target_class = ip['target_class'] if 'topN' in ip: sortedLabels = sortedLabels[:ip['topN']] num_scores = ip['topN'] if 'gamma' in ip: gamma = ip['gamma'] # compute metrics num_pos = sortedLabels.count(target_class) percent_rank = np.zeros(num_scores) precision = np.zeros(num_scores) recall = np.zeros(num_scores) true_detection = 0 for i in range(num_scores): percent_rank[i] = (i+1) / float(num_scores) if sortedLabels[i] == target_class: true_detection += 1 precision[i] = true_detection / float(i + 1) recall[i] = true_detection / float(num_pos) indices = [i for i, x in enumerate(sortedLabels) if x == target_class] ap_prime = np.sum (gamma * recall[indices] / percent_rank[indices]) / num_pos ap = np.mean(precision[indices]) R0_star = np.max(recall - 12.5 * percent_rank) outputs[idx]['ap_prime'] = ap_prime outputs[idx]['ap'] = ap outputs[idx]['R0_star'] = R0_star # plotting parameters if 'threshold' in ip: index = scores.index(ip['threshold']) R0 = recall[index] - 12.5*percent_rank[index] outputs[idx]['R0'] = R0 if 'plot_parameters' is not None: if 'show_threshold' in plot_parameters: show_threshold = plot_parameters['show_threshold'] if 'plot_parameters' in ip: if 'show_threshold' in ip['plot_parameters']: show_threshold = ip['plot_parameters']['show_threshold'] else: show_threshold = False if plot_parameters is not None: if 'show_R0_star' in plot_parameters: show_R0_star = plot_parameters['show_R0_star'] if 'plot_parameters' in ip: if 'show_R0_star' in ip['plot_parameters']: show_R0_star = ip['plot_parameters']['show_R0_star'] if show_R0_star: plot_label = 'AP\' = %0.4f, AP = %0.4f, R0* = %0.4f' % (ap_prime, ap, R0_star) else: plot_label = 'AP\' = %0.4f, AP = %0.4f' % (ap_prime, ap) if 'plot_parameters' in ip: if 'color' in ip['plot_parameters']: color_name = ip['plot_parameters']['color'] else: color_name = next(colors) if 'linewidth' in ip['plot_parameters']: line_width = ip['plot_parameters']['linewidth'] if 'name' in ip['plot_parameters']: plot_label = '%s, %s' % (ip['plot_parameters']['name'], plot_label) else: color_name = next(colors) # plot percent_rank vs. recall curve if plot_parameters is None: fig = plt.figure() ax = fig.add_subplot(1,1,1) p[idx] = ax.plot(percent_rank*100, recall, linewidth=line_width, color = color_name, label = plot_label) if show_threshold: index = scores.index(ip['threshold']) plt.plot(percent_rank[index], recall[index], '^', markersize = 15, color = color_name) # save each plot if 'plot_parameters' in ip: if 'title' in ip['plot_parameters']: plt.title(ip['plot_parameters']['title']) if 'resolution' in ip['plot_parameters']: dpi_value = ip['plot_parameters']['resolution'] if 'filename_plot' in ip['plot_parameters']: handles, labels = ax.get_legend_handles_labels() ax.legend(handles[::-1], labels[::-1],loc = 'best', prop = {'size': 10}) plt.xlabel("Percent Rank") plt.ylabel("Recall") plt.ylim(0,1) plt.xlim(0,100) plt.grid(b=True, axis='both', linestyle=':', linewidth=0.3) plt.savefig(ip['plot_parameters']['filename_plot'], dpi=dpi_value) # save final plot with all the curves if plot_parameters is not None: if 'title' in plot_parameters: plt.title(plot_parameters['title']) if 'resolution' in plot_parameters: dpi_value = plot_parameters['resolution'] if 'filename_plot' in plot_parameters: handles, labels = ax.get_legend_handles_labels() ax.legend(handles[::-1], labels[::-1],loc = 'best', prop = {'size': 10}) plt.xlabel("Percent Rank") plt.ylabel("Recall") plt.ylim(0,1) plt.xlim(0,100) plt.grid(b=True, axis='both', linestyle=':', linewidth=0.3) plt.savefig(plot_parameters['filename_plot'], dpi=dpi_value) return outputs def average_precision(scores, labels, target_class=1, thresholds = None, topN = None): """ Compute Average Precision for one class, and return AP. @param scores: series of scores in the same order as labels @param labels: ground truth labels @param target_class: the positive class (among possible labels) @param topN: (optional) only compute AP among top N scoring examples @type labels: iterable @type scores: numpy.array_like @type target_class: integer @type topN: integer, optional, default = None (all samples will be used) @return: average precision @rtype: float """ if isinstance(scores[0], list): inputs = [dict() for k in range(len(scores))] for i in range(len(scores)): inputs[i]['scores'] = scores[i] inputs[i]['labels'] = labels[i] inputs[i]['target_class'] = target_class inputs[i]['plot_parameters'] = dict() if thresholds is not None: inputs[i]['threshold'] = thresholds[i] if topN is not None: inputs[i]['topN'] = topN inputs[0]['plot_parameters']['name'] = 'E006' inputs[1]['plot_parameters']['name'] = 'E007' # inputs[0]['plot_parameters']['filename_plot'] = 'E006.jpg' # inputs[1]['plot_parameters']['filename_plot'] = 'E007.jpg' # inputs[0]['plot_parameters']['color'] = [1, 0, 0] # inputs[1]['plot_parameters']['color'] = 'm' else: inputs = dict() inputs['scores'] = scores inputs['labels'] = labels inputs['target_class'] = target_class if thresholds is not None: inputs['thresholds'] = thresholds if topN is not None: inputs['topN'] = topN plot_parameters = dict() plot_parameters['resolution'] = 600 plot_parameters['title'] = 'Performance Metrics' plot_parameters['filename_plot'] = 'performance_metrics.jpg' plot_parameters['show_R0_star'] = False outputs = average_precision_R0(inputs, plot_parameters) #outputs = average_precision_R0(inputs) return outputs if __name__ == "__main__" : scores6 = (np.loadtxt('scores6.txt')).tolist() labels6 = np.loadtxt('labels6.txt').tolist() scores7 = (np.loadtxt('scores7.txt')).tolist() labels7 = np.loadtxt('labels7.txt').tolist() scores = [scores6, scores7] labels = [labels6, labels7] # scores = ([5, 4, 3, 2, 1], [1, 2, 3, 4, 5]) # labels = ([1, 1, 0, 1, 0], [1, 0, 0, 1, 1]) # target_class = [1, 1] # thresholds = [3, 3] # metrics = average_precision(scores, labels, 1)
bsd-3-clause
kenshay/ImageScripter
ProgramData/SystemFiles/Python/Lib/site-packages/matplotlib/dviread.py
10
33393
""" An experimental module for reading dvi files output by TeX. Several limitations make this not (currently) useful as a general-purpose dvi preprocessor, but it is currently used by the pdf backend for processing usetex text. Interface:: dvi = Dvi(filename, 72) # iterate over pages (but only one page is supported for now): for page in dvi: w, h, d = page.width, page.height, page.descent for x,y,font,glyph,width in page.text: fontname = font.texname pointsize = font.size ... for x,y,height,width in page.boxes: ... """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import xrange import errno import matplotlib import matplotlib.cbook as mpl_cbook from matplotlib.compat import subprocess from matplotlib import rcParams import numpy as np import struct import sys import os if six.PY3: def ord(x): return x _dvistate = mpl_cbook.Bunch(pre=0, outer=1, inpage=2, post_post=3, finale=4) class Dvi(object): """ A dvi ("device-independent") file, as produced by TeX. The current implementation only reads the first page and does not even attempt to verify the postamble. """ def __init__(self, filename, dpi): """ Initialize the object. This takes the filename as input and opens the file; actually reading the file happens when iterating through the pages of the file. """ matplotlib.verbose.report('Dvi: ' + filename, 'debug') self.file = open(filename, 'rb') self.dpi = dpi self.fonts = {} self.state = _dvistate.pre self.baseline = self._get_baseline(filename) def _get_baseline(self, filename): if rcParams['text.latex.preview']: base, ext = os.path.splitext(filename) baseline_filename = base + ".baseline" if os.path.exists(baseline_filename): with open(baseline_filename, 'rb') as fd: l = fd.read().split() height, depth, width = l return float(depth) return None def __iter__(self): """ Iterate through the pages of the file. Returns (text, boxes) pairs, where: text is a list of (x, y, fontnum, glyphnum, width) tuples boxes is a list of (x, y, height, width) tuples The coordinates are transformed into a standard Cartesian coordinate system at the dpi value given when initializing. The coordinates are floating point numbers, but otherwise precision is not lost and coordinate values are not clipped to integers. """ while True: have_page = self._read() if have_page: yield self._output() else: break def close(self): """ Close the underlying file if it is open. """ if not self.file.closed: self.file.close() def _output(self): """ Output the text and boxes belonging to the most recent page. page = dvi._output() """ minx, miny, maxx, maxy = np.inf, np.inf, -np.inf, -np.inf maxy_pure = -np.inf for elt in self.text + self.boxes: if len(elt) == 4: # box x,y,h,w = elt e = 0 # zero depth else: # glyph x,y,font,g,w = elt h,e = font._height_depth_of(g) minx = min(minx, x) miny = min(miny, y - h) maxx = max(maxx, x + w) maxy = max(maxy, y + e) maxy_pure = max(maxy_pure, y) if self.dpi is None: # special case for ease of debugging: output raw dvi coordinates return mpl_cbook.Bunch(text=self.text, boxes=self.boxes, width=maxx-minx, height=maxy_pure-miny, descent=descent) d = self.dpi / (72.27 * 2**16) # from TeX's "scaled points" to dpi units if self.baseline is None: descent = (maxy - maxy_pure) * d else: descent = self.baseline text = [ ((x-minx)*d, (maxy-y)*d - descent, f, g, w*d) for (x,y,f,g,w) in self.text ] boxes = [ ((x-minx)*d, (maxy-y)*d - descent, h*d, w*d) for (x,y,h,w) in self.boxes ] return mpl_cbook.Bunch(text=text, boxes=boxes, width=(maxx-minx)*d, height=(maxy_pure-miny)*d, descent=descent) def _read(self): """ Read one page from the file. Return True if successful, False if there were no more pages. """ while True: byte = ord(self.file.read(1)[0]) self._dispatch(byte) if byte == 140: # end of page return True if self.state == _dvistate.post_post: # end of file self.close() return False def _arg(self, nbytes, signed=False): """ Read and return an integer argument *nbytes* long. Signedness is determined by the *signed* keyword. """ str = self.file.read(nbytes) value = ord(str[0]) if signed and value >= 0x80: value = value - 0x100 for i in range(1, nbytes): value = 0x100*value + ord(str[i]) return value def _dispatch(self, byte): """ Based on the opcode *byte*, read the correct kinds of arguments from the dvi file and call the method implementing that opcode with those arguments. """ if 0 <= byte <= 127: self._set_char(byte) elif byte == 128: self._set_char(self._arg(1)) elif byte == 129: self._set_char(self._arg(2)) elif byte == 130: self._set_char(self._arg(3)) elif byte == 131: self._set_char(self._arg(4, True)) elif byte == 132: self._set_rule(self._arg(4, True), self._arg(4, True)) elif byte == 133: self._put_char(self._arg(1)) elif byte == 134: self._put_char(self._arg(2)) elif byte == 135: self._put_char(self._arg(3)) elif byte == 136: self._put_char(self._arg(4, True)) elif byte == 137: self._put_rule(self._arg(4, True), self._arg(4, True)) elif byte == 138: self._nop() elif byte == 139: self._bop(*[self._arg(4, True) for i in range(11)]) elif byte == 140: self._eop() elif byte == 141: self._push() elif byte == 142: self._pop() elif byte == 143: self._right(self._arg(1, True)) elif byte == 144: self._right(self._arg(2, True)) elif byte == 145: self._right(self._arg(3, True)) elif byte == 146: self._right(self._arg(4, True)) elif byte == 147: self._right_w(None) elif byte == 148: self._right_w(self._arg(1, True)) elif byte == 149: self._right_w(self._arg(2, True)) elif byte == 150: self._right_w(self._arg(3, True)) elif byte == 151: self._right_w(self._arg(4, True)) elif byte == 152: self._right_x(None) elif byte == 153: self._right_x(self._arg(1, True)) elif byte == 154: self._right_x(self._arg(2, True)) elif byte == 155: self._right_x(self._arg(3, True)) elif byte == 156: self._right_x(self._arg(4, True)) elif byte == 157: self._down(self._arg(1, True)) elif byte == 158: self._down(self._arg(2, True)) elif byte == 159: self._down(self._arg(3, True)) elif byte == 160: self._down(self._arg(4, True)) elif byte == 161: self._down_y(None) elif byte == 162: self._down_y(self._arg(1, True)) elif byte == 163: self._down_y(self._arg(2, True)) elif byte == 164: self._down_y(self._arg(3, True)) elif byte == 165: self._down_y(self._arg(4, True)) elif byte == 166: self._down_z(None) elif byte == 167: self._down_z(self._arg(1, True)) elif byte == 168: self._down_z(self._arg(2, True)) elif byte == 169: self._down_z(self._arg(3, True)) elif byte == 170: self._down_z(self._arg(4, True)) elif 171 <= byte <= 234: self._fnt_num(byte-171) elif byte == 235: self._fnt_num(self._arg(1)) elif byte == 236: self._fnt_num(self._arg(2)) elif byte == 237: self._fnt_num(self._arg(3)) elif byte == 238: self._fnt_num(self._arg(4, True)) elif 239 <= byte <= 242: len = self._arg(byte-238) special = self.file.read(len) self._xxx(special) elif 243 <= byte <= 246: k = self._arg(byte-242, byte==246) c, s, d, a, l = [ self._arg(x) for x in (4, 4, 4, 1, 1) ] n = self.file.read(a+l) self._fnt_def(k, c, s, d, a, l, n) elif byte == 247: i, num, den, mag, k = [ self._arg(x) for x in (1, 4, 4, 4, 1) ] x = self.file.read(k) self._pre(i, num, den, mag, x) elif byte == 248: self._post() elif byte == 249: self._post_post() else: raise ValueError("unknown command: byte %d"%byte) def _pre(self, i, num, den, mag, comment): if self.state != _dvistate.pre: raise ValueError("pre command in middle of dvi file") if i != 2: raise ValueError("Unknown dvi format %d"%i) if num != 25400000 or den != 7227 * 2**16: raise ValueError("nonstandard units in dvi file") # meaning: TeX always uses those exact values, so it # should be enough for us to support those # (There are 72.27 pt to an inch so 7227 pt = # 7227 * 2**16 sp to 100 in. The numerator is multiplied # by 10^5 to get units of 10**-7 meters.) if mag != 1000: raise ValueError("nonstandard magnification in dvi file") # meaning: LaTeX seems to frown on setting \mag, so # I think we can assume this is constant self.state = _dvistate.outer def _set_char(self, char): if self.state != _dvistate.inpage: raise ValueError("misplaced set_char in dvi file") self._put_char(char) self.h += self.fonts[self.f]._width_of(char) def _set_rule(self, a, b): if self.state != _dvistate.inpage: raise ValueError("misplaced set_rule in dvi file") self._put_rule(a, b) self.h += b def _put_char(self, char): if self.state != _dvistate.inpage: raise ValueError("misplaced put_char in dvi file") font = self.fonts[self.f] if font._vf is None: self.text.append((self.h, self.v, font, char, font._width_of(char))) else: scale = font._scale for x, y, f, g, w in font._vf[char].text: newf = DviFont(scale=_mul2012(scale, f._scale), tfm=f._tfm, texname=f.texname, vf=f._vf) self.text.append((self.h + _mul2012(x, scale), self.v + _mul2012(y, scale), newf, g, newf._width_of(g))) self.boxes.extend([(self.h + _mul2012(x, scale), self.v + _mul2012(y, scale), _mul2012(a, scale), _mul2012(b, scale)) for x, y, a, b in font._vf[char].boxes]) def _put_rule(self, a, b): if self.state != _dvistate.inpage: raise ValueError("misplaced put_rule in dvi file") if a > 0 and b > 0: self.boxes.append((self.h, self.v, a, b)) def _nop(self): pass def _bop(self, c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, p): if self.state != _dvistate.outer: raise ValueError("misplaced bop in dvi file (state %d)" % self.state) self.state = _dvistate.inpage self.h, self.v, self.w, self.x, self.y, self.z = 0, 0, 0, 0, 0, 0 self.stack = [] self.text = [] # list of (x,y,fontnum,glyphnum) self.boxes = [] # list of (x,y,width,height) def _eop(self): if self.state != _dvistate.inpage: raise ValueError("misplaced eop in dvi file") self.state = _dvistate.outer del self.h, self.v, self.w, self.x, self.y, self.z, self.stack def _push(self): if self.state != _dvistate.inpage: raise ValueError("misplaced push in dvi file") self.stack.append((self.h, self.v, self.w, self.x, self.y, self.z)) def _pop(self): if self.state != _dvistate.inpage: raise ValueError("misplaced pop in dvi file") self.h, self.v, self.w, self.x, self.y, self.z = self.stack.pop() def _right(self, b): if self.state != _dvistate.inpage: raise ValueError("misplaced right in dvi file") self.h += b def _right_w(self, new_w): if self.state != _dvistate.inpage: raise ValueError("misplaced w in dvi file") if new_w is not None: self.w = new_w self.h += self.w def _right_x(self, new_x): if self.state != _dvistate.inpage: raise ValueError("misplaced x in dvi file") if new_x is not None: self.x = new_x self.h += self.x def _down(self, a): if self.state != _dvistate.inpage: raise ValueError("misplaced down in dvi file") self.v += a def _down_y(self, new_y): if self.state != _dvistate.inpage: raise ValueError("misplaced y in dvi file") if new_y is not None: self.y = new_y self.v += self.y def _down_z(self, new_z): if self.state != _dvistate.inpage: raise ValueError("misplaced z in dvi file") if new_z is not None: self.z = new_z self.v += self.z def _fnt_num(self, k): if self.state != _dvistate.inpage: raise ValueError("misplaced fnt_num in dvi file") self.f = k def _xxx(self, special): if six.PY3: matplotlib.verbose.report( 'Dvi._xxx: encountered special: %s' % ''.join([(32 <= ord(ch) < 127) and chr(ch) or '<%02x>' % ord(ch) for ch in special]), 'debug') else: matplotlib.verbose.report( 'Dvi._xxx: encountered special: %s' % ''.join([(32 <= ord(ch) < 127) and ch or '<%02x>' % ord(ch) for ch in special]), 'debug') def _fnt_def(self, k, c, s, d, a, l, n): fontname = n[-l:].decode('ascii') tfm = _tfmfile(fontname) if tfm is None: if six.PY2: error_class = OSError else: error_class = FileNotFoundError raise error_class("missing font metrics file: %s" % fontname) if c != 0 and tfm.checksum != 0 and c != tfm.checksum: raise ValueError('tfm checksum mismatch: %s'%n) vf = _vffile(fontname) self.fonts[k] = DviFont(scale=s, tfm=tfm, texname=n, vf=vf) def _post(self): if self.state != _dvistate.outer: raise ValueError("misplaced post in dvi file") self.state = _dvistate.post_post # TODO: actually read the postamble and finale? # currently post_post just triggers closing the file def _post_post(self): raise NotImplementedError class DviFont(object): """ Object that holds a font's texname and size, supports comparison, and knows the widths of glyphs in the same units as the AFM file. There are also internal attributes (for use by dviread.py) that are *not* used for comparison. The size is in Adobe points (converted from TeX points). .. attribute:: texname Name of the font as used internally by TeX and friends. This is usually very different from any external font names, and :class:`dviread.PsfontsMap` can be used to find the external name of the font. .. attribute:: size Size of the font in Adobe points, converted from the slightly smaller TeX points. .. attribute:: widths Widths of glyphs in glyph-space units, typically 1/1000ths of the point size. """ __slots__ = ('texname', 'size', 'widths', '_scale', '_vf', '_tfm') def __init__(self, scale, tfm, texname, vf): if six.PY3 and isinstance(texname, bytes): texname = texname.decode('ascii') self._scale, self._tfm, self.texname, self._vf = \ scale, tfm, texname, vf self.size = scale * (72.0 / (72.27 * 2**16)) try: nchars = max(six.iterkeys(tfm.width)) + 1 except ValueError: nchars = 0 self.widths = [ (1000*tfm.width.get(char, 0)) >> 20 for char in xrange(nchars) ] def __eq__(self, other): return self.__class__ == other.__class__ and \ self.texname == other.texname and self.size == other.size def __ne__(self, other): return not self.__eq__(other) def _width_of(self, char): """ Width of char in dvi units. For internal use by dviread.py. """ width = self._tfm.width.get(char, None) if width is not None: return _mul2012(width, self._scale) matplotlib.verbose.report( 'No width for char %d in font %s' % (char, self.texname), 'debug') return 0 def _height_depth_of(self, char): """ Height and depth of char in dvi units. For internal use by dviread.py. """ result = [] for metric,name in ((self._tfm.height, "height"), (self._tfm.depth, "depth")): value = metric.get(char, None) if value is None: matplotlib.verbose.report( 'No %s for char %d in font %s' % (name, char, self.texname), 'debug') result.append(0) else: result.append(_mul2012(value, self._scale)) return result class Vf(Dvi): """ A virtual font (\*.vf file) containing subroutines for dvi files. Usage:: vf = Vf(filename) glyph = vf[code] glyph.text, glyph.boxes, glyph.width """ def __init__(self, filename): Dvi.__init__(self, filename, 0) try: self._first_font = None self._chars = {} self._packet_ends = None self._read() finally: self.close() def __getitem__(self, code): return self._chars[code] def _dispatch(self, byte): # If we are in a packet, execute the dvi instructions if self.state == _dvistate.inpage: byte_at = self.file.tell()-1 if byte_at == self._packet_ends: self._finalize_packet() # fall through elif byte_at > self._packet_ends: raise ValueError("Packet length mismatch in vf file") else: if byte in (139, 140) or byte >= 243: raise ValueError("Inappropriate opcode %d in vf file" % byte) Dvi._dispatch(self, byte) return # We are outside a packet if byte < 242: # a short packet (length given by byte) cc, tfm = self._arg(1), self._arg(3) self._init_packet(byte, cc, tfm) elif byte == 242: # a long packet pl, cc, tfm = [ self._arg(x) for x in (4, 4, 4) ] self._init_packet(pl, cc, tfm) elif 243 <= byte <= 246: Dvi._dispatch(self, byte) elif byte == 247: # preamble i, k = self._arg(1), self._arg(1) x = self.file.read(k) cs, ds = self._arg(4), self._arg(4) self._pre(i, x, cs, ds) elif byte == 248: # postamble (just some number of 248s) self.state = _dvistate.post_post else: raise ValueError("unknown vf opcode %d" % byte) def _init_packet(self, pl, cc, tfm): if self.state != _dvistate.outer: raise ValueError("Misplaced packet in vf file") self.state = _dvistate.inpage self._packet_ends = self.file.tell() + pl self._packet_char = cc self._packet_width = tfm self.h, self.v, self.w, self.x, self.y, self.z = 0, 0, 0, 0, 0, 0 self.stack, self.text, self.boxes = [], [], [] self.f = self._first_font def _finalize_packet(self): self._chars[self._packet_char] = mpl_cbook.Bunch( text=self.text, boxes=self.boxes, width = self._packet_width) self.state = _dvistate.outer def _pre(self, i, x, cs, ds): if self.state != _dvistate.pre: raise ValueError("pre command in middle of vf file") if i != 202: raise ValueError("Unknown vf format %d" % i) if len(x): matplotlib.verbose.report('vf file comment: ' + x, 'debug') self.state = _dvistate.outer # cs = checksum, ds = design size def _fnt_def(self, k, *args): Dvi._fnt_def(self, k, *args) if self._first_font is None: self._first_font = k def _fix2comp(num): """ Convert from two's complement to negative. """ assert 0 <= num < 2**32 if num & 2**31: return num - 2**32 else: return num def _mul2012(num1, num2): """ Multiply two numbers in 20.12 fixed point format. """ # Separated into a function because >> has surprising precedence return (num1*num2) >> 20 class Tfm(object): """ A TeX Font Metric file. This implementation covers only the bare minimum needed by the Dvi class. .. attribute:: checksum Used for verifying against the dvi file. .. attribute:: design_size Design size of the font (in what units?) .. attribute:: width Width of each character, needs to be scaled by the factor specified in the dvi file. This is a dict because indexing may not start from 0. .. attribute:: height Height of each character. .. attribute:: depth Depth of each character. """ __slots__ = ('checksum', 'design_size', 'width', 'height', 'depth') def __init__(self, filename): matplotlib.verbose.report('opening tfm file ' + filename, 'debug') with open(filename, 'rb') as file: header1 = file.read(24) lh, bc, ec, nw, nh, nd = \ struct.unpack(str('!6H'), header1[2:14]) matplotlib.verbose.report( 'lh=%d, bc=%d, ec=%d, nw=%d, nh=%d, nd=%d' % ( lh, bc, ec, nw, nh, nd), 'debug') header2 = file.read(4*lh) self.checksum, self.design_size = \ struct.unpack(str('!2I'), header2[:8]) # there is also encoding information etc. char_info = file.read(4*(ec-bc+1)) widths = file.read(4*nw) heights = file.read(4*nh) depths = file.read(4*nd) self.width, self.height, self.depth = {}, {}, {} widths, heights, depths = \ [ struct.unpack(str('!%dI') % (len(x)/4), x) for x in (widths, heights, depths) ] for idx, char in enumerate(xrange(bc, ec+1)): self.width[char] = _fix2comp(widths[ord(char_info[4*idx])]) self.height[char] = _fix2comp(heights[ord(char_info[4*idx+1]) >> 4]) self.depth[char] = _fix2comp(depths[ord(char_info[4*idx+1]) & 0xf]) class PsfontsMap(object): """ A psfonts.map formatted file, mapping TeX fonts to PS fonts. Usage:: >>> map = PsfontsMap(find_tex_file('pdftex.map')) >>> entry = map['ptmbo8r'] >>> entry.texname 'ptmbo8r' >>> entry.psname 'Times-Bold' >>> entry.encoding '/usr/local/texlive/2008/texmf-dist/fonts/enc/dvips/base/8r.enc' >>> entry.effects {'slant': 0.16700000000000001} >>> entry.filename For historical reasons, TeX knows many Type-1 fonts by different names than the outside world. (For one thing, the names have to fit in eight characters.) Also, TeX's native fonts are not Type-1 but Metafont, which is nontrivial to convert to PostScript except as a bitmap. While high-quality conversions to Type-1 format exist and are shipped with modern TeX distributions, we need to know which Type-1 fonts are the counterparts of which native fonts. For these reasons a mapping is needed from internal font names to font file names. A texmf tree typically includes mapping files called e.g. psfonts.map, pdftex.map, dvipdfm.map. psfonts.map is used by dvips, pdftex.map by pdfTeX, and dvipdfm.map by dvipdfm. psfonts.map might avoid embedding the 35 PostScript fonts (i.e., have no filename for them, as in the Times-Bold example above), while the pdf-related files perhaps only avoid the "Base 14" pdf fonts. But the user may have configured these files differently. """ __slots__ = ('_font',) def __init__(self, filename): self._font = {} with open(filename, 'rt') as file: self._parse(file) def __getitem__(self, texname): try: result = self._font[texname] except KeyError: result = self._font[texname.decode('ascii')] fn, enc = result.filename, result.encoding if fn is not None and not fn.startswith('/'): result.filename = find_tex_file(fn) if enc is not None and not enc.startswith('/'): result.encoding = find_tex_file(result.encoding) return result def _parse(self, file): """Parse each line into words.""" for line in file: line = line.strip() if line == '' or line.startswith('%'): continue words, pos = [], 0 while pos < len(line): if line[pos] == '"': # double quoted word pos += 1 end = line.index('"', pos) words.append(line[pos:end]) pos = end + 1 else: # ordinary word end = line.find(' ', pos+1) if end == -1: end = len(line) words.append(line[pos:end]) pos = end while pos < len(line) and line[pos] == ' ': pos += 1 self._register(words) def _register(self, words): """Register a font described by "words". The format is, AFAIK: texname fontname [effects and filenames] Effects are PostScript snippets like ".177 SlantFont", filenames begin with one or two less-than signs. A filename ending in enc is an encoding file, other filenames are font files. This can be overridden with a left bracket: <[foobar indicates an encoding file named foobar. There is some difference between <foo.pfb and <<bar.pfb in subsetting, but I have no example of << in my TeX installation. """ # If the map file specifies multiple encodings for a font, we # follow pdfTeX in choosing the last one specified. Such # entries are probably mistakes but they have occurred. # http://tex.stackexchange.com/questions/10826/ # http://article.gmane.org/gmane.comp.tex.pdftex/4914 texname, psname = words[:2] effects, encoding, filename = '', None, None for word in words[2:]: if not word.startswith('<'): effects = word else: word = word.lstrip('<') if word.startswith('[') or word.endswith('.enc'): if encoding is not None: matplotlib.verbose.report( 'Multiple encodings for %s = %s' % (texname, psname), 'debug') if word.startswith('['): encoding = word[1:] else: encoding = word else: assert filename is None filename = word eff = effects.split() effects = {} try: effects['slant'] = float(eff[eff.index('SlantFont')-1]) except ValueError: pass try: effects['extend'] = float(eff[eff.index('ExtendFont')-1]) except ValueError: pass self._font[texname] = mpl_cbook.Bunch( texname=texname, psname=psname, effects=effects, encoding=encoding, filename=filename) class Encoding(object): """ Parses a \*.enc file referenced from a psfonts.map style file. The format this class understands is a very limited subset of PostScript. Usage (subject to change):: for name in Encoding(filename): whatever(name) """ __slots__ = ('encoding',) def __init__(self, filename): with open(filename, 'rt') as file: matplotlib.verbose.report('Parsing TeX encoding ' + filename, 'debug-annoying') self.encoding = self._parse(file) matplotlib.verbose.report('Result: ' + repr(self.encoding), 'debug-annoying') def __iter__(self): for name in self.encoding: yield name def _parse(self, file): result = [] state = 0 for line in file: comment_start = line.find('%') if comment_start > -1: line = line[:comment_start] line = line.strip() if state == 0: # Expecting something like /FooEncoding [ if '[' in line: state = 1 line = line[line.index('[')+1:].strip() if state == 1: if ']' in line: # ] def line = line[:line.index(']')] state = 2 words = line.split() for w in words: if w.startswith('/'): # Allow for /abc/def/ghi subwords = w.split('/') result.extend(subwords[1:]) else: raise ValueError("Broken name in encoding file: " + w) return result def find_tex_file(filename, format=None): """ Call :program:`kpsewhich` to find a file in the texmf tree. If *format* is not None, it is used as the value for the `--format` option. Apparently most existing TeX distributions on Unix-like systems use kpathsea. I hear MikTeX (a popular distribution on Windows) doesn't use kpathsea, so what do we do? (TODO) .. seealso:: `Kpathsea documentation <http://www.tug.org/kpathsea/>`_ The library that :program:`kpsewhich` is part of. """ cmd = [str('kpsewhich')] if format is not None: cmd += ['--format=' + format] cmd += [filename] matplotlib.verbose.report('find_tex_file(%s): %s' \ % (filename,cmd), 'debug') # stderr is unused, but reading it avoids a subprocess optimization # that breaks EINTR handling in some Python versions: # http://bugs.python.org/issue12493 # https://github.com/matplotlib/matplotlib/issues/633 pipe = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) result = pipe.communicate()[0].rstrip() matplotlib.verbose.report('find_tex_file result: %s' % result, 'debug') return result.decode('ascii') # With multiple text objects per figure (e.g., tick labels) we may end # up reading the same tfm and vf files many times, so we implement a # simple cache. TODO: is this worth making persistent? _tfmcache = {} _vfcache = {} def _fontfile(texname, class_, suffix, cache): try: return cache[texname] except KeyError: pass filename = find_tex_file(texname + suffix) if filename: result = class_(filename) else: result = None cache[texname] = result return result def _tfmfile(texname): return _fontfile(texname, Tfm, '.tfm', _tfmcache) def _vffile(texname): return _fontfile(texname, Vf, '.vf', _vfcache) if __name__ == '__main__': import sys matplotlib.verbose.set_level('debug-annoying') fname = sys.argv[1] try: dpi = float(sys.argv[2]) except IndexError: dpi = None dvi = Dvi(fname, dpi) fontmap = PsfontsMap(find_tex_file('pdftex.map')) for page in dvi: print('=== new page ===') fPrev = None for x,y,f,c,w in page.text: if f != fPrev: print('font', f.texname, 'scaled', f._scale/pow(2.0,20)) fPrev = f print(x,y,c, 32 <= c < 128 and chr(c) or '.', w) for x,y,w,h in page.boxes: print(x,y,'BOX',w,h)
gpl-3.0
endolith/scikit-image
doc/examples/transform/plot_register_translation.py
14
2717
""" ===================================== Cross-Correlation (Phase Correlation) ===================================== In this example, we use phase correlation to identify the relative shift between two similar-sized images. The ``register_translation`` function uses cross-correlation in Fourier space, optionally employing an upsampled matrix-multiplication DFT to achieve arbitrary subpixel precision. [1]_ .. [1] Manuel Guizar-Sicairos, Samuel T. Thurman, and James R. Fienup, "Efficient subpixel image registration algorithms," Optics Letters 33, 156-158 (2008). """ import numpy as np import matplotlib.pyplot as plt from skimage import data from skimage.feature import register_translation from skimage.feature.register_translation import _upsampled_dft from scipy.ndimage import fourier_shift image = data.camera() shift = (-2.4, 1.32) # (-2.4, 1.32) pixel offset relative to reference coin offset_image = fourier_shift(np.fft.fftn(image), shift) offset_image = np.fft.ifftn(offset_image) print("Known offset (y, x):") print(shift) # pixel precision first shift, error, diffphase = register_translation(image, offset_image) fig = plt.figure(figsize=(8, 3)) ax1 = plt.subplot(1, 3, 1, adjustable='box-forced') ax2 = plt.subplot(1, 3, 2, sharex=ax1, sharey=ax1, adjustable='box-forced') ax3 = plt.subplot(1, 3, 3) ax1.imshow(image) ax1.set_axis_off() ax1.set_title('Reference image') ax2.imshow(offset_image.real) ax2.set_axis_off() ax2.set_title('Offset image') # View the output of a cross-correlation to show what the algorithm is # doing behind the scenes image_product = np.fft.fft2(image) * np.fft.fft2(offset_image).conj() cc_image = np.fft.fftshift(np.fft.ifft2(image_product)) ax3.imshow(cc_image.real) ax3.set_axis_off() ax3.set_title("Cross-correlation") plt.show() print("Detected pixel offset (y, x):") print(shift) # subpixel precision shift, error, diffphase = register_translation(image, offset_image, 100) fig = plt.figure(figsize=(8, 3)) ax1 = plt.subplot(1, 3, 1, adjustable='box-forced') ax2 = plt.subplot(1, 3, 2, sharex=ax1, sharey=ax1, adjustable='box-forced') ax3 = plt.subplot(1, 3, 3) ax1.imshow(image) ax1.set_axis_off() ax1.set_title('Reference image') ax2.imshow(offset_image.real) ax2.set_axis_off() ax2.set_title('Offset image') # Calculate the upsampled DFT, again to show what the algorithm is doing # behind the scenes. Constants correspond to calculated values in routine. # See source code for details. cc_image = _upsampled_dft(image_product, 150, 100, (shift*100)+75).conj() ax3.imshow(cc_image.real) ax3.set_axis_off() ax3.set_title("Supersampled XC sub-area") plt.show() print("Detected subpixel offset (y, x):") print(shift)
bsd-3-clause
waditu/tushare
tushare/stock/classifying.py
2
10615
# -*- coding:utf-8 -*- """ 获取股票分类数据接口 Created on 2015/02/01 @author: Jimmy Liu @group : waditu @contact: [email protected] """ import pandas as pd from tushare.stock import cons as ct from tushare.stock import ref_vars as rv import json import re from pandas.util.testing import _network_error_classes import time import tushare.stock.fundamental as fd from tushare.util.netbase import Client try: from urllib.request import urlopen, Request except ImportError: from urllib2 import urlopen, Request def get_industry_classified(standard='sina'): """ 获取行业分类数据 Parameters ---------- standard sina:新浪行业 sw:申万 行业 Returns ------- DataFrame code :股票代码 name :股票名称 c_name :行业名称 """ if standard == 'sw': # df = _get_type_data(ct.SINA_INDUSTRY_INDEX_URL%(ct.P_TYPE['http'], # ct.DOMAINS['vsf'], ct.PAGES['ids_sw'])) df = pd.read_csv(ct.TSDATA_CLASS%(ct.P_TYPE['http'], ct.DOMAINS['oss'], 'industry_sw'), dtype={'code':object}) else: # df = _get_type_data(ct.SINA_INDUSTRY_INDEX_URL%(ct.P_TYPE['http'], # ct.DOMAINS['vsf'], ct.PAGES['ids'])) df = pd.read_csv(ct.TSDATA_CLASS%(ct.P_TYPE['http'], ct.DOMAINS['oss'], 'industry'), dtype={'code':object}) # data = [] # ct._write_head() # for row in df.values: # rowDf = _get_detail(row[0], retry_count=10, pause=0.01) # rowDf['c_name'] = row[1] # data.append(rowDf) # data = pd.concat(data, ignore_index=True) return df def get_concept_classified(): """ 获取概念分类数据 Return -------- DataFrame code :股票代码 name :股票名称 c_name :概念名称 """ df = pd.read_csv(ct.TSDATA_CLASS%(ct.P_TYPE['http'], ct.DOMAINS['oss'], 'concept'), dtype={'code':object}) return df def concetps(): ct._write_head() df = _get_type_data(ct.SINA_CONCEPTS_INDEX_URL%(ct.P_TYPE['http'], ct.DOMAINS['sf'], ct.PAGES['cpt'])) data = [] for row in df.values: rowDf = _get_detail(row[0]) if rowDf is not None: rowDf['c_name'] = row[1] data.append(rowDf) if len(data) > 0: data = pd.concat(data, ignore_index=True) data.to_csv('d:\\cpt.csv', index=False) def get_concepts(src='dfcf'): """ 获取概念板块行情数据 Return -------- DataFrame code :股票代码 name :股票名称 c_name :概念名称 """ clt = Client(ct.ET_CONCEPTS_INDEX_URL%(ct.P_TYPE['http'], ct.DOMAINS['dfcf'], _random(15)), ref='') content = clt.gvalue() content = content.decode('utf-8') if ct.PY3 else content js = json.loads(content) data = [] for row in js: cols = row.split(',') cs = cols[6].split('|') arr = [cols[2], cols[3], cs[0], cs[2], cols[7], cols[9]] data.append(arr) df = pd.DataFrame(data, columns=['concept', 'change', 'up', 'down', 'top_code', 'top_name']) return df def get_area_classified(): """ 获取地域分类数据 Return -------- DataFrame code :股票代码 name :股票名称 area :地域名称 """ df = fd.get_stock_basics() df = df[['name', 'area']] df.reset_index(inplace=True) df = df.sort_values('area').reset_index(drop=True) return df def get_gem_classified(): """ 获取创业板股票 Return -------- DataFrame code :股票代码 name :股票名称 """ df = fd.get_stock_basics() df.reset_index(inplace=True) df = df[ct.FOR_CLASSIFY_COLS] df = df.ix[df.code.str[0] == '3'] df = df.sort_values('code').reset_index(drop=True) return df def get_sme_classified(): """ 获取中小板股票 Return -------- DataFrame code :股票代码 name :股票名称 """ df = fd.get_stock_basics() df.reset_index(inplace=True) df = df[ct.FOR_CLASSIFY_COLS] df = df.ix[df.code.str[0:3] == '002'] df = df.sort_values('code').reset_index(drop=True) return df def get_st_classified(): """ 获取风险警示板股票 Return -------- DataFrame code :股票代码 name :股票名称 """ df = fd.get_stock_basics() df.reset_index(inplace=True) df = df[ct.FOR_CLASSIFY_COLS] df = df.ix[df.name.str.contains('ST')] df = df.sort_values('code').reset_index(drop=True) return df def _get_detail(tag, retry_count=3, pause=0.001): dfc = pd.DataFrame() p = 0 num_limit = 100 while(True): p = p+1 for _ in range(retry_count): time.sleep(pause) try: ct._write_console() request = Request(ct.SINA_DATA_DETAIL_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'], ct.PAGES['jv'], p,tag)) text = urlopen(request, timeout=10).read() text = text.decode('gbk') except _network_error_classes: pass else: break reg = re.compile(r'\,(.*?)\:') text = reg.sub(r',"\1":', text) text = text.replace('"{symbol', '{"symbol') text = text.replace('{symbol', '{"symbol"') jstr = json.dumps(text) js = json.loads(jstr) df = pd.DataFrame(pd.read_json(js, dtype={'code':object}), columns=ct.THE_FIELDS) # df = df[ct.FOR_CLASSIFY_B_COLS] df = df[['code', 'name']] dfc = pd.concat([dfc, df]) if df.shape[0] < num_limit: return dfc #raise IOError(ct.NETWORK_URL_ERROR_MSG) def _get_type_data(url): try: request = Request(url) data_str = urlopen(request, timeout=10).read() data_str = data_str.decode('GBK') data_str = data_str.split('=')[1] data_json = json.loads(data_str) df = pd.DataFrame([[row.split(',')[0], row.split(',')[1]] for row in data_json.values()], columns=['tag', 'name']) return df except Exception as er: print(str(er)) def get_hs300s(): """ 获取沪深300当前成份股及所占权重 Return -------- DataFrame code :股票代码 name :股票名称 date :日期 weight:权重 """ try: wt = pd.read_excel(ct.HS300_CLASSIFY_URL_FTP%(ct.P_TYPE['http'], ct.DOMAINS['idx'], ct.PAGES['hs300w']), usecols=[0, 4, 5, 8]) wt.columns = ct.FOR_CLASSIFY_W_COLS wt['code'] = wt['code'].map(lambda x :str(x).zfill(6)) return wt except Exception as er: print(str(er)) def get_sz50s(): """ 获取上证50成份股 Return -------- DataFrame date :日期 code :股票代码 name :股票名称 """ try: df = pd.read_excel(ct.SZ_CLASSIFY_URL_FTP%(ct.P_TYPE['http'], ct.DOMAINS['idx'], ct.PAGES['sz50b']), parse_cols=[0, 4, 5]) df.columns = ct.FOR_CLASSIFY_B_COLS df['code'] = df['code'].map(lambda x :str(x).zfill(6)) return df except Exception as er: print(str(er)) def get_zz500s(): """ 获取中证500成份股 Return -------- DataFrame date :日期 code :股票代码 name :股票名称 weight : 权重 """ try: wt = pd.read_excel(ct.HS300_CLASSIFY_URL_FTP%(ct.P_TYPE['http'], ct.DOMAINS['idx'], ct.PAGES['zz500wt']), usecols=[0, 4, 5, 8]) wt.columns = ct.FOR_CLASSIFY_W_COLS wt['code'] = wt['code'].map(lambda x :str(x).zfill(6)) return wt except Exception as er: print(str(er)) def get_terminated(): """ 获取终止上市股票列表 Return -------- DataFrame code :股票代码 name :股票名称 oDate:上市日期 tDate:终止上市日期 """ try: ref = ct.SSEQ_CQ_REF_URL%(ct.P_TYPE['http'], ct.DOMAINS['sse']) clt = Client(rv.TERMINATED_URL%(ct.P_TYPE['http'], ct.DOMAINS['sseq'], ct.PAGES['ssecq'], _random(5), _random()), ref=ref, cookie=rv.MAR_SH_COOKIESTR) lines = clt.gvalue() lines = lines.decode('utf-8') if ct.PY3 else lines lines = lines[19:-1] lines = json.loads(lines) df = pd.DataFrame(lines['result'], columns=rv.TERMINATED_T_COLS) df.columns = rv.TERMINATED_COLS return df except Exception as er: print(str(er)) def get_suspended(): """ 获取暂停上市股票列表 Return -------- DataFrame code :股票代码 name :股票名称 oDate:上市日期 tDate:终止上市日期 """ try: ref = ct.SSEQ_CQ_REF_URL%(ct.P_TYPE['http'], ct.DOMAINS['sse']) clt = Client(rv.SUSPENDED_URL%(ct.P_TYPE['http'], ct.DOMAINS['sseq'], ct.PAGES['ssecq'], _random(5), _random()), ref=ref, cookie=rv.MAR_SH_COOKIESTR) lines = clt.gvalue() lines = lines.decode('utf-8') if ct.PY3 else lines lines = lines[19:-1] lines = json.loads(lines) df = pd.DataFrame(lines['result'], columns=rv.TERMINATED_T_COLS) df.columns = rv.TERMINATED_COLS return df except Exception as er: print(str(er)) def _random(n=13): from random import randint start = 10**(n-1) end = (10**n)-1 return str(randint(start, end))
bsd-3-clause
makeyourowntextminingtoolkit/makeyourowntextminingtoolkit
text_mining_toolkit/visualisation.py
1
5350
# module with visualisation functions import os import wordcloud import matplotlib.pyplot as plt import numpy import IPython.core.display import networkx import networkx.readwrite.json_graph import random # word cloud from pandas frame of word and freq def plot_wordcloud(word_count): # wordcloud object wc = wordcloud.WordCloud(max_words=100, width=1200, height=800, background_color="white", margin=10, prefer_horizontal=1.0) # words and plot sizes (word count, relevance, etc) wc.generate_from_frequencies(word_count.to_dict()[word_count.columns[0]]) # plot wordcloud plt.figure(dpi=600, figsize=(6,4)) plt.imshow(wc) plt.axis("off") pass # force-directed graph def plot_force_directed_graph(node1_node1_weight): # column names for node source and target, and edge attributes node_source_name = node1_node1_weight.columns.values[0] node_target_name = node1_node1_weight.columns.values[1] link_edge_name = node1_node1_weight.columns.values[2] # convert node1_node1_weight to graph graph = networkx.from_pandas_dataframe(node1_node1_weight, source=node_source_name, target=node_target_name, edge_attr=link_edge_name) # convert graph nodes and inks to json, ready for d3 graph_json = networkx.readwrite.json_graph.node_link_data(graph) graph_json_nodes = graph_json['nodes'] graph_json_links = graph_json['links'] #print(str(graph_json_nodes)) #print(str(graph_json_links)) # read html template html_template_file = os.path.join(os.path.dirname(__file__), 'html_templates/d3_force_directed_graph.html') with open(html_template_file, mode='r') as f: html = f.read() pass # read javascript template js_template_file = os.path.join(os.path.dirname(__file__), 'html_templates/d3_force_directed_graph.js') with open(js_template_file, mode='r') as f: js = f.read() pass # generate random identifier for SVG element, to avoid name clashes if used multiple times in a notebook random_id_string = str(random.randrange(1000000,9999999)) # replace placeholder in both html and js templates html = html.replace('%%unique-id%%', random_id_string) js = js.replace('%%unique-id%%', random_id_string) # substitute links and data js = js.replace('%%links%%', str(graph_json_links)) js = js.replace('%%nodes%%', str(graph_json_nodes)) js = js.replace('%%edge_attribute%%', link_edge_name) #print(html) #print(js) # display html in notebook cell IPython.core.display.display_html(IPython.core.display.HTML(html)) # display (run) javascript in notebook cell IPython.core.display.display_javascript(IPython.core.display.Javascript(data=js)) pass # force-directed graph2 def plot_force_directed_graph2(node1_node1_weight): # column names for node source and target, and edge attributes node_source_name = node1_node1_weight.columns.values[0] node_target_name = node1_node1_weight.columns.values[1] link_edge_name = node1_node1_weight.columns.values[2] # convert node1_node1_weight to graph graph = networkx.from_pandas_dataframe(node1_node1_weight, source=node_source_name, target=node_target_name, edge_attr=link_edge_name) # convert graph nodes and inks to json, ready for d3 graph_json = networkx.readwrite.json_graph.node_link_data(graph) graph_json_nodes = graph_json['nodes'] graph_json_links = graph_json['links'] #print(str(graph_json_nodes)) #print(str(graph_json_links)) # read html template html_template_file = os.path.join(os.path.dirname(__file__), 'html_templates/d3_force_directed_graph.html') with open(html_template_file, mode='r') as f: html = f.read() pass # read javascript template js_template_file = os.path.join(os.path.dirname(__file__), 'html_templates/d3_force_directed_graph.js') with open(js_template_file, mode='r') as f: js = f.read() pass # generate random identifier for SVG element, to avoid name clashes if used multiple times in a notebook random_id_string = str(random.randrange(1000000,9999999)) # replace placeholder in both html and js templates html = html.replace('%%unique-id%%', random_id_string) js = js.replace('%%unique-id%%', random_id_string) # substitute links and data js = js.replace('%%links%%', str(graph_json_links)) js = js.replace('%%nodes%%', str(graph_json_nodes)) js = js.replace('%%edge_attribute%%', link_edge_name) #print(html) #print(js) # display html in notebook cell IPython.core.display.display_html(IPython.core.display.HTML(html)) # display (run) javascript in notebook cell IPython.core.display.display_javascript(IPython.core.display.Javascript(data=js)) pass # bar chart def plot_bar_chart(data_series): plt.bar(numpy.arange(len(data_series)), data_series.values) pass # scatter 2-d plot def plot_scatter_chart(xy_data): # plot as scatter plot p = plt.subplot(111) p.axis('scaled'); #p.axis([-2, 2, -2, 2]); p.axhline(y=0, color='lightgrey'); p.axvline(x=0, color='lightgrey') p.set_yticklabels([]); p.set_xticklabels([]) p.set_title("S_reduced_VT") p.plot(xy_data.iloc[0], xy_data.iloc[1], 'ro') plt.show() pass
gpl-2.0
rakshit-agrawal/crowdsource-platform
fixtures/createJson.py
16
2463
__author__ = 'Megha' # Script to transfer csv containing data about various models to json # Input csv file constituting of the model data # Output json file representing the csv data as json object # Assumes model name to be first line # Field names of the model on the second line # Data seperated by __DELIM__ # Example: # L01 ModelName: registrationmodel # L02 FieldNames: user,activation_key,created_timestamp,last_updated # L03 Data: 1,qwer,2015-05-01T00:17:40.085Z,2015-05-01T00:17:40.085Z # L04 Data: 2,assd,2015-05-01T00:17:40.085Z,2015-05-01T00:17:40.085Z import numpy as np import pandas as pd import json as json __MODULE_NAME__ = 7 #Number of lines after which Model Name __INPUT_FILE__ = 'meghaWorkerData.csv' __OUTPUT_FILE__ = 'meghaWorkerData.json' __NEWLINE__ = '\n' __KEY1__ = 0 __KEY2__ = 0 __DELIM__ = ',' __APPEND__ = 'crowdsourcing.' __KEY_MODEL__ = 'model' __KEY_FIELDS__ = 'fields' __KEY_PK__ = 'pk' def create_dict(input_dict, module, data_collection): for key, value in input_dict.items(): data_dict = {} data_dict[__KEY_FIELDS__] = value data_dict[__KEY_PK__] = key data_dict[__KEY_MODEL__] = __APPEND__ + module data_collection.append(data_dict) return data_collection def create_data_json(__FILE__): in_fp = open(__INPUT_FILE__, 'rb') file_lines = in_fp.readlines() in_fp.close() data_collection = [] for line_no in range(0, len(file_lines)): if line_no % __MODULE_NAME__ == 0: columns = file_lines[line_no + 1].strip(__NEWLINE__).split(__DELIM__) instance1 = file_lines[line_no + 2].strip(__NEWLINE__).split(__DELIM__) instance2 = file_lines[line_no + 3].strip(__NEWLINE__).split(__DELIM__) instance3 = file_lines[line_no + 4].strip(__NEWLINE__).split(__DELIM__) instance4 = file_lines[line_no + 5].strip(__NEWLINE__).split(__DELIM__) instance5 = file_lines[line_no + 6].strip(__NEWLINE__).split(__DELIM__) data = np.array([instance1,instance2,instance3,instance4,instance5]) df = pd.DataFrame(data, columns = columns) create_dict(df.transpose().to_dict(), file_lines[line_no].strip(__NEWLINE__), data_collection) del(df) print(data_collection) out_fp = open(__OUTPUT_FILE__, 'wb') out_fp.write(json.dumps(data_collection, indent = 2)) out_fp.close() if __name__ == '__main__': create_data_json (__INPUT_FILE__)
mit
mdesco/dipy
doc/examples/quick_start.py
13
6225
""" ========================= Getting started with Dipy ========================= In diffusion MRI (dMRI) usually we use three types of files, a Nifti file with the diffusion weighted data, and two text files one with b-values and one with the b-vectors. In Dipy we provide tools to load and process these files and we also provide access to publically available datasets for those who haven't acquired yet their own datasets. With the following commands we can download a dMRI dataset """ from dipy.data import fetch_sherbrooke_3shell fetch_sherbrooke_3shell() """ By default these datasets will go in the .dipy folder inside your home directory. Here is how you can access them. """ from os.path import expanduser, join home = expanduser('~') """ ``dname`` holds the directory name where the 3 files are in. """ dname = join(home, '.dipy', 'sherbrooke_3shell') """ Here, we show the complete filenames of the 3 files """ fdwi = join(dname, 'HARDI193.nii.gz') print(fdwi) fbval = join(dname, 'HARDI193.bval') print(fbval) fbvec = join(dname, 'HARDI193.bvec') print(fbvec) """ ``/home/username/.dipy/sherbrooke_3shell/HARDI193.nii.gz`` ``/home/username/.dipy/sherbrooke_3shell/HARDI193.bval`` ``/home/username/.dipy/sherbrooke_3shell/HARDI193.bvec`` Now, that we have their filenames we can start checking what these look like. Let's start first by loading the dMRI datasets. For this purpose, we use a python library called nibabel_ which enables us to read and write neuroimaging-specific file formats. """ import nibabel as nib img = nib.load(fdwi) data = img.get_data() """ ``data`` is a 4D array where the first 3 dimensions are the i, j, k voxel coordinates and the last dimension is the number of non-weighted (S0s) and diffusion-weighted volumes. We can very easily check the size of ``data`` in the following way: """ print(data.shape) """ ``(128, 128, 60, 194)`` We can also check the dimensions of each voxel in the following way: """ print(img.get_header().get_zooms()[:3]) """ ``(2.0, 2.0, 2.0)`` We can quickly visualize the results using matplotlib_. For example, let's show here the middle axial slices of volume 0 and volume 10. """ import matplotlib.pyplot as plt axial_middle = data.shape[2] / 2 plt.figure('Showing the datasets') plt.subplot(1, 2, 1).set_axis_off() plt.imshow(data[:, :, axial_middle, 0].T, cmap='gray', origin='lower') plt.subplot(1, 2, 2).set_axis_off() plt.imshow(data[:, :, axial_middle, 10].T, cmap='gray', origin='lower') plt.show() plt.savefig('data.png', bbox_inches='tight') """ .. figure:: data.png :align: center **Showing the middle axial slice without (left) and with (right) diffusion weighting**. The next step is to load the b-values and b-vectors from the disk using the function ``read_bvals_bvecs``. """ from dipy.io import read_bvals_bvecs bvals, bvecs = read_bvals_bvecs(fbval, fbvec) """ In Dipy, we use an object called ``GradientTable`` which holds all the acquision specific parameters, e.g. b-values, b-vectors, timings and others. To create this object you can use the function ``gradient_table``. """ from dipy.core.gradients import gradient_table gtab = gradient_table(bvals, bvecs) """ Finally, you can use ``gtab`` (the GradientTable object) to show some information about the acquisition parameters """ print(gtab.info) """ B-values shape (193,) min 0.000000 max 3500.000000 B-vectors shape (193, 3) min -0.964050 max 0.999992 You, can also see the b-values using: """ print(gtab.bvals) """ :: [ 0. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500. 3500.] Or, for example the 10 first b-vectors using: """ print(gtab.bvecs[:10, :]) """ :: array([[ 0. , 0. , 0. ], [ 0.999979 , -0.00504001, -0.00402795], [ 0. , 0.999992 , -0.00398794], [-0.0257055 , 0.653861 , -0.756178 ], [ 0.589518 , -0.769236 , -0.246462 ], [-0.235785 , -0.529095 , -0.815147 ], [-0.893578 , -0.263559 , -0.363394 ], [ 0.79784 , 0.133726 , -0.587851 ], [ 0.232937 , 0.931884 , -0.278087 ], [ 0.93672 , 0.144139 , -0.31903 ]]) ``gtab`` can be used to tell what part of the data is the S0 volumes (volumes which correspond to b-values of 0). """ S0s = data[:, :, :, gtab.b0s_mask] """ Here, we had only 1 S0 as we can verify by looking at the dimensions of S0s """ print(S0s.shape) """ ``(128, 128, 60, 1)`` Just, for fun let's save this in a new Nifti file. """ nib.save(nib.Nifti1Image(S0s, img.get_affine()), 'HARDI193_S0.nii.gz') """ Now, that we learned how to load dMRI datasets we can start the analysis. See example :ref:`example_reconst_dti` to learn how to create FA maps. .. include:: ../links_names.inc """
bsd-3-clause
Srisai85/scikit-learn
examples/covariance/plot_robust_vs_empirical_covariance.py
248
6359
r""" ======================================= Robust vs Empirical covariance estimate ======================================= The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers in the data set. In such a case, it would be better to use a robust estimator of covariance to guarantee that the estimation is resistant to "erroneous" observations in the data set. Minimum Covariance Determinant Estimator ---------------------------------------- The Minimum Covariance Determinant estimator is a robust, high-breakdown point (i.e. it can be used to estimate the covariance matrix of highly contaminated datasets, up to :math:`\frac{n_\text{samples} - n_\text{features}-1}{2}` outliers) estimator of covariance. The idea is to find :math:`\frac{n_\text{samples} + n_\text{features}+1}{2}` observations whose empirical covariance has the smallest determinant, yielding a "pure" subset of observations from which to compute standards estimates of location and covariance. After a correction step aiming at compensating the fact that the estimates were learned from only a portion of the initial data, we end up with robust estimates of the data set location and covariance. The Minimum Covariance Determinant estimator (MCD) has been introduced by P.J.Rousseuw in [1]_. Evaluation ---------- In this example, we compare the estimation errors that are made when using various types of location and covariance estimates on contaminated Gaussian distributed data sets: - The mean and the empirical covariance of the full dataset, which break down as soon as there are outliers in the data set - The robust MCD, that has a low error provided :math:`n_\text{samples} > 5n_\text{features}` - The mean and the empirical covariance of the observations that are known to be good ones. This can be considered as a "perfect" MCD estimation, so one can trust our implementation by comparing to this case. References ---------- .. [1] P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984. .. [2] Johanna Hardin, David M Rocke. Journal of Computational and Graphical Statistics. December 1, 2005, 14(4): 928-946. .. [3] Zoubir A., Koivunen V., Chakhchoukh Y. and Muma M. (2012). Robust estimation in signal processing: A tutorial-style treatment of fundamental concepts. IEEE Signal Processing Magazine 29(4), 61-80. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn.covariance import EmpiricalCovariance, MinCovDet # example settings n_samples = 80 n_features = 5 repeat = 10 range_n_outliers = np.concatenate( (np.linspace(0, n_samples / 8, 5), np.linspace(n_samples / 8, n_samples / 2, 5)[1:-1])) # definition of arrays to store results err_loc_mcd = np.zeros((range_n_outliers.size, repeat)) err_cov_mcd = np.zeros((range_n_outliers.size, repeat)) err_loc_emp_full = np.zeros((range_n_outliers.size, repeat)) err_cov_emp_full = np.zeros((range_n_outliers.size, repeat)) err_loc_emp_pure = np.zeros((range_n_outliers.size, repeat)) err_cov_emp_pure = np.zeros((range_n_outliers.size, repeat)) # computation for i, n_outliers in enumerate(range_n_outliers): for j in range(repeat): rng = np.random.RandomState(i * j) # generate data X = rng.randn(n_samples, n_features) # add some outliers outliers_index = rng.permutation(n_samples)[:n_outliers] outliers_offset = 10. * \ (np.random.randint(2, size=(n_outliers, n_features)) - 0.5) X[outliers_index] += outliers_offset inliers_mask = np.ones(n_samples).astype(bool) inliers_mask[outliers_index] = False # fit a Minimum Covariance Determinant (MCD) robust estimator to data mcd = MinCovDet().fit(X) # compare raw robust estimates with the true location and covariance err_loc_mcd[i, j] = np.sum(mcd.location_ ** 2) err_cov_mcd[i, j] = mcd.error_norm(np.eye(n_features)) # compare estimators learned from the full data set with true # parameters err_loc_emp_full[i, j] = np.sum(X.mean(0) ** 2) err_cov_emp_full[i, j] = EmpiricalCovariance().fit(X).error_norm( np.eye(n_features)) # compare with an empirical covariance learned from a pure data set # (i.e. "perfect" mcd) pure_X = X[inliers_mask] pure_location = pure_X.mean(0) pure_emp_cov = EmpiricalCovariance().fit(pure_X) err_loc_emp_pure[i, j] = np.sum(pure_location ** 2) err_cov_emp_pure[i, j] = pure_emp_cov.error_norm(np.eye(n_features)) # Display results font_prop = matplotlib.font_manager.FontProperties(size=11) plt.subplot(2, 1, 1) plt.errorbar(range_n_outliers, err_loc_mcd.mean(1), yerr=err_loc_mcd.std(1) / np.sqrt(repeat), label="Robust location", color='m') plt.errorbar(range_n_outliers, err_loc_emp_full.mean(1), yerr=err_loc_emp_full.std(1) / np.sqrt(repeat), label="Full data set mean", color='green') plt.errorbar(range_n_outliers, err_loc_emp_pure.mean(1), yerr=err_loc_emp_pure.std(1) / np.sqrt(repeat), label="Pure data set mean", color='black') plt.title("Influence of outliers on the location estimation") plt.ylabel(r"Error ($||\mu - \hat{\mu}||_2^2$)") plt.legend(loc="upper left", prop=font_prop) plt.subplot(2, 1, 2) x_size = range_n_outliers.size plt.errorbar(range_n_outliers, err_cov_mcd.mean(1), yerr=err_cov_mcd.std(1), label="Robust covariance (mcd)", color='m') plt.errorbar(range_n_outliers[:(x_size / 5 + 1)], err_cov_emp_full.mean(1)[:(x_size / 5 + 1)], yerr=err_cov_emp_full.std(1)[:(x_size / 5 + 1)], label="Full data set empirical covariance", color='green') plt.plot(range_n_outliers[(x_size / 5):(x_size / 2 - 1)], err_cov_emp_full.mean(1)[(x_size / 5):(x_size / 2 - 1)], color='green', ls='--') plt.errorbar(range_n_outliers, err_cov_emp_pure.mean(1), yerr=err_cov_emp_pure.std(1), label="Pure data set empirical covariance", color='black') plt.title("Influence of outliers on the covariance estimation") plt.xlabel("Amount of contamination (%)") plt.ylabel("RMSE") plt.legend(loc="upper center", prop=font_prop) plt.show()
bsd-3-clause
JackKelly/neuralnilm_prototype
scripts/e144.py
2
5135
from __future__ import print_function, division import matplotlib matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import Net, RealApplianceSource, BLSTMLayer, DimshuffleLayer from lasagne.nonlinearities import sigmoid, rectify from lasagne.objectives import crossentropy, mse from lasagne.init import Uniform, Normal from lasagne.layers import LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer from lasagne.updates import adagrad, nesterov_momentum from functools import partial import os from neuralnilm.source import standardise, discretize, fdiff, power_and_fdiff from neuralnilm.experiment import run_experiment from neuralnilm.net import TrainingError import __main__ NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" SAVE_PLOT_INTERVAL = 250 GRADIENT_STEPS = 100 """ e103 Discovered that bottom layer is hardly changing. So will try just a single lstm layer e104 standard init lower learning rate e106 lower learning rate to 0.001 e108 is e107 but with batch size of 5 e109 Normal(1) for LSTM e110 * Back to Uniform(5) for LSTM * Using nntools eb17bd923ef9ff2cacde2e92d7323b4e51bb5f1f RESULTS: Seems to run fine again! e111 * Try with nntools head * peepholes=False RESULTS: appears to be working well. Haven't seen a NaN, even with training rate of 0.1 e112 * n_seq_per_batch = 50 e114 * Trying looking at layer by layer training again. * Start with single LSTM layer e115 * Learning rate = 1 e116 * Standard inits e117 * Uniform(1) init e119 * Learning rate 10 # Result: didn't work well! e120 * init: Normal(1) * not as good as Uniform(5) e121 * Uniform(25) e122 * Just 10 cells * Uniform(5) e125 * Pre-train lower layers e128 * Add back all 5 appliances * Seq length 1500 * skip_prob = 0.7 e129 * max_input_power = None * 2nd layer has Uniform(5) * pre-train bottom layer for 2000 epochs * add third layer at 4000 epochs e131 e138 * Trying to replicate e82 and then break it ;) e140 diff e141 conv1D layer has Uniform(1), as does 2nd LSTM layer e142 diff AND power e144 diff and power and max power is 5900 """ def set_save_plot_interval(net, epoch): net.save_plot_interval = SAVE_PLOT_INTERVAL def exp_a(name): source = RealApplianceSource( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television' # 'dish washer', # ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200, 2500, 2400], on_power_thresholds=[5, 5, 5, 5, 5], max_input_power=5900, min_on_durations=[60, 60, 60, 1800, 1800], min_off_durations=[12, 12, 12, 1800, 600], window=("2013-06-01", "2014-07-01"), seq_length=1000, output_one_appliance=False, boolean_targets=False, train_buildings=[1], validation_buildings=[1], skip_probability=0, n_seq_per_batch=50, subsample_target=5, include_diff=True ) net = Net( experiment_name=name, source=source, save_plot_interval=250, loss_function=crossentropy, updates=partial(nesterov_momentum, learning_rate=1.0), layers_config=[ { 'type': LSTMLayer, 'num_units': 30, 'W_in_to_cell': Uniform(5), 'gradient_steps': GRADIENT_STEPS, 'peepholes': False }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) }, { 'type': Conv1DLayer, 'num_filters': 60, 'filter_length': 5, 'stride': 5, 'nonlinearity': sigmoid, 'W': Uniform(1) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) }, { 'type': LSTMLayer, 'num_units': 60, 'W_in_to_cell': Uniform(1), 'gradient_steps': GRADIENT_STEPS, 'peepholes': False }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ] ) return net def init_experiment(experiment): full_exp_name = NAME + experiment func_call = 'exp_{:s}(full_exp_name)'.format(experiment) print("***********************************") print("Preparing", full_exp_name, "...") net = eval(func_call) return net def main(): for experiment in list('abcd'): full_exp_name = NAME + experiment path = os.path.join(PATH, full_exp_name) try: net = init_experiment(experiment) run_experiment(net, path, epochs=None) except KeyboardInterrupt: break except TrainingError as e: print("EXCEPTION:", e) if __name__ == "__main__": main()
mit
aewhatley/scikit-learn
sklearn/cluster/tests/test_hierarchical.py
230
19795
""" Several basic tests for hierarchical clustering procedures """ # Authors: Vincent Michel, 2010, Gael Varoquaux 2012, # Matteo Visconti di Oleggio Castello 2014 # License: BSD 3 clause from tempfile import mkdtemp import shutil from functools import partial import numpy as np from scipy import sparse from scipy.cluster import hierarchy from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.cluster import ward_tree from sklearn.cluster import AgglomerativeClustering, FeatureAgglomeration from sklearn.cluster.hierarchical import (_hc_cut, _TREE_BUILDERS, linkage_tree) from sklearn.feature_extraction.image import grid_to_graph from sklearn.metrics.pairwise import PAIRED_DISTANCES, cosine_distances,\ manhattan_distances, pairwise_distances from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.neighbors.graph import kneighbors_graph from sklearn.cluster._hierarchical import average_merge, max_merge from sklearn.utils.fast_dict import IntFloatDict from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns def test_linkage_misc(): # Misc tests on linkage rng = np.random.RandomState(42) X = rng.normal(size=(5, 5)) assert_raises(ValueError, AgglomerativeClustering(linkage='foo').fit, X) assert_raises(ValueError, linkage_tree, X, linkage='foo') assert_raises(ValueError, linkage_tree, X, connectivity=np.ones((4, 4))) # Smoke test FeatureAgglomeration FeatureAgglomeration().fit(X) # test hiearchical clustering on a precomputed distances matrix dis = cosine_distances(X) res = linkage_tree(dis, affinity="precomputed") assert_array_equal(res[0], linkage_tree(X, affinity="cosine")[0]) # test hiearchical clustering on a precomputed distances matrix res = linkage_tree(X, affinity=manhattan_distances) assert_array_equal(res[0], linkage_tree(X, affinity="manhattan")[0]) def test_structured_linkage_tree(): # Check that we obtain the correct solution for structured linkage trees. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) # Avoiding a mask with only 'True' entries mask[4:7, 4:7] = 0 X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for tree_builder in _TREE_BUILDERS.values(): children, n_components, n_leaves, parent = \ tree_builder(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) # Check that ward_tree raises a ValueError with a connectivity matrix # of the wrong shape assert_raises(ValueError, tree_builder, X.T, np.ones((4, 4))) # Check that fitting with no samples raises an error assert_raises(ValueError, tree_builder, X.T[:0], connectivity) def test_unstructured_linkage_tree(): # Check that we obtain the correct solution for unstructured linkage trees. rng = np.random.RandomState(0) X = rng.randn(50, 100) for this_X in (X, X[0]): # With specified a number of clusters just for the sake of # raising a warning and testing the warning code with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, ward_tree, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) for tree_builder in _TREE_BUILDERS.values(): for this_X in (X, X[0]): with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, tree_builder, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) def test_height_linkage_tree(): # Check that the height of the results of linkage tree is sorted. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for linkage_func in _TREE_BUILDERS.values(): children, n_nodes, n_leaves, parent = linkage_func(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) def test_agglomerative_clustering(): # Check that we obtain the correct number of clusters with # agglomerative clustering. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) n_samples = 100 X = rng.randn(n_samples, 50) connectivity = grid_to_graph(*mask.shape) for linkage in ("ward", "complete", "average"): clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage=linkage) clustering.fit(X) # test caching try: tempdir = mkdtemp() clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, memory=tempdir, linkage=linkage) clustering.fit(X) labels = clustering.labels_ assert_true(np.size(np.unique(labels)) == 10) finally: shutil.rmtree(tempdir) # Turn caching off now clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, linkage=linkage) # Check that we obtain the same solution with early-stopping of the # tree building clustering.compute_full_tree = False clustering.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering.labels_, labels), 1) clustering.connectivity = None clustering.fit(X) assert_true(np.size(np.unique(clustering.labels_)) == 10) # Check that we raise a TypeError on dense matrices clustering = AgglomerativeClustering( n_clusters=10, connectivity=sparse.lil_matrix( connectivity.toarray()[:10, :10]), linkage=linkage) assert_raises(ValueError, clustering.fit, X) # Test that using ward with another metric than euclidean raises an # exception clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity.toarray(), affinity="manhattan", linkage="ward") assert_raises(ValueError, clustering.fit, X) # Test using another metric than euclidean works with linkage complete for affinity in PAIRED_DISTANCES.keys(): # Compare our (structured) implementation to scipy clustering = AgglomerativeClustering( n_clusters=10, connectivity=np.ones((n_samples, n_samples)), affinity=affinity, linkage="complete") clustering.fit(X) clustering2 = AgglomerativeClustering( n_clusters=10, connectivity=None, affinity=affinity, linkage="complete") clustering2.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering2.labels_, clustering.labels_), 1) # Test that using a distance matrix (affinity = 'precomputed') has same # results (with connectivity constraints) clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage="complete") clustering.fit(X) X_dist = pairwise_distances(X) clustering2 = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, affinity='precomputed', linkage="complete") clustering2.fit(X_dist) assert_array_equal(clustering.labels_, clustering2.labels_) def test_ward_agglomeration(): # Check that we obtain the correct solution in a simplistic case rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity) agglo.fit(X) assert_true(np.size(np.unique(agglo.labels_)) == 5) X_red = agglo.transform(X) assert_true(X_red.shape[1] == 5) X_full = agglo.inverse_transform(X_red) assert_true(np.unique(X_full[0]).size == 5) assert_array_almost_equal(agglo.transform(X_full), X_red) # Check that fitting with no samples raises a ValueError assert_raises(ValueError, agglo.fit, X[:0]) def assess_same_labelling(cut1, cut2): """Util for comparison with scipy""" co_clust = [] for cut in [cut1, cut2]: n = len(cut) k = cut.max() + 1 ecut = np.zeros((n, k)) ecut[np.arange(n), cut] = 1 co_clust.append(np.dot(ecut, ecut.T)) assert_true((co_clust[0] == co_clust[1]).all()) def test_scikit_vs_scipy(): # Test scikit linkage with full connectivity (i.e. unstructured) vs scipy n, p, k = 10, 5, 3 rng = np.random.RandomState(0) # Not using a lil_matrix here, just to check that non sparse # matrices are well handled connectivity = np.ones((n, n)) for linkage in _TREE_BUILDERS.keys(): for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out = hierarchy.linkage(X, method=linkage) children_ = out[:, :2].astype(np.int) children, _, n_leaves, _ = _TREE_BUILDERS[linkage](X, connectivity) cut = _hc_cut(k, children, n_leaves) cut_ = _hc_cut(k, children_, n_leaves) assess_same_labelling(cut, cut_) # Test error management in _hc_cut assert_raises(ValueError, _hc_cut, n_leaves + 1, children, n_leaves) def test_connectivity_propagation(): # Check that connectivity in the ward tree is propagated correctly during # merging. X = np.array([(.014, .120), (.014, .099), (.014, .097), (.017, .153), (.017, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .152), (.018, .149), (.018, .144)]) connectivity = kneighbors_graph(X, 10, include_self=False) ward = AgglomerativeClustering( n_clusters=4, connectivity=connectivity, linkage='ward') # If changes are not propagated correctly, fit crashes with an # IndexError ward.fit(X) def test_ward_tree_children_order(): # Check that children are ordered in the same way for both structured and # unstructured versions of ward_tree. # test on five random datasets n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X) out_structured = ward_tree(X, connectivity=connectivity) assert_array_equal(out_unstructured[0], out_structured[0]) def test_ward_linkage_tree_return_distance(): # Test return_distance option on linkage and ward trees # test that return_distance when set true, gives same # output on both structured and unstructured clustering. n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X, return_distance=True) out_structured = ward_tree(X, connectivity=connectivity, return_distance=True) # get children children_unstructured = out_unstructured[0] children_structured = out_structured[0] # check if we got the same clusters assert_array_equal(children_unstructured, children_structured) # check if the distances are the same dist_unstructured = out_unstructured[-1] dist_structured = out_structured[-1] assert_array_almost_equal(dist_unstructured, dist_structured) for linkage in ['average', 'complete']: structured_items = linkage_tree( X, connectivity=connectivity, linkage=linkage, return_distance=True)[-1] unstructured_items = linkage_tree( X, linkage=linkage, return_distance=True)[-1] structured_dist = structured_items[-1] unstructured_dist = unstructured_items[-1] structured_children = structured_items[0] unstructured_children = unstructured_items[0] assert_array_almost_equal(structured_dist, unstructured_dist) assert_array_almost_equal( structured_children, unstructured_children) # test on the following dataset where we know the truth # taken from scipy/cluster/tests/hierarchy_test_data.py X = np.array([[1.43054825, -7.5693489], [6.95887839, 6.82293382], [2.87137846, -9.68248579], [7.87974764, -6.05485803], [8.24018364, -6.09495602], [7.39020262, 8.54004355]]) # truth linkage_X_ward = np.array([[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 9.10208346, 4.], [7., 9., 24.7784379, 6.]]) linkage_X_complete = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.96742194, 4.], [7., 9., 18.77445997, 6.]]) linkage_X_average = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.55832839, 4.], [7., 9., 15.44089605, 6.]]) n_samples, n_features = np.shape(X) connectivity_X = np.ones((n_samples, n_samples)) out_X_unstructured = ward_tree(X, return_distance=True) out_X_structured = ward_tree(X, connectivity=connectivity_X, return_distance=True) # check that the labels are the same assert_array_equal(linkage_X_ward[:, :2], out_X_unstructured[0]) assert_array_equal(linkage_X_ward[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(linkage_X_ward[:, 2], out_X_unstructured[4]) assert_array_almost_equal(linkage_X_ward[:, 2], out_X_structured[4]) linkage_options = ['complete', 'average'] X_linkage_truth = [linkage_X_complete, linkage_X_average] for (linkage, X_truth) in zip(linkage_options, X_linkage_truth): out_X_unstructured = linkage_tree( X, return_distance=True, linkage=linkage) out_X_structured = linkage_tree( X, connectivity=connectivity_X, linkage=linkage, return_distance=True) # check that the labels are the same assert_array_equal(X_truth[:, :2], out_X_unstructured[0]) assert_array_equal(X_truth[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(X_truth[:, 2], out_X_unstructured[4]) assert_array_almost_equal(X_truth[:, 2], out_X_structured[4]) def test_connectivity_fixing_non_lil(): # Check non regression of a bug if a non item assignable connectivity is # provided with more than one component. # create dummy data x = np.array([[0, 0], [1, 1]]) # create a mask with several components to force connectivity fixing m = np.array([[True, False], [False, True]]) c = grid_to_graph(n_x=2, n_y=2, mask=m) w = AgglomerativeClustering(connectivity=c, linkage='ward') assert_warns(UserWarning, w.fit, x) def test_int_float_dict(): rng = np.random.RandomState(0) keys = np.unique(rng.randint(100, size=10).astype(np.intp)) values = rng.rand(len(keys)) d = IntFloatDict(keys, values) for key, value in zip(keys, values): assert d[key] == value other_keys = np.arange(50).astype(np.intp)[::2] other_values = 0.5 * np.ones(50)[::2] other = IntFloatDict(other_keys, other_values) # Complete smoke test max_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) average_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) def test_connectivity_callable(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering( connectivity=partial(kneighbors_graph, n_neighbors=3, include_self=False)) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_connectivity_ignores_diagonal(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) connectivity_include_self = kneighbors_graph(X, 3, include_self=True) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering(connectivity=connectivity_include_self) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_compute_full_tree(): # Test that the full tree is computed if n_clusters is small rng = np.random.RandomState(0) X = rng.randn(10, 2) connectivity = kneighbors_graph(X, 5, include_self=False) # When n_clusters is less, the full tree should be built # that is the number of merges should be n_samples - 1 agc = AgglomerativeClustering(n_clusters=2, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - 1) # When n_clusters is large, greater than max of 100 and 0.02 * n_samples. # we should stop when there are n_clusters. n_clusters = 101 X = rng.randn(200, 2) connectivity = kneighbors_graph(X, 10, include_self=False) agc = AgglomerativeClustering(n_clusters=n_clusters, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - n_clusters) def test_n_components(): # Test n_components returned by linkage, average and ward tree rng = np.random.RandomState(0) X = rng.rand(5, 5) # Connectivity matrix having five components. connectivity = np.eye(5) for linkage_func in _TREE_BUILDERS.values(): assert_equal(ignore_warnings(linkage_func)(X, connectivity)[1], 5) def test_agg_n_clusters(): # Test that an error is raised when n_clusters <= 0 rng = np.random.RandomState(0) X = rng.rand(20, 10) for n_clus in [-1, 0]: agc = AgglomerativeClustering(n_clusters=n_clus) msg = ("n_clusters should be an integer greater than 0." " %s was provided." % str(agc.n_clusters)) assert_raise_message(ValueError, msg, agc.fit, X)
