repo_name
stringlengths 6
112
| path
stringlengths 4
204
| copies
stringlengths 1
3
| size
stringlengths 4
6
| content
stringlengths 714
810k
| license
stringclasses 15
values |
---|---|---|---|---|---|
mne-tools/mne-tools.github.io
|
0.21/_downloads/5925ef7bd5aa0a449a4da84bf3516e5a/plot_mne_inverse_label_connectivity.py
|
13
|
7516
|
"""
=========================================================================
Compute source space connectivity and visualize it using a circular graph
=========================================================================
This example computes the all-to-all connectivity between 68 regions in
source space based on dSPM inverse solutions and a FreeSurfer cortical
parcellation. The connectivity is visualized using a circular graph which
is ordered based on the locations of the regions in the axial plane.
"""
# Authors: Martin Luessi <[email protected]>
# Alexandre Gramfort <[email protected]>
# Nicolas P. Rougier (graph code borrowed from his matplotlib gallery)
#
# License: BSD (3-clause)
import numpy as np
import matplotlib.pyplot as plt
import mne
from mne.datasets import sample
from mne.minimum_norm import apply_inverse_epochs, read_inverse_operator
from mne.connectivity import spectral_connectivity
from mne.viz import circular_layout, plot_connectivity_circle
print(__doc__)
###############################################################################
# Load our data
# -------------
#
# First we'll load the data we'll use in connectivity estimation. We'll use
# the sample MEG data provided with MNE.
data_path = sample.data_path()
subjects_dir = data_path + '/subjects'
fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif'
fname_raw = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
fname_event = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif'
# Load data
inverse_operator = read_inverse_operator(fname_inv)
raw = mne.io.read_raw_fif(fname_raw)
events = mne.read_events(fname_event)
# Add a bad channel
raw.info['bads'] += ['MEG 2443']
# Pick MEG channels
picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=False, eog=True,
exclude='bads')
# Define epochs for left-auditory condition
event_id, tmin, tmax = 1, -0.2, 0.5
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks,
baseline=(None, 0), reject=dict(mag=4e-12, grad=4000e-13,
eog=150e-6))
###############################################################################
# Compute inverse solutions and their connectivity
# ------------------------------------------------
#
# Next, we need to compute the inverse solution for this data. This will return
# the sources / source activity that we'll use in computing connectivity. We'll
# compute the connectivity in the alpha band of these sources. We can specify
# particular frequencies to include in the connectivity with the ``fmin`` and
# ``fmax`` flags. Notice from the status messages how mne-python:
#
# 1. reads an epoch from the raw file
# 2. applies SSP and baseline correction
# 3. computes the inverse to obtain a source estimate
# 4. averages the source estimate to obtain a time series for each label
# 5. includes the label time series in the connectivity computation
# 6. moves to the next epoch.
#
# This behaviour is because we are using generators. Since we only need to
# operate on the data one epoch at a time, using a generator allows us to
# compute connectivity in a computationally efficient manner where the amount
# of memory (RAM) needed is independent from the number of epochs.
# Compute inverse solution and for each epoch. By using "return_generator=True"
# stcs will be a generator object instead of a list.
snr = 1.0 # use lower SNR for single epochs
lambda2 = 1.0 / snr ** 2
method = "dSPM" # use dSPM method (could also be MNE or sLORETA)
stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, method,
pick_ori="normal", return_generator=True)
# Get labels for FreeSurfer 'aparc' cortical parcellation with 34 labels/hemi
labels = mne.read_labels_from_annot('sample', parc='aparc',
subjects_dir=subjects_dir)
label_colors = [label.color for label in labels]
# Average the source estimates within each label using sign-flips to reduce
# signal cancellations, also here we return a generator
src = inverse_operator['src']
label_ts = mne.extract_label_time_course(stcs, labels, src, mode='mean_flip',
return_generator=True)
fmin = 8.
fmax = 13.
sfreq = raw.info['sfreq'] # the sampling frequency
con_methods = ['pli', 'wpli2_debiased', 'ciplv']
con, freqs, times, n_epochs, n_tapers = spectral_connectivity(
label_ts, method=con_methods, mode='multitaper', sfreq=sfreq, fmin=fmin,
fmax=fmax, faverage=True, mt_adaptive=True, n_jobs=1)
# con is a 3D array, get the connectivity for the first (and only) freq. band
# for each method
con_res = dict()
for method, c in zip(con_methods, con):
con_res[method] = c[:, :, 0]
###############################################################################
# Make a connectivity plot
# ------------------------
#
# Now, we visualize this connectivity using a circular graph layout.
# First, we reorder the labels based on their location in the left hemi
label_names = [label.name for label in labels]
lh_labels = [name for name in label_names if name.endswith('lh')]
# Get the y-location of the label
label_ypos = list()
for name in lh_labels:
idx = label_names.index(name)
ypos = np.mean(labels[idx].pos[:, 1])
label_ypos.append(ypos)
# Reorder the labels based on their location
lh_labels = [label for (yp, label) in sorted(zip(label_ypos, lh_labels))]
# For the right hemi
rh_labels = [label[:-2] + 'rh' for label in lh_labels]
# Save the plot order and create a circular layout
node_order = list()
node_order.extend(lh_labels[::-1]) # reverse the order
node_order.extend(rh_labels)
node_angles = circular_layout(label_names, node_order, start_pos=90,
group_boundaries=[0, len(label_names) / 2])
# Plot the graph using node colors from the FreeSurfer parcellation. We only
# show the 300 strongest connections.
plot_connectivity_circle(con_res['pli'], label_names, n_lines=300,
node_angles=node_angles, node_colors=label_colors,
title='All-to-All Connectivity left-Auditory '
'Condition (PLI)')
###############################################################################
# Make two connectivity plots in the same figure
# ----------------------------------------------
#
# We can also assign these connectivity plots to axes in a figure. Below we'll
# show the connectivity plot using two different connectivity methods.
fig = plt.figure(num=None, figsize=(8, 4), facecolor='black')
no_names = [''] * len(label_names)
for ii, method in enumerate(con_methods):
plot_connectivity_circle(con_res[method], no_names, n_lines=300,
node_angles=node_angles, node_colors=label_colors,
title=method, padding=0, fontsize_colorbar=6,
fig=fig, subplot=(1, 3, ii + 1))
plt.show()
###############################################################################
# Save the figure (optional)
# --------------------------
#
# By default matplotlib does not save using the facecolor, even though this was
# set when the figure was generated. If not set via savefig, the labels, title,
# and legend will be cut off from the output png file.
# fname_fig = data_path + '/MEG/sample/plot_inverse_connect.png'
# fig.savefig(fname_fig, facecolor='black')
|
bsd-3-clause
|
benanne/kaggle-galaxies
|
predict_augmented_npy_maxout2048_extradense_pysexgen1_dup2.py
|
7
|
9737
|
"""
Load an analysis file and redo the predictions on the validation set / test set,
this time with augmented data and averaging. Store them as numpy files.
"""
import numpy as np
# import pandas as pd
import theano
import theano.tensor as T
import layers
import cc_layers
import custom
import load_data
import realtime_augmentation as ra
import time
import csv
import os
import cPickle as pickle
BATCH_SIZE = 32 # 16
NUM_INPUT_FEATURES = 3
CHUNK_SIZE = 8000 # 10000 # this should be a multiple of the batch size
# ANALYSIS_PATH = "analysis/try_convnet_cc_multirot_3x69r45_untied_bias.pkl"
ANALYSIS_PATH = "analysis/final/try_convnet_cc_multirotflip_3x69r45_maxout2048_extradense_pysexgen1_dup2.pkl"
DO_VALID = True # disable this to not bother with the validation set evaluation
DO_TEST = True # disable this to not generate predictions on the testset
target_filename = os.path.basename(ANALYSIS_PATH).replace(".pkl", ".npy.gz")
target_path_valid = os.path.join("predictions/final/augmented/valid", target_filename)
target_path_test = os.path.join("predictions/final/augmented/test", target_filename)
print "Loading model data etc."
analysis = np.load(ANALYSIS_PATH)
input_sizes = [(69, 69), (69, 69)]
ds_transforms = [
ra.build_ds_transform(3.0, target_size=input_sizes[0]),
ra.build_ds_transform(3.0, target_size=input_sizes[1]) + ra.build_augmentation_transform(rotation=45)]
num_input_representations = len(ds_transforms)
# split training data into training + a small validation set
num_train = load_data.num_train
num_valid = num_train // 10 # integer division
num_train -= num_valid
num_test = load_data.num_test
valid_ids = load_data.train_ids[num_train:]
train_ids = load_data.train_ids[:num_train]
test_ids = load_data.test_ids
train_indices = np.arange(num_train)
valid_indices = np.arange(num_train, num_train+num_valid)
test_indices = np.arange(num_test)
y_valid = np.load("data/solutions_train.npy")[num_train:]
print "Build model"
l0 = layers.Input2DLayer(BATCH_SIZE, NUM_INPUT_FEATURES, input_sizes[0][0], input_sizes[0][1])
l0_45 = layers.Input2DLayer(BATCH_SIZE, NUM_INPUT_FEATURES, input_sizes[1][0], input_sizes[1][1])
l0r = layers.MultiRotSliceLayer([l0, l0_45], part_size=45, include_flip=True)
l0s = cc_layers.ShuffleBC01ToC01BLayer(l0r)
l1a = cc_layers.CudaConvnetConv2DLayer(l0s, n_filters=32, filter_size=6, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True)
l1 = cc_layers.CudaConvnetPooling2DLayer(l1a, pool_size=2)
l2a = cc_layers.CudaConvnetConv2DLayer(l1, n_filters=64, filter_size=5, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True)
l2 = cc_layers.CudaConvnetPooling2DLayer(l2a, pool_size=2)
l3a = cc_layers.CudaConvnetConv2DLayer(l2, n_filters=128, filter_size=3, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True)
l3b = cc_layers.CudaConvnetConv2DLayer(l3a, n_filters=128, filter_size=3, pad=0, weights_std=0.1, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True)
l3 = cc_layers.CudaConvnetPooling2DLayer(l3b, pool_size=2)
l3s = cc_layers.ShuffleC01BToBC01Layer(l3)
j3 = layers.MultiRotMergeLayer(l3s, num_views=4) # 2) # merge convolutional parts
l4a = layers.DenseLayer(j3, n_outputs=4096, weights_std=0.001, init_bias_value=0.01, dropout=0.5, nonlinearity=layers.identity)
l4b = layers.FeatureMaxPoolingLayer(l4a, pool_size=2, feature_dim=1, implementation='reshape')
l4c = layers.DenseLayer(l4b, n_outputs=4096, weights_std=0.001, init_bias_value=0.01, dropout=0.5, nonlinearity=layers.identity)
l4 = layers.FeatureMaxPoolingLayer(l4c, pool_size=2, feature_dim=1, implementation='reshape')
# l5 = layers.DenseLayer(l4, n_outputs=37, weights_std=0.01, init_bias_value=0.0, dropout=0.5, nonlinearity=custom.clip_01) # nonlinearity=layers.identity)
l5 = layers.DenseLayer(l4, n_outputs=37, weights_std=0.01, init_bias_value=0.1, dropout=0.5, nonlinearity=layers.identity)
# l6 = layers.OutputLayer(l5, error_measure='mse')
l6 = custom.OptimisedDivGalaxyOutputLayer(l5) # this incorporates the constraints on the output (probabilities sum to one, weighting, etc.)
xs_shared = [theano.shared(np.zeros((1,1,1,1), dtype=theano.config.floatX)) for _ in xrange(num_input_representations)]
idx = T.lscalar('idx')
givens = {
l0.input_var: xs_shared[0][idx*BATCH_SIZE:(idx+1)*BATCH_SIZE],
l0_45.input_var: xs_shared[1][idx*BATCH_SIZE:(idx+1)*BATCH_SIZE],
}
compute_output = theano.function([idx], l6.predictions(dropout_active=False), givens=givens)
print "Load model parameters"
layers.set_param_values(l6, analysis['param_values'])
print "Create generators"
# set here which transforms to use to make predictions
augmentation_transforms = []
for zoom in [1 / 1.2, 1.0, 1.2]:
for angle in np.linspace(0, 360, 10, endpoint=False):
augmentation_transforms.append(ra.build_augmentation_transform(rotation=angle, zoom=zoom))
augmentation_transforms.append(ra.build_augmentation_transform(rotation=(angle + 180), zoom=zoom, shear=180)) # flipped
print " %d augmentation transforms." % len(augmentation_transforms)
augmented_data_gen_valid = ra.realtime_fixed_augmented_data_gen(valid_indices, 'train', augmentation_transforms=augmentation_transforms, chunk_size=CHUNK_SIZE, target_sizes=input_sizes, ds_transforms=ds_transforms, processor_class=ra.LoadAndProcessFixedPysexGen1CenteringRescaling)
valid_gen = load_data.buffered_gen_mp(augmented_data_gen_valid, buffer_size=1)
augmented_data_gen_test = ra.realtime_fixed_augmented_data_gen(test_indices, 'test', augmentation_transforms=augmentation_transforms, chunk_size=CHUNK_SIZE, target_sizes=input_sizes, ds_transforms=ds_transforms, processor_class=ra.LoadAndProcessFixedPysexGen1CenteringRescaling)
test_gen = load_data.buffered_gen_mp(augmented_data_gen_test, buffer_size=1)
approx_num_chunks_valid = int(np.ceil(num_valid * len(augmentation_transforms) / float(CHUNK_SIZE)))
approx_num_chunks_test = int(np.ceil(num_test * len(augmentation_transforms) / float(CHUNK_SIZE)))
print "Approximately %d chunks for the validation set" % approx_num_chunks_valid
print "Approximately %d chunks for the test set" % approx_num_chunks_test
if DO_VALID:
print
print "VALIDATION SET"
print "Compute predictions"
predictions_list = []
start_time = time.time()
for e, (chunk_data, chunk_length) in enumerate(valid_gen):
print "Chunk %d" % (e + 1)
xs_chunk = chunk_data
# need to transpose the chunks to move the 'channels' dimension up
xs_chunk = [x_chunk.transpose(0, 3, 1, 2) for x_chunk in xs_chunk]
print " load data onto GPU"
for x_shared, x_chunk in zip(xs_shared, xs_chunk):
x_shared.set_value(x_chunk)
num_batches_chunk = int(np.ceil(chunk_length / float(BATCH_SIZE)))
# make predictions, don't forget to cute off the zeros at the end
predictions_chunk_list = []
for b in xrange(num_batches_chunk):
if b % 1000 == 0:
print " batch %d/%d" % (b + 1, num_batches_chunk)
predictions = compute_output(b)
predictions_chunk_list.append(predictions)
predictions_chunk = np.vstack(predictions_chunk_list)
predictions_chunk = predictions_chunk[:chunk_length] # cut off zeros / padding
print " compute average over transforms"
predictions_chunk_avg = predictions_chunk.reshape(-1, len(augmentation_transforms), 37).mean(1)
predictions_list.append(predictions_chunk_avg)
time_since_start = time.time() - start_time
print " %s since start" % load_data.hms(time_since_start)
all_predictions = np.vstack(predictions_list)
print "Write predictions to %s" % target_path_valid
load_data.save_gz(target_path_valid, all_predictions)
print "Evaluate"
rmse_valid = analysis['losses_valid'][-1]
rmse_augmented = np.sqrt(np.mean((y_valid - all_predictions)**2))
print " MSE (last iteration):\t%.6f" % rmse_valid
print " MSE (augmented):\t%.6f" % rmse_augmented
if DO_TEST:
print
print "TEST SET"
print "Compute predictions"
predictions_list = []
start_time = time.time()
for e, (chunk_data, chunk_length) in enumerate(test_gen):
print "Chunk %d" % (e + 1)
xs_chunk = chunk_data
# need to transpose the chunks to move the 'channels' dimension up
xs_chunk = [x_chunk.transpose(0, 3, 1, 2) for x_chunk in xs_chunk]
print " load data onto GPU"
for x_shared, x_chunk in zip(xs_shared, xs_chunk):
x_shared.set_value(x_chunk)
num_batches_chunk = int(np.ceil(chunk_length / float(BATCH_SIZE)))
# make predictions, don't forget to cute off the zeros at the end
predictions_chunk_list = []
for b in xrange(num_batches_chunk):
if b % 1000 == 0:
print " batch %d/%d" % (b + 1, num_batches_chunk)
predictions = compute_output(b)
predictions_chunk_list.append(predictions)
predictions_chunk = np.vstack(predictions_chunk_list)
predictions_chunk = predictions_chunk[:chunk_length] # cut off zeros / padding
print " compute average over transforms"
predictions_chunk_avg = predictions_chunk.reshape(-1, len(augmentation_transforms), 37).mean(1)
predictions_list.append(predictions_chunk_avg)
time_since_start = time.time() - start_time
print " %s since start" % load_data.hms(time_since_start)
all_predictions = np.vstack(predictions_list)
print "Write predictions to %s" % target_path_test
load_data.save_gz(target_path_test, all_predictions)
print "Done!"
|
bsd-3-clause
|
Jackson-Y/Machine-Learning
|
recommendation/wide_n_deep.py
|
1
|
7548
|
# -*- coding: utf-8 -*-
""" Wide & Deep Learning 宽度&深度学习模型,基于tensorflow平台 """
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
import tempfile
import pandas as pd
from six.moves import urllib
import tensorflow as tf
CSV_COLUMNS = [
"age", "workclass", "fnlwgt", "education", "education_num",
"marital_status", "occupation", "relationship", "race", "gender",
"capital_gain", "capital_loss", "hours_per_week", "native_country",
"income_bracket"
]
gender = tf.feature_column.categorical_column_with_vocabulary_list(
"gender", ["Female", "Male"])
education = tf.feature_column.categorical_column_with_vocabulary_list(
"education", [
"Bachelors", "HS-grad", "11th", "Masters", "9th",
"Some-college", "Assoc-acdm", "Assoc-voc", "7th-8th",
"Doctorate", "Prof-school", "5th-6th", "10th", "1st-4th",
"Preschool", "12th"
])
marital_status = tf.feature_column.categorical_column_with_vocabulary_list(
"marital_status", [
"Married-civ-spouse", "Divorced", "Married-spouse-absent",
"Never-married", "Separated", "Married-AF-spouse", "Widowed"
])
relationship = tf.feature_column.categorical_column_with_vocabulary_list(
"relationship", [
"Husband", "Not-in-family", "Wife", "Own-child", "Unmarried",
"Other-relative"
])
workclass = tf.feature_column.categorical_column_with_vocabulary_list(
"workclass", [
"Self-emp-not-inc", "Private", "State-gov", "Federal-gov",
"Local-gov", "?", "Self-emp-inc", "Without-pay", "Never-worked"
])
# To show an example of hashing
occupation = tf.feature_column.categorical_column_with_hash_bucket(
"occupation", hash_bucket_size=1000)
native_country = tf.feature_column.categorical_column_with_hash_bucket(
"native_country", hash_bucket_size=1000)
# Continuous base columns
age = tf.feature_column.numeric_column("age")
education_num = tf.feature_column.numeric_column("education_num")
capital_gain = tf.feature_column.numeric_column("capital_gain")
capital_loss = tf.feature_column.numeric_column("capital_loss")
hours_per_week = tf.feature_column.numeric_column("hours_per_week")
# Transformations
age_buckets = tf.feature_column.bucketized_column(
age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65])
# Wide columns and deep columns.
base_columns = [
gender, education, marital_status, relationship, workclass, occupation,
native_country, age_buckets,
]
crossed_columns = [
tf.feature_column.crossed_column(
["education", "occupation"], hash_bucket_size=1000),
tf.feature_column.crossed_column(
[age_buckets, "education", "occupation"], hash_bucket_size=1000),
tf.feature_column.crossed_column(
["native_country", "occupation"], hash_bucket_size=1000)
]
deep_columns = [
tf.feature_column.indicator_column(workclass),
tf.feature_column.indicator_column(education),
tf.feature_column.indicator_column(gender),
tf.feature_column.indicator_column(relationship),
# To show an example of embedding
tf.feature_column.embedding_column(native_country, dimension=8),
tf.feature_column.embedding_column(occupation, dimension=8),
age,
education_num,
capital_gain,
capital_loss,
hours_per_week,
]
def maybe_download(train_data, test_data):
"""Maybe downloads training data and returns train and test file names."""
if train_data:
train_file_name = train_data
else:
train_file = tempfile.NamedTemporaryFile(delete=False)
urllib.request.urlretrieve(
"https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data",
train_file.name) # pylint: disable=line-too-long
train_file_name = train_file.name
train_file.close()
print("Training data is downloaded to %s" % train_file_name)
if test_data:
test_file_name = test_data
else:
test_file = tempfile.NamedTemporaryFile(delete=False)
urllib.request.urlretrieve(
"https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test",
test_file.name) # pylint: disable=line-too-long
test_file_name = test_file.name
test_file.close()
print("Test data is downloaded to %s"% test_file_name)
return train_file_name, test_file_name
def build_estimator(model_dir, model_type):
"""Build an estimator."""
if model_type == "wide":
m = tf.estimator.LinearClassifier(
model_dir=model_dir, feature_columns=base_columns + crossed_columns)
elif model_type == "deep":
m = tf.estimator.DNNClassifier(
model_dir=model_dir,
feature_columns=deep_columns,
hidden_units=[100, 50])
else:
m = tf.estimator.DNNLinearCombinedClassifier(
model_dir=model_dir,
linear_feature_columns=crossed_columns,
dnn_feature_columns=deep_columns,
dnn_hidden_units=[100, 50])
return m
def input_fn(data_file, num_epochs, shuffle):
"""Input builder function."""
df_data = pd.read_csv(
tf.gfile.Open(data_file),
names=CSV_COLUMNS,
skipinitialspace=True,
engine="python",
skiprows=1)
# remove NaN elements
df_data = df_data.dropna(how="any", axis=0)
labels = df_data["income_bracket"].apply(lambda x: ">50k" in x).astype(int)
return tf.estimator.inputs.pandas_input_fn(
x=df_data,
y=labels,
batch_size=100,
num_epochs=num_epochs,
shuffle=shuffle,
num_threads=5)
def train_and_eval(model_dir, model_type, train_steps, train_data, test_data):
"""Train and evaluate the model."""
train_file_name, test_file_name = maybe_download(train_data, test_data)
model_dir = tempfile.mkdtemp() if not model_dir else model_dir
m = build_estimator(model_dir, model_type)
m.train(
input_fn=input_fn(train_file_name, num_epochs=None, shuffle=True),
steps=train_steps
)
results = m.evaluate(
input_fn=input_fn(test_file_name, num_epochs=1, shuffle=False),
steps=None
)
print("model directory = %s" % model_dir)
for key in sorted(results):
print("%s: %s" % (key, results[key]))
FLAGS = None
def main(_):
train_and_eval(FLAGS.model_dir, FLAGS.model_type, FLAGS.train_steps,
FLAGS.train_data, FLAGS.test_data)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.register("type", "bool", lambda v: v.lower() == "true")
parser.add_argument(
"--model_dir",
type=str,
default="./model/",
help="Base directory for output models."
)
parser.add_argument(
"--model_type",
type=str,
default="wide_n_deep",
help="Valid model types: {'wide', 'deep', 'wide_n_deep'}."
)
parser.add_argument(
"--train_steps",
type=int,
default=1000,
help="Number of training steps."
)
parser.add_argument(
"--train_data",
type=str,
default="../exercise/ADULT_data/adult.train",
help="Path to the training data."
)
parser.add_argument(
"--test_data",
type=str,
default="../exercise/ADULT_data/adult.test",
help="Path to the test data."
)
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
|
mit
|
q1ang/scikit-learn
|
sklearn/metrics/tests/test_regression.py
|
272
|
6066
|
from __future__ import division, print_function
import numpy as np
from itertools import product
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.metrics import explained_variance_score
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import median_absolute_error
from sklearn.metrics import r2_score
from sklearn.metrics.regression import _check_reg_targets
def test_regression_metrics(n_samples=50):
y_true = np.arange(n_samples)
y_pred = y_true + 1
assert_almost_equal(mean_squared_error(y_true, y_pred), 1.)
assert_almost_equal(mean_absolute_error(y_true, y_pred), 1.)
assert_almost_equal(median_absolute_error(y_true, y_pred), 1.)
assert_almost_equal(r2_score(y_true, y_pred), 0.995, 2)
assert_almost_equal(explained_variance_score(y_true, y_pred), 1.)
def test_multioutput_regression():
y_true = np.array([[1, 0, 0, 1], [0, 1, 1, 1], [1, 1, 0, 1]])
y_pred = np.array([[0, 0, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]])
error = mean_squared_error(y_true, y_pred)
assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.)
# mean_absolute_error and mean_squared_error are equal because
# it is a binary problem.
error = mean_absolute_error(y_true, y_pred)
assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.)
error = r2_score(y_true, y_pred, multioutput='variance_weighted')
assert_almost_equal(error, 1. - 5. / 2)
error = r2_score(y_true, y_pred, multioutput='uniform_average')
assert_almost_equal(error, -.875)
def test_regression_metrics_at_limits():
assert_almost_equal(mean_squared_error([0.], [0.]), 0.00, 2)
assert_almost_equal(mean_absolute_error([0.], [0.]), 0.00, 2)
assert_almost_equal(median_absolute_error([0.], [0.]), 0.00, 2)
assert_almost_equal(explained_variance_score([0.], [0.]), 1.00, 2)
assert_almost_equal(r2_score([0., 1], [0., 1]), 1.00, 2)
def test__check_reg_targets():
# All of length 3
EXAMPLES = [
("continuous", [1, 2, 3], 1),
("continuous", [[1], [2], [3]], 1),
("continuous-multioutput", [[1, 1], [2, 2], [3, 1]], 2),
("continuous-multioutput", [[5, 1], [4, 2], [3, 1]], 2),
("continuous-multioutput", [[1, 3, 4], [2, 2, 2], [3, 1, 1]], 3),
]
for (type1, y1, n_out1), (type2, y2, n_out2) in product(EXAMPLES,
repeat=2):
if type1 == type2 and n_out1 == n_out2:
y_type, y_check1, y_check2, multioutput = _check_reg_targets(
y1, y2, None)
assert_equal(type1, y_type)
if type1 == 'continuous':
assert_array_equal(y_check1, np.reshape(y1, (-1, 1)))
assert_array_equal(y_check2, np.reshape(y2, (-1, 1)))
else:
assert_array_equal(y_check1, y1)
assert_array_equal(y_check2, y2)
else:
assert_raises(ValueError, _check_reg_targets, y1, y2, None)
def test_regression_multioutput_array():
y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]]
y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]]
mse = mean_squared_error(y_true, y_pred, multioutput='raw_values')
mae = mean_absolute_error(y_true, y_pred, multioutput='raw_values')
r = r2_score(y_true, y_pred, multioutput='raw_values')
evs = explained_variance_score(y_true, y_pred, multioutput='raw_values')
assert_array_almost_equal(mse, [0.125, 0.5625], decimal=2)
assert_array_almost_equal(mae, [0.25, 0.625], decimal=2)
assert_array_almost_equal(r, [0.95, 0.93], decimal=2)
assert_array_almost_equal(evs, [0.95, 0.93], decimal=2)
# mean_absolute_error and mean_squared_error are equal because
# it is a binary problem.
y_true = [[0, 0]]*4
y_pred = [[1, 1]]*4
mse = mean_squared_error(y_true, y_pred, multioutput='raw_values')
mae = mean_absolute_error(y_true, y_pred, multioutput='raw_values')
r = r2_score(y_true, y_pred, multioutput='raw_values')
assert_array_almost_equal(mse, [1., 1.], decimal=2)
assert_array_almost_equal(mae, [1., 1.], decimal=2)
assert_array_almost_equal(r, [0., 0.], decimal=2)
r = r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='raw_values')
assert_array_almost_equal(r, [0, -3.5], decimal=2)
assert_equal(np.mean(r), r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]],
multioutput='uniform_average'))
evs = explained_variance_score([[0, -1], [0, 1]], [[2, 2], [1, 1]],
multioutput='raw_values')
assert_array_almost_equal(evs, [0, -1.25], decimal=2)
# Checking for the condition in which both numerator and denominator is
# zero.
y_true = [[1, 3], [-1, 2]]
y_pred = [[1, 4], [-1, 1]]
r2 = r2_score(y_true, y_pred, multioutput='raw_values')
assert_array_almost_equal(r2, [1., -3.], decimal=2)
assert_equal(np.mean(r2), r2_score(y_true, y_pred,
multioutput='uniform_average'))
evs = explained_variance_score(y_true, y_pred, multioutput='raw_values')
assert_array_almost_equal(evs, [1., -3.], decimal=2)
assert_equal(np.mean(evs), explained_variance_score(y_true, y_pred))
def test_regression_custom_weights():
y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]]
y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]]
msew = mean_squared_error(y_true, y_pred, multioutput=[0.4, 0.6])
maew = mean_absolute_error(y_true, y_pred, multioutput=[0.4, 0.6])
rw = r2_score(y_true, y_pred, multioutput=[0.4, 0.6])
evsw = explained_variance_score(y_true, y_pred, multioutput=[0.4, 0.6])
assert_almost_equal(msew, 0.39, decimal=2)
assert_almost_equal(maew, 0.475, decimal=3)
assert_almost_equal(rw, 0.94, decimal=2)
assert_almost_equal(evsw, 0.94, decimal=2)
|
bsd-3-clause
|
carrillo/scikit-learn
|
sklearn/feature_extraction/hashing.py
|
183
|
6155
|
# Author: Lars Buitinck <[email protected]>
# License: BSD 3 clause
import numbers
import numpy as np
import scipy.sparse as sp
from . import _hashing
from ..base import BaseEstimator, TransformerMixin
def _iteritems(d):
"""Like d.iteritems, but accepts any collections.Mapping."""
return d.iteritems() if hasattr(d, "iteritems") else d.items()
class FeatureHasher(BaseEstimator, TransformerMixin):
"""Implements feature hashing, aka the hashing trick.
This class turns sequences of symbolic feature names (strings) into
scipy.sparse matrices, using a hash function to compute the matrix column
corresponding to a name. The hash function employed is the signed 32-bit
version of Murmurhash3.
Feature names of type byte string are used as-is. Unicode strings are
converted to UTF-8 first, but no Unicode normalization is done.
Feature values must be (finite) numbers.
This class is a low-memory alternative to DictVectorizer and
CountVectorizer, intended for large-scale (online) learning and situations
where memory is tight, e.g. when running prediction code on embedded
devices.
Read more in the :ref:`User Guide <feature_hashing>`.
Parameters
----------
n_features : integer, optional
The number of features (columns) in the output matrices. Small numbers
of features are likely to cause hash collisions, but large numbers
will cause larger coefficient dimensions in linear learners.
dtype : numpy type, optional
The type of feature values. Passed to scipy.sparse matrix constructors
as the dtype argument. Do not set this to bool, np.boolean or any
unsigned integer type.
input_type : string, optional
Either "dict" (the default) to accept dictionaries over
(feature_name, value); "pair" to accept pairs of (feature_name, value);
or "string" to accept single strings.
feature_name should be a string, while value should be a number.
In the case of "string", a value of 1 is implied.
The feature_name is hashed to find the appropriate column for the
feature. The value's sign might be flipped in the output (but see
non_negative, below).
non_negative : boolean, optional, default np.float64
Whether output matrices should contain non-negative values only;
effectively calls abs on the matrix prior to returning it.
When True, output values can be interpreted as frequencies.
When False, output values will have expected value zero.
Examples
--------
>>> from sklearn.feature_extraction import FeatureHasher
>>> h = FeatureHasher(n_features=10)
>>> D = [{'dog': 1, 'cat':2, 'elephant':4},{'dog': 2, 'run': 5}]
>>> f = h.transform(D)
>>> f.toarray()
array([[ 0., 0., -4., -1., 0., 0., 0., 0., 0., 2.],
[ 0., 0., 0., -2., -5., 0., 0., 0., 0., 0.]])
See also
--------
DictVectorizer : vectorizes string-valued features using a hash table.
sklearn.preprocessing.OneHotEncoder : handles nominal/categorical features
encoded as columns of integers.
"""
def __init__(self, n_features=(2 ** 20), input_type="dict",
dtype=np.float64, non_negative=False):
self._validate_params(n_features, input_type)
self.dtype = dtype
self.input_type = input_type
self.n_features = n_features
self.non_negative = non_negative
@staticmethod
def _validate_params(n_features, input_type):
# strangely, np.int16 instances are not instances of Integral,
# while np.int64 instances are...
if not isinstance(n_features, (numbers.Integral, np.integer)):
raise TypeError("n_features must be integral, got %r (%s)."
% (n_features, type(n_features)))
elif n_features < 1 or n_features >= 2 ** 31:
raise ValueError("Invalid number of features (%d)." % n_features)
if input_type not in ("dict", "pair", "string"):
raise ValueError("input_type must be 'dict', 'pair' or 'string',"
" got %r." % input_type)
def fit(self, X=None, y=None):
"""No-op.
This method doesn't do anything. It exists purely for compatibility
with the scikit-learn transformer API.
Returns
-------
self : FeatureHasher
"""
# repeat input validation for grid search (which calls set_params)
self._validate_params(self.n_features, self.input_type)
return self
def transform(self, raw_X, y=None):
"""Transform a sequence of instances to a scipy.sparse matrix.
Parameters
----------
raw_X : iterable over iterable over raw features, length = n_samples
Samples. Each sample must be iterable an (e.g., a list or tuple)
containing/generating feature names (and optionally values, see
the input_type constructor argument) which will be hashed.
raw_X need not support the len function, so it can be the result
of a generator; n_samples is determined on the fly.
y : (ignored)
Returns
-------
X : scipy.sparse matrix, shape = (n_samples, self.n_features)
Feature matrix, for use with estimators or further transformers.
"""
raw_X = iter(raw_X)
if self.input_type == "dict":
raw_X = (_iteritems(d) for d in raw_X)
elif self.input_type == "string":
raw_X = (((f, 1) for f in x) for x in raw_X)
indices, indptr, values = \
_hashing.transform(raw_X, self.n_features, self.dtype)
n_samples = indptr.shape[0] - 1
if n_samples == 0:
raise ValueError("Cannot vectorize empty sequence.")
X = sp.csr_matrix((values, indices, indptr), dtype=self.dtype,
shape=(n_samples, self.n_features))
X.sum_duplicates() # also sorts the indices
if self.non_negative:
np.abs(X.data, X.data)
return X
|
bsd-3-clause
|
allisony/pyspeckit
|
examples/h2co_mm_example_despotic.py
|
6
|
2746
|
import pyspeckit as psk
from pyspeckit.spectrum import models
from astropy.table import Table
from spectral_cube import SpectralCube
import numpy as np
import matplotlib.pyplot as plt
import despotic
import pyspeckit.spectrum.readers.read_class
import os
import shutil
if not os.path.exists('ph2cogrid.fits'):
if not os.path.exists('protostellarCore.desp'):
despotic_install_path = (os.path.split(despotic.__file__))[0]
shutil.copy(despotic_install_path+'/cloudfiles/protostellarCore.desp',os.getcwd())
models.formaldehyde_mm.build_despotic_grids(gridfile='ph2cogrid.fits', DvUpper=10)
t = Table.read('ph2cogrid.fits')
# This returns interpolating functions that take physical parameters
# and returns values for Tex, Tau for the three mm transitions.
f1, f2, f3 = models.formaldehyde_mm.formaldehyde_mm_despotic_functions(t)
# Instantiate that fitter!
formaldehyde_fitter=models.model.SpectralModel(models.formaldehyde_mm.formaldehyde_mm_despotic,
5, parnames=['temperature', 'column', 'density',
'center', 'width'],
parvalues=[50,12,5.0,0,2],
parlimited=[(True, True), (True, True),
(True, True), (False, False),
(True, False)],
parlimits=[(5,205), (10,17),
(2,7), (0,0), (0,0)],
parsteps=[0.01, 0.01, 0.1, 0, 0],
fitunits='Hz',
h2co_303_202=f1, # interpolation of (Tex, tau)
h2co_322_221=f2,
h2co_321_220=f3,
shortvarnames=("T", "N", "n", "v", "\\sigma"))
sp = pyspeckit.readers.read_class.class_to_spectra('example_h2co_mm_spectrum.apex')
sp.data *= 1/0.75 # T_A* -> T_MB
sp.unit = "$T_{MB}$"
# estimate the error from the data
# sp.error[:] = sp.stats((2.183e2,2.184e2))['std']
sp.Registry.add_fitter('formaldehyde_mm_despotic', formaldehyde_fitter, 5)
#plot fit for all 3 ('both')
sp.plotter(figure=1)
sp.specfit(fittype='formaldehyde_mm_despotic',
guesses=[95, 14.5, 4, 0.0, 4.0],
limits=[(10,300), (11,15), (2,7), (-20,150), (1, 10)],
limited=[(True, True)]*5,
fixed=[False, False, True, False, False])
sp.plotter.savefig('test_fitting_figure_01.png')
|
mit
|
probml/pyprobml
|
scripts/correlation2d.py
|
1
|
3494
|
import numpy as np
from numpy import linalg as la
import matplotlib
matplotlib.use('TKAgg')
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider
'''
https://en.wikipedia.org/wiki/Correlation_and_dependence#/media/File:Correlation_examples2.svg
The corr(X, Y) == 1 iff y = a * x + b
The following code demonstrate the above linked image that is included in
ML 1st Edition. There are two sliders in the UI that allow a user to change the
rotation and aspect ratio of the 2D point cloud. The corr(X, Y) value is also
displayed.
A line fitted by linear regression on the 2D point cloud is also shown. The SSE
of linear regression satisfies:
SSE / cov(Y,Y) = 1 - corr(X,Y)
Thus SSE == 0 iff corr(X,Y) == 1
'''
def Rotation(theta):
''' Return a 2D rotation matrix
'''
c = np.cos(theta)
s = np.sin(theta)
return np.array([[ c, -s],
[s, c]], dtype=np.float32)
def Scale(aspect):
''' Return a 2D scale matrix
'''
a = aspect
return np.array([[1.0, 0.0],
[0.0, a]], dtype=np.float32)
def GeneratePoints(n, r):
''' Uniformlly sample n 2d points in the circle with radius r
'''
result = []
while len(result) < n:
p = r * (2.0 * np.random.random_sample() - 1.0),\
r * (2.0 * np.random.random_sample() - 1.0)
if la.norm(p, 2) <= r:
result.append(p)
return np.array(result, dtype=np.float32)
def LinearRegressionOn2DPoints(points):
points_T = np.transpose(points)
X0, Y0 = points_T[0, :], points_T[1, :]
n = len(X0)
ones = np.ones(n)
A = np.vstack([X0, ones]).T
a, b = la.lstsq(A, Y0)[0]
alpha = np.array([a, b]).T
Y = np.dot(np.vstack((X0, np.ones(len(X0)))).T, alpha)
return X0, Y0, Y
def Correlation2DPoints(points):
X = points[:, 0]
Y = points[:, 1]
C = np.corrcoef(points[:, 0], points[:, 1])
return C[0,1]
def TransformPoints(params):
R = Rotation(params["theta"])
S = Scale(params["aspect"])
T = np.dot(R, S)
points = params["original_points"]
params["points"] = np.array([np.dot(T, np.transpose(point)) for point in points], dtype=np.float32)
def updateHandler(key, text, points_plot, line_plot, params):
def update(v):
params[key] = v
TransformPoints(params)
X0, Y0, Y = LinearRegressionOn2DPoints(params["points"])
points_plot.set_xdata(X0)
points_plot.set_ydata(Y0)
line_plot.set_xdata(X0)
line_plot.set_ydata(Y)
text.set_text("Corr(x,y) %f" % Correlation2DPoints(params["points"]))
return update
def main():
points = GeneratePoints(1000, 4.0)
theta = np.pi / 4.0
aspect = 0.5
params = {"theta": theta,
"aspect": aspect,
"original_points": points,
"points": points}
TransformPoints(params)
X0, Y0, Y = LinearRegressionOn2DPoints(params["points"])
points_plot, = plt.plot(X0, Y0, 'o')
line_plot, = plt.plot(X0, Y, 'r')
plt.axis('equal')
# Add UI Text and Sliders
text = plt.text(-4.5, 3.5, "Corr(x,y) %f" % Correlation2DPoints(params["points"]), fontsize=15)
ax_aspect = plt.axes([0.25, 0.1, 0.65, 0.03])
ax_theta = plt.axes([0.25, 0.15, 0.65, 0.03])
aspect_slider = Slider(ax_aspect, 'Aspect', 0.0, 1.0, valinit=aspect)
theta_slider = Slider(ax_theta, 'Theta', -0.5 * np.pi, 0.5 * np.pi, valinit=theta)
aspect_slider.on_changed(updateHandler("aspect", text, points_plot, line_plot, params))
theta_slider.on_changed(updateHandler("theta", text, points_plot, line_plot, params))
plt.show()
if __name__ == "__main__":
main()
|
mit
|
HannesHolste/littlebigo
|
littlebigo/analysis.py
|
1
|
2781
|
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
def df_from_benchmarks(benchmarks_db, extract_input_size):
df = pd.DataFrame(
columns=['id',
'group_id',
'input_size',
'cpu_kernel_time_secs',
'cpu_user_time_secs',
'resident_set_memory_kb',
'wall_time_secs'])
# Populate dataframe with timing information from database
i = 0
for benchmark in benchmarks_db.all():
if benchmark['timing_result'] is not None:
row = ([benchmark['id'],
benchmark['group_id'],
extract_input_size(benchmark['command_with_param']),
benchmark['timing_result']['cpu_kernel_time_secs'],
benchmark['timing_result']['cpu_user_time_secs'],
benchmark['timing_result']['resident_set_memory_kb'],
benchmark['timing_result']['wall_time_secs']])
df.loc[i] = row
i += 1
# Unit conversions and new columns
df['resident_set_memory_kb'] = df['resident_set_memory_kb'].astype(int)
df['input_size'] = df['input_size'].astype(int)
# Introduce new columns
df['cpu_time_total_secs'] = df['cpu_user_time_secs'] + df[
'cpu_kernel_time_secs']
df['resident_set_memory_mb'] = (df['resident_set_memory_kb'] /
1000).astype(float)
return df
def df_from_benchmarks_aggregated(benchmarks_db, extract_input_size):
df = df_from_benchmarks(benchmarks_db, extract_input_size)
cols_with_errorbars = ['cpu_kernel_time_secs',
'cpu_user_time_secs',
'resident_set_memory_kb',
'wall_time_secs',
'cpu_time_total_secs',
'resident_set_memory_mb']
# Calculate info for error bars for each col in cols_with_errorbars
df_final = pd.DataFrame()
for col in cols_with_errorbars:
# calculate min and std
df_errors = (df.groupby(['input_size'], as_index=False)[col]
.agg({'{}_min'.format(col): np.min,
'{}_std'.format(col): np.std})
.sort_values(by=['{}_min'.format(col)]))
# ensure that 'input_size' column is not duplicated
cols_to_use = df_errors.columns.difference(df_final.columns)
df_final = pd.concat([df_final, df_errors[cols_to_use]], axis=1)
return df_final
def generate_plot(df, y_name, y_std_name=None):
x = df['input_size']
y = df[y_name]
plt.scatter(x, y)
plt.ylim(0)
if y_std_name is not None:
plt.errorbar(x, y, yerr=(df[y_std_name]))
return plt
|
bsd-3-clause
|
zhenv5/scikit-learn
|
examples/linear_model/plot_polynomial_interpolation.py
|
251
|
1895
|
#!/usr/bin/env python
"""
========================
Polynomial interpolation
========================
This example demonstrates how to approximate a function with a polynomial of
degree n_degree by using ridge regression. Concretely, from n_samples 1d
points, it suffices to build the Vandermonde matrix, which is n_samples x
n_degree+1 and has the following form:
[[1, x_1, x_1 ** 2, x_1 ** 3, ...],
[1, x_2, x_2 ** 2, x_2 ** 3, ...],
...]
Intuitively, this matrix can be interpreted as a matrix of pseudo features (the
points raised to some power). The matrix is akin to (but different from) the
matrix induced by a polynomial kernel.
This example shows that you can do non-linear regression with a linear model,
using a pipeline to add non-linear features. Kernel methods extend this idea
and can induce very high (even infinite) dimensional feature spaces.
"""
print(__doc__)
# Author: Mathieu Blondel
# Jake Vanderplas
# License: BSD 3 clause
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline
def f(x):
""" function to approximate by polynomial interpolation"""
return x * np.sin(x)
# generate points used to plot
x_plot = np.linspace(0, 10, 100)
# generate points and keep a subset of them
x = np.linspace(0, 10, 100)
rng = np.random.RandomState(0)
rng.shuffle(x)
x = np.sort(x[:20])
y = f(x)
# create matrix versions of these arrays
X = x[:, np.newaxis]
X_plot = x_plot[:, np.newaxis]
plt.plot(x_plot, f(x_plot), label="ground truth")
plt.scatter(x, y, label="training points")
for degree in [3, 4, 5]:
model = make_pipeline(PolynomialFeatures(degree), Ridge())
model.fit(X, y)
y_plot = model.predict(X_plot)
plt.plot(x_plot, y_plot, label="degree %d" % degree)
plt.legend(loc='lower left')
plt.show()
|
bsd-3-clause
|
nico202/pyNeMo
|
libs/IO.py
|
1
|
13196
|
"""
This module defines various useful functions used for Input and Output
like loading the config file, checking dependencies, various conversions etc.
"""
#Transform input time to ms (steps):
# example: 100 = 100 (ms)
# example: 30s = 30000 (ms)
# example: 10m = 600000 (ms)
def time_to_steps(input_time):
try:
if 'm' in input_time: #minutes
steps = float(input_time.strip('m')) * 60 * 1000
elif 's' in input_time: #Seconds
steps = float(input_time.strip('s')) * 1000
else:
steps = input_time
except ValueError:
exit("Steps parameter can contain either 'm' (minutes) or 's' (seconds)")
except TypeError:
return None
return int(steps)
#Dependency check: check if all required module are present
#(without actually importing them)
def dependency_check(modules):
import imp
for module in modules:
try:
imp.find_module(module)
found = True
except ImportError:
found = False
if not found:
exit("Could not find required module: %s" % (module))
def load_network_file(network_file, hooks):
import imp
#Ultra-important. Prevent the creation of pyc files, that get imported by imp
#... preventing the reload of the source, leading to wrong input -> wrong output
#... in batch runs
###############################
import sys
sys.dont_write_bytecode = True
###############################
try:
config_name = try_load_vue(network_file, hooks)
config = imp.load_source('*', config_name)
except SyntaxError:
cprint("Config file: Syntax Error", 'fail')
raise
except IOError:
cprint("Error: network file (%s) does not exists" % (network_file), 'fail')
exit()
except NameError:
cprint("This VUE contains undefined variables (is it for a batch?)", 'fail')
raise
except:
cprint("DEBUG: Unknown error", 'fail')
raise
return config, config_name
def try_load_vue(config_name, hooks=("", "")): #FIXME: relative path etc
if ".vue" in config_name:
import libs.VUEtoPy as VUEtoPy
#TODO: verbosity fix
cprint("Converting input VUE to py", 'info')
VUEtoPy.VUEtoPyConverter(config_name, hooks)
config_name = "".join((config_name.split(".")[:-1]))
config_name += ".py"
return "./" + config_name
def import_network(
(network_file, hooks),
(use_cuda, cuda_backend_number),
(disable_sensory) #FIXME: use this
):
'''
Pass the network file to load_network_file, then:
* Add neurons and synapses to Nemo
returns [ nemo_simulation, to_save ]
'''
network_config, network_name = load_network_file(network_file, hooks)
import nemo
nemo_net = nemo.Network()
nemo_config = nemo.Configuration()
nemo_select_backend(nemo_config, (use_cuda, cuda_backend_number))
#Add network neurons
nemo_add_neurons(nemo_net, network_config.neurons[0])
#Add networks synapses
nemo_add_synapses(nemo_net, network_config.synapses)
#Create the simulation
nemo_simulation = nemo.Simulation(nemo_net, nemo_config)
return ([
nemo_simulation, #0
( #1
network_config.save,
#Used to coninue numeration on sensor
len(network_config.neurons[0]),
network_config.step_input,
network_config.sensory_neurons,
network_config.neurons,
network_config.synapses,
network_config.name
)
]), network_name
def nemo_add_neurons(net, neuron_list, start_id=0):
iz = net.add_neuron_type('Izhikevich')
#TODO: edit conifg file to allow this?
#km = net.add_neuron_type('Kuramoto')
for nidx, neuron in enumerate(neuron_list):
n_id = nidx + start_id
a, b, c, d, s, u, v = neuron
net.add_neuron(iz, n_id, a, b, c, d, s, u, v)
def nemo_add_synapses(net, synaspes_list):
for sidx, synapse in enumerate(synaspes_list):
source, dests, synaptic_prop = synapse
delay, weights, plastic = synaptic_prop
try: #dests is a single value or a list?
dests = int(dests)
dests = [dests]
except TypeError: #Is already a list :)
pass
try: #if weight length is 1, apply it to all synapses
weights = int(weights)
weights = [weights]
except TypeError: #Already an array
pass
if len(weights) != len(dests):
if len(weights) == 1:
#List of weight matching number of outpu nurons
weights = weights * len(dests)
else:
exit("Malformed synapse line %d" % (sidx + 1))
net.add_synapse(source, dests, delay, weights, plastic)
def nemo_select_backend(
nemo_config,
(use_cuda, backend_number)
):
if use_cuda:
try:
nemo_config.set_cuda_backend(backend_number)
except RuntimeError:
#FIXME: verbosity
print "No CUDA-GPU found: using CPU instead"
nemo_config.set_cpu_backend()
else:
nemo_config.set_cpu_backend()
def saveKey(filename,
values,
out_dir=".",
compress=True,
compress_format="gzip",
force_write=False):
'''
Saves a dict to a file.
If compress enabled, saves to gz (compress less then bz2 but faster)
'''
import os.path
filename = str(filename)
out_dir = str(out_dir)
is_folder(out_dir)
output_name = out_dir + '/' + filename
values = str(values)
if not os.path.isfile(output_name) or force_write:
try:
if compress:
if compress_format in ["gzip", "gz"]:
import gzip
with gzip.open(output_name + ".gz", 'wb') as f:
f.write(values)
elif compress_format in ["bzip2", "bzip", "bz2"]:
import bz2
file_out = bz2.BZ2File(output_name + ".bz2", 'wb')
try:
file_out.write(values)
finally:
file_out.close()
values = bz2.compress("%s" % values)
else:
output = open(output_name, 'w')
output.write("%s" % values)
output.close()
except:
print "Probem writing file?! DEBUG me"
raise
return True
else:
return False
def hashIt(module): #We use this to check if configuration changed
import hashlib #Benchmarked: hashlib.sha1, hashlib.sha256, hashlib.md5
#hashlib.sha1 is the fastest
key_string = str({key: value for key, value in module.__dict__.iteritems()
if not (key.startswith('__') or key.startswith('_'))})
return key_string, str(hashlib.sha1(key_string).hexdigest())
def hashDict(dictionary):
import hashlib
return str(hashlib.sha1(str(dictionary)).hexdigest())
def is_folder(output_dir=".store"):
#FIXME: allow recursive creation
import os.path
output_dir = str(output_dir)
if not os.path.isdir(output_dir):
if not os.path.exists(output_dir):
try:
os.mkdir(output_dir)
except:
print "Unknown error creating folder"
raise
return True
else:
exit("Destination must be a folder! Check your config")
else:
return True
def write_log(uniqueId, output_dir="history", name="history.log"):
import time
history = open(output_dir + "/" + name, 'a') #Update the history
history.write("%f, %s\n" % (time.time(), uniqueId))
history.close()
def write_batch_log(sessionId, cycle, output_dir="batch"):
print cycle, output_dir, sessionId
save = {
"cycle":cycle
} #Do we need something else?
saveKey(str(sessionId), save, output_dir, compress=False, force_write=True)
def membraneImage(values,
title=False,
close=True,
scales=None):
"""
Output an image of the membrane potential from a list of Membrane values.
zoom = (stretch_x, stretch_y) means the stretch that is applied to x and y axes
"""
#https://docs.python.org/2/tutorial/controlflow.html#default-argument-values
if not scales:
scales = []
#TODO: Add stimulation trace
import matplotlib.pyplot as plt
import numpy as np
Vm_list = values
if close:
plt.clf()
plt.cla()
x = len(Vm_list)
x = np.array(range(0, x))
fig, ax1 = plt.subplots()
ax1.plot(x, np.array(Vm_list))
ax1.set_xlabel('time (ms)')
ax1.set_ylabel('Membrane Potential\n(mV)')
if title:
plt.title(title)
plt.show()
return plt
#COLORS
_NUMERALS = '0123456789abcdefABCDEF'
_HEXDEC = {v: int(v, 16) for v in (x+y for x in _NUMERALS for y in _NUMERALS)}
LOWERCASE, UPPERCASE = 'x', 'X'
MAP = {0: "R", 1: "G", 2: "B"}
COLORS=['k', 'm', 'r', 'y', 'w', 'g', 'c', [ 0.08, 0.80, 0.3], [ 0.68531278, 0.89077202,0.47581724], [ 0.80060385, 0.5, 0.1], [ 0.85033402,0.51683594, 0.11595041], [ 0.69312674, 0.66558017, 0.19565276], [0.09279514, 0.29094335, 0.85578709], [ 0.12722716, 0.62390063, 0.6649016 ], [ 0.91393435, 0.40349173, 0.10641532], [ 0.75184848, 0.79743901, 0.52527901], [ 0.44535098, 0.97818332, 0.03139634], [ 0.57541834, 0.22390996, 0.92280031], [ 0.22892716, 0.24278792, 0.8204559 ], [ 0.19601175, 0.79459385, 0.48783126], [ 0.10710888, 0.30693979, 0.01899005], [ 0.35588286, 0.18795917, 0.14780942], [ 0.80756219, 0.56990641, 0.00645912], [ 0.65984658, 0.12283337, 0.78819321], [ 0.17601197, 0.78862402, 0.78049605], [ 0.57904688, 0.31030127, 0.65775516],[ 0.25918713, 0.40173477, 0.19886916]]
def rgb(triplet):
return _HEXDEC[triplet[0:2]], _HEXDEC[triplet[2:4]], _HEXDEC[triplet[4:6]]
def cprint(text, color="okblue", debug=False):
colors = {
'okblue': '\033[94m',
'info': '\033[94m',
'okgreen': '\033[92m',
'endc': '\033[0m',
'warning': '\033[93m',
'fail': '\033[91m',
'red': '\033[91m' #=fail
}
if not debug:# or debug: #change if enable debug
print colors[color]+text+colors['endc']
def saveFile(file_source, file_dest):
'''
Copy file #TODO: Enable compression (bz2/_lzma_)
'''
from shutil import copy2
from os.path import isfile
output_name = file_dest
if not isfile(output_name):
try:
copy2(file_source, file_dest)
except:
print "Probem copying file?! DEBUG me"
raise
else:
return False
def read_output(f, path, idx=0, total=0):
import imp
#Move import_istory to libs.IO?
from plugins.importer import import_history
from os.path import isfile, join
fail = False
print "[%s/%s]\tUsing file: %s" % (idx, total, f)
#_input.bz2 could be used, but is more difficult to extract, and is heavier
input_file = join(path, f.split("_")[1]) + "_input.py"
try:
input_conf = imp.load_source('*', input_file)
except IOError: #File _input.py missing, save name to file, will try later?
broken = open('ANALYSIS_FAILED.csv', 'a')
broken.write("%s,%s\n" % (f.split("_")[0], f.split("_")[1]))
broken.close()
cprint("FAILED, SKIPPING", 'fail')
fail = True
except SyntaxError:
broken = open('CONVERT_VUE_TO_PY.csv', 'a')
broken.write("%s,%s\n" % (f.split("_")[0], f.split("_")[1]))
broken.close()
cprint("FAILED, SKIPPING", 'fail')
fail = True
input_conf = vars(input_conf)
remove = ["step_input", "_S", "_N", "_stimuli", "_typicalN"]
input_conf_clear = {}
for var in input_conf:
if var not in remove and not var.startswith("__"):
input_conf_clear[var] = input_conf[var]
data = import_history(join(path, f), compressed=True) #FIXME: allow uncompressed
return data, input_conf_clear if not fail else False
def list_all(path, start_from, end_to):
from os import listdir
from os.path import isfile, join
files = [f for f in listdir(path) if isfile(join(path, f))]
#FIXME: allow uncompressed
outputs = list(set([f for f in files if "_output" in f]))
#Filter out unwanted runs
outputs = outputs[start_from:end_to] if end_to else outputs[start_from:]
total = len(outputs) + start_from
return outputs, total
def ask(msg
, exit_msg="Change your cli params then!"
, sure="Are you sure? [y/n]"
):
action = "z"
while action.capitalize() not in ["Y", "N"]:
action = raw_input(msg + "\n" + sure +": ")
if action.capitalize() == "Y":
break
else:
cprint(exit_msg, 'warning')
exit()
def reset_world(): #TODO: move to own function (like in IO.py)
'''
Reset gazebo world. Replaces reset_all
'''
import subprocess
subprocess.call(["gz", "world", "-r"])
return True
|
gpl-2.0
|
alphaBenj/zipline
|
zipline/utils/calendars/exchange_calendar_tsx.py
|
5
|
2687
|
from datetime import time
from pandas.tseries.holiday import (
Holiday,
DateOffset,
MO,
weekend_to_monday,
GoodFriday
)
from pytz import timezone
from zipline.utils.calendars.trading_calendar import TradingCalendar, \
HolidayCalendar
from zipline.utils.calendars.us_holidays import Christmas
from zipline.utils.calendars.exchange_calendar_lse import (
WeekendChristmas,
BoxingDay,
WeekendBoxingDay
)
# New Year's Day
TSXNewYearsDay = Holiday(
"New Year's Day",
month=1,
day=1,
observance=weekend_to_monday,
)
# Ontario Family Day
FamilyDay = Holiday(
"Family Day",
month=2,
day=1,
offset=DateOffset(weekday=MO(3)),
start_date='2008-01-01',
)
# Victoria Day
VictoriaDay = Holiday(
'Victoria Day',
month=5,
day=25,
offset=DateOffset(weekday=MO(-1)),
)
# Canada Day
CanadaDay = Holiday(
'Canada Day',
month=7,
day=1,
observance=weekend_to_monday,
)
# Civic Holiday
CivicHoliday = Holiday(
'Civic Holiday',
month=8,
day=1,
offset=DateOffset(weekday=MO(1)),
)
# Labor Day
LaborDay = Holiday(
'Labor Day',
month=9,
day=1,
offset=DateOffset(weekday=MO(1)),
)
# Thanksgiving
Thanksgiving = Holiday(
'Thanksgiving',
month=10,
day=1,
offset=DateOffset(weekday=MO(2)),
)
class TSXExchangeCalendar(TradingCalendar):
"""
Exchange calendar for the Toronto Stock Exchange
Open Time: 9:30 AM, EST
Close Time: 4:00 PM, EST
Regularly-Observed Holidays:
- New Years Day (observed on first business day on/after)
- Family Day (Third Monday in February after 2008)
- Good Friday
- Victoria Day (Monday before May 25th)
- Canada Day (July 1st, observed first business day after)
- Civic Holiday (First Monday in August)
- Labor Day (First Monday in September)
- Thanksgiving (Second Monday in October)
- Christmas Day
- Dec. 27th (if Christmas is on a weekend)
- Boxing Day
- Dec. 28th (if Boxing Day is on a weekend)
"""
@property
def name(self):
return "TSX"
@property
def tz(self):
return timezone('Canada/Atlantic')
@property
def open_time(self):
return time(9, 31)
@property
def close_time(self):
return time(16)
@property
def regular_holidays(self):
return HolidayCalendar([
TSXNewYearsDay,
FamilyDay,
GoodFriday,
VictoriaDay,
CanadaDay,
CivicHoliday,
LaborDay,
Thanksgiving,
Christmas,
WeekendChristmas,
BoxingDay,
WeekendBoxingDay
])
|
apache-2.0
|
lbishal/scikit-learn
|
examples/cluster/plot_cluster_comparison.py
|
246
|
4684
|
"""
=========================================================
Comparing different clustering algorithms on toy datasets
=========================================================
This example aims at showing characteristics of different
clustering algorithms on datasets that are "interesting"
but still in 2D. The last dataset is an example of a 'null'
situation for clustering: the data is homogeneous, and
there is no good clustering.
While these examples give some intuition about the algorithms,
this intuition might not apply to very high dimensional data.
The results could be improved by tweaking the parameters for
each clustering strategy, for instance setting the number of
clusters for the methods that needs this parameter
specified. Note that affinity propagation has a tendency to
create many clusters. Thus in this example its two parameters
(damping and per-point preference) were set to to mitigate this
behavior.
"""
print(__doc__)
import time
import numpy as np
import matplotlib.pyplot as plt
from sklearn import cluster, datasets
from sklearn.neighbors import kneighbors_graph
from sklearn.preprocessing import StandardScaler
np.random.seed(0)
# Generate datasets. We choose the size big enough to see the scalability
# of the algorithms, but not too big to avoid too long running times
n_samples = 1500
noisy_circles = datasets.make_circles(n_samples=n_samples, factor=.5,
noise=.05)
noisy_moons = datasets.make_moons(n_samples=n_samples, noise=.05)
blobs = datasets.make_blobs(n_samples=n_samples, random_state=8)
no_structure = np.random.rand(n_samples, 2), None
colors = np.array([x for x in 'bgrcmykbgrcmykbgrcmykbgrcmyk'])
colors = np.hstack([colors] * 20)
clustering_names = [
'MiniBatchKMeans', 'AffinityPropagation', 'MeanShift',
'SpectralClustering', 'Ward', 'AgglomerativeClustering',
'DBSCAN', 'Birch']
plt.figure(figsize=(len(clustering_names) * 2 + 3, 9.5))
plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05,
hspace=.01)
plot_num = 1
datasets = [noisy_circles, noisy_moons, blobs, no_structure]
for i_dataset, dataset in enumerate(datasets):
X, y = dataset
# normalize dataset for easier parameter selection
X = StandardScaler().fit_transform(X)
# estimate bandwidth for mean shift
bandwidth = cluster.estimate_bandwidth(X, quantile=0.3)
# connectivity matrix for structured Ward
connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False)
# make connectivity symmetric
connectivity = 0.5 * (connectivity + connectivity.T)
# create clustering estimators
ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True)
two_means = cluster.MiniBatchKMeans(n_clusters=2)
ward = cluster.AgglomerativeClustering(n_clusters=2, linkage='ward',
connectivity=connectivity)
spectral = cluster.SpectralClustering(n_clusters=2,
eigen_solver='arpack',
affinity="nearest_neighbors")
dbscan = cluster.DBSCAN(eps=.2)
affinity_propagation = cluster.AffinityPropagation(damping=.9,
preference=-200)
average_linkage = cluster.AgglomerativeClustering(
linkage="average", affinity="cityblock", n_clusters=2,
connectivity=connectivity)
birch = cluster.Birch(n_clusters=2)
clustering_algorithms = [
two_means, affinity_propagation, ms, spectral, ward, average_linkage,
dbscan, birch]
for name, algorithm in zip(clustering_names, clustering_algorithms):
# predict cluster memberships
t0 = time.time()
algorithm.fit(X)
t1 = time.time()
if hasattr(algorithm, 'labels_'):
y_pred = algorithm.labels_.astype(np.int)
else:
y_pred = algorithm.predict(X)
# plot
plt.subplot(4, len(clustering_algorithms), plot_num)
if i_dataset == 0:
plt.title(name, size=18)
plt.scatter(X[:, 0], X[:, 1], color=colors[y_pred].tolist(), s=10)
if hasattr(algorithm, 'cluster_centers_'):
centers = algorithm.cluster_centers_
center_colors = colors[:len(centers)]
plt.scatter(centers[:, 0], centers[:, 1], s=100, c=center_colors)
plt.xlim(-2, 2)
plt.ylim(-2, 2)
plt.xticks(())
plt.yticks(())
plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'),
transform=plt.gca().transAxes, size=15,
horizontalalignment='right')
plot_num += 1
plt.show()
|
bsd-3-clause
|
jseabold/statsmodels
|
statsmodels/datasets/strikes/data.py
|
4
|
1875
|
"""U.S. Strike Duration Data"""
from statsmodels.datasets import utils as du
__docformat__ = 'restructuredtext'
COPYRIGHT = """This is public domain."""
TITLE = __doc__
SOURCE = """
This is a subset of the data used in Kennan (1985). It was originally
published by the Bureau of Labor Statistics.
::
Kennan, J. 1985. "The duration of contract strikes in US manufacturing.
`Journal of Econometrics` 28.1, 5-28.
"""
DESCRSHORT = """Contains data on the length of strikes in US manufacturing and
unanticipated industrial production."""
DESCRLONG = """Contains data on the length of strikes in US manufacturing and
unanticipated industrial production. The data is a subset of the data originally
used by Kennan. The data here is data for the months of June only to avoid
seasonal issues."""
#suggested notes
NOTE = """::
Number of observations - 62
Number of variables - 2
Variable name definitions::
duration - duration of the strike in days
iprod - unanticipated industrial production
"""
def load_pandas():
"""
Load the strikes data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
data = _get_data()
return du.process_pandas(data, endog_idx=0)
def load(as_pandas=None):
"""
Load the strikes data and return a Dataset class instance.
Parameters
----------
as_pandas : bool
Flag indicating whether to return pandas DataFrames and Series
or numpy recarrays and arrays. If True, returns pandas.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
return du.as_numpy_dataset(load_pandas(), as_pandas=as_pandas)
def _get_data():
return du.load_csv(__file__,'strikes.csv').astype(float)
|
bsd-3-clause
|
fyffyt/scikit-learn
|
sklearn/cross_validation.py
|
47
|
67782
|
"""
The :mod:`sklearn.cross_validation` module includes utilities for cross-
validation and performance evaluation.
"""
# Author: Alexandre Gramfort <[email protected]>,
# Gael Varoquaux <[email protected]>,
# Olivier Grisel <[email protected]>
# License: BSD 3 clause
from __future__ import print_function
from __future__ import division
import warnings
from itertools import chain, combinations
from math import ceil, floor, factorial
import numbers
import time
from abc import ABCMeta, abstractmethod
import numpy as np
import scipy.sparse as sp
from .base import is_classifier, clone
from .utils import indexable, check_random_state, safe_indexing
from .utils.validation import (_is_arraylike, _num_samples,
check_array, column_or_1d)
from .utils.multiclass import type_of_target
from .externals.joblib import Parallel, delayed, logger
from .externals.six import with_metaclass
from .externals.six.moves import zip
from .metrics.scorer import check_scoring
from .utils.fixes import bincount
__all__ = ['KFold',
'LabelKFold',
'LeaveOneLabelOut',
'LeaveOneOut',
'LeavePLabelOut',
'LeavePOut',
'ShuffleSplit',
'StratifiedKFold',
'StratifiedShuffleSplit',
'PredefinedSplit',
'LabelShuffleSplit',
'check_cv',
'cross_val_score',
'cross_val_predict',
'permutation_test_score',
'train_test_split']
class _PartitionIterator(with_metaclass(ABCMeta)):
"""Base class for CV iterators where train_mask = ~test_mask
Implementations must define `_iter_test_masks` or `_iter_test_indices`.
Parameters
----------
n : int
Total number of elements in dataset.
"""
def __init__(self, n):
if abs(n - int(n)) >= np.finfo('f').eps:
raise ValueError("n must be an integer")
self.n = int(n)
def __iter__(self):
ind = np.arange(self.n)
for test_index in self._iter_test_masks():
train_index = np.logical_not(test_index)
train_index = ind[train_index]
test_index = ind[test_index]
yield train_index, test_index
# Since subclasses must implement either _iter_test_masks or
# _iter_test_indices, neither can be abstract.
def _iter_test_masks(self):
"""Generates boolean masks corresponding to test sets.
By default, delegates to _iter_test_indices()
"""
for test_index in self._iter_test_indices():
test_mask = self._empty_mask()
test_mask[test_index] = True
yield test_mask
def _iter_test_indices(self):
"""Generates integer indices corresponding to test sets."""
raise NotImplementedError
def _empty_mask(self):
return np.zeros(self.n, dtype=np.bool)
class LeaveOneOut(_PartitionIterator):
"""Leave-One-Out cross validation iterator.
Provides train/test indices to split data in train test sets. Each
sample is used once as a test set (singleton) while the remaining
samples form the training set.
Note: ``LeaveOneOut(n)`` is equivalent to ``KFold(n, n_folds=n)`` and
``LeavePOut(n, p=1)``.
Due to the high number of test sets (which is the same as the
number of samples) this cross validation method can be very costly.
For large datasets one should favor KFold, StratifiedKFold or
ShuffleSplit.
Read more in the :ref:`User Guide <cross_validation>`.
Parameters
----------
n : int
Total number of elements in dataset.
Examples
--------
>>> from sklearn import cross_validation
>>> X = np.array([[1, 2], [3, 4]])
>>> y = np.array([1, 2])
>>> loo = cross_validation.LeaveOneOut(2)
>>> len(loo)
2
>>> print(loo)
sklearn.cross_validation.LeaveOneOut(n=2)
>>> for train_index, test_index in loo:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
... print(X_train, X_test, y_train, y_test)
TRAIN: [1] TEST: [0]
[[3 4]] [[1 2]] [2] [1]
TRAIN: [0] TEST: [1]
[[1 2]] [[3 4]] [1] [2]
See also
--------
LeaveOneLabelOut for splitting the data according to explicit,
domain-specific stratification of the dataset.
"""
def _iter_test_indices(self):
return range(self.n)
def __repr__(self):
return '%s.%s(n=%i)' % (
self.__class__.__module__,
self.__class__.__name__,
self.n,
)
def __len__(self):
return self.n
class LeavePOut(_PartitionIterator):
"""Leave-P-Out cross validation iterator
Provides train/test indices to split data in train test sets. This results
in testing on all distinct samples of size p, while the remaining n - p
samples form the training set in each iteration.
Note: ``LeavePOut(n, p)`` is NOT equivalent to ``KFold(n, n_folds=n // p)``
which creates non-overlapping test sets.
Due to the high number of iterations which grows combinatorically with the
number of samples this cross validation method can be very costly. For
large datasets one should favor KFold, StratifiedKFold or ShuffleSplit.
Read more in the :ref:`User Guide <cross_validation>`.
Parameters
----------
n : int
Total number of elements in dataset.
p : int
Size of the test sets.
Examples
--------
>>> from sklearn import cross_validation
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
>>> y = np.array([1, 2, 3, 4])
>>> lpo = cross_validation.LeavePOut(4, 2)
>>> len(lpo)
6
>>> print(lpo)
sklearn.cross_validation.LeavePOut(n=4, p=2)
>>> for train_index, test_index in lpo:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [2 3] TEST: [0 1]
TRAIN: [1 3] TEST: [0 2]
TRAIN: [1 2] TEST: [0 3]
TRAIN: [0 3] TEST: [1 2]
TRAIN: [0 2] TEST: [1 3]
TRAIN: [0 1] TEST: [2 3]
"""
def __init__(self, n, p):
super(LeavePOut, self).__init__(n)
self.p = p
def _iter_test_indices(self):
for comb in combinations(range(self.n), self.p):
yield np.array(comb)
def __repr__(self):
return '%s.%s(n=%i, p=%i)' % (
self.__class__.__module__,
self.__class__.__name__,
self.n,
self.p,
)
def __len__(self):
return int(factorial(self.n) / factorial(self.n - self.p)
/ factorial(self.p))
class _BaseKFold(with_metaclass(ABCMeta, _PartitionIterator)):
"""Base class to validate KFold approaches"""
@abstractmethod
def __init__(self, n, n_folds, shuffle, random_state):
super(_BaseKFold, self).__init__(n)
if abs(n_folds - int(n_folds)) >= np.finfo('f').eps:
raise ValueError("n_folds must be an integer")
self.n_folds = n_folds = int(n_folds)
if n_folds <= 1:
raise ValueError(
"k-fold cross validation requires at least one"
" train / test split by setting n_folds=2 or more,"
" got n_folds={0}.".format(n_folds))
if n_folds > self.n:
raise ValueError(
("Cannot have number of folds n_folds={0} greater"
" than the number of samples: {1}.").format(n_folds, n))
if not isinstance(shuffle, bool):
raise TypeError("shuffle must be True or False;"
" got {0}".format(shuffle))
self.shuffle = shuffle
self.random_state = random_state
class KFold(_BaseKFold):
"""K-Folds cross validation iterator.
Provides train/test indices to split data in train test sets. Split
dataset into k consecutive folds (without shuffling by default).
Each fold is then used a validation set once while the k - 1 remaining
fold form the training set.
Read more in the :ref:`User Guide <cross_validation>`.
Parameters
----------
n : int
Total number of elements.
n_folds : int, default=3
Number of folds. Must be at least 2.
shuffle : boolean, optional
Whether to shuffle the data before splitting into batches.
random_state : None, int or RandomState
When shuffle=True, pseudo-random number generator state used for
shuffling. If None, use default numpy RNG for shuffling.
Examples
--------
>>> from sklearn.cross_validation import KFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([1, 2, 3, 4])
>>> kf = KFold(4, n_folds=2)
>>> len(kf)
2
>>> print(kf) # doctest: +NORMALIZE_WHITESPACE
sklearn.cross_validation.KFold(n=4, n_folds=2, shuffle=False,
random_state=None)
>>> for train_index, test_index in kf:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [2 3] TEST: [0 1]
TRAIN: [0 1] TEST: [2 3]
Notes
-----
The first n % n_folds folds have size n // n_folds + 1, other folds have
size n // n_folds.
See also
--------
StratifiedKFold: take label information into account to avoid building
folds with imbalanced class distributions (for binary or multiclass
classification tasks).
LabelKFold: K-fold iterator variant with non-overlapping labels.
"""
def __init__(self, n, n_folds=3, shuffle=False,
random_state=None):
super(KFold, self).__init__(n, n_folds, shuffle, random_state)
self.idxs = np.arange(n)
if shuffle:
rng = check_random_state(self.random_state)
rng.shuffle(self.idxs)
def _iter_test_indices(self):
n = self.n
n_folds = self.n_folds
fold_sizes = (n // n_folds) * np.ones(n_folds, dtype=np.int)
fold_sizes[:n % n_folds] += 1
current = 0
for fold_size in fold_sizes:
start, stop = current, current + fold_size
yield self.idxs[start:stop]
current = stop
def __repr__(self):
return '%s.%s(n=%i, n_folds=%i, shuffle=%s, random_state=%s)' % (
self.__class__.__module__,
self.__class__.__name__,
self.n,
self.n_folds,
self.shuffle,
self.random_state,
)
def __len__(self):
return self.n_folds
class LabelKFold(_BaseKFold):
"""K-fold iterator variant with non-overlapping labels.
The same label will not appear in two different folds (the number of
distinct labels has to be at least equal to the number of folds).
The folds are approximately balanced in the sense that the number of
distinct labels is approximately the same in each fold.
Parameters
----------
labels : array-like with shape (n_samples, )
Contains a label for each sample.
The folds are built so that the same label does not appear in two
different folds.
n_folds : int, default=3
Number of folds. Must be at least 2.
shuffle : boolean, optional
Whether to shuffle the data before splitting into batches.
random_state : None, int or RandomState
When shuffle=True, pseudo-random number generator state used for
shuffling. If None, use default numpy RNG for shuffling.
Examples
--------
>>> from sklearn.cross_validation import LabelKFold
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
>>> y = np.array([1, 2, 3, 4])
>>> labels = np.array([0, 0, 2, 2])
>>> label_kfold = LabelKFold(labels, n_folds=2)
>>> len(label_kfold)
2
>>> print(label_kfold)
sklearn.cross_validation.LabelKFold(n_labels=4, n_folds=2)
>>> for train_index, test_index in label_kfold:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
... print(X_train, X_test, y_train, y_test)
...
TRAIN: [0 1] TEST: [2 3]
[[1 2]
[3 4]] [[5 6]
[7 8]] [1 2] [3 4]
TRAIN: [2 3] TEST: [0 1]
[[5 6]
[7 8]] [[1 2]
[3 4]] [3 4] [1 2]
See also
--------
LeaveOneLabelOut for splitting the data according to explicit,
domain-specific stratification of the dataset.
"""
def __init__(self, labels, n_folds=3, shuffle=False, random_state=None):
super(LabelKFold, self).__init__(len(labels), n_folds, shuffle,
random_state)
unique_labels, labels = np.unique(labels, return_inverse=True)
n_labels = len(unique_labels)
if n_folds > n_labels:
raise ValueError(
("Cannot have number of folds n_folds={0} greater"
" than the number of labels: {1}.").format(n_folds,
n_labels))
# Weight labels by their number of occurences
n_samples_per_label = np.bincount(labels)
# Distribute the most frequent labels first
indices = np.argsort(n_samples_per_label)[::-1]
n_samples_per_label = n_samples_per_label[indices]
# Total weight of each fold
n_samples_per_fold = np.zeros(n_folds)
# Mapping from label index to fold index
label_to_fold = np.zeros(len(unique_labels))
# Distribute samples by adding the largest weight to the lightest fold
for label_index, weight in enumerate(n_samples_per_label):
lightest_fold = np.argmin(n_samples_per_fold)
n_samples_per_fold[lightest_fold] += weight
label_to_fold[indices[label_index]] = lightest_fold
self.idxs = label_to_fold[labels]
if shuffle:
rng = check_random_state(self.random_state)
rng.shuffle(self.idxs)
def _iter_test_indices(self):
for i in range(self.n_folds):
yield (self.idxs == i)
def __repr__(self):
return '{0}.{1}(n_labels={2}, n_folds={3})'.format(
self.__class__.__module__,
self.__class__.__name__,
self.n,
self.n_folds,
)
def __len__(self):
return self.n_folds
class StratifiedKFold(_BaseKFold):
"""Stratified K-Folds cross validation iterator
Provides train/test indices to split data in train test sets.
This cross-validation object is a variation of KFold that
returns stratified folds. The folds are made by preserving
the percentage of samples for each class.
Read more in the :ref:`User Guide <cross_validation>`.
Parameters
----------
y : array-like, [n_samples]
Samples to split in K folds.
n_folds : int, default=3
Number of folds. Must be at least 2.
shuffle : boolean, optional
Whether to shuffle each stratification of the data before splitting
into batches.
random_state : None, int or RandomState
When shuffle=True, pseudo-random number generator state used for
shuffling. If None, use default numpy RNG for shuffling.
Examples
--------
>>> from sklearn.cross_validation import StratifiedKFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> skf = StratifiedKFold(y, n_folds=2)
>>> len(skf)
2
>>> print(skf) # doctest: +NORMALIZE_WHITESPACE
sklearn.cross_validation.StratifiedKFold(labels=[0 0 1 1], n_folds=2,
shuffle=False, random_state=None)
>>> for train_index, test_index in skf:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [1 3] TEST: [0 2]
TRAIN: [0 2] TEST: [1 3]
Notes
-----
All the folds have size trunc(n_samples / n_folds), the last one has the
complementary.
See also
--------
LabelKFold: K-fold iterator variant with non-overlapping labels.
"""
def __init__(self, y, n_folds=3, shuffle=False,
random_state=None):
super(StratifiedKFold, self).__init__(
len(y), n_folds, shuffle, random_state)
y = np.asarray(y)
n_samples = y.shape[0]
unique_labels, y_inversed = np.unique(y, return_inverse=True)
label_counts = bincount(y_inversed)
min_labels = np.min(label_counts)
if self.n_folds > min_labels:
warnings.warn(("The least populated class in y has only %d"
" members, which is too few. The minimum"
" number of labels for any class cannot"
" be less than n_folds=%d."
% (min_labels, self.n_folds)), Warning)
# don't want to use the same seed in each label's shuffle
if self.shuffle:
rng = check_random_state(self.random_state)
else:
rng = self.random_state
# pre-assign each sample to a test fold index using individual KFold
# splitting strategies for each label so as to respect the
# balance of labels
per_label_cvs = [
KFold(max(c, self.n_folds), self.n_folds, shuffle=self.shuffle,
random_state=rng) for c in label_counts]
test_folds = np.zeros(n_samples, dtype=np.int)
for test_fold_idx, per_label_splits in enumerate(zip(*per_label_cvs)):
for label, (_, test_split) in zip(unique_labels, per_label_splits):
label_test_folds = test_folds[y == label]
# the test split can be too big because we used
# KFold(max(c, self.n_folds), self.n_folds) instead of
# KFold(c, self.n_folds) to make it possible to not crash even
# if the data is not 100% stratifiable for all the labels
# (we use a warning instead of raising an exception)
# If this is the case, let's trim it:
test_split = test_split[test_split < len(label_test_folds)]
label_test_folds[test_split] = test_fold_idx
test_folds[y == label] = label_test_folds
self.test_folds = test_folds
self.y = y
def _iter_test_masks(self):
for i in range(self.n_folds):
yield self.test_folds == i
def __repr__(self):
return '%s.%s(labels=%s, n_folds=%i, shuffle=%s, random_state=%s)' % (
self.__class__.__module__,
self.__class__.__name__,
self.y,
self.n_folds,
self.shuffle,
self.random_state,
)
def __len__(self):
return self.n_folds
class LeaveOneLabelOut(_PartitionIterator):
"""Leave-One-Label_Out cross-validation iterator
Provides train/test indices to split data according to a third-party
provided label. This label information can be used to encode arbitrary
domain specific stratifications of the samples as integers.
For instance the labels could be the year of collection of the samples
and thus allow for cross-validation against time-based splits.
Read more in the :ref:`User Guide <cross_validation>`.
Parameters
----------
labels : array-like of int with shape (n_samples,)
Arbitrary domain-specific stratification of the data to be used
to draw the splits.
Examples
--------
>>> from sklearn import cross_validation
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
>>> y = np.array([1, 2, 1, 2])
>>> labels = np.array([1, 1, 2, 2])
>>> lol = cross_validation.LeaveOneLabelOut(labels)
>>> len(lol)
2
>>> print(lol)
sklearn.cross_validation.LeaveOneLabelOut(labels=[1 1 2 2])
>>> for train_index, test_index in lol:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
... print(X_train, X_test, y_train, y_test)
TRAIN: [2 3] TEST: [0 1]
[[5 6]
[7 8]] [[1 2]
[3 4]] [1 2] [1 2]
TRAIN: [0 1] TEST: [2 3]
[[1 2]
[3 4]] [[5 6]
[7 8]] [1 2] [1 2]
See also
--------
LabelKFold: K-fold iterator variant with non-overlapping labels.
"""
def __init__(self, labels):
super(LeaveOneLabelOut, self).__init__(len(labels))
# We make a copy of labels to avoid side-effects during iteration
self.labels = np.array(labels, copy=True)
self.unique_labels = np.unique(labels)
self.n_unique_labels = len(self.unique_labels)
def _iter_test_masks(self):
for i in self.unique_labels:
yield self.labels == i
def __repr__(self):
return '%s.%s(labels=%s)' % (
self.__class__.__module__,
self.__class__.__name__,
self.labels,
)
def __len__(self):
return self.n_unique_labels
class LeavePLabelOut(_PartitionIterator):
"""Leave-P-Label_Out cross-validation iterator
Provides train/test indices to split data according to a third-party
provided label. This label information can be used to encode arbitrary
domain specific stratifications of the samples as integers.
For instance the labels could be the year of collection of the samples
and thus allow for cross-validation against time-based splits.
The difference between LeavePLabelOut and LeaveOneLabelOut is that
the former builds the test sets with all the samples assigned to
``p`` different values of the labels while the latter uses samples
all assigned the same labels.
Read more in the :ref:`User Guide <cross_validation>`.
Parameters
----------
labels : array-like of int with shape (n_samples,)
Arbitrary domain-specific stratification of the data to be used
to draw the splits.
p : int
Number of samples to leave out in the test split.
Examples
--------
>>> from sklearn import cross_validation
>>> X = np.array([[1, 2], [3, 4], [5, 6]])
>>> y = np.array([1, 2, 1])
>>> labels = np.array([1, 2, 3])
>>> lpl = cross_validation.LeavePLabelOut(labels, p=2)
>>> len(lpl)
3
>>> print(lpl)
sklearn.cross_validation.LeavePLabelOut(labels=[1 2 3], p=2)
>>> for train_index, test_index in lpl:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
... print(X_train, X_test, y_train, y_test)
TRAIN: [2] TEST: [0 1]
[[5 6]] [[1 2]
[3 4]] [1] [1 2]
TRAIN: [1] TEST: [0 2]
[[3 4]] [[1 2]
[5 6]] [2] [1 1]
TRAIN: [0] TEST: [1 2]
[[1 2]] [[3 4]
[5 6]] [1] [2 1]
See also
--------
LabelKFold: K-fold iterator variant with non-overlapping labels.