bsd-3-clause
valexandersaulys/airbnb_kaggle_contest
venv/lib/python3.4/site-packages/sklearn/tests/test_cross_validation.py
6
46787
"""Test the cross_validation module""" from __future__ import division import warnings import numpy as np from scipy.sparse import coo_matrix from scipy.sparse import csr_matrix from scipy import stats from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from sklearn import cross_validation as cval from sklearn.datasets import make_regression from sklearn.datasets import load_boston from sklearn.datasets import load_digits from sklearn.datasets import load_iris from sklearn.datasets import make_multilabel_classification from sklearn.metrics import explained_variance_score from sklearn.metrics import make_scorer from sklearn.metrics import precision_score from sklearn.externals import six from sklearn.externals.six.moves import zip from sklearn.linear_model import Ridge from sklearn.multiclass import OneVsRestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.cluster import KMeans from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline class MockClassifier(object): """Dummy classifier to test the cross-validation""" def __init__(self, a=0, allow_nd=False): self.a = a self.allow_nd = allow_nd def fit(self, X, Y=None, sample_weight=None, class_prior=None, sparse_sample_weight=None, sparse_param=None, dummy_int=None, dummy_str=None, dummy_obj=None, callback=None): """The dummy arguments are to test that this fit function can accept non-array arguments through cross-validation, such as: - int - str (this is actually array-like) - object - function """ self.dummy_int = dummy_int self.dummy_str = dummy_str self.dummy_obj = dummy_obj if callback is not None: callback(self) if self.allow_nd: X = X.reshape(len(X), -1) if X.ndim >= 3 and not self.allow_nd: raise ValueError('X cannot be d') if sample_weight is not None: assert_true(sample_weight.shape[0] == X.shape[0], 'MockClassifier extra fit_param sample_weight.shape[0]' ' is {0}, should be {1}'.format(sample_weight.shape[0], X.shape[0])) if class_prior is not None: assert_true(class_prior.shape[0] == len(np.unique(y)), 'MockClassifier extra fit_param class_prior.shape[0]' ' is {0}, should be {1}'.format(class_prior.shape[0], len(np.unique(y)))) if sparse_sample_weight is not None: fmt = ('MockClassifier extra fit_param sparse_sample_weight' '.shape[0] is {0}, should be {1}') assert_true(sparse_sample_weight.shape[0] == X.shape[0], fmt.format(sparse_sample_weight.shape[0], X.shape[0])) if sparse_param is not None: fmt = ('MockClassifier extra fit_param sparse_param.shape ' 'is ({0}, {1}), should be ({2}, {3})') assert_true(sparse_param.shape == P_sparse.shape, fmt.format(sparse_param.shape[0], sparse_param.shape[1], P_sparse.shape[0], P_sparse.shape[1])) return self def predict(self, T): if self.allow_nd: T = T.reshape(len(T), -1) return T[:, 0] def score(self, X=None, Y=None): return 1. / (1 + np.abs(self.a)) def get_params(self, deep=False): return {'a': self.a, 'allow_nd': self.allow_nd} X = np.ones((10, 2)) X_sparse = coo_matrix(X) W_sparse = coo_matrix((np.array([1]), (np.array([1]), np.array([0]))), shape=(10, 1)) P_sparse = coo_matrix(np.eye(5)) # avoid StratifiedKFold's Warning about least populated class in y y = np.arange(10) % 3 ############################################################################## # Tests def check_valid_split(train, test, n_samples=None): # Use python sets to get more informative assertion failure messages train, test = set(train), set(test) # Train and test split should not overlap assert_equal(train.intersection(test), set()) if n_samples is not None: # Check that the union of train an test split cover all the indices assert_equal(train.union(test), set(range(n_samples))) def check_cv_coverage(cv, expected_n_iter=None, n_samples=None): # Check that a all the samples appear at least once in a test fold if expected_n_iter is not None: assert_equal(len(cv), expected_n_iter) else: expected_n_iter = len(cv) collected_test_samples = set() iterations = 0 for train, test in cv: check_valid_split(train, test, n_samples=n_samples) iterations += 1 collected_test_samples.update(test) # Check that the accumulated test samples cover the whole dataset assert_equal(iterations, expected_n_iter) if n_samples is not None: assert_equal(collected_test_samples, set(range(n_samples))) def test_kfold_valueerrors(): # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.KFold, 3, 4) # Check that a warning is raised if the least populated class has too few # members. y = [3, 3, -1, -1, 2] cv = assert_warns_message(Warning, "The least populated class", cval.StratifiedKFold, y, 3) # Check that despite the warning the folds are still computed even # though all the classes are not necessarily represented at on each # side of the split at each split check_cv_coverage(cv, expected_n_iter=3, n_samples=len(y)) # Error when number of folds is <= 1 assert_raises(ValueError, cval.KFold, 2, 0) assert_raises(ValueError, cval.KFold, 2, 1) assert_raises(ValueError, cval.StratifiedKFold, y, 0) assert_raises(ValueError, cval.StratifiedKFold, y, 1) # When n is not integer: assert_raises(ValueError, cval.KFold, 2.5, 2) # When n_folds is not integer: assert_raises(ValueError, cval.KFold, 5, 1.5) assert_raises(ValueError, cval.StratifiedKFold, y, 1.5) def test_kfold_indices(): # Check all indices are returned in the test folds kf = cval.KFold(300, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=300) # Check all indices are returned in the test folds even when equal-sized # folds are not possible kf = cval.KFold(17, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=17) def test_kfold_no_shuffle(): # Manually check that KFold preserves the data ordering on toy datasets splits = iter(cval.KFold(4, 2)) train, test = next(splits) assert_array_equal(test, [0, 1]) assert_array_equal(train, [2, 3]) train, test = next(splits) assert_array_equal(test, [2, 3]) assert_array_equal(train, [0, 1]) splits = iter(cval.KFold(5, 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 2]) assert_array_equal(train, [3, 4]) train, test = next(splits) assert_array_equal(test, [3, 4]) assert_array_equal(train, [0, 1, 2]) def test_stratified_kfold_no_shuffle(): # Manually check that StratifiedKFold preserves the data ordering as much # as possible on toy datasets in order to avoid hiding sample dependencies # when possible splits = iter(cval.StratifiedKFold([1, 1, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 2]) assert_array_equal(train, [1, 3]) train, test = next(splits) assert_array_equal(test, [1, 3]) assert_array_equal(train, [0, 2]) splits = iter(cval.StratifiedKFold([1, 1, 1, 0, 0, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 3, 4]) assert_array_equal(train, [2, 5, 6]) train, test = next(splits) assert_array_equal(test, [2, 5, 6]) assert_array_equal(train, [0, 1, 3, 4]) def test_stratified_kfold_ratios(): # Check that stratified kfold preserves label ratios in individual splits # Repeat with shuffling turned off and on n_samples = 1000 labels = np.array([4] * int(0.10 * n_samples) + [0] * int(0.89 * n_samples) + [1] * int(0.01 * n_samples)) for shuffle in [False, True]: for train, test in cval.StratifiedKFold(labels, 5, shuffle=shuffle): assert_almost_equal(np.sum(labels[train] == 4) / len(train), 0.10, 2) assert_almost_equal(np.sum(labels[train] == 0) / len(train), 0.89, 2) assert_almost_equal(np.sum(labels[train] == 1) / len(train), 0.01, 2) assert_almost_equal(np.sum(labels[test] == 4) / len(test), 0.10, 2) assert_almost_equal(np.sum(labels[test] == 0) / len(test), 0.89, 2) assert_almost_equal(np.sum(labels[test] == 1) / len(test), 0.01, 2) def test_kfold_balance(): # Check that KFold returns folds with balanced sizes for kf in [cval.KFold(i, 5) for i in range(11, 17)]: sizes = [] for _, test in kf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), kf.n) def test_stratifiedkfold_balance(): # Check that KFold returns folds with balanced sizes (only when # stratification is possible) # Repeat with shuffling turned off and on labels = [0] * 3 + [1] * 14 for shuffle in [False, True]: for skf in [cval.StratifiedKFold(labels[:i], 3, shuffle=shuffle) for i in range(11, 17)]: sizes = [] for _, test in skf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), skf.n) def test_shuffle_kfold(): # Check the indices are shuffled properly, and that all indices are # returned in the different test folds kf = cval.KFold(300, 3, shuffle=True, random_state=0) ind = np.arange(300) all_folds = None for train, test in kf: assert_true(np.any(np.arange(100) != ind[test])) assert_true(np.any(np.arange(100, 200) != ind[test])) assert_true(np.any(np.arange(200, 300) != ind[test])) if all_folds is None: all_folds = ind[test].copy() else: all_folds = np.concatenate((all_folds, ind[test])) all_folds.sort() assert_array_equal(all_folds, ind) def test_shuffle_stratifiedkfold(): # Check that shuffling is happening when requested, and for proper # sample coverage labels = [0] * 20 + [1] * 20 kf0 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=0)) kf1 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=1)) for (_, test0), (_, test1) in zip(kf0, kf1): assert_true(set(test0) != set(test1)) check_cv_coverage(kf0, expected_n_iter=5, n_samples=40) def test_kfold_can_detect_dependent_samples_on_digits(): # see #2372 # The digits samples are dependent: they are apparently grouped by authors # although we don't have any information on the groups segment locations # for this data. We can highlight this fact be computing k-fold cross- # validation with and without shuffling: we observe that the shuffling case # wrongly makes the IID assumption and is therefore too optimistic: it # estimates a much higher accuracy (around 0.96) than than the non # shuffling variant (around 0.86). digits = load_digits() X, y = digits.data[:800], digits.target[:800] model = SVC(C=10, gamma=0.005) n = len(y) cv = cval.KFold(n, 5, shuffle=False) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) # Shuffling the data artificially breaks the dependency and hides the # overfitting of the model with regards to the writing style of the authors # by yielding a seriously overestimated score: cv = cval.KFold(n, 5, shuffle=True, random_state=0) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) cv = cval.KFold(n, 5, shuffle=True, random_state=1) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) # Similarly, StratifiedKFold should try to shuffle the data as little # as possible (while respecting the balanced class constraints) # and thus be able to detect the dependency by not overestimating # the CV score either. As the digits dataset is approximately balanced # the estimated mean score is close to the score measured with # non-shuffled KFold cv = cval.StratifiedKFold(y, 5) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) def test_label_kfold(): rng = np.random.RandomState(0) # Parameters of the test n_labels = 15 n_samples = 1000 n_folds = 5 # Construct the test data tolerance = 0.05 * n_samples # 5 percent error allowed labels = rng.randint(0, n_labels, n_samples) folds = cval.LabelKFold(labels, n_folds=n_folds).idxs ideal_n_labels_per_fold = n_samples // n_folds # Check that folds have approximately the same size assert_equal(len(folds), len(labels)) for i in np.unique(folds): assert_greater_equal(tolerance, abs(sum(folds == i) - ideal_n_labels_per_fold)) # Check that each label appears only in 1 fold for label in np.unique(labels): assert_equal(len(np.unique(folds[labels == label])), 1) # Check that no label is on both sides of the split labels = np.asarray(labels, dtype=object) for train, test in cval.LabelKFold(labels, n_folds=n_folds): assert_equal(len(np.intersect1d(labels[train], labels[test])), 0) # Construct the test data labels = ['Albert', 'Jean', 'Bertrand', 'Michel', 'Jean', 'Francis', 'Robert', 'Michel', 'Rachel', 'Lois', 'Michelle', 'Bernard', 'Marion', 'Laura', 'Jean', 'Rachel', 'Franck', 'John', 'Gael', 'Anna', 'Alix', 'Robert', 'Marion', 'David', 'Tony', 'Abel', 'Becky', 'Madmood', 'Cary', 'Mary', 'Alexandre', 'David', 'Francis', 'Barack', 'Abdoul', 'Rasha', 'Xi', 'Silvia'] labels = np.asarray(labels, dtype=object) n_labels = len(np.unique(labels)) n_samples = len(labels) n_folds = 5 tolerance = 0.05 * n_samples # 5 percent error allowed folds = cval.LabelKFold(labels, n_folds=n_folds).idxs ideal_n_labels_per_fold = n_samples // n_folds # Check that folds have approximately the same size assert_equal(len(folds), len(labels)) for i in np.unique(folds): assert_greater_equal(tolerance, abs(sum(folds == i) - ideal_n_labels_per_fold)) # Check that each label appears only in 1 fold for label in np.unique(labels): assert_equal(len(np.unique(folds[labels == label])), 1) # Check that no label is on both sides of the split for train, test in cval.LabelKFold(labels, n_folds=n_folds): assert_equal(len(np.intersect1d(labels[train], labels[test])), 0) # Should fail if there are more folds than labels labels = np.array([1, 1, 1, 2, 2]) assert_raises(ValueError, cval.LabelKFold, labels, n_folds=3) def test_shuffle_split(): ss1 = cval.ShuffleSplit(10, test_size=0.2, random_state=0) ss2 = cval.ShuffleSplit(10, test_size=2, random_state=0) ss3 = cval.ShuffleSplit(10, test_size=np.int32(2), random_state=0) for typ in six.integer_types: ss4 = cval.ShuffleSplit(10, test_size=typ(2), random_state=0) for t1, t2, t3, t4 in zip(ss1, ss2, ss3, ss4): assert_array_equal(t1[0], t2[0]) assert_array_equal(t2[0], t3[0]) assert_array_equal(t3[0], t4[0]) assert_array_equal(t1[1], t2[1]) assert_array_equal(t2[1], t3[1]) assert_array_equal(t3[1], t4[1]) def test_stratified_shuffle_split_init(): y = np.asarray([0, 1, 1, 1, 2, 2, 2]) # Check that error is raised if there is a class with only one sample assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.2) # Check that error is raised if the test set size is smaller than n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 2) # Check that error is raised if the train set size is smaller than # n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 3, 2) y = np.asarray([0, 0, 0, 1, 1, 1, 2, 2, 2]) # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.5, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 8, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.6, 8) # Train size or test size too small assert_raises(ValueError, cval.StratifiedShuffleSplit, y, train_size=2) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, test_size=2) def test_stratified_shuffle_split_iter(): ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]), np.array([-1] * 800 + [1] * 50) ] for y in ys: sss = cval.StratifiedShuffleSplit(y, 6, test_size=0.33, random_state=0) for train, test in sss: assert_array_equal(np.unique(y[train]), np.unique(y[test])) # Checks if folds keep classes proportions p_train = (np.bincount(np.unique(y[train], return_inverse=True)[1]) / float(len(y[train]))) p_test = (np.bincount(np.unique(y[test], return_inverse=True)[1]) / float(len(y[test]))) assert_array_almost_equal(p_train, p_test, 1) assert_equal(y[train].size + y[test].size, y.size) assert_array_equal(np.intersect1d(train, test), []) def test_stratified_shuffle_split_even(): # Test the StratifiedShuffleSplit, indices are drawn with a # equal chance n_folds = 5 n_iter = 1000 def assert_counts_are_ok(idx_counts, p): # Here we test that the distribution of the counts # per index is close enough to a binomial threshold = 0.05 / n_splits bf = stats.binom(n_splits, p) for count in idx_counts: p = bf.pmf(count) assert_true(p > threshold, "An index is not drawn with chance corresponding " "to even draws") for n_samples in (6, 22): labels = np.array((n_samples // 2) * [0, 1]) splits = cval.StratifiedShuffleSplit(labels, n_iter=n_iter, test_size=1. / n_folds, random_state=0) train_counts = [0] * n_samples test_counts = [0] * n_samples n_splits = 0 for train, test in splits: n_splits += 1 for counter, ids in [(train_counts, train), (test_counts, test)]: for id in ids: counter[id] += 1 assert_equal(n_splits, n_iter) assert_equal(len(train), splits.n_train) assert_equal(len(test), splits.n_test) assert_equal(len(set(train).intersection(test)), 0) label_counts = np.unique(labels) assert_equal(splits.test_size, 1.0 / n_folds) assert_equal(splits.n_train + splits.n_test, len(labels)) assert_equal(len(label_counts), 2) ex_test_p = float(splits.n_test) / n_samples ex_train_p = float(splits.n_train) / n_samples assert_counts_are_ok(train_counts, ex_train_p) assert_counts_are_ok(test_counts, ex_test_p) def test_predefinedsplit_with_kfold_split(): # Check that PredefinedSplit can reproduce a split generated by Kfold. folds = -1 * np.ones(10) kf_train = [] kf_test = [] for i, (train_ind, test_ind) in enumerate(cval.KFold(10, 5, shuffle=True)): kf_train.append(train_ind) kf_test.append(test_ind) folds[test_ind] = i ps_train = [] ps_test = [] ps = cval.PredefinedSplit(folds) for train_ind, test_ind in ps: ps_train.append(train_ind) ps_test.append(test_ind) assert_array_equal(ps_train, kf_train) assert_array_equal(ps_test, kf_test) def test_label_shuffle_split(): ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]), ] for y in ys: n_iter = 6 test_size = 1. / 3 slo = cval.LabelShuffleSplit(y, n_iter, test_size=test_size, random_state=0) # Make sure the repr works repr(slo) # Test that the length is correct assert_equal(len(slo), n_iter) y_unique = np.unique(y) for train, test in slo: # First test: no train label is in the test set and vice versa y_train_unique = np.unique(y[train]) y_test_unique = np.unique(y[test]) assert_false(np.any(np.in1d(y[train], y_test_unique))) assert_false(np.any(np.in1d(y[test], y_train_unique))) # Second test: train and test add up to all the data assert_equal(y[train].size + y[test].size, y.size) # Third test: train and test are disjoint assert_array_equal(np.intersect1d(train, test), []) # Fourth test: # unique train and test labels are correct, # +- 1 for rounding error assert_true(abs(len(y_test_unique) - round(test_size * len(y_unique))) <= 1) assert_true(abs(len(y_train_unique) - round((1.0 - test_size) * len(y_unique))) <= 1) def test_leave_label_out_changing_labels(): # Check that LeaveOneLabelOut and LeavePLabelOut work normally if # the labels variable is changed before calling __iter__ labels = np.array([0, 1, 2, 1, 1, 2, 0, 0]) labels_changing = np.array(labels, copy=True) lolo = cval.LeaveOneLabelOut(labels) lolo_changing = cval.LeaveOneLabelOut(labels_changing) lplo = cval.LeavePLabelOut(labels, p=2) lplo_changing = cval.LeavePLabelOut(labels_changing, p=2) labels_changing[:] = 0 for llo, llo_changing in [(lolo, lolo_changing), (lplo, lplo_changing)]: for (train, test), (train_chan, test_chan) in zip(llo, llo_changing): assert_array_equal(train, train_chan) assert_array_equal(test, test_chan) def test_cross_val_score(): clf = MockClassifier() for a in range(-10, 10): clf.a = a # Smoke test scores = cval.cross_val_score(clf, X, y) assert_array_equal(scores, clf.score(X, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) scores = cval.cross_val_score(clf, X_sparse, y) assert_array_equal(scores, clf.score(X_sparse, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) scores = cval.cross_val_score(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) scores = cval.cross_val_score(clf, X, y.tolist()) assert_raises(ValueError, cval.cross_val_score, clf, X, y, scoring="sklearn") # test with 3d X and X_3d = X[:, :, np.newaxis] clf = MockClassifier(allow_nd=True) scores = cval.cross_val_score(clf, X_3d, y) clf = MockClassifier(allow_nd=False) assert_raises(ValueError, cval.cross_val_score, clf, X_3d, y) def test_cross_val_score_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_score(clf, X_df, y_ser) def test_cross_val_score_mask(): # test that cross_val_score works with boolean masks svm = SVC(kernel="linear") iris = load_iris() X, y = iris.data, iris.target cv_indices = cval.KFold(len(y), 5) scores_indices = cval.cross_val_score(svm, X, y, cv=cv_indices) cv_indices = cval.KFold(len(y), 5) cv_masks = [] for train, test in cv_indices: mask_train = np.zeros(len(y), dtype=np.bool) mask_test = np.zeros(len(y), dtype=np.bool) mask_train[train] = 1 mask_test[test] = 1 cv_masks.append((train, test)) scores_masks = cval.cross_val_score(svm, X, y, cv=cv_masks) assert_array_equal(scores_indices, scores_masks) def test_cross_val_score_precomputed(): # test for svm with precomputed kernel svm = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target linear_kernel = np.dot(X, X.T) score_precomputed = cval.cross_val_score(svm, linear_kernel, y) svm = SVC(kernel="linear") score_linear = cval.cross_val_score(svm, X, y) assert_array_equal(score_precomputed, score_linear) # Error raised for non-square X svm = SVC(kernel="precomputed") assert_raises(ValueError, cval.cross_val_score, svm, X, y) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cval.cross_val_score, svm, linear_kernel.tolist(), y) def test_cross_val_score_fit_params(): clf = MockClassifier() n_samples = X.shape[0] n_classes = len(np.unique(y)) DUMMY_INT = 42 DUMMY_STR = '42' DUMMY_OBJ = object() def assert_fit_params(clf): # Function to test that the values are passed correctly to the # classifier arguments for non-array type assert_equal(clf.dummy_int, DUMMY_INT) assert_equal(clf.dummy_str, DUMMY_STR) assert_equal(clf.dummy_obj, DUMMY_OBJ) fit_params = {'sample_weight': np.ones(n_samples), 'class_prior': np.ones(n_classes) / n_classes, 'sparse_sample_weight': W_sparse, 'sparse_param': P_sparse, 'dummy_int': DUMMY_INT, 'dummy_str': DUMMY_STR, 'dummy_obj': DUMMY_OBJ, 'callback': assert_fit_params} cval.cross_val_score(clf, X, y, fit_params=fit_params) def test_cross_val_score_score_func(): clf = MockClassifier() _score_func_args = [] def score_func(y_test, y_predict): _score_func_args.append((y_test, y_predict)) return 1.0 with warnings.catch_warnings(record=True): scoring = make_scorer(score_func) score = cval.cross_val_score(clf, X, y, scoring=scoring) assert_array_equal(score, [1.0, 1.0, 1.0]) assert len(_score_func_args) == 3 def test_cross_val_score_errors(): class BrokenEstimator: pass assert_raises(TypeError, cval.cross_val_score, BrokenEstimator(), X) def test_train_test_split_errors(): assert_raises(ValueError, cval.train_test_split) assert_raises(ValueError, cval.train_test_split, range(3), train_size=1.1) assert_raises(ValueError, cval.train_test_split, range(3), test_size=0.6, train_size=0.6) assert_raises(ValueError, cval.train_test_split, range(3), test_size=np.float32(0.6), train_size=np.float32(0.6)) assert_raises(ValueError, cval.train_test_split, range(3), test_size="wrong_type") assert_raises(ValueError, cval.train_test_split, range(3), test_size=2, train_size=4) assert_raises(TypeError, cval.train_test_split, range(3), some_argument=1.1) assert_raises(ValueError, cval.train_test_split, range(3), range(42)) def test_train_test_split(): X = np.arange(100).reshape((10, 10)) X_s = coo_matrix(X) y = np.arange(10) # simple test split = cval.train_test_split(X, y, test_size=None, train_size=.5) X_train, X_test, y_train, y_test = split assert_equal(len(y_test), len(y_train)) # test correspondence of X and y assert_array_equal(X_train[:, 0], y_train * 10) assert_array_equal(X_test[:, 0], y_test * 10) # conversion of lists to arrays (deprecated?) with warnings.catch_warnings(record=True): split = cval.train_test_split(X, X_s, y.tolist(), allow_lists=False) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_array_equal(X_train, X_s_train.toarray()) assert_array_equal(X_test, X_s_test.toarray()) # don't convert lists to anything else by default split = cval.train_test_split(X, X_s, y.tolist()) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_true(isinstance(y_train, list)) assert_true(isinstance(y_test, list)) # allow nd-arrays X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) split = cval.train_test_split(X_4d, y_3d) assert_equal(split[0].shape, (7, 5, 3, 2)) assert_equal(split[1].shape, (3, 5, 3, 2)) assert_equal(split[2].shape, (7, 7, 11)) assert_equal(split[3].shape, (3, 7, 11)) # test stratification option y = np.array([1, 1, 1, 1, 2, 2, 2, 2]) for test_size, exp_test_size in zip([2, 4, 0.25, 0.5, 0.75], [2, 4, 2, 4, 6]): train, test = cval.train_test_split(y, test_size=test_size, stratify=y, random_state=0) assert_equal(len(test), exp_test_size) assert_equal(len(test) + len(train), len(y)) # check the 1:1 ratio of ones and twos in the data is preserved assert_equal(np.sum(train == 1), np.sum(train == 2)) def train_test_split_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [MockDataFrame] try: from pandas import DataFrame types.append(DataFrame) except ImportError: pass for InputFeatureType in types: # X dataframe X_df = InputFeatureType(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, InputFeatureType)) assert_true(isinstance(X_test, InputFeatureType)) def train_test_split_mock_pandas(): # X mock dataframe X_df = MockDataFrame(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, MockDataFrame)) assert_true(isinstance(X_test, MockDataFrame)) with warnings.catch_warnings(record=True): # deprecated X_train_arr, X_test_arr = cval.train_test_split(X_df, allow_lists=False) assert_true(isinstance(X_train_arr, np.ndarray)) assert_true(isinstance(X_test_arr, np.ndarray)) def test_cross_val_score_with_score_func_classification(): iris = load_iris() clf = SVC(kernel='linear') # Default score (should be the accuracy score) scores = cval.cross_val_score(clf, iris.data, iris.target, cv=5) assert_array_almost_equal(scores, [0.97, 1., 0.97, 0.97, 1.], 2) # Correct classification score (aka. zero / one score) - should be the # same as the default estimator score zo_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="accuracy", cv=5) assert_array_almost_equal(zo_scores, [0.97, 1., 0.97, 0.97, 1.], 2) # F1 score (class are balanced so f1_score should be equal to zero/one # score f1_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="f1_weighted", cv=5) assert_array_almost_equal(f1_scores, [0.97, 1., 0.97, 0.97, 1.], 2) def test_cross_val_score_with_score_func_regression(): X, y = make_regression(n_samples=30, n_features=20, n_informative=5, random_state=0) reg = Ridge() # Default score of the Ridge regression estimator scores = cval.cross_val_score(reg, X, y, cv=5) assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # R2 score (aka. determination coefficient) - should be the # same as the default estimator score r2_scores = cval.cross_val_score(reg, X, y, scoring="r2", cv=5) assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # Mean squared error; this is a loss function, so "scores" are negative mse_scores = cval.cross_val_score(reg, X, y, cv=5, scoring="mean_squared_error") expected_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99]) assert_array_almost_equal(mse_scores, expected_mse, 2) # Explained variance scoring = make_scorer(explained_variance_score) ev_scores = cval.cross_val_score(reg, X, y, cv=5, scoring=scoring) assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) def test_permutation_score(): iris = load_iris() X = iris.data X_sparse = coo_matrix(X) y = iris.target svm = SVC(kernel='linear') cv = cval.StratifiedKFold(y, 2) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_greater(score, 0.9) assert_almost_equal(pvalue, 0.0, 1) score_label, _, pvalue_label = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # check that we obtain the same results with a sparse representation svm_sparse = SVC(kernel='linear') cv_sparse = cval.StratifiedKFold(y, 2) score_label, _, pvalue_label = cval.permutation_test_score( svm_sparse, X_sparse, y, n_permutations=30, cv=cv_sparse, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # test with custom scoring object def custom_score(y_true, y_pred): return (((y_true == y_pred).sum() - (y_true != y_pred).sum()) / y_true.shape[0]) scorer = make_scorer(custom_score) score, _, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=100, scoring=scorer, cv=cv, random_state=0) assert_almost_equal(score, .93, 2) assert_almost_equal(pvalue, 0.01, 3) # set random y y = np.mod(np.arange(len(y)), 3) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_less(score, 0.5) assert_greater(pvalue, 0.2) def test_cross_val_generator_with_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) # explicitly passing indices value is deprecated loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) ps = cval.PredefinedSplit([1, 1, 2, 2]) ss = cval.ShuffleSplit(2) for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X[train], X[test] y[train], y[test] @ignore_warnings def test_cross_val_generator_with_default_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) ss = cval.ShuffleSplit(2) ps = cval.PredefinedSplit([1, 1, 2, 2]) for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X[train], X[test] y[train], y[test] def test_shufflesplit_errors(): assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=2.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=1.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=0.1, train_size=0.95) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=11) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=10) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=8, train_size=3) assert_raises(ValueError, cval.ShuffleSplit, 10, train_size=1j) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=None, train_size=None) def test_shufflesplit_reproducible(): # Check that iterating twice on the ShuffleSplit gives the same # sequence of train-test when the random_state is given ss = cval.ShuffleSplit(10, random_state=21) assert_array_equal(list(a for a, b in ss), list(a for a, b in ss)) def test_safe_split_with_precomputed_kernel(): clf = SVC() clfp = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target K = np.dot(X, X.T) cv = cval.ShuffleSplit(X.shape[0], test_size=0.25, random_state=0) tr, te = list(cv)[0] X_tr, y_tr = cval._safe_split(clf, X, y, tr) K_tr, y_tr2 = cval._safe_split(clfp, K, y, tr) assert_array_almost_equal(K_tr, np.dot(X_tr, X_tr.T)) X_te, y_te = cval._safe_split(clf, X, y, te, tr) K_te, y_te2 = cval._safe_split(clfp, K, y, te, tr) assert_array_almost_equal(K_te, np.dot(X_te, X_tr.T)) def test_cross_val_score_allow_nans(): # Check that cross_val_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.cross_val_score(p, X, y, cv=5) def test_train_test_split_allow_nans(): # Check that train_test_split allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) cval.train_test_split(X, y, test_size=0.2, random_state=42) def test_permutation_test_score_allow_nans(): # Check that permutation_test_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.permutation_test_score(p, X, y, cv=5) def test_check_cv_return_types(): X = np.ones((9, 2)) cv = cval.check_cv(3, X, classifier=False) assert_true(isinstance(cv, cval.KFold)) y_binary = np.array([0, 1, 0, 1, 0, 0, 1, 1, 1]) cv = cval.check_cv(3, X, y_binary, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) y_multiclass = np.array([0, 1, 0, 1, 2, 1, 2, 0, 2]) cv = cval.check_cv(3, X, y_multiclass, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) X = np.ones((5, 2)) y_multilabel = [[1, 0, 1], [1, 1, 0], [0, 0, 0], [0, 1, 1], [1, 0, 0]] cv = cval.check_cv(3, X, y_multilabel, classifier=True) assert_true(isinstance(cv, cval.KFold)) y_multioutput = np.array([[1, 2], [0, 3], [0, 0], [3, 1], [2, 0]]) cv = cval.check_cv(3, X, y_multioutput, classifier=True) assert_true(isinstance(cv, cval.KFold)) def test_cross_val_score_multilabel(): X = np.array([[-3, 4], [2, 4], [3, 3], [0, 2], [-3, 1], [-2, 1], [0, 0], [-2, -1], [-1, -2], [1, -2]]) y = np.array([[1, 1], [0, 1], [0, 1], [0, 1], [1, 1], [0, 1], [1, 0], [1, 1], [1, 0], [0, 0]]) clf = KNeighborsClassifier(n_neighbors=1) scoring_micro = make_scorer(precision_score, average='micro') scoring_macro = make_scorer(precision_score, average='macro') scoring_samples = make_scorer(precision_score, average='samples') score_micro = cval.cross_val_score(clf, X, y, scoring=scoring_micro, cv=5) score_macro = cval.cross_val_score(clf, X, y, scoring=scoring_macro, cv=5) score_samples = cval.cross_val_score(clf, X, y, scoring=scoring_samples, cv=5) assert_almost_equal(score_micro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 3]) assert_almost_equal(score_macro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) assert_almost_equal(score_samples, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) def test_cross_val_predict(): boston = load_boston() X, y = boston.data, boston.target cv = cval.KFold(len(boston.target)) est = Ridge() # Naive loop (should be same as cross_val_predict): preds2 = np.zeros_like(y) for train, test in cv: est.fit(X[train], y[train]) preds2[test] = est.predict(X[test]) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_array_almost_equal(preds, preds2) preds = cval.cross_val_predict(est, X, y) assert_equal(len(preds), len(y)) cv = cval.LeaveOneOut(len(y)) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_equal(len(preds), len(y)) Xsp = X.copy() Xsp *= (Xsp > np.median(Xsp)) Xsp = coo_matrix(Xsp) preds = cval.cross_val_predict(est, Xsp, y) assert_array_almost_equal(len(preds), len(y)) preds = cval.cross_val_predict(KMeans(), X) assert_equal(len(preds), len(y)) def bad_cv(): for i in range(4): yield np.array([0, 1, 2, 3]), np.array([4, 5, 6, 7, 8]) assert_raises(ValueError, cval.cross_val_predict, est, X, y, cv=bad_cv()) def test_cross_val_predict_input_types(): clf = Ridge() # Smoke test predictions = cval.cross_val_predict(clf, X, y) assert_equal(predictions.shape, (10,)) # test with multioutput y predictions = cval.cross_val_predict(clf, X_sparse, X) assert_equal(predictions.shape, (10, 2)) predictions = cval.cross_val_predict(clf, X_sparse, y) assert_array_equal(predictions.shape, (10,)) # test with multioutput y predictions = cval.cross_val_predict(clf, X_sparse, X) assert_array_equal(predictions.shape, (10, 2)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) predictions = cval.cross_val_predict(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) predictions = cval.cross_val_predict(clf, X, y.tolist()) # test with 3d X and X_3d = X[:, :, np.newaxis] check_3d = lambda x: x.ndim == 3 clf = CheckingClassifier(check_X=check_3d) predictions = cval.cross_val_predict(clf, X_3d, y) assert_array_equal(predictions.shape, (10,)) def test_cross_val_predict_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_predict(clf, X_df, y_ser) def test_sparse_fit_params(): iris = load_iris() X, y = iris.data, iris.target clf = MockClassifier() fit_params = {'sparse_sample_weight': coo_matrix(np.eye(X.shape[0]))} a = cval.cross_val_score(clf, X, y, fit_params=fit_params) assert_array_equal(a, np.ones(3)) def test_check_is_partition(): p = np.arange(100) assert_true(cval._check_is_partition(p, 100)) assert_false(cval._check_is_partition(np.delete(p, 23), 100)) p[0] = 23 assert_false(cval._check_is_partition(p, 100)) def test_cross_val_predict_sparse_prediction(): # check that cross_val_predict gives same result for sparse and dense input X, y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, return_indicator=True, random_state=1) X_sparse = csr_matrix(X) y_sparse = csr_matrix(y) classif = OneVsRestClassifier(SVC(kernel='linear')) preds = cval.cross_val_predict(classif, X, y, cv=10) preds_sparse = cval.cross_val_predict(classif, X_sparse, y_sparse, cv=10) preds_sparse = preds_sparse.toarray() assert_array_almost_equal(preds_sparse, preds)
gpl-2.0
UIUC-SULLIVAN/ThesisProject_Andrea_Mattera
Coupling with weather/Classes.py
4
51132
# coding: utf-8 # In[6]: import numpy as np from sklearn import preprocessing import pandas as pd import datetime as dt from sklearn.metrics import mean_absolute_error,mean_squared_error,median_absolute_error from sklearn.svm import SVR from sklearn.neighbors import KNeighborsRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.decomposition import PCA as sklearnPCA ,KernelPCA,FactorAnalysis,IncrementalPCA,FastICA from scipy.stats.mstats import normaltest from scipy.stats import spearmanr from math import * import matplotlib.pyplot as plt import time from sklearn.grid_search import GridSearchCV from sklearn.cluster import MeanShift, estimate_bandwidth import matplotlib.pyplot as plt import urllib2 import json # #Classes # In[ ]: class Sensor(object): ID=None owner=None days={} #days is a dictionary containing a dataframe with the safecast data for that specific day daysList=[] #it contains the days of the measurement, it is a list of the keys of days dictionary dataset=None latitude=None longitude=None stationary=None def __init__(self,a,date='Captured Time'): #given a series of measurement it creates a dataframe for every day df=pd.DataFrame(a) df=df.sort('Captured Time') self.latitude,self.longitude,self.ID=df[['Latitude','Longitude','Sensor']].iloc[0].values i=lambda x: str(x.year) + '-' + str(x.month) + '-' +str(x.day) #I take just year,month and day try: dates= df[date].apply(i) except AttributeError: df=df.convert_objects(convert_dates='coerce') dates= df[date].apply(i) df['Date']=dates daysList=dates.unique() self.stationary=Sensor.isStationary(df) self.days=dict([(day,df[df['Date']==day]) for day in daysList]) self.daysList=daysList def apply(self,f): '''Apply a generic function on historical data''' self.days.update((x, f(y)) for x, y in self.days.items()) return self def addDay(self,a,date='Captured Time'): ''' It adds another day to the days dictionary ''' df=pd.DataFrame(a) i=lambda x: str(x.year) + '-' + str(x.month) + '-' +str(x.day) #I take just year,month and day try: dates= df[date].apply(i) except AttributeError: df=df.convert_objects(convert_dates='coerce') dates= df[date].apply(i) df['Day']=dates daysList=dates.unique() [self.days.update({day:df[df['Day']==day]}) for day in daysList] [self.daysList.append(day) for day in daysList] return self def cleanAll(self): '''It cleans all the measurements applying the static method clean to every day ''' self.days.update((x, Sensor.clean(y)) for x, y in self.days.items()) return self @staticmethod def clean(df): '''It cleans a single day ''' from string import strip columns=['Captured Time','Latitude','Longitude','Value','Unit','ID','Height','Loader ID','Sensor','Distance'] df=df[columns] #df=df.dropna(1) #empty rows are deleted df=df.drop_duplicates('Captured Time') #sometimes there are some duplicates df.index=xrange(0,len(df)) today=dt.datetime.today().strftime("%Y-%m-%d %H:%M:%S") df=df.convert_objects(convert_dates='coerce') df=df[df['Captured Time']<=today] #every row with date field incorrect is deleted df['Unit']=df['Unit'].apply(strip) df=df[df.Unit=='cpm'] #all the units that are not expressed in cpm are deleted #I should add some lines to remove special character like \n and \t return df @staticmethod def convertDate(df,date='Captured Time'): df[date]=0 try: f = lambda x: str(int(x.Year)) + '-'+ str(int(x.Month)) + '-' + str(int(x.Day)) + ' ' + str(int(x.Hour)) + ':' + str(int(x.Minute)) + ':' + '00' df[date]=df.apply(f,1) except AttributeError: diz={0:'00',0.25:'15',0.5:'30',0.75:'45'} g = lambda x: str(int(x.Year)) + '-'+ str(int(x.Month)) + '-' + str(int(x.Day)) + ' ' + str(int(x.Hour)) + ':' + diz[x.Hour - int(x.Hour)] + ':' + '00' df[date]=df.apply(g,1) df=df.drop(['Year','Month','Day','Hour'],axis=1) fmt="%Y-%m-%d %H:%M:%S" try: df[date]=df[date].apply(dt.datetime.strptime(date,fmt)) except ValueError: pass return df def createDataset(self): '''It merge all the dataframe in the days dictionary in a single dataframe ''' tmp=self.days.values() df = pd.concat(tmp) self.dataset=df#.sort('Captured Time') return self.dataset def delDay(self,day): try: self.days.pop(day) self.daysList.remove(day) except KeyError: print 'The day ' + str(day) + ' is not present' return self return self @staticmethod def distance(a1,b1,a2,b2): '''Evaluates the distance in m between two points with coordinates expressed in Latitude and Longitude ''' a1=a1*np.pi/180 a2=a2*np.pi/180 b1=b1*np.pi/180 b2=b2*np.pi/180 return np.arccos(np.cos(a1-a2)*np.cos(b1)*np.cos(b2)+np.sin(b1)*np.sin(b2))*6378*1000 def extractDates(self,date='Captured Time',delta=0.25): '''It applies the extracDate static method on every day ''' self.days.update((x, Sensor.extractDate(y,date,delta)) for x, y in self.days.items()) return self @staticmethod def extractDate(df,date='Captured Time',delta=0.25): '''Add two different fields useful to couple with weather data. The field 'DAY': year-month-day and the field 'Hour': hour.minutes ''' import datetime as dt fmt="%Y-%m-%d" i=lambda x: str(x.year) + '-' + str(x.month) + '-' +str(x.day) #I take just year,month and day try: dates= df[date].apply(i) except AttributeError: df=df.convert_objects(convert_dates='coerce') dates= df[date].apply(i) g = lambda x: dt.datetime.strptime(x,fmt) dates= dates.apply(g) h=lambda x : str(x).split(' ')[0]#the conversion adds hour,minutes and seconds dates= dates.apply(h) #I drop it and return a list of string df['Year']=df[date].apply(lambda x : x.year) df['Month']=df[date].apply(lambda x: x.month) df['Day']=df[date].apply(lambda x: x.day) tmp=df[date].apply(lambda x: x.to_datetime()) df['Hour']=tmp.apply(lambda x: x.hour) tmp=df[date].apply(lambda x: x.minute) f=lambda x: round(round(x/(60*delta))*delta,3) df['Hour']=df['Hour']+tmp.apply(f) df['Hour']=df['Hour'].replace(24,0.00) return df def getDays(self): print self.daysList @staticmethod def isStationary(df): '''It returns True if the measurement in df belong to a stationary detector ''' l1=df.Latitude.iloc[0] l2=df.Longitude.iloc[0] m1=df.Latitude.iloc[len(df)-1] m2=df.Longitude.iloc[len(df)-1] if df.Distance.max()>15: #it checks if the distance between two consevutive measurements is more than #the maximum value of gps spatial inaccuracy return False if Sensor.distance(l1,l2,m1,m2)>100: #it checks if the distance between the first and the last point #is too much return False if df.Distance.sum()>2*len(df): return False return True def timeSampling(self,day): '''It returns the time sampling of the measurement in the day indicated ''' from numpy import median df=self.days[day] df=df.clean() return median([(df['Captured Time'].loc[n]-df['Captured Time'].loc[m]).total_seconds() for n,m in zip(xrange(1,len(df)),xrange(0,(len(df)-1)))]) def to_csv(self,filename): with open(filename, 'a') as f: self.dataset.to_csv(f,index=False,float_format = '%.4f',header=False) class Weather(object): '''The weather info for every day requested are saved in the dictionary historical {'year-month-day:weather df} ''' lat=None lon=None historical={} stations=None state=None icao=None dataset=pd.DataFrame() daysUnavailable=[] daysList=[] closestStation=None key=0 def __init__(self,lat,lon): '''Given latitude and longitude it find the closest weather station it will be used after to find weather informations''' self.parser=ParseWeather() self.city,self.country,self.state=self.parser.getLocation(lat,lon) def addDay(self,a,date='DateUTC'): '''Add another day to the historical dictionary''' df=pd.DataFrame(a) i=lambda x: str(x.year) + '-' + str(x.month) + '-' +str(x.day) #I take just year,month and day try: dates= df[date].apply(i) except AttributeError: df=df.convert_objects(convert_dates='coerce') dates= df[date].apply(i) df['Day']=dates daysList=dates.unique() [self.historical.update({day:df[df['Day']==day]}) for day in daysList] [self.daysList.append(day) for day in daysList] return self def apply(self,f): '''Apply a function on historical data''' self.historical.update((x, f(y)) for x, y in self.historical.items()) return self @staticmethod def clean(df): '''Clean a specific dataframe containing weather informations''' info=df.copy() info=info.convert_objects(convert_numeric=True) pre={'Light Rain':1,'Heavy Rain':1,'Rain':1,'Light Rain Mist':1, 'Heavy Rain Mist':1,'Rain Mist':1,'Light Rain Showers':1,'Heavy Rain Showers':1, 'Rain Showers':1,'Light Thunderstorms and Rain':1,'Heavy Thunderstorms and Rain':1, 'Thunderstorms and Rain':1,'Light Freezing Drizzle':1,'Heavy Freezing Drizzle':1, 'Freezing Drizzle':1,'Light Freezing Rain':1,'Heavy Freezing Rain':1,'Freezing Rain':1, 'Light Snow':1,'Heavy Snow':1,'Snow':1,'Light Snow Grains':1,'Heavy Snow Grains':1, 'Snow Grains':1,'LightSnow Showers':1,'Heavy Snow Showers':1,'Snow Showers':1, 'Light Ice Crystals':1,'Heavy Ice Crystals':1,'Ice Crystals':1,'Light Ice Pellets':1, \ 'Heavy Ice Pellets':1,'Ice Pellets':1,'LightIce Pellet Showers':1,'HeavyIce Pellet Showers':1, \ 'Ice Pellet Showers':1,'LightHail Showers':1,'Heavy Hail Showers':1, \ 'Hail Showers':1,'Light Small Hail Showers':1,'Heavy Small Hail Showers':1, \ 'Small Hail Showers':1} f=lambda x: pre.get(str(x) , 0) info['Conditions']=info['Conditions'].apply(f) #cleaning of NaN and other unexpected values info.PrecipitationIn=info.PrecipitationIn.fillna(value=0) info['Wind SpeedMPH']=info['Wind SpeedMPH'].fillna(value=0) info['Wind Direction']=info['Wind Direction'].replace('Calm',0) info['Wind SpeedMPH']=info['Wind SpeedMPH'].replace('Calm',0) #windspeedmph contains strings so it is considered as a generic object type, I convert it in float type info['Wind SpeedMPH']=info['Wind SpeedMPH'].apply(float) t=info.TemperatureF.copy() h=info.Humidity.copy() s=info['Sea Level PressureIn'].copy() d=info['Dew PointF'].copy() p=info['PrecipitationIn'].copy() #sometimes the weather informations show unexpected values (as -9999) t[t < -100] = np.NaN h[h<0]=np.NaN s[s<0]=np.NaN d[d<0]=np.NaN p[p<0]=0 info['TemperatureF']=t info['Humidity']=h info['Sea Level PressureIn']=s info['Dew PointF']=d info['PrecipitationIn']=p return info def conditionsOccurred(self,graph=False): '''It returns the weather conditions occurred in the dataset''' conditions=self.dataset.Conditions.value_counts() print conditions self.conditions=self.dataset.Conditions.value_counts() if graph: conditions.plot(kind='barh') return self def createDataset(self): '''It merges all the dataframe in the historical dictionary in a single dataframe ''' tmp=self.historical.values() df = pd.concat(tmp) self.dataset=df#.sort('DateUTC') return self.dataset @staticmethod def extractHour(df,date='DateUTC',delta=0.25): '''It creates a new field hour The field contains the hour in the format Hour.quarters (i.e 13.25 are 13 hours and 15 mins)''' f=lambda x: round(round(x/(60*delta))*delta,3) try: hour=df[date].apply(lambda x: x.hour) except AttributeError: df[date]=df[date].convert_objects(convert_dates='coerce') hour=df[date].apply(lambda x: x.hour) minute=df[date].dt.minute.apply(f) df['Hour']=hour+minute df['Hour']=df['Hour'].replace(24,0.00) return df def extractHours(self,date='DateUTC',delta=0.25): '''It applies the extractHour static method on every day ''' self.historical.update((x, Weather.extractHour(y,date,delta)) for x, y in self.historical.items() ) return self def getDays(self): '''It simply prints the days with weather information available in the instance''' print self.weather.keys() def getHistorical(self, date): '''Given a specific day it extract the weather information from wunderground.com ''' key=date[:10] fmt="%Y-%m-%d" date=dt.datetime.strptime(key,fmt) day=date.day date1=date-dt.timedelta(days=1) date=str(date) date1=str(date1) df1=self.parser.getWeather(date,self.city,self.state) df2=self.parser.getWeather(date1,self.city,self.state) df1['Day']=df1['DateUTC'].apply(lambda x: x.day) df2['Day']=df2['DateUTC'].apply(lambda x: x.day) df1=df1[df1['Day']==day] df2=df2[df2['Day']==day] df=df1.append(df2) df=df.drop('Day',1) df=Weather.clean(df) self.historical[key]=df self.daysList.append(key) df=Weather.clean(df) return df def timeSampling(self,date='DateUTC'): from numpy import median df=self df=df.clean() return median([(df[date].loc[n]-df[date].loc[m]).total_seconds() for n,m in zip(xrange(1,len(df)),xrange(0,(len(df)-1)))]) class Model(object): '''This class contains method to prediction the background radiation using a dataframe with background and weather informations ''' debug={} outliers=None reducedDatasets=None weather_columns=['Humidity','TemperatureF','Sea Level PressureIn','PrecipitationIn','Dew PointF','Conditions','Wind SpeedMPH'] out_columns=['Value'] #model_columns=['Value','PrecipitationIn','Humidity','Dew PointF','Sea Level PressureIn','TemperatureF'] columns=['Captured Time','Humidity','TemperatureF','Sea Level PressureIn','Conditions','PrecipitationIn','Dew PointF','Value','Wind SpeedMPH'] def __init__(self,df): self.ModelInputs={} self.ModelOutput=None self.prediction=None self.metrics={} self.Threats=[] self.OutputTest={} self.CorrelationTable=pd.DataFrame() self.datasetsAvailable=['Dataset'] self.Sensor=df.Sensor.iloc[0] self.model_columns=['PrecipitationIn','Humidity','Dew PointF','Sea Level PressureIn','TemperatureF'] '''Define a model object ''' df=df[Model.columns] df=df.convert_objects(convert_dates='coerce') df=self.clean(df) t=df['Captured Time'].iloc[0] f=lambda x: (x-t).total_seconds() index=df['Captured Time'].apply(f) #df=df.drop('Captured Time',1) self.time=index df.index=index self.dataset=df def applyOnInputs(self,method,inp,f=None,window=0,percentage=60): '''It applies a built-in methods or a custom function f to the input variables Methods available: 'standardize' , it applies the standardization method of sklearn.preprocessing.scale ''' if not(self.ModelInputs): self.getInput() index=int(percentage*len(self.dataset)/100) d={'Train':self.ModelInputs[inp][:index,:],'Test':self.ModelInputs[inp][index:,:]} if method=='standardize': d.update((x, preprocessing.scale(y)) for x, y in d.items()) else: d.update((x, f(y)) for x, y in d.items()) #debug #dataset=pd.DataFrame(self.ModelInputs['Dataset']) #dataset['Output']=self.ModelOutput #self.debug['ApplyOnInputs']=dataset ### self.ModelInputs[inp]=np.append(d['Train'],d['Test'],axis=0) return self def applyOnOutput(self,method,f=None,window=0,percentage=60): '''It applies a built-in methods or a custom function f to the output variable Methods available: 'movingaverage', it requires the variable window 'standardize' , it applies the standardization method of sklearn.preprocessing.scale ''' if self.ModelOutput==None: self.getOutput() index=int(percentage*len(self.dataset)/100) self.OutputTest['Original']=self.ModelOutput[index:] #this function it's used to apply some filtering to the output #for this reason the data are splitted , in this way every filtering technique won't be anticasual #i.e. a moving average filtering on the train part will consider also some samples from the test part #that belong ideally to the "future" d={'Train':self.ModelOutput[:index],'Test':self.ModelOutput[index:]} if method=='movingaverage': if not(window): raise ValueError('A value for the window is required') d.update((x, Model.moving_average(y,n=window)) for x, y in d.items()) elif method=='standardize': self.OutputTest['mean']=np.mean(d['Train']) self.OutputTest['std']=np.std(d['Train']) d.update((x, preprocessing.scale(y)) for x, y in d.items()) else: d.update((x, f(y)) for x, y in d.items()) newOutput=np.append(d['Train'],d['Test']) #the moving_average could drop some values at the end of the time series, so if this happens the last #values is repeated to restore the original dimension check=len(self.ModelOutput)-len(newOutput) if check>0: newOutput=np.append(newOutput,newOutput[-check:]) self.ModelOutput=newOutput ''' #debug dataset=pd.DataFrame(self.ModelInputs['Dataset']) dataset['Output']=self.ModelOutput self.debug['ApplyOnOutputs']=dataset ###''' return self def clean(self,dataset): dataset.Value=dataset.Value.replace(0,np.nan) #a weighted interpolation is applied on a windows that correspond to a period of 3 hours #just for the weather conditions colnames=['Humidity','TemperatureF','Sea Level PressureIn','Conditions','PrecipitationIn','Dew PointF'] dataset[colnames]=dataset[colnames].replace(np.nan,999) #the rolling apply function require that there are no nan values, so I use a dummy number dataset[colnames]=pd.rolling_apply(dataset[colnames],13,Model.weightedInterp) #at the end a linear interpolation it is used on value field and to fulfill the weather conditions in #the case that some period had no value to interpolate dataset=dataset.interpolate(method='linear') dataset=dataset.dropna() #it drops the NaT captured Time return dataset @staticmethod def clustering(var1,var2): '''Given two variables it find the clusters according the Meanshift algorithm The current function is used by the remove_outliers method ''' X=[var1,var2] X=np.array(X) X=X.T bandwidth = estimate_bandwidth(X, quantile=0.9, n_samples=500) #estimation of bandwidth parameter needed for the #clustering ms = MeanShift(bandwidth=bandwidth, bin_seeding=True) ms.fit(X) labels = ms.labels_ tmp=pd.DataFrame(X) tmp['Label']=labels return tmp def conditionsOccurred(self,graph=False): '''It returns the weather conditions occurred in the dataset, if the Condition field has not transformed in a numerical field yet ''' conditions=self.dataset.Conditions.value_counts() print conditions self.conditions=self.dataset.Conditions.value_counts() if graph: conditions.plot(kind='barh') return self @staticmethod def createDataset(sens,printing=False,filename='Stationary_data_with_weather.csv'): '''This function instantiates the objects Weather and Sensor, use their method to clean and collect informations Then merge them in a dataset containing weather and radiation information ''' w=None s=Sensor(sens) s=s.cleanAll() sensor=s.extractDates() #value of lat and lon needed to instantiate the weather class lat,lon=sensor.latitude,sensor.longitude w= Weather(lat,lon) for day in sensor.daysList: w.getHistorical(day) #the historical weather has a sampling time of 1 hour, so I resample my sensor data every (15 min default) #taking the median of the value in that period wea=w.extractHours() f= lambda x: x.groupby(x.Hour).median() wea=wea.apply(f) wea=wea.apply(lambda x: x.drop('Hour',1)) sensor=sensor.apply(f) #pieces contains a list of dataframe corresponding to a single day of measurements coupled with the weater #dataframe with all the measurements coupled try: pieces=[sensor.days[date].join(wea.historical[date]) for date in wea.daysList if not(wea.historical[date].empty) ] except ValueError: return pd.DataFrame() #to make the single days well sampled the holes are filled with a linear interpolation method #the first and the last are skipped because the first piece probably doesn't start at midnight so it would be filled #with NaN #for the last is the same, it probably doesn't finish at midnight filled=[p.reindex(np.arange(0,24,0.25)).interpolate(method='linear') for num,p in enumerate(pieces) if (num!=0 and num!=len(pieces)-1) ] try: filled.insert(0,pieces[0]) except IndexError: return pd.DataFrame() filled.append(pieces[-1]) try: dataset=pd.concat(filled) except ValueError: return pd.DataFrame() #after the median on every hour all the field that were string become NaN or are dropped dataset.dropna(1,how='all') dataset = dataset[np.isfinite(dataset['Sensor'])] dataset['Hour']=dataset.index dataset.drop #in the line below the field Captured Time is recreated dataset=Sensor.convertDate(dataset) if printing: with open(filename, 'a') as f: dataset.to_csv(f,index=False,float_format = '%.4f',header=False) return dataset def dimensionalityReduction(self,nr=5): '''It applies all the dimensionality reduction techniques available in this class: Techniques available: 'PCA' 'FactorAnalysis' 'KPCArbf','KPCApoly' 'KPCAcosine','KPCAsigmoid' 'IPCA' 'FastICADeflation' 'FastICAParallel' 'Isomap' 'LLE' 'LLEmodified' 'LLEltsa' ''' dataset=self.ModelInputs['Dataset'] sklearn_pca = sklearnPCA(n_components=nr) p_components = sklearn_pca.fit_transform(dataset) fa=FactorAnalysis(n_components=nr) factors=fa.fit_transform(dataset) kpca=KernelPCA(nr,kernel='rbf') rbf=kpca.fit_transform(dataset) kpca=KernelPCA(nr,kernel='poly') poly=kpca.fit_transform(dataset) kpca=KernelPCA(nr,kernel='cosine') cosine=kpca.fit_transform(dataset) kpca=KernelPCA(nr,kernel='sigmoid') sigmoid=kpca.fit_transform(dataset) ipca=IncrementalPCA(nr) i_components=ipca.fit_transform(dataset) fip=FastICA(nr,algorithm='parallel') fid=FastICA(nr,algorithm='deflation') ficaD=fip.fit_transform(dataset) ficaP=fid.fit_transform(dataset) '''isomap=Isomap(n_components=nr).fit_transform(dataset) try: lle1=LocallyLinearEmbedding(n_components=nr).fit_transform(dataset) except ValueError: lle1=LocallyLinearEmbedding(n_components=nr,eigen_solver='dense').fit_transform(dataset) try: lle2=LocallyLinearEmbedding(n_components=nr,method='modified').fit_transform(dataset) except ValueError: lle2=LocallyLinearEmbedding(n_components=nr,method='modified',eigen_solver='dense').fit_transform(dataset) try: lle3=LocallyLinearEmbedding(n_components=nr,method='ltsa').fit_transform(dataset) except ValueError: lle3=LocallyLinearEmbedding(n_components=nr,method='ltsa',eigen_solver='dense').fit_transform(dataset)''' values=[p_components,factors,rbf,poly,cosine,sigmoid,i_components,ficaD,ficaP]#,isomap,lle1,lle2,lle3] keys=['PCA','FactorAnalysis','KPCArbf','KPCApoly','KPCAcosine','KPCAsigmoid','IPCA','FastICADeflation','FastICAParallel']#,'Isomap','LLE','LLEmodified','LLEltsa'] self.ModelInputs.update(dict(zip(keys, values))) [self.datasetsAvailable.append(key) for key in keys ] #debug #dataset=pd.DataFrame(self.ModelInputs['Dataset']) #dataset['Output']=self.ModelOutput #self.debug['Dimensionalityreduction']=dataset ### return self @staticmethod def extractMetrics(pred,test_y): '''It extracts three different metrics: mean absolute error,median absolute error,mean square error ''' try: meanae=mean_absolute_error(test_y,pred) except ValueError: #sometimes the moving average filter on the output reduce the dimensionality of it #so some value of the predition is dropped pred=pred[:len(test_y)-len(pred)] meanae=mean_absolute_error(test_y,pred) mae=median_absolute_error(test_y,pred) mse=mean_squared_error(test_y,pred) return meanae,mae,mse def findCorrelations(self,alfa=5,duringRain=False,minimumLength=500): '''It discovers if the input variables are correlated with the output making use of Spearman correlation technique The alfa parameter define the level of significance of the test,it is expressed in percentage If the p-value evaluated is less than alfa/100 the Null Hypotesis (there is no correlation between the variables) is refused''' e=self.dataset if duringRain: e=e[e['Conditions']==1] e=e[Model.weather_columns] e['Value']=self.dataset.Value.copy() e=e.apply(preprocessing.scale) if len(e)<minimumLength: self.CorrelationTable=pd.DataFrame() return self pthresh=alfa/100.0 val=e.Value.values temp=spearmanr(e.TemperatureF.values,val) hum=spearmanr(e.Humidity.values,val) sea=spearmanr(e['Sea Level PressureIn'].values,val) prec=spearmanr(e.PrecipitationIn.values,val) dew=spearmanr(e['Dew PointF'].values,val) df=pd.DataFrame({'Temperature':temp,'Sea Level PressureIn':sea,'PrecipitationIn':prec,'Humidity':hum,'Dew PointF':dew},index=['Pearson coefficients','p-values']) def test(p,threshold): if p<threshold: return 'Reject H0' else: return 'Accept H0' df.loc['Results']=[test(p,pthresh) for p in df.loc['p-values']] self.CorrelationTable=df return self def GBregression(self,percentage=60,inp='Dataset',n_estimators=100, learning_rate=0.1,max_depth=1, random_state=0, loss='ls'): '''It applies the ensamble method of gradient boosting trees''' X=y=prediction=metrics=None X=self.ModelInputs[inp] #input dataset samples=int(percentage*len(X)/100) #evaluating the samples number given the percentage x=X[:samples,:] #training input set try: y = self.ModelOutput[:samples] #training output set except KeyError: self.getOutput() y = self.ModelOutput[:samples] test_x=X[samples:,:] #testing input set test_y=self.ModelOutput[samples:] # testing output set gb=GradientBoostingRegressor(n_estimators=100, learning_rate=0.1,max_depth=1, random_state=0, loss='ls') model=gb.fit(x,y) prediction=model.predict(test_x) self.prediction=prediction self.OutputTest['Standardized']=test_y metrics=Model.extractMetrics(prediction,test_y) return prediction,np.median(metrics) def getDatasetsAvailable(self): self.datasetsAvailable=self.ModelInputs.keys() return self.ModelInputs.keys() def getInput(self): X=self.dataset[self.model_columns].copy() self.ModelInputs['Dataset']=X.as_matrix() return self def getOutput(self): Y=self.dataset.copy() try: self.ModelOutput=Y[Model.out_columns].as_matrix() except KeyError: self.ModelOutput=self.dataset['Output'].as_matrix() #if the preparare dataset has been called #the output is 'Output' instead of 'Values return self def insertThreat(self,testPercentage=40,wLength=4,meanP=1.1): '''Method to simulate and insert a threat in the part of the output series that will be used as test wLenght: the lenght of the window in which the threat will be inserted testPercentage: indicates the percentage of the test dataset meanP: is the mean value of the Poisson distribution from which the "threat" is extracted ''' t=None testPercentage=testPercentage/100.0 t=pd.DataFrame() t['Value']=self.dataset.Value.copy()#create a copy of the output startTest=int((1-testPercentage)*len(t)) #define the first index of the output that will be used as test s=np.random.random_integers(startTest,len(t)) #find a random index in the test part of the output values=np.random.poisson(t['Value'].mean()*meanP,wLength) #find random values from poisson distribution with E[x]=m window=np.arange(s,s+4)*(self.dataset.index[1]-self.dataset.index[0]) #define the window #the window is cleaned, the values are added and the other values are interpolated to maintain the continuity t['Value'].loc[window]=values #t.loc[window[1:-1]]=values self.ThreatsIndex=t.copy() self.ThreatsIndex['Value']=0 self.ThreatsIndex.loc[window]=1 d={'Train':t['Value'].iloc[:startTest],'Test':t['Value'].iloc[startTest:]} d.update((x, preprocessing.scale(y)) for x, y in d.items()) self.Threats=np.append(d['Train'],d['Test'])#append the window in which there is the threat self.dataset.Value=t['Value'].values #the threat is inserted in the dataset return self def KNregression(self,percentage,inp='Dataset',neighbors=5,weights='distance',algorithm='auto',leaf=30): '''It evaluates a prediction using k-nearest neighbors regression approach It returns a tuple: (prediction, median of three different metrics) ''' X=y=prediction=metrics=None X=self.ModelInputs[inp] #input matrix samples=int(percentage*len(X)/100) #evaulating the number of samples given the percentage x=X[:samples,0:] #training input set y = self.ModelOutput[:samples] # training output set test_x=X[samples:,:] #testing input set test_y=self.ModelOutput[samples:] #testing output set knn=KNeighborsRegressor(n_neighbors=neighbors,weights=weights,algorithm=algorithm, leaf_size=leaf) try: model=knn.fit(x,y) #evaluating the model except ValueError: return np.nan,9999 prediction=model.predict(test_x) #evaluating of the prediction self.prediction=prediction self.OutputTest['Standardized']=test_y metrics=Model.extractMetrics(prediction,test_y) return prediction,np.median(metrics) @staticmethod def moving_average(a, n=3) : ''' Function that implements a moving average filter [source]:http://stackoverflow.com/questions/14313510/moving-average-function-on-numpy-scipy ''' first=np.array([a[0]]) last=np.array([a[-1]]) a=np.concatenate((first,a,last)) ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n - 1:] / n def plotRadiationWeather(self): '''It plots the Value field with each weather field separately The function returns a plot object ''' df=self.dataset plt.figure() stand=df.apply(preprocessing.scale,axis=0) #the data are normalized because they have different units val=stand['Value'].as_matrix() prec=stand['PrecipitationIn'].as_matrix() dew=stand['Dew PointF'].as_matrix() hum=stand['Humidity'].as_matrix() press=stand['Sea Level PressureIn'].as_matrix() temp=stand['TemperatureF'].as_matrix() plt.subplot(3,3,1) plt.plot(val,prec,'bo') plt.ylabel('Precipitation') plt.xlabel('Background Radiation') plt.subplot(3,2,2) plt.plot(val,dew,'ro') plt.ylabel('Dew Point') plt.xlabel('Background Radiation') plt.subplot(3,2,3) plt.plot(val,hum,'yo') plt.ylabel('Humidity') plt.xlabel('Background Radiation') plt.subplot(3,2,4) plt.plot(val,press,'go') plt.ylabel('Sea Level Pressure') plt.xlabel('Background Radiation') plt.subplot(3,2,5) plt.plot(val,temp,'mo') plt.ylabel('Temperature') plt.xlabel('Background Radiation') plt.subplot(3,2,6) plt.plot(val,prec,'bo') plt.plot(val,dew,'ro') plt.plot(val,hum,'yo') plt.plot(val,press,'go') plt.plot(val,temp,'mo') #plt.legend(['Precipitation','DewPoint','Humidity','Sea Level Pressure','Temperature']) plt.xlabel('Background Radiation') plt.show() def plotDataset(self): self.dataset.plot(subplots=True) plt.xlabel('Time') plt.show() def plotPrediction(self): '''It creates a figure with two graphs: the real and the predicted output the absolute error between them ''' predicted=self.prediction real=self.OutputTest['Standardized']#[abs(len(self.OutputTest['Standardized'])-len(self.prediction)):] rmse=np.sqrt(mean_squared_error(predicted,real)) plt.figure() plt.subplot(211) plt.xlabel('Time') plt.ylabel('Radiation ') plt.title('Comparison between real and predicted output, RMSE=' + str(rmse)) plt.plot(predicted,'r') plt.plot(real,'b') plt.legend(['Predicted output','Real output']) plt.subplot(212) plt.xlabel('Time') plt.ylabel('Absolute error') plt.plot(abs(real-predicted),'m') plt.show() def prepareDataset(self,n=1,l=1,w=0): X=self.dataset[Model.weather_columns].copy() self.model_columns=Model.weather_columns[:] #this fake slicing provide a copy of the list values=self.dataset.Value.copy() output=values.shift(-l).copy() vfield=[] for m in xrange(0,n+1): #the n parameter sets how much new fields should be created #if the present value of the output is at the time t there will be created n columns with #output from 0,1,2,...t-1 , 0,1,2,...t-2, ....... 0,1,2,...t-n field='Values-' + str(m) vfield.append(field) self.model_columns.append(field) X[field]=values.shift(m) #the shift function creates the new fields for k in xrange(1,w+1): a=X[Model.weather_columns].shift(k) newfields=[col+'-' +str(w) for col in a.columns] a.columns=newfields #[self.model_columns.append(f) for f in newfields] X=pd.concat([X,a], axis=1) X['Output']=output X=X.dropna() ##debug #dataset=X.copy() #dataset['Output']=output.copy() #self.debug['getInput']=dataset ## self.dataset=X.copy() return self def reduceDataset(self,nr=3,method='PCA'): '''It reduces the dimensionality of a given dataset using different techniques provided by Sklearn library Methods available: 'PCA' 'FactorAnalysis' 'KPCArbf','KPCApoly' 'KPCAcosine','KPCAsigmoid' 'IPCA' 'FastICADeflation' 'FastICAParallel' 'Isomap' 'LLE' 'LLEmodified' 'LLEltsa' ''' dataset=self.ModelInputs['Dataset'] #dataset=self.dataset[Model.in_columns] #dataset=self.dataset[['Humidity','TemperatureF','Sea Level PressureIn','PrecipitationIn','Dew PointF','Value']] #PCA if method=='PCA': sklearn_pca = sklearnPCA(n_components=nr) reduced = sklearn_pca.fit_transform(dataset) #Factor Analysis elif method=='FactorAnalysis': fa=FactorAnalysis(n_components=nr) reduced=fa.fit_transform(dataset) #kernel pca with rbf kernel elif method=='KPCArbf': kpca=KernelPCA(nr,kernel='rbf') reduced=kpca.fit_transform(dataset) #kernel pca with poly kernel elif method=='KPCApoly': kpca=KernelPCA(nr,kernel='poly') reduced=kpca.fit_transform(dataset) #kernel pca with cosine kernel elif method=='KPCAcosine': kpca=KernelPCA(nr,kernel='cosine') reduced=kpca.fit_transform(dataset) #kernel pca with sigmoid kernel elif method=='KPCAsigmoid': kpca=KernelPCA(nr,kernel='sigmoid') reduced=kpca.fit_transform(dataset) #ICA elif method=='IPCA': ipca=IncrementalPCA(nr) reduced=ipca.fit_transform(dataset) #Fast ICA elif method=='FastICAParallel': fip=FastICA(nr,algorithm='parallel') reduced=fip.fit_transform(dataset) elif method=='FastICADeflation': fid=FastICA(nr,algorithm='deflation') reduced=fid.fit_transform(dataset) elif method == 'All': self.dimensionalityReduction(nr=nr) return self self.ModelInputs.update({method:reduced}) self.datasetsAvailable.append(method) return self def remove_outliers(self): '''It removes the outliers using the MeanShift clustering techniques ''' dataset=self.dataset[self.model_columns].copy() dataset['Value']=self.dataset.Value.copy() stand=dataset.apply(preprocessing.scale,axis=0) #the data are standardized because they have different units val=stand['Value'].as_matrix() prec=stand['PrecipitationIn'].as_matrix() dew=stand['Dew PointF'].as_matrix() hum=stand['Humidity'].as_matrix() press=stand['Sea Level PressureIn'].as_matrix() temp=stand['TemperatureF'].as_matrix() l=[Model.clustering(val,b) for b in [prec,dew,hum,press,temp] ] l1=[a.groupby('Label').count().index[0] for a in l ] #it finds the cluster with most of the data l2=[a[a['Label']!=lab] for a,lab in zip(l,l1)] #the biggest cluster is removed in every dataframe outliers=pd.concat(l2,join='inner',axis=1).index #the concat with join='inner' option find the intersection between #the dataframes, the resulting indexes indicate the outliers #the indexes in outliers are not expressed in seconds #so I create a fake index index=list(xrange(0,len(stand))) #and I remove the indexes that corresponds to the outliers [index.remove(a) for a in outliers ] #using iloc I remove them from the original dataset self.dataset.Value.iloc[outliers]=np.nan #the dropped value are replaced using a linear interpolation self.dataset.Value=self.dataset.Value.interpolate(method='linear') self.dataset=self.dataset.dropna() index=self.dataset.index-self.dataset.index[0] self.dataset.index=index self.outliers=outliers #the outliers are saved #DEBUG self.debug['Removeoutliers']=dataset ### return self def SVregression(self,percentage,inp='Dataset',kern='rbf',method='standard',c=2048,eps=0,gamma=0.01,tau=3): '''Given the dataset of the input X and the dataset of the output Y it find a regression model using Support vector regression algorithm of sklearn library It returns a tuple: (prediction, median of three different metrics) ''' X=y=prediction=metrics=None X=self.ModelInputs[inp].copy() #input dataset samples=int(percentage*len(X)/100) #evaluating the samples number given the percentage x=X[:samples,:] #training input set try: y = self.ModelOutput[:samples] #training output set except KeyError: self.getOutput() y = self.ModelOutput[:samples] test_x=X[samples:,:] #testing input set test_y=self.ModelOutput[samples:] # testing output set #Parameters settings based on "Selection of Meta-Parameters for support vector regression" # Vladimir Cherkassky and Yunqian Ma if method=='standard': n=len(y) std=y.std() c=tau*std eps=tau*np.sqrt(log(n)/n) #regression svr =SVR(kernel=kern,C=c,epsilon=eps,gamma=gamma) m=None try: m=svr.fit(x,y) except ValueError: return np.nan,9999 #debug #self.debug['SVR']=self.ModelOutput prediction=m.predict(test_x) self.prediction=prediction self.OutputTest['Standardized']=test_y metrics=Model.extractMetrics(prediction,test_y) return prediction,np.median(metrics) @staticmethod def weightedInterp(array): l=int(len(array)/2) if array[l]!=999: return array[6] #other weight function could be inserted using scipy.signal module a=list(np.arange(1,l+1)) l1=[(n*m,m) for n,m in zip(array[0:6],a) if n!=999] a.reverse() l2=[(n*m,m) for n,m in zip(array[7:13],a) if n!=999] try: num=reduce(lambda x,y: x+y, [x[0] for x in l1+l2]) except TypeError: return np.nan den= reduce(lambda x,y: x+y, [x[1] for x in l1+l2]) return num/den class ParseMap(object): way={} node={} coord={} way_limit={} way_City={} way_Street={} way_coor={} ''' #notes: #the use of the tag_filter seems slower than a simple if-then #not used at the moment whitelist = set(('name', 'highway')) #unused def tag_filter(tags): for key in tags.keys(): if key not in whitelist: del tags[key] if 'name' in tags and len(tags) == 1: # tags with only a name have no information # how to handle this element del tags['name'] ''' def ways_stationary(self,ways): for osmid, tags, refs in ways: if tags.has_key('building'): self.way[osmid]=refs if tags.has_key('addr:city'): #sometimes the ways have also the city name in tags self.way_City[osmid]=tags['addr:city'] else: self.way_City[osmid]=None if tags.has_key('name'): self.way_Street[osmid]=tags['name'] else: self.way_Street[osmid]=None def ways(self,ways): for osmid, tags, refs in ways: if tags.has_key('highway'): #just the streets are needed self.way[osmid]=refs if tags.has_key('addr:city'): #sometimes the ways have also the city name in tags self.way_City[osmid]=tags['addr:city'] else: self.way_City[osmid]=None if tags.has_key('name'): self.way_Street[osmid]=tags['name'] else: self.way_Street[osmid]=None def nodes(self,nodes): for idnode,tag,coor in nodes: lat=coor[1] #it's necessary because the coordinates in the nodes lon=coor[0] #are (lon,lat) while in the coords are (lat,lon) self.node[idnode]=((lat,lon), tag) def coords(self,coords): for osm_id, lon, lat in coords: self.coord[osm_id]=(lat,lon) def fill_way_coords(self): #return a dictionary: {osmid:[list of nodes coordinates]} for osmid in self.way.keys(): l=[] for ref in self.way[osmid]: try: val=self.node[ref][0] except KeyError: val=self.coord[ref] l.append(val) self.way_coor[osmid]=l def getRange(self): for osmid in self.way.keys(): a=self.way_coor[osmid] c=map(list, zip(*a)) #to unzip a list of tuples [(lat1,lon1),(lat2,lon2)] in [ [lat1,lat2),(lon1,lon2)] lat=c[0] lon=c[1] self.way_limit[osmid]=[min(lat),min(lon),max(lat),max(lon)] class ParseWeather(object): '''Class that implement methods to get the weather informations from wunderground.com ''' key='3187b62a57755d52' def __init__(self): if not(ParseWeather.key): raise Exception('Key is not present, register at http://www.wunderground.com/weather/api/ to get one') def getLocation(self,lat,lon): '''Given latitude and longitude it returns the city,country and state corresponding to the coordinates ''' key=ParseWeather.key url_template='http://api.wunderground.com/api/{key}/geolookup/q/{latitude},{longitude}.json' url=url_template.format(key=key,latitude=lat,longitude=lon) g = urllib2.urlopen(url) json_string = g.read() location = json.loads(json_string) g.close() diz=location['location']['nearby_weather_stations']['airport']['station'][0] return diz['city'].replace(' ','_'),diz['country'],diz['state'] def getWeather(self,date,c,s): '''Given a date a city and a state it returns a DataFrame ''' k=ParseWeather.key d=date[:10].replace('-','') url_template='http://api.wunderground.com/api/{key}/history_{date}/q/{state}/{city}.json' url=url_template.format(key=k,date=d,state=s,city=c) f = urllib2.urlopen(url) json_string = f.read() weather = json.loads(json_string) #parsing the json f.close() forecast=weather['history']['observations'] l=[] for n in xrange(0,len(forecast)): #every cycle define a row containing the weather information for a single hour tmp=pd.DataFrame(forecast[n]) #definition of the dataframe col=['utcdate','tempi','dewpti','hum','pressurei','visi','wdire','wspdi','precipi','conds','snow','wdird'] year=tmp.ix['year','utcdate'] #info about the day are extracted month=tmp.ix['mon','utcdate'] day=tmp.ix['mday','utcdate'] hour=tmp.ix['hour','utcdate'] minute=tmp.ix['min','utcdate'] date= year +'-' + month + '-' + day + ' ' + hour + ':' + minute + ':00' #the name of the columns are changed newcol=['DateUTC', 'TemperatureF', 'Dew PointF', 'Humidity', 'Sea Level PressureIn', 'VisibilityMPH', 'Wind Direction', 'Wind SpeedMPH', 'PrecipitationIn', 'Conditions','Snow', 'WindDirDegrees'] tmp=tmp[col] tmp.columns=newcol tmp=tmp.head(1) tmp['DateUTC']=date tmp.index=[hour] l.append(tmp) df=pd.concat(l) #all the weather info are concatenated in a single dataframe df=df.convert_objects(convert_dates='coerce') return df
mit
yl565/statsmodels
statsmodels/tsa/descriptivestats.py
33
2304
# -*- coding: utf-8 -*- """Descriptive Statistics for Time Series Created on Sat Oct 30 14:24:08 2010 Author: josef-pktd License: BSD(3clause) """ import numpy as np from . import stattools as stt #todo: check subclassing for descriptive stats classes class TsaDescriptive(object): '''collection of descriptive statistical methods for time series ''' def __init__(self, data, label=None, name=''): self.data = data self.label = label self.name = name def filter(self, num, den): from scipy.signal import lfilter xfiltered = lfilter(num, den, self.data) return self.__class__(xfiltered, self.label, self.name + '_filtered') def detrend(self, order=1): from . import tsatools xdetrended = tsatools.detrend(self.data, order=order) return self.__class__(xdetrended, self.label, self.name + '_detrended') def fit(self, order=(1,0,1), **kwds): from .arima_model import ARMA self.mod = ARMA(self.data) self.res = self.mod.fit(order=order, **kwds) #self.estimated_process = return self.res def acf(self, nlags=40): return stt.acf(self.data, nlags=nlags) def pacf(self, nlags=40): return stt.pacf(self.data, nlags=nlags) def periodogram(self): #doesn't return frequesncies return stt.periodogram(self.data) # copied from fftarma.py def plot4(self, fig=None, nobs=100, nacf=20, nfreq=100): data = self.data acf = self.acf(nacf) pacf = self.pacf(nacf) w = np.linspace(0, np.pi, nfreq, endpoint=False) spdr = self.periodogram()[:nfreq] #(w) if fig is None: import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(2,2,1) namestr = ' for %s' % self.name if self.name else '' ax.plot(data) ax.set_title('Time series' + namestr) ax = fig.add_subplot(2,2,2) ax.plot(acf) ax.set_title('Autocorrelation' + namestr) ax = fig.add_subplot(2,2,3) ax.plot(spdr) # (wr, spdr) ax.set_title('Power Spectrum' + namestr) ax = fig.add_subplot(2,2,4) ax.plot(pacf) ax.set_title('Partial Autocorrelation' + namestr) return fig
bsd-3-clause
saethlin/python-astronomy-workshops
examples/fitting_examples.py
1
1566
import time import numpy as np import scipy.optimize from matplotlib import pyplot as plt def rms(data, model): return np.sqrt(np.mean((data - model)**2)) def gaussian(x, height, center, width): return height*np.exp(-(center - x)**2 / (2*width**2)) def voigt(x, height, center, gauss_width, lorentz_width): dst = x-center z = (dst+(abs(lorentz_width)*1j))/(abs(gauss_width)*np.sqrt(2)) return height * scipy.special.wofz(z).real/(abs(gauss_width)*np.sqrt(2*np.pi)) true_params = (1e4, 0, 20, 20) npts = 1e5 xdata = np.linspace(-100, 100, npts) ydata = voigt(xdata, *true_params) + np.random.randn(xdata.size) print('true rms:', rms(ydata, voigt(xdata, *true_params))) print() # Polynomial model start = time.time() coefficients = np.polyfit(xdata, ydata, 10) print('poly time:', time.time()-start) poly_fit = np.polyval(coefficients, xdata) print('poly rms:', rms(poly_fit, ydata)) print() # Gaussian model start = time.time() model = scipy.optimize.curve_fit(gaussian, xdata, ydata, p0=[100,0,20])[0] print('gaussian time:', time.time()-start) gaussian_fit = gaussian(xdata, *model) print('gaussian rms:', rms(gaussian_fit, ydata)) print() # Voigt model start = time.time() model, _ = scipy.optimize.curve_fit(voigt, xdata, ydata) print('voigt time:', time.time()-start) voigt_fit = voigt(xdata, *model) print('voigt rms:', rms(voigt_fit, ydata)) print() plt.plot(xdata, ydata, 'k.') plt.plot(xdata, poly_fit, color='b', lw=3) plt.plot(xdata, gaussian_fit, color='r', lw=3) plt.plot(xdata, voigt_fit, color='y', lw=3) plt.show()
mit
michigraber/scikit-learn
sklearn/preprocessing/__init__.py
31
1235
""" The :mod:`sklearn.preprocessing` module includes scaling, centering, normalization, binarization and imputation methods. """ from .data import Binarizer from .data import KernelCenterer from .data import MinMaxScaler from .data import MaxAbsScaler from .data import Normalizer from .data import RobustScaler from .data import StandardScaler from .data import add_dummy_feature from .data import binarize from .data import normalize from .data import scale from .data import robust_scale from .data import maxabs_scale from .data import minmax_scale from .data import OneHotEncoder from .data import PolynomialFeatures from .label import label_binarize from .label import LabelBinarizer from .label import LabelEncoder from .label import MultiLabelBinarizer from .imputation import Imputer __all__ = [ 'Binarizer', 'Imputer', 'KernelCenterer', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', 'MinMaxScaler', 'MaxAbsScaler', 'Normalizer', 'OneHotEncoder', 'RobustScaler', 'StandardScaler', 'add_dummy_feature', 'PolynomialFeatures', 'binarize', 'normalize', 'scale', 'robust_scale', 'maxabs_scale', 'minmax_scale', 'label_binarize', ]
bsd-3-clause
mne-tools/mne-tools.github.io
0.21/_downloads/1355f558a1df99f9a2cec657b05c2b56/plot_sleep.py
7
12214
# -*- coding: utf-8 -*- """ .. _tut-sleep-stage-classif: Sleep stage classification from polysomnography (PSG) data ========================================================== .. note:: This code is taken from the analysis code used in [3]_. If you reuse this code please consider citing this work. This tutorial explains how to perform a toy polysomnography analysis that answers the following question: .. important:: Given two subjects from the Sleep Physionet dataset [1]_ [2]_, namely *Alice* and *Bob*, how well can we predict the sleep stages of *Bob* from *Alice's* data? This problem is tackled as supervised multiclass classification task. The aim is to predict the sleep stage from 5 possible stages for each chunk of 30 seconds of data. .. contents:: This tutorial covers: :local: :depth: 2 .. _Pipeline: https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html .. _FunctionTransformer: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.FunctionTransformer.html .. _physionet_labels: https://physionet.org/physiobank/database/sleep-edfx/#sleep-cassette-study-and-data """ # noqa: E501 # Authors: Alexandre Gramfort <[email protected]> # Stanislas Chambon <[email protected]> # Joan Massich <[email protected]> # # License: BSD Style. import numpy as np import matplotlib.pyplot as plt import mne from mne.datasets.sleep_physionet.age import fetch_data from mne.time_frequency import psd_welch from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.pipeline import make_pipeline from sklearn.preprocessing import FunctionTransformer ############################################################################## # Load the data # ------------- # # Here we download the data from two subjects and the end goal is to obtain # :term:`epochs` and its associated ground truth. # # MNE-Python provides us with # :func:`mne.datasets.sleep_physionet.age.fetch_data` to conveniently download # data from the Sleep Physionet dataset [1]_ [2]_. # Given a list of subjects and records, the fetcher downloads the data and # provides us for each subject, a pair of files: # # * ``-PSG.edf`` containing the polysomnography. The :term:`raw` data from the # EEG helmet, # * ``-Hypnogram.edf`` containing the :term:`annotations` recorded by an # expert. # # Combining these two in a :class:`mne.io.Raw` object then we can extract # :term:`events` based on the descriptions of the annotations to obtain the # :term:`epochs`. # # Read the PSG data and Hypnograms to create a raw object # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ALICE, BOB = 0, 1 [alice_files, bob_files] = fetch_data(subjects=[ALICE, BOB], recording=[1]) mapping = {'EOG horizontal': 'eog', 'Resp oro-nasal': 'misc', 'EMG submental': 'misc', 'Temp rectal': 'misc', 'Event marker': 'misc'} raw_train = mne.io.read_raw_edf(alice_files[0]) annot_train = mne.read_annotations(alice_files[1]) raw_train.set_annotations(annot_train, emit_warning=False) raw_train.set_channel_types(mapping) # plot some data raw_train.plot(duration=60, scalings='auto') ############################################################################## # Extract 30s events from annotations # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # The Sleep Physionet dataset is annotated using # `8 labels <physionet_labels_>`_: # Wake (W), Stage 1, Stage 2, Stage 3, Stage 4 corresponding to the range from # light sleep to deep sleep, REM sleep (R) where REM is the abbreviation for # Rapid Eye Movement sleep, movement (M), and Stage (?) for any none scored # segment. # # We will work only with 5 stages: Wake (W), Stage 1, Stage 2, Stage 3/4, and # REM sleep (R). To do so, we use the ``event_id`` parameter in # :func:`mne.events_from_annotations` to select which events are we # interested in and we associate an event identifier to each of them. # # Moreover, the recordings contain long awake (W) regions before and after each # night. To limit the impact of class imbalance, we trim each recording by only # keeping 30 minutes of wake time before the first occurrence and 30 minutes # after the last occurrence of sleep stages. annotation_desc_2_event_id = {'Sleep stage W': 1, 'Sleep stage 1': 2, 'Sleep stage 2': 3, 'Sleep stage 3': 4, 'Sleep stage 4': 4, 'Sleep stage R': 5} # keep last 30-min wake events before sleep and first 30-min wake events after # sleep and redefine annotations on raw data annot_train.crop(annot_train[1]['onset'] - 30 * 60, annot_train[-2]['onset'] + 30 * 60) raw_train.set_annotations(annot_train, emit_warning=False) events_train, _ = mne.events_from_annotations( raw_train, event_id=annotation_desc_2_event_id, chunk_duration=30.) # create a new event_id that unifies stages 3 and 4 event_id = {'Sleep stage W': 1, 'Sleep stage 1': 2, 'Sleep stage 2': 3, 'Sleep stage 3/4': 4, 'Sleep stage R': 5} # plot events fig = mne.viz.plot_events(events_train, event_id=event_id, sfreq=raw_train.info['sfreq'], first_samp=events_train[0, 0]) # keep the color-code for further plotting stage_colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] ############################################################################## # Create Epochs from the data based on the events found in the annotations # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ tmax = 30. - 1. / raw_train.info['sfreq'] # tmax in included epochs_train = mne.Epochs(raw=raw_train, events=events_train, event_id=event_id, tmin=0., tmax=tmax, baseline=None) print(epochs_train) ############################################################################## # Applying the same steps to the test data from Bob # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ raw_test = mne.io.read_raw_edf(bob_files[0]) annot_test = mne.read_annotations(bob_files[1]) annot_test.crop(annot_test[1]['onset'] - 30 * 60, annot_test[-2]['onset'] + 30 * 60) raw_test.set_annotations(annot_test, emit_warning=False) raw_test.set_channel_types(mapping) events_test, _ = mne.events_from_annotations( raw_test, event_id=annotation_desc_2_event_id, chunk_duration=30.) epochs_test = mne.Epochs(raw=raw_test, events=events_test, event_id=event_id, tmin=0., tmax=tmax, baseline=None) print(epochs_test) ############################################################################## # Feature Engineering # ------------------- # # Observing the power spectral density (PSD) plot of the :term:`epochs` grouped # by sleeping stage we can see that different sleep stages have different # signatures. These signatures remain similar between Alice and Bob's data. # # The rest of this section we will create EEG features based on relative power # in specific frequency bands to capture this difference between the sleep # stages in our data. # visualize Alice vs. Bob PSD by sleep stage. fig, (ax1, ax2) = plt.subplots(ncols=2) # iterate over the subjects stages = sorted(event_id.keys()) for ax, title, epochs in zip([ax1, ax2], ['Alice', 'Bob'], [epochs_train, epochs_test]): for stage, color in zip(stages, stage_colors): epochs[stage].plot_psd(area_mode=None, color=color, ax=ax, fmin=0.1, fmax=20., show=False, average=True, spatial_colors=False) ax.set(title=title, xlabel='Frequency (Hz)') ax2.set(ylabel='µV^2/Hz (dB)') ax2.legend(ax2.lines[2::3], stages) plt.show() ############################################################################## # Design a scikit-learn transformer from a Python function # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # We will now create a function to extract EEG features based on relative power # in specific frequency bands to be able to predict sleep stages from EEG # signals. def eeg_power_band(epochs): """EEG relative power band feature extraction. This function takes an ``mne.Epochs`` object and creates EEG features based on relative power in specific frequency bands that are compatible with scikit-learn. Parameters ---------- epochs : Epochs The data. Returns ------- X : numpy array of shape [n_samples, 5] Transformed data. """ # specific frequency bands FREQ_BANDS = {"delta": [0.5, 4.5], "theta": [4.5, 8.5], "alpha": [8.5, 11.5], "sigma": [11.5, 15.5], "beta": [15.5, 30]} psds, freqs = psd_welch(epochs, picks='eeg', fmin=0.5, fmax=30.) # Normalize the PSDs psds /= np.sum(psds, axis=-1, keepdims=True) X = [] for fmin, fmax in FREQ_BANDS.values(): psds_band = psds[:, :, (freqs >= fmin) & (freqs < fmax)].mean(axis=-1) X.append(psds_band.reshape(len(psds), -1)) return np.concatenate(X, axis=1) ############################################################################## # Multiclass classification workflow using scikit-learn # ----------------------------------------------------- # # To answer the question of how well can we predict the sleep stages of Bob # from Alice's data and avoid as much boilerplate code as possible, we will # take advantage of two key features of sckit-learn: # `Pipeline`_ , and `FunctionTransformer`_. # # Scikit-learn pipeline composes an estimator as a sequence of transforms # and a final estimator, while the FunctionTransformer converts a python # function in an estimator compatible object. In this manner we can create # scikit-learn estimator that takes :class:`mne.Epochs` thanks to # ``eeg_power_band`` function we just created. pipe = make_pipeline(FunctionTransformer(eeg_power_band, validate=False), RandomForestClassifier(n_estimators=100, random_state=42)) # Train y_train = epochs_train.events[:, 2] pipe.fit(epochs_train, y_train) # Test y_pred = pipe.predict(epochs_test) # Assess the results y_test = epochs_test.events[:, 2] acc = accuracy_score(y_test, y_pred) print("Accuracy score: {}".format(acc)) ############################################################################## # In short, yes. We can predict Bob's sleeping stages based on Alice's data. # # Further analysis of the data # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # We can check the confusion matrix or the classification report. print(confusion_matrix(y_test, y_pred)) ############################################################################## # print(classification_report(y_test, y_pred, target_names=event_id.keys())) ############################################################################## # Exercise # -------- # # Fetch 50 subjects from the Physionet database and run a 5-fold # cross-validation leaving each time 10 subjects out in the test set. # # References # ---------- # # .. [1] B Kemp, AH Zwinderman, B Tuk, HAC Kamphuisen, JJL Oberyé. Analysis of # a sleep-dependent neuronal feedback loop: the slow-wave # microcontinuity of the EEG. IEEE-BME 47(9):1185-1194 (2000). # # .. [2] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, # Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. (2000) # PhysioBank, PhysioToolkit, and PhysioNet: Components of a New # Research Resource for Complex Physiologic Signals. # Circulation 101(23):e215-e220 # # .. [3] Chambon, S., Galtier, M., Arnal, P., Wainrib, G. and Gramfort, A. # (2018)A Deep Learning Architecture for Temporal Sleep Stage # Classification Using Multivariate and Multimodal Time Series. # IEEE Trans. on Neural Systems and Rehabilitation Engineering 26: # (758-769). #
bsd-3-clause
sumspr/scikit-learn
sklearn/linear_model/coordinate_descent.py
12
75078
# Author: Alexandre Gramfort <[email protected]> # Fabian Pedregosa <[email protected]> # Olivier Grisel <[email protected]> # Gael Varoquaux <[email protected]> # # License: BSD 3 clause import sys import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy import sparse from .base import LinearModel, _pre_fit from ..base import RegressorMixin from .base import center_data, sparse_center_data from ..utils import check_array, check_X_y, deprecated from ..utils.validation import check_random_state from ..cross_validation import check_cv from ..externals.joblib import Parallel, delayed from ..externals import six from ..externals.six.moves import xrange from ..utils.extmath import safe_sparse_dot from ..utils.validation import check_is_fitted from ..utils.validation import column_or_1d from ..utils import ConvergenceWarning from . import cd_fast ############################################################################### # Paths functions def _alpha_grid(X, y, Xy=None, l1_ratio=1.0, fit_intercept=True, eps=1e-3, n_alphas=100, normalize=False, copy_X=True): """ Compute the grid of alpha values for elastic net parameter search Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication y : ndarray, shape (n_samples,) Target values Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. l1_ratio : float The elastic net mixing parameter, with ``0 <= l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2. eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path fit_intercept : boolean, default True Whether to fit an intercept or not normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. """ n_samples = len(y) sparse_center = False if Xy is None: X_sparse = sparse.isspmatrix(X) sparse_center = X_sparse and (fit_intercept or normalize) X = check_array(X, 'csc', copy=(copy_X and fit_intercept and not X_sparse)) if not X_sparse: # X can be touched inplace thanks to the above line X, y, _, _, _ = center_data(X, y, fit_intercept, normalize, copy=False) Xy = safe_sparse_dot(X.T, y, dense_output=True) if sparse_center: # Workaround to find alpha_max for sparse matrices. # since we should not destroy the sparsity of such matrices. _, _, X_mean, _, X_std = sparse_center_data(X, y, fit_intercept, normalize) mean_dot = X_mean * np.sum(y) if Xy.ndim == 1: Xy = Xy[:, np.newaxis] if sparse_center: if fit_intercept: Xy -= mean_dot[:, np.newaxis] if normalize: Xy /= X_std[:, np.newaxis] alpha_max = (np.sqrt(np.sum(Xy ** 2, axis=1)).max() / (n_samples * l1_ratio)) if alpha_max <= np.finfo(float).resolution: alphas = np.empty(n_alphas) alphas.fill(np.finfo(float).resolution) return alphas return np.logspace(np.log10(alpha_max * eps), np.log10(alpha_max), num=n_alphas)[::-1] def lasso_path(X, y, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, **params): """Compute Lasso path with coordinate descent The Lasso optimization function varies for mono and multi-outputs. For mono-output tasks it is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 For multi-output tasks it is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <lasso>`. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse. y : ndarray, shape (n_samples,), or (n_samples, n_outputs) Target values eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity. params : kwargs keyword arguments passed to the coordinate descent solver. positive : bool, default False If set to True, forces coefficients to be positive. return_n_iter : bool whether to return the number of iterations or not. Returns ------- alphas : array, shape (n_alphas,) The alphas along the path where models are computed. coefs : array, shape (n_features, n_alphas) or \ (n_outputs, n_features, n_alphas) Coefficients along the path. dual_gaps : array, shape (n_alphas,) The dual gaps at the end of the optimization for each alpha. n_iters : array-like, shape (n_alphas,) The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. Notes ----- See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In particular, linear interpolation can be used to retrieve model coefficients between the values output by lars_path Examples --------- Comparing lasso_path and lars_path with interpolation: >>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T >>> y = np.array([1, 2, 3.1]) >>> # Use lasso_path to compute a coefficient path >>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5]) >>> print(coef_path) [[ 0. 0. 0.46874778] [ 0.2159048 0.4425765 0.23689075]] >>> # Now use lars_path and 1D linear interpolation to compute the >>> # same path >>> from sklearn.linear_model import lars_path >>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso') >>> from scipy import interpolate >>> coef_path_continuous = interpolate.interp1d(alphas[::-1], ... coef_path_lars[:, ::-1]) >>> print(coef_path_continuous([5., 1., .5])) [[ 0. 0. 0.46915237] [ 0.2159048 0.4425765 0.23668876]] See also -------- lars_path Lasso LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode """ return enet_path(X, y, l1_ratio=1., eps=eps, n_alphas=n_alphas, alphas=alphas, precompute=precompute, Xy=Xy, copy_X=copy_X, coef_init=coef_init, verbose=verbose, positive=positive, **params) def enet_path(X, y, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, **params): """Compute elastic net path with coordinate descent The elastic net optimization function varies for mono and multi-outputs. For mono-output tasks it is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 For multi-output tasks it is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- X : {array-like}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse. y : ndarray, shape (n_samples,) or (n_samples, n_outputs) Target values l1_ratio : float, optional float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties). ``l1_ratio=1`` corresponds to the Lasso eps : float Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity. params : kwargs keyword arguments passed to the coordinate descent solver. return_n_iter : bool whether to return the number of iterations or not. positive : bool, default False If set to True, forces coefficients to be positive. Returns ------- alphas : array, shape (n_alphas,) The alphas along the path where models are computed. coefs : array, shape (n_features, n_alphas) or \ (n_outputs, n_features, n_alphas) Coefficients along the path. dual_gaps : array, shape (n_alphas,) The dual gaps at the end of the optimization for each alpha. n_iters : array-like, shape (n_alphas,) The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. (Is returned when ``return_n_iter`` is set to True). Notes ----- See examples/plot_lasso_coordinate_descent_path.py for an example. See also -------- MultiTaskElasticNet MultiTaskElasticNetCV ElasticNet ElasticNetCV """ # We expect X and y to be already float64 Fortran ordered when bypassing # checks check_input = 'check_input' not in params or params['check_input'] pre_fit = 'check_input' not in params or params['pre_fit'] if check_input: X = check_array(X, 'csc', dtype=np.float64, order='F', copy=copy_X) y = check_array(y, 'csc', dtype=np.float64, order='F', copy=False, ensure_2d=False) if Xy is not None: Xy = check_array(Xy, 'csc', dtype=np.float64, order='F', copy=False, ensure_2d=False) n_samples, n_features = X.shape multi_output = False if y.ndim != 1: multi_output = True _, n_outputs = y.shape # MultiTaskElasticNet does not support sparse matrices if not multi_output and sparse.isspmatrix(X): if 'X_mean' in params: # As sparse matrices are not actually centered we need this # to be passed to the CD solver. X_sparse_scaling = params['X_mean'] / params['X_std'] else: X_sparse_scaling = np.zeros(n_features) # X should be normalized and fit already if function is called # from ElasticNet.fit if pre_fit: X, y, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X, y, Xy, precompute, normalize=False, fit_intercept=False, copy=False, Xy_precompute_order='F') if alphas is None: # No need to normalize of fit_intercept: it has been done # above alphas = _alpha_grid(X, y, Xy=Xy, l1_ratio=l1_ratio, fit_intercept=False, eps=eps, n_alphas=n_alphas, normalize=False, copy_X=False) else: alphas = np.sort(alphas)[::-1] # make sure alphas are properly ordered n_alphas = len(alphas) tol = params.get('tol', 1e-4) max_iter = params.get('max_iter', 1000) dual_gaps = np.empty(n_alphas) n_iters = [] rng = check_random_state(params.get('random_state', None)) selection = params.get('selection', 'cyclic') if selection not in ['random', 'cyclic']: raise ValueError("selection should be either random or cyclic.") random = (selection == 'random') if not multi_output: coefs = np.empty((n_features, n_alphas), dtype=np.float64) else: coefs = np.empty((n_outputs, n_features, n_alphas), dtype=np.float64) if coef_init is None: coef_ = np.asfortranarray(np.zeros(coefs.shape[:-1])) else: coef_ = np.asfortranarray(coef_init) for i, alpha in enumerate(alphas): l1_reg = alpha * l1_ratio * n_samples l2_reg = alpha * (1.0 - l1_ratio) * n_samples if not multi_output and sparse.isspmatrix(X): model = cd_fast.sparse_enet_coordinate_descent( coef_, l1_reg, l2_reg, X.data, X.indices, X.indptr, y, X_sparse_scaling, max_iter, tol, rng, random, positive) elif multi_output: model = cd_fast.enet_coordinate_descent_multi_task( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random) elif isinstance(precompute, np.ndarray): # We expect precompute to be already Fortran ordered when bypassing # checks if check_input: precompute = check_array(precompute, 'csc', dtype=np.float64, order='F') model = cd_fast.enet_coordinate_descent_gram( coef_, l1_reg, l2_reg, precompute, Xy, y, max_iter, tol, rng, random, positive) elif precompute is False: model = cd_fast.enet_coordinate_descent( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random, positive) else: raise ValueError("Precompute should be one of True, False, " "'auto' or array-like") coef_, dual_gap_, eps_, n_iter_ = model coefs[..., i] = coef_ dual_gaps[i] = dual_gap_ n_iters.append(n_iter_) if dual_gap_ > eps_: warnings.warn('Objective did not converge.' + ' You might want' + ' to increase the number of iterations', ConvergenceWarning) if verbose: if verbose > 2: print(model) elif verbose > 1: print('Path: %03i out of %03i' % (i, n_alphas)) else: sys.stderr.write('.') if return_n_iter: return alphas, coefs, dual_gaps, n_iters return alphas, coefs, dual_gaps ############################################################################### # ElasticNet model class ElasticNet(LinearModel, RegressorMixin): """Linear regression with combined L1 and L2 priors as regularizer. Minimizes the objective function:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 where:: alpha = a + b and l1_ratio = a / (a + b) The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. Specifically, l1_ratio = 1 is the lasso penalty. Currently, l1_ratio <= 0.01 is not reliable, unless you supply your own sequence of alpha. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- alpha : float Constant that multiplies the penalty terms. Defaults to 1.0 See the notes for the exact mathematical meaning of this parameter. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` with the Lasso object is not advised and you should prefer the LinearRegression object. l1_ratio : float The ElasticNet mixing parameter, with ``0 <= l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2. fit_intercept : bool Whether the intercept should be estimated or not. If ``False``, the data is assumed to be already centered. normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. WARNING : The ``'auto'`` option is deprecated and will be removed in 0.18. max_iter : int, optional The maximum number of iterations copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` intercept_ : float | array, shape (n_targets,) independent term in decision function. n_iter_ : array-like, shape (n_targets,) number of iterations run by the coordinate descent solver to reach the specified tolerance. Notes ----- To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- SGDRegressor: implements elastic net regression with incremental training. SGDClassifier: implements logistic regression with elastic net penalty (``SGDClassifier(loss="log", penalty="elasticnet")``). """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False, max_iter=1000, copy_X=True, tol=1e-4, warm_start=False, positive=False, random_state=None, selection='cyclic'): self.alpha = alpha self.l1_ratio = l1_ratio self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.positive = positive self.intercept_ = 0.0 self.random_state = random_state self.selection = selection def fit(self, X, y, check_input=True): """Fit model with coordinate descent. Parameters ----------- X : ndarray or scipy.sparse matrix, (n_samples, n_features) Data y : ndarray, shape (n_samples,) or (n_samples, n_targets) Target Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ if self.alpha == 0: warnings.warn("With alpha=0, this algorithm does not converge " "well. You are advised to use the LinearRegression " "estimator", stacklevel=2) if self.precompute == 'auto': warnings.warn("Setting precompute to 'auto', was found to be " "slower even when n_samples > n_features. Hence " "it will be removed in 0.18.", DeprecationWarning, stacklevel=2) # We expect X and y to be already float64 Fortran ordered arrays # when bypassing checks if check_input: X, y = check_X_y(X, y, accept_sparse='csc', dtype=np.float64, order='F', copy=self.copy_X and self.fit_intercept, multi_output=True, y_numeric=True) X, y, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X, y, None, self.precompute, self.normalize, self.fit_intercept, copy=False, Xy_precompute_order='F') if y.ndim == 1: y = y[:, np.newaxis] if Xy is not None and Xy.ndim == 1: Xy = Xy[:, np.newaxis] n_samples, n_features = X.shape n_targets = y.shape[1] if self.selection not in ['cyclic', 'random']: raise ValueError("selection should be either random or cyclic.") if not self.warm_start or self.coef_ is None: coef_ = np.zeros((n_targets, n_features), dtype=np.float64, order='F') else: coef_ = self.coef_ if coef_.ndim == 1: coef_ = coef_[np.newaxis, :] dual_gaps_ = np.zeros(n_targets, dtype=np.float64) self.n_iter_ = [] for k in xrange(n_targets): if Xy is not None: this_Xy = Xy[:, k] else: this_Xy = None _, this_coef, this_dual_gap, this_iter = \ self.path(X, y[:, k], l1_ratio=self.l1_ratio, eps=None, n_alphas=None, alphas=[self.alpha], precompute=precompute, Xy=this_Xy, fit_intercept=False, normalize=False, copy_X=True, verbose=False, tol=self.tol, positive=self.positive, X_mean=X_mean, X_std=X_std, return_n_iter=True, coef_init=coef_[k], max_iter=self.max_iter, random_state=self.random_state, selection=self.selection, check_input=False, pre_fit=False) coef_[k] = this_coef[:, 0] dual_gaps_[k] = this_dual_gap[0] self.n_iter_.append(this_iter[0]) if n_targets == 1: self.n_iter_ = self.n_iter_[0] self.coef_, self.dual_gap_ = map(np.squeeze, [coef_, dual_gaps_]) self._set_intercept(X_mean, y_mean, X_std) # return self for chaining fit and predict calls return self @property def sparse_coef_(self): """ sparse representation of the fitted coef """ return sparse.csr_matrix(self.coef_) @deprecated(" and will be removed in 0.19") def decision_function(self, X): """Decision function of the linear model Parameters ---------- X : numpy array or scipy.sparse matrix of shape (n_samples, n_features) Returns ------- T : array, shape (n_samples,) The predicted decision function """ return self._decision_function(X) def _decision_function(self, X): """Decision function of the linear model Parameters ---------- X : numpy array or scipy.sparse matrix of shape (n_samples, n_features) Returns ------- T : array, shape (n_samples,) The predicted decision function """ check_is_fitted(self, 'n_iter_') if sparse.isspmatrix(X): return np.ravel(safe_sparse_dot(self.coef_, X.T, dense_output=True) + self.intercept_) else: return super(ElasticNet, self)._decision_function(X) ############################################################################### # Lasso model class Lasso(ElasticNet): """Linear Model trained with L1 prior as regularizer (aka the Lasso) The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Technically the Lasso model is optimizing the same objective function as the Elastic Net with ``l1_ratio=1.0`` (no L2 penalty). Read more in the :ref:`User Guide <lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1 term. Defaults to 1.0. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` is with the Lasso object is not advised and you should prefer the LinearRegression object. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. WARNING : The ``'auto'`` option is deprecated and will be removed in 0.18. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` intercept_ : float | array, shape (n_targets,) independent term in decision function. n_iter_ : int | array-like, shape (n_targets,) number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.Lasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [ 0.85 0. ] >>> print(clf.intercept_) 0.15 See also -------- lars_path lasso_path LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, positive=False, random_state=None, selection='cyclic'): super(Lasso, self).__init__( alpha=alpha, l1_ratio=1.0, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, copy_X=copy_X, max_iter=max_iter, tol=tol, warm_start=warm_start, positive=positive, random_state=random_state, selection=selection) ############################################################################### # Functions for CV with paths functions def _path_residuals(X, y, train, test, path, path_params, alphas=None, l1_ratio=1, X_order=None, dtype=None): """Returns the MSE for the models computed by 'path' Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values train : list of indices The indices of the train set test : list of indices The indices of the test set path : callable function returning a list of models on the path. See enet_path for an example of signature path_params : dictionary Parameters passed to the path function alphas : array-like, optional Array of float that is used for cross-validation. If not provided, computed using 'path' l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 X_order : {'F', 'C', or None}, optional The order of the arrays expected by the path function to avoid memory copies dtype : a numpy dtype or None The dtype of the arrays expected by the path function to avoid memory copies """ X_train = X[train] y_train = y[train] X_test = X[test] y_test = y[test] fit_intercept = path_params['fit_intercept'] normalize = path_params['normalize'] if y.ndim == 1: precompute = path_params['precompute'] else: # No Gram variant of multi-task exists right now. # Fall back to default enet_multitask precompute = False X_train, y_train, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X_train, y_train, None, precompute, normalize, fit_intercept, copy=False) path_params = path_params.copy() path_params['Xy'] = Xy path_params['X_mean'] = X_mean path_params['X_std'] = X_std path_params['precompute'] = precompute path_params['copy_X'] = False path_params['alphas'] = alphas if 'l1_ratio' in path_params: path_params['l1_ratio'] = l1_ratio # Do the ordering and type casting here, as if it is done in the path, # X is copied and a reference is kept here X_train = check_array(X_train, 'csc', dtype=dtype, order=X_order) alphas, coefs, _ = path(X_train, y_train, **path_params) del X_train, y_train if y.ndim == 1: # Doing this so that it becomes coherent with multioutput. coefs = coefs[np.newaxis, :, :] y_mean = np.atleast_1d(y_mean) y_test = y_test[:, np.newaxis] if normalize: nonzeros = np.flatnonzero(X_std) coefs[:, nonzeros] /= X_std[nonzeros][:, np.newaxis] intercepts = y_mean[:, np.newaxis] - np.dot(X_mean, coefs) if sparse.issparse(X_test): n_order, n_features, n_alphas = coefs.shape # Work around for sparse matices since coefs is a 3-D numpy array. coefs_feature_major = np.rollaxis(coefs, 1) feature_2d = np.reshape(coefs_feature_major, (n_features, -1)) X_test_coefs = safe_sparse_dot(X_test, feature_2d) X_test_coefs = X_test_coefs.reshape(X_test.shape[0], n_order, -1) else: X_test_coefs = safe_sparse_dot(X_test, coefs) residues = X_test_coefs - y_test[:, :, np.newaxis] residues += intercepts this_mses = ((residues ** 2).mean(axis=0)).mean(axis=0) return this_mses class LinearModelCV(six.with_metaclass(ABCMeta, LinearModel)): """Base class for iterative model fitting along a regularization path""" @abstractmethod def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, positive=False, random_state=None, selection='cyclic'): self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.copy_X = copy_X self.cv = cv self.verbose = verbose self.n_jobs = n_jobs self.positive = positive self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit linear model with coordinate descent Fit is on grid of alphas and best alpha estimated by cross-validation. Parameters ---------- X : {array-like}, shape (n_samples, n_features) Training data. Pass directly as float64, Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output, X can be sparse. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values """ y = np.asarray(y, dtype=np.float64) if y.shape[0] == 0: raise ValueError("y has 0 samples: %r" % y) if hasattr(self, 'l1_ratio'): model_str = 'ElasticNet' else: model_str = 'Lasso' if isinstance(self, ElasticNetCV) or isinstance(self, LassoCV): if model_str == 'ElasticNet': model = ElasticNet() else: model = Lasso() if y.ndim > 1 and y.shape[1] > 1: raise ValueError("For multi-task outputs, use " "MultiTask%sCV" % (model_str)) y = column_or_1d(y, warn=True) else: if sparse.isspmatrix(X): raise TypeError("X should be dense but a sparse matrix was" "passed") elif y.ndim == 1: raise ValueError("For mono-task outputs, use " "%sCV" % (model_str)) if model_str == 'ElasticNet': model = MultiTaskElasticNet() else: model = MultiTaskLasso() if self.selection not in ["random", "cyclic"]: raise ValueError("selection should be either random or cyclic.") # This makes sure that there is no duplication in memory. # Dealing right with copy_X is important in the following: # Multiple functions touch X and subsamples of X and can induce a # lot of duplication of memory copy_X = self.copy_X and self.fit_intercept if isinstance(X, np.ndarray) or sparse.isspmatrix(X): # Keep a reference to X reference_to_old_X = X # Let us not impose fortran ordering or float64 so far: it is # not useful for the cross-validation loop and will be done # by the model fitting itself X = check_array(X, 'csc', copy=False) if sparse.isspmatrix(X): if not np.may_share_memory(reference_to_old_X.data, X.data): # X is a sparse matrix and has been copied copy_X = False elif not np.may_share_memory(reference_to_old_X, X): # X has been copied copy_X = False del reference_to_old_X else: X = check_array(X, 'csc', dtype=np.float64, order='F', copy=copy_X) copy_X = False if X.shape[0] != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (X.shape[0], y.shape[0])) # All LinearModelCV parameters except 'cv' are acceptable path_params = self.get_params() if 'l1_ratio' in path_params: l1_ratios = np.atleast_1d(path_params['l1_ratio']) # For the first path, we need to set l1_ratio path_params['l1_ratio'] = l1_ratios[0] else: l1_ratios = [1, ] path_params.pop('cv', None) path_params.pop('n_jobs', None) alphas = self.alphas n_l1_ratio = len(l1_ratios) if alphas is None: alphas = [] for l1_ratio in l1_ratios: alphas.append(_alpha_grid( X, y, l1_ratio=l1_ratio, fit_intercept=self.fit_intercept, eps=self.eps, n_alphas=self.n_alphas, normalize=self.normalize, copy_X=self.copy_X)) else: # Making sure alphas is properly ordered. alphas = np.tile(np.sort(alphas)[::-1], (n_l1_ratio, 1)) # We want n_alphas to be the number of alphas used for each l1_ratio. n_alphas = len(alphas[0]) path_params.update({'n_alphas': n_alphas}) path_params['copy_X'] = copy_X # We are not computing in parallel, we can modify X # inplace in the folds if not (self.n_jobs == 1 or self.n_jobs is None): path_params['copy_X'] = False # init cross-validation generator cv = check_cv(self.cv, X) # Compute path for all folds and compute MSE to get the best alpha folds = list(cv) best_mse = np.inf # We do a double for loop folded in one, in order to be able to # iterate in parallel on l1_ratio and folds jobs = (delayed(_path_residuals)(X, y, train, test, self.path, path_params, alphas=this_alphas, l1_ratio=this_l1_ratio, X_order='F', dtype=np.float64) for this_l1_ratio, this_alphas in zip(l1_ratios, alphas) for train, test in folds) mse_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")(jobs) mse_paths = np.reshape(mse_paths, (n_l1_ratio, len(folds), -1)) mean_mse = np.mean(mse_paths, axis=1) self.mse_path_ = np.squeeze(np.rollaxis(mse_paths, 2, 1)) for l1_ratio, l1_alphas, mse_alphas in zip(l1_ratios, alphas, mean_mse): i_best_alpha = np.argmin(mse_alphas) this_best_mse = mse_alphas[i_best_alpha] if this_best_mse < best_mse: best_alpha = l1_alphas[i_best_alpha] best_l1_ratio = l1_ratio best_mse = this_best_mse self.l1_ratio_ = best_l1_ratio self.alpha_ = best_alpha if self.alphas is None: self.alphas_ = np.asarray(alphas) if n_l1_ratio == 1: self.alphas_ = self.alphas_[0] # Remove duplicate alphas in case alphas is provided. else: self.alphas_ = np.asarray(alphas[0]) # Refit the model with the parameters selected common_params = dict((name, value) for name, value in self.get_params().items() if name in model.get_params()) model.set_params(**common_params) model.alpha = best_alpha model.l1_ratio = best_l1_ratio model.copy_X = copy_X model.precompute = False model.fit(X, y) if not hasattr(self, 'l1_ratio'): del self.l1_ratio_ self.coef_ = model.coef_ self.intercept_ = model.intercept_ self.dual_gap_ = model.dual_gap_ self.n_iter_ = model.n_iter_ return self class LassoCV(LinearModelCV, RegressorMixin): """Lasso linear model with iterative fitting along a regularization path The best model is selected by cross-validation. The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path alphas : numpy array, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. positive : bool, optional If positive, restrict regression coefficients to be positive selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. fit_intercept : boolean, default True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Attributes ---------- alpha_ : float The amount of penalization chosen by cross validation coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) intercept_ : float | array, shape (n_targets,) independent term in decision function. mse_path_ : array, shape (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) The grid of alphas used for fitting dual_gap_ : ndarray, shape () The dual gap at the end of the optimization for the optimal alpha (``alpha_``). n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Notes ----- See examples/linear_model/lasso_path_with_crossvalidation.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- lars_path lasso_path LassoLars Lasso LassoLarsCV """ path = staticmethod(lasso_path) def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, positive=False, random_state=None, selection='cyclic'): super(LassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose, n_jobs=n_jobs, positive=positive, random_state=random_state, selection=selection) class ElasticNetCV(LinearModelCV, RegressorMixin): """Elastic Net model with iterative fitting along a regularization path The best model is selected by cross-validation. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 This parameter can be a list, in which case the different values are tested by cross-validation and the one giving the best prediction score is used. Note that a good choice of list of values for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7, .9, .95, .99, 1]`` eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path, used for each l1_ratio. alphas : numpy array, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Attributes ---------- alpha_ : float The amount of penalization chosen by cross validation l1_ratio_ : float The compromise between l1 and l2 penalization chosen by cross validation coef_ : array, shape (n_features,) | (n_targets, n_features) Parameter vector (w in the cost function formula), intercept_ : float | array, shape (n_targets, n_features) Independent term in the decision function. mse_path_ : array, shape (n_l1_ratio, n_alpha, n_folds) Mean square error for the test set on each fold, varying l1_ratio and alpha. alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas) The grid of alphas used for fitting, for each l1_ratio. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Notes ----- See examples/linear_model/lasso_path_with_crossvalidation.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. More specifically, the optimization objective is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 for:: alpha = a + b and l1_ratio = a / (a + b). See also -------- enet_path ElasticNet """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1, positive=False, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs self.positive = positive self.random_state = random_state self.selection = selection ############################################################################### # Multi Task ElasticNet and Lasso models (with joint feature selection) class MultiTaskElasticNet(Lasso): """Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer The optimization objective for MultiTaskElasticNet is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 l1_ratio : float The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 0 the penalty is an L1/L2 penalty. For l1_ratio = 1 it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). If a 1D y is \ passed in at fit (non multi-task usage), ``coef_`` is then a 1D array n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNet(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNet(alpha=0.1, copy_X=True, fit_intercept=True, l1_ratio=0.5, max_iter=1000, normalize=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.45663524 0.45612256] [ 0.45663524 0.45612256]] >>> print(clf.intercept_) [ 0.0872422 0.0872422] See also -------- ElasticNet, MultiTaskLasso Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.alpha = alpha self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit MultiTaskLasso model with coordinate descent Parameters ----------- X : ndarray, shape (n_samples, n_features) Data y : ndarray, shape (n_samples, n_tasks) Target Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ # X and y must be of type float64 X = check_array(X, dtype=np.float64, order='F', copy=self.copy_X and self.fit_intercept) y = np.asarray(y, dtype=np.float64) if hasattr(self, 'l1_ratio'): model_str = 'ElasticNet' else: model_str = 'Lasso' if y.ndim == 1: raise ValueError("For mono-task outputs, use %s" % model_str) n_samples, n_features = X.shape _, n_tasks = y.shape if n_samples != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (n_samples, y.shape[0])) X, y, X_mean, y_mean, X_std = center_data( X, y, self.fit_intercept, self.normalize, copy=False) if not self.warm_start or self.coef_ is None: self.coef_ = np.zeros((n_tasks, n_features), dtype=np.float64, order='F') l1_reg = self.alpha * self.l1_ratio * n_samples l2_reg = self.alpha * (1.0 - self.l1_ratio) * n_samples self.coef_ = np.asfortranarray(self.coef_) # coef contiguous in memory if self.selection not in ['random', 'cyclic']: raise ValueError("selection should be either random or cyclic.") random = (self.selection == 'random') self.coef_, self.dual_gap_, self.eps_, self.n_iter_ = \ cd_fast.enet_coordinate_descent_multi_task( self.coef_, l1_reg, l2_reg, X, y, self.max_iter, self.tol, check_random_state(self.random_state), random) self._set_intercept(X_mean, y_mean, X_std) if self.dual_gap_ > self.eps_: warnings.warn('Objective did not converge, you might want' ' to increase the number of iterations') # return self for chaining fit and predict calls return self class MultiTaskLasso(MultiTaskElasticNet): """Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of earch row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4 random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_tasks, n_features) parameter vector (W in the cost function formula) intercept_ : array, shape (n_tasks,) independent term in decision function. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskLasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) MultiTaskLasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.89393398 0. ] [ 0.89393398 0. ]] >>> print(clf.intercept_) [ 0.10606602 0.10606602] See also -------- Lasso, MultiTaskElasticNet Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, random_state=None, selection='cyclic'): self.alpha = alpha self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.l1_ratio = 1.0 self.random_state = random_state self.selection = selection class MultiTaskElasticNetCV(LinearModelCV, RegressorMixin): """Multi-task L1/L2 ElasticNet with built-in cross-validation. The optimization objective for MultiTaskElasticNet is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. alphas : array-like, optional List of alphas where to compute the models. If not provided, set automatically. n_alphas : int, optional Number of alphas along the regularization path l1_ratio : float or array of floats The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 0 the penalty is an L1/L2 penalty. For l1_ratio = 1 it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). alpha_ : float The amount of penalization chosen by cross validation mse_path_ : array, shape (n_alphas, n_folds) or \ (n_l1_ratio, n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas) The grid of alphas used for fitting, for each l1_ratio l1_ratio_ : float best l1_ratio obtained by cross-validation. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNetCV() >>> clf.fit([[0,0], [1, 1], [2, 2]], ... [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNetCV(alphas=None, copy_X=True, cv=None, eps=0.001, fit_intercept=True, l1_ratio=0.5, max_iter=1000, n_alphas=100, n_jobs=1, normalize=False, random_state=None, selection='cyclic', tol=0.0001, verbose=0) >>> print(clf.coef_) [[ 0.52875032 0.46958558] [ 0.52875032 0.46958558]] >>> print(clf.intercept_) [ 0.00166409 0.00166409] See also -------- MultiTaskElasticNet ElasticNetCV MultiTaskLassoCV Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs self.random_state = random_state self.selection = selection class MultiTaskLassoCV(LinearModelCV, RegressorMixin): """Multi-task L1/L2 Lasso with built-in cross-validation. The optimization objective for MultiTaskLasso is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. alphas : array-like, optional List of alphas where to compute the models. If not provided, set automaticlly. n_alphas : int, optional Number of alphas along the regularization path fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations. tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). alpha_ : float The amount of penalization chosen by cross validation mse_path_ : array, shape (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) The grid of alphas used for fitting. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. See also -------- MultiTaskElasticNet ElasticNetCV MultiTaskElasticNetCV Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(lasso_path) def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, random_state=None, selection='cyclic'): super(MultiTaskLassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose, n_jobs=n_jobs, random_state=random_state, selection=selection)
bsd-3-clause
NeuroDataDesign/seelviz
graphfiles/scripts/csvMaker.py
1
1118
import clearity as cl # I wrote this module for easier operations on data import clearity.resources as rs import csv,gc # garbage memory collection :) import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d import jgraph as ig ####Normal Image #c = cl.Clarity('/home/albert/claritycontrol/code/data/raw/Cocaine175') # #fname = rs.HIST_DATA_PATH+token+".csv" #claritycsv = c.loadNiiImg().imgToPoints(threshold=0.1,sample=0.11).savePoints() # #np.savetxt(token,claritycsv,delimiter=',') #print "Fear197.csv saved." #del c #gc.collect() ####General Image #c = cl.Clarity('globaleq') # #fname = rs.HIST_DATA_PATH+token+".csv" #claritycsv = c.loadEqImg().imgToPoints(threshold=0.99,sample=0.005).savePoints() # #np.savetxt(token,claritycsv,delimiter=',') #print "globaleq.csv saved." #del c #gc.collect() ####Local Image c = cl.Clarity('AutAlocaleq') #fname = rs.HIST_DATA_PATH+token+".csv" claritycsv = c.loadEqImg().imgToPoints(threshold=0.9,sample=0.1).savePoints() #np.savetxt(token,claritycsv,delimiter=',') print "localeq.csv saved." del c gc.collect()
apache-2.0
walterreade/scikit-learn
examples/linear_model/plot_ols_3d.py
350
2040
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Sparsity Example: Fitting only features 1 and 2 ========================================================= Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that although feature 2 has a strong coefficient on the full model, it does not give us much regarding `y` when compared to just feature 1 """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets, linear_model diabetes = datasets.load_diabetes() indices = (0, 1) X_train = diabetes.data[:-20, indices] X_test = diabetes.data[-20:, indices] y_train = diabetes.target[:-20] y_test = diabetes.target[-20:] ols = linear_model.LinearRegression() ols.fit(X_train, y_train) ############################################################################### # Plot the figure def plot_figs(fig_num, elev, azim, X_train, clf): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, elev=elev, azim=azim) ax.scatter(X_train[:, 0], X_train[:, 1], y_train, c='k', marker='+') ax.plot_surface(np.array([[-.1, -.1], [.15, .15]]), np.array([[-.1, .15], [-.1, .15]]), clf.predict(np.array([[-.1, -.1, .15, .15], [-.1, .15, -.1, .15]]).T ).reshape((2, 2)), alpha=.5) ax.set_xlabel('X_1') ax.set_ylabel('X_2') ax.set_zlabel('Y') ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) #Generate the three different figures from different views elev = 43.5 azim = -110 plot_figs(1, elev, azim, X_train, ols) elev = -.5 azim = 0 plot_figs(2, elev, azim, X_train, ols) elev = -.5 azim = 90 plot_figs(3, elev, azim, X_train, ols) plt.show()
bsd-3-clause
mbeyeler/pulse2percept
examples/datasets/plot_data_beyeler2019.py
1
8496
""" =============================================================================== Phosphene drawings from Beyeler et al. (2019) =============================================================================== This example shows how to use the Beyeler et al. (2019) dataset. [Beyeler2019]_ asked Argus I/II users to draw what they see in response to single-electrode stimulation. .. important :: For this dataset you will need to install both `Pandas <https://pandas.pydata.org>`_ (``pip install pandas``) and `HDF4 for Python <https://www.h5py.org>`_ (``pip install h5py``). Loading the dataset ------------------- Due to its size (66 MB), the dataset is not included with pulse2percept, but can be downloaded from the Open Science Framework (OSF). By default, the dataset will be stored in a local directory ‘~/pulse2percept_data/’ within your user directory (but a different path can be specified). This way, the datasets is only downloaded once, and future calls to the fetch function will load the dataset from your local copy. The data itself will be provided as a Pandas ``DataFrame``: """ # sphinx_gallery_thumbnail_number = 2 from pulse2percept.datasets import fetch_beyeler2019 data = fetch_beyeler2019() print(data) ############################################################################### # # Inspecting the DataFrame tells us that there are 400 phosphene drawings # (the rows) each with 16 different attributes (the columns). # # These attributes include specifiers such as "subject", "electrode", and # "image". We can print all column names using: data.columns ############################################################################### # .. note :: # # The meaning of all column names is explained in the docstring of # the :py:func:`~pulse2percept.datasets.fetch_beyeler2019` function. # # For example, "subject" contains the different subject IDs used in the study: data.subject.unique() ############################################################################### # To select all drawings from Subject 2, we can index into the DataFrame as # follows: print(data[data.subject == 'S2']) ############################################################################### # This leaves us with 110 rows, each of which correspond to one phosphene # drawings from a number of different electrodes and trials. # # An alternative to indexing into the DataFrame is to load only a subset of # the data: print(fetch_beyeler2019(subjects='S2')) ############################################################################### # Plotting the data # ----------------- # # Arguably the most important column is "image". This is the phosphene drawing # obtained during a particular trial. # # Each phosphene drawing is a 2D black-and-white NumPy array, so we can just # plot it using Matplotlib like any other image: import matplotlib.pyplot as plt plt.imshow(data.loc[0, 'image'], cmap='gray') ############################################################################### # However, we might be more interested in seeing how phosphene shape differs # for different electrodes. # For this we can use :py:func:`~pulse2percept.viz.plot_argus_phosphenes` from # the :py:mod:`~pulse2percept.viz` module. # In addition to the ``data`` matrix, the function will also want an # :py:class:`~pulse2percept.implants.ArgusII` object implanted at the correct # location. # # Consulting [Beyeler2019]_ tells us that the prosthesis was roughly implanted # in the following location: from pulse2percept.implants import ArgusII argus = ArgusII(x=-1331, y=-850, rot=-28.4, eye='RE') ############################################################################### # For now, let's focus on the data from Subject 2: data = fetch_beyeler2019(subjects='S2') ############################################################################### # Passing both ``data`` and ``argus`` to # :py:func:`~pulse2percept.viz.plot_argus_phosphenes` will then allow the # function to overlay the phosphene drawings over a schematic of the implant. # Here, phosphene drawings from different trials are averaged, and aligned with # the center of the electrode that was used to obtain the drawing: from pulse2percept.viz import plot_argus_phosphenes plot_argus_phosphenes(data, argus) ############################################################################### # Great! We have just reproduced a panel from Figure 2 in [Beyeler2019]_. # # As [Beyeler2019]_ went on to show, the orientation of these phosphenes is # well aligned with the map of nerve fiber bundles (NFBs) in each subject's # eye. # # To see how the phosphene drawings line up with the NFBs, we can also pass an # :py:class:`~pulse2percept.models.AxonMapModel` to the function. # Of course, we need to make sure that we use the correct dimensions. Subject # S2 had their optic disc center located 16.2 deg nasally, 1.38 deg superior # from the fovea: from pulse2percept.models import AxonMapModel model = AxonMapModel(loc_od=(16.2, 1.38)) plot_argus_phosphenes(data, argus, axon_map=model) ############################################################################### # Predicting phosphene shape # -------------------------- # # In addition, the :py:class:`~pulse2percept.models.AxonMapModel` is well # suited to predict the shape of individual phosphenes. Using the values given # in [Beyeler2019]_, we can tailor the axon map parameters to Subject 2: import numpy as np model = AxonMapModel(rho=315, axlambda=500, loc_od=(16.2, 1.38), xrange=(-30, 30), yrange=(-22.5, 22.5), thresh_percept=1 / np.sqrt(np.e)) model.build() ############################################################################### # Now we need to activate one electrode at a time, and predict the resulting # percept. We could build a :py:class:`~pulse2percept.stimuli.Stimulus` object # with a for loop that does just that, or we can use the following trick. # # The stimulus' data container is a (electrodes, timepoints) shaped 2D NumPy # array. Activating one electrode at a time is therefore the same as an # identity matrix whose size is equal to the number of electrodes. In code: # Find the names of all the electrodes in the dataset: electrodes = data.electrode.unique() # Activate one electrode at a time: import numpy as np from pulse2percept.stimuli import Stimulus argus.stim = Stimulus(np.eye(len(electrodes)), electrodes=electrodes) ############################################################################### # Using the model's # :py:func:`~pulse2percept.models.AxonMapModel.predict_percept`, we then get # a Percept object where each frame is the percept generated from activating # a single electrode: percepts = model.predict_percept(argus) percepts.play() ############################################################################### # Finally, we can visualize the ground-truth and simulated phosphenes # side-by-side: from pulse2percept.viz import plot_argus_simulated_phosphenes fig, (ax_data, ax_sim) = plt.subplots(ncols=2, figsize=(15, 5)) plot_argus_phosphenes(data, argus, scale=0.75, ax=ax_data) plot_argus_simulated_phosphenes(percepts, argus, scale=1.25, ax=ax_sim) ax_data.set_title('Ground-truth phosphenes') ax_sim.set_title('Simulated phosphenes') ############################################################################### # Analyzing phosphene shape # ------------------------- # # The phosphene drawings also come annotated with different shape descriptors: # area, orientation, and elongation. # Elongation is also called eccentricity in the computer vision literature, # which is not to be confused with retinal eccentricity. It is simply a number # between 0 and 1, where 0 corresponds to a circle and 1 corresponds to an # infinitesimally thin line (note that the Methods section of [Beyeler2019]_ # got it wrong). # # [Beyeler2019]_ made the point that if each phosphene could be considered a # pixel (or essentially a blob), as is so often assumed in the literature, then # most phosphenes should have zero elongation. # # Instead, using Matplotlib's histogram function, we can convince ourselves # that most phosphenes are in fact elongated: data = fetch_beyeler2019() data.eccentricity.plot(kind='hist') plt.xlabel('phosphene elongation') ############################################################################### # Phosphenes are not pixels! # And with that we have just reproduced Fig. 3C of [Beyeler2019]_.