"""
def __init__(self, labels, p):
# We make a copy of labels to avoid side-effects during iteration
super(LeavePLabelOut, self).__init__(len(labels))
self.labels = np.array(labels, copy=True)
self.unique_labels = np.unique(labels)
self.n_unique_labels = len(self.unique_labels)
self.p = p
def _iter_test_masks(self):
comb = combinations(range(self.n_unique_labels), self.p)
for idx in comb:
test_index = self._empty_mask()
idx = np.array(idx)
for l in self.unique_labels[idx]:
test_index[self.labels == l] = True
yield test_index
def __repr__(self):
return '%s.%s(labels=%s, p=%s)' % (
self.__class__.__module__,
self.__class__.__name__,
self.labels,
self.p,
)
def __len__(self):
return int(factorial(self.n_unique_labels) /
factorial(self.n_unique_labels - self.p) /
factorial(self.p))
class BaseShuffleSplit(with_metaclass(ABCMeta)):
"""Base class for ShuffleSplit and StratifiedShuffleSplit"""
def __init__(self, n, n_iter=10, test_size=0.1, train_size=None,
random_state=None):
self.n = n
self.n_iter = n_iter
self.test_size = test_size
self.train_size = train_size
self.random_state = random_state
self.n_train, self.n_test = _validate_shuffle_split(n, test_size,
train_size)
def __iter__(self):
for train, test in self._iter_indices():
yield train, test
return
@abstractmethod
def _iter_indices(self):
"""Generate (train, test) indices"""
class ShuffleSplit(BaseShuffleSplit):
"""Random permutation cross-validation iterator.
Yields indices to split data into training and test sets.
Note: contrary to other cross-validation strategies, random splits
do not guarantee that all folds will be different, although this is
still very likely for sizeable datasets.
Read more in the :ref:`User Guide <cross_validation>`.
Parameters
----------
n : int
Total number of elements in the dataset.
n_iter : int (default 10)
Number of re-shuffling & splitting iterations.
test_size : float (default 0.1), int, or None
If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the test split. If
int, represents the absolute number of test samples. If None,
the value is automatically set to the complement of the train size.
train_size : float, int, or None (default is None)
If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the train split. If
int, represents the absolute number of train samples. If None,
the value is automatically set to the complement of the test size.
random_state : int or RandomState
Pseudo-random number generator state used for random sampling.
Examples
--------
>>> from sklearn import cross_validation
>>> rs = cross_validation.ShuffleSplit(4, n_iter=3,
... test_size=.25, random_state=0)
>>> len(rs)
3
>>> print(rs)
... # doctest: +ELLIPSIS
ShuffleSplit(4, n_iter=3, test_size=0.25, ...)
>>> for train_index, test_index in rs:
... print("TRAIN:", train_index, "TEST:", test_index)
...
TRAIN: [3 1 0] TEST: [2]
TRAIN: [2 1 3] TEST: [0]
TRAIN: [0 2 1] TEST: [3]
>>> rs = cross_validation.ShuffleSplit(4, n_iter=3,
... train_size=0.5, test_size=.25, random_state=0)
>>> for train_index, test_index in rs:
... print("TRAIN:", train_index, "TEST:", test_index)
...
TRAIN: [3 1] TEST: [2]
TRAIN: [2 1] TEST: [0]
TRAIN: [0 2] TEST: [3]
"""
def _iter_indices(self):
rng = check_random_state(self.random_state)
for i in range(self.n_iter):
# random partition
permutation = rng.permutation(self.n)
ind_test = permutation[:self.n_test]
ind_train = permutation[self.n_test:self.n_test + self.n_train]
yield ind_train, ind_test
def __repr__(self):
return ('%s(%d, n_iter=%d, test_size=%s, '
'random_state=%s)' % (
self.__class__.__name__,
self.n,
self.n_iter,
str(self.test_size),
self.random_state,
))
def __len__(self):
return self.n_iter
def _validate_shuffle_split(n, test_size, train_size):
if test_size is None and train_size is None:
raise ValueError(
'test_size and train_size can not both be None')
if test_size is not None:
if np.asarray(test_size).dtype.kind == 'f':
if test_size >= 1.:
raise ValueError(
'test_size=%f should be smaller '
'than 1.0 or be an integer' % test_size)
elif np.asarray(test_size).dtype.kind == 'i':
if test_size >= n:
raise ValueError(
'test_size=%d should be smaller '
'than the number of samples %d' % (test_size, n))
else:
raise ValueError("Invalid value for test_size: %r" % test_size)
if train_size is not None:
if np.asarray(train_size).dtype.kind == 'f':
if train_size >= 1.:
raise ValueError("train_size=%f should be smaller "
"than 1.0 or be an integer" % train_size)
elif np.asarray(test_size).dtype.kind == 'f' and \
train_size + test_size > 1.:
raise ValueError('The sum of test_size and train_size = %f, '
'should be smaller than 1.0. Reduce '
'test_size and/or train_size.' %
(train_size + test_size))
elif np.asarray(train_size).dtype.kind == 'i':
if train_size >= n:
raise ValueError("train_size=%d should be smaller "
"than the number of samples %d" %
(train_size, n))
else:
raise ValueError("Invalid value for train_size: %r" % train_size)
if np.asarray(test_size).dtype.kind == 'f':
n_test = ceil(test_size * n)
elif np.asarray(test_size).dtype.kind == 'i':
n_test = float(test_size)
if train_size is None:
n_train = n - n_test
else:
if np.asarray(train_size).dtype.kind == 'f':
n_train = floor(train_size * n)
else:
n_train = float(train_size)
if test_size is None:
n_test = n - n_train
if n_train + n_test > n:
raise ValueError('The sum of train_size and test_size = %d, '
'should be smaller than the number of '
'samples %d. Reduce test_size and/or '
'train_size.' % (n_train + n_test, n))
return int(n_train), int(n_test)
class StratifiedShuffleSplit(BaseShuffleSplit):
"""Stratified ShuffleSplit cross validation iterator
Provides train/test indices to split data in train test sets.
This cross-validation object is a merge of StratifiedKFold and
ShuffleSplit, which returns stratified randomized folds. The folds
are made by preserving the percentage of samples for each class.
Note: like the ShuffleSplit strategy, stratified random splits
do not guarantee that all folds will be different, although this is
still very likely for sizeable datasets.
Read more in the :ref:`User Guide <cross_validation>`.
Parameters
----------
y : array, [n_samples]
Labels of samples.
n_iter : int (default 10)
Number of re-shuffling & splitting iterations.
test_size : float (default 0.1), int, or None
If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the test split. If
int, represents the absolute number of test samples. If None,
the value is automatically set to the complement of the train size.
train_size : float, int, or None (default is None)
If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the train split. If
int, represents the absolute number of train samples. If None,
the value is automatically set to the complement of the test size.
random_state : int or RandomState
Pseudo-random number generator state used for random sampling.
Examples
--------
>>> from sklearn.cross_validation import StratifiedShuffleSplit
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> sss = StratifiedShuffleSplit(y, 3, test_size=0.5, random_state=0)
>>> len(sss)
3
>>> print(sss) # doctest: +ELLIPSIS
StratifiedShuffleSplit(labels=[0 0 1 1], n_iter=3, ...)
>>> for train_index, test_index in sss:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [1 2] TEST: [3 0]
TRAIN: [0 2] TEST: [1 3]
TRAIN: [0 2] TEST: [3 1]
"""
def __init__(self, y, n_iter=10, test_size=0.1, train_size=None,
random_state=None):
super(StratifiedShuffleSplit, self).__init__(
len(y), n_iter, test_size, train_size, random_state)
self.y = np.array(y)
self.classes, self.y_indices = np.unique(y, return_inverse=True)
n_cls = self.classes.shape[0]
if np.min(bincount(self.y_indices)) < 2:
raise ValueError("The least populated class in y has only 1"
" member, which is too few. The minimum"
" number of labels for any class cannot"
" be less than 2.")
if self.n_train < n_cls:
raise ValueError('The train_size = %d should be greater or '
'equal to the number of classes = %d' %
(self.n_train, n_cls))
if self.n_test < n_cls:
raise ValueError('The test_size = %d should be greater or '
'equal to the number of classes = %d' %
(self.n_test, n_cls))
def _iter_indices(self):
rng = check_random_state(self.random_state)
cls_count = bincount(self.y_indices)
p_i = cls_count / float(self.n)
n_i = np.round(self.n_train * p_i).astype(int)
t_i = np.minimum(cls_count - n_i,
np.round(self.n_test * p_i).astype(int))
for n in range(self.n_iter):
train = []
test = []
for i, cls in enumerate(self.classes):
permutation = rng.permutation(cls_count[i])
cls_i = np.where((self.y == cls))[0][permutation]
train.extend(cls_i[:n_i[i]])
test.extend(cls_i[n_i[i]:n_i[i] + t_i[i]])
# Because of rounding issues (as n_train and n_test are not
# dividers of the number of elements per class), we may end
# up here with less samples in train and test than asked for.
if len(train) < self.n_train or len(test) < self.n_test:
# We complete by affecting randomly the missing indexes
missing_idx = np.where(bincount(train + test,
minlength=len(self.y)) == 0,
)[0]
missing_idx = rng.permutation(missing_idx)
train.extend(missing_idx[:(self.n_train - len(train))])
test.extend(missing_idx[-(self.n_test - len(test)):])
train = rng.permutation(train)
test = rng.permutation(test)
yield train, test
def __repr__(self):
return ('%s(labels=%s, n_iter=%d, test_size=%s, '
'random_state=%s)' % (
self.__class__.__name__,
self.y,
self.n_iter,
str(self.test_size),
self.random_state,
))
def __len__(self):
return self.n_iter
class PredefinedSplit(_PartitionIterator):
"""Predefined split cross validation iterator
Splits the data into training/test set folds according to a predefined
scheme. Each sample can be assigned to at most one test set fold, as
specified by the user through the ``test_fold`` parameter.
Read more in the :ref:`User Guide <cross_validation>`.
Parameters
----------
test_fold : "array-like, shape (n_samples,)
test_fold[i] gives the test set fold of sample i. A value of -1
indicates that the corresponding sample is not part of any test set
folds, but will instead always be put into the training fold.
Examples
--------
>>> from sklearn.cross_validation import PredefinedSplit
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> ps = PredefinedSplit(test_fold=[0, 1, -1, 1])
>>> len(ps)
2
>>> print(ps) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
sklearn.cross_validation.PredefinedSplit(test_fold=[ 0 1 -1 1])
>>> for train_index, test_index in ps:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [1 2 3] TEST: [0]
TRAIN: [0 2] TEST: [1 3]
"""
def __init__(self, test_fold):
super(PredefinedSplit, self).__init__(len(test_fold))
self.test_fold = np.array(test_fold, dtype=np.int)
self.test_fold = column_or_1d(self.test_fold)
self.unique_folds = np.unique(self.test_fold)
self.unique_folds = self.unique_folds[self.unique_folds != -1]
def _iter_test_indices(self):
for f in self.unique_folds:
yield np.where(self.test_fold == f)[0]
def __repr__(self):
return '%s.%s(test_fold=%s)' % (
self.__class__.__module__,
self.__class__.__name__,
self.test_fold)
def __len__(self):
return len(self.unique_folds)
class LabelShuffleSplit(ShuffleSplit):
'''Shuffle-Labels-Out cross-validation iterator
Provides randomized train/test indices to split data according to a
third-party provided label. This label information can be used to encode
arbitrary domain specific stratifications of the samples as integers.
For instance the labels could be the year of collection of the samples
and thus allow for cross-validation against time-based splits.
The difference between LeavePLabelOut and LabelShuffleSplit is that
the former generates splits using all subsets of size ``p`` unique labels,
whereas LabelShuffleSplit generates a user-determined number of random
test splits, each with a user-determined fraction of unique labels.
For example, a less computationally intensive alternative to
``LeavePLabelOut(labels, p=10)`` would be
``LabelShuffleSplit(labels, test_size=10, n_iter=100)``.
Note: The parameters ``test_size`` and ``train_size`` refer to labels, and
not to samples, as in ShuffleSplit.
Parameters
----------
labels : array, [n_samples]
Labels of samples
n_iter : int (default 5)
Number of re-shuffling & splitting iterations.
test_size : float (default 0.2), int, or None
If float, should be between 0.0 and 1.0 and represent the
proportion of the labels to include in the test split. If
int, represents the absolute number of test labels. If None,
the value is automatically set to the complement of the train size.
train_size : float, int, or None (default is None)
If float, should be between 0.0 and 1.0 and represent the
proportion of the labels to include in the train split. If
int, represents the absolute number of train labels. If None,
the value is automatically set to the complement of the test size.
random_state : int or RandomState
Pseudo-random number generator state used for random sampling.
'''
def __init__(self, labels, n_iter=5, test_size=0.2, train_size=None,
random_state=None):
classes, label_indices = np.unique(labels, return_inverse=True)
super(LabelShuffleSplit, self).__init__(
len(classes),
n_iter=n_iter,
test_size=test_size,
train_size=train_size,
random_state=random_state)
self.labels = labels
self.classes = classes
self.label_indices = label_indices
def __repr__(self):
return ('%s(labels=%s, n_iter=%d, test_size=%s, '
'random_state=%s)' % (
self.__class__.__name__,
self.labels,
self.n_iter,
str(self.test_size),
self.random_state,
))
def __len__(self):
return self.n_iter
def _iter_indices(self):
for label_train, label_test in super(LabelShuffleSplit,
self)._iter_indices():
# these are the indices of classes in the partition
# invert them into data indices
train = np.flatnonzero(np.in1d(self.label_indices, label_train))
test = np.flatnonzero(np.in1d(self.label_indices, label_test))
yield train, test
##############################################################################
def _index_param_value(X, v, indices):
"""Private helper function for parameter value indexing."""
if not _is_arraylike(v) or _num_samples(v) != _num_samples(X):
# pass through: skip indexing
return v
if sp.issparse(v):
v = v.tocsr()
return safe_indexing(v, indices)
def cross_val_predict(estimator, X, y=None, cv=None, n_jobs=1,
verbose=0, fit_params=None, pre_dispatch='2*n_jobs'):
"""Generate cross-validated estimates for each input data point
Read more in the :ref:`User Guide <cross_validation>`.
Parameters
----------
estimator : estimator object implementing 'fit' and 'predict'
The object to use to fit the data.
X : array-like
The data to fit. Can be, for example a list, or an array at least 2d.
y : array-like, optional, default: None
The target variable to try to predict in the case of
supervised learning.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross-validation,
- integer, to specify the number of folds.
- An object to be used as a cross-validation generator.
- An iterable yielding train/test splits.
For integer/None inputs, if ``y`` is binary or multiclass,
:class:`StratifiedKFold` used. If the estimator is a classifier
or if ``y`` is neither binary nor multiclass, :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
n_jobs : integer, optional
The number of CPUs to use to do the computation. -1 means
'all CPUs'.
verbose : integer, optional
The verbosity level.
fit_params : dict, optional
Parameters to pass to the fit method of the estimator.
pre_dispatch : int, or string, optional
Controls the number of jobs that get dispatched during parallel
execution. Reducing this number can be useful to avoid an
explosion of memory consumption when more jobs get dispatched
than CPUs can process. This parameter can be:
- None, in which case all the jobs are immediately
created and spawned. Use this for lightweight and
fast-running jobs, to avoid delays due to on-demand
spawning of the jobs
- An int, giving the exact number of total jobs that are
spawned
- A string, giving an expression as a function of n_jobs,
as in '2*n_jobs'
Returns
-------
preds : ndarray
This is the result of calling 'predict'
"""
X, y = indexable(X, y)
cv = check_cv(cv, X, y, classifier=is_classifier(estimator))
# We clone the estimator to make sure that all the folds are
# independent, and that it is pickle-able.
parallel = Parallel(n_jobs=n_jobs, verbose=verbose,
pre_dispatch=pre_dispatch)
preds_blocks = parallel(delayed(_fit_and_predict)(clone(estimator), X, y,
train, test, verbose,
fit_params)
for train, test in cv)
preds = [p for p, _ in preds_blocks]
locs = np.concatenate([loc for _, loc in preds_blocks])
if not _check_is_partition(locs, _num_samples(X)):
raise ValueError('cross_val_predict only works for partitions')
inv_locs = np.empty(len(locs), dtype=int)
inv_locs[locs] = np.arange(len(locs))
# Check for sparse predictions
if sp.issparse(preds[0]):
preds = sp.vstack(preds, format=preds[0].format)
else:
preds = np.concatenate(preds)
return preds[inv_locs]
def _fit_and_predict(estimator, X, y, train, test, verbose, fit_params):
"""Fit estimator and predict values for a given dataset split.
Read more in the :ref:`User Guide <cross_validation>`.
Parameters
----------
estimator : estimator object implementing 'fit' and 'predict'
The object to use to fit the data.
X : array-like of shape at least 2D
The data to fit.
y : array-like, optional, default: None
The target variable to try to predict in the case of
supervised learning.
train : array-like, shape (n_train_samples,)
Indices of training samples.
test : array-like, shape (n_test_samples,)
Indices of test samples.
verbose : integer
The verbosity level.
fit_params : dict or None
Parameters that will be passed to ``estimator.fit``.
Returns
-------
preds : sequence
Result of calling 'estimator.predict'
test : array-like
This is the value of the test parameter
"""
# Adjust length of sample weights
fit_params = fit_params if fit_params is not None else {}
fit_params = dict([(k, _index_param_value(X, v, train))
for k, v in fit_params.items()])
X_train, y_train = _safe_split(estimator, X, y, train)
X_test, _ = _safe_split(estimator, X, y, test, train)
if y_train is None:
estimator.fit(X_train, **fit_params)
else:
estimator.fit(X_train, y_train, **fit_params)
preds = estimator.predict(X_test)
return preds, test
def _check_is_partition(locs, n):
"""Check whether locs is a reordering of the array np.arange(n)
Parameters
----------
locs : ndarray
integer array to test
n : int
number of expected elements
Returns
-------
is_partition : bool
True iff sorted(locs) is range(n)
"""
if len(locs) != n:
return False
hit = np.zeros(n, bool)
hit[locs] = True
if not np.all(hit):
return False
return True
def cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jobs=1,
verbose=0, fit_params=None, pre_dispatch='2*n_jobs'):
"""Evaluate a score by cross-validation
Read more in the :ref:`User Guide <cross_validation>`.
Parameters
----------
estimator : estimator object implementing 'fit'
The object to use to fit the data.
X : array-like
The data to fit. Can be, for example a list, or an array at least 2d.
y : array-like, optional, default: None
The target variable to try to predict in the case of
supervised learning.
scoring : string, callable or None, optional, default: None
A string (see model evaluation documentation) or
a scorer callable object / function with signature
``scorer(estimator, X, y)``.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross-validation,
- integer, to specify the number of folds.
- An object to be used as a cross-validation generator.
- An iterable yielding train/test splits.
For integer/None inputs, if ``y`` is binary or multiclass,
:class:`StratifiedKFold` used. If the estimator is a classifier
or if ``y`` is neither binary nor multiclass, :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
n_jobs : integer, optional
The number of CPUs to use to do the computation. -1 means
'all CPUs'.
verbose : integer, optional
The verbosity level.
fit_params : dict, optional
Parameters to pass to the fit method of the estimator.
pre_dispatch : int, or string, optional
Controls the number of jobs that get dispatched during parallel
execution. Reducing this number can be useful to avoid an
explosion of memory consumption when more jobs get dispatched
than CPUs can process. This parameter can be:
- None, in which case all the jobs are immediately
created and spawned. Use this for lightweight and
fast-running jobs, to avoid delays due to on-demand
spawning of the jobs
- An int, giving the exact number of total jobs that are
spawned
- A string, giving an expression as a function of n_jobs,
as in '2*n_jobs'
Returns
-------
scores : array of float, shape=(len(list(cv)),)
Array of scores of the estimator for each run of the cross validation.
"""
X, y = indexable(X, y)
cv = check_cv(cv, X, y, classifier=is_classifier(estimator))
scorer = check_scoring(estimator, scoring=scoring)
# We clone the estimator to make sure that all the folds are
# independent, and that it is pickle-able.
parallel = Parallel(n_jobs=n_jobs, verbose=verbose,
pre_dispatch=pre_dispatch)
scores = parallel(delayed(_fit_and_score)(clone(estimator), X, y, scorer,
train, test, verbose, None,
fit_params)
for train, test in cv)
return np.array(scores)[:, 0]
class FitFailedWarning(RuntimeWarning):
pass
def _fit_and_score(estimator, X, y, scorer, train, test, verbose,
parameters, fit_params, return_train_score=False,
return_parameters=False, error_score='raise'):
"""Fit estimator and compute scores for a given dataset split.
Parameters
----------
estimator : estimator object implementing 'fit'
The object to use to fit the data.
X : array-like of shape at least 2D
The data to fit.
y : array-like, optional, default: None
The target variable to try to predict in the case of
supervised learning.
scorer : callable
A scorer callable object / function with signature
``scorer(estimator, X, y)``.
train : array-like, shape (n_train_samples,)
Indices of training samples.
test : array-like, shape (n_test_samples,)
Indices of test samples.
verbose : integer
The verbosity level.
error_score : 'raise' (default) or numeric
Value to assign to the score if an error occurs in estimator fitting.
If set to 'raise', the error is raised. If a numeric value is given,
FitFailedWarning is raised. This parameter does not affect the refit
step, which will always raise the error.
parameters : dict or None
Parameters to be set on the estimator.
fit_params : dict or None
Parameters that will be passed to ``estimator.fit``.
return_train_score : boolean, optional, default: False
Compute and return score on training set.
return_parameters : boolean, optional, default: False
Return parameters that has been used for the estimator.
Returns
-------
train_score : float, optional
Score on training set, returned only if `return_train_score` is `True`.
test_score : float
Score on test set.
n_test_samples : int
Number of test samples.
scoring_time : float
Time spent for fitting and scoring in seconds.
parameters : dict or None, optional
The parameters that have been evaluated.
"""
if verbose > 1:
if parameters is None:
msg = "no parameters to be set"
else:
msg = '%s' % (', '.join('%s=%s' % (k, v)
for k, v in parameters.items()))
print("[CV] %s %s" % (msg, (64 - len(msg)) * '.'))
# Adjust length of sample weights
fit_params = fit_params if fit_params is not None else {}
fit_params = dict([(k, _index_param_value(X, v, train))
for k, v in fit_params.items()])
if parameters is not None:
estimator.set_params(**parameters)
start_time = time.time()
X_train, y_train = _safe_split(estimator, X, y, train)
X_test, y_test = _safe_split(estimator, X, y, test, train)
try:
if y_train is None:
estimator.fit(X_train, **fit_params)
else:
estimator.fit(X_train, y_train, **fit_params)
except Exception as e:
if error_score == 'raise':
raise
elif isinstance(error_score, numbers.Number):
test_score = error_score
if return_train_score:
train_score = error_score
warnings.warn("Classifier fit failed. The score on this train-test"
" partition for these parameters will be set to %f. "
"Details: \n%r" % (error_score, e), FitFailedWarning)
else:
raise ValueError("error_score must be the string 'raise' or a"
" numeric value. (Hint: if using 'raise', please"
" make sure that it has been spelled correctly.)"
)
else:
test_score = _score(estimator, X_test, y_test, scorer)
if return_train_score:
train_score = _score(estimator, X_train, y_train, scorer)
scoring_time = time.time() - start_time
if verbose > 2:
msg += ", score=%f" % test_score
if verbose > 1:
end_msg = "%s -%s" % (msg, logger.short_format_time(scoring_time))
print("[CV] %s %s" % ((64 - len(end_msg)) * '.', end_msg))
ret = [train_score] if return_train_score else []
ret.extend([test_score, _num_samples(X_test), scoring_time])
if return_parameters:
ret.append(parameters)
return ret
def _safe_split(estimator, X, y, indices, train_indices=None):
"""Create subset of dataset and properly handle kernels."""
if hasattr(estimator, 'kernel') and callable(estimator.kernel):
# cannot compute the kernel values with custom function
raise ValueError("Cannot use a custom kernel function. "
"Precompute the kernel matrix instead.")
if not hasattr(X, "shape"):
if getattr(estimator, "_pairwise", False):
raise ValueError("Precomputed kernels or affinity matrices have "
"to be passed as arrays or sparse matrices.")
X_subset = [X[idx] for idx in indices]
else:
if getattr(estimator, "_pairwise", False):
# X is a precomputed square kernel matrix
if X.shape[0] != X.shape[1]:
raise ValueError("X should be a square kernel matrix")
if train_indices is None:
X_subset = X[np.ix_(indices, indices)]
else:
X_subset = X[np.ix_(indices, train_indices)]
else:
X_subset = safe_indexing(X, indices)
if y is not None:
y_subset = safe_indexing(y, indices)
else:
y_subset = None
return X_subset, y_subset
def _score(estimator, X_test, y_test, scorer):
"""Compute the score of an estimator on a given test set."""
if y_test is None:
score = scorer(estimator, X_test)
else:
score = scorer(estimator, X_test, y_test)
if not isinstance(score, numbers.Number):
raise ValueError("scoring must return a number, got %s (%s) instead."
% (str(score), type(score)))
return score
def _permutation_test_score(estimator, X, y, cv, scorer):
"""Auxiliary function for permutation_test_score"""
avg_score = []
for train, test in cv:
estimator.fit(X[train], y[train])
avg_score.append(scorer(estimator, X[test], y[test]))
return np.mean(avg_score)
def _shuffle(y, labels, random_state):
"""Return a shuffled copy of y eventually shuffle among same labels."""
if labels is None:
ind = random_state.permutation(len(y))
else:
ind = np.arange(len(labels))
for label in np.unique(labels):
this_mask = (labels == label)
ind[this_mask] = random_state.permutation(ind[this_mask])
return y[ind]
def check_cv(cv, X=None, y=None, classifier=False):
"""Input checker utility for building a CV in a user friendly way.
Parameters
----------
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross-validation,
- integer, to specify the number of folds.
- An object to be used as a cross-validation generator.
- An iterable yielding train/test splits.
For integer/None inputs, if ``y`` is binary or multiclass,
:class:`StratifiedKFold` used. If the estimator is a classifier
or if ``y`` is neither binary nor multiclass, :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
X : array-like
The data the cross-val object will be applied on.
y : array-like
The target variable for a supervised learning problem.
classifier : boolean optional
Whether the task is a classification task, in which case
stratified KFold will be used.
Returns
-------
checked_cv: a cross-validation generator instance.
The return value is guaranteed to be a cv generator instance, whatever
the input type.
"""
is_sparse = sp.issparse(X)
if cv is None:
cv = 3
if isinstance(cv, numbers.Integral):
if classifier:
if type_of_target(y) in ['binary', 'multiclass']:
cv = StratifiedKFold(y, cv)
else:
cv = KFold(_num_samples(y), cv)
else:
if not is_sparse:
n_samples = len(X)
else:
n_samples = X.shape[0]
cv = KFold(n_samples, cv)
return cv
def permutation_test_score(estimator, X, y, cv=None,
n_permutations=100, n_jobs=1, labels=None,
random_state=0, verbose=0, scoring=None):
"""Evaluate the significance of a cross-validated score with permutations
Read more in the :ref:`User Guide <cross_validation>`.
Parameters
----------
estimator : estimator object implementing 'fit'
The object to use to fit the data.
X : array-like of shape at least 2D
The data to fit.
y : array-like
The target variable to try to predict in the case of
supervised learning.
scoring : string, callable or None, optional, default: None
A string (see model evaluation documentation) or
a scorer callable object / function with signature
``scorer(estimator, X, y)``.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross-validation,
- integer, to specify the number of folds.
- An object to be used as a cross-validation generator.
- An iterable yielding train/test splits.
For integer/None inputs, if ``y`` is binary or multiclass,
:class:`StratifiedKFold` used. If the estimator is a classifier
or if ``y`` is neither binary nor multiclass, :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
n_permutations : integer, optional
Number of times to permute ``y``.
n_jobs : integer, optional
The number of CPUs to use to do the computation. -1 means
'all CPUs'.
labels : array-like of shape [n_samples] (optional)
Labels constrain the permutation among groups of samples with
a same label.
random_state : RandomState or an int seed (0 by default)
A random number generator instance to define the state of the
random permutations generator.
verbose : integer, optional
The verbosity level.
Returns
-------
score : float
The true score without permuting targets.
permutation_scores : array, shape (n_permutations,)
The scores obtained for each permutations.
pvalue : float
The returned value equals p-value if `scoring` returns bigger
numbers for better scores (e.g., accuracy_score). If `scoring` is
rather a loss function (i.e. when lower is better such as with
`mean_squared_error`) then this is actually the complement of the
p-value: 1 - p-value.
Notes
-----
This function implements Test 1 in:
Ojala and Garriga. Permutation Tests for Studying Classifier
Performance. The Journal of Machine Learning Research (2010)
vol. 11
"""
X, y = indexable(X, y)
cv = check_cv(cv, X, y, classifier=is_classifier(estimator))
scorer = check_scoring(estimator, scoring=scoring)
random_state = check_random_state(random_state)
# We clone the estimator to make sure that all the folds are
# independent, and that it is pickle-able.
score = _permutation_test_score(clone(estimator), X, y, cv, scorer)
permutation_scores = Parallel(n_jobs=n_jobs, verbose=verbose)(
delayed(_permutation_test_score)(
clone(estimator), X, _shuffle(y, labels, random_state), cv,
scorer)
for _ in range(n_permutations))
permutation_scores = np.array(permutation_scores)
pvalue = (np.sum(permutation_scores >= score) + 1.0) / (n_permutations + 1)
return score, permutation_scores, pvalue
permutation_test_score.__test__ = False # to avoid a pb with nosetests
def train_test_split(*arrays, **options):
"""Split arrays or matrices into random train and test subsets
Quick utility that wraps input validation and
``next(iter(ShuffleSplit(n_samples)))`` and application to input
data into a single call for splitting (and optionally subsampling)
data in a oneliner.
Read more in the :ref:`User Guide <cross_validation>`.
Parameters
----------
*arrays : sequence of arrays or scipy.sparse matrices with same shape[0]
Python lists or tuples occurring in arrays are converted to 1D numpy
arrays.
test_size : float, int, or None (default is None)
If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the test split. If
int, represents the absolute number of test samples. If None,
the value is automatically set to the complement of the train size.
If train size is also None, test size is set to 0.25.
train_size : float, int, or None (default is None)
If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the train split. If
int, represents the absolute number of train samples. If None,
the value is automatically set to the complement of the test size.
random_state : int or RandomState
Pseudo-random number generator state used for random sampling.
stratify : array-like or None (default is None)
If not None, data is split in a stratified fashion, using this as
the labels array.
Returns
-------
splitting : list of arrays, length=2 * len(arrays)
List containing train-test split of input array.
Examples
--------
>>> import numpy as np
>>> from sklearn.cross_validation import train_test_split
>>> X, y = np.arange(10).reshape((5, 2)), range(5)
>>> X
array([[0, 1],
[2, 3],
[4, 5],
[6, 7],
[8, 9]])
>>> list(y)
[0, 1, 2, 3, 4]
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.33, random_state=42)
...
>>> X_train
array([[4, 5],
[0, 1],
[6, 7]])
>>> y_train
[2, 0, 3]
>>> X_test
array([[2, 3],
[8, 9]])
>>> y_test
[1, 4]
"""
n_arrays = len(arrays)
if n_arrays == 0:
raise ValueError("At least one array required as input")
test_size = options.pop('test_size', None)
train_size = options.pop('train_size', None)
random_state = options.pop('random_state', None)
dtype = options.pop('dtype', None)
if dtype is not None:
warnings.warn("dtype option is ignored and will be removed in 0.18.",
DeprecationWarning)
allow_nd = options.pop('allow_nd', None)
allow_lists = options.pop('allow_lists', None)
stratify = options.pop('stratify', None)
if allow_lists is not None:
warnings.warn("The allow_lists option is deprecated and will be "
"assumed True in 0.18 and removed.", DeprecationWarning)
if options:
raise TypeError("Invalid parameters passed: %s" % str(options))
if allow_nd is not None:
warnings.warn("The allow_nd option is deprecated and will be "
"assumed True in 0.18 and removed.", DeprecationWarning)
if allow_lists is False or allow_nd is False:
arrays = [check_array(x, 'csr', allow_nd=allow_nd,
force_all_finite=False, ensure_2d=False)
if x is not None else x
for x in arrays]
if test_size is None and train_size is None:
test_size = 0.25
arrays = indexable(*arrays)
if stratify is not None:
cv = StratifiedShuffleSplit(stratify, test_size=test_size,
train_size=train_size,
random_state=random_state)
else:
n_samples = _num_samples(arrays[0])
cv = ShuffleSplit(n_samples, test_size=test_size,
train_size=train_size,
random_state=random_state)
train, test = next(iter(cv))
return list(chain.from_iterable((safe_indexing(a, train),
safe_indexing(a, test)) for a in arrays))
train_test_split.__test__ = False # to avoid a pb with nosetests
|
bsd-3-clause
|
zhonghualiu/FaST-LMM
|
fastlmm/util/util.py
|
1
|
22211
|
import scipy as sp
import numpy as np
import scipy.stats as st
import pdb
import warnings
import logging
import sys
import matplotlib
matplotlib.use('Agg') #This lets it work even on machines without graphics displays
import matplotlib.pyplot as plt
def thin_results_file(myfile,dup_postfix="v2"):
'''
Used in score vs lrt to remove any lines in the results
ending with "v2", as these were replicate gene set entries.
'''
sets = np.loadtxt(myfile,dtype=str,comments=None)
nodup_ind = []
dup_ind = []
#indexes of non-duplicates, as indicated by dup_postfix
for i in range(0,sets.shape[0]):
tmpset=sets[i,0]
if tmpset[-2:]!=dup_postfix:
nodup_ind.append(i)
else:
dup_ind.append(i)
sets_nodup = sets[nodup_ind]
print "%i reps, and %i non-reps" % (len(dup_ind),len(nodup_ind))
return sets_nodup
def compare_files(file1,file2,tol=1e-8,delimiter="\t"):
'''
Given two files, compare the contents, including numbers up to absolute tolerance, tol
Returns: val,msg
where val is True/False (true means files to compare to each other) and a msg for the failure.
'''
dat1=sp.loadtxt(file1,dtype='str',delimiter=delimiter,comments=None)
dat2=sp.loadtxt(file2,dtype='str',delimiter=delimiter,comments=None)
ncol1=dat1[0].size
ncol2=dat2[0].size
if ncol1!=ncol2:
return False,"num columns do not match up"
try:
head1=dat1[0,:]
head2=dat2[0,:]
except:
#file contains just a single column.
return sp.all(dat1==dat2), "single column result doesn't match exactly ('{0}')".format(file1)
#logging.warn("DO headers match up? (file='{0}', '{1}' =?= '{2}')".format(file1, head1,head2))
if not sp.all(head1==head2):
return False, "headers do not match up (file='{0}', '{1}' =?= '{2}')".format(file1, head1,head2)
for c in range(ncol1):
checked=False
col1=dat1[1:,c]
col2=dat2[1:,c]
try:
#if it is numeric
col1=sp.array(col1,dtype='float64')
col2=sp.array(col2,dtype='float64')
except Exception:
# if it is a string
pass
if not sp.all(col1==col2):
return False, "string column %s does not match" % head1[c]
checked=True
#if it is numeric
if not checked:
absdiff=sp.absolute(col1-col2)
if sp.any(absdiff>tol):
try:
return False, "numeric column %s does diff of %e not match within tolerance %e" % (head1[c],max(absdiff), tol)
except:
return False, "Error trying to print error message while comparing '{0}' and '{1}'".format(file1,file2)
return True, "files are comparable within abs tolerance=%e" % tol
def compare_mixed_files(file1,file2,tol=1e-8,delimiter="\t"):
'''
Given two files, compare the contents, including numbers up to absolute tolerance, tol
Returns: val,msg
where val is True/False (true means files to compare to each other) and a msg for the failure.
'''
dat1=sp.loadtxt(file1,dtype='str',delimiter=delimiter,comments=None)
dat2=sp.loadtxt(file2,dtype='str',delimiter=delimiter,comments=None)
ncol1=dat1[0].size
ncol2=dat2[0].size
if ncol1!=ncol2:
return False,"num columns do not match up"
try:
r_count = dat1.shape[0]
c_count = dat1.shape[1]
except:
#file contains just a single column.
return sp.all(dat1==dat2), "single column result doesn't match exactly ('{0}')".format(file1)
for r in xrange(r_count):
for c in xrange(c_count):
val1 = dat1[r,c]
val2 = dat2[r,c]
if val1!=val2:
try:
f1 = float(val1)
f2 = float(val2)
except:
return False, "Values do not match up (file='{0}', '{1}' =?= '{2}')".format(file1, val1, val2)
if abs(f1-f2) > tol:
return False, "Values too different (file='{0}', '{1}' =?= '{2}')".format(file1, val1, val2)
return True, "files are comparable within abs tolerance=%e" % tol
#could make this more efficient by reading in blocks of SNPs, as in
#FastLmmSet.py:KfromAltSnps()
def write_kernel(iid,K,fileout):
'''
writes out kernel
assumes that iid contains a list of the ids, or else a list of [famid, personid] which
then get merged with a space in between
'''
nInd = K.shape[0]
header = 'var'
iid_merged = []
# first line contains iids
for i in range(nInd):
if iid.ndim==1 or iid.shape[1]==1:
header += '\t%s'%(iid[i])
iid_merged.append('%s'%(iid[i]))
else:
header += '\t%s %s'%(iid[i,0],iid[i,1])
iid_merged.append('%s %s'%(iid[i,0],iid[i,1]))
# each row of the matrix is one line
f = open(fileout,'w')
f.write(header+'\n')
for i in range(nInd):
row = ['\t%.4f'%x for x in K[i,:]]
f.write('%s%s\n'%(iid_merged[i],''.join(row)))
f.close()
def write_plink_covariates(iid,X,fileout):
'''
writes out plink-style covariates/phen file
assuming that X is [N,M] for N individuals and M features
assumes that iid contains a list of [famid, personid]
'''
[nInd,M] = X.shape
# each row of the matrix is one line
f = open(fileout,'w')
for i in range(nInd):
row = ['\t%.4f'%x for x in X[i,:]]
f.write('%s\t%s%s\n'%(iid[i,0],iid[i,1],''.join(row)))
f.close()
def combineseeds(seed1,seed2):
import hashlib
import sys
seed=int(hashlib.md5(str(seed1) + "_" + str(seed2)).hexdigest()[-8:], 16) #as of numpy 1.9, seeds must be 32-bit, so keep only the 8 right-most hex digits
return seed
def standardize_col(dat,meanonly=False):
'''
Mean impute each columns of an array.
'''
colmean=st.nanmean(dat)
if ~meanonly:
colstd=st.nanstd(dat)
else:
colstd=None
ncol=dat.shape[1]
nmissing=sp.zeros((ncol))
datimp=sp.empty_like(dat); datimp[:]=dat
for c in sp.arange(0,ncol):
datimp[sp.isnan(datimp[:,c]),c]=colmean[c]
datimp[:,c]=datimp[:,c]-colmean[c]
if not meanonly:
if colstd[c]>1e-6:
datimp[:,c]=datimp[:,c]/colstd[c]
else:
print "warning: colstd=" + colstd[c] + " during normalization"
nmissing[c]=float(sp.isnan(dat[:,c]).sum())
fracmissing=nmissing/dat.shape[0]
return datimp,fracmissing
def extractcols(filein,colnameset=None,dtypeset=None):
if colnameset is None: raise Exception("must specify column names to read")
import pandas as pd
data=pd.read_csv(filein,delimiter = '\t',dtype=dtypeset,usecols=colnameset)
r={}
for j in sp.arange(0,len(colnameset)):
name=colnameset.pop()
r[name]=(data[name].values)
return r
def argintersect_left(a, b):
"""
find indices in a, whose corresponding values are in b
----------------------------------------------------------------------
Input:
a : array, for which indices are returned that are in the intersect with b
b : array to be intersected with a
----------------------------------------------------------------------
Output:
the indices of elements of a, which are in intersect of a and b
----------------------------------------------------------------------
"""
return sp.arange(a.shape[0])[sp.in1d(a,b)]
def intersect_ids(idslist,sep="Q_Q"):
'''
Takes a list of 2d string arrays of family and individual ids.
These are intersected.
"sep" is used to concatenate the family and individual ids into one unique string
Returns: indarr, an array of size N x L, where N is the number of
individuals in the intersection, and L is the number of lists in idslist, and which
contains the index to use (in order) such that all people will be identical and in order
across all data sets.
If one of the lists=None, it is ignored (but still has values reported in indarr, all equal to -1),
but the first list must not be None.
'''
#!!warnings.warn("This intersect_ids is deprecated. Pysnptools includes newer versions of intersect_ids", DeprecationWarning)
id2ind={}
L=len(idslist)
observed=sp.zeros(L,dtype='bool')
for l, id_list in enumerate(idslist):
if id_list is not None:
observed[l]=1
if l==0:
if ~observed[l]:
raise Exception("first list must be non-empty")
else:
for i in xrange(id_list.shape[0]):
id=id_list[i,0] +sep+ id_list[i,1]
entry=sp.zeros(L)*sp.nan #id_list to contain the index for this id, for all lists provided
entry[l]=i #index for the first one
id2ind[id]=entry
elif observed[l]:
for i in xrange(id_list.shape[0]):
id=id_list[i,0] +sep+ id_list[i,1]
if id2ind.has_key(id):
id2ind[id][l]=i
indarr=sp.array(id2ind.values(),dtype='float') #need float because may contain NaNs
indarr[:,~observed]=-1 #replace all Nan's from empty lists to -1
inan = sp.isnan(indarr).any(1) #find any rows that contain at least one Nan
indarr=indarr[~inan] #keep only rows that are not NaN
indarr=sp.array(indarr,dtype='int') #convert to int so can slice
return indarr
def indof_constfeatures(X,axis=0):
'''
Assumes features are columns (by default, but can do rows), and checks to see if all features are simply constants,
such that it is equivalent to a bias and nothing else
'''
featvar=sp.var(X,axis=axis)
badind = sp.nonzero(featvar==0)[0]
return badind
def constfeatures(X,axis=0):
'''
Assumes features are columns (by default, but can do rows), and checks to see if all features are simply constants,
such that it is equivalent to a bias and nothing else
'''
featmeans=sp.mean(X,axis=axis)
return (X-featmeans==0).all()
def appendtofilename(filename,midfix,sep="."):
import os
dir, fileext = os.path.split(filename)
file, extension = os.path.splitext(fileext)
infofilename = dir + os.path.sep + file + sep + midfix + extension
return infofilename
def datestamp(appendrandom=False):
import datetime
now = datetime.datetime.now()
s = str(now)[:19].replace(" ","_").replace(":","_")
if appendrandom:
import random
s += "_" + str(random.random())[2:]
return s
#not needed, just use the sp RandomState.permutation
#def permute(numbersamples):
# perm = sp.random.permutation(numbersamples)
# return perm
#Not needed because enumerate is built in to the language
#def appendindex(iter):
# index = -1;
# for item in iter:
# index += 1
# yield item, index
def create_directory_if_necessary(name, isfile=True):
import os
if isfile:
directory_name = os.path.dirname(name)
else:
directory_name = name
if directory_name != "":
try:
os.makedirs(directory_name)
except OSError, e:
if not os.path.isdir(directory_name):
raise Exception("not valid path: '{0}'. (Working directory is '{1}'".format(directory_name,os.getcwd()))
def which(vec):
'''
find the True from the index 0 with bool vector vec
----------------------------------------------------------------------
Input:
vec : vector of bool
----------------------------------------------------------------------
Output:
index of the first True from the bool vector vec
----------------------------------------------------------------------
'''
for i, item in enumerate(vec):
if (item):
return(i)
return(-1)
def which_opposite(vec):
'''
find the True from the index 0 with bool vector vec
----------------------------------------------------------------------
Input:
vec : vector of bool
----------------------------------------------------------------------
Output:
index of the last True from the bool vector vec
----------------------------------------------------------------------
'''
for i in reversed(xrange(len(vec))):
item = vec[i]
if (item):
return(i)
return(-1)
def generatePermutation(numbersamples,randomSeedOrState):
from numpy.random import RandomState
if isinstance(randomSeedOrState,RandomState):
randomstate = randomSeedOrState
else:
randomstate = RandomState(int(randomSeedOrState % sys.maxint))
perm = randomstate.permutation(numbersamples)
return perm
def excludeinds(pos0, pos1, mindist = 10.0,idist = 2):
'''
get the indices of SNPs that have to be excluded from the set of null SNPs when testing alternative SNPs to correct for proximal contamination.
--------------------------------------------------------------------------
Input:
pos0 : [S0*3] array of null-model SNP positions
pos1 : [S0*3] array of alternative-model SNP positions
idist : index in pos array that the exclusion is based on.
(1=genetic distance, 2=basepair distance)
--------------------------------------------------------------------------
Output:
i_exclude : [S] 1-D boolean array indicating excluson of SNPs
(True: exclude, False: do not exclude)
--------------------------------------------------------------------------
'''
chromosomes1 = sp.unique(pos1[:,0])
i_exclude = sp.zeros(pos0[:,0].shape[0],dtype = 'bool')
if (mindist>=0.0):
for ichr in xrange(chromosomes1.shape[0]):
i_SNPs1_chr=pos1[:,0] == chromosomes1[ichr]
i_SNPs0_chr=pos0[:,0] == chromosomes1[ichr]
pos1_ = pos1[i_SNPs1_chr,idist]
pos0_ = pos0[i_SNPs0_chr,idist]
distmatrix = pos1_[sp.newaxis,:] - pos0_[:,sp.newaxis]
i_exclude[i_SNPs0_chr] = (sp.absolute(distmatrix)<=mindist).any(1)
return i_exclude
def dotDotRange(dotDotString):
'''
A method for generating integers.
For example:
> for i in util.dotDotRange("1..4,100,-1..1"): print i
1
2
3
4
100
-1
0
1
'''
for intervalString in dotDotString.split(","):
parts = intervalString.split("..")
if len(parts) > 2 : raise Exception("Expect at most one '..' between commas. (see {0})".format(intervalString))
start = int(parts[0])
if len(parts) == 1:
yield start
else:
lastInclusive = int(parts[1])
for i in xrange(start,lastInclusive+1):
yield i
def _run_length_encode(seq):
count = 0
previous = None
for item in seq:
if count == 0:
count = 1
previous = item
elif item == previous:
count += 1
else:
yield previous, count
previous = item
count =1
if count > 0:
yield previous, count
def _rel_to_midpoint(rle):
previous_count = 0
for item, count in rle:
yield previous_count + count // 2
previous_count += count
def _color_list(chr_list,rle):
chr_to_index = dict((chr,index) for index,(chr,count) in enumerate(rle))
index_to_color = {0:"b",1:"g"}
result = [index_to_color[chr_to_index[chr]%len(index_to_color)] for chr in chr_list]
return result
def manhattan_plot(chr_pos_pvalue_array,pvalue_line=None,plot_threshold=1.0,vline_significant=False,marker="o", chromosome_starts=None, xaxis_unit_bp=True, alpha=0.5):
"""
Function to create a Manhattan plot. See http://en.wikipedia.org/wiki/Manhattan_plot.
Args:
chr_pos_pvalue_array: an n x 3 numpy array. The three columns are the chrom number
(as a number), the position, and pvalue.
:type chr_pos_pvalue_array: numpy array
pvalue_line: (Default: None). If given, draws a line at that PValue.
:type pvalue_line: a 'pheno dictionary' or a string
plot_threshold: plot only SNPs that achieve a P-value smaller than pvalue_threshold
to speed up plotting
vline_significant: boolean. Draw a vertical line at each significant Pvalue?
:rtype: none, but changes the global current figure.
marker: marker for the scatter plot. default: "o"
chromosome_starts: [Nchrom x 3] ndarray: chromosome, cumulative start position, cumulative stop position
cumulative chromosome starts, for plotting. If None (default), this is estimated from data
xaxis_unit_bp: plot cumulative position in basepair units on x axis? If False, only
use rank of SNP positions. (default: True)
alpha: alpha (opaquness) for P-value markers in scatterplot (default 0.5)
Returns:
chromosome_starts [Nchrom x 3] ndarray: chromosome, cumulative start position, cumulative stop position
cumulative chromosome starts used in plotting.
:Example:
>>> from fastlmm.association import single_snp_leave_out_one_chrom
>>> from pysnptools.snpreader import Bed
>>> import matplotlib.pyplot as plt
>>> import fastlmm.util.util as flutil
>>> pheno_fn = "../feature_selection/examples/toydata.phe"
>>> results_dataframe = single_snp_leave_out_one_chrom(test_snps="../feature_selection/examples/toydata.5chrom", pheno=pheno_fn, h2=.2)
>>> chromosome_starts = flutil.manhattan_plot(results_dataframe.as_matrix(["Chr", "ChrPos", "PValue"]),pvalue_line=1e-7)
>>> #plt.show()
"""
# create a copy of the data and sort it by chrom and then position
array = np.array(chr_pos_pvalue_array)
if plot_threshold:
array = array[array[:,2]<=plot_threshold]
else:
plot_threshold = 1.0
array=array[np.argsort(array[:,1]),:] #sort by ChrPos
array=array[np.argsort(array[:,0],kind='mergesort'),:] #Finally, sort by Chr (but keep ChrPos in case of ties)
rle = list(_run_length_encode(array[:,0]))
if xaxis_unit_bp: #compute and use cumulative basepair positions for x-axis
if chromosome_starts is None:
chromosome_starts = _compute_x_positions_chrom(array)
chr_pos_list = _compute_x_positions_snps(array, chromosome_starts)
plt.xlim([0,chromosome_starts[-1,2]+1])
plt.xticks(chromosome_starts[:,1:3].mean(1),chromosome_starts[:,0])
else: #use rank indices for x-axis
chr_pos_list = np.arange(array.shape[0])
xTickMarks = [str(int(item)) for item,count in rle]
plt.xlim([0,array.shape[0]])
plt.xticks(list(_rel_to_midpoint(rle)), xTickMarks)
y = -np.log10(array[:,2])
max_y = y.max()
if pvalue_line and vline_significant: #mark significant associations (ones that pass the pvalue_line) by a red vertical line:
idx_significant = array[:,2]<pvalue_line
if np.any(idx_significant):
y_significant = y[idx_significant]
chr_pos_list_significant = chr_pos_list[idx_significant]
for i in xrange(len(chr_pos_list_significant)):
plt.axvline(x=chr_pos_list_significant[i],ymin = 0.0, ymax = y_significant[i], color = 'r',alpha=0.8)
plt.scatter(chr_pos_list,y,marker=marker,c=_color_list(array[:,0],rle),edgecolor='none',s=y/max_y*20+0.5, alpha=alpha)
plt.xlabel("chromosome")
plt.ylabel("-log10(P value)")
if pvalue_line:
plt.axhline(-np.log10(pvalue_line),linestyle="--",color='gray')
plt.ylim([-np.log10(plot_threshold),None])
return chromosome_starts
def _compute_x_positions_chrom(positions, offset=1e5):
chromosomes = np.unique(positions[:,0])
chromosomes.sort()
chromosome_starts = np.zeros((chromosomes.shape[0],3),dtype="object")
chr_start_next = 0
for i, chromosome in enumerate(chromosomes):
pos_chr = positions[positions[:,0]==chromosome]
chromosome_starts[i,0] = chromosome #the chromosome
chromosome_starts[i,1] = chr_start_next #start of the chromosome
chromosome_starts[i,2] = chr_start_next + pos_chr.max() #end of the chromosome
chr_start_next = chromosome_starts[i,2] + offset
return chromosome_starts
def _compute_x_positions_snps(positions, chromosome_starts):
cumulative_pos = np.zeros(positions.shape[0])
for i, chromosome_start in enumerate(chromosome_starts):
idx_chr = positions[:,0]==chromosome_start[0]
cumulative_pos[idx_chr] = positions[idx_chr][:,1] + chromosome_start[1]
return cumulative_pos
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
import doctest
doctest.testmod()
|
apache-2.0
|
suyashbire1/pyhton_scripts_mom6
|
plot_twamomx_budget_complete_direct_newest.py
|
2
|
27301
|
import importlib
import sys
import time
import matplotlib.pyplot as plt
import mom_plot1
import numpy as np
import pyximport
import readParams_moreoptions as rdp1
from getvaratzc import getvaratzc, getvaratzc5
from netCDF4 import Dataset as dset
from netCDF4 import MFDataset as mfdset
from pym6 import Domain, Plotter, Variable
importlib.reload(mom_plot1)
m6plot = mom_plot1.m6plot
xdegtokm = mom_plot1.xdegtokm
pyximport.install()
importlib.reload(Domain)
importlib.reload(Variable)
importlib.reload(Plotter)
gv = Variable.GridVariable
def extract_twamomx_terms_pym6(initializer):
domain = Domain.Domain(initializer)
plot_loc = 'ul'
with mfdset(initializer.fil) as fh, mfdset(initializer.fil2) as fh2:
h = (gv('h_Cu', domain, plot_loc, fh2, fh, plot_loc=plot_loc)
.read_array(filled=0))
ur = gv('uh',
domain,
plot_loc,
fh2,
fh,
plot_loc=plot_loc,
divisor='h_Cu',
name=r'$\hat{u}$').read_array(
divide_by_dy=True, filled=0)
urx = (gv('uh',
domain,
plot_loc,
fh2,
fh,
plot_loc=plot_loc,
divisor='h_Cu').xsm().xep().read_array(
extend_kwargs={'method': 'symmetric'},
divide_by_dy=True,
filled=0).ddx(3).move_to(plot_loc))
ury = (gv('uh',
domain,
plot_loc,
fh2,
fh,
plot_loc=plot_loc,
divisor='h_Cu').ysm().yep().read_array(
extend_kwargs={'method': 'vorticity'},
divide_by_dy=True,
filled=0).ddx(2).move_to(plot_loc))
humx = (gv('uh', domain, plot_loc, fh2, fh, plot_loc=plot_loc)
.xsm().xep().read_array(
extend_kwargs={'method': 'symmetric'},
filled=0).ddx(3, div_by_area=True).move_to(plot_loc))
hvm = (gv('vh', domain, 'vl', fh2, fh, plot_loc=plot_loc).ysm().xep()
.read_array(
divide_by_dx=True,
filled=0,
extend_kwargs={'method': 'vorticity'})
.move_to('hl').move_to(plot_loc))
hvmy = (gv('vh', domain, 'vl', fh2, fh, plot_loc=plot_loc).ysm().xep()
.read_array(
filled=0, extend_kwargs={'method': 'vorticity'})
.ddx(2, div_by_area=True).move_to(plot_loc))
huuxphuvym = (
(gv('twa_huuxpt', domain, plot_loc, fh2, fh, plot_loc=plot_loc)
.read_array(filled=0)) +
(gv('twa_huvymt', domain, plot_loc, fh2, fh, plot_loc=plot_loc)
.read_array(filled=0)))
huuxm = (gv('huu_Cu', domain, plot_loc, fh2, fh, plot_loc=plot_loc)
.xsm().xep().read_array(
extend_kwargs={'method': 'symmetric'},
filled=0).ddx(3, div_by_area=True).move_to(plot_loc))
huvym = huuxphuvym + huuxm
urb = (gv('uh',
domain,
plot_loc,
fh2,
fh,
plot_loc=plot_loc,
divisor='h_Cu').lsm().lep().read_array(
extend_kwargs={'method': 'mirror'},
divide_by_dy=True,
filled=0).ddx(1).move_to('ul'))
hwb = (gv('wd', domain, 'hi', fh2, fh, plot_loc=plot_loc)
.xep().read_array(
filled=0, extend_kwargs={'method': 'vorticity'})
.o1diff(1).move_to(plot_loc))
hwm = (gv('wd', domain, 'hi', fh2, fh, plot_loc=plot_loc)
.xep().read_array(
filled=0, extend_kwargs={'method': 'vorticity'})
.move_to('hl').move_to(plot_loc)) * domain.db
esq = (gv('esq', domain, 'hl', fh2, fh, plot_loc=plot_loc)
.xep().read_array(extend_kwargs={'method': 'mirror'}))
e = (gv('e', domain, 'hi', fh2, fh, plot_loc=plot_loc)
.xep().read_array(extend_kwargs={'method': 'mirror'})
.move_to('hl'))
edlsqm = esq - e * e
edlsqmx = edlsqm.ddx(3)
hpfu = (gv('twa_hpfu', domain, plot_loc, fh2, fh, plot_loc=plot_loc)
.read_array(filled=0))
pfum = (gv('PFu', domain, plot_loc, fh2, fh, plot_loc=plot_loc)
.read_array(filled=0))
edpfudmb = -hpfu + h * pfum - edlsqmx * domain.db * 0.5
hfvm = (gv('twa_hfv', domain, plot_loc, fh2, fh, plot_loc=plot_loc)
.read_array(filled=0))
huwbm = (gv('twa_huwb', domain, plot_loc, fh2, fh, plot_loc=plot_loc)
.read_array(filled=0))
hdiffum = (
gv('twa_hdiffu', domain, plot_loc, fh2, fh, plot_loc=plot_loc)
.read_array(filled=0))
hdudtviscm = (gv('twa_hdudtvisc',
domain,
plot_loc,
fh2,
fh,
plot_loc=plot_loc).read_array(filled=0))
advx = ur * urx
advy = hvm * ury / h
advb = hwm * urb / h
cor = hfvm / h
pfum = pfum
xdivep1 = -huuxm / h
xdivep2 = advx
xdivep3 = ur * humx / h
xdivep4 = -edlsqmx / 2 * domain.db / h
xdivep = (xdivep1 + xdivep2 + xdivep3 + xdivep4)
ydivep1 = huvym / h
ydivep2 = advy
ydivep3 = ur * hvmy / h
ydivep = (ydivep1 + ydivep2 + ydivep3)
bdivep1 = huwbm / h
bdivep2 = advb
bdivep3 = ur * hwb / h
bdivep4 = -edpfudmb / h
bdivep = (bdivep1 + bdivep2 + bdivep3 + bdivep4)
X1twa = hdiffum / h
X2twa = hdudtviscm / h
budgetlist = [
-advx, -advy, -advb, cor, pfum, xdivep1 + xdivep2 + xdivep3, xdivep4,
ydivep, bdivep1 + bdivep2 + bdivep3, bdivep4, X1twa, X2twa
]
ti = [
'(a)', '(b)', '(c)', '(d)', '(e)', '(f)', '(g)', '(h)', '(i)', '(j)',
'(k)', '(l)'
]
lab = [
r'$-\hat{u}\hat{u}_{\tilde{x}}$', r'$-\hat{v}\hat{u}_{\tilde{y}}$',
r'$-\hat{\varpi}\hat{u}_{\tilde{b}}$', r'$f\hat{v}$',
r'$-\overline{m_{\tilde{x}}}$',
r"""-$\frac{1}{\overline{h}}(\overline{h}\widehat{u ^{\prime \prime} u ^{\prime \prime} })_{\tilde{x}}$""",
r"""-$\frac{1}{2\overline{\zeta_{\tilde{b}}}}(\overline{\zeta ^{\prime 2}})_{\tilde{x}}$""",
r"""-$\frac{1}{\overline{h}}(\overline{h}\widehat{u ^{\prime \prime} v ^{\prime \prime}})_{\tilde{y}}$""",
r"""-$\frac{1}{\overline{h}}(\overline{h}\widehat{u ^{\prime \prime} \varpi ^{\prime \prime}})_{\tilde{b}}$""",
r""" -$\frac{1}{2\overline{\zeta_{\tilde{b}}}}(\overline{\zeta ^\prime m_{\tilde{x}}^\prime})_{\tilde{b}}$""",
r'$\widehat{X^H}$', r'$\widehat{X^V}$'
]
for i, var in enumerate(budgetlist):
var.name = lab[i]
return budgetlist
def plot_twamomx_pym6(initializer, **kwargs):
budgetlist = extract_twamomx_terms_pym6(initializer)
terms = kwargs.get('terms', None)
if terms:
budgetlist = [budgetlist[i] for i in terms]
with mfdset(initializer.fil) as fh, mfdset(initializer.fil2) as fh2:
e = (gv('e', budgetlist[0].dom, 'hi', fh2, fh, plot_loc='ul')
.xep().read_array(extend_kwargs={'method': 'mirror'})
.move_to('ui'))
plot_kwargs = dict(cmap='RdBu_r')
plotter_kwargs = dict(
xtokm=True, zcoord=True, z=initializer.z, e=e, isop_mean=True)
ax, fig = Plotter.budget_plot(
budgetlist,
initializer.meanax,
plot_kwargs=plot_kwargs,
plotter_kwargs=plotter_kwargs,
individual_cbars=False,
**kwargs)
swash = kwargs.get('swash', True)
plotter_kwargs.pop('ax')
if swash:
initializer_for_swash = Domain.Initializer(
geofil=initializer.geofil,
vgeofil=initializer.vgeofil,
wlon=-0.5,
elon=0,
slat=10,
nlat=11)
domain_for_swash0 = Domain.Domain(initializer_for_swash)
with mfdset(initializer.fil3) as fh:
islayerdeep = (
gv('islayerdeep', budgetlist[0].dom, 'ql', fh, plot_loc='ul')
.ysm().read_array(
tmean=False,
extend_kwargs={'method': 'mirror'}).move_to('ul'))
islayerdeep0 = (
gv('islayerdeep', domain_for_swash0, 'ql', fh, plot_loc='ul')
.ysm().read_array(
tmean=False,
extend_kwargs={'method': 'mirror'}).move_to('ul'))
swashperc = (
-islayerdeep / islayerdeep0.values[-1, 0, 0, 0] + 1) * 100
plot_kwargs = kwargs.get('swash_plot_kwargs',
dict(
colors='grey', linewidths=4))
for axc in ax.ravel():
axc, _ = swashperc.plot(
'nanmean',
initializer.meanax,
only_contour=True,
clevs=np.array([1]),
annotate='None',
ax=axc,
plot_kwargs=plot_kwargs,
**plotter_kwargs)
return ax, fig
def extract_twamomx_terms(geofil,
vgeofil,
fil,
fil2,
xstart,
xend,
ystart,
yend,
zs,
ze,
meanax,
fil3=None,
alreadysaved=False,
xyasindices=False,
calledfrompv=False,
htol=1e-3):
if not alreadysaved:
keepax = ()
for i in range(4):
if i not in meanax:
keepax += (i, )
fhvgeo = dset(vgeofil)
db = -fhvgeo.variables['g'][:]
dbi = np.append(db, 0)
fhvgeo.close()
fhgeo = dset(geofil)
fh = mfdset(fil)
fh2 = mfdset(fil2)
zi = rdp1.getdims(fh)[2][0]
dbl = np.diff(zi) * 9.8 / 1031
if xyasindices:
(xs, xe), (ys, ye) = (xstart, xend), (ystart, yend)
_, _, dimu = rdp1.getdimsbyindx(
fh,
xs,
xe,
ys,
ye,
zs=zs,
ze=ze,
ts=0,
te=None,
xhxq='xq',
yhyq='yh',
zlzi='zl')
else:
(xs, xe), (ys, ye), dimu = rdp1.getlatlonindx(
fh,
wlon=xstart,
elon=xend,
slat=ystart,
nlat=yend,
zs=zs,
ze=ze,
xhxq='xq')
sl = np.s_[:, :, ys:ye, xs:xe]
slmy = np.s_[:, :, ys - 1:ye, xs:xe]
D, (ah, aq) = rdp1.getgeombyindx(fhgeo, xs, xe, ys, ye)[0:2]
Dforgetutwaforxdiff = rdp1.getgeombyindx(fhgeo, xs - 1, xe, ys, ye)[0]
Dforgetutwaforydiff = rdp1.getgeombyindx(fhgeo, xs, xe, ys - 1,
ye + 1)[0]
Dforgethvforydiff = rdp1.getgeombyindx(fhgeo, xs, xe, ys - 1, ye)[0]
dxt, dyt = rdp1.getgeombyindx(fhgeo, xs, xe, ys, ye)[2][6:8]
dxcu, dycu = rdp1.getgeombyindx(fhgeo, xs, xe, ys, ye)[2][0:2]
dycuforxdiff = rdp1.getgeombyindx(fhgeo, xs - 1, xe, ys, ye)[2][1:2]
dycuforydiff = rdp1.getgeombyindx(fhgeo, xs, xe, ys - 1,
ye + 1)[2][1:2]
dxbu, dybu = rdp1.getgeombyindx(fhgeo, xs, xe, ys, ye + 1)[2][4:6]
aq1 = rdp1.getgeombyindx(fhgeo, xs, xe, ys - 1, ye)[1][1]
ah1 = rdp1.getgeombyindx(fhgeo, xs - 1, xe, ys, ye)[1][0]
dxcu1 = rdp1.getgeombyindx(fhgeo, xs, xe, ys - 1, ye + 1)[2][0]
nt_const = dimu[0].size
t0 = time.time()
dt = fh.variables['average_DT'][:]
dt = dt[:, np.newaxis, np.newaxis, np.newaxis]
if fil3:
fh3 = mfdset(fil3)
slmytn = np.s_[-1:, :, ys - 1:ye, xs:xe]
# islayerdeep0 = fh3.variables['islayerdeep'][:,0,0,0].sum()
# islayerdeep = (fh3.variables['islayerdeep'][slmy].filled(np.nan)).sum(axis=0,
# keepdims=True)
islayerdeep0 = fh3.variables['islayerdeep'][-1:, 0, 0, 0]
islayerdeep = (fh3.variables['islayerdeep'][slmytn].filled(np.nan))
swash = (islayerdeep0 - islayerdeep) / islayerdeep0 * 100
swash = 0.5 * (swash[:, :, :-1, :] + swash[:, :, 1:, :])
fh3.close()
else:
swash = None
em = (fh2.variables['e'][0:, zs:ze, ys:ye, xs:xe] * dt).sum(
axis=0, keepdims=True) / np.sum(dt)
elm = 0.5 * (em[:, 0:-1, :, :] + em[:, 1:, :, :])
uh = (fh.variables['uh_masked'][0:, zs:ze, ys:ye, xs:xe].filled(np.nan)
* dt).sum(axis=0, keepdims=True) / np.sum(dt)
h_cu = (fh.variables['h_Cu'][0:, zs:ze, ys:ye, xs:xe].filled(0) *
dt).sum(axis=0, keepdims=True) / np.sum(dt)
h_cu[h_cu < htol] = np.nan
h_um = h_cu
utwa = uh / h_cu / dycu
uhforxdiff = (fh.variables['uh_masked'][0:, zs:ze, ys:ye, xs - 1:xe] *
dt).filled(np.nan).sum(axis=0,
keepdims=True) / np.sum(dt)
h_cuforxdiff = (fh.variables['h_Cu'][0:, zs:ze, ys:ye, xs - 1:xe] *
dt).filled(0).sum(axis=0, keepdims=True) / np.sum(dt)
h_cuforxdiff[h_cuforxdiff < htol] = np.nan
utwaforxdiff = uhforxdiff / h_cuforxdiff #/dycuforxdiff
uhforydiff = (
fh.variables['uh_masked'][0:, zs:ze, ys - 1:ye + 1, xs:xe] *
dt).filled(np.nan).sum(axis=0, keepdims=True) / np.sum(dt)
h_cuforydiff = (fh.variables['h_Cu'][0:, zs:ze, ys - 1:ye + 1, xs:xe] *
dt).filled(0).sum(axis=0, keepdims=True) / np.sum(dt)
h_cuforydiff[h_cuforydiff < htol] = np.nan
utwaforydiff = uhforydiff / h_cuforydiff #/dycuforydiff
utwax = np.diff(np.nan_to_num(utwaforxdiff), axis=3) / dxt / dyt
utwax = np.concatenate((utwax, -utwax[:, :, :, [-1]]), axis=3)
utwax = 0.5 * (utwax[:, :, :, 0:-1] + utwax[:, :, :, 1:])
utway = np.diff(utwaforydiff, axis=2) / dxbu / dybu
utway = 0.5 * (utway[:, :, 0:-1, :] + utway[:, :, 1:, :])
humx = np.diff(np.nan_to_num(uhforxdiff), axis=3) / dxt / dyt
humx = np.concatenate((humx, -humx[:, :, :, [-1]]), axis=3)
humx = 0.5 * (humx[:, :, :, 0:-1] + humx[:, :, :, 1:])
hvm = (fh.variables['vh_masked'][0:, zs:ze, ys - 1:ye, xs:xe] *
dt).sum(axis=0, keepdims=True) / np.sum(dt)
hvm = np.concatenate((hvm, -hvm[:, :, :, -1:]), axis=3)
hvm = 0.25 * (hvm[:, :, :-1, :-1] + hvm[:, :, :-1, 1:] +
hvm[:, :, 1:, :-1] + hvm[:, :, 1:, 1:]) / dxcu
hv = (fh.variables['vh_masked'][0:, zs:ze, ys - 1:ye, xs:xe] * dt).sum(
axis=0, keepdims=True) / np.sum(dt)
hvmy = np.diff(hv, axis=2) / dxt / dyt
hvmy = np.concatenate((hvmy, -hvmy[:, :, :, -1:]), axis=3)
hvmy = 0.5 * (hvmy[:, :, :, :-1] + hvmy[:, :, :, 1:])
huuxphuvym = (
fh.variables['twa_huuxpt'][0:, zs:ze, ys:ye, xs:xe] * dt +
fh.variables['twa_huvymt'][0:, zs:ze, ys:ye, xs:xe] * dt
).filled(np.nan).sum(axis=0, keepdims=True) / np.sum(dt)
#u = (fh.variables['u_masked'][0:,zs:ze,ys:ye,xs-1:xe]*dt).filled(np.nan).sum(axis=0,keepdims=True)/np.sum(dt)
huu = (fh.variables['huu_Cu'][0:, zs:ze, ys:ye, xs - 1:xe] *
dt).filled(np.nan).sum(axis=0, keepdims=True) / np.sum(dt)
huuxm = np.diff(np.nan_to_num(huu), axis=3) / dxt / dyt
huuxm = np.concatenate((huuxm, -huuxm[:, :, :, -1:]), axis=3)
huuxm = 0.5 * (huuxm[:, :, :, :-1] + huuxm[:, :, :, 1:])
# huu = (fh.variables['huu_T'][0:,zs:ze,ys:ye,xs:xe]*dt).sum(axis=0,keepdims=True)/np.sum(dt)*dyt
# huu = np.concatenate((huu,-huu[:,:,:,-1:]),axis=3)
# huuxm = np.diff(huu,axis=3)/dxcu/dycu
huvym = huuxphuvym + huuxm
utwaforvdiff = np.concatenate((utwa[:, [0], :, :], utwa), axis=1)
utwab = np.diff(utwaforvdiff, axis=1) / db[:, np.newaxis, np.newaxis]
utwab = np.concatenate(
(utwab, np.zeros(utwab[:, :1, :, :].shape)), axis=1)
utwab = 0.5 * (utwab[:, 0:-1, :, :] + utwab[:, 1:, :, :])
hwb = (fh2.variables['wd'][0:, zs:ze, ys:ye, xs:xe] * dt).sum(
axis=0, keepdims=True) / np.sum(dt)
hwb = np.diff(hwb, axis=1)
hwb = np.concatenate((hwb, -hwb[:, :, :, -1:]), axis=3)
hwb_u = 0.5 * (hwb[:, :, :, :-1] + hwb[:, :, :, 1:])
hwb = (fh2.variables['wd'][0:, zs:ze, ys:ye, xs:xe] * dt).sum(
axis=0, keepdims=True) / np.sum(dt)
hwm = 0.5 * (hwb[:, :-1] + hwb[:, 1:]) * dbl[:, np.newaxis, np.newaxis]
hwm = np.concatenate((hwm, -hwm[:, :, :, -1:]), axis=3)
hwm_u = 0.5 * (hwm[:, :, :, :-1] + hwm[:, :, :, 1:])
esq = (fh.variables['esq'][0:, zs:ze, ys:ye, xs:xe] * dt).sum(
axis=0, keepdims=True) / np.sum(dt)
edlsqm = (esq - elm**2)
edlsqm = np.concatenate((edlsqm, edlsqm[:, :, :, -1:]), axis=3)
edlsqmx = np.diff(edlsqm, axis=3) / dxcu
hpfu = (fh.variables['twa_hpfu'][0:, zs:ze, ys:ye, xs:xe] *
dt).filled(np.nan).sum(axis=0, keepdims=True) / np.sum(dt)
pfum = (fh2.variables['PFu'][0:, zs:ze, ys:ye, xs:xe] *
dt).filled(np.nan).sum(axis=0, keepdims=True) / np.sum(dt)
edpfudmb = -hpfu + h_cu * pfum - 0.5 * edlsqmx * dbl[:, np.newaxis, np.
newaxis]
hfvm = (fh.variables['twa_hfv'][0:, zs:ze, ys:ye, xs:xe] *
dt).filled(np.nan).sum(axis=0, keepdims=True) / np.sum(dt)
huwbm = (fh.variables['twa_huwb'][0:, zs:ze, ys:ye, xs:xe] *
dt).filled(np.nan).sum(axis=0, keepdims=True) / np.sum(dt)
hdiffum = (fh.variables['twa_hdiffu'][0:, zs:ze, ys:ye, xs:xe] *
dt).filled(np.nan).sum(axis=0, keepdims=True) / np.sum(dt)
hdudtviscm = (fh.variables['twa_hdudtvisc'][0:, zs:ze, ys:ye, xs:xe] *
dt).filled(np.nan).sum(axis=0,
keepdims=True) / np.sum(dt)
fh2.close()
fh.close()
advx = utwa * utwax
advy = hvm * utway / h_um
advb = hwm_u * utwab / h_um
cor = hfvm / h_um
pfum = pfum
xdivep1 = -huuxm / h_um
xdivep2 = advx
xdivep3 = utwa * humx / h_um
xdivep4 = -0.5 * edlsqmx * dbl[:, np.newaxis, np.newaxis] / h_um
xdivep = (xdivep1 + xdivep2 + xdivep3 + xdivep4)
ydivep1 = huvym / h_um
ydivep2 = advy
ydivep3 = utwa * hvmy / h_um
ydivep = (ydivep1 + ydivep2 + ydivep3)
bdivep1 = huwbm / h_um
bdivep2 = advb
bdivep3 = utwa * hwb_u / h_um
bdivep4 = -edpfudmb / h_um
bdivep = (bdivep1 + bdivep2 + bdivep3 + bdivep4)
X1twa = hdiffum / h_um
X2twa = hdudtviscm / h_um
terms = np.concatenate(
(-advx[:, :, :, :, np.newaxis], -advy[:, :, :, :, np.newaxis],
-advb[:, :, :, :, np.newaxis], cor[:, :, :, :, np.newaxis],
pfum[:, :, :, :, np.newaxis], xdivep[:, :, :, :, np.newaxis],
ydivep[:, :, :, :, np.newaxis], bdivep[:, :, :, :, np.newaxis],
X1twa[:, :, :, :, np.newaxis], X2twa[:, :, :, :, np.newaxis]),
axis=4)
termsep = np.concatenate(
(xdivep1[:, :, :, :, np.newaxis], xdivep3[:, :, :, :, np.newaxis],
xdivep4[:, :, :, :, np.newaxis], ydivep1[:, :, :, :, np.newaxis],
ydivep3[:, :, :, :, np.newaxis], bdivep1[:, :, :, :, np.newaxis],
bdivep3[:, :, :, :, np.newaxis], bdivep4[:, :, :, :, np.newaxis]),
axis=4)
termsm = np.nanmean(terms, axis=meanax, keepdims=True)
termsepm = np.nanmean(termsep, axis=meanax, keepdims=True)
X = dimu[keepax[1]]
Y = dimu[keepax[0]]
if 1 in keepax and not calledfrompv:
em = np.nanmean(em, axis=meanax, keepdims=True)
elm = np.nanmean(elm, axis=meanax, keepdims=True)
z = np.linspace(-3000, 0, 100)
Y = z
P = getvaratzc5(
termsm.astype(np.float32),
z.astype(np.float32), em.astype(np.float32))
Pep = getvaratzc5(
termsepm.astype(np.float32),
z.astype(np.float32), em.astype(np.float32))
if fil3:
swash = np.nanmean(swash, meanax, keepdims=True)
swash = getvaratzc(
swash.astype(np.float32),
z.astype(np.float32), em.astype(np.float32)).squeeze()
else:
P = termsm.squeeze()
Pep = termsepm.squeeze()
if not calledfrompv:
np.savez('twamomx_complete_terms', X=X, Y=Y, P=P, Pep=Pep)
else:
npzfile = np.load('twamomx_complete_terms.npz')
X = npzfile['X']
Y = npzfile['Y']
P = npzfile['P']
Pep = npzfile['Pep']
return (X, Y, P, Pep, swash, em.squeeze())
def plot_twamomx(geofil,
vgeofil,
fil,
fil2,
xstart,
xend,
ystart,
yend,
zs,
ze,
meanax,
fil3=None,
cmaxpercfactor=1,
cmaxpercfactorforep=1,
plotterms=[3, 4, 7],
swashperc=1,
savfil=None,
savfilep=None,
alreadysaved=False):
X, Y, P, Pep, swash, em = extract_twamomx_terms(
geofil,
vgeofil,
fil,
fil2,
xstart,
xend,
ystart,
yend,
zs,
ze,
meanax,
alreadysaved=alreadysaved,
fil3=fil3)
P = np.ma.masked_array(P, mask=np.isnan(P)).squeeze()
cmax = np.nanpercentile(P, [cmaxpercfactor, 100 - cmaxpercfactor])
cmax = np.max(np.fabs(cmax))
fig, ax = plt.subplots(
np.int8(np.ceil(len(plotterms) / 2)),
2,
sharex=True,
sharey=True,
figsize=(10, 3))
ti = ['(a)', '(b)', '(c)', '(d)', '(e)', '(f)', '(g)', '(h)', '(i)', '(j)']
lab = [
r'$-\hat{u}\hat{u}_{\tilde{x}}$', r'$-\hat{v}\hat{u}_{\tilde{y}}$',
r'$-\hat{\varpi}\hat{u}_{\tilde{b}}$', r'$f\hat{v}$',
r'$-\overline{m_{\tilde{x}}}$',
r"""-$\frac{1}{\overline{h}}(\overline{h}\widehat{u ^{\prime \prime} u ^{\prime \prime} } +\frac{1}{2}\overline{\zeta ^{\prime 2}})_{\tilde{x}}$""",
r"""-$\frac{1}{\overline{h}}(\overline{h}\widehat{u ^{\prime \prime} v ^{\prime \prime}})_{\tilde{y}}$""",
r"""-$\frac{1}{\overline{h}}(\overline{h}\widehat{u ^{\prime \prime} \varpi ^{\prime \prime}} + \overline{\zeta ^\prime m_{\tilde{x}}^\prime})_{\tilde{b}}$""",
r'$\widehat{X^H}$', r'$\widehat{X^V}$'
]
for i, p in enumerate(plotterms):
axc = ax.ravel()[i]
im = m6plot(
(X, Y, P[:, :, p]),
axc,
vmax=cmax,
vmin=-cmax,
ptype='imshow',
txt=lab[p],
ylim=(-2000, 0),
cmap='RdBu_r',
cbar=False)
if fil3:
cs = axc.contour(
X,
Y,
swash,
np.array([swashperc]),
colors='grey',
linewidths=4)
cs = axc.contour(
X,
Y,
P[:, :, p],
levels=[-2e-5, -1e-5, 1e-5, 2e-5],
colors='k',
linestyles='dashed')
cs.clabel(inline=True, fmt="%.0e")
cs1 = axc.plot(X, em[::4, :].T, 'k')
if i % 2 == 0:
axc.set_ylabel('z (m)')
if i > np.size(ax) - 3:
xdegtokm(axc, 0.5 * (ystart + yend))
fig.tight_layout()
cb = fig.colorbar(im, ax=ax.ravel().tolist())
cb.formatter.set_powerlimits((0, 0))
cb.update_ticks()
if savfil:
plt.savefig(
savfil + '.eps',
dpi=300,
facecolor='w',
edgecolor='w',
format='eps',
transparent=False,
bbox_inches='tight')
else:
plt.show()
im = m6plot(
(X, Y, np.sum(P, axis=2)),
vmax=cmax,
vmin=-cmax,
ptype='imshow',
cmap='RdBu_r',
ylim=(-2500, 0))
if savfil:
plt.savefig(
savfil + 'res.eps',
dpi=300,
facecolor='w',
edgecolor='w',
format='eps',
transparent=False,
bbox_inches='tight')
else:
plt.show()
Pep = np.ma.masked_array(Pep, mask=np.isnan(Pep)).squeeze()
cmax = np.nanpercentile(Pep,
[cmaxpercfactorforep, 100 - cmaxpercfactorforep])
cmax = np.max(np.fabs(cmax))
lab = [
r'$-\frac{(\overline{huu})_{\tilde{x}}}{\overline{h}}$',
r'$\frac{\hat{u}(\overline{hu})_{\tilde{x}}}{\overline{h}}$',
r"""$-\frac{1}{2\overline{h}}\overline{\zeta ^{\prime 2}}_{\tilde{x}}$""",
r'$-\frac{(\overline{huv})_{\tilde{y}}}{\overline{h}}$',
r'$\frac{\hat{u}(\overline{hv})_{\tilde{y}}}{\overline{h}}$',
r'$-\frac{(\overline{hu\varpi})_{\tilde{b}}}{\overline{h}}$',
r'$\frac{\hat{u}(\overline{h\varpi})_{\tilde{b}}}{\overline{h}}$',
r"""$-\frac{(\overline{\zeta ^\prime m_{\tilde{x}}^\prime})_{\tilde{b}}}{\overline{h}}$"""
]
fig, ax = plt.subplots(
np.int8(np.ceil(Pep.shape[-1] / 2)),
2,
sharex=True,
sharey=True,
figsize=(12, 9))
for i in range(Pep.shape[-1]):
axc = ax.ravel()[i]
im = m6plot(
(X, Y, Pep[:, :, i]),
axc,
vmax=cmax,
vmin=-cmax,
ptype='imshow',
txt=lab[i],
cmap='RdBu_r',
ylim=(-2500, 0),
cbar=False)
if fil3:
cs = axc.contour(X, Y, swash, np.array([swashperc]), colors='k')
if i % 2 == 0:
axc.set_ylabel('z (m)')
if i > np.size(ax) - 3:
xdegtokm(axc, 0.5 * (ystart + yend))
fig.tight_layout()
cb = fig.colorbar(im, ax=ax.ravel().tolist())
cb.formatter.set_powerlimits((0, 0))
cb.update_ticks()
if savfilep:
plt.savefig(
savfilep + '.eps',
dpi=300,
facecolor='w',
edgecolor='w',
format='eps',
transparent=False,
bbox_inches='tight')
else:
plt.show()
|
gpl-3.0
|
thunderhoser/GewitterGefahr
|
gewittergefahr/gg_utils/storm_tracking_eval_test.py
|
1
|
4622
|
"""Unit tests for storm_tracking_eval.py."""
import copy
import unittest
import numpy
import pandas
from gewittergefahr.gg_utils import storm_tracking_eval as tracking_eval
from gewittergefahr.gg_utils import storm_tracking_utils as tracking_utils
TOLERANCE = 1e-6
# The following constants are used to test _fit_theil_sen_one_track.
VALID_TIMES_ONE_TRACK_UNIX_SEC = numpy.array(
[0, 1, 2, 2, 3, 4, 5, 6, 7, 7], dtype=int
)
X_COORDS_ONE_TRACK_METRES = numpy.array([
-10, -7.5, -5, -5, -2.5, 0, 2.5, 5, 7.5, 7.5
])
Y_COORDS_ONE_TRACK_METRES = numpy.array([
5, 1.4, -2.2, -2.2, -5.8, -9.4, -13, -16.6, -20.2, -20.2
])
X_INTERCEPT_ONE_TRACK_METRES = -10.
X_VELOCITY_ONE_TRACK_M_S01 = 2.5
Y_INTERCEPT_ONE_TRACK_METRES = 5.