bsd-3-clause
bibsian/database-development
test/logiclayer/datalayer/test_filehandles.py
1
14956
#!/usr/bin/env python import pytest from pandas import read_csv, read_excel, read_table, DataFrame from collections import namedtuple import sys, os import copy from poplerGUI import class_inputhandler as ini rootpath = os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname( __file__ )))) end = os.path.sep sys.path.append(os.path.realpath(os.path.dirname( rootpath + 'logiclayer' + end))) os.chdir(rootpath) @pytest.fixture def DataFileOriginator(Memento): class DataFileOriginator(object): """ FileHandler (i.e. the originator) is a class that will take a user selected file, identify the extension, and load the data as an instance of a pandas dataframe... This is all the handler does. Class has some properties for working with file extensions and pandas I/O methods This is the originator of the initial data """ get_info = namedtuple( 'get_info', 'name ext version') state = 'original' def __init__(self, inputclsinstance): self.filetoload = inputclsinstance.filename if inputclsinstance.lnedentry['sheet'] is not '': self.sheet = inputclsinstance.lnedentry['sheet'] else: self.sheet = None if inputclsinstance.lnedentry['tskip'] is not '': self.topskiplines = int(inputclsinstance.lnedentry[ 'tskip']) else: self.topskiplines = None if inputclsinstance.lnedentry['bskip'] is not '': self.bottomskiplines = int(inputclsinstance.lnedentry[ 'bskip']) else: self.bottomskiplines = 0 if inputclsinstance.lnedentry['delim'] is not '': self.delimitchar = inputclsinstance.lnedentry[ 'delim'] else: self.delimitchar = '\t' if inputclsinstance.checks is True: self.header = -1 else: self.header = 'infer' self._data = None self.inputoptions = { '.csv': { 'filename':self.filetoload }, '.xlsx': { 'filename':self.filetoload, 'sheet':self.sheet }, '.txt': { 'filename': self.filetoload, 'skiprows': self.topskiplines, 'skipfooter': self.bottomskiplines, 'delimiter': self.delimitchar, 'header': self.header } } self.accepted_filetypes = [ '.csv', '.txt', '.xlsx', 'xls' ] @property def file_id(self): ''' extension property based on the user inputs ''' if self.filetoload is None: return None else: try: filename, ex = os.path.splitext(self.filetoload) if '.' in ex: print('filename (class): ', filename, ex) return self.get_info( name=filename, ext=ex, version=self.state) else: raise IOError(self.ext_error) except: raise IOError(self.ext_error) def save_to_memento(self): ''' Adding a method to set the data attribute. File type must be able to be read in by pandas. ''' if self.file_id.ext not in self.accepted_filetypes: raise IOError('Cannot open file type') try: if self.file_id.ext == '.csv': self._data = read_csv( self.inputoptions[ '.csv']['filename'] ) elif ( self.file_id.ext == '.xls' or self.file_id.ext == '.xlsx'): self._data = read_excel( self.inputoptions[ 'xlsx']['filename'], sheetname=self.inputoptions[ 'xlsx']['sheet'] ) elif self.file_id.ext == '.txt': self._data = read_table( self.inputoptions[ '.txt']['filename'], delimiter=self.inputoptions[ '.txt']['delimiter'], skiprows=self.inputoptions[ '.txt']['skiprows'], header=self.inputoptions[ '.txt']['header'], error_bad_lines=False, engine='c' ) except Exception as e: print('Could not read in file: ', str(e)) for i, item in enumerate(self._data.columns): na_vals = [ 9999, 99999, 999999, -9999, -99999, -999999, -8888, -88888, -88888, -888, 9999.0, 99999.0, 999999.0, -9999.0, -99999.0, -999999.0, -8888.0, -88888.0, -888888.0, -888.0 ] self._data[item].replace( dict(zip(na_vals, ['NaN']*len(na_vals))), inplace=True) self._data.fillna('NA',inplace=True) self._data = self._data[ self._data.isnull().all(axis=1) != True] memento = Memento(dfstate = self._data.copy(),state= self.state) return memento return DataFileOriginator @pytest.fixture def Caretaker(): class Caretaker(object): '''Caretaker for state of dataframe''' def __init__(self): self._statelogbook = {} self._statelist = [] def save(self, memento): ''' Saves memento object with a dictionary recording the state name and the dataframe state ''' self._statelogbook[ memento.get_state()] = memento self._statelist.append(memento.get_state()) def restore(self): ''' Restores a memento given a state_name ''' try: if self._statelist: print('restore list:', self._statelist) if len(self._statelist) == 1: print('og restore') return self._statelogbook[self._statelist[0]] else: self._statelist.pop() return self._statelogbook[self._statelist[-1]] else: raise AttributeError('Cannot undo further') except Exception as e: print(str(e)) return Caretaker @pytest.fixture def Memento(): class Memento(object): ''' Memento Class. This simply records the state of the data and gives it to the FileCaretaker ''' def __init__(self, dfstate, state): self._dfstate = dfstate.copy(deep=True) self._state = str(state) def get_dfstate(self): return self._dfstate def get_state(self): return self._state return Memento @pytest.fixture def DataOriginator(): class DataOriginator(object): def __init__(self, df, state): self._data = df self._state = state def save_to_memento(self): memento = Memento(self._data, self._state) return memento def restore_from_memento(self, memento): self._data = memento.get_dfstate() self._state = memento.get_state() return DataOriginator @pytest.fixture def user_input(): rbtn = {'csv': True, 'xlsx': False, 'txt': False} lned = { 'sheet': '', 'delim': '', 'tskip': '', 'bskip': '', 'header': '' } fname = ( rootpath + end + 'Datasets_manual_test' + end + 'raw_data_test_1.csv') user_input = ini.InputHandler( name='fileoptions',lnedentry=lned, rbtns=rbtn, filename=fname, checks=False) return user_input @pytest.fixture def real_data(): rbtn = {'csv': False, 'xlsx': False, 'txt': True} lned = { 'sheet': '', 'delim': '\t', 'tskip': '', 'bskip': '', 'header': '' } fname = (rootpath + end +'data'+end + 'SGS_LTER_Humus_canopyCover.txt') user_input = ini.InputHandler( name='fileoptions',lnedentry=lned, rbtns=rbtn, filename=fname, checks=False) return user_input # def test_csv_reader_method( # user_input, Caretaker, # DataFileOriginator, DataOriginator, Memento): # caretaker = Caretaker() # originator_from_file = DataFileOriginator(user_input) # originator = DataOriginator(None, 'Initialize') # assert (isinstance(originator, DataOriginator)) is True # caretaker.save(originator_from_file.save_to_memento()) # originator.restore_from_memento(caretaker.restore()) # assert (isinstance(originator._data, DataFrame)) is True def test_txt_true( real_data, Caretaker, DataFileOriginator, DataOriginator, Memento): caretaker = Caretaker() originator_from_file = DataFileOriginator(real_data) originator = DataOriginator(None, 'Initialize') assert (isinstance(originator, DataOriginator)) is True caretaker.save(originator_from_file.save_to_memento()) originator.restore_from_memento(caretaker.restore()) assert (isinstance(originator._data, DataFrame)) is True print(originator._data) # # @pytest.fixture # def user_txt(): # rbtn = {'csv': False, 'xlsx': False, 'txt': True} # lned = { # 'sheet': '', 'delim': '', 'tskip': '', 'bskip': '', # 'header': '' # } # fname = ( # rootpath + end + 'Datasets_manual_test' + end + # 'climate_precip.txt') # user_input = ini.InputHandler( # name='fileoptions', lnedentry=lned, # rbtns=rbtn, filename=fname, checks=True) # return user_input # # def test_txt_reader_method( # user_txt, Caretaker, # DataFileOriginator, DataOriginator, Memento): # caretaker = Caretaker() # originator_from_file = DataFileOriginator(user_txt) # originator = DataOriginator(None, 'Initialize') # assert (isinstance(originator, DataOriginator)) is True # caretaker.save(originator_from_file.save_to_memento()) # originator.restore_from_memento(caretaker.restore()) # assert (isinstance(originator._data, DataFrame)) is True # # # # @pytest.fixture # def user_txt_delim(): # rbtn = {'csv': False, 'xlsx': False, 'txt': True} # lned = { # 'sheet': '', 'delim': ',', 'tskip': '', 'bskip': '', # 'header': '' # } # fname = 'Datasets_manual_test/climate_temp_test.txt' # user_input = ini.InputHandler( # name='fileoptions', lnedentry=lned, # rbtns=rbtn, filename=fname, checks=False) # return user_input # # def test_txt_comma_delim_reader_method( # user_txt_delim, Caretaker, user_txt, # DataFileOriginator, DataOriginator, Memento): # caretaker = Caretaker() # # originator_from_file = DataFileOriginator(user_txt_delim) # originator = DataOriginator(None, 'Initialize') # assert (isinstance(originator, DataOriginator)) is True # caretaker.save(originator_from_file.save_to_memento()) # originator.restore_from_memento(caretaker.restore()) # assert (isinstance(originator._data, DataFrame)) is True # originator_from_file = DataFileOriginator(user_txt) # originator = DataOriginator(None, 'Initialize') # assert (isinstance(originator, DataOriginator)) is True # caretaker.save(originator_from_file.save_to_memento()) # originator.restore_from_memento(caretaker.restore()) # assert (isinstance(originator._data, DataFrame)) is True # # # # @pytest.fixture # def user_txt_skiplines_no_header(): # rbtn = {'csv': False, 'xlsx': False, 'txt': True} # lned = { # 'sheet': '', 'delim': '\t', 'tskip': '8', 'bskip': '', # 'header': '-1' # } # fname = ( # rootpath + end + 'Datasets_manual_test' + end + # 'skip_no_header_test.txt') # user_input = ini.InputHandler( # name='fileoptions', lnedentry=lned, # rbtns=rbtn, filename=fname, checks=True) # return user_input # # def test_txt_skiplines_no_header( # user_txt_skiplines_no_header, Caretaker, # DataFileOriginator, DataOriginator, Memento): # caretaker = Caretaker() # originator_from_file = DataFileOriginator( # user_txt_skiplines_no_header) # originator = DataOriginator(None, 'Initialize') # assert (isinstance(originator, DataOriginator)) is True # caretaker.save(originator_from_file.save_to_memento()) # originator.restore_from_memento(caretaker.restore()) # data = originator._data # assert (isinstance(data, DataFrame)) is True # assert (len(data.columns) == 3) is True # print(data) # # @pytest.fixture # def user_txt_skiplines_header(): # rbtn = {'csv': False, 'xlsx': False, 'txt': True} # lned = { # 'sheet': '', 'delim': '\t', 'tskip': '10', 'bskip': '', # ': '' # } # fname = ( # rootpath + end + 'Datasets_manual_test' + end + # 'skip_header_test.txt') # user_input = ini.InputHandler( # name='fileoptions', lnedentry=lned, # rbtns=rbtn, filename=fname, checks=False) # return user_input # # def test_txt_skiplines_header( # user_txt_skiplines_header, Caretaker, # DataFileOriginator, DataOriginator, Memento): # caretaker = Caretaker() # originator_from_file = DataFileOriginator( # user_txt_skiplines_header) # originator = DataOriginator(None, 'Initialize') # assert (isinstance(originator, DataOriginator)) is True # caretaker.save(originator_from_file.save_to_memento()) # originator.restore_from_memento(caretaker.restore()) # data = originator._data # assert (isinstance(data, DataFrame)) is True # assert (len(data.columns) == 3) is True # print(data) #
mit
mfjb/scikit-learn
sklearn/decomposition/tests/test_fastica.py
272
7798
""" Test the fastica algorithm. """ import itertools import warnings import numpy as np from scipy import stats from nose.tools import assert_raises from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns from sklearn.decomposition import FastICA, fastica, PCA from sklearn.decomposition.fastica_ import _gs_decorrelation from sklearn.externals.six import moves def center_and_norm(x, axis=-1): """ Centers and norms x **in place** Parameters ----------- x: ndarray Array with an axis of observations (statistical units) measured on random variables. axis: int, optional Axis along which the mean and variance are calculated. """ x = np.rollaxis(x, axis) x -= x.mean(axis=0) x /= x.std(axis=0) def test_gs(): # Test gram schmidt orthonormalization # generate a random orthogonal matrix rng = np.random.RandomState(0) W, _, _ = np.linalg.svd(rng.randn(10, 10)) w = rng.randn(10) _gs_decorrelation(w, W, 10) assert_less((w ** 2).sum(), 1.e-10) w = rng.randn(10) u = _gs_decorrelation(w, W, 5) tmp = np.dot(u, W.T) assert_less((tmp[:5] ** 2).sum(), 1.e-10) def test_fastica_simple(add_noise=False): # Test the FastICA algorithm on very simple data. rng = np.random.RandomState(0) # scipy.stats uses the global RNG: np.random.seed(0) n_samples = 1000 # Generate two sources: s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1 s2 = stats.t.rvs(1, size=n_samples) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing angle phi = 0.6 mixing = np.array([[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]]) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(2, 1000) center_and_norm(m) # function as fun arg def g_test(x): return x ** 3, (3 * x ** 2).mean(axis=-1) algos = ['parallel', 'deflation'] nls = ['logcosh', 'exp', 'cube', g_test] whitening = [True, False] for algo, nl, whiten in itertools.product(algos, nls, whitening): if whiten: k_, mixing_, s_ = fastica(m.T, fun=nl, algorithm=algo) assert_raises(ValueError, fastica, m.T, fun=np.tanh, algorithm=algo) else: X = PCA(n_components=2, whiten=True).fit_transform(m.T) k_, mixing_, s_ = fastica(X, fun=nl, algorithm=algo, whiten=False) assert_raises(ValueError, fastica, X, fun=np.tanh, algorithm=algo) s_ = s_.T # Check that the mixing model described in the docstring holds: if whiten: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2) else: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=1) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=1) # Test FastICA class _, _, sources_fun = fastica(m.T, fun=nl, algorithm=algo, random_state=0) ica = FastICA(fun=nl, algorithm=algo, random_state=0) sources = ica.fit_transform(m.T) assert_equal(ica.components_.shape, (2, 2)) assert_equal(sources.shape, (1000, 2)) assert_array_almost_equal(sources_fun, sources) assert_array_almost_equal(sources, ica.transform(m.T)) assert_equal(ica.mixing_.shape, (2, 2)) for fn in [np.tanh, "exp(-.5(x^2))"]: ica = FastICA(fun=fn, algorithm=algo, random_state=0) assert_raises(ValueError, ica.fit, m.T) assert_raises(TypeError, FastICA(fun=moves.xrange(10)).fit, m.T) def test_fastica_nowhiten(): m = [[0, 1], [1, 0]] # test for issue #697 ica = FastICA(n_components=1, whiten=False, random_state=0) assert_warns(UserWarning, ica.fit, m) assert_true(hasattr(ica, 'mixing_')) def test_non_square_fastica(add_noise=False): # Test the FastICA algorithm on very simple data. rng = np.random.RandomState(0) n_samples = 1000 # Generate two sources: t = np.linspace(0, 100, n_samples) s1 = np.sin(t) s2 = np.ceil(np.sin(np.pi * t)) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing matrix mixing = rng.randn(6, 2) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(6, n_samples) center_and_norm(m) k_, mixing_, s_ = fastica(m.T, n_components=2, random_state=rng) s_ = s_.T # Check that the mixing model described in the docstring holds: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=3) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=3) def test_fit_transform(): # Test FastICA.fit_transform rng = np.random.RandomState(0) X = rng.random_sample((100, 10)) for whiten, n_components in [[True, 5], [False, None]]: n_components_ = (n_components if n_components is not None else X.shape[1]) ica = FastICA(n_components=n_components, whiten=whiten, random_state=0) Xt = ica.fit_transform(X) assert_equal(ica.components_.shape, (n_components_, 10)) assert_equal(Xt.shape, (100, n_components_)) ica = FastICA(n_components=n_components, whiten=whiten, random_state=0) ica.fit(X) assert_equal(ica.components_.shape, (n_components_, 10)) Xt2 = ica.transform(X) assert_array_almost_equal(Xt, Xt2) def test_inverse_transform(): # Test FastICA.inverse_transform n_features = 10 n_samples = 100 n1, n2 = 5, 10 rng = np.random.RandomState(0) X = rng.random_sample((n_samples, n_features)) expected = {(True, n1): (n_features, n1), (True, n2): (n_features, n2), (False, n1): (n_features, n2), (False, n2): (n_features, n2)} for whiten in [True, False]: for n_components in [n1, n2]: n_components_ = (n_components if n_components is not None else X.shape[1]) ica = FastICA(n_components=n_components, random_state=rng, whiten=whiten) with warnings.catch_warnings(record=True): # catch "n_components ignored" warning Xt = ica.fit_transform(X) expected_shape = expected[(whiten, n_components_)] assert_equal(ica.mixing_.shape, expected_shape) X2 = ica.inverse_transform(Xt) assert_equal(X.shape, X2.shape) # reversibility test in non-reduction case if n_components == X.shape[1]: assert_array_almost_equal(X, X2)
bsd-3-clause
joernhees/scikit-learn
sklearn/datasets/tests/test_mldata.py
384
5221
"""Test functionality of mldata fetching utilities.""" import os import shutil import tempfile import scipy as sp from sklearn import datasets from sklearn.datasets import mldata_filename, fetch_mldata from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_not_in from sklearn.utils.testing import mock_mldata_urlopen from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import with_setup from sklearn.utils.testing import assert_array_equal tmpdir = None def setup_tmpdata(): # create temporary dir global tmpdir tmpdir = tempfile.mkdtemp() os.makedirs(os.path.join(tmpdir, 'mldata')) def teardown_tmpdata(): # remove temporary dir if tmpdir is not None: shutil.rmtree(tmpdir) def test_mldata_filename(): cases = [('datasets-UCI iris', 'datasets-uci-iris'), ('news20.binary', 'news20binary'), ('book-crossing-ratings-1.0', 'book-crossing-ratings-10'), ('Nile Water Level', 'nile-water-level'), ('MNIST (original)', 'mnist-original')] for name, desired in cases: assert_equal(mldata_filename(name), desired) @with_setup(setup_tmpdata, teardown_tmpdata) def test_download(): """Test that fetch_mldata is able to download and cache a data set.""" _urlopen_ref = datasets.mldata.urlopen datasets.mldata.urlopen = mock_mldata_urlopen({ 'mock': { 'label': sp.ones((150,)), 'data': sp.ones((150, 4)), }, }) try: mock = fetch_mldata('mock', data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data"]: assert_in(n, mock) assert_equal(mock.target.shape, (150,)) assert_equal(mock.data.shape, (150, 4)) assert_raises(datasets.mldata.HTTPError, fetch_mldata, 'not_existing_name') finally: datasets.mldata.urlopen = _urlopen_ref @with_setup(setup_tmpdata, teardown_tmpdata) def test_fetch_one_column(): _urlopen_ref = datasets.mldata.urlopen try: dataname = 'onecol' # create fake data set in cache x = sp.arange(6).reshape(2, 3) datasets.mldata.urlopen = mock_mldata_urlopen({dataname: {'x': x}}) dset = fetch_mldata(dataname, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "data"]: assert_in(n, dset) assert_not_in("target", dset) assert_equal(dset.data.shape, (2, 3)) assert_array_equal(dset.data, x) # transposing the data array dset = fetch_mldata(dataname, transpose_data=False, data_home=tmpdir) assert_equal(dset.data.shape, (3, 2)) finally: datasets.mldata.urlopen = _urlopen_ref @with_setup(setup_tmpdata, teardown_tmpdata) def test_fetch_multiple_column(): _urlopen_ref = datasets.mldata.urlopen try: # create fake data set in cache x = sp.arange(6).reshape(2, 3) y = sp.array([1, -1]) z = sp.arange(12).reshape(4, 3) # by default dataname = 'threecol-default' datasets.mldata.urlopen = mock_mldata_urlopen({ dataname: ( { 'label': y, 'data': x, 'z': z, }, ['z', 'data', 'label'], ), }) dset = fetch_mldata(dataname, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "z"]: assert_in(n, dset) assert_not_in("x", dset) assert_not_in("y", dset) assert_array_equal(dset.data, x) assert_array_equal(dset.target, y) assert_array_equal(dset.z, z.T) # by order dataname = 'threecol-order' datasets.mldata.urlopen = mock_mldata_urlopen({ dataname: ({'y': y, 'x': x, 'z': z}, ['y', 'x', 'z']), }) dset = fetch_mldata(dataname, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "z"]: assert_in(n, dset) assert_not_in("x", dset) assert_not_in("y", dset) assert_array_equal(dset.data, x) assert_array_equal(dset.target, y) assert_array_equal(dset.z, z.T) # by number dataname = 'threecol-number' datasets.mldata.urlopen = mock_mldata_urlopen({ dataname: ({'y': y, 'x': x, 'z': z}, ['z', 'x', 'y']), }) dset = fetch_mldata(dataname, target_name=2, data_name=0, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "x"]: assert_in(n, dset) assert_not_in("y", dset) assert_not_in("z", dset) assert_array_equal(dset.data, z) assert_array_equal(dset.target, y) # by name dset = fetch_mldata(dataname, target_name='y', data_name='z', data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "x"]: assert_in(n, dset) assert_not_in("y", dset) assert_not_in("z", dset) finally: datasets.mldata.urlopen = _urlopen_ref
bsd-3-clause
eickenberg/scikit-learn
benchmarks/bench_lasso.py
297
3305
""" Benchmarks of Lasso vs LassoLars First, we fix a training set and increase the number of samples. Then we plot the computation time as function of the number of samples. In the second benchmark, we increase the number of dimensions of the training set. Then we plot the computation time as function of the number of dimensions. In both cases, only 10% of the features are informative. """ import gc from time import time import numpy as np from sklearn.datasets.samples_generator import make_regression def compute_bench(alpha, n_samples, n_features, precompute): lasso_results = [] lars_lasso_results = [] it = 0 for ns in n_samples: for nf in n_features: it += 1 print('==================') print('Iteration %s of %s' % (it, max(len(n_samples), len(n_features)))) print('==================') n_informative = nf // 10 X, Y, coef_ = make_regression(n_samples=ns, n_features=nf, n_informative=n_informative, noise=0.1, coef=True) X /= np.sqrt(np.sum(X ** 2, axis=0)) # Normalize data gc.collect() print("- benchmarking Lasso") clf = Lasso(alpha=alpha, fit_intercept=False, precompute=precompute) tstart = time() clf.fit(X, Y) lasso_results.append(time() - tstart) gc.collect() print("- benchmarking LassoLars") clf = LassoLars(alpha=alpha, fit_intercept=False, normalize=False, precompute=precompute) tstart = time() clf.fit(X, Y) lars_lasso_results.append(time() - tstart) return lasso_results, lars_lasso_results if __name__ == '__main__': from sklearn.linear_model import Lasso, LassoLars import pylab as pl alpha = 0.01 # regularization parameter n_features = 10 list_n_samples = np.linspace(100, 1000000, 5).astype(np.int) lasso_results, lars_lasso_results = compute_bench(alpha, list_n_samples, [n_features], precompute=True) pl.figure('scikit-learn LASSO benchmark results') pl.subplot(211) pl.plot(list_n_samples, lasso_results, 'b-', label='Lasso') pl.plot(list_n_samples, lars_lasso_results, 'r-', label='LassoLars') pl.title('precomputed Gram matrix, %d features, alpha=%s' % (n_features, alpha)) pl.legend(loc='upper left') pl.xlabel('number of samples') pl.ylabel('Time (s)') pl.axis('tight') n_samples = 2000 list_n_features = np.linspace(500, 3000, 5).astype(np.int) lasso_results, lars_lasso_results = compute_bench(alpha, [n_samples], list_n_features, precompute=False) pl.subplot(212) pl.plot(list_n_features, lasso_results, 'b-', label='Lasso') pl.plot(list_n_features, lars_lasso_results, 'r-', label='LassoLars') pl.title('%d samples, alpha=%s' % (n_samples, alpha)) pl.legend(loc='upper left') pl.xlabel('number of features') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
aabadie/scikit-learn
sklearn/linear_model/tests/test_sag.py
45
28228
# Authors: Danny Sullivan <[email protected]> # Tom Dupre la Tour <[email protected]> # # License: BSD 3 clause import math import numpy as np import scipy.sparse as sp from sklearn.linear_model.sag import get_auto_step_size from sklearn.linear_model.sag_fast import _multinomial_grad_loss_all_samples from sklearn.linear_model import LogisticRegression, Ridge from sklearn.linear_model.base import make_dataset from sklearn.linear_model.logistic import _multinomial_loss_grad from sklearn.utils.extmath import logsumexp from sklearn.utils.extmath import row_norms from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.utils import compute_class_weight from sklearn.utils import check_random_state from sklearn.preprocessing import LabelEncoder, LabelBinarizer from sklearn.datasets import make_blobs, load_iris from sklearn.base import clone iris = load_iris() # this is used for sag classification def log_dloss(p, y): z = p * y # approximately equal and saves the computation of the log if z > 18.0: return math.exp(-z) * -y if z < -18.0: return -y return -y / (math.exp(z) + 1.0) def log_loss(p, y): return np.mean(np.log(1. + np.exp(-y * p))) # this is used for sag regression def squared_dloss(p, y): return p - y def squared_loss(p, y): return np.mean(0.5 * (p - y) * (p - y)) # function for measuring the log loss def get_pobj(w, alpha, myX, myy, loss): w = w.ravel() pred = np.dot(myX, w) p = loss(pred, myy) p += alpha * w.dot(w) / 2. return p def sag(X, y, step_size, alpha, n_iter=1, dloss=None, sparse=False, sample_weight=None, fit_intercept=True): n_samples, n_features = X.shape[0], X.shape[1] weights = np.zeros(X.shape[1]) sum_gradient = np.zeros(X.shape[1]) gradient_memory = np.zeros((n_samples, n_features)) intercept = 0.0 intercept_sum_gradient = 0.0 intercept_gradient_memory = np.zeros(n_samples) rng = np.random.RandomState(77) decay = 1.0 seen = set() # sparse data has a fixed decay of .01 if sparse: decay = .01 for epoch in range(n_iter): for k in range(n_samples): idx = int(rng.rand(1) * n_samples) # idx = k entry = X[idx] seen.add(idx) p = np.dot(entry, weights) + intercept gradient = dloss(p, y[idx]) if sample_weight is not None: gradient *= sample_weight[idx] update = entry * gradient + alpha * weights sum_gradient += update - gradient_memory[idx] gradient_memory[idx] = update if fit_intercept: intercept_sum_gradient += (gradient - intercept_gradient_memory[idx]) intercept_gradient_memory[idx] = gradient intercept -= (step_size * intercept_sum_gradient / len(seen) * decay) weights -= step_size * sum_gradient / len(seen) return weights, intercept def sag_sparse(X, y, step_size, alpha, n_iter=1, dloss=None, sample_weight=None, sparse=False, fit_intercept=True): if step_size * alpha == 1.: raise ZeroDivisionError("Sparse sag does not handle the case " "step_size * alpha == 1") n_samples, n_features = X.shape[0], X.shape[1] weights = np.zeros(n_features) sum_gradient = np.zeros(n_features) last_updated = np.zeros(n_features, dtype=np.int) gradient_memory = np.zeros(n_samples) rng = np.random.RandomState(77) intercept = 0.0 intercept_sum_gradient = 0.0 wscale = 1.0 decay = 1.0 seen = set() c_sum = np.zeros(n_iter * n_samples) # sparse data has a fixed decay of .01 if sparse: decay = .01 counter = 0 for epoch in range(n_iter): for k in range(n_samples): # idx = k idx = int(rng.rand(1) * n_samples) entry = X[idx] seen.add(idx) if counter >= 1: for j in range(n_features): if last_updated[j] == 0: weights[j] -= c_sum[counter - 1] * sum_gradient[j] else: weights[j] -= ((c_sum[counter - 1] - c_sum[last_updated[j] - 1]) * sum_gradient[j]) last_updated[j] = counter p = (wscale * np.dot(entry, weights)) + intercept gradient = dloss(p, y[idx]) if sample_weight is not None: gradient *= sample_weight[idx] update = entry * gradient sum_gradient += update - (gradient_memory[idx] * entry) if fit_intercept: intercept_sum_gradient += gradient - gradient_memory[idx] intercept -= (step_size * intercept_sum_gradient / len(seen) * decay) gradient_memory[idx] = gradient wscale *= (1.0 - alpha * step_size) if counter == 0: c_sum[0] = step_size / (wscale * len(seen)) else: c_sum[counter] = (c_sum[counter - 1] + step_size / (wscale * len(seen))) if counter >= 1 and wscale < 1e-9: for j in range(n_features): if last_updated[j] == 0: weights[j] -= c_sum[counter] * sum_gradient[j] else: weights[j] -= ((c_sum[counter] - c_sum[last_updated[j] - 1]) * sum_gradient[j]) last_updated[j] = counter + 1 c_sum[counter] = 0 weights *= wscale wscale = 1.0 counter += 1 for j in range(n_features): if last_updated[j] == 0: weights[j] -= c_sum[counter - 1] * sum_gradient[j] else: weights[j] -= ((c_sum[counter - 1] - c_sum[last_updated[j] - 1]) * sum_gradient[j]) weights *= wscale return weights, intercept def get_step_size(X, alpha, fit_intercept, classification=True): if classification: return (4.0 / (np.max(np.sum(X * X, axis=1)) + fit_intercept + 4.0 * alpha)) else: return 1.0 / (np.max(np.sum(X * X, axis=1)) + fit_intercept + alpha) @ignore_warnings def test_classifier_matching(): n_samples = 20 X, y = make_blobs(n_samples=n_samples, centers=2, random_state=0, cluster_std=0.1) y[y == 0] = -1 alpha = 1.1 n_iter = 80 fit_intercept = True step_size = get_step_size(X, alpha, fit_intercept) clf = LogisticRegression(solver="sag", fit_intercept=fit_intercept, tol=1e-11, C=1. / alpha / n_samples, max_iter=n_iter, random_state=10) clf.fit(X, y) weights, intercept = sag_sparse(X, y, step_size, alpha, n_iter=n_iter, dloss=log_dloss, fit_intercept=fit_intercept) weights2, intercept2 = sag(X, y, step_size, alpha, n_iter=n_iter, dloss=log_dloss, fit_intercept=fit_intercept) weights = np.atleast_2d(weights) intercept = np.atleast_1d(intercept) weights2 = np.atleast_2d(weights2) intercept2 = np.atleast_1d(intercept2) assert_array_almost_equal(weights, clf.coef_, decimal=10) assert_array_almost_equal(intercept, clf.intercept_, decimal=10) assert_array_almost_equal(weights2, clf.coef_, decimal=10) assert_array_almost_equal(intercept2, clf.intercept_, decimal=10) @ignore_warnings def test_regressor_matching(): n_samples = 10 n_features = 5 rng = np.random.RandomState(10) X = rng.normal(size=(n_samples, n_features)) true_w = rng.normal(size=n_features) y = X.dot(true_w) alpha = 1. n_iter = 100 fit_intercept = True step_size = get_step_size(X, alpha, fit_intercept, classification=False) clf = Ridge(fit_intercept=fit_intercept, tol=.00000000001, solver='sag', alpha=alpha * n_samples, max_iter=n_iter) clf.fit(X, y) weights1, intercept1 = sag_sparse(X, y, step_size, alpha, n_iter=n_iter, dloss=squared_dloss, fit_intercept=fit_intercept) weights2, intercept2 = sag(X, y, step_size, alpha, n_iter=n_iter, dloss=squared_dloss, fit_intercept=fit_intercept) assert_array_almost_equal(weights1, clf.coef_, decimal=10) assert_array_almost_equal(intercept1, clf.intercept_, decimal=10) assert_array_almost_equal(weights2, clf.coef_, decimal=10) assert_array_almost_equal(intercept2, clf.intercept_, decimal=10) @ignore_warnings def test_sag_pobj_matches_logistic_regression(): """tests if the sag pobj matches log reg""" n_samples = 100 alpha = 1.0 max_iter = 20 X, y = make_blobs(n_samples=n_samples, centers=2, random_state=0, cluster_std=0.1) clf1 = LogisticRegression(solver='sag', fit_intercept=False, tol=.0000001, C=1. / alpha / n_samples, max_iter=max_iter, random_state=10) clf2 = clone(clf1) clf3 = LogisticRegression(fit_intercept=False, tol=.0000001, C=1. / alpha / n_samples, max_iter=max_iter, random_state=10) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) clf3.fit(X, y) pobj1 = get_pobj(clf1.coef_, alpha, X, y, log_loss) pobj2 = get_pobj(clf2.coef_, alpha, X, y, log_loss) pobj3 = get_pobj(clf3.coef_, alpha, X, y, log_loss) assert_array_almost_equal(pobj1, pobj2, decimal=4) assert_array_almost_equal(pobj2, pobj3, decimal=4) assert_array_almost_equal(pobj3, pobj1, decimal=4) @ignore_warnings def test_sag_pobj_matches_ridge_regression(): """tests if the sag pobj matches ridge reg""" n_samples = 100 n_features = 10 alpha = 1.0 n_iter = 100 fit_intercept = False rng = np.random.RandomState(10) X = rng.normal(size=(n_samples, n_features)) true_w = rng.normal(size=n_features) y = X.dot(true_w) clf1 = Ridge(fit_intercept=fit_intercept, tol=.00000000001, solver='sag', alpha=alpha, max_iter=n_iter, random_state=42) clf2 = clone(clf1) clf3 = Ridge(fit_intercept=fit_intercept, tol=.00001, solver='lsqr', alpha=alpha, max_iter=n_iter, random_state=42) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) clf3.fit(X, y) pobj1 = get_pobj(clf1.coef_, alpha, X, y, squared_loss) pobj2 = get_pobj(clf2.coef_, alpha, X, y, squared_loss) pobj3 = get_pobj(clf3.coef_, alpha, X, y, squared_loss) assert_array_almost_equal(pobj1, pobj2, decimal=4) assert_array_almost_equal(pobj1, pobj3, decimal=4) assert_array_almost_equal(pobj3, pobj2, decimal=4) @ignore_warnings def test_sag_regressor_computed_correctly(): """tests if the sag regressor is computed correctly""" alpha = .1 n_features = 10 n_samples = 40 max_iter = 50 tol = .000001 fit_intercept = True rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) w = rng.normal(size=n_features) y = np.dot(X, w) + 2. step_size = get_step_size(X, alpha, fit_intercept, classification=False) clf1 = Ridge(fit_intercept=fit_intercept, tol=tol, solver='sag', alpha=alpha * n_samples, max_iter=max_iter) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) spweights1, spintercept1 = sag_sparse(X, y, step_size, alpha, n_iter=max_iter, dloss=squared_dloss, fit_intercept=fit_intercept) spweights2, spintercept2 = sag_sparse(X, y, step_size, alpha, n_iter=max_iter, dloss=squared_dloss, sparse=True, fit_intercept=fit_intercept) assert_array_almost_equal(clf1.coef_.ravel(), spweights1.ravel(), decimal=3) assert_almost_equal(clf1.intercept_, spintercept1, decimal=1) # TODO: uncomment when sparse Ridge with intercept will be fixed (#4710) #assert_array_almost_equal(clf2.coef_.ravel(), # spweights2.ravel(), # decimal=3) #assert_almost_equal(clf2.intercept_, spintercept2, decimal=1)''' @ignore_warnings def test_get_auto_step_size(): X = np.array([[1, 2, 3], [2, 3, 4], [2, 3, 2]], dtype=np.float64) alpha = 1.2 fit_intercept = False # sum the squares of the second sample because that's the largest max_squared_sum = 4 + 9 + 16 max_squared_sum_ = row_norms(X, squared=True).max() assert_almost_equal(max_squared_sum, max_squared_sum_, decimal=4) for fit_intercept in (True, False): step_size_sqr = 1.0 / (max_squared_sum + alpha + int(fit_intercept)) step_size_log = 4.0 / (max_squared_sum + 4.0 * alpha + int(fit_intercept)) step_size_sqr_ = get_auto_step_size(max_squared_sum_, alpha, "squared", fit_intercept) step_size_log_ = get_auto_step_size(max_squared_sum_, alpha, "log", fit_intercept) assert_almost_equal(step_size_sqr, step_size_sqr_, decimal=4) assert_almost_equal(step_size_log, step_size_log_, decimal=4) msg = 'Unknown loss function for SAG solver, got wrong instead of' assert_raise_message(ValueError, msg, get_auto_step_size, max_squared_sum_, alpha, "wrong", fit_intercept) @ignore_warnings def test_sag_regressor(): """tests if the sag regressor performs well""" xmin, xmax = -5, 5 n_samples = 20 tol = .001 max_iter = 20 alpha = 0.1 rng = np.random.RandomState(0) X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1) # simple linear function without noise y = 0.5 * X.ravel() clf1 = Ridge(tol=tol, solver='sag', max_iter=max_iter, alpha=alpha * n_samples) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) score1 = clf1.score(X, y) score2 = clf2.score(X, y) assert_greater(score1, 0.99) assert_greater(score2, 0.99) # simple linear function with noise y = 0.5 * X.ravel() + rng.randn(n_samples, 1).ravel() clf1 = Ridge(tol=tol, solver='sag', max_iter=max_iter, alpha=alpha * n_samples) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) score1 = clf1.score(X, y) score2 = clf2.score(X, y) score2 = clf2.score(X, y) assert_greater(score1, 0.5) assert_greater(score2, 0.5) @ignore_warnings def test_sag_classifier_computed_correctly(): """tests if the binary classifier is computed correctly""" alpha = .1 n_samples = 50 n_iter = 50 tol = .00001 fit_intercept = True X, y = make_blobs(n_samples=n_samples, centers=2, random_state=0, cluster_std=0.1) step_size = get_step_size(X, alpha, fit_intercept, classification=True) classes = np.unique(y) y_tmp = np.ones(n_samples) y_tmp[y != classes[1]] = -1 y = y_tmp clf1 = LogisticRegression(solver='sag', C=1. / alpha / n_samples, max_iter=n_iter, tol=tol, random_state=77, fit_intercept=fit_intercept) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) spweights, spintercept = sag_sparse(X, y, step_size, alpha, n_iter=n_iter, dloss=log_dloss, fit_intercept=fit_intercept) spweights2, spintercept2 = sag_sparse(X, y, step_size, alpha, n_iter=n_iter, dloss=log_dloss, sparse=True, fit_intercept=fit_intercept) assert_array_almost_equal(clf1.coef_.ravel(), spweights.ravel(), decimal=2) assert_almost_equal(clf1.intercept_, spintercept, decimal=1) assert_array_almost_equal(clf2.coef_.ravel(), spweights2.ravel(), decimal=2) assert_almost_equal(clf2.intercept_, spintercept2, decimal=1) @ignore_warnings def test_sag_multiclass_computed_correctly(): """tests if the multiclass classifier is computed correctly""" alpha = .1 n_samples = 20 tol = .00001 max_iter = 40 fit_intercept = True X, y = make_blobs(n_samples=n_samples, centers=3, random_state=0, cluster_std=0.1) step_size = get_step_size(X, alpha, fit_intercept, classification=True) classes = np.unique(y) clf1 = LogisticRegression(solver='sag', C=1. / alpha / n_samples, max_iter=max_iter, tol=tol, random_state=77, fit_intercept=fit_intercept) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) coef1 = [] intercept1 = [] coef2 = [] intercept2 = [] for cl in classes: y_encoded = np.ones(n_samples) y_encoded[y != cl] = -1 spweights1, spintercept1 = sag_sparse(X, y_encoded, step_size, alpha, dloss=log_dloss, n_iter=max_iter, fit_intercept=fit_intercept) spweights2, spintercept2 = sag_sparse(X, y_encoded, step_size, alpha, dloss=log_dloss, n_iter=max_iter, sparse=True, fit_intercept=fit_intercept) coef1.append(spweights1) intercept1.append(spintercept1) coef2.append(spweights2) intercept2.append(spintercept2) coef1 = np.vstack(coef1) intercept1 = np.array(intercept1) coef2 = np.vstack(coef2) intercept2 = np.array(intercept2) for i, cl in enumerate(classes): assert_array_almost_equal(clf1.coef_[i].ravel(), coef1[i].ravel(), decimal=2) assert_almost_equal(clf1.intercept_[i], intercept1[i], decimal=1) assert_array_almost_equal(clf2.coef_[i].ravel(), coef2[i].ravel(), decimal=2) assert_almost_equal(clf2.intercept_[i], intercept2[i], decimal=1) @ignore_warnings def test_classifier_results(): """tests if classifier results match target""" alpha = .1 n_features = 20 n_samples = 10 tol = .01 max_iter = 200 rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) w = rng.normal(size=n_features) y = np.dot(X, w) y = np.sign(y) clf1 = LogisticRegression(solver='sag', C=1. / alpha / n_samples, max_iter=max_iter, tol=tol, random_state=77) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) pred1 = clf1.predict(X) pred2 = clf2.predict(X) assert_almost_equal(pred1, y, decimal=12) assert_almost_equal(pred2, y, decimal=12) @ignore_warnings def test_binary_classifier_class_weight(): """tests binary classifier with classweights for each class""" alpha = .1 n_samples = 50 n_iter = 20 tol = .00001 fit_intercept = True X, y = make_blobs(n_samples=n_samples, centers=2, random_state=10, cluster_std=0.1) step_size = get_step_size(X, alpha, fit_intercept, classification=True) classes = np.unique(y) y_tmp = np.ones(n_samples) y_tmp[y != classes[1]] = -1 y = y_tmp class_weight = {1: .45, -1: .55} clf1 = LogisticRegression(solver='sag', C=1. / alpha / n_samples, max_iter=n_iter, tol=tol, random_state=77, fit_intercept=fit_intercept, class_weight=class_weight) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) le = LabelEncoder() class_weight_ = compute_class_weight(class_weight, np.unique(y), y) sample_weight = class_weight_[le.fit_transform(y)] spweights, spintercept = sag_sparse(X, y, step_size, alpha, n_iter=n_iter, dloss=log_dloss, sample_weight=sample_weight, fit_intercept=fit_intercept) spweights2, spintercept2 = sag_sparse(X, y, step_size, alpha, n_iter=n_iter, dloss=log_dloss, sparse=True, sample_weight=sample_weight, fit_intercept=fit_intercept) assert_array_almost_equal(clf1.coef_.ravel(), spweights.ravel(), decimal=2) assert_almost_equal(clf1.intercept_, spintercept, decimal=1) assert_array_almost_equal(clf2.coef_.ravel(), spweights2.ravel(), decimal=2) assert_almost_equal(clf2.intercept_, spintercept2, decimal=1) @ignore_warnings def test_multiclass_classifier_class_weight(): """tests multiclass with classweights for each class""" alpha = .1 n_samples = 20 tol = .00001 max_iter = 50 class_weight = {0: .45, 1: .55, 2: .75} fit_intercept = True X, y = make_blobs(n_samples=n_samples, centers=3, random_state=0, cluster_std=0.1) step_size = get_step_size(X, alpha, fit_intercept, classification=True) classes = np.unique(y) clf1 = LogisticRegression(solver='sag', C=1. / alpha / n_samples, max_iter=max_iter, tol=tol, random_state=77, fit_intercept=fit_intercept, class_weight=class_weight) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) le = LabelEncoder() class_weight_ = compute_class_weight(class_weight, np.unique(y), y) sample_weight = class_weight_[le.fit_transform(y)] coef1 = [] intercept1 = [] coef2 = [] intercept2 = [] for cl in classes: y_encoded = np.ones(n_samples) y_encoded[y != cl] = -1 spweights1, spintercept1 = sag_sparse(X, y_encoded, step_size, alpha, n_iter=max_iter, dloss=log_dloss, sample_weight=sample_weight) spweights2, spintercept2 = sag_sparse(X, y_encoded, step_size, alpha, n_iter=max_iter, dloss=log_dloss, sample_weight=sample_weight, sparse=True) coef1.append(spweights1) intercept1.append(spintercept1) coef2.append(spweights2) intercept2.append(spintercept2) coef1 = np.vstack(coef1) intercept1 = np.array(intercept1) coef2 = np.vstack(coef2) intercept2 = np.array(intercept2) for i, cl in enumerate(classes): assert_array_almost_equal(clf1.coef_[i].ravel(), coef1[i].ravel(), decimal=2) assert_almost_equal(clf1.intercept_[i], intercept1[i], decimal=1) assert_array_almost_equal(clf2.coef_[i].ravel(), coef2[i].ravel(), decimal=2) assert_almost_equal(clf2.intercept_[i], intercept2[i], decimal=1) def test_classifier_single_class(): """tests if ValueError is thrown with only one class""" X = [[1, 2], [3, 4]] y = [1, 1] assert_raise_message(ValueError, "This solver needs samples of at least 2 classes " "in the data", LogisticRegression(solver='sag').fit, X, y) def test_step_size_alpha_error(): X = [[0, 0], [0, 0]] y = [1, -1] fit_intercept = False alpha = 1. msg = ("Current sag implementation does not handle the case" " step_size * alpha_scaled == 1") clf1 = LogisticRegression(solver='sag', C=1. / alpha, fit_intercept=fit_intercept) assert_raise_message(ZeroDivisionError, msg, clf1.fit, X, y) clf2 = Ridge(fit_intercept=fit_intercept, solver='sag', alpha=alpha) assert_raise_message(ZeroDivisionError, msg, clf2.fit, X, y) def test_multinomial_loss(): # test if the multinomial loss and gradient computations are consistent X, y = iris.data, iris.target.astype(np.float64) n_samples, n_features = X.shape n_classes = len(np.unique(y)) rng = check_random_state(42) weights = rng.randn(n_features, n_classes) intercept = rng.randn(n_classes) sample_weights = rng.randn(n_samples) np.abs(sample_weights, sample_weights) # compute loss and gradient like in multinomial SAG dataset, _ = make_dataset(X, y, sample_weights, random_state=42) loss_1, grad_1 = _multinomial_grad_loss_all_samples(dataset, weights, intercept, n_samples, n_features, n_classes) # compute loss and gradient like in multinomial LogisticRegression lbin = LabelBinarizer() Y_bin = lbin.fit_transform(y) weights_intercept = np.vstack((weights, intercept)).T.ravel() loss_2, grad_2, _ = _multinomial_loss_grad(weights_intercept, X, Y_bin, 0.0, sample_weights) grad_2 = grad_2.reshape(n_classes, -1) grad_2 = grad_2[:, :-1].T # comparison assert_array_almost_equal(grad_1, grad_2) assert_almost_equal(loss_1, loss_2) def test_multinomial_loss_ground_truth(): # n_samples, n_features, n_classes = 4, 2, 3 n_classes = 3 X = np.array([[1.1, 2.2], [2.2, -4.4], [3.3, -2.2], [1.1, 1.1]]) y = np.array([0, 1, 2, 0]) lbin = LabelBinarizer() Y_bin = lbin.fit_transform(y) weights = np.array([[0.1, 0.2, 0.3], [1.1, 1.2, -1.3]]) intercept = np.array([1., 0, -.2]) sample_weights = np.array([0.8, 1, 1, 0.8]) prediction = np.dot(X, weights) + intercept logsumexp_prediction = logsumexp(prediction, axis=1) p = prediction - logsumexp_prediction[:, np.newaxis] loss_1 = -(sample_weights[:, np.newaxis] * p * Y_bin).sum() diff = sample_weights[:, np.newaxis] * (np.exp(p) - Y_bin) grad_1 = np.dot(X.T, diff) weights_intercept = np.vstack((weights, intercept)).T.ravel() loss_2, grad_2, _ = _multinomial_loss_grad(weights_intercept, X, Y_bin, 0.0, sample_weights) grad_2 = grad_2.reshape(n_classes, -1) grad_2 = grad_2[:, :-1].T assert_almost_equal(loss_1, loss_2) assert_array_almost_equal(grad_1, grad_2) # ground truth loss_gt = 11.680360354325961 grad_gt = np.array([[-0.557487, -1.619151, +2.176638], [-0.903942, +5.258745, -4.354803]]) assert_almost_equal(loss_1, loss_gt) assert_array_almost_equal(grad_1, grad_gt)
bsd-3-clause
mplaine/www.laatukiikut.fi
2018/data_wrangling/Create Boulders Final.py
1
15366
# coding: utf-8 # # Suomen Parhaat Boulderit 2018: Create Boulders Final # March 17, 2018 # <br> # Google Maps JavaScript API key. See https://developers.google.com/maps/documentation/javascript/get-api-key # In[1]: GOOGLE_MAPS_JAVASCRIPT_API_KEY = "YOUR_API_KEY" # <br> # Import required modules # In[2]: import json import time import numpy as np import pandas as pd from geopy.geocoders import GoogleV3 from geopy.exc import GeocoderQueryError, GeocoderQuotaExceeded # <br> # Load the datafile `spb2018_-_cleaned.csv`, which contains the form responses to the **Suomen Parhaat Boulderit 2018** survey. # In[3]: # Load cleaned dataset spb2018_df = pd.read_csv("data/survey_-_cleaned.csv") # Drop duplicates (exclude the Timestamp column from comparisons) spb2018_df = spb2018_df.drop_duplicates(subset=spb2018_df.columns.values.tolist()[1:]) spb2018_df.head() # <br> # Load the datafile `boulders_-_prefilled.csv`, which contains manually added details of each voted boulder. # In[4]: boulder_details_df = pd.read_csv("data/boulders_-_prefilled.csv", index_col="Name") boulder_details_df.head() # <br> # Add column _VotedBy_ # In[5]: """ # Simpler but slower (appr. four times) implementation # 533 ms ± 95.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) def add_column_votedby(column_name="VotedBy"): # Gender mappings from Finnish to English gender_dict = { "Mies": "Male", "Nainen": "Female" } # Iterate over boulders for index, row in boulder_details_df.iterrows(): boulder_name = index gender_s = spb2018_df.loc[(spb2018_df["Boulderin nimi"] == boulder_name) | (spb2018_df["Boulderin nimi.1"] == boulder_name) | (spb2018_df["Boulderin nimi.2"] == boulder_name), "Sukupuoli"] boulder_details_df.loc[boulder_name, column_name] = gender_dict[gender_s.iloc[0]] if gender_s.nunique() == 1 else "Both" """ """ # More complex but faster (appr. four times) implementation # 136 ms ± 5.42 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) def add_column_votedby(column_name="VotedBy"): # Initialize the new column boulder_details_df[column_name] = "" # Gender mappings from Finnish to English gender_dict = { "Mies": "Male", "Nainen": "Female" } def update_genders(gender, boulder_names): for boulder_name in boulder_names: previous_gender = boulder_details_df.loc[boulder_name, column_name] if previous_gender == "" or previous_gender == gender: boulder_details_df.loc[boulder_name, column_name] = gender else: boulder_details_df.loc[boulder_name, column_name] = "Both" # Iterate over form responses for index, row in spb2018_df.iterrows(): gender = gender_dict[row["Sukupuoli"]] boulder_names = [row["Boulderin nimi"], row["Boulderin nimi.1"], row["Boulderin nimi.2"]] boulder_names = [boulder_name for boulder_name in boulder_names if pd.notnull(boulder_name)] update_genders(gender, boulder_names) """ # Typical implementation # 430 ms ± 78.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) def add_column_votedby(column_name="VotedBy"): # Gender mappings from Finnish to English gender_dict = { "Mies": "Male", "Nainen": "Female" } def set_voted_by(row): boulder_name = row.name gender_s = spb2018_df.loc[(spb2018_df["Boulderin nimi"] == boulder_name) | (spb2018_df["Boulderin nimi.1"] == boulder_name) | (spb2018_df["Boulderin nimi.2"] == boulder_name), "Sukupuoli"] return gender_dict[gender_s.iloc[0]] if gender_s.nunique() == 1 else "Both" boulder_details_df[column_name] = boulder_details_df.apply(set_voted_by, axis=1) add_column_votedby() boulder_details_df.head() # <br> # Add column *Votes*. # In[6]: def add_column_votes(column_name="Votes"): boulder_name_columns = [spb2018_df["Boulderin nimi"], spb2018_df["Boulderin nimi.1"], spb2018_df["Boulderin nimi.2"]] all_voted_boulders_s = pd.concat(boulder_name_columns, ignore_index=True).dropna() boulder_votes_s = all_voted_boulders_s.value_counts() boulder_details_df[column_name] = boulder_votes_s add_column_votes() boulder_details_df.sort_values(by=["Votes"], ascending=[False]).loc[boulder_details_df["Votes"] >= 3] # <br> # Add columns *Latitude* and *Longitude*. # In[7]: def add_columns_latitude_and_longitude(column_names=["Latitude", "Longitude"]): boulder_details_df[[column_names[0], column_names[1]]] = boulder_details_df["Coordinates"].str.split(",", expand=True).astype(float) add_columns_latitude_and_longitude() boulder_details_df.head() # <br> # Add column *GradeNumeric*. # In[8]: def add_column_gradenumeric(column_name="GradeNumeric"): # Grade mappings from Font to numeric grade_dict = { "?": 0, "1": 1, "2": 2, "3": 3, "4": 4, "4+": 5, "5": 6, "5+": 7, "6A": 8, "6A+": 9, "6B": 10, "6B+": 11, "6C": 12, "6C+": 13, "7A": 14, "7A+": 15, "7B": 16, "7B+": 17, "7C": 18, "7C+": 19, "8A": 20, "8A+": 21, "8B": 22, "8B+": 23, "8C": 24, "8C+": 25, "9A": 26 } boulder_details_df[column_name] = boulder_details_df.apply(lambda row: str(grade_dict[row["Grade"]]) if pd.notnull(row["Grade"]) else np.nan, axis=1) boulder_details_df[column_name] = boulder_details_df[column_name].astype(int) add_column_gradenumeric() boulder_details_df.head() # <br> # Add column *Adjectives* # In[9]: def add_column_adjectives(column_name="Adjectives"): def set_adjectives(row): boulder_name = row.name adjectives1_s = spb2018_df.loc[(spb2018_df["Boulderin nimi"] == boulder_name), "Kuvaile boulderia kolmella (3) adjektiivilla"] adjectives2_s = spb2018_df.loc[(spb2018_df["Boulderin nimi.1"] == boulder_name), "Kuvaile boulderia kolmella (3) adjektiivilla.1"] adjectives3_s = spb2018_df.loc[(spb2018_df["Boulderin nimi.2"] == boulder_name), "Kuvaile boulderia kolmella (3) adjektiivilla.2"] adjectives_s = adjectives1_s.append(adjectives2_s).append(adjectives3_s) adjectives = ",".join(adjectives_s) # Clean adjectives adjectives = ",".join(sorted(list(set([adjective.strip().lower() for adjective in adjectives.split(",")])))) return adjectives boulder_details_df[column_name] = boulder_details_df.apply(set_adjectives, axis=1) add_column_adjectives() boulder_details_df.head() # <br> # Add column *MainHoldTypes* # In[10]: def add_column_main_hold_types(column_name="MainHoldTypes"): def set_main_hold_types(row): boulder_name = row.name main_hold_types1_s = spb2018_df.loc[(spb2018_df["Boulderin nimi"] == boulder_name), "Boulderin pääotetyypit"] main_hold_types2_s = spb2018_df.loc[(spb2018_df["Boulderin nimi.1"] == boulder_name), "Boulderin pääotetyypit.1"] main_hold_types3_s = spb2018_df.loc[(spb2018_df["Boulderin nimi.2"] == boulder_name), "Boulderin pääotetyypit.2"] main_hold_types_s = main_hold_types1_s.append(main_hold_types2_s).append(main_hold_types3_s) main_hold_types = ",".join(main_hold_types_s) # Clean main_hold_types main_hold_types = ",".join(sorted(list(set([main_hold_type.strip().lower() for main_hold_type in main_hold_types.split(",")])))) return main_hold_types boulder_details_df[column_name] = boulder_details_df.apply(set_main_hold_types, axis=1) add_column_main_hold_types() boulder_details_df.head() # <br> # Add column *MainProfiles* # In[11]: def add_column_main_profiles(column_name="MainProfiles"): def set_main_profiles(row): boulder_name = row.name main_profiles1_s = spb2018_df.loc[(spb2018_df["Boulderin nimi"] == boulder_name), "Boulderin pääprofiilit"] main_profiles2_s = spb2018_df.loc[(spb2018_df["Boulderin nimi.1"] == boulder_name), "Boulderin pääprofiilit.1"] main_profiles3_s = spb2018_df.loc[(spb2018_df["Boulderin nimi.2"] == boulder_name), "Boulderin pääprofiilit.2"] main_profiles_s = main_profiles1_s.append(main_profiles2_s).append(main_profiles3_s) main_profiles = ",".join(main_profiles_s) # Clean main_profiles main_profiles = ",".join(sorted(list(set([main_profile.strip().lower() for main_profile in main_profiles.split(",")])))) return main_profiles boulder_details_df[column_name] = boulder_details_df.apply(set_main_profiles, axis=1) add_column_main_profiles() boulder_details_df.head() # <br> # Add column *MainSkillsNeeded* # In[12]: def add_column_main_skills_needed(column_name="MainSkillsNeeded"): def set_main_skills_needed(row): boulder_name = row.name main_skills_needed1_s = spb2018_df.loc[(spb2018_df["Boulderin nimi"] == boulder_name), "Boulderin kiipeämiseen vaadittavat pääkyvyt"] main_skills_needed2_s = spb2018_df.loc[(spb2018_df["Boulderin nimi.1"] == boulder_name), "Boulderin kiipeämiseen vaadittavat pääkyvyt.1"] main_skills_needed3_s = spb2018_df.loc[(spb2018_df["Boulderin nimi.2"] == boulder_name), "Boulderin kiipeämiseen vaadittavat pääkyvyt.2"] main_skills_needed_s = main_skills_needed1_s.append(main_skills_needed2_s).append(main_skills_needed3_s) main_skills_needed = ",".join(main_skills_needed_s) # Clean main_skills_needed main_skills_needed = ",".join(sorted(list(set([main_skill_needed.strip().lower() for main_skill_needed in main_skills_needed.split(",")])))) return main_skills_needed boulder_details_df[column_name] = boulder_details_df.apply(set_main_skills_needed, axis=1) add_column_main_skills_needed() boulder_details_df.head() # <br> # Add column *Comments* # In[13]: def add_column_comments(column_name="Comments"): def set_comments(row): boulder_name = row.name comments1_s = spb2018_df.loc[(spb2018_df["Boulderin nimi"] == boulder_name), "Kuvaile boulderia omin sanoin (vapaaehtoinen)"] comments2_s = spb2018_df.loc[(spb2018_df["Boulderin nimi.1"] == boulder_name), "Kuvaile boulderia omin sanoin (vapaaehtoinen).1"] comments3_s = spb2018_df.loc[(spb2018_df["Boulderin nimi.2"] == boulder_name), "Kuvaile boulderia omin sanoin (vapaaehtoinen).2"] comments_s = comments1_s.append(comments2_s).append(comments3_s) comments = [] for index, value in comments_s.iteritems(): if pd.notnull(value): comments.append(value.strip()) return ",".join("\"{}\"".format(comment) for comment in comments) boulder_details_df[column_name] = boulder_details_df.apply(set_comments, axis=1) add_column_comments() boulder_details_df.head() # <br> # Add columns *AreaLevel1*, *AreaLevel2*, and *AreaLevel3* # In[14]: def add_columns_arealevel1_arealevel2_and_arealevel3(column_names=["AreaLevel1", "AreaLevel2", "AreaLevel3"]): boulder_details_df.drop(columns=[column_names[0], column_names[1], column_names[2]], inplace=True, errors="ignore") geolocator = GoogleV3(api_key=GOOGLE_MAPS_JAVASCRIPT_API_KEY) def extract_administrative_area_levels(location_results, approximateLocation, area_levels_dict): # List of location result types that we are interested in location_result_types = ["administrative_area_level_1", "administrative_area_level_2", "administrative_area_level_3"] # Iterate over location results for location_result in location_results: location_result_json = location_result.raw # Extract data only from those location results that we are interested in if any(location_result_type in location_result_json["types"] for location_result_type in location_result_types): # Extract location result type location_result_type = location_result_json["types"][0] # Iterate over address components for address_component in location_result_json["address_components"]: # Extract data only from the matched location result type if location_result_type in address_component["types"]: # Extract the name of the administrative area level 1 if location_result_type == location_result_types[0]: area_levels_dict["AreaLevel1"] = address_component["long_name"] # Extract the name of the administrative area level 2 if location_result_type == location_result_types[1] and approximateLocation == "No": area_levels_dict["AreaLevel2"] = address_component["long_name"] # Extract the name of the administrative area level 3 if location_result_type == location_result_types[2] and approximateLocation == "No": area_levels_dict["AreaLevel3"] = address_component["long_name"] return area_levels_dict def get_area_levels(row): # Area levels template area_levels_dict = { column_names[0]: "", column_names[1]: "", column_names[2]: "" } geocoded = False while geocoded is not True: # Reverse geocode coordinates try: location_results = geolocator.reverse(row["Coordinates"], language="fi") area_levels_dict = extract_administrative_area_levels(location_results, row["ApproximateCoordinates"], area_levels_dict) geocoded = True except GeocoderQueryError as gqe: print("Geocoding error with {}: {}".format(row.name, str(gqe))) print("Skipping {}".format(row.name)) geocoded = True except GeocoderQuotaExceeded as gqe: print("Geocoding quota exceeded: {}".format(str(gqe))) print("Backing off for a bit") time.sleep(30 * 60) # sleep for 30 minutes print("Back in action") return pd.Series(area_levels_dict) boulder_area_levels_df = boulder_details_df[["Coordinates", "ApproximateCoordinates"]].apply(get_area_levels, axis=1) return pd.merge(boulder_details_df, boulder_area_levels_df, how="outer", left_index=True, right_index=True) boulder_details_df = add_columns_arealevel1_arealevel2_and_arealevel3() boulder_details_df.head() # <br> # Create boulders final file `boulders_-_final.csv`. # In[15]: def create_boulders_final(): boulder_details_reset_df = boulder_details_df.reset_index() boulder_details_reset_df = boulder_details_reset_df[["Votes", "VotedBy", "Name", "Grade", "GradeNumeric", "InFinland", "AreaLevel1", "AreaLevel2", "AreaLevel3", "Crag", "ApproximateCoordinates", "Coordinates", "Latitude", "Longitude", "Url27crags", "UrlVideo", "UrlStory", "MainProfiles", "MainHoldTypes", "MainSkillsNeeded", "Adjectives", "Comments"]] boulder_details_reset_df = boulder_details_reset_df.sort_values(by=["Votes", "GradeNumeric", "Name"], ascending=[False, False, True]) boulder_details_reset_df.to_csv("data/boulders_-_final.csv", index=False) create_boulders_final()
mit
lazywei/scikit-learn
benchmarks/bench_plot_incremental_pca.py
374
6430
""" ======================== IncrementalPCA benchmark ======================== Benchmarks for IncrementalPCA """ import numpy as np import gc from time import time from collections import defaultdict import matplotlib.pyplot as plt from sklearn.datasets import fetch_lfw_people from sklearn.decomposition import IncrementalPCA, RandomizedPCA, PCA def plot_results(X, y, label): plt.plot(X, y, label=label, marker='o') def benchmark(estimator, data): gc.collect() print("Benching %s" % estimator) t0 = time() estimator.fit(data) training_time = time() - t0 data_t = estimator.transform(data) data_r = estimator.inverse_transform(data_t) reconstruction_error = np.mean(np.abs(data - data_r)) return {'time': training_time, 'error': reconstruction_error} def plot_feature_times(all_times, batch_size, all_components, data): plt.figure() plot_results(all_components, all_times['pca'], label="PCA") plot_results(all_components, all_times['ipca'], label="IncrementalPCA, bsize=%i" % batch_size) plot_results(all_components, all_times['rpca'], label="RandomizedPCA") plt.legend(loc="upper left") plt.suptitle("Algorithm runtime vs. n_components\n \ LFW, size %i x %i" % data.shape) plt.xlabel("Number of components (out of max %i)" % data.shape[1]) plt.ylabel("Time (seconds)") def plot_feature_errors(all_errors, batch_size, all_components, data): plt.figure() plot_results(all_components, all_errors['pca'], label="PCA") plot_results(all_components, all_errors['ipca'], label="IncrementalPCA, bsize=%i" % batch_size) plot_results(all_components, all_errors['rpca'], label="RandomizedPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm error vs. n_components\n" "LFW, size %i x %i" % data.shape) plt.xlabel("Number of components (out of max %i)" % data.shape[1]) plt.ylabel("Mean absolute error") def plot_batch_times(all_times, n_features, all_batch_sizes, data): plt.figure() plot_results(all_batch_sizes, all_times['pca'], label="PCA") plot_results(all_batch_sizes, all_times['rpca'], label="RandomizedPCA") plot_results(all_batch_sizes, all_times['ipca'], label="IncrementalPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm runtime vs. batch_size for n_components %i\n \ LFW, size %i x %i" % ( n_features, data.shape[0], data.shape[1])) plt.xlabel("Batch size") plt.ylabel("Time (seconds)") def plot_batch_errors(all_errors, n_features, all_batch_sizes, data): plt.figure() plot_results(all_batch_sizes, all_errors['pca'], label="PCA") plot_results(all_batch_sizes, all_errors['ipca'], label="IncrementalPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm error vs. batch_size for n_components %i\n \ LFW, size %i x %i" % ( n_features, data.shape[0], data.shape[1])) plt.xlabel("Batch size") plt.ylabel("Mean absolute error") def fixed_batch_size_comparison(data): all_features = [i.astype(int) for i in np.linspace(data.shape[1] // 10, data.shape[1], num=5)] batch_size = 1000 # Compare runtimes and error for fixed batch size all_times = defaultdict(list) all_errors = defaultdict(list) for n_components in all_features: pca = PCA(n_components=n_components) rpca = RandomizedPCA(n_components=n_components, random_state=1999) ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) results_dict = {k: benchmark(est, data) for k, est in [('pca', pca), ('ipca', ipca), ('rpca', rpca)]} for k in sorted(results_dict.keys()): all_times[k].append(results_dict[k]['time']) all_errors[k].append(results_dict[k]['error']) plot_feature_times(all_times, batch_size, all_features, data) plot_feature_errors(all_errors, batch_size, all_features, data) def variable_batch_size_comparison(data): batch_sizes = [i.astype(int) for i in np.linspace(data.shape[0] // 10, data.shape[0], num=10)] for n_components in [i.astype(int) for i in np.linspace(data.shape[1] // 10, data.shape[1], num=4)]: all_times = defaultdict(list) all_errors = defaultdict(list) pca = PCA(n_components=n_components) rpca = RandomizedPCA(n_components=n_components, random_state=1999) results_dict = {k: benchmark(est, data) for k, est in [('pca', pca), ('rpca', rpca)]} # Create flat baselines to compare the variation over batch size all_times['pca'].extend([results_dict['pca']['time']] * len(batch_sizes)) all_errors['pca'].extend([results_dict['pca']['error']] * len(batch_sizes)) all_times['rpca'].extend([results_dict['rpca']['time']] * len(batch_sizes)) all_errors['rpca'].extend([results_dict['rpca']['error']] * len(batch_sizes)) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) results_dict = {k: benchmark(est, data) for k, est in [('ipca', ipca)]} all_times['ipca'].append(results_dict['ipca']['time']) all_errors['ipca'].append(results_dict['ipca']['error']) plot_batch_times(all_times, n_components, batch_sizes, data) # RandomizedPCA error is always worse (approx 100x) than other PCA # tests plot_batch_errors(all_errors, n_components, batch_sizes, data) faces = fetch_lfw_people(resize=.2, min_faces_per_person=5) # limit dataset to 5000 people (don't care who they are!) X = faces.data[:5000] n_samples, h, w = faces.images.shape n_features = X.shape[1] X -= X.mean(axis=0) X /= X.std(axis=0) fixed_batch_size_comparison(X) variable_batch_size_comparison(X) plt.show()
bsd-3-clause
blockstack/packaging
imported/future/src/future/utils/__init__.py
24
20523
""" A selection of cross-compatible functions for Python 2 and 3. This module exports useful functions for 2/3 compatible code: * bind_method: binds functions to classes * ``native_str_to_bytes`` and ``bytes_to_native_str`` * ``native_str``: always equal to the native platform string object (because this may be shadowed by imports from future.builtins) * lists: lrange(), lmap(), lzip(), lfilter() * iterable method compatibility: - iteritems, iterkeys, itervalues - viewitems, viewkeys, viewvalues These use the original method if available, otherwise they use items, keys, values. * types: * text_type: unicode in Python 2, str in Python 3 * binary_type: str in Python 2, bythes in Python 3 * string_types: basestring in Python 2, str in Python 3 * bchr(c): Take an integer and make a 1-character byte string * bord(c) Take the result of indexing on a byte string and make an integer * tobytes(s) Take a text string, a byte string, or a sequence of characters taken from a byte string, and make a byte string. * raise_from() * raise_with_traceback() This module also defines these decorators: * ``python_2_unicode_compatible`` * ``with_metaclass`` * ``implements_iterator`` Some of the functions in this module come from the following sources: * Jinja2 (BSD licensed: see https://github.com/mitsuhiko/jinja2/blob/master/LICENSE) * Pandas compatibility module pandas.compat * six.py by Benjamin Peterson * Django """ import types import sys import numbers import functools import copy import inspect PY3 = sys.version_info[0] == 3 PY2 = sys.version_info[0] == 2 PY26 = sys.version_info[0:2] == (2, 6) PY27 = sys.version_info[0:2] == (2, 7) PYPY = hasattr(sys, 'pypy_translation_info') def python_2_unicode_compatible(cls): """ A decorator that defines __unicode__ and __str__ methods under Python 2. Under Python 3, this decorator is a no-op. To support Python 2 and 3 with a single code base, define a __str__ method returning unicode text and apply this decorator to the class, like this:: >>> from future.utils import python_2_unicode_compatible >>> @python_2_unicode_compatible ... class MyClass(object): ... def __str__(self): ... return u'Unicode string: \u5b54\u5b50' >>> a = MyClass() Then, after this import: >>> from future.builtins import str the following is ``True`` on both Python 3 and 2:: >>> str(a) == a.encode('utf-8').decode('utf-8') True and, on a Unicode-enabled terminal with the right fonts, these both print the Chinese characters for Confucius:: >>> print(a) >>> print(str(a)) The implementation comes from django.utils.encoding. """ if not PY3: cls.__unicode__ = cls.__str__ cls.__str__ = lambda self: self.__unicode__().encode('utf-8') return cls def with_metaclass(meta, *bases): """ Function from jinja2/_compat.py. License: BSD. Use it like this:: class BaseForm(object): pass class FormType(type): pass class Form(with_metaclass(FormType, BaseForm)): pass This requires a bit of explanation: the basic idea is to make a dummy metaclass for one level of class instantiation that replaces itself with the actual metaclass. Because of internal type checks we also need to make sure that we downgrade the custom metaclass for one level to something closer to type (that's why __call__ and __init__ comes back from type etc.). This has the advantage over six.with_metaclass of not introducing dummy classes into the final MRO. """ class metaclass(meta): __call__ = type.__call__ __init__ = type.__init__ def __new__(cls, name, this_bases, d): if this_bases is None: return type.__new__(cls, name, (), d) return meta(name, bases, d) return metaclass('temporary_class', None, {}) # Definitions from pandas.compat and six.py follow: if PY3: def bchr(s): return bytes([s]) def bstr(s): if isinstance(s, str): return bytes(s, 'latin-1') else: return bytes(s) def bord(s): return s string_types = str, integer_types = int, class_types = type, text_type = str binary_type = bytes else: # Python 2 def bchr(s): return chr(s) def bstr(s): return str(s) def bord(s): return ord(s) string_types = basestring, integer_types = (int, long) class_types = (type, types.ClassType) text_type = unicode binary_type = str ### if PY3: def tobytes(s): if isinstance(s, bytes): return s else: if isinstance(s, str): return s.encode('latin-1') else: return bytes(s) else: # Python 2 def tobytes(s): if isinstance(s, unicode): return s.encode('latin-1') else: return ''.join(s) tobytes.__doc__ = """ Encodes to latin-1 (where the first 256 chars are the same as ASCII.) """ if PY3: def native_str_to_bytes(s, encoding='utf-8'): return s.encode(encoding) def bytes_to_native_str(b, encoding='utf-8'): return b.decode(encoding) def text_to_native_str(t, encoding=None): return t else: # Python 2 def native_str_to_bytes(s, encoding=None): from future.types import newbytes # to avoid a circular import return newbytes(s) def bytes_to_native_str(b, encoding=None): return native(b) def text_to_native_str(t, encoding='ascii'): """ Use this to create a Py2 native string when "from __future__ import unicode_literals" is in effect. """ return unicode(t).encode(encoding) native_str_to_bytes.__doc__ = """ On Py3, returns an encoded string. On Py2, returns a newbytes type, ignoring the ``encoding`` argument. """ if PY3: # list-producing versions of the major Python iterating functions def lrange(*args, **kwargs): return list(range(*args, **kwargs)) def lzip(*args, **kwargs): return list(zip(*args, **kwargs)) def lmap(*args, **kwargs): return list(map(*args, **kwargs)) def lfilter(*args, **kwargs): return list(filter(*args, **kwargs)) else: import __builtin__ # Python 2-builtin ranges produce lists lrange = __builtin__.range lzip = __builtin__.zip lmap = __builtin__.map lfilter = __builtin__.filter def isidentifier(s, dotted=False): ''' A function equivalent to the str.isidentifier method on Py3 ''' if dotted: return all(isidentifier(a) for a in s.split('.')) if PY3: return s.isidentifier() else: import re _name_re = re.compile(r"[a-zA-Z_][a-zA-Z0-9_]*$") return bool(_name_re.match(s)) def viewitems(obj, **kwargs): """ Function for iterating over dictionary items with the same set-like behaviour on Py2.7 as on Py3. Passes kwargs to method.""" func = getattr(obj, "viewitems", None) if not func: func = obj.items return func(**kwargs) def viewkeys(obj, **kwargs): """ Function for iterating over dictionary keys with the same set-like behaviour on Py2.7 as on Py3. Passes kwargs to method.""" func = getattr(obj, "viewkeys", None) if not func: func = obj.keys return func(**kwargs) def viewvalues(obj, **kwargs): """ Function for iterating over dictionary values with the same set-like behaviour on Py2.7 as on Py3. Passes kwargs to method.""" func = getattr(obj, "viewvalues", None) if not func: func = obj.values return func(**kwargs) def iteritems(obj, **kwargs): """Use this only if compatibility with Python versions before 2.7 is required. Otherwise, prefer viewitems(). """ func = getattr(obj, "iteritems", None) if not func: func = obj.items return func(**kwargs) def iterkeys(obj, **kwargs): """Use this only if compatibility with Python versions before 2.7 is required. Otherwise, prefer viewkeys(). """ func = getattr(obj, "iterkeys", None) if not func: func = obj.keys return func(**kwargs) def itervalues(obj, **kwargs): """Use this only if compatibility with Python versions before 2.7 is required. Otherwise, prefer viewvalues(). """ func = getattr(obj, "itervalues", None) if not func: func = obj.values return func(**kwargs) def bind_method(cls, name, func): """Bind a method to class, python 2 and python 3 compatible. Parameters ---------- cls : type class to receive bound method name : basestring name of method on class instance func : function function to be bound as method Returns ------- None """ # only python 2 has an issue with bound/unbound methods if not PY3: setattr(cls, name, types.MethodType(func, None, cls)) else: setattr(cls, name, func) def getexception(): return sys.exc_info()[1] def _get_caller_globals_and_locals(): """ Returns the globals and locals of the calling frame. Is there an alternative to frame hacking here? """ caller_frame = inspect.stack()[2] myglobals = caller_frame[0].f_globals mylocals = caller_frame[0].f_locals return myglobals, mylocals def _repr_strip(mystring): """ Returns the string without any initial or final quotes. """ r = repr(mystring) if r.startswith("'") and r.endswith("'"): return r[1:-1] else: return r if PY3: def raise_from(exc, cause): """ Equivalent to: raise EXCEPTION from CAUSE on Python 3. (See PEP 3134). """ # Is either arg an exception class (e.g. IndexError) rather than # instance (e.g. IndexError('my message here')? If so, pass the # name of the class undisturbed through to "raise ... from ...". if isinstance(exc, type) and issubclass(exc, Exception): exc = exc.__name__ if isinstance(cause, type) and issubclass(cause, Exception): cause = cause.__name__ execstr = "raise " + _repr_strip(exc) + " from " + _repr_strip(cause) myglobals, mylocals = _get_caller_globals_and_locals() exec(execstr, myglobals, mylocals) def raise_(tp, value=None, tb=None): """ A function that matches the Python 2.x ``raise`` statement. This allows re-raising exceptions with the cls value and traceback on Python 2 and 3. """ if value is not None and isinstance(tp, Exception): raise TypeError("instance exception may not have a separate value") if value is not None: exc = tp(value) else: exc = tp if exc.__traceback__ is not tb: raise exc.with_traceback(tb) raise exc def raise_with_traceback(exc, traceback=Ellipsis): if traceback == Ellipsis: _, _, traceback = sys.exc_info() raise exc.with_traceback(traceback) else: def raise_from(exc, cause): """ Equivalent to: raise EXCEPTION from CAUSE on Python 3. (See PEP 3134). """ # Is either arg an exception class (e.g. IndexError) rather than # instance (e.g. IndexError('my message here')? If so, pass the # name of the class undisturbed through to "raise ... from ...". if isinstance(exc, type) and issubclass(exc, Exception): e = exc() # exc = exc.__name__ # execstr = "e = " + _repr_strip(exc) + "()" # myglobals, mylocals = _get_caller_globals_and_locals() # exec(execstr, myglobals, mylocals) else: e = exc e.__suppress_context__ = False if isinstance(cause, type) and issubclass(cause, Exception): e.__cause__ = cause() e.__suppress_context__ = True elif cause is None: e.__cause__ = None e.__suppress_context__ = True elif isinstance(cause, BaseException): e.__cause__ = cause e.__suppress_context__ = True else: raise TypeError("exception causes must derive from BaseException") e.__context__ = sys.exc_info()[1] raise e exec(''' def raise_(tp, value=None, tb=None): raise tp, value, tb def raise_with_traceback(exc, traceback=Ellipsis): if traceback == Ellipsis: _, _, traceback = sys.exc_info() raise exc, None, traceback '''.strip()) raise_with_traceback.__doc__ = ( """Raise exception with existing traceback. If traceback is not passed, uses sys.exc_info() to get traceback.""" ) # Deprecated alias for backward compatibility with ``future`` versions < 0.11: reraise = raise_ def implements_iterator(cls): ''' From jinja2/_compat.py. License: BSD. Use as a decorator like this:: @implements_iterator class UppercasingIterator(object): def __init__(self, iterable): self._iter = iter(iterable) def __iter__(self): return self def __next__(self): return next(self._iter).upper() ''' if PY3: return cls else: cls.next = cls.__next__ del cls.__next__ return cls if PY3: get_next = lambda x: x.next else: get_next = lambda x: x.__next__ def encode_filename(filename): if PY3: return filename else: if isinstance(filename, unicode): return filename.encode('utf-8') return filename def is_new_style(cls): """ Python 2.7 has both new-style and old-style classes. Old-style classes can be pesky in some circumstances, such as when using inheritance. Use this function to test for whether a class is new-style. (Python 3 only has new-style classes.) """ return hasattr(cls, '__class__') and ('__dict__' in dir(cls) or hasattr(cls, '__slots__')) # The native platform string and bytes types. Useful because ``str`` and # ``bytes`` are redefined on Py2 by ``from future.builtins import *``. native_str = str native_bytes = bytes def istext(obj): """ Deprecated. Use:: >>> isinstance(obj, str) after this import: >>> from future.builtins import str """ return isinstance(obj, type(u'')) def isbytes(obj): """ Deprecated. Use:: >>> isinstance(obj, bytes) after this import: >>> from future.builtins import bytes """ return isinstance(obj, type(b'')) def isnewbytes(obj): """ Equivalent to the result of ``isinstance(obj, newbytes)`` were ``__instancecheck__`` not overridden on the newbytes subclass. In other words, it is REALLY a newbytes instance, not a Py2 native str object? """ # TODO: generalize this so that it works with subclasses of newbytes # Import is here to avoid circular imports: from future.types.newbytes import newbytes return type(obj) == newbytes def isint(obj): """ Deprecated. Tests whether an object is a Py3 ``int`` or either a Py2 ``int`` or ``long``. Instead of using this function, you can use: >>> from future.builtins import int >>> isinstance(obj, int) The following idiom is equivalent: >>> from numbers import Integral >>> isinstance(obj, Integral) """ return isinstance(obj, numbers.Integral) def native(obj): """ On Py3, this is a no-op: native(obj) -> obj On Py2, returns the corresponding native Py2 types that are superclasses for backported objects from Py3: >>> from builtins import str, bytes, int >>> native(str(u'ABC')) u'ABC' >>> type(native(str(u'ABC'))) unicode >>> native(bytes(b'ABC')) b'ABC' >>> type(native(bytes(b'ABC'))) bytes >>> native(int(10**20)) 100000000000000000000L >>> type(native(int(10**20))) long Existing native types on Py2 will be returned unchanged: >>> type(native(u'ABC')) unicode """ if hasattr(obj, '__native__'): return obj.__native__() else: return obj # Implementation of exec_ is from ``six``: if PY3: import builtins exec_ = getattr(builtins, "exec") else: def exec_(code, globs=None, locs=None): """Execute code in a namespace.""" if globs is None: frame = sys._getframe(1) globs = frame.f_globals if locs is None: locs = frame.f_locals del frame elif locs is None: locs = globs exec("""exec code in globs, locs""") # Defined here for backward compatibility: def old_div(a, b): """ DEPRECATED: import ``old_div`` from ``past.utils`` instead. Equivalent to ``a / b`` on Python 2 without ``from __future__ import division``. TODO: generalize this to other objects (like arrays etc.) """ if isinstance(a, numbers.Integral) and isinstance(b, numbers.Integral): return a // b else: return a / b def as_native_str(encoding='utf-8'): ''' A decorator to turn a function or method call that returns text, i.e. unicode, into one that returns a native platform str. Use it as a decorator like this:: from __future__ import unicode_literals class MyClass(object): @as_native_str(encoding='ascii') def __repr__(self): return next(self._iter).upper() ''' if PY3: return lambda f: f else: def encoder(f): @functools.wraps(f) def wrapper(*args, **kwargs): return f(*args, **kwargs).encode(encoding=encoding) return wrapper return encoder # listvalues and listitems definitions from Nick Coghlan's (withdrawn) # PEP 496: try: dict.iteritems except AttributeError: # Python 3 def listvalues(d): return list(d.values()) def listitems(d): return list(d.items()) else: # Python 2 def listvalues(d): return d.values() def listitems(d): return d.items() if PY3: def ensure_new_type(obj): return obj else: def ensure_new_type(obj): from future.types.newbytes import newbytes from future.types.newstr import newstr from future.types.newint import newint from future.types.newdict import newdict native_type = type(native(obj)) # Upcast only if the type is already a native (non-future) type if issubclass(native_type, type(obj)): # Upcast if native_type == str: # i.e. Py2 8-bit str return newbytes(obj) elif native_type == unicode: return newstr(obj) elif native_type == int: return newint(obj) elif native_type == long: return newint(obj) elif native_type == dict: return newdict(obj) else: return NotImplementedError('type %s not supported' % type(obj)) else: # Already a new type assert type(obj) in [newbytes, newstr] return obj __all__ = ['PY2', 'PY26', 'PY3', 'PYPY', 'as_native_str', 'bind_method', 'bord', 'bstr', 'bytes_to_native_str', 'encode_filename', 'ensure_new_type', 'exec_', 'get_next', 'getexception', 'implements_iterator', 'is_new_style', 'isbytes', 'isidentifier', 'isint', 'isnewbytes', 'istext', 'iteritems', 'iterkeys', 'itervalues', 'lfilter', 'listitems', 'listvalues', 'lmap', 'lrange', 'lzip', 'native', 'native_bytes', 'native_str', 'native_str_to_bytes', 'old_div', 'python_2_unicode_compatible', 'raise_', 'raise_with_traceback', 'reraise', 'text_to_native_str', 'tobytes', 'viewitems', 'viewkeys', 'viewvalues', 'with_metaclass' ]