Y_VELOCITY_ONE_TRACK_M_S01 = -3.6
# The following constants are used to test _apply_theil_sen_one_track.
STORM_TRACK_DICT = {
tracking_eval.X_INTERCEPT_COLUMN: [X_INTERCEPT_ONE_TRACK_METRES],
tracking_eval.X_VELOCITY_COLUMN: [X_VELOCITY_ONE_TRACK_M_S01],
tracking_eval.Y_INTERCEPT_COLUMN: [Y_INTERCEPT_ONE_TRACK_METRES],
tracking_eval.Y_VELOCITY_COLUMN: [Y_VELOCITY_ONE_TRACK_M_S01]
}
STORM_TRACK_TABLE = pandas.DataFrame.from_dict(STORM_TRACK_DICT)
NESTED_ARRAY = STORM_TRACK_TABLE[[
tracking_eval.X_INTERCEPT_COLUMN, tracking_eval.X_INTERCEPT_COLUMN
]].values.tolist()
STORM_TRACK_TABLE = STORM_TRACK_TABLE.assign(**{
tracking_utils.TRACK_TIMES_COLUMN: NESTED_ARRAY,
tracking_utils.TRACK_X_COORDS_COLUMN: NESTED_ARRAY,
tracking_utils.TRACK_Y_COORDS_COLUMN: NESTED_ARRAY
})
THESE_TIMES_UNIX_SEC = numpy.array([10, 10, 15, 15, 20, 25, 30, 40], dtype=int)
ACTUAL_X_COORDS_METRES = numpy.array([12, 19, 22, 33, 38, 50.5, 63, 86])
ACTUAL_Y_COORDS_METRES = numpy.array([
-38, -25, -60, -45, -66.6, -88, -102, -130
])
EXPECTED_X_COORDS_METRES = numpy.array([15, 15, 27.5, 27.5, 40, 52.5, 65, 90])
EXPECTED_Y_COORDS_METRES = numpy.array(
[-31, -31, -49, -49, -67, -85, -103, -139], dtype=float
)
STORM_TRACK_TABLE[tracking_utils.TRACK_TIMES_COLUMN].values[0] = (
THESE_TIMES_UNIX_SEC
)
STORM_TRACK_TABLE[tracking_utils.TRACK_X_COORDS_COLUMN].values[0] = (
ACTUAL_X_COORDS_METRES
)
STORM_TRACK_TABLE[tracking_utils.TRACK_Y_COORDS_COLUMN].values[0] = (
ACTUAL_Y_COORDS_METRES
)
# The following constants are used to test _get_mean_ts_error_one_track.
RMSE_METRES = numpy.sqrt(numpy.mean(
(EXPECTED_X_COORDS_METRES - ACTUAL_X_COORDS_METRES) ** 2 +
(EXPECTED_Y_COORDS_METRES - ACTUAL_Y_COORDS_METRES) ** 2
))
class StormTrackingEvalTests(unittest.TestCase):
"""Each method is a unit test for storm_tracking_eval.py."""
def test_fit_theil_sen_one_track(self):
"""Ensures correct output from _fit_theil_sen_one_track."""
this_dict = tracking_eval._fit_theil_sen_one_track(
x_coords_metres=X_COORDS_ONE_TRACK_METRES,
y_coords_metres=Y_COORDS_ONE_TRACK_METRES,
valid_times_unix_sec=VALID_TIMES_ONE_TRACK_UNIX_SEC)
self.assertTrue(numpy.isclose(
this_dict[tracking_eval.X_INTERCEPT_KEY],
X_INTERCEPT_ONE_TRACK_METRES, atol=TOLERANCE
))
self.assertTrue(numpy.isclose(
this_dict[tracking_eval.X_VELOCITY_KEY],
X_VELOCITY_ONE_TRACK_M_S01, atol=TOLERANCE
))
self.assertTrue(numpy.isclose(
this_dict[tracking_eval.Y_INTERCEPT_KEY],
Y_INTERCEPT_ONE_TRACK_METRES, atol=TOLERANCE
))
self.assertTrue(numpy.isclose(
this_dict[tracking_eval.Y_VELOCITY_KEY],
Y_VELOCITY_ONE_TRACK_M_S01, atol=TOLERANCE
))
def test_apply_theil_sen_one_track(self):
"""Ensures correct output from _apply_theil_sen_one_track."""
these_x_coords_metres, these_y_coords_metres = (
tracking_eval._apply_theil_sen_one_track(
storm_track_table=copy.deepcopy(STORM_TRACK_TABLE), row_index=0)
)
self.assertTrue(numpy.allclose(
these_x_coords_metres, EXPECTED_X_COORDS_METRES, atol=TOLERANCE
))
self.assertTrue(numpy.allclose(
these_y_coords_metres, EXPECTED_Y_COORDS_METRES, atol=TOLERANCE
))
def test_get_mean_ts_error_one_track(self):
"""Ensures correct output from _get_mean_ts_error_one_track."""
this_rmse_metres = tracking_eval._get_mean_ts_error_one_track(
storm_track_table=copy.deepcopy(STORM_TRACK_TABLE), row_index=0
)
self.assertTrue(numpy.isclose(
RMSE_METRES, this_rmse_metres, atol=TOLERANCE
))
if __name__ == '__main__':
unittest.main()
|
mit
|
ajZiiiN/honest-blackops
|
src/return_ml_cron.py
|
1
|
5638
|
import lib.dbUtil as dbUtil
import lib.queries as qUtil
import pandas as pd
import numpy as np
from datetime import datetime, date, time, timedelta
import os
from sklearn import metrics
from sklearn.model_selection import train_test_split
import pickle
DATA_DIR = "../data/raw"
PRED_DIR = "../data/pred_ml"
def scaleRange(X, R = (0,1)):
from sklearn.preprocessing import MinMaxScaler
oldRange = [np.amin(X), np.amax(X)]
scaler = MinMaxScaler(feature_range = R)
return scaler.fit_transform(X), oldRange
# dataset-1: queries.getInstallDayGameDataW0ReturnQ
def getInstallDataset(startDate, save = True, loadExisting = False):
if loadExisting == True:
return pd.read_csv(os.path.join(DATA_DIR, str(startDate) + ".csv"))
data = []
cols = ['pid', 'chaal_by_blind', 'avg_win_by_boot', 'avg_loss_by_boot', 'times_loaded', 'isReturnW0']
q = qUtil.getInstallDayGameDataW0ReturnQ.replace('${date}$', str(startDate))
count = 0
result = dbUtil.runQuery(q)
count = count+1
total = result.rowcount
row = result.fetchone()
while row != None:
rowData = (row[0], float(row[1]), float(row[2]), float(row[3]), int(row[4]), int(row[5]))
data.append(rowData)
print(("Done: ", count, total))
count = count+1
row = result.fetchone()
df = pd.DataFrame(data, columns = cols)
if save == True:
df.to_csv(os.path.join(DATA_DIR, str(startDate) + ".csv"))
return df
# dataset-2: queries.getInstallDayGameDataW0Return_2_Q
def getInstallDataset_2(startDate , save = True, loadExisting = False):
if loadExisting == True and os.path.exists(os.path.join(DATA_DIR, str(startDate) + ".csv")):
return pd.read_csv(os.path.join(DATA_DIR, str(startDate) + ".csv"))
data = []
cols = ['pid', 'chaal_by_blind', 'avg_win_by_boot', 'avg_loss_by_boot', 'games_played','times_loaded', 'isReturnW0']
q = qUtil.getInstallDayGameDataW0Return_2_Q.replace('${date}$', str(startDate))
count = 0
result = dbUtil.runQuery(q)
count = count+1
total = result.rowcount
row = result.fetchone()
while row != None:
rowData = (row[0], float(row[1]), float(row[2]), float(row[3]), int(row[4]) ,int(row[5]), int(row[6]))
data.append(rowData)
print(("Done: ", count, total))
count = count+1
row = result.fetchone()
df = pd.DataFrame(data, columns = cols)
if save == True:
df.to_csv(os.path.join(DATA_DIR, str(startDate) + ".csv"))
return df
# adding model creation
def trainModel(X_train, y_train, clf):
return clf.fit(X_train, y_train)
def evalModel(X_test, y_test, clf):
y_pred = clf.predict(X_test)
print("Accuracy Score: ", metrics.accuracy_score(y_test, y_pred))
print("F1 score: ", metrics.f1_score(y_test, y_pred, average='binary'))
return y_pred
def splitTrainTestData(df):
y = df.pop('isReturnW0')
pids = df.pop('pid')
X = df[['chaal_by_blind', 'avg_win_by_boot', 'avg_loss_by_boot', 'games_played','times_loaded']]
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0, shuffle = False)
return X_train,X_test,y_train,y_test, pids
def splitTrainTestDataNorm(df):
y = df.pop('isReturnW0')
#X = df[['chaal_by_blind', 'avg_win_by_boot', 'avg_loss_by_boot', 'games_played','times_loaded']]
pids = df.pop('pid')
# Normalizing data
minMax = {}
X = pd.DataFrame()
X['cbb'], minMax['cbb'] = scaleRange(df['chaal_by_blind'])
X['awd'], minMax['awb'] = scaleRange(df['avg_win_by_boot'])
X['alb'], minMax['alb'] = scaleRange(df['avg_loss_by_boot'])
X['gp'], minMax['gp'] = scaleRange(df['games_played'])
X['tl'], minMax['tl'] = scaleRange(df['times_loaded'])
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0, shuffle = False)
return X_train,X_test,y_train,y_test , pids, minMax
def writeClassifierToFile(clf, filename):
from sklearn.externals import joblib
pickle_path = os.path.join("../data/ml_model",filename)
joblib.dump(clf, pickle_path)
def readClassifierFromFile(filename):
from sklearn.externals import joblib
pickle_path = os.path.join('../data/ml_model',filename)
clf = joblib.load(pickle_path)
return clf
def doPrediction(curDate):
df = getInstallDataset_2(curDate, loadExisting=False)
X_train,X_test,y_train,y_test, pids, = splitTrainTestData(df)
print(X_train.shape,y_train.shape, X_test.shape, y_test.shape)
clf = readClassifierFromFile( "W1_return.pkl")
y_val_pred2 = evalModel(X_train, y_train, clf)
return pids, y_train, y_val_pred2
def getApiPrediction(pid, date_str):
import requests
URL = "http://172.31.0.81:9090/ret"
PARAMS = {'date': date_str, 'pid': pid}
r = requests.get(url = URL, params = PARAMS)
print(r.json())
return r.json()['isReturn']
def main():
# runs cron for yesterday
yest = date(2017, 10, 14)
#yest = datetime.now().date() - timedelta(days = 1)
pids, y_train, y_pred = doPrediction(yest)
print("Got dataset for : ", str(yest))
df_predicts = pd.DataFrame()
df_predicts['pids'] = pids
df_predicts['ret_actual']= y_train
print("Got pids and actual return: ", df_predicts.head())
df_predicts['ret_pred'] = y_pred
print("Got Home prediction: ", df_predicts.head())
pred = {}
for index, row in df_predicts.iterrows():
pred[str(row['pids'])] = row['ret_pred']
with open(os.path.join(PRED_DIR, str(yest) + ".pkl"), "wb") as pf:
pickle.dump(pred, pf, 1)
print("Done Prediction for : ", str(yest))
if __name__ == "__main__":
main()
|
mit
|
jcirni/grit
|
grit.py
|
1
|
5623
|
import pandas as pd
import argparse
import os.path
import re
import datetime from datetime
pd.set_option('display.width', 120)
#catch bad file path
def valid_file(arg):
if not os.path.isfile(arg):
parser.error("File does not exist!")
else:
return arg
#standard outputs for data validation
def err_data(value, row, col):
log = open('error.log', 'a')
log.write(str(datetime.now()) + ": Your value, " + value + ", at row %d and col %d does not contain appropriate data\n" % (row, col))
#test chrom data
def valid_chrom(chrom):
try:
return chrom[0:3] == 'chr' and int(chrom[3:]) < 23
except ValueError:
return False
#test start position
def valid_start_position(value):
return 0 < value and value < (2 ** 32 + 1)
#test end position
def valid_end_position(end, start):
return 0 < end and end < (2 ** 32 + 1) and start < end
#test feature name
def valid_feature_name(feature):
return re.match("^[\w_()-]*$", feature)
#validate data set
def valid_data(data, length):
'''iterate through columns of dataset, log errors'''
chromErrs, startErrs, endErrs, featErrs, strandErrs = 0,0,0,0,0
i = 0
print "Data Validation Results:"
while i < length:
#validate chrom field
if valid_chrom(data.iloc[i][0]):
#cut chr prefix and update value
data.set_value(i,0, (data.iloc[i][0])[3:], takeable=True)
else:
err_data(data.iloc[i][0],i,0)
chromErrs += 1
#validate start position
if not valid_start_position(data.iloc[i][1]):
err_data(data.iloc[i][1],i,1)
startErrs += 1
#validate end position
if not valid_end_position(data.iloc[i][2], data.iloc[i][1]):
err_data(data.iloc[i][2],i,2)
endErrs += 1
#validate feature name
if not valid_feature_name(data.iloc[i][3]):
err_data(data.iloc[i][3],i,3)
featErrs += 1
#validate strand
if not (data.iloc[i][4] == '-' or data.iloc[i][4] == '+'):
err_data(data.iloc[i][4],i,4)
strandErrs += 1
i += 1
print "chrom field reported %d errors!" % (chromErrs)
print "start position field reported %d errors!" % (startErrs)
print "end position field reported %d errors!" % (endErrs)
print "feature name field reported %d errors!" % (featErrs)
print "strand field reported %d errors!" % (strandErrs)
return chromErrs + startErrs + endErrs + featErrs + strandErrs == 0
def get_user_chrom():
opt = raw_input("Enter chromosome value (format chr##): ")
if valid_chrom(opt):
return int(opt[3:])
else:
print "invalid input, please try again"
get_user_chrom()
def get_user_pos():
opt = raw_input("OPTIONAL: Enter position value. Must be a number 1 - 2^32. Or enter no: ")
if opt == 'no' or opt =='No' or opt == 'n':
return None
else:
try:
opt = int(opt)
if valid_start_position(opt):
return opt
except ValueError:
print "invalid input, value must be 1 - 2^32. Please try again"
get_user_pos()
def get_user_feature():
opt = raw_input("Enter feature name: ")
if valid_feature_name(opt):
return opt
else:
print "invalid input, please try again"
get_user_feature()
#queries dataset for chromosome
def search_for_chrom(data, chrom, pos):
if pos == None:
return data.loc[data['chromosome'] == chrom]
else:
return data.loc[(data['chromosome'] == chrom) & (data['start_pos'] < pos) & (data['end_pos'] > pos)]
#queries dataset for feature
def search_for_feature(data, feature):
return data.loc[data['feature_name'] == feature]
#summary metrix
def get_metrics():
print
print "================== Your Metrics ======================"
print
#count unique features per chromosome by chromosome and starting position
print "Features in data set: %d" % len(df.groupby(['chromosome', 'start_pos']).size().index)
#new length column
df['length'] = df['end_pos'] - df['start_pos']
#min
print "The smallest length is: %d" % df['length'].min()
#max
print "The largest length is: %d" % df['length'].max()
#mean
print "The average length is: %d" % df['length'].mean()
#count unique features per strand
print
print "==== Features per Strand ===="
print
print df.groupby(['chromosome', 'strand']).size()
#get user's next action
def get_user_input():
opta = raw_input("Query data, get stats, or exit? (q/s/x): ")
if opta == 'q':
optb = raw_input("Search by pos or feat? (pos/feat): ")
if optb == 'pos':
print search_for_chrom(df, get_user_chrom(), get_user_pos())
get_user_input()
elif optb == 'feat':
print search_for_feature(df, get_user_feature())
get_user_input()
else:
print "invalid input please try again (pos/feat): "
get_user_input()
elif opta == 's':
get_metrics()
get_user_input()
elif opta == 'x':
print "All done."
exit()
else:
print "invalid input, please try again"
get_user_input()
#command line arguments
parser = argparse.ArgumentParser(description='Parses genetic annotation data and allows querying with command line arguments. Requires file (-f /path/to/file)')
parser.add_argument('-f', '--file', type=str, help='path to file')
#parse arguments
args = parser.parse_args()
#check for valid file and read file
if args.file:
print "Validating data now!"
df = pd.read_csv(valid_file(args.file), '\t' , header=None)
df.columns = ['chromosome', 'start_pos', 'end_pos', 'feature_name', 'strand']
print
if valid_data(df, len(df.index)):
print "Data validation complete!"
#now that data is good, strip chr prefix from chrom column
df[['chromosome']] = df[['chromosome']].apply(pd.to_numeric)
print df
#what does user want to do now?
get_user_input()
else:
print
print 'Please make corrections to your data sample'
else:
print parser.description
|
mit
|
yeahkun/tushare
|
tushare/stock/fundamental.py
|
4
|
14920
|
# -*- coding:utf-8 -*-
"""
基本面数据接口
Created on 2015/01/18
@author: Jimmy Liu
@group : waditu
@contact: [email protected]
"""
import pandas as pd
from tushare.stock import cons as ct
import lxml.html
from lxml import etree
import re
from pandas.compat import StringIO
try:
from urllib.request import urlopen, Request
except ImportError:
from urllib2 import urlopen, Request
def get_stock_basics():
"""
获取沪深上市公司基本情况
Return
--------
DataFrame
code,代码
name,名称
industry,细分行业
area,地区
pe,市盈率
outstanding,流通股本
totals,总股本(万)
totalAssets,总资产(万)
liquidAssets,流动资产
fixedAssets,固定资产
reserved,公积金
reservedPerShare,每股公积金
eps,每股收益
bvps,每股净资
pb,市净率
timeToMarket,上市日期
"""
request = Request(ct.ALL_STOCK_BASICS_FILE)
text = urlopen(request, timeout=10).read()
text = text.decode('GBK')
df = pd.read_csv(StringIO(text), dtype={'code':'object'})
df = df.set_index('code')
return df
def get_report_data(year, quarter):
"""
获取业绩报表数据
Parameters
--------
year:int 年度 e.g:2014
quarter:int 季度 :1、2、3、4,只能输入这4个季度
说明:由于是从网站获取的数据,需要一页页抓取,速度取决于您当前网络速度
Return
--------
DataFrame
code,代码
name,名称
eps,每股收益
eps_yoy,每股收益同比(%)
bvps,每股净资产
roe,净资产收益率(%)
epcf,每股现金流量(元)
net_profits,净利润(万元)
profits_yoy,净利润同比(%)
distrib,分配方案
report_date,发布日期
"""
if ct._check_input(year,quarter) is True:
ct._write_head()
df = _get_report_data(year, quarter, 1, pd.DataFrame())
if df is not None:
df = df.drop_duplicates('code')
df['code'] = df['code'].map(lambda x:str(x).zfill(6))
return df
def _get_report_data(year, quarter, pageNo, dataArr):
ct._write_console()
try:
request = Request(ct.REPORT_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'], ct.PAGES['fd'],
year, quarter, pageNo, ct.PAGE_NUM[1]))
text = urlopen(request, timeout=10).read()
text = text.decode('GBK')
html = lxml.html.parse(StringIO(text))
res = html.xpath("//table[@class=\"list_table\"]/tr")
if ct.PY3:
sarr = [etree.tostring(node).decode('utf-8') for node in res]
else:
sarr = [etree.tostring(node) for node in res]
sarr = ''.join(sarr)
sarr = '<table>%s</table>'%sarr
df = pd.read_html(sarr)[0]
df = df.drop(11, axis=1)
df.columns = ct.REPORT_COLS
dataArr = dataArr.append(df, ignore_index=True)
nextPage = html.xpath('//div[@class=\"pages\"]/a[last()]/@onclick')
if len(nextPage)>0:
pageNo = re.findall(r'\d+', nextPage[0])[0]
return _get_report_data(year, quarter, pageNo, dataArr)
else:
return dataArr
except Exception as e:
print(e)
def get_profit_data(year, quarter):
"""
获取盈利能力数据
Parameters
--------
year:int 年度 e.g:2014
quarter:int 季度 :1、2、3、4,只能输入这4个季度
说明:由于是从网站获取的数据,需要一页页抓取,速度取决于您当前网络速度
Return
--------
DataFrame
code,代码
name,名称
roe,净资产收益率(%)
net_profit_ratio,净利率(%)
gross_profit_rate,毛利率(%)
net_profits,净利润(万元)
eps,每股收益
business_income,营业收入(百万元)
bips,每股主营业务收入(元)
"""
if ct._check_input(year, quarter) is True:
ct._write_head()
data = _get_profit_data(year, quarter, 1, pd.DataFrame())
if data is not None:
data = data.drop_duplicates('code')
data['code'] = data['code'].map(lambda x:str(x).zfill(6))
return data
def _get_profit_data(year, quarter, pageNo, dataArr):
ct._write_console()
try:
request = Request(ct.PROFIT_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'],
ct.PAGES['fd'], year,
quarter, pageNo, ct.PAGE_NUM[1]))
text = urlopen(request, timeout=10).read()
text = text.decode('GBK')
html = lxml.html.parse(StringIO(text))
res = html.xpath("//table[@class=\"list_table\"]/tr")
if ct.PY3:
sarr = [etree.tostring(node).decode('utf-8') for node in res]
else:
sarr = [etree.tostring(node) for node in res]
sarr = ''.join(sarr)
sarr = '<table>%s</table>'%sarr
df = pd.read_html(sarr)[0]
df.columns=ct.PROFIT_COLS
dataArr = dataArr.append(df, ignore_index=True)
nextPage = html.xpath('//div[@class=\"pages\"]/a[last()]/@onclick')
if len(nextPage)>0:
pageNo = re.findall(r'\d+', nextPage[0])[0]
return _get_profit_data(year, quarter, pageNo, dataArr)
else:
return dataArr
except:
pass
def get_operation_data(year, quarter):
"""
获取营运能力数据
Parameters
--------
year:int 年度 e.g:2014
quarter:int 季度 :1、2、3、4,只能输入这4个季度
说明:由于是从网站获取的数据,需要一页页抓取,速度取决于您当前网络速度
Return
--------
DataFrame
code,代码
name,名称
arturnover,应收账款周转率(次)
arturndays,应收账款周转天数(天)
inventory_turnover,存货周转率(次)
inventory_days,存货周转天数(天)
currentasset_turnover,流动资产周转率(次)
currentasset_days,流动资产周转天数(天)
"""
if ct._check_input(year, quarter) is True:
ct._write_head()
data = _get_operation_data(year, quarter, 1, pd.DataFrame())
if data is not None:
data = data.drop_duplicates('code')
data['code'] = data['code'].map(lambda x:str(x).zfill(6))
return data
def _get_operation_data(year, quarter, pageNo, dataArr):
ct._write_console()
try:
request = Request(ct.OPERATION_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'],
ct.PAGES['fd'], year,
quarter, pageNo, ct.PAGE_NUM[1]))
text = urlopen(request, timeout=10).read()
text = text.decode('GBK')
html = lxml.html.parse(StringIO(text))
res = html.xpath("//table[@class=\"list_table\"]/tr")
if ct.PY3:
sarr = [etree.tostring(node).decode('utf-8') for node in res]
else:
sarr = [etree.tostring(node) for node in res]
sarr = ''.join(sarr)
sarr = '<table>%s</table>'%sarr
df = pd.read_html(sarr)[0]
df.columns=ct.OPERATION_COLS
dataArr = dataArr.append(df, ignore_index=True)
nextPage = html.xpath('//div[@class=\"pages\"]/a[last()]/@onclick')
if len(nextPage)>0:
pageNo = re.findall(r'\d+', nextPage[0])[0]
return _get_operation_data(year, quarter, pageNo, dataArr)
else:
return dataArr
except Exception as e:
print(e)
def get_growth_data(year, quarter):
"""
获取成长能力数据
Parameters
--------
year:int 年度 e.g:2014
quarter:int 季度 :1、2、3、4,只能输入这4个季度
说明:由于是从网站获取的数据,需要一页页抓取,速度取决于您当前网络速度
Return
--------
DataFrame
code,代码
name,名称
mbrg,主营业务收入增长率(%)
nprg,净利润增长率(%)
nav,净资产增长率
targ,总资产增长率
epsg,每股收益增长率
seg,股东权益增长率
"""
if ct._check_input(year, quarter) is True:
ct._write_head()
data = _get_growth_data(year, quarter, 1, pd.DataFrame())
if data is not None:
data = data.drop_duplicates('code')
data['code'] = data['code'].map(lambda x:str(x).zfill(6))
return data
def _get_growth_data(year, quarter, pageNo, dataArr):
ct._write_console()
try:
request = Request(ct.GROWTH_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'],
ct.PAGES['fd'], year,
quarter, pageNo, ct.PAGE_NUM[1]))
text = urlopen(request, timeout=10).read()
text = text.decode('GBK')
html = lxml.html.parse(StringIO(text))
res = html.xpath("//table[@class=\"list_table\"]/tr")
if ct.PY3:
sarr = [etree.tostring(node).decode('utf-8') for node in res]
else:
sarr = [etree.tostring(node) for node in res]
sarr = ''.join(sarr)
sarr = '<table>%s</table>'%sarr
df = pd.read_html(sarr)[0]
df.columns=ct.GROWTH_COLS
dataArr = dataArr.append(df, ignore_index=True)
nextPage = html.xpath('//div[@class=\"pages\"]/a[last()]/@onclick')
if len(nextPage)>0:
pageNo = re.findall(r'\d+', nextPage[0])[0]
return _get_growth_data(year, quarter, pageNo, dataArr)
else:
return dataArr
except Exception as e:
print(e)
def get_debtpaying_data(year, quarter):
"""
获取偿债能力数据
Parameters
--------
year:int 年度 e.g:2014
quarter:int 季度 :1、2、3、4,只能输入这4个季度
说明:由于是从网站获取的数据,需要一页页抓取,速度取决于您当前网络速度
Return
--------
DataFrame
code,代码
name,名称
currentratio,流动比率
quickratio,速动比率
cashratio,现金比率
icratio,利息支付倍数
sheqratio,股东权益比率
adratio,股东权益增长率
"""
if ct._check_input(year, quarter) is True:
ct._write_head()
df = _get_debtpaying_data(year, quarter, 1, pd.DataFrame())
if df is not None:
df = df.drop_duplicates('code')
df['code'] = df['code'].map(lambda x:str(x).zfill(6))
return df
def _get_debtpaying_data(year, quarter, pageNo, dataArr):
ct._write_console()
try:
request = Request(ct.DEBTPAYING_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'],
ct.PAGES['fd'], year,
quarter, pageNo, ct.PAGE_NUM[1]))
text = urlopen(request, timeout=10).read()
text = text.decode('GBK')
html = lxml.html.parse(StringIO(text))
res = html.xpath("//table[@class=\"list_table\"]/tr")
if ct.PY3:
sarr = [etree.tostring(node).decode('utf-8') for node in res]
else:
sarr = [etree.tostring(node) for node in res]
sarr = ''.join(sarr)
sarr = '<table>%s</table>'%sarr
df = pd.read_html(sarr)[0]
df.columns = ct.DEBTPAYING_COLS
dataArr = dataArr.append(df, ignore_index=True)
nextPage = html.xpath('//div[@class=\"pages\"]/a[last()]/@onclick')
if len(nextPage)>0:
pageNo = re.findall(r'\d+', nextPage[0])[0]
return _get_debtpaying_data(year, quarter, pageNo, dataArr)
else:
return dataArr
except Exception as e:
print(e)
def get_cashflow_data(year, quarter):
"""
获取现金流量数据
Parameters
--------
year:int 年度 e.g:2014
quarter:int 季度 :1、2、3、4,只能输入这4个季度
说明:由于是从网站获取的数据,需要一页页抓取,速度取决于您当前网络速度
Return
--------
DataFrame
code,代码
name,名称
cf_sales,经营现金净流量对销售收入比率
rateofreturn,资产的经营现金流量回报率
cf_nm,经营现金净流量与净利润的比率
cf_liabilities,经营现金净流量对负债比率
cashflowratio,现金流量比率
"""
if ct._check_input(year, quarter) is True:
ct._write_head()
df = _get_cashflow_data(year, quarter, 1, pd.DataFrame())
if df is not None:
df = df.drop_duplicates('code')
df['code'] = df['code'].map(lambda x:str(x).zfill(6))
return df
def _get_cashflow_data(year, quarter, pageNo, dataArr):
ct._write_console()
try:
request = Request(ct.CASHFLOW_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'],
ct.PAGES['fd'], year,
quarter, pageNo, ct.PAGE_NUM[1]))
text = urlopen(request, timeout=10).read()
text = text.decode('GBK')
html = lxml.html.parse(StringIO(text))
res = html.xpath("//table[@class=\"list_table\"]/tr")
if ct.PY3:
sarr = [etree.tostring(node).decode('utf-8') for node in res]
else:
sarr = [etree.tostring(node) for node in res]
sarr = ''.join(sarr)
sarr = '<table>%s</table>'%sarr
df = pd.read_html(sarr)[0]
df.columns = ct.CASHFLOW_COLS
dataArr = dataArr.append(df, ignore_index=True)
nextPage = html.xpath('//div[@class=\"pages\"]/a[last()]/@onclick')
if len(nextPage)>0:
pageNo = re.findall(r'\d+', nextPage[0])[0]
return _get_cashflow_data(year, quarter, pageNo, dataArr)
else:
return dataArr
except Exception as e:
print(e)
def _data_path():
import os
import inspect
caller_file = inspect.stack()[1][1]
pardir = os.path.abspath(os.path.join(os.path.dirname(caller_file), os.path.pardir))
return os.path.abspath(os.path.join(pardir, os.path.pardir))
|
bsd-3-clause
|
vhaasteren/scipy
|
scipy/stats/_multivariate.py
|
17
|
69089
|
#
# Author: Joris Vankerschaver 2013
#
from __future__ import division, print_function, absolute_import
import numpy as np
import scipy.linalg
from scipy.misc import doccer
from scipy.special import gammaln, psi, multigammaln
from scipy._lib._util import check_random_state
__all__ = ['multivariate_normal', 'dirichlet', 'wishart', 'invwishart']
_LOG_2PI = np.log(2 * np.pi)
_LOG_2 = np.log(2)
_LOG_PI = np.log(np.pi)
def _process_parameters(dim, mean, cov):
"""
Infer dimensionality from mean or covariance matrix, ensure that
mean and covariance are full vector resp. matrix.
"""
# Try to infer dimensionality
if dim is None:
if mean is None:
if cov is None:
dim = 1
else:
cov = np.asarray(cov, dtype=float)
if cov.ndim < 2:
dim = 1
else:
dim = cov.shape[0]
else:
mean = np.asarray(mean, dtype=float)
dim = mean.size
else:
if not np.isscalar(dim):
raise ValueError("Dimension of random variable must be a scalar.")
# Check input sizes and return full arrays for mean and cov if necessary
if mean is None:
mean = np.zeros(dim)
mean = np.asarray(mean, dtype=float)
if cov is None:
cov = 1.0
cov = np.asarray(cov, dtype=float)
if dim == 1:
mean.shape = (1,)
cov.shape = (1, 1)
if mean.ndim != 1 or mean.shape[0] != dim:
raise ValueError("Array 'mean' must be a vector of length %d." % dim)
if cov.ndim == 0:
cov = cov * np.eye(dim)
elif cov.ndim == 1:
cov = np.diag(cov)
elif cov.ndim == 2 and cov.shape != (dim, dim):
rows, cols = cov.shape
if rows != cols:
msg = ("Array 'cov' must be square if it is two dimensional,"
" but cov.shape = %s." % str(cov.shape))
else:
msg = ("Dimension mismatch: array 'cov' is of shape %s,"
" but 'mean' is a vector of length %d.")
msg = msg % (str(cov.shape), len(mean))
raise ValueError(msg)
elif cov.ndim > 2:
raise ValueError("Array 'cov' must be at most two-dimensional,"
" but cov.ndim = %d" % cov.ndim)
return dim, mean, cov
def _process_quantiles(x, dim):
"""
Adjust quantiles array so that last axis labels the components of
each data point.
"""
x = np.asarray(x, dtype=float)
if x.ndim == 0:
x = x[np.newaxis]
elif x.ndim == 1:
if dim == 1:
x = x[:, np.newaxis]
else:
x = x[np.newaxis, :]
return x
def _squeeze_output(out):
"""
Remove single-dimensional entries from array and convert to scalar,
if necessary.
"""
out = out.squeeze()
if out.ndim == 0:
out = out[()]
return out
def _eigvalsh_to_eps(spectrum, cond=None, rcond=None):
"""
Determine which eigenvalues are "small" given the spectrum.
This is for compatibility across various linear algebra functions
that should agree about whether or not a Hermitian matrix is numerically
singular and what is its numerical matrix rank.
This is designed to be compatible with scipy.linalg.pinvh.
Parameters
----------
spectrum : 1d ndarray
Array of eigenvalues of a Hermitian matrix.
cond, rcond : float, optional
Cutoff for small eigenvalues.
Singular values smaller than rcond * largest_eigenvalue are
considered zero.
If None or -1, suitable machine precision is used.
Returns
-------
eps : float
Magnitude cutoff for numerical negligibility.
"""
if rcond is not None:
cond = rcond
if cond in [None, -1]:
t = spectrum.dtype.char.lower()
factor = {'f': 1E3, 'd': 1E6}
cond = factor[t] * np.finfo(t).eps
eps = cond * np.max(abs(spectrum))
return eps
def _pinv_1d(v, eps=1e-5):
"""
A helper function for computing the pseudoinverse.
Parameters
----------
v : iterable of numbers
This may be thought of as a vector of eigenvalues or singular values.
eps : float
Values with magnitude no greater than eps are considered negligible.
Returns
-------
v_pinv : 1d float ndarray
A vector of pseudo-inverted numbers.
"""
return np.array([0 if abs(x) <= eps else 1/x for x in v], dtype=float)
class _PSD(object):
"""
Compute coordinated functions of a symmetric positive semidefinite matrix.
This class addresses two issues. Firstly it allows the pseudoinverse,
the logarithm of the pseudo-determinant, and the rank of the matrix
to be computed using one call to eigh instead of three.
Secondly it allows these functions to be computed in a way
that gives mutually compatible results.
All of the functions are computed with a common understanding as to
which of the eigenvalues are to be considered negligibly small.
The functions are designed to coordinate with scipy.linalg.pinvh()
but not necessarily with np.linalg.det() or with np.linalg.matrix_rank().
Parameters
----------
M : array_like
Symmetric positive semidefinite matrix (2-D).
cond, rcond : float, optional
Cutoff for small eigenvalues.
Singular values smaller than rcond * largest_eigenvalue are
considered zero.
If None or -1, suitable machine precision is used.
lower : bool, optional
Whether the pertinent array data is taken from the lower
or upper triangle of M. (Default: lower)
check_finite : bool, optional
Whether to check that the input matrices contain only finite
numbers. Disabling may give a performance gain, but may result
in problems (crashes, non-termination) if the inputs do contain
infinities or NaNs.
allow_singular : bool, optional
Whether to allow a singular matrix. (Default: True)
Notes
-----
The arguments are similar to those of scipy.linalg.pinvh().
"""
def __init__(self, M, cond=None, rcond=None, lower=True,
check_finite=True, allow_singular=True):
# Compute the symmetric eigendecomposition.
# Note that eigh takes care of array conversion, chkfinite,
# and assertion that the matrix is square.
s, u = scipy.linalg.eigh(M, lower=lower, check_finite=check_finite)
eps = _eigvalsh_to_eps(s, cond, rcond)
if np.min(s) < -eps:
raise ValueError('the input matrix must be positive semidefinite')
d = s[s > eps]
if len(d) < len(s) and not allow_singular:
raise np.linalg.LinAlgError('singular matrix')
s_pinv = _pinv_1d(s, eps)
U = np.multiply(u, np.sqrt(s_pinv))
# Initialize the eagerly precomputed attributes.
self.rank = len(d)
self.U = U
self.log_pdet = np.sum(np.log(d))
# Initialize an attribute to be lazily computed.
self._pinv = None
@property
def pinv(self):
if self._pinv is None:
self._pinv = np.dot(self.U, self.U.T)
return self._pinv
_doc_default_callparams = """\
mean : array_like, optional
Mean of the distribution (default zero)
cov : array_like, optional
Covariance matrix of the distribution (default one)
allow_singular : bool, optional
Whether to allow a singular covariance matrix. (Default: False)
"""
_doc_callparams_note = \
"""Setting the parameter `mean` to `None` is equivalent to having `mean`
be the zero-vector. The parameter `cov` can be a scalar, in which case
the covariance matrix is the identity times that value, a vector of
diagonal entries for the covariance matrix, or a two-dimensional
array_like.
"""
_doc_random_state = """\
random_state : None or int or np.random.RandomState instance, optional
If int or RandomState, use it for drawing the random variates.
If None (or np.random), the global np.random state is used.
Default is None.
"""
_doc_frozen_callparams = ""
_doc_frozen_callparams_note = \
"""See class definition for a detailed description of parameters."""
docdict_params = {
'_doc_default_callparams': _doc_default_callparams,
'_doc_callparams_note': _doc_callparams_note,
'_doc_random_state': _doc_random_state
}
docdict_noparams = {
'_doc_default_callparams': _doc_frozen_callparams,
'_doc_callparams_note': _doc_frozen_callparams_note,
'_doc_random_state': _doc_random_state
}
class multi_rv_generic(object):
"""
Class which encapsulates common functionality between all multivariate
distributions.
"""
def __init__(self, seed=None):
super(multi_rv_generic, self).__init__()
self._random_state = check_random_state(seed)
@property
def random_state(self):
""" Get or set the RandomState object for generating random variates.
This can be either None or an existing RandomState object.
If None (or np.random), use the RandomState singleton used by np.random.
If already a RandomState instance, use it.
If an int, use a new RandomState instance seeded with seed.
"""
return self._random_state
@random_state.setter
def random_state(self, seed):
self._random_state = check_random_state(seed)
def _get_random_state(self, random_state):
if random_state is not None:
return check_random_state(random_state)
else:
return self._random_state
class multi_rv_frozen(object):
"""
Class which encapsulates common functionality between all frozen
multivariate distributions.
"""
@property
def random_state(self):
return self._dist._random_state
@random_state.setter
def random_state(self, seed):
self._dist._random_state = check_random_state(seed)
class multivariate_normal_gen(multi_rv_generic):
r"""
A multivariate normal random variable.
The `mean` keyword specifies the mean. The `cov` keyword specifies the
covariance matrix.
Methods
-------
``pdf(x, mean=None, cov=1, allow_singular=False)``
Probability density function.
``logpdf(x, mean=None, cov=1, allow_singular=False)``
Log of the probability density function.
``rvs(mean=None, cov=1, size=1, random_state=None)``
Draw random samples from a multivariate normal distribution.
``entropy()``
Compute the differential entropy of the multivariate normal.
Parameters
----------
x : array_like
Quantiles, with the last axis of `x` denoting the components.
%(_doc_default_callparams)s
%(_doc_random_state)s
Alternatively, the object may be called (as a function) to fix the mean
and covariance parameters, returning a "frozen" multivariate normal
random variable:
rv = multivariate_normal(mean=None, cov=1, allow_singular=False)
- Frozen object with the same methods but holding the given
mean and covariance fixed.
Notes
-----
%(_doc_callparams_note)s
The covariance matrix `cov` must be a (symmetric) positive
semi-definite matrix. The determinant and inverse of `cov` are computed
as the pseudo-determinant and pseudo-inverse, respectively, so
that `cov` does not need to have full rank.
The probability density function for `multivariate_normal` is
.. math::
f(x) = \frac{1}{\sqrt{(2 \pi)^k \det \Sigma}}
\exp\left( -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right),
where :math:`\mu` is the mean, :math:`\Sigma` the covariance matrix,
and :math:`k` is the dimension of the space where :math:`x` takes values.
.. versionadded:: 0.14.0
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from scipy.stats import multivariate_normal
>>> x = np.linspace(0, 5, 10, endpoint=False)
>>> y = multivariate_normal.pdf(x, mean=2.5, cov=0.5); y
array([ 0.00108914, 0.01033349, 0.05946514, 0.20755375, 0.43939129,
0.56418958, 0.43939129, 0.20755375, 0.05946514, 0.01033349])
>>> fig1 = plt.figure()
>>> ax = fig1.add_subplot(111)
>>> ax.plot(x, y)
The input quantiles can be any shape of array, as long as the last
axis labels the components. This allows us for instance to
display the frozen pdf for a non-isotropic random variable in 2D as
follows:
>>> x, y = np.mgrid[-1:1:.01, -1:1:.01]
>>> pos = np.empty(x.shape + (2,))
>>> pos[:, :, 0] = x; pos[:, :, 1] = y
>>> rv = multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]])
>>> fig2 = plt.figure()
>>> ax2 = fig2.add_subplot(111)
>>> ax2.contourf(x, y, rv.pdf(pos))
"""
def __init__(self, seed=None):
super(multivariate_normal_gen, self).__init__(seed)
self.__doc__ = doccer.docformat(self.__doc__, docdict_params)
def __call__(self, mean=None, cov=1, allow_singular=False, seed=None):
"""
Create a frozen multivariate normal distribution.
See `multivariate_normal_frozen` for more information.
"""
return multivariate_normal_frozen(mean, cov,
allow_singular=allow_singular,
seed=seed)
def _logpdf(self, x, mean, prec_U, log_det_cov, rank):
"""
Parameters
----------
x : ndarray
Points at which to evaluate the log of the probability
density function
mean : ndarray
Mean of the distribution
prec_U : ndarray
A decomposition such that np.dot(prec_U, prec_U.T)
is the precision matrix, i.e. inverse of the covariance matrix.
log_det_cov : float
Logarithm of the determinant of the covariance matrix
rank : int
Rank of the covariance matrix.
Notes
-----
As this function does no argument checking, it should not be
called directly; use 'logpdf' instead.
"""
dev = x - mean
maha = np.sum(np.square(np.dot(dev, prec_U)), axis=-1)
return -0.5 * (rank * _LOG_2PI + log_det_cov + maha)
def logpdf(self, x, mean, cov, allow_singular=False):
"""
Log of the multivariate normal probability density function.
Parameters
----------
x : array_like
Quantiles, with the last axis of `x` denoting the components.
%(_doc_default_callparams)s
Returns
-------
pdf : ndarray
Log of the probability density function evaluated at `x`
Notes
-----
%(_doc_callparams_note)s
"""
dim, mean, cov = _process_parameters(None, mean, cov)
x = _process_quantiles(x, dim)
psd = _PSD(cov, allow_singular=allow_singular)
out = self._logpdf(x, mean, psd.U, psd.log_pdet, psd.rank)
return _squeeze_output(out)
def pdf(self, x, mean, cov, allow_singular=False):
"""
Multivariate normal probability density function.
Parameters
----------
x : array_like
Quantiles, with the last axis of `x` denoting the components.
%(_doc_default_callparams)s
Returns
-------
pdf : ndarray
Probability density function evaluated at `x`
Notes
-----
%(_doc_callparams_note)s
"""
dim, mean, cov = _process_parameters(None, mean, cov)
x = _process_quantiles(x, dim)
psd = _PSD(cov, allow_singular=allow_singular)
out = np.exp(self._logpdf(x, mean, psd.U, psd.log_pdet, psd.rank))
return _squeeze_output(out)
def rvs(self, mean=None, cov=1, size=1, random_state=None):
"""
Draw random samples from a multivariate normal distribution.
Parameters
----------
%(_doc_default_callparams)s
size : integer, optional
Number of samples to draw (default 1).
%(_doc_random_state)s
Returns
-------
rvs : ndarray or scalar
Random variates of size (`size`, `N`), where `N` is the
dimension of the random variable.
Notes
-----
%(_doc_callparams_note)s
"""
dim, mean, cov = _process_parameters(None, mean, cov)
random_state = self._get_random_state(random_state)
out = random_state.multivariate_normal(mean, cov, size)
return _squeeze_output(out)
def entropy(self, mean=None, cov=1):
"""
Compute the differential entropy of the multivariate normal.
Parameters
----------
%(_doc_default_callparams)s
Returns
-------
h : scalar
Entropy of the multivariate normal distribution
Notes
-----
%(_doc_callparams_note)s
"""
dim, mean, cov = _process_parameters(None, mean, cov)
_, logdet = np.linalg.slogdet(2 * np.pi * np.e * cov)
return 0.5 * logdet
multivariate_normal = multivariate_normal_gen()
class multivariate_normal_frozen(multi_rv_frozen):
def __init__(self, mean=None, cov=1, allow_singular=False, seed=None):
"""
Create a frozen multivariate normal distribution.
Parameters
----------
mean : array_like, optional
Mean of the distribution (default zero)
cov : array_like, optional
Covariance matrix of the distribution (default one)
allow_singular : bool, optional
If this flag is True then tolerate a singular
covariance matrix (default False).
seed : None or int or np.random.RandomState instance, optional
This parameter defines the RandomState object to use for drawing
random variates.
If None (or np.random), the global np.random state is used.
If integer, it is used to seed the local RandomState instance
Default is None.
Examples
--------
When called with the default parameters, this will create a 1D random
variable with mean 0 and covariance 1:
>>> from scipy.stats import multivariate_normal
>>> r = multivariate_normal()
>>> r.mean
array([ 0.])
>>> r.cov
array([[1.]])
"""
self.dim, self.mean, self.cov = _process_parameters(None, mean, cov)
self.cov_info = _PSD(self.cov, allow_singular=allow_singular)
self._dist = multivariate_normal_gen(seed)
def logpdf(self, x):
x = _process_quantiles(x, self.dim)
out = self._dist._logpdf(x, self.mean, self.cov_info.U,
self.cov_info.log_pdet, self.cov_info.rank)
return _squeeze_output(out)
def pdf(self, x):
return np.exp(self.logpdf(x))
def rvs(self, size=1, random_state=None):
return self._dist.rvs(self.mean, self.cov, size, random_state)
def entropy(self):
"""
Computes the differential entropy of the multivariate normal.
Returns
-------
h : scalar
Entropy of the multivariate normal distribution
"""
log_pdet = self.cov_info.log_pdet
rank = self.cov_info.rank
return 0.5 * (rank * (_LOG_2PI + 1) + log_pdet)
# Set frozen generator docstrings from corresponding docstrings in
# multivariate_normal_gen and fill in default strings in class docstrings
for name in ['logpdf', 'pdf', 'rvs']:
method = multivariate_normal_gen.__dict__[name]
method_frozen = multivariate_normal_frozen.__dict__[name]
method_frozen.__doc__ = doccer.docformat(method.__doc__, docdict_noparams)
method.__doc__ = doccer.docformat(method.__doc__, docdict_params)
_dirichlet_doc_default_callparams = """\
alpha : array_like
The concentration parameters. The number of entries determines the
dimensionality of the distribution.
"""
_dirichlet_doc_frozen_callparams = ""
_dirichlet_doc_frozen_callparams_note = \
"""See class definition for a detailed description of parameters."""
dirichlet_docdict_params = {
'_dirichlet_doc_default_callparams': _dirichlet_doc_default_callparams,
'_doc_random_state': _doc_random_state
}
dirichlet_docdict_noparams = {
'_dirichlet_doc_default_callparams': _dirichlet_doc_frozen_callparams,
'_doc_random_state': _doc_random_state
}
def _dirichlet_check_parameters(alpha):
alpha = np.asarray(alpha)
if np.min(alpha) <= 0:
raise ValueError("All parameters must be greater than 0")
elif alpha.ndim != 1:
raise ValueError("Parameter vector 'a' must be one dimensional, " +
"but a.shape = %s." % str(alpha.shape))
return alpha
def _dirichlet_check_input(alpha, x):
x = np.asarray(x)
if x.shape[0] + 1 != alpha.shape[0] and x.shape[0] != alpha.shape[0]:
raise ValueError("Vector 'x' must have one entry less then the" +
" parameter vector 'a', but alpha.shape = " +
"%s and " % alpha.shape +
"x.shape = %s." % x.shape)
if x.shape[0] != alpha.shape[0]:
xk = np.array([1 - np.sum(x, 0)])
if xk.ndim == 1:
x = np.append(x, xk)
elif xk.ndim == 2:
x = np.vstack((x, xk))
else:
raise ValueError("The input must be one dimensional or a two "
"dimensional matrix containing the entries.")
if np.min(x) < 0:
raise ValueError("Each entry in 'x' must be greater or equal zero.")
if np.max(x) > 1:
raise ValueError("Each entry in 'x' must be smaller or equal one.")
if (np.abs(np.sum(x, 0) - 1.0) > 10e-10).any():
raise ValueError("The input vector 'x' must lie within the normal " +
"simplex. but sum(x)=%f." % np.sum(x, 0))
return x
def _lnB(alpha):
r"""
Internal helper function to compute the log of the useful quotient
.. math::
B(\alpha) = \frac{\prod_{i=1}{K}\Gamma(\alpha_i)}{\Gamma\left(\sum_{i=1}^{K}\alpha_i\right)}
Parameters
----------
%(_dirichlet_doc_default_callparams)s
Returns
-------
B : scalar
Helper quotient, internal use only
"""
return np.sum(gammaln(alpha)) - gammaln(np.sum(alpha))
class dirichlet_gen(multi_rv_generic):
r"""
A Dirichlet random variable.
The `alpha` keyword specifies the concentration parameters of the
distribution.
.. versionadded:: 0.15.0
Methods
-------
``pdf(x, alpha)``
Probability density function.
``logpdf(x, alpha)``
Log of the probability density function.
``rvs(alpha, size=1, random_state=None)``
Draw random samples from a Dirichlet distribution.
``mean(alpha)``
The mean of the Dirichlet distribution
``var(alpha)``
The variance of the Dirichlet distribution
``entropy(alpha)``
Compute the differential entropy of the multivariate normal.
Parameters
----------
x : array_like
Quantiles, with the last axis of `x` denoting the components.
%(_dirichlet_doc_default_callparams)s
%(_doc_random_state)s
Alternatively, the object may be called (as a function) to fix
concentration parameters, returning a "frozen" Dirichlet
random variable:
rv = dirichlet(alpha)
- Frozen object with the same methods but holding the given
concentration parameters fixed.
Notes
-----
Each :math:`\alpha` entry must be positive. The distribution has only
support on the simplex defined by
.. math::
\sum_{i=1}^{K} x_i \le 1
The probability density function for `dirichlet` is
.. math::
f(x) = \frac{1}{\mathrm{B}(\boldsymbol\alpha)} \prod_{i=1}^K x_i^{\alpha_i - 1}
where
.. math::
\mathrm{B}(\boldsymbol\alpha) = \frac{\prod_{i=1}^K \Gamma(\alpha_i)}
{\Gamma\bigl(\sum_{i=1}^K \alpha_i\bigr)}
and :math:`\boldsymbol\alpha=(\alpha_1,\ldots,\alpha_K)`, the
concentration parameters and :math:`K` is the dimension of the space
where :math:`x` takes values.
"""
def __init__(self, seed=None):
super(dirichlet_gen, self).__init__(seed)
self.__doc__ = doccer.docformat(self.__doc__, dirichlet_docdict_params)
def __call__(self, alpha, seed=None):
return dirichlet_frozen(alpha, seed=seed)
def _logpdf(self, x, alpha):
"""
Parameters
----------
x : ndarray
Points at which to evaluate the log of the probability
density function
%(_dirichlet_doc_default_callparams)s
Notes
-----
As this function does no argument checking, it should not be
called directly; use 'logpdf' instead.
"""
lnB = _lnB(alpha)
return - lnB + np.sum((np.log(x.T) * (alpha - 1)).T, 0)
def logpdf(self, x, alpha):
"""
Log of the Dirichlet probability density function.
Parameters
----------
x : array_like
Quantiles, with the last axis of `x` denoting the components.
%(_dirichlet_doc_default_callparams)s
Returns
-------
pdf : ndarray
Log of the probability density function evaluated at `x`.
"""
alpha = _dirichlet_check_parameters(alpha)
x = _dirichlet_check_input(alpha, x)
out = self._logpdf(x, alpha)
return _squeeze_output(out)
def pdf(self, x, alpha):
"""
The Dirichlet probability density function.
Parameters
----------
x : array_like
Quantiles, with the last axis of `x` denoting the components.
%(_dirichlet_doc_default_callparams)s
Returns
-------
pdf : ndarray
The probability density function evaluated at `x`.
"""
alpha = _dirichlet_check_parameters(alpha)
x = _dirichlet_check_input(alpha, x)
out = np.exp(self._logpdf(x, alpha))
return _squeeze_output(out)
def mean(self, alpha):
"""
Compute the mean of the dirichlet distribution.
Parameters
----------
%(_dirichlet_doc_default_callparams)s
Returns
-------
mu : scalar
Mean of the Dirichlet distribution
"""
alpha = _dirichlet_check_parameters(alpha)
out = alpha / (np.sum(alpha))
return _squeeze_output(out)
def var(self, alpha):
"""
Compute the variance of the dirichlet distribution.
Parameters
----------
%(_dirichlet_doc_default_callparams)s
Returns
-------
v : scalar
Variance of the Dirichlet distribution
"""
alpha = _dirichlet_check_parameters(alpha)
alpha0 = np.sum(alpha)
out = (alpha * (alpha0 - alpha)) / ((alpha0 * alpha0) * (alpha0 + 1))
return out
def entropy(self, alpha):
"""
Compute the differential entropy of the dirichlet distribution.
Parameters
----------
%(_dirichlet_doc_default_callparams)s
Returns
-------
h : scalar
Entropy of the Dirichlet distribution
"""
alpha = _dirichlet_check_parameters(alpha)
alpha0 = np.sum(alpha)
lnB = _lnB(alpha)
K = alpha.shape[0]
out = lnB + (alpha0 - K) * scipy.special.psi(alpha0) - np.sum(
(alpha - 1) * scipy.special.psi(alpha))
return _squeeze_output(out)
def rvs(self, alpha, size=1, random_state=None):
"""
Draw random samples from a Dirichlet distribution.
Parameters
----------
%(_dirichlet_doc_default_callparams)s
size : int, optional
Number of samples to draw (default 1).
%(_doc_random_state)s
Returns
-------
rvs : ndarray or scalar
Random variates of size (`size`, `N`), where `N` is the
dimension of the random variable.
"""
alpha = _dirichlet_check_parameters(alpha)
random_state = self._get_random_state(random_state)
return random_state.dirichlet(alpha, size=size)
dirichlet = dirichlet_gen()
class dirichlet_frozen(multi_rv_frozen):
def __init__(self, alpha, seed=None):
self.alpha = _dirichlet_check_parameters(alpha)
self._dist = dirichlet_gen(seed)
def logpdf(self, x):
return self._dist.logpdf(x, self.alpha)
def pdf(self, x):
return self._dist.pdf(x, self.alpha)
def mean(self):
return self._dist.mean(self.alpha)
def var(self):
return self._dist.var(self.alpha)
def entropy(self):
return self._dist.entropy(self.alpha)
def rvs(self, size=1, random_state=None):
return self._dist.rvs(self.alpha, size, random_state)
# Set frozen generator docstrings from corresponding docstrings in
# multivariate_normal_gen and fill in default strings in class docstrings
for name in ['logpdf', 'pdf', 'rvs', 'mean', 'var', 'entropy']:
method = dirichlet_gen.__dict__[name]
method_frozen = dirichlet_frozen.__dict__[name]
method_frozen.__doc__ = doccer.docformat(
method.__doc__, dirichlet_docdict_noparams)
method.__doc__ = doccer.docformat(method.__doc__, dirichlet_docdict_params)
_wishart_doc_default_callparams = """\
df : int
Degrees of freedom, must be greater than or equal to dimension of the
scale matrix
scale : array_like
Symmetric positive definite scale matrix of the distribution
"""
_wishart_doc_callparams_note = ""
_wishart_doc_frozen_callparams = ""
_wishart_doc_frozen_callparams_note = \
"""See class definition for a detailed description of parameters."""
wishart_docdict_params = {
'_doc_default_callparams': _wishart_doc_default_callparams,
'_doc_callparams_note': _wishart_doc_callparams_note,
'_doc_random_state': _doc_random_state
}
wishart_docdict_noparams = {
'_doc_default_callparams': _wishart_doc_frozen_callparams,
'_doc_callparams_note': _wishart_doc_frozen_callparams_note,
'_doc_random_state': _doc_random_state
}
class wishart_gen(multi_rv_generic):
r"""
A Wishart random variable.
The `df` keyword specifies the degrees of freedom. The `scale` keyword
specifies the scale matrix, which must be symmetric and positive definite.
In this context, the scale matrix is often interpreted in terms of a
multivariate normal precision matrix (the inverse of the covariance
matrix).
Methods
-------
``pdf(x, df, scale)``
Probability density function.
``logpdf(x, df, scale)``
Log of the probability density function.
``rvs(df, scale, size=1, random_state=None)``
Draw random samples from a Wishart distribution.
``entropy()``
Compute the differential entropy of the Wishart distribution.
Parameters
----------
x : array_like
Quantiles, with the last axis of `x` denoting the components.
%(_doc_default_callparams)s
%(_doc_random_state)s
Alternatively, the object may be called (as a function) to fix the degrees
of freedom and scale parameters, returning a "frozen" Wishart random
variable:
rv = wishart(df=1, scale=1)
- Frozen object with the same methods but holding the given
degrees of freedom and scale fixed.
See Also
--------
invwishart, chi2
Notes
-----
%(_doc_callparams_note)s
The scale matrix `scale` must be a symmetric positive definite
matrix. Singular matrices, including the symmetric positive semi-definite
case, are not supported.
The Wishart distribution is often denoted
.. math::
W_p(\nu, \Sigma)
where :math:`\nu` is the degrees of freedom and :math:`\Sigma` is the
:math:`p \times p` scale matrix.
The probability density function for `wishart` has support over positive
definite matrices :math:`S`; if :math:`S \sim W_p(\nu, \Sigma)`, then
its PDF is given by:
.. math::
f(S) = \frac{|S|^{\frac{\nu - p - 1}{2}}}{2^{ \frac{\nu p}{2} }
|\Sigma|^\frac{\nu}{2} \Gamma_p \left ( \frac{\nu}{2} \right )}
\exp\left( -tr(\Sigma^{-1} S) / 2 \right)
If :math:`S \sim W_p(\nu, \Sigma)` (Wishart) then
:math:`S^{-1} \sim W_p^{-1}(\nu, \Sigma^{-1})` (inverse Wishart).
If the scale matrix is 1-dimensional and equal to one, then the Wishart
distribution :math:`W_1(\nu, 1)` collapses to the :math:`\chi^2(\nu)`
distribution.
.. versionadded:: 0.16.0
References
----------
.. [1] M.L. Eaton, "Multivariate Statistics: A Vector Space Approach",
Wiley, 1983.
.. [2] W.B. Smith and R.R. Hocking, "Algorithm AS 53: Wishart Variate
Generator", Applied Statistics, vol. 21, pp. 341-345, 1972.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from scipy.stats import wishart, chi2
>>> x = np.linspace(1e-5, 8, 100)
>>> w = wishart.pdf(x, df=3, scale=1); w[:5]
array([ 0.00126156, 0.10892176, 0.14793434, 0.17400548, 0.1929669 ])
>>> c = chi2.pdf(x, 3); c[:5]
array([ 0.00126156, 0.10892176, 0.14793434, 0.17400548, 0.1929669 ])
>>> plt.plot(x, w)
The input quantiles can be any shape of array, as long as the last
axis labels the components.
"""
def __init__(self, seed=None):
super(wishart_gen, self).__init__(seed)
self.__doc__ = doccer.docformat(self.__doc__, wishart_docdict_params)
def __call__(self, df=None, scale=None, seed=None):
"""
Create a frozen Wishart distribution.
See `wishart_frozen` for more information.
"""
return wishart_frozen(df, scale, seed)
def _process_parameters(self, df, scale):
if scale is None:
scale = 1.0
scale = np.asarray(scale, dtype=float)
if scale.ndim == 0:
scale = scale[np.newaxis,np.newaxis]
elif scale.ndim == 1:
scale = np.diag(scale)
elif scale.ndim == 2 and not scale.shape[0] == scale.shape[1]:
raise ValueError("Array 'scale' must be square if it is two"
" dimensional, but scale.scale = %s."
% str(scale.shape))
elif scale.ndim > 2:
raise ValueError("Array 'scale' must be at most two-dimensional,"
" but scale.ndim = %d" % scale.ndim)
dim = scale.shape[0]
if df is None:
df = dim
elif not np.isscalar(df):
raise ValueError("Degrees of freedom must be a scalar.")
elif df < dim:
raise ValueError("Degrees of freedom cannot be less than dimension"
" of scale matrix, but df = %d" % df)
return dim, df, scale
def _process_quantiles(self, x, dim):
"""
Adjust quantiles array so that last axis labels the components of
each data point.
"""
x = np.asarray(x, dtype=float)
if x.ndim == 0:
x = x * np.eye(dim)[:, :, np.newaxis]
if x.ndim == 1:
if dim == 1:
x = x[np.newaxis, np.newaxis, :]
else:
x = np.diag(x)[:, :, np.newaxis]
elif x.ndim == 2:
if not x.shape[0] == x.shape[1]:
raise ValueError("Quantiles must be square if they are two"
" dimensional, but x.shape = %s."
% str(x.shape))
x = x[:, :, np.newaxis]
elif x.ndim == 3:
if not x.shape[0] == x.shape[1]:
raise ValueError("Quantiles must be square in the first two"
" dimensions if they are three dimensional"
", but x.shape = %s." % str(x.shape))
elif x.ndim > 3:
raise ValueError("Quantiles must be at most two-dimensional with"
" an additional dimension for multiple"
"components, but x.ndim = %d" % x.ndim)
# Now we have 3-dim array; should have shape [dim, dim, *]
if not x.shape[0:2] == (dim, dim):
raise ValueError('Quantiles have incompatible dimensions: should'
' be %s, got %s.' % ((dim, dim), x.shape[0:2]))
return x
def _process_size(self, size):
size = np.asarray(size)
if size.ndim == 0:
size = size[np.newaxis]
elif size.ndim > 1:
raise ValueError('Size must be an integer or tuple of integers;'
' thus must have dimension <= 1.'
' Got size.ndim = %s' % str(tuple(size)))
n = size.prod()
shape = tuple(size)
return n, shape
def _logpdf(self, x, dim, df, scale, log_det_scale, C):
"""
Parameters
----------
x : ndarray
Points at which to evaluate the log of the probability
density function
dim : int
Dimension of the scale matrix
df : int
Degrees of freedom
scale : ndarray
Scale matrix
log_det_scale : float
Logarithm of the determinant of the scale matrix
C : ndarray
Cholesky factorization of the scale matrix, lower triagular.
Notes
-----
As this function does no argument checking, it should not be
called directly; use 'logpdf' instead.
"""
# log determinant of x
# Note: x has components along the last axis, so that x.T has
# components alone the 0-th axis. Then since det(A) = det(A'), this
# gives us a 1-dim vector of determinants
# Retrieve tr(scale^{-1} x)
log_det_x = np.zeros(x.shape[-1])
scale_inv_x = np.zeros(x.shape)
tr_scale_inv_x = np.zeros(x.shape[-1])
for i in range(x.shape[-1]):
_, log_det_x[i] = self._cholesky_logdet(x[:,:,i])
scale_inv_x[:,:,i] = scipy.linalg.cho_solve((C, True), x[:,:,i])
tr_scale_inv_x[i] = scale_inv_x[:,:,i].trace()
# Log PDF
out = ((0.5 * (df - dim - 1) * log_det_x - 0.5 * tr_scale_inv_x) -
(0.5 * df * dim * _LOG_2 + 0.5 * df * log_det_scale +
multigammaln(0.5*df, dim)))
return out
def logpdf(self, x, df, scale):
"""
Log of the Wishart probability density function.
Parameters
----------
x : array_like
Quantiles, with the last axis of `x` denoting the components.
Each quantile must be a symmetric positive definite matrix.
%(_doc_default_callparams)s
Returns
-------
pdf : ndarray
Log of the probability density function evaluated at `x`
Notes
-----
%(_doc_callparams_note)s
"""
dim, df, scale = self._process_parameters(df, scale)
x = self._process_quantiles(x, dim)
# Cholesky decomposition of scale, get log(det(scale))
C, log_det_scale = self._cholesky_logdet(scale)
out = self._logpdf(x, dim, df, scale, log_det_scale, C)
return _squeeze_output(out)
def pdf(self, x, df, scale):
"""
Wishart probability density function.
Parameters
----------
x : array_like
Quantiles, with the last axis of `x` denoting the components.
Each quantile must be a symmetric positive definite matrix.
%(_doc_default_callparams)s
Returns
-------
pdf : ndarray
Probability density function evaluated at `x`
Notes
-----
%(_doc_callparams_note)s
"""
return np.exp(self.logpdf(x, df, scale))
def _mean(self, dim, df, scale):
"""
Parameters
----------
dim : int
Dimension of the scale matrix
%(_doc_default_callparams)s
Notes
-----
As this function does no argument checking, it should not be
called directly; use 'mean' instead.
"""
return df * scale
def mean(self, df, scale):
"""
Mean of the Wishart distribution
Parameters
----------
%(_doc_default_callparams)s
Returns
-------
mean : float
The mean of the distribution
"""
dim, df, scale = self._process_parameters(df, scale)
out = self._mean(dim, df, scale)
return _squeeze_output(out)
def _mode(self, dim, df, scale):
"""
Parameters
----------
dim : int
Dimension of the scale matrix
%(_doc_default_callparams)s
Notes
-----
As this function does no argument checking, it should not be
called directly; use 'mode' instead.
"""
if df >= dim + 1:
out = (df-dim-1) * scale
else:
out = None
return out
def mode(self, df, scale):
"""
Mode of the Wishart distribution
Only valid if the degrees of freedom are greater than the dimension of
the scale matrix.
Parameters
----------
%(_doc_default_callparams)s
Returns
-------
mode : float or None
The Mode of the distribution
"""
dim, df, scale = self._process_parameters(df, scale)
out = self._mode(dim, df, scale)
return _squeeze_output(out) if out is not None else out
def _var(self, dim, df, scale):
"""
Parameters
----------
dim : int
Dimension of the scale matrix
%(_doc_default_callparams)s
Notes
-----
As this function does no argument checking, it should not be
called directly; use 'var' instead.
"""
var = scale**2
diag = scale.diagonal() # 1 x dim array
var += np.outer(diag, diag)
var *= df
return var
def var(self, df, scale):
"""
Variance of the Wishart distribution
Parameters
----------
%(_doc_default_callparams)s
Returns
-------
var : float
The variance of the distribution
"""
dim, df, scale = self._process_parameters(df, scale)
out = self._var(dim, df, scale)
return _squeeze_output(out)
def _standard_rvs(self, n, shape, dim, df, random_state):
"""
Parameters
----------
n : integer
Number of variates to generate
shape : iterable
Shape of the variates to generate
dim : int
Dimension of the scale matrix
df : int
Degrees of freedom
random_state : np.random.RandomState instance
RandomState used for drawing the random variates.
Notes
-----
As this function does no argument checking, it should not be
called directly; use 'rvs' instead.
"""
# Random normal variates for off-diagonal elements
n_tril = dim * (dim-1) // 2
covariances = random_state.normal(
size=n*n_tril).reshape(shape+(n_tril,))
# Random chi-square variates for diagonal elements
variances = np.r_[[random_state.chisquare(df-(i+1)+1, size=n)**0.5
for i in range(dim)]].reshape((dim,) + shape[::-1]).T
# Create the A matri(ces) - lower triangular
A = np.zeros(shape + (dim, dim))
# Input the covariances
size_idx = tuple([slice(None,None,None)]*len(shape))
tril_idx = np.tril_indices(dim, k=-1)
A[size_idx + tril_idx] = covariances
# Input the variances
diag_idx = np.diag_indices(dim)
A[size_idx + diag_idx] = variances
return A
def _rvs(self, n, shape, dim, df, C, random_state):
"""
Parameters
----------
n : integer
Number of variates to generate
shape : iterable
Shape of the variates to generate
dim : int
Dimension of the scale matrix
df : int
Degrees of freedom
scale : ndarray
Scale matrix
C : ndarray
Cholesky factorization of the scale matrix, lower triangular.
%(_doc_random_state)s
Notes
-----
As this function does no argument checking, it should not be
called directly; use 'rvs' instead.
"""
random_state = self._get_random_state(random_state)
# Calculate the matrices A, which are actually lower triangular
# Cholesky factorizations of a matrix B such that B ~ W(df, I)
A = self._standard_rvs(n, shape, dim, df, random_state)
# Calculate SA = C A A' C', where SA ~ W(df, scale)
# Note: this is the product of a (lower) (lower) (lower)' (lower)'
# or, denoting B = AA', it is C B C' where C is the lower
# triangular Cholesky factorization of the scale matrix.
# this appears to conflict with the instructions in [1]_, which
# suggest that it should be D' B D where D is the lower
# triangular factorization of the scale matrix. However, it is
# meant to refer to the Bartlett (1933) representation of a
# Wishart random variate as L A A' L' where L is lower triangular
# so it appears that understanding D' to be upper triangular
# is either a typo in or misreading of [1]_.
for index in np.ndindex(shape):
CA = np.dot(C, A[index])
A[index] = np.dot(CA, CA.T)
return A
def rvs(self, df, scale, size=1, random_state=None):
"""
Draw random samples from a Wishart distribution.
Parameters
----------
%(_doc_default_callparams)s
size : integer or iterable of integers, optional
Number of samples to draw (default 1).
%(_doc_random_state)s
Returns
-------
rvs : ndarray
Random variates of shape (`size`) + (`dim`, `dim), where `dim` is
the dimension of the scale matrix.
Notes
-----
%(_doc_callparams_note)s
"""
n, shape = self._process_size(size)
dim, df, scale = self._process_parameters(df, scale)
# Cholesky decomposition of scale
C = scipy.linalg.cholesky(scale, lower=True)
out = self._rvs(n, shape, dim, df, C, random_state)
return _squeeze_output(out)
def _entropy(self, dim, df, log_det_scale):
"""
Parameters
----------
dim : int
Dimension of the scale matrix
df : int
Degrees of freedom
log_det_scale : float
Logarithm of the determinant of the scale matrix
Notes
-----
As this function does no argument checking, it should not be
called directly; use 'entropy' instead.
"""
return (
0.5 * (dim+1) * log_det_scale +
0.5 * dim * (dim+1) * _LOG_2 +
multigammaln(0.5*df, dim) -
0.5 * (df - dim - 1) * np.sum(
[psi(0.5*(df + 1 - (i+1))) for i in range(dim)]
) +
0.5 * df * dim
)
def entropy(self, df, scale):
"""
Compute the differential entropy of the Wishart.
Parameters
----------
%(_doc_default_callparams)s
Returns
-------
h : scalar
Entropy of the Wishart distribution
Notes
-----
%(_doc_callparams_note)s
"""
dim, df, scale = self._process_parameters(df, scale)
_, log_det_scale = self._cholesky_logdet(scale)
return self._entropy(dim, df, log_det_scale)
def _cholesky_logdet(self, scale):
"""
Compute Cholesky decomposition and determine (log(det(scale)).
Parameters
----------
scale : ndarray
Scale matrix.
Returns
-------
c_decomp : ndarray
The Cholesky decomposition of `scale`.
logdet : scalar
The log of the determinant of `scale`.
Notes
-----
This computation of ``logdet`` is equivalent to
``np.linalg.slogdet(scale)``. It is ~2x faster though.
"""
c_decomp = scipy.linalg.cholesky(scale, lower=True)
logdet = 2 * np.sum(np.log(c_decomp.diagonal()))
return c_decomp, logdet
wishart = wishart_gen()
class wishart_frozen(multi_rv_frozen):
"""
Create a frozen Wishart distribution.
Parameters
----------
df : array_like
Degrees of freedom of the distribution
scale : array_like
Scale matrix of the distribution
seed : None or int or np.random.RandomState instance, optional
This parameter defines the RandomState object to use for drawing
random variates.
If None (or np.random), the global np.random state is used.
If integer, it is used to seed the local RandomState instance
Default is None.
"""
def __init__(self, df, scale, seed=None):
self._dist = wishart_gen(seed)
self.dim, self.df, self.scale = self._dist._process_parameters(
df, scale)
self.C, self.log_det_scale = self._dist._cholesky_logdet(self.scale)
def logpdf(self, x):
x = self._dist._process_quantiles(x, self.dim)
out = self._dist._logpdf(x, self.dim, self.df, self.scale,
self.log_det_scale, self.C)
return _squeeze_output(out)
def pdf(self, x):
return np.exp(self.logpdf(x))
def mean(self):
out = self._dist._mean(self.dim, self.df, self.scale)
return _squeeze_output(out)
def mode(self):
out = self._dist._mode(self.dim, self.df, self.scale)
return _squeeze_output(out) if out is not None else out
def var(self):
out = self._dist._var(self.dim, self.df, self.scale)
return _squeeze_output(out)
def rvs(self, size=1, random_state=None):
n, shape = self._dist._process_size(size)
out = self._dist._rvs(n, shape, self.dim, self.df,
self.C, random_state)
return _squeeze_output(out)
def entropy(self):
return self._dist._entropy(self.dim, self.df, self.log_det_scale)
# Set frozen generator docstrings from corresponding docstrings in
# Wishart and fill in default strings in class docstrings
for name in ['logpdf', 'pdf', 'mean', 'mode', 'var', 'rvs', 'entropy']:
method = wishart_gen.__dict__[name]
method_frozen = wishart_frozen.__dict__[name]
method_frozen.__doc__ = doccer.docformat(
method.__doc__, wishart_docdict_noparams)
method.__doc__ = doccer.docformat(method.__doc__, wishart_docdict_params)
from numpy import asarray_chkfinite, asarray
from scipy.linalg.misc import LinAlgError
from scipy.linalg.lapack import get_lapack_funcs
def _cho_inv_batch(a, check_finite=True):
"""
Invert the matrices a_i, using a Cholesky factorization of A, where
a_i resides in the last two dimensions of a and the other indices describe
the index i.
Overwrites the data in a.
Parameters
----------
a : array
Array of matrices to invert, where the matrices themselves are stored
in the last two dimensions.
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
x : array
Array of inverses of the matrices ``a_i``.
See also
--------
scipy.linalg.cholesky : Cholesky factorization of a matrix
"""
if check_finite:
a1 = asarray_chkfinite(a)
else:
a1 = asarray(a)
if len(a1.shape) < 2 or a1.shape[-2] != a1.shape[-1]:
raise ValueError('expected square matrix in last two dimensions')
potrf, potri = get_lapack_funcs(('potrf','potri'), (a1,))
tril_idx = np.tril_indices(a.shape[-2], k=-1)
triu_idx = np.triu_indices(a.shape[-2], k=1)
for index in np.ndindex(a1.shape[:-2]):
# Cholesky decomposition
a1[index], info = potrf(a1[index], lower=True, overwrite_a=False,
clean=False)
if info > 0:
raise LinAlgError("%d-th leading minor not positive definite"
% info)
if info < 0:
raise ValueError('illegal value in %d-th argument of internal'
' potrf' % -info)
# Inversion
a1[index], info = potri(a1[index], lower=True, overwrite_c=False)
if info > 0:
raise LinAlgError("the inverse could not be computed")
if info < 0:
raise ValueError('illegal value in %d-th argument of internal'
' potrf' % -info)
# Make symmetric (dpotri only fills in the lower triangle)
a1[index][triu_idx] = a1[index][tril_idx]
return a1
class invwishart_gen(wishart_gen):
r"""
An inverse Wishart random variable.
The `df` keyword specifies the degrees of freedom. The `scale` keyword
specifies the scale matrix, which must be symmetric and positive definite.
In this context, the scale matrix is often interpreted in terms of a
multivariate normal covariance matrix.
Methods
-------
``pdf(x, df, scale)``
Probability density function.
``logpdf(x, df, scale)``
Log of the probability density function.
``rvs(df, scale, size=1, random_state=None)``
Draw random samples from an inverse Wishart distribution.
Parameters
----------
x : array_like
Quantiles, with the last axis of `x` denoting the components.
%(_doc_default_callparams)s
%(_doc_random_state)s
Alternatively, the object may be called (as a function) to fix the degrees
of freedom and scale parameters, returning a "frozen" inverse Wishart
random variable:
rv = invwishart(df=1, scale=1)
- Frozen object with the same methods but holding the given
degrees of freedom and scale fixed.
See Also
--------
wishart
Notes
-----
%(_doc_callparams_note)s
The scale matrix `scale` must be a symmetric positive definite
matrix. Singular matrices, including the symmetric positive semi-definite
case, are not supported.
The inverse Wishart distribution is often denoted
.. math::
W_p^{-1}(\nu, \Psi)
where :math:`\nu` is the degrees of freedom and :math:`\Psi` is the
:math:`p \times p` scale matrix.
The probability density function for `invwishart` has support over positive
definite matrices :math:`S`; if :math:`S \sim W^{-1}_p(\nu, \Sigma)`,
then its PDF is given by:
.. math::
f(S) = \frac{|\Sigma|^\frac{\nu}{2}}{2^{ \frac{\nu p}{2} }
|S|^{\frac{\nu + p + 1}{2}} \Gamma_p \left(\frac{\nu}{2} \right)}
\exp\left( -tr(\Sigma S^{-1}) / 2 \right)
If :math:`S \sim W_p^{-1}(\nu, \Psi)` (inverse Wishart) then
:math:`S^{-1} \sim W_p(\nu, \Psi^{-1})` (Wishart).
If the scale matrix is 1-dimensional and equal to one, then the inverse
Wishart distribution :math:`W_1(\nu, 1)` collapses to the
inverse Gamma distribution with parameters shape = :math:`\frac{\nu}{2}`
and scale = :math:`\frac{1}{2}`.
.. versionadded:: 0.16.0
References
----------
.. [1] M.L. Eaton, "Multivariate Statistics: A Vector Space Approach",
Wiley, 1983.
.. [2] M.C. Jones, "Generating Inverse Wishart Matrices", Communications in
Statistics - Simulation and Computation, vol. 14.2, pp.511-514, 1985.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from scipy.stats import invwishart, invgamma
>>> x = np.linspace(0.01, 1, 100)
>>> iw = invwishart.pdf(x, df=6, scale=1)
>>> iw[:3]
array([ 1.20546865e-15, 5.42497807e-06, 4.45813929e-03])
>>> ig = invgamma.pdf(x, 6/2., scale=1./2)
>>> ig[:3]
array([ 1.20546865e-15, 5.42497807e-06, 4.45813929e-03])
>>> plt.plot(x, iw)
The input quantiles can be any shape of array, as long as the last
axis labels the components.
"""
def __init__(self, seed=None):
super(invwishart_gen, self).__init__(seed)
self.__doc__ = doccer.docformat(self.__doc__, wishart_docdict_params)
def __call__(self, df=None, scale=None, seed=None):
"""
Create a frozen inverse Wishart distribution.
See `invwishart_frozen` for more information.
"""
return invwishart_frozen(df, scale, seed)
def _logpdf(self, x, dim, df, scale, log_det_scale):
"""
Parameters
----------
x : ndarray
Points at which to evaluate the log of the probability
density function.
dim : int
Dimension of the scale matrix
df : int
Degrees of freedom
scale : ndarray
Scale matrix
log_det_scale : float
Logarithm of the determinant of the scale matrix
Notes
-----
As this function does no argument checking, it should not be
called directly; use 'logpdf' instead.
"""
log_det_x = np.zeros(x.shape[-1])
#scale_x_inv = np.zeros(x.shape)
x_inv = np.copy(x).T
if dim > 1:
_cho_inv_batch(x_inv) # works in-place
else:
x_inv = 1./x_inv
tr_scale_x_inv = np.zeros(x.shape[-1])
for i in range(x.shape[-1]):
C, lower = scipy.linalg.cho_factor(x[:,:,i], lower=True)
log_det_x[i] = 2 * np.sum(np.log(C.diagonal()))
#scale_x_inv[:,:,i] = scipy.linalg.cho_solve((C, True), scale).T
tr_scale_x_inv[i] = np.dot(scale, x_inv[i]).trace()
# Log PDF
out = ((0.5 * df * log_det_scale - 0.5 * tr_scale_x_inv) -
(0.5 * df * dim * _LOG_2 + 0.5 * (df + dim + 1) * log_det_x) -
multigammaln(0.5*df, dim))
return out
def logpdf(self, x, df, scale):
"""
Log of the inverse Wishart probability density function.
Parameters
----------
x : array_like
Quantiles, with the last axis of `x` denoting the components.
Each quantile must be a symmetric positive definite matrix.
%(_doc_default_callparams)s
Returns
-------
pdf : ndarray
Log of the probability density function evaluated at `x`
Notes
-----
%(_doc_callparams_note)s
"""
dim, df, scale = self._process_parameters(df, scale)
x = self._process_quantiles(x, dim)
_, log_det_scale = self._cholesky_logdet(scale)
out = self._logpdf(x, dim, df, scale, log_det_scale)
return _squeeze_output(out)
def pdf(self, x, df, scale):
"""
Inverse Wishart probability density function.
Parameters
----------
x : array_like
Quantiles, with the last axis of `x` denoting the components.
Each quantile must be a symmetric positive definite matrix.
%(_doc_default_callparams)s
Returns
-------
pdf : ndarray
Probability density function evaluated at `x`
Notes
-----
%(_doc_callparams_note)s
"""
return np.exp(self.logpdf(x, df, scale))
def _mean(self, dim, df, scale):
"""
Parameters
----------
dim : int
Dimension of the scale matrix
%(_doc_default_callparams)s
Notes
-----
As this function does no argument checking, it should not be
called directly; use 'mean' instead.
"""
if df > dim + 1:
out = scale / (df - dim - 1)
else:
out = None
return out
def mean(self, df, scale):
"""
Mean of the inverse Wishart distribution
Only valid if the degrees of freedom are greater than the dimension of
the scale matrix plus one.
Parameters
----------
%(_doc_default_callparams)s
Returns
-------
mean : float or None
The mean of the distribution
"""
dim, df, scale = self._process_parameters(df, scale)
out = self._mean(dim, df, scale)
return _squeeze_output(out) if out is not None else out
def _mode(self, dim, df, scale):
"""
Parameters
----------
dim : int
Dimension of the scale matrix
%(_doc_default_callparams)s
Notes
-----
As this function does no argument checking, it should not be
called directly; use 'mode' instead.
"""
return scale / (df + dim + 1)
def mode(self, df, scale):
"""
Mode of the inverse Wishart distribution
Parameters
----------
%(_doc_default_callparams)s
Returns
-------
mode : float
The Mode of the distribution
"""
dim, df, scale = self._process_parameters(df, scale)
out = self._mode(dim, df, scale)
return _squeeze_output(out)
def _var(self, dim, df, scale):
"""
Parameters
----------
dim : int
Dimension of the scale matrix
%(_doc_default_callparams)s
Notes
-----
As this function does no argument checking, it should not be
called directly; use 'var' instead.
"""
if df > dim + 3:
var = (df - dim + 1) * scale**2
diag = scale.diagonal() # 1 x dim array
var += (df - dim - 1) * np.outer(diag, diag)
var /= (df - dim) * (df - dim - 1)**2 * (df - dim - 3)
else:
var = None
return var
def var(self, df, scale):
"""
Variance of the inverse Wishart distribution
Only valid if the degrees of freedom are greater than the dimension of
the scale matrix plus three.
Parameters
----------
%(_doc_default_callparams)s
Returns
-------
var : float
The variance of the distribution
"""
dim, df, scale = self._process_parameters(df, scale)
out = self._var(dim, df, scale)
return _squeeze_output(out) if out is not None else out
def _rvs(self, n, shape, dim, df, C, random_state):
"""
Parameters
----------
n : integer
Number of variates to generate
shape : iterable
Shape of the variates to generate
dim : int
Dimension of the scale matrix
df : int
Degrees of freedom
C : ndarray
Cholesky factorization of the scale matrix, lower triagular.
%(_doc_random_state)s
Notes
-----
As this function does no argument checking, it should not be
called directly; use 'rvs' instead.
"""
random_state = self._get_random_state(random_state)
# Get random draws A such that A ~ W(df, I)
A = super(invwishart_gen, self)._standard_rvs(n, shape, dim,
df, random_state)
# Calculate SA = (CA)'^{-1} (CA)^{-1} ~ iW(df, scale)
eye = np.eye(dim)
trtrs = get_lapack_funcs(('trtrs'), (A,))
for index in np.ndindex(A.shape[:-2]):
# Calculate CA
CA = np.dot(C, A[index])
# Get (C A)^{-1} via triangular solver
if dim > 1:
CA, info = trtrs(CA, eye, lower=True)
if info > 0:
raise LinAlgError("Singular matrix.")
if info < 0:
raise ValueError('Illegal value in %d-th argument of'
' internal trtrs' % -info)
else:
CA = 1. / CA
# Get SA
A[index] = np.dot(CA.T, CA)
return A
def rvs(self, df, scale, size=1, random_state=None):
"""
Draw random samples from an inverse Wishart distribution.
Parameters
----------
%(_doc_default_callparams)s
size : integer or iterable of integers, optional
Number of samples to draw (default 1).
%(_doc_random_state)s
Returns
-------
rvs : ndarray
Random variates of shape (`size`) + (`dim`, `dim), where `dim` is
the dimension of the scale matrix.
Notes
-----
%(_doc_callparams_note)s
"""
n, shape = self._process_size(size)
dim, df, scale = self._process_parameters(df, scale)
# Invert the scale
eye = np.eye(dim)
L, lower = scipy.linalg.cho_factor(scale, lower=True)
inv_scale = scipy.linalg.cho_solve((L, lower), eye)
# Cholesky decomposition of inverted scale
C = scipy.linalg.cholesky(inv_scale, lower=True)
out = self._rvs(n, shape, dim, df, C, random_state)
return _squeeze_output(out)
def entropy(self):
# Need to find reference for inverse Wishart entropy
raise AttributeError
invwishart = invwishart_gen()
class invwishart_frozen(multi_rv_frozen):
def __init__(self, df, scale, seed=None):
"""
Create a frozen inverse Wishart distribution.
Parameters
----------
df : array_like
Degrees of freedom of the distribution
scale : array_like
Scale matrix of the distribution
seed : None or int or np.random.RandomState instance, optional
This parameter defines the RandomState object to use for drawing
random variates.
If None (or np.random), the global np.random state is used.
If integer, it is used to seed the local RandomState instance
Default is None.
"""
self._dist = invwishart_gen(seed)
self.dim, self.df, self.scale = self._dist._process_parameters(
df, scale
)
# Get the determinant via Cholesky factorization
C, lower = scipy.linalg.cho_factor(self.scale, lower=True)
self.log_det_scale = 2 * np.sum(np.log(C.diagonal()))
# Get the inverse using the Cholesky factorization
eye = np.eye(self.dim)
self.inv_scale = scipy.linalg.cho_solve((C, lower), eye)
# Get the Cholesky factorization of the inverse scale
self.C = scipy.linalg.cholesky(self.inv_scale, lower=True)
def logpdf(self, x):
x = self._dist._process_quantiles(x, self.dim)
out = self._dist._logpdf(x, self.dim, self.df, self.scale,
self.log_det_scale)
return _squeeze_output(out)
def pdf(self, x):
return np.exp(self.logpdf(x))
def mean(self):
out = self._dist._mean(self.dim, self.df, self.scale)
return _squeeze_output(out) if out is not None else out
def mode(self):
out = self._dist._mode(self.dim, self.df, self.scale)
return _squeeze_output(out)
def var(self):
out = self._dist._var(self.dim, self.df, self.scale)
return _squeeze_output(out) if out is not None else out
def rvs(self, size=1, random_state=None):
n, shape = self._dist._process_size(size)
out = self._dist._rvs(n, shape, self.dim, self.df,
self.C, random_state)
return _squeeze_output(out)
def entropy(self):
# Need to find reference for inverse Wishart entropy
raise AttributeError
# Set frozen generator docstrings from corresponding docstrings in
# inverse Wishart and fill in default strings in class docstrings
for name in ['logpdf', 'pdf', 'mean', 'mode', 'var', 'rvs']:
method = invwishart_gen.__dict__[name]
method_frozen = wishart_frozen.__dict__[name]
method_frozen.__doc__ = doccer.docformat(
method.__doc__, wishart_docdict_noparams)
method.__doc__ = doccer.docformat(method.__doc__, wishart_docdict_params)
|
bsd-3-clause
|
stylianos-kampakis/scikit-learn
|
sklearn/decomposition/truncated_svd.py
|
199
|
7744
|
"""Truncated SVD for sparse matrices, aka latent semantic analysis (LSA).
"""
# Author: Lars Buitinck <[email protected]>
# Olivier Grisel <[email protected]>
# Michael Becker <[email protected]>
# License: 3-clause BSD.
import numpy as np
import scipy.sparse as sp
try:
from scipy.sparse.linalg import svds
except ImportError:
from ..utils.arpack import svds
from ..base import BaseEstimator, TransformerMixin
from ..utils import check_array, as_float_array, check_random_state
from ..utils.extmath import randomized_svd, safe_sparse_dot, svd_flip
from ..utils.sparsefuncs import mean_variance_axis
__all__ = ["TruncatedSVD"]
class TruncatedSVD(BaseEstimator, TransformerMixin):
"""Dimensionality reduction using truncated SVD (aka LSA).
This transformer performs linear dimensionality reduction by means of
truncated singular value decomposition (SVD). It is very similar to PCA,
but operates on sample vectors directly, instead of on a covariance matrix.
This means it can work with scipy.sparse matrices efficiently.
In particular, truncated SVD works on term count/tf-idf matrices as
returned by the vectorizers in sklearn.feature_extraction.text. In that
context, it is known as latent semantic analysis (LSA).
This estimator supports two algorithm: a fast randomized SVD solver, and
a "naive" algorithm that uses ARPACK as an eigensolver on (X * X.T) or
(X.T * X), whichever is more efficient.
Read more in the :ref:`User Guide <LSA>`.
Parameters
----------
n_components : int, default = 2
Desired dimensionality of output data.
Must be strictly less than the number of features.
The default value is useful for visualisation. For LSA, a value of
100 is recommended.
algorithm : string, default = "randomized"
SVD solver to use. Either "arpack" for the ARPACK wrapper in SciPy
(scipy.sparse.linalg.svds), or "randomized" for the randomized
algorithm due to Halko (2009).
n_iter : int, optional
Number of iterations for randomized SVD solver. Not used by ARPACK.
random_state : int or RandomState, optional
(Seed for) pseudo-random number generator. If not given, the
numpy.random singleton is used.
tol : float, optional
Tolerance for ARPACK. 0 means machine precision. Ignored by randomized
SVD solver.
Attributes
----------
components_ : array, shape (n_components, n_features)
explained_variance_ratio_ : array, [n_components]
Percentage of variance explained by each of the selected components.
explained_variance_ : array, [n_components]
The variance of the training samples transformed by a projection to
each component.
Examples
--------
>>> from sklearn.decomposition import TruncatedSVD
>>> from sklearn.random_projection import sparse_random_matrix
>>> X = sparse_random_matrix(100, 100, density=0.01, random_state=42)
>>> svd = TruncatedSVD(n_components=5, random_state=42)
>>> svd.fit(X) # doctest: +NORMALIZE_WHITESPACE
TruncatedSVD(algorithm='randomized', n_components=5, n_iter=5,
random_state=42, tol=0.0)
>>> print(svd.explained_variance_ratio_) # doctest: +ELLIPSIS
[ 0.07825... 0.05528... 0.05445... 0.04997... 0.04134...]
>>> print(svd.explained_variance_ratio_.sum()) # doctest: +ELLIPSIS
0.27930...
See also
--------
PCA
RandomizedPCA
References
----------
Finding structure with randomness: Stochastic algorithms for constructing
approximate matrix decompositions
Halko, et al., 2009 (arXiv:909) http://arxiv.org/pdf/0909.4061
Notes
-----
SVD suffers from a problem called "sign indeterminancy", which means the
sign of the ``components_`` and the output from transform depend on the
algorithm and random state. To work around this, fit instances of this
class to data once, then keep the instance around to do transformations.
"""
def __init__(self, n_components=2, algorithm="randomized", n_iter=5,
random_state=None, tol=0.):
self.algorithm = algorithm
self.n_components = n_components
self.n_iter = n_iter
self.random_state = random_state
self.tol = tol
def fit(self, X, y=None):
"""Fit LSI model on training data X.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
Training data.
Returns
-------
self : object
Returns the transformer object.
"""
self.fit_transform(X)
return self
def fit_transform(self, X, y=None):
"""Fit LSI model to X and perform dimensionality reduction on X.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
Training data.
Returns
-------
X_new : array, shape (n_samples, n_components)
Reduced version of X. This will always be a dense array.
"""
X = as_float_array(X, copy=False)
random_state = check_random_state(self.random_state)
# If sparse and not csr or csc, convert to csr
if sp.issparse(X) and X.getformat() not in ["csr", "csc"]:
X = X.tocsr()
if self.algorithm == "arpack":
U, Sigma, VT = svds(X, k=self.n_components, tol=self.tol)
# svds doesn't abide by scipy.linalg.svd/randomized_svd
# conventions, so reverse its outputs.
Sigma = Sigma[::-1]
U, VT = svd_flip(U[:, ::-1], VT[::-1])
elif self.algorithm == "randomized":
k = self.n_components
n_features = X.shape[1]
if k >= n_features:
raise ValueError("n_components must be < n_features;"
" got %d >= %d" % (k, n_features))
U, Sigma, VT = randomized_svd(X, self.n_components,
n_iter=self.n_iter,
random_state=random_state)
else:
raise ValueError("unknown algorithm %r" % self.algorithm)
self.components_ = VT
# Calculate explained variance & explained variance ratio
X_transformed = np.dot(U, np.diag(Sigma))
self.explained_variance_ = exp_var = np.var(X_transformed, axis=0)
if sp.issparse(X):
_, full_var = mean_variance_axis(X, axis=0)
full_var = full_var.sum()
else:
full_var = np.var(X, axis=0).sum()
self.explained_variance_ratio_ = exp_var / full_var
return X_transformed
def transform(self, X):
"""Perform dimensionality reduction on X.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
New data.
Returns
-------
X_new : array, shape (n_samples, n_components)
Reduced version of X. This will always be a dense array.
"""
X = check_array(X, accept_sparse='csr')
return safe_sparse_dot(X, self.components_.T)
def inverse_transform(self, X):
"""Transform X back to its original space.
Returns an array X_original whose transform would be X.
Parameters
----------
X : array-like, shape (n_samples, n_components)
New data.
Returns
-------
X_original : array, shape (n_samples, n_features)
Note that this is always a dense array.
"""
X = check_array(X)
return np.dot(X, self.components_)
|
bsd-3-clause
|
e-koch/mpld3
|
examples/mpld3_logo.py
|
19
|
3751
|
"""
mpld3 Logo Idea
===============
This example shows how mpld3 can be used to generate relatively intricate
vector graphics in the browser. This is an adaptation of a logo proposal by
github user debjan, in turn based on both the matplotlib and D3js logos.
"""
# Author: Jake VanderPlas
import matplotlib.pyplot as plt
from matplotlib import image, patches, colors
from matplotlib.colors import colorConverter
import numpy as np
import mpld3
imsize = np.array([319, 217])
center = [108.5, 108.5]
max_radius = 108.5
radii = np.linspace(16, max_radius, 5)
angles = np.arange(0, 360, 45)
fig = plt.figure(figsize=imsize / 50.)
ax = fig.add_axes([0, 0, 1, 1], frameon=False, xticks=[], yticks=[])
# Create a clip path for the elements
clip_path = patches.Rectangle((0, 0), imsize[0], imsize[1],
transform=ax.transData)
# Create the background gradient
x = np.array([0, 104, 196, 300])
y = np.linspace(150, 450, 86)[:, None]
c = np.cos(-np.pi / 4)
s = np.sin(-np.pi / 4)
X, Y = (c * x - s * y) - 116, (s * x + c * y)
C = np.arange(255).reshape((3, 85)).T
C = C[::-1, :]
cmap = colors.LinearSegmentedColormap.from_list("mpld3",
[[0.97, 0.6, 0.29],
[0.97, 0.59, 0.27],
[0.97, 0.58, 0.25],
[0.95, 0.44, 0.34],
[0.92, 0.51, 0.29],
[0.68, 0.21, 0.20]])
mesh = ax.pcolormesh(X, Y, C, cmap=cmap, shading='gourand', zorder=0)
mesh.set_clip_path(clip_path)
# cut-off the background to form the "D" and "3" using white patches
# (this could also be done with a clip path)
kwargs = dict(fc='white', ec='none', zorder=1)
ax.add_patch(patches.Rectangle([0, 0], center[0], imsize[1], **kwargs))
ax.add_patch(patches.Circle(center, radii[2], **kwargs))
ax.add_patch(patches.Wedge(center, 127, -90, 90, width=18.5, **kwargs))
ax.add_patch(patches.Circle((252, 66), 18, **kwargs))
ax.add_patch(patches.Rectangle([216, 48], 36, 36, **kwargs))
ax.add_patch(patches.Wedge((252, 66), 101, -90, 40.1, width=35, **kwargs))
ax.add_patch(patches.Circle((252, 151), 18, **kwargs))
ax.add_patch(patches.Rectangle([216, 133], 36, 36, **kwargs))
ax.add_patch(patches.Wedge((252, 151), 101, -40.1, 90, width=35, **kwargs))
ax.add_patch(patches.Rectangle([-200, -200], 719, 200, **kwargs))
ax.add_patch(patches.Rectangle([-200, -200], 200, 617, **kwargs))
ax.add_patch(patches.Rectangle([-200, imsize[1]], 719, 200, **kwargs))
ax.add_patch(patches.Rectangle([imsize[0], -200], 200, 617, **kwargs))
# plot circles and lines
for radius in radii:
ax.add_patch(patches.Circle(center, radius, lw=0.5,
ec='gray', fc='none', zorder=2))
for angle in angles:
dx, dy = np.sin(np.radians(angle)), np.cos(np.radians(angle))
ax.plot([max_radius * (1 - dx), max_radius * (1 + dx)],
[max_radius * (1 - dy), max_radius * (1 + dy)],
'-', color='gray', lw=0.5, zorder=2)
# plot wedges within the graph
wedges = [(98, 231, 258, '#FF6600'),
(85, 170, 205, '#FFC500'),
(60, 80, 103, '#7DFF78'),
(96, 45, 58, '#FD7C1A'),
(73, 291, 308, '#CCFF28'),
(47, 146, 155, '#28FFCC'),
(25, 340, 360, '#004AFF')]
for (radius, theta1, theta2, color) in wedges:
ax.add_patch(patches.Wedge(center, radius, theta1, theta2,
fc=color, ec='black', alpha=0.6, zorder=3))
for patch in ax.patches:
patch.set_clip_path(clip_path)
ax.set_xlim(0, imsize[0])
ax.set_ylim(imsize[1], 0)
#plt.savefig('mpld3.png')
mpld3.show()
|
bsd-3-clause
|
kpolimis/paa_2017_social_media
|
Estimate_Facebook_Audience/pySocialWatcher/pysocialwatcher/utils.py
|
2
|
17460
|
# -*- coding: utf-8 -*-
import json
from tabulate import tabulate
import pandas as pd
import constants
import itertools
import logging
import coloredlogs
import time
from multiprocessing import Process, Manager
import numpy
import requests
import ast
coloredlogs.install(level=logging.INFO)
class RequestException(Exception):
def __init__(self, value):
self.value = value
def __str__(self):
return repr(self.value)
class JsonFormatException(Exception):
def __init__(self, value):
self.value = value
def __str__(self):
return repr(self.value)
class FatalException(Exception):
def __init__(self, value):
self.value = value
def __str__(self):
return repr(self.value)
def print_error_warning(error_json, params):
print_warning("Facebook Error Code: " + str(error_json["error"]["code"]))
print_warning("Facebook Error Message: " + str(error_json["error"]["message"]))
if error_json["error"].has_key("error_user_title") and error_json["error"].has_key("error_user_msg"):
print_warning("Facebook: " + str(error_json["error"]["error_user_title"]) + "\n" + str(
error_json["error"]["error_user_msg"]))
print_warning("Facebook Trace Id: " + str(error_json["error"]["fbtrace_id"]))
print_warning("Request Params : " + str(params))
def get_dataframe_from_json_response_query_data(json_response):
dataframe = pd.DataFrame()
for entry in json_response["data"]:
entry_details = {}
for field in constants.DETAILS_FIELD_FROM_FACEBOOK_TARGETING_SEARCH:
entry_details[field] = entry[field] if field in entry else None
dataframe = dataframe.append(entry_details, ignore_index=True)
return dataframe
def handle_send_request_error(response, url, params, tryNumber):
try:
error_json = json.loads(response.text)
if error_json["error"]["code"] == constants.API_UNKOWN_ERROR_CODE_1 or error_json["error"]["code"] == constants.API_UNKOWN_ERROR_CODE_2:
print_error_warning(error_json, params)
time.sleep(constants.INITIAL_TRY_SLEEP_TIME * tryNumber)
return send_request(url, params, tryNumber)
elif error_json["error"]["code"] == constants.INVALID_PARAMETER_ERROR and error_json["error"]["error_subcode"] == constants.FEW_USERS_IN_CUSTOM_LOCATIONS_SUBCODE_ERROR:
return get_fake_response()
else:
logging.error("Could not handle error.")
raise FatalException(str(error_json["error"]))
except:
raise FatalException(str(response.text))
def send_request(url, params, tryNumber = 0):
tryNumber += 1
if tryNumber >= constants.MAX_NUMBER_TRY:
print_warning("Maxium Number of Tries reached. Failing.")
raise FatalException("Maximum try reached.")
try:
response = requests.get(url, params=params)
except Exception as error:
raise RequestException(error.message)
if response.status_code == 200:
return response
else:
return handle_send_request_error(response, url, params, tryNumber)
def call_request_fb(row, token, account):
target_request = row[constants.TARGETING_FIELD]
payload = {
'currency': 'USD',
'optimize_for': "NONE",
'targeting_spec': json.dumps(target_request),
'access_token': token,
}
print_info("\tSending in request: {}".format(payload))
url = constants.REACHESTIMATE_URL.format(account)
response = send_request(url, payload)
return response.content
def get_fake_response():
response = requests.models.Response()
response._content = constants.FAKE_DATA_RESPONSE_CONTENT
response.status_code = 200
logging.warn("Fake Response created: " + response.content)
return response
def trigger_facebook_call(index, row, token, account, shared_queue):
try:
response = call_request_fb(row, token, account)
shared_queue.put((index, response))
except RequestException:
print_warning("Warning Facebook Request Failed")
print_warning("Row: " + str(row))
print_warning("It will try again later")
shared_queue.put((index, numpy.nan))
def add_timestamp(dataframe):
dataframe["timestamp"] = constants.UNIQUE_TIME_ID
return dataframe
def add_published_platforms(dataframe, input_json):
platforms = constants.PUBLISHER_PLATFORM_DEFAULT
if constants.API_PUBLISHER_PLATFORMS_FIELD in input_json:
platforms = input_json[constants.API_PUBLISHER_PLATFORMS_FIELD]
dataframe[constants.API_PUBLISHER_PLATFORMS_FIELD] = json.dumps(platforms)
return dataframe
def trigger_request_process_and_return_response(rows_to_request):
process_manager = Manager()
shared_queue = process_manager.Queue()
shared_queue_list = []
list_process = []
# Trigger Process in rows
for index, row in rows_to_request.iterrows():
token, account = get_token_and_account_number_or_wait()
p = Process(target=trigger_facebook_call, args=(index, row, token, account, shared_queue))
list_process.append(p)
# Starting process
map(lambda p: p.start(), list_process)
# Stop process
map(lambda p: p.join(), list_process)
#Check for Exception
map(lambda p: check_exception(p), list_process)
# Put things from shared list to normal list
while shared_queue.qsize() != 0:
shared_queue_list.append(shared_queue.get())
return shared_queue_list
def check_exception(p):
if p.exitcode != 0:
raise FatalException("FatalError: Check logging for clue. No way to proceed from here.")
def print_info(message):
logging.info(message)
def unstrict_literal_eval(string):
try:
value = ast.literal_eval(string)
return value
except ValueError:
return string
except SyntaxError:
return string
def load_dataframe_from_file(file_path):
dataframe = pd.DataFrame.from_csv(file_path)
return dataframe.applymap(unstrict_literal_eval)
def save_response_in_dataframe(shared_queue_list, df):
for result_tuple in shared_queue_list:
result_index = result_tuple[0]
result_response = result_tuple[1]
df.loc[result_index, "response"] = result_response
def save_skeleton_dataframe(dataframe):
print_info("Saving Skeleton file: " + constants.DATAFRAME_SKELETON_FILE_NAME)
dataframe.to_csv(constants.DATAFRAME_SKELETON_FILE_NAME)
def save_temporary_dataframe(dataframe):
print_info("Saving temporary file: " + constants.DATAFRAME_TEMPORARY_COLLECTION_FILE_NAME)
dataframe.to_csv(constants.DATAFRAME_TEMPORARY_COLLECTION_FILE_NAME)
def save_after_collecting_dataframe(dataframe):
print_info("Saving after collecting file: " + constants.DATAFRAME_AFTER_COLLECTION_FILE_NAME)
dataframe.to_csv(constants.DATAFRAME_AFTER_COLLECTION_FILE_NAME)
def save_after_collecting_dataframe_without_full_response(dataframe):
dataframe = dataframe.drop('response', 1)
print_dataframe(dataframe)
print_info("Saving after collecting file: " + constants.DATAFRAME_AFTER_COLLECTION_FILE_NAME_WITHOUT_FULL_RESPONSE)
dataframe.to_csv(constants.DATAFRAME_AFTER_COLLECTION_FILE_NAME_WITHOUT_FULL_RESPONSE)
def print_warning(message):
logging.warn(message)
def load_json_data_from_response(response):
response_content = response.content.encode('utf-8')
return json.loads(response_content)
def print_dataframe(df):
print tabulate(df, headers='keys', tablefmt='psql', floatfmt=".0f")
def build_initial_collection_dataframe():
return pd.DataFrame(columns= constants.DATAFRAME_COLUMNS)
def get_all_combinations_from_input(input_data_json):
to_combine_fields = {}
for field in constants.INPUT_FIELDS_TO_COMBINE:
try:
if isinstance(input_data_json[field], list):
field_content = input_data_json[field]
to_combine_fields[field] = field_content
if isinstance(input_data_json[field], dict):
for intra_field_key in input_data_json[field].keys():
to_combine_fields[intra_field_key] = input_data_json[field][intra_field_key]
# to_combine_fields[field] = build_AND_intra_field_combinations(input_data_json[field])
except KeyError:
print_warning("Field not expecified: " + field)
for field in to_combine_fields.keys():
for index, value in enumerate(to_combine_fields[field]):
to_combine_fields[field][index] = (field, value)
all_combinations = list(itertools.product(*to_combine_fields.values()))
return all_combinations
def build_AND_intra_field_combinations(intra_field_data):
intra_fields = []
for field in intra_field_data.values():
intra_fields.append(field)
teste = list(itertools.product(*intra_fields))
import ipdb;ipdb.set_trace()
pass
def add_list_of_ANDS_to_input(list_of_ANDS_between_groups,input_data_json):
for interests_to_AND in list_of_ANDS_between_groups:
names = []
and_ors = []
for interest_to_AND in interests_to_AND:
names.append(interest_to_AND[constants.INPUT_NAME_FIELD])
if "or" not in interest_to_AND:
raise Exception("Only AND of ors are supported")
and_ors.append(interest_to_AND["or"])
new_and_interest = {
constants.INPUT_NAME_FIELD : " AND ".join(names),
"and_ors" : and_ors,
"isAND" : True
}
input_data_json[constants.INPUT_INTEREST_FIELD].append(new_and_interest)
def generate_collection_request_from_combination(current_combination, input_data):
targeting = build_targeting(current_combination,input_data)
dataframe_row = {}
for field in current_combination:
field_name = field[0]
value = field[1]
dataframe_row[field_name] = value
dataframe_row[constants.ALLFIELDS_FIELD] = current_combination
dataframe_row[constants.TARGETING_FIELD] = targeting
dataframe_row[constants.INPUT_NAME_FIELD] = input_data[constants.INPUT_NAME_FIELD]
return dataframe_row
def select_common_fields_in_targeting(targeting, input_combination_dictionary):
# Selecting Geolocation
geo_location = input_combination_dictionary[constants.INPUT_GEOLOCATION_FIELD]
if geo_location.has_key(constants.INPUT_GEOLOCATION_LOCATION_TYPE_FIELD):
location_type = geo_location[constants.INPUT_GEOLOCATION_LOCATION_TYPE_FIELD]
else:
location_type = constants.DEFAULT_GEOLOCATION_LOCATION_TYPE_FIELD
targeting[constants.API_GEOLOCATION_FIELD] = {
geo_location["name"]: geo_location["values"],
constants.INPUT_GEOLOCATION_LOCATION_TYPE_FIELD: location_type
}
# Selecting Age
age_range = input_combination_dictionary[constants.INPUT_AGE_RANGE_FIELD]
targeting[constants.API_MIN_AGE_FIELD] = age_range[constants.MIN_AGE] if age_range.has_key(constants.MIN_AGE) else None
targeting[constants.API_MAX_AGE_FIELD] = age_range[constants.MAX_AGE] if age_range.has_key(constants.MAX_AGE) else None
# Selecting genders
gender = input_combination_dictionary[constants.INPUT_GENDER_FIELD]
targeting[constants.API_GENDER_FIELD] = [gender]
# Selecting Languages
if input_combination_dictionary.has_key(constants.INPUT_LANGUAGE_FIELD):
languages = input_combination_dictionary[constants.INPUT_LANGUAGE_FIELD]
if languages:
targeting[constants.API_LANGUAGES_FIELD] = languages["values"]
else:
print_warning("No field: " + constants.INPUT_LANGUAGE_FIELD)
def get_api_field_name(field_name):
return constants.INPUT_TO_API_FIELD_NAME[field_name]
def process_audience_from_response(literal_response):
audience = json.loads(literal_response)["data"]["users"]
return int(audience)
def post_process_collection(collection_dataframe):
# For now just capture audience
print_info("Computing Audience column")
collection_dataframe["audience"] = collection_dataframe["response"].apply(
lambda x: process_audience_from_response(x))
return collection_dataframe
def select_advance_targeting_type_array_ids(segment_type, input_value, targeting):
api_field_name = get_api_field_name(segment_type)
if input_value:
if input_value.has_key("or"):
or_query = []
for or_id in input_value["or"]:
or_query.append({"id" : or_id})
targeting["flexible_spec"].append({api_field_name: or_query})
if input_value.has_key("and"):
for id_and in input_value["and"]:
targeting["flexible_spec"].append({segment_type: {"id" : id_and}})
if input_value.has_key("not"):
if not "exclusions" in targeting:
targeting["exclusions"] = {}
if not api_field_name in targeting["exclusions"].keys():
targeting["exclusions"][api_field_name] = []
for id_not in input_value["not"]:
targeting["exclusions"][api_field_name].append({"id" : id_not})
if input_value.has_key("and_ors"):
for or_ids in input_value["and_ors"]:
or_query = []
for or_id in or_ids:
or_query.append({"id" : or_id})
targeting["flexible_spec"].append({segment_type: or_query})
if not input_value.has_key("or") and not input_value.has_key("and") and not input_value.has_key("not") and not input_value.has_key("and_ors"):
raise JsonFormatException("Something wrong with: " + str(input_value))
def get_interests_by_group_to_AND(input_data_json, groups_ids):
interests_by_group_to_AND = {}
for group_id in groups_ids:
interests_by_group_to_AND[group_id] = []
for interest_input in input_data_json[constants.INPUT_INTEREST_FIELD]:
if interest_input:
if constants.GROUP_ID_FIELD in interest_input:
interest_group_id = interest_input[constants.GROUP_ID_FIELD]
if interest_group_id in interests_by_group_to_AND:
interests_by_group_to_AND[interest_group_id].append(interest_input)
return interests_by_group_to_AND
def select_advance_targeting_type_array_integer(segment_type, input_value, targeting):
api_field_name = get_api_field_name(segment_type)
if input_value:
try:
targeting["flexible_spec"].append({api_field_name : input_value["or"]})
except:
raise JsonFormatException("Something wrong with: " + str(input_value))
def select_advance_targeting_fields(targeting, input_combination_dictionary):
# Selecting Advance Targeting
targeting["flexible_spec"] = []
for advance_field in constants.ADVANCE_TARGETING_FIELDS_TYPE_ARRAY_IDS:
if input_combination_dictionary.has_key(advance_field):
select_advance_targeting_type_array_ids(advance_field, input_combination_dictionary[advance_field], targeting)
for advance_field in constants.ADVANCE_TARGETING_FIELDS_TYPE_ARRAY_INTEGER:
if input_combination_dictionary.has_key(advance_field):
select_advance_targeting_type_array_integer(advance_field, input_combination_dictionary[advance_field], targeting)
return targeting
def select_publisher_platform(targeting, input_data):
# Selecting Publisher Platform
platform = constants.PUBLISHER_PLATFORM_DEFAULT
if constants.API_PUBLISHER_PLATFORMS_FIELD in input_data:
platform = input_data[constants.API_PUBLISHER_PLATFORMS_FIELD]
targeting[constants.API_PUBLISHER_PLATFORMS_FIELD] = platform
def build_targeting(current_combination, input_data):
targeting = {}
input_combination_dictionary = dict(current_combination)
select_common_fields_in_targeting(targeting, input_combination_dictionary)
select_advance_targeting_fields(targeting, input_combination_dictionary)
select_publisher_platform(targeting, input_data)
return targeting
def get_token_and_account_number_or_wait():
if not "used_tokens_time_map" in globals():
global used_tokens_time_map
used_tokens_time_map = {}
while True:
for token, account in constants.TOKENS:
if used_tokens_time_map.has_key(token):
last_used_time = used_tokens_time_map[token]
time_since_used = time.time() - last_used_time
if time_since_used > constants.SLEEP_TIME:
used_tokens_time_map[token] = time.time()
return token, account
else:
used_tokens_time_map[token] = time.time()
return token, account
time.sleep(1)
def print_collecting_progress(uncomplete_df, df):
full_size = len(df)
uncomplete_df_size = len(uncomplete_df)
print_info("Collecting... Completed: {:.2f}% , {:d}/{:d}".format((float(full_size - uncomplete_df_size) / full_size * 100),
full_size - uncomplete_df_size, full_size))
def send_dumb_query(token, account):
try:
row = pd.Series()
row[constants.TARGETING_FIELD] = constants.DEFAULT_DUMB_TARGETING
call_request_fb(row, token, account)
except Exception as error:
print_warning("Token or Account Number Error:")
print_warning("Token:" + token)
print_warning("Account:" + account)
raise error
|
mit
|
ChinaQuants/blaze
|
blaze/compute/tests/test_mysql_compute.py
|
3
|
1619
|
from __future__ import absolute_import, print_function, division
from getpass import getuser
import pytest
sa = pytest.importorskip('sqlalchemy')
pytest.importorskip('pymysql')
from odo import odo, drop, discover
import pandas as pd
from blaze import symbol, compute
from blaze.utils import example, normalize
@pytest.yield_fixture(scope='module')
def data():
try:
t = odo(
example('nyc.csv'),
'mysql+pymysql://%s@localhost/test::nyc' % getuser()
)
except sa.exc.OperationalError as e:
pytest.skip(str(e))
else:
try:
yield t.bind
finally:
drop(t)
@pytest.fixture
def db(data):
return symbol('test', discover(data))
def test_agg_sql(db, data):
subset = db.nyc[['pickup_datetime', 'dropoff_datetime', 'passenger_count']]
expr = subset[subset.passenger_count < 4].passenger_count.min()
result = compute(expr, data)
expected = """
select
min(alias.passenger_count) as passenger_count_min
from
(select
nyc.passenger_count as passenger_count
from
nyc
where nyc.passenger_count < %s) as alias
"""
assert normalize(str(result)) == normalize(expected)
def test_agg_compute(db, data):
subset = db.nyc[['pickup_datetime', 'dropoff_datetime', 'passenger_count']]
expr = subset[subset.passenger_count < 4].passenger_count.min()
result = compute(expr, data)
passenger_count = odo(compute(db.nyc.passenger_count, {db: data}), pd.Series)
assert passenger_count[passenger_count < 4].min() == result.scalar()
|
bsd-3-clause
|
cimat/data-visualization-patterns
|
display-patterns/Hierarchies/Pruebas/A62Tree_Map_Matplotlib.py
|
1
|
1800
|
import pylab
import random
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
class Treemap:
def __init__(self, tree, iter_method, size_method, color_method):
self.ax = pylab.subplot(111,aspect='equal')
pylab.subplots_adjust(left=0, right=1, top=1, bottom=0)
self.ax.set_xticks([])
self.ax.set_yticks([])
self.size_method = size_method
self.iter_method = iter_method
self.color_method = color_method
self.addnode(tree)
def addnode(self, node, lower=[0,0], upper=[1,1], axis=0):
axis = axis % 2
self.draw_rectangle(lower, upper, node)
width = upper[axis] - lower[axis]
try:
for child in self.iter_method(node):
upper[axis] = lower[axis] + (width * float(size(child))) / size(node)
self.addnode(child, list(lower), list(upper), axis + 1)
lower[axis] = upper[axis]
except TypeError:
pass
def draw_rectangle(self, lower, upper, node):
r = Rectangle( lower, upper[0]-lower[0], upper[1] - lower[1],
edgecolor='k',
facecolor= self.color_method(node))
self.ax.add_patch(r)
if __name__ == '__main__':
size_cache = {}
def size(thing):
if isinstance(thing, int):
return thing
if thing in size_cache:
return size_cache[thing]
else:
size_cache[thing] = reduce(int.__add__, [size(x) for x in thing])
return size_cache[thing]
def random_color(thing):
return (random.random(),random.random(),random.random())
tree=((2,12),((4,(1,2)),(8,(1,2))))
Treemap(tree, iter, size, random_color)
plt.show()
|
cc0-1.0
|
ltiao/scikit-learn
|
sklearn/manifold/t_sne.py
|
52
|
34602
|
# Author: Alexander Fabisch -- <[email protected]>
# Author: Christopher Moody <[email protected]>
# Author: Nick Travers <[email protected]>
# License: BSD 3 clause (C) 2014
# This is the exact and Barnes-Hut t-SNE implementation. There are other
# modifications of the algorithm:
# * Fast Optimization for t-SNE:
# http://cseweb.ucsd.edu/~lvdmaaten/workshops/nips2010/papers/vandermaaten.pdf
import numpy as np
from scipy import linalg
import scipy.sparse as sp
from scipy.spatial.distance import pdist
from scipy.spatial.distance import squareform
from ..neighbors import BallTree
from ..base import BaseEstimator
from ..utils import check_array
from ..utils import check_random_state
from ..utils.extmath import _ravel
from ..decomposition import RandomizedPCA
from ..metrics.pairwise import pairwise_distances
from . import _utils
from . import _barnes_hut_tsne
from ..utils.fixes import astype
MACHINE_EPSILON = np.finfo(np.double).eps
def _joint_probabilities(distances, desired_perplexity, verbose):
"""Compute joint probabilities p_ij from distances.
Parameters
----------
distances : array, shape (n_samples * (n_samples-1) / 2,)
Distances of samples are stored as condensed matrices, i.e.
we omit the diagonal and duplicate entries and store everything
in a one-dimensional array.
desired_perplexity : float
Desired perplexity of the joint probability distributions.
verbose : int
Verbosity level.
Returns
-------
P : array, shape (n_samples * (n_samples-1) / 2,)
Condensed joint probability matrix.
"""
# Compute conditional probabilities such that they approximately match
# the desired perplexity
distances = astype(distances, np.float32, copy=False)
conditional_P = _utils._binary_search_perplexity(
distances, None, desired_perplexity, verbose)
P = conditional_P + conditional_P.T
sum_P = np.maximum(np.sum(P), MACHINE_EPSILON)
P = np.maximum(squareform(P) / sum_P, MACHINE_EPSILON)
return P
def _joint_probabilities_nn(distances, neighbors, desired_perplexity, verbose):
"""Compute joint probabilities p_ij from distances using just nearest
neighbors.
This method is approximately equal to _joint_probabilities. The latter
is O(N), but limiting the joint probability to nearest neighbors improves
this substantially to O(uN).
Parameters
----------
distances : array, shape (n_samples * (n_samples-1) / 2,)
Distances of samples are stored as condensed matrices, i.e.
we omit the diagonal and duplicate entries and store everything
in a one-dimensional array.
desired_perplexity : float
Desired perplexity of the joint probability distributions.
verbose : int
Verbosity level.
Returns
-------
P : array, shape (n_samples * (n_samples-1) / 2,)
Condensed joint probability matrix.
"""
# Compute conditional probabilities such that they approximately match
# the desired perplexity
distances = astype(distances, np.float32, copy=False)
neighbors = astype(neighbors, np.int64, copy=False)
conditional_P = _utils._binary_search_perplexity(
distances, neighbors, desired_perplexity, verbose)
m = "All probabilities should be finite"
assert np.all(np.isfinite(conditional_P)), m
P = conditional_P + conditional_P.T
sum_P = np.maximum(np.sum(P), MACHINE_EPSILON)
P = np.maximum(squareform(P) / sum_P, MACHINE_EPSILON)
assert np.all(np.abs(P) <= 1.0)
return P
def _kl_divergence(params, P, degrees_of_freedom, n_samples, n_components,
skip_num_points=0):
"""t-SNE objective function: gradient of the KL divergence
of p_ijs and q_ijs and the absolute error.
Parameters
----------
params : array, shape (n_params,)
Unraveled embedding.
P : array, shape (n_samples * (n_samples-1) / 2,)
Condensed joint probability matrix.
degrees_of_freedom : float
Degrees of freedom of the Student's-t distribution.
n_samples : int
Number of samples.
n_components : int
Dimension of the embedded space.
skip_num_points : int (optional, default:0)
This does not compute the gradient for points with indices below
`skip_num_points`. This is useful when computing transforms of new
data where you'd like to keep the old data fixed.
Returns
-------
kl_divergence : float
Kullback-Leibler divergence of p_ij and q_ij.
grad : array, shape (n_params,)
Unraveled gradient of the Kullback-Leibler divergence with respect to
the embedding.
"""
X_embedded = params.reshape(n_samples, n_components)
# Q is a heavy-tailed distribution: Student's t-distribution
n = pdist(X_embedded, "sqeuclidean")
n += 1.
n /= degrees_of_freedom
n **= (degrees_of_freedom + 1.0) / -2.0
Q = np.maximum(n / (2.0 * np.sum(n)), MACHINE_EPSILON)
# Optimization trick below: np.dot(x, y) is faster than
# np.sum(x * y) because it calls BLAS
# Objective: C (Kullback-Leibler divergence of P and Q)
kl_divergence = 2.0 * np.dot(P, np.log(P / Q))
# Gradient: dC/dY
grad = np.ndarray((n_samples, n_components))
PQd = squareform((P - Q) * n)
for i in range(skip_num_points, n_samples):
np.dot(_ravel(PQd[i]), X_embedded[i] - X_embedded, out=grad[i])
grad = grad.ravel()
c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom
grad *= c
return kl_divergence, grad
def _kl_divergence_error(params, P, neighbors, degrees_of_freedom, n_samples,
n_components):
"""t-SNE objective function: the absolute error of the
KL divergence of p_ijs and q_ijs.
Parameters
----------
params : array, shape (n_params,)
Unraveled embedding.
P : array, shape (n_samples * (n_samples-1) / 2,)
Condensed joint probability matrix.
neighbors : array (n_samples, K)
The neighbors is not actually required to calculate the
divergence, but is here to match the signature of the
gradient function
degrees_of_freedom : float
Degrees of freedom of the Student's-t distribution.
n_samples : int
Number of samples.
n_components : int
Dimension of the embedded space.
Returns
-------
kl_divergence : float
Kullback-Leibler divergence of p_ij and q_ij.
grad : array, shape (n_params,)
Unraveled gradient of the Kullback-Leibler divergence with respect to
the embedding.
"""
X_embedded = params.reshape(n_samples, n_components)
# Q is a heavy-tailed distribution: Student's t-distribution
n = pdist(X_embedded, "sqeuclidean")
n += 1.
n /= degrees_of_freedom
n **= (degrees_of_freedom + 1.0) / -2.0
Q = np.maximum(n / (2.0 * np.sum(n)), MACHINE_EPSILON)
# Optimization trick below: np.dot(x, y) is faster than
# np.sum(x * y) because it calls BLAS
# Objective: C (Kullback-Leibler divergence of P and Q)
if len(P.shape) == 2:
P = squareform(P)
kl_divergence = 2.0 * np.dot(P, np.log(P / Q))
return kl_divergence
def _kl_divergence_bh(params, P, neighbors, degrees_of_freedom, n_samples,
n_components, angle=0.5, skip_num_points=0,
verbose=False):
"""t-SNE objective function: KL divergence of p_ijs and q_ijs.
Uses Barnes-Hut tree methods to calculate the gradient that
runs in O(NlogN) instead of O(N^2)
Parameters
----------
params : array, shape (n_params,)
Unraveled embedding.
P : array, shape (n_samples * (n_samples-1) / 2,)
Condensed joint probability matrix.
neighbors: int64 array, shape (n_samples, K)
Array with element [i, j] giving the index for the jth
closest neighbor to point i.
degrees_of_freedom : float
Degrees of freedom of the Student's-t distribution.
n_samples : int
Number of samples.
n_components : int
Dimension of the embedded space.
angle : float (default: 0.5)
This is the trade-off between speed and accuracy for Barnes-Hut T-SNE.
'angle' is the angular size (referred to as theta in [3]) of a distant
node as measured from a point. If this size is below 'angle' then it is
used as a summary node of all points contained within it.
This method is not very sensitive to changes in this parameter
in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing
computation time and angle greater 0.8 has quickly increasing error.
skip_num_points : int (optional, default:0)
This does not compute the gradient for points with indices below
`skip_num_points`. This is useful when computing transforms of new
data where you'd like to keep the old data fixed.
verbose : int
Verbosity level.
Returns
-------
kl_divergence : float
Kullback-Leibler divergence of p_ij and q_ij.
grad : array, shape (n_params,)
Unraveled gradient of the Kullback-Leibler divergence with respect to
the embedding.
"""
params = astype(params, np.float32, copy=False)
X_embedded = params.reshape(n_samples, n_components)
neighbors = astype(neighbors, np.int64, copy=False)
if len(P.shape) == 1:
sP = squareform(P).astype(np.float32)
else:
sP = P.astype(np.float32)
grad = np.zeros(X_embedded.shape, dtype=np.float32)
error = _barnes_hut_tsne.gradient(sP, X_embedded, neighbors,
grad, angle, n_components, verbose,
dof=degrees_of_freedom)
c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom
grad = grad.ravel()
grad *= c
return error, grad
def _gradient_descent(objective, p0, it, n_iter, objective_error=None,
n_iter_check=1, n_iter_without_progress=50,
momentum=0.5, learning_rate=1000.0, min_gain=0.01,
min_grad_norm=1e-7, min_error_diff=1e-7, verbose=0,
args=None, kwargs=None):
"""Batch gradient descent with momentum and individual gains.
Parameters
----------
objective : function or callable
Should return a tuple of cost and gradient for a given parameter
vector. When expensive to compute, the cost can optionally
be None and can be computed every n_iter_check steps using
the objective_error function.
p0 : array-like, shape (n_params,)
Initial parameter vector.
it : int
Current number of iterations (this function will be called more than
once during the optimization).
n_iter : int
Maximum number of gradient descent iterations.
n_iter_check : int
Number of iterations before evaluating the global error. If the error
is sufficiently low, we abort the optimization.
objective_error : function or callable
Should return a tuple of cost and gradient for a given parameter
vector.
n_iter_without_progress : int, optional (default: 30)
Maximum number of iterations without progress before we abort the
optimization.
momentum : float, within (0.0, 1.0), optional (default: 0.5)
The momentum generates a weight for previous gradients that decays
exponentially.
learning_rate : float, optional (default: 1000.0)
The learning rate should be extremely high for t-SNE! Values in the
range [100.0, 1000.0] are common.
min_gain : float, optional (default: 0.01)
Minimum individual gain for each parameter.
min_grad_norm : float, optional (default: 1e-7)
If the gradient norm is below this threshold, the optimization will
be aborted.
min_error_diff : float, optional (default: 1e-7)
If the absolute difference of two successive cost function values
is below this threshold, the optimization will be aborted.
verbose : int, optional (default: 0)
Verbosity level.
args : sequence
Arguments to pass to objective function.
kwargs : dict
Keyword arguments to pass to objective function.
Returns
-------
p : array, shape (n_params,)
Optimum parameters.
error : float
Optimum.
i : int
Last iteration.
"""
if args is None:
args = []
if kwargs is None:
kwargs = {}
p = p0.copy().ravel()
update = np.zeros_like(p)
gains = np.ones_like(p)
error = np.finfo(np.float).max
best_error = np.finfo(np.float).max
best_iter = 0
for i in range(it, n_iter):
new_error, grad = objective(p, *args, **kwargs)
grad_norm = linalg.norm(grad)
inc = update * grad >= 0.0
dec = np.invert(inc)
gains[inc] += 0.05
gains[dec] *= 0.95
np.clip(gains, min_gain, np.inf)
grad *= gains
update = momentum * update - learning_rate * grad
p += update
if (i + 1) % n_iter_check == 0:
if new_error is None:
new_error = objective_error(p, *args)
error_diff = np.abs(new_error - error)
error = new_error
if verbose >= 2:
m = "[t-SNE] Iteration %d: error = %.7f, gradient norm = %.7f"
print(m % (i + 1, error, grad_norm))
if error < best_error:
best_error = error
best_iter = i
elif i - best_iter > n_iter_without_progress:
if verbose >= 2:
print("[t-SNE] Iteration %d: did not make any progress "
"during the last %d episodes. Finished."
% (i + 1, n_iter_without_progress))
break
if grad_norm <= min_grad_norm:
if verbose >= 2:
print("[t-SNE] Iteration %d: gradient norm %f. Finished."
% (i + 1, grad_norm))
break
if error_diff <= min_error_diff:
if verbose >= 2:
m = "[t-SNE] Iteration %d: error difference %f. Finished."
print(m % (i + 1, error_diff))
break
if new_error is not None:
error = new_error
return p, error, i
def trustworthiness(X, X_embedded, n_neighbors=5, precomputed=False):
"""Expresses to what extent the local structure is retained.
The trustworthiness is within [0, 1]. It is defined as
.. math::
T(k) = 1 - \frac{2}{nk (2n - 3k - 1)} \sum^n_{i=1}
\sum_{j \in U^{(k)}_i (r(i, j) - k)}
where :math:`r(i, j)` is the rank of the embedded datapoint j
according to the pairwise distances between the embedded datapoints,
:math:`U^{(k)}_i` is the set of points that are in the k nearest
neighbors in the embedded space but not in the original space.
* "Neighborhood Preservation in Nonlinear Projection Methods: An
Experimental Study"
J. Venna, S. Kaski
* "Learning a Parametric Embedding by Preserving Local Structure"
L.J.P. van der Maaten
Parameters
----------
X : array, shape (n_samples, n_features) or (n_samples, n_samples)
If the metric is 'precomputed' X must be a square distance
matrix. Otherwise it contains a sample per row.
X_embedded : array, shape (n_samples, n_components)
Embedding of the training data in low-dimensional space.
n_neighbors : int, optional (default: 5)
Number of neighbors k that will be considered.
precomputed : bool, optional (default: False)
Set this flag if X is a precomputed square distance matrix.
Returns
-------
trustworthiness : float
Trustworthiness of the low-dimensional embedding.
"""
if precomputed:
dist_X = X
else:
dist_X = pairwise_distances(X, squared=True)
dist_X_embedded = pairwise_distances(X_embedded, squared=True)
ind_X = np.argsort(dist_X, axis=1)
ind_X_embedded = np.argsort(dist_X_embedded, axis=1)[:, 1:n_neighbors + 1]
n_samples = X.shape[0]
t = 0.0
ranks = np.zeros(n_neighbors)
for i in range(n_samples):
for j in range(n_neighbors):
ranks[j] = np.where(ind_X[i] == ind_X_embedded[i, j])[0][0]
ranks -= n_neighbors
t += np.sum(ranks[ranks > 0])
t = 1.0 - t * (2.0 / (n_samples * n_neighbors *
(2.0 * n_samples - 3.0 * n_neighbors - 1.0)))
return t
class TSNE(BaseEstimator):
"""t-distributed Stochastic Neighbor Embedding.
t-SNE [1] is a tool to visualize high-dimensional data. It converts
similarities between data points to joint probabilities and tries
to minimize the Kullback-Leibler divergence between the joint
probabilities of the low-dimensional embedding and the
high-dimensional data. t-SNE has a cost function that is not convex,
i.e. with different initializations we can get different results.
It is highly recommended to use another dimensionality reduction
method (e.g. PCA for dense data or TruncatedSVD for sparse data)
to reduce the number of dimensions to a reasonable amount (e.g. 50)
if the number of features is very high. This will suppress some
noise and speed up the computation of pairwise distances between
samples. For more tips see Laurens van der Maaten's FAQ [2].
Read more in the :ref:`User Guide <t_sne>`.
Parameters
----------
n_components : int, optional (default: 2)
Dimension of the embedded space.
perplexity : float, optional (default: 30)
The perplexity is related to the number of nearest neighbors that
is used in other manifold learning algorithms. Larger datasets
usually require a larger perplexity. Consider selcting a value
between 5 and 50. The choice is not extremely critical since t-SNE
is quite insensitive to this parameter.
early_exaggeration : float, optional (default: 4.0)
Controls how tight natural clusters in the original space are in
the embedded space and how much space will be between them. For
larger values, the space between natural clusters will be larger
in the embedded space. Again, the choice of this parameter is not
very critical. If the cost function increases during initial
optimization, the early exaggeration factor or the learning rate
might be too high.
learning_rate : float, optional (default: 1000)
The learning rate can be a critical parameter. It should be
between 100 and 1000. If the cost function increases during initial
optimization, the early exaggeration factor or the learning rate
might be too high. If the cost function gets stuck in a bad local
minimum increasing the learning rate helps sometimes.
n_iter : int, optional (default: 1000)
Maximum number of iterations for the optimization. Should be at
least 200.
n_iter_without_progress : int, optional (default: 30)
Maximum number of iterations without progress before we abort the
optimization.
min_grad_norm : float, optional (default: 1E-7)
If the gradient norm is below this threshold, the optimization will
be aborted.
metric : string or callable, optional
The metric to use when calculating distance between instances in a
feature array. If metric is a string, it must be one of the options
allowed by scipy.spatial.distance.pdist for its metric parameter, or
a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS.
If metric is "precomputed", X is assumed to be a distance matrix.
Alternatively, if metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable
should take two arrays from X as input and return a value indicating
the distance between them. The default is "euclidean" which is
interpreted as squared euclidean distance.
init : string, optional (default: "random")
Initialization of embedding. Possible options are 'random' and 'pca'.
PCA initialization cannot be used with precomputed distances and is
usually more globally stable than random initialization.
verbose : int, optional (default: 0)
Verbosity level.
random_state : int or RandomState instance or None (default)
Pseudo Random Number generator seed control. If None, use the
numpy.random singleton. Note that different initializations
might result in different local minima of the cost function.
method : string (default: 'barnes_hut')
By default the gradient calculation algorithm uses Barnes-Hut
approximation running in O(NlogN) time. method='exact'
will run on the slower, but exact, algorithm in O(N^2) time. The
exact algorithm should be used when nearest-neighbor errors need
to be better than 3%. However, the exact method cannot scale to
millions of examples.
angle : float (default: 0.5)
Only used if method='barnes_hut'
This is the trade-off between speed and accuracy for Barnes-Hut T-SNE.
'angle' is the angular size (referred to as theta in [3]) of a distant
node as measured from a point. If this size is below 'angle' then it is
used as a summary node of all points contained within it.
This method is not very sensitive to changes in this parameter
in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing
computation time and angle greater 0.8 has quickly increasing error.
Attributes
----------
embedding_ : array-like, shape (n_samples, n_components)
Stores the embedding vectors.
Examples
--------
>>> import numpy as np
>>> from sklearn.manifold import TSNE
>>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
>>> model = TSNE(n_components=2, random_state=0)
>>> np.set_printoptions(suppress=True)
>>> model.fit_transform(X) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
array([[ 0.00017599, 0.00003993],
[ 0.00009891, 0.00021913],
[ 0.00018554, -0.00009357],
[ 0.00009528, -0.00001407]])
References
----------
[1] van der Maaten, L.J.P.; Hinton, G.E. Visualizing High-Dimensional Data
Using t-SNE. Journal of Machine Learning Research 9:2579-2605, 2008.
[2] van der Maaten, L.J.P. t-Distributed Stochastic Neighbor Embedding
http://homepage.tudelft.nl/19j49/t-SNE.html
[3] L.J.P. van der Maaten. Accelerating t-SNE using Tree-Based Algorithms.
Journal of Machine Learning Research 15(Oct):3221-3245, 2014.
http://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf
"""
def __init__(self, n_components=2, perplexity=30.0,
early_exaggeration=4.0, learning_rate=1000.0, n_iter=1000,
n_iter_without_progress=30, min_grad_norm=1e-7,
metric="euclidean", init="random", verbose=0,
random_state=None, method='barnes_hut', angle=0.5):
if init not in ["pca", "random"] or isinstance(init, np.ndarray):
msg = "'init' must be 'pca', 'random' or a NumPy array"
raise ValueError(msg)
self.n_components = n_components
self.perplexity = perplexity
self.early_exaggeration = early_exaggeration
self.learning_rate = learning_rate
self.n_iter = n_iter
self.n_iter_without_progress = n_iter_without_progress
self.min_grad_norm = min_grad_norm
self.metric = metric
self.init = init
self.verbose = verbose
self.random_state = random_state
self.method = method
self.angle = angle
self.embedding_ = None
def _fit(self, X, skip_num_points=0):
"""Fit the model using X as training data.
Note that sparse arrays can only be handled by method='exact'.
It is recommended that you convert your sparse array to dense
(e.g. `X.toarray()`) if it fits in memory, or otherwise using a
dimensionality reduction technique (e.g. TrucnatedSVD).
Parameters
----------
X : array, shape (n_samples, n_features) or (n_samples, n_samples)
If the metric is 'precomputed' X must be a square distance
matrix. Otherwise it contains a sample per row. Note that this
when method='barnes_hut', X cannot be a sparse array and if need be
will be converted to a 32 bit float array. Method='exact' allows
sparse arrays and 64bit floating point inputs.
skip_num_points : int (optional, default:0)
This does not compute the gradient for points with indices below
`skip_num_points`. This is useful when computing transforms of new
data where you'd like to keep the old data fixed.
"""
if self.method not in ['barnes_hut', 'exact']:
raise ValueError("'method' must be 'barnes_hut' or 'exact'")
if self.angle < 0.0 or self.angle > 1.0:
raise ValueError("'angle' must be between 0.0 - 1.0")
if self.method == 'barnes_hut' and sp.issparse(X):
raise TypeError('A sparse matrix was passed, but dense '
'data is required for method="barnes_hut". Use '
'X.toarray() to convert to a dense numpy array if '
'the array is small enough for it to fit in '
'memory. Otherwise consider dimensionality '
'reduction techniques (e.g. TruncatedSVD)')
X = check_array(X, dtype=np.float32)
else:
X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64)
random_state = check_random_state(self.random_state)
if self.early_exaggeration < 1.0:
raise ValueError("early_exaggeration must be at least 1, but is "
"%f" % self.early_exaggeration)
if self.n_iter < 200:
raise ValueError("n_iter should be at least 200")
if self.metric == "precomputed":
if self.init == 'pca':
raise ValueError("The parameter init=\"pca\" cannot be used "
"with metric=\"precomputed\".")
if X.shape[0] != X.shape[1]:
raise ValueError("X should be a square distance matrix")
distances = X
else:
if self.verbose:
print("[t-SNE] Computing pairwise distances...")
if self.metric == "euclidean":
distances = pairwise_distances(X, metric=self.metric,
squared=True)
else:
distances = pairwise_distances(X, metric=self.metric)
if not np.all(distances >= 0):
raise ValueError("All distances should be positive, either "
"the metric or precomputed distances given "
"as X are not correct")
# Degrees of freedom of the Student's t-distribution. The suggestion
# degrees_of_freedom = n_components - 1 comes from
# "Learning a Parametric Embedding by Preserving Local Structure"
# Laurens van der Maaten, 2009.
degrees_of_freedom = max(self.n_components - 1.0, 1)
n_samples = X.shape[0]
# the number of nearest neighbors to find
k = min(n_samples - 1, int(3. * self.perplexity + 1))
neighbors_nn = None
if self.method == 'barnes_hut':
if self.verbose:
print("[t-SNE] Computing %i nearest neighbors..." % k)
if self.metric == 'precomputed':
# Use the precomputed distances to find
# the k nearest neighbors and their distances
neighbors_nn = np.argsort(distances, axis=1)[:, :k]
else:
# Find the nearest neighbors for every point
bt = BallTree(X)
# LvdM uses 3 * perplexity as the number of neighbors
# And we add one to not count the data point itself
# In the event that we have very small # of points
# set the neighbors to n - 1
distances_nn, neighbors_nn = bt.query(X, k=k + 1)
neighbors_nn = neighbors_nn[:, 1:]
P = _joint_probabilities_nn(distances, neighbors_nn,
self.perplexity, self.verbose)
else:
P = _joint_probabilities(distances, self.perplexity, self.verbose)
assert np.all(np.isfinite(P)), "All probabilities should be finite"
assert np.all(P >= 0), "All probabilities should be zero or positive"
assert np.all(P <= 1), ("All probabilities should be less "
"or then equal to one")
if self.init == 'pca':
pca = RandomizedPCA(n_components=self.n_components,
random_state=random_state)
X_embedded = pca.fit_transform(X)
elif isinstance(self.init, np.ndarray):
X_embedded = self.init
elif self.init == 'random':
X_embedded = None
else:
raise ValueError("Unsupported initialization scheme: %s"
% self.init)
return self._tsne(P, degrees_of_freedom, n_samples, random_state,
X_embedded=X_embedded,
neighbors=neighbors_nn,
skip_num_points=skip_num_points)
def _tsne(self, P, degrees_of_freedom, n_samples, random_state,
X_embedded=None, neighbors=None, skip_num_points=0):
"""Runs t-SNE."""
# t-SNE minimizes the Kullback-Leiber divergence of the Gaussians P
# and the Student's t-distributions Q. The optimization algorithm that
# we use is batch gradient descent with three stages:
# * early exaggeration with momentum 0.5
# * early exaggeration with momentum 0.8
# * final optimization with momentum 0.8
# The embedding is initialized with iid samples from Gaussians with
# standard deviation 1e-4.
if X_embedded is None:
# Initialize embedding randomly
X_embedded = 1e-4 * random_state.randn(n_samples,
self.n_components)
params = X_embedded.ravel()
opt_args = {}
opt_args = {"n_iter": 50, "momentum": 0.5, "it": 0,
"learning_rate": self.learning_rate,
"verbose": self.verbose, "n_iter_check": 25,
"kwargs": dict(skip_num_points=skip_num_points)}
if self.method == 'barnes_hut':
m = "Must provide an array of neighbors to use Barnes-Hut"
assert neighbors is not None, m
obj_func = _kl_divergence_bh
objective_error = _kl_divergence_error
sP = squareform(P).astype(np.float32)
neighbors = neighbors.astype(np.int64)
args = [sP, neighbors, degrees_of_freedom, n_samples,
self.n_components]
opt_args['args'] = args
opt_args['min_grad_norm'] = 1e-3
opt_args['n_iter_without_progress'] = 30
# Don't always calculate the cost since that calculation
# can be nearly as expensive as the gradient
opt_args['objective_error'] = objective_error
opt_args['kwargs']['angle'] = self.angle
opt_args['kwargs']['verbose'] = self.verbose
else:
obj_func = _kl_divergence
opt_args['args'] = [P, degrees_of_freedom, n_samples,
self.n_components]
opt_args['min_error_diff'] = 0.0
opt_args['min_grad_norm'] = 0.0
# Early exaggeration
P *= self.early_exaggeration
params, error, it = _gradient_descent(obj_func, params, **opt_args)
opt_args['n_iter'] = 100
opt_args['momentum'] = 0.8
opt_args['it'] = it + 1
params, error, it = _gradient_descent(obj_func, params, **opt_args)
if self.verbose:
print("[t-SNE] Error after %d iterations with early "
"exaggeration: %f" % (it + 1, error))
# Save the final number of iterations
self.n_iter_final = it
# Final optimization
P /= self.early_exaggeration
opt_args['n_iter'] = self.n_iter
opt_args['it'] = it + 1
params, error, it = _gradient_descent(obj_func, params, **opt_args)
if self.verbose:
print("[t-SNE] Error after %d iterations: %f" % (it + 1, error))
X_embedded = params.reshape(n_samples, self.n_components)
return X_embedded
def fit_transform(self, X, y=None):
"""Fit X into an embedded space and return that transformed
output.
Parameters
----------
X : array, shape (n_samples, n_features) or (n_samples, n_samples)
If the metric is 'precomputed' X must be a square distance
matrix. Otherwise it contains a sample per row.
Returns
-------
X_new : array, shape (n_samples, n_components)
Embedding of the training data in low-dimensional space.
"""
embedding = self._fit(X)
self.embedding_ = embedding
return self.embedding_
def fit(self, X, y=None):
"""Fit X into an embedded space.
Parameters
----------
X : array, shape (n_samples, n_features) or (n_samples, n_samples)
If the metric is 'precomputed' X must be a square distance
matrix. Otherwise it contains a sample per row. If the method
is 'exact', X may be a sparse matrix of type 'csr', 'csc'
or 'coo'.
"""
self.fit_transform(X)
return self
def _check_fitted(self):
if self.embedding_ is None:
raise ValueError("Cannot call `transform` unless `fit` has"
"already been called")
|
bsd-3-clause
|
cavestruz/L500analysis
|
plotting/profiles/T_evolution/Tall_evolution/plot_Tall_r500c.py
|
2
|
2944
|
from L500analysis.data_io.get_cluster_data import GetClusterData
from L500analysis.utils.utils import aexp2redshift
from L500analysis.plotting.tools.figure_formatting import *
from L500analysis.plotting.profiles.tools.profiles_percentile \
import *
from L500analysis.utils.constants import rbins
from derived_field_functions import *
color = matplotlib.cm.afmhot_r
matplotlib.rcParams['legend.handlelength'] = 0
matplotlib.rcParams['legend.numpoints'] = 1
matplotlib.rcParams['legend.fontsize'] = 12
aexps = [1.0,0.9,0.8,0.7,0.6,0.5,0.45,0.4,0.35]
db_name = 'L500_NR_0'
db_dir = '/home/babyostrich/Documents/Repos/L500analysis/'
profiles_list = ['T_mw', 'r_mid',
'vel_gas_rad_std', 'vel_gas_tan_std',
'vel_gas_rad_avg', 'vel_gas_tan_avg',
'Tnt/T500c','Ttot/T500c','T_mw/T500c',
'R/R500c']
halo_properties_list=['r500c','M_total_500c','nu_500c']
Tratio=r"$\tilde{T}=T(R)/T_{500c}$"
fTz0=r"$\tilde{T}/\tilde{T}(z=1)$"
pa = PlotAxes(figname='Tall_r500c',
axes=[[0.15,0.4,0.80,0.55],[0.15,0.15,0.80,0.24]],
axes_labels=[Tratio,fTz0],
xlabel=r"$R/R_{500c}$",
xlim=(0.2,5),
ylims=[(0.1,1.19),(0.6,1.4)])
Tmw={}
Tnt={}
Ttot={}
Tplots = [Tmw,Tnt,Ttot]
clkeys = ['T_mw/T500c','Tnt/T500c','Ttot/T500c']
linestyles = [':','-.','-']
Tmw_frac={}
Tnt_frac={}
Ttot_frac={}
for aexp in aexps :
cldata = GetClusterData(aexp=aexp,db_name=db_name,
db_dir=db_dir,
profiles_list=profiles_list,
halo_properties_list=halo_properties_list)
for Tplot, key in zip(Tplots,clkeys) :
Tplot[aexp] = calculate_profiles_mean_variance(cldata[key])
pa.axes[Tratio].plot( rbins, Tmw[aexp]['mean'],color=color(aexp),ls=':' )
pa.axes[Tratio].plot( rbins, Tnt[aexp]['mean'],color=color(aexp),ls='-.' )
pa.axes[Tratio].plot( rbins, Ttot[aexp]['mean'],color=color(aexp),ls='-',
label="$z=%3.1f$" % aexp2redshift(aexp))
pa.axes[Tratio].fill_between(rbins, Ttot[0.5]['down'], Ttot[0.5]['up'],
color=color(0.5), zorder=0)
for aexp in aexps :
for T,ls in zip(Tplots,linestyles) :
fractional_evolution = get_profiles_division_mean_variance(
mean_profile1=T[aexp]['mean'],
var_profile1=T[aexp]['var'],
mean_profile2=T[0.5]['mean'],
var_profile2=T[0.5]['var'],
)
pa.axes[fTz0].plot( rbins, fractional_evolution['mean'],
color=color(aexp),ls=ls)
pa.axes[Tratio].tick_params(labelsize=12)
pa.axes[Tratio].tick_params(labelsize=12)
pa.axes[fTz0].set_yticks(arange(0.6,1.4,0.2))
pa.set_legend(axes_label=Tratio,ncol=3,loc='best', frameon=False)
pa.color_legend_texts(axes_label=Tratio)
pa.savefig()
|
mit
|
Edu-Glez/Bank_sentiment_analysis
|
env/lib/python3.6/site-packages/pandas/io/sas/sasreader.py
|
7
|
2128
|
"""
Read SAS sas7bdat or xport files.
"""
def read_sas(filepath_or_buffer, format=None, index=None, encoding=None,
chunksize=None, iterator=False):
"""
Read SAS files stored as either XPORT or SAS7BDAT format files.
Parameters
----------
filepath_or_buffer : string or file-like object
Path to the SAS file.
format : string {'xport', 'sas7bdat'} or None
If None, file format is inferred. If 'xport' or 'sas7bdat',
uses the corresponding format.
index : identifier of index column, defaults to None
Identifier of column that should be used as index of the DataFrame.
encoding : string, default is None
Encoding for text data. If None, text data are stored as raw bytes.
chunksize : int
Read file `chunksize` lines at a time, returns iterator.
iterator : bool, defaults to False
If True, returns an iterator for reading the file incrementally.
Returns
-------
DataFrame if iterator=False and chunksize=None, else SAS7BDATReader
or XportReader
"""
if format is None:
try:
fname = filepath_or_buffer.lower()
if fname.endswith(".xpt"):
format = "xport"
elif fname.endswith(".sas7bdat"):
format = "sas7bdat"
else:
raise ValueError("unable to infer format of SAS file")
except:
pass
if format.lower() == 'xport':
from pandas.io.sas.sas_xport import XportReader
reader = XportReader(filepath_or_buffer, index=index,
encoding=encoding,
chunksize=chunksize)
elif format.lower() == 'sas7bdat':
from pandas.io.sas.sas7bdat import SAS7BDATReader
reader = SAS7BDATReader(filepath_or_buffer, index=index,
encoding=encoding,
chunksize=chunksize)
else:
raise ValueError('unknown SAS format')
if iterator or chunksize:
return reader
data = reader.read()
reader.close()
return data
|
apache-2.0
|
WhittKinley/aima-python
|
submissions/aartiste/myKMeans.py
|
13
|
4852
|
from sklearn.cluster import KMeans
import traceback
from submissions.aartiste import election
from submissions.aartiste import county_demographics
class DataFrame:
data = []
feature_names = []
target = []
target_names = []
trumpECHP = DataFrame()
'''
Extract data from the CORGIS elections, and merge it with the
CORGIS demographics. Both data sets are organized by county and state.
'''
joint = {}
elections = election.get_results()
for county in elections:
try:
st = county['Location']['State Abbreviation']
countyST = county['Location']['County'] + st
trump = county['Vote Data']['Donald Trump']['Percent of Votes']
joint[countyST] = {}
joint[countyST]['ST']= st
joint[countyST]['Trump'] = trump
except:
traceback.print_exc()
demographics = county_demographics.get_all_counties()
for county in demographics:
try:
countyNames = county['County'].split()
cName = ' '.join(countyNames[:-1])
st = county['State']
countyST = cName + st
# elderly =
# college =
# home =
# poverty =
if countyST in joint:
joint[countyST]['Elderly'] = county['Age']["Percent 65 and Older"]
joint[countyST]['HighSchool'] = county['Education']["High School or Higher"]
joint[countyST]['College'] = county['Education']["Bachelor's Degree or Higher"]
joint[countyST]['White'] = county['Ethnicities']["White Alone, not Hispanic or Latino"]
joint[countyST]['Persons'] = county['Housing']["Persons per Household"]
joint[countyST]['Home'] = county['Housing']["Homeownership Rate"]
joint[countyST]['Income'] = county['Income']["Median Houseold Income"]
joint[countyST]['Poverty'] = county['Income']["Persons Below Poverty Level"]
joint[countyST]['Sales'] = county['Sales']["Retail Sales per Capita"]
except:
traceback.print_exc()
'''
Remove the counties that did not appear in both samples.
'''
intersection = {}
for countyST in joint:
if 'College' in joint[countyST]:
intersection[countyST] = joint[countyST]
trumpECHP.data = []
'''
Build the input frame, row by row.
'''
for countyST in intersection:
# choose the input values
row = []
for key in intersection[countyST]:
if key in ['ST', 'Trump']:
continue
row.append(intersection[countyST][key])
trumpECHP.data.append(row)
firstCounty = next(iter(intersection.keys()))
firstRow = intersection[firstCounty]
trumpECHP.feature_names = list(firstRow.keys())
trumpECHP.feature_names.remove('ST')
trumpECHP.feature_names.remove('Trump')
'''
Build the target list,
one entry for each row in the input frame.
The Naive Bayesian network is a classifier,
i.e. it sorts data points into bins.
The best it can do to estimate a continuous variable
is to break the domain into segments, and predict
the segment into which the variable's value will fall.
In this example, I'm breaking Trump's % into two
arbitrary segments.
'''
trumpECHP.target = []
def trumpTarget(percentage):
if percentage > 45:
return 1
return 0
for countyST in intersection:
# choose the target
tt = trumpTarget(intersection[countyST]['Trump'])
trumpECHP.target.append(tt)
trumpECHP.target_names = [
'Trump <= 45%',
'Trump > 45%',
]
'''
Try scaling the data.
'''
trumpScaled = DataFrame()
def setupScales(grid):
global min, max
min = list(grid[0])
max = list(grid[0])
for row in range(1, len(grid)):
for col in range(len(grid[row])):
cell = grid[row][col]
if cell < min[col]:
min[col] = cell
if cell > max[col]:
max[col] = cell
def scaleGrid(grid):
newGrid = []
for row in range(len(grid)):
newRow = []
for col in range(len(grid[row])):
try:
cell = grid[row][col]
scaled = (cell - min[col]) \
/ (max[col] - min[col])
newRow.append(scaled)
except:
pass
newGrid.append(newRow)
return newGrid
setupScales(trumpECHP.data)
trumpScaled.data = scaleGrid(trumpECHP.data)
trumpScaled.feature_names = trumpECHP.feature_names
trumpScaled.target = trumpECHP.target
trumpScaled.target_names = trumpECHP.target_names
'''
Make a customn classifier,
'''
km = KMeans(
n_clusters=2,
# max_iter=300,
# n_init=10,
# init='k-means++',
# algorithm='auto',
# precompute_distances='auto',
# tol=1e-4,
# n_jobs=-1,
# random_state=numpy.RandomState,
# verbose=0,
# copy_x=True,
)
Examples = {
'Trump': {
'frame': trumpScaled,
},
'TrumpCustom': {
'frame': trumpScaled,
'kmeans': km
},
}
|
mit
|
frozstone/concept
|
Cluster.py
|
1
|
1813
|
import community
import networkx as nx
import matplotlib.pyplot as plt
from collections import OrderedDict
from lxml import etree
class Cluster:
def __print_cluster(self, partition, math_map, desc_map):
n_cluster = max(partition.values())
clusters = OrderedDict.fromkeys(range(n_cluster+1))
for node, cl in partition.iteritems():
if clusters[cl] is None: clusters[cl] = []
clusters[cl].append(node)
mid_prefix = math_map.items()[0][0]
mid_prefix = mid_prefix[:mid_prefix.rindex("_")]
for ckey, cnodes in clusters.iteritems():
print ckey
for node in cnodes:
if node == 0: continue
gmid = "%s_%d" % (mid_prefix, node)
mml = math_map[gmid]
etree.strip_tags(mml, "*")
desc = desc_map[gmid] if gmid in desc_map else ""
print mml.text.encode("utf-8"), desc
print ""
def comm_detect(self, labels, edges, math_map, desc_map):
g = nx.from_numpy_matrix(edges)
partition = community.best_partition(g)
self.__print_cluster(partition, math_map, desc_map)
partresult = partition.values()
pos = nx.spring_layout(g)
nx.draw_networkx_nodes(g, pos, node_color = partition.values())
nx.draw_networkx_labels(g, pos, labels, font_size=16)
nx.draw_networkx_edges(g, pos)
plt.show()
def comm_detect_g(self, g):
partition = community.best_partition(g)
partresult = partition.values()
pos = nx.spring_layout(g)
nx.draw_networkx_nodes(g, pos, node_color = partition.values())
#nx.draw_networkx_labels(g, pos, labels, font_size=16)
nx.draw_networkx_edges(g, pos)
plt.show()
|
mit
|
wlamond/scikit-learn
|
sklearn/base.py
|
15
|
19725
|
"""Base classes for all estimators."""
# Author: Gael Varoquaux <[email protected]>
# License: BSD 3 clause
import copy
import warnings
import numpy as np
from scipy import sparse
from .externals import six
from .utils.fixes import signature
from . import __version__
##############################################################################
def _first_and_last_element(arr):
"""Returns first and last element of numpy array or sparse matrix."""
if isinstance(arr, np.ndarray) or hasattr(arr, 'data'):
# numpy array or sparse matrix with .data attribute
data = arr.data if sparse.issparse(arr) else arr
return data.flat[0], data.flat[-1]
else:
# Sparse matrices without .data attribute. Only dok_matrix at
# the time of writing, in this case indexing is fast
return arr[0, 0], arr[-1, -1]
def clone(estimator, safe=True):
"""Constructs a new estimator with the same parameters.
Clone does a deep copy of the model in an estimator
without actually copying attached data. It yields a new estimator
with the same parameters that has not been fit on any data.
Parameters
----------
estimator : estimator object, or list, tuple or set of objects
The estimator or group of estimators to be cloned
safe : boolean, optional
If safe is false, clone will fall back to a deep copy on objects
that are not estimators.
"""
estimator_type = type(estimator)
# XXX: not handling dictionaries
if estimator_type in (list, tuple, set, frozenset):
return estimator_type([clone(e, safe=safe) for e in estimator])
elif not hasattr(estimator, 'get_params'):
if not safe:
return copy.deepcopy(estimator)
else:
raise TypeError("Cannot clone object '%s' (type %s): "
"it does not seem to be a scikit-learn estimator "
"as it does not implement a 'get_params' methods."
% (repr(estimator), type(estimator)))
klass = estimator.__class__
new_object_params = estimator.get_params(deep=False)
for name, param in six.iteritems(new_object_params):
new_object_params[name] = clone(param, safe=False)
new_object = klass(**new_object_params)
params_set = new_object.get_params(deep=False)
# quick sanity check of the parameters of the clone
for name in new_object_params:
param1 = new_object_params[name]
param2 = params_set[name]
if param1 is param2:
# this should always happen
continue
if isinstance(param1, np.ndarray):
# For most ndarrays, we do not test for complete equality
if not isinstance(param2, type(param1)):
equality_test = False
elif (param1.ndim > 0
and param1.shape[0] > 0
and isinstance(param2, np.ndarray)
and param2.ndim > 0
and param2.shape[0] > 0):
equality_test = (
param1.shape == param2.shape
and param1.dtype == param2.dtype
and (_first_and_last_element(param1) ==
_first_and_last_element(param2))
)
else:
equality_test = np.all(param1 == param2)
elif sparse.issparse(param1):
# For sparse matrices equality doesn't work
if not sparse.issparse(param2):
equality_test = False
elif param1.size == 0 or param2.size == 0:
equality_test = (
param1.__class__ == param2.__class__
and param1.size == 0
and param2.size == 0
)
else:
equality_test = (
param1.__class__ == param2.__class__
and (_first_and_last_element(param1) ==
_first_and_last_element(param2))
and param1.nnz == param2.nnz
and param1.shape == param2.shape
)
else:
# fall back on standard equality
equality_test = param1 == param2
if equality_test:
warnings.warn("Estimator %s modifies parameters in __init__."
" This behavior is deprecated as of 0.18 and "
"support for this behavior will be removed in 0.20."
% type(estimator).__name__, DeprecationWarning)
else:
raise RuntimeError('Cannot clone object %s, as the constructor '
'does not seem to set parameter %s' %
(estimator, name))
return new_object
###############################################################################
def _pprint(params, offset=0, printer=repr):
"""Pretty print the dictionary 'params'
Parameters
----------
params : dict
The dictionary to pretty print
offset : int
The offset in characters to add at the begin of each line.
printer : callable
The function to convert entries to strings, typically
the builtin str or repr
"""
# Do a multi-line justified repr:
options = np.get_printoptions()
np.set_printoptions(precision=5, threshold=64, edgeitems=2)
params_list = list()
this_line_length = offset
line_sep = ',\n' + (1 + offset // 2) * ' '
for i, (k, v) in enumerate(sorted(six.iteritems(params))):
if type(v) is float:
# use str for representing floating point numbers
# this way we get consistent representation across
# architectures and versions.
this_repr = '%s=%s' % (k, str(v))
else:
# use repr of the rest
this_repr = '%s=%s' % (k, printer(v))
if len(this_repr) > 500:
this_repr = this_repr[:300] + '...' + this_repr[-100:]
if i > 0:
if (this_line_length + len(this_repr) >= 75 or '\n' in this_repr):
params_list.append(line_sep)
this_line_length = len(line_sep)
else:
params_list.append(', ')
this_line_length += 2
params_list.append(this_repr)
this_line_length += len(this_repr)
np.set_printoptions(**options)
lines = ''.join(params_list)
# Strip trailing space to avoid nightmare in doctests
lines = '\n'.join(l.rstrip(' ') for l in lines.split('\n'))
return lines
###############################################################################
class BaseEstimator(object):
"""Base class for all estimators in scikit-learn
Notes
-----
All estimators should specify all the parameters that can be set
at the class level in their ``__init__`` as explicit keyword
arguments (no ``*args`` or ``**kwargs``).
"""
@classmethod
def _get_param_names(cls):
"""Get parameter names for the estimator"""
# fetch the constructor or the original constructor before
# deprecation wrapping if any
init = getattr(cls.__init__, 'deprecated_original', cls.__init__)
if init is object.__init__:
# No explicit constructor to introspect
return []
# introspect the constructor arguments to find the model parameters
# to represent
init_signature = signature(init)
# Consider the constructor parameters excluding 'self'
parameters = [p for p in init_signature.parameters.values()
if p.name != 'self' and p.kind != p.VAR_KEYWORD]
for p in parameters:
if p.kind == p.VAR_POSITIONAL:
raise RuntimeError("scikit-learn estimators should always "
"specify their parameters in the signature"
" of their __init__ (no varargs)."
" %s with constructor %s doesn't "
" follow this convention."
% (cls, init_signature))
# Extract and sort argument names excluding 'self'
return sorted([p.name for p in parameters])
def get_params(self, deep=True):
"""Get parameters for this estimator.
Parameters
----------
deep : boolean, optional
If True, will return the parameters for this estimator and
contained subobjects that are estimators.
Returns
-------
params : mapping of string to any
Parameter names mapped to their values.
"""
out = dict()
for key in self._get_param_names():
# We need deprecation warnings to always be on in order to
# catch deprecated param values.
# This is set in utils/__init__.py but it gets overwritten
# when running under python3 somehow.
warnings.simplefilter("always", DeprecationWarning)
try:
with warnings.catch_warnings(record=True) as w:
value = getattr(self, key, None)
if len(w) and w[0].category == DeprecationWarning:
# if the parameter is deprecated, don't show it
continue
finally:
warnings.filters.pop(0)
# XXX: should we rather test if instance of estimator?
if deep and hasattr(value, 'get_params'):
deep_items = value.get_params().items()
out.update((key + '__' + k, val) for k, val in deep_items)
out[key] = value
return out
def set_params(self, **params):
"""Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
``<component>__<parameter>`` so that it's possible to update each
component of a nested object.
Returns
-------
self
"""
if not params:
# Simple optimization to gain speed (inspect is slow)
return self
valid_params = self.get_params(deep=True)
for key, value in six.iteritems(params):
split = key.split('__', 1)
if len(split) > 1:
# nested objects case
name, sub_name = split
if name not in valid_params:
raise ValueError('Invalid parameter %s for estimator %s. '
'Check the list of available parameters '
'with `estimator.get_params().keys()`.' %
(name, self))
sub_object = valid_params[name]
sub_object.set_params(**{sub_name: value})
else:
# simple objects case
if key not in valid_params:
raise ValueError('Invalid parameter %s for estimator %s. '
'Check the list of available parameters '
'with `estimator.get_params().keys()`.' %
(key, self.__class__.__name__))
setattr(self, key, value)
return self
def __repr__(self):
class_name = self.__class__.__name__
return '%s(%s)' % (class_name, _pprint(self.get_params(deep=False),
offset=len(class_name),),)
def __getstate__(self):
try:
state = super(BaseEstimator, self).__getstate__()
except AttributeError:
state = self.__dict__.copy()
if type(self).__module__.startswith('sklearn.'):
return dict(state.items(), _sklearn_version=__version__)
else:
return state
def __setstate__(self, state):
if type(self).__module__.startswith('sklearn.'):
pickle_version = state.pop("_sklearn_version", "pre-0.18")
if pickle_version != __version__:
warnings.warn(
"Trying to unpickle estimator {0} from version {1} when "
"using version {2}. This might lead to breaking code or "
"invalid results. Use at your own risk.".format(
self.__class__.__name__, pickle_version, __version__),
UserWarning)
try:
super(BaseEstimator, self).__setstate__(state)
except AttributeError:
self.__dict__.update(state)
###############################################################################
class ClassifierMixin(object):
"""Mixin class for all classifiers in scikit-learn."""
_estimator_type = "classifier"
def score(self, X, y, sample_weight=None):
"""Returns the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.
Parameters
----------
X : array-like, shape = (n_samples, n_features)
Test samples.
y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True labels for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns
-------
score : float
Mean accuracy of self.predict(X) wrt. y.
"""
from .metrics import accuracy_score
return accuracy_score(y, self.predict(X), sample_weight=sample_weight)
###############################################################################
class RegressorMixin(object):
"""Mixin class for all regression estimators in scikit-learn."""
_estimator_type = "regressor"
def score(self, X, y, sample_weight=None):
"""Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the residual
sum of squares ((y_true - y_pred) ** 2).sum() and v is the total
sum of squares ((y_true - y_true.mean()) ** 2).sum().
The best possible score is 1.0 and it can be negative (because the
model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features,
would get a R^2 score of 0.0.
Parameters
----------
X : array-like, shape = (n_samples, n_features)
Test samples.
y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True values for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns
-------
score : float
R^2 of self.predict(X) wrt. y.
"""
from .metrics import r2_score
return r2_score(y, self.predict(X), sample_weight=sample_weight,
multioutput='variance_weighted')
###############################################################################
class ClusterMixin(object):
"""Mixin class for all cluster estimators in scikit-learn."""
_estimator_type = "clusterer"
def fit_predict(self, X, y=None):
"""Performs clustering on X and returns cluster labels.
Parameters
----------
X : ndarray, shape (n_samples, n_features)
Input data.
Returns
-------
y : ndarray, shape (n_samples,)
cluster labels
"""
# non-optimized default implementation; override when a better
# method is possible for a given clustering algorithm
self.fit(X)
return self.labels_
class BiclusterMixin(object):
"""Mixin class for all bicluster estimators in scikit-learn"""
@property
def biclusters_(self):
"""Convenient way to get row and column indicators together.
Returns the ``rows_`` and ``columns_`` members.
"""
return self.rows_, self.columns_
def get_indices(self, i):
"""Row and column indices of the i'th bicluster.
Only works if ``rows_`` and ``columns_`` attributes exist.
Returns
-------
row_ind : np.array, dtype=np.intp
Indices of rows in the dataset that belong to the bicluster.
col_ind : np.array, dtype=np.intp
Indices of columns in the dataset that belong to the bicluster.
"""
rows = self.rows_[i]
columns = self.columns_[i]
return np.nonzero(rows)[0], np.nonzero(columns)[0]
def get_shape(self, i):
"""Shape of the i'th bicluster.
Returns
-------
shape : (int, int)
Number of rows and columns (resp.) in the bicluster.
"""
indices = self.get_indices(i)
return tuple(len(i) for i in indices)
def get_submatrix(self, i, data):
"""Returns the submatrix corresponding to bicluster `i`.
Works with sparse matrices. Only works if ``rows_`` and
``columns_`` attributes exist.
"""
from .utils.validation import check_array
data = check_array(data, accept_sparse='csr')
row_ind, col_ind = self.get_indices(i)
return data[row_ind[:, np.newaxis], col_ind]
###############################################################################
class TransformerMixin(object):
"""Mixin class for all transformers in scikit-learn."""
def fit_transform(self, X, y=None, **fit_params):
"""Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params
and returns a transformed version of X.
Parameters
----------
X : numpy array of shape [n_samples, n_features]
Training set.
y : numpy array of shape [n_samples]
Target values.
Returns
-------
X_new : numpy array of shape [n_samples, n_features_new]
Transformed array.
"""
# non-optimized default implementation; override when a better
# method is possible for a given clustering algorithm
if y is None:
# fit method of arity 1 (unsupervised transformation)
return self.fit(X, **fit_params).transform(X)
else:
# fit method of arity 2 (supervised transformation)
return self.fit(X, y, **fit_params).transform(X)
class DensityMixin(object):
"""Mixin class for all density estimators in scikit-learn."""
_estimator_type = "DensityEstimator"
def score(self, X, y=None):
"""Returns the score of the model on the data X
Parameters
----------
X : array-like, shape = (n_samples, n_features)
Returns
-------
score : float
"""
pass
###############################################################################
class MetaEstimatorMixin(object):
"""Mixin class for all meta estimators in scikit-learn."""