gpl-3.0
idbedead/RNA-sequence-tools
picard_sort_insertmetrics.py
2
1747
import fnmatch import os import pandas as pd import subprocess '''This program takes accepted_hits.bam files from tophat and turns them into counts and creates matrix file of cells/conditions and counts using htseq: http://www-huber.embl.de/HTSeq/doc/overview.html The files are sorted using samtools: http://www.htslib.org/ Paired end mates are fixed and RNA metrics collected using Picard tools: http://broadinstitute.github.io/picard/ The 3' to 5' bias of each sample is collected as a matrix file for easy plotting. ''' #list of file paths with mapped hits pats = ['rsem_m38_Cfms-d7-Sham_insert_metrics'] #output path #initialize dictonaries for collected output fpkm_matrix_dict_g ={} count_dict = {} norm_read_dict = {} picard_stats_dict = {} #collect gene_list once since it the same between all samples st = 1 gene_list = [] #loop through all files and sort, fix, count, collect metrics on each for p in pats: for root, dirnames, filenames in os.walk(p): for filename in fnmatch.filter(filenames, 'insert_size_metrics.txt'): with open(os.path.join(root,'insert_size_metrics.txt'), mode='r') as f: next_line=-1 cname=os.path.basename(root) for i, l in enumerate(f): if l[0:18] == 'MEDIAN_INSERT_SIZE': titles = l.split('\t') next_line= i+1 if i == next_line: metrics = l.split('\t') a = dict(zip(titles, metrics)) picard_stats_dict[cname] = a final_df = pd.DataFrame(picard_stats_dict) final_df_t = final_df.transpose() final_df_t.to_csv(os.path.basename(pats[0])+"_picard_insert_metrics.txt", sep='\t')
mit
tdhopper/scikit-learn
sklearn/manifold/t_sne.py
48
20644
# Author: Alexander Fabisch -- <[email protected]> # License: BSD 3 clause (C) 2014 # This is the standard t-SNE implementation. There are faster modifications of # the algorithm: # * Barnes-Hut-SNE: reduces the complexity of the gradient computation from # N^2 to N log N (http://arxiv.org/abs/1301.3342) # * Fast Optimization for t-SNE: # http://cseweb.ucsd.edu/~lvdmaaten/workshops/nips2010/papers/vandermaaten.pdf import numpy as np from scipy import linalg from scipy.spatial.distance import pdist from scipy.spatial.distance import squareform from ..base import BaseEstimator from ..utils import check_array from ..utils import check_random_state from ..utils.extmath import _ravel from ..decomposition import RandomizedPCA from ..metrics.pairwise import pairwise_distances from . import _utils MACHINE_EPSILON = np.finfo(np.double).eps def _joint_probabilities(distances, desired_perplexity, verbose): """Compute joint probabilities p_ij from distances. Parameters ---------- distances : array, shape (n_samples * (n_samples-1) / 2,) Distances of samples are stored as condensed matrices, i.e. we omit the diagonal and duplicate entries and store everything in a one-dimensional array. desired_perplexity : float Desired perplexity of the joint probability distributions. verbose : int Verbosity level. Returns ------- P : array, shape (n_samples * (n_samples-1) / 2,) Condensed joint probability matrix. """ # Compute conditional probabilities such that they approximately match # the desired perplexity conditional_P = _utils._binary_search_perplexity( distances, desired_perplexity, verbose) P = conditional_P + conditional_P.T sum_P = np.maximum(np.sum(P), MACHINE_EPSILON) P = np.maximum(squareform(P) / sum_P, MACHINE_EPSILON) return P def _kl_divergence(params, P, alpha, n_samples, n_components): """t-SNE objective function: KL divergence of p_ijs and q_ijs. Parameters ---------- params : array, shape (n_params,) Unraveled embedding. P : array, shape (n_samples * (n_samples-1) / 2,) Condensed joint probability matrix. alpha : float Degrees of freedom of the Student's-t distribution. n_samples : int Number of samples. n_components : int Dimension of the embedded space. Returns ------- kl_divergence : float Kullback-Leibler divergence of p_ij and q_ij. grad : array, shape (n_params,) Unraveled gradient of the Kullback-Leibler divergence with respect to the embedding. """ X_embedded = params.reshape(n_samples, n_components) # Q is a heavy-tailed distribution: Student's t-distribution n = pdist(X_embedded, "sqeuclidean") n += 1. n /= alpha n **= (alpha + 1.0) / -2.0 Q = np.maximum(n / (2.0 * np.sum(n)), MACHINE_EPSILON) # Optimization trick below: np.dot(x, y) is faster than # np.sum(x * y) because it calls BLAS # Objective: C (Kullback-Leibler divergence of P and Q) kl_divergence = 2.0 * np.dot(P, np.log(P / Q)) # Gradient: dC/dY grad = np.ndarray((n_samples, n_components)) PQd = squareform((P - Q) * n) for i in range(n_samples): np.dot(_ravel(PQd[i]), X_embedded[i] - X_embedded, out=grad[i]) grad = grad.ravel() c = 2.0 * (alpha + 1.0) / alpha grad *= c return kl_divergence, grad def _gradient_descent(objective, p0, it, n_iter, n_iter_without_progress=30, momentum=0.5, learning_rate=1000.0, min_gain=0.01, min_grad_norm=1e-7, min_error_diff=1e-7, verbose=0, args=None): """Batch gradient descent with momentum and individual gains. Parameters ---------- objective : function or callable Should return a tuple of cost and gradient for a given parameter vector. p0 : array-like, shape (n_params,) Initial parameter vector. it : int Current number of iterations (this function will be called more than once during the optimization). n_iter : int Maximum number of gradient descent iterations. n_iter_without_progress : int, optional (default: 30) Maximum number of iterations without progress before we abort the optimization. momentum : float, within (0.0, 1.0), optional (default: 0.5) The momentum generates a weight for previous gradients that decays exponentially. learning_rate : float, optional (default: 1000.0) The learning rate should be extremely high for t-SNE! Values in the range [100.0, 1000.0] are common. min_gain : float, optional (default: 0.01) Minimum individual gain for each parameter. min_grad_norm : float, optional (default: 1e-7) If the gradient norm is below this threshold, the optimization will be aborted. min_error_diff : float, optional (default: 1e-7) If the absolute difference of two successive cost function values is below this threshold, the optimization will be aborted. verbose : int, optional (default: 0) Verbosity level. args : sequence Arguments to pass to objective function. Returns ------- p : array, shape (n_params,) Optimum parameters. error : float Optimum. i : int Last iteration. """ if args is None: args = [] p = p0.copy().ravel() update = np.zeros_like(p) gains = np.ones_like(p) error = np.finfo(np.float).max best_error = np.finfo(np.float).max best_iter = 0 for i in range(it, n_iter): new_error, grad = objective(p, *args) error_diff = np.abs(new_error - error) error = new_error grad_norm = linalg.norm(grad) if error < best_error: best_error = error best_iter = i elif i - best_iter > n_iter_without_progress: if verbose >= 2: print("[t-SNE] Iteration %d: did not make any progress " "during the last %d episodes. Finished." % (i + 1, n_iter_without_progress)) break if min_grad_norm >= grad_norm: if verbose >= 2: print("[t-SNE] Iteration %d: gradient norm %f. Finished." % (i + 1, grad_norm)) break if min_error_diff >= error_diff: if verbose >= 2: print("[t-SNE] Iteration %d: error difference %f. Finished." % (i + 1, error_diff)) break inc = update * grad >= 0.0 dec = np.invert(inc) gains[inc] += 0.05 gains[dec] *= 0.95 np.clip(gains, min_gain, np.inf) grad *= gains update = momentum * update - learning_rate * grad p += update if verbose >= 2 and (i + 1) % 10 == 0: print("[t-SNE] Iteration %d: error = %.7f, gradient norm = %.7f" % (i + 1, error, grad_norm)) return p, error, i def trustworthiness(X, X_embedded, n_neighbors=5, precomputed=False): """Expresses to what extent the local structure is retained. The trustworthiness is within [0, 1]. It is defined as .. math:: T(k) = 1 - \frac{2}{nk (2n - 3k - 1)} \sum^n_{i=1} \sum_{j \in U^{(k)}_i (r(i, j) - k)} where :math:`r(i, j)` is the rank of the embedded datapoint j according to the pairwise distances between the embedded datapoints, :math:`U^{(k)}_i` is the set of points that are in the k nearest neighbors in the embedded space but not in the original space. * "Neighborhood Preservation in Nonlinear Projection Methods: An Experimental Study" J. Venna, S. Kaski * "Learning a Parametric Embedding by Preserving Local Structure" L.J.P. van der Maaten Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. X_embedded : array, shape (n_samples, n_components) Embedding of the training data in low-dimensional space. n_neighbors : int, optional (default: 5) Number of neighbors k that will be considered. precomputed : bool, optional (default: False) Set this flag if X is a precomputed square distance matrix. Returns ------- trustworthiness : float Trustworthiness of the low-dimensional embedding. """ if precomputed: dist_X = X else: dist_X = pairwise_distances(X, squared=True) dist_X_embedded = pairwise_distances(X_embedded, squared=True) ind_X = np.argsort(dist_X, axis=1) ind_X_embedded = np.argsort(dist_X_embedded, axis=1)[:, 1:n_neighbors + 1] n_samples = X.shape[0] t = 0.0 ranks = np.zeros(n_neighbors) for i in range(n_samples): for j in range(n_neighbors): ranks[j] = np.where(ind_X[i] == ind_X_embedded[i, j])[0][0] ranks -= n_neighbors t += np.sum(ranks[ranks > 0]) t = 1.0 - t * (2.0 / (n_samples * n_neighbors * (2.0 * n_samples - 3.0 * n_neighbors - 1.0))) return t class TSNE(BaseEstimator): """t-distributed Stochastic Neighbor Embedding. t-SNE [1] is a tool to visualize high-dimensional data. It converts similarities between data points to joint probabilities and tries to minimize the Kullback-Leibler divergence between the joint probabilities of the low-dimensional embedding and the high-dimensional data. t-SNE has a cost function that is not convex, i.e. with different initializations we can get different results. It is highly recommended to use another dimensionality reduction method (e.g. PCA for dense data or TruncatedSVD for sparse data) to reduce the number of dimensions to a reasonable amount (e.g. 50) if the number of features is very high. This will suppress some noise and speed up the computation of pairwise distances between samples. For more tips see Laurens van der Maaten's FAQ [2]. Read more in the :ref:`User Guide <t_sne>`. Parameters ---------- n_components : int, optional (default: 2) Dimension of the embedded space. perplexity : float, optional (default: 30) The perplexity is related to the number of nearest neighbors that is used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. Consider selcting a value between 5 and 50. The choice is not extremely critical since t-SNE is quite insensitive to this parameter. early_exaggeration : float, optional (default: 4.0) Controls how tight natural clusters in the original space are in the embedded space and how much space will be between them. For larger values, the space between natural clusters will be larger in the embedded space. Again, the choice of this parameter is not very critical. If the cost function increases during initial optimization, the early exaggeration factor or the learning rate might be too high. learning_rate : float, optional (default: 1000) The learning rate can be a critical parameter. It should be between 100 and 1000. If the cost function increases during initial optimization, the early exaggeration factor or the learning rate might be too high. If the cost function gets stuck in a bad local minimum increasing the learning rate helps sometimes. n_iter : int, optional (default: 1000) Maximum number of iterations for the optimization. Should be at least 200. n_iter_without_progress : int, optional (default: 30) Maximum number of iterations without progress before we abort the optimization. min_grad_norm : float, optional (default: 1E-7) If the gradient norm is below this threshold, the optimization will be aborted. metric : string or callable, optional The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is "precomputed", X is assumed to be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. The default is "euclidean" which is interpreted as squared euclidean distance. init : string, optional (default: "random") Initialization of embedding. Possible options are 'random' and 'pca'. PCA initialization cannot be used with precomputed distances and is usually more globally stable than random initialization. verbose : int, optional (default: 0) Verbosity level. random_state : int or RandomState instance or None (default) Pseudo Random Number generator seed control. If None, use the numpy.random singleton. Note that different initializations might result in different local minima of the cost function. Attributes ---------- embedding_ : array-like, shape (n_samples, n_components) Stores the embedding vectors. training_data_ : array-like, shape (n_samples, n_features) Stores the training data. Examples -------- >>> import numpy as np >>> from sklearn.manifold import TSNE >>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]]) >>> model = TSNE(n_components=2, random_state=0) >>> model.fit_transform(X) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE array([[ 887.28..., 238.61...], [ -714.79..., 3243.34...], [ 957.30..., -2505.78...], [-1130.28..., -974.78...]) References ---------- [1] van der Maaten, L.J.P.; Hinton, G.E. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9:2579-2605, 2008. [2] van der Maaten, L.J.P. t-Distributed Stochastic Neighbor Embedding http://homepage.tudelft.nl/19j49/t-SNE.html """ def __init__(self, n_components=2, perplexity=30.0, early_exaggeration=4.0, learning_rate=1000.0, n_iter=1000, n_iter_without_progress=30, min_grad_norm=1e-7, metric="euclidean", init="random", verbose=0, random_state=None): if init not in ["pca", "random"]: raise ValueError("'init' must be either 'pca' or 'random'") self.n_components = n_components self.perplexity = perplexity self.early_exaggeration = early_exaggeration self.learning_rate = learning_rate self.n_iter = n_iter self.n_iter_without_progress = n_iter_without_progress self.min_grad_norm = min_grad_norm self.metric = metric self.init = init self.verbose = verbose self.random_state = random_state def fit(self, X, y=None): """Fit the model using X as training data. Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64) random_state = check_random_state(self.random_state) if self.early_exaggeration < 1.0: raise ValueError("early_exaggeration must be at least 1, but is " "%f" % self.early_exaggeration) if self.n_iter < 200: raise ValueError("n_iter should be at least 200") if self.metric == "precomputed": if self.init == 'pca': raise ValueError("The parameter init=\"pca\" cannot be used " "with metric=\"precomputed\".") if X.shape[0] != X.shape[1]: raise ValueError("X should be a square distance matrix") distances = X else: if self.verbose: print("[t-SNE] Computing pairwise distances...") if self.metric == "euclidean": distances = pairwise_distances(X, metric=self.metric, squared=True) else: distances = pairwise_distances(X, metric=self.metric) # Degrees of freedom of the Student's t-distribution. The suggestion # alpha = n_components - 1 comes from "Learning a Parametric Embedding # by Preserving Local Structure" Laurens van der Maaten, 2009. alpha = max(self.n_components - 1.0, 1) n_samples = X.shape[0] self.training_data_ = X P = _joint_probabilities(distances, self.perplexity, self.verbose) if self.init == 'pca': pca = RandomizedPCA(n_components=self.n_components, random_state=random_state) X_embedded = pca.fit_transform(X) elif self.init == 'random': X_embedded = None else: raise ValueError("Unsupported initialization scheme: %s" % self.init) self.embedding_ = self._tsne(P, alpha, n_samples, random_state, X_embedded=X_embedded) return self def _tsne(self, P, alpha, n_samples, random_state, X_embedded=None): """Runs t-SNE.""" # t-SNE minimizes the Kullback-Leiber divergence of the Gaussians P # and the Student's t-distributions Q. The optimization algorithm that # we use is batch gradient descent with three stages: # * early exaggeration with momentum 0.5 # * early exaggeration with momentum 0.8 # * final optimization with momentum 0.8 # The embedding is initialized with iid samples from Gaussians with # standard deviation 1e-4. if X_embedded is None: # Initialize embedding randomly X_embedded = 1e-4 * random_state.randn(n_samples, self.n_components) params = X_embedded.ravel() # Early exaggeration P *= self.early_exaggeration params, error, it = _gradient_descent( _kl_divergence, params, it=0, n_iter=50, momentum=0.5, min_grad_norm=0.0, min_error_diff=0.0, learning_rate=self.learning_rate, verbose=self.verbose, args=[P, alpha, n_samples, self.n_components]) params, error, it = _gradient_descent( _kl_divergence, params, it=it + 1, n_iter=100, momentum=0.8, min_grad_norm=0.0, min_error_diff=0.0, learning_rate=self.learning_rate, verbose=self.verbose, args=[P, alpha, n_samples, self.n_components]) if self.verbose: print("[t-SNE] Error after %d iterations with early " "exaggeration: %f" % (it + 1, error)) # Final optimization P /= self.early_exaggeration params, error, it = _gradient_descent( _kl_divergence, params, it=it + 1, n_iter=self.n_iter, min_grad_norm=self.min_grad_norm, n_iter_without_progress=self.n_iter_without_progress, momentum=0.8, learning_rate=self.learning_rate, verbose=self.verbose, args=[P, alpha, n_samples, self.n_components]) if self.verbose: print("[t-SNE] Error after %d iterations: %f" % (it + 1, error)) X_embedded = params.reshape(n_samples, self.n_components) return X_embedded def fit_transform(self, X, y=None): """Transform X to the embedded space. Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. Returns ------- X_new : array, shape (n_samples, n_components) Embedding of the training data in low-dimensional space. """ self.fit(X) return self.embedding_
bsd-3-clause
asnorkin/sentiment_analysis
site/lib/python2.7/site-packages/numpy/linalg/linalg.py
24
77839
"""Lite version of scipy.linalg. Notes ----- This module is a lite version of the linalg.py module in SciPy which contains high-level Python interface to the LAPACK library. The lite version only accesses the following LAPACK functions: dgesv, zgesv, dgeev, zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf, zgetrf, dpotrf, zpotrf, dgeqrf, zgeqrf, zungqr, dorgqr. """ from __future__ import division, absolute_import, print_function __all__ = ['matrix_power', 'solve', 'tensorsolve', 'tensorinv', 'inv', 'cholesky', 'eigvals', 'eigvalsh', 'pinv', 'slogdet', 'det', 'svd', 'eig', 'eigh', 'lstsq', 'norm', 'qr', 'cond', 'matrix_rank', 'LinAlgError', 'multi_dot'] import warnings from numpy.core import ( array, asarray, zeros, empty, empty_like, transpose, intc, single, double, csingle, cdouble, inexact, complexfloating, newaxis, ravel, all, Inf, dot, add, multiply, sqrt, maximum, fastCopyAndTranspose, sum, isfinite, size, finfo, errstate, geterrobj, longdouble, rollaxis, amin, amax, product, abs, broadcast, atleast_2d, intp, asanyarray, isscalar, object_ ) from numpy.lib import triu, asfarray from numpy.linalg import lapack_lite, _umath_linalg from numpy.matrixlib.defmatrix import matrix_power from numpy.compat import asbytes # For Python2/3 compatibility _N = asbytes('N') _V = asbytes('V') _A = asbytes('A') _S = asbytes('S') _L = asbytes('L') fortran_int = intc # Error object class LinAlgError(Exception): """ Generic Python-exception-derived object raised by linalg functions. General purpose exception class, derived from Python's exception.Exception class, programmatically raised in linalg functions when a Linear Algebra-related condition would prevent further correct execution of the function. Parameters ---------- None Examples -------- >>> from numpy import linalg as LA >>> LA.inv(np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "...linalg.py", line 350, in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype))) File "...linalg.py", line 249, in solve raise LinAlgError('Singular matrix') numpy.linalg.LinAlgError: Singular matrix """ pass # Dealing with errors in _umath_linalg _linalg_error_extobj = None def _determine_error_states(): global _linalg_error_extobj errobj = geterrobj() bufsize = errobj[0] with errstate(invalid='call', over='ignore', divide='ignore', under='ignore'): invalid_call_errmask = geterrobj()[1] _linalg_error_extobj = [bufsize, invalid_call_errmask, None] _determine_error_states() def _raise_linalgerror_singular(err, flag): raise LinAlgError("Singular matrix") def _raise_linalgerror_nonposdef(err, flag): raise LinAlgError("Matrix is not positive definite") def _raise_linalgerror_eigenvalues_nonconvergence(err, flag): raise LinAlgError("Eigenvalues did not converge") def _raise_linalgerror_svd_nonconvergence(err, flag): raise LinAlgError("SVD did not converge") def get_linalg_error_extobj(callback): extobj = list(_linalg_error_extobj) extobj[2] = callback return extobj def _makearray(a): new = asarray(a) wrap = getattr(a, "__array_prepare__", new.__array_wrap__) return new, wrap def isComplexType(t): return issubclass(t, complexfloating) _real_types_map = {single : single, double : double, csingle : single, cdouble : double} _complex_types_map = {single : csingle, double : cdouble, csingle : csingle, cdouble : cdouble} def _realType(t, default=double): return _real_types_map.get(t, default) def _complexType(t, default=cdouble): return _complex_types_map.get(t, default) def _linalgRealType(t): """Cast the type t to either double or cdouble.""" return double _complex_types_map = {single : csingle, double : cdouble, csingle : csingle, cdouble : cdouble} def _commonType(*arrays): # in lite version, use higher precision (always double or cdouble) result_type = single is_complex = False for a in arrays: if issubclass(a.dtype.type, inexact): if isComplexType(a.dtype.type): is_complex = True rt = _realType(a.dtype.type, default=None) if rt is None: # unsupported inexact scalar raise TypeError("array type %s is unsupported in linalg" % (a.dtype.name,)) else: rt = double if rt is double: result_type = double if is_complex: t = cdouble result_type = _complex_types_map[result_type] else: t = double return t, result_type # _fastCopyAndTranpose assumes the input is 2D (as all the calls in here are). _fastCT = fastCopyAndTranspose def _to_native_byte_order(*arrays): ret = [] for arr in arrays: if arr.dtype.byteorder not in ('=', '|'): ret.append(asarray(arr, dtype=arr.dtype.newbyteorder('='))) else: ret.append(arr) if len(ret) == 1: return ret[0] else: return ret def _fastCopyAndTranspose(type, *arrays): cast_arrays = () for a in arrays: if a.dtype.type is type: cast_arrays = cast_arrays + (_fastCT(a),) else: cast_arrays = cast_arrays + (_fastCT(a.astype(type)),) if len(cast_arrays) == 1: return cast_arrays[0] else: return cast_arrays def _assertRank2(*arrays): for a in arrays: if len(a.shape) != 2: raise LinAlgError('%d-dimensional array given. Array must be ' 'two-dimensional' % len(a.shape)) def _assertRankAtLeast2(*arrays): for a in arrays: if len(a.shape) < 2: raise LinAlgError('%d-dimensional array given. Array must be ' 'at least two-dimensional' % len(a.shape)) def _assertSquareness(*arrays): for a in arrays: if max(a.shape) != min(a.shape): raise LinAlgError('Array must be square') def _assertNdSquareness(*arrays): for a in arrays: if max(a.shape[-2:]) != min(a.shape[-2:]): raise LinAlgError('Last 2 dimensions of the array must be square') def _assertFinite(*arrays): for a in arrays: if not (isfinite(a).all()): raise LinAlgError("Array must not contain infs or NaNs") def _assertNoEmpty2d(*arrays): for a in arrays: if a.size == 0 and product(a.shape[-2:]) == 0: raise LinAlgError("Arrays cannot be empty") # Linear equations def tensorsolve(a, b, axes=None): """ Solve the tensor equation ``a x = b`` for x. It is assumed that all indices of `x` are summed over in the product, together with the rightmost indices of `a`, as is done in, for example, ``tensordot(a, x, axes=len(b.shape))``. Parameters ---------- a : array_like Coefficient tensor, of shape ``b.shape + Q``. `Q`, a tuple, equals the shape of that sub-tensor of `a` consisting of the appropriate number of its rightmost indices, and must be such that ``prod(Q) == prod(b.shape)`` (in which sense `a` is said to be 'square'). b : array_like Right-hand tensor, which can be of any shape. axes : tuple of ints, optional Axes in `a` to reorder to the right, before inversion. If None (default), no reordering is done. Returns ------- x : ndarray, shape Q Raises ------ LinAlgError If `a` is singular or not 'square' (in the above sense). See Also -------- numpy.tensordot, tensorinv, numpy.einsum Examples -------- >>> a = np.eye(2*3*4) >>> a.shape = (2*3, 4, 2, 3, 4) >>> b = np.random.randn(2*3, 4) >>> x = np.linalg.tensorsolve(a, b) >>> x.shape (2, 3, 4) >>> np.allclose(np.tensordot(a, x, axes=3), b) True """ a, wrap = _makearray(a) b = asarray(b) an = a.ndim if axes is not None: allaxes = list(range(0, an)) for k in axes: allaxes.remove(k) allaxes.insert(an, k) a = a.transpose(allaxes) oldshape = a.shape[-(an-b.ndim):] prod = 1 for k in oldshape: prod *= k a = a.reshape(-1, prod) b = b.ravel() res = wrap(solve(a, b)) res.shape = oldshape return res def solve(a, b): """ Solve a linear matrix equation, or system of linear scalar equations. Computes the "exact" solution, `x`, of the well-determined, i.e., full rank, linear matrix equation `ax = b`. Parameters ---------- a : (..., M, M) array_like Coefficient matrix. b : {(..., M,), (..., M, K)}, array_like Ordinate or "dependent variable" values. Returns ------- x : {(..., M,), (..., M, K)} ndarray Solution to the system a x = b. Returned shape is identical to `b`. Raises ------ LinAlgError If `a` is singular or not square. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The solutions are computed using LAPACK routine _gesv `a` must be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly independent; if either is not true, use `lstsq` for the least-squares best "solution" of the system/equation. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 22. Examples -------- Solve the system of equations ``3 * x0 + x1 = 9`` and ``x0 + 2 * x1 = 8``: >>> a = np.array([[3,1], [1,2]]) >>> b = np.array([9,8]) >>> x = np.linalg.solve(a, b) >>> x array([ 2., 3.]) Check that the solution is correct: >>> np.allclose(np.dot(a, x), b) True """ a, _ = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) b, wrap = _makearray(b) t, result_t = _commonType(a, b) # We use the b = (..., M,) logic, only if the number of extra dimensions # match exactly if b.ndim == a.ndim - 1: if a.shape[-1] == 0 and b.shape[-1] == 0: # Legal, but the ufunc cannot handle the 0-sized inner dims # let the ufunc handle all wrong cases. a = a.reshape(a.shape[:-1]) bc = broadcast(a, b) return wrap(empty(bc.shape, dtype=result_t)) gufunc = _umath_linalg.solve1 else: if b.size == 0: if (a.shape[-1] == 0 and b.shape[-2] == 0) or b.shape[-1] == 0: a = a[:,:1].reshape(a.shape[:-1] + (1,)) bc = broadcast(a, b) return wrap(empty(bc.shape, dtype=result_t)) gufunc = _umath_linalg.solve signature = 'DD->D' if isComplexType(t) else 'dd->d' extobj = get_linalg_error_extobj(_raise_linalgerror_singular) r = gufunc(a, b, signature=signature, extobj=extobj) return wrap(r.astype(result_t, copy=False)) def tensorinv(a, ind=2): """ Compute the 'inverse' of an N-dimensional array. The result is an inverse for `a` relative to the tensordot operation ``tensordot(a, b, ind)``, i. e., up to floating-point accuracy, ``tensordot(tensorinv(a), a, ind)`` is the "identity" tensor for the tensordot operation. Parameters ---------- a : array_like Tensor to 'invert'. Its shape must be 'square', i. e., ``prod(a.shape[:ind]) == prod(a.shape[ind:])``. ind : int, optional Number of first indices that are involved in the inverse sum. Must be a positive integer, default is 2. Returns ------- b : ndarray `a`'s tensordot inverse, shape ``a.shape[ind:] + a.shape[:ind]``. Raises ------ LinAlgError If `a` is singular or not 'square' (in the above sense). See Also -------- numpy.tensordot, tensorsolve Examples -------- >>> a = np.eye(4*6) >>> a.shape = (4, 6, 8, 3) >>> ainv = np.linalg.tensorinv(a, ind=2) >>> ainv.shape (8, 3, 4, 6) >>> b = np.random.randn(4, 6) >>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b)) True >>> a = np.eye(4*6) >>> a.shape = (24, 8, 3) >>> ainv = np.linalg.tensorinv(a, ind=1) >>> ainv.shape (8, 3, 24) >>> b = np.random.randn(24) >>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b)) True """ a = asarray(a) oldshape = a.shape prod = 1 if ind > 0: invshape = oldshape[ind:] + oldshape[:ind] for k in oldshape[ind:]: prod *= k else: raise ValueError("Invalid ind argument.") a = a.reshape(prod, -1) ia = inv(a) return ia.reshape(*invshape) # Matrix inversion def inv(a): """ Compute the (multiplicative) inverse of a matrix. Given a square matrix `a`, return the matrix `ainv` satisfying ``dot(a, ainv) = dot(ainv, a) = eye(a.shape[0])``. Parameters ---------- a : (..., M, M) array_like Matrix to be inverted. Returns ------- ainv : (..., M, M) ndarray or matrix (Multiplicative) inverse of the matrix `a`. Raises ------ LinAlgError If `a` is not square or inversion fails. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. Examples -------- >>> from numpy.linalg import inv >>> a = np.array([[1., 2.], [3., 4.]]) >>> ainv = inv(a) >>> np.allclose(np.dot(a, ainv), np.eye(2)) True >>> np.allclose(np.dot(ainv, a), np.eye(2)) True If a is a matrix object, then the return value is a matrix as well: >>> ainv = inv(np.matrix(a)) >>> ainv matrix([[-2. , 1. ], [ 1.5, -0.5]]) Inverses of several matrices can be computed at once: >>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]]) >>> inv(a) array([[[-2. , 1. ], [ 1.5, -0.5]], [[-5. , 2. ], [ 3. , -1. ]]]) """ a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) if a.shape[-1] == 0: # The inner array is 0x0, the ufunc cannot handle this case return wrap(empty_like(a, dtype=result_t)) signature = 'D->D' if isComplexType(t) else 'd->d' extobj = get_linalg_error_extobj(_raise_linalgerror_singular) ainv = _umath_linalg.inv(a, signature=signature, extobj=extobj) return wrap(ainv.astype(result_t, copy=False)) # Cholesky decomposition def cholesky(a): """ Cholesky decomposition. Return the Cholesky decomposition, `L * L.H`, of the square matrix `a`, where `L` is lower-triangular and .H is the conjugate transpose operator (which is the ordinary transpose if `a` is real-valued). `a` must be Hermitian (symmetric if real-valued) and positive-definite. Only `L` is actually returned. Parameters ---------- a : (..., M, M) array_like Hermitian (symmetric if all elements are real), positive-definite input matrix. Returns ------- L : (..., M, M) array_like Upper or lower-triangular Cholesky factor of `a`. Returns a matrix object if `a` is a matrix object. Raises ------ LinAlgError If the decomposition fails, for example, if `a` is not positive-definite. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The Cholesky decomposition is often used as a fast way of solving .. math:: A \\mathbf{x} = \\mathbf{b} (when `A` is both Hermitian/symmetric and positive-definite). First, we solve for :math:`\\mathbf{y}` in .. math:: L \\mathbf{y} = \\mathbf{b}, and then for :math:`\\mathbf{x}` in .. math:: L.H \\mathbf{x} = \\mathbf{y}. Examples -------- >>> A = np.array([[1,-2j],[2j,5]]) >>> A array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> L = np.linalg.cholesky(A) >>> L array([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) >>> np.dot(L, L.T.conj()) # verify that L * L.H = A array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like? >>> np.linalg.cholesky(A) # an ndarray object is returned array([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) >>> # But a matrix object is returned if A is a matrix object >>> LA.cholesky(np.matrix(A)) matrix([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) """ extobj = get_linalg_error_extobj(_raise_linalgerror_nonposdef) gufunc = _umath_linalg.cholesky_lo a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) signature = 'D->D' if isComplexType(t) else 'd->d' r = gufunc(a, signature=signature, extobj=extobj) return wrap(r.astype(result_t, copy=False)) # QR decompostion def qr(a, mode='reduced'): """ Compute the qr factorization of a matrix. Factor the matrix `a` as *qr*, where `q` is orthonormal and `r` is upper-triangular. Parameters ---------- a : array_like, shape (M, N) Matrix to be factored. mode : {'reduced', 'complete', 'r', 'raw', 'full', 'economic'}, optional If K = min(M, N), then 'reduced' : returns q, r with dimensions (M, K), (K, N) (default) 'complete' : returns q, r with dimensions (M, M), (M, N) 'r' : returns r only with dimensions (K, N) 'raw' : returns h, tau with dimensions (N, M), (K,) 'full' : alias of 'reduced', deprecated 'economic' : returns h from 'raw', deprecated. The options 'reduced', 'complete, and 'raw' are new in numpy 1.8, see the notes for more information. The default is 'reduced' and to maintain backward compatibility with earlier versions of numpy both it and the old default 'full' can be omitted. Note that array h returned in 'raw' mode is transposed for calling Fortran. The 'economic' mode is deprecated. The modes 'full' and 'economic' may be passed using only the first letter for backwards compatibility, but all others must be spelled out. See the Notes for more explanation. Returns ------- q : ndarray of float or complex, optional A matrix with orthonormal columns. When mode = 'complete' the result is an orthogonal/unitary matrix depending on whether or not a is real/complex. The determinant may be either +/- 1 in that case. r : ndarray of float or complex, optional The upper-triangular matrix. (h, tau) : ndarrays of np.double or np.cdouble, optional The array h contains the Householder reflectors that generate q along with r. The tau array contains scaling factors for the reflectors. In the deprecated 'economic' mode only h is returned. Raises ------ LinAlgError If factoring fails. Notes ----- This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, and zungqr. For more information on the qr factorization, see for example: http://en.wikipedia.org/wiki/QR_factorization Subclasses of `ndarray` are preserved except for the 'raw' mode. So if `a` is of type `matrix`, all the return values will be matrices too. New 'reduced', 'complete', and 'raw' options for mode were added in NumPy 1.8.0 and the old option 'full' was made an alias of 'reduced'. In addition the options 'full' and 'economic' were deprecated. Because 'full' was the previous default and 'reduced' is the new default, backward compatibility can be maintained by letting `mode` default. The 'raw' option was added so that LAPACK routines that can multiply arrays by q using the Householder reflectors can be used. Note that in this case the returned arrays are of type np.double or np.cdouble and the h array is transposed to be FORTRAN compatible. No routines using the 'raw' return are currently exposed by numpy, but some are available in lapack_lite and just await the necessary work. Examples -------- >>> a = np.random.randn(9, 6) >>> q, r = np.linalg.qr(a) >>> np.allclose(a, np.dot(q, r)) # a does equal qr True >>> r2 = np.linalg.qr(a, mode='r') >>> r3 = np.linalg.qr(a, mode='economic') >>> np.allclose(r, r2) # mode='r' returns the same r as mode='full' True >>> # But only triu parts are guaranteed equal when mode='economic' >>> np.allclose(r, np.triu(r3[:6,:6], k=0)) True Example illustrating a common use of `qr`: solving of least squares problems What are the least-squares-best `m` and `y0` in ``y = y0 + mx`` for the following data: {(0,1), (1,0), (1,2), (2,1)}. (Graph the points and you'll see that it should be y0 = 0, m = 1.) The answer is provided by solving the over-determined matrix equation ``Ax = b``, where:: A = array([[0, 1], [1, 1], [1, 1], [2, 1]]) x = array([[y0], [m]]) b = array([[1], [0], [2], [1]]) If A = qr such that q is orthonormal (which is always possible via Gram-Schmidt), then ``x = inv(r) * (q.T) * b``. (In numpy practice, however, we simply use `lstsq`.) >>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]]) >>> A array([[0, 1], [1, 1], [1, 1], [2, 1]]) >>> b = np.array([1, 0, 2, 1]) >>> q, r = LA.qr(A) >>> p = np.dot(q.T, b) >>> np.dot(LA.inv(r), p) array([ 1.1e-16, 1.0e+00]) """ if mode not in ('reduced', 'complete', 'r', 'raw'): if mode in ('f', 'full'): # 2013-04-01, 1.8 msg = "".join(( "The 'full' option is deprecated in favor of 'reduced'.\n", "For backward compatibility let mode default.")) warnings.warn(msg, DeprecationWarning, stacklevel=2) mode = 'reduced' elif mode in ('e', 'economic'): # 2013-04-01, 1.8 msg = "The 'economic' option is deprecated." warnings.warn(msg, DeprecationWarning, stacklevel=2) mode = 'economic' else: raise ValueError("Unrecognized mode '%s'" % mode) a, wrap = _makearray(a) _assertRank2(a) _assertNoEmpty2d(a) m, n = a.shape t, result_t = _commonType(a) a = _fastCopyAndTranspose(t, a) a = _to_native_byte_order(a) mn = min(m, n) tau = zeros((mn,), t) if isComplexType(t): lapack_routine = lapack_lite.zgeqrf routine_name = 'zgeqrf' else: lapack_routine = lapack_lite.dgeqrf routine_name = 'dgeqrf' # calculate optimal size of work data 'work' lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, n, a, m, tau, work, -1, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) # do qr decomposition lwork = int(abs(work[0])) work = zeros((lwork,), t) results = lapack_routine(m, n, a, m, tau, work, lwork, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) # handle modes that don't return q if mode == 'r': r = _fastCopyAndTranspose(result_t, a[:, :mn]) return wrap(triu(r)) if mode == 'raw': return a, tau if mode == 'economic': if t != result_t : a = a.astype(result_t, copy=False) return wrap(a.T) # generate q from a if mode == 'complete' and m > n: mc = m q = empty((m, m), t) else: mc = mn q = empty((n, m), t) q[:n] = a if isComplexType(t): lapack_routine = lapack_lite.zungqr routine_name = 'zungqr' else: lapack_routine = lapack_lite.dorgqr routine_name = 'dorgqr' # determine optimal lwork lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, mc, mn, q, m, tau, work, -1, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) # compute q lwork = int(abs(work[0])) work = zeros((lwork,), t) results = lapack_routine(m, mc, mn, q, m, tau, work, lwork, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) q = _fastCopyAndTranspose(result_t, q[:mc]) r = _fastCopyAndTranspose(result_t, a[:, :mc]) return wrap(q), wrap(triu(r)) # Eigenvalues def eigvals(a): """ Compute the eigenvalues of a general matrix. Main difference between `eigvals` and `eig`: the eigenvectors aren't returned. Parameters ---------- a : (..., M, M) array_like A complex- or real-valued matrix whose eigenvalues will be computed. Returns ------- w : (..., M,) ndarray The eigenvalues, each repeated according to its multiplicity. They are not necessarily ordered, nor are they necessarily real for real matrices. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eig : eigenvalues and right eigenvectors of general arrays eigvalsh : eigenvalues of symmetric or Hermitian arrays. eigh : eigenvalues and eigenvectors of symmetric/Hermitian arrays. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of general square arrays. Examples -------- Illustration, using the fact that the eigenvalues of a diagonal matrix are its diagonal elements, that multiplying a matrix on the left by an orthogonal matrix, `Q`, and on the right by `Q.T` (the transpose of `Q`), preserves the eigenvalues of the "middle" matrix. In other words, if `Q` is orthogonal, then ``Q * A * Q.T`` has the same eigenvalues as ``A``: >>> from numpy import linalg as LA >>> x = np.random.random() >>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]]) >>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :]) (1.0, 1.0, 0.0) Now multiply a diagonal matrix by Q on one side and by Q.T on the other: >>> D = np.diag((-1,1)) >>> LA.eigvals(D) array([-1., 1.]) >>> A = np.dot(Q, D) >>> A = np.dot(A, Q.T) >>> LA.eigvals(A) array([ 1., -1.]) """ a, wrap = _makearray(a) _assertNoEmpty2d(a) _assertRankAtLeast2(a) _assertNdSquareness(a) _assertFinite(a) t, result_t = _commonType(a) extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) signature = 'D->D' if isComplexType(t) else 'd->D' w = _umath_linalg.eigvals(a, signature=signature, extobj=extobj) if not isComplexType(t): if all(w.imag == 0): w = w.real result_t = _realType(result_t) else: result_t = _complexType(result_t) return w.astype(result_t, copy=False) def eigvalsh(a, UPLO='L'): """ Compute the eigenvalues of a Hermitian or real symmetric matrix. Main difference from eigh: the eigenvectors are not computed. Parameters ---------- a : (..., M, M) array_like A complex- or real-valued matrix whose eigenvalues are to be computed. UPLO : {'L', 'U'}, optional Specifies whether the calculation is done with the lower triangular part of `a` ('L', default) or the upper triangular part ('U'). Irrespective of this value only the real parts of the diagonal will be considered in the computation to preserve the notion of a Hermitian matrix. It therefore follows that the imaginary part of the diagonal will always be treated as zero. Returns ------- w : (..., M,) ndarray The eigenvalues in ascending order, each repeated according to its multiplicity. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigh : eigenvalues and eigenvectors of symmetric/Hermitian arrays. eigvals : eigenvalues of general real or complex arrays. eig : eigenvalues and right eigenvectors of general real or complex arrays. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The eigenvalues are computed using LAPACK routines _syevd, _heevd Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> LA.eigvalsh(a) array([ 0.17157288, 5.82842712]) >>> # demonstrate the treatment of the imaginary part of the diagonal >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]]) >>> a array([[ 5.+2.j, 9.-2.j], [ 0.+2.j, 2.-1.j]]) >>> # with UPLO='L' this is numerically equivalent to using LA.eigvals() >>> # with: >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]]) >>> b array([[ 5.+0.j, 0.-2.j], [ 0.+2.j, 2.+0.j]]) >>> wa = LA.eigvalsh(a) >>> wb = LA.eigvals(b) >>> wa; wb array([ 1., 6.]) array([ 6.+0.j, 1.+0.j]) """ UPLO = UPLO.upper() if UPLO not in ('L', 'U'): raise ValueError("UPLO argument must be 'L' or 'U'") extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) if UPLO == 'L': gufunc = _umath_linalg.eigvalsh_lo else: gufunc = _umath_linalg.eigvalsh_up a, wrap = _makearray(a) _assertNoEmpty2d(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) signature = 'D->d' if isComplexType(t) else 'd->d' w = gufunc(a, signature=signature, extobj=extobj) return w.astype(_realType(result_t), copy=False) def _convertarray(a): t, result_t = _commonType(a) a = _fastCT(a.astype(t)) return a, t, result_t # Eigenvectors def eig(a): """ Compute the eigenvalues and right eigenvectors of a square array. Parameters ---------- a : (..., M, M) array Matrices for which the eigenvalues and right eigenvectors will be computed Returns ------- w : (..., M) array The eigenvalues, each repeated according to its multiplicity. The eigenvalues are not necessarily ordered. The resulting array will be of complex type, unless the imaginary part is zero in which case it will be cast to a real type. When `a` is real the resulting eigenvalues will be real (0 imaginary part) or occur in conjugate pairs v : (..., M, M) array The normalized (unit "length") eigenvectors, such that the column ``v[:,i]`` is the eigenvector corresponding to the eigenvalue ``w[i]``. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigvals : eigenvalues of a non-symmetric array. eigh : eigenvalues and eigenvectors of a symmetric or Hermitian (conjugate symmetric) array. eigvalsh : eigenvalues of a symmetric or Hermitian (conjugate symmetric) array. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of general square arrays. The number `w` is an eigenvalue of `a` if there exists a vector `v` such that ``dot(a,v) = w * v``. Thus, the arrays `a`, `w`, and `v` satisfy the equations ``dot(a[:,:], v[:,i]) = w[i] * v[:,i]`` for :math:`i \\in \\{0,...,M-1\\}`. The array `v` of eigenvectors may not be of maximum rank, that is, some of the columns may be linearly dependent, although round-off error may obscure that fact. If the eigenvalues are all different, then theoretically the eigenvectors are linearly independent. Likewise, the (complex-valued) matrix of eigenvectors `v` is unitary if the matrix `a` is normal, i.e., if ``dot(a, a.H) = dot(a.H, a)``, where `a.H` denotes the conjugate transpose of `a`. Finally, it is emphasized that `v` consists of the *right* (as in right-hand side) eigenvectors of `a`. A vector `y` satisfying ``dot(y.T, a) = z * y.T`` for some number `z` is called a *left* eigenvector of `a`, and, in general, the left and right eigenvectors of a matrix are not necessarily the (perhaps conjugate) transposes of each other. References ---------- G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, Various pp. Examples -------- >>> from numpy import linalg as LA (Almost) trivial example with real e-values and e-vectors. >>> w, v = LA.eig(np.diag((1, 2, 3))) >>> w; v array([ 1., 2., 3.]) array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) Real matrix possessing complex e-values and e-vectors; note that the e-values are complex conjugates of each other. >>> w, v = LA.eig(np.array([[1, -1], [1, 1]])) >>> w; v array([ 1. + 1.j, 1. - 1.j]) array([[ 0.70710678+0.j , 0.70710678+0.j ], [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]]) Complex-valued matrix with real e-values (but complex-valued e-vectors); note that a.conj().T = a, i.e., a is Hermitian. >>> a = np.array([[1, 1j], [-1j, 1]]) >>> w, v = LA.eig(a) >>> w; v array([ 2.00000000e+00+0.j, 5.98651912e-36+0.j]) # i.e., {2, 0} array([[ 0.00000000+0.70710678j, 0.70710678+0.j ], [ 0.70710678+0.j , 0.00000000+0.70710678j]]) Be careful about round-off error! >>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]]) >>> # Theor. e-values are 1 +/- 1e-9 >>> w, v = LA.eig(a) >>> w; v array([ 1., 1.]) array([[ 1., 0.], [ 0., 1.]]) """ a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) _assertFinite(a) t, result_t = _commonType(a) extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) signature = 'D->DD' if isComplexType(t) else 'd->DD' w, vt = _umath_linalg.eig(a, signature=signature, extobj=extobj) if not isComplexType(t) and all(w.imag == 0.0): w = w.real vt = vt.real result_t = _realType(result_t) else: result_t = _complexType(result_t) vt = vt.astype(result_t, copy=False) return w.astype(result_t, copy=False), wrap(vt) def eigh(a, UPLO='L'): """ Return the eigenvalues and eigenvectors of a Hermitian or symmetric matrix. Returns two objects, a 1-D array containing the eigenvalues of `a`, and a 2-D square array or matrix (depending on the input type) of the corresponding eigenvectors (in columns). Parameters ---------- a : (..., M, M) array Hermitian/Symmetric matrices whose eigenvalues and eigenvectors are to be computed. UPLO : {'L', 'U'}, optional Specifies whether the calculation is done with the lower triangular part of `a` ('L', default) or the upper triangular part ('U'). Irrespective of this value only the real parts of the diagonal will be considered in the computation to preserve the notion of a Hermitian matrix. It therefore follows that the imaginary part of the diagonal will always be treated as zero. Returns ------- w : (..., M) ndarray The eigenvalues in ascending order, each repeated according to its multiplicity. v : {(..., M, M) ndarray, (..., M, M) matrix} The column ``v[:, i]`` is the normalized eigenvector corresponding to the eigenvalue ``w[i]``. Will return a matrix object if `a` is a matrix object. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigvalsh : eigenvalues of symmetric or Hermitian arrays. eig : eigenvalues and right eigenvectors for non-symmetric arrays. eigvals : eigenvalues of non-symmetric arrays. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The eigenvalues/eigenvectors are computed using LAPACK routines _syevd, _heevd The eigenvalues of real symmetric or complex Hermitian matrices are always real. [1]_ The array `v` of (column) eigenvectors is unitary and `a`, `w`, and `v` satisfy the equations ``dot(a, v[:, i]) = w[i] * v[:, i]``. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 222. Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> a array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> w, v = LA.eigh(a) >>> w; v array([ 0.17157288, 5.82842712]) array([[-0.92387953+0.j , -0.38268343+0.j ], [ 0.00000000+0.38268343j, 0.00000000-0.92387953j]]) >>> np.dot(a, v[:, 0]) - w[0] * v[:, 0] # verify 1st e-val/vec pair array([2.77555756e-17 + 0.j, 0. + 1.38777878e-16j]) >>> np.dot(a, v[:, 1]) - w[1] * v[:, 1] # verify 2nd e-val/vec pair array([ 0.+0.j, 0.+0.j]) >>> A = np.matrix(a) # what happens if input is a matrix object >>> A matrix([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> w, v = LA.eigh(A) >>> w; v array([ 0.17157288, 5.82842712]) matrix([[-0.92387953+0.j , -0.38268343+0.j ], [ 0.00000000+0.38268343j, 0.00000000-0.92387953j]]) >>> # demonstrate the treatment of the imaginary part of the diagonal >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]]) >>> a array([[ 5.+2.j, 9.-2.j], [ 0.+2.j, 2.-1.j]]) >>> # with UPLO='L' this is numerically equivalent to using LA.eig() with: >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]]) >>> b array([[ 5.+0.j, 0.-2.j], [ 0.+2.j, 2.+0.j]]) >>> wa, va = LA.eigh(a) >>> wb, vb = LA.eig(b) >>> wa; wb array([ 1., 6.]) array([ 6.+0.j, 1.+0.j]) >>> va; vb array([[-0.44721360-0.j , -0.89442719+0.j ], [ 0.00000000+0.89442719j, 0.00000000-0.4472136j ]]) array([[ 0.89442719+0.j , 0.00000000-0.4472136j], [ 0.00000000-0.4472136j, 0.89442719+0.j ]]) """ UPLO = UPLO.upper() if UPLO not in ('L', 'U'): raise ValueError("UPLO argument must be 'L' or 'U'") a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) if UPLO == 'L': gufunc = _umath_linalg.eigh_lo else: gufunc = _umath_linalg.eigh_up signature = 'D->dD' if isComplexType(t) else 'd->dd' w, vt = gufunc(a, signature=signature, extobj=extobj) w = w.astype(_realType(result_t), copy=False) vt = vt.astype(result_t, copy=False) return w, wrap(vt) # Singular value decomposition def svd(a, full_matrices=1, compute_uv=1): """ Singular Value Decomposition. Factors the matrix `a` as ``u * np.diag(s) * v``, where `u` and `v` are unitary and `s` is a 1-d array of `a`'s singular values. Parameters ---------- a : (..., M, N) array_like A real or complex matrix of shape (`M`, `N`) . full_matrices : bool, optional If True (default), `u` and `v` have the shapes (`M`, `M`) and (`N`, `N`), respectively. Otherwise, the shapes are (`M`, `K`) and (`K`, `N`), respectively, where `K` = min(`M`, `N`). compute_uv : bool, optional Whether or not to compute `u` and `v` in addition to `s`. True by default. Returns ------- u : { (..., M, M), (..., M, K) } array Unitary matrices. The actual shape depends on the value of ``full_matrices``. Only returned when ``compute_uv`` is True. s : (..., K) array The singular values for every matrix, sorted in descending order. v : { (..., N, N), (..., K, N) } array Unitary matrices. The actual shape depends on the value of ``full_matrices``. Only returned when ``compute_uv`` is True. Raises ------ LinAlgError If SVD computation does not converge. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The decomposition is performed using LAPACK routine _gesdd The SVD is commonly written as ``a = U S V.H``. The `v` returned by this function is ``V.H`` and ``u = U``. If ``U`` is a unitary matrix, it means that it satisfies ``U.H = inv(U)``. The rows of `v` are the eigenvectors of ``a.H a``. The columns of `u` are the eigenvectors of ``a a.H``. For row ``i`` in `v` and column ``i`` in `u`, the corresponding eigenvalue is ``s[i]**2``. If `a` is a `matrix` object (as opposed to an `ndarray`), then so are all the return values. Examples -------- >>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6) Reconstruction based on full SVD: >>> U, s, V = np.linalg.svd(a, full_matrices=True) >>> U.shape, V.shape, s.shape ((9, 9), (6, 6), (6,)) >>> S = np.zeros((9, 6), dtype=complex) >>> S[:6, :6] = np.diag(s) >>> np.allclose(a, np.dot(U, np.dot(S, V))) True Reconstruction based on reduced SVD: >>> U, s, V = np.linalg.svd(a, full_matrices=False) >>> U.shape, V.shape, s.shape ((9, 6), (6, 6), (6,)) >>> S = np.diag(s) >>> np.allclose(a, np.dot(U, np.dot(S, V))) True """ a, wrap = _makearray(a) _assertNoEmpty2d(a) _assertRankAtLeast2(a) t, result_t = _commonType(a) extobj = get_linalg_error_extobj(_raise_linalgerror_svd_nonconvergence) m = a.shape[-2] n = a.shape[-1] if compute_uv: if full_matrices: if m < n: gufunc = _umath_linalg.svd_m_f else: gufunc = _umath_linalg.svd_n_f else: if m < n: gufunc = _umath_linalg.svd_m_s else: gufunc = _umath_linalg.svd_n_s signature = 'D->DdD' if isComplexType(t) else 'd->ddd' u, s, vt = gufunc(a, signature=signature, extobj=extobj) u = u.astype(result_t, copy=False) s = s.astype(_realType(result_t), copy=False) vt = vt.astype(result_t, copy=False) return wrap(u), s, wrap(vt) else: if m < n: gufunc = _umath_linalg.svd_m else: gufunc = _umath_linalg.svd_n signature = 'D->d' if isComplexType(t) else 'd->d' s = gufunc(a, signature=signature, extobj=extobj) s = s.astype(_realType(result_t), copy=False) return s def cond(x, p=None): """ Compute the condition number of a matrix. This function is capable of returning the condition number using one of seven different norms, depending on the value of `p` (see Parameters below). Parameters ---------- x : (..., M, N) array_like The matrix whose condition number is sought. p : {None, 1, -1, 2, -2, inf, -inf, 'fro'}, optional Order of the norm: ===== ============================ p norm for matrices ===== ============================ None 2-norm, computed directly using the ``SVD`` 'fro' Frobenius norm inf max(sum(abs(x), axis=1)) -inf min(sum(abs(x), axis=1)) 1 max(sum(abs(x), axis=0)) -1 min(sum(abs(x), axis=0)) 2 2-norm (largest sing. value) -2 smallest singular value ===== ============================ inf means the numpy.inf object, and the Frobenius norm is the root-of-sum-of-squares norm. Returns ------- c : {float, inf} The condition number of the matrix. May be infinite. See Also -------- numpy.linalg.norm Notes ----- The condition number of `x` is defined as the norm of `x` times the norm of the inverse of `x` [1]_; the norm can be the usual L2-norm (root-of-sum-of-squares) or one of a number of other matrix norms. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, Orlando, FL, Academic Press, Inc., 1980, pg. 285. Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]]) >>> a array([[ 1, 0, -1], [ 0, 1, 0], [ 1, 0, 1]]) >>> LA.cond(a) 1.4142135623730951 >>> LA.cond(a, 'fro') 3.1622776601683795 >>> LA.cond(a, np.inf) 2.0 >>> LA.cond(a, -np.inf) 1.0 >>> LA.cond(a, 1) 2.0 >>> LA.cond(a, -1) 1.0 >>> LA.cond(a, 2) 1.4142135623730951 >>> LA.cond(a, -2) 0.70710678118654746 >>> min(LA.svd(a, compute_uv=0))*min(LA.svd(LA.inv(a), compute_uv=0)) 0.70710678118654746 """ x = asarray(x) # in case we have a matrix if p is None: s = svd(x, compute_uv=False) return s[..., 0]/s[..., -1] else: return norm(x, p, axis=(-2, -1)) * norm(inv(x), p, axis=(-2, -1)) def matrix_rank(M, tol=None): """ Return matrix rank of array using SVD method Rank of the array is the number of SVD singular values of the array that are greater than `tol`. Parameters ---------- M : {(M,), (M, N)} array_like array of <=2 dimensions tol : {None, float}, optional threshold below which SVD values are considered zero. If `tol` is None, and ``S`` is an array with singular values for `M`, and ``eps`` is the epsilon value for datatype of ``S``, then `tol` is set to ``S.max() * max(M.shape) * eps``. Notes ----- The default threshold to detect rank deficiency is a test on the magnitude of the singular values of `M`. By default, we identify singular values less than ``S.max() * max(M.shape) * eps`` as indicating rank deficiency (with the symbols defined above). This is the algorithm MATLAB uses [1]. It also appears in *Numerical recipes* in the discussion of SVD solutions for linear least squares [2]. This default threshold is designed to detect rank deficiency accounting for the numerical errors of the SVD computation. Imagine that there is a column in `M` that is an exact (in floating point) linear combination of other columns in `M`. Computing the SVD on `M` will not produce a singular value exactly equal to 0 in general: any difference of the smallest SVD value from 0 will be caused by numerical imprecision in the calculation of the SVD. Our threshold for small SVD values takes this numerical imprecision into account, and the default threshold will detect such numerical rank deficiency. The threshold may declare a matrix `M` rank deficient even if the linear combination of some columns of `M` is not exactly equal to another column of `M` but only numerically very close to another column of `M`. We chose our default threshold because it is in wide use. Other thresholds are possible. For example, elsewhere in the 2007 edition of *Numerical recipes* there is an alternative threshold of ``S.max() * np.finfo(M.dtype).eps / 2. * np.sqrt(m + n + 1.)``. The authors describe this threshold as being based on "expected roundoff error" (p 71). The thresholds above deal with floating point roundoff error in the calculation of the SVD. However, you may have more information about the sources of error in `M` that would make you consider other tolerance values to detect *effective* rank deficiency. The most useful measure of the tolerance depends on the operations you intend to use on your matrix. For example, if your data come from uncertain measurements with uncertainties greater than floating point epsilon, choosing a tolerance near that uncertainty may be preferable. The tolerance may be absolute if the uncertainties are absolute rather than relative. References ---------- .. [1] MATLAB reference documention, "Rank" http://www.mathworks.com/help/techdoc/ref/rank.html .. [2] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, "Numerical Recipes (3rd edition)", Cambridge University Press, 2007, page 795. Examples -------- >>> from numpy.linalg import matrix_rank >>> matrix_rank(np.eye(4)) # Full rank matrix 4 >>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix >>> matrix_rank(I) 3 >>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0 1 >>> matrix_rank(np.zeros((4,))) 0 """ M = asarray(M) if M.ndim > 2: raise TypeError('array should have 2 or fewer dimensions') if M.ndim < 2: return int(not all(M==0)) S = svd(M, compute_uv=False) if tol is None: tol = S.max() * max(M.shape) * finfo(S.dtype).eps return sum(S > tol) # Generalized inverse def pinv(a, rcond=1e-15 ): """ Compute the (Moore-Penrose) pseudo-inverse of a matrix. Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all *large* singular values. Parameters ---------- a : (M, N) array_like Matrix to be pseudo-inverted. rcond : float Cutoff for small singular values. Singular values smaller (in modulus) than `rcond` * largest_singular_value (again, in modulus) are set to zero. Returns ------- B : (N, M) ndarray The pseudo-inverse of `a`. If `a` is a `matrix` instance, then so is `B`. Raises ------ LinAlgError If the SVD computation does not converge. Notes ----- The pseudo-inverse of a matrix A, denoted :math:`A^+`, is defined as: "the matrix that 'solves' [the least-squares problem] :math:`Ax = b`," i.e., if :math:`\\bar{x}` is said solution, then :math:`A^+` is that matrix such that :math:`\\bar{x} = A^+b`. It can be shown that if :math:`Q_1 \\Sigma Q_2^T = A` is the singular value decomposition of A, then :math:`A^+ = Q_2 \\Sigma^+ Q_1^T`, where :math:`Q_{1,2}` are orthogonal matrices, :math:`\\Sigma` is a diagonal matrix consisting of A's so-called singular values, (followed, typically, by zeros), and then :math:`\\Sigma^+` is simply the diagonal matrix consisting of the reciprocals of A's singular values (again, followed by zeros). [1]_ References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pp. 139-142. Examples -------- The following example checks that ``a * a+ * a == a`` and ``a+ * a * a+ == a+``: >>> a = np.random.randn(9, 6) >>> B = np.linalg.pinv(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True """ a, wrap = _makearray(a) _assertNoEmpty2d(a) a = a.conjugate() u, s, vt = svd(a, 0) m = u.shape[0] n = vt.shape[1] cutoff = rcond*maximum.reduce(s) for i in range(min(n, m)): if s[i] > cutoff: s[i] = 1./s[i] else: s[i] = 0. res = dot(transpose(vt), multiply(s[:, newaxis], transpose(u))) return wrap(res) # Determinant def slogdet(a): """ Compute the sign and (natural) logarithm of the determinant of an array. If an array has a very small or very large determinant, then a call to `det` may overflow or underflow. This routine is more robust against such issues, because it computes the logarithm of the determinant rather than the determinant itself. Parameters ---------- a : (..., M, M) array_like Input array, has to be a square 2-D array. Returns ------- sign : (...) array_like A number representing the sign of the determinant. For a real matrix, this is 1, 0, or -1. For a complex matrix, this is a complex number with absolute value 1 (i.e., it is on the unit circle), or else 0. logdet : (...) array_like The natural log of the absolute value of the determinant. If the determinant is zero, then `sign` will be 0 and `logdet` will be -Inf. In all cases, the determinant is equal to ``sign * np.exp(logdet)``. See Also -------- det Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. .. versionadded:: 1.6.0 The determinant is computed via LU factorization using the LAPACK routine z/dgetrf. Examples -------- The determinant of a 2-D array ``[[a, b], [c, d]]`` is ``ad - bc``: >>> a = np.array([[1, 2], [3, 4]]) >>> (sign, logdet) = np.linalg.slogdet(a) >>> (sign, logdet) (-1, 0.69314718055994529) >>> sign * np.exp(logdet) -2.0 Computing log-determinants for a stack of matrices: >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ]) >>> a.shape (3, 2, 2) >>> sign, logdet = np.linalg.slogdet(a) >>> (sign, logdet) (array([-1., -1., -1.]), array([ 0.69314718, 1.09861229, 2.07944154])) >>> sign * np.exp(logdet) array([-2., -3., -8.]) This routine succeeds where ordinary `det` does not: >>> np.linalg.det(np.eye(500) * 0.1) 0.0 >>> np.linalg.slogdet(np.eye(500) * 0.1) (1, -1151.2925464970228) """ a = asarray(a) _assertNoEmpty2d(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) real_t = _realType(result_t) signature = 'D->Dd' if isComplexType(t) else 'd->dd' sign, logdet = _umath_linalg.slogdet(a, signature=signature) if isscalar(sign): sign = sign.astype(result_t) else: sign = sign.astype(result_t, copy=False) if isscalar(logdet): logdet = logdet.astype(real_t) else: logdet = logdet.astype(real_t, copy=False) return sign, logdet def det(a): """ Compute the determinant of an array. Parameters ---------- a : (..., M, M) array_like Input array to compute determinants for. Returns ------- det : (...) array_like Determinant of `a`. See Also -------- slogdet : Another way to representing the determinant, more suitable for large matrices where underflow/overflow may occur. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The determinant is computed via LU factorization using the LAPACK routine z/dgetrf. Examples -------- The determinant of a 2-D array [[a, b], [c, d]] is ad - bc: >>> a = np.array([[1, 2], [3, 4]]) >>> np.linalg.det(a) -2.0 Computing determinants for a stack of matrices: >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ]) >>> a.shape (3, 2, 2) >>> np.linalg.det(a) array([-2., -3., -8.]) """ a = asarray(a) _assertNoEmpty2d(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) signature = 'D->D' if isComplexType(t) else 'd->d' r = _umath_linalg.det(a, signature=signature) if isscalar(r): r = r.astype(result_t) else: r = r.astype(result_t, copy=False) return r # Linear Least Squares def lstsq(a, b, rcond=-1): """ Return the least-squares solution to a linear matrix equation. Solves the equation `a x = b` by computing a vector `x` that minimizes the Euclidean 2-norm `|| b - a x ||^2`. The equation may be under-, well-, or over- determined (i.e., the number of linearly independent rows of `a` can be less than, equal to, or greater than its number of linearly independent columns). If `a` is square and of full rank, then `x` (but for round-off error) is the "exact" solution of the equation. Parameters ---------- a : (M, N) array_like "Coefficient" matrix. b : {(M,), (M, K)} array_like Ordinate or "dependent variable" values. If `b` is two-dimensional, the least-squares solution is calculated for each of the `K` columns of `b`. rcond : float, optional Cut-off ratio for small singular values of `a`. For the purposes of rank determination, singular values are treated as zero if they are smaller than `rcond` times the largest singular value of `a`. Returns ------- x : {(N,), (N, K)} ndarray Least-squares solution. If `b` is two-dimensional, the solutions are in the `K` columns of `x`. residuals : {(), (1,), (K,)} ndarray Sums of residuals; squared Euclidean 2-norm for each column in ``b - a*x``. If the rank of `a` is < N or M <= N, this is an empty array. If `b` is 1-dimensional, this is a (1,) shape array. Otherwise the shape is (K,). rank : int Rank of matrix `a`. s : (min(M, N),) ndarray Singular values of `a`. Raises ------ LinAlgError If computation does not converge. Notes ----- If `b` is a matrix, then all array results are returned as matrices. Examples -------- Fit a line, ``y = mx + c``, through some noisy data-points: >>> x = np.array([0, 1, 2, 3]) >>> y = np.array([-1, 0.2, 0.9, 2.1]) By examining the coefficients, we see that the line should have a gradient of roughly 1 and cut the y-axis at, more or less, -1. We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]`` and ``p = [[m], [c]]``. Now use `lstsq` to solve for `p`: >>> A = np.vstack([x, np.ones(len(x))]).T >>> A array([[ 0., 1.], [ 1., 1.], [ 2., 1.], [ 3., 1.]]) >>> m, c = np.linalg.lstsq(A, y)[0] >>> print(m, c) 1.0 -0.95 Plot the data along with the fitted line: >>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'o', label='Original data', markersize=10) >>> plt.plot(x, m*x + c, 'r', label='Fitted line') >>> plt.legend() >>> plt.show() """ import math a, _ = _makearray(a) b, wrap = _makearray(b) is_1d = len(b.shape) == 1 if is_1d: b = b[:, newaxis] _assertRank2(a, b) m = a.shape[0] n = a.shape[1] n_rhs = b.shape[1] ldb = max(n, m) if m != b.shape[0]: raise LinAlgError('Incompatible dimensions') t, result_t = _commonType(a, b) result_real_t = _realType(result_t) real_t = _linalgRealType(t) bstar = zeros((ldb, n_rhs), t) bstar[:b.shape[0], :n_rhs] = b.copy() a, bstar = _fastCopyAndTranspose(t, a, bstar) a, bstar = _to_native_byte_order(a, bstar) s = zeros((min(m, n),), real_t) nlvl = max( 0, int( math.log( float(min(m, n))/2. ) ) + 1 ) iwork = zeros((3*min(m, n)*nlvl+11*min(m, n),), fortran_int) if isComplexType(t): lapack_routine = lapack_lite.zgelsd lwork = 1 rwork = zeros((lwork,), real_t) work = zeros((lwork,), t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, -1, rwork, iwork, 0) lwork = int(abs(work[0])) rwork = zeros((lwork,), real_t) a_real = zeros((m, n), real_t) bstar_real = zeros((ldb, n_rhs,), real_t) results = lapack_lite.dgelsd(m, n, n_rhs, a_real, m, bstar_real, ldb, s, rcond, 0, rwork, -1, iwork, 0) lrwork = int(rwork[0]) work = zeros((lwork,), t) rwork = zeros((lrwork,), real_t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, lwork, rwork, iwork, 0) else: lapack_routine = lapack_lite.dgelsd lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, -1, iwork, 0) lwork = int(work[0]) work = zeros((lwork,), t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, lwork, iwork, 0) if results['info'] > 0: raise LinAlgError('SVD did not converge in Linear Least Squares') resids = array([], result_real_t) if is_1d: x = array(ravel(bstar)[:n], dtype=result_t, copy=True) if results['rank'] == n and m > n: if isComplexType(t): resids = array([sum(abs(ravel(bstar)[n:])**2)], dtype=result_real_t) else: resids = array([sum((ravel(bstar)[n:])**2)], dtype=result_real_t) else: x = array(transpose(bstar)[:n,:], dtype=result_t, copy=True) if results['rank'] == n and m > n: if isComplexType(t): resids = sum(abs(transpose(bstar)[n:,:])**2, axis=0).astype( result_real_t, copy=False) else: resids = sum((transpose(bstar)[n:,:])**2, axis=0).astype( result_real_t, copy=False) st = s[:min(n, m)].astype(result_real_t, copy=True) return wrap(x), wrap(resids), results['rank'], st def _multi_svd_norm(x, row_axis, col_axis, op): """Compute a function of the singular values of the 2-D matrices in `x`. This is a private utility function used by numpy.linalg.norm(). Parameters ---------- x : ndarray row_axis, col_axis : int The axes of `x` that hold the 2-D matrices. op : callable This should be either numpy.amin or numpy.amax or numpy.sum. Returns ------- result : float or ndarray If `x` is 2-D, the return values is a float. Otherwise, it is an array with ``x.ndim - 2`` dimensions. The return values are either the minimum or maximum or sum of the singular values of the matrices, depending on whether `op` is `numpy.amin` or `numpy.amax` or `numpy.sum`. """ if row_axis > col_axis: row_axis -= 1 y = rollaxis(rollaxis(x, col_axis, x.ndim), row_axis, -1) result = op(svd(y, compute_uv=0), axis=-1) return result def norm(x, ord=None, axis=None, keepdims=False): """ Matrix or vector norm. This function is able to return one of eight different matrix norms, or one of an infinite number of vector norms (described below), depending on the value of the ``ord`` parameter. Parameters ---------- x : array_like Input array. If `axis` is None, `x` must be 1-D or 2-D. ord : {non-zero int, inf, -inf, 'fro', 'nuc'}, optional Order of the norm (see table under ``Notes``). inf means numpy's `inf` object. axis : {int, 2-tuple of ints, None}, optional If `axis` is an integer, it specifies the axis of `x` along which to compute the vector norms. If `axis` is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. If `axis` is None then either a vector norm (when `x` is 1-D) or a matrix norm (when `x` is 2-D) is returned. keepdims : bool, optional If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original `x`. .. versionadded:: 1.10.0 Returns ------- n : float or ndarray Norm of the matrix or vector(s). Notes ----- For values of ``ord <= 0``, the result is, strictly speaking, not a mathematical 'norm', but it may still be useful for various numerical purposes. The following norms can be calculated: ===== ============================ ========================== ord norm for matrices norm for vectors ===== ============================ ========================== None Frobenius norm 2-norm 'fro' Frobenius norm -- 'nuc' nuclear norm -- inf max(sum(abs(x), axis=1)) max(abs(x)) -inf min(sum(abs(x), axis=1)) min(abs(x)) 0 -- sum(x != 0) 1 max(sum(abs(x), axis=0)) as below -1 min(sum(abs(x), axis=0)) as below 2 2-norm (largest sing. value) as below -2 smallest singular value as below other -- sum(abs(x)**ord)**(1./ord) ===== ============================ ========================== The Frobenius norm is given by [1]_: :math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}` The nuclear norm is the sum of the singular values. References ---------- .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*, Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15 Examples -------- >>> from numpy import linalg as LA >>> a = np.arange(9) - 4 >>> a array([-4, -3, -2, -1, 0, 1, 2, 3, 4]) >>> b = a.reshape((3, 3)) >>> b array([[-4, -3, -2], [-1, 0, 1], [ 2, 3, 4]]) >>> LA.norm(a) 7.745966692414834 >>> LA.norm(b) 7.745966692414834 >>> LA.norm(b, 'fro') 7.745966692414834 >>> LA.norm(a, np.inf) 4.0 >>> LA.norm(b, np.inf) 9.0 >>> LA.norm(a, -np.inf) 0.0 >>> LA.norm(b, -np.inf) 2.0 >>> LA.norm(a, 1) 20.0 >>> LA.norm(b, 1) 7.0 >>> LA.norm(a, -1) -4.6566128774142013e-010 >>> LA.norm(b, -1) 6.0 >>> LA.norm(a, 2) 7.745966692414834 >>> LA.norm(b, 2) 7.3484692283495345 >>> LA.norm(a, -2) nan >>> LA.norm(b, -2) 1.8570331885190563e-016 >>> LA.norm(a, 3) 5.8480354764257312 >>> LA.norm(a, -3) nan Using the `axis` argument to compute vector norms: >>> c = np.array([[ 1, 2, 3], ... [-1, 1, 4]]) >>> LA.norm(c, axis=0) array([ 1.41421356, 2.23606798, 5. ]) >>> LA.norm(c, axis=1) array([ 3.74165739, 4.24264069]) >>> LA.norm(c, ord=1, axis=1) array([ 6., 6.]) Using the `axis` argument to compute matrix norms: >>> m = np.arange(8).reshape(2,2,2) >>> LA.norm(m, axis=(1,2)) array([ 3.74165739, 11.22497216]) >>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :]) (3.7416573867739413, 11.224972160321824) """ x = asarray(x) if not issubclass(x.dtype.type, (inexact, object_)): x = x.astype(float) # Immediately handle some default, simple, fast, and common cases. if axis is None: ndim = x.ndim if ((ord is None) or (ord in ('f', 'fro') and ndim == 2) or (ord == 2 and ndim == 1)): x = x.ravel(order='K') if isComplexType(x.dtype.type): sqnorm = dot(x.real, x.real) + dot(x.imag, x.imag) else: sqnorm = dot(x, x) ret = sqrt(sqnorm) if keepdims: ret = ret.reshape(ndim*[1]) return ret # Normalize the `axis` argument to a tuple. nd = x.ndim if axis is None: axis = tuple(range(nd)) elif not isinstance(axis, tuple): try: axis = int(axis) except: raise TypeError("'axis' must be None, an integer or a tuple of integers") axis = (axis,) if len(axis) == 1: if ord == Inf: return abs(x).max(axis=axis, keepdims=keepdims) elif ord == -Inf: return abs(x).min(axis=axis, keepdims=keepdims) elif ord == 0: # Zero norm return (x != 0).astype(float).sum(axis=axis, keepdims=keepdims) elif ord == 1: # special case for speedup return add.reduce(abs(x), axis=axis, keepdims=keepdims) elif ord is None or ord == 2: # special case for speedup s = (x.conj() * x).real return sqrt(add.reduce(s, axis=axis, keepdims=keepdims)) else: try: ord + 1 except TypeError: raise ValueError("Invalid norm order for vectors.") if x.dtype.type is longdouble: # Convert to a float type, so integer arrays give # float results. Don't apply asfarray to longdouble arrays, # because it will downcast to float64. absx = abs(x) else: absx = x if isComplexType(x.dtype.type) else asfarray(x) if absx.dtype is x.dtype: absx = abs(absx) else: # if the type changed, we can safely overwrite absx abs(absx, out=absx) absx **= ord return add.reduce(absx, axis=axis, keepdims=keepdims) ** (1.0 / ord) elif len(axis) == 2: row_axis, col_axis = axis if row_axis < 0: row_axis += nd if col_axis < 0: col_axis += nd if not (0 <= row_axis < nd and 0 <= col_axis < nd): raise ValueError('Invalid axis %r for an array with shape %r' % (axis, x.shape)) if row_axis == col_axis: raise ValueError('Duplicate axes given.') if ord == 2: ret = _multi_svd_norm(x, row_axis, col_axis, amax) elif ord == -2: ret = _multi_svd_norm(x, row_axis, col_axis, amin) elif ord == 1: if col_axis > row_axis: col_axis -= 1 ret = add.reduce(abs(x), axis=row_axis).max(axis=col_axis) elif ord == Inf: if row_axis > col_axis: row_axis -= 1 ret = add.reduce(abs(x), axis=col_axis).max(axis=row_axis) elif ord == -1: if col_axis > row_axis: col_axis -= 1 ret = add.reduce(abs(x), axis=row_axis).min(axis=col_axis) elif ord == -Inf: if row_axis > col_axis: row_axis -= 1 ret = add.reduce(abs(x), axis=col_axis).min(axis=row_axis) elif ord in [None, 'fro', 'f']: ret = sqrt(add.reduce((x.conj() * x).real, axis=axis)) elif ord == 'nuc': ret = _multi_svd_norm(x, row_axis, col_axis, sum) else: raise ValueError("Invalid norm order for matrices.") if keepdims: ret_shape = list(x.shape) ret_shape[axis[0]] = 1 ret_shape[axis[1]] = 1 ret = ret.reshape(ret_shape) return ret else: raise ValueError("Improper number of dimensions to norm.") # multi_dot def multi_dot(arrays): """ Compute the dot product of two or more arrays in a single function call, while automatically selecting the fastest evaluation order. `multi_dot` chains `numpy.dot` and uses optimal parenthesization of the matrices [1]_ [2]_. Depending on the shapes of the matrices, this can speed up the multiplication a lot. If the first argument is 1-D it is treated as a row vector. If the last argument is 1-D it is treated as a column vector. The other arguments must be 2-D. Think of `multi_dot` as:: def multi_dot(arrays): return functools.reduce(np.dot, arrays) Parameters ---------- arrays : sequence of array_like If the first argument is 1-D it is treated as row vector. If the last argument is 1-D it is treated as column vector. The other arguments must be 2-D. Returns ------- output : ndarray Returns the dot product of the supplied arrays. See Also -------- dot : dot multiplication with two arguments. References ---------- .. [1] Cormen, "Introduction to Algorithms", Chapter 15.2, p. 370-378 .. [2] http://en.wikipedia.org/wiki/Matrix_chain_multiplication Examples -------- `multi_dot` allows you to write:: >>> from numpy.linalg import multi_dot >>> # Prepare some data >>> A = np.random.random(10000, 100) >>> B = np.random.random(100, 1000) >>> C = np.random.random(1000, 5) >>> D = np.random.random(5, 333) >>> # the actual dot multiplication >>> multi_dot([A, B, C, D]) instead of:: >>> np.dot(np.dot(np.dot(A, B), C), D) >>> # or >>> A.dot(B).dot(C).dot(D) Example: multiplication costs of different parenthesizations ------------------------------------------------------------ The cost for a matrix multiplication can be calculated with the following function:: def cost(A, B): return A.shape[0] * A.shape[1] * B.shape[1] Let's assume we have three matrices :math:`A_{10x100}, B_{100x5}, C_{5x50}$`. The costs for the two different parenthesizations are as follows:: cost((AB)C) = 10*100*5 + 10*5*50 = 5000 + 2500 = 7500 cost(A(BC)) = 10*100*50 + 100*5*50 = 50000 + 25000 = 75000 """ n = len(arrays) # optimization only makes sense for len(arrays) > 2 if n < 2: raise ValueError("Expecting at least two arrays.") elif n == 2: return dot(arrays[0], arrays[1]) arrays = [asanyarray(a) for a in arrays] # save original ndim to reshape the result array into the proper form later ndim_first, ndim_last = arrays[0].ndim, arrays[-1].ndim # Explicitly convert vectors to 2D arrays to keep the logic of the internal # _multi_dot_* functions as simple as possible. if arrays[0].ndim == 1: arrays[0] = atleast_2d(arrays[0]) if arrays[-1].ndim == 1: arrays[-1] = atleast_2d(arrays[-1]).T _assertRank2(*arrays) # _multi_dot_three is much faster than _multi_dot_matrix_chain_order if n == 3: result = _multi_dot_three(arrays[0], arrays[1], arrays[2]) else: order = _multi_dot_matrix_chain_order(arrays) result = _multi_dot(arrays, order, 0, n - 1) # return proper shape if ndim_first == 1 and ndim_last == 1: return result[0, 0] # scalar elif ndim_first == 1 or ndim_last == 1: return result.ravel() # 1-D else: return result def _multi_dot_three(A, B, C): """ Find the best order for three arrays and do the multiplication. For three arguments `_multi_dot_three` is approximately 15 times faster than `_multi_dot_matrix_chain_order` """ a0, a1b0 = A.shape b1c0, c1 = C.shape # cost1 = cost((AB)C) = a0*a1b0*b1c0 + a0*b1c0*c1 cost1 = a0 * b1c0 * (a1b0 + c1) # cost2 = cost(A(BC)) = a1b0*b1c0*c1 + a0*a1b0*c1 cost2 = a1b0 * c1 * (a0 + b1c0) if cost1 < cost2: return dot(dot(A, B), C) else: return dot(A, dot(B, C)) def _multi_dot_matrix_chain_order(arrays, return_costs=False): """ Return a np.array that encodes the optimal order of mutiplications. The optimal order array is then used by `_multi_dot()` to do the multiplication. Also return the cost matrix if `return_costs` is `True` The implementation CLOSELY follows Cormen, "Introduction to Algorithms", Chapter 15.2, p. 370-378. Note that Cormen uses 1-based indices. cost[i, j] = min([ cost[prefix] + cost[suffix] + cost_mult(prefix, suffix) for k in range(i, j)]) """ n = len(arrays) # p stores the dimensions of the matrices # Example for p: A_{10x100}, B_{100x5}, C_{5x50} --> p = [10, 100, 5, 50] p = [a.shape[0] for a in arrays] + [arrays[-1].shape[1]] # m is a matrix of costs of the subproblems # m[i,j]: min number of scalar multiplications needed to compute A_{i..j} m = zeros((n, n), dtype=double) # s is the actual ordering # s[i, j] is the value of k at which we split the product A_i..A_j s = empty((n, n), dtype=intp) for l in range(1, n): for i in range(n - l): j = i + l m[i, j] = Inf for k in range(i, j): q = m[i, k] + m[k+1, j] + p[i]*p[k+1]*p[j+1] if q < m[i, j]: m[i, j] = q s[i, j] = k # Note that Cormen uses 1-based index return (s, m) if return_costs else s def _multi_dot(arrays, order, i, j): """Actually do the multiplication with the given order.""" if i == j: return arrays[i] else: return dot(_multi_dot(arrays, order, i, order[i, j]), _multi_dot(arrays, order, order[i, j] + 1, j))
mit
Winand/pandas
pandas/tests/io/json/test_pandas.py
11
44634
# -*- coding: utf-8 -*- # pylint: disable-msg=W0612,E1101 import pytest from pandas.compat import (range, lrange, StringIO, OrderedDict, is_platform_32bit) import os import numpy as np from pandas import (Series, DataFrame, DatetimeIndex, Timestamp, read_json, compat) from datetime import timedelta import pandas as pd from pandas.util.testing import (assert_almost_equal, assert_frame_equal, assert_series_equal, network, ensure_clean, assert_index_equal) import pandas.util.testing as tm _seriesd = tm.getSeriesData() _tsd = tm.getTimeSeriesData() _frame = DataFrame(_seriesd) _frame2 = DataFrame(_seriesd, columns=['D', 'C', 'B', 'A']) _intframe = DataFrame(dict((k, v.astype(np.int64)) for k, v in compat.iteritems(_seriesd))) _tsframe = DataFrame(_tsd) _cat_frame = _frame.copy() cat = ['bah'] * 5 + ['bar'] * 5 + ['baz'] * \ 5 + ['foo'] * (len(_cat_frame) - 15) _cat_frame.index = pd.CategoricalIndex(cat, name='E') _cat_frame['E'] = list(reversed(cat)) _cat_frame['sort'] = np.arange(len(_cat_frame), dtype='int64') _mixed_frame = _frame.copy() class TestPandasContainer(object): def setup_method(self, method): self.dirpath = tm.get_data_path() self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.objSeries = tm.makeObjectSeries() self.objSeries.name = 'objects' self.empty_series = Series([], index=[]) self.empty_frame = DataFrame({}) self.frame = _frame.copy() self.frame2 = _frame2.copy() self.intframe = _intframe.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy() self.categorical = _cat_frame.copy() def teardown_method(self, method): del self.dirpath del self.ts del self.series del self.objSeries del self.empty_series del self.empty_frame del self.frame del self.frame2 del self.intframe del self.tsframe del self.mixed_frame def test_frame_double_encoded_labels(self): df = DataFrame([['a', 'b'], ['c', 'd']], index=['index " 1', 'index / 2'], columns=['a \\ b', 'y / z']) assert_frame_equal(df, read_json(df.to_json(orient='split'), orient='split')) assert_frame_equal(df, read_json(df.to_json(orient='columns'), orient='columns')) assert_frame_equal(df, read_json(df.to_json(orient='index'), orient='index')) df_unser = read_json(df.to_json(orient='records'), orient='records') assert_index_equal(df.columns, df_unser.columns) tm.assert_numpy_array_equal(df.values, df_unser.values) def test_frame_non_unique_index(self): df = DataFrame([['a', 'b'], ['c', 'd']], index=[1, 1], columns=['x', 'y']) pytest.raises(ValueError, df.to_json, orient='index') pytest.raises(ValueError, df.to_json, orient='columns') assert_frame_equal(df, read_json(df.to_json(orient='split'), orient='split')) unser = read_json(df.to_json(orient='records'), orient='records') tm.assert_index_equal(df.columns, unser.columns) tm.assert_almost_equal(df.values, unser.values) unser = read_json(df.to_json(orient='values'), orient='values') tm.assert_numpy_array_equal(df.values, unser.values) def test_frame_non_unique_columns(self): df = DataFrame([['a', 'b'], ['c', 'd']], index=[1, 2], columns=['x', 'x']) pytest.raises(ValueError, df.to_json, orient='index') pytest.raises(ValueError, df.to_json, orient='columns') pytest.raises(ValueError, df.to_json, orient='records') assert_frame_equal(df, read_json(df.to_json(orient='split'), orient='split', dtype=False)) unser = read_json(df.to_json(orient='values'), orient='values') tm.assert_numpy_array_equal(df.values, unser.values) # GH4377; duplicate columns not processing correctly df = DataFrame([['a', 'b'], ['c', 'd']], index=[ 1, 2], columns=['x', 'y']) result = read_json(df.to_json(orient='split'), orient='split') assert_frame_equal(result, df) def _check(df): result = read_json(df.to_json(orient='split'), orient='split', convert_dates=['x']) assert_frame_equal(result, df) for o in [[['a', 'b'], ['c', 'd']], [[1.5, 2.5], [3.5, 4.5]], [[1, 2.5], [3, 4.5]], [[Timestamp('20130101'), 3.5], [Timestamp('20130102'), 4.5]]]: _check(DataFrame(o, index=[1, 2], columns=['x', 'x'])) def test_frame_from_json_to_json(self): def _check_orient(df, orient, dtype=None, numpy=False, convert_axes=True, check_dtype=True, raise_ok=None, sort=None, check_index_type=True, check_column_type=True, check_numpy_dtype=False): if sort is not None: df = df.sort_values(sort) else: df = df.sort_index() # if we are not unique, then check that we are raising ValueError # for the appropriate orients if not df.index.is_unique and orient in ['index', 'columns']: pytest.raises( ValueError, lambda: df.to_json(orient=orient)) return if (not df.columns.is_unique and orient in ['index', 'columns', 'records']): pytest.raises( ValueError, lambda: df.to_json(orient=orient)) return dfjson = df.to_json(orient=orient) try: unser = read_json(dfjson, orient=orient, dtype=dtype, numpy=numpy, convert_axes=convert_axes) except Exception as detail: if raise_ok is not None: if isinstance(detail, raise_ok): return raise if sort is not None and sort in unser.columns: unser = unser.sort_values(sort) else: unser = unser.sort_index() if dtype is False: check_dtype = False if not convert_axes and df.index.dtype.type == np.datetime64: unser.index = DatetimeIndex( unser.index.values.astype('i8') * 1e6) if orient == "records": # index is not captured in this orientation tm.assert_almost_equal(df.values, unser.values, check_dtype=check_numpy_dtype) tm.assert_index_equal(df.columns, unser.columns, exact=check_column_type) elif orient == "values": # index and cols are not captured in this orientation if numpy is True and df.shape == (0, 0): assert unser.shape[0] == 0 else: tm.assert_almost_equal(df.values, unser.values, check_dtype=check_numpy_dtype) elif orient == "split": # index and col labels might not be strings unser.index = [str(i) for i in unser.index] unser.columns = [str(i) for i in unser.columns] if sort is None: unser = unser.sort_index() tm.assert_almost_equal(df.values, unser.values, check_dtype=check_numpy_dtype) else: if convert_axes: tm.assert_frame_equal(df, unser, check_dtype=check_dtype, check_index_type=check_index_type, check_column_type=check_column_type) else: tm.assert_frame_equal(df, unser, check_less_precise=False, check_dtype=check_dtype) def _check_all_orients(df, dtype=None, convert_axes=True, raise_ok=None, sort=None, check_index_type=True, check_column_type=True): # numpy=False if convert_axes: _check_orient(df, "columns", dtype=dtype, sort=sort, check_index_type=False, check_column_type=False) _check_orient(df, "records", dtype=dtype, sort=sort, check_index_type=False, check_column_type=False) _check_orient(df, "split", dtype=dtype, sort=sort, check_index_type=False, check_column_type=False) _check_orient(df, "index", dtype=dtype, sort=sort, check_index_type=False, check_column_type=False) _check_orient(df, "values", dtype=dtype, sort=sort, check_index_type=False, check_column_type=False) _check_orient(df, "columns", dtype=dtype, convert_axes=False, sort=sort) _check_orient(df, "records", dtype=dtype, convert_axes=False, sort=sort) _check_orient(df, "split", dtype=dtype, convert_axes=False, sort=sort) _check_orient(df, "index", dtype=dtype, convert_axes=False, sort=sort) _check_orient(df, "values", dtype=dtype, convert_axes=False, sort=sort) # numpy=True and raise_ok might be not None, so ignore the error if convert_axes: _check_orient(df, "columns", dtype=dtype, numpy=True, raise_ok=raise_ok, sort=sort, check_index_type=False, check_column_type=False) _check_orient(df, "records", dtype=dtype, numpy=True, raise_ok=raise_ok, sort=sort, check_index_type=False, check_column_type=False) _check_orient(df, "split", dtype=dtype, numpy=True, raise_ok=raise_ok, sort=sort, check_index_type=False, check_column_type=False) _check_orient(df, "index", dtype=dtype, numpy=True, raise_ok=raise_ok, sort=sort, check_index_type=False, check_column_type=False) _check_orient(df, "values", dtype=dtype, numpy=True, raise_ok=raise_ok, sort=sort, check_index_type=False, check_column_type=False) _check_orient(df, "columns", dtype=dtype, numpy=True, convert_axes=False, raise_ok=raise_ok, sort=sort) _check_orient(df, "records", dtype=dtype, numpy=True, convert_axes=False, raise_ok=raise_ok, sort=sort) _check_orient(df, "split", dtype=dtype, numpy=True, convert_axes=False, raise_ok=raise_ok, sort=sort) _check_orient(df, "index", dtype=dtype, numpy=True, convert_axes=False, raise_ok=raise_ok, sort=sort) _check_orient(df, "values", dtype=dtype, numpy=True, convert_axes=False, raise_ok=raise_ok, sort=sort) # basic _check_all_orients(self.frame) assert self.frame.to_json() == self.frame.to_json(orient="columns") _check_all_orients(self.intframe, dtype=self.intframe.values.dtype) _check_all_orients(self.intframe, dtype=False) # big one # index and columns are strings as all unserialised JSON object keys # are assumed to be strings biggie = DataFrame(np.zeros((200, 4)), columns=[str(i) for i in range(4)], index=[str(i) for i in range(200)]) _check_all_orients(biggie, dtype=False, convert_axes=False) # dtypes _check_all_orients(DataFrame(biggie, dtype=np.float64), dtype=np.float64, convert_axes=False) _check_all_orients(DataFrame(biggie, dtype=np.int), dtype=np.int, convert_axes=False) _check_all_orients(DataFrame(biggie, dtype='U3'), dtype='U3', convert_axes=False, raise_ok=ValueError) # categorical _check_all_orients(self.categorical, sort='sort', raise_ok=ValueError) # empty _check_all_orients(self.empty_frame, check_index_type=False, check_column_type=False) # time series data _check_all_orients(self.tsframe) # mixed data index = pd.Index(['a', 'b', 'c', 'd', 'e']) data = {'A': [0., 1., 2., 3., 4.], 'B': [0., 1., 0., 1., 0.], 'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'], 'D': [True, False, True, False, True]} df = DataFrame(data=data, index=index) _check_orient(df, "split", check_dtype=False) _check_orient(df, "records", check_dtype=False) _check_orient(df, "values", check_dtype=False) _check_orient(df, "columns", check_dtype=False) # index oriented is problematic as it is read back in in a transposed # state, so the columns are interpreted as having mixed data and # given object dtypes. # force everything to have object dtype beforehand _check_orient(df.transpose().transpose(), "index", dtype=False) def test_frame_from_json_bad_data(self): pytest.raises(ValueError, read_json, StringIO('{"key":b:a:d}')) # too few indices json = StringIO('{"columns":["A","B"],' '"index":["2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}') pytest.raises(ValueError, read_json, json, orient="split") # too many columns json = StringIO('{"columns":["A","B","C"],' '"index":["1","2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}') pytest.raises(AssertionError, read_json, json, orient="split") # bad key json = StringIO('{"badkey":["A","B"],' '"index":["2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}') with tm.assert_raises_regex(ValueError, r"unexpected key\(s\): badkey"): read_json(json, orient="split") def test_frame_from_json_nones(self): df = DataFrame([[1, 2], [4, 5, 6]]) unser = read_json(df.to_json()) assert np.isnan(unser[2][0]) df = DataFrame([['1', '2'], ['4', '5', '6']]) unser = read_json(df.to_json()) assert np.isnan(unser[2][0]) unser = read_json(df.to_json(), dtype=False) assert unser[2][0] is None unser = read_json(df.to_json(), convert_axes=False, dtype=False) assert unser['2']['0'] is None unser = read_json(df.to_json(), numpy=False) assert np.isnan(unser[2][0]) unser = read_json(df.to_json(), numpy=False, dtype=False) assert unser[2][0] is None unser = read_json(df.to_json(), numpy=False, convert_axes=False, dtype=False) assert unser['2']['0'] is None # infinities get mapped to nulls which get mapped to NaNs during # deserialisation df = DataFrame([[1, 2], [4, 5, 6]]) df.loc[0, 2] = np.inf unser = read_json(df.to_json()) assert np.isnan(unser[2][0]) unser = read_json(df.to_json(), dtype=False) assert np.isnan(unser[2][0]) df.loc[0, 2] = np.NINF unser = read_json(df.to_json()) assert np.isnan(unser[2][0]) unser = read_json(df.to_json(), dtype=False) assert np.isnan(unser[2][0]) @pytest.mark.skipif(is_platform_32bit(), reason="not compliant on 32-bit, xref #15865") def test_frame_to_json_float_precision(self): df = pd.DataFrame([dict(a_float=0.95)]) encoded = df.to_json(double_precision=1) assert encoded == '{"a_float":{"0":1.0}}' df = pd.DataFrame([dict(a_float=1.95)]) encoded = df.to_json(double_precision=1) assert encoded == '{"a_float":{"0":2.0}}' df = pd.DataFrame([dict(a_float=-1.95)]) encoded = df.to_json(double_precision=1) assert encoded == '{"a_float":{"0":-2.0}}' df = pd.DataFrame([dict(a_float=0.995)]) encoded = df.to_json(double_precision=2) assert encoded == '{"a_float":{"0":1.0}}' df = pd.DataFrame([dict(a_float=0.9995)]) encoded = df.to_json(double_precision=3) assert encoded == '{"a_float":{"0":1.0}}' df = pd.DataFrame([dict(a_float=0.99999999999999944)]) encoded = df.to_json(double_precision=15) assert encoded == '{"a_float":{"0":1.0}}' def test_frame_to_json_except(self): df = DataFrame([1, 2, 3]) pytest.raises(ValueError, df.to_json, orient="garbage") def test_frame_empty(self): df = DataFrame(columns=['jim', 'joe']) assert not df._is_mixed_type assert_frame_equal(read_json(df.to_json(), dtype=dict(df.dtypes)), df, check_index_type=False) # GH 7445 result = pd.DataFrame({'test': []}, index=[]).to_json(orient='columns') expected = '{"test":{}}' assert result == expected def test_frame_empty_mixedtype(self): # mixed type df = DataFrame(columns=['jim', 'joe']) df['joe'] = df['joe'].astype('i8') assert df._is_mixed_type assert_frame_equal(read_json(df.to_json(), dtype=dict(df.dtypes)), df, check_index_type=False) def test_frame_mixedtype_orient(self): # GH10289 vals = [[10, 1, 'foo', .1, .01], [20, 2, 'bar', .2, .02], [30, 3, 'baz', .3, .03], [40, 4, 'qux', .4, .04]] df = DataFrame(vals, index=list('abcd'), columns=['1st', '2nd', '3rd', '4th', '5th']) assert df._is_mixed_type right = df.copy() for orient in ['split', 'index', 'columns']: inp = df.to_json(orient=orient) left = read_json(inp, orient=orient, convert_axes=False) assert_frame_equal(left, right) right.index = np.arange(len(df)) inp = df.to_json(orient='records') left = read_json(inp, orient='records', convert_axes=False) assert_frame_equal(left, right) right.columns = np.arange(df.shape[1]) inp = df.to_json(orient='values') left = read_json(inp, orient='values', convert_axes=False) assert_frame_equal(left, right) def test_v12_compat(self): df = DataFrame( [[1.56808523, 0.65727391, 1.81021139, -0.17251653], [-0.2550111, -0.08072427, -0.03202878, -0.17581665], [1.51493992, 0.11805825, 1.629455, -1.31506612], [-0.02765498, 0.44679743, 0.33192641, -0.27885413], [0.05951614, -2.69652057, 1.28163262, 0.34703478]], columns=['A', 'B', 'C', 'D'], index=pd.date_range('2000-01-03', '2000-01-07')) df['date'] = pd.Timestamp('19920106 18:21:32.12') df.iloc[3, df.columns.get_loc('date')] = pd.Timestamp('20130101') df['modified'] = df['date'] df.iloc[1, df.columns.get_loc('modified')] = pd.NaT v12_json = os.path.join(self.dirpath, 'tsframe_v012.json') df_unser = pd.read_json(v12_json) assert_frame_equal(df, df_unser) df_iso = df.drop(['modified'], axis=1) v12_iso_json = os.path.join(self.dirpath, 'tsframe_iso_v012.json') df_unser_iso = pd.read_json(v12_iso_json) assert_frame_equal(df_iso, df_unser_iso) def test_blocks_compat_GH9037(self): index = pd.date_range('20000101', periods=10, freq='H') df_mixed = DataFrame(OrderedDict( float_1=[-0.92077639, 0.77434435, 1.25234727, 0.61485564, -0.60316077, 0.24653374, 0.28668979, -2.51969012, 0.95748401, -1.02970536], int_1=[19680418, 75337055, 99973684, 65103179, 79373900, 40314334, 21290235, 4991321, 41903419, 16008365], str_1=['78c608f1', '64a99743', '13d2ff52', 'ca7f4af2', '97236474', 'bde7e214', '1a6bde47', 'b1190be5', '7a669144', '8d64d068'], float_2=[-0.0428278, -1.80872357, 3.36042349, -0.7573685, -0.48217572, 0.86229683, 1.08935819, 0.93898739, -0.03030452, 1.43366348], str_2=['14f04af9', 'd085da90', '4bcfac83', '81504caf', '2ffef4a9', '08e2f5c4', '07e1af03', 'addbd4a7', '1f6a09ba', '4bfc4d87'], int_2=[86967717, 98098830, 51927505, 20372254, 12601730, 20884027, 34193846, 10561746, 24867120, 76131025] ), index=index) # JSON deserialisation always creates unicode strings df_mixed.columns = df_mixed.columns.astype('unicode') df_roundtrip = pd.read_json(df_mixed.to_json(orient='split'), orient='split') assert_frame_equal(df_mixed, df_roundtrip, check_index_type=True, check_column_type=True, check_frame_type=True, by_blocks=True, check_exact=True) def test_series_non_unique_index(self): s = Series(['a', 'b'], index=[1, 1]) pytest.raises(ValueError, s.to_json, orient='index') assert_series_equal(s, read_json(s.to_json(orient='split'), orient='split', typ='series')) unser = read_json(s.to_json(orient='records'), orient='records', typ='series') tm.assert_numpy_array_equal(s.values, unser.values) def test_series_from_json_to_json(self): def _check_orient(series, orient, dtype=None, numpy=False, check_index_type=True): series = series.sort_index() unser = read_json(series.to_json(orient=orient), typ='series', orient=orient, numpy=numpy, dtype=dtype) unser = unser.sort_index() if orient == "records" or orient == "values": assert_almost_equal(series.values, unser.values) else: if orient == "split": assert_series_equal(series, unser, check_index_type=check_index_type) else: assert_series_equal(series, unser, check_names=False, check_index_type=check_index_type) def _check_all_orients(series, dtype=None, check_index_type=True): _check_orient(series, "columns", dtype=dtype, check_index_type=check_index_type) _check_orient(series, "records", dtype=dtype, check_index_type=check_index_type) _check_orient(series, "split", dtype=dtype, check_index_type=check_index_type) _check_orient(series, "index", dtype=dtype, check_index_type=check_index_type) _check_orient(series, "values", dtype=dtype) _check_orient(series, "columns", dtype=dtype, numpy=True, check_index_type=check_index_type) _check_orient(series, "records", dtype=dtype, numpy=True, check_index_type=check_index_type) _check_orient(series, "split", dtype=dtype, numpy=True, check_index_type=check_index_type) _check_orient(series, "index", dtype=dtype, numpy=True, check_index_type=check_index_type) _check_orient(series, "values", dtype=dtype, numpy=True, check_index_type=check_index_type) # basic _check_all_orients(self.series) assert self.series.to_json() == self.series.to_json(orient="index") objSeries = Series([str(d) for d in self.objSeries], index=self.objSeries.index, name=self.objSeries.name) _check_all_orients(objSeries, dtype=False) # empty_series has empty index with object dtype # which cannot be revert assert self.empty_series.index.dtype == np.object_ _check_all_orients(self.empty_series, check_index_type=False) _check_all_orients(self.ts) # dtype s = Series(lrange(6), index=['a', 'b', 'c', 'd', 'e', 'f']) _check_all_orients(Series(s, dtype=np.float64), dtype=np.float64) _check_all_orients(Series(s, dtype=np.int), dtype=np.int) def test_series_to_json_except(self): s = Series([1, 2, 3]) pytest.raises(ValueError, s.to_json, orient="garbage") def test_series_from_json_precise_float(self): s = Series([4.56, 4.56, 4.56]) result = read_json(s.to_json(), typ='series', precise_float=True) assert_series_equal(result, s, check_index_type=False) def test_frame_from_json_precise_float(self): df = DataFrame([[4.56, 4.56, 4.56], [4.56, 4.56, 4.56]]) result = read_json(df.to_json(), precise_float=True) assert_frame_equal(result, df, check_index_type=False, check_column_type=False) def test_typ(self): s = Series(lrange(6), index=['a', 'b', 'c', 'd', 'e', 'f'], dtype='int64') result = read_json(s.to_json(), typ=None) assert_series_equal(result, s) def test_reconstruction_index(self): df = DataFrame([[1, 2, 3], [4, 5, 6]]) result = read_json(df.to_json()) assert_frame_equal(result, df) df = DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]}, index=['A', 'B', 'C']) result = read_json(df.to_json()) assert_frame_equal(result, df) def test_path(self): with ensure_clean('test.json') as path: for df in [self.frame, self.frame2, self.intframe, self.tsframe, self.mixed_frame]: df.to_json(path) read_json(path) def test_axis_dates(self): # frame json = self.tsframe.to_json() result = read_json(json) assert_frame_equal(result, self.tsframe) # series json = self.ts.to_json() result = read_json(json, typ='series') assert_series_equal(result, self.ts, check_names=False) assert result.name is None def test_convert_dates(self): # frame df = self.tsframe.copy() df['date'] = Timestamp('20130101') json = df.to_json() result = read_json(json) assert_frame_equal(result, df) df['foo'] = 1. json = df.to_json(date_unit='ns') result = read_json(json, convert_dates=False) expected = df.copy() expected['date'] = expected['date'].values.view('i8') expected['foo'] = expected['foo'].astype('int64') assert_frame_equal(result, expected) # series ts = Series(Timestamp('20130101'), index=self.ts.index) json = ts.to_json() result = read_json(json, typ='series') assert_series_equal(result, ts) def test_convert_dates_infer(self): # GH10747 from pandas.io.json import dumps infer_words = ['trade_time', 'date', 'datetime', 'sold_at', 'modified', 'timestamp', 'timestamps'] for infer_word in infer_words: data = [{'id': 1, infer_word: 1036713600000}, {'id': 2}] expected = DataFrame([[1, Timestamp('2002-11-08')], [2, pd.NaT]], columns=['id', infer_word]) result = read_json(dumps(data))[['id', infer_word]] assert_frame_equal(result, expected) def test_date_format_frame(self): df = self.tsframe.copy() def test_w_date(date, date_unit=None): df['date'] = Timestamp(date) df.iloc[1, df.columns.get_loc('date')] = pd.NaT df.iloc[5, df.columns.get_loc('date')] = pd.NaT if date_unit: json = df.to_json(date_format='iso', date_unit=date_unit) else: json = df.to_json(date_format='iso') result = read_json(json) assert_frame_equal(result, df) test_w_date('20130101 20:43:42.123') test_w_date('20130101 20:43:42', date_unit='s') test_w_date('20130101 20:43:42.123', date_unit='ms') test_w_date('20130101 20:43:42.123456', date_unit='us') test_w_date('20130101 20:43:42.123456789', date_unit='ns') pytest.raises(ValueError, df.to_json, date_format='iso', date_unit='foo') def test_date_format_series(self): def test_w_date(date, date_unit=None): ts = Series(Timestamp(date), index=self.ts.index) ts.iloc[1] = pd.NaT ts.iloc[5] = pd.NaT if date_unit: json = ts.to_json(date_format='iso', date_unit=date_unit) else: json = ts.to_json(date_format='iso') result = read_json(json, typ='series') assert_series_equal(result, ts) test_w_date('20130101 20:43:42.123') test_w_date('20130101 20:43:42', date_unit='s') test_w_date('20130101 20:43:42.123', date_unit='ms') test_w_date('20130101 20:43:42.123456', date_unit='us') test_w_date('20130101 20:43:42.123456789', date_unit='ns') ts = Series(Timestamp('20130101 20:43:42.123'), index=self.ts.index) pytest.raises(ValueError, ts.to_json, date_format='iso', date_unit='foo') def test_date_unit(self): df = self.tsframe.copy() df['date'] = Timestamp('20130101 20:43:42') dl = df.columns.get_loc('date') df.iloc[1, dl] = Timestamp('19710101 20:43:42') df.iloc[2, dl] = Timestamp('21460101 20:43:42') df.iloc[4, dl] = pd.NaT for unit in ('s', 'ms', 'us', 'ns'): json = df.to_json(date_format='epoch', date_unit=unit) # force date unit result = read_json(json, date_unit=unit) assert_frame_equal(result, df) # detect date unit result = read_json(json, date_unit=None) assert_frame_equal(result, df) def test_weird_nested_json(self): # this used to core dump the parser s = r'''{ "status": "success", "data": { "posts": [ { "id": 1, "title": "A blog post", "body": "Some useful content" }, { "id": 2, "title": "Another blog post", "body": "More content" } ] } }''' read_json(s) def test_doc_example(self): dfj2 = DataFrame(np.random.randn(5, 2), columns=list('AB')) dfj2['date'] = Timestamp('20130101') dfj2['ints'] = lrange(5) dfj2['bools'] = True dfj2.index = pd.date_range('20130101', periods=5) json = dfj2.to_json() result = read_json(json, dtype={'ints': np.int64, 'bools': np.bool_}) assert_frame_equal(result, result) def test_misc_example(self): # parsing unordered input fails result = read_json('[{"a": 1, "b": 2}, {"b":2, "a" :1}]', numpy=True) expected = DataFrame([[1, 2], [1, 2]], columns=['a', 'b']) error_msg = """DataFrame\\.index are different DataFrame\\.index values are different \\(100\\.0 %\\) \\[left\\]: Index\\(\\[u?'a', u?'b'\\], dtype='object'\\) \\[right\\]: RangeIndex\\(start=0, stop=2, step=1\\)""" with tm.assert_raises_regex(AssertionError, error_msg): assert_frame_equal(result, expected, check_index_type=False) result = read_json('[{"a": 1, "b": 2}, {"b":2, "a" :1}]') expected = DataFrame([[1, 2], [1, 2]], columns=['a', 'b']) assert_frame_equal(result, expected) @network def test_round_trip_exception_(self): # GH 3867 csv = 'https://raw.github.com/hayd/lahman2012/master/csvs/Teams.csv' df = pd.read_csv(csv) s = df.to_json() result = pd.read_json(s) assert_frame_equal(result.reindex( index=df.index, columns=df.columns), df) @network def test_url(self): url = 'https://api.github.com/repos/pandas-dev/pandas/issues?per_page=5' # noqa result = read_json(url, convert_dates=True) for c in ['created_at', 'closed_at', 'updated_at']: assert result[c].dtype == 'datetime64[ns]' def test_timedelta(self): converter = lambda x: pd.to_timedelta(x, unit='ms') s = Series([timedelta(23), timedelta(seconds=5)]) assert s.dtype == 'timedelta64[ns]' result = pd.read_json(s.to_json(), typ='series').apply(converter) assert_series_equal(result, s) s = Series([timedelta(23), timedelta(seconds=5)], index=pd.Index([0, 1])) assert s.dtype == 'timedelta64[ns]' result = pd.read_json(s.to_json(), typ='series').apply(converter) assert_series_equal(result, s) frame = DataFrame([timedelta(23), timedelta(seconds=5)]) assert frame[0].dtype == 'timedelta64[ns]' assert_frame_equal(frame, pd.read_json(frame.to_json()) .apply(converter)) frame = DataFrame({'a': [timedelta(days=23), timedelta(seconds=5)], 'b': [1, 2], 'c': pd.date_range(start='20130101', periods=2)}) result = pd.read_json(frame.to_json(date_unit='ns')) result['a'] = pd.to_timedelta(result.a, unit='ns') result['c'] = pd.to_datetime(result.c) assert_frame_equal(frame, result) def test_mixed_timedelta_datetime(self): frame = DataFrame({'a': [timedelta(23), pd.Timestamp('20130101')]}, dtype=object) expected = DataFrame({'a': [pd.Timedelta(frame.a[0]).value, pd.Timestamp(frame.a[1]).value]}) result = pd.read_json(frame.to_json(date_unit='ns'), dtype={'a': 'int64'}) assert_frame_equal(result, expected, check_index_type=False) def test_default_handler(self): value = object() frame = DataFrame({'a': [7, value]}) expected = DataFrame({'a': [7, str(value)]}) result = pd.read_json(frame.to_json(default_handler=str)) assert_frame_equal(expected, result, check_index_type=False) def test_default_handler_indirect(self): from pandas.io.json import dumps def default(obj): if isinstance(obj, complex): return [('mathjs', 'Complex'), ('re', obj.real), ('im', obj.imag)] return str(obj) df_list = [9, DataFrame({'a': [1, 'STR', complex(4, -5)], 'b': [float('nan'), None, 'N/A']}, columns=['a', 'b'])] expected = ('[9,[[1,null],["STR",null],[[["mathjs","Complex"],' '["re",4.0],["im",-5.0]],"N\\/A"]]]') assert dumps(df_list, default_handler=default, orient="values") == expected def test_default_handler_numpy_unsupported_dtype(self): # GH12554 to_json raises 'Unhandled numpy dtype 15' df = DataFrame({'a': [1, 2.3, complex(4, -5)], 'b': [float('nan'), None, complex(1.2, 0)]}, columns=['a', 'b']) expected = ('[["(1+0j)","(nan+0j)"],' '["(2.3+0j)","(nan+0j)"],' '["(4-5j)","(1.2+0j)"]]') assert df.to_json(default_handler=str, orient="values") == expected def test_default_handler_raises(self): def my_handler_raises(obj): raise TypeError("raisin") pytest.raises(TypeError, DataFrame({'a': [1, 2, object()]}).to_json, default_handler=my_handler_raises) pytest.raises(TypeError, DataFrame({'a': [1, 2, complex(4, -5)]}).to_json, default_handler=my_handler_raises) def test_categorical(self): # GH4377 df.to_json segfaults with non-ndarray blocks df = DataFrame({"A": ["a", "b", "c", "a", "b", "b", "a"]}) df["B"] = df["A"] expected = df.to_json() df["B"] = df["A"].astype('category') assert expected == df.to_json() s = df["A"] sc = df["B"] assert s.to_json() == sc.to_json() def test_datetime_tz(self): # GH4377 df.to_json segfaults with non-ndarray blocks tz_range = pd.date_range('20130101', periods=3, tz='US/Eastern') tz_naive = tz_range.tz_convert('utc').tz_localize(None) df = DataFrame({ 'A': tz_range, 'B': pd.date_range('20130101', periods=3)}) df_naive = df.copy() df_naive['A'] = tz_naive expected = df_naive.to_json() assert expected == df.to_json() stz = Series(tz_range) s_naive = Series(tz_naive) assert stz.to_json() == s_naive.to_json() def test_sparse(self): # GH4377 df.to_json segfaults with non-ndarray blocks df = pd.DataFrame(np.random.randn(10, 4)) df.loc[:8] = np.nan sdf = df.to_sparse() expected = df.to_json() assert expected == sdf.to_json() s = pd.Series(np.random.randn(10)) s.loc[:8] = np.nan ss = s.to_sparse() expected = s.to_json() assert expected == ss.to_json() def test_tz_is_utc(self): from pandas.io.json import dumps exp = '"2013-01-10T05:00:00.000Z"' ts = Timestamp('2013-01-10 05:00:00Z') assert dumps(ts, iso_dates=True) == exp dt = ts.to_pydatetime() assert dumps(dt, iso_dates=True) == exp ts = Timestamp('2013-01-10 00:00:00', tz='US/Eastern') assert dumps(ts, iso_dates=True) == exp dt = ts.to_pydatetime() assert dumps(dt, iso_dates=True) == exp ts = Timestamp('2013-01-10 00:00:00-0500') assert dumps(ts, iso_dates=True) == exp dt = ts.to_pydatetime() assert dumps(dt, iso_dates=True) == exp def test_tz_range_is_utc(self): from pandas.io.json import dumps exp = '["2013-01-01T05:00:00.000Z","2013-01-02T05:00:00.000Z"]' dfexp = ('{"DT":{' '"0":"2013-01-01T05:00:00.000Z",' '"1":"2013-01-02T05:00:00.000Z"}}') tz_range = pd.date_range('2013-01-01 05:00:00Z', periods=2) assert dumps(tz_range, iso_dates=True) == exp dti = pd.DatetimeIndex(tz_range) assert dumps(dti, iso_dates=True) == exp df = DataFrame({'DT': dti}) assert dumps(df, iso_dates=True) == dfexp tz_range = pd.date_range('2013-01-01 00:00:00', periods=2, tz='US/Eastern') assert dumps(tz_range, iso_dates=True) == exp dti = pd.DatetimeIndex(tz_range) assert dumps(dti, iso_dates=True) == exp df = DataFrame({'DT': dti}) assert dumps(df, iso_dates=True) == dfexp tz_range = pd.date_range('2013-01-01 00:00:00-0500', periods=2) assert dumps(tz_range, iso_dates=True) == exp dti = pd.DatetimeIndex(tz_range) assert dumps(dti, iso_dates=True) == exp df = DataFrame({'DT': dti}) assert dumps(df, iso_dates=True) == dfexp def test_read_jsonl(self): # GH9180 result = read_json('{"a": 1, "b": 2}\n{"b":2, "a" :1}\n', lines=True) expected = DataFrame([[1, 2], [1, 2]], columns=['a', 'b']) assert_frame_equal(result, expected) def test_read_jsonl_unicode_chars(self): # GH15132: non-ascii unicode characters # \u201d == RIGHT DOUBLE QUOTATION MARK # simulate file handle json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n' json = StringIO(json) result = read_json(json, lines=True) expected = DataFrame([[u"foo\u201d", "bar"], ["foo", "bar"]], columns=['a', 'b']) assert_frame_equal(result, expected) # simulate string json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n' result = read_json(json, lines=True) expected = DataFrame([[u"foo\u201d", "bar"], ["foo", "bar"]], columns=['a', 'b']) assert_frame_equal(result, expected) def test_to_jsonl(self): # GH9180 df = DataFrame([[1, 2], [1, 2]], columns=['a', 'b']) result = df.to_json(orient="records", lines=True) expected = '{"a":1,"b":2}\n{"a":1,"b":2}' assert result == expected df = DataFrame([["foo}", "bar"], ['foo"', "bar"]], columns=['a', 'b']) result = df.to_json(orient="records", lines=True) expected = '{"a":"foo}","b":"bar"}\n{"a":"foo\\"","b":"bar"}' assert result == expected assert_frame_equal(pd.read_json(result, lines=True), df) # GH15096: escaped characters in columns and data df = DataFrame([["foo\\", "bar"], ['foo"', "bar"]], columns=["a\\", 'b']) result = df.to_json(orient="records", lines=True) expected = ('{"a\\\\":"foo\\\\","b":"bar"}\n' '{"a\\\\":"foo\\"","b":"bar"}') assert result == expected assert_frame_equal(pd.read_json(result, lines=True), df) def test_latin_encoding(self): if compat.PY2: tm.assert_raises_regex( TypeError, r'\[unicode\] is not implemented as a table column') return # GH 13774 pytest.skip("encoding not implemented in .to_json(), " "xref #13774") values = [[b'E\xc9, 17', b'', b'a', b'b', b'c'], [b'E\xc9, 17', b'a', b'b', b'c'], [b'EE, 17', b'', b'a', b'b', b'c'], [b'E\xc9, 17', b'\xf8\xfc', b'a', b'b', b'c'], [b'', b'a', b'b', b'c'], [b'\xf8\xfc', b'a', b'b', b'c'], [b'A\xf8\xfc', b'', b'a', b'b', b'c'], [np.nan, b'', b'b', b'c'], [b'A\xf8\xfc', np.nan, b'', b'b', b'c']] def _try_decode(x, encoding='latin-1'): try: return x.decode(encoding) except AttributeError: return x # not sure how to remove latin-1 from code in python 2 and 3 values = [[_try_decode(x) for x in y] for y in values] examples = [] for dtype in ['category', object]: for val in values: examples.append(Series(val, dtype=dtype)) def roundtrip(s, encoding='latin-1'): with ensure_clean('test.json') as path: s.to_json(path, encoding=encoding) retr = read_json(path, encoding=encoding) assert_series_equal(s, retr, check_categorical=False) for s in examples: roundtrip(s) def test_data_frame_size_after_to_json(self): # GH15344 df = DataFrame({'a': [str(1)]}) size_before = df.memory_usage(index=True, deep=True).sum() df.to_json() size_after = df.memory_usage(index=True, deep=True).sum() assert size_before == size_after
bsd-3-clause
reynoldsnlp/bayes-morph-soc-net
artificial-data/generate_tables.py
1
10494
"""Generate artificial input morphological tables.""" from collections import Counter from pathlib import Path from pprint import pprint from random import choice from random import choices from statistics import mean from string import ascii_lowercase from string import ascii_uppercase # import sys from matplotlib import pyplot as plt from networkx import Graph from morph_nx import MorphGraph Path('autogen').mkdir(exist_ok=True) class MorphTable(): """Tab-separated morphological table of the following format: typeFreq A B C D E F NA a x jj uu ww ttt NA a m jj vv ww iii NA b m y vv xx iii NA b n y kk xx jjj NA c n z kk yy jjj NA c o z ll yy kkk ... """ def __init__(self, source=None, e_min=2, e_max=24, num_cells=6, num_classes=24): """Generate a morphological table.""" self.source = source self.e_min = e_min self.e_max = e_max self.num_cells = num_cells self.num_classes = num_classes self.AMs = self.gen_AMs() if self.source is None: self.AM_dict = {i: [next(self.AMs) for _ in range(choice(range(e_min, e_max)))] for i in range(num_cells)} self.gen_random_table() self.get_metrics() elif isinstance(self.source, Graph): # networkx Graph self.get_table_from_graph() self.get_metrics() try: assert self.mean_degree == self.source.avg_deg() assert self.mean_edge_weight == self.source.avg_wght() except AssertionError as e: print(f'MorphGraph metrics:\t{self.source.avg_deg():.4f}\t' f'{self.source.avg_wght():.4f}') print(f'MorphTable metrics:\t{self.mean_degree:.4f}\t' f'{self.mean_edge_weight:.4f}') # raise e elif isinstance(self.source, str): # filename self.get_table_from_file() self.get_metrics() else: print(type(self.source)) raise NotImplementedError def __repr__(self): repr = ['typeFreq\t' + '\t'.join(ascii_uppercase[:self.num_cells])] for r in self.tbl: repr.append('NA\t' + '\t'.join(r)) return '\n'.join(repr) def gen_random_table(self): """Generate table randomly.""" self.tbl = set() while len(self.tbl) < self.num_classes: self.tbl.add(tuple(choice(self.AM_dict[i]) for i in range(self.num_cells))) self.tbl = list(self.tbl) def get_table_from_graph(self): """Generate table structure from MorphGraph (custom networkx Graph).""" self.tbl = [[None] * self.num_cells for _ in range(self.num_classes)] g = self.source # Place exponents in the table for u, v, d in g.edges(data=True): shared_MSPSs = d['weight'] for msps in shared_MSPSs: rows = {u, v} # all rows that share this exp just_saw_a_new_one = True while just_saw_a_new_one: just_saw_a_new_one = False for U, V, D in g.edges(data=True): if U in rows and msps in D['weight'] and V not in rows: rows.add(V) just_saw_a_new_one = True if V in rows and msps in D['weight'] and U not in rows: rows.add(U) just_saw_a_new_one = True existing_exps = set(self.tbl[r][msps] for r in rows) - {None} lee = len(existing_exps) if lee == 0: exponent = '_' + next(self.AMs) if lee == 1: continue elif lee > 1: pprint(self.tbl) print(rows, msps) raise AttributeError('Whaaaaa?!') for r in rows: self.tbl[r][msps] = exponent self.tbl = [[e or next(self.AMs) for e in row] for row in self.tbl] def get_table_from_file(self): """Import table structure from tab-separated file.""" with Path(self.source).open() as f: self.tbl = [] for line in f.readlines()[1:]: self.tbl.append(tuple(line.strip().split('\t')[1:])) assert len(set([len(r) for r in self.tbl])) == 1 self.num_cells = len(self.tbl[0]) self.num_classes = len(self.tbl) def get_col(self, index): """Return column of `self.tbl`.""" return [row[index] for row in self.tbl] def get_matching_rows(self, msps, exponent): return [i for i, row in enumerate(self.tbl) if self.tbl[i][msps] == exponent] @staticmethod def gen_AMs(): """Generate list of unique 'allomorphs'.""" gem = 0 # duplication factor while True: gem += 1 for c in ascii_lowercase: yield c * gem def get_metrics(self): """Calculate mean degree and mean edge weight. Mean degree - On average, how many nodes is each node connected to Mean edge weight - On average, how many classes share each exponent """ degs = [] weights = [] for row in range(self.num_classes): cell_counter = Counter() for other_row in range(self.num_classes): if other_row != row: for msps in range(self.num_cells): if self.tbl[other_row][msps] == self.tbl[row][msps]: cell_counter.update([other_row]) degs.append(len(cell_counter)) weights.extend(cell_counter.values()) md = mean(degs) self.mean_degree = md self.norm_mean_degree = md / (self.num_classes - 1) mew = mean(weights) self.mean_edge_weight = mew self.norm_mean_edge_weight = mew / (self.num_cells - 1) def mutate(self, MSPSs=1, cells=1, guaranteed=False): """Mutate table by changing x exponents in each MSPS. x -- How many cells to change per MSPS prob -- Probability that any given MSPS will actually be changed guaranteed -- Guarantee that exponent is not replaced by itself, unless there is only one exponent for that MSPS """ for msps in choices(range(self.num_cells), k=MSPSs): already_changed = set() for _ in range(cells): pool = [row[msps] for row in self.tbl] victim_row = choice(range(self.num_classes)) while ((msps, victim_row) in already_changed and len(already_changed) < len(self.num_classes)): victim_row = choice(range(self.num_classes)) new_exp = choice(pool) if guaranteed and len(set(pool)) > 1: while self.tbl[victim_row][msps] == new_exp: new_exp = choice(pool) new_row = list(self.tbl[victim_row]) new_row[msps] = new_exp self.tbl[victim_row] = tuple(new_row) already_changed.add((msps, victim_row)) self.get_metrics() if __name__ == '__main__': NORM_LIMS = (-0.1, 1.1) from_nx = [] for i in range(1, 24): for j in range(1, 6): print(i, j) g = MorphGraph(24, i, j) print(g.avg_deg(), g.avg_wght()) from_nx.append(MorphTable(g)) nx_mean_degs = [mt.norm_mean_degree for mt in from_nx] nx_mean_weights = [mt.norm_mean_edge_weight for mt in from_nx] plt.scatter(nx_mean_degs, nx_mean_weights, marker='o', color='r') plt.title('Random generation of tables from networkx Graphs') plt.xlabel('Mean degree') plt.ylabel('Mean edge weight') plt.xlim(NORM_LIMS) plt.ylim(NORM_LIMS) plt.show() jeffs = [MorphTable(fname) for fname in Path('.').glob('data_6.*')] orig_mean_degs = [mt.norm_mean_degree for mt in jeffs] orig_mean_weights = [mt.norm_mean_edge_weight for mt in jeffs] plt.scatter(orig_mean_degs, orig_mean_weights, marker='o', color='r') mean_degs = [] mean_weights = [] for mt in jeffs: for i in range(100): mt.mutate() mean_degs.append(mt.norm_mean_degree) mean_weights.append(mt.norm_mean_edge_weight) # print(f'writing file {i}...', file=sys.stderr) # with Path(f'autogen/{str(i).zfill(4)}.txt').open('w') as f: # print(mt, file=f) plt.scatter(mean_degs, mean_weights, marker='.') plt.title('Incremental random mutation of 6.x tables') plt.xlabel('Normalized mean degree') plt.ylabel('Normalized mean edge weight') plt.xlim(NORM_LIMS) plt.ylim(NORM_LIMS) # axes = plt.gca() # xlim = axes.get_xlim() # ylim = axes.get_ylim() plt.show() mean_degs = [] mean_weights = [] for i in range(1000): mt = MorphTable() mean_degs.append(mt.norm_mean_degree) mean_weights.append(mt.norm_mean_edge_weight) plt.scatter(mean_degs, mean_weights, marker='.') plt.title('Random generation of tables') plt.xlabel('Mean degree') plt.ylabel('Mean edge weight') plt.xlim(NORM_LIMS) plt.ylim(NORM_LIMS) plt.show() langs = [(MorphTable(f), f.stem) for f in Path('../language-data').glob('*.txt')] lang_mean_degs = [mt.norm_mean_degree for mt, name in langs] lang_mean_weights = [mt.norm_mean_edge_weight for mt, name in langs] lang_names = [name for mt, name in langs] fix, ax = plt.subplots() ax.scatter(lang_mean_degs, lang_mean_weights, marker='o', color='b') for x, y, txt in zip(lang_mean_degs, lang_mean_weights, lang_names): ax.annotate(txt, (x, y)) mean_degs = [] mean_weights = [] for mt, name in langs: for i in range(100): mt.mutate() mean_degs.append(mt.norm_mean_degree) mean_weights.append(mt.norm_mean_edge_weight) plt.scatter(mean_degs, mean_weights, marker='.') plt.title('Incremental random mutation of natural language tables') plt.xlabel('Normalized mean degree') plt.ylabel('Normalized mean edge weight') plt.xlim(NORM_LIMS) plt.ylim(NORM_LIMS) plt.show()
gpl-3.0
alvarofierroclavero/scikit-learn
examples/classification/plot_digits_classification.py
289
2397
""" ================================ Recognizing hand-written digits ================================ An example showing how the scikit-learn can be used to recognize images of hand-written digits. This example is commented in the :ref:`tutorial section of the user manual <introduction>`. """ print(__doc__) # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # License: BSD 3 clause # Standard scientific Python imports import matplotlib.pyplot as plt # Import datasets, classifiers and performance metrics from sklearn import datasets, svm, metrics # The digits dataset digits = datasets.load_digits() # The data that we are interested in is made of 8x8 images of digits, let's # have a look at the first 3 images, stored in the `images` attribute of the # dataset. If we were working from image files, we could load them using # pylab.imread. Note that each image must have the same size. For these # images, we know which digit they represent: it is given in the 'target' of # the dataset. images_and_labels = list(zip(digits.images, digits.target)) for index, (image, label) in enumerate(images_and_labels[:4]): plt.subplot(2, 4, index + 1) plt.axis('off') plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest') plt.title('Training: %i' % label) # To apply a classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.images) data = digits.images.reshape((n_samples, -1)) # Create a classifier: a support vector classifier classifier = svm.SVC(gamma=0.001) # We learn the digits on the first half of the digits classifier.fit(data[:n_samples / 2], digits.target[:n_samples / 2]) # Now predict the value of the digit on the second half: expected = digits.target[n_samples / 2:] predicted = classifier.predict(data[n_samples / 2:]) print("Classification report for classifier %s:\n%s\n" % (classifier, metrics.classification_report(expected, predicted))) print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted)) images_and_predictions = list(zip(digits.images[n_samples / 2:], predicted)) for index, (image, prediction) in enumerate(images_and_predictions[:4]): plt.subplot(2, 4, index + 5) plt.axis('off') plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest') plt.title('Prediction: %i' % prediction) plt.show()
bsd-3-clause
mne-tools/mne-tools.github.io
stable/_downloads/e2ab6e33a74484d0a12d24af03cb3f79/time_frequency_simulated.py
18
8475
""" ====================================================================== Time-frequency on simulated data (Multitaper vs. Morlet vs. Stockwell) ====================================================================== This example demonstrates the different time-frequency estimation methods on simulated data. It shows the time-frequency resolution trade-off and the problem of estimation variance. In addition it highlights alternative functions for generating TFRs without averaging across trials, or by operating on numpy arrays. """ # Authors: Hari Bharadwaj <[email protected]> # Denis Engemann <[email protected]> # Chris Holdgraf <[email protected]> # # License: BSD (3-clause) import numpy as np from matplotlib import pyplot as plt from mne import create_info, EpochsArray from mne.baseline import rescale from mne.time_frequency import (tfr_multitaper, tfr_stockwell, tfr_morlet, tfr_array_morlet) from mne.viz import centers_to_edges print(__doc__) ############################################################################### # Simulate data # ------------- # # We'll simulate data with a known spectro-temporal structure. sfreq = 1000.0 ch_names = ['SIM0001', 'SIM0002'] ch_types = ['grad', 'grad'] info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types) n_times = 1024 # Just over 1 second epochs n_epochs = 40 seed = 42 rng = np.random.RandomState(seed) noise = rng.randn(n_epochs, len(ch_names), n_times) # Add a 50 Hz sinusoidal burst to the noise and ramp it. t = np.arange(n_times, dtype=np.float64) / sfreq signal = np.sin(np.pi * 2. * 50. * t) # 50 Hz sinusoid signal signal[np.logical_or(t < 0.45, t > 0.55)] = 0. # Hard windowing on_time = np.logical_and(t >= 0.45, t <= 0.55) signal[on_time] *= np.hanning(on_time.sum()) # Ramping data = noise + signal reject = dict(grad=4000) events = np.empty((n_epochs, 3), dtype=int) first_event_sample = 100 event_id = dict(sin50hz=1) for k in range(n_epochs): events[k, :] = first_event_sample + k * n_times, 0, event_id['sin50hz'] epochs = EpochsArray(data=data, info=info, events=events, event_id=event_id, reject=reject) epochs.average().plot() ############################################################################### # Calculate a time-frequency representation (TFR) # ----------------------------------------------- # # Below we'll demonstrate the output of several TFR functions in MNE: # # * :func:`mne.time_frequency.tfr_multitaper` # * :func:`mne.time_frequency.tfr_stockwell` # * :func:`mne.time_frequency.tfr_morlet` # # Multitaper transform # ==================== # First we'll use the multitaper method for calculating the TFR. # This creates several orthogonal tapering windows in the TFR estimation, # which reduces variance. We'll also show some of the parameters that can be # tweaked (e.g., ``time_bandwidth``) that will result in different multitaper # properties, and thus a different TFR. You can trade time resolution or # frequency resolution or both in order to get a reduction in variance. freqs = np.arange(5., 100., 3.) vmin, vmax = -3., 3. # Define our color limits. ############################################################################### # **(1) Least smoothing (most variance/background fluctuations).** n_cycles = freqs / 2. time_bandwidth = 2.0 # Least possible frequency-smoothing (1 taper) power = tfr_multitaper(epochs, freqs=freqs, n_cycles=n_cycles, time_bandwidth=time_bandwidth, return_itc=False) # Plot results. Baseline correct based on first 100 ms. power.plot([0], baseline=(0., 0.1), mode='mean', vmin=vmin, vmax=vmax, title='Sim: Least smoothing, most variance') ############################################################################### # **(2) Less frequency smoothing, more time smoothing.** n_cycles = freqs # Increase time-window length to 1 second. time_bandwidth = 4.0 # Same frequency-smoothing as (1) 3 tapers. power = tfr_multitaper(epochs, freqs=freqs, n_cycles=n_cycles, time_bandwidth=time_bandwidth, return_itc=False) # Plot results. Baseline correct based on first 100 ms. power.plot([0], baseline=(0., 0.1), mode='mean', vmin=vmin, vmax=vmax, title='Sim: Less frequency smoothing, more time smoothing') ############################################################################### # **(3) Less time smoothing, more frequency smoothing.** n_cycles = freqs / 2. time_bandwidth = 8.0 # Same time-smoothing as (1), 7 tapers. power = tfr_multitaper(epochs, freqs=freqs, n_cycles=n_cycles, time_bandwidth=time_bandwidth, return_itc=False) # Plot results. Baseline correct based on first 100 ms. power.plot([0], baseline=(0., 0.1), mode='mean', vmin=vmin, vmax=vmax, title='Sim: Less time smoothing, more frequency smoothing') ############################################################################## # Stockwell (S) transform # ======================= # # Stockwell uses a Gaussian window to balance temporal and spectral resolution. # Importantly, frequency bands are phase-normalized, hence strictly comparable # with regard to timing, and, the input signal can be recoverd from the # transform in a lossless way if we disregard numerical errors. In this case, # we control the spectral / temporal resolution by specifying different widths # of the gaussian window using the ``width`` parameter. fig, axs = plt.subplots(1, 3, figsize=(15, 5), sharey=True) fmin, fmax = freqs[[0, -1]] for width, ax in zip((0.2, .7, 3.0), axs): power = tfr_stockwell(epochs, fmin=fmin, fmax=fmax, width=width) power.plot([0], baseline=(0., 0.1), mode='mean', axes=ax, show=False, colorbar=False) ax.set_title('Sim: Using S transform, width = {:0.1f}'.format(width)) plt.tight_layout() ############################################################################### # Morlet Wavelets # =============== # # Finally, show the TFR using morlet wavelets, which are a sinusoidal wave # with a gaussian envelope. We can control the balance between spectral and # temporal resolution with the ``n_cycles`` parameter, which defines the # number of cycles to include in the window. fig, axs = plt.subplots(1, 3, figsize=(15, 5), sharey=True) all_n_cycles = [1, 3, freqs / 2.] for n_cycles, ax in zip(all_n_cycles, axs): power = tfr_morlet(epochs, freqs=freqs, n_cycles=n_cycles, return_itc=False) power.plot([0], baseline=(0., 0.1), mode='mean', vmin=vmin, vmax=vmax, axes=ax, show=False, colorbar=False) n_cycles = 'scaled by freqs' if not isinstance(n_cycles, int) else n_cycles ax.set_title('Sim: Using Morlet wavelet, n_cycles = %s' % n_cycles) plt.tight_layout() ############################################################################### # Calculating a TFR without averaging over epochs # ----------------------------------------------- # # It is also possible to calculate a TFR without averaging across trials. # We can do this by using ``average=False``. In this case, an instance of # :class:`mne.time_frequency.EpochsTFR` is returned. n_cycles = freqs / 2. power = tfr_morlet(epochs, freqs=freqs, n_cycles=n_cycles, return_itc=False, average=False) print(type(power)) avgpower = power.average() avgpower.plot([0], baseline=(0., 0.1), mode='mean', vmin=vmin, vmax=vmax, title='Using Morlet wavelets and EpochsTFR', show=False) ############################################################################### # Operating on arrays # ------------------- # # MNE also has versions of the functions above which operate on numpy arrays # instead of MNE objects. They expect inputs of the shape # ``(n_epochs, n_channels, n_times)``. They will also return a numpy array # of shape ``(n_epochs, n_channels, n_freqs, n_times)``. power = tfr_array_morlet(epochs.get_data(), sfreq=epochs.info['sfreq'], freqs=freqs, n_cycles=n_cycles, output='avg_power') # Baseline the output rescale(power, epochs.times, (0., 0.1), mode='mean', copy=False) fig, ax = plt.subplots() x, y = centers_to_edges(epochs.times * 1000, freqs) mesh = ax.pcolormesh(x, y, power[0], cmap='RdBu_r', vmin=vmin, vmax=vmax) ax.set_title('TFR calculated on a numpy array') ax.set(ylim=freqs[[0, -1]], xlabel='Time (ms)') fig.colorbar(mesh) plt.tight_layout() plt.show()
bsd-3-clause
untom/scikit-learn
examples/linear_model/plot_multi_task_lasso_support.py
249
2211
#!/usr/bin/env python """ ============================================= Joint feature selection with multi-task Lasso ============================================= The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected features to be the same across tasks. This example simulates sequential measurements, each task is a time instant, and the relevant features vary in amplitude over time while being the same. The multi-task lasso imposes that features that are selected at one time point are select for all time point. This makes feature selection by the Lasso more stable. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import MultiTaskLasso, Lasso rng = np.random.RandomState(42) # Generate some 2D coefficients with sine waves with random frequency and phase n_samples, n_features, n_tasks = 100, 30, 40 n_relevant_features = 5 coef = np.zeros((n_tasks, n_features)) times = np.linspace(0, 2 * np.pi, n_tasks) for k in range(n_relevant_features): coef[:, k] = np.sin((1. + rng.randn(1)) * times + 3 * rng.randn(1)) X = rng.randn(n_samples, n_features) Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks) coef_lasso_ = np.array([Lasso(alpha=0.5).fit(X, y).coef_ for y in Y.T]) coef_multi_task_lasso_ = MultiTaskLasso(alpha=1.).fit(X, Y).coef_ ############################################################################### # Plot support and time series fig = plt.figure(figsize=(8, 5)) plt.subplot(1, 2, 1) plt.spy(coef_lasso_) plt.xlabel('Feature') plt.ylabel('Time (or Task)') plt.text(10, 5, 'Lasso') plt.subplot(1, 2, 2) plt.spy(coef_multi_task_lasso_) plt.xlabel('Feature') plt.ylabel('Time (or Task)') plt.text(10, 5, 'MultiTaskLasso') fig.suptitle('Coefficient non-zero location') feature_to_plot = 0 plt.figure() plt.plot(coef[:, feature_to_plot], 'k', label='Ground truth') plt.plot(coef_lasso_[:, feature_to_plot], 'g', label='Lasso') plt.plot(coef_multi_task_lasso_[:, feature_to_plot], 'r', label='MultiTaskLasso') plt.legend(loc='upper center') plt.axis('tight') plt.ylim([-1.1, 1.1]) plt.show()
bsd-3-clause
ChinaQuants/bokeh
bokeh/util/serialization.py
31
7419