# this is just a tag for the moment
###############################################################################
def is_classifier(estimator):
"""Returns True if the given estimator is (probably) a classifier."""
return getattr(estimator, "_estimator_type", None) == "classifier"
def is_regressor(estimator):
"""Returns True if the given estimator is (probably) a regressor."""
return getattr(estimator, "_estimator_type", None) == "regressor"
|
bsd-3-clause
|
rajul/mne-python
|
mne/stats/tests/test_cluster_level.py
|
8
|
20475
|
import os
import os.path as op
import numpy as np
from numpy.testing import (assert_equal, assert_array_equal,
assert_array_almost_equal)
from nose.tools import assert_true, assert_raises
from scipy import sparse, linalg, stats
from mne.fixes import partial
import warnings
from mne.parallel import _force_serial
from mne.stats.cluster_level import (permutation_cluster_test,
permutation_cluster_1samp_test,
spatio_temporal_cluster_test,
spatio_temporal_cluster_1samp_test,
ttest_1samp_no_p, summarize_clusters_stc)
from mne.utils import run_tests_if_main, slow_test, _TempDir, set_log_file
warnings.simplefilter('always') # enable b/c these tests throw warnings
n_space = 50
def _get_conditions():
noise_level = 20
n_time_1 = 20
n_time_2 = 13
normfactor = np.hanning(20).sum()
rng = np.random.RandomState(42)
condition1_1d = rng.randn(n_time_1, n_space) * noise_level
for c in condition1_1d:
c[:] = np.convolve(c, np.hanning(20), mode="same") / normfactor
condition2_1d = rng.randn(n_time_2, n_space) * noise_level
for c in condition2_1d:
c[:] = np.convolve(c, np.hanning(20), mode="same") / normfactor
pseudoekp = 10 * np.hanning(25)[None, :]
condition1_1d[:, 25:] += pseudoekp
condition2_1d[:, 25:] -= pseudoekp
condition1_2d = condition1_1d[:, :, np.newaxis]
condition2_2d = condition2_1d[:, :, np.newaxis]
return condition1_1d, condition2_1d, condition1_2d, condition2_2d
def test_cache_dir():
"""Test use of cache dir
"""
tempdir = _TempDir()
orig_dir = os.getenv('MNE_CACHE_DIR', None)
orig_size = os.getenv('MNE_MEMMAP_MIN_SIZE', None)
rng = np.random.RandomState(0)
X = rng.randn(9, 2, 10)
log_file = op.join(tempdir, 'log.txt')
try:
os.environ['MNE_MEMMAP_MIN_SIZE'] = '1K'
os.environ['MNE_CACHE_DIR'] = tempdir
# Fix error for #1507: in-place when memmapping
permutation_cluster_1samp_test(
X, buffer_size=None, n_jobs=2, n_permutations=1,
seed=0, stat_fun=ttest_1samp_no_p, verbose=False)
# ensure that non-independence yields warning
stat_fun = partial(ttest_1samp_no_p, sigma=1e-3)
set_log_file(log_file)
permutation_cluster_1samp_test(
X, buffer_size=10, n_jobs=2, n_permutations=1,
seed=0, stat_fun=stat_fun, verbose=False)
with open(log_file, 'r') as fid:
assert_true('independently' in ''.join(fid.readlines()))
finally:
if orig_dir is not None:
os.environ['MNE_CACHE_DIR'] = orig_dir
else:
del os.environ['MNE_CACHE_DIR']
if orig_size is not None:
os.environ['MNE_MEMMAP_MIN_SIZE'] = orig_size
else:
del os.environ['MNE_MEMMAP_MIN_SIZE']
set_log_file(None)
def test_permutation_step_down_p():
"""Test cluster level permutations with step_down_p
"""
try:
try:
from sklearn.feature_extraction.image import grid_to_graph
except ImportError:
from scikits.learn.feature_extraction.image import grid_to_graph # noqa
except ImportError:
return
rng = np.random.RandomState(0)
# subjects, time points, spatial points
X = rng.randn(9, 2, 10)
# add some significant points
X[:, 0:2, 0:2] += 2 # span two time points and two spatial points
X[:, 1, 5:9] += 0.5 # span four time points with 4x smaller amplitude
thresh = 2
# make sure it works when we use ALL points in step-down
t, clusters, p, H0 = \
permutation_cluster_1samp_test(X, threshold=thresh,
step_down_p=1.0)
# make sure using step-down will actually yield improvements sometimes
t, clusters, p_old, H0 = \
permutation_cluster_1samp_test(X, threshold=thresh,
step_down_p=0.0)
assert_equal(np.sum(p_old < 0.05), 1) # just spatial cluster
t, clusters, p_new, H0 = \
permutation_cluster_1samp_test(X, threshold=thresh,
step_down_p=0.05)
assert_equal(np.sum(p_new < 0.05), 2) # time one rescued
assert_true(np.all(p_old >= p_new))
def test_cluster_permutation_test():
"""Test cluster level permutations tests
"""
condition1_1d, condition2_1d, condition1_2d, condition2_2d = \
_get_conditions()
for condition1, condition2 in zip((condition1_1d, condition1_2d),
(condition2_1d, condition2_2d)):
T_obs, clusters, cluster_p_values, hist = permutation_cluster_test(
[condition1, condition2], n_permutations=100, tail=1, seed=1,
buffer_size=None)
assert_equal(np.sum(cluster_p_values < 0.05), 1)
T_obs, clusters, cluster_p_values, hist = permutation_cluster_test(
[condition1, condition2], n_permutations=100, tail=0, seed=1,
buffer_size=None)
assert_equal(np.sum(cluster_p_values < 0.05), 1)
# test with 2 jobs and buffer_size enabled
buffer_size = condition1.shape[1] // 10
T_obs, clusters, cluster_p_values_buff, hist =\
permutation_cluster_test([condition1, condition2],
n_permutations=100, tail=0, seed=1,
n_jobs=2, buffer_size=buffer_size)
assert_array_equal(cluster_p_values, cluster_p_values_buff)
@slow_test
def test_cluster_permutation_t_test():
"""Test cluster level permutations T-test
"""
condition1_1d, condition2_1d, condition1_2d, condition2_2d = \
_get_conditions()
# use a very large sigma to make sure Ts are not independent
stat_funs = [ttest_1samp_no_p,
partial(ttest_1samp_no_p, sigma=1e-1)]
for stat_fun in stat_funs:
for condition1 in (condition1_1d, condition1_2d):
# these are so significant we can get away with fewer perms
T_obs, clusters, cluster_p_values, hist =\
permutation_cluster_1samp_test(condition1, n_permutations=100,
tail=0, seed=1,
buffer_size=None)
assert_equal(np.sum(cluster_p_values < 0.05), 1)
T_obs_pos, c_1, cluster_p_values_pos, _ =\
permutation_cluster_1samp_test(condition1, n_permutations=100,
tail=1, threshold=1.67, seed=1,
stat_fun=stat_fun,
buffer_size=None)
T_obs_neg, _, cluster_p_values_neg, _ =\
permutation_cluster_1samp_test(-condition1, n_permutations=100,
tail=-1, threshold=-1.67,
seed=1, stat_fun=stat_fun,
buffer_size=None)
assert_array_equal(T_obs_pos, -T_obs_neg)
assert_array_equal(cluster_p_values_pos < 0.05,
cluster_p_values_neg < 0.05)
# test with 2 jobs and buffer_size enabled
buffer_size = condition1.shape[1] // 10
T_obs_neg_buff, _, cluster_p_values_neg_buff, _ = \
permutation_cluster_1samp_test(-condition1, n_permutations=100,
tail=-1, threshold=-1.67,
seed=1, n_jobs=2,
stat_fun=stat_fun,
buffer_size=buffer_size)
assert_array_equal(T_obs_neg, T_obs_neg_buff)
assert_array_equal(cluster_p_values_neg, cluster_p_values_neg_buff)
def test_cluster_permutation_with_connectivity():
"""Test cluster level permutations with connectivity matrix
"""
try:
try:
from sklearn.feature_extraction.image import grid_to_graph
except ImportError:
from scikits.learn.feature_extraction.image import grid_to_graph
except ImportError:
return
condition1_1d, condition2_1d, condition1_2d, condition2_2d = \
_get_conditions()
n_pts = condition1_1d.shape[1]
# we don't care about p-values in any of these, so do fewer permutations
args = dict(seed=None, max_step=1, exclude=None,
step_down_p=0, t_power=1, threshold=1.67,
check_disjoint=False, n_permutations=50)
did_warn = False
for X1d, X2d, func, spatio_temporal_func in \
[(condition1_1d, condition1_2d,
permutation_cluster_1samp_test,
spatio_temporal_cluster_1samp_test),
([condition1_1d, condition2_1d],
[condition1_2d, condition2_2d],
permutation_cluster_test,
spatio_temporal_cluster_test)]:
out = func(X1d, **args)
connectivity = grid_to_graph(1, n_pts)
out_connectivity = func(X1d, connectivity=connectivity, **args)
assert_array_equal(out[0], out_connectivity[0])
for a, b in zip(out_connectivity[1], out[1]):
assert_array_equal(out[0][a], out[0][b])
assert_true(np.all(a[b]))
# test spatio-temporal w/o time connectivity (repeat spatial pattern)
connectivity_2 = sparse.coo_matrix(
linalg.block_diag(connectivity.asfptype().todense(),
connectivity.asfptype().todense()))
if isinstance(X1d, list):
X1d_2 = [np.concatenate((x, x), axis=1) for x in X1d]
else:
X1d_2 = np.concatenate((X1d, X1d), axis=1)
out_connectivity_2 = func(X1d_2, connectivity=connectivity_2, **args)
# make sure we were operating on the same values
split = len(out[0])
assert_array_equal(out[0], out_connectivity_2[0][:split])
assert_array_equal(out[0], out_connectivity_2[0][split:])
# make sure we really got 2x the number of original clusters
n_clust_orig = len(out[1])
assert_true(len(out_connectivity_2[1]) == 2 * n_clust_orig)
# Make sure that we got the old ones back
data_1 = set([np.sum(out[0][b[:n_pts]]) for b in out[1]])
data_2 = set([np.sum(out_connectivity_2[0][a[:n_pts]]) for a in
out_connectivity_2[1][:]])
assert_true(len(data_1.intersection(data_2)) == len(data_1))
# now use the other algorithm
if isinstance(X1d, list):
X1d_3 = [np.reshape(x, (-1, 2, n_space)) for x in X1d_2]
else:
X1d_3 = np.reshape(X1d_2, (-1, 2, n_space))
out_connectivity_3 = spatio_temporal_func(X1d_3, n_permutations=50,
connectivity=connectivity,
max_step=0, threshold=1.67,
check_disjoint=True)
# make sure we were operating on the same values
split = len(out[0])
assert_array_equal(out[0], out_connectivity_3[0][0])
assert_array_equal(out[0], out_connectivity_3[0][1])
# make sure we really got 2x the number of original clusters
assert_true(len(out_connectivity_3[1]) == 2 * n_clust_orig)
# Make sure that we got the old ones back
data_1 = set([np.sum(out[0][b[:n_pts]]) for b in out[1]])
data_2 = set([np.sum(out_connectivity_3[0][a[0], a[1]]) for a in
out_connectivity_3[1]])
assert_true(len(data_1.intersection(data_2)) == len(data_1))
# test new versus old method
out_connectivity_4 = spatio_temporal_func(X1d_3, n_permutations=50,
connectivity=connectivity,
max_step=2, threshold=1.67)
out_connectivity_5 = spatio_temporal_func(X1d_3, n_permutations=50,
connectivity=connectivity,
max_step=1, threshold=1.67)
# clusters could be in a different order
sums_4 = [np.sum(out_connectivity_4[0][a])
for a in out_connectivity_4[1]]
sums_5 = [np.sum(out_connectivity_4[0][a])
for a in out_connectivity_5[1]]
sums_4 = np.sort(sums_4)
sums_5 = np.sort(sums_5)
assert_array_almost_equal(sums_4, sums_5)
if not _force_serial:
assert_raises(ValueError, spatio_temporal_func, X1d_3,
n_permutations=1, connectivity=connectivity,
max_step=1, threshold=1.67, n_jobs=-1000)
# not enough TFCE params
assert_raises(KeyError, spatio_temporal_func, X1d_3,
connectivity=connectivity, threshold=dict(me='hello'))
# too extreme a start threshold
with warnings.catch_warnings(record=True) as w:
spatio_temporal_func(X1d_3, connectivity=connectivity,
threshold=dict(start=10, step=1))
if not did_warn:
assert_true(len(w) == 1)
did_warn = True
# too extreme a start threshold
assert_raises(ValueError, spatio_temporal_func, X1d_3,
connectivity=connectivity, tail=-1,
threshold=dict(start=1, step=-1))
assert_raises(ValueError, spatio_temporal_func, X1d_3,
connectivity=connectivity, tail=-1,
threshold=dict(start=-1, step=1))
# wrong type for threshold
assert_raises(TypeError, spatio_temporal_func, X1d_3,
connectivity=connectivity, threshold=[])
# wrong value for tail
assert_raises(ValueError, spatio_temporal_func, X1d_3,
connectivity=connectivity, tail=2)
# make sure it actually found a significant point
out_connectivity_6 = spatio_temporal_func(X1d_3, n_permutations=50,
connectivity=connectivity,
max_step=1,
threshold=dict(start=1,
step=1))
assert_true(np.min(out_connectivity_6[2]) < 0.05)
@slow_test
def test_permutation_connectivity_equiv():
"""Test cluster level permutations with and without connectivity
"""
try:
try:
from sklearn.feature_extraction.image import grid_to_graph
except ImportError:
from scikits.learn.feature_extraction.image import grid_to_graph
except ImportError:
return
rng = np.random.RandomState(0)
# subjects, time points, spatial points
n_time = 2
n_space = 4
X = rng.randn(6, n_time, n_space)
# add some significant points
X[:, :, 0:2] += 10 # span two time points and two spatial points
X[:, 1, 3] += 20 # span one time point
max_steps = [1, 1, 1, 2]
# This will run full algorithm in two ways, then the ST-algorithm in 2 ways
# All of these should give the same results
conns = [None, grid_to_graph(n_time, n_space),
grid_to_graph(1, n_space), grid_to_graph(1, n_space)]
stat_map = None
thresholds = [2, dict(start=1.5, step=1.0)]
sig_counts = [2, 5]
sdps = [0, 0.05, 0.05]
ots = ['mask', 'mask', 'indices']
stat_fun = partial(ttest_1samp_no_p, sigma=1e-3)
for thresh, count in zip(thresholds, sig_counts):
cs = None
ps = None
for max_step, conn in zip(max_steps, conns):
for sdp, ot in zip(sdps, ots):
t, clusters, p, H0 = \
permutation_cluster_1samp_test(
X, threshold=thresh, connectivity=conn, n_jobs=2,
max_step=max_step, stat_fun=stat_fun,
step_down_p=sdp, out_type=ot)
# make sure our output datatype is correct
if ot == 'mask':
assert_true(isinstance(clusters[0], np.ndarray))
assert_true(clusters[0].dtype == bool)
assert_array_equal(clusters[0].shape, X.shape[1:])
else: # ot == 'indices'
assert_true(isinstance(clusters[0], tuple))
# make sure all comparisons were done; for TFCE, no perm
# should come up empty
if count == 8:
assert_true(not np.any(H0 == 0))
inds = np.where(p < 0.05)[0]
assert_true(len(inds) == count)
this_cs = [clusters[ii] for ii in inds]
this_ps = p[inds]
this_stat_map = np.zeros((n_time, n_space), dtype=bool)
for ci, c in enumerate(this_cs):
if isinstance(c, tuple):
this_c = np.zeros((n_time, n_space), bool)
for x, y in zip(c[0], c[1]):
this_stat_map[x, y] = True
this_c[x, y] = True
this_cs[ci] = this_c
c = this_c
this_stat_map[c] = True
if cs is None:
ps = this_ps
cs = this_cs
if stat_map is None:
stat_map = this_stat_map
assert_array_equal(ps, this_ps)
assert_true(len(cs) == len(this_cs))
for c1, c2 in zip(cs, this_cs):
assert_array_equal(c1, c2)
assert_array_equal(stat_map, this_stat_map)
@slow_test
def spatio_temporal_cluster_test_connectivity():
"""Test spatio-temporal cluster permutations
"""
try:
try:
from sklearn.feature_extraction.image import grid_to_graph
except ImportError:
from scikits.learn.feature_extraction.image import grid_to_graph
except ImportError:
return
condition1_1d, condition2_1d, condition1_2d, condition2_2d = \
_get_conditions()
rng = np.random.RandomState(0)
noise1_2d = rng.randn(condition1_2d.shape[0], condition1_2d.shape[1], 10)
data1_2d = np.transpose(np.dstack((condition1_2d, noise1_2d)), [0, 2, 1])
noise2_d2 = rng.randn(condition2_2d.shape[0], condition2_2d.shape[1], 10)
data2_2d = np.transpose(np.dstack((condition2_2d, noise2_d2)), [0, 2, 1])
conn = grid_to_graph(data1_2d.shape[-1], 1)
threshold = dict(start=4.0, step=2)
T_obs, clusters, p_values_conn, hist = \
spatio_temporal_cluster_test([data1_2d, data2_2d], connectivity=conn,
n_permutations=50, tail=1, seed=1,
threshold=threshold, buffer_size=None)
buffer_size = data1_2d.size // 10
T_obs, clusters, p_values_no_conn, hist = \
spatio_temporal_cluster_test([data1_2d, data2_2d],
n_permutations=50, tail=1, seed=1,
threshold=threshold, n_jobs=2,
buffer_size=buffer_size)
assert_equal(np.sum(p_values_conn < 0.05), np.sum(p_values_no_conn < 0.05))
# make sure results are the same without buffer_size
T_obs, clusters, p_values2, hist2 = \
spatio_temporal_cluster_test([data1_2d, data2_2d],
n_permutations=50, tail=1, seed=1,
threshold=threshold, n_jobs=2,
buffer_size=None)
assert_array_equal(p_values_no_conn, p_values2)
def ttest_1samp(X):
"""Returns T-values
"""
return stats.ttest_1samp(X, 0)[0]
def test_summarize_clusters():
"""Test cluster summary stcs
"""
clu = (np.random.random([1, 20484]),
[(np.array([0]), np.array([0, 2, 4]))],
np.array([0.02, 0.1]),
np.array([12, -14, 30]))
stc_sum = summarize_clusters_stc(clu)
assert_true(stc_sum.data.shape[1] == 2)
clu[2][0] = 0.3
assert_raises(RuntimeError, summarize_clusters_stc, clu)
run_tests_if_main()
|
bsd-3-clause
|
sarahgrogan/scikit-learn
|
sklearn/metrics/setup.py
|
299
|
1024
|
import os
import os.path
import numpy
from numpy.distutils.misc_util import Configuration
from sklearn._build_utils import get_blas_info
def configuration(parent_package="", top_path=None):
config = Configuration("metrics", parent_package, top_path)
cblas_libs, blas_info = get_blas_info()
if os.name == 'posix':
cblas_libs.append('m')
config.add_extension("pairwise_fast",
sources=["pairwise_fast.c"],
include_dirs=[os.path.join('..', 'src', 'cblas'),
numpy.get_include(),
blas_info.pop('include_dirs', [])],
libraries=cblas_libs,
extra_compile_args=blas_info.pop('extra_compile_args',
[]),
**blas_info)
return config
if __name__ == "__main__":
from numpy.distutils.core import setup
setup(**configuration().todict())
|
bsd-3-clause
|
scottpurdy/nupic
|
examples/opf/clients/hotgym/anomaly/one_gym/nupic_anomaly_output.py
|
49
|
9450
|
# ----------------------------------------------------------------------
# Numenta Platform for Intelligent Computing (NuPIC)
# Copyright (C) 2013, Numenta, Inc. Unless you have an agreement
# with Numenta, Inc., for a separate license for this software code, the
# following terms and conditions apply:
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero Public License version 3 as
# published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU Affero Public License for more details.
#
# You should have received a copy of the GNU Affero Public License
# along with this program. If not, see http://www.gnu.org/licenses.
#
# http://numenta.org/licenses/
# ----------------------------------------------------------------------
"""
Provides two classes with the same signature for writing data out of NuPIC
models.
(This is a component of the One Hot Gym Anomaly Tutorial.)
"""
import csv
from collections import deque
from abc import ABCMeta, abstractmethod
from nupic.algorithms import anomaly_likelihood
# Try to import matplotlib, but we don't have to.
try:
import matplotlib
matplotlib.use('TKAgg')
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from matplotlib.dates import date2num, DateFormatter
except ImportError:
pass
WINDOW = 300
HIGHLIGHT_ALPHA = 0.3
ANOMALY_HIGHLIGHT_COLOR = 'red'
WEEKEND_HIGHLIGHT_COLOR = 'yellow'
ANOMALY_THRESHOLD = 0.9
class NuPICOutput(object):
__metaclass__ = ABCMeta
def __init__(self, name):
self.name = name
self.anomalyLikelihoodHelper = anomaly_likelihood.AnomalyLikelihood()
@abstractmethod
def write(self, timestamp, value, predicted, anomalyScore):
pass
@abstractmethod
def close(self):
pass
class NuPICFileOutput(NuPICOutput):
def __init__(self, *args, **kwargs):
super(NuPICFileOutput, self).__init__(*args, **kwargs)
self.outputFiles = []
self.outputWriters = []
self.lineCount = 0
headerRow = [
'timestamp', 'kw_energy_consumption', 'prediction',
'anomaly_score', 'anomaly_likelihood'
]
outputFileName = "%s_out.csv" % self.name
print "Preparing to output %s data to %s" % (self.name, outputFileName)
self.outputFile = open(outputFileName, "w")
self.outputWriter = csv.writer(self.outputFile)
self.outputWriter.writerow(headerRow)
def write(self, timestamp, value, predicted, anomalyScore):
if timestamp is not None:
anomalyLikelihood = self.anomalyLikelihoodHelper.anomalyProbability(
value, anomalyScore, timestamp
)
outputRow = [timestamp, value, predicted, anomalyScore, anomalyLikelihood]
self.outputWriter.writerow(outputRow)
self.lineCount += 1
def close(self):
self.outputFile.close()
print "Done. Wrote %i data lines to %s." % (self.lineCount, self.name)
def extractWeekendHighlights(dates):
weekendsOut = []
weekendSearch = [5, 6]
weekendStart = None
for i, date in enumerate(dates):
if date.weekday() in weekendSearch:
if weekendStart is None:
# Mark start of weekend
weekendStart = i
else:
if weekendStart is not None:
# Mark end of weekend
weekendsOut.append((
weekendStart, i, WEEKEND_HIGHLIGHT_COLOR, HIGHLIGHT_ALPHA
))
weekendStart = None
# Cap it off if we're still in the middle of a weekend
if weekendStart is not None:
weekendsOut.append((
weekendStart, len(dates)-1, WEEKEND_HIGHLIGHT_COLOR, HIGHLIGHT_ALPHA
))
return weekendsOut
def extractAnomalyIndices(anomalyLikelihood):
anomaliesOut = []
anomalyStart = None
for i, likelihood in enumerate(anomalyLikelihood):
if likelihood >= ANOMALY_THRESHOLD:
if anomalyStart is None:
# Mark start of anomaly
anomalyStart = i
else:
if anomalyStart is not None:
# Mark end of anomaly
anomaliesOut.append((
anomalyStart, i, ANOMALY_HIGHLIGHT_COLOR, HIGHLIGHT_ALPHA
))
anomalyStart = None
# Cap it off if we're still in the middle of an anomaly
if anomalyStart is not None:
anomaliesOut.append((
anomalyStart, len(anomalyLikelihood)-1,
ANOMALY_HIGHLIGHT_COLOR, HIGHLIGHT_ALPHA
))
return anomaliesOut
class NuPICPlotOutput(NuPICOutput):
def __init__(self, *args, **kwargs):
super(NuPICPlotOutput, self).__init__(*args, **kwargs)
# Turn matplotlib interactive mode on.
plt.ion()
self.dates = []
self.convertedDates = []
self.value = []
self.allValues = []
self.predicted = []
self.anomalyScore = []
self.anomalyLikelihood = []
self.actualLine = None
self.predictedLine = None
self.anomalyScoreLine = None
self.anomalyLikelihoodLine = None
self.linesInitialized = False
self._chartHighlights = []
fig = plt.figure(figsize=(16, 10))
gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1])
self._mainGraph = fig.add_subplot(gs[0, 0])
plt.title(self.name)
plt.ylabel('KW Energy Consumption')
plt.xlabel('Date')
self._anomalyGraph = fig.add_subplot(gs[1])
plt.ylabel('Percentage')
plt.xlabel('Date')
# Maximizes window
mng = plt.get_current_fig_manager()
mng.resize(*mng.window.maxsize())
plt.tight_layout()
def initializeLines(self, timestamp):
print "initializing %s" % self.name
anomalyRange = (0.0, 1.0)
self.dates = deque([timestamp] * WINDOW, maxlen=WINDOW)
self.convertedDates = deque(
[date2num(date) for date in self.dates], maxlen=WINDOW
)
self.value = deque([0.0] * WINDOW, maxlen=WINDOW)
self.predicted = deque([0.0] * WINDOW, maxlen=WINDOW)
self.anomalyScore = deque([0.0] * WINDOW, maxlen=WINDOW)
self.anomalyLikelihood = deque([0.0] * WINDOW, maxlen=WINDOW)
actualPlot, = self._mainGraph.plot(self.dates, self.value)
self.actualLine = actualPlot
predictedPlot, = self._mainGraph.plot(self.dates, self.predicted)
self.predictedLine = predictedPlot
self._mainGraph.legend(tuple(['actual', 'predicted']), loc=3)
anomalyScorePlot, = self._anomalyGraph.plot(
self.dates, self.anomalyScore, 'm'
)
anomalyScorePlot.axes.set_ylim(anomalyRange)
self.anomalyScoreLine = anomalyScorePlot
anomalyLikelihoodPlot, = self._anomalyGraph.plot(
self.dates, self.anomalyScore, 'r'
)
anomalyLikelihoodPlot.axes.set_ylim(anomalyRange)
self.anomalyLikelihoodLine = anomalyLikelihoodPlot
self._anomalyGraph.legend(
tuple(['anomaly score', 'anomaly likelihood']), loc=3
)
dateFormatter = DateFormatter('%m/%d %H:%M')
self._mainGraph.xaxis.set_major_formatter(dateFormatter)
self._anomalyGraph.xaxis.set_major_formatter(dateFormatter)
self._mainGraph.relim()
self._mainGraph.autoscale_view(True, True, True)
self.linesInitialized = True
def highlightChart(self, highlights, chart):
for highlight in highlights:
# Each highlight contains [start-index, stop-index, color, alpha]
self._chartHighlights.append(chart.axvspan(
self.convertedDates[highlight[0]], self.convertedDates[highlight[1]],
color=highlight[2], alpha=highlight[3]
))
def write(self, timestamp, value, predicted, anomalyScore):
# We need the first timestamp to initialize the lines at the right X value,
# so do that check first.
if not self.linesInitialized:
self.initializeLines(timestamp)
anomalyLikelihood = self.anomalyLikelihoodHelper.anomalyProbability(
value, anomalyScore, timestamp
)
self.dates.append(timestamp)
self.convertedDates.append(date2num(timestamp))
self.value.append(value)
self.allValues.append(value)
self.predicted.append(predicted)
self.anomalyScore.append(anomalyScore)
self.anomalyLikelihood.append(anomalyLikelihood)
# Update main chart data
self.actualLine.set_xdata(self.convertedDates)
self.actualLine.set_ydata(self.value)
self.predictedLine.set_xdata(self.convertedDates)
self.predictedLine.set_ydata(self.predicted)
# Update anomaly chart data
self.anomalyScoreLine.set_xdata(self.convertedDates)
self.anomalyScoreLine.set_ydata(self.anomalyScore)
self.anomalyLikelihoodLine.set_xdata(self.convertedDates)
self.anomalyLikelihoodLine.set_ydata(self.anomalyLikelihood)
# Remove previous highlighted regions
for poly in self._chartHighlights:
poly.remove()
self._chartHighlights = []
weekends = extractWeekendHighlights(self.dates)
anomalies = extractAnomalyIndices(self.anomalyLikelihood)
# Highlight weekends in main chart
self.highlightChart(weekends, self._mainGraph)
# Highlight anomalies in anomaly chart
self.highlightChart(anomalies, self._anomalyGraph)
maxValue = max(self.allValues)
self._mainGraph.relim()
self._mainGraph.axes.set_ylim(0, maxValue + (maxValue * 0.02))
self._mainGraph.relim()
self._mainGraph.autoscale_view(True, scaley=False)
self._anomalyGraph.relim()
self._anomalyGraph.autoscale_view(True, True, True)
plt.draw()
def close(self):
plt.ioff()
plt.show()
NuPICOutput.register(NuPICFileOutput)
NuPICOutput.register(NuPICPlotOutput)
|
agpl-3.0
|
vybstat/scikit-learn
|
sklearn/metrics/cluster/tests/test_unsupervised.py
|
230
|
2823
|
import numpy as np
from scipy.sparse import csr_matrix
from sklearn import datasets
from sklearn.metrics.cluster.unsupervised import silhouette_score
from sklearn.metrics import pairwise_distances
from sklearn.utils.testing import assert_false, assert_almost_equal
from sklearn.utils.testing import assert_raises_regexp
def test_silhouette():
# Tests the Silhouette Coefficient.
dataset = datasets.load_iris()
X = dataset.data
y = dataset.target
D = pairwise_distances(X, metric='euclidean')
# Given that the actual labels are used, we can assume that S would be
# positive.
silhouette = silhouette_score(D, y, metric='precomputed')
assert(silhouette > 0)
# Test without calculating D
silhouette_metric = silhouette_score(X, y, metric='euclidean')
assert_almost_equal(silhouette, silhouette_metric)
# Test with sampling
silhouette = silhouette_score(D, y, metric='precomputed',
sample_size=int(X.shape[0] / 2),
random_state=0)
silhouette_metric = silhouette_score(X, y, metric='euclidean',
sample_size=int(X.shape[0] / 2),
random_state=0)
assert(silhouette > 0)
assert(silhouette_metric > 0)
assert_almost_equal(silhouette_metric, silhouette)
# Test with sparse X
X_sparse = csr_matrix(X)
D = pairwise_distances(X_sparse, metric='euclidean')
silhouette = silhouette_score(D, y, metric='precomputed')
assert(silhouette > 0)
def test_no_nan():
# Assert Silhouette Coefficient != nan when there is 1 sample in a class.
# This tests for the condition that caused issue 960.
# Note that there is only one sample in cluster 0. This used to cause the
# silhouette_score to return nan (see bug #960).
labels = np.array([1, 0, 1, 1, 1])
# The distance matrix doesn't actually matter.
D = np.random.RandomState(0).rand(len(labels), len(labels))
silhouette = silhouette_score(D, labels, metric='precomputed')
assert_false(np.isnan(silhouette))
def test_correct_labelsize():
# Assert 1 < n_labels < n_samples
dataset = datasets.load_iris()
X = dataset.data
# n_labels = n_samples
y = np.arange(X.shape[0])
assert_raises_regexp(ValueError,
'Number of labels is %d\. Valid values are 2 '
'to n_samples - 1 \(inclusive\)' % len(np.unique(y)),
silhouette_score, X, y)
# n_labels = 1
y = np.zeros(X.shape[0])
assert_raises_regexp(ValueError,
'Number of labels is %d\. Valid values are 2 '
'to n_samples - 1 \(inclusive\)' % len(np.unique(y)),
silhouette_score, X, y)
|
bsd-3-clause
|
smjhnits/Praktikum_TU_D_16-17
|
Anfängerpraktikum/Protokolle/V207_Das_Kugelfallviskosimeter/Auswertung/Auswertung.py
|
1
|
6592
|
import numpy as np
from scipy.stats import sem
from uncertainties import ufloat
import uncertainties.unumpy as unp
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
daten = np.genfromtxt("Daten.txt", unpack = True)
DurchmesserGr = np.array([1.561, 1.560, 1.560])
DurchmesserKl = np.array([1.543, 1.544, 1.543])
RadiusGr = DurchmesserGr / 2
RadiusKl = DurchmesserKl / 2
GewichtGr = np.array([4.96, 4.96, 4.96])
GewichtKl = np.array([4.45, 4.45, 4.45])
s = 1 / np.sqrt(3)
Rgr = ufloat(np.mean(RadiusGr), np.std(RadiusGr, ddof = 1) * s)
Rkl = ufloat(np.mean(RadiusKl), np.std(RadiusKl, ddof = 1) * s)
Ggr = ufloat(np.mean(GewichtGr), np.std(GewichtGr, ddof = 1) * s)
Gkl = ufloat(np.mean(GewichtKl), np.std(GewichtKl, ddof = 1) * s)
print("Durchmesser große Kugel: ", np.mean(DurchmesserGr), np.std(DurchmesserGr, ddof = 1) *s)
print("Durchmesser kleine Kugel: ", np.mean(DurchmesserKl), np.std(DurchmesserKl, ddof = 1) *s)
print("Radius große Kugel: ", Rgr, " cm")
print("Gewicht große Kugel: ", Ggr, " g")
print("Radius kleine Kugel: ", Rkl, " cm")
print("Gewicht kleine Kugel: ", Gkl, " g")
print('\n')
#Auslesen und Mitteln der Daten
FallzeitKugel2 = ufloat(np.mean(daten[0]), np.std(daten[0], ddof = 1) * 1/np.sqrt(len(daten[0])))
FallzeitKugel1 = ufloat(np.mean(daten[1]), np.std(daten[1], ddof = 1) * 1/np.sqrt(len(daten[1])))
Temperaturen = daten[2]
Temperaturen += 273.15
Messungen = np.array([daten[3], daten[4]])
Messungen = np.transpose(Messungen)
print("Fallzeit kleine Kugel: ", FallzeitKugel2)
print("Fallzeit große Kugel: ", FallzeitKugel1)
print("Temperaturen: ", '\n', Temperaturen)
print('\n')
Mittelwerte = np.array([ np.mean(row) for row in Messungen ])
Fehler = np.array([1/np.sqrt(len(row)) * np.std(row, ddof=1) for row in Messungen])
kombiniert = np.array([ufloat(n, Fehler[i]) for i,n in enumerate(Mittelwerte)])
#print("Messung der Fallzeiten: ", '\n', unp.nominal_values(kombiniert))
print("Messung der Fallzeiten: ", '\n', kombiniert)
print('\n')
#Ermittlung der Kugeldichte und benötigte Daten
DichteKl = Gkl / (4/3 * np.pi * Rkl**3)
#DichteKl /= 1000 # Anpassung in g/cm^3
DichteGr = Ggr / (4/3 * np.pi * Rgr**3)
#DichteGr /= 1000 # Anpassung in g/cm^3
DichteW = 0.998
DichteW_array = np.array([0.9957, 0.994, 0.9922, 0.9902, 0.9880, 0.9980, 0.9857, 0.9832, 0.9806, 0.9778])
Kkl = 0.07640 # in mPa * cm^3 / g
print("Kugel 1 = große Kugel")
print("Kugel 2 = kleine Kugel")
print("Dichte der kleinen Kugel: ", DichteKl, " g/cm^3")
print("Dichte der großen Kugel: ", DichteGr, " g/cm^3")
print("Dichte Wasser: ", DichteW, " g/cm^3")
print('\n')
#Ermittlung von K
Viskositätkl20 = (Kkl * (DichteKl - DichteW) * FallzeitKugel2)
Kgr = Viskositätkl20 / ( (DichteGr - DichteW) * FallzeitKugel1)
print("Viskosität kleiner Kugel: ", Viskositätkl20, " mPa s")
print("Apparaturkonstante kleine Kugel: ", Kkl, " mPa s cm^3 7 g")
print("Apparaturkonstante große Kugel: ", Kgr, " mPa s cm^3 7 g")
print('\n')
#Ermittlung der ViskositäTemperaturen
Viskos = np.array([ Kgr * (DichteGr - DichteW_array[i]) * n for i,n in enumerate(kombiniert) ])
#print("Viskositäten: ",'\n', unp.nominal_values(Viskos))
print("Viskositäten: ",'\n', Viskos)
print('\n')
print("Temperaturen: ", '\n', Temperaturen)
print('\n')
Viskos *= 10**(-3)
#Literaturwerte einspeichern
ViskosLit = np.array([ 797.7, 653.1, 547.1, 466.8, 404.5, ])
ViskosLit *= 10**(-3)
Temperature = np.array([ 30.0, 40.0 , 50.0, 60.0, 70.0, ])
Temperature += 273.15
print("Viskositäten Literaturwerte: ", '\n' , ViskosLit)
print('\n')
print("Temperaturen Literatur: ", '\n', Temperature)
print('\n')
ViskosLit *= 10**(-3)
#Plot anfertigen
def f(x, A, B):
return A * np.exp( B / x)
params, covariance = curve_fit(f, Temperaturen, unp.nominal_values(Viskos))
paramslit, covariancelit = curve_fit(f, Temperature, ViskosLit)
x_plot = np.linspace(300, 350, num = 100)
#Der Scheiß für Mareike
Viskoslog = np.log(unp.nominal_values(Viskos))
Viskoslitlog = np.log(unp.nominal_values(ViskosLit))
def g(x, A, B):
return A * 1/x + B
paramslog, covariancelog = curve_fit(g, Temperaturen, Viskoslog)
errorsExperimentell = np.sqrt(np.diag(covariancelog))
paramslitlog, covariancelitlog = curve_fit(g, Temperature, Viskoslitlog)
errorsLit = np.sqrt(np.diag(covariancelitlog))
print("Parameter für Viskositäten Literatur: ", '\n', paramslit, " A in mPa s, B in K")
print("Parameter mit linearer Regression", '\n', paramslitlog)
print("Fehler der linearen Regression: ", '\n', errorsLit[0], errorsLit[1])
print('\n')
# Plot mit V gegen 1/T
plt.clf()
plt.plot(1/Temperaturen, unp.log(unp.nominal_values(Viskos)), "bx", label = "Viskositäten")
#plt.plot(1/x_plot, unp.log(f(x_plot, *params)), "r-", label = "Regressionskurve")
plt.plot(1/Temperature, unp.log(ViskosLit), "gx", label = "Viskositäten Literatur")
plt.plot(1/x_plot, g(x_plot, *paramslitlog), "k-", label = "Fit der Literaturwerte")
plt.plot(1/x_plot, g(x_plot, *paramslog), "r-", label = "Linearer Fit") #fwfewf
plt.grid(True, which = "both")
plt.xlabel(r"$1/T \,\, in \,\, 1/K$")
plt.ylabel(r"$ln(\eta)$ ")
plt.legend(loc = 'best')
plt.xlim(0.0029, 0.00333)
#plt.yscale('log')
plt.tight_layout()
plt.savefig("Plot_T_1.pdf")
print("Parameter für Viskositäten Experimentell: ", '\n', params, " A in mPa s, B in K")
print("Parameter B : ", '\n', ufloat(paramslog[0], errorsExperimentell[0]),)
ParameterA = ufloat(paramslog[1], errorsExperimentell[1])
print("Parameter A : ", '\n', unp.exp(ParameterA))
print('\n')
#plt.show()
#Abweichungen Literatur und Experimentell
ViskosLit2 = np.array([ paramslit[0] * np.exp( paramslit[1] / n ) for n in Temperaturen])
Abweichungen = Viskos - ViskosLit2
print("Durchschnittliche Abweichung: ", np.mean(Abweichungen))
print('\n')
#Geschwindigkeiten
Strecke = 0.1
Geschwindigkeiten = Strecke / kombiniert
Vcm = Geschwindigkeiten * 100
#print("Geschwindigkeiten: ", '\n', unp.nominal_values(Vcm) )
print("Geschwindigkeiten: Angaben in cm", '\n', Vcm)
print('\n')
#Reynoldszahl
Reynolds = np.array([DichteW_array[i] * Vcm[i] * 2 * Rgr / 10 / n for i,n in enumerate(Viskos)])
#print("Reynoldszahl mit cm : ", '\n', unp.nominal_values(Reynolds))
print("Reynoldszahl große Kugel : ", '\n', Reynolds)
print('\n')
#Reynoldszahl kleine Kugel
Viskositätkl20 *= 10**(-3)
print("Fallzeit kleine Kugel: ", FallzeitKugel2)
Reynoldskl = DichteW * Strecke * 100 * 2 * Rkl / 10 / (Viskositätkl20 * FallzeitKugel2)
print("Reynoldszahl in cm kleine kugel : ", '\n' ,Reynoldskl)
|
mit
|
Obus/scikit-learn
|
sklearn/tests/test_kernel_approximation.py
|
244
|
7588
|
import numpy as np
from scipy.sparse import csr_matrix
from sklearn.utils.testing import assert_array_equal, assert_equal, assert_true
from sklearn.utils.testing import assert_not_equal
from sklearn.utils.testing import assert_array_almost_equal, assert_raises
from sklearn.utils.testing import assert_less_equal
from sklearn.metrics.pairwise import kernel_metrics
from sklearn.kernel_approximation import RBFSampler
from sklearn.kernel_approximation import AdditiveChi2Sampler
from sklearn.kernel_approximation import SkewedChi2Sampler
from sklearn.kernel_approximation import Nystroem
from sklearn.metrics.pairwise import polynomial_kernel, rbf_kernel
# generate data
rng = np.random.RandomState(0)
X = rng.random_sample(size=(300, 50))
Y = rng.random_sample(size=(300, 50))
X /= X.sum(axis=1)[:, np.newaxis]
Y /= Y.sum(axis=1)[:, np.newaxis]
def test_additive_chi2_sampler():
# test that AdditiveChi2Sampler approximates kernel on random data
# compute exact kernel
# appreviations for easier formular
X_ = X[:, np.newaxis, :]
Y_ = Y[np.newaxis, :, :]
large_kernel = 2 * X_ * Y_ / (X_ + Y_)
# reduce to n_samples_x x n_samples_y by summing over features
kernel = (large_kernel.sum(axis=2))
# approximate kernel mapping
transform = AdditiveChi2Sampler(sample_steps=3)
X_trans = transform.fit_transform(X)
Y_trans = transform.transform(Y)
kernel_approx = np.dot(X_trans, Y_trans.T)
assert_array_almost_equal(kernel, kernel_approx, 1)
X_sp_trans = transform.fit_transform(csr_matrix(X))
Y_sp_trans = transform.transform(csr_matrix(Y))
assert_array_equal(X_trans, X_sp_trans.A)
assert_array_equal(Y_trans, Y_sp_trans.A)
# test error is raised on negative input
Y_neg = Y.copy()
Y_neg[0, 0] = -1
assert_raises(ValueError, transform.transform, Y_neg)
# test error on invalid sample_steps
transform = AdditiveChi2Sampler(sample_steps=4)
assert_raises(ValueError, transform.fit, X)
# test that the sample interval is set correctly
sample_steps_available = [1, 2, 3]
for sample_steps in sample_steps_available:
# test that the sample_interval is initialized correctly
transform = AdditiveChi2Sampler(sample_steps=sample_steps)
assert_equal(transform.sample_interval, None)
# test that the sample_interval is changed in the fit method
transform.fit(X)
assert_not_equal(transform.sample_interval_, None)
# test that the sample_interval is set correctly
sample_interval = 0.3
transform = AdditiveChi2Sampler(sample_steps=4,
sample_interval=sample_interval)
assert_equal(transform.sample_interval, sample_interval)
transform.fit(X)
assert_equal(transform.sample_interval_, sample_interval)
def test_skewed_chi2_sampler():
# test that RBFSampler approximates kernel on random data
# compute exact kernel
c = 0.03
# appreviations for easier formular
X_c = (X + c)[:, np.newaxis, :]
Y_c = (Y + c)[np.newaxis, :, :]
# we do it in log-space in the hope that it's more stable
# this array is n_samples_x x n_samples_y big x n_features
log_kernel = ((np.log(X_c) / 2.) + (np.log(Y_c) / 2.) + np.log(2.) -
np.log(X_c + Y_c))
# reduce to n_samples_x x n_samples_y by summing over features in log-space
kernel = np.exp(log_kernel.sum(axis=2))
# approximate kernel mapping
transform = SkewedChi2Sampler(skewedness=c, n_components=1000,
random_state=42)
X_trans = transform.fit_transform(X)
Y_trans = transform.transform(Y)
kernel_approx = np.dot(X_trans, Y_trans.T)
assert_array_almost_equal(kernel, kernel_approx, 1)
# test error is raised on negative input
Y_neg = Y.copy()
Y_neg[0, 0] = -1
assert_raises(ValueError, transform.transform, Y_neg)
def test_rbf_sampler():
# test that RBFSampler approximates kernel on random data
# compute exact kernel
gamma = 10.
kernel = rbf_kernel(X, Y, gamma=gamma)
# approximate kernel mapping
rbf_transform = RBFSampler(gamma=gamma, n_components=1000, random_state=42)
X_trans = rbf_transform.fit_transform(X)
Y_trans = rbf_transform.transform(Y)
kernel_approx = np.dot(X_trans, Y_trans.T)
error = kernel - kernel_approx
assert_less_equal(np.abs(np.mean(error)), 0.01) # close to unbiased
np.abs(error, out=error)
assert_less_equal(np.max(error), 0.1) # nothing too far off
assert_less_equal(np.mean(error), 0.05) # mean is fairly close
def test_input_validation():
# Regression test: kernel approx. transformers should work on lists
# No assertions; the old versions would simply crash
X = [[1, 2], [3, 4], [5, 6]]
AdditiveChi2Sampler().fit(X).transform(X)
SkewedChi2Sampler().fit(X).transform(X)
RBFSampler().fit(X).transform(X)
X = csr_matrix(X)
RBFSampler().fit(X).transform(X)
def test_nystroem_approximation():
# some basic tests
rnd = np.random.RandomState(0)
X = rnd.uniform(size=(10, 4))
# With n_components = n_samples this is exact
X_transformed = Nystroem(n_components=X.shape[0]).fit_transform(X)
K = rbf_kernel(X)
assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K)
trans = Nystroem(n_components=2, random_state=rnd)
X_transformed = trans.fit(X).transform(X)
assert_equal(X_transformed.shape, (X.shape[0], 2))
# test callable kernel
linear_kernel = lambda X, Y: np.dot(X, Y.T)
trans = Nystroem(n_components=2, kernel=linear_kernel, random_state=rnd)
X_transformed = trans.fit(X).transform(X)
assert_equal(X_transformed.shape, (X.shape[0], 2))
# test that available kernels fit and transform
kernels_available = kernel_metrics()
for kern in kernels_available:
trans = Nystroem(n_components=2, kernel=kern, random_state=rnd)
X_transformed = trans.fit(X).transform(X)
assert_equal(X_transformed.shape, (X.shape[0], 2))
def test_nystroem_singular_kernel():
# test that nystroem works with singular kernel matrix
rng = np.random.RandomState(0)
X = rng.rand(10, 20)
X = np.vstack([X] * 2) # duplicate samples
gamma = 100
N = Nystroem(gamma=gamma, n_components=X.shape[0]).fit(X)
X_transformed = N.transform(X)
K = rbf_kernel(X, gamma=gamma)
assert_array_almost_equal(K, np.dot(X_transformed, X_transformed.T))
assert_true(np.all(np.isfinite(Y)))
def test_nystroem_poly_kernel_params():
# Non-regression: Nystroem should pass other parameters beside gamma.
rnd = np.random.RandomState(37)
X = rnd.uniform(size=(10, 4))
K = polynomial_kernel(X, degree=3.1, coef0=.1)
nystroem = Nystroem(kernel="polynomial", n_components=X.shape[0],
degree=3.1, coef0=.1)
X_transformed = nystroem.fit_transform(X)
assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K)
def test_nystroem_callable():
# Test Nystroem on a callable.
rnd = np.random.RandomState(42)
n_samples = 10
X = rnd.uniform(size=(n_samples, 4))
def logging_histogram_kernel(x, y, log):
"""Histogram kernel that writes to a log."""
log.append(1)
return np.minimum(x, y).sum()
kernel_log = []
X = list(X) # test input validation
Nystroem(kernel=logging_histogram_kernel,
n_components=(n_samples - 1),
kernel_params={'log': kernel_log}).fit(X)
assert_equal(len(kernel_log), n_samples * (n_samples - 1) / 2)
|
bsd-3-clause
|
jobovy/apogee-maps
|
py/plot_dust_gaia.py
|
1
|
2691
|
###############################################################################
# plot_dust_gaia: plot the dust-map at X for Gaia
###############################################################################
import sys
import numpy
import healpy
import matplotlib
matplotlib.use('Agg')
from galpy.util import bovy_plot, bovy_coords
import dust
# nside to work at, 2048 is the max
_NSIDE= 2048
def plot_dust_gaia(dist,plotname):
# Load the dust map
green15map= dust.load_combined(dist,nest=True,nside_out=_NSIDE)
dm= dust.dist2distmod(dist)
green15map[green15map == healpy.UNSEEN]= -1.
print "%i are NaN" % (numpy.sum(numpy.isnan(green15map)))
#theta, phi= healpy.pixelfunc.pix2ang(_NSIDE,numpy.arange(healpy.pixelfunc.nside2npix(_NSIDE)),nest=True)
#print (numpy.pi/2.-theta)[numpy.isnan(green15map)]/numpy.pi*180.
#print phi[numpy.isnan(green15map)]/numpy.pi*180.
# plot it
healpy.visufunc.mollview(green15map,
nest=True,
xsize=4000,min=0.,
max=round(10.*(20.-dm-0.68))/10.,
format=r'$%g$',
cmap='gist_yarg',
title="",
unit='$A_G\,(\mathrm{mag})$')
# Plot outline of Marshall et al.
ls= numpy.linspace(-100.125,100.125,1001)
healpy.visufunc.projplot(ls,ls*0.-10.125,'k--',lw=1.2,lonlat=True)
healpy.visufunc.projplot(ls,ls*0.+10.125,'k--',lw=1.2,lonlat=True)
bs= numpy.linspace(-10.125,10.125,1001)
healpy.visufunc.projplot(bs*0.-100.125,bs,'k--',lw=1.2,lonlat=True)
healpy.visufunc.projplot(bs*0.+100.125,bs,'k--',lw=1.2,lonlat=True)
# Plot boundary of Green et al. map, dec > -30.
ras= numpy.linspace(0.,360.,1001)
decs= ras*0.-30.
lbs= bovy_coords.radec_to_lb(ras,decs,degree=True)
ls= lbs[:,0]
bs= lbs[:,1]
# rm those within Marshall et al.
keepIndx= True-((ls > 259.875)*(numpy.fabs(bs) < 10.125)
+(ls < 100.125)*(numpy.fabs(bs) < 10.125))
ls= ls[keepIndx]
bs= bs[keepIndx]
healpy.visufunc.projplot(ls,bs,'k-.',lw=1.2,lonlat=True)
# Labels
healpy.visufunc.projtext(350.,-8.,r'$\mathrm{Marshall\ et\ al.\ (2006)}$',
lonlat=True,size=13.)
healpy.visufunc.projtext(10.,-60.,r'$\mathrm{Drimmel\ et\ al.\ (2003)}$',
lonlat=True,size=13.)
healpy.visufunc.projtext(160.,40.,r'$\mathrm{Green\ et\ al.\ (2015)}$',
lonlat=True,size=13.)
bovy_plot.bovy_end_print(plotname)
if __name__ == '__main__':
plot_dust_gaia(float(sys.argv[1]),sys.argv[2])
|
bsd-3-clause
|
ningchi/scikit-learn
|
examples/text/mlcomp_sparse_document_classification.py
|
292
|
4498
|
"""
========================================================
Classification of text documents: using a MLComp dataset
========================================================
This is an example showing how the scikit-learn can be used to classify
documents by topics using a bag-of-words approach. This example uses
a scipy.sparse matrix to store the features instead of standard numpy arrays.
The dataset used in this example is the 20 newsgroups dataset and should be
downloaded from the http://mlcomp.org (free registration required):
http://mlcomp.org/datasets/379
Once downloaded unzip the archive somewhere on your filesystem.
For instance in::
% mkdir -p ~/data/mlcomp
% cd ~/data/mlcomp
% unzip /path/to/dataset-379-20news-18828_XXXXX.zip
You should get a folder ``~/data/mlcomp/379`` with a file named ``metadata``
and subfolders ``raw``, ``train`` and ``test`` holding the text documents
organized by newsgroups.
Then set the ``MLCOMP_DATASETS_HOME`` environment variable pointing to
the root folder holding the uncompressed archive::
% export MLCOMP_DATASETS_HOME="~/data/mlcomp"
Then you are ready to run this example using your favorite python shell::
% ipython examples/mlcomp_sparse_document_classification.py
"""
# Author: Olivier Grisel <[email protected]>
# License: BSD 3 clause
from __future__ import print_function
from time import time
import sys
import os
import numpy as np
import scipy.sparse as sp
import pylab as pl
from sklearn.datasets import load_mlcomp
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.naive_bayes import MultinomialNB
print(__doc__)
if 'MLCOMP_DATASETS_HOME' not in os.environ:
print("MLCOMP_DATASETS_HOME not set; please follow the above instructions")
sys.exit(0)
# Load the training set
print("Loading 20 newsgroups training set... ")
news_train = load_mlcomp('20news-18828', 'train')
print(news_train.DESCR)
print("%d documents" % len(news_train.filenames))
print("%d categories" % len(news_train.target_names))
print("Extracting features from the dataset using a sparse vectorizer")
t0 = time()
vectorizer = TfidfVectorizer(encoding='latin1')
X_train = vectorizer.fit_transform((open(f).read()
for f in news_train.filenames))
print("done in %fs" % (time() - t0))
print("n_samples: %d, n_features: %d" % X_train.shape)
assert sp.issparse(X_train)
y_train = news_train.target
print("Loading 20 newsgroups test set... ")
news_test = load_mlcomp('20news-18828', 'test')
t0 = time()
print("done in %fs" % (time() - t0))
print("Predicting the labels of the test set...")
print("%d documents" % len(news_test.filenames))
print("%d categories" % len(news_test.target_names))
print("Extracting features from the dataset using the same vectorizer")
t0 = time()
X_test = vectorizer.transform((open(f).read() for f in news_test.filenames))
y_test = news_test.target
print("done in %fs" % (time() - t0))
print("n_samples: %d, n_features: %d" % X_test.shape)
###############################################################################
# Benchmark classifiers
def benchmark(clf_class, params, name):
print("parameters:", params)
t0 = time()
clf = clf_class(**params).fit(X_train, y_train)
print("done in %fs" % (time() - t0))
if hasattr(clf, 'coef_'):
print("Percentage of non zeros coef: %f"
% (np.mean(clf.coef_ != 0) * 100))
print("Predicting the outcomes of the testing set")
t0 = time()
pred = clf.predict(X_test)
print("done in %fs" % (time() - t0))
print("Classification report on test set for classifier:")
print(clf)
print()
print(classification_report(y_test, pred,
target_names=news_test.target_names))
cm = confusion_matrix(y_test, pred)
print("Confusion matrix:")
print(cm)
# Show confusion matrix
pl.matshow(cm)
pl.title('Confusion matrix of the %s classifier' % name)
pl.colorbar()
print("Testbenching a linear classifier...")
parameters = {
'loss': 'hinge',
'penalty': 'l2',
'n_iter': 50,
'alpha': 0.00001,
'fit_intercept': True,
}
benchmark(SGDClassifier, parameters, 'SGD')
print("Testbenching a MultinomialNB classifier...")
parameters = {'alpha': 0.01}
benchmark(MultinomialNB, parameters, 'MultinomialNB')
pl.show()
|
bsd-3-clause
|
qifeigit/scikit-learn
|
sklearn/linear_model/tests/test_sgd.py
|
129
|
43401
|
import pickle
import unittest
import numpy as np
import scipy.sparse as sp
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_less
from sklearn.utils.testing import raises
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_false, assert_true
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_raises_regexp
from sklearn import linear_model, datasets, metrics
from sklearn.base import clone
from sklearn.linear_model import SGDClassifier, SGDRegressor
from sklearn.preprocessing import LabelEncoder, scale, MinMaxScaler
class SparseSGDClassifier(SGDClassifier):
def fit(self, X, y, *args, **kw):
X = sp.csr_matrix(X)
return super(SparseSGDClassifier, self).fit(X, y, *args, **kw)
def partial_fit(self, X, y, *args, **kw):
X = sp.csr_matrix(X)
return super(SparseSGDClassifier, self).partial_fit(X, y, *args, **kw)
def decision_function(self, X):
X = sp.csr_matrix(X)
return super(SparseSGDClassifier, self).decision_function(X)
def predict_proba(self, X):
X = sp.csr_matrix(X)
return super(SparseSGDClassifier, self).predict_proba(X)
class SparseSGDRegressor(SGDRegressor):
def fit(self, X, y, *args, **kw):
X = sp.csr_matrix(X)
return SGDRegressor.fit(self, X, y, *args, **kw)
def partial_fit(self, X, y, *args, **kw):
X = sp.csr_matrix(X)
return SGDRegressor.partial_fit(self, X, y, *args, **kw)
def decision_function(self, X, *args, **kw):
X = sp.csr_matrix(X)
return SGDRegressor.decision_function(self, X, *args, **kw)
# Test Data
# test sample 1
X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]])
Y = [1, 1, 1, 2, 2, 2]
T = np.array([[-1, -1], [2, 2], [3, 2]])
true_result = [1, 2, 2]
# test sample 2; string class labels
X2 = np.array([[-1, 1], [-0.75, 0.5], [-1.5, 1.5],
[1, 1], [0.75, 0.5], [1.5, 1.5],
[-1, -1], [0, -0.5], [1, -1]])
Y2 = ["one"] * 3 + ["two"] * 3 + ["three"] * 3
T2 = np.array([[-1.5, 0.5], [1, 2], [0, -2]])
true_result2 = ["one", "two", "three"]
# test sample 3
X3 = np.array([[1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 1, 1],
[0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0]])
Y3 = np.array([1, 1, 1, 1, 2, 2, 2, 2])
# test sample 4 - two more or less redundent feature groups
X4 = np.array([[1, 0.9, 0.8, 0, 0, 0], [1, .84, .98, 0, 0, 0],
[1, .96, .88, 0, 0, 0], [1, .91, .99, 0, 0, 0],
[0, 0, 0, .89, .91, 1], [0, 0, 0, .79, .84, 1],
[0, 0, 0, .91, .95, 1], [0, 0, 0, .93, 1, 1]])
Y4 = np.array([1, 1, 1, 1, 2, 2, 2, 2])
iris = datasets.load_iris()
# test sample 5 - test sample 1 as binary classification problem
X5 = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]])
Y5 = [1, 1, 1, 2, 2, 2]
true_result5 = [0, 1, 1]
# Classification Test Case
class CommonTest(object):
def factory(self, **kwargs):
if "random_state" not in kwargs:
kwargs["random_state"] = 42
return self.factory_class(**kwargs)
# a simple implementation of ASGD to use for testing
# uses squared loss to find the gradient
def asgd(self, X, y, eta, alpha, weight_init=None, intercept_init=0.0):
if weight_init is None:
weights = np.zeros(X.shape[1])
else:
weights = weight_init
average_weights = np.zeros(X.shape[1])
intercept = intercept_init
average_intercept = 0.0
decay = 1.0
# sparse data has a fixed decay of .01
if (isinstance(self, SparseSGDClassifierTestCase) or
isinstance(self, SparseSGDRegressorTestCase)):
decay = .01
for i, entry in enumerate(X):
p = np.dot(entry, weights)
p += intercept
gradient = p - y[i]
weights *= 1.0 - (eta * alpha)
weights += -(eta * gradient * entry)
intercept += -(eta * gradient) * decay
average_weights *= i
average_weights += weights
average_weights /= i + 1.0
average_intercept *= i
average_intercept += intercept
average_intercept /= i + 1.0
return average_weights, average_intercept
def _test_warm_start(self, X, Y, lr):
# Test that explicit warm restart...
clf = self.factory(alpha=0.01, eta0=0.01, n_iter=5, shuffle=False,
learning_rate=lr)
clf.fit(X, Y)
clf2 = self.factory(alpha=0.001, eta0=0.01, n_iter=5, shuffle=False,
learning_rate=lr)
clf2.fit(X, Y,
coef_init=clf.coef_.copy(),
intercept_init=clf.intercept_.copy())
# ... and implicit warm restart are equivalent.
clf3 = self.factory(alpha=0.01, eta0=0.01, n_iter=5, shuffle=False,
warm_start=True, learning_rate=lr)
clf3.fit(X, Y)
assert_equal(clf3.t_, clf.t_)
assert_array_almost_equal(clf3.coef_, clf.coef_)
clf3.set_params(alpha=0.001)
clf3.fit(X, Y)
assert_equal(clf3.t_, clf2.t_)
assert_array_almost_equal(clf3.coef_, clf2.coef_)
def test_warm_start_constant(self):
self._test_warm_start(X, Y, "constant")
def test_warm_start_invscaling(self):
self._test_warm_start(X, Y, "invscaling")
def test_warm_start_optimal(self):
self._test_warm_start(X, Y, "optimal")
def test_input_format(self):
# Input format tests.
clf = self.factory(alpha=0.01, n_iter=5,
shuffle=False)
clf.fit(X, Y)
Y_ = np.array(Y)[:, np.newaxis]
Y_ = np.c_[Y_, Y_]
assert_raises(ValueError, clf.fit, X, Y_)
def test_clone(self):
# Test whether clone works ok.
clf = self.factory(alpha=0.01, n_iter=5, penalty='l1')
clf = clone(clf)
clf.set_params(penalty='l2')
clf.fit(X, Y)
clf2 = self.factory(alpha=0.01, n_iter=5, penalty='l2')
clf2.fit(X, Y)
assert_array_equal(clf.coef_, clf2.coef_)
def test_plain_has_no_average_attr(self):
clf = self.factory(average=True, eta0=.01)
clf.fit(X, Y)
assert_true(hasattr(clf, 'average_coef_'))
assert_true(hasattr(clf, 'average_intercept_'))
assert_true(hasattr(clf, 'standard_intercept_'))
assert_true(hasattr(clf, 'standard_coef_'))
clf = self.factory()
clf.fit(X, Y)
assert_false(hasattr(clf, 'average_coef_'))
assert_false(hasattr(clf, 'average_intercept_'))
assert_false(hasattr(clf, 'standard_intercept_'))
assert_false(hasattr(clf, 'standard_coef_'))
def test_late_onset_averaging_not_reached(self):
clf1 = self.factory(average=600)
clf2 = self.factory()
for _ in range(100):
if isinstance(clf1, SGDClassifier):
clf1.partial_fit(X, Y, classes=np.unique(Y))
clf2.partial_fit(X, Y, classes=np.unique(Y))
else:
clf1.partial_fit(X, Y)
clf2.partial_fit(X, Y)
assert_array_almost_equal(clf1.coef_, clf2.coef_, decimal=16)
assert_almost_equal(clf1.intercept_, clf2.intercept_, decimal=16)
def test_late_onset_averaging_reached(self):
eta0 = .001
alpha = .0001
Y_encode = np.array(Y)
Y_encode[Y_encode == 1] = -1.0
Y_encode[Y_encode == 2] = 1.0
clf1 = self.factory(average=7, learning_rate="constant",
loss='squared_loss', eta0=eta0,
alpha=alpha, n_iter=2, shuffle=False)
clf2 = self.factory(average=0, learning_rate="constant",
loss='squared_loss', eta0=eta0,
alpha=alpha, n_iter=1, shuffle=False)
clf1.fit(X, Y_encode)
clf2.fit(X, Y_encode)
average_weights, average_intercept = \
self.asgd(X, Y_encode, eta0, alpha,
weight_init=clf2.coef_.ravel(),
intercept_init=clf2.intercept_)
assert_array_almost_equal(clf1.coef_.ravel(),
average_weights.ravel(),
decimal=16)
assert_almost_equal(clf1.intercept_, average_intercept, decimal=16)
class DenseSGDClassifierTestCase(unittest.TestCase, CommonTest):
"""Test suite for the dense representation variant of SGD"""
factory_class = SGDClassifier
def test_sgd(self):
# Check that SGD gives any results :-)
for loss in ("hinge", "squared_hinge", "log", "modified_huber"):
clf = self.factory(penalty='l2', alpha=0.01, fit_intercept=True,
loss=loss, n_iter=10, shuffle=True)
clf.fit(X, Y)
# assert_almost_equal(clf.coef_[0], clf.coef_[1], decimal=7)
assert_array_equal(clf.predict(T), true_result)
@raises(ValueError)
def test_sgd_bad_l1_ratio(self):
# Check whether expected ValueError on bad l1_ratio
self.factory(l1_ratio=1.1)
@raises(ValueError)
def test_sgd_bad_learning_rate_schedule(self):
# Check whether expected ValueError on bad learning_rate
self.factory(learning_rate="<unknown>")
@raises(ValueError)
def test_sgd_bad_eta0(self):
# Check whether expected ValueError on bad eta0
self.factory(eta0=0, learning_rate="constant")
@raises(ValueError)
def test_sgd_bad_alpha(self):
# Check whether expected ValueError on bad alpha
self.factory(alpha=-.1)
@raises(ValueError)
def test_sgd_bad_penalty(self):
# Check whether expected ValueError on bad penalty
self.factory(penalty='foobar', l1_ratio=0.85)
@raises(ValueError)
def test_sgd_bad_loss(self):
# Check whether expected ValueError on bad loss
self.factory(loss="foobar")
@raises(ValueError)
def test_sgd_n_iter_param(self):
# Test parameter validity check
self.factory(n_iter=-10000)
@raises(ValueError)
def test_sgd_shuffle_param(self):
# Test parameter validity check
self.factory(shuffle="false")
@raises(TypeError)
def test_argument_coef(self):
# Checks coef_init not allowed as model argument (only fit)
# Provided coef_ does not match dataset.
self.factory(coef_init=np.zeros((3,))).fit(X, Y)
@raises(ValueError)
def test_provide_coef(self):
# Checks coef_init shape for the warm starts
# Provided coef_ does not match dataset.
self.factory().fit(X, Y, coef_init=np.zeros((3,)))
@raises(ValueError)
def test_set_intercept(self):
# Checks intercept_ shape for the warm starts
# Provided intercept_ does not match dataset.
self.factory().fit(X, Y, intercept_init=np.zeros((3,)))
def test_set_intercept_binary(self):
# Checks intercept_ shape for the warm starts in binary case
self.factory().fit(X5, Y5, intercept_init=0)
def test_average_binary_computed_correctly(self):
# Checks the SGDClassifier correctly computes the average weights
eta = .1
alpha = 2.
n_samples = 20
n_features = 10
rng = np.random.RandomState(0)
X = rng.normal(size=(n_samples, n_features))
w = rng.normal(size=n_features)
clf = self.factory(loss='squared_loss',
learning_rate='constant',
eta0=eta, alpha=alpha,
fit_intercept=True,
n_iter=1, average=True, shuffle=False)
# simple linear function without noise
y = np.dot(X, w)
y = np.sign(y)
clf.fit(X, y)
average_weights, average_intercept = self.asgd(X, y, eta, alpha)
average_weights = average_weights.reshape(1, -1)
assert_array_almost_equal(clf.coef_,
average_weights,
decimal=14)
assert_almost_equal(clf.intercept_, average_intercept, decimal=14)
def test_set_intercept_to_intercept(self):
# Checks intercept_ shape consistency for the warm starts
# Inconsistent intercept_ shape.
clf = self.factory().fit(X5, Y5)
self.factory().fit(X5, Y5, intercept_init=clf.intercept_)
clf = self.factory().fit(X, Y)
self.factory().fit(X, Y, intercept_init=clf.intercept_)
@raises(ValueError)
def test_sgd_at_least_two_labels(self):
# Target must have at least two labels
self.factory(alpha=0.01, n_iter=20).fit(X2, np.ones(9))
def test_partial_fit_weight_class_balanced(self):
# partial_fit with class_weight='balanced' not supported"""
assert_raises_regexp(ValueError,
"class_weight 'balanced' is not supported for "
"partial_fit. In order to use 'balanced' weights, "
"use compute_class_weight\('balanced', classes, y\). "
"In place of y you can us a large enough sample "
"of the full training set target to properly "
"estimate the class frequency distributions. "
"Pass the resulting weights as the class_weight "
"parameter.",
self.factory(class_weight='balanced').partial_fit,
X, Y, classes=np.unique(Y))
def test_sgd_multiclass(self):
# Multi-class test case
clf = self.factory(alpha=0.01, n_iter=20).fit(X2, Y2)
assert_equal(clf.coef_.shape, (3, 2))
assert_equal(clf.intercept_.shape, (3,))
assert_equal(clf.decision_function([0, 0]).shape, (1, 3))
pred = clf.predict(T2)
assert_array_equal(pred, true_result2)
def test_sgd_multiclass_average(self):
eta = .001
alpha = .01
# Multi-class average test case
clf = self.factory(loss='squared_loss',
learning_rate='constant',
eta0=eta, alpha=alpha,
fit_intercept=True,
n_iter=1, average=True, shuffle=False)
np_Y2 = np.array(Y2)
clf.fit(X2, np_Y2)
classes = np.unique(np_Y2)
for i, cl in enumerate(classes):
y_i = np.ones(np_Y2.shape[0])
y_i[np_Y2 != cl] = -1
average_coef, average_intercept = self.asgd(X2, y_i, eta, alpha)
assert_array_almost_equal(average_coef, clf.coef_[i], decimal=16)
assert_almost_equal(average_intercept,
clf.intercept_[i],
decimal=16)
def test_sgd_multiclass_with_init_coef(self):
# Multi-class test case
clf = self.factory(alpha=0.01, n_iter=20)
clf.fit(X2, Y2, coef_init=np.zeros((3, 2)),
intercept_init=np.zeros(3))
assert_equal(clf.coef_.shape, (3, 2))
assert_true(clf.intercept_.shape, (3,))
pred = clf.predict(T2)
assert_array_equal(pred, true_result2)
def test_sgd_multiclass_njobs(self):
# Multi-class test case with multi-core support
clf = self.factory(alpha=0.01, n_iter=20, n_jobs=2).fit(X2, Y2)
assert_equal(clf.coef_.shape, (3, 2))
assert_equal(clf.intercept_.shape, (3,))
assert_equal(clf.decision_function([0, 0]).shape, (1, 3))
pred = clf.predict(T2)
assert_array_equal(pred, true_result2)
def test_set_coef_multiclass(self):
# Checks coef_init and intercept_init shape for for multi-class
# problems
# Provided coef_ does not match dataset
clf = self.factory()
assert_raises(ValueError, clf.fit, X2, Y2, coef_init=np.zeros((2, 2)))
# Provided coef_ does match dataset
clf = self.factory().fit(X2, Y2, coef_init=np.zeros((3, 2)))
# Provided intercept_ does not match dataset
clf = self.factory()
assert_raises(ValueError, clf.fit, X2, Y2,
intercept_init=np.zeros((1,)))
# Provided intercept_ does match dataset.
clf = self.factory().fit(X2, Y2, intercept_init=np.zeros((3,)))
def test_sgd_proba(self):
# Check SGD.predict_proba
# Hinge loss does not allow for conditional prob estimate.
# We cannot use the factory here, because it defines predict_proba
# anyway.
clf = SGDClassifier(loss="hinge", alpha=0.01, n_iter=10).fit(X, Y)
assert_false(hasattr(clf, "predict_proba"))
assert_false(hasattr(clf, "predict_log_proba"))
# log and modified_huber losses can output probability estimates
# binary case
for loss in ["log", "modified_huber"]:
clf = self.factory(loss="modified_huber", alpha=0.01, n_iter=10)
clf.fit(X, Y)
p = clf.predict_proba([3, 2])
assert_true(p[0, 1] > 0.5)
p = clf.predict_proba([-1, -1])
assert_true(p[0, 1] < 0.5)
p = clf.predict_log_proba([3, 2])
assert_true(p[0, 1] > p[0, 0])
p = clf.predict_log_proba([-1, -1])
assert_true(p[0, 1] < p[0, 0])
# log loss multiclass probability estimates
clf = self.factory(loss="log", alpha=0.01, n_iter=10).fit(X2, Y2)
d = clf.decision_function([[.1, -.1], [.3, .2]])
p = clf.predict_proba([[.1, -.1], [.3, .2]])
assert_array_equal(np.argmax(p, axis=1), np.argmax(d, axis=1))
assert_almost_equal(p[0].sum(), 1)
assert_true(np.all(p[0] >= 0))
p = clf.predict_proba([-1, -1])
d = clf.decision_function([-1, -1])
assert_array_equal(np.argsort(p[0]), np.argsort(d[0]))
l = clf.predict_log_proba([3, 2])
p = clf.predict_proba([3, 2])
assert_array_almost_equal(np.log(p), l)
l = clf.predict_log_proba([-1, -1])
p = clf.predict_proba([-1, -1])
assert_array_almost_equal(np.log(p), l)
# Modified Huber multiclass probability estimates; requires a separate
# test because the hard zero/one probabilities may destroy the
# ordering present in decision_function output.
clf = self.factory(loss="modified_huber", alpha=0.01, n_iter=10)
clf.fit(X2, Y2)
d = clf.decision_function([3, 2])
p = clf.predict_proba([3, 2])
if not isinstance(self, SparseSGDClassifierTestCase):
assert_equal(np.argmax(d, axis=1), np.argmax(p, axis=1))
else: # XXX the sparse test gets a different X2 (?)
assert_equal(np.argmin(d, axis=1), np.argmin(p, axis=1))
# the following sample produces decision_function values < -1,
# which would cause naive normalization to fail (see comment
# in SGDClassifier.predict_proba)
x = X.mean(axis=0)
d = clf.decision_function(x)
if np.all(d < -1): # XXX not true in sparse test case (why?)
p = clf.predict_proba(x)
assert_array_almost_equal(p[0], [1 / 3.] * 3)
def test_sgd_l1(self):
# Test L1 regularization
n = len(X4)
rng = np.random.RandomState(13)
idx = np.arange(n)
rng.shuffle(idx)
X = X4[idx, :]
Y = Y4[idx]
clf = self.factory(penalty='l1', alpha=.2, fit_intercept=False,
n_iter=2000, shuffle=False)
clf.fit(X, Y)
assert_array_equal(clf.coef_[0, 1:-1], np.zeros((4,)))
pred = clf.predict(X)
assert_array_equal(pred, Y)
# test sparsify with dense inputs
clf.sparsify()
assert_true(sp.issparse(clf.coef_))
pred = clf.predict(X)
assert_array_equal(pred, Y)
# pickle and unpickle with sparse coef_
clf = pickle.loads(pickle.dumps(clf))
assert_true(sp.issparse(clf.coef_))
pred = clf.predict(X)
assert_array_equal(pred, Y)
def test_class_weights(self):
# Test class weights.
X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
[1.0, 1.0], [1.0, 0.0]])
y = [1, 1, 1, -1, -1]
clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False,
class_weight=None)
clf.fit(X, y)
assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1]))
# we give a small weights to class 1
clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False,
class_weight={1: 0.001})
clf.fit(X, y)
# now the hyperplane should rotate clock-wise and
# the prediction on this point should shift
assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1]))
def test_equal_class_weight(self):
# Test if equal class weights approx. equals no class weights.
X = [[1, 0], [1, 0], [0, 1], [0, 1]]
y = [0, 0, 1, 1]
clf = self.factory(alpha=0.1, n_iter=1000, class_weight=None)
clf.fit(X, y)
X = [[1, 0], [0, 1]]
y = [0, 1]
clf_weighted = self.factory(alpha=0.1, n_iter=1000,
class_weight={0: 0.5, 1: 0.5})
clf_weighted.fit(X, y)
# should be similar up to some epsilon due to learning rate schedule
assert_almost_equal(clf.coef_, clf_weighted.coef_, decimal=2)
@raises(ValueError)
def test_wrong_class_weight_label(self):
# ValueError due to not existing class label.
clf = self.factory(alpha=0.1, n_iter=1000, class_weight={0: 0.5})
clf.fit(X, Y)
@raises(ValueError)
def test_wrong_class_weight_format(self):
# ValueError due to wrong class_weight argument type.
clf = self.factory(alpha=0.1, n_iter=1000, class_weight=[0.5])
clf.fit(X, Y)
def test_weights_multiplied(self):
# Tests that class_weight and sample_weight are multiplicative
class_weights = {1: .6, 2: .3}
sample_weights = np.random.random(Y4.shape[0])
multiplied_together = np.copy(sample_weights)
multiplied_together[Y4 == 1] *= class_weights[1]
multiplied_together[Y4 == 2] *= class_weights[2]
clf1 = self.factory(alpha=0.1, n_iter=20, class_weight=class_weights)
clf2 = self.factory(alpha=0.1, n_iter=20)
clf1.fit(X4, Y4, sample_weight=sample_weights)
clf2.fit(X4, Y4, sample_weight=multiplied_together)
assert_almost_equal(clf1.coef_, clf2.coef_)
def test_balanced_weight(self):
# Test class weights for imbalanced data"""
# compute reference metrics on iris dataset that is quite balanced by
# default
X, y = iris.data, iris.target
X = scale(X)
idx = np.arange(X.shape[0])
rng = np.random.RandomState(6)
rng.shuffle(idx)
X = X[idx]
y = y[idx]
clf = self.factory(alpha=0.0001, n_iter=1000,
class_weight=None, shuffle=False).fit(X, y)
assert_almost_equal(metrics.f1_score(y, clf.predict(X), average='weighted'), 0.96,
decimal=1)
# make the same prediction using balanced class_weight
clf_balanced = self.factory(alpha=0.0001, n_iter=1000,
class_weight="balanced",
shuffle=False).fit(X, y)
assert_almost_equal(metrics.f1_score(y, clf_balanced.predict(X), average='weighted'), 0.96,
decimal=1)
# Make sure that in the balanced case it does not change anything
# to use "balanced"
assert_array_almost_equal(clf.coef_, clf_balanced.coef_, 6)
# build an very very imbalanced dataset out of iris data
X_0 = X[y == 0, :]
y_0 = y[y == 0]
X_imbalanced = np.vstack([X] + [X_0] * 10)
y_imbalanced = np.concatenate([y] + [y_0] * 10)
# fit a model on the imbalanced data without class weight info
clf = self.factory(n_iter=1000, class_weight=None, shuffle=False)
clf.fit(X_imbalanced, y_imbalanced)
y_pred = clf.predict(X)
assert_less(metrics.f1_score(y, y_pred, average='weighted'), 0.96)
# fit a model with balanced class_weight enabled
clf = self.factory(n_iter=1000, class_weight="balanced", shuffle=False)
clf.fit(X_imbalanced, y_imbalanced)
y_pred = clf.predict(X)
assert_greater(metrics.f1_score(y, y_pred, average='weighted'), 0.96)
# fit another using a fit parameter override
clf = self.factory(n_iter=1000, class_weight="balanced", shuffle=False)
clf.fit(X_imbalanced, y_imbalanced)
y_pred = clf.predict(X)
assert_greater(metrics.f1_score(y, y_pred, average='weighted'), 0.96)
def test_sample_weights(self):
# Test weights on individual samples
X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
[1.0, 1.0], [1.0, 0.0]])
y = [1, 1, 1, -1, -1]
clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False)
clf.fit(X, y)
assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1]))
# we give a small weights to class 1
clf.fit(X, y, sample_weight=[0.001] * 3 + [1] * 2)
# now the hyperplane should rotate clock-wise and
# the prediction on this point should shift
assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1]))
@raises(ValueError)
def test_wrong_sample_weights(self):
# Test if ValueError is raised if sample_weight has wrong shape
clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False)
# provided sample_weight too long
clf.fit(X, Y, sample_weight=np.arange(7))
@raises(ValueError)
def test_partial_fit_exception(self):
clf = self.factory(alpha=0.01)
# classes was not specified
clf.partial_fit(X3, Y3)
def test_partial_fit_binary(self):
third = X.shape[0] // 3
clf = self.factory(alpha=0.01)
classes = np.unique(Y)
clf.partial_fit(X[:third], Y[:third], classes=classes)
assert_equal(clf.coef_.shape, (1, X.shape[1]))
assert_equal(clf.intercept_.shape, (1,))
assert_equal(clf.decision_function([0, 0]).shape, (1, ))
id1 = id(clf.coef_.data)
clf.partial_fit(X[third:], Y[third:])
id2 = id(clf.coef_.data)
# check that coef_ haven't been re-allocated
assert_true(id1, id2)
y_pred = clf.predict(T)
assert_array_equal(y_pred, true_result)
def test_partial_fit_multiclass(self):
third = X2.shape[0] // 3
clf = self.factory(alpha=0.01)
classes = np.unique(Y2)
clf.partial_fit(X2[:third], Y2[:third], classes=classes)
assert_equal(clf.coef_.shape, (3, X2.shape[1]))
assert_equal(clf.intercept_.shape, (3,))
assert_equal(clf.decision_function([0, 0]).shape, (1, 3))
id1 = id(clf.coef_.data)
clf.partial_fit(X2[third:], Y2[third:])
id2 = id(clf.coef_.data)
# check that coef_ haven't been re-allocated
assert_true(id1, id2)
def test_fit_then_partial_fit(self):
# Partial_fit should work after initial fit in the multiclass case.
# Non-regression test for #2496; fit would previously produce a
# Fortran-ordered coef_ that subsequent partial_fit couldn't handle.
clf = self.factory()
clf.fit(X2, Y2)
clf.partial_fit(X2, Y2) # no exception here
def _test_partial_fit_equal_fit(self, lr):
for X_, Y_, T_ in ((X, Y, T), (X2, Y2, T2)):
clf = self.factory(alpha=0.01, eta0=0.01, n_iter=2,
learning_rate=lr, shuffle=False)
clf.fit(X_, Y_)
y_pred = clf.decision_function(T_)
t = clf.t_
classes = np.unique(Y_)
clf = self.factory(alpha=0.01, eta0=0.01, learning_rate=lr,
shuffle=False)
for i in range(2):
clf.partial_fit(X_, Y_, classes=classes)
y_pred2 = clf.decision_function(T_)
assert_equal(clf.t_, t)
assert_array_almost_equal(y_pred, y_pred2, decimal=2)
def test_partial_fit_equal_fit_constant(self):
self._test_partial_fit_equal_fit("constant")
def test_partial_fit_equal_fit_optimal(self):
self._test_partial_fit_equal_fit("optimal")
def test_partial_fit_equal_fit_invscaling(self):
self._test_partial_fit_equal_fit("invscaling")
def test_regression_losses(self):
clf = self.factory(alpha=0.01, learning_rate="constant",
eta0=0.1, loss="epsilon_insensitive")
clf.fit(X, Y)
assert_equal(1.0, np.mean(clf.predict(X) == Y))
clf = self.factory(alpha=0.01, learning_rate="constant",
eta0=0.1, loss="squared_epsilon_insensitive")
clf.fit(X, Y)
assert_equal(1.0, np.mean(clf.predict(X) == Y))
clf = self.factory(alpha=0.01, loss="huber")
clf.fit(X, Y)
assert_equal(1.0, np.mean(clf.predict(X) == Y))
clf = self.factory(alpha=0.01, learning_rate="constant", eta0=0.01,
loss="squared_loss")
clf.fit(X, Y)
assert_equal(1.0, np.mean(clf.predict(X) == Y))
def test_warm_start_multiclass(self):
self._test_warm_start(X2, Y2, "optimal")
def test_multiple_fit(self):
# Test multiple calls of fit w/ different shaped inputs.
clf = self.factory(alpha=0.01, n_iter=5,
shuffle=False)
clf.fit(X, Y)
assert_true(hasattr(clf, "coef_"))
# Non-regression test: try fitting with a different label set.
y = [["ham", "spam"][i] for i in LabelEncoder().fit_transform(Y)]
clf.fit(X[:, :-1], y)
class SparseSGDClassifierTestCase(DenseSGDClassifierTestCase):
"""Run exactly the same tests using the sparse representation variant"""
factory_class = SparseSGDClassifier
###############################################################################
# Regression Test Case
class DenseSGDRegressorTestCase(unittest.TestCase, CommonTest):
"""Test suite for the dense representation variant of SGD"""
factory_class = SGDRegressor
def test_sgd(self):
# Check that SGD gives any results.
clf = self.factory(alpha=0.1, n_iter=2,
fit_intercept=False)
clf.fit([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
assert_equal(clf.coef_[0], clf.coef_[1])
@raises(ValueError)
def test_sgd_bad_penalty(self):
# Check whether expected ValueError on bad penalty
self.factory(penalty='foobar', l1_ratio=0.85)
@raises(ValueError)
def test_sgd_bad_loss(self):
# Check whether expected ValueError on bad loss
self.factory(loss="foobar")
def test_sgd_averaged_computed_correctly(self):
# Tests the average regressor matches the naive implementation
eta = .001
alpha = .01
n_samples = 20
n_features = 10
rng = np.random.RandomState(0)
X = rng.normal(size=(n_samples, n_features))
w = rng.normal(size=n_features)
# simple linear function without noise
y = np.dot(X, w)
clf = self.factory(loss='squared_loss',
learning_rate='constant',
eta0=eta, alpha=alpha,
fit_intercept=True,
n_iter=1, average=True, shuffle=False)
clf.fit(X, y)
average_weights, average_intercept = self.asgd(X, y, eta, alpha)
assert_array_almost_equal(clf.coef_,
average_weights,
decimal=16)
assert_almost_equal(clf.intercept_, average_intercept, decimal=16)
def test_sgd_averaged_partial_fit(self):
# Tests whether the partial fit yields the same average as the fit
eta = .001
alpha = .01
n_samples = 20
n_features = 10
rng = np.random.RandomState(0)
X = rng.normal(size=(n_samples, n_features))
w = rng.normal(size=n_features)
# simple linear function without noise
y = np.dot(X, w)
clf = self.factory(loss='squared_loss',
learning_rate='constant',
eta0=eta, alpha=alpha,
fit_intercept=True,
n_iter=1, average=True, shuffle=False)
clf.partial_fit(X[:int(n_samples / 2)][:], y[:int(n_samples / 2)])
clf.partial_fit(X[int(n_samples / 2):][:], y[int(n_samples / 2):])
average_weights, average_intercept = self.asgd(X, y, eta, alpha)
assert_array_almost_equal(clf.coef_,
average_weights,
decimal=16)
assert_almost_equal(clf.intercept_[0], average_intercept, decimal=16)
def test_average_sparse(self):
# Checks the average weights on data with 0s
eta = .001
alpha = .01
clf = self.factory(loss='squared_loss',
learning_rate='constant',
eta0=eta, alpha=alpha,
fit_intercept=True,
n_iter=1, average=True, shuffle=False)
n_samples = Y3.shape[0]
clf.partial_fit(X3[:int(n_samples / 2)][:], Y3[:int(n_samples / 2)])
clf.partial_fit(X3[int(n_samples / 2):][:], Y3[int(n_samples / 2):])
average_weights, average_intercept = self.asgd(X3, Y3, eta, alpha)
assert_array_almost_equal(clf.coef_,
average_weights,
decimal=16)
assert_almost_equal(clf.intercept_, average_intercept, decimal=16)
def test_sgd_least_squares_fit(self):
xmin, xmax = -5, 5
n_samples = 100
rng = np.random.RandomState(0)
X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1)
# simple linear function without noise
y = 0.5 * X.ravel()
clf = self.factory(loss='squared_loss', alpha=0.1, n_iter=20,
fit_intercept=False)
clf.fit(X, y)
score = clf.score(X, y)
assert_greater(score, 0.99)
# simple linear function with noise
y = 0.5 * X.ravel() + rng.randn(n_samples, 1).ravel()
clf = self.factory(loss='squared_loss', alpha=0.1, n_iter=20,
fit_intercept=False)
clf.fit(X, y)
score = clf.score(X, y)
assert_greater(score, 0.5)
def test_sgd_epsilon_insensitive(self):
xmin, xmax = -5, 5
n_samples = 100
X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1)
# simple linear function without noise
y = 0.5 * X.ravel()
clf = self.factory(loss='epsilon_insensitive', epsilon=0.01,
alpha=0.1, n_iter=20,
fit_intercept=False)
clf.fit(X, y)
score = clf.score(X, y)
assert_true(score > 0.99)
# simple linear function with noise
y = 0.5 * X.ravel() \
+ np.random.randn(n_samples, 1).ravel()
clf = self.factory(loss='epsilon_insensitive', epsilon=0.01,
alpha=0.1, n_iter=20,
fit_intercept=False)
clf.fit(X, y)
score = clf.score(X, y)
assert_true(score > 0.5)
def test_sgd_huber_fit(self):
xmin, xmax = -5, 5
n_samples = 100
rng = np.random.RandomState(0)
X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1)
# simple linear function without noise
y = 0.5 * X.ravel()
clf = self.factory(loss="huber", epsilon=0.1, alpha=0.1, n_iter=20,
fit_intercept=False)
clf.fit(X, y)
score = clf.score(X, y)
assert_greater(score, 0.99)
# simple linear function with noise
y = 0.5 * X.ravel() + rng.randn(n_samples, 1).ravel()
clf = self.factory(loss="huber", epsilon=0.1, alpha=0.1, n_iter=20,
fit_intercept=False)
clf.fit(X, y)
score = clf.score(X, y)
assert_greater(score, 0.5)
def test_elasticnet_convergence(self):
# Check that the SGD output is consistent with coordinate descent
n_samples, n_features = 1000, 5
rng = np.random.RandomState(0)
X = np.random.randn(n_samples, n_features)
# ground_truth linear model that generate y from X and to which the
# models should converge if the regularizer would be set to 0.0
ground_truth_coef = rng.randn(n_features)
y = np.dot(X, ground_truth_coef)
# XXX: alpha = 0.1 seems to cause convergence problems
for alpha in [0.01, 0.001]:
for l1_ratio in [0.5, 0.8, 1.0]:
cd = linear_model.ElasticNet(alpha=alpha, l1_ratio=l1_ratio,
fit_intercept=False)
cd.fit(X, y)
sgd = self.factory(penalty='elasticnet', n_iter=50,
alpha=alpha, l1_ratio=l1_ratio,
fit_intercept=False)
sgd.fit(X, y)
err_msg = ("cd and sgd did not converge to comparable "
"results for alpha=%f and l1_ratio=%f"
% (alpha, l1_ratio))
assert_almost_equal(cd.coef_, sgd.coef_, decimal=2,
err_msg=err_msg)
def test_partial_fit(self):
third = X.shape[0] // 3
clf = self.factory(alpha=0.01)
clf.partial_fit(X[:third], Y[:third])
assert_equal(clf.coef_.shape, (X.shape[1], ))
assert_equal(clf.intercept_.shape, (1,))
assert_equal(clf.decision_function([0, 0]).shape, (1, ))
id1 = id(clf.coef_.data)
clf.partial_fit(X[third:], Y[third:])
id2 = id(clf.coef_.data)
# check that coef_ haven't been re-allocated
assert_true(id1, id2)
def _test_partial_fit_equal_fit(self, lr):
clf = self.factory(alpha=0.01, n_iter=2, eta0=0.01,
learning_rate=lr, shuffle=False)
clf.fit(X, Y)
y_pred = clf.predict(T)
t = clf.t_
clf = self.factory(alpha=0.01, eta0=0.01,
learning_rate=lr, shuffle=False)
for i in range(2):
clf.partial_fit(X, Y)
y_pred2 = clf.predict(T)
assert_equal(clf.t_, t)
assert_array_almost_equal(y_pred, y_pred2, decimal=2)
def test_partial_fit_equal_fit_constant(self):
self._test_partial_fit_equal_fit("constant")
def test_partial_fit_equal_fit_optimal(self):
self._test_partial_fit_equal_fit("optimal")
def test_partial_fit_equal_fit_invscaling(self):
self._test_partial_fit_equal_fit("invscaling")
def test_loss_function_epsilon(self):
clf = self.factory(epsilon=0.9)
clf.set_params(epsilon=0.1)
assert clf.loss_functions['huber'][1] == 0.1
class SparseSGDRegressorTestCase(DenseSGDRegressorTestCase):
# Run exactly the same tests using the sparse representation variant
factory_class = SparseSGDRegressor
def test_l1_ratio():
# Test if l1 ratio extremes match L1 and L2 penalty settings.
X, y = datasets.make_classification(n_samples=1000,
n_features=100, n_informative=20,
random_state=1234)
# test if elasticnet with l1_ratio near 1 gives same result as pure l1
est_en = SGDClassifier(alpha=0.001, penalty='elasticnet',
l1_ratio=0.9999999999, random_state=42).fit(X, y)
est_l1 = SGDClassifier(alpha=0.001, penalty='l1', random_state=42).fit(X, y)
assert_array_almost_equal(est_en.coef_, est_l1.coef_)
# test if elasticnet with l1_ratio near 0 gives same result as pure l2
est_en = SGDClassifier(alpha=0.001, penalty='elasticnet',
l1_ratio=0.0000000001, random_state=42).fit(X, y)
est_l2 = SGDClassifier(alpha=0.001, penalty='l2', random_state=42).fit(X, y)
assert_array_almost_equal(est_en.coef_, est_l2.coef_)
def test_underflow_or_overlow():
with np.errstate(all='raise'):
# Generate some weird data with hugely unscaled features
rng = np.random.RandomState(0)
n_samples = 100
n_features = 10
X = rng.normal(size=(n_samples, n_features))
X[:, :2] *= 1e300
assert_true(np.isfinite(X).all())
# Use MinMaxScaler to scale the data without introducing a numerical
# instability (computing the standard deviation naively is not possible
# on this data)
X_scaled = MinMaxScaler().fit_transform(X)
assert_true(np.isfinite(X_scaled).all())
# Define a ground truth on the scaled data
ground_truth = rng.normal(size=n_features)
y = (np.dot(X_scaled, ground_truth) > 0.).astype(np.int32)
assert_array_equal(np.unique(y), [0, 1])
model = SGDClassifier(alpha=0.1, loss='squared_hinge', n_iter=500)
# smoke test: model is stable on scaled data
model.fit(X_scaled, y)
assert_true(np.isfinite(model.coef_).all())
# model is numerically unstable on unscaled data
msg_regxp = (r"Floating-point under-/overflow occurred at epoch #.*"
" Scaling input data with StandardScaler or MinMaxScaler"
" might help.")
assert_raises_regexp(ValueError, msg_regxp, model.fit, X, y)
def test_numerical_stability_large_gradient():
# Non regression test case for numerical stability on scaled problems
# where the gradient can still explode with some losses
model = SGDClassifier(loss='squared_hinge', n_iter=10, shuffle=True,
penalty='elasticnet', l1_ratio=0.3, alpha=0.01,
eta0=0.001, random_state=0)
with np.errstate(all='raise'):
model.fit(iris.data, iris.target)
assert_true(np.isfinite(model.coef_).all())
def test_large_regularization():
# Non regression tests for numerical stability issues caused by large
# regularization parameters
for penalty in ['l2', 'l1', 'elasticnet']:
model = SGDClassifier(alpha=1e5, learning_rate='constant', eta0=0.1,
n_iter=5, penalty=penalty, shuffle=False)
with np.errstate(all='raise'):
model.fit(iris.data, iris.target)
assert_array_almost_equal(model.coef_, np.zeros_like(model.coef_))
|
bsd-3-clause
|
chdhr-harshal/MCMonitor
|
src/python/experiments/grid_nodes.py
|
1
|
2175
|
#!/usr/local/bin/python
"""
Grid graph nodes objective evolution with increasing k
"""
from __future__ import division
import sys
sys.path.insert(1, '..')
import __builtin__
import os
from MarkovChain import *
from MarkovChain.node_objectives import *
import networkx as nx
import pandas as pd
PLOTS_DATA_DIR = "/home/grad3/harshal/Desktop/MCMonitor/Plots_data/"
dataframe_rows = []
def get_objective_evolution(method, k, iteration):
rows = get_evolution(method, k)
for row in rows:
row['iteration'] = iteration
global dataframe_rows
dataframe_rows += rows
df = pd.DataFrame(dataframe_rows)
df.to_csv(PLOTS_DATA_DIR + "grid_nodes_k_objective_evolution.csv.gz", sep=",",
header=True, index=False, compression="gzip")
if __name__ == "__main__":
G = nx.grid_2d_graph(100, 10, create_using=nx.DiGraph())
G = nx.convert_node_labels_to_integers(G)
G = nx.stochastic_graph(G, weight='weight')
num_nodes = len(G)
num_items = len(G)
k = 50
item_distributions = ['uniform', 'direct', 'inverse', 'ego']
for item_distribution in item_distributions:
if item_distribution == 'ego':
iterations = 10
else:
iterations = 1
for iteration in xrange(iterations):
print "Evaluating item distribution {}".format(item_distribution)
__builtin__.mc = MarkovChain(num_nodes=num_nodes,
num_items=num_items,
item_distribution=item_distribution,
G=G)
print "Starting evaluation of methods"
methods = [random_nodes,
highest_item_nodes,
highest_closeness_centrality_nodes,
highest_in_degree_centrality_nodes,
highest_in_probability_nodes,
highest_betweenness_centrality_nodes,
smart_greedy_parallel]
for method in methods:
print "Evaluating method {}".format(method.func_name)
get_objective_evolution(method, k, iteration)
|
mit
|
blink1073/scikit-image
|
doc/examples/features_detection/plot_local_binary_pattern.py
|
12
|
6776
|
"""
===============================================
Local Binary Pattern for texture classification
===============================================
In this example, we will see how to classify textures based on LBP (Local
Binary Pattern). LBP looks at points surrounding a central point and tests
whether the surrounding points are greater than or less than the central point
(i.e. gives a binary result).