""" Functions for helping with serialization and deserialization of Bokeh objects. """ from __future__ import absolute_import from six import iterkeys is_numpy = None try: import numpy as np is_numpy = True except ImportError: is_numpy = False try: import pandas as pd is_pandas = True except ImportError: is_pandas = False import logging log = logging.getLogger(__name__) _simple_id = 1000 def make_id(): """ Return a new unique ID for a Bokeh object. Normally this function will return UUIDs to use for identifying Bokeh objects. This is especally important for Bokeh objects stored on a Bokeh server. However, it is convenient to have more human-readable IDs during development, so this behavior can be overridden by setting the environment variable ``BOKEH_SIMPLE_IDS=yes``. """ global _simple_id import uuid from ..settings import settings if settings.simple_ids(False): _simple_id += 1 new_id = _simple_id else: new_id = uuid.uuid4() return str(new_id) def urljoin(*args): """ Construct an absolute URL from several URL components. Args: *args (str) : URL components to join Returns: str : joined URL """ from six.moves.urllib.parse import urljoin as sys_urljoin from functools import reduce return reduce(sys_urljoin, args) def get_json(response): """ Unify retrieving JSON responses from different sources. Works correctly for HTTP responses from requests <=1.0, >1.0, and the Flask test client. Args: response (Flask or requests response) : a response to process Returns: JSON """ import json try: import flask except ImportError: flask = None if flask and isinstance(response, flask.Response): # flask testing return json.loads(response.data.decode('utf-8')) else: # requests if hasattr(response.json, '__call__'): return response.json() else: return response.json def dump(objs, docid, changed_only=True): """ Serialize a sequence of Bokeh objects into JSON Args: objs (seq[obj]) : a sequence of Bokeh object to dump docid (str) : an ID for a Bokeh Document to dump relative to changed_only (bool, optional) : whether to dump only attributes that have had their values changed at some point (default: True) Returns: list[json] """ json_objs = [] for obj in objs: ref = obj.ref ref["attributes"] = obj.vm_serialize(changed_only=changed_only) ref["attributes"].update({"id": ref["id"], "doc" : docid}) json_objs.append(ref) return json_objs def is_ref(frag): """ Test whether a given Bokeh object graph fragment is a reference. A Bokeh "reference" is a ``dict`` with ``"type"`` and ``"id"`` keys. Args: frag (dict) : a fragment of a Bokeh object graph Returns: True, if the fragment is a reference, otherwise False """ return isinstance(frag, dict) and \ frag.get('type') and \ frag.get('id') def json_apply(fragment, check_func, func): """ Apply a function to JSON fragments that match the given predicate and return the collected results. Recursively traverses a nested collection of ``dict`` and ``list``, applying ``check_func`` to each fragment. If True, then collect ``func(fragment)`` in the final output Args: fragment (JSON-like) : the fragment to apply ``func`` to recursively check_func (callable) : the predicate to test fragments with func (callable) : the conversion function to apply Returns: converted fragments """ if check_func(fragment): return func(fragment) elif isinstance(fragment, list): output = [] for val in fragment: output.append(json_apply(val, check_func, func)) return output elif isinstance(fragment, dict): output = {} for k, val in fragment.items(): output[k] = json_apply(val, check_func, func) return output else: return fragment def transform_series(obj): """transforms pandas series into array of values """ vals = obj.values return transform_array(vals) def transform_array(obj): """Transform arrays into lists of json safe types also handles pandas series, and replacing nans and infs with strings """ # Check for astype failures (putative Numpy < 1.7) dt2001 = np.datetime64('2001') legacy_datetime64 = (dt2001.astype('int64') == dt2001.astype('datetime64[ms]').astype('int64')) ## not quite correct, truncates to ms.. if obj.dtype.kind == 'M': if legacy_datetime64: if obj.dtype == np.dtype('datetime64[ns]'): return (obj.astype('int64') / 10**6.0).tolist() else: return (obj.astype('datetime64[us]').astype('int64') / 1000.).tolist() elif obj.dtype.kind in ('u', 'i', 'f'): return transform_numerical_array(obj) return obj.tolist() def transform_numerical_array(obj): """handles nans/inf conversion """ if isinstance(obj, np.ma.MaskedArray): obj = obj.filled(np.nan) # Set masked values to nan if not np.isnan(obj).any() and not np.isinf(obj).any(): return obj.tolist() else: transformed = obj.astype('object') transformed[np.isnan(obj)] = 'NaN' transformed[np.isposinf(obj)] = 'Infinity' transformed[np.isneginf(obj)] = '-Infinity' return transformed.tolist() def traverse_data(datum, is_numpy=is_numpy, use_numpy=True): """recursively dig until a flat list is found if numpy is available convert the flat list to a numpy array and send off to transform_array() to handle nan, inf, -inf otherwise iterate through items in array converting non-json items Args: datum (list) : a list of values or lists is_numpy: True if numpy is present (see imports) use_numpy: toggle numpy as a dependency for testing purposes """ is_numpy = is_numpy and use_numpy if is_numpy and not any(isinstance(el, (list, tuple)) for el in datum): return transform_array(np.asarray(datum)) datum_copy = [] for item in datum: if isinstance(item, (list, tuple)): datum_copy.append(traverse_data(item)) elif isinstance(item, float): if np.isnan(item): item = 'NaN' elif np.isposinf(item): item = 'Infinity' elif np.isneginf(item): item = '-Infinity' datum_copy.append(item) else: datum_copy.append(item) return datum_copy def transform_column_source_data(data): """iterate through the data of a ColumnSourceData object replacing non-JSON-compliant objects with compliant ones """ data_copy = {} for key in iterkeys(data): if is_pandas and isinstance(data[key], (pd.Series, pd.Index)): data_copy[key] = transform_series(data[key]) elif isinstance(data[key], np.ndarray): data_copy[key] = transform_array(data[key]) else: data_copy[key] = traverse_data(data[key]) return data_copy
bsd-3-clause
petosegan/scikit-learn
benchmarks/bench_lasso.py
297
3305
""" Benchmarks of Lasso vs LassoLars First, we fix a training set and increase the number of samples. Then we plot the computation time as function of the number of samples. In the second benchmark, we increase the number of dimensions of the training set. Then we plot the computation time as function of the number of dimensions. In both cases, only 10% of the features are informative. """ import gc from time import time import numpy as np from sklearn.datasets.samples_generator import make_regression def compute_bench(alpha, n_samples, n_features, precompute): lasso_results = [] lars_lasso_results = [] it = 0 for ns in n_samples: for nf in n_features: it += 1 print('==================') print('Iteration %s of %s' % (it, max(len(n_samples), len(n_features)))) print('==================') n_informative = nf // 10 X, Y, coef_ = make_regression(n_samples=ns, n_features=nf, n_informative=n_informative, noise=0.1, coef=True) X /= np.sqrt(np.sum(X ** 2, axis=0)) # Normalize data gc.collect() print("- benchmarking Lasso") clf = Lasso(alpha=alpha, fit_intercept=False, precompute=precompute) tstart = time() clf.fit(X, Y) lasso_results.append(time() - tstart) gc.collect() print("- benchmarking LassoLars") clf = LassoLars(alpha=alpha, fit_intercept=False, normalize=False, precompute=precompute) tstart = time() clf.fit(X, Y) lars_lasso_results.append(time() - tstart) return lasso_results, lars_lasso_results if __name__ == '__main__': from sklearn.linear_model import Lasso, LassoLars import pylab as pl alpha = 0.01 # regularization parameter n_features = 10 list_n_samples = np.linspace(100, 1000000, 5).astype(np.int) lasso_results, lars_lasso_results = compute_bench(alpha, list_n_samples, [n_features], precompute=True) pl.figure('scikit-learn LASSO benchmark results') pl.subplot(211) pl.plot(list_n_samples, lasso_results, 'b-', label='Lasso') pl.plot(list_n_samples, lars_lasso_results, 'r-', label='LassoLars') pl.title('precomputed Gram matrix, %d features, alpha=%s' % (n_features, alpha)) pl.legend(loc='upper left') pl.xlabel('number of samples') pl.ylabel('Time (s)') pl.axis('tight') n_samples = 2000 list_n_features = np.linspace(500, 3000, 5).astype(np.int) lasso_results, lars_lasso_results = compute_bench(alpha, [n_samples], list_n_features, precompute=False) pl.subplot(212) pl.plot(list_n_features, lasso_results, 'b-', label='Lasso') pl.plot(list_n_features, lars_lasso_results, 'r-', label='LassoLars') pl.title('%d samples, alpha=%s' % (n_samples, alpha)) pl.legend(loc='upper left') pl.xlabel('number of features') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
andim/scipy
scipy/stats/_distn_infrastructure.py
4
113604
# # Author: Travis Oliphant 2002-2011 with contributions from # SciPy Developers 2004-2011 # from __future__ import division, print_function, absolute_import from scipy._lib.six import string_types, exec_ from scipy._lib._util import getargspec_no_self as _getargspec import sys import keyword import re import types import warnings from scipy.misc import doccer from ._distr_params import distcont, distdiscrete from scipy._lib._util import check_random_state from scipy.special import (comb, chndtr, gammaln, entr, kl_div, xlogy, ive) # for root finding for discrete distribution ppf, and max likelihood estimation from scipy import optimize # for functions of continuous distributions (e.g. moments, entropy, cdf) from scipy import integrate # to approximate the pdf of a continuous distribution given its cdf from scipy.misc import derivative from numpy import (arange, putmask, ravel, take, ones, sum, shape, product, reshape, zeros, floor, logical_and, log, sqrt, exp, ndarray) from numpy import (place, any, argsort, argmax, vectorize, asarray, nan, inf, isinf, NINF, empty) import numpy as np from ._constants import _EPS, _XMAX try: from new import instancemethod except ImportError: # Python 3 def instancemethod(func, obj, cls): return types.MethodType(func, obj) # These are the docstring parts used for substitution in specific # distribution docstrings docheaders = {'methods': """\nMethods\n-------\n""", 'notes': """\nNotes\n-----\n""", 'examples': """\nExamples\n--------\n"""} _doc_rvs = """\ ``rvs(%(shapes)s, loc=0, scale=1, size=1, random_state=None)`` Random variates. """ _doc_pdf = """\ ``pdf(x, %(shapes)s, loc=0, scale=1)`` Probability density function. """ _doc_logpdf = """\ ``logpdf(x, %(shapes)s, loc=0, scale=1)`` Log of the probability density function. """ _doc_pmf = """\ ``pmf(x, %(shapes)s, loc=0, scale=1)`` Probability mass function. """ _doc_logpmf = """\ ``logpmf(x, %(shapes)s, loc=0, scale=1)`` Log of the probability mass function. """ _doc_cdf = """\ ``cdf(x, %(shapes)s, loc=0, scale=1)`` Cumulative density function. """ _doc_logcdf = """\ ``logcdf(x, %(shapes)s, loc=0, scale=1)`` Log of the cumulative density function. """ _doc_sf = """\ ``sf(x, %(shapes)s, loc=0, scale=1)`` Survival function (``1 - cdf`` --- sometimes more accurate). """ _doc_logsf = """\ ``logsf(x, %(shapes)s, loc=0, scale=1)`` Log of the survival function. """ _doc_ppf = """\ ``ppf(q, %(shapes)s, loc=0, scale=1)`` Percent point function (inverse of ``cdf`` --- percentiles). """ _doc_isf = """\ ``isf(q, %(shapes)s, loc=0, scale=1)`` Inverse survival function (inverse of ``sf``). """ _doc_moment = """\ ``moment(n, %(shapes)s, loc=0, scale=1)`` Non-central moment of order n """ _doc_stats = """\ ``stats(%(shapes)s, loc=0, scale=1, moments='mv')`` Mean('m'), variance('v'), skew('s'), and/or kurtosis('k'). """ _doc_entropy = """\ ``entropy(%(shapes)s, loc=0, scale=1)`` (Differential) entropy of the RV. """ _doc_fit = """\ ``fit(data, %(shapes)s, loc=0, scale=1)`` Parameter estimates for generic data. """ _doc_expect = """\ ``expect(func, %(shapes)s, loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)`` Expected value of a function (of one argument) with respect to the distribution. """ _doc_expect_discrete = """\ ``expect(func, %(shapes)s, loc=0, lb=None, ub=None, conditional=False)`` Expected value of a function (of one argument) with respect to the distribution. """ _doc_median = """\ ``median(%(shapes)s, loc=0, scale=1)`` Median of the distribution. """ _doc_mean = """\ ``mean(%(shapes)s, loc=0, scale=1)`` Mean of the distribution. """ _doc_var = """\ ``var(%(shapes)s, loc=0, scale=1)`` Variance of the distribution. """ _doc_std = """\ ``std(%(shapes)s, loc=0, scale=1)`` Standard deviation of the distribution. """ _doc_interval = """\ ``interval(alpha, %(shapes)s, loc=0, scale=1)`` Endpoints of the range that contains alpha percent of the distribution """ _doc_allmethods = ''.join([docheaders['methods'], _doc_rvs, _doc_pdf, _doc_logpdf, _doc_cdf, _doc_logcdf, _doc_sf, _doc_logsf, _doc_ppf, _doc_isf, _doc_moment, _doc_stats, _doc_entropy, _doc_fit, _doc_expect, _doc_median, _doc_mean, _doc_var, _doc_std, _doc_interval]) _doc_default_longsummary = """\ As an instance of the `rv_continuous` class, `%(name)s` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution. """ _doc_default_frozen_note = """ Alternatively, the object may be called (as a function) to fix the shape, location, and scale parameters returning a "frozen" continuous RV object: rv = %(name)s(%(shapes)s, loc=0, scale=1) - Frozen RV object with the same methods but holding the given shape, location, and scale fixed. """ _doc_default_example = """\ Examples -------- >>> from scipy.stats import %(name)s >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1) Calculate a few first moments: %(set_vals_stmt)s >>> mean, var, skew, kurt = %(name)s.stats(%(shapes)s, moments='mvsk') Display the probability density function (``pdf``): >>> x = np.linspace(%(name)s.ppf(0.01, %(shapes)s), ... %(name)s.ppf(0.99, %(shapes)s), 100) >>> ax.plot(x, %(name)s.pdf(x, %(shapes)s), ... 'r-', lw=5, alpha=0.6, label='%(name)s pdf') Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a "frozen" RV object holding the given parameters fixed. Freeze the distribution and display the frozen ``pdf``: >>> rv = %(name)s(%(shapes)s) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf') Check accuracy of ``cdf`` and ``ppf``: >>> vals = %(name)s.ppf([0.001, 0.5, 0.999], %(shapes)s) >>> np.allclose([0.001, 0.5, 0.999], %(name)s.cdf(vals, %(shapes)s)) True Generate random numbers: >>> r = %(name)s.rvs(%(shapes)s, size=1000) And compare the histogram: >>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show() """ _doc_default_locscale = """\ The probability density above is defined in the "standardized" form. To shift and/or scale the distribution use the ``loc`` and ``scale`` parameters. Specifically, ``%(name)s.pdf(x, %(shapes)s, loc, scale)`` is identically equivalent to ``%(name)s.pdf(y, %(shapes)s) / scale`` with ``y = (x - loc) / scale``. """ _doc_default = ''.join([_doc_default_longsummary, _doc_allmethods, '\n', _doc_default_example]) _doc_default_before_notes = ''.join([_doc_default_longsummary, _doc_allmethods]) docdict = { 'rvs': _doc_rvs, 'pdf': _doc_pdf, 'logpdf': _doc_logpdf, 'cdf': _doc_cdf, 'logcdf': _doc_logcdf, 'sf': _doc_sf, 'logsf': _doc_logsf, 'ppf': _doc_ppf, 'isf': _doc_isf, 'stats': _doc_stats, 'entropy': _doc_entropy, 'fit': _doc_fit, 'moment': _doc_moment, 'expect': _doc_expect, 'interval': _doc_interval, 'mean': _doc_mean, 'std': _doc_std, 'var': _doc_var, 'median': _doc_median, 'allmethods': _doc_allmethods, 'longsummary': _doc_default_longsummary, 'frozennote': _doc_default_frozen_note, 'example': _doc_default_example, 'default': _doc_default, 'before_notes': _doc_default_before_notes, 'after_notes': _doc_default_locscale } # Reuse common content between continuous and discrete docs, change some # minor bits. docdict_discrete = docdict.copy() docdict_discrete['pmf'] = _doc_pmf docdict_discrete['logpmf'] = _doc_logpmf docdict_discrete['expect'] = _doc_expect_discrete _doc_disc_methods = ['rvs', 'pmf', 'logpmf', 'cdf', 'logcdf', 'sf', 'logsf', 'ppf', 'isf', 'stats', 'entropy', 'expect', 'median', 'mean', 'var', 'std', 'interval'] for obj in _doc_disc_methods: docdict_discrete[obj] = docdict_discrete[obj].replace(', scale=1', '') docdict_discrete.pop('pdf') docdict_discrete.pop('logpdf') _doc_allmethods = ''.join([docdict_discrete[obj] for obj in _doc_disc_methods]) docdict_discrete['allmethods'] = docheaders['methods'] + _doc_allmethods docdict_discrete['longsummary'] = _doc_default_longsummary.replace( 'rv_continuous', 'rv_discrete') _doc_default_frozen_note = """ Alternatively, the object may be called (as a function) to fix the shape and location parameters returning a "frozen" discrete RV object: rv = %(name)s(%(shapes)s, loc=0) - Frozen RV object with the same methods but holding the given shape and location fixed. """ docdict_discrete['frozennote'] = _doc_default_frozen_note _doc_default_discrete_example = """\ Examples -------- >>> from scipy.stats import %(name)s >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1) Calculate a few first moments: %(set_vals_stmt)s >>> mean, var, skew, kurt = %(name)s.stats(%(shapes)s, moments='mvsk') Display the probability mass function (``pmf``): >>> x = np.arange(%(name)s.ppf(0.01, %(shapes)s), ... %(name)s.ppf(0.99, %(shapes)s)) >>> ax.plot(x, %(name)s.pmf(x, %(shapes)s), 'bo', ms=8, label='%(name)s pmf') >>> ax.vlines(x, 0, %(name)s.pmf(x, %(shapes)s), colors='b', lw=5, alpha=0.5) Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a "frozen" RV object holding the given parameters fixed. Freeze the distribution and display the frozen ``pmf``: >>> rv = %(name)s(%(shapes)s) >>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, ... label='frozen pmf') >>> ax.legend(loc='best', frameon=False) >>> plt.show() Check accuracy of ``cdf`` and ``ppf``: >>> prob = %(name)s.cdf(x, %(shapes)s) >>> np.allclose(x, %(name)s.ppf(prob, %(shapes)s)) True Generate random numbers: >>> r = %(name)s.rvs(%(shapes)s, size=1000) """ _doc_default_discrete_locscale = """\ The probability mass function above is defined in the "standardized" form. To shift distribution use the ``loc`` parameter. Specifically, ``%(name)s.pmf(k, %(shapes)s, loc)`` is identically equivalent to ``%(name)s.pmf(k - loc, %(shapes)s)``. """ docdict_discrete['example'] = _doc_default_discrete_example docdict_discrete['after_notes'] = _doc_default_discrete_locscale _doc_default_before_notes = ''.join([docdict_discrete['longsummary'], docdict_discrete['allmethods']]) docdict_discrete['before_notes'] = _doc_default_before_notes _doc_default_disc = ''.join([docdict_discrete['longsummary'], docdict_discrete['allmethods'], docdict_discrete['frozennote'], docdict_discrete['example']]) docdict_discrete['default'] = _doc_default_disc # clean up all the separate docstring elements, we do not need them anymore for obj in [s for s in dir() if s.startswith('_doc_')]: exec('del ' + obj) del obj try: del s except NameError: # in Python 3, loop variables are not visible after the loop pass def _moment(data, n, mu=None): if mu is None: mu = data.mean() return ((data - mu)**n).mean() def _moment_from_stats(n, mu, mu2, g1, g2, moment_func, args): if (n == 0): return 1.0 elif (n == 1): if mu is None: val = moment_func(1, *args) else: val = mu elif (n == 2): if mu2 is None or mu is None: val = moment_func(2, *args) else: val = mu2 + mu*mu elif (n == 3): if g1 is None or mu2 is None or mu is None: val = moment_func(3, *args) else: mu3 = g1 * np.power(mu2, 1.5) # 3rd central moment val = mu3+3*mu*mu2+mu*mu*mu # 3rd non-central moment elif (n == 4): if g1 is None or g2 is None or mu2 is None or mu is None: val = moment_func(4, *args) else: mu4 = (g2+3.0)*(mu2**2.0) # 4th central moment mu3 = g1*np.power(mu2, 1.5) # 3rd central moment val = mu4+4*mu*mu3+6*mu*mu*mu2+mu*mu*mu*mu else: val = moment_func(n, *args) return val def _skew(data): """ skew is third central moment / variance**(1.5) """ data = np.ravel(data) mu = data.mean() m2 = ((data - mu)**2).mean() m3 = ((data - mu)**3).mean() return m3 / np.power(m2, 1.5) def _kurtosis(data): """ kurtosis is fourth central moment / variance**2 - 3 """ data = np.ravel(data) mu = data.mean() m2 = ((data - mu)**2).mean() m4 = ((data - mu)**4).mean() return m4 / m2**2 - 3 # Frozen RV class class rv_frozen(object): def __init__(self, dist, *args, **kwds): self.args = args self.kwds = kwds # create a new instance self.dist = dist.__class__(**dist._ctor_param) # a, b may be set in _argcheck, depending on *args, **kwds. Ouch. shapes, _, _ = self.dist._parse_args(*args, **kwds) self.dist._argcheck(*shapes) self.a, self.b = self.dist.a, self.dist.b @property def random_state(self): return self.dist._random_state @random_state.setter def random_state(self, seed): self.dist._random_state = check_random_state(seed) def pdf(self, x): # raises AttributeError in frozen discrete distribution return self.dist.pdf(x, *self.args, **self.kwds) def logpdf(self, x): return self.dist.logpdf(x, *self.args, **self.kwds) def cdf(self, x): return self.dist.cdf(x, *self.args, **self.kwds) def logcdf(self, x): return self.dist.logcdf(x, *self.args, **self.kwds) def ppf(self, q): return self.dist.ppf(q, *self.args, **self.kwds) def isf(self, q): return self.dist.isf(q, *self.args, **self.kwds) def rvs(self, size=None, random_state=None): kwds = self.kwds.copy() kwds.update({'size': size, 'random_state': random_state}) return self.dist.rvs(*self.args, **kwds) def sf(self, x): return self.dist.sf(x, *self.args, **self.kwds) def logsf(self, x): return self.dist.logsf(x, *self.args, **self.kwds) def stats(self, moments='mv'): kwds = self.kwds.copy() kwds.update({'moments': moments}) return self.dist.stats(*self.args, **kwds) def median(self): return self.dist.median(*self.args, **self.kwds) def mean(self): return self.dist.mean(*self.args, **self.kwds) def var(self): return self.dist.var(*self.args, **self.kwds) def std(self): return self.dist.std(*self.args, **self.kwds) def moment(self, n): return self.dist.moment(n, *self.args, **self.kwds) def entropy(self): return self.dist.entropy(*self.args, **self.kwds) def pmf(self, k): return self.dist.pmf(k, *self.args, **self.kwds) def logpmf(self, k): return self.dist.logpmf(k, *self.args, **self.kwds) def interval(self, alpha): return self.dist.interval(alpha, *self.args, **self.kwds) def expect(self, func=None, lb=None, ub=None, conditional=False, **kwds): # expect method only accepts shape parameters as positional args # hence convert self.args, self.kwds, also loc/scale # See the .expect method docstrings for the meaning of # other parameters. a, loc, scale = self.dist._parse_args(*self.args, **self.kwds) if isinstance(self.dist, rv_discrete): if kwds: raise ValueError("Discrete expect does not accept **kwds.") return self.dist.expect(func, a, loc, lb, ub, conditional) else: return self.dist.expect(func, a, loc, scale, lb, ub, conditional, **kwds) def valarray(shape, value=nan, typecode=None): """Return an array of all value. """ out = ones(shape, dtype=bool) * value if typecode is not None: out = out.astype(typecode) if not isinstance(out, ndarray): out = asarray(out) return out def _lazywhere(cond, arrays, f, fillvalue=None, f2=None): """ np.where(cond, x, fillvalue) always evaluates x even where cond is False. This one only evaluates f(arr1[cond], arr2[cond], ...). For example, >>> a, b = np.array([1, 2, 3, 4]), np.array([5, 6, 7, 8]) >>> def f(a, b): return a*b >>> _lazywhere(a > 2, (a, b), f, np.nan) array([ nan, nan, 21., 32.]) Notice it assumes that all `arrays` are of the same shape, or can be broadcasted together. """ if fillvalue is None: if f2 is None: raise ValueError("One of (fillvalue, f2) must be given.") else: fillvalue = np.nan else: if f2 is not None: raise ValueError("Only one of (fillvalue, f2) can be given.") arrays = np.broadcast_arrays(*arrays) temp = tuple(np.extract(cond, arr) for arr in arrays) out = valarray(shape(arrays[0]), value=fillvalue) np.place(out, cond, f(*temp)) if f2 is not None: temp = tuple(np.extract(~cond, arr) for arr in arrays) np.place(out, ~cond, f2(*temp)) return out # This should be rewritten def argsreduce(cond, *args): """Return the sequence of ravel(args[i]) where ravel(condition) is True in 1D. Examples -------- >>> import numpy as np >>> rand = np.random.random_sample >>> A = rand((4, 5)) >>> B = 2 >>> C = rand((1, 5)) >>> cond = np.ones(A.shape) >>> [A1, B1, C1] = argsreduce(cond, A, B, C) >>> B1.shape (20,) >>> cond[2,:] = 0 >>> [A2, B2, C2] = argsreduce(cond, A, B, C) >>> B2.shape (15,) """ newargs = np.atleast_1d(*args) if not isinstance(newargs, list): newargs = [newargs, ] expand_arr = (cond == cond) return [np.extract(cond, arr1 * expand_arr) for arr1 in newargs] parse_arg_template = """ def _parse_args(self, %(shape_arg_str)s %(locscale_in)s): return (%(shape_arg_str)s), %(locscale_out)s def _parse_args_rvs(self, %(shape_arg_str)s %(locscale_in)s, size=None): return (%(shape_arg_str)s), %(locscale_out)s, size def _parse_args_stats(self, %(shape_arg_str)s %(locscale_in)s, moments='mv'): return (%(shape_arg_str)s), %(locscale_out)s, moments """ # Both the continuous and discrete distributions depend on ncx2. # I think the function name ncx2 is an abbreviation for noncentral chi squared. def _ncx2_log_pdf(x, df, nc): # We use (xs**2 + ns**2)/2 = (xs - ns)**2/2 + xs*ns, and include the factor # of exp(-xs*ns) into the ive function to improve numerical stability # at large values of xs. See also `rice.pdf`. df2 = df/2.0 - 1.0 xs, ns = np.sqrt(x), np.sqrt(nc) res = xlogy(df2/2.0, x/nc) - 0.5*(xs - ns)**2 res += np.log(ive(df2, xs*ns) / 2.0) return res def _ncx2_pdf(x, df, nc): return np.exp(_ncx2_log_pdf(x, df, nc)) def _ncx2_cdf(x, df, nc): return chndtr(x, df, nc) class rv_generic(object): """Class which encapsulates common functionality between rv_discrete and rv_continuous. """ def __init__(self, seed=None): super(rv_generic, self).__init__() # figure out if _stats signature has 'moments' keyword sign = _getargspec(self._stats) self._stats_has_moments = ((sign[2] is not None) or ('moments' in sign[0])) self._random_state = check_random_state(seed) @property def random_state(self): """ Get or set the RandomState object for generating random variates. This can be either None or an existing RandomState object. If None (or np.random), use the RandomState singleton used by np.random. If already a RandomState instance, use it. If an int, use a new RandomState instance seeded with seed. """ return self._random_state @random_state.setter def random_state(self, seed): self._random_state = check_random_state(seed) def _construct_argparser( self, meths_to_inspect, locscale_in, locscale_out): """Construct the parser for the shape arguments. Generates the argument-parsing functions dynamically and attaches them to the instance. Is supposed to be called in __init__ of a class for each distribution. If self.shapes is a non-empty string, interprets it as a comma-separated list of shape parameters. Otherwise inspects the call signatures of `meths_to_inspect` and constructs the argument-parsing functions from these. In this case also sets `shapes` and `numargs`. """ if self.shapes: # sanitize the user-supplied shapes if not isinstance(self.shapes, string_types): raise TypeError('shapes must be a string.') shapes = self.shapes.replace(',', ' ').split() for field in shapes: if keyword.iskeyword(field): raise SyntaxError('keywords cannot be used as shapes.') if not re.match('^[_a-zA-Z][_a-zA-Z0-9]*$', field): raise SyntaxError( 'shapes must be valid python identifiers') else: # find out the call signatures (_pdf, _cdf etc), deduce shape # arguments. Generic methods only have 'self, x', any further args # are shapes. shapes_list = [] for meth in meths_to_inspect: shapes_args = _getargspec(meth) # NB: does not contain self args = shapes_args.args[1:] # peel off 'x', too if args: shapes_list.append(args) # *args or **kwargs are not allowed w/automatic shapes if shapes_args.varargs is not None: raise TypeError( '*args are not allowed w/out explicit shapes') if shapes_args.keywords is not None: raise TypeError( '**kwds are not allowed w/out explicit shapes') if shapes_args.defaults is not None: raise TypeError('defaults are not allowed for shapes') if shapes_list: shapes = shapes_list[0] # make sure the signatures are consistent for item in shapes_list: if item != shapes: raise TypeError('Shape arguments are inconsistent.') else: shapes = [] # have the arguments, construct the method from template shapes_str = ', '.join(shapes) + ', ' if shapes else '' # NB: not None dct = dict(shape_arg_str=shapes_str, locscale_in=locscale_in, locscale_out=locscale_out, ) ns = {} exec_(parse_arg_template % dct, ns) # NB: attach to the instance, not class for name in ['_parse_args', '_parse_args_stats', '_parse_args_rvs']: setattr(self, name, instancemethod(ns[name], self, self.__class__) ) self.shapes = ', '.join(shapes) if shapes else None if not hasattr(self, 'numargs'): # allows more general subclassing with *args self.numargs = len(shapes) def _construct_doc(self, docdict, shapes_vals=None): """Construct the instance docstring with string substitutions.""" tempdict = docdict.copy() tempdict['name'] = self.name or 'distname' tempdict['shapes'] = self.shapes or '' if shapes_vals is None: shapes_vals = () vals = ', '.join('%.3g' % val for val in shapes_vals) tempdict['vals'] = vals if self.shapes: tempdict['set_vals_stmt'] = '>>> %s = %s' % (self.shapes, vals) else: tempdict['set_vals_stmt'] = '' if self.shapes is None: # remove shapes from call parameters if there are none for item in ['default', 'before_notes']: tempdict[item] = tempdict[item].replace( "\n%(shapes)s : array_like\n shape parameters", "") for i in range(2): if self.shapes is None: # necessary because we use %(shapes)s in two forms (w w/o ", ") self.__doc__ = self.__doc__.replace("%(shapes)s, ", "") self.__doc__ = doccer.docformat(self.__doc__, tempdict) # correct for empty shapes self.__doc__ = self.__doc__.replace('(, ', '(').replace(', )', ')') def _construct_default_doc(self, longname=None, extradoc=None, docdict=None, discrete='continuous'): """Construct instance docstring from the default template.""" if longname is None: longname = 'A' if extradoc is None: extradoc = '' if extradoc.startswith('\n\n'): extradoc = extradoc[2:] self.__doc__ = ''.join(['%s %s random variable.' % (longname, discrete), '\n\n%(before_notes)s\n', docheaders['notes'], extradoc, '\n%(example)s']) self._construct_doc(docdict) def freeze(self, *args, **kwds): """Freeze the distribution for the given arguments. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution. Should include all the non-optional arguments, may include ``loc`` and ``scale``. Returns ------- rv_frozen : rv_frozen instance The frozen distribution. """ return rv_frozen(self, *args, **kwds) def __call__(self, *args, **kwds): return self.freeze(*args, **kwds) __call__.__doc__ = freeze.__doc__ # The actual calculation functions (no basic checking need be done) # If these are defined, the others won't be looked at. # Otherwise, the other set can be defined. def _stats(self, *args, **kwds): return None, None, None, None # Central moments def _munp(self, n, *args): # Silence floating point warnings from integration. olderr = np.seterr(all='ignore') vals = self.generic_moment(n, *args) np.seterr(**olderr) return vals ## These are the methods you must define (standard form functions) ## NB: generic _pdf, _logpdf, _cdf are different for ## rv_continuous and rv_discrete hence are defined in there def _argcheck(self, *args): """Default check for correct values on args and keywords. Returns condition array of 1's where arguments are correct and 0's where they are not. """ cond = 1 for arg in args: cond = logical_and(cond, (asarray(arg) > 0)) return cond ##(return 1-d using self._size to get number) def _rvs(self, *args): ## Use basic inverse cdf algorithm for RV generation as default. U = self._random_state.random_sample(self._size) Y = self._ppf(U, *args) return Y def _logcdf(self, x, *args): return log(self._cdf(x, *args)) def _sf(self, x, *args): return 1.0-self._cdf(x, *args) def _logsf(self, x, *args): return log(self._sf(x, *args)) def _ppf(self, q, *args): return self._ppfvec(q, *args) def _isf(self, q, *args): return self._ppf(1.0-q, *args) # use correct _ppf for subclasses # These are actually called, and should not be overwritten if you # want to keep error checking. def rvs(self, *args, **kwds): """ Random variates of given type. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). scale : array_like, optional Scale parameter (default=1). size : int or tuple of ints, optional Defining number of random variates (default is 1). random_state : None or int or ``np.random.RandomState`` instance, optional If int or RandomState, use it for drawing the random variates. If None, rely on ``self.random_state``. Default is None. Returns ------- rvs : ndarray or scalar Random variates of given `size`. """ discrete = kwds.pop('discrete', None) rndm = kwds.pop('random_state', None) args, loc, scale, size = self._parse_args_rvs(*args, **kwds) cond = logical_and(self._argcheck(*args), (scale >= 0)) if not np.all(cond): raise ValueError("Domain error in arguments.") # self._size is total size of all output values self._size = product(size, axis=0) if self._size is not None and self._size > 1: size = np.array(size, ndmin=1) if np.all(scale == 0): return loc*ones(size, 'd') # extra gymnastics needed for a custom random_state if rndm is not None: random_state_saved = self._random_state self._random_state = check_random_state(rndm) vals = self._rvs(*args) if self._size is not None: vals = reshape(vals, size) vals = vals * scale + loc # do not forget to restore the _random_state if rndm is not None: self._random_state = random_state_saved # Cast to int if discrete if discrete: if np.isscalar(vals): vals = int(vals) else: vals = vals.astype(int) return vals def stats(self, *args, **kwds): """ Some statistics of the given RV. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional (continuous RVs only) scale parameter (default=1) moments : str, optional composed of letters ['mvsk'] defining which moments to compute: 'm' = mean, 'v' = variance, 's' = (Fisher's) skew, 'k' = (Fisher's) kurtosis. (default is 'mv') Returns ------- stats : sequence of requested moments. """ args, loc, scale, moments = self._parse_args_stats(*args, **kwds) # scale = 1 by construction for discrete RVs loc, scale = map(asarray, (loc, scale)) args = tuple(map(asarray, args)) cond = self._argcheck(*args) & (scale > 0) & (loc == loc) output = [] default = valarray(shape(cond), self.badvalue) # Use only entries that are valid in calculation if any(cond): goodargs = argsreduce(cond, *(args+(scale, loc))) scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2] if self._stats_has_moments: mu, mu2, g1, g2 = self._stats(*goodargs, **{'moments': moments}) else: mu, mu2, g1, g2 = self._stats(*goodargs) if g1 is None: mu3 = None else: if mu2 is None: mu2 = self._munp(2, *goodargs) if g2 is None: # (mu2**1.5) breaks down for nan and inf mu3 = g1 * np.power(mu2, 1.5) if 'm' in moments: if mu is None: mu = self._munp(1, *goodargs) out0 = default.copy() place(out0, cond, mu * scale + loc) output.append(out0) if 'v' in moments: if mu2 is None: mu2p = self._munp(2, *goodargs) if mu is None: mu = self._munp(1, *goodargs) mu2 = mu2p - mu * mu if np.isinf(mu): #if mean is inf then var is also inf mu2 = np.inf out0 = default.copy() place(out0, cond, mu2 * scale * scale) output.append(out0) if 's' in moments: if g1 is None: mu3p = self._munp(3, *goodargs) if mu is None: mu = self._munp(1, *goodargs) if mu2 is None: mu2p = self._munp(2, *goodargs) mu2 = mu2p - mu * mu mu3 = mu3p - 3 * mu * mu2 - mu**3 g1 = mu3 / np.power(mu2, 1.5) out0 = default.copy() place(out0, cond, g1) output.append(out0) if 'k' in moments: if g2 is None: mu4p = self._munp(4, *goodargs) if mu is None: mu = self._munp(1, *goodargs) if mu2 is None: mu2p = self._munp(2, *goodargs) mu2 = mu2p - mu * mu if mu3 is None: mu3p = self._munp(3, *goodargs) mu3 = mu3p - 3 * mu * mu2 - mu**3 mu4 = mu4p - 4 * mu * mu3 - 6 * mu * mu * mu2 - mu**4 g2 = mu4 / mu2**2.0 - 3.0 out0 = default.copy() place(out0, cond, g2) output.append(out0) else: # no valid args output = [] for _ in moments: out0 = default.copy() output.append(out0) if len(output) == 1: return output[0] else: return tuple(output) def entropy(self, *args, **kwds): """ Differential entropy of the RV. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). scale : array_like, optional (continuous distributions only). Scale parameter (default=1). Notes ----- Entropy is defined base `e`: >>> drv = rv_discrete(values=((0, 1), (0.5, 0.5))) >>> np.allclose(drv.entropy(), np.log(2.0)) True """ args, loc, scale = self._parse_args(*args, **kwds) # NB: for discrete distributions scale=1 by construction in _parse_args args = tuple(map(asarray, args)) cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc) output = zeros(shape(cond0), 'd') place(output, (1-cond0), self.badvalue) goodargs = argsreduce(cond0, *args) # np.vectorize doesn't work when numargs == 0 in numpy 1.6.2. Once the # lowest supported numpy version is >= 1.7.0, this special case can be # removed (see gh-4314). if self.numargs == 0: place(output, cond0, self._entropy() + log(scale)) else: place(output, cond0, self.vecentropy(*goodargs) + log(scale)) return output def moment(self, n, *args, **kwds): """ n-th order non-central moment of distribution. Parameters ---------- n : int, n >= 1 Order of moment. arg1, arg2, arg3,... : float The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) """ args, loc, scale = self._parse_args(*args, **kwds) if not (self._argcheck(*args) and (scale > 0)): return nan if (floor(n) != n): raise ValueError("Moment must be an integer.") if (n < 0): raise ValueError("Moment must be positive.") mu, mu2, g1, g2 = None, None, None, None if (n > 0) and (n < 5): if self._stats_has_moments: mdict = {'moments': {1: 'm', 2: 'v', 3: 'vs', 4: 'vk'}[n]} else: mdict = {} mu, mu2, g1, g2 = self._stats(*args, **mdict) val = _moment_from_stats(n, mu, mu2, g1, g2, self._munp, args) # Convert to transformed X = L + S*Y # E[X^n] = E[(L+S*Y)^n] = L^n sum(comb(n, k)*(S/L)^k E[Y^k], k=0...n) if loc == 0: return scale**n * val else: result = 0 fac = float(scale) / float(loc) for k in range(n): valk = _moment_from_stats(k, mu, mu2, g1, g2, self._munp, args) result += comb(n, k, exact=True)*(fac**k) * valk result += fac**n * val return result * loc**n def median(self, *args, **kwds): """ Median of the distribution. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional Location parameter, Default is 0. scale : array_like, optional Scale parameter, Default is 1. Returns ------- median : float The median of the distribution. See Also -------- stats.distributions.rv_discrete.ppf Inverse of the CDF """ return self.ppf(0.5, *args, **kwds) def mean(self, *args, **kwds): """ Mean of the distribution. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- mean : float the mean of the distribution """ kwds['moments'] = 'm' res = self.stats(*args, **kwds) if isinstance(res, ndarray) and res.ndim == 0: return res[()] return res def var(self, *args, **kwds): """ Variance of the distribution. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- var : float the variance of the distribution """ kwds['moments'] = 'v' res = self.stats(*args, **kwds) if isinstance(res, ndarray) and res.ndim == 0: return res[()] return res def std(self, *args, **kwds): """ Standard deviation of the distribution. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- std : float standard deviation of the distribution """ kwds['moments'] = 'v' res = sqrt(self.stats(*args, **kwds)) return res def interval(self, alpha, *args, **kwds): """ Confidence interval with equal areas around the median. Parameters ---------- alpha : array_like of float Probability that an rv will be drawn from the returned range. Each value should be in the range [0, 1]. arg1, arg2, ... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional location parameter, Default is 0. scale : array_like, optional scale parameter, Default is 1. Returns ------- a, b : ndarray of float end-points of range that contain ``100 * alpha %`` of the rv's possible values. """ alpha = asarray(alpha) if any((alpha > 1) | (alpha < 0)): raise ValueError("alpha must be between 0 and 1 inclusive") q1 = (1.0-alpha)/2 q2 = (1.0+alpha)/2 a = self.ppf(q1, *args, **kwds) b = self.ppf(q2, *args, **kwds) return a, b ## continuous random variables: implement maybe later ## ## hf --- Hazard Function (PDF / SF) ## chf --- Cumulative hazard function (-log(SF)) ## psf --- Probability sparsity function (reciprocal of the pdf) in ## units of percent-point-function (as a function of q). ## Also, the derivative of the percent-point function. class rv_continuous(rv_generic): """ A generic continuous random variable class meant for subclassing. `rv_continuous` is a base class to construct specific distribution classes and instances for continuous random variables. It cannot be used directly as a distribution. Parameters ---------- momtype : int, optional The type of generic moment calculation to use: 0 for pdf, 1 (default) for ppf. a : float, optional Lower bound of the support of the distribution, default is minus infinity. b : float, optional Upper bound of the support of the distribution, default is plus infinity. xtol : float, optional The tolerance for fixed point calculation for generic ppf. badvalue : float, optional The value in a result arrays that indicates a value that for which some argument restriction is violated, default is np.nan. name : str, optional The name of the instance. This string is used to construct the default example for distributions. longname : str, optional This string is used as part of the first line of the docstring returned when a subclass has no docstring of its own. Note: `longname` exists for backwards compatibility, do not use for new subclasses. shapes : str, optional The shape of the distribution. For example ``"m, n"`` for a distribution that takes two integers as the two shape arguments for all its methods. If not provided, shape parameters will be inferred from the signature of the private methods, ``_pdf`` and ``_cdf`` of the instance. extradoc : str, optional, deprecated This string is used as the last part of the docstring returned when a subclass has no docstring of its own. Note: `extradoc` exists for backwards compatibility, do not use for new subclasses. seed : None or int or ``numpy.random.RandomState`` instance, optional This parameter defines the RandomState object to use for drawing random variates. If None (or np.random), the global np.random state is used. If integer, it is used to seed the local RandomState instance. Default is None. Methods ------- rvs pdf logpdf cdf logcdf sf logsf ppf isf moment stats entropy expect median mean std var interval __call__ fit fit_loc_scale nnlf Notes ----- Public methods of an instance of a distribution class (e.g., ``pdf``, ``cdf``) check their arguments and pass valid arguments to private, computational methods (``_pdf``, ``_cdf``). For ``pdf(x)``, ``x`` is valid if it is within the support of a distribution, ``self.a <= x <= self.b``. Whether a shape parameter is valid is decided by an ``_argcheck`` method (which defaults to checking that its arguments are strictly positive.) **Subclassing** New random variables can be defined by subclassing the `rv_continuous` class and re-defining at least the ``_pdf`` or the ``_cdf`` method (normalized to location 0 and scale 1). If positive argument checking is not correct for your RV then you will also need to re-define the ``_argcheck`` method. Correct, but potentially slow defaults exist for the remaining methods but for speed and/or accuracy you can over-ride:: _logpdf, _cdf, _logcdf, _ppf, _rvs, _isf, _sf, _logsf Rarely would you override ``_isf``, ``_sf`` or ``_logsf``, but you could. **Methods that can be overwritten by subclasses** :: _rvs _pdf _cdf _sf _ppf _isf _stats _munp _entropy _argcheck There are additional (internal and private) generic methods that can be useful for cross-checking and for debugging, but might work in all cases when directly called. A note on ``shapes``: subclasses need not specify them explicitly. In this case, `shapes` will be automatically deduced from the signatures of the overridden methods (`pdf`, `cdf` etc). If, for some reason, you prefer to avoid relying on introspection, you can specify ``shapes`` explicitly as an argument to the instance constructor. **Frozen Distributions** Normally, you must provide shape parameters (and, optionally, location and scale parameters to each call of a method of a distribution. Alternatively, the object may be called (as a function) to fix the shape, location, and scale parameters returning a "frozen" continuous RV object: rv = generic(<shape(s)>, loc=0, scale=1) frozen RV object with the same methods but holding the given shape, location, and scale fixed **Statistics** Statistics are computed using numerical integration by default. For speed you can redefine this using ``_stats``: - take shape parameters and return mu, mu2, g1, g2 - If you can't compute one of these, return it as None - Can also be defined with a keyword argument ``moments``, which is a string composed of "m", "v", "s", and/or "k". Only the components appearing in string should be computed and returned in the order "m", "v", "s", or "k" with missing values returned as None. Alternatively, you can override ``_munp``, which takes ``n`` and shape parameters and returns the n-th non-central moment of the distribution. Examples -------- To create a new Gaussian distribution, we would do the following: >>> from scipy.stats import rv_continuous >>> class gaussian_gen(rv_continuous): ... "Gaussian distribution" ... def _pdf(self, x): ... return np.exp(-x**2 / 2.) / np.sqrt(2.0 * np.pi) >>> gaussian = gaussian_gen(name='gaussian') ``scipy.stats`` distributions are *instances*, so here we subclass `rv_continuous` and create an instance. With this, we now have a fully functional distribution with all relevant methods automagically generated by the framework. Note that above we defined a standard normal distribution, with zero mean and unit variance. Shifting and scaling of the distribution can be done by using ``loc`` and ``scale`` parameters: ``gaussian.pdf(x, loc, scale)`` essentially computes ``y = (x - loc) / scale`` and ``gaussian._pdf(y) / scale``. """ def __init__(self, momtype=1, a=None, b=None, xtol=1e-14, badvalue=None, name=None, longname=None, shapes=None, extradoc=None, seed=None): super(rv_continuous, self).__init__(seed) # save the ctor parameters, cf generic freeze self._ctor_param = dict( momtype=momtype, a=a, b=b, xtol=xtol, badvalue=badvalue, name=name, longname=longname, shapes=shapes, extradoc=extradoc, seed=seed) if badvalue is None: badvalue = nan if name is None: name = 'Distribution' self.badvalue = badvalue self.name = name self.a = a self.b = b if a is None: self.a = -inf if b is None: self.b = inf self.xtol = xtol self._size = 1 self.moment_type = momtype self.shapes = shapes self._construct_argparser(meths_to_inspect=[self._pdf, self._cdf], locscale_in='loc=0, scale=1', locscale_out='loc, scale') # nin correction self._ppfvec = vectorize(self._ppf_single, otypes='d') self._ppfvec.nin = self.numargs + 1 self.vecentropy = vectorize(self._entropy, otypes='d') self._cdfvec = vectorize(self._cdf_single, otypes='d') self._cdfvec.nin = self.numargs + 1 # backwards compat. these were removed in 0.14.0, put back but # deprecated in 0.14.1: self.vecfunc = np.deprecate(self._ppfvec, "vecfunc") self.veccdf = np.deprecate(self._cdfvec, "veccdf") self.extradoc = extradoc if momtype == 0: self.generic_moment = vectorize(self._mom0_sc, otypes='d') else: self.generic_moment = vectorize(self._mom1_sc, otypes='d') # Because of the *args argument of _mom0_sc, vectorize cannot count the # number of arguments correctly. self.generic_moment.nin = self.numargs + 1 if longname is None: if name[0] in ['aeiouAEIOU']: hstr = "An " else: hstr = "A " longname = hstr + name if sys.flags.optimize < 2: # Skip adding docstrings if interpreter is run with -OO if self.__doc__ is None: self._construct_default_doc(longname=longname, extradoc=extradoc, docdict=docdict, discrete='continuous') else: dct = dict(distcont) self._construct_doc(docdict, dct.get(self.name)) def _ppf_to_solve(self, x, q, *args): return self.cdf(*(x, )+args)-q def _ppf_single(self, q, *args): left = right = None if self.a > -np.inf: left = self.a if self.b < np.inf: right = self.b factor = 10. if not left: # i.e. self.a = -inf left = -1.*factor while self._ppf_to_solve(left, q, *args) > 0.: right = left left *= factor # left is now such that cdf(left) < q if not right: # i.e. self.b = inf right = factor while self._ppf_to_solve(right, q, *args) < 0.: left = right right *= factor # right is now such that cdf(right) > q return optimize.brentq(self._ppf_to_solve, left, right, args=(q,)+args, xtol=self.xtol) # moment from definition def _mom_integ0(self, x, m, *args): return x**m * self.pdf(x, *args) def _mom0_sc(self, m, *args): return integrate.quad(self._mom_integ0, self.a, self.b, args=(m,)+args)[0] # moment calculated using ppf def _mom_integ1(self, q, m, *args): return (self.ppf(q, *args))**m def _mom1_sc(self, m, *args): return integrate.quad(self._mom_integ1, 0, 1, args=(m,)+args)[0] def _pdf(self, x, *args): return derivative(self._cdf, x, dx=1e-5, args=args, order=5) ## Could also define any of these def _logpdf(self, x, *args): return log(self._pdf(x, *args)) def _cdf_single(self, x, *args): return integrate.quad(self._pdf, self.a, x, args=args)[0] def _cdf(self, x, *args): return self._cdfvec(x, *args) ## generic _argcheck, _logcdf, _sf, _logsf, _ppf, _isf, _rvs are defined ## in rv_generic def pdf(self, x, *args, **kwds): """ Probability density function at x of the given RV. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- pdf : ndarray Probability density function evaluated at x """ args, loc, scale = self._parse_args(*args, **kwds) x, loc, scale = map(asarray, (x, loc, scale)) args = tuple(map(asarray, args)) dtyp = np.find_common_type([x.dtype, np.float64], []) x = np.asarray((x - loc)/scale, dtype=dtyp) cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x >= self.a) & (x <= self.b) cond = cond0 & cond1 output = zeros(shape(cond), dtyp) putmask(output, (1-cond0)+np.isnan(x), self.badvalue) if any(cond): goodargs = argsreduce(cond, *((x,)+args+(scale,))) scale, goodargs = goodargs[-1], goodargs[:-1] place(output, cond, self._pdf(*goodargs) / scale) if output.ndim == 0: return output[()] return output def logpdf(self, x, *args, **kwds): """ Log of the probability density function at x of the given RV. This uses a more numerically accurate calculation if available. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- logpdf : array_like Log of the probability density function evaluated at x """ args, loc, scale = self._parse_args(*args, **kwds) x, loc, scale = map(asarray, (x, loc, scale)) args = tuple(map(asarray, args)) dtyp = np.find_common_type([x.dtype, np.float64], []) x = np.asarray((x - loc)/scale, dtype=dtyp) cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x >= self.a) & (x <= self.b) cond = cond0 & cond1 output = empty(shape(cond), dtyp) output.fill(NINF) putmask(output, (1-cond0)+np.isnan(x), self.badvalue) if any(cond): goodargs = argsreduce(cond, *((x,)+args+(scale,))) scale, goodargs = goodargs[-1], goodargs[:-1] place(output, cond, self._logpdf(*goodargs) - log(scale)) if output.ndim == 0: return output[()] return output def cdf(self, x, *args, **kwds): """ Cumulative distribution function of the given RV. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- cdf : ndarray Cumulative distribution function evaluated at `x` """ args, loc, scale = self._parse_args(*args, **kwds) x, loc, scale = map(asarray, (x, loc, scale)) args = tuple(map(asarray, args)) dtyp = np.find_common_type([x.dtype, np.float64], []) x = np.asarray((x - loc)/scale, dtype=dtyp) cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x > self.a) & (x < self.b) cond2 = (x >= self.b) & cond0 cond = cond0 & cond1 output = zeros(shape(cond), dtyp) place(output, (1-cond0)+np.isnan(x), self.badvalue) place(output, cond2, 1.0) if any(cond): # call only if at least 1 entry goodargs = argsreduce(cond, *((x,)+args)) place(output, cond, self._cdf(*goodargs)) if output.ndim == 0: return output[()] return output def logcdf(self, x, *args, **kwds): """ Log of the cumulative distribution function at x of the given RV. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- logcdf : array_like Log of the cumulative distribution function evaluated at x """ args, loc, scale = self._parse_args(*args, **kwds) x, loc, scale = map(asarray, (x, loc, scale)) args = tuple(map(asarray, args)) dtyp = np.find_common_type([x.dtype, np.float64], []) x = np.asarray((x - loc)/scale, dtype=dtyp) cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x > self.a) & (x < self.b) cond2 = (x >= self.b) & cond0 cond = cond0 & cond1 output = empty(shape(cond), dtyp) output.fill(NINF) place(output, (1-cond0)*(cond1 == cond1)+np.isnan(x), self.badvalue) place(output, cond2, 0.0) if any(cond): # call only if at least 1 entry goodargs = argsreduce(cond, *((x,)+args)) place(output, cond, self._logcdf(*goodargs)) if output.ndim == 0: return output[()] return output def sf(self, x, *args, **kwds): """ Survival function (1 - `cdf`) at x of the given RV. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- sf : array_like Survival function evaluated at x """ args, loc, scale = self._parse_args(*args, **kwds) x, loc, scale = map(asarray, (x, loc, scale)) args = tuple(map(asarray, args)) dtyp = np.find_common_type([x.dtype, np.float64], []) x = np.asarray((x - loc)/scale, dtype=dtyp) cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x > self.a) & (x < self.b) cond2 = cond0 & (x <= self.a) cond = cond0 & cond1 output = zeros(shape(cond), dtyp) place(output, (1-cond0)+np.isnan(x), self.badvalue) place(output, cond2, 1.0) if any(cond): goodargs = argsreduce(cond, *((x,)+args)) place(output, cond, self._sf(*goodargs)) if output.ndim == 0: return output[()] return output def logsf(self, x, *args, **kwds): """ Log of the survival function of the given RV. Returns the log of the "survival function," defined as (1 - `cdf`), evaluated at `x`. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- logsf : ndarray Log of the survival function evaluated at `x`. """ args, loc, scale = self._parse_args(*args, **kwds) x, loc, scale = map(asarray, (x, loc, scale)) args = tuple(map(asarray, args)) dtyp = np.find_common_type([x.dtype, np.float64], []) x = np.asarray((x - loc)/scale, dtype=dtyp) cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x > self.a) & (x < self.b) cond2 = cond0 & (x <= self.a) cond = cond0 & cond1 output = empty(shape(cond), dtyp) output.fill(NINF) place(output, (1-cond0)+np.isnan(x), self.badvalue) place(output, cond2, 0.0) if any(cond): goodargs = argsreduce(cond, *((x,)+args)) place(output, cond, self._logsf(*goodargs)) if output.ndim == 0: return output[()] return output def ppf(self, q, *args, **kwds): """ Percent point function (inverse of `cdf`) at q of the given RV. Parameters ---------- q : array_like lower tail probability arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- x : array_like quantile corresponding to the lower tail probability q. """ args, loc, scale = self._parse_args(*args, **kwds) q, loc, scale = map(asarray, (q, loc, scale)) args = tuple(map(asarray, args)) cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc) cond1 = (0 < q) & (q < 1) cond2 = cond0 & (q == 0) cond3 = cond0 & (q == 1) cond = cond0 & cond1 output = valarray(shape(cond), value=self.badvalue) lower_bound = self.a * scale + loc upper_bound = self.b * scale + loc place(output, cond2, argsreduce(cond2, lower_bound)[0]) place(output, cond3, argsreduce(cond3, upper_bound)[0]) if any(cond): # call only if at least 1 entry goodargs = argsreduce(cond, *((q,)+args+(scale, loc))) scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2] place(output, cond, self._ppf(*goodargs) * scale + loc) if output.ndim == 0: return output[()] return output def isf(self, q, *args, **kwds): """ Inverse survival function (inverse of `sf`) at q of the given RV. Parameters ---------- q : array_like upper tail probability arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- x : ndarray or scalar Quantile corresponding to the upper tail probability q. """ args, loc, scale = self._parse_args(*args, **kwds) q, loc, scale = map(asarray, (q, loc, scale)) args = tuple(map(asarray, args)) cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc) cond1 = (0 < q) & (q < 1) cond2 = cond0 & (q == 1) cond3 = cond0 & (q == 0) cond = cond0 & cond1 output = valarray(shape(cond), value=self.badvalue) lower_bound = self.a * scale + loc upper_bound = self.b * scale + loc place(output, cond2, argsreduce(cond2, lower_bound)[0]) place(output, cond3, argsreduce(cond3, upper_bound)[0]) if any(cond): goodargs = argsreduce(cond, *((q,)+args+(scale, loc))) scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2] place(output, cond, self._isf(*goodargs) * scale + loc) if output.ndim == 0: return output[()] return output def _nnlf(self, x, *args): return -sum(self._logpdf(x, *args), axis=0) def nnlf(self, theta, x): '''Return negative loglikelihood function. Notes ----- This is ``-sum(log pdf(x, theta), axis=0)`` where `theta` are the parameters (including loc and scale). ''' try: loc = theta[-2] scale = theta[-1] args = tuple(theta[:-2]) except IndexError: raise ValueError("Not enough input arguments.") if not self._argcheck(*args) or scale <= 0: return inf x = asarray((x-loc) / scale) cond0 = (x <= self.a) | (self.b <= x) if (any(cond0)): return inf else: N = len(x) return self._nnlf(x, *args) + N * log(scale) def _penalized_nnlf(self, theta, x): ''' Return negative loglikelihood function, i.e., - sum (log pdf(x, theta), axis=0) where theta are the parameters (including loc and scale) ''' try: loc = theta[-2] scale = theta[-1] args = tuple(theta[:-2]) except IndexError: raise ValueError("Not enough input arguments.") if not self._argcheck(*args) or scale <= 0: return inf x = asarray((x-loc) / scale) loginf = log(_XMAX) if np.isneginf(self.a).all() and np.isinf(self.b).all(): Nbad = 0 else: cond0 = (x <= self.a) | (self.b <= x) Nbad = sum(cond0) if Nbad > 0: x = argsreduce(~cond0, x)[0] N = len(x) return self._nnlf(x, *args) + N*log(scale) + Nbad * 100.0 * loginf # return starting point for fit (shape arguments + loc + scale) def _fitstart(self, data, args=None): if args is None: args = (1.0,)*self.numargs loc, scale = self._fit_loc_scale_support(data, *args) return args + (loc, scale) # Return the (possibly reduced) function to optimize in order to find MLE # estimates for the .fit method def _reduce_func(self, args, kwds): # First of all, convert fshapes params to fnum: eg for stats.beta, # shapes='a, b'. To fix `a`, can specify either `f1` or `fa`. # Convert the latter into the former. if self.shapes: shapes = self.shapes.replace(',', ' ').split() for j, s in enumerate(shapes): val = kwds.pop('f' + s, None) or kwds.pop('fix_' + s, None) if val is not None: key = 'f%d' % j if key in kwds: raise ValueError("Duplicate entry for %s." % key) else: kwds[key] = val args = list(args) Nargs = len(args) fixedn = [] names = ['f%d' % n for n in range(Nargs - 2)] + ['floc', 'fscale'] x0 = [] for n, key in enumerate(names): if key in kwds: fixedn.append(n) args[n] = kwds.pop(key) else: x0.append(args[n]) if len(fixedn) == 0: func = self._penalized_nnlf restore = None else: if len(fixedn) == Nargs: raise ValueError( "All parameters fixed. There is nothing to optimize.") def restore(args, theta): # Replace with theta for all numbers not in fixedn # This allows the non-fixed values to vary, but # we still call self.nnlf with all parameters. i = 0 for n in range(Nargs): if n not in fixedn: args[n] = theta[i] i += 1 return args def func(theta, x): newtheta = restore(args[:], theta) return self._penalized_nnlf(newtheta, x) return x0, func, restore, args def fit(self, data, *args, **kwds): """ Return MLEs for shape, location, and scale parameters from data. MLE stands for Maximum Likelihood Estimate. Starting estimates for the fit are given by input arguments; for any arguments not provided with starting estimates, ``self._fitstart(data)`` is called to generate such. One can hold some parameters fixed to specific values by passing in keyword arguments ``f0``, ``f1``, ..., ``fn`` (for shape parameters) and ``floc`` and ``fscale`` (for location and scale parameters, respectively). Parameters ---------- data : array_like Data to use in calculating the MLEs. args : floats, optional Starting value(s) for any shape-characterizing arguments (those not provided will be determined by a call to ``_fitstart(data)``). No default value. kwds : floats, optional Starting values for the location and scale parameters; no default. Special keyword arguments are recognized as holding certain parameters fixed: - f0...fn : hold respective shape parameters fixed. Alternatively, shape parameters to fix can be specified by name. For example, if ``self.shapes == "a, b"``, ``fa``and ``fix_a`` are equivalent to ``f0``, and ``fb`` and ``fix_b`` are equivalent to ``f1``. - floc : hold location parameter fixed to specified value. - fscale : hold scale parameter fixed to specified value. - optimizer : The optimizer to use. The optimizer must take ``func``, and starting position as the first two arguments, plus ``args`` (for extra arguments to pass to the function to be optimized) and ``disp=0`` to suppress output as keyword arguments. Returns ------- shape, loc, scale : tuple of floats MLEs for any shape statistics, followed by those for location and scale. Notes ----- This fit is computed by maximizing a log-likelihood function, with penalty applied for samples outside of range of the distribution. The returned answer is not guaranteed to be the globally optimal MLE, it may only be locally optimal, or the optimization may fail altogether. Examples -------- Generate some data to fit: draw random variates from the `beta` distribution >>> from scipy.stats import beta >>> a, b = 1., 2. >>> x = beta.rvs(a, b, size=1000) Now we can fit all four parameters (``a``, ``b``, ``loc`` and ``scale``): >>> a1, b1, loc1, scale1 = beta.fit(x) We can also use some prior knowledge about the dataset: let's keep ``loc`` and ``scale`` fixed: >>> a1, b1, loc1, scale1 = beta.fit(x, floc=0, fscale=1) >>> loc1, scale1 (0, 1) We can also keep shape parameters fixed by using ``f``-keywords. To keep the zero-th shape parameter ``a`` equal 1, use ``f0=1`` or, equivalently, ``fa=1``: >>> a1, b1, loc1, scale1 = beta.fit(x, fa=1, floc=0, fscale=1) >>> a1 1 """ Narg = len(args) if Narg > self.numargs: raise TypeError("Too many input arguments.") start = [None]*2 if (Narg < self.numargs) or not ('loc' in kwds and 'scale' in kwds): # get distribution specific starting locations start = self._fitstart(data) args += start[Narg:-2] loc = kwds.pop('loc', start[-2]) scale = kwds.pop('scale', start[-1]) args += (loc, scale) x0, func, restore, args = self._reduce_func(args, kwds) optimizer = kwds.pop('optimizer', optimize.fmin) # convert string to function in scipy.optimize if not callable(optimizer) and isinstance(optimizer, string_types): if not optimizer.startswith('fmin_'): optimizer = "fmin_"+optimizer if optimizer == 'fmin_': optimizer = 'fmin' try: optimizer = getattr(optimize, optimizer) except AttributeError: raise ValueError("%s is not a valid optimizer" % optimizer) # by now kwds must be empty, since everybody took what they needed if kwds: raise TypeError("Unknown arguments: %s." % kwds) vals = optimizer(func, x0, args=(ravel(data),), disp=0) if restore is not None: vals = restore(args, vals) vals = tuple(vals) return vals def _fit_loc_scale_support(self, data, *args): """ Estimate loc and scale parameters from data accounting for support. Parameters ---------- data : array_like Data to fit. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). Returns ------- Lhat : float Estimated location parameter for the data. Shat : float Estimated scale parameter for the data. """ data = np.asarray(data) # Estimate location and scale according to the method of moments. loc_hat, scale_hat = self.fit_loc_scale(data, *args) # Compute the support according to the shape parameters. self._argcheck(*args) a, b = self.a, self.b support_width = b - a # If the support is empty then return the moment-based estimates. if support_width <= 0: return loc_hat, scale_hat # Compute the proposed support according to the loc and scale estimates. a_hat = loc_hat + a * scale_hat b_hat = loc_hat + b * scale_hat # Use the moment-based estimates if they are compatible with the data. data_a = np.min(data) data_b = np.max(data) if a_hat < data_a and data_b < b_hat: return loc_hat, scale_hat # Otherwise find other estimates that are compatible with the data. data_width = data_b - data_a rel_margin = 0.1 margin = data_width * rel_margin # For a finite interval, both the location and scale # should have interesting values. if support_width < np.inf: loc_hat = (data_a - a) - margin scale_hat = (data_width + 2 * margin) / support_width return loc_hat, scale_hat # For a one-sided interval, use only an interesting location parameter. if a > -np.inf: return (data_a - a) - margin, 1 elif b < np.inf: return (data_b - b) + margin, 1 else: raise RuntimeError def fit_loc_scale(self, data, *args): """ Estimate loc and scale parameters from data using 1st and 2nd moments. Parameters ---------- data : array_like Data to fit. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). Returns ------- Lhat : float Estimated location parameter for the data. Shat : float Estimated scale parameter for the data. """ mu, mu2 = self.stats(*args, **{'moments': 'mv'}) tmp = asarray(data) muhat = tmp.mean() mu2hat = tmp.var() Shat = sqrt(mu2hat / mu2) Lhat = muhat - Shat*mu if not np.isfinite(Lhat): Lhat = 0 if not (np.isfinite(Shat) and (0 < Shat)): Shat = 1 return Lhat, Shat @np.deprecate def est_loc_scale(self, data, *args): """This function is deprecated, use self.fit_loc_scale(data) instead. """ return self.fit_loc_scale(data, *args) def _entropy(self, *args): def integ(x): val = self._pdf(x, *args) return entr(val) # upper limit is often inf, so suppress warnings when integrating olderr = np.seterr(over='ignore') h = integrate.quad(integ, self.a, self.b)[0] np.seterr(**olderr) if not np.isnan(h): return h else: # try with different limits if integration problems low, upp = self.ppf([1e-10, 1. - 1e-10], *args) if np.isinf(self.b): upper = upp else: upper = self.b if np.isinf(self.a): lower = low else: lower = self.a return integrate.quad(integ, lower, upper)[0] def expect(self, func=None, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds): """Calculate expected value of a function with respect to the distribution. The expected value of a function ``f(x)`` with respect to a distribution ``dist`` is defined as:: ubound E[x] = Integral(f(x) * dist.pdf(x)) lbound Parameters ---------- func : callable, optional Function for which integral is calculated. Takes only one argument. The default is the identity mapping f(x) = x. args : tuple, optional Shape parameters of the distribution. loc : float, optional Location parameter (default=0). scale : float, optional Scale parameter (default=1). lb, ub : scalar, optional Lower and upper bound for integration. Default is set to the support of the distribution. conditional : bool, optional If True, the integral is corrected by the conditional probability of the integration interval. The return value is the expectation of the function, conditional on being in the given interval. Default is False. Additional keyword arguments are passed to the integration routine. Returns ------- expect : float The calculated expected value. Notes ----- The integration behavior of this function is inherited from `integrate.quad`. """ lockwds = {'loc': loc, 'scale': scale} self._argcheck(*args) if func is None: def fun(x, *args): return x * self.pdf(x, *args, **lockwds) else: def fun(x, *args): return func(x) * self.pdf(x, *args, **lockwds) if lb is None: lb = loc + self.a * scale if ub is None: ub = loc + self.b * scale if conditional: invfac = (self.sf(lb, *args, **lockwds) - self.sf(ub, *args, **lockwds)) else: invfac = 1.0 kwds['args'] = args # Silence floating point warnings from integration. olderr = np.seterr(all='ignore') vals = integrate.quad(fun, lb, ub, **kwds)[0] / invfac np.seterr(**olderr) return vals ## Handlers for generic case where xk and pk are given ## The _drv prefix probably means discrete random variable. def _drv_pmf(self, xk, *args): try: return self.P[xk] except KeyError: return 0.0 def _drv_cdf(self, xk, *args): indx = argmax((self.xk > xk), axis=-1)-1 return self.F[self.xk[indx]] def _drv_ppf(self, q, *args): indx = argmax((self.qvals >= q), axis=-1) return self.Finv[self.qvals[indx]] def _drv_nonzero(self, k, *args): return 1 def _drv_moment(self, n, *args): n = asarray(n) return sum(self.xk**n[np.newaxis, ...] * self.pk, axis=0) def _drv_moment_gen(self, t, *args): t = asarray(t) return sum(exp(self.xk * t[np.newaxis, ...]) * self.pk, axis=0) def _drv2_moment(self, n, *args): """Non-central moment of discrete distribution.""" # many changes, originally not even a return tot = 0.0 diff = 1e100 # pos = self.a pos = max(0.0, 1.0*self.a) count = 0 # handle cases with infinite support ulimit = max(1000, (min(self.b, 1000) + max(self.a, -1000))/2.0) llimit = min(-1000, (min(self.b, 1000) + max(self.a, -1000))/2.0) while (pos <= self.b) and ((pos <= ulimit) or (diff > self.moment_tol)): diff = np.power(pos, n) * self.pmf(pos, *args) # use pmf because _pmf does not check support in randint and there # might be problems ? with correct self.a, self.b at this stage tot += diff pos += self.inc count += 1 if self.a < 0: # handle case when self.a = -inf diff = 1e100 pos = -self.inc while (pos >= self.a) and ((pos >= llimit) or (diff > self.moment_tol)): diff = np.power(pos, n) * self.pmf(pos, *args) # using pmf instead of _pmf, see above tot += diff pos -= self.inc count += 1 return tot def _drv2_ppfsingle(self, q, *args): # Use basic bisection algorithm b = self.b a = self.a if isinf(b): # Be sure ending point is > q b = int(max(100*q, 10)) while 1: if b >= self.b: qb = 1.0 break qb = self._cdf(b, *args) if (qb < q): b += 10 else: break else: qb = 1.0 if isinf(a): # be sure starting point < q a = int(min(-100*q, -10)) while 1: if a <= self.a: qb = 0.0 break qa = self._cdf(a, *args) if (qa > q): a -= 10 else: break else: qa = self._cdf(a, *args) while 1: if (qa == q): return a if (qb == q): return b if b <= a+1: # testcase: return wrong number at lower index # python -c "from scipy.stats import zipf;print zipf.ppf(0.01, 2)" wrong # python -c "from scipy.stats import zipf;print zipf.ppf([0.01, 0.61, 0.77, 0.83], 2)" # python -c "from scipy.stats import logser;print logser.ppf([0.1, 0.66, 0.86, 0.93], 0.6)" if qa > q: return a else: return b c = int((a+b)/2.0) qc = self._cdf(c, *args) if (qc < q): if a != c: a = c else: raise RuntimeError('updating stopped, endless loop') qa = qc elif (qc > q): if b != c: b = c else: raise RuntimeError('updating stopped, endless loop') qb = qc else: return c def entropy(pk, qk=None, base=None): """Calculate the entropy of a distribution for given probability values. If only probabilities `pk` are given, the entropy is calculated as ``S = -sum(pk * log(pk), axis=0)``. If `qk` is not None, then compute the Kullback-Leibler divergence ``S = sum(pk * log(pk / qk), axis=0)``. This routine will normalize `pk` and `qk` if they don't sum to 1. Parameters ---------- pk : sequence Defines the (discrete) distribution. ``pk[i]`` is the (possibly unnormalized) probability of event ``i``. qk : sequence, optional Sequence against which the relative entropy is computed. Should be in the same format as `pk`. base : float, optional The logarithmic base to use, defaults to ``e`` (natural logarithm). Returns ------- S : float The calculated entropy. """ pk = asarray(pk) pk = 1.0*pk / sum(pk, axis=0) if qk is None: vec = entr(pk) else: qk = asarray(qk) if len(qk) != len(pk): raise ValueError("qk and pk must have same length.") qk = 1.0*qk / sum(qk, axis=0) vec = kl_div(pk, qk) S = sum(vec, axis=0) if base is not None: S /= log(base) return S # Must over-ride one of _pmf or _cdf or pass in # x_k, p(x_k) lists in initialization class rv_discrete(rv_generic): """ A generic discrete random variable class meant for subclassing. `rv_discrete` is a base class to construct specific distribution classes and instances for discrete random variables. It can also be used to construct an arbitrary distribution defined by a list of support points and corresponding probabilities. Parameters ---------- a : float, optional Lower bound of the support of the distribution, default: 0 b : float, optional Upper bound of the support of the distribution, default: plus infinity moment_tol : float, optional The tolerance for the generic calculation of moments. values : tuple of two array_like, optional ``(xk, pk)`` where ``xk`` are integers with non-zero probabilities ``pk`` with ``sum(pk) = 1``. inc : integer, optional Increment for the support of the distribution. Default is 1. (other values have not been tested) badvalue : float, optional The value in a result arrays that indicates a value that for which some argument restriction is violated, default is np.nan. name : str, optional The name of the instance. This string is used to construct the default example for distributions. longname : str, optional This string is used as part of the first line of the docstring returned when a subclass has no docstring of its own. Note: `longname` exists for backwards compatibility, do not use for new subclasses. shapes : str, optional The shape of the distribution. For example "m, n" for a distribution that takes two integers as the two shape arguments for all its methods If not provided, shape parameters will be inferred from the signatures of the private methods, ``_pmf`` and ``_cdf`` of the instance. extradoc : str, optional This string is used as the last part of the docstring returned when a subclass has no docstring of its own. Note: `extradoc` exists for backwards compatibility, do not use for new subclasses. seed : None or int or ``numpy.random.RandomState`` instance, optional This parameter defines the RandomState object to use for drawing random variates. If None, the global np.random state is used. If integer, it is used to seed the local RandomState instance. Default is None. Methods ------- rvs pmf logpmf cdf logcdf sf logsf ppf isf moment stats entropy expect median mean std var interval __call__ Notes ----- This class is similar to `rv_continuous`, the main differences being: - the support of the distribution is a set of integers - instead of the probability density function, ``pdf`` (and the corresponding private ``_pdf``), this class defines the *probability mass function*, `pmf` (and the corresponding private ``_pmf``.) - scale parameter is not defined. To create a new discrete distribution, we would do the following: >>> from scipy.stats import rv_discrete >>> class poisson_gen(rv_discrete): ... "Poisson distribution" ... def _pmf(self, k, mu): ... return exp(-mu) * mu**k / factorial(k) and create an instance:: >>> poisson = poisson_gen(name="poisson") Note that above we defined the Poisson distribution in the standard form. Shifting the distribution can be done by providing the ``loc`` parameter to the methods of the instance. For example, ``poisson.pmf(x, mu, loc)`` delegates the work to ``poisson._pmf(x-loc, mu)``. **Discrete distributions from a list of probabilities** Alternatively, you can construct an arbitrary discrete rv defined on a finite set of values ``xk`` with ``Prob{X=xk} = pk`` by using the ``values`` keyword argument to the `rv_discrete` constructor. Examples -------- Custom made discrete distribution: >>> from scipy import stats >>> xk = np.arange(7) >>> pk = (0.1, 0.2, 0.3, 0.1, 0.1, 0.0, 0.2) >>> custm = stats.rv_discrete(name='custm', values=(xk, pk)) >>> >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1) >>> ax.plot(xk, custm.pmf(xk), 'ro', ms=12, mec='r') >>> ax.vlines(xk, 0, custm.pmf(xk), colors='r', lw=4) >>> plt.show() Random number generation: >>> R = custm.rvs(size=100) """ def __init__(self, a=0, b=inf, name=None, badvalue=None, moment_tol=1e-8, values=None, inc=1, longname=None, shapes=None, extradoc=None, seed=None): super(rv_discrete, self).__init__(seed) # cf generic freeze self._ctor_param = dict( a=a, b=b, name=name, badvalue=badvalue, moment_tol=moment_tol, values=values, inc=inc, longname=longname, shapes=shapes, extradoc=extradoc, seed=seed) if badvalue is None: badvalue = nan if name is None: name = 'Distribution' self.badvalue = badvalue self.a = a self.b = b self.name = name self.moment_tol = moment_tol self.inc = inc self._cdfvec = vectorize(self._cdf_single, otypes='d') self.return_integers = 1 self.vecentropy = vectorize(self._entropy) self.shapes = shapes self.extradoc = extradoc if values is not None: self.xk, self.pk = values self.return_integers = 0 indx = argsort(ravel(self.xk)) self.xk = take(ravel(self.xk), indx, 0) self.pk = take(ravel(self.pk), indx, 0) self.a = self.xk[0] self.b = self.xk[-1] self.P = dict(zip(self.xk, self.pk)) self.qvals = np.cumsum(self.pk, axis=0) self.F = dict(zip(self.xk, self.qvals)) decreasing_keys = sorted(self.F.keys(), reverse=True) self.Finv = dict((self.F[k], k) for k in decreasing_keys) self._ppf = instancemethod(vectorize(_drv_ppf, otypes='d'), self, rv_discrete) self._pmf = instancemethod(vectorize(_drv_pmf, otypes='d'), self, rv_discrete) self._cdf = instancemethod(vectorize(_drv_cdf, otypes='d'), self, rv_discrete) self._nonzero = instancemethod(_drv_nonzero, self, rv_discrete) self.generic_moment = instancemethod(_drv_moment, self, rv_discrete) self.moment_gen = instancemethod(_drv_moment_gen, self, rv_discrete) self.shapes = ' ' # bypass inspection self._construct_argparser(meths_to_inspect=[self._pmf], locscale_in='loc=0', # scale=1 for discrete RVs locscale_out='loc, 1') else: self._construct_argparser(meths_to_inspect=[self._pmf, self._cdf], locscale_in='loc=0', # scale=1 for discrete RVs locscale_out='loc, 1') # nin correction needs to be after we know numargs # correct nin for generic moment vectorization _vec_generic_moment = vectorize(_drv2_moment, otypes='d') _vec_generic_moment.nin = self.numargs + 2 self.generic_moment = instancemethod(_vec_generic_moment, self, rv_discrete) # backwards compat. was removed in 0.14.0, put back but # deprecated in 0.14.1: self.vec_generic_moment = np.deprecate(_vec_generic_moment, "vec_generic_moment", "generic_moment") # correct nin for ppf vectorization _vppf = vectorize(_drv2_ppfsingle, otypes='d') _vppf.nin = self.numargs + 2 # +1 is for self self._ppfvec = instancemethod(_vppf, self, rv_discrete) # now that self.numargs is defined, we can adjust nin self._cdfvec.nin = self.numargs + 1 # generate docstring for subclass instances if longname is None: if name[0] in ['aeiouAEIOU']: hstr = "An " else: hstr = "A " longname = hstr + name if sys.flags.optimize < 2: # Skip adding docstrings if interpreter is run with -OO if self.__doc__ is None: self._construct_default_doc(longname=longname, extradoc=extradoc, docdict=docdict_discrete, discrete='discrete') else: dct = dict(distdiscrete) self._construct_doc(docdict_discrete, dct.get(self.name)) #discrete RV do not have the scale parameter, remove it self.__doc__ = self.__doc__.replace( '\n scale : array_like, ' 'optional\n scale parameter (default=1)', '') def _nonzero(self, k, *args): return floor(k) == k def _pmf(self, k, *args): return self._cdf(k, *args) - self._cdf(k-1, *args) def _logpmf(self, k, *args): return log(self._pmf(k, *args)) def _cdf_single(self, k, *args): m = arange(int(self.a), k+1) return sum(self._pmf(m, *args), axis=0) def _cdf(self, x, *args): k = floor(x) return self._cdfvec(k, *args) # generic _logcdf, _sf, _logsf, _ppf, _isf, _rvs defined in rv_generic def rvs(self, *args, **kwargs): """ Random variates of given type. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). size : int or tuple of ints, optional Defining number of random variates (Default is 1). Note that `size` has to be given as keyword, not as positional argument. random_state : None or int or ``np.random.RandomState`` instance, optional If int or RandomState, use it for drawing the random variates. If None, rely on ``self.random_state``. Default is None. Returns ------- rvs : ndarray or scalar Random variates of given `size`. """ kwargs['discrete'] = True return super(rv_discrete, self).rvs(*args, **kwargs) def pmf(self, k, *args, **kwds): """ Probability mass function at k of the given RV. Parameters ---------- k : array_like Quantiles. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional Location parameter (default=0). Returns ------- pmf : array_like Probability mass function evaluated at k """ args, loc, _ = self._parse_args(*args, **kwds) k, loc = map(asarray, (k, loc)) args = tuple(map(asarray, args)) k = asarray((k-loc)) cond0 = self._argcheck(*args) cond1 = (k >= self.a) & (k <= self.b) & self._nonzero(k, *args) cond = cond0 & cond1 output = zeros(shape(cond), 'd') place(output, (1-cond0) + np.isnan(k), self.badvalue) if any(cond): goodargs = argsreduce(cond, *((k,)+args)) place(output, cond, np.clip(self._pmf(*goodargs), 0, 1)) if output.ndim == 0: return output[()] return output def logpmf(self, k, *args, **kwds): """ Log of the probability mass function at k of the given RV. Parameters ---------- k : array_like Quantiles. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter. Default is 0. Returns ------- logpmf : array_like Log of the probability mass function evaluated at k. """ args, loc, _ = self._parse_args(*args, **kwds) k, loc = map(asarray, (k, loc)) args = tuple(map(asarray, args)) k = asarray((k-loc)) cond0 = self._argcheck(*args) cond1 = (k >= self.a) & (k <= self.b) & self._nonzero(k, *args) cond = cond0 & cond1 output = empty(shape(cond), 'd') output.fill(NINF) place(output, (1-cond0) + np.isnan(k), self.badvalue) if any(cond): goodargs = argsreduce(cond, *((k,)+args)) place(output, cond, self._logpmf(*goodargs)) if output.ndim == 0: return output[()] return output def cdf(self, k, *args, **kwds): """ Cumulative distribution function of the given RV. Parameters ---------- k : array_like, int Quantiles. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). Returns ------- cdf : ndarray Cumulative distribution function evaluated at `k`. """ args, loc, _ = self._parse_args(*args, **kwds) k, loc = map(asarray, (k, loc)) args = tuple(map(asarray, args)) k = asarray((k-loc)) cond0 = self._argcheck(*args) cond1 = (k >= self.a) & (k < self.b) cond2 = (k >= self.b) cond = cond0 & cond1 output = zeros(shape(cond), 'd') place(output, (1-cond0) + np.isnan(k), self.badvalue) place(output, cond2*(cond0 == cond0), 1.0) if any(cond): goodargs = argsreduce(cond, *((k,)+args)) place(output, cond, np.clip(self._cdf(*goodargs), 0, 1)) if output.ndim == 0: return output[()] return output def logcdf(self, k, *args, **kwds): """ Log of the cumulative distribution function at k of the given RV. Parameters ---------- k : array_like, int Quantiles. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). Returns ------- logcdf : array_like Log of the cumulative distribution function evaluated at k. """ args, loc, _ = self._parse_args(*args, **kwds) k, loc = map(asarray, (k, loc)) args = tuple(map(asarray, args)) k = asarray((k-loc)) cond0 = self._argcheck(*args) cond1 = (k >= self.a) & (k < self.b) cond2 = (k >= self.b) cond = cond0 & cond1 output = empty(shape(cond), 'd') output.fill(NINF) place(output, (1-cond0) + np.isnan(k), self.badvalue) place(output, cond2*(cond0 == cond0), 0.0) if any(cond): goodargs = argsreduce(cond, *((k,)+args)) place(output, cond, self._logcdf(*goodargs)) if output.ndim == 0: return output[()] return output def sf(self, k, *args, **kwds): """ Survival function (1 - `cdf`) at k of the given RV. Parameters ---------- k : array_like Quantiles. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). Returns ------- sf : array_like Survival function evaluated at k. """ args, loc, _ = self._parse_args(*args, **kwds) k, loc = map(asarray, (k, loc)) args = tuple(map(asarray, args)) k = asarray(k-loc) cond0 = self._argcheck(*args) cond1 = (k >= self.a) & (k < self.b) cond2 = (k < self.a) & cond0 cond = cond0 & cond1 output = zeros(shape(cond), 'd') place(output, (1-cond0) + np.isnan(k), self.badvalue) place(output, cond2, 1.0) if any(cond): goodargs = argsreduce(cond, *((k,)+args)) place(output, cond, np.clip(self._sf(*goodargs), 0, 1)) if output.ndim == 0: return output[()] return output def logsf(self, k, *args, **kwds): """ Log of the survival function of the given RV. Returns the log of the "survival function," defined as 1 - `cdf`, evaluated at `k`. Parameters ---------- k : array_like Quantiles. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). Returns ------- logsf : ndarray Log of the survival function evaluated at `k`. """ args, loc, _ = self._parse_args(*args, **kwds) k, loc = map(asarray, (k, loc)) args = tuple(map(asarray, args)) k = asarray(k-loc) cond0 = self._argcheck(*args) cond1 = (k >= self.a) & (k < self.b) cond2 = (k < self.a) & cond0 cond = cond0 & cond1 output = empty(shape(cond), 'd') output.fill(NINF) place(output, (1-cond0) + np.isnan(k), self.badvalue) place(output, cond2, 0.0) if any(cond): goodargs = argsreduce(cond, *((k,)+args)) place(output, cond, self._logsf(*goodargs)) if output.ndim == 0: return output[()] return output def ppf(self, q, *args, **kwds): """ Percent point function (inverse of `cdf`) at q of the given RV. Parameters ---------- q : array_like Lower tail probability. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). Returns ------- k : array_like Quantile corresponding to the lower tail probability, q. """ args, loc, _ = self._parse_args(*args, **kwds) q, loc = map(asarray, (q, loc)) args = tuple(map(asarray, args)) cond0 = self._argcheck(*args) & (loc == loc) cond1 = (q > 0) & (q < 1) cond2 = (q == 1) & cond0 cond = cond0 & cond1 output = valarray(shape(cond), value=self.badvalue, typecode='d') # output type 'd' to handle nin and inf place(output, (q == 0)*(cond == cond), self.a-1) place(output, cond2, self.b) if any(cond): goodargs = argsreduce(cond, *((q,)+args+(loc,))) loc, goodargs = goodargs[-1], goodargs[:-1] place(output, cond, self._ppf(*goodargs) + loc) if output.ndim == 0: return output[()] return output def isf(self, q, *args, **kwds): """ Inverse survival function (inverse of `sf`) at q of the given RV. Parameters ---------- q : array_like Upper tail probability. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). Returns ------- k : ndarray or scalar Quantile corresponding to the upper tail probability, q. """ args, loc, _ = self._parse_args(*args, **kwds) q, loc = map(asarray, (q, loc)) args = tuple(map(asarray, args)) cond0 = self._argcheck(*args) & (loc == loc) cond1 = (q > 0) & (q < 1) cond2 = (q == 1) & cond0 cond = cond0 & cond1 # same problem as with ppf; copied from ppf and changed output = valarray(shape(cond), value=self.badvalue, typecode='d') # output type 'd' to handle nin and inf place(output, (q == 0)*(cond == cond), self.b) place(output, cond2, self.a-1) # call place only if at least 1 valid argument if any(cond): goodargs = argsreduce(cond, *((q,)+args+(loc,))) loc, goodargs = goodargs[-1], goodargs[:-1] # PB same as ticket 766 place(output, cond, self._isf(*goodargs) + loc) if output.ndim == 0: return output[()] return output def _entropy(self, *args): if hasattr(self, 'pk'): return entropy(self.pk) else: mu = int(self.stats(*args, **{'moments': 'm'})) val = self.pmf(mu, *args) ent = entr(val) k = 1 term = 1.0 while (abs(term) > _EPS): val = self.pmf(mu+k, *args) term = entr(val) val = self.pmf(mu-k, *args) term += entr(val) k += 1 ent += term return ent def expect(self, func=None, args=(), loc=0, lb=None, ub=None, conditional=False): """ Calculate expected value of a function with respect to the distribution for discrete distribution. Parameters ---------- func : callable, optional Function for which the expectation value is calculated. Takes only one argument. The default is the identity mapping f(k) = k. args : tuple, optional Shape parameters of the distribution. loc : float, optional Location parameter. Default is 0. lb, ub : int, optional Lower and upper bound for integration, default is set to the support of the distribution, inclusive (``ul <= k <= ub``). conditional : bool, optional If true then the expectation is corrected by the conditional probability of the summation interval. The return value is the expectation of the function, `func`, conditional on being in the given interval (k such that ``ul <= k <= ub``). Default is False. Returns ------- expect : float Expected value. Notes ----- * function is not vectorized * accuracy: uses self.moment_tol as stopping criterium for heavy tailed distribution e.g. zipf(4), accuracy for mean, variance in example is only 1e-5, increasing precision (moment_tol) makes zipf very slow * suppnmin=100 internal parameter for minimum number of points to evaluate could be added as keyword parameter, to evaluate functions with non-monotonic shapes, points include integers in (-suppnmin, suppnmin) * uses maxcount=1000 limits the number of points that are evaluated to break loop for infinite sums (a maximum of suppnmin+1000 positive plus suppnmin+1000 negative integers are evaluated) """ # moment_tol = 1e-12 # increase compared to self.moment_tol, # too slow for only small gain in precision for zipf # avoid endless loop with unbound integral, eg. var of zipf(2) maxcount = 1000 suppnmin = 100 # minimum number of points to evaluate (+ and -) if func is None: def fun(x): # loc and args from outer scope return (x+loc)*self._pmf(x, *args) else: def fun(x): # loc and args from outer scope return func(x+loc)*self._pmf(x, *args) # used pmf because _pmf does not check support in randint and there # might be problems(?) with correct self.a, self.b at this stage maybe # not anymore, seems to work now with _pmf self._argcheck(*args) # (re)generate scalar self.a and self.b if lb is None: lb = (self.a) else: lb = lb - loc # convert bound for standardized distribution if ub is None: ub = (self.b) else: ub = ub - loc # convert bound for standardized distribution if conditional: invfac = self.sf(lb-1, *args) - self.sf(ub, *args) else: invfac = 1.0 tot = 0.0 low, upp = self._ppf(0.001, *args), self._ppf(0.999, *args) low = max(min(-suppnmin, low), lb) upp = min(max(suppnmin, upp), ub) supp = np.arange(low, upp+1, self.inc) # check limits tot = np.sum(fun(supp)) diff = 1e100 pos = upp + self.inc count = 0 # handle cases with infinite support while (pos <= ub) and (diff > self.moment_tol) and count <= maxcount: diff = fun(pos) tot += diff pos += self.inc count += 1 if self.a < 0: # handle case when self.a = -inf diff = 1e100 pos = low - self.inc while ((pos >= lb) and (diff > self.moment_tol) and count <= maxcount): diff = fun(pos) tot += diff pos -= self.inc count += 1 if count > maxcount: warnings.warn('expect(): sum did not converge', RuntimeWarning) return tot/invfac def get_distribution_names(namespace_pairs, rv_base_class): """ Collect names of statistical distributions and their generators. Parameters ---------- namespace_pairs : sequence A snapshot of (name, value) pairs in the namespace of a module. rv_base_class : class The base class of random variable generator classes in a module. Returns ------- distn_names : list of strings Names of the statistical distributions. distn_gen_names : list of strings Names of the generators of the statistical distributions. Note that these are not simply the names of the statistical distributions, with a _gen suffix added. """ distn_names = [] distn_gen_names = [] for name, value in namespace_pairs: if name.startswith('_'): continue if name.endswith('_gen') and issubclass(value, rv_base_class): distn_gen_names.append(name) if isinstance(value, rv_base_class): distn_names.append(name) return distn_names, distn_gen_names
bsd-3-clause
Ichaelus/Github-Classifier
Application/Models/ClassificationModules/multinomialnbreadmeonly.py
1
2861
#!/usr/bin/env python # -*- coding: utf-8 -*- from Models.FeatureProcessing import * import sklearn from sklearn.naive_bayes import MultinomialNB import numpy as np import abc from ClassificationModule import ClassificationModule class multinomialnbreadmeonly(ClassificationModule): """A Multinomial Naive Bayes""" def __init__(self, text_corpus): ClassificationModule.__init__(self, "Readme Only Multinomial Naive Bayes", "A Multinomial Naive Bayes-Classifier") # Create vectorizer and fit on all available Descriptions self.vectorizer = getTextVectorizer(8000) # Maximum of different columns corpus = [] for description in text_corpus: corpus.append(process_text(description)) self.vectorizer.fit(corpus) self.clf = MultinomialNB() print "\t-", self.name def resetAllTraining(self): """Reset classification module to status before training""" self.clf = sklearn.base.clone(self.clf) def trainOnSample(self, sample, shuffle=True, verbose=True): """Trainiere (inkrementell) mit Sample. Evtl zusätzlich mit best. Menge alter Daten, damit overfitten auf neue Daten verhindert wird.""" readme_vec = self.formatInputData(sample) label_index = getLabelIndex(sample) return self.clf.fit(readme_vec, np.expand_dims(label_index, axis=0)) def train(self, samples, shuffle=True, verbose=True): """Trainiere mit Liste von Daten. Evtl weitere Paramter nötig (nb_epoch, learning_rate, ...)""" train_samples = [] train_lables = [] for sample in samples: formatted_sample = self.formatInputData(sample)[0].tolist() train_samples.append(formatted_sample) train_lables.append(getLabelIndex(sample)) train_lables = np.asarray(train_lables) train_result = self.clf.fit(train_samples, train_lables) self.isTrained = True return train_result def predictLabel(self, sample): """Gibt zurück, wie der Klassifikator ein gegebenes Sample klassifizieren würde""" if not self.isTrained: return 0 sample = self.formatInputData(sample) return self.clf.predict(sample)[0] def predictLabelAndProbability(self, sample): """Return the probability the module assignes each label""" if not self.isTrained: return [0, 0, 0, 0, 0, 0, 0, 0] sample = self.formatInputData(sample) prediction = self.clf.predict_proba(sample)[0] return [np.argmax(prediction)] + list(prediction) def formatInputData(self, sample): """Extract readme and transform to vector""" sd = getReadme(sample) # Returns numpy array which contains 1 array with features return self.vectorizer.transform([sd]).toarray()
mit
0bserver07/One-Hundred-Layers-Tiramisu
train-tiramisu.py
1
4182
from __future__ import absolute_import from __future__ import print_function import os import keras.models as models from keras.layers.core import Layer, Dense, Dropout, Activation, Flatten, Reshape, Permute from keras.layers.convolutional import Conv2D, MaxPooling2D, UpSampling2D, Cropping2D from keras.layers.normalization import BatchNormalization from keras.layers import Conv2D, Conv2DTranspose from keras.optimizers import RMSprop, Adam, SGD from keras.callbacks import ModelCheckpoint from keras.layers import Input, merge from keras.regularizers import l2 from keras.models import Model from keras import regularizers from keras.models import Model from keras.layers import Input, concatenate, Conv2D, MaxPooling2D, UpSampling2D from keras import backend as K from keras import callbacks import math # remote = callbacks.RemoteMonitor(root='http://localhost:9000', path='/publish/epoch/end/', field='data', headers=None) # early_stopping = callbacks.EarlyStopping(monitor='val_loss', patience=50, verbose=0, mode='auto') # tensor_board = callbacks.TensorBoard(log_dir='./logs', histogram_freq=5, write_graph=True, write_images=True) K.set_image_dim_ordering('tf') import cv2 import numpy as np import json np.random.seed(7) # 0bserver07 for reproducibility class_weighting = [ 0.2595, 0.1826, 4.5640, 0.1417, 0.5051, 0.3826, 9.6446, 1.8418, 6.6823, 6.2478, 3.0, 7.3614 ] # load the data train_data = np.load('./data/train_data.npy') train_data = train_data.reshape((367, 224, 224, 3)) train_label = np.load('./data/train_label.npy')#[:,:,:-1] test_data = np.load('./data/test_data.npy') test_data = test_data.reshape((233, 224, 224, 3)) test_label = np.load('./data/test_label.npy')#[:,:,:-1] # test_label = to_categorical(test_label, num_classes=None) # load the model: with open('tiramisu_fc_dense67_model_12_func.json') as model_file: tiramisu = models.model_from_json(model_file.read()) # section 4.1 from the paper from keras.callbacks import LearningRateScheduler # learning rate schedule def step_decay(epoch): initial_lrate = 0.001 drop = 0.00001 epochs_drop = 10.0 lrate = initial_lrate * math.pow(drop, math.floor((1+epoch)/epochs_drop)) return lrate lrate = LearningRateScheduler(step_decay) # tiramisu.load_weights("weights/prop_tiramisu_weights_67_12_func_10-e5_decay.best.hdf5") optimizer = RMSprop(lr=0.001, decay=0.0000001) # optimizer = SGD(lr=0.01) # optimizer = Adam(lr=1e-3, decay=0.995) tiramisu.compile(loss="categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) # learning schedule callback # lrate = LearningRateScheduler(step_decay) # checkpoint 278 TensorBoard = callbacks.TensorBoard(log_dir='./logs', histogram_freq=5, write_graph=True, write_images=True) # ReduceLROnPlateau = callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, verbose=0, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0) filepath="weights/prop_tiramisu_weights_67_12_func_10-e7_decay.best.hdf5" checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=2, save_best_only=True, save_weights_only=False, mode='max') callbacks_list = [checkpoint] nb_epoch = 150 batch_size = 2 # Fit the model history = tiramisu.fit(train_data, train_label, batch_size=batch_size, epochs=nb_epoch, callbacks=callbacks_list, class_weight=class_weighting,verbose=1, validation_data=(test_data, test_label), shuffle=True) # validation_split=0.33 # This save the trained model weights to this file with number of epochs tiramisu.save_weights('weights/prop_tiramisu_weights_67_12_func_10-e7_decay{}.hdf5'.format(nb_epoch)) import matplotlib.pyplot as plt # list all data in history print(history.history.keys()) # summarize history for accuracy plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() # summarize history for loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show()
mit
Ziqi-Li/bknqgis
pandas/pandas/tests/indexes/period/test_formats.py
15
1545
from pandas import PeriodIndex import numpy as np import pandas.util.testing as tm import pandas as pd def test_to_native_types(): index = PeriodIndex(['2017-01-01', '2017-01-02', '2017-01-03'], freq='D') # First, with no arguments. expected = np.array(['2017-01-01', '2017-01-02', '2017-01-03'], dtype='<U10') result = index.to_native_types() tm.assert_numpy_array_equal(result, expected) # No NaN values, so na_rep has no effect result = index.to_native_types(na_rep='pandas') tm.assert_numpy_array_equal(result, expected) # Make sure slicing works expected = np.array(['2017-01-01', '2017-01-03'], dtype='<U10') result = index.to_native_types([0, 2]) tm.assert_numpy_array_equal(result, expected) # Make sure date formatting works expected = np.array(['01-2017-01', '01-2017-02', '01-2017-03'], dtype='<U10') result = index.to_native_types(date_format='%m-%Y-%d') tm.assert_numpy_array_equal(result, expected) # NULL object handling should work index = PeriodIndex(['2017-01-01', pd.NaT, '2017-01-03'], freq='D') expected = np.array(['2017-01-01', 'NaT', '2017-01-03'], dtype=object) result = index.to_native_types() tm.assert_numpy_array_equal(result, expected) expected = np.array(['2017-01-01', 'pandas', '2017-01-03'], dtype=object) result = index.to_native_types(na_rep='pandas') tm.assert_numpy_array_equal(result, expected)
gpl-2.0
CompPhysics/MachineLearning
doc/src/DimRed/Programs/cancerownlogreg.py
1
1284
import matplotlib.pyplot as plt import numpy as np from sklearn.model_selection import train_test_split from sklearn.datasets import load_breast_cancer from sklearn.linear_model import LogisticRegression cancer = load_breast_cancer() fig, axes = plt.subplots(15,2,figsize=(10,20)) malignant = cancer.data[cancer.target == 0] benign = cancer.data[cancer.target == 1] ax = axes.ravel() for i in range(30): _, bins = np.histogram(cancer.data[:,i], bins =50) ax[i].hist(malignant[:,i], bins = bins, alpha = 0.5) ax[i].hist(benign[:,i], bins = bins, alpha = 0.5) ax[i].set_title(cancer.feature_names[i]) ax[i].set_yticks(()) ax[0].set_xlabel("Feature magnitude") ax[0].set_ylabel("Frequency") ax[0].legend(["Malignant", "Benign"], loc ="best") fig.tight_layout() plt.show() X_train, X_test, y_train, y_test = train_test_split(cancer.data,cancer.target,random_state=0) logreg = LogisticRegression() logreg.fit(X_train, y_train) print("Test set accuracy from Logistic Regression: {:.2f}".format(logreg.score(X_test,y_test))) beta = np.random.randn(2,1) eta = 0.1 Niterations = 100 for iter in range(Niterations): gradients = 2.0/m*xb.T @ (xb @ (beta)-y)+2*lmbda*beta beta -= eta*gradients print(beta) ypredict = xb @ beta ypredict2 = xb @ beta_linreg
cc0-1.0
davidnmurray/iris
lib/iris/tests/unit/plot/__init__.py
1
2524
# (C) British Crown Copyright 2014 - 2016, Met Office # # This file is part of Iris. # # Iris is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Iris is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Iris. If not, see <http://www.gnu.org/licenses/>. """Unit tests for the :mod:`iris.plot` module.""" from __future__ import (absolute_import, division, print_function) from six.moves import (filter, input, map, range, zip) # noqa # Import iris.tests first so that some things can be initialised before # importing anything else. import iris.tests as tests from iris.tests.stock import simple_2d, lat_lon_cube from iris.coords import AuxCoord @tests.skip_plot class TestGraphicStringCoord(tests.GraphicsTest): def setUp(self): super(TestGraphicStringCoord, self).setUp() self.cube = simple_2d(with_bounds=True) self.cube.add_aux_coord(AuxCoord(list('abcd'), long_name='str_coord'), 1) self.lat_lon_cube = lat_lon_cube() def tick_loc_and_label(self, axis_name, axes=None): # Intentional lazy import so that subclasses can have an opportunity # to change the backend. import matplotlib.pyplot as plt # Draw the plot to 'fix' the ticks. if axes: axes.figure.canvas.draw() else: axes = plt.gca() plt.draw() axis = getattr(axes, axis_name) locations = axis.get_majorticklocs() labels = [tick.get_text() for tick in axis.get_ticklabels()] return list(zip(locations, labels)) def assertBoundsTickLabels(self, axis, axes=None): actual = self.tick_loc_and_label(axis, axes) expected = [(-1.0, ''), (0.0, 'a'), (1.0, 'b'), (2.0, 'c'), (3.0, 'd'), (4.0, '')] self.assertEqual(expected, actual) def assertPointsTickLabels(self, axis, axes=None): actual = self.tick_loc_and_label(axis, axes) expected = [(0.0, 'a'), (1.0, 'b'), (2.0, 'c'), (3.0, 'd')] self.assertEqual(expected, actual)
gpl-3.0
nicholaschris/landsatpy
project_clouds.py
1
7429
import os import models import views import config import count_clouds import utils import cloud_detection # import cloud_shadow_morphology import skimage import numpy as np from numpy import ma from matplotlib import pyplot as plt from math import * import imp imp.reload(count_clouds) pcl = cloud_detection.calc_pcl() labels, nbr_objects = count_clouds.label_clouds(pcl,3,9) label_no = 4 data_dir = config.data_dir path = config.path row = config.row time = config.time band_option = config.band_option b = band_option # Scene = models.NetcdfModel(data_dir, path, row, time) # Scene.get_variables_list() # btc = utils.convert_to_celsius(Scene.data('BT_B10')) # btc[np.where(btc<0)] = 0 # btc[np.where(btc>27)] = 27 th0 = Scene.theta_0 phi0 = pi - (Scene.phi_0) # _bpcl, pcs_buffer = cloud_shadow_morphology.main() _bpcl = None def offset_sign(x_offset, y_offset): if x_offset <= 0: x_offset_neg, x_offset_pos = x_offset, 0 if y_offset <= 0: y_offset_neg, y_offset_pos = y_offset, 0 if x_offset > 0: x_offset_neg, x_offset_pos = 0, x_offset if y_offset > 0: y_offset_neg, y_offset_pos = 0, y_offset return x_offset_neg, x_offset_pos, y_offset_neg, y_offset_pos def calc_temp_percentiles(): csl_bt = fmask.clear_sky_land_brightness_temp() t_low, t_high = utils.calculate_percentile(csl_bt, 17.5), utils.calculate_percentile(csl_bt, 82.5) return t_low, t_high def create_zeros_array(input_array): new_shape = input_array.shape output_array = np.zeros(new_shape) return output_array def calc_mean_water_pixel_btc(): water_pixel_btc = ma.masked_where(np.invert(fmask.water_test()), btc) return ma.mean(water_pixel_btc) def cloud_base_height(label_no): cloud_object_btc = ma.masked_where(labels!=label_no, btc) cloud_height_array = create_zeros_array(cloud_object_btc) area = ma.count(cloud_object_btc) radius = np.sqrt(area/(2*np.pi)) # confusion as to whether 2 should be included if radius >= 8: # print("Radius is: ", radius) t_cloudbase = utils.calculate_percentile(cloud_object_btc, (((radius- 8)**2)/radius**2)) # print("Cloudbase temp is: ",t_cloudbase) else: t_cloudbase = cloud_object_btc.min() cloud_object_btc[np.where(cloud_object_btc>t_cloudbase)] = t_cloudbase # t_low, t_high = utils.calculate_percentile(cloud_object_btc, 17.5), utils.calculate_percentile(cloud_object_btc, 82.5) h_cloudbase = max(0.2, (t_low-4-t_cloudbase)/9.8), min(12, (t_high +4-t_cloudbase)) t_cloudtop = np.percentile(cloud_object_btc, 12.5) # cloud_object_btc.min() # not clear in paper h_cloudtop = np.max(np.array(h_cloudbase)) # + 6.5*(t_cloudbase-t_cloudtop) h_cloud_top = 0.2+(t_high - t_cloudbase)/6.5 # h_cloudtop_two = np.max(np.array(h_cloudbase)) + 6.5*(t_cloudbase-t_cloudtop) # print(h_cloudbase) # h_cloudtop = (h_cloudtop_one + h_cloudtop_two) / 2 print(h_cloudbase, h_cloudtop, t_cloudtop, t_cloudbase-t_cloudtop) # return h_cloudbase, h_cloudbase[1], h_cloudtop, t_cloudtop, t_cloudbase-t_cloudtop # cloud_height_array[np.where(labels==label_no)] = h_cloudtop_two return h_cloudtop def max_x_y_offset(th0, phi0): d = 12000/30 # cloud_height(label_no)/30 x_offset = - d*tan(th0)*sin(phi0) y_offset = - d*tan(th0)*cos(phi0) return x_offset, y_offset def create_expanded_zone(): x_offset, y_offset = max_x_y_offset(th0, phi0) amxn, amxp, amyn, amyp = offset_sign(x_offset, y_offset) amxn, amxp, amyn, amyp = np.int(amxn), np.int(amxp), np.int(amyn), np.int(amyp) _tmp_shape = -amyn+labels.shape[0]+amyp, -amxn+labels.shape[1]+amxp shadowy = np.zeros(_tmp_shape) return shadowy, _tmp_shape def iter_cloud_x_y_offset(th0, phi0, cloud_height): x_offset = [] y_offset = [] cloud_height = cloud_height*1000/30 for height_iteration in range(0, np.int(cloud_height)): x_offset.append(- (1/1)*height_iteration*tan(th0)*sin(phi0)) y_offset.append( - (1/1)*height_iteration*tan(th0)*cos(phi0)) return x_offset, y_offset def iter_cloud_shift(th0, phi0, cloud_height, x_inds, y_inds, tmp_shape, amxn, amxp, amyn, amyp): cloud_height = cloud_height*33 print(cloud_height) _tmp = np.zeros(tmp_shape) _tmp[y_inds, x_inds] = 1 for height_iteration in range(0, np.int(cloud_height*0.9), 2): # print(height_iteration) x_offset_neg, x_offset_pos, y_offset_neg, y_offset_pos = offset_sign((- (1/1)*height_iteration*tan(th0)*sin(phi0)), ( - (1/1)*height_iteration*tan(th0)*cos(phi0))) xon, xop, yon, yop = np.int(x_offset_neg), np.int(x_offset_pos), np.int(y_offset_neg), np.int(y_offset_pos) x_shifted = x_inds + xon + xop y_shifted = y_inds + yon + yop # print(x_shifted, y_shifted) # _tmp[y_shifted, x_shifted] = 1 # put in if statement _tmp_tmp = np.zeros(tmp_shape) _tmp_tmp[y_shifted, x_shifted] = 1 # mask = ma.masked_where(_tmp_tmp[-amyn:tmp_shape[0]-amyp, -amxn:tmp_shape[1]-amxp ]==1, pcs_buffer) # mask = np.logical_and(pcs_buffer, _tmp_tmp[-amyn:tmp_shape[0]-amyp, -amxn:tmp_shape[1]-amxp ]) # NB # mask = pcs_buffer + _tmp_tmp[-amyn:tmp_shape[0]-amyp, -amxn:tmp_shape[1]-amxp ] # mask = ma.masked_where(np.invert(mask), mask) # NB # print(ma.count(mask), np.count_nonzero(_tmp)) # if ma.count(mask) > np.count_nonzero(_tmp)/4: #NB # print("Match") # _tmp[y_shifted, x_shifted] = 1 _tmp[y_shifted, x_shifted] = 1 return _tmp def iter_shadowmaker(labels, nbr_objects): x_offset, y_offset = max_x_y_offset(th0, phi0) amxn, amxp, amyn, amyp = offset_sign(x_offset, y_offset) amxn, amxp, amyn, amyp = np.int(amxn), np.int(amxp), np.int(amyn), np.int(amyp) _tmp_shape = -amyn+labels.shape[0]+amyp, -amxn+labels.shape[1]+amxp shadowy = np.zeros(_tmp_shape) for label_no in range(1, (nbr_objects+1)): print("Label No: ", label_no) cloud_object_inds = np.where(labels==label_no) cloud_h = 12 # cloud_base_height(label_no) cloud_h = 6 # Speed things up print("Cloud Height: ", cloud_h) x_inds = cloud_object_inds[1] - amxn y_inds = cloud_object_inds[0] - amyn tmp = iter_cloud_shift(th0, phi0, cloud_h, x_inds, y_inds, _tmp_shape, amxn, amxp, amyn, amyp) shadowy += tmp tmp = None return shadowy[-amyn:_tmp_shape[0]-amyp, -amxn:_tmp_shape[1]-amxp ] print("There are %s clouds." % nbr_objects) mean_water_pixel_btc = calc_mean_water_pixel_btc() t_low, t_high = calc_temp_percentiles() # cloud_height_array = create_zeros_array(labels) # cloud_height_list=[] # for label_no in range(1, nbr_objects+1): # print("Cloud Number ", label_no) # cloud_height_array += cloud_base_height(label_no) # cloud_height_list.append(cloud_base_height(label_no)) if __name__ == "__main__": shadowy = iter_shadowmaker(labels, nbr_objects) # utils.save_object(pcs_buffer, fmask.Scene.dir_name+ '/' + band_option +'shadowy.pkl') # os.chdir(os.path.dirname(__file__)) # print(os.getcwd()) # cur_dir = os.getcwd() # cur_dir = os.path.join(os.getcwd(), "") # fig_dir = cur_dir + 'results/figures/' # theCMG = views.create_cm_greys() # plt.close('all') # plt.imshow(shadowy, cmap = theCMG) # plt.show()
mit
hsuantien/scikit-learn
examples/linear_model/plot_multi_task_lasso_support.py
249
2211
#!/usr/bin/env python """ ============================================= Joint feature selection with multi-task Lasso ============================================= The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected features to be the same across tasks. This example simulates sequential measurements, each task is a time instant, and the relevant features vary in amplitude over time while being the same. The multi-task lasso imposes that features that are selected at one time point are select for all time point. This makes feature selection by the Lasso more stable. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import MultiTaskLasso, Lasso rng = np.random.RandomState(42) # Generate some 2D coefficients with sine waves with random frequency and phase n_samples, n_features, n_tasks = 100, 30, 40 n_relevant_features = 5 coef = np.zeros((n_tasks, n_features)) times = np.linspace(0, 2 * np.pi, n_tasks) for k in range(n_relevant_features): coef[:, k] = np.sin((1. + rng.randn(1)) * times + 3 * rng.randn(1)) X = rng.randn(n_samples, n_features) Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks) coef_lasso_ = np.array([Lasso(alpha=0.5).fit(X, y).coef_ for y in Y.T]) coef_multi_task_lasso_ = MultiTaskLasso(alpha=1.).fit(X, Y).coef_ ############################################################################### # Plot support and time series fig = plt.figure(figsize=(8, 5)) plt.subplot(1, 2, 1) plt.spy(coef_lasso_) plt.xlabel('Feature') plt.ylabel('Time (or Task)') plt.text(10, 5, 'Lasso') plt.subplot(1, 2, 2) plt.spy(coef_multi_task_lasso_) plt.xlabel('Feature') plt.ylabel('Time (or Task)') plt.text(10, 5, 'MultiTaskLasso') fig.suptitle('Coefficient non-zero location') feature_to_plot = 0 plt.figure() plt.plot(coef[:, feature_to_plot], 'k', label='Ground truth') plt.plot(coef_lasso_[:, feature_to_plot], 'g', label='Lasso') plt.plot(coef_multi_task_lasso_[:, feature_to_plot], 'r', label='MultiTaskLasso') plt.legend(loc='upper center') plt.axis('tight') plt.ylim([-1.1, 1.1]) plt.show()
bsd-3-clause
untom/scikit-learn
sklearn/utils/tests/test_shortest_path.py
88
2828
from collections import defaultdict import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.utils.graph import (graph_shortest_path, single_source_shortest_path_length) def floyd_warshall_slow(graph, directed=False): N = graph.shape[0] #set nonzero entries to infinity graph[np.where(graph == 0)] = np.inf #set diagonal to zero graph.flat[::N + 1] = 0 if not directed: graph = np.minimum(graph, graph.T) for k in range(N): for i in range(N): for j in range(N): graph[i, j] = min(graph[i, j], graph[i, k] + graph[k, j]) graph[np.where(np.isinf(graph))] = 0 return graph def generate_graph(N=20): #sparse grid of distances rng = np.random.RandomState(0) dist_matrix = rng.random_sample((N, N)) #make symmetric: distances are not direction-dependent dist_matrix += dist_matrix.T #make graph sparse i = (rng.randint(N, size=N * N // 2), rng.randint(N, size=N * N // 2)) dist_matrix[i] = 0 #set diagonal to zero dist_matrix.flat[::N + 1] = 0 return dist_matrix def test_floyd_warshall(): dist_matrix = generate_graph(20) for directed in (True, False): graph_FW = graph_shortest_path(dist_matrix, directed, 'FW') graph_py = floyd_warshall_slow(dist_matrix.copy(), directed) assert_array_almost_equal(graph_FW, graph_py) def test_dijkstra(): dist_matrix = generate_graph(20) for directed in (True, False): graph_D = graph_shortest_path(dist_matrix, directed, 'D') graph_py = floyd_warshall_slow(dist_matrix.copy(), directed) assert_array_almost_equal(graph_D, graph_py) def test_shortest_path(): dist_matrix = generate_graph(20) # We compare path length and not costs (-> set distances to 0 or 1) dist_matrix[dist_matrix != 0] = 1 for directed in (True, False): if not directed: dist_matrix = np.minimum(dist_matrix, dist_matrix.T) graph_py = floyd_warshall_slow(dist_matrix.copy(), directed) for i in range(dist_matrix.shape[0]): # Non-reachable nodes have distance 0 in graph_py dist_dict = defaultdict(int) dist_dict.update(single_source_shortest_path_length(dist_matrix, i)) for j in range(graph_py[i].shape[0]): assert_array_almost_equal(dist_dict[j], graph_py[i, j]) def test_dijkstra_bug_fix(): X = np.array([[0., 0., 4.], [1., 0., 2.], [0., 5., 0.]]) dist_FW = graph_shortest_path(X, directed=False, method='FW') dist_D = graph_shortest_path(X, directed=False, method='D') assert_array_almost_equal(dist_D, dist_FW)
bsd-3-clause
KellyChan/Python
python/sklearn/examples/general/test_the_significance.py
3
2304
#---------------------------------------------------------------# # Project: Test with permutations the significance of a classification score # Author: Kelly Chan # Date: Apr 23 2014 #---------------------------------------------------------------# print(__doc__) import numpy as np import pylab as pl from sklearn.svm import SVC from sklearn.cross_validation import StratifiedKFold, permutation_test_score from sklearn import datasets def loadData(): iris = datasets.load_iris() X = iris.data y = iris.target n_classes = np.unique(y).size return X, y, n_classes def addNoise(X): random = np.random.RandomState(seed=0) E = random.normal(size=(len(X), 2200)) X = np.c_[X, E] return X def crossValidation(y): cv = StratifiedKFold(y, 2) return cv def createSVM(): svm = SVC(kernel='linear') return svm def computeScore(svm, X, y, cv): score, permutation_scores, pvalue = permutation_test_score(svm, \ X, y, \ scoring='accuracy', \ cv=cv, \ n_permutations=100, \ n_jobs=1) print("Classification score %s (pvalue: %s)" % (score, pvalue)) return score, permutation_scores, pvalue def plotHist(score, permutation_scores, pvalue, n_classes): pl.hist(permutation_scores, 20, label='Permutation scores') ylim = pl.ylim() pl.plot(2 * [score], ylim, '--g', \ linewidth=3, \ label='Classification Score (pvalue %s)' % pvalue) pl.plot(2 * [1. / n_classes], ylim, '--k', \ linewidth=3, \ label='Luck') pl.ylim(ylim) pl.legend() pl.xlabel('Score') pl.show() def test(): X, y, n_classes = loadData() X = addNoise(X) cv = crossValidation(y) svm = createSVM() score, permutation_scores, pvalue = computeScore(svm, X, y, cv) plotHist(score, permutation_scores, pvalue, n_classes) if __name__ == '__main__': test()
mit
kambysese/mne-python
examples/stats/plot_cluster_stats_evoked.py
18
3021
""" ======================================================= Permutation F-test on sensor data with 1D cluster level ======================================================= One tests if the evoked response is significantly different between conditions. Multiple comparison problem is addressed with cluster level permutation test. """ # Authors: Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import matplotlib.pyplot as plt import mne from mne import io from mne.stats import permutation_cluster_test from mne.datasets import sample print(__doc__) ############################################################################### # Set parameters data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' tmin = -0.2 tmax = 0.5 # Setup for reading the raw data raw = io.read_raw_fif(raw_fname) events = mne.read_events(event_fname) channel = 'MEG 1332' # include only this channel in analysis include = [channel] ############################################################################### # Read epochs for the channel of interest picks = mne.pick_types(raw.info, meg=False, eog=True, include=include, exclude='bads') event_id = 1 reject = dict(grad=4000e-13, eog=150e-6) epochs1 = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=reject) condition1 = epochs1.get_data() # as 3D matrix event_id = 2 epochs2 = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=reject) condition2 = epochs2.get_data() # as 3D matrix condition1 = condition1[:, 0, :] # take only one channel to get a 2D array condition2 = condition2[:, 0, :] # take only one channel to get a 2D array ############################################################################### # Compute statistic threshold = 6.0 T_obs, clusters, cluster_p_values, H0 = \ permutation_cluster_test([condition1, condition2], n_permutations=1000, threshold=threshold, tail=1, n_jobs=1, out_type='mask') ############################################################################### # Plot times = epochs1.times plt.close('all') plt.subplot(211) plt.title('Channel : ' + channel) plt.plot(times, condition1.mean(axis=0) - condition2.mean(axis=0), label="ERF Contrast (Event 1 - Event 2)") plt.ylabel("MEG (T / m)") plt.legend() plt.subplot(212) for i_c, c in enumerate(clusters): c = c[0] if cluster_p_values[i_c] <= 0.05: h = plt.axvspan(times[c.start], times[c.stop - 1], color='r', alpha=0.3) else: plt.axvspan(times[c.start], times[c.stop - 1], color=(0.3, 0.3, 0.3), alpha=0.3) hf = plt.plot(times, T_obs, 'g') plt.legend((h, ), ('cluster p-value < 0.05', )) plt.xlabel("time (ms)") plt.ylabel("f-values") plt.show()
bsd-3-clause
leofdecarvalho/MachineLearning
2. Modeling/2. Classification/10. SVM/svm.py
6
2607
# Support Vector Machine (SVM) # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('Social_Network_Ads.csv') X = dataset.iloc[:, [2, 3]].values y = dataset.iloc[:, 4].values # Splitting the dataset into the Training set and Test set from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) # Feature Scaling from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) # Fitting SVM to the Training set from sklearn.svm import SVC classifier = SVC(kernel = 'linear', random_state = 0) classifier.fit(X_train, y_train) # Predicting the Test set results y_pred = classifier.predict(X_test) # Making the Confusion Matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred) # Visualising the Training set results from matplotlib.colors import ListedColormap X_set, y_set = X_train, y_train X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j) plt.title('SVM (Training set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') plt.legend() plt.show() # Visualising the Test set results from matplotlib.colors import ListedColormap X_set, y_set = X_test, y_test X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j) plt.title('SVM (Test set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') plt.legend() plt.show()
mit
mjudsp/Tsallis
benchmarks/bench_sample_without_replacement.py
397
8008
""" Benchmarks for sampling without replacement of integer. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import operator import matplotlib.pyplot as plt import numpy as np import random from sklearn.externals.six.moves import xrange from sklearn.utils.random import sample_without_replacement def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_sample(sampling, n_population, n_samples): gc.collect() # start time t_start = datetime.now() sampling(n_population, n_samples) delta = (datetime.now() - t_start) # stop time time = compute_time(t_start, delta) return time if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Benchmark results are average over n_times experiments") op.add_option("--n-population", dest="n_population", default=100000, type=int, help="Size of the population to sample from.") op.add_option("--n-step", dest="n_steps", default=5, type=int, help="Number of step interval between 0 and n_population.") default_algorithms = "custom-tracking-selection,custom-auto," \ "custom-reservoir-sampling,custom-pool,"\ "python-core-sample,numpy-permutation" op.add_option("--algorithm", dest="selected_algorithm", default=default_algorithms, type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. \nAvailable: %default") # op.add_option("--random-seed", # dest="random_seed", default=13, type=int, # help="Seed used by the random number generators.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) selected_algorithm = opts.selected_algorithm.split(',') for key in selected_algorithm: if key not in default_algorithms.split(','): raise ValueError("Unknown sampling algorithm \"%s\" not in (%s)." % (key, default_algorithms)) ########################################################################### # List sampling algorithm ########################################################################### # We assume that sampling algorithm has the following signature: # sample(n_population, n_sample) # sampling_algorithm = {} ########################################################################### # Set Python core input sampling_algorithm["python-core-sample"] = \ lambda n_population, n_sample: \ random.sample(xrange(n_population), n_sample) ########################################################################### # Set custom automatic method selection sampling_algorithm["custom-auto"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="auto", random_state=random_state) ########################################################################### # Set custom tracking based method sampling_algorithm["custom-tracking-selection"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="tracking_selection", random_state=random_state) ########################################################################### # Set custom reservoir based method sampling_algorithm["custom-reservoir-sampling"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="reservoir_sampling", random_state=random_state) ########################################################################### # Set custom reservoir based method sampling_algorithm["custom-pool"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="pool", random_state=random_state) ########################################################################### # Numpy permutation based sampling_algorithm["numpy-permutation"] = \ lambda n_population, n_sample: \ np.random.permutation(n_population)[:n_sample] ########################################################################### # Remove unspecified algorithm sampling_algorithm = dict((key, value) for key, value in sampling_algorithm.items() if key in selected_algorithm) ########################################################################### # Perform benchmark ########################################################################### time = {} n_samples = np.linspace(start=0, stop=opts.n_population, num=opts.n_steps).astype(np.int) ratio = n_samples / opts.n_population print('Benchmarks') print("===========================") for name in sorted(sampling_algorithm): print("Perform benchmarks for %s..." % name, end="") time[name] = np.zeros(shape=(opts.n_steps, opts.n_times)) for step in xrange(opts.n_steps): for it in xrange(opts.n_times): time[name][step, it] = bench_sample(sampling_algorithm[name], opts.n_population, n_samples[step]) print("done") print("Averaging results...", end="") for name in sampling_algorithm: time[name] = np.mean(time[name], axis=1) print("done\n") # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Sampling algorithm performance:") print("===============================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") fig = plt.figure('scikit-learn sample w/o replacement benchmark results') plt.title("n_population = %s, n_times = %s" % (opts.n_population, opts.n_times)) ax = fig.add_subplot(111) for name in sampling_algorithm: ax.plot(ratio, time[name], label=name) ax.set_xlabel('ratio of n_sample / n_population') ax.set_ylabel('Time (s)') ax.legend() # Sort legend labels handles, labels = ax.get_legend_handles_labels() hl = sorted(zip(handles, labels), key=operator.itemgetter(1)) handles2, labels2 = zip(*hl) ax.legend(handles2, labels2, loc=0) plt.show()
bsd-3-clause
shusenl/scikit-learn
examples/svm/plot_svm_margin.py
318
2328
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM Margins Example ========================================================= The plots below illustrate the effect the parameter `C` has on the separation line. A large value of `C` basically tells our model that we do not have that much faith in our data's distribution, and will only consider points close to line of separation. A small value of `C` includes more/all the observations, allowing the margins to be calculated using all the data in the area. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # figure number fignum = 1 # fit the model for name, penalty in (('unreg', 1), ('reg', 0.05)): clf = svm.SVC(kernel='linear', C=penalty) clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors margin = 1 / np.sqrt(np.sum(clf.coef_ ** 2)) yy_down = yy + a * margin yy_up = yy - a * margin # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10) plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired) plt.axis('tight') x_min = -4.8 x_max = 4.2 y_min = -6 y_max = 6 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.predict(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) plt.pcolormesh(XX, YY, Z, cmap=plt.cm.Paired) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show()
bsd-3-clause
yanchen036/tensorflow
tensorflow/contrib/timeseries/examples/predict.py
69
5579
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """An example of training and predicting with a TFTS estimator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import tensorflow as tf try: import matplotlib # pylint: disable=g-import-not-at-top matplotlib.use("TkAgg") # Need Tk for interactive plots. from matplotlib import pyplot # pylint: disable=g-import-not-at-top HAS_MATPLOTLIB = True except ImportError: # Plotting requires matplotlib, but the unit test running this code may # execute in an environment without it (i.e. matplotlib is not a build # dependency). We'd still like to test the TensorFlow-dependent parts of this # example, namely train_and_predict. HAS_MATPLOTLIB = False FLAGS = None def structural_ensemble_train_and_predict(csv_file_name): # Cycle between 5 latent values over a period of 100. This leads to a very # smooth periodic component (and a small model), which is a good fit for our # example data. Modeling high-frequency periodic variations will require a # higher cycle_num_latent_values. structural = tf.contrib.timeseries.StructuralEnsembleRegressor( periodicities=100, num_features=1, cycle_num_latent_values=5) return train_and_predict(structural, csv_file_name, training_steps=150) def ar_train_and_predict(csv_file_name): # An autoregressive model, with periodicity handled as a time-based # regression. Note that this requires windows of size 16 (input_window_size + # output_window_size) for training. ar = tf.contrib.timeseries.ARRegressor( periodicities=100, input_window_size=10, output_window_size=6, num_features=1, # Use the (default) normal likelihood loss to adaptively fit the # variance. SQUARED_LOSS overestimates variance when there are trends in # the series. loss=tf.contrib.timeseries.ARModel.NORMAL_LIKELIHOOD_LOSS) return train_and_predict(ar, csv_file_name, training_steps=600) def train_and_predict(estimator, csv_file_name, training_steps): """A simple example of training and predicting.""" # Read data in the default "time,value" CSV format with no header reader = tf.contrib.timeseries.CSVReader(csv_file_name) # Set up windowing and batching for training train_input_fn = tf.contrib.timeseries.RandomWindowInputFn( reader, batch_size=16, window_size=16) # Fit model parameters to data estimator.train(input_fn=train_input_fn, steps=training_steps) # Evaluate on the full dataset sequentially, collecting in-sample predictions # for a qualitative evaluation. Note that this loads the whole dataset into # memory. For quantitative evaluation, use RandomWindowChunker. evaluation_input_fn = tf.contrib.timeseries.WholeDatasetInputFn(reader) evaluation = estimator.evaluate(input_fn=evaluation_input_fn, steps=1) # Predict starting after the evaluation (predictions,) = tuple(estimator.predict( input_fn=tf.contrib.timeseries.predict_continuation_input_fn( evaluation, steps=200))) times = evaluation["times"][0] observed = evaluation["observed"][0, :, 0] mean = np.squeeze(np.concatenate( [evaluation["mean"][0], predictions["mean"]], axis=0)) variance = np.squeeze(np.concatenate( [evaluation["covariance"][0], predictions["covariance"]], axis=0)) all_times = np.concatenate([times, predictions["times"]], axis=0) upper_limit = mean + np.sqrt(variance) lower_limit = mean - np.sqrt(variance) return times, observed, all_times, mean, upper_limit, lower_limit def make_plot(name, training_times, observed, all_times, mean, upper_limit, lower_limit): """Plot a time series in a new figure.""" pyplot.figure() pyplot.plot(training_times, observed, "b", label="training series") pyplot.plot(all_times, mean, "r", label="forecast") pyplot.plot(all_times, upper_limit, "g", label="forecast upper bound") pyplot.plot(all_times, lower_limit, "g", label="forecast lower bound") pyplot.fill_between(all_times, lower_limit, upper_limit, color="grey", alpha="0.2") pyplot.axvline(training_times[-1], color="k", linestyle="--") pyplot.xlabel("time") pyplot.ylabel("observations") pyplot.legend(loc=0) pyplot.title(name) def main(unused_argv): if not HAS_MATPLOTLIB: raise ImportError( "Please install matplotlib to generate a plot from this example.") make_plot("Structural ensemble", *structural_ensemble_train_and_predict(FLAGS.input_filename)) make_plot("AR", *ar_train_and_predict(FLAGS.input_filename)) pyplot.show() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--input_filename", type=str, required=True, help="Input csv file.") FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
flowmatters/taudem-py
taudem/utils.py
1
3675
import os import numpy as _np import osgeo.gdal as _gd import shutil _NUMPY_TO_GDAL_TYPES={ _np.dtype('f'):_gd.GDT_Float32, _np.dtype('d'):_gd.GDT_Float64, _np.dtype('int16'):_gd.GDT_Int16, _np.dtype('int32'):_gd.GDT_Int32 } class MetadataArray(_np.ndarray): def __new__(cls, input_array, **kwargs): # Input array is an already formed ndarray instance # We first cast to be our class type obj = _np.asarray(input_array).view(cls) # add the new attribute to the created instance obj.metadata = kwargs # Finally, we must return the newly created object: return obj def __array_finalize__(self, obj): # see InfoArray.__array_finalize__ for comments if obj is None: return self.metadata = getattr(obj, 'metadata', None) def to_geotiff(arr,gt,fn): driver = _gd.GetDriverByName('GTiff') outRaster = driver.Create(fn, arr.shape[1], arr.shape[0], 1, _NUMPY_TO_GDAL_TYPES[arr.dtype]) if gt is not None: if hasattr(gt,'to_gdal'): gt = gt.to_gdal() outRaster.SetGeoTransform(gt) outband = outRaster.GetRasterBand(1) if hasattr(arr,'metadata'): outband.SetNoDataValue(arr.metadata.get('no_data_value',None)) outband.WriteArray(arr) # outRasterSRS = osr.SpatialReference() # outRasterSRS.ImportFromEPSG(4326) # outRaster.SetProjection(outRasterSRS.ExportToWkt()) outband.FlushCache() def to_point_shp(points,fn): if hasattr(points,'to_file'): points.to_file(fn) return raise Exception('Unable to write shapefile. Unknown data representation.') def clip(raster,polygons,all_touched=True): import rasterio as rio geom_bounds = tuple(polygons.bounds) fsrc = raster.read(bounds=geom_bounds) coverage_rst = rasterize_geom(geom,like=fsrc,all_touched=all_touched) masked = np.ma.MaskedArray(fsrc.arry,mask=np.logical_or(fsrc.array==fsrc.nodata,np.logical_not(coverage_rst))) return masked def to_polygons(raster,shp_fn=None,transform=None): from osgeo import ogr tmp=None if not shp_fn or not isinstance(raster,str): import tempfile tmp = tempfile.mkdtemp(prefix='taudem_') if not isinstance(raster,str): tmp_fn = os.path.join(tmp,'raster.tif') to_geotiff(raster,transform,tmp_fn) raster = tmp_fn if not shp_fn: shp_fn = os.path.join(tmp,'polygons.shp') try: if os.path.exists(shp_fn): os.remove(shp_fn) drv = ogr.GetDriverByName("ESRI Shapefile") dst_ds = drv.CreateDataSource( shp_fn ) dst_layer = dst_ds.CreateLayer(os.path.basename(shp_fn)[:-4], srs = None ) newField = ogr.FieldDefn('GRIDCODE', ogr.OFTInteger) dst_layer.CreateField(newField) coverage = _gd.Open(raster) band = coverage.GetRasterBand(1) result = _gd.Polygonize( band, band.GetMaskBand(), dst_layer, 0, [], callback=None ) dst_ds.SyncToDisk() if tmp: import geopandas as gpd return gpd.read_file(shp_fn) finally: if tmp:shutil.rmtree(tmp) # from http://stackoverflow.com/a/377028 def which(program): import os def is_exe(fpath): return os.path.isfile(fpath) and os.access(fpath, os.X_OK) fpath, fname = os.path.split(program) if fpath: if is_exe(program): return program else: for path in os.environ["PATH"].split(os.pathsep): path = path.strip('"') exe_file = os.path.join(path, program) if is_exe(exe_file): return exe_file return None
isc
trogdorsey/data_hacking
dga_detection/dga_model_gen.py
6
13951
''' Build models to detect Algorithmically Generated Domain Names (DGA). We're trying to classify domains as being 'legit' or having a high probability of being generated by a DGA (Dynamic Generation Algorithm). We have 'legit' in quotes as we're using the domains in Alexa as the 'legit' set. ''' import os, sys import traceback import json import optparse import pickle import collections import sklearn import sklearn.feature_extraction import sklearn.ensemble import sklearn.metrics import pandas as pd import numpy as np import tldextract import math # Version printing is always a good idea print 'Scikit Learn version: %s' % sklearn.__version__ print 'Pandas version: %s' % pd.__version__ print 'TLDExtract version: %s' % tldextract.__version__ # Version 0.12.0 of Pandas has a DeprecationWarning about Height blah that I'm ignoring import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) # Okay for this model we need the 2LD and nothing else def domain_extract(uri): ext = tldextract.extract(uri) if (not ext.suffix): return None else: return ext.domain # Entropy calc (this must match model_eval) def entropy(s): p, lns = collections.Counter(s), float(len(s)) return -sum( count/lns * math.log(count/lns, 2) for count in p.values()) def show_cm(cm, labels): # Compute percentanges percent = (cm*100.0)/np.array(np.matrix(cm.sum(axis=1)).T) # Derp, I'm sure there's a better way print 'Confusion Matrix Stats' for i, label_i in enumerate(labels): for j, label_j in enumerate(labels): print "%s/%s: %.2f%% (%d/%d)" % (label_i, label_j, (percent[i][j]), cm[i][j], cm[i].sum()) def save_model_to_disk(name, model, model_dir='models'): ''' Serialize and save a model to disk''' # First serialized the model serialized_model = pickle.dumps(model, protocol=pickle.HIGHEST_PROTOCOL) # Model directory + model name model_path = os.path.join(model_dir, name+'.model') # Now store it to disk print 'Storing Serialized Model to Disk (%s:%.2fMeg)' % (name, len(serialized_model)/1024.0/1024.0) open(model_path,'wb').write(serialized_model) def load_model_from_disk(name, model_dir='models'): # Model directory is relative to this file model_path = os.path.join(model_dir, name+'.model') # Put a try/except around the model load in case it fails try: model = pickle.loads(open(model_path,'rb').read()) except: print 'Could not load model: %s from directory %s!' % (name, model_path) return None return model def main(): ''' Main method, takes care of loading data, running it through the various analyses and reporting the results ''' # Handle command-line arguments parser = optparse.OptionParser() parser.add_option('--alexa-file', default='data/alexa_100k.csv', help='Alexa file to pull from. Default: %default') (options, arguments) = parser.parse_args() print options, arguments try: # Pokemon exception handling # This is the Alexa 1M domain list. print 'Loading alexa dataframe...' alexa_dataframe = pd.read_csv(options.alexa_file, names=['rank','uri'], header=None, encoding='utf-8') print alexa_dataframe.info() print alexa_dataframe.head() # Compute the 2LD of the domain given by Alexa alexa_dataframe['domain'] = [ domain_extract(uri) for uri in alexa_dataframe['uri']] del alexa_dataframe['rank'] del alexa_dataframe['uri'] alexa_dataframe = alexa_dataframe.dropna() alexa_dataframe = alexa_dataframe.drop_duplicates() print alexa_dataframe.head() # Set the class alexa_dataframe['class'] = 'legit' # Shuffle the data (important for training/testing) alexa_dataframe = alexa_dataframe.reindex(np.random.permutation(alexa_dataframe.index)) alexa_total = alexa_dataframe.shape[0] print 'Total Alexa domains %d' % alexa_total # Read in the DGA domains dga_dataframe = pd.read_csv('data/dga_domains.txt', names=['raw_domain'], header=None, encoding='utf-8') # We noticed that the blacklist values just differ by captilization or .com/.org/.info dga_dataframe['domain'] = dga_dataframe.applymap(lambda x: x.split('.')[0].strip().lower()) del dga_dataframe['raw_domain'] # It's possible we have NaNs from blanklines or whatever dga_dataframe = dga_dataframe.dropna() dga_dataframe = dga_dataframe.drop_duplicates() dga_total = dga_dataframe.shape[0] print 'Total DGA domains %d' % dga_total # Set the class dga_dataframe['class'] = 'dga' print 'Number of DGA domains: %d' % dga_dataframe.shape[0] print dga_dataframe.head() # Concatenate the domains in a big pile! all_domains = pd.concat([alexa_dataframe, dga_dataframe], ignore_index=True) # Add a length field for the domain all_domains['length'] = [len(x) for x in all_domains['domain']] # Okay since we're trying to detect dynamically generated domains and short # domains (length <=6) are crazy random even for 'legit' domains we're going # to punt on short domains (perhaps just white/black list for short domains?) all_domains = all_domains[all_domains['length'] > 6] # Add a entropy field for the domain all_domains['entropy'] = [entropy(x) for x in all_domains['domain']] print all_domains.head() # Now we compute NGrams for every Alexa domain and see if we can use the # NGrams to help us better differentiate and mark DGA domains... # Scikit learn has a nice NGram generator that can generate either char NGrams or word NGrams (we're using char). # Parameters: # - ngram_range=(3,5) # Give me all ngrams of length 3, 4, and 5 # - min_df=1e-4 # Minimumum document frequency. At 1e-4 we're saying give us NGrams that # # happen in at least .1% of the domains (so for 100k... at least 100 domains) alexa_vc = sklearn.feature_extraction.text.CountVectorizer(analyzer='char', ngram_range=(3,5), min_df=1e-4, max_df=1.0) # I'm SURE there's a better way to store all the counts but not sure... # At least the min_df parameters has already done some thresholding counts_matrix = alexa_vc.fit_transform(alexa_dataframe['domain']) alexa_counts = np.log10(counts_matrix.sum(axis=0).getA1()) ngrams_list = alexa_vc.get_feature_names() # For fun sort it and show it import operator _sorted_ngrams = sorted(zip(ngrams_list, alexa_counts), key=operator.itemgetter(1), reverse=True) print 'Alexa NGrams: %d' % len(_sorted_ngrams) for ngram, count in _sorted_ngrams[:10]: print ngram, count # We're also going to throw in a bunch of dictionary words word_dataframe = pd.read_csv('data/words.txt', names=['word'], header=None, dtype={'word': np.str}, encoding='utf-8') # Cleanup words from dictionary word_dataframe = word_dataframe[word_dataframe['word'].map(lambda x: str(x).isalpha())] word_dataframe = word_dataframe.applymap(lambda x: str(x).strip().lower()) word_dataframe = word_dataframe.dropna() word_dataframe = word_dataframe.drop_duplicates() print word_dataframe.head(10) # Now compute NGrams on the dictionary words # Same logic as above... dict_vc = sklearn.feature_extraction.text.CountVectorizer(analyzer='char', ngram_range=(3,5), min_df=1e-5, max_df=1.0) counts_matrix = dict_vc.fit_transform(word_dataframe['word']) dict_counts = np.log10(counts_matrix.sum(axis=0).getA1()) ngrams_list = dict_vc.get_feature_names() # For fun sort it and show it import operator _sorted_ngrams = sorted(zip(ngrams_list, dict_counts), key=operator.itemgetter(1), reverse=True) print 'Word NGrams: %d' % len(_sorted_ngrams) for ngram, count in _sorted_ngrams[:10]: print ngram, count # We use the transform method of the CountVectorizer to form a vector # of ngrams contained in the domain, that vector is than multiplied # by the counts vector (which is a column sum of the count matrix). def ngram_count(domain): alexa_match = alexa_counts * alexa_vc.transform([domain]).T # Woot vector multiply and transpose Woo Hoo! dict_match = dict_counts * dict_vc.transform([domain]).T print '%s Alexa match:%d Dict match: %d' % (domain, alexa_match, dict_match) # Examples: ngram_count('google') ngram_count('facebook') ngram_count('1cb8a5f36f') ngram_count('pterodactylfarts') ngram_count('ptes9dro-dwacty2lfa5rrts') ngram_count('beyonce') ngram_count('bey666on4ce') # Compute NGram matches for all the domains and add to our dataframe all_domains['alexa_grams']= alexa_counts * alexa_vc.transform(all_domains['domain']).T all_domains['word_grams']= dict_counts * dict_vc.transform(all_domains['domain']).T print all_domains.head() # Use the vectorized operations of the dataframe to investigate differences # between the alexa and word grams all_domains['diff'] = all_domains['alexa_grams'] - all_domains['word_grams'] # The table below shows those domain names that are more 'dictionary' and less 'web' print all_domains.sort(['diff'], ascending=True).head(10) # The table below shows those domain names that are more 'web' and less 'dictionary' # Good O' web.... print all_domains.sort(['diff'], ascending=False).head(50) # Lets look at which Legit domains are scoring low on both alexa and word gram count weird_cond = (all_domains['class']=='legit') & (all_domains['word_grams']<3) & (all_domains['alexa_grams']<2) weird = all_domains[weird_cond] print weird.shape[0] print weird.head(10) # Epiphany... Alexa really may not be the best 'exemplar' set... # (probably a no-shit moment for everyone else :) # # Discussion: If you're using these as exemplars of NOT DGA, then your probably # making things very hard on your machine learning algorithm. # Perhaps we should have two categories of Alexa domains, 'legit' # and a 'weird'. based on some definition of weird. # Looking at the entries above... we have approx 80 domains # that we're going to mark as 'weird'. # all_domains.loc[weird_cond, 'class'] = 'weird' print all_domains['class'].value_counts() all_domains[all_domains['class'] == 'weird'].head() # Perhaps we will just exclude the weird class from our ML training not_weird = all_domains[all_domains['class'] != 'weird'] X = not_weird.as_matrix(['length', 'entropy', 'alexa_grams', 'word_grams']) # Labels (scikit learn uses 'y' for classification labels) y = np.array(not_weird['class'].tolist()) # Random Forest is a popular ensemble machine learning classifier. # http://scikit-learn.org/dev/modules/generated/sklearn.ensemble.RandomForestClassifier.html clf = sklearn.ensemble.RandomForestClassifier(n_estimators=20, compute_importances=True) # Trees in the forest # Train on a 80/20 split from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # Now plot the results of the holdout set in a confusion matrix labels = ['legit', 'dga'] cm = sklearn.metrics.confusion_matrix(y_test, y_pred, labels) show_cm(cm, labels) # We can also look at what features the learning algorithm thought were the most important importances = zip(['length', 'entropy', 'alexa_grams', 'word_grams'], clf.feature_importances_) print importances # Now train on the whole thing before doing tests and saving models to disk clf.fit(X, y) # test_it shows how to do evaluation, also fun for manual testing below :) def test_it(domain): _alexa_match = alexa_counts * alexa_vc.transform([domain]).T # Woot matrix multiply and transpose Woo Hoo! _dict_match = dict_counts * dict_vc.transform([domain]).T _X = [len(domain), entropy(domain), _alexa_match, _dict_match] print '%s : %s' % (domain, clf.predict(_X)[0]) # Examples (feel free to change these and see the results!) test_it('google') test_it('google88') test_it('facebook') test_it('1cb8a5f36f') test_it('pterodactylfarts') test_it('ptes9dro-dwacty2lfa5rrts') test_it('beyonce') test_it('bey666on4ce') test_it('supersexy') test_it('yourmomissohotinthesummertime') test_it('35-sdf-09jq43r') test_it('clicksecurity') # Serialize model to disk save_model_to_disk('dga_model_random_forest', clf) save_model_to_disk('dga_model_alexa_vectorizor', alexa_vc) save_model_to_disk('dga_model_alexa_counts', alexa_counts) save_model_to_disk('dga_model_dict_vectorizor', dict_vc) save_model_to_disk('dga_model_dict_counts', dict_counts) except KeyboardInterrupt: print 'Goodbye Cruel World...' sys.exit(0) except Exception, error: traceback.print_exc() print '(Exception):, %s' % (str(error)) sys.exit(1) if __name__ == '__main__': main()
mit