Before trying out LBP on an image, it helps to look at a schematic of LBPs.
The below code is just used to plot the schematic.
"""
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
METHOD = 'uniform'
plt.rcParams['font.size'] = 9
def plot_circle(ax, center, radius, color):
circle = plt.Circle(center, radius, facecolor=color, edgecolor='0.5')
ax.add_patch(circle)
def plot_lbp_model(ax, binary_values):
"""Draw the schematic for a local binary pattern."""
# Geometry spec
theta = np.deg2rad(45)
R = 1
r = 0.15
w = 1.5
gray = '0.5'
# Draw the central pixel.
plot_circle(ax, (0, 0), radius=r, color=gray)
# Draw the surrounding pixels.
for i, facecolor in enumerate(binary_values):
x = R * np.cos(i * theta)
y = R * np.sin(i * theta)
plot_circle(ax, (x, y), radius=r, color=str(facecolor))
# Draw the pixel grid.
for x in np.linspace(-w, w, 4):
ax.axvline(x, color=gray)
ax.axhline(x, color=gray)
# Tweak the layout.
ax.axis('image')
ax.axis('off')
size = w + 0.2
ax.set_xlim(-size, size)
ax.set_ylim(-size, size)
fig, axes = plt.subplots(ncols=5, figsize=(7, 2))
titles = ['flat', 'flat', 'edge', 'corner', 'non-uniform']
binary_patterns = [np.zeros(8),
np.ones(8),
np.hstack([np.ones(4), np.zeros(4)]),
np.hstack([np.zeros(3), np.ones(5)]),
[1, 0, 0, 1, 1, 1, 0, 0]]
for ax, values, name in zip(axes, binary_patterns, titles):
plot_lbp_model(ax, values)
ax.set_title(name)
"""
.. image:: PLOT2RST.current_figure
The figure above shows example results with black (or white) representing
pixels that are less (or more) intense than the central pixel. When surrounding
pixels are all black or all white, then that image region is flat (i.e.
featureless). Groups of continuous black or white pixels are considered
"uniform" patterns that can be interpreted as corners or edges. If pixels
switch back-and-forth between black and white pixels, the pattern is considered
"non-uniform".
When using LBP to detect texture, you measure a collection of LBPs over an
image patch and look at the distribution of these LBPs. Lets apply LBP to
a brick texture.
"""
from skimage.transform import rotate
from skimage.feature import local_binary_pattern
from skimage import data
from skimage.color import label2rgb
# settings for LBP
radius = 3
n_points = 8 * radius
def overlay_labels(image, lbp, labels):
mask = np.logical_or.reduce([lbp == each for each in labels])
return label2rgb(mask, image=image, bg_label=0, alpha=0.5)
def highlight_bars(bars, indexes):
for i in indexes:
bars[i].set_facecolor('r')
image = data.load('brick.png')
lbp = local_binary_pattern(image, n_points, radius, METHOD)
def hist(ax, lbp):
n_bins = lbp.max() + 1
return ax.hist(lbp.ravel(), normed=True, bins=n_bins, range=(0, n_bins),
facecolor='0.5')
# plot histograms of LBP of textures
fig, (ax_img, ax_hist) = plt.subplots(nrows=2, ncols=3, figsize=(9, 6))
plt.gray()
titles = ('edge', 'flat', 'corner')
w = width = radius - 1
edge_labels = range(n_points // 2 - w, n_points // 2 + w + 1)
flat_labels = list(range(0, w + 1)) + list(range(n_points - w, n_points + 2))
i_14 = n_points // 4 # 1/4th of the histogram
i_34 = 3 * (n_points // 4) # 3/4th of the histogram
corner_labels = (list(range(i_14 - w, i_14 + w + 1)) +
list(range(i_34 - w, i_34 + w + 1)))
label_sets = (edge_labels, flat_labels, corner_labels)
for ax, labels in zip(ax_img, label_sets):
ax.imshow(overlay_labels(image, lbp, labels))
for ax, labels, name in zip(ax_hist, label_sets, titles):
counts, _, bars = hist(ax, lbp)
highlight_bars(bars, labels)
ax.set_ylim(ymax=np.max(counts[:-1]))
ax.set_xlim(xmax=n_points + 2)
ax.set_title(name)
ax_hist[0].set_ylabel('Percentage')
for ax in ax_img:
ax.axis('off')
"""
.. image:: PLOT2RST.current_figure
The above plot highlights flat, edge-like, and corner-like regions of the
image.
The histogram of the LBP result is a good measure to classify textures. Here,
we test the histogram distributions against each other using the
Kullback-Leibler-Divergence.
"""
# settings for LBP
radius = 2
n_points = 8 * radius
def kullback_leibler_divergence(p, q):
p = np.asarray(p)
q = np.asarray(q)
filt = np.logical_and(p != 0, q != 0)
return np.sum(p[filt] * np.log2(p[filt] / q[filt]))
def match(refs, img):
best_score = 10
best_name = None
lbp = local_binary_pattern(img, n_points, radius, METHOD)
n_bins = lbp.max() + 1
hist, _ = np.histogram(lbp, normed=True, bins=n_bins, range=(0, n_bins))
for name, ref in refs.items():
ref_hist, _ = np.histogram(ref, normed=True, bins=n_bins,
range=(0, n_bins))
score = kullback_leibler_divergence(hist, ref_hist)
if score < best_score:
best_score = score
best_name = name
return best_name
brick = data.load('brick.png')
grass = data.load('grass.png')
wall = data.load('rough-wall.png')
refs = {
'brick': local_binary_pattern(brick, n_points, radius, METHOD),
'grass': local_binary_pattern(grass, n_points, radius, METHOD),
'wall': local_binary_pattern(wall, n_points, radius, METHOD)
}
# classify rotated textures
print('Rotated images matched against references using LBP:')
print('original: brick, rotated: 30deg, match result: ',
match(refs, rotate(brick, angle=30, resize=False)))
print('original: brick, rotated: 70deg, match result: ',
match(refs, rotate(brick, angle=70, resize=False)))
print('original: grass, rotated: 145deg, match result: ',
match(refs, rotate(grass, angle=145, resize=False)))
# plot histograms of LBP of textures
fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(nrows=2, ncols=3,
figsize=(9, 6))
plt.gray()
ax1.imshow(brick)
ax1.axis('off')
hist(ax4, refs['brick'])
ax4.set_ylabel('Percentage')
ax2.imshow(grass)
ax2.axis('off')
hist(ax5, refs['grass'])
ax5.set_xlabel('Uniform LBP values')
ax3.imshow(wall)
ax3.axis('off')
hist(ax6, refs['wall'])
"""
.. image:: PLOT2RST.current_figure
"""
plt.show()
|
bsd-3-clause
|
kernc/scikit-learn
|
benchmarks/bench_multilabel_metrics.py
|
276
|
7138
|
#!/usr/bin/env python
"""
A comparison of multilabel target formats and metrics over them
"""
from __future__ import division
from __future__ import print_function
from timeit import timeit
from functools import partial
import itertools
import argparse
import sys
import matplotlib.pyplot as plt
import scipy.sparse as sp
import numpy as np
from sklearn.datasets import make_multilabel_classification
from sklearn.metrics import (f1_score, accuracy_score, hamming_loss,
jaccard_similarity_score)
from sklearn.utils.testing import ignore_warnings
METRICS = {
'f1': partial(f1_score, average='micro'),
'f1-by-sample': partial(f1_score, average='samples'),
'accuracy': accuracy_score,
'hamming': hamming_loss,
'jaccard': jaccard_similarity_score,
}
FORMATS = {
'sequences': lambda y: [list(np.flatnonzero(s)) for s in y],
'dense': lambda y: y,
'csr': lambda y: sp.csr_matrix(y),
'csc': lambda y: sp.csc_matrix(y),
}
@ignore_warnings
def benchmark(metrics=tuple(v for k, v in sorted(METRICS.items())),
formats=tuple(v for k, v in sorted(FORMATS.items())),
samples=1000, classes=4, density=.2,
n_times=5):
"""Times metric calculations for a number of inputs
Parameters
----------
metrics : array-like of callables (1d or 0d)
The metric functions to time.
formats : array-like of callables (1d or 0d)
These may transform a dense indicator matrix into multilabel
representation.
samples : array-like of ints (1d or 0d)
The number of samples to generate as input.
classes : array-like of ints (1d or 0d)
The number of classes in the input.
density : array-like of ints (1d or 0d)
The density of positive labels in the input.
n_times : int
Time calling the metric n_times times.
Returns
-------
array of floats shaped like (metrics, formats, samples, classes, density)
Time in seconds.
"""
metrics = np.atleast_1d(metrics)
samples = np.atleast_1d(samples)
classes = np.atleast_1d(classes)
density = np.atleast_1d(density)
formats = np.atleast_1d(formats)
out = np.zeros((len(metrics), len(formats), len(samples), len(classes),
len(density)), dtype=float)
it = itertools.product(samples, classes, density)
for i, (s, c, d) in enumerate(it):
_, y_true = make_multilabel_classification(n_samples=s, n_features=1,
n_classes=c, n_labels=d * c,
random_state=42)
_, y_pred = make_multilabel_classification(n_samples=s, n_features=1,
n_classes=c, n_labels=d * c,
random_state=84)
for j, f in enumerate(formats):
f_true = f(y_true)
f_pred = f(y_pred)
for k, metric in enumerate(metrics):
t = timeit(partial(metric, f_true, f_pred), number=n_times)
out[k, j].flat[i] = t
return out
def _tabulate(results, metrics, formats):
"""Prints results by metric and format
Uses the last ([-1]) value of other fields
"""
column_width = max(max(len(k) for k in formats) + 1, 8)
first_width = max(len(k) for k in metrics)
head_fmt = ('{:<{fw}s}' + '{:>{cw}s}' * len(formats))
row_fmt = ('{:<{fw}s}' + '{:>{cw}.3f}' * len(formats))
print(head_fmt.format('Metric', *formats,
cw=column_width, fw=first_width))
for metric, row in zip(metrics, results[:, :, -1, -1, -1]):
print(row_fmt.format(metric, *row,
cw=column_width, fw=first_width))
def _plot(results, metrics, formats, title, x_ticks, x_label,
format_markers=('x', '|', 'o', '+'),
metric_colors=('c', 'm', 'y', 'k', 'g', 'r', 'b')):
"""
Plot the results by metric, format and some other variable given by
x_label
"""
fig = plt.figure('scikit-learn multilabel metrics benchmarks')
plt.title(title)
ax = fig.add_subplot(111)
for i, metric in enumerate(metrics):
for j, format in enumerate(formats):
ax.plot(x_ticks, results[i, j].flat,
label='{}, {}'.format(metric, format),
marker=format_markers[j],
color=metric_colors[i % len(metric_colors)])
ax.set_xlabel(x_label)
ax.set_ylabel('Time (s)')
ax.legend()
plt.show()
if __name__ == "__main__":
ap = argparse.ArgumentParser()
ap.add_argument('metrics', nargs='*', default=sorted(METRICS),
help='Specifies metrics to benchmark, defaults to all. '
'Choices are: {}'.format(sorted(METRICS)))
ap.add_argument('--formats', nargs='+', choices=sorted(FORMATS),
help='Specifies multilabel formats to benchmark '
'(defaults to all).')
ap.add_argument('--samples', type=int, default=1000,
help='The number of samples to generate')
ap.add_argument('--classes', type=int, default=10,
help='The number of classes')
ap.add_argument('--density', type=float, default=.2,
help='The average density of labels per sample')
ap.add_argument('--plot', choices=['classes', 'density', 'samples'],
default=None,
help='Plot time with respect to this parameter varying '
'up to the specified value')
ap.add_argument('--n-steps', default=10, type=int,
help='Plot this many points for each metric')
ap.add_argument('--n-times',
default=5, type=int,
help="Time performance over n_times trials")
args = ap.parse_args()
if args.plot is not None:
max_val = getattr(args, args.plot)
if args.plot in ('classes', 'samples'):
min_val = 2
else:
min_val = 0
steps = np.linspace(min_val, max_val, num=args.n_steps + 1)[1:]
if args.plot in ('classes', 'samples'):
steps = np.unique(np.round(steps).astype(int))
setattr(args, args.plot, steps)
if args.metrics is None:
args.metrics = sorted(METRICS)
if args.formats is None:
args.formats = sorted(FORMATS)
results = benchmark([METRICS[k] for k in args.metrics],
[FORMATS[k] for k in args.formats],
args.samples, args.classes, args.density,
args.n_times)
_tabulate(results, args.metrics, args.formats)
if args.plot is not None:
print('Displaying plot', file=sys.stderr)
title = ('Multilabel metrics with %s' %
', '.join('{0}={1}'.format(field, getattr(args, field))
for field in ['samples', 'classes', 'density']
if args.plot != field))
_plot(results, args.metrics, args.formats, title, steps, args.plot)
|
bsd-3-clause
|
hasecbinusr/pysal
|
pysal/core/tests/test_Tables.py
|
6
|
1083
|
import pysal as ps
import numpy as np
import unittest as ut
PANDAS_EXTINCT = ps.common.pandas is None
class Test_Table(ut.TestCase):
def setUp(self):
self.filehandler = ps.open(ps.examples.get_path('columbus.dbf'))
self.df = self.filehandler.to_df()
self.filehandler.seek(0)
self.shapefile = ps.open(ps.examples.get_path('columbus.shp'))
self.csvhandler = ps.open(ps.examples.get_path('usjoin.csv'))
self.csv_df = self.csvhandler.to_df()
self.csvhandler.seek(0)
@ut.skipIf(PANDAS_EXTINCT, 'missing pandas')
def test_to_df(self):
for column in self.csv_df.columns:
if column.lower() == 'name':
continue
np.testing.assert_allclose(self.csvhandler.by_col(column),
self.csv_df[column].values)
for column in self.df.columns:
if column == 'geometry':
continue
np.testing.assert_allclose(self.filehandler.by_col(column),
self.df[column])
|
bsd-3-clause
|
Acehaidrey/incubator-airflow
|
tests/providers/sqlite/hooks/test_sqlite.py
|
7
|
3828
|
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
import unittest
from unittest import mock
from unittest.mock import patch
from airflow.models import Connection
from airflow.providers.sqlite.hooks.sqlite import SqliteHook
class TestSqliteHookConn(unittest.TestCase):
def setUp(self):
self.connection = Connection(host='host')
class UnitTestSqliteHook(SqliteHook):
conn_name_attr = 'test_conn_id'
self.db_hook = UnitTestSqliteHook()
self.db_hook.get_connection = mock.Mock()
self.db_hook.get_connection.return_value = self.connection
@patch('airflow.providers.sqlite.hooks.sqlite.sqlite3.connect')
def test_get_conn(self, mock_connect):
self.db_hook.get_conn()
mock_connect.assert_called_once_with('host')
@patch('airflow.providers.sqlite.hooks.sqlite.sqlite3.connect')
def test_get_conn_non_default_id(self, mock_connect):
self.db_hook.test_conn_id = 'non_default' # pylint: disable=attribute-defined-outside-init
self.db_hook.get_conn()
mock_connect.assert_called_once_with('host')
self.db_hook.get_connection.assert_called_once_with('non_default')
class TestSqliteHook(unittest.TestCase):
def setUp(self):
self.cur = mock.MagicMock()
self.conn = mock.MagicMock()
self.conn.cursor.return_value = self.cur
conn = self.conn
class UnitTestSqliteHook(SqliteHook):
conn_name_attr = 'test_conn_id'
log = mock.MagicMock()
def get_conn(self):
return conn
self.db_hook = UnitTestSqliteHook()
def test_get_first_record(self):
statement = 'SQL'
result_sets = [('row1',), ('row2',)]
self.cur.fetchone.return_value = result_sets[0]
self.assertEqual(result_sets[0], self.db_hook.get_first(statement))
self.conn.close.assert_called_once_with()
self.cur.close.assert_called_once_with()
self.cur.execute.assert_called_once_with(statement)
def test_get_records(self):
statement = 'SQL'
result_sets = [('row1',), ('row2',)]
self.cur.fetchall.return_value = result_sets
self.assertEqual(result_sets, self.db_hook.get_records(statement))
self.conn.close.assert_called_once_with()
self.cur.close.assert_called_once_with()
self.cur.execute.assert_called_once_with(statement)
def test_get_pandas_df(self):
statement = 'SQL'
column = 'col'
result_sets = [('row1',), ('row2',)]
self.cur.description = [(column,)]
self.cur.fetchall.return_value = result_sets
df = self.db_hook.get_pandas_df(statement)
self.assertEqual(column, df.columns[0])
self.assertEqual(result_sets[0][0], df.values.tolist()[0][0])
self.assertEqual(result_sets[1][0], df.values.tolist()[1][0])
self.cur.execute.assert_called_once_with(statement)
def test_run_log(self):
statement = 'SQL'
self.db_hook.run(statement)
assert self.db_hook.log.info.call_count == 2
|
apache-2.0
|
bromjiri/Presto
|
trainer/tests/final-twtter.py
|
1
|
1993
|
import datetime
import trainer.corpora as crp
import trainer.features as ftr
import trainer.classifier_test_verbose as cls
import os
# vars
type = "final"
nltk_run = False
sklearn_run = True
COUNT = 25000
cut = int((COUNT / 2) * 4 / 5)
array = [15000]
def run(dataset):
nlt = dict()
skl = dict()
dir = "output/" + dataset + "/" + type + "/"
os.makedirs(dir, exist_ok=True)
# file
for variable in array:
var_name = str(variable)
if nltk_run:
nlt_file = dir + dataset + "-" + type + "-" + var_name + "-nlt.csv"
nlt[var_name] = open(nlt_file, 'a')
nlt[var_name].write(str(datetime.datetime.today()) + "\n")
if sklearn_run:
skl_file = dir + dataset + "-" + type + "-" + var_name + "-skl.csv"
skl[var_name] = open(skl_file, 'a')
skl[var_name].write(str(datetime.datetime.today()) + "\n")
# cycle
for x in range(0, 10):
print(x)
corpora = crp.Corpora(dataset, count=COUNT, shuffle=True)
for variable in array:
print(str(variable))
var_name = str(variable)
features = ftr.Features(corpora, total=COUNT, bigram=True, stop=False, stem="porter", lower=True, inf_count=variable)
posfeats = features.get_features_pos()
negfeats = features.get_fearures_neg()
trainfeats = negfeats[:cut] + posfeats[:cut]
testfeats = negfeats[cut:] + posfeats[cut:]
nlt_output, skl_output = cls.train(trainfeats, testfeats, dataset, nlt=nltk_run, skl=sklearn_run)
# if nltk_run:
# print(str(nlt_output))
# nlt[var_name].write(nlt_output)
# nlt[var_name].flush()
# if sklearn_run:
# print(str(skl_output))
# skl[var_name].write(skl_output)
# skl[var_name].flush()
dataset_array = ["stanford"]
for dataset in dataset_array:
run(dataset)
|
mit
|
linebp/pandas
|
pandas/tests/plotting/test_series.py
|
1
|
32501
|
# coding: utf-8
""" Test cases for Series.plot """
import itertools
import pytest
from datetime import datetime
import pandas as pd
from pandas import Series, DataFrame, date_range
from pandas.compat import range, lrange
import pandas.util.testing as tm
from pandas.util.testing import slow
import numpy as np
from numpy.random import randn
import pandas.plotting as plotting
from pandas.tests.plotting.common import (TestPlotBase, _check_plot_works,
_skip_if_no_scipy_gaussian_kde,
_ok_for_gaussian_kde)
tm._skip_if_no_mpl()
class TestSeriesPlots(TestPlotBase):
def setup_method(self, method):
TestPlotBase.setup_method(self, method)
import matplotlib as mpl
mpl.rcdefaults()
self.ts = tm.makeTimeSeries()
self.ts.name = 'ts'
self.series = tm.makeStringSeries()
self.series.name = 'series'
self.iseries = tm.makePeriodSeries()
self.iseries.name = 'iseries'
@slow
def test_plot(self):
_check_plot_works(self.ts.plot, label='foo')
_check_plot_works(self.ts.plot, use_index=False)
axes = _check_plot_works(self.ts.plot, rot=0)
self._check_ticks_props(axes, xrot=0)
ax = _check_plot_works(self.ts.plot, style='.', logy=True)
self._check_ax_scales(ax, yaxis='log')
ax = _check_plot_works(self.ts.plot, style='.', logx=True)
self._check_ax_scales(ax, xaxis='log')
ax = _check_plot_works(self.ts.plot, style='.', loglog=True)
self._check_ax_scales(ax, xaxis='log', yaxis='log')
_check_plot_works(self.ts[:10].plot.bar)
_check_plot_works(self.ts.plot.area, stacked=False)
_check_plot_works(self.iseries.plot)
for kind in ['line', 'bar', 'barh', 'kde', 'hist', 'box']:
if not _ok_for_gaussian_kde(kind):
continue
_check_plot_works(self.series[:5].plot, kind=kind)
_check_plot_works(self.series[:10].plot.barh)
ax = _check_plot_works(Series(randn(10)).plot.bar, color='black')
self._check_colors([ax.patches[0]], facecolors=['black'])
# GH 6951
ax = _check_plot_works(self.ts.plot, subplots=True)
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
ax = _check_plot_works(self.ts.plot, subplots=True, layout=(-1, 1))
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
ax = _check_plot_works(self.ts.plot, subplots=True, layout=(1, -1))
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
@slow
def test_plot_figsize_and_title(self):
# figsize and title
_, ax = self.plt.subplots()
ax = self.series.plot(title='Test', figsize=(16, 8), ax=ax)
self._check_text_labels(ax.title, 'Test')
self._check_axes_shape(ax, axes_num=1, layout=(1, 1), figsize=(16, 8))
def test_dont_modify_rcParams(self):
# GH 8242
if self.mpl_ge_1_5_0:
key = 'axes.prop_cycle'
else:
key = 'axes.color_cycle'
colors = self.plt.rcParams[key]
_, ax = self.plt.subplots()
Series([1, 2, 3]).plot(ax=ax)
assert colors == self.plt.rcParams[key]
def test_ts_line_lim(self):
fig, ax = self.plt.subplots()
ax = self.ts.plot(ax=ax)
xmin, xmax = ax.get_xlim()
lines = ax.get_lines()
assert xmin == lines[0].get_data(orig=False)[0][0]
assert xmax == lines[0].get_data(orig=False)[0][-1]
tm.close()
ax = self.ts.plot(secondary_y=True, ax=ax)
xmin, xmax = ax.get_xlim()
lines = ax.get_lines()
assert xmin == lines[0].get_data(orig=False)[0][0]
assert xmax == lines[0].get_data(orig=False)[0][-1]
def test_ts_area_lim(self):
_, ax = self.plt.subplots()
ax = self.ts.plot.area(stacked=False, ax=ax)
xmin, xmax = ax.get_xlim()
line = ax.get_lines()[0].get_data(orig=False)[0]
assert xmin == line[0]
assert xmax == line[-1]
tm.close()
# GH 7471
_, ax = self.plt.subplots()
ax = self.ts.plot.area(stacked=False, x_compat=True, ax=ax)
xmin, xmax = ax.get_xlim()
line = ax.get_lines()[0].get_data(orig=False)[0]
assert xmin == line[0]
assert xmax == line[-1]
tm.close()
tz_ts = self.ts.copy()
tz_ts.index = tz_ts.tz_localize('GMT').tz_convert('CET')
_, ax = self.plt.subplots()
ax = tz_ts.plot.area(stacked=False, x_compat=True, ax=ax)
xmin, xmax = ax.get_xlim()
line = ax.get_lines()[0].get_data(orig=False)[0]
assert xmin == line[0]
assert xmax == line[-1]
tm.close()
_, ax = self.plt.subplots()
ax = tz_ts.plot.area(stacked=False, secondary_y=True, ax=ax)
xmin, xmax = ax.get_xlim()
line = ax.get_lines()[0].get_data(orig=False)[0]
assert xmin == line[0]
assert xmax == line[-1]
def test_label(self):
s = Series([1, 2])
_, ax = self.plt.subplots()
ax = s.plot(label='LABEL', legend=True, ax=ax)
self._check_legend_labels(ax, labels=['LABEL'])
self.plt.close()
_, ax = self.plt.subplots()
ax = s.plot(legend=True, ax=ax)
self._check_legend_labels(ax, labels=['None'])
self.plt.close()
# get name from index
s.name = 'NAME'
_, ax = self.plt.subplots()
ax = s.plot(legend=True, ax=ax)
self._check_legend_labels(ax, labels=['NAME'])
self.plt.close()
# override the default
_, ax = self.plt.subplots()
ax = s.plot(legend=True, label='LABEL', ax=ax)
self._check_legend_labels(ax, labels=['LABEL'])
self.plt.close()
# Add lebel info, but don't draw
_, ax = self.plt.subplots()
ax = s.plot(legend=False, label='LABEL', ax=ax)
assert ax.get_legend() is None # Hasn't been drawn
ax.legend() # draw it
self._check_legend_labels(ax, labels=['LABEL'])
def test_line_area_nan_series(self):
values = [1, 2, np.nan, 3]
s = Series(values)
ts = Series(values, index=tm.makeDateIndex(k=4))
for d in [s, ts]:
ax = _check_plot_works(d.plot)
masked = ax.lines[0].get_ydata()
# remove nan for comparison purpose
exp = np.array([1, 2, 3], dtype=np.float64)
tm.assert_numpy_array_equal(np.delete(masked.data, 2), exp)
tm.assert_numpy_array_equal(
masked.mask, np.array([False, False, True, False]))
expected = np.array([1, 2, 0, 3], dtype=np.float64)
ax = _check_plot_works(d.plot, stacked=True)
tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
ax = _check_plot_works(d.plot.area)
tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
ax = _check_plot_works(d.plot.area, stacked=False)
tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
def test_line_use_index_false(self):
s = Series([1, 2, 3], index=['a', 'b', 'c'])
s.index.name = 'The Index'
_, ax = self.plt.subplots()
ax = s.plot(use_index=False, ax=ax)
label = ax.get_xlabel()
assert label == ''
_, ax = self.plt.subplots()
ax2 = s.plot.bar(use_index=False, ax=ax)
label2 = ax2.get_xlabel()
assert label2 == ''
@slow
def test_bar_log(self):
expected = np.array([1., 10., 100., 1000.])
if not self.mpl_le_1_2_1:
expected = np.hstack((.1, expected, 1e4))
_, ax = self.plt.subplots()
ax = Series([200, 500]).plot.bar(log=True, ax=ax)
tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected)
tm.close()
_, ax = self.plt.subplots()
ax = Series([200, 500]).plot.barh(log=True, ax=ax)
tm.assert_numpy_array_equal(ax.xaxis.get_ticklocs(), expected)
tm.close()
# GH 9905
expected = np.array([1.0e-03, 1.0e-02, 1.0e-01, 1.0e+00])
if not self.mpl_le_1_2_1:
expected = np.hstack((1.0e-04, expected, 1.0e+01))
if self.mpl_ge_2_0_0:
expected = np.hstack((1.0e-05, expected))
_, ax = self.plt.subplots()
ax = Series([0.1, 0.01, 0.001]).plot(log=True, kind='bar', ax=ax)
ymin = 0.0007943282347242822 if self.mpl_ge_2_0_0 else 0.001
ymax = 0.12589254117941673 if self.mpl_ge_2_0_0 else .10000000000000001
res = ax.get_ylim()
tm.assert_almost_equal(res[0], ymin)
tm.assert_almost_equal(res[1], ymax)
tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected)
tm.close()
_, ax = self.plt.subplots()
ax = Series([0.1, 0.01, 0.001]).plot(log=True, kind='barh', ax=ax)
res = ax.get_xlim()
tm.assert_almost_equal(res[0], ymin)
tm.assert_almost_equal(res[1], ymax)
tm.assert_numpy_array_equal(ax.xaxis.get_ticklocs(), expected)
@slow
def test_bar_ignore_index(self):
df = Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
_, ax = self.plt.subplots()
ax = df.plot.bar(use_index=False, ax=ax)
self._check_text_labels(ax.get_xticklabels(), ['0', '1', '2', '3'])
def test_rotation(self):
df = DataFrame(randn(5, 5))
# Default rot 0
_, ax = self.plt.subplots()
axes = df.plot(ax=ax)
self._check_ticks_props(axes, xrot=0)
_, ax = self.plt.subplots()
axes = df.plot(rot=30, ax=ax)
self._check_ticks_props(axes, xrot=30)
def test_irregular_datetime(self):
rng = date_range('1/1/2000', '3/1/2000')
rng = rng[[0, 1, 2, 3, 5, 9, 10, 11, 12]]
ser = Series(randn(len(rng)), rng)
_, ax = self.plt.subplots()
ax = ser.plot(ax=ax)
xp = datetime(1999, 1, 1).toordinal()
ax.set_xlim('1/1/1999', '1/1/2001')
assert xp == ax.get_xlim()[0]
@slow
def test_pie_series(self):
# if sum of values is less than 1.0, pie handle them as rate and draw
# semicircle.
series = Series(np.random.randint(1, 5),
index=['a', 'b', 'c', 'd', 'e'], name='YLABEL')
ax = _check_plot_works(series.plot.pie)
self._check_text_labels(ax.texts, series.index)
assert ax.get_ylabel() == 'YLABEL'
# without wedge labels
ax = _check_plot_works(series.plot.pie, labels=None)
self._check_text_labels(ax.texts, [''] * 5)
# with less colors than elements
color_args = ['r', 'g', 'b']
ax = _check_plot_works(series.plot.pie, colors=color_args)
color_expected = ['r', 'g', 'b', 'r', 'g']
self._check_colors(ax.patches, facecolors=color_expected)
# with labels and colors
labels = ['A', 'B', 'C', 'D', 'E']
color_args = ['r', 'g', 'b', 'c', 'm']
ax = _check_plot_works(series.plot.pie, labels=labels,
colors=color_args)
self._check_text_labels(ax.texts, labels)
self._check_colors(ax.patches, facecolors=color_args)
# with autopct and fontsize
ax = _check_plot_works(series.plot.pie, colors=color_args,
autopct='%.2f', fontsize=7)
pcts = ['{0:.2f}'.format(s * 100)
for s in series.values / float(series.sum())]
iters = [iter(series.index), iter(pcts)]
expected_texts = list(next(it) for it in itertools.cycle(iters))
self._check_text_labels(ax.texts, expected_texts)
for t in ax.texts:
assert t.get_fontsize() == 7
# includes negative value
with pytest.raises(ValueError):
series = Series([1, 2, 0, 4, -1], index=['a', 'b', 'c', 'd', 'e'])
series.plot.pie()
# includes nan
series = Series([1, 2, np.nan, 4], index=['a', 'b', 'c', 'd'],
name='YLABEL')
ax = _check_plot_works(series.plot.pie)
self._check_text_labels(ax.texts, ['a', 'b', '', 'd'])
def test_pie_nan(self):
s = Series([1, np.nan, 1, 1])
_, ax = self.plt.subplots()
ax = s.plot.pie(legend=True, ax=ax)
expected = ['0', '', '2', '3']
result = [x.get_text() for x in ax.texts]
assert result == expected
@slow
def test_hist_df_kwargs(self):
df = DataFrame(np.random.randn(10, 2))
_, ax = self.plt.subplots()
ax = df.plot.hist(bins=5, ax=ax)
assert len(ax.patches) == 10
@slow
def test_hist_df_with_nonnumerics(self):
# GH 9853
with tm.RNGContext(1):
df = DataFrame(
np.random.randn(10, 4), columns=['A', 'B', 'C', 'D'])
df['E'] = ['x', 'y'] * 5
_, ax = self.plt.subplots()
ax = df.plot.hist(bins=5, ax=ax)
assert len(ax.patches) == 20
_, ax = self.plt.subplots()
ax = df.plot.hist(ax=ax) # bins=10
assert len(ax.patches) == 40
@slow
def test_hist_legacy(self):
_check_plot_works(self.ts.hist)
_check_plot_works(self.ts.hist, grid=False)
_check_plot_works(self.ts.hist, figsize=(8, 10))
# _check_plot_works adds an ax so catch warning. see GH #13188
with tm.assert_produces_warning(UserWarning):
_check_plot_works(self.ts.hist,
by=self.ts.index.month)
with tm.assert_produces_warning(UserWarning):
_check_plot_works(self.ts.hist,
by=self.ts.index.month, bins=5)
fig, ax = self.plt.subplots(1, 1)
_check_plot_works(self.ts.hist, ax=ax)
_check_plot_works(self.ts.hist, ax=ax, figure=fig)
_check_plot_works(self.ts.hist, figure=fig)
tm.close()
fig, (ax1, ax2) = self.plt.subplots(1, 2)
_check_plot_works(self.ts.hist, figure=fig, ax=ax1)
_check_plot_works(self.ts.hist, figure=fig, ax=ax2)
with pytest.raises(ValueError):
self.ts.hist(by=self.ts.index, figure=fig)
@slow
def test_hist_bins_legacy(self):
df = DataFrame(np.random.randn(10, 2))
ax = df.hist(bins=2)[0][0]
assert len(ax.patches) == 2
@slow
def test_hist_layout(self):
df = self.hist_df
with pytest.raises(ValueError):
df.height.hist(layout=(1, 1))
with pytest.raises(ValueError):
df.height.hist(layout=[1, 1])
@slow
def test_hist_layout_with_by(self):
df = self.hist_df
# _check_plot_works adds an ax so catch warning. see GH #13188
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist,
by=df.gender, layout=(2, 1))
self._check_axes_shape(axes, axes_num=2, layout=(2, 1))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist,
by=df.gender, layout=(3, -1))
self._check_axes_shape(axes, axes_num=2, layout=(3, 1))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist,
by=df.category, layout=(4, 1))
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist,
by=df.category, layout=(2, -1))
self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist,
by=df.category, layout=(3, -1))
self._check_axes_shape(axes, axes_num=4, layout=(3, 2))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist,
by=df.category, layout=(-1, 4))
self._check_axes_shape(axes, axes_num=4, layout=(1, 4))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist,
by=df.classroom, layout=(2, 2))
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
axes = df.height.hist(by=df.category, layout=(4, 2), figsize=(12, 7))
self._check_axes_shape(axes, axes_num=4, layout=(4, 2),
figsize=(12, 7))
@slow
def test_hist_no_overlap(self):
from matplotlib.pyplot import subplot, gcf
x = Series(randn(2))
y = Series(randn(2))
subplot(121)
x.hist()
subplot(122)
y.hist()
fig = gcf()
axes = fig.axes if self.mpl_ge_1_5_0 else fig.get_axes()
assert len(axes) == 2
@slow
def test_hist_secondary_legend(self):
# GH 9610
df = DataFrame(np.random.randn(30, 4), columns=list('abcd'))
# primary -> secondary
_, ax = self.plt.subplots()
ax = df['a'].plot.hist(legend=True, ax=ax)
df['b'].plot.hist(ax=ax, legend=True, secondary_y=True)
# both legends are dran on left ax
# left and right axis must be visible
self._check_legend_labels(ax, labels=['a', 'b (right)'])
assert ax.get_yaxis().get_visible()
assert ax.right_ax.get_yaxis().get_visible()
tm.close()
# secondary -> secondary
_, ax = self.plt.subplots()
ax = df['a'].plot.hist(legend=True, secondary_y=True, ax=ax)
df['b'].plot.hist(ax=ax, legend=True, secondary_y=True)
# both legends are draw on left ax
# left axis must be invisible, right axis must be visible
self._check_legend_labels(ax.left_ax,
labels=['a (right)', 'b (right)'])
assert not ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
tm.close()
# secondary -> primary
_, ax = self.plt.subplots()
ax = df['a'].plot.hist(legend=True, secondary_y=True, ax=ax)
# right axes is returned
df['b'].plot.hist(ax=ax, legend=True)
# both legends are draw on left ax
# left and right axis must be visible
self._check_legend_labels(ax.left_ax, labels=['a (right)', 'b'])
assert ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
tm.close()
@slow
def test_df_series_secondary_legend(self):
# GH 9779
df = DataFrame(np.random.randn(30, 3), columns=list('abc'))
s = Series(np.random.randn(30), name='x')
# primary -> secondary (without passing ax)
_, ax = self.plt.subplots()
ax = df.plot(ax=ax)
s.plot(legend=True, secondary_y=True, ax=ax)
# both legends are dran on left ax
# left and right axis must be visible
self._check_legend_labels(ax, labels=['a', 'b', 'c', 'x (right)'])
assert ax.get_yaxis().get_visible()
assert ax.right_ax.get_yaxis().get_visible()
tm.close()
# primary -> secondary (with passing ax)
_, ax = self.plt.subplots()
ax = df.plot(ax=ax)
s.plot(ax=ax, legend=True, secondary_y=True)
# both legends are dran on left ax
# left and right axis must be visible
self._check_legend_labels(ax, labels=['a', 'b', 'c', 'x (right)'])
assert ax.get_yaxis().get_visible()
assert ax.right_ax.get_yaxis().get_visible()
tm.close()
# seconcary -> secondary (without passing ax)
_, ax = self.plt.subplots()
ax = df.plot(secondary_y=True, ax=ax)
s.plot(legend=True, secondary_y=True, ax=ax)
# both legends are dran on left ax
# left axis must be invisible and right axis must be visible
expected = ['a (right)', 'b (right)', 'c (right)', 'x (right)']
self._check_legend_labels(ax.left_ax, labels=expected)
assert not ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
tm.close()
# secondary -> secondary (with passing ax)
_, ax = self.plt.subplots()
ax = df.plot(secondary_y=True, ax=ax)
s.plot(ax=ax, legend=True, secondary_y=True)
# both legends are dran on left ax
# left axis must be invisible and right axis must be visible
expected = ['a (right)', 'b (right)', 'c (right)', 'x (right)']
self._check_legend_labels(ax.left_ax, expected)
assert not ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
tm.close()
# secondary -> secondary (with passing ax)
_, ax = self.plt.subplots()
ax = df.plot(secondary_y=True, mark_right=False, ax=ax)
s.plot(ax=ax, legend=True, secondary_y=True)
# both legends are dran on left ax
# left axis must be invisible and right axis must be visible
expected = ['a', 'b', 'c', 'x (right)']
self._check_legend_labels(ax.left_ax, expected)
assert not ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
tm.close()
@slow
def test_plot_fails_with_dupe_color_and_style(self):
x = Series(randn(2))
with pytest.raises(ValueError):
_, ax = self.plt.subplots()
x.plot(style='k--', color='k', ax=ax)
@slow
def test_hist_kde(self):
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(logy=True, ax=ax)
self._check_ax_scales(ax, yaxis='log')
xlabels = ax.get_xticklabels()
# ticks are values, thus ticklabels are blank
self._check_text_labels(xlabels, [''] * len(xlabels))
ylabels = ax.get_yticklabels()
self._check_text_labels(ylabels, [''] * len(ylabels))
tm._skip_if_no_scipy()
_skip_if_no_scipy_gaussian_kde()
_check_plot_works(self.ts.plot.kde)
_check_plot_works(self.ts.plot.density)
_, ax = self.plt.subplots()
ax = self.ts.plot.kde(logy=True, ax=ax)
self._check_ax_scales(ax, yaxis='log')
xlabels = ax.get_xticklabels()
self._check_text_labels(xlabels, [''] * len(xlabels))
ylabels = ax.get_yticklabels()
self._check_text_labels(ylabels, [''] * len(ylabels))
@slow
def test_kde_kwargs(self):
tm._skip_if_no_scipy()
_skip_if_no_scipy_gaussian_kde()
from numpy import linspace
_check_plot_works(self.ts.plot.kde, bw_method=.5,
ind=linspace(-100, 100, 20))
_check_plot_works(self.ts.plot.density, bw_method=.5,
ind=linspace(-100, 100, 20))
_, ax = self.plt.subplots()
ax = self.ts.plot.kde(logy=True, bw_method=.5,
ind=linspace(-100, 100, 20), ax=ax)
self._check_ax_scales(ax, yaxis='log')
self._check_text_labels(ax.yaxis.get_label(), 'Density')
@slow
def test_kde_missing_vals(self):
tm._skip_if_no_scipy()
_skip_if_no_scipy_gaussian_kde()
s = Series(np.random.uniform(size=50))
s[0] = np.nan
axes = _check_plot_works(s.plot.kde)
# gh-14821: check if the values have any missing values
assert any(~np.isnan(axes.lines[0].get_xdata()))
@slow
def test_hist_kwargs(self):
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(bins=5, ax=ax)
assert len(ax.patches) == 5
self._check_text_labels(ax.yaxis.get_label(), 'Frequency')
tm.close()
if self.mpl_ge_1_3_1:
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(orientation='horizontal', ax=ax)
self._check_text_labels(ax.xaxis.get_label(), 'Frequency')
tm.close()
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(align='left', stacked=True, ax=ax)
tm.close()
@slow
def test_hist_kde_color(self):
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(logy=True, bins=10, color='b', ax=ax)
self._check_ax_scales(ax, yaxis='log')
assert len(ax.patches) == 10
self._check_colors(ax.patches, facecolors=['b'] * 10)
tm._skip_if_no_scipy()
_skip_if_no_scipy_gaussian_kde()
_, ax = self.plt.subplots()
ax = self.ts.plot.kde(logy=True, color='r', ax=ax)
self._check_ax_scales(ax, yaxis='log')
lines = ax.get_lines()
assert len(lines) == 1
self._check_colors(lines, ['r'])
@slow
def test_boxplot_series(self):
_, ax = self.plt.subplots()
ax = self.ts.plot.box(logy=True, ax=ax)
self._check_ax_scales(ax, yaxis='log')
xlabels = ax.get_xticklabels()
self._check_text_labels(xlabels, [self.ts.name])
ylabels = ax.get_yticklabels()
self._check_text_labels(ylabels, [''] * len(ylabels))
@slow
def test_kind_both_ways(self):
s = Series(range(3))
kinds = (plotting._core._common_kinds +
plotting._core._series_kinds)
_, ax = self.plt.subplots()
for kind in kinds:
if not _ok_for_gaussian_kde(kind):
continue
s.plot(kind=kind, ax=ax)
getattr(s.plot, kind)()
@slow
def test_invalid_plot_data(self):
s = Series(list('abcd'))
_, ax = self.plt.subplots()
for kind in plotting._core._common_kinds:
if not _ok_for_gaussian_kde(kind):
continue
with pytest.raises(TypeError):
s.plot(kind=kind, ax=ax)
@slow
def test_valid_object_plot(self):
s = Series(lrange(10), dtype=object)
for kind in plotting._core._common_kinds:
if not _ok_for_gaussian_kde(kind):
continue
_check_plot_works(s.plot, kind=kind)
def test_partially_invalid_plot_data(self):
s = Series(['a', 'b', 1.0, 2])
_, ax = self.plt.subplots()
for kind in plotting._core._common_kinds:
if not _ok_for_gaussian_kde(kind):
continue
with pytest.raises(TypeError):
s.plot(kind=kind, ax=ax)
def test_invalid_kind(self):
s = Series([1, 2])
with pytest.raises(ValueError):
s.plot(kind='aasdf')
@slow
def test_dup_datetime_index_plot(self):
dr1 = date_range('1/1/2009', periods=4)
dr2 = date_range('1/2/2009', periods=4)
index = dr1.append(dr2)
values = randn(index.size)
s = Series(values, index=index)
_check_plot_works(s.plot)
@slow
def test_errorbar_plot(self):
s = Series(np.arange(10), name='x')
s_err = np.random.randn(10)
d_err = DataFrame(randn(10, 2), index=s.index, columns=['x', 'y'])
# test line and bar plots
kinds = ['line', 'bar']
for kind in kinds:
ax = _check_plot_works(s.plot, yerr=Series(s_err), kind=kind)
self._check_has_errorbars(ax, xerr=0, yerr=1)
ax = _check_plot_works(s.plot, yerr=s_err, kind=kind)
self._check_has_errorbars(ax, xerr=0, yerr=1)
ax = _check_plot_works(s.plot, yerr=s_err.tolist(), kind=kind)
self._check_has_errorbars(ax, xerr=0, yerr=1)
ax = _check_plot_works(s.plot, yerr=d_err, kind=kind)
self._check_has_errorbars(ax, xerr=0, yerr=1)
ax = _check_plot_works(s.plot, xerr=0.2, yerr=0.2, kind=kind)
self._check_has_errorbars(ax, xerr=1, yerr=1)
ax = _check_plot_works(s.plot, xerr=s_err)
self._check_has_errorbars(ax, xerr=1, yerr=0)
# test time series plotting
ix = date_range('1/1/2000', '1/1/2001', freq='M')
ts = Series(np.arange(12), index=ix, name='x')
ts_err = Series(np.random.randn(12), index=ix)
td_err = DataFrame(randn(12, 2), index=ix, columns=['x', 'y'])
ax = _check_plot_works(ts.plot, yerr=ts_err)
self._check_has_errorbars(ax, xerr=0, yerr=1)
ax = _check_plot_works(ts.plot, yerr=td_err)
self._check_has_errorbars(ax, xerr=0, yerr=1)
# check incorrect lengths and types
with pytest.raises(ValueError):
s.plot(yerr=np.arange(11))
s_err = ['zzz'] * 10
# in mpl 1.5+ this is a TypeError
with pytest.raises((ValueError, TypeError)):
s.plot(yerr=s_err)
def test_table(self):
_check_plot_works(self.series.plot, table=True)
_check_plot_works(self.series.plot, table=self.series)
@slow
def test_series_grid_settings(self):
# Make sure plot defaults to rcParams['axes.grid'] setting, GH 9792
self._check_grid_settings(Series([1, 2, 3]),
plotting._core._series_kinds +
plotting._core._common_kinds)
@slow
def test_standard_colors(self):
from pandas.plotting._style import _get_standard_colors
for c in ['r', 'red', 'green', '#FF0000']:
result = _get_standard_colors(1, color=c)
assert result == [c]
result = _get_standard_colors(1, color=[c])
assert result == [c]
result = _get_standard_colors(3, color=c)
assert result == [c] * 3
result = _get_standard_colors(3, color=[c])
assert result == [c] * 3
@slow
def test_standard_colors_all(self):
import matplotlib.colors as colors
from pandas.plotting._style import _get_standard_colors
# multiple colors like mediumaquamarine
for c in colors.cnames:
result = _get_standard_colors(num_colors=1, color=c)
assert result == [c]
result = _get_standard_colors(num_colors=1, color=[c])
assert result == [c]
result = _get_standard_colors(num_colors=3, color=c)
assert result == [c] * 3
result = _get_standard_colors(num_colors=3, color=[c])
assert result == [c] * 3
# single letter colors like k
for c in colors.ColorConverter.colors:
result = _get_standard_colors(num_colors=1, color=c)
assert result == [c]
result = _get_standard_colors(num_colors=1, color=[c])
assert result == [c]
result = _get_standard_colors(num_colors=3, color=c)
assert result == [c] * 3
result = _get_standard_colors(num_colors=3, color=[c])
assert result == [c] * 3
def test_series_plot_color_kwargs(self):
# GH1890
_, ax = self.plt.subplots()
ax = Series(np.arange(12) + 1).plot(color='green', ax=ax)
self._check_colors(ax.get_lines(), linecolors=['green'])
def test_time_series_plot_color_kwargs(self):
# #1890
_, ax = self.plt.subplots()
ax = Series(np.arange(12) + 1, index=date_range(
'1/1/2000', periods=12)).plot(color='green', ax=ax)
self._check_colors(ax.get_lines(), linecolors=['green'])
def test_time_series_plot_color_with_empty_kwargs(self):
import matplotlib as mpl
if self.mpl_ge_1_5_0:
def_colors = self._maybe_unpack_cycler(mpl.rcParams)
else:
def_colors = mpl.rcParams['axes.color_cycle']
index = date_range('1/1/2000', periods=12)
s = Series(np.arange(1, 13), index=index)
ncolors = 3
_, ax = self.plt.subplots()
for i in range(ncolors):
ax = s.plot(ax=ax)
self._check_colors(ax.get_lines(), linecolors=def_colors[:ncolors])
def test_xticklabels(self):
# GH11529
s = Series(np.arange(10), index=['P%02d' % i for i in range(10)])
_, ax = self.plt.subplots()
ax = s.plot(xticks=[0, 3, 5, 9], ax=ax)
exp = ['P%02d' % i for i in [0, 3, 5, 9]]
self._check_text_labels(ax.get_xticklabels(), exp)
def test_custom_business_day_freq(self):
# GH7222
from pandas.tseries.offsets import CustomBusinessDay
s = Series(range(100, 121), index=pd.bdate_range(
start='2014-05-01', end='2014-06-01',
freq=CustomBusinessDay(holidays=['2014-05-26'])))
_check_plot_works(s.plot)
|
bsd-3-clause
|
terkkila/scikit-learn
|
sklearn/metrics/setup.py
|
299
|
1024
|
import os
import os.path
import numpy
from numpy.distutils.misc_util import Configuration
from sklearn._build_utils import get_blas_info
def configuration(parent_package="", top_path=None):
config = Configuration("metrics", parent_package, top_path)
cblas_libs, blas_info = get_blas_info()
if os.name == 'posix':
cblas_libs.append('m')
config.add_extension("pairwise_fast",
sources=["pairwise_fast.c"],
include_dirs=[os.path.join('..', 'src', 'cblas'),
numpy.get_include(),
blas_info.pop('include_dirs', [])],
libraries=cblas_libs,
extra_compile_args=blas_info.pop('extra_compile_args',
[]),
**blas_info)
return config
if __name__ == "__main__":
from numpy.distutils.core import setup
setup(**configuration().todict())
|
bsd-3-clause
|
kevalds51/sympy
|
sympy/interactive/tests/test_ipythonprinting.py
|
21
|
6055
|
"""Tests that the IPython printing module is properly loaded. """
from sympy.core.compatibility import u
from sympy.interactive.session import init_ipython_session
from sympy.external import import_module
from sympy.utilities.pytest import raises
# run_cell was added in IPython 0.11
ipython = import_module("IPython", min_module_version="0.11")
# disable tests if ipython is not present
if not ipython:
disabled = True
def test_ipythonprinting():
# Initialize and setup IPython session
app = init_ipython_session()
app.run_cell("ip = get_ipython()")
app.run_cell("inst = ip.instance()")
app.run_cell("format = inst.display_formatter.format")
app.run_cell("from sympy import Symbol")
# Printing without printing extension
app.run_cell("a = format(Symbol('pi'))")
app.run_cell("a2 = format(Symbol('pi')**2)")
# Deal with API change starting at IPython 1.0
if int(ipython.__version__.split(".")[0]) < 1:
assert app.user_ns['a']['text/plain'] == "pi"
assert app.user_ns['a2']['text/plain'] == "pi**2"
else:
assert app.user_ns['a'][0]['text/plain'] == "pi"
assert app.user_ns['a2'][0]['text/plain'] == "pi**2"
# Load printing extension
app.run_cell("from sympy import init_printing")
app.run_cell("init_printing()")
# Printing with printing extension
app.run_cell("a = format(Symbol('pi'))")
app.run_cell("a2 = format(Symbol('pi')**2)")
# Deal with API change starting at IPython 1.0
if int(ipython.__version__.split(".")[0]) < 1:
assert app.user_ns['a']['text/plain'] in (u('\N{GREEK SMALL LETTER PI}'), 'pi')
assert app.user_ns['a2']['text/plain'] in (u(' 2\n\N{GREEK SMALL LETTER PI} '), ' 2\npi ')
else:
assert app.user_ns['a'][0]['text/plain'] in (u('\N{GREEK SMALL LETTER PI}'), 'pi')
assert app.user_ns['a2'][0]['text/plain'] in (u(' 2\n\N{GREEK SMALL LETTER PI} '), ' 2\npi ')
def test_print_builtin_option():
# Initialize and setup IPython session
app = init_ipython_session()
app.run_cell("ip = get_ipython()")
app.run_cell("inst = ip.instance()")
app.run_cell("format = inst.display_formatter.format")
app.run_cell("from sympy import Symbol")
app.run_cell("from sympy import init_printing")
app.run_cell("a = format({Symbol('pi'): 3.14, Symbol('n_i'): 3})")
# Deal with API change starting at IPython 1.0
if int(ipython.__version__.split(".")[0]) < 1:
text = app.user_ns['a']['text/plain']
raises(KeyError, lambda: app.user_ns['a']['text/latex'])
else:
text = app.user_ns['a'][0]['text/plain']
raises(KeyError, lambda: app.user_ns['a'][0]['text/latex'])
# Note : In Python 3 the text is unicode, but in 2 it is a string.
# XXX: How can we make this ignore the terminal width? This test fails if
# the terminal is too narrow.
assert text in ("{pi: 3.14, n_i: 3}",
u('{n\N{LATIN SUBSCRIPT SMALL LETTER I}: 3, \N{GREEK SMALL LETTER PI}: 3.14}'),
"{n_i: 3, pi: 3.14}",
u('{\N{GREEK SMALL LETTER PI}: 3.14, n\N{LATIN SUBSCRIPT SMALL LETTER I}: 3}'))
# If we enable the default printing, then the dictionary's should render
# as a LaTeX version of the whole dict: ${\pi: 3.14, n_i: 3}$
app.run_cell("inst.display_formatter.formatters['text/latex'].enabled = True")
app.run_cell("init_printing(use_latex=True)")
app.run_cell("a = format({Symbol('pi'): 3.14, Symbol('n_i'): 3})")
# Deal with API change starting at IPython 1.0
if int(ipython.__version__.split(".")[0]) < 1:
text = app.user_ns['a']['text/plain']
latex = app.user_ns['a']['text/latex']
else:
text = app.user_ns['a'][0]['text/plain']
latex = app.user_ns['a'][0]['text/latex']
assert text in ("{pi: 3.14, n_i: 3}",
u('{n\N{LATIN SUBSCRIPT SMALL LETTER I}: 3, \N{GREEK SMALL LETTER PI}: 3.14}'),
"{n_i: 3, pi: 3.14}",
u('{\N{GREEK SMALL LETTER PI}: 3.14, n\N{LATIN SUBSCRIPT SMALL LETTER I}: 3}'))
assert latex == r'$$\left \{ n_{i} : 3, \quad \pi : 3.14\right \}$$'
app.run_cell("inst.display_formatter.formatters['text/latex'].enabled = True")
app.run_cell("init_printing(use_latex=True, print_builtin=False)")
app.run_cell("a = format({Symbol('pi'): 3.14, Symbol('n_i'): 3})")
# Deal with API change starting at IPython 1.0
if int(ipython.__version__.split(".")[0]) < 1:
text = app.user_ns['a']['text/plain']
raises(KeyError, lambda: app.user_ns['a']['text/latex'])
else:
text = app.user_ns['a'][0]['text/plain']
raises(KeyError, lambda: app.user_ns['a'][0]['text/latex'])
# Note : In Python 3 the text is unicode, but in 2 it is a string.
# Python 3.3.3 + IPython 0.13.2 gives: '{n_i: 3, pi: 3.14}'
# Python 3.3.3 + IPython 1.1.0 gives: '{n_i: 3, pi: 3.14}'
# Python 2.7.5 + IPython 1.1.0 gives: '{pi: 3.14, n_i: 3}'
assert text in ("{pi: 3.14, n_i: 3}", "{n_i: 3, pi: 3.14}")
def test_matplotlib_bad_latex():
# Initialize and setup IPython session
app = init_ipython_session()
app.run_cell("import IPython")
app.run_cell("ip = get_ipython()")
app.run_cell("inst = ip.instance()")
app.run_cell("format = inst.display_formatter.format")
app.run_cell("from sympy import init_printing, Matrix")
app.run_cell("init_printing(use_latex='matplotlib')")
# The png formatter is not enabled by default in this context
app.run_cell("inst.display_formatter.formatters['image/png'].enabled = True")
# Make sure no warnings are raised by IPython
app.run_cell("import warnings")
app.run_cell("warnings.simplefilter('error', IPython.core.formatters.FormatterWarning)")
# This should not raise an exception
app.run_cell("a = format(Matrix([1, 2, 3]))")
# issue 9799
app.run_cell("from sympy import Piecewise, Symbol, Eq")
app.run_cell("x = Symbol('x'); pw = format(Piecewise((1, Eq(x, 0)), (0, True)))")
|
bsd-3-clause
|
sjperkins/tensorflow
|
tensorflow/contrib/learn/python/learn/estimators/_sklearn.py
|
153
|
6723
|
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""sklearn cross-support."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import os
import numpy as np
import six
def _pprint(d):
return ', '.join(['%s=%s' % (key, str(value)) for key, value in d.items()])
class _BaseEstimator(object):
"""This is a cross-import when sklearn is not available.
Adopted from sklearn.BaseEstimator implementation.
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
"""
def get_params(self, deep=True):
"""Get parameters for this estimator.
Args:
deep: boolean, optional
If `True`, will return the parameters for this estimator and
contained subobjects that are estimators.
Returns:
params : mapping of string to any
Parameter names mapped to their values.
"""
out = dict()
param_names = [name for name in self.__dict__ if not name.startswith('_')]
for key in param_names:
value = getattr(self, key, None)
if isinstance(value, collections.Callable):
continue
# XXX: should we rather test if instance of estimator?
if deep and hasattr(value, 'get_params'):
deep_items = value.get_params().items()
out.update((key + '__' + k, val) for k, val in deep_items)
out[key] = value
return out
def set_params(self, **params):
"""Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
``<component>__<parameter>`` so that it's possible to update each
component of a nested object.
Args:
**params: Parameters.
Returns:
self
Raises:
ValueError: If params contain invalid names.
"""
if not params:
# Simple optimisation to gain speed (inspect is slow)
return self
valid_params = self.get_params(deep=True)
for key, value in six.iteritems(params):
split = key.split('__', 1)
if len(split) > 1:
# nested objects case
name, sub_name = split
if name not in valid_params:
raise ValueError('Invalid parameter %s for estimator %s. '
'Check the list of available parameters '
'with `estimator.get_params().keys()`.' %
(name, self))
sub_object = valid_params[name]
sub_object.set_params(**{sub_name: value})
else:
# simple objects case
if key not in valid_params:
raise ValueError('Invalid parameter %s for estimator %s. '
'Check the list of available parameters '
'with `estimator.get_params().keys()`.' %
(key, self.__class__.__name__))
setattr(self, key, value)
return self
def __repr__(self):
class_name = self.__class__.__name__
return '%s(%s)' % (class_name,
_pprint(self.get_params(deep=False)),)
# pylint: disable=old-style-class
class _ClassifierMixin():
"""Mixin class for all classifiers."""
pass
class _RegressorMixin():
"""Mixin class for all regression estimators."""
pass
class _TransformerMixin():
"""Mixin class for all transformer estimators."""
class NotFittedError(ValueError, AttributeError):
"""Exception class to raise if estimator is used before fitting.
This class inherits from both ValueError and AttributeError to help with
exception handling and backward compatibility.
Examples:
>>> from sklearn.svm import LinearSVC
>>> from sklearn.exceptions import NotFittedError
>>> try:
... LinearSVC().predict([[1, 2], [2, 3], [3, 4]])
... except NotFittedError as e:
... print(repr(e))
... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
NotFittedError('This LinearSVC instance is not fitted yet',)
Copied from
https://github.com/scikit-learn/scikit-learn/master/sklearn/exceptions.py
"""
# pylint: enable=old-style-class
def _accuracy_score(y_true, y_pred):
score = y_true == y_pred
return np.average(score)
def _mean_squared_error(y_true, y_pred):
if len(y_true.shape) > 1:
y_true = np.squeeze(y_true)
if len(y_pred.shape) > 1:
y_pred = np.squeeze(y_pred)
return np.average((y_true - y_pred)**2)
def _train_test_split(*args, **options):
# pylint: disable=missing-docstring
test_size = options.pop('test_size', None)
train_size = options.pop('train_size', None)
random_state = options.pop('random_state', None)
if test_size is None and train_size is None:
train_size = 0.75
elif train_size is None:
train_size = 1 - test_size
train_size = int(train_size * args[0].shape[0])
np.random.seed(random_state)
indices = np.random.permutation(args[0].shape[0])
train_idx, test_idx = indices[:train_size], indices[train_size:]
result = []
for x in args:
result += [x.take(train_idx, axis=0), x.take(test_idx, axis=0)]
return tuple(result)
# If "TENSORFLOW_SKLEARN" flag is defined then try to import from sklearn.
TRY_IMPORT_SKLEARN = os.environ.get('TENSORFLOW_SKLEARN', False)
if TRY_IMPORT_SKLEARN:
# pylint: disable=g-import-not-at-top,g-multiple-import,unused-import
from sklearn.base import BaseEstimator, ClassifierMixin, RegressorMixin, TransformerMixin
from sklearn.metrics import accuracy_score, log_loss, mean_squared_error
from sklearn.cross_validation import train_test_split
try:
from sklearn.exceptions import NotFittedError
except ImportError:
try:
from sklearn.utils.validation import NotFittedError
except ImportError:
pass
else:
# Naive implementations of sklearn classes and functions.
BaseEstimator = _BaseEstimator
ClassifierMixin = _ClassifierMixin
RegressorMixin = _RegressorMixin
TransformerMixin = _TransformerMixin
accuracy_score = _accuracy_score
log_loss = None
mean_squared_error = _mean_squared_error
train_test_split = _train_test_split
|
apache-2.0
|
Neha-Setia/Pearson-Api
|
welcome.py
|
1
|
5817
|
from flask import Flask, render_template, request, jsonify, url_for, send_from_directory
import json,os,pymongo,ssl
from watson_developer_cloud import DiscoveryV1
from werkzeug.utils import secure_filename
import base64, pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.feature_extraction.text import TfidfVectorizer
from werkzeug.datastructures import FileStorage
MONGODB_URL = "mongodb://admin:[email protected]:25934,bluemix-sandbox-dal-9-portal.6.dblayer.com:25934/admin?ssl=true"
# MONGODB_URL = os.environ.get('MONGODB_URL')
client = pymongo.MongoClient(MONGODB_URL, ssl_cert_reqs=ssl.CERT_NONE)
print(client)
db = client.discovery_db
coll = db.Pearsons_maths_dictionary
UPLOAD_FOLDER = './uploads'
app = Flask(__name__)
app._static_folder = './static'
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
discovery = DiscoveryV1(
'2016-11-07',
username='5f10f086-cd37-4386-bffe-f4e829e589a8',
password='crMQG1F3jQuR')
environments = discovery.get_environments()
print(environments)
my_environment = [x for x in environments['environments'] if x['name'] == 'byod']
environment_id = my_environment[0]['environment_id']
print(environment_id)
##################### COLLECTION ID FOR EDU DCOS ##################
collections = discovery.list_collections(environment_id)
doc_collection = [x for x in collections['collections'] if x['name'] == 'pearson-api']
doc_collection_id = doc_collection[0]['collection_id']
print(doc_collection_id)
#4ee23389-04fa-4ecf-9811-957bcecb19b4
configuration_id = discovery.get_default_configuration_id(environment_id=environment_id)
print(configuration_id)
# api_endpoint = "https://gateway.watsonplatform.net/discovery/api/v1"
username = '5f10f086-cd37-4386-bffe-f4e829e589a8'
password = 'crMQG1F3jQuR'
document_id_list =[]
def decode_base64(data):
"""Decode base64, padding being optional.
:param data: Base64 data as an ASCII byte string
:returns: The decoded byte string.
"""
missing_padding = len(data) % 4
if missing_padding != 0:
data += b'=' * (4 - missing_padding)
return base64.b64decode(data)
@app.route("/")
def main():
return render_template('document-upload.html')
@app.route("/upload", methods=['POST'])
def upload_document():
print("upload")
print(request)
print(request.data)
file = request.data
file = file.split(',')
file = decode_base64(file[1])
print(file)
file1 = FileStorage(stream=file, name="division.pdf")
print(file1.stream)
# f = file1.filename
# print(f)
# # file2 = stream.read()
# # print(file2)
# # file_result = open('./uploads/filename1.json', 'wb') # create a writable file and write the decoding result
# # file_result.write(file)
#
# # with open(os.path.join(app.config['UPLOAD_FOLDER'], 'filename1.json')) as fileinfo:
# # print(fileinfo)
# files=[]
# files.append((f, FileStorage(stream=file, filename="division.pdf")))
# print(files[0])
add_doc = discovery.add_document(environment_id, doc_collection_id, file_info=file1)
d = json.dumps(add_doc, indent=2)
print(d)
document_id_list.append(add_doc['document_id'][0])
print(document_id_list[0])
print("hi")
qopts = {'query': ''}
my_query = discovery.query(environment_id, doc_collection_id, qopts)
print(my_query)
# data = [q['enriched_text'] for q in my_query['results']]
data = my_query['results'][0]['enriched_text']
print(data)
data = [q['text'] for q in data['keywords']]
print(data)
data = ' '.join([str(item) for item in data])
print(data)
cursor_cl = coll.find({"class_name": "Class 3", "subject_name": "Mathematics"})
print(cursor_cl)
# # ---->
comb = []
myList = []
print(cursor_cl.count())
conc_weightage = cursor_cl.count()
if conc_weightage > 0:
for selected_content_db in cursor_cl:
match1 = []
part_kw1 = selected_content_db['keywords'].split(",")
instruction_id = selected_content_db['sctid']
filt_semi_kw1 = [let.encode('utf-8') for let in part_kw1]
contend = ' '.join(filt_semi_kw1)
print(contend)
train_set = [contend, data]
print(train_set)
tfidf_vectorizer = TfidfVectorizer()
tfidf_matrix_train = tfidf_vectorizer.fit_transform(train_set)
cosine_score = cosine_similarity(tfidf_matrix_train)
cosine_score = cosine_score.tolist()
print(cosine_score)
cosine_score = cosine_score[0]
cosine_score = cosine_score[1]
parser_iddetails = instruction_id
parser_score = cosine_score
myList.append(cosine_score)
comb.append([instruction_id, cosine_score])
print(instruction_id)
print(cosine_score)
df = pd.DataFrame(comb)
print(df)
render_template('result.html', tables=[df.to_html(classes='table', index=False)])
return 'file upload successful'
@app.route("/getmetaData", methods=['GET'])
def get_document():
qopts = {'query': ''}
my_query = discovery.query(environment_id, doc_collection_id, qopts)
json_it = jsonify(my_query)
print(type(json_it))
# return render_template("Json-Result.html", data=json_it)
return json_it
@app.route("/delete_document", methods=['GET'])
def delete_document():
for document_id in document_id_list:
delete_doc = discovery.delete_document(environment_id, doc_collection_id, document_id)
print(json.dumps(delete_doc, indent=2))
return json.dumps(delete_doc, indent=2)
port = os.getenv('PORT', '5000')
if __name__ == "__main__":
app.run(host='0.0.0.0', port=int(port))
|
apache-2.0
|
yuyuz/FLASH
|
HPOlib/Plotting/plotTrace_perExp.py
|
5
|
6055
|
#!/usr/bin/env python
##
# wrapping: A program making it easy to use hyperparameter
# optimization software.
# Copyright (C) 2013 Katharina Eggensperger and Matthias Feurer
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from argparse import ArgumentParser
import cPickle
import itertools
import sys
from matplotlib.pyplot import tight_layout, figure, subplots_adjust, subplot, savefig, show
import matplotlib.gridspec
import numpy as np
from HPOlib.Plotting import plot_util
__authors__ = ["Katharina Eggensperger", "Matthias Feurer"]
__contact__ = "automl.org"
def plot_optimization_trace_cv(trial_list, name_list, optimum=0, title="",
log=True, save="", y_max=0, y_min=0):
markers =plot_util.get_plot_markers()
colors = plot_util.get_plot_colors()
linestyles = itertools.cycle(['-'])
size = 1
ratio = 5
gs = matplotlib.gridspec.GridSpec(ratio, 1)
fig = figure(1, dpi=100)
fig.suptitle(title, fontsize=16)
ax1 = subplot(gs[0:ratio, :])
ax1.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5)
min_val = sys.maxint
max_val = -sys.maxint
max_trials = 0
fig.suptitle(title, fontsize=16)
# Plot the average error and std
for i in range(len(name_list)):
m = markers.next()
c = colors.next()
l = linestyles.next()
leg = False
for tr in trial_list[i]:
if log:
tr = np.log10(tr)
x = range(1, len(tr)+1)
y = tr
if not leg:
ax1.plot(x, y, color=c, linewidth=size, linestyle=l, label=name_list[i][0])
leg = True
ax1.plot(x, y, color=c, linewidth=size, linestyle=l)
min_val = min(min_val, min(tr))
max_val = max(max_val, max(tr))
max_trials = max(max_trials, len(tr))
# Maybe plot on logscale
ylabel = ""
if log:
ax1.set_ylabel("log10(Minfunction value)" + ylabel)
else:
ax1.set_ylabel("Minfunction value" + ylabel)
# Descript and label the stuff
leg = ax1.legend(loc='best', fancybox=True)
leg.get_frame().set_alpha(0.5)
ax1.set_xlabel("#Function evaluations")
if y_max == y_min:
# Set axes limits
ax1.set_ylim([min_val-0.1*abs((max_val-min_val)), max_val+0.1*abs((max_val-min_val))])
else:
ax1.set_ylim([y_min, y_max])
ax1.set_xlim([0, max_trials + 1])
tight_layout()
subplots_adjust(top=0.85)
if save != "":
savefig(save, dpi=100, facecolor='w', edgecolor='w',
orientation='portrait', papertype=None, format=None,
transparent=False, bbox_inches="tight", pad_inches=0.1)
else:
show()
def main(pkl_list, name_list, autofill, optimum=0, save="", title="", log=False,
y_min=0, y_max=0):
trial_list = list()
for i in range(len(pkl_list)):
tmp_trial_list = list()
max_len = -sys.maxint
for pkl in pkl_list[i]:
fh = open(pkl, "r")
trials = cPickle.load(fh)
fh.close()
trace = plot_util.get_Trace_cv(trials)
tmp_trial_list.append(trace)
max_len = max(max_len, len(trace))
trial_list.append(list())
for tr in tmp_trial_list:
# if len(tr) < max_len:
# tr.extend([tr[-1] for idx in range(abs(max_len - len(tr)))])
trial_list[-1].append(np.array(tr))
plot_optimization_trace_cv(trial_list, name_list, optimum, title=title, log=log,
save=save, y_min=y_min, y_max=y_max)
if save != "":
sys.stdout.write("Saved plot to " + save + "\n")
else:
sys.stdout.write("..Done\n")
if __name__ == "__main__":
prog = "python plotTraceWithStd.py WhatIsThis <oneOrMorePickles> [WhatIsThis <oneOrMorePickles>]"
description = "Plot a Trace with std for multiple experiments"
parser = ArgumentParser(description=description, prog=prog)
# Options for specific benchmarks
parser.add_argument("-o", "--optimum", type=float, dest="optimum",
default=0, help="If not set, the optimum is supposed to be zero")
# Options which are available only for this plot
parser.add_argument("-a", "--autofill", action="store_true", dest="autofill",
default=False, help="Fill trace automatically")
# General Options
parser.add_argument("-l", "--log", action="store_true", dest="log",
default=False, help="Plot on log scale")
parser.add_argument("--max", dest="max", type=float,
default=0, help="Maximum of the plot")
parser.add_argument("--min", dest="min", type=float,
default=0, help="Minimum of the plot")
parser.add_argument("-s", "--save", dest="save",
default="", help="Where to save plot instead of showing it?")
parser.add_argument("-t", "--title", dest="title",
default="", help="Optional supertitle for plot")
args, unknown = parser.parse_known_args()
sys.stdout.write("\nFound " + str(len(unknown)) + " arguments\n")
pkl_list_main, name_list_main = plot_util.get_pkl_and_name_list(unknown)
main(pkl_list=pkl_list_main, name_list=name_list_main, autofill=args.autofill, optimum=args.optimum,
save=args.save, title=args.title, log=args.log, y_min=args.min, y_max=args.max)
|
gpl-3.0
|
sam81/pychoacoustics
|
pychoacoustics/win_UML_est_guess_parspace_plot.py
|
1
|
21278
|
# -*- coding: utf-8 -*-
# Copyright (C) 2008-2020 Samuele Carcagno <[email protected]>
# This file is part of pychoacoustics
# pychoacoustics is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# pychoacoustics is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with pychoacoustics. If not, see <http://www.gnu.org/licenses/>.
from __future__ import nested_scopes, generators, division, absolute_import, with_statement, print_function, unicode_literals
import matplotlib
from cycler import cycler
from .pyqtver import*
if pyqtversion == 4:
from PyQt4 import QtGui, QtCore
from PyQt4.QtGui import QCheckBox, QIcon, QHBoxLayout, QMainWindow, QPushButton, QVBoxLayout, QWidget
# import the Qt4Agg FigureCanvas object, that binds Figure to
# Qt4Agg backend. It also inherits from QWidget
from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas
# import the NavigationToolbar Qt4Agg widget
from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as NavigationToolbar
matplotlib.rcParams['backend'] = "Qt4Agg"
matplotlib.rcParams['backend.qt4'] = "PyQt4"
elif pyqtversion == -4:
from PySide import QtGui, QtCore
from PySide.QtGui import QCheckBox, QIcon, QHBoxLayout, QMainWindow, QPushButton, QVBoxLayout, QWidget
# import the Qt4Agg FigureCanvas object, that binds Figure to
# Qt4Agg backend. It also inherits from QWidget
from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas
# import the NavigationToolbar Qt4Agg widget
from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as NavigationToolbar
matplotlib.rcParams['backend'] = "Qt4Agg"
matplotlib.rcParams['backend.qt4'] = "PySide"
elif pyqtversion == 5:
from PyQt5 import QtGui, QtCore
from PyQt5.QtWidgets import QCheckBox, QHBoxLayout, QMainWindow, QPushButton, QVBoxLayout, QWidget
from PyQt5.QtGui import QIcon
# import the Qt4Agg FigureCanvas object, that binds Figure to
# Qt4Agg backend. It also inherits from QWidget
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
# import the NavigationToolbar Qt4Agg widget
from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar
matplotlib.rcParams['backend'] = "Qt5Agg"
# Matplotlib Figure object
from matplotlib.figure import Figure
from matplotlib.widgets import Cursor
import numpy as np
import copy, os
from numpy import arange, ceil, floor, linspace, log10
from matplotlib.lines import Line2D
import matplotlib.pyplot as plt
import matplotlib as mpl
#import pandas as pd
import matplotlib.font_manager as fm
from .pysdt import*
from .UML_method_est_guess import*
from .utils_general import*
#mpl.rcParams['font.family'] = 'sans-serif'
#fontPath = os.path.abspath(os.path.dirname(__file__)+'/../') + '/data/Ubuntu-R.ttf'
#fontPath = '/media/ntfsShared/lin_home/auditory/code/pychoacoustics/pychoacoustics-qt4/development/dev/data/Ubuntu-R.ttf'
#prop = fm.FontProperties(fname=fontPath)
#mpl.rcParams.update({'font.size': 16})
class UMLEstGuessRateParSpacePlot(QMainWindow):
def __init__(self, parent):
QMainWindow.__init__(self, parent)
self.setAttribute(QtCore.Qt.WA_DeleteOnClose)
#self.prm = prm
self.pchs = ["o", "s", "v", "p", "h", "8", "*", "x", "+", "d", ",", "^", "<", ">", "1", "2", "3", "4", "H", "D", ".", "|", "_"]
mpl.rcParams['xtick.major.size'] = 6
mpl.rcParams['xtick.minor.size'] = 4
mpl.rcParams['xtick.major.width'] = 1
mpl.rcParams['xtick.minor.width'] = 1
mpl.rcParams['ytick.major.size'] = 9
mpl.rcParams['ytick.minor.size'] = 5
mpl.rcParams['ytick.major.width'] = 0.8
mpl.rcParams['ytick.minor.width'] = 0.8
mpl.rcParams['xtick.direction'] = 'out'
mpl.rcParams['ytick.direction'] = 'out'
mpl.rcParams['font.size'] = 14
mpl.rcParams['figure.facecolor'] = 'white'
mpl.rcParams['lines.color'] = 'black'
mpl.rcParams['axes.prop_cycle'] = cycler('color', ["#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7"])
self.mw = QWidget(self)
self.vbl = QVBoxLayout(self.mw)
self.fig = Figure(figsize=(8,8))#facecolor=self.canvasColor, dpi=self.dpi)
self.ax1 = self.fig.add_subplot(221)
self.ax2 = self.fig.add_subplot(222)
self.ax3 = self.fig.add_subplot(223)
self.ax4 = self.fig.add_subplot(224)
self.canvas = FigureCanvas(self.fig)
self.canvas.setParent(self.mw)
self.ntb = NavigationToolbar(self.canvas, self.mw)
self.logAxisMidpoint = QCheckBox(self.tr("Midpoint Log Axis"))
self.logAxisMidpoint.stateChanged[int].connect(self.toggleMidpointLogAxis)
self.logAxisSlope = QCheckBox(self.tr("Slope Log Axis"))
self.logAxisSlope.stateChanged[int].connect(self.toggleSlopeLogAxis)
self.logAxisGuess = QCheckBox(self.tr("Guess Log Axis"))
self.logAxisGuess.stateChanged[int].connect(self.toggleGuessLogAxis)
self.logAxisLapse = QCheckBox(self.tr("Lapse Log Axis"))
self.logAxisLapse.stateChanged[int].connect(self.toggleLapseLogAxis)
self.updateButton = QPushButton(self.tr("Update"), self)
self.updateButton.setIcon(QIcon.fromTheme("view-refresh", QIcon(":/view-refresh")))
self.updateButton.clicked.connect(self.onClickUpdateButton)
self.ntbBox = QHBoxLayout()
self.ntbBox.addWidget(self.ntb)
self.ntbBox.addWidget(self.logAxisMidpoint)
self.ntbBox.addWidget(self.logAxisSlope)
self.ntbBox.addWidget(self.logAxisGuess)
self.ntbBox.addWidget(self.logAxisLapse)
self.ntbBox.addWidget(self.updateButton)
self.vbl.addWidget(self.canvas)
self.vbl.addLayout(self.ntbBox)
self.mw.setFocus()
self.setCentralWidget(self.mw)
self.getUMLPars()
if self.stimScaling == "Linear":
self.logAxisMidpoint.setChecked(False)
self.plotDataMidpoint()
elif self.stimScaling == "Logarithmic":
self.logAxisMidpoint.setChecked(True)
self.plotDataMidpointLogAxis()
if self.slopeSpacing == "Linear":
self.logAxisSlope.setChecked(False)
self.plotDataSlope()
elif self.slopeSpacing == "Logarithmic":
self.logAxisSlope.setChecked(True)
self.plotDataSlopeLogAxis()
if self.guessSpacing == "Linear":
self.logAxisGuess.setChecked(False)
self.plotDataGuess()
elif self.guessSpacing == "Logarithmic":
self.logAxisGuess.setChecked(True)
self.plotDataGuessLogAxis()
if self.lapseSpacing == "Linear":
self.logAxisLapse.setChecked(False)
self.plotDataLapse()
elif self.lapseSpacing == "Logarithmic":
self.logAxisLapse.setChecked(True)
self.plotDataLapseLogAxis()
self.fig.suptitle(self.tr("UML Parameter Space"))
self.show()
self.canvas.draw()
def getUMLPars(self):
self.psyFun = self.parent().psyFunChooser.currentText()
self.loStim = self.parent().currLocale.toDouble(self.parent().loStim.text())[0]
self.hiStim = self.parent().currLocale.toDouble(self.parent().hiStim.text())[0]
self.stimScaling = self.parent().stimScalingChooser.currentText()
self.loMidPoint = self.parent().currLocale.toDouble(self.parent().loMidPoint.text())[0]
self.hiMidPoint = self.parent().currLocale.toDouble(self.parent().hiMidPoint.text())[0]
self.threshGridStep = self.parent().currLocale.toDouble(self.parent().threshGridStep.text())[0]
self.threshPrior = self.parent().threshPriorChooser.currentText()
self.threshPriorMu = self.parent().currLocale.toDouble(self.parent().threshPriorMu.text())[0]
self.threshPriorSTD = self.parent().currLocale.toDouble(self.parent().threshPriorSTD.text())[0]
self.loSlope = self.parent().currLocale.toDouble(self.parent().loSlope.text())[0]
self.hiSlope = self.parent().currLocale.toDouble(self.parent().hiSlope.text())[0]
self.slopeGridStep = self.parent().currLocale.toDouble(self.parent().slopeGridStep.text())[0]
self.slopeSpacing = self.parent().slopeSpacingChooser.currentText()
self.slopePrior = self.parent().slopePriorChooser.currentText()
self.slopePriorMu = self.parent().currLocale.toDouble(self.parent().slopePriorMu.text())[0]
self.slopePriorSTD = self.parent().currLocale.toDouble(self.parent().slopePriorSTD.text())[0]
self.loGuess = self.parent().currLocale.toDouble(self.parent().loGuess.text())[0]
self.hiGuess = self.parent().currLocale.toDouble(self.parent().hiGuess.text())[0]
self.guessGridStep = self.parent().currLocale.toDouble(self.parent().guessGridStep.text())[0]
self.guessSpacing = self.parent().guessSpacingChooser.currentText()
self.guessPrior = self.parent().guessPriorChooser.currentText()
self.guessPriorMu = self.parent().currLocale.toDouble(self.parent().guessPriorMu.text())[0]
self.guessPriorSTD = self.parent().currLocale.toDouble(self.parent().guessPriorSTD.text())[0]
self.loLapse = self.parent().currLocale.toDouble(self.parent().loLapse.text())[0]
self.hiLapse = self.parent().currLocale.toDouble(self.parent().hiLapse.text())[0]
self.lapseGridStep = self.parent().currLocale.toDouble(self.parent().lapseGridStep.text())[0]
self.lapseSpacing = self.parent().lapseSpacingChooser.currentText()
self.lapsePrior = self.parent().lapsePriorChooser.currentText()
self.lapsePriorMu = self.parent().currLocale.toDouble(self.parent().lapsePriorMu.text())[0]
self.lapsePriorSTD = self.parent().currLocale.toDouble(self.parent().lapsePriorSTD.text())[0]
# try:
# self.nAlternatives = int(self.parent().nAlternativesChooser.currentText())
# except:
# self.nAlternatives = 2
if self.stimScaling == "Linear":
self.UML = setupUMLEstGuessRate(model=self.psyFun,
swptRule="Up-Down",
nDown=2,
centTend = "Mean",
stimScale = self.stimScaling,
x0=1,
xLim=(self.loStim, self.hiStim),
alphaLim=(self.loMidPoint, self.hiMidPoint),
alphaStep=self.threshGridStep,
alphaSpacing="Linear",
alphaDist=self.threshPrior,
alphaMu=self.threshPriorMu,
alphaSTD=self.threshPriorSTD,
betaLim=(self.loSlope, self.hiSlope),
betaStep=self.slopeGridStep,
betaSpacing=self.slopeSpacing,
betaDist=self.slopePrior,
betaMu=self.slopePriorMu,
betaSTD=self.slopePriorSTD,
gammaLim=(self.loGuess, self.hiGuess),
gammaStep=self.guessGridStep,
gammaSpacing=self.guessSpacing,
gammaDist=self.guessPrior,
gammaMu=self.guessPriorMu,
gammaSTD=self.guessPriorSTD,
lambdaLim=(self.loLapse, self.hiLapse),
lambdaStep=self.lapseGridStep,
lambdaSpacing=self.lapseSpacing,
lambdaDist=self.lapsePrior,
lambdaMu=self.lapsePriorMu,
lambdaSTD=self.lapsePriorSTD)
elif self.stimScaling == "Logarithmic":
self.UML = setupUMLEstGuessRate(model=self.psyFun,
swptRule="Up-Down",
nDown=2,
centTend = "Mean",
stimScale = self.stimScaling,
x0=1,
xLim=(abs(self.loStim), abs(self.hiStim)),
alphaLim=(abs(self.loMidPoint), abs(self.hiMidPoint)),
alphaStep=self.threshGridStep,
alphaSpacing="Linear",
alphaDist=self.threshPrior,
alphaMu=abs(self.threshPriorMu),
alphaSTD=self.threshPriorSTD,
betaLim=(self.loSlope, self.hiSlope),
betaStep=self.slopeGridStep,
betaSpacing=self.slopeSpacing,
betaDist=self.slopePrior,
betaMu=self.slopePriorMu,
betaSTD=self.slopePriorSTD,
gammaLim=(self.loGuess, self.hiGuess),
gammaStep=self.guessGridStep,
gammaSpacing=self.guessSpacing,
gammaDist=self.guessPrior,
gammaMu=self.guessPriorMu,
gammaSTD=self.guessPriorSTD,
lambdaLim=(self.loLapse, self.hiLapse),
lambdaStep=self.lapseGridStep,
lambdaSpacing=self.lapseSpacing,
lambdaDist=self.lapsePrior,
lambdaMu=self.lapsePriorMu,
lambdaSTD=self.lapsePriorSTD)
def plotDataMidpoint(self):
self.ax1.clear()
self.A = setPrior(self.UML["a"], self.UML["par"]["alpha"])
if self.stimScaling == "Linear":
markerline, stemlines, baseline = self.ax1.stem(self.UML["alpha"], self.A[:,0,0,0], 'k')
elif self.stimScaling == "Logarithmic":
markerline, stemlines, baseline = self.ax1.stem(exp(self.UML["alpha"]), self.A[:,0,0,0]/exp(self.UML["alpha"]), 'k')
if self.loStim < 0:
self.ax1.set_xticklabels(list(map(str, -self.ax1.get_xticks())))
plt.setp(markerline, 'markerfacecolor', 'k')
nAlpha = len(self.A[:,0,0])
self.ax1.set_title("Midpoint, #Points " + str(nAlpha))
def plotDataSlope(self):
self.ax2.clear()
self.B = setPrior(self.UML["b"], self.UML["par"]["beta"])
if self.UML["par"]["beta"]["spacing"] == "Linear":
markerline, stemlines, baseline = self.ax2.stem(self.UML["beta"], self.B[0,:,0,0], 'k')
elif self.UML["par"]["beta"]["spacing"] == "Logarithmic":
markerline, stemlines, baseline = self.ax2.stem(self.UML["beta"], self.B[0,:,0,0]/self.UML["beta"], 'k')
plt.setp(markerline, 'markerfacecolor', 'k')
nBeta = len(self.B[0,:,0,0])
self.ax2.set_title("Slope, #Points " + str(nBeta))
def plotDataGuess(self):
self.ax4.clear()
self.G = setPrior(self.UML["g"], self.UML["par"]["gamma"])
if self.UML["par"]["gamma"]["spacing"] == "Linear":
markerline, stemlines, baseline = self.ax4.stem(self.UML["gamma"], self.G[0,0,:,0], 'k')
elif self.UML["par"]["gamma"]["spacing"] == "Logarithmic":
markerline, stemlines, baseline = self.ax4.stem(self.UML["gamma"], self.G[0,0,:,0]/self.UML["gamma"], 'k')
plt.setp(markerline, 'markerfacecolor', 'k')
nGamma = len(self.G[0,0,:,0])
self.ax4.set_title("Guess, #Points " + str(nGamma))
def plotDataLapse(self):
self.ax3.clear()
L = setPrior(self.UML["l"], self.UML["par"]["lambda"])
if self.UML["par"]["lambda"]["spacing"] == "Linear":
markerline, stemlines, baseline = self.ax3.stem(self.UML["lambda"], L[0,0,0,:], 'k')
elif self.UML["par"]["lambda"]["spacing"] == "Logarithmic":
markerline, stemlines, baseline = self.ax3.stem(self.UML["lambda"], L[0,0,0,:]/self.UML["lambda"], 'k')
plt.setp(markerline, 'markerfacecolor', 'k')
nLambda = len(L[0,0,0,:])
self.ax3.set_title("Lapse, #Points " + str(nLambda))
def plotDataMidpointLogAxis(self):
self.ax1.clear()
self.A = setPrior(self.UML["a"], self.UML["par"]["alpha"])
if self.stimScaling == "Logarithmic":
x = self.UML["alpha"]
markerline, stemlines, baseline = self.ax1.stem(x, self.A[:,0,0,0], 'k')
elif self.stimScaling == "Linear":
x = log(self.UML["alpha"])
markerline, stemlines, baseline = self.ax1.stem(x, self.A[:,0,0,0]*self.UML["alpha"], 'k')
setLogTicks(self.ax1, exp(1))
plt.setp(markerline, 'markerfacecolor', 'k')
nAlpha = len(self.A[:,0,0,0])
self.ax1.set_title("Midpoint, #Points " + str(nAlpha))
def plotDataSlopeLogAxis(self):
self.ax2.clear()
self.B = setPrior(self.UML["b"], self.UML["par"]["beta"])
if self.UML["par"]["beta"]["spacing"] == "Logarithmic":
markerline, stemlines, baseline = self.ax2.stem(log(self.UML["beta"]), self.B[0,:,0,0], 'k')
elif self.UML["par"]["beta"]["spacing"] == "Linear":
markerline, stemlines, baseline = self.ax2.stem(log(self.UML["beta"]), self.B[0,:,0,0]*self.UML["beta"], 'k')
setLogTicks(self.ax2, exp(1))
plt.setp(markerline, 'markerfacecolor', 'k')
nBeta = len(self.B[0,:,0,0])
self.ax2.set_title("Slope, #Points " + str(nBeta))
def plotDataGuessLogAxis(self):
self.ax4.clear()
self.G = setPrior(self.UML["g"], self.UML["par"]["gamma"])
if self.UML["par"]["gamma"]["spacing"] == "Logarithmic":
markerline, stemlines, baseline = self.ax4.stem(log(self.UML["gamma"]), self.G[0,0,:,0], 'k')
elif self.UML["par"]["gamma"]["spacing"] == "Linear":
markerline, stemlines, baseline = self.ax4.stem(log(self.UML["gamma"]), self.G[0,0,:,0]*self.UML["gamma"], 'k')
setLogTicks(self.ax4, exp(1))
plt.setp(markerline, 'markerfacecolor', 'k')
nGamma = len(self.G[0,0,:,0])
self.ax4.set_title("Guess, #Points " + str(nGamma))
def plotDataLapseLogAxis(self):
self.ax3.clear()
L = setPrior(self.UML["l"], self.UML["par"]["lambda"])
if self.UML["par"]["lambda"]["spacing"] == "Logarithmic":
markerline, stemlines, baseline = self.ax3.stem(log(self.UML["lambda"]), L[0,0,0,:], 'k')
elif self.UML["par"]["lambda"]["spacing"] == "Linear":
markerline, stemlines, baseline = self.ax3.stem(log(self.UML["lambda"]), L[0,0,0,:]*self.UML["lambda"], 'k')
setLogTicks(self.ax3, exp(1))
plt.setp(markerline, 'markerfacecolor', 'k')
nLambda = len(L[0,0,0,:])
self.ax3.set_title("Lapse, #Points " + str(nLambda))
def onClickUpdateButton(self):
self.getUMLPars()
if self.logAxisMidpoint.isChecked() == False:
self.plotDataMidpoint()
else:
self.plotDataMidpointLogAxis()
if self.logAxisSlope.isChecked() == False:
self.plotDataSlope()
else:
self.plotDataSlopeLogAxis()
if self.logAxisGuess.isChecked() == False:
self.plotDataGuess()
else:
self.plotDataGuessLogAxis()
if self.logAxisLapse.isChecked() == False:
self.plotDataLapse()
else:
self.plotDataLapseLogAxis()
self.canvas.draw()
def toggleMidpointLogAxis(self):
if self.logAxisMidpoint.isChecked() == True:
self.plotDataMidpointLogAxis()
else:
self.plotDataMidpoint()
self.canvas.draw()
def toggleSlopeLogAxis(self):
if self.logAxisSlope.isChecked() == True:
self.plotDataSlopeLogAxis()
else:
self.plotDataSlope()
self.canvas.draw()
def toggleGuessLogAxis(self):
if self.logAxisGuess.isChecked() == True:
self.plotDataGuessLogAxis()
else:
self.plotDataGuess()
self.canvas.draw()
def toggleLapseLogAxis(self):
if self.logAxisLapse.isChecked() == True:
self.plotDataLapseLogAxis()
else:
self.plotDataLapse()
self.canvas.draw()
|
gpl-3.0
|
benjaminoh1/tensorflowcookbook
|
Chapter 03/lin_reg_decomposition.py
|
1
|
1611
|
# Linear Regression: Decomposition Method
#----------------------------------
#
# This function shows how to use Tensorflow to
# solve linear regression via the matrix inverse.
#
# Given Ax=b, and a Cholesky decomposition such that
# A = L*L' then we can get solve for x via
# 1) L*y=t(A)*b
# 2) L'*x=y
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
ops.reset_default_graph()
# Create graph
sess = tf.Session()
# Create the data
x_vals = np.linspace(0, 10, 100)
y_vals = x_vals + np.random.normal(0, 1, 100)
# Create design matrix
x_vals_column = np.transpose(np.matrix(x_vals))
ones_column = np.transpose(np.matrix(np.repeat(1, 100)))
A = np.column_stack((x_vals_column, ones_column))
# Create b matrix
b = np.transpose(np.matrix(y_vals))
# Create tensors
A_tensor = tf.constant(A)
b_tensor = tf.constant(b)
# Find Cholesky Decomposition
tA_A = tf.matmul(tf.transpose(A_tensor), A_tensor)
L = tf.cholesky(tA_A)
# Solve L*y=t(A)*b
tA_b = tf.matmul(tf.transpose(A_tensor), b)
sol1 = tf.matrix_solve(L, tA_b)
# Solve L' * y = sol1
sol2 = tf.matrix_solve(tf.transpose(L), sol1)
solution_eval = sess.run(sol2)
# Extract coefficients
slope = solution_eval[0][0]
y_intercept = solution_eval[1][0]
print('slope: ' + str(slope))
print('y_intercept: ' + str(y_intercept))
# Get best fit line
best_fit = []
for i in x_vals:
best_fit.append(slope*i+y_intercept)
# Plot the results
plt.plot(x_vals, y_vals, 'o', label='Data')
plt.plot(x_vals, best_fit, 'r-', label='Best fit line', linewidth=3)
plt.legend(loc='upper left')
plt.show()
|
mit
|
ZenDevelopmentSystems/scikit-learn
|
sklearn/linear_model/tests/test_perceptron.py
|
378
|
1815
|
import numpy as np
import scipy.sparse as sp
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_true
from sklearn.utils.testing import assert_raises
from sklearn.utils import check_random_state
from sklearn.datasets import load_iris
from sklearn.linear_model import Perceptron
iris = load_iris()
random_state = check_random_state(12)
indices = np.arange(iris.data.shape[0])
random_state.shuffle(indices)
X = iris.data[indices]
y = iris.target[indices]
X_csr = sp.csr_matrix(X)
X_csr.sort_indices()
class MyPerceptron(object):
def __init__(self, n_iter=1):
self.n_iter = n_iter
def fit(self, X, y):
n_samples, n_features = X.shape
self.w = np.zeros(n_features, dtype=np.float64)
self.b = 0.0
for t in range(self.n_iter):
for i in range(n_samples):
if self.predict(X[i])[0] != y[i]:
self.w += y[i] * X[i]
self.b += y[i]
def project(self, X):
return np.dot(X, self.w) + self.b
def predict(self, X):
X = np.atleast_2d(X)
return np.sign(self.project(X))
def test_perceptron_accuracy():
for data in (X, X_csr):
clf = Perceptron(n_iter=30, shuffle=False)
clf.fit(data, y)
score = clf.score(data, y)
assert_true(score >= 0.7)
def test_perceptron_correctness():
y_bin = y.copy()
y_bin[y != 1] = -1
clf1 = MyPerceptron(n_iter=2)
clf1.fit(X, y_bin)
clf2 = Perceptron(n_iter=2, shuffle=False)
clf2.fit(X, y_bin)
assert_array_almost_equal(clf1.w, clf2.coef_.ravel())
def test_undefined_methods():
clf = Perceptron()
for meth in ("predict_proba", "predict_log_proba"):
assert_raises(AttributeError, lambda x: getattr(clf, x), meth)
|
bsd-3-clause
|
nvoron23/scikit-learn
|
sklearn/decomposition/tests/test_online_lda.py
|
49
|
13124
|
import numpy as np
from scipy.linalg import block_diag
from scipy.sparse import csr_matrix
from scipy.special import psi
from sklearn.decomposition import LatentDirichletAllocation
from sklearn.decomposition._online_lda import (_dirichlet_expectation_1d,
_dirichlet_expectation_2d)
from sklearn.utils.testing import assert_allclose
from sklearn.utils.testing import assert_true
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_greater_equal
from sklearn.utils.testing import assert_raises_regexp
from sklearn.utils.testing import if_safe_multiprocessing_with_blas
from sklearn.utils.validation import NotFittedError
from sklearn.externals.six.moves import xrange
def _build_sparse_mtx():
# Create 3 topics and each topic has 3 disticnt words.
# (Each word only belongs to a single topic.)
n_topics = 3
block = n_topics * np.ones((3, 3))
blocks = [block] * n_topics
X = block_diag(*blocks)
X = csr_matrix(X)
return (n_topics, X)
def test_lda_default_prior_params():
# default prior parameter should be `1 / topics`
# and verbose params should not affect result
n_topics, X = _build_sparse_mtx()
prior = 1. / n_topics
lda_1 = LatentDirichletAllocation(n_topics=n_topics, doc_topic_prior=prior,
topic_word_prior=prior, random_state=0)
lda_2 = LatentDirichletAllocation(n_topics=n_topics, random_state=0)
topic_distr_1 = lda_1.fit_transform(X)
topic_distr_2 = lda_2.fit_transform(X)
assert_almost_equal(topic_distr_1, topic_distr_2)
def test_lda_fit_batch():
# Test LDA batch learning_offset (`fit` method with 'batch' learning)
rng = np.random.RandomState(0)
n_topics, X = _build_sparse_mtx()
lda = LatentDirichletAllocation(n_topics=n_topics, evaluate_every=1,
learning_method='batch', random_state=rng)
lda.fit(X)
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
for component in lda.components_:
# Find top 3 words in each LDA component
top_idx = set(component.argsort()[-3:][::-1])
assert_true(tuple(sorted(top_idx)) in correct_idx_grps)
def test_lda_fit_online():
# Test LDA online learning (`fit` method with 'online' learning)
rng = np.random.RandomState(0)
n_topics, X = _build_sparse_mtx()
lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=10.,
evaluate_every=1, learning_method='online',
random_state=rng)
lda.fit(X)
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
for component in lda.components_:
# Find top 3 words in each LDA component
top_idx = set(component.argsort()[-3:][::-1])
assert_true(tuple(sorted(top_idx)) in correct_idx_grps)
def test_lda_partial_fit():
# Test LDA online learning (`partial_fit` method)
# (same as test_lda_batch)
rng = np.random.RandomState(0)
n_topics, X = _build_sparse_mtx()
lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=10.,
total_samples=100, random_state=rng)
for i in xrange(3):
lda.partial_fit(X)
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
for c in lda.components_:
top_idx = set(c.argsort()[-3:][::-1])
assert_true(tuple(sorted(top_idx)) in correct_idx_grps)
def test_lda_dense_input():
# Test LDA with dense input.
rng = np.random.RandomState(0)
n_topics, X = _build_sparse_mtx()
lda = LatentDirichletAllocation(n_topics=n_topics, learning_method='batch',
random_state=rng)
lda.fit(X.toarray())
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
for component in lda.components_:
# Find top 3 words in each LDA component
top_idx = set(component.argsort()[-3:][::-1])
assert_true(tuple(sorted(top_idx)) in correct_idx_grps)
def test_lda_transform():
# Test LDA transform.
# Transform result cannot be negative
rng = np.random.RandomState(0)
X = rng.randint(5, size=(20, 10))
n_topics = 3
lda = LatentDirichletAllocation(n_topics=n_topics, random_state=rng)
X_trans = lda.fit_transform(X)
assert_true((X_trans > 0.0).any())
def test_lda_fit_transform():
# Test LDA fit_transform & transform
# fit_transform and transform result should be the same
for method in ('online', 'batch'):
rng = np.random.RandomState(0)
X = rng.randint(10, size=(50, 20))
lda = LatentDirichletAllocation(n_topics=5, learning_method=method,
random_state=rng)
X_fit = lda.fit_transform(X)
X_trans = lda.transform(X)
assert_array_almost_equal(X_fit, X_trans, 4)
def test_lda_partial_fit_dim_mismatch():
# test `n_features` mismatch in `partial_fit`
rng = np.random.RandomState(0)
n_topics = rng.randint(3, 6)
n_col = rng.randint(6, 10)
X_1 = np.random.randint(4, size=(10, n_col))
X_2 = np.random.randint(4, size=(10, n_col + 1))
lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=5.,
total_samples=20, random_state=rng)
lda.partial_fit(X_1)
assert_raises_regexp(ValueError, r"^The provided data has",
lda.partial_fit, X_2)
def test_invalid_params():
# test `_check_params` method
X = np.ones((5, 10))
invalid_models = (
('n_topics', LatentDirichletAllocation(n_topics=0)),
('learning_method',
LatentDirichletAllocation(learning_method='unknown')),
('total_samples', LatentDirichletAllocation(total_samples=0)),
('learning_offset', LatentDirichletAllocation(learning_offset=-1)),
)
for param, model in invalid_models:
regex = r"^Invalid %r parameter" % param
assert_raises_regexp(ValueError, regex, model.fit, X)
def test_lda_negative_input():
# test pass dense matrix with sparse negative input.
X = -np.ones((5, 10))
lda = LatentDirichletAllocation()
regex = r"^Negative values in data passed"
assert_raises_regexp(ValueError, regex, lda.fit, X)
def test_lda_no_component_error():
# test `transform` and `perplexity` before `fit`
rng = np.random.RandomState(0)
X = rng.randint(4, size=(20, 10))
lda = LatentDirichletAllocation()
regex = r"^no 'components_' attribute"
assert_raises_regexp(NotFittedError, regex, lda.transform, X)
assert_raises_regexp(NotFittedError, regex, lda.perplexity, X)
def test_lda_transform_mismatch():
# test `n_features` mismatch in partial_fit and transform
rng = np.random.RandomState(0)
X = rng.randint(4, size=(20, 10))
X_2 = rng.randint(4, size=(10, 8))
n_topics = rng.randint(3, 6)
lda = LatentDirichletAllocation(n_topics=n_topics, random_state=rng)
lda.partial_fit(X)
assert_raises_regexp(ValueError, r"^The provided data has",
lda.partial_fit, X_2)
@if_safe_multiprocessing_with_blas
def test_lda_multi_jobs():
n_topics, X = _build_sparse_mtx()
# Test LDA batch training with multi CPU
for method in ('online', 'batch'):
rng = np.random.RandomState(0)
lda = LatentDirichletAllocation(n_topics=n_topics, n_jobs=2,
learning_method=method,
random_state=rng)
lda.fit(X)
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
for c in lda.components_:
top_idx = set(c.argsort()[-3:][::-1])
assert_true(tuple(sorted(top_idx)) in correct_idx_grps)
@if_safe_multiprocessing_with_blas
def test_lda_partial_fit_multi_jobs():
# Test LDA online training with multi CPU
rng = np.random.RandomState(0)
n_topics, X = _build_sparse_mtx()
lda = LatentDirichletAllocation(n_topics=n_topics, n_jobs=2,
learning_offset=5., total_samples=30,
random_state=rng)
for i in range(2):
lda.partial_fit(X)
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
for c in lda.components_:
top_idx = set(c.argsort()[-3:][::-1])
assert_true(tuple(sorted(top_idx)) in correct_idx_grps)
def test_lda_preplexity_mismatch():
# test dimension mismatch in `perplexity` method
rng = np.random.RandomState(0)
n_topics = rng.randint(3, 6)
n_samples = rng.randint(6, 10)
X = np.random.randint(4, size=(n_samples, 10))
lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=5.,
total_samples=20, random_state=rng)
lda.fit(X)
# invalid samples
invalid_n_samples = rng.randint(4, size=(n_samples + 1, n_topics))
assert_raises_regexp(ValueError, r'Number of samples', lda.perplexity, X,
invalid_n_samples)
# invalid topic number
invalid_n_topics = rng.randint(4, size=(n_samples, n_topics + 1))
assert_raises_regexp(ValueError, r'Number of topics', lda.perplexity, X,
invalid_n_topics)
def test_lda_perplexity():
# Test LDA perplexity for batch training
# perplexity should be lower after each iteration
n_topics, X = _build_sparse_mtx()
for method in ('online', 'batch'):
lda_1 = LatentDirichletAllocation(n_topics=n_topics, max_iter=1,
learning_method=method,
total_samples=100, random_state=0)
lda_2 = LatentDirichletAllocation(n_topics=n_topics, max_iter=10,
learning_method=method,
total_samples=100, random_state=0)
distr_1 = lda_1.fit_transform(X)
perp_1 = lda_1.perplexity(X, distr_1, sub_sampling=False)
distr_2 = lda_2.fit_transform(X)
perp_2 = lda_2.perplexity(X, distr_2, sub_sampling=False)
assert_greater_equal(perp_1, perp_2)
perp_1_subsampling = lda_1.perplexity(X, distr_1, sub_sampling=True)
perp_2_subsampling = lda_2.perplexity(X, distr_2, sub_sampling=True)
assert_greater_equal(perp_1_subsampling, perp_2_subsampling)
def test_lda_score():
# Test LDA score for batch training
# score should be higher after each iteration
n_topics, X = _build_sparse_mtx()
for method in ('online', 'batch'):
lda_1 = LatentDirichletAllocation(n_topics=n_topics, max_iter=1,
learning_method=method,
total_samples=100, random_state=0)
lda_2 = LatentDirichletAllocation(n_topics=n_topics, max_iter=10,
learning_method=method,
total_samples=100, random_state=0)
lda_1.fit_transform(X)
score_1 = lda_1.score(X)
lda_2.fit_transform(X)
score_2 = lda_2.score(X)
assert_greater_equal(score_2, score_1)
def test_perplexity_input_format():
# Test LDA perplexity for sparse and dense input
# score should be the same for both dense and sparse input
n_topics, X = _build_sparse_mtx()
lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=1,
learning_method='batch',
total_samples=100, random_state=0)
distr = lda.fit_transform(X)
perp_1 = lda.perplexity(X)
perp_2 = lda.perplexity(X, distr)
perp_3 = lda.perplexity(X.toarray(), distr)
assert_almost_equal(perp_1, perp_2)
assert_almost_equal(perp_1, perp_3)
def test_lda_score_perplexity():
# Test the relationship between LDA score and perplexity
n_topics, X = _build_sparse_mtx()
lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=10,
random_state=0)
distr = lda.fit_transform(X)
perplexity_1 = lda.perplexity(X, distr, sub_sampling=False)
score = lda.score(X)
perplexity_2 = np.exp(-1. * (score / np.sum(X.data)))
assert_almost_equal(perplexity_1, perplexity_2)
def test_lda_empty_docs():
"""Test LDA on empty document (all-zero rows)."""
Z = np.zeros((5, 4))
for X in [Z, csr_matrix(Z)]:
lda = LatentDirichletAllocation(max_iter=750).fit(X)
assert_almost_equal(lda.components_.sum(axis=0),
np.ones(lda.components_.shape[1]))
def test_dirichlet_expectation():
"""Test Cython version of Dirichlet expectation calculation."""
x = np.logspace(-100, 10, 10000)
assert_allclose(_dirichlet_expectation_1d(x),
np.exp(psi(x) - psi(np.sum(x))),
atol=1e-19)
x = x.reshape(100, 100)
assert_allclose(_dirichlet_expectation_2d(x),
psi(x) - psi(np.sum(x, axis=1)[:, np.newaxis]),
rtol=1e-11, atol=3e-9)
|
bsd-3-clause
|
scottpurdy/nupic
|
external/linux32/lib/python2.6/site-packages/matplotlib/axes.py
|
69
|
259904
|
from __future__ import division, generators
import math, sys, warnings, datetime, new
import numpy as np
from numpy import ma
import matplotlib
rcParams = matplotlib.rcParams
import matplotlib.artist as martist
import matplotlib.axis as maxis
import matplotlib.cbook as cbook
import matplotlib.collections as mcoll
import matplotlib.colors as mcolors
import matplotlib.contour as mcontour
import matplotlib.dates as mdates
import matplotlib.font_manager as font_manager
import matplotlib.image as mimage
import matplotlib.legend as mlegend
import matplotlib.lines as mlines
import matplotlib.mlab as mlab
import matplotlib.patches as mpatches
import matplotlib.quiver as mquiver
import matplotlib.scale as mscale
import matplotlib.table as mtable
import matplotlib.text as mtext
import matplotlib.ticker as mticker
import matplotlib.transforms as mtransforms
iterable = cbook.iterable
is_string_like = cbook.is_string_like
def _process_plot_format(fmt):
"""
Process a matlab(TM) style color/line style format string. Return a
(*linestyle*, *color*) tuple as a result of the processing. Default
values are ('-', 'b'). Example format strings include:
* 'ko': black circles
* '.b': blue dots
* 'r--': red dashed lines
.. seealso::
:func:`~matplotlib.Line2D.lineStyles` and
:func:`~matplotlib.pyplot.colors`:
for all possible styles and color format string.
"""
linestyle = None
marker = None
color = None
# Is fmt just a colorspec?
try:
color = mcolors.colorConverter.to_rgb(fmt)
return linestyle, marker, color # Yes.
except ValueError:
pass # No, not just a color.
# handle the multi char special cases and strip them from the
# string
if fmt.find('--')>=0:
linestyle = '--'
fmt = fmt.replace('--', '')
if fmt.find('-.')>=0:
linestyle = '-.'
fmt = fmt.replace('-.', '')
if fmt.find(' ')>=0:
linestyle = 'None'
fmt = fmt.replace(' ', '')
chars = [c for c in fmt]
for c in chars:
if c in mlines.lineStyles:
if linestyle is not None:
raise ValueError(
'Illegal format string "%s"; two linestyle symbols' % fmt)
linestyle = c
elif c in mlines.lineMarkers:
if marker is not None:
raise ValueError(
'Illegal format string "%s"; two marker symbols' % fmt)
marker = c
elif c in mcolors.colorConverter.colors:
if color is not None:
raise ValueError(
'Illegal format string "%s"; two color symbols' % fmt)
color = c
else:
raise ValueError(
'Unrecognized character %c in format string' % c)
if linestyle is None and marker is None:
linestyle = rcParams['lines.linestyle']
if linestyle is None:
linestyle = 'None'
if marker is None:
marker = 'None'
return linestyle, marker, color
def set_default_color_cycle(clist):
"""
Change the default cycle of colors that will be used by the plot
command. This must be called before creating the
:class:`Axes` to which it will apply; it will
apply to all future axes.
*clist* is a sequence of mpl color specifiers
"""
_process_plot_var_args.defaultColors = clist[:]
rcParams['lines.color'] = clist[0]
class _process_plot_var_args:
"""
Process variable length arguments to the plot command, so that
plot commands like the following are supported::
plot(t, s)
plot(t1, s1, t2, s2)
plot(t1, s1, 'ko', t2, s2)
plot(t1, s1, 'ko', t2, s2, 'r--', t3, e3)
an arbitrary number of *x*, *y*, *fmt* are allowed
"""
defaultColors = ['b','g','r','c','m','y','k']
def __init__(self, axes, command='plot'):
self.axes = axes
self.command = command
self._clear_color_cycle()
def _clear_color_cycle(self):
self.colors = _process_plot_var_args.defaultColors[:]
# if the default line color is a color format string, move it up
# in the que
try: ind = self.colors.index(rcParams['lines.color'])
except ValueError:
self.firstColor = rcParams['lines.color']
else:
self.colors[0], self.colors[ind] = self.colors[ind], self.colors[0]
self.firstColor = self.colors[0]
self.Ncolors = len(self.colors)
self.count = 0
def set_color_cycle(self, clist):
self.colors = clist[:]
self.firstColor = self.colors[0]
self.Ncolors = len(self.colors)
self.count = 0
def _get_next_cycle_color(self):
if self.count==0:
color = self.firstColor
else:
color = self.colors[int(self.count % self.Ncolors)]
self.count += 1
return color
def __call__(self, *args, **kwargs):
if self.axes.xaxis is not None and self.axes.yaxis is not None:
xunits = kwargs.pop( 'xunits', self.axes.xaxis.units)
yunits = kwargs.pop( 'yunits', self.axes.yaxis.units)
if xunits!=self.axes.xaxis.units:
self.axes.xaxis.set_units(xunits)
if yunits!=self.axes.yaxis.units:
self.axes.yaxis.set_units(yunits)
ret = self._grab_next_args(*args, **kwargs)
return ret
def set_lineprops(self, line, **kwargs):
assert self.command == 'plot', 'set_lineprops only works with "plot"'
for key, val in kwargs.items():
funcName = "set_%s"%key
if not hasattr(line,funcName):
raise TypeError, 'There is no line property "%s"'%key
func = getattr(line,funcName)
func(val)
def set_patchprops(self, fill_poly, **kwargs):
assert self.command == 'fill', 'set_patchprops only works with "fill"'
for key, val in kwargs.items():
funcName = "set_%s"%key
if not hasattr(fill_poly,funcName):
raise TypeError, 'There is no patch property "%s"'%key
func = getattr(fill_poly,funcName)
func(val)
def _xy_from_y(self, y):
if self.axes.yaxis is not None:
b = self.axes.yaxis.update_units(y)
if b: return np.arange(len(y)), y, False
if not ma.isMaskedArray(y):
y = np.asarray(y)
if len(y.shape) == 1:
y = y[:,np.newaxis]
nr, nc = y.shape
x = np.arange(nr)
if len(x.shape) == 1:
x = x[:,np.newaxis]
return x,y, True
def _xy_from_xy(self, x, y):
if self.axes.xaxis is not None and self.axes.yaxis is not None:
bx = self.axes.xaxis.update_units(x)
by = self.axes.yaxis.update_units(y)
# right now multicol is not supported if either x or y are
# unit enabled but this can be fixed..
if bx or by: return x, y, False
x = ma.asarray(x)
y = ma.asarray(y)
if len(x.shape) == 1:
x = x[:,np.newaxis]
if len(y.shape) == 1:
y = y[:,np.newaxis]
nrx, ncx = x.shape
nry, ncy = y.shape
assert nrx == nry, 'Dimensions of x and y are incompatible'
if ncx == ncy:
return x, y, True
if ncx == 1:
x = np.repeat(x, ncy, axis=1)
if ncy == 1:
y = np.repeat(y, ncx, axis=1)
assert x.shape == y.shape, 'Dimensions of x and y are incompatible'
return x, y, True
def _plot_1_arg(self, y, **kwargs):
assert self.command == 'plot', 'fill needs at least 2 arguments'
ret = []
x, y, multicol = self._xy_from_y(y)
if multicol:
for j in xrange(y.shape[1]):
color = self._get_next_cycle_color()
seg = mlines.Line2D(x, y[:,j],
color = color,
axes=self.axes,
)
self.set_lineprops(seg, **kwargs)
ret.append(seg)
else:
color = self._get_next_cycle_color()
seg = mlines.Line2D(x, y,
color = color,
axes=self.axes,
)
self.set_lineprops(seg, **kwargs)
ret.append(seg)
return ret
def _plot_2_args(self, tup2, **kwargs):
ret = []
if is_string_like(tup2[1]):
assert self.command == 'plot', ('fill needs at least 2 non-string '
'arguments')
y, fmt = tup2
x, y, multicol = self._xy_from_y(y)
linestyle, marker, color = _process_plot_format(fmt)
def makeline(x, y):
_color = color
if _color is None:
_color = self._get_next_cycle_color()
seg = mlines.Line2D(x, y,
color=_color,
linestyle=linestyle, marker=marker,
axes=self.axes,
)
self.set_lineprops(seg, **kwargs)
ret.append(seg)
if multicol:
for j in xrange(y.shape[1]):
makeline(x[:,j], y[:,j])
else:
makeline(x, y)
return ret
else:
x, y = tup2
x, y, multicol = self._xy_from_xy(x, y)
def makeline(x, y):
color = self._get_next_cycle_color()
seg = mlines.Line2D(x, y,
color=color,
axes=self.axes,
)
self.set_lineprops(seg, **kwargs)
ret.append(seg)
def makefill(x, y):
x = self.axes.convert_xunits(x)
y = self.axes.convert_yunits(y)
facecolor = self._get_next_cycle_color()
seg = mpatches.Polygon(np.hstack(
(x[:,np.newaxis],y[:,np.newaxis])),
facecolor = facecolor,
fill=True,
closed=closed
)
self.set_patchprops(seg, **kwargs)
ret.append(seg)
if self.command == 'plot':
func = makeline
else:
closed = kwargs.get('closed', True)
func = makefill
if multicol:
for j in xrange(y.shape[1]):
func(x[:,j], y[:,j])
else:
func(x, y)
return ret
def _plot_3_args(self, tup3, **kwargs):
ret = []
x, y, fmt = tup3
x, y, multicol = self._xy_from_xy(x, y)
linestyle, marker, color = _process_plot_format(fmt)
def makeline(x, y):
_color = color
if _color is None:
_color = self._get_next_cycle_color()
seg = mlines.Line2D(x, y,
color=_color,
linestyle=linestyle, marker=marker,
axes=self.axes,
)
self.set_lineprops(seg, **kwargs)
ret.append(seg)
def makefill(x, y):
facecolor = color
x = self.axes.convert_xunits(x)
y = self.axes.convert_yunits(y)
seg = mpatches.Polygon(np.hstack(
(x[:,np.newaxis],y[:,np.newaxis])),
facecolor = facecolor,
fill=True,
closed=closed
)
self.set_patchprops(seg, **kwargs)
ret.append(seg)
if self.command == 'plot':
func = makeline
else:
closed = kwargs.get('closed', True)
func = makefill
if multicol:
for j in xrange(y.shape[1]):
func(x[:,j], y[:,j])
else:
func(x, y)
return ret
def _grab_next_args(self, *args, **kwargs):
remaining = args
while 1:
if len(remaining)==0: return
if len(remaining)==1:
for seg in self._plot_1_arg(remaining[0], **kwargs):
yield seg
remaining = []
continue
if len(remaining)==2:
for seg in self._plot_2_args(remaining, **kwargs):
yield seg
remaining = []
continue
if len(remaining)==3:
if not is_string_like(remaining[2]):
raise ValueError, 'third arg must be a format string'
for seg in self._plot_3_args(remaining, **kwargs):
yield seg
remaining=[]
continue
if is_string_like(remaining[2]):
for seg in self._plot_3_args(remaining[:3], **kwargs):
yield seg
remaining=remaining[3:]
else:
for seg in self._plot_2_args(remaining[:2], **kwargs):
yield seg
remaining=remaining[2:]
class Axes(martist.Artist):
"""
The :class:`Axes` contains most of the figure elements:
:class:`~matplotlib.axis.Axis`, :class:`~matplotlib.axis.Tick`,
:class:`~matplotlib.lines.Line2D`, :class:`~matplotlib.text.Text`,
:class:`~matplotlib.patches.Polygon`, etc., and sets the
coordinate system.
The :class:`Axes` instance supports callbacks through a callbacks
attribute which is a :class:`~matplotlib.cbook.CallbackRegistry`
instance. The events you can connect to are 'xlim_changed' and
'ylim_changed' and the callback will be called with func(*ax*)
where *ax* is the :class:`Axes` instance.
"""
name = "rectilinear"
_shared_x_axes = cbook.Grouper()
_shared_y_axes = cbook.Grouper()
def __str__(self):
return "Axes(%g,%g;%gx%g)" % tuple(self._position.bounds)
def __init__(self, fig, rect,
axisbg = None, # defaults to rc axes.facecolor
frameon = True,
sharex=None, # use Axes instance's xaxis info
sharey=None, # use Axes instance's yaxis info
label='',
**kwargs
):
"""
Build an :class:`Axes` instance in
:class:`~matplotlib.figure.Figure` *fig* with
*rect=[left, bottom, width, height]* in
:class:`~matplotlib.figure.Figure` coordinates
Optional keyword arguments:
================ =========================================
Keyword Description
================ =========================================
*adjustable* [ 'box' | 'datalim' ]
*alpha* float: the alpha transparency
*anchor* [ 'C', 'SW', 'S', 'SE', 'E', 'NE', 'N',
'NW', 'W' ]
*aspect* [ 'auto' | 'equal' | aspect_ratio ]
*autoscale_on* [ *True* | *False* ] whether or not to
autoscale the *viewlim*
*axis_bgcolor* any matplotlib color, see
:func:`~matplotlib.pyplot.colors`
*axisbelow* draw the grids and ticks below the other
artists
*cursor_props* a (*float*, *color*) tuple
*figure* a :class:`~matplotlib.figure.Figure`
instance
*frame_on* a boolean - draw the axes frame
*label* the axes label
*navigate* [ *True* | *False* ]
*navigate_mode* [ 'PAN' | 'ZOOM' | None ] the navigation
toolbar button status
*position* [left, bottom, width, height] in
class:`~matplotlib.figure.Figure` coords
*sharex* an class:`~matplotlib.axes.Axes` instance
to share the x-axis with
*sharey* an class:`~matplotlib.axes.Axes` instance
to share the y-axis with
*title* the title string
*visible* [ *True* | *False* ] whether the axes is
visible
*xlabel* the xlabel
*xlim* (*xmin*, *xmax*) view limits
*xscale* [%(scale)s]
*xticklabels* sequence of strings
*xticks* sequence of floats
*ylabel* the ylabel strings
*ylim* (*ymin*, *ymax*) view limits
*yscale* [%(scale)s]
*yticklabels* sequence of strings
*yticks* sequence of floats
================ =========================================
""" % {'scale': ' | '.join([repr(x) for x in mscale.get_scale_names()])}
martist.Artist.__init__(self)
if isinstance(rect, mtransforms.Bbox):
self._position = rect
else:
self._position = mtransforms.Bbox.from_bounds(*rect)
self._originalPosition = self._position.frozen()
self.set_axes(self)
self.set_aspect('auto')
self._adjustable = 'box'
self.set_anchor('C')
self._sharex = sharex
self._sharey = sharey
if sharex is not None:
self._shared_x_axes.join(self, sharex)
if sharex._adjustable == 'box':
sharex._adjustable = 'datalim'
#warnings.warn(
# 'shared axes: "adjustable" is being changed to "datalim"')
self._adjustable = 'datalim'
if sharey is not None:
self._shared_y_axes.join(self, sharey)
if sharey._adjustable == 'box':
sharey._adjustable = 'datalim'
#warnings.warn(
# 'shared axes: "adjustable" is being changed to "datalim"')
self._adjustable = 'datalim'
self.set_label(label)
self.set_figure(fig)
# this call may differ for non-sep axes, eg polar
self._init_axis()
if axisbg is None: axisbg = rcParams['axes.facecolor']
self._axisbg = axisbg
self._frameon = frameon
self._axisbelow = rcParams['axes.axisbelow']
self._hold = rcParams['axes.hold']
self._connected = {} # a dict from events to (id, func)
self.cla()
# funcs used to format x and y - fall back on major formatters
self.fmt_xdata = None
self.fmt_ydata = None
self.set_cursor_props((1,'k')) # set the cursor properties for axes
self._cachedRenderer = None
self.set_navigate(True)
self.set_navigate_mode(None)
if len(kwargs): martist.setp(self, **kwargs)
if self.xaxis is not None:
self._xcid = self.xaxis.callbacks.connect('units finalize',
self.relim)
if self.yaxis is not None:
self._ycid = self.yaxis.callbacks.connect('units finalize',
self.relim)
def get_window_extent(self, *args, **kwargs):
'''
get the axes bounding box in display space; *args* and
*kwargs* are empty
'''
return self.bbox
def _init_axis(self):
"move this out of __init__ because non-separable axes don't use it"
self.xaxis = maxis.XAxis(self)
self.yaxis = maxis.YAxis(self)
self._update_transScale()
def set_figure(self, fig):
"""
Set the class:`~matplotlib.axes.Axes` figure
accepts a class:`~matplotlib.figure.Figure` instance
"""
martist.Artist.set_figure(self, fig)
self.bbox = mtransforms.TransformedBbox(self._position, fig.transFigure)
#these will be updated later as data is added
self.dataLim = mtransforms.Bbox.unit()
self.viewLim = mtransforms.Bbox.unit()
self.transScale = mtransforms.TransformWrapper(
mtransforms.IdentityTransform())
self._set_lim_and_transforms()
def _set_lim_and_transforms(self):
"""
set the *dataLim* and *viewLim*
:class:`~matplotlib.transforms.Bbox` attributes and the
*transScale*, *transData*, *transLimits* and *transAxes*
transformations.
"""
self.transAxes = mtransforms.BboxTransformTo(self.bbox)
# Transforms the x and y axis separately by a scale factor
# It is assumed that this part will have non-linear components
self.transScale = mtransforms.TransformWrapper(
mtransforms.IdentityTransform())
# An affine transformation on the data, generally to limit the
# range of the axes
self.transLimits = mtransforms.BboxTransformFrom(
mtransforms.TransformedBbox(self.viewLim, self.transScale))
# The parentheses are important for efficiency here -- they
# group the last two (which are usually affines) separately
# from the first (which, with log-scaling can be non-affine).
self.transData = self.transScale + (self.transLimits + self.transAxes)
self._xaxis_transform = mtransforms.blended_transform_factory(
self.axes.transData, self.axes.transAxes)
self._yaxis_transform = mtransforms.blended_transform_factory(
self.axes.transAxes, self.axes.transData)
def get_xaxis_transform(self):
"""
Get the transformation used for drawing x-axis labels, ticks
and gridlines. The x-direction is in data coordinates and the
y-direction is in axis coordinates.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
"""
return self._xaxis_transform
def get_xaxis_text1_transform(self, pad_points):
"""
Get the transformation used for drawing x-axis labels, which
will add the given amount of padding (in points) between the
axes and the label. The x-direction is in data coordinates
and the y-direction is in axis coordinates. Returns a
3-tuple of the form::
(transform, valign, halign)
where *valign* and *halign* are requested alignments for the
text.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
"""
return (self._xaxis_transform +
mtransforms.ScaledTranslation(0, -1 * pad_points / 72.0,
self.figure.dpi_scale_trans),
"top", "center")
def get_xaxis_text2_transform(self, pad_points):
"""
Get the transformation used for drawing the secondary x-axis
labels, which will add the given amount of padding (in points)
between the axes and the label. The x-direction is in data
coordinates and the y-direction is in axis coordinates.
Returns a 3-tuple of the form::
(transform, valign, halign)
where *valign* and *halign* are requested alignments for the
text.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
"""
return (self._xaxis_transform +
mtransforms.ScaledTranslation(0, pad_points / 72.0,
self.figure.dpi_scale_trans),
"bottom", "center")
def get_yaxis_transform(self):
"""
Get the transformation used for drawing y-axis labels, ticks
and gridlines. The x-direction is in axis coordinates and the
y-direction is in data coordinates.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
"""
return self._yaxis_transform
def get_yaxis_text1_transform(self, pad_points):
"""
Get the transformation used for drawing y-axis labels, which
will add the given amount of padding (in points) between the
axes and the label. The x-direction is in axis coordinates
and the y-direction is in data coordinates. Returns a 3-tuple
of the form::
(transform, valign, halign)
where *valign* and *halign* are requested alignments for the
text.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
"""
return (self._yaxis_transform +
mtransforms.ScaledTranslation(-1 * pad_points / 72.0, 0,
self.figure.dpi_scale_trans),
"center", "right")
def get_yaxis_text2_transform(self, pad_points):
"""
Get the transformation used for drawing the secondary y-axis
labels, which will add the given amount of padding (in points)
between the axes and the label. The x-direction is in axis
coordinates and the y-direction is in data coordinates.
Returns a 3-tuple of the form::
(transform, valign, halign)
where *valign* and *halign* are requested alignments for the
text.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
"""
return (self._yaxis_transform +
mtransforms.ScaledTranslation(pad_points / 72.0, 0,
self.figure.dpi_scale_trans),
"center", "left")
def _update_transScale(self):
self.transScale.set(
mtransforms.blended_transform_factory(
self.xaxis.get_transform(), self.yaxis.get_transform()))
if hasattr(self, "lines"):
for line in self.lines:
line._transformed_path.invalidate()
def get_position(self, original=False):
'Return the a copy of the axes rectangle as a Bbox'
if original:
return self._originalPosition.frozen()
else:
return self._position.frozen()
def set_position(self, pos, which='both'):
"""
Set the axes position with::
pos = [left, bottom, width, height]
in relative 0,1 coords, or *pos* can be a
:class:`~matplotlib.transforms.Bbox`
There are two position variables: one which is ultimately
used, but which may be modified by :meth:`apply_aspect`, and a
second which is the starting point for :meth:`apply_aspect`.
Optional keyword arguments:
*which*
========== ====================
value description
========== ====================
'active' to change the first
'original' to change the second
'both' to change both
========== ====================
"""
if not isinstance(pos, mtransforms.BboxBase):
pos = mtransforms.Bbox.from_bounds(*pos)
if which in ('both', 'active'):
self._position.set(pos)
if which in ('both', 'original'):
self._originalPosition.set(pos)
def reset_position(self):
'Make the original position the active position'
pos = self.get_position(original=True)
self.set_position(pos, which='active')
def _set_artist_props(self, a):
'set the boilerplate props for artists added to axes'
a.set_figure(self.figure)
if not a.is_transform_set():
a.set_transform(self.transData)
a.set_axes(self)
def _gen_axes_patch(self):
"""
Returns the patch used to draw the background of the axes. It
is also used as the clipping path for any data elements on the
axes.
In the standard axes, this is a rectangle, but in other
projections it may not be.
.. note::
Intended to be overridden by new projection types.
"""
return mpatches.Rectangle((0.0, 0.0), 1.0, 1.0)
def cla(self):
'Clear the current axes'
# Note: this is called by Axes.__init__()
self.xaxis.cla()
self.yaxis.cla()
self.ignore_existing_data_limits = True
self.callbacks = cbook.CallbackRegistry(('xlim_changed',
'ylim_changed'))
if self._sharex is not None:
# major and minor are class instances with
# locator and formatter attributes
self.xaxis.major = self._sharex.xaxis.major
self.xaxis.minor = self._sharex.xaxis.minor
x0, x1 = self._sharex.get_xlim()
self.set_xlim(x0, x1, emit=False)
self.xaxis.set_scale(self._sharex.xaxis.get_scale())
else:
self.xaxis.set_scale('linear')
if self._sharey is not None:
self.yaxis.major = self._sharey.yaxis.major
self.yaxis.minor = self._sharey.yaxis.minor
y0, y1 = self._sharey.get_ylim()
self.set_ylim(y0, y1, emit=False)
self.yaxis.set_scale(self._sharey.yaxis.get_scale())
else:
self.yaxis.set_scale('linear')
self._autoscaleon = True
self._update_transScale() # needed?
self._get_lines = _process_plot_var_args(self)
self._get_patches_for_fill = _process_plot_var_args(self, 'fill')
self._gridOn = rcParams['axes.grid']
self.lines = []
self.patches = []
self.texts = []
self.tables = []
self.artists = []
self.images = []
self.legend_ = None
self.collections = [] # collection.Collection instances
self.grid(self._gridOn)
props = font_manager.FontProperties(size=rcParams['axes.titlesize'])
self.titleOffsetTrans = mtransforms.ScaledTranslation(
0.0, 5.0 / 72.0, self.figure.dpi_scale_trans)
self.title = mtext.Text(
x=0.5, y=1.0, text='',
fontproperties=props,
verticalalignment='bottom',
horizontalalignment='center',
)
self.title.set_transform(self.transAxes + self.titleOffsetTrans)
self.title.set_clip_box(None)
self._set_artist_props(self.title)
# the patch draws the background of the axes. we want this to
# be below the other artists; the axesPatch name is
# deprecated. We use the frame to draw the edges so we are
# setting the edgecolor to None
self.patch = self.axesPatch = self._gen_axes_patch()
self.patch.set_figure(self.figure)
self.patch.set_facecolor(self._axisbg)
self.patch.set_edgecolor('None')
self.patch.set_linewidth(0)
self.patch.set_transform(self.transAxes)
# the frame draws the border around the axes and we want this
# above. this is a place holder for a more sophisticated
# artist that might just draw a left, bottom frame, or a
# centered frame, etc the axesFrame name is deprecated
self.frame = self.axesFrame = self._gen_axes_patch()
self.frame.set_figure(self.figure)
self.frame.set_facecolor('none')
self.frame.set_edgecolor(rcParams['axes.edgecolor'])
self.frame.set_linewidth(rcParams['axes.linewidth'])
self.frame.set_transform(self.transAxes)
self.frame.set_zorder(2.5)
self.axison = True
self.xaxis.set_clip_path(self.patch)
self.yaxis.set_clip_path(self.patch)
self._shared_x_axes.clean()
self._shared_y_axes.clean()
def clear(self):
'clear the axes'
self.cla()
def set_color_cycle(self, clist):
"""
Set the color cycle for any future plot commands on this Axes.
clist is a list of mpl color specifiers.
"""
self._get_lines.set_color_cycle(clist)
def ishold(self):
'return the HOLD status of the axes'
return self._hold
def hold(self, b=None):
"""
call signature::
hold(b=None)
Set the hold state. If *hold* is *None* (default), toggle the
*hold* state. Else set the *hold* state to boolean value *b*.
Examples:
* toggle hold:
>>> hold()
* turn hold on:
>>> hold(True)
* turn hold off
>>> hold(False)
When hold is True, subsequent plot commands will be added to
the current axes. When hold is False, the current axes and
figure will be cleared on the next plot command
"""
if b is None:
self._hold = not self._hold
else:
self._hold = b
def get_aspect(self):
return self._aspect
def set_aspect(self, aspect, adjustable=None, anchor=None):
"""
*aspect*
======== ================================================
value description
======== ================================================
'auto' automatic; fill position rectangle with data
'normal' same as 'auto'; deprecated
'equal' same scaling from data to plot units for x and y
num a circle will be stretched such that the height
is num times the width. aspect=1 is the same as
aspect='equal'.
======== ================================================
*adjustable*
========= ============================
value description
========= ============================
'box' change physical size of axes
'datalim' change xlim or ylim
========= ============================
*anchor*
===== =====================
value description
===== =====================
'C' centered
'SW' lower left corner
'S' middle of bottom edge
'SE' lower right corner
etc.
===== =====================
"""
if aspect in ('normal', 'auto'):
self._aspect = 'auto'
elif aspect == 'equal':
self._aspect = 'equal'
else:
self._aspect = float(aspect) # raise ValueError if necessary
if adjustable is not None:
self.set_adjustable(adjustable)
if anchor is not None:
self.set_anchor(anchor)
def get_adjustable(self):
return self._adjustable
def set_adjustable(self, adjustable):
"""
ACCEPTS: [ 'box' | 'datalim' ]
"""
if adjustable in ('box', 'datalim'):
if self in self._shared_x_axes or self in self._shared_y_axes:
if adjustable == 'box':
raise ValueError(
'adjustable must be "datalim" for shared axes')
self._adjustable = adjustable
else:
raise ValueError('argument must be "box", or "datalim"')
def get_anchor(self):
return self._anchor
def set_anchor(self, anchor):
"""
*anchor*
===== ============
value description
===== ============
'C' Center
'SW' bottom left
'S' bottom
'SE' bottom right
'E' right
'NE' top right
'N' top
'NW' top left
'W' left
===== ============
"""
if anchor in mtransforms.Bbox.coefs.keys() or len(anchor) == 2:
self._anchor = anchor
else:
raise ValueError('argument must be among %s' %
', '.join(mtransforms.BBox.coefs.keys()))
def get_data_ratio(self):
"""
Returns the aspect ratio of the raw data.
This method is intended to be overridden by new projection
types.
"""
xmin,xmax = self.get_xbound()
xsize = max(math.fabs(xmax-xmin), 1e-30)
ymin,ymax = self.get_ybound()
ysize = max(math.fabs(ymax-ymin), 1e-30)
return ysize/xsize
def apply_aspect(self, position=None):
'''
Use :meth:`_aspect` and :meth:`_adjustable` to modify the
axes box or the view limits.
'''
if position is None:
position = self.get_position(original=True)
aspect = self.get_aspect()
if aspect == 'auto':
self.set_position( position , which='active')
return
if aspect == 'equal':
A = 1
else:
A = aspect
#Ensure at drawing time that any Axes involved in axis-sharing
# does not have its position changed.
if self in self._shared_x_axes or self in self._shared_y_axes:
if self._adjustable == 'box':
self._adjustable = 'datalim'
warnings.warn(
'shared axes: "adjustable" is being changed to "datalim"')
figW,figH = self.get_figure().get_size_inches()
fig_aspect = figH/figW
if self._adjustable == 'box':
box_aspect = A * self.get_data_ratio()
pb = position.frozen()
pb1 = pb.shrunk_to_aspect(box_aspect, pb, fig_aspect)
self.set_position(pb1.anchored(self.get_anchor(), pb), 'active')
return
# reset active to original in case it had been changed
# by prior use of 'box'
self.set_position(position, which='active')
xmin,xmax = self.get_xbound()
xsize = max(math.fabs(xmax-xmin), 1e-30)
ymin,ymax = self.get_ybound()
ysize = max(math.fabs(ymax-ymin), 1e-30)
l,b,w,h = position.bounds
box_aspect = fig_aspect * (h/w)
data_ratio = box_aspect / A
y_expander = (data_ratio*xsize/ysize - 1.0)
#print 'y_expander', y_expander
# If y_expander > 0, the dy/dx viewLim ratio needs to increase
if abs(y_expander) < 0.005:
#print 'good enough already'
return
dL = self.dataLim
xr = 1.05 * dL.width
yr = 1.05 * dL.height
xmarg = xsize - xr
ymarg = ysize - yr
Ysize = data_ratio * xsize
Xsize = ysize / data_ratio
Xmarg = Xsize - xr
Ymarg = Ysize - yr
xm = 0 # Setting these targets to, e.g., 0.05*xr does not seem to help.
ym = 0
#print 'xmin, xmax, ymin, ymax', xmin, xmax, ymin, ymax
#print 'xsize, Xsize, ysize, Ysize', xsize, Xsize, ysize, Ysize
changex = (self in self._shared_y_axes
and self not in self._shared_x_axes)
changey = (self in self._shared_x_axes
and self not in self._shared_y_axes)
if changex and changey:
warnings.warn("adjustable='datalim' cannot work with shared "
"x and y axes")
return
if changex:
adjust_y = False
else:
#print 'xmarg, ymarg, Xmarg, Ymarg', xmarg, ymarg, Xmarg, Ymarg
if xmarg > xm and ymarg > ym:
adjy = ((Ymarg > 0 and y_expander < 0)
or (Xmarg < 0 and y_expander > 0))
else:
adjy = y_expander > 0
#print 'y_expander, adjy', y_expander, adjy
adjust_y = changey or adjy #(Ymarg > xmarg)
if adjust_y:
yc = 0.5*(ymin+ymax)
y0 = yc - Ysize/2.0
y1 = yc + Ysize/2.0
self.set_ybound((y0, y1))
#print 'New y0, y1:', y0, y1
#print 'New ysize, ysize/xsize', y1-y0, (y1-y0)/xsize
else:
xc = 0.5*(xmin+xmax)
x0 = xc - Xsize/2.0
x1 = xc + Xsize/2.0
self.set_xbound((x0, x1))
#print 'New x0, x1:', x0, x1
#print 'New xsize, ysize/xsize', x1-x0, ysize/(x1-x0)
def axis(self, *v, **kwargs):
'''
Convenience method for manipulating the x and y view limits
and the aspect ratio of the plot.
*kwargs* are passed on to :meth:`set_xlim` and
:meth:`set_ylim`
'''
if len(v)==1 and is_string_like(v[0]):
s = v[0].lower()
if s=='on': self.set_axis_on()
elif s=='off': self.set_axis_off()
elif s in ('equal', 'tight', 'scaled', 'normal', 'auto', 'image'):
self.set_autoscale_on(True)
self.set_aspect('auto')
self.autoscale_view()
# self.apply_aspect()
if s=='equal':
self.set_aspect('equal', adjustable='datalim')
elif s == 'scaled':
self.set_aspect('equal', adjustable='box', anchor='C')
self.set_autoscale_on(False) # Req. by Mark Bakker
elif s=='tight':
self.autoscale_view(tight=True)
self.set_autoscale_on(False)
elif s == 'image':
self.autoscale_view(tight=True)
self.set_autoscale_on(False)
self.set_aspect('equal', adjustable='box', anchor='C')
else:
raise ValueError('Unrecognized string %s to axis; '
'try on or off' % s)
xmin, xmax = self.get_xlim()
ymin, ymax = self.get_ylim()
return xmin, xmax, ymin, ymax
try: v[0]
except IndexError:
emit = kwargs.get('emit', True)
xmin = kwargs.get('xmin', None)
xmax = kwargs.get('xmax', None)
xmin, xmax = self.set_xlim(xmin, xmax, emit)
ymin = kwargs.get('ymin', None)
ymax = kwargs.get('ymax', None)
ymin, ymax = self.set_ylim(ymin, ymax, emit)
return xmin, xmax, ymin, ymax
v = v[0]
if len(v) != 4:
raise ValueError('v must contain [xmin xmax ymin ymax]')
self.set_xlim([v[0], v[1]])
self.set_ylim([v[2], v[3]])
return v
def get_child_artists(self):
"""
Return a list of artists the axes contains.
.. deprecated:: 0.98
"""
raise DeprecationWarning('Use get_children instead')
def get_frame(self):
'Return the axes Rectangle frame'
warnings.warn('use ax.patch instead', DeprecationWarning)
return self.patch
def get_legend(self):
'Return the legend.Legend instance, or None if no legend is defined'
return self.legend_
def get_images(self):
'return a list of Axes images contained by the Axes'
return cbook.silent_list('AxesImage', self.images)
def get_lines(self):
'Return a list of lines contained by the Axes'
return cbook.silent_list('Line2D', self.lines)
def get_xaxis(self):
'Return the XAxis instance'
return self.xaxis
def get_xgridlines(self):
'Get the x grid lines as a list of Line2D instances'
return cbook.silent_list('Line2D xgridline', self.xaxis.get_gridlines())
def get_xticklines(self):
'Get the xtick lines as a list of Line2D instances'
return cbook.silent_list('Text xtickline', self.xaxis.get_ticklines())
def get_yaxis(self):
'Return the YAxis instance'
return self.yaxis
def get_ygridlines(self):
'Get the y grid lines as a list of Line2D instances'
return cbook.silent_list('Line2D ygridline', self.yaxis.get_gridlines())
def get_yticklines(self):
'Get the ytick lines as a list of Line2D instances'
return cbook.silent_list('Line2D ytickline', self.yaxis.get_ticklines())
#### Adding and tracking artists
def has_data(self):
'''Return *True* if any artists have been added to axes.
This should not be used to determine whether the *dataLim*
need to be updated, and may not actually be useful for
anything.
'''
return (
len(self.collections) +
len(self.images) +
len(self.lines) +
len(self.patches))>0
def add_artist(self, a):
'Add any :class:`~matplotlib.artist.Artist` to the axes'
a.set_axes(self)
self.artists.append(a)
self._set_artist_props(a)
a.set_clip_path(self.patch)
a._remove_method = lambda h: self.artists.remove(h)
def add_collection(self, collection, autolim=True):
'''
add a :class:`~matplotlib.collections.Collection` instance
to the axes
'''
label = collection.get_label()
if not label:
collection.set_label('collection%d'%len(self.collections))
self.collections.append(collection)
self._set_artist_props(collection)
collection.set_clip_path(self.patch)
if autolim:
if collection._paths and len(collection._paths):
self.update_datalim(collection.get_datalim(self.transData))
collection._remove_method = lambda h: self.collections.remove(h)
def add_line(self, line):
'''
Add a :class:`~matplotlib.lines.Line2D` to the list of plot
lines
'''
self._set_artist_props(line)
line.set_clip_path(self.patch)
self._update_line_limits(line)
if not line.get_label():
line.set_label('_line%d'%len(self.lines))
self.lines.append(line)
line._remove_method = lambda h: self.lines.remove(h)
def _update_line_limits(self, line):
p = line.get_path()
if p.vertices.size > 0:
self.dataLim.update_from_path(p, self.ignore_existing_data_limits,
updatex=line.x_isdata,
updatey=line.y_isdata)
self.ignore_existing_data_limits = False
def add_patch(self, p):
"""
Add a :class:`~matplotlib.patches.Patch` *p* to the list of
axes patches; the clipbox will be set to the Axes clipping
box. If the transform is not set, it will be set to
:attr:`transData`.
"""
self._set_artist_props(p)
p.set_clip_path(self.patch)
self._update_patch_limits(p)
self.patches.append(p)
p._remove_method = lambda h: self.patches.remove(h)
def _update_patch_limits(self, patch):
'update the data limits for patch *p*'
# hist can add zero height Rectangles, which is useful to keep
# the bins, counts and patches lined up, but it throws off log
# scaling. We'll ignore rects with zero height or width in
# the auto-scaling
if (isinstance(patch, mpatches.Rectangle) and
(patch.get_width()==0 or patch.get_height()==0)):
return
vertices = patch.get_path().vertices
if vertices.size > 0:
xys = patch.get_patch_transform().transform(vertices)
if patch.get_data_transform() != self.transData:
transform = (patch.get_data_transform() +
self.transData.inverted())
xys = transform.transform(xys)
self.update_datalim(xys, updatex=patch.x_isdata,
updatey=patch.y_isdata)
def add_table(self, tab):
'''
Add a :class:`~matplotlib.tables.Table` instance to the
list of axes tables
'''
self._set_artist_props(tab)
self.tables.append(tab)
tab.set_clip_path(self.patch)
tab._remove_method = lambda h: self.tables.remove(h)
def relim(self):
'recompute the data limits based on current artists'
# Collections are deliberately not supported (yet); see
# the TODO note in artists.py.
self.dataLim.ignore(True)
self.ignore_existing_data_limits = True
for line in self.lines:
self._update_line_limits(line)
for p in self.patches:
self._update_patch_limits(p)
def update_datalim(self, xys, updatex=True, updatey=True):
'Update the data lim bbox with seq of xy tups or equiv. 2-D array'
# if no data is set currently, the bbox will ignore its
# limits and set the bound to be the bounds of the xydata.
# Otherwise, it will compute the bounds of it's current data
# and the data in xydata
if iterable(xys) and not len(xys): return
if not ma.isMaskedArray(xys):
xys = np.asarray(xys)
self.dataLim.update_from_data_xy(xys, self.ignore_existing_data_limits,
updatex=updatex, updatey=updatey)
self.ignore_existing_data_limits = False
def update_datalim_numerix(self, x, y):
'Update the data lim bbox with seq of xy tups'
# if no data is set currently, the bbox will ignore it's
# limits and set the bound to be the bounds of the xydata.
# Otherwise, it will compute the bounds of it's current data
# and the data in xydata
if iterable(x) and not len(x): return
self.dataLim.update_from_data(x, y, self.ignore_existing_data_limits)
self.ignore_existing_data_limits = False
def update_datalim_bounds(self, bounds):
'''
Update the datalim to include the given
:class:`~matplotlib.transforms.Bbox` *bounds*
'''
self.dataLim.set(mtransforms.Bbox.union([self.dataLim, bounds]))
def _process_unit_info(self, xdata=None, ydata=None, kwargs=None):
'look for unit *kwargs* and update the axis instances as necessary'
if self.xaxis is None or self.yaxis is None: return
#print 'processing', self.get_geometry()
if xdata is not None:
# we only need to update if there is nothing set yet.
if not self.xaxis.have_units():
self.xaxis.update_units(xdata)
#print '\tset from xdata', self.xaxis.units
if ydata is not None:
# we only need to update if there is nothing set yet.
if not self.yaxis.have_units():
self.yaxis.update_units(ydata)
#print '\tset from ydata', self.yaxis.units
# process kwargs 2nd since these will override default units
if kwargs is not None:
xunits = kwargs.pop( 'xunits', self.xaxis.units)
if xunits!=self.xaxis.units:
#print '\tkw setting xunits', xunits
self.xaxis.set_units(xunits)
# If the units being set imply a different converter,
# we need to update.
if xdata is not None:
self.xaxis.update_units(xdata)
yunits = kwargs.pop('yunits', self.yaxis.units)
if yunits!=self.yaxis.units:
#print '\tkw setting yunits', yunits
self.yaxis.set_units(yunits)
# If the units being set imply a different converter,
# we need to update.
if ydata is not None:
self.yaxis.update_units(ydata)
def in_axes(self, mouseevent):
'''
return *True* if the given *mouseevent* (in display coords)
is in the Axes
'''
return self.patch.contains(mouseevent)[0]
def get_autoscale_on(self):
"""
Get whether autoscaling is applied on plot commands
"""
return self._autoscaleon
def set_autoscale_on(self, b):
"""
Set whether autoscaling is applied on plot commands
accepts: [ *True* | *False* ]
"""
self._autoscaleon = b
def autoscale_view(self, tight=False, scalex=True, scaley=True):
"""
autoscale the view limits using the data limits. You can
selectively autoscale only a single axis, eg, the xaxis by
setting *scaley* to *False*. The autoscaling preserves any
axis direction reversal that has already been done.
"""
# if image data only just use the datalim
if not self._autoscaleon: return
if scalex:
xshared = self._shared_x_axes.get_siblings(self)
dl = [ax.dataLim for ax in xshared]
bb = mtransforms.BboxBase.union(dl)
x0, x1 = bb.intervalx
if scaley:
yshared = self._shared_y_axes.get_siblings(self)
dl = [ax.dataLim for ax in yshared]
bb = mtransforms.BboxBase.union(dl)
y0, y1 = bb.intervaly
if (tight or (len(self.images)>0 and
len(self.lines)==0 and
len(self.patches)==0)):
if scalex:
self.set_xbound(x0, x1)
if scaley:
self.set_ybound(y0, y1)
return
if scalex:
XL = self.xaxis.get_major_locator().view_limits(x0, x1)
self.set_xbound(XL)
if scaley:
YL = self.yaxis.get_major_locator().view_limits(y0, y1)
self.set_ybound(YL)
#### Drawing
def draw(self, renderer=None, inframe=False):
"Draw everything (plot lines, axes, labels)"
if renderer is None:
renderer = self._cachedRenderer
if renderer is None:
raise RuntimeError('No renderer defined')
if not self.get_visible(): return
renderer.open_group('axes')
self.apply_aspect()
# the patch draws the background rectangle -- the frame below
# will draw the edges
if self.axison and self._frameon:
self.patch.draw(renderer)
artists = []
if len(self.images)<=1 or renderer.option_image_nocomposite():
for im in self.images:
im.draw(renderer)
else:
# make a composite image blending alpha
# list of (mimage.Image, ox, oy)
mag = renderer.get_image_magnification()
ims = [(im.make_image(mag),0,0)
for im in self.images if im.get_visible()]
l, b, r, t = self.bbox.extents
width = mag*((round(r) + 0.5) - (round(l) - 0.5))
height = mag*((round(t) + 0.5) - (round(b) - 0.5))
im = mimage.from_images(height,
width,
ims)
im.is_grayscale = False
l, b, w, h = self.bbox.bounds
# composite images need special args so they will not
# respect z-order for now
renderer.draw_image(
round(l), round(b), im, self.bbox,
self.patch.get_path(),
self.patch.get_transform())
artists.extend(self.collections)
artists.extend(self.patches)
artists.extend(self.lines)
artists.extend(self.texts)
artists.extend(self.artists)
if self.axison and not inframe:
if self._axisbelow:
self.xaxis.set_zorder(0.5)
self.yaxis.set_zorder(0.5)
else:
self.xaxis.set_zorder(2.5)
self.yaxis.set_zorder(2.5)
artists.extend([self.xaxis, self.yaxis])
if not inframe: artists.append(self.title)
artists.extend(self.tables)
if self.legend_ is not None:
artists.append(self.legend_)
# the frame draws the edges around the axes patch -- we
# decouple these so the patch can be in the background and the
# frame in the foreground.
if self.axison and self._frameon:
artists.append(self.frame)
dsu = [ (a.zorder, i, a) for i, a in enumerate(artists)
if not a.get_animated() ]
dsu.sort()
for zorder, i, a in dsu:
a.draw(renderer)
renderer.close_group('axes')
self._cachedRenderer = renderer
def draw_artist(self, a):
"""
This method can only be used after an initial draw which
caches the renderer. It is used to efficiently update Axes
data (axis ticks, labels, etc are not updated)
"""
assert self._cachedRenderer is not None
a.draw(self._cachedRenderer)
def redraw_in_frame(self):
"""
This method can only be used after an initial draw which
caches the renderer. It is used to efficiently update Axes
data (axis ticks, labels, etc are not updated)
"""
assert self._cachedRenderer is not None
self.draw(self._cachedRenderer, inframe=True)
def get_renderer_cache(self):
return self._cachedRenderer
def __draw_animate(self):
# ignore for now; broken
if self._lastRenderer is None:
raise RuntimeError('You must first call ax.draw()')
dsu = [(a.zorder, a) for a in self.animated.keys()]
dsu.sort()
renderer = self._lastRenderer
renderer.blit()
for tmp, a in dsu:
a.draw(renderer)
#### Axes rectangle characteristics
def get_frame_on(self):
"""
Get whether the axes rectangle patch is drawn
"""
return self._frameon
def set_frame_on(self, b):
"""
Set whether the axes rectangle patch is drawn
ACCEPTS: [ *True* | *False* ]
"""
self._frameon = b
def get_axisbelow(self):
"""
Get whether axis below is true or not
"""
return self._axisbelow
def set_axisbelow(self, b):
"""
Set whether the axis ticks and gridlines are above or below most artists
ACCEPTS: [ *True* | *False* ]
"""
self._axisbelow = b
def grid(self, b=None, **kwargs):
"""
call signature::
grid(self, b=None, **kwargs)
Set the axes grids on or off; *b* is a boolean
If *b* is *None* and ``len(kwargs)==0``, toggle the grid state. If
*kwargs* are supplied, it is assumed that you want a grid and *b*
is thus set to *True*
*kawrgs* are used to set the grid line properties, eg::
ax.grid(color='r', linestyle='-', linewidth=2)
Valid :class:`~matplotlib.lines.Line2D` kwargs are
%(Line2D)s
"""
if len(kwargs): b = True
self.xaxis.grid(b, **kwargs)
self.yaxis.grid(b, **kwargs)
grid.__doc__ = cbook.dedent(grid.__doc__) % martist.kwdocd
def ticklabel_format(self, **kwargs):
"""
Convenience method for manipulating the ScalarFormatter
used by default for linear axes.
Optional keyword arguments:
============ =====================================
Keyword Description
============ =====================================
*style* [ 'sci' (or 'scientific') | 'plain' ]
plain turns off scientific notation
*scilimits* (m, n), pair of integers; if *style*
is 'sci', scientific notation will
be used for numbers outside the range
10`-m`:sup: to 10`n`:sup:.
Use (0,0) to include all numbers.
*axis* [ 'x' | 'y' | 'both' ]
============ =====================================
Only the major ticks are affected.
If the method is called when the
:class:`~matplotlib.ticker.ScalarFormatter` is not the
:class:`~matplotlib.ticker.Formatter` being used, an
:exc:`AttributeError` will be raised.
"""
style = kwargs.pop('style', '').lower()
scilimits = kwargs.pop('scilimits', None)
if scilimits is not None:
try:
m, n = scilimits
m+n+1 # check that both are numbers
except (ValueError, TypeError):
raise ValueError("scilimits must be a sequence of 2 integers")
axis = kwargs.pop('axis', 'both').lower()
if style[:3] == 'sci':
sb = True
elif style in ['plain', 'comma']:
sb = False
if style == 'plain':
cb = False
else:
cb = True
raise NotImplementedError, "comma style remains to be added"
elif style == '':
sb = None
else:
raise ValueError, "%s is not a valid style value"
try:
if sb is not None:
if axis == 'both' or axis == 'x':
self.xaxis.major.formatter.set_scientific(sb)
if axis == 'both' or axis == 'y':
self.yaxis.major.formatter.set_scientific(sb)
if scilimits is not None:
if axis == 'both' or axis == 'x':
self.xaxis.major.formatter.set_powerlimits(scilimits)
if axis == 'both' or axis == 'y':
self.yaxis.major.formatter.set_powerlimits(scilimits)
except AttributeError:
raise AttributeError(
"This method only works with the ScalarFormatter.")
def set_axis_off(self):
"""turn off the axis"""
self.axison = False
def set_axis_on(self):
"""turn on the axis"""
self.axison = True
def get_axis_bgcolor(self):
'Return the axis background color'
return self._axisbg
def set_axis_bgcolor(self, color):
"""
set the axes background color
ACCEPTS: any matplotlib color - see
:func:`~matplotlib.pyplot.colors`
"""
self._axisbg = color
self.patch.set_facecolor(color)
### data limits, ticks, tick labels, and formatting
def invert_xaxis(self):
"Invert the x-axis."
left, right = self.get_xlim()
self.set_xlim(right, left)
def xaxis_inverted(self):
'Returns True if the x-axis is inverted.'
left, right = self.get_xlim()
return right < left
def get_xbound(self):
"""
Returns the x-axis numerical bounds where::
lowerBound < upperBound
"""
left, right = self.get_xlim()
if left < right:
return left, right
else:
return right, left
def set_xbound(self, lower=None, upper=None):
"""
Set the lower and upper numerical bounds of the x-axis.
This method will honor axes inversion regardless of parameter order.
"""
if upper is None and iterable(lower):
lower,upper = lower
old_lower,old_upper = self.get_xbound()
if lower is None: lower = old_lower
if upper is None: upper = old_upper
if self.xaxis_inverted():
if lower < upper:
self.set_xlim(upper, lower)
else:
self.set_xlim(lower, upper)
else:
if lower < upper:
self.set_xlim(lower, upper)
else:
self.set_xlim(upper, lower)
def get_xlim(self):
"""
Get the x-axis range [*xmin*, *xmax*]
"""
return tuple(self.viewLim.intervalx)
def set_xlim(self, xmin=None, xmax=None, emit=True, **kwargs):
"""
call signature::
set_xlim(self, *args, **kwargs)
Set the limits for the xaxis
Returns the current xlimits as a length 2 tuple: [*xmin*, *xmax*]
Examples::
set_xlim((valmin, valmax))
set_xlim(valmin, valmax)
set_xlim(xmin=1) # xmax unchanged
set_xlim(xmax=1) # xmin unchanged
Keyword arguments:
*ymin*: scalar
the min of the ylim
*ymax*: scalar
the max of the ylim
*emit*: [ True | False ]
notify observers of lim change
ACCEPTS: len(2) sequence of floats
"""
if xmax is None and iterable(xmin):
xmin,xmax = xmin
self._process_unit_info(xdata=(xmin, xmax))
if xmin is not None:
xmin = self.convert_xunits(xmin)
if xmax is not None:
xmax = self.convert_xunits(xmax)
old_xmin,old_xmax = self.get_xlim()
if xmin is None: xmin = old_xmin
if xmax is None: xmax = old_xmax
xmin, xmax = mtransforms.nonsingular(xmin, xmax, increasing=False)
xmin, xmax = self.xaxis.limit_range_for_scale(xmin, xmax)
self.viewLim.intervalx = (xmin, xmax)
if emit:
self.callbacks.process('xlim_changed', self)
# Call all of the other x-axes that are shared with this one
for other in self._shared_x_axes.get_siblings(self):
if other is not self:
other.set_xlim(self.viewLim.intervalx, emit=False)
if (other.figure != self.figure and
other.figure.canvas is not None):
other.figure.canvas.draw_idle()
return xmin, xmax
def get_xscale(self):
'return the xaxis scale string: %s' % (
", ".join(mscale.get_scale_names()))
return self.xaxis.get_scale()
def set_xscale(self, value, **kwargs):
"""
call signature::
set_xscale(value)
Set the scaling of the x-axis: %(scale)s
ACCEPTS: [%(scale)s]
Different kwargs are accepted, depending on the scale:
%(scale_docs)s
"""
self.xaxis.set_scale(value, **kwargs)
self.autoscale_view()
self._update_transScale()
set_xscale.__doc__ = cbook.dedent(set_xscale.__doc__) % {
'scale': ' | '.join([repr(x) for x in mscale.get_scale_names()]),
'scale_docs': mscale.get_scale_docs().strip()}
def get_xticks(self, minor=False):
'Return the x ticks as a list of locations'
return self.xaxis.get_ticklocs(minor=minor)
def set_xticks(self, ticks, minor=False):
"""
Set the x ticks with list of *ticks*
ACCEPTS: sequence of floats
"""
return self.xaxis.set_ticks(ticks, minor=minor)
def get_xmajorticklabels(self):
'Get the xtick labels as a list of Text instances'
return cbook.silent_list('Text xticklabel',
self.xaxis.get_majorticklabels())
def get_xminorticklabels(self):
'Get the xtick labels as a list of Text instances'
return cbook.silent_list('Text xticklabel',
self.xaxis.get_minorticklabels())
def get_xticklabels(self, minor=False):
'Get the xtick labels as a list of Text instances'
return cbook.silent_list('Text xticklabel',
self.xaxis.get_ticklabels(minor=minor))
def set_xticklabels(self, labels, fontdict=None, minor=False, **kwargs):
"""
call signature::
set_xticklabels(labels, fontdict=None, minor=False, **kwargs)
Set the xtick labels with list of strings *labels*. Return a
list of axis text instances.
*kwargs* set the :class:`~matplotlib.text.Text` properties.
Valid properties are
%(Text)s
ACCEPTS: sequence of strings
"""
return self.xaxis.set_ticklabels(labels, fontdict,
minor=minor, **kwargs)
set_xticklabels.__doc__ = cbook.dedent(
set_xticklabels.__doc__) % martist.kwdocd
def invert_yaxis(self):
"Invert the y-axis."
left, right = self.get_ylim()
self.set_ylim(right, left)
def yaxis_inverted(self):
'Returns True if the y-axis is inverted.'
left, right = self.get_ylim()
return right < left
def get_ybound(self):
"Return y-axis numerical bounds in the form of lowerBound < upperBound"
left, right = self.get_ylim()
if left < right:
return left, right
else:
return right, left
def set_ybound(self, lower=None, upper=None):
"""Set the lower and upper numerical bounds of the y-axis.
This method will honor axes inversion regardless of parameter order.
"""
if upper is None and iterable(lower):
lower,upper = lower
old_lower,old_upper = self.get_ybound()
if lower is None: lower = old_lower
if upper is None: upper = old_upper
if self.yaxis_inverted():
if lower < upper:
self.set_ylim(upper, lower)
else:
self.set_ylim(lower, upper)
else:
if lower < upper:
self.set_ylim(lower, upper)
else:
self.set_ylim(upper, lower)
def get_ylim(self):
"""
Get the y-axis range [*ymin*, *ymax*]
"""
return tuple(self.viewLim.intervaly)
def set_ylim(self, ymin=None, ymax=None, emit=True, **kwargs):
"""
call signature::
set_ylim(self, *args, **kwargs):
Set the limits for the yaxis; v = [ymin, ymax]::
set_ylim((valmin, valmax))
set_ylim(valmin, valmax)
set_ylim(ymin=1) # ymax unchanged
set_ylim(ymax=1) # ymin unchanged
Keyword arguments:
*ymin*: scalar
the min of the ylim
*ymax*: scalar
the max of the ylim
*emit*: [ True | False ]
notify observers of lim change
Returns the current ylimits as a length 2 tuple
ACCEPTS: len(2) sequence of floats
"""
if ymax is None and iterable(ymin):
ymin,ymax = ymin
if ymin is not None:
ymin = self.convert_yunits(ymin)
if ymax is not None:
ymax = self.convert_yunits(ymax)
old_ymin,old_ymax = self.get_ylim()
if ymin is None: ymin = old_ymin
if ymax is None: ymax = old_ymax
ymin, ymax = mtransforms.nonsingular(ymin, ymax, increasing=False)
ymin, ymax = self.yaxis.limit_range_for_scale(ymin, ymax)
self.viewLim.intervaly = (ymin, ymax)
if emit:
self.callbacks.process('ylim_changed', self)
# Call all of the other y-axes that are shared with this one
for other in self._shared_y_axes.get_siblings(self):
if other is not self:
other.set_ylim(self.viewLim.intervaly, emit=False)
if (other.figure != self.figure and
other.figure.canvas is not None):
other.figure.canvas.draw_idle()
return ymin, ymax
def get_yscale(self):
'return the xaxis scale string: %s' % (
", ".join(mscale.get_scale_names()))
return self.yaxis.get_scale()
def set_yscale(self, value, **kwargs):
"""
call signature::
set_yscale(value)
Set the scaling of the y-axis: %(scale)s
ACCEPTS: [%(scale)s]
Different kwargs are accepted, depending on the scale:
%(scale_docs)s
"""
self.yaxis.set_scale(value, **kwargs)
self.autoscale_view()
self._update_transScale()
set_yscale.__doc__ = cbook.dedent(set_yscale.__doc__) % {
'scale': ' | '.join([repr(x) for x in mscale.get_scale_names()]),
'scale_docs': mscale.get_scale_docs().strip()}
def get_yticks(self, minor=False):
'Return the y ticks as a list of locations'
return self.yaxis.get_ticklocs(minor=minor)
def set_yticks(self, ticks, minor=False):
"""
Set the y ticks with list of *ticks*
ACCEPTS: sequence of floats
Keyword arguments:
*minor*: [ False | True ]
Sets the minor ticks if True
"""
return self.yaxis.set_ticks(ticks, minor=minor)
def get_ymajorticklabels(self):
'Get the xtick labels as a list of Text instances'
return cbook.silent_list('Text yticklabel',
self.yaxis.get_majorticklabels())
def get_yminorticklabels(self):
'Get the xtick labels as a list of Text instances'
return cbook.silent_list('Text yticklabel',
self.yaxis.get_minorticklabels())
def get_yticklabels(self, minor=False):
'Get the xtick labels as a list of Text instances'
return cbook.silent_list('Text yticklabel',
self.yaxis.get_ticklabels(minor=minor))
def set_yticklabels(self, labels, fontdict=None, minor=False, **kwargs):
"""
call signature::
set_yticklabels(labels, fontdict=None, minor=False, **kwargs)
Set the ytick labels with list of strings *labels*. Return a list of
:class:`~matplotlib.text.Text` instances.
*kwargs* set :class:`~matplotlib.text.Text` properties for the labels.
Valid properties are
%(Text)s
ACCEPTS: sequence of strings
"""
return self.yaxis.set_ticklabels(labels, fontdict,
minor=minor, **kwargs)
set_yticklabels.__doc__ = cbook.dedent(
set_yticklabels.__doc__) % martist.kwdocd
def xaxis_date(self, tz=None):
"""Sets up x-axis ticks and labels that treat the x data as dates.
*tz* is the time zone to use in labeling dates. Defaults to rc value.
"""
xmin, xmax = self.dataLim.intervalx
if xmin==0.:
# no data has been added - let's set the default datalim.
# We should probably use a better proxy for the datalim
# have been updated than the ignore setting
dmax = today = datetime.date.today()
dmin = today-datetime.timedelta(days=10)
self._process_unit_info(xdata=(dmin, dmax))
dmin, dmax = self.convert_xunits([dmin, dmax])
self.viewLim.intervalx = dmin, dmax
self.dataLim.intervalx = dmin, dmax
locator = self.xaxis.get_major_locator()
if not isinstance(locator, mdates.DateLocator):
locator = mdates.AutoDateLocator(tz)
self.xaxis.set_major_locator(locator)
# the autolocator uses the viewlim to pick the right date
# locator, but it may not have correct viewlim before an
# autoscale. If the viewlim is still zero..1, set it to the
# datalim and the autoscaler will update it on request
if self.viewLim.intervalx[0]==0.:
self.viewLim.intervalx = tuple(self.dataLim.intervalx)
locator.refresh()
formatter = self.xaxis.get_major_formatter()
if not isinstance(formatter, mdates.DateFormatter):
formatter = mdates.AutoDateFormatter(locator, tz)
self.xaxis.set_major_formatter(formatter)
def yaxis_date(self, tz=None):
"""Sets up y-axis ticks and labels that treat the y data as dates.
*tz* is the time zone to use in labeling dates. Defaults to rc value.
"""
ymin, ymax = self.dataLim.intervaly
if ymin==0.:
# no data has been added - let's set the default datalim.
# We should probably use a better proxy for the datalim
# have been updated than the ignore setting
dmax = today = datetime.date.today()
dmin = today-datetime.timedelta(days=10)
self._process_unit_info(ydata=(dmin, dmax))
dmin, dmax = self.convert_yunits([dmin, dmax])
self.viewLim.intervaly = dmin, dmax
self.dataLim.intervaly = dmin, dmax
locator = self.yaxis.get_major_locator()
if not isinstance(locator, mdates.DateLocator):
locator = mdates.AutoDateLocator(tz)
self.yaxis.set_major_locator(locator)
# the autolocator uses the viewlim to pick the right date
# locator, but it may not have correct viewlim before an
# autoscale. If the viewlim is still zero..1, set it to the
# datalim and the autoscaler will update it on request
if self.viewLim.intervaly[0]==0.:
self.viewLim.intervaly = tuple(self.dataLim.intervaly)
locator.refresh()
formatter = self.xaxis.get_major_formatter()
if not isinstance(formatter, mdates.DateFormatter):
formatter = mdates.AutoDateFormatter(locator, tz)
self.yaxis.set_major_formatter(formatter)
def format_xdata(self, x):
"""
Return *x* string formatted. This function will use the attribute
self.fmt_xdata if it is callable, else will fall back on the xaxis
major formatter
"""
try: return self.fmt_xdata(x)
except TypeError:
func = self.xaxis.get_major_formatter().format_data_short
val = func(x)
return val
def format_ydata(self, y):
"""
Return y string formatted. This function will use the
:attr:`fmt_ydata` attribute if it is callable, else will fall
back on the yaxis major formatter
"""
try: return self.fmt_ydata(y)
except TypeError:
func = self.yaxis.get_major_formatter().format_data_short
val = func(y)
return val
def format_coord(self, x, y):
'return a format string formatting the *x*, *y* coord'
if x is None:
x = '???'
if y is None:
y = '???'
xs = self.format_xdata(x)
ys = self.format_ydata(y)
return 'x=%s, y=%s'%(xs,ys)
#### Interactive manipulation
def can_zoom(self):
"""
Return *True* if this axes support the zoom box
"""
return True
def get_navigate(self):
"""
Get whether the axes responds to navigation commands
"""
return self._navigate
def set_navigate(self, b):
"""
Set whether the axes responds to navigation toolbar commands
ACCEPTS: [ True | False ]
"""
self._navigate = b
def get_navigate_mode(self):
"""
Get the navigation toolbar button status: 'PAN', 'ZOOM', or None
"""
return self._navigate_mode
def set_navigate_mode(self, b):
"""
Set the navigation toolbar button status;
.. warning::
this is not a user-API function.
"""
self._navigate_mode = b
def start_pan(self, x, y, button):
"""
Called when a pan operation has started.
*x*, *y* are the mouse coordinates in display coords.
button is the mouse button number:
* 1: LEFT
* 2: MIDDLE
* 3: RIGHT
.. note::
Intended to be overridden by new projection types.
"""
self._pan_start = cbook.Bunch(
lim = self.viewLim.frozen(),
trans = self.transData.frozen(),
trans_inverse = self.transData.inverted().frozen(),
bbox = self.bbox.frozen(),
x = x,
y = y
)
def end_pan(self):
"""
Called when a pan operation completes (when the mouse button
is up.)
.. note::
Intended to be overridden by new projection types.
"""
del self._pan_start
def drag_pan(self, button, key, x, y):
"""
Called when the mouse moves during a pan operation.
*button* is the mouse button number:
* 1: LEFT
* 2: MIDDLE
* 3: RIGHT
*key* is a "shift" key
*x*, *y* are the mouse coordinates in display coords.
.. note::
Intended to be overridden by new projection types.
"""
def format_deltas(key, dx, dy):
if key=='control':
if(abs(dx)>abs(dy)):
dy = dx
else:
dx = dy
elif key=='x':
dy = 0
elif key=='y':
dx = 0
elif key=='shift':
if 2*abs(dx) < abs(dy):
dx=0
elif 2*abs(dy) < abs(dx):
dy=0
elif(abs(dx)>abs(dy)):
dy=dy/abs(dy)*abs(dx)
else:
dx=dx/abs(dx)*abs(dy)
return (dx,dy)
p = self._pan_start
dx = x - p.x
dy = y - p.y
if dx == 0 and dy == 0:
return
if button == 1:
dx, dy = format_deltas(key, dx, dy)
result = p.bbox.translated(-dx, -dy) \
.transformed(p.trans_inverse)
elif button == 3:
try:
dx = -dx / float(self.bbox.width)
dy = -dy / float(self.bbox.height)
dx, dy = format_deltas(key, dx, dy)
if self.get_aspect() != 'auto':
dx = 0.5 * (dx + dy)
dy = dx
alpha = np.power(10.0, (dx, dy))
start = p.trans_inverse.transform_point((p.x, p.y))
lim_points = p.lim.get_points()
result = start + alpha * (lim_points - start)
result = mtransforms.Bbox(result)
except OverflowError:
warnings.warn('Overflow while panning')
return
self.set_xlim(*result.intervalx)
self.set_ylim(*result.intervaly)
def get_cursor_props(self):
"""
return the cursor propertiess as a (*linewidth*, *color*)
tuple, where *linewidth* is a float and *color* is an RGBA
tuple
"""
return self._cursorProps
def set_cursor_props(self, *args):
"""
Set the cursor property as::
ax.set_cursor_props(linewidth, color)
or::
ax.set_cursor_props((linewidth, color))
ACCEPTS: a (*float*, *color*) tuple
"""
if len(args)==1:
lw, c = args[0]
elif len(args)==2:
lw, c = args
else:
raise ValueError('args must be a (linewidth, color) tuple')
c =mcolors.colorConverter.to_rgba(c)
self._cursorProps = lw, c
def connect(self, s, func):
"""
Register observers to be notified when certain events occur. Register
with callback functions with the following signatures. The function
has the following signature::
func(ax) # where ax is the instance making the callback.
The following events can be connected to:
'xlim_changed','ylim_changed'
The connection id is is returned - you can use this with
disconnect to disconnect from the axes event
"""
raise DeprecationWarning('use the callbacks CallbackRegistry instance '
'instead')
def disconnect(self, cid):
'disconnect from the Axes event.'
raise DeprecationWarning('use the callbacks CallbackRegistry instance '
'instead')
def get_children(self):
'return a list of child artists'
children = []
children.append(self.xaxis)
children.append(self.yaxis)
children.extend(self.lines)
children.extend(self.patches)
children.extend(self.texts)
children.extend(self.tables)
children.extend(self.artists)
children.extend(self.images)
if self.legend_ is not None:
children.append(self.legend_)
children.extend(self.collections)
children.append(self.title)
children.append(self.patch)
children.append(self.frame)
return children
def contains(self,mouseevent):
"""Test whether the mouse event occured in the axes.
Returns T/F, {}
"""
if callable(self._contains): return self._contains(self,mouseevent)
return self.patch.contains(mouseevent)
def pick(self, *args):
"""
call signature::
pick(mouseevent)
each child artist will fire a pick event if mouseevent is over
the artist and the artist has picker set
"""
if len(args)>1:
raise DeprecationWarning('New pick API implemented -- '
'see API_CHANGES in the src distribution')
martist.Artist.pick(self,args[0])
def __pick(self, x, y, trans=None, among=None):
"""
Return the artist under point that is closest to the *x*, *y*.
If *trans* is *None*, *x*, and *y* are in window coords,
(0,0 = lower left). Otherwise, *trans* is a
:class:`~matplotlib.transforms.Transform` that specifies the
coordinate system of *x*, *y*.
The selection of artists from amongst which the pick function
finds an artist can be narrowed using the optional keyword
argument *among*. If provided, this should be either a sequence
of permitted artists or a function taking an artist as its
argument and returning a true value if and only if that artist
can be selected.
Note this algorithm calculates distance to the vertices of the
polygon, so if you want to pick a patch, click on the edge!
"""
# MGDTODO: Needs updating
if trans is not None:
xywin = trans.transform_point((x,y))
else:
xywin = x,y
def dist_points(p1, p2):
'return the distance between two points'
x1, y1 = p1
x2, y2 = p2
return math.sqrt((x1-x2)**2+(y1-y2)**2)
def dist_x_y(p1, x, y):
'*x* and *y* are arrays; return the distance to the closest point'
x1, y1 = p1
return min(np.sqrt((x-x1)**2+(y-y1)**2))
def dist(a):
if isinstance(a, Text):
bbox = a.get_window_extent()
l,b,w,h = bbox.bounds
verts = (l,b), (l,b+h), (l+w,b+h), (l+w, b)
xt, yt = zip(*verts)
elif isinstance(a, Patch):
path = a.get_path()
tverts = a.get_transform().transform_path(path)
xt, yt = zip(*tverts)
elif isinstance(a, mlines.Line2D):
xdata = a.get_xdata(orig=False)
ydata = a.get_ydata(orig=False)
xt, yt = a.get_transform().numerix_x_y(xdata, ydata)
return dist_x_y(xywin, np.asarray(xt), np.asarray(yt))
artists = self.lines + self.patches + self.texts
if callable(among):
artists = filter(test, artists)
elif iterable(among):
amongd = dict([(k,1) for k in among])
artists = [a for a in artists if a in amongd]
elif among is None:
pass
else:
raise ValueError('among must be callable or iterable')
if not len(artists): return None
ds = [ (dist(a),a) for a in artists]
ds.sort()
return ds[0][1]
#### Labelling
def get_title(self):
"""
Get the title text string.
"""
return self.title.get_text()
def set_title(self, label, fontdict=None, **kwargs):
"""
call signature::
set_title(label, fontdict=None, **kwargs):
Set the title for the axes.
kwargs are Text properties:
%(Text)s
ACCEPTS: str
.. seealso::
:meth:`text`:
for information on how override and the optional args work
"""
default = {
'fontsize':rcParams['axes.titlesize'],
'verticalalignment' : 'bottom',
'horizontalalignment' : 'center'
}
self.title.set_text(label)
self.title.update(default)
if fontdict is not None: self.title.update(fontdict)
self.title.update(kwargs)
return self.title
set_title.__doc__ = cbook.dedent(set_title.__doc__) % martist.kwdocd
def get_xlabel(self):
"""
Get the xlabel text string.
"""
label = self.xaxis.get_label()
return label.get_text()
def set_xlabel(self, xlabel, fontdict=None, **kwargs):
"""
call signature::
set_xlabel(xlabel, fontdict=None, **kwargs)
Set the label for the xaxis.
Valid kwargs are Text properties:
%(Text)s
ACCEPTS: str
.. seealso::
:meth:`text`:
for information on how override and the optional args work
"""
label = self.xaxis.get_label()
label.set_text(xlabel)
if fontdict is not None: label.update(fontdict)
label.update(kwargs)
return label
set_xlabel.__doc__ = cbook.dedent(set_xlabel.__doc__) % martist.kwdocd
def get_ylabel(self):
"""
Get the ylabel text string.
"""
label = self.yaxis.get_label()
return label.get_text()
def set_ylabel(self, ylabel, fontdict=None, **kwargs):
"""
call signature::
set_ylabel(ylabel, fontdict=None, **kwargs)
Set the label for the yaxis
Valid kwargs are Text properties:
%(Text)s
ACCEPTS: str
.. seealso::
:meth:`text`:
for information on how override and the optional args work
"""
label = self.yaxis.get_label()
label.set_text(ylabel)
if fontdict is not None: label.update(fontdict)
label.update(kwargs)
return label
set_ylabel.__doc__ = cbook.dedent(set_ylabel.__doc__) % martist.kwdocd
def text(self, x, y, s, fontdict=None,
withdash=False, **kwargs):
"""
call signature::
text(x, y, s, fontdict=None, **kwargs)
Add text in string *s* to axis at location *x*, *y*, data
coordinates.
Keyword arguments:
*fontdict*:
A dictionary to override the default text properties.
If *fontdict* is *None*, the defaults are determined by your rc
parameters.
*withdash*: [ False | True ]
Creates a :class:`~matplotlib.text.TextWithDash` instance
instead of a :class:`~matplotlib.text.Text` instance.
Individual keyword arguments can be used to override any given
parameter::
text(x, y, s, fontsize=12)
The default transform specifies that text is in data coords,
alternatively, you can specify text in axis coords (0,0 is
lower-left and 1,1 is upper-right). The example below places
text in the center of the axes::
text(0.5, 0.5,'matplotlib',
horizontalalignment='center',
verticalalignment='center',
transform = ax.transAxes)
You can put a rectangular box around the text instance (eg. to
set a background color) by using the keyword *bbox*. *bbox* is
a dictionary of :class:`matplotlib.patches.Rectangle`
properties. For example::
text(x, y, s, bbox=dict(facecolor='red', alpha=0.5))
Valid kwargs are :class:`matplotlib.text.Text` properties:
%(Text)s
"""
default = {
'verticalalignment' : 'bottom',
'horizontalalignment' : 'left',
#'verticalalignment' : 'top',
'transform' : self.transData,
}
# At some point if we feel confident that TextWithDash
# is robust as a drop-in replacement for Text and that
# the performance impact of the heavier-weight class
# isn't too significant, it may make sense to eliminate
# the withdash kwarg and simply delegate whether there's
# a dash to TextWithDash and dashlength.
if withdash:
t = mtext.TextWithDash(
x=x, y=y, text=s,
)
else:
t = mtext.Text(
x=x, y=y, text=s,
)
self._set_artist_props(t)
t.update(default)
if fontdict is not None: t.update(fontdict)
t.update(kwargs)
self.texts.append(t)
t._remove_method = lambda h: self.texts.remove(h)
#if t.get_clip_on(): t.set_clip_box(self.bbox)
if 'clip_on' in kwargs: t.set_clip_box(self.bbox)
return t
text.__doc__ = cbook.dedent(text.__doc__) % martist.kwdocd
def annotate(self, *args, **kwargs):
"""
call signature::
annotate(s, xy, xytext=None, xycoords='data',
textcoords='data', arrowprops=None, **kwargs)
Keyword arguments:
%(Annotation)s
.. plot:: mpl_examples/pylab_examples/annotation_demo2.py
"""
a = mtext.Annotation(*args, **kwargs)
a.set_transform(mtransforms.IdentityTransform())
self._set_artist_props(a)
if kwargs.has_key('clip_on'): a.set_clip_path(self.patch)
self.texts.append(a)
return a
annotate.__doc__ = cbook.dedent(annotate.__doc__) % martist.kwdocd
#### Lines and spans
def axhline(self, y=0, xmin=0, xmax=1, **kwargs):
"""
call signature::
axhline(y=0, xmin=0, xmax=1, **kwargs)
Axis Horizontal Line
Draw a horizontal line at *y* from *xmin* to *xmax*. With the
default values of *xmin* = 0 and *xmax* = 1, this line will
always span the horizontal extent of the axes, regardless of
the xlim settings, even if you change them, eg. with the
:meth:`set_xlim` command. That is, the horizontal extent is
in axes coords: 0=left, 0.5=middle, 1.0=right but the *y*
location is in data coordinates.
Return value is the :class:`~matplotlib.lines.Line2D`
instance. kwargs are the same as kwargs to plot, and can be
used to control the line properties. Eg.,
* draw a thick red hline at *y* = 0 that spans the xrange
>>> axhline(linewidth=4, color='r')
* draw a default hline at *y* = 1 that spans the xrange
>>> axhline(y=1)
* draw a default hline at *y* = .5 that spans the the middle half of
the xrange
>>> axhline(y=.5, xmin=0.25, xmax=0.75)
Valid kwargs are :class:`~matplotlib.lines.Line2D` properties:
%(Line2D)s
.. seealso::
:meth:`axhspan`:
for example plot and source code
"""
ymin, ymax = self.get_ybound()
# We need to strip away the units for comparison with
# non-unitized bounds
yy = self.convert_yunits( y )
scaley = (yy<ymin) or (yy>ymax)
trans = mtransforms.blended_transform_factory(
self.transAxes, self.transData)
l = mlines.Line2D([xmin,xmax], [y,y], transform=trans, **kwargs)
l.x_isdata = False
self.add_line(l)
self.autoscale_view(scalex=False, scaley=scaley)
return l
axhline.__doc__ = cbook.dedent(axhline.__doc__) % martist.kwdocd
def axvline(self, x=0, ymin=0, ymax=1, **kwargs):
"""
call signature::
axvline(x=0, ymin=0, ymax=1, **kwargs)
Axis Vertical Line
Draw a vertical line at *x* from *ymin* to *ymax*. With the
default values of *ymin* = 0 and *ymax* = 1, this line will
always span the vertical extent of the axes, regardless of the
xlim settings, even if you change them, eg. with the
:meth:`set_xlim` command. That is, the vertical extent is in
axes coords: 0=bottom, 0.5=middle, 1.0=top but the *x* location
is in data coordinates.
Return value is the :class:`~matplotlib.lines.Line2D`
instance. kwargs are the same as kwargs to plot, and can be
used to control the line properties. Eg.,
* draw a thick red vline at *x* = 0 that spans the yrange
>>> axvline(linewidth=4, color='r')
* draw a default vline at *x* = 1 that spans the yrange
>>> axvline(x=1)
* draw a default vline at *x* = .5 that spans the the middle half of
the yrange
>>> axvline(x=.5, ymin=0.25, ymax=0.75)
Valid kwargs are :class:`~matplotlib.lines.Line2D` properties:
%(Line2D)s
.. seealso::
:meth:`axhspan`:
for example plot and source code
"""
xmin, xmax = self.get_xbound()
# We need to strip away the units for comparison with
# non-unitized bounds
xx = self.convert_xunits( x )
scalex = (xx<xmin) or (xx>xmax)
trans = mtransforms.blended_transform_factory(
self.transData, self.transAxes)
l = mlines.Line2D([x,x], [ymin,ymax] , transform=trans, **kwargs)
l.y_isdata = False
self.add_line(l)
self.autoscale_view(scalex=scalex, scaley=False)
return l
axvline.__doc__ = cbook.dedent(axvline.__doc__) % martist.kwdocd
def axhspan(self, ymin, ymax, xmin=0, xmax=1, **kwargs):
"""
call signature::
axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs)
Axis Horizontal Span.
*y* coords are in data units and *x* coords are in axes (relative
0-1) units.
Draw a horizontal span (rectangle) from *ymin* to *ymax*.
With the default values of *xmin* = 0 and *xmax* = 1, this
always spans the xrange, regardless of the xlim settings, even
if you change them, eg. with the :meth:`set_xlim` command.
That is, the horizontal extent is in axes coords: 0=left,
0.5=middle, 1.0=right but the *y* location is in data
coordinates.
Return value is a :class:`matplotlib.patches.Polygon`
instance.
Examples:
* draw a gray rectangle from *y* = 0.25-0.75 that spans the
horizontal extent of the axes
>>> axhspan(0.25, 0.75, facecolor='0.5', alpha=0.5)
Valid kwargs are :class:`~matplotlib.patches.Polygon` properties:
%(Polygon)s
**Example:**
.. plot:: mpl_examples/pylab_examples/axhspan_demo.py
"""
trans = mtransforms.blended_transform_factory(
self.transAxes, self.transData)
# process the unit information
self._process_unit_info( [xmin, xmax], [ymin, ymax], kwargs=kwargs )
# first we need to strip away the units
xmin, xmax = self.convert_xunits( [xmin, xmax] )
ymin, ymax = self.convert_yunits( [ymin, ymax] )
verts = (xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)
p = mpatches.Polygon(verts, **kwargs)
p.set_transform(trans)
p.x_isdata = False
self.add_patch(p)
return p
axhspan.__doc__ = cbook.dedent(axhspan.__doc__) % martist.kwdocd
def axvspan(self, xmin, xmax, ymin=0, ymax=1, **kwargs):
"""
call signature::
axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs)
Axis Vertical Span.
*x* coords are in data units and *y* coords are in axes (relative
0-1) units.
Draw a vertical span (rectangle) from *xmin* to *xmax*. With
the default values of *ymin* = 0 and *ymax* = 1, this always
spans the yrange, regardless of the ylim settings, even if you
change them, eg. with the :meth:`set_ylim` command. That is,
the vertical extent is in axes coords: 0=bottom, 0.5=middle,
1.0=top but the *y* location is in data coordinates.
Return value is the :class:`matplotlib.patches.Polygon`
instance.
Examples:
* draw a vertical green translucent rectangle from x=1.25 to 1.55 that
spans the yrange of the axes
>>> axvspan(1.25, 1.55, facecolor='g', alpha=0.5)
Valid kwargs are :class:`~matplotlib.patches.Polygon`
properties:
%(Polygon)s
.. seealso::
:meth:`axhspan`:
for example plot and source code
"""
trans = mtransforms.blended_transform_factory(
self.transData, self.transAxes)
# process the unit information
self._process_unit_info( [xmin, xmax], [ymin, ymax], kwargs=kwargs )
# first we need to strip away the units
xmin, xmax = self.convert_xunits( [xmin, xmax] )
ymin, ymax = self.convert_yunits( [ymin, ymax] )
verts = [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)]
p = mpatches.Polygon(verts, **kwargs)
p.set_transform(trans)
p.y_isdata = False
self.add_patch(p)
return p
axvspan.__doc__ = cbook.dedent(axvspan.__doc__) % martist.kwdocd
def hlines(self, y, xmin, xmax, colors='k', linestyles='solid',
label='', **kwargs):
"""
call signature::
hlines(y, xmin, xmax, colors='k', linestyles='solid', **kwargs)
Plot horizontal lines at each *y* from *xmin* to *xmax*.
Returns the :class:`~matplotlib.collections.LineCollection`
that was added.
Required arguments:
*y*:
a 1-D numpy array or iterable.
*xmin* and *xmax*:
can be scalars or ``len(x)`` numpy arrays. If they are
scalars, then the respective values are constant, else the
widths of the lines are determined by *xmin* and *xmax*.
Optional keyword arguments:
*colors*:
a line collections color argument, either a single color
or a ``len(y)`` list of colors
*linestyles*:
[ 'solid' | 'dashed' | 'dashdot' | 'dotted' ]
**Example:**
.. plot:: mpl_examples/pylab_examples/hline_demo.py
"""
if kwargs.get('fmt') is not None:
raise DeprecationWarning('hlines now uses a '
'collections.LineCollection and not a '
'list of Line2D to draw; see API_CHANGES')
# We do the conversion first since not all unitized data is uniform
y = self.convert_yunits( y )
xmin = self.convert_xunits( xmin )
xmax = self.convert_xunits( xmax )
if not iterable(y): y = [y]
if not iterable(xmin): xmin = [xmin]
if not iterable(xmax): xmax = [xmax]
y = np.asarray(y)
xmin = np.asarray(xmin)
xmax = np.asarray(xmax)
if len(xmin)==1:
xmin = np.resize( xmin, y.shape )
if len(xmax)==1:
xmax = np.resize( xmax, y.shape )
if len(xmin)!=len(y):
raise ValueError, 'xmin and y are unequal sized sequences'
if len(xmax)!=len(y):
raise ValueError, 'xmax and y are unequal sized sequences'
verts = [ ((thisxmin, thisy), (thisxmax, thisy))
for thisxmin, thisxmax, thisy in zip(xmin, xmax, y)]
coll = mcoll.LineCollection(verts, colors=colors,
linestyles=linestyles, label=label)
self.add_collection(coll)
coll.update(kwargs)
minx = min(xmin.min(), xmax.min())
maxx = max(xmin.max(), xmax.max())
miny = y.min()
maxy = y.max()
corners = (minx, miny), (maxx, maxy)
self.update_datalim(corners)
self.autoscale_view()
return coll
hlines.__doc__ = cbook.dedent(hlines.__doc__)
def vlines(self, x, ymin, ymax, colors='k', linestyles='solid',
label='', **kwargs):
"""
call signature::
vlines(x, ymin, ymax, color='k', linestyles='solid')
Plot vertical lines at each *x* from *ymin* to *ymax*. *ymin*
or *ymax* can be scalars or len(*x*) numpy arrays. If they are
scalars, then the respective values are constant, else the
heights of the lines are determined by *ymin* and *ymax*.
*colors*
a line collections color args, either a single color
or a len(*x*) list of colors
*linestyles*
one of [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ]
Returns the :class:`matplotlib.collections.LineCollection`
that was added.
kwargs are :class:`~matplotlib.collections.LineCollection` properties:
%(LineCollection)s
"""
if kwargs.get('fmt') is not None:
raise DeprecationWarning('vlines now uses a '
'collections.LineCollection and not a '
'list of Line2D to draw; see API_CHANGES')
self._process_unit_info(xdata=x, ydata=ymin, kwargs=kwargs)
# We do the conversion first since not all unitized data is uniform
x = self.convert_xunits( x )
ymin = self.convert_yunits( ymin )
ymax = self.convert_yunits( ymax )
if not iterable(x): x = [x]
if not iterable(ymin): ymin = [ymin]
if not iterable(ymax): ymax = [ymax]
x = np.asarray(x)
ymin = np.asarray(ymin)
ymax = np.asarray(ymax)
if len(ymin)==1:
ymin = np.resize( ymin, x.shape )
if len(ymax)==1:
ymax = np.resize( ymax, x.shape )
if len(ymin)!=len(x):
raise ValueError, 'ymin and x are unequal sized sequences'
if len(ymax)!=len(x):
raise ValueError, 'ymax and x are unequal sized sequences'
Y = np.array([ymin, ymax]).T
verts = [ ((thisx, thisymin), (thisx, thisymax))
for thisx, (thisymin, thisymax) in zip(x,Y)]
#print 'creating line collection'
coll = mcoll.LineCollection(verts, colors=colors,
linestyles=linestyles, label=label)
self.add_collection(coll)
coll.update(kwargs)
minx = min( x )
maxx = max( x )
miny = min( min(ymin), min(ymax) )
maxy = max( max(ymin), max(ymax) )
corners = (minx, miny), (maxx, maxy)
self.update_datalim(corners)
self.autoscale_view()
return coll
vlines.__doc__ = cbook.dedent(vlines.__doc__) % martist.kwdocd
#### Basic plotting
def plot(self, *args, **kwargs):
"""
Plot lines and/or markers to the
:class:`~matplotlib.axes.Axes`. *args* is a variable length
argument, allowing for multiple *x*, *y* pairs with an
optional format string. For example, each of the following is
legal::
plot(x, y) # plot x and y using default line style and color
plot(x, y, 'bo') # plot x and y using blue circle markers
plot(y) # plot y using x as index array 0..N-1
plot(y, 'r+') # ditto, but with red plusses
If *x* and/or *y* is 2-dimensional, then the corresponding columns
will be plotted.
An arbitrary number of *x*, *y*, *fmt* groups can be
specified, as in::
a.plot(x1, y1, 'g^', x2, y2, 'g-')
Return value is a list of lines that were added.
The following format string characters are accepted to control
the line style or marker:
================ ===============================
character description
================ ===============================
'-' solid line style
'--' dashed line style
'-.' dash-dot line style
':' dotted line style
'.' point marker
',' pixel marker
'o' circle marker
'v' triangle_down marker
'^' triangle_up marker
'<' triangle_left marker
'>' triangle_right marker
'1' tri_down marker
'2' tri_up marker
'3' tri_left marker
'4' tri_right marker
's' square marker
'p' pentagon marker
'*' star marker
'h' hexagon1 marker
'H' hexagon2 marker
'+' plus marker
'x' x marker
'D' diamond marker
'd' thin_diamond marker
'|' vline marker
'_' hline marker
================ ===============================
The following color abbreviations are supported:
========== ========
character color
========== ========
'b' blue
'g' green
'r' red
'c' cyan
'm' magenta
'y' yellow
'k' black
'w' white
========== ========
In addition, you can specify colors in many weird and
wonderful ways, including full names (``'green'``), hex
strings (``'#008000'``), RGB or RGBA tuples (``(0,1,0,1)``) or
grayscale intensities as a string (``'0.8'``). Of these, the
string specifications can be used in place of a ``fmt`` group,
but the tuple forms can be used only as ``kwargs``.
Line styles and colors are combined in a single format string, as in
``'bo'`` for blue circles.
The *kwargs* can be used to set line properties (any property that has
a ``set_*`` method). You can use this to set a line label (for auto
legends), linewidth, anitialising, marker face color, etc. Here is an
example::
plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2)
plot([1,2,3], [1,4,9], 'rs', label='line 2')
axis([0, 4, 0, 10])
legend()
If you make multiple lines with one plot command, the kwargs
apply to all those lines, e.g.::
plot(x1, y1, x2, y2, antialised=False)
Neither line will be antialiased.
You do not need to use format strings, which are just
abbreviations. All of the line properties can be controlled
by keyword arguments. For example, you can set the color,
marker, linestyle, and markercolor with::
plot(x, y, color='green', linestyle='dashed', marker='o',
markerfacecolor='blue', markersize=12). See
:class:`~matplotlib.lines.Line2D` for details.
The kwargs are :class:`~matplotlib.lines.Line2D` properties:
%(Line2D)s
kwargs *scalex* and *scaley*, if defined, are passed on to
:meth:`~matplotlib.axes.Axes.autoscale_view` to determine
whether the *x* and *y* axes are autoscaled; the default is
*True*.
"""
scalex = kwargs.pop( 'scalex', True)
scaley = kwargs.pop( 'scaley', True)
if not self._hold: self.cla()
lines = []
for line in self._get_lines(*args, **kwargs):
self.add_line(line)
lines.append(line)
self.autoscale_view(scalex=scalex, scaley=scaley)
return lines
plot.__doc__ = cbook.dedent(plot.__doc__) % martist.kwdocd
def plot_date(self, x, y, fmt='bo', tz=None, xdate=True, ydate=False,
**kwargs):
"""
call signature::
plot_date(x, y, fmt='bo', tz=None, xdate=True, ydate=False, **kwargs)
Similar to the :func:`~matplotlib.pyplot.plot` command, except
the *x* or *y* (or both) data is considered to be dates, and the
axis is labeled accordingly.
*x* and/or *y* can be a sequence of dates represented as float
days since 0001-01-01 UTC.
Keyword arguments:
*fmt*: string
The plot format string.
*tz*: [ None | timezone string ]
The time zone to use in labeling dates. If *None*, defaults to rc
value.
*xdate*: [ True | False ]
If *True*, the *x*-axis will be labeled with dates.
*ydate*: [ False | True ]
If *True*, the *y*-axis will be labeled with dates.
Note if you are using custom date tickers and formatters, it
may be necessary to set the formatters/locators after the call
to :meth:`plot_date` since :meth:`plot_date` will set the
default tick locator to
:class:`matplotlib.ticker.AutoDateLocator` (if the tick
locator is not already set to a
:class:`matplotlib.ticker.DateLocator` instance) and the
default tick formatter to
:class:`matplotlib.ticker.AutoDateFormatter` (if the tick
formatter is not already set to a
:class:`matplotlib.ticker.DateFormatter` instance).
Valid kwargs are :class:`~matplotlib.lines.Line2D` properties:
%(Line2D)s
.. seealso::
:mod:`~matplotlib.dates`:
for helper functions
:func:`~matplotlib.dates.date2num`,
:func:`~matplotlib.dates.num2date` and
:func:`~matplotlib.dates.drange`:
for help on creating the required floating point
dates.
"""
if not self._hold: self.cla()
ret = self.plot(x, y, fmt, **kwargs)
if xdate:
self.xaxis_date(tz)
if ydate:
self.yaxis_date(tz)
self.autoscale_view()
return ret
plot_date.__doc__ = cbook.dedent(plot_date.__doc__) % martist.kwdocd
def loglog(self, *args, **kwargs):
"""
call signature::
loglog(*args, **kwargs)
Make a plot with log scaling on the *x* and *y* axis.
:func:`~matplotlib.pyplot.loglog` supports all the keyword
arguments of :func:`~matplotlib.pyplot.plot` and
:meth:`matplotlib.axes.Axes.set_xscale` /
:meth:`matplotlib.axes.Axes.set_yscale`.
Notable keyword arguments:
*basex*/*basey*: scalar > 1
base of the *x*/*y* logarithm
*subsx*/*subsy*: [ None | sequence ]
the location of the minor *x*/*y* ticks; *None* defaults
to autosubs, which depend on the number of decades in the
plot; see :meth:`matplotlib.axes.Axes.set_xscale` /
:meth:`matplotlib.axes.Axes.set_yscale` for details
The remaining valid kwargs are
:class:`~matplotlib.lines.Line2D` properties:
%(Line2D)s
**Example:**
.. plot:: mpl_examples/pylab_examples/log_demo.py
"""
if not self._hold: self.cla()
dx = {'basex': kwargs.pop('basex', 10),
'subsx': kwargs.pop('subsx', None),
}
dy = {'basey': kwargs.pop('basey', 10),
'subsy': kwargs.pop('subsy', None),
}
self.set_xscale('log', **dx)
self.set_yscale('log', **dy)
b = self._hold
self._hold = True # we've already processed the hold
l = self.plot(*args, **kwargs)
self._hold = b # restore the hold
return l
loglog.__doc__ = cbook.dedent(loglog.__doc__) % martist.kwdocd
def semilogx(self, *args, **kwargs):
"""
call signature::
semilogx(*args, **kwargs)
Make a plot with log scaling on the *x* axis.
:func:`semilogx` supports all the keyword arguments of
:func:`~matplotlib.pyplot.plot` and
:meth:`matplotlib.axes.Axes.set_xscale`.
Notable keyword arguments:
*basex*: scalar > 1
base of the *x* logarithm
*subsx*: [ None | sequence ]
The location of the minor xticks; *None* defaults to
autosubs, which depend on the number of decades in the
plot; see :meth:`~matplotlib.axes.Axes.set_xscale` for
details.
The remaining valid kwargs are
:class:`~matplotlib.lines.Line2D` properties:
%(Line2D)s
.. seealso::
:meth:`loglog`:
For example code and figure
"""
if not self._hold: self.cla()
d = {'basex': kwargs.pop( 'basex', 10),
'subsx': kwargs.pop( 'subsx', None),
}
self.set_xscale('log', **d)
b = self._hold
self._hold = True # we've already processed the hold
l = self.plot(*args, **kwargs)
self._hold = b # restore the hold
return l
semilogx.__doc__ = cbook.dedent(semilogx.__doc__) % martist.kwdocd
def semilogy(self, *args, **kwargs):
"""
call signature::
semilogy(*args, **kwargs)
Make a plot with log scaling on the *y* axis.
:func:`semilogy` supports all the keyword arguments of
:func:`~matplotlib.pylab.plot` and
:meth:`matplotlib.axes.Axes.set_yscale`.
Notable keyword arguments:
*basey*: scalar > 1
Base of the *y* logarithm
*subsy*: [ None | sequence ]
The location of the minor yticks; *None* defaults to
autosubs, which depend on the number of decades in the
plot; see :meth:`~matplotlib.axes.Axes.set_yscale` for
details.
The remaining valid kwargs are
:class:`~matplotlib.lines.Line2D` properties:
%(Line2D)s
.. seealso::
:meth:`loglog`:
For example code and figure
"""
if not self._hold: self.cla()
d = {'basey': kwargs.pop('basey', 10),
'subsy': kwargs.pop('subsy', None),
}
self.set_yscale('log', **d)
b = self._hold
self._hold = True # we've already processed the hold
l = self.plot(*args, **kwargs)
self._hold = b # restore the hold
return l
semilogy.__doc__ = cbook.dedent(semilogy.__doc__) % martist.kwdocd
def acorr(self, x, **kwargs):
"""
call signature::
acorr(x, normed=False, detrend=mlab.detrend_none, usevlines=False,
maxlags=None, **kwargs)
Plot the autocorrelation of *x*. If *normed* = *True*,
normalize the data by the autocorrelation at 0-th lag. *x* is
detrended by the *detrend* callable (default no normalization).
Data are plotted as ``plot(lags, c, **kwargs)``
Return value is a tuple (*lags*, *c*, *line*) where:
- *lags* are a length 2*maxlags+1 lag vector
- *c* is the 2*maxlags+1 auto correlation vector
- *line* is a :class:`~matplotlib.lines.Line2D` instance
returned by :meth:`plot`
The default *linestyle* is None and the default *marker* is
``'o'``, though these can be overridden with keyword args.
The cross correlation is performed with
:func:`numpy.correlate` with *mode* = 2.
If *usevlines* is *True*, :meth:`~matplotlib.axes.Axes.vlines`
rather than :meth:`~matplotlib.axes.Axes.plot` is used to draw
vertical lines from the origin to the acorr. Otherwise, the
plot style is determined by the kwargs, which are
:class:`~matplotlib.lines.Line2D` properties.
*maxlags* is a positive integer detailing the number of lags
to show. The default value of *None* will return all
:math:`2 \mathrm{len}(x) - 1` lags.
The return value is a tuple (*lags*, *c*, *linecol*, *b*)
where
- *linecol* is the
:class:`~matplotlib.collections.LineCollection`
- *b* is the *x*-axis.
.. seealso::
:meth:`~matplotlib.axes.Axes.plot` or
:meth:`~matplotlib.axes.Axes.vlines`: For documentation on
valid kwargs.
**Example:**
:func:`~matplotlib.pyplot.xcorr` above, and
:func:`~matplotlib.pyplot.acorr` below.
**Example:**
.. plot:: mpl_examples/pylab_examples/xcorr_demo.py
"""
return self.xcorr(x, x, **kwargs)
acorr.__doc__ = cbook.dedent(acorr.__doc__) % martist.kwdocd
def xcorr(self, x, y, normed=False, detrend=mlab.detrend_none,
usevlines=False, maxlags=None, **kwargs):
"""
call signature::
xcorr(x, y, normed=False, detrend=mlab.detrend_none,
usevlines=False, **kwargs):
Plot the cross correlation between *x* and *y*. If *normed* =
*True*, normalize the data by the cross correlation at 0-th
lag. *x* and y are detrended by the *detrend* callable
(default no normalization). *x* and *y* must be equal length.
Data are plotted as ``plot(lags, c, **kwargs)``
Return value is a tuple (*lags*, *c*, *line*) where:
- *lags* are a length ``2*maxlags+1`` lag vector
- *c* is the ``2*maxlags+1`` auto correlation vector
- *line* is a :class:`~matplotlib.lines.Line2D` instance
returned by :func:`~matplotlib.pyplot.plot`.
The default *linestyle* is *None* and the default *marker* is
'o', though these can be overridden with keyword args. The
cross correlation is performed with :func:`numpy.correlate`
with *mode* = 2.
If *usevlines* is *True*:
:func:`~matplotlib.pyplot.vlines`
rather than :func:`~matplotlib.pyplot.plot` is used to draw
vertical lines from the origin to the xcorr. Otherwise the
plotstyle is determined by the kwargs, which are
:class:`~matplotlib.lines.Line2D` properties.
The return value is a tuple (*lags*, *c*, *linecol*, *b*)
where *linecol* is the
:class:`matplotlib.collections.LineCollection` instance and
*b* is the *x*-axis.
*maxlags* is a positive integer detailing the number of lags to show.
The default value of *None* will return all ``(2*len(x)-1)`` lags.
**Example:**
:func:`~matplotlib.pyplot.xcorr` above, and
:func:`~matplotlib.pyplot.acorr` below.
**Example:**
.. plot:: mpl_examples/pylab_examples/xcorr_demo.py
"""
Nx = len(x)
if Nx!=len(y):
raise ValueError('x and y must be equal length')
x = detrend(np.asarray(x))
y = detrend(np.asarray(y))
c = np.correlate(x, y, mode=2)
if normed: c/= np.sqrt(np.dot(x,x) * np.dot(y,y))
if maxlags is None: maxlags = Nx - 1
if maxlags >= Nx or maxlags < 1:
raise ValueError('maglags must be None or strictly '
'positive < %d'%Nx)
lags = np.arange(-maxlags,maxlags+1)
c = c[Nx-1-maxlags:Nx+maxlags]
if usevlines:
a = self.vlines(lags, [0], c, **kwargs)
b = self.axhline(**kwargs)
else:
kwargs.setdefault('marker', 'o')
kwargs.setdefault('linestyle', 'None')
a, = self.plot(lags, c, **kwargs)
b = None
return lags, c, a, b
xcorr.__doc__ = cbook.dedent(xcorr.__doc__) % martist.kwdocd
def legend(self, *args, **kwargs):
"""
call signature::
legend(*args, **kwargs)
Place a legend on the current axes at location *loc*. Labels are a
sequence of strings and *loc* can be a string or an integer specifying
the legend location.
To make a legend with existing lines::
legend()
:meth:`legend` by itself will try and build a legend using the label
property of the lines/patches/collections. You can set the label of
a line by doing::
plot(x, y, label='my data')
or::
line.set_label('my data').
If label is set to '_nolegend_', the item will not be shown in
legend.
To automatically generate the legend from labels::
legend( ('label1', 'label2', 'label3') )
To make a legend for a list of lines and labels::
legend( (line1, line2, line3), ('label1', 'label2', 'label3') )
To make a legend at a given location, using a location argument::
legend( ('label1', 'label2', 'label3'), loc='upper left')
or::
legend( (line1, line2, line3), ('label1', 'label2', 'label3'), loc=2)
The location codes are
=============== =============
Location String Location Code
=============== =============
'best' 0
'upper right' 1
'upper left' 2
'lower left' 3
'lower right' 4
'right' 5
'center left' 6
'center right' 7
'lower center' 8
'upper center' 9
'center' 10
=============== =============
If none of these are locations are suitable, loc can be a 2-tuple
giving x,y in axes coords, ie::
loc = 0, 1 # left top
loc = 0.5, 0.5 # center
Keyword arguments:
*isaxes*: [ True | False ]
Indicates that this is an axes legend
*numpoints*: integer
The number of points in the legend line, default is 4
*prop*: [ None | FontProperties ]
A :class:`matplotlib.font_manager.FontProperties`
instance, or *None* to use rc settings.
*pad*: [ None | scalar ]
The fractional whitespace inside the legend border, between 0 and 1.
If *None*, use rc settings.
*markerscale*: [ None | scalar ]
The relative size of legend markers vs. original. If *None*, use rc
settings.
*shadow*: [ None | False | True ]
If *True*, draw a shadow behind legend. If *None*, use rc settings.
*labelsep*: [ None | scalar ]
The vertical space between the legend entries. If *None*, use rc
settings.
*handlelen*: [ None | scalar ]
The length of the legend lines. If *None*, use rc settings.
*handletextsep*: [ None | scalar ]
The space between the legend line and legend text. If *None*, use rc
settings.
*axespad*: [ None | scalar ]
The border between the axes and legend edge. If *None*, use rc
settings.
**Example:**
.. plot:: mpl_examples/api/legend_demo.py
"""
def get_handles():
handles = self.lines[:]
handles.extend(self.patches)
handles.extend([c for c in self.collections
if isinstance(c, mcoll.LineCollection)])
handles.extend([c for c in self.collections
if isinstance(c, mcoll.RegularPolyCollection)])
return handles
if len(args)==0:
handles = []
labels = []
for handle in get_handles():
label = handle.get_label()
if (label is not None and
label != '' and not label.startswith('_')):
handles.append(handle)
labels.append(label)
if len(handles) == 0:
warnings.warn("No labeled objects found. "
"Use label='...' kwarg on individual plots.")
return None
elif len(args)==1:
# LABELS
labels = args[0]
handles = [h for h, label in zip(get_handles(), labels)]
elif len(args)==2:
if is_string_like(args[1]) or isinstance(args[1], int):
# LABELS, LOC
labels, loc = args
handles = [h for h, label in zip(get_handles(), labels)]
kwargs['loc'] = loc
else:
# LINES, LABELS
handles, labels = args
elif len(args)==3:
# LINES, LABELS, LOC
handles, labels, loc = args
kwargs['loc'] = loc
else:
raise TypeError('Invalid arguments to legend')
handles = cbook.flatten(handles)
self.legend_ = mlegend.Legend(self, handles, labels, **kwargs)
return self.legend_
#### Specialized plotting
def step(self, x, y, *args, **kwargs):
'''
call signature::
step(x, y, *args, **kwargs)
Make a step plot. Additional keyword args to :func:`step` are the same
as those for :func:`~matplotlib.pyplot.plot`.
*x* and *y* must be 1-D sequences, and it is assumed, but not checked,
that *x* is uniformly increasing.
Keyword arguments:
*where*: [ 'pre' | 'post' | 'mid' ]
If 'pre', the interval from x[i] to x[i+1] has level y[i]
If 'post', that interval has level y[i+1]
If 'mid', the jumps in *y* occur half-way between the
*x*-values.
'''
where = kwargs.pop('where', 'pre')
if where not in ('pre', 'post', 'mid'):
raise ValueError("'where' argument to step must be "
"'pre', 'post' or 'mid'")
kwargs['linestyle'] = 'steps-' + where
return self.plot(x, y, *args, **kwargs)
def bar(self, left, height, width=0.8, bottom=None,
color=None, edgecolor=None, linewidth=None,
yerr=None, xerr=None, ecolor=None, capsize=3,
align='edge', orientation='vertical', log=False,
**kwargs
):
"""
call signature::
bar(left, height, width=0.8, bottom=0,
color=None, edgecolor=None, linewidth=None,
yerr=None, xerr=None, ecolor=None, capsize=3,
align='edge', orientation='vertical', log=False)
Make a bar plot with rectangles bounded by:
*left*, *left* + *width*, *bottom*, *bottom* + *height*
(left, right, bottom and top edges)
*left*, *height*, *width*, and *bottom* can be either scalars
or sequences
Return value is a list of
:class:`matplotlib.patches.Rectangle` instances.
Required arguments:
======== ===============================================
Argument Description
======== ===============================================
*left* the x coordinates of the left sides of the bars
*height* the heights of the bars
======== ===============================================
Optional keyword arguments:
=============== ==========================================
Keyword Description
=============== ==========================================
*width* the widths of the bars
*bottom* the y coordinates of the bottom edges of
the bars
*color* the colors of the bars
*edgecolor* the colors of the bar edges
*linewidth* width of bar edges; None means use default
linewidth; 0 means don't draw edges.
*xerr* if not None, will be used to generate
errorbars on the bar chart
*yerr* if not None, will be used to generate
errorbars on the bar chart
*ecolor* specifies the color of any errorbar
*capsize* (default 3) determines the length in
points of the error bar caps
*align* 'edge' (default) | 'center'
*orientation* 'vertical' | 'horizontal'
*log* [False|True] False (default) leaves the
orientation axis as-is; True sets it to
log scale
=============== ==========================================
For vertical bars, *align* = 'edge' aligns bars by their left
edges in left, while *align* = 'center' interprets these
values as the *x* coordinates of the bar centers. For
horizontal bars, *align* = 'edge' aligns bars by their bottom
edges in bottom, while *align* = 'center' interprets these
values as the *y* coordinates of the bar centers.
The optional arguments *color*, *edgecolor*, *linewidth*,
*xerr*, and *yerr* can be either scalars or sequences of
length equal to the number of bars. This enables you to use
bar as the basis for stacked bar charts, or candlestick plots.
Other optional kwargs:
%(Rectangle)s
**Example:** A stacked bar chart.
.. plot:: mpl_examples/pylab_examples/bar_stacked.py
"""
if not self._hold: self.cla()
label = kwargs.pop('label', '')
def make_iterable(x):
if not iterable(x):
return [x]
else:
return x
# make them safe to take len() of
_left = left
left = make_iterable(left)
height = make_iterable(height)
width = make_iterable(width)
_bottom = bottom
bottom = make_iterable(bottom)
linewidth = make_iterable(linewidth)
adjust_ylim = False
adjust_xlim = False
if orientation == 'vertical':
self._process_unit_info(xdata=left, ydata=height, kwargs=kwargs)
if log:
self.set_yscale('log')
# size width and bottom according to length of left
if _bottom is None:
if self.get_yscale() == 'log':
bottom = [1e-100]
adjust_ylim = True
else:
bottom = [0]
nbars = len(left)
if len(width) == 1:
width *= nbars
if len(bottom) == 1:
bottom *= nbars
elif orientation == 'horizontal':
self._process_unit_info(xdata=width, ydata=bottom, kwargs=kwargs)
if log:
self.set_xscale('log')
# size left and height according to length of bottom
if _left is None:
if self.get_xscale() == 'log':
left = [1e-100]
adjust_xlim = True
else:
left = [0]
nbars = len(bottom)
if len(left) == 1:
left *= nbars
if len(height) == 1:
height *= nbars
else:
raise ValueError, 'invalid orientation: %s' % orientation
# do not convert to array here as unit info is lost
#left = np.asarray(left)
#height = np.asarray(height)
#width = np.asarray(width)
#bottom = np.asarray(bottom)
if len(linewidth) < nbars:
linewidth *= nbars
if color is None:
color = [None] * nbars
else:
color = list(mcolors.colorConverter.to_rgba_array(color))
if len(color) < nbars:
color *= nbars
if edgecolor is None:
edgecolor = [None] * nbars
else:
edgecolor = list(mcolors.colorConverter.to_rgba_array(edgecolor))
if len(edgecolor) < nbars:
edgecolor *= nbars
if yerr is not None:
if not iterable(yerr):
yerr = [yerr]*nbars
if xerr is not None:
if not iterable(xerr):
xerr = [xerr]*nbars
# FIXME: convert the following to proper input validation
# raising ValueError; don't use assert for this.
assert len(left)==nbars, "argument 'left' must be %d or scalar" % nbars
assert len(height)==nbars, ("argument 'height' must be %d or scalar" %
nbars)
assert len(width)==nbars, ("argument 'width' must be %d or scalar" %
nbars)
assert len(bottom)==nbars, ("argument 'bottom' must be %d or scalar" %
nbars)
if yerr is not None and len(yerr)!=nbars:
raise ValueError(
"bar() argument 'yerr' must be len(%s) or scalar" % nbars)
if xerr is not None and len(xerr)!=nbars:
raise ValueError(
"bar() argument 'xerr' must be len(%s) or scalar" % nbars)
patches = []
# lets do some conversions now since some types cannot be
# subtracted uniformly
if self.xaxis is not None:
xconv = self.xaxis.converter
if xconv is not None:
units = self.xaxis.get_units()
left = xconv.convert( left, units )
width = xconv.convert( width, units )
if self.yaxis is not None:
yconv = self.yaxis.converter
if yconv is not None :
units = self.yaxis.get_units()
bottom = yconv.convert( bottom, units )
height = yconv.convert( height, units )
if align == 'edge':
pass
elif align == 'center':
if orientation == 'vertical':
left = [left[i] - width[i]/2. for i in xrange(len(left))]
elif orientation == 'horizontal':
bottom = [bottom[i] - height[i]/2. for i in xrange(len(bottom))]
else:
raise ValueError, 'invalid alignment: %s' % align
args = zip(left, bottom, width, height, color, edgecolor, linewidth)
for l, b, w, h, c, e, lw in args:
if h<0:
b += h
h = abs(h)
if w<0:
l += w
w = abs(w)
r = mpatches.Rectangle(
xy=(l, b), width=w, height=h,
facecolor=c,
edgecolor=e,
linewidth=lw,
label=label
)
label = '_nolegend_'
r.update(kwargs)
#print r.get_label(), label, 'label' in kwargs
self.add_patch(r)
patches.append(r)
holdstate = self._hold
self.hold(True) # ensure hold is on before plotting errorbars
if xerr is not None or yerr is not None:
if orientation == 'vertical':
# using list comps rather than arrays to preserve unit info
x = [l+0.5*w for l, w in zip(left, width)]
y = [b+h for b,h in zip(bottom, height)]
elif orientation == 'horizontal':
# using list comps rather than arrays to preserve unit info
x = [l+w for l,w in zip(left, width)]
y = [b+0.5*h for b,h in zip(bottom, height)]
self.errorbar(
x, y,
yerr=yerr, xerr=xerr,
fmt=None, ecolor=ecolor, capsize=capsize)
self.hold(holdstate) # restore previous hold state
if adjust_xlim:
xmin, xmax = self.dataLim.intervalx
xmin = np.amin(width[width!=0]) # filter out the 0 width rects
if xerr is not None:
xmin = xmin - np.amax(xerr)
xmin = max(xmin*0.9, 1e-100)
self.dataLim.intervalx = (xmin, xmax)
if adjust_ylim:
ymin, ymax = self.dataLim.intervaly
ymin = np.amin(height[height!=0]) # filter out the 0 height rects
if yerr is not None:
ymin = ymin - np.amax(yerr)
ymin = max(ymin*0.9, 1e-100)
self.dataLim.intervaly = (ymin, ymax)
self.autoscale_view()
return patches
bar.__doc__ = cbook.dedent(bar.__doc__) % martist.kwdocd
def barh(self, bottom, width, height=0.8, left=None, **kwargs):
"""
call signature::
barh(bottom, width, height=0.8, left=0, **kwargs)
Make a horizontal bar plot with rectangles bounded by:
*left*, *left* + *width*, *bottom*, *bottom* + *height*
(left, right, bottom and top edges)
*bottom*, *width*, *height*, and *left* can be either scalars
or sequences
Return value is a list of
:class:`matplotlib.patches.Rectangle` instances.
Required arguments:
======== ======================================================
Argument Description
======== ======================================================
*bottom* the vertical positions of the bottom edges of the bars
*width* the lengths of the bars
======== ======================================================
Optional keyword arguments:
=============== ==========================================
Keyword Description
=============== ==========================================
*height* the heights (thicknesses) of the bars
*left* the x coordinates of the left edges of the
bars
*color* the colors of the bars
*edgecolor* the colors of the bar edges
*linewidth* width of bar edges; None means use default
linewidth; 0 means don't draw edges.
*xerr* if not None, will be used to generate
errorbars on the bar chart
*yerr* if not None, will be used to generate
errorbars on the bar chart
*ecolor* specifies the color of any errorbar
*capsize* (default 3) determines the length in
points of the error bar caps
*align* 'edge' (default) | 'center'
*log* [False|True] False (default) leaves the
horizontal axis as-is; True sets it to log
scale
=============== ==========================================
Setting *align* = 'edge' aligns bars by their bottom edges in
bottom, while *align* = 'center' interprets these values as
the *y* coordinates of the bar centers.
The optional arguments *color*, *edgecolor*, *linewidth*,
*xerr*, and *yerr* can be either scalars or sequences of
length equal to the number of bars. This enables you to use
barh as the basis for stacked bar charts, or candlestick
plots.
other optional kwargs:
%(Rectangle)s
"""
patches = self.bar(left=left, height=height, width=width, bottom=bottom,
orientation='horizontal', **kwargs)
return patches
barh.__doc__ = cbook.dedent(barh.__doc__) % martist.kwdocd
def broken_barh(self, xranges, yrange, **kwargs):
"""
call signature::
broken_barh(self, xranges, yrange, **kwargs)
A collection of horizontal bars spanning *yrange* with a sequence of
*xranges*.
Required arguments:
========= ==============================
Argument Description
========= ==============================
*xranges* sequence of (*xmin*, *xwidth*)
*yrange* sequence of (*ymin*, *ywidth*)
========= ==============================
kwargs are
:class:`matplotlib.collections.BrokenBarHCollection`
properties:
%(BrokenBarHCollection)s
these can either be a single argument, ie::
facecolors = 'black'
or a sequence of arguments for the various bars, ie::
facecolors = ('black', 'red', 'green')
**Example:**
.. plot:: mpl_examples/pylab_examples/broken_barh.py
"""
col = mcoll.BrokenBarHCollection(xranges, yrange, **kwargs)
self.add_collection(col, autolim=True)
self.autoscale_view()
return col
broken_barh.__doc__ = cbook.dedent(broken_barh.__doc__) % martist.kwdocd
def stem(self, x, y, linefmt='b-', markerfmt='bo', basefmt='r-'):
"""
call signature::
stem(x, y, linefmt='b-', markerfmt='bo', basefmt='r-')
A stem plot plots vertical lines (using *linefmt*) at each *x*
location from the baseline to *y*, and places a marker there
using *markerfmt*. A horizontal line at 0 is is plotted using
*basefmt*.
Return value is a tuple (*markerline*, *stemlines*,
*baseline*).
.. seealso::
`this document`__ for details
:file:`examples/pylab_examples/stem_plot.py`:
for a demo
__ http://www.mathworks.com/access/helpdesk/help/techdoc/ref/stem.html
"""
remember_hold=self._hold
if not self._hold: self.cla()
self.hold(True)
markerline, = self.plot(x, y, markerfmt)
stemlines = []
for thisx, thisy in zip(x, y):
l, = self.plot([thisx,thisx], [0, thisy], linefmt)
stemlines.append(l)
baseline, = self.plot([np.amin(x), np.amax(x)], [0,0], basefmt)
self.hold(remember_hold)
return markerline, stemlines, baseline
def pie(self, x, explode=None, labels=None, colors=None,
autopct=None, pctdistance=0.6, shadow=False,
labeldistance=1.1):
r"""
call signature::
pie(x, explode=None, labels=None,
colors=('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'),
autopct=None, pctdistance=0.6, labeldistance=1.1, shadow=False)
Make a pie chart of array *x*. The fractional area of each
wedge is given by x/sum(x). If sum(x) <= 1, then the values
of x give the fractional area directly and the array will not
be normalized.
Keyword arguments:
*explode*: [ None | len(x) sequence ]
If not *None*, is a len(*x*) array which specifies the
fraction of the radius with which to offset each wedge.
*colors*: [ None | color sequence ]
A sequence of matplotlib color args through which the pie chart
will cycle.
*labels*: [ None | len(x) sequence of strings ]
A sequence of strings providing the labels for each wedge
*autopct*: [ None | format string | format function ]
If not *None*, is a string or function used to label the
wedges with their numeric value. The label will be placed inside
the wedge. If it is a format string, the label will be ``fmt%pct``.
If it is a function, it will be called.
*pctdistance*: scalar
The ratio between the center of each pie slice and the
start of the text generated by *autopct*. Ignored if
*autopct* is *None*; default is 0.6.
*labeldistance*: scalar
The radial distance at which the pie labels are drawn
*shadow*: [ False | True ]
Draw a shadow beneath the pie.
The pie chart will probably look best if the figure and axes are
square. Eg.::
figure(figsize=(8,8))
ax = axes([0.1, 0.1, 0.8, 0.8])
Return value:
If *autopct* is None, return the tuple (*patches*, *texts*):
- *patches* is a sequence of
:class:`matplotlib.patches.Wedge` instances
- *texts* is a list of the label
:class:`matplotlib.text.Text` instances.
If *autopct* is not *None*, return the tuple (*patches*,
*texts*, *autotexts*), where *patches* and *texts* are as
above, and *autotexts* is a list of
:class:`~matplotlib.text.Text` instances for the numeric
labels.
"""
self.set_frame_on(False)
x = np.asarray(x).astype(np.float32)
sx = float(x.sum())
if sx>1: x = np.divide(x,sx)
if labels is None: labels = ['']*len(x)
if explode is None: explode = [0]*len(x)
assert(len(x)==len(labels))
assert(len(x)==len(explode))
if colors is None: colors = ('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w')
center = 0,0
radius = 1
theta1 = 0
i = 0
texts = []
slices = []
autotexts = []
for frac, label, expl in cbook.safezip(x,labels, explode):
x, y = center
theta2 = theta1 + frac
thetam = 2*math.pi*0.5*(theta1+theta2)
x += expl*math.cos(thetam)
y += expl*math.sin(thetam)
w = mpatches.Wedge((x,y), radius, 360.*theta1, 360.*theta2,
facecolor=colors[i%len(colors)])
slices.append(w)
self.add_patch(w)
w.set_label(label)
if shadow:
# make sure to add a shadow after the call to
# add_patch so the figure and transform props will be
# set
shad = mpatches.Shadow(w, -0.02, -0.02,
#props={'facecolor':w.get_facecolor()}
)
shad.set_zorder(0.9*w.get_zorder())
self.add_patch(shad)
xt = x + labeldistance*radius*math.cos(thetam)
yt = y + labeldistance*radius*math.sin(thetam)
label_alignment = xt > 0 and 'left' or 'right'
t = self.text(xt, yt, label,
size=rcParams['xtick.labelsize'],
horizontalalignment=label_alignment,
verticalalignment='center')
texts.append(t)
if autopct is not None:
xt = x + pctdistance*radius*math.cos(thetam)
yt = y + pctdistance*radius*math.sin(thetam)
if is_string_like(autopct):
s = autopct%(100.*frac)
elif callable(autopct):
s = autopct(100.*frac)
else:
raise TypeError(
'autopct must be callable or a format string')
t = self.text(xt, yt, s,
horizontalalignment='center',
verticalalignment='center')
autotexts.append(t)
theta1 = theta2
i += 1
self.set_xlim((-1.25, 1.25))
self.set_ylim((-1.25, 1.25))
self.set_xticks([])
self.set_yticks([])
if autopct is None: return slices, texts
else: return slices, texts, autotexts
def errorbar(self, x, y, yerr=None, xerr=None,
fmt='-', ecolor=None, elinewidth=None, capsize=3,
barsabove=False, lolims=False, uplims=False,
xlolims=False, xuplims=False, **kwargs):
"""
call signature::
errorbar(x, y, yerr=None, xerr=None,
fmt='-', ecolor=None, elinewidth=None, capsize=3,
barsabove=False, lolims=False, uplims=False,
xlolims=False, xuplims=False)
Plot *x* versus *y* with error deltas in *yerr* and *xerr*.
Vertical errorbars are plotted if *yerr* is not *None*.
Horizontal errorbars are plotted if *xerr* is not *None*.
*x*, *y*, *xerr*, and *yerr* can all be scalars, which plots a
single error bar at *x*, *y*.
Optional keyword arguments:
*xerr*/*yerr*: [ scalar | N, Nx1, Nx2 array-like ]
If a scalar number, len(N) array-like object, or an Nx1 array-like
object, errorbars are drawn +/- value.
If a rank-1, Nx2 Numpy array, errorbars are drawn at -column1 and
+column2
*fmt*: '-'
The plot format symbol for *y*. If *fmt* is *None*, just plot the
errorbars with no line symbols. This can be useful for creating a
bar plot with errorbars.
*ecolor*: [ None | mpl color ]
a matplotlib color arg which gives the color the errorbar lines; if
*None*, use the marker color.
*elinewidth*: scalar
the linewidth of the errorbar lines. If *None*, use the linewidth.
*capsize*: scalar
the size of the error bar caps in points
*barsabove*: [ True | False ]
if *True*, will plot the errorbars above the plot
symbols. Default is below.
*lolims*/*uplims*/*xlolims*/*xuplims*: [ False | True ]
These arguments can be used to indicate that a value gives
only upper/lower limits. In that case a caret symbol is
used to indicate this. lims-arguments may be of the same
type as *xerr* and *yerr*.
All other keyword arguments are passed on to the plot command for the
markers, so you can add additional key=value pairs to control the
errorbar markers. For example, this code makes big red squares with
thick green edges::
x,y,yerr = rand(3,10)
errorbar(x, y, yerr, marker='s',
mfc='red', mec='green', ms=20, mew=4)
where *mfc*, *mec*, *ms* and *mew* are aliases for the longer
property names, *markerfacecolor*, *markeredgecolor*, *markersize*
and *markeredgewith*.
valid kwargs for the marker properties are
%(Line2D)s
Return value is a length 3 tuple. The first element is the
:class:`~matplotlib.lines.Line2D` instance for the *y* symbol
lines. The second element is a list of error bar cap lines,
the third element is a list of
:class:`~matplotlib.collections.LineCollection` instances for
the horizontal and vertical error ranges.
**Example:**
.. plot:: mpl_examples/pylab_examples/errorbar_demo.py
"""
self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)
if not self._hold: self.cla()
# make sure all the args are iterable; use lists not arrays to
# preserve units
if not iterable(x):
x = [x]
if not iterable(y):
y = [y]
if xerr is not None:
if not iterable(xerr):
xerr = [xerr]*len(x)
if yerr is not None:
if not iterable(yerr):
yerr = [yerr]*len(y)
l0 = None
if barsabove and fmt is not None:
l0, = self.plot(x,y,fmt,**kwargs)
barcols = []
caplines = []
lines_kw = {'label':'_nolegend_'}
if elinewidth:
lines_kw['linewidth'] = elinewidth
else:
if 'linewidth' in kwargs:
lines_kw['linewidth']=kwargs['linewidth']
if 'lw' in kwargs:
lines_kw['lw']=kwargs['lw']
if 'transform' in kwargs:
lines_kw['transform'] = kwargs['transform']
# arrays fine here, they are booleans and hence not units
if not iterable(lolims):
lolims = np.asarray([lolims]*len(x), bool)
else: lolims = np.asarray(lolims, bool)
if not iterable(uplims): uplims = np.array([uplims]*len(x), bool)
else: uplims = np.asarray(uplims, bool)
if not iterable(xlolims): xlolims = np.array([xlolims]*len(x), bool)
else: xlolims = np.asarray(xlolims, bool)
if not iterable(xuplims): xuplims = np.array([xuplims]*len(x), bool)
else: xuplims = np.asarray(xuplims, bool)
def xywhere(xs, ys, mask):
"""
return xs[mask], ys[mask] where mask is True but xs and
ys are not arrays
"""
assert len(xs)==len(ys)
assert len(xs)==len(mask)
xs = [thisx for thisx, b in zip(xs, mask) if b]
ys = [thisy for thisy, b in zip(ys, mask) if b]
return xs, ys
if capsize > 0:
plot_kw = {
'ms':2*capsize,
'label':'_nolegend_'}
if 'markeredgewidth' in kwargs:
plot_kw['markeredgewidth']=kwargs['markeredgewidth']
if 'mew' in kwargs:
plot_kw['mew']=kwargs['mew']
if 'transform' in kwargs:
plot_kw['transform'] = kwargs['transform']
if xerr is not None:
if (iterable(xerr) and len(xerr)==2 and
iterable(xerr[0]) and iterable(xerr[1])):
# using list comps rather than arrays to preserve units
left = [thisx-thiserr for (thisx, thiserr)
in cbook.safezip(x,xerr[0])]
right = [thisx+thiserr for (thisx, thiserr)
in cbook.safezip(x,xerr[1])]
else:
# using list comps rather than arrays to preserve units
left = [thisx-thiserr for (thisx, thiserr)
in cbook.safezip(x,xerr)]
right = [thisx+thiserr for (thisx, thiserr)
in cbook.safezip(x,xerr)]
barcols.append( self.hlines(y, left, right, **lines_kw ) )
if capsize > 0:
if xlolims.any():
# can't use numpy logical indexing since left and
# y are lists
leftlo, ylo = xywhere(left, y, xlolims)
caplines.extend(
self.plot(leftlo, ylo, ls='None',
marker=mlines.CARETLEFT, **plot_kw) )
xlolims = ~xlolims
leftlo, ylo = xywhere(left, y, xlolims)
caplines.extend( self.plot(leftlo, ylo, 'k|', **plot_kw) )
else:
caplines.extend( self.plot(left, y, 'k|', **plot_kw) )
if xuplims.any():
rightup, yup = xywhere(right, y, xuplims)
caplines.extend(
self.plot(rightup, yup, ls='None',
marker=mlines.CARETRIGHT, **plot_kw) )
xuplims = ~xuplims
rightup, yup = xywhere(right, y, xuplims)
caplines.extend( self.plot(rightup, yup, 'k|', **plot_kw) )
else:
caplines.extend( self.plot(right, y, 'k|', **plot_kw) )
if yerr is not None:
if (iterable(yerr) and len(yerr)==2 and
iterable(yerr[0]) and iterable(yerr[1])):
# using list comps rather than arrays to preserve units
lower = [thisy-thiserr for (thisy, thiserr)
in cbook.safezip(y,yerr[0])]
upper = [thisy+thiserr for (thisy, thiserr)
in cbook.safezip(y,yerr[1])]
else:
# using list comps rather than arrays to preserve units
lower = [thisy-thiserr for (thisy, thiserr)
in cbook.safezip(y,yerr)]
upper = [thisy+thiserr for (thisy, thiserr)
in cbook.safezip(y,yerr)]
barcols.append( self.vlines(x, lower, upper, **lines_kw) )
if capsize > 0:
if lolims.any():
xlo, lowerlo = xywhere(x, lower, lolims)
caplines.extend(
self.plot(xlo, lowerlo, ls='None',
marker=mlines.CARETDOWN, **plot_kw) )
lolims = ~lolims
xlo, lowerlo = xywhere(x, lower, lolims)
caplines.extend( self.plot(xlo, lowerlo, 'k_', **plot_kw) )
else:
caplines.extend( self.plot(x, lower, 'k_', **plot_kw) )
if uplims.any():
xup, upperup = xywhere(x, upper, uplims)
caplines.extend(
self.plot(xup, upperup, ls='None',
marker=mlines.CARETUP, **plot_kw) )
uplims = ~uplims
xup, upperup = xywhere(x, upper, uplims)
caplines.extend( self.plot(xup, upperup, 'k_', **plot_kw) )
else:
caplines.extend( self.plot(x, upper, 'k_', **plot_kw) )
if not barsabove and fmt is not None:
l0, = self.plot(x,y,fmt,**kwargs)
if ecolor is None:
if l0 is None:
ecolor = self._get_lines._get_next_cycle_color()
else:
ecolor = l0.get_color()
for l in barcols:
l.set_color(ecolor)
for l in caplines:
l.set_color(ecolor)
self.autoscale_view()
return (l0, caplines, barcols)
errorbar.__doc__ = cbook.dedent(errorbar.__doc__) % martist.kwdocd
def boxplot(self, x, notch=0, sym='b+', vert=1, whis=1.5,
positions=None, widths=None):
"""
call signature::
boxplot(x, notch=0, sym='+', vert=1, whis=1.5,
positions=None, widths=None)
Make a box and whisker plot for each column of *x* or each
vector in sequence *x*. The box extends from the lower to
upper quartile values of the data, with a line at the median.
The whiskers extend from the box to show the range of the
data. Flier points are those past the end of the whiskers.
- *notch* = 0 (default) produces a rectangular box plot.
- *notch* = 1 will produce a notched box plot
*sym* (default 'b+') is the default symbol for flier points.
Enter an empty string ('') if you don't want to show fliers.
- *vert* = 1 (default) makes the boxes vertical.
- *vert* = 0 makes horizontal boxes. This seems goofy, but
that's how Matlab did it.
*whis* (default 1.5) defines the length of the whiskers as
a function of the inner quartile range. They extend to the
most extreme data point within ( ``whis*(75%-25%)`` ) data range.
*positions* (default 1,2,...,n) sets the horizontal positions of
the boxes. The ticks and limits are automatically set to match
the positions.
*widths* is either a scalar or a vector and sets the width of
each box. The default is 0.5, or ``0.15*(distance between extreme
positions)`` if that is smaller.
*x* is an array or a sequence of vectors.
Returns a dictionary mapping each component of the boxplot
to a list of the :class:`matplotlib.lines.Line2D`
instances created.
**Example:**
.. plot:: pyplots/boxplot_demo.py
"""
if not self._hold: self.cla()
holdStatus = self._hold
whiskers, caps, boxes, medians, fliers = [], [], [], [], []
# convert x to a list of vectors
if hasattr(x, 'shape'):
if len(x.shape) == 1:
if hasattr(x[0], 'shape'):
x = list(x)
else:
x = [x,]
elif len(x.shape) == 2:
nr, nc = x.shape
if nr == 1:
x = [x]
elif nc == 1:
x = [x.ravel()]
else:
x = [x[:,i] for i in xrange(nc)]
else:
raise ValueError, "input x can have no more than 2 dimensions"
if not hasattr(x[0], '__len__'):
x = [x]
col = len(x)
# get some plot info
if positions is None:
positions = range(1, col + 1)
if widths is None:
distance = max(positions) - min(positions)
widths = min(0.15*max(distance,1.0), 0.5)
if isinstance(widths, float) or isinstance(widths, int):
widths = np.ones((col,), float) * widths
# loop through columns, adding each to plot
self.hold(True)
for i,pos in enumerate(positions):
d = np.ravel(x[i])
row = len(d)
# get median and quartiles
q1, med, q3 = mlab.prctile(d,[25,50,75])
# get high extreme
iq = q3 - q1
hi_val = q3 + whis*iq
wisk_hi = np.compress( d <= hi_val , d )
if len(wisk_hi) == 0:
wisk_hi = q3
else:
wisk_hi = max(wisk_hi)
# get low extreme
lo_val = q1 - whis*iq
wisk_lo = np.compress( d >= lo_val, d )
if len(wisk_lo) == 0:
wisk_lo = q1
else:
wisk_lo = min(wisk_lo)
# get fliers - if we are showing them
flier_hi = []
flier_lo = []
flier_hi_x = []
flier_lo_x = []
if len(sym) != 0:
flier_hi = np.compress( d > wisk_hi, d )
flier_lo = np.compress( d < wisk_lo, d )
flier_hi_x = np.ones(flier_hi.shape[0]) * pos
flier_lo_x = np.ones(flier_lo.shape[0]) * pos
# get x locations for fliers, whisker, whisker cap and box sides
box_x_min = pos - widths[i] * 0.5
box_x_max = pos + widths[i] * 0.5
wisk_x = np.ones(2) * pos
cap_x_min = pos - widths[i] * 0.25
cap_x_max = pos + widths[i] * 0.25
cap_x = [cap_x_min, cap_x_max]
# get y location for median
med_y = [med, med]
# calculate 'regular' plot
if notch == 0:
# make our box vectors
box_x = [box_x_min, box_x_max, box_x_max, box_x_min, box_x_min ]
box_y = [q1, q1, q3, q3, q1 ]
# make our median line vectors
med_x = [box_x_min, box_x_max]
# calculate 'notch' plot
else:
notch_max = med + 1.57*iq/np.sqrt(row)
notch_min = med - 1.57*iq/np.sqrt(row)
if notch_max > q3:
notch_max = q3
if notch_min < q1:
notch_min = q1
# make our notched box vectors
box_x = [box_x_min, box_x_max, box_x_max, cap_x_max, box_x_max,
box_x_max, box_x_min, box_x_min, cap_x_min, box_x_min,
box_x_min ]
box_y = [q1, q1, notch_min, med, notch_max, q3, q3, notch_max,
med, notch_min, q1]
# make our median line vectors
med_x = [cap_x_min, cap_x_max]
med_y = [med, med]
# vertical or horizontal plot?
if vert:
def doplot(*args):
return self.plot(*args)
else:
def doplot(*args):
shuffled = []
for i in xrange(0, len(args), 3):
shuffled.extend([args[i+1], args[i], args[i+2]])
return self.plot(*shuffled)
whiskers.extend(doplot(wisk_x, [q1, wisk_lo], 'b--',
wisk_x, [q3, wisk_hi], 'b--'))
caps.extend(doplot(cap_x, [wisk_hi, wisk_hi], 'k-',
cap_x, [wisk_lo, wisk_lo], 'k-'))
boxes.extend(doplot(box_x, box_y, 'b-'))
medians.extend(doplot(med_x, med_y, 'r-'))
fliers.extend(doplot(flier_hi_x, flier_hi, sym,
flier_lo_x, flier_lo, sym))
# fix our axes/ticks up a little
if 1 == vert:
setticks, setlim = self.set_xticks, self.set_xlim
else:
setticks, setlim = self.set_yticks, self.set_ylim
newlimits = min(positions)-0.5, max(positions)+0.5
setlim(newlimits)
setticks(positions)
# reset hold status
self.hold(holdStatus)
return dict(whiskers=whiskers, caps=caps, boxes=boxes,
medians=medians, fliers=fliers)
def scatter(self, x, y, s=20, c='b', marker='o', cmap=None, norm=None,
vmin=None, vmax=None, alpha=1.0, linewidths=None,
faceted=True, verts=None,
**kwargs):
"""
call signatures::
scatter(x, y, s=20, c='b', marker='o', cmap=None, norm=None,
vmin=None, vmax=None, alpha=1.0, linewidths=None,
verts=None, **kwargs)
Make a scatter plot of *x* versus *y*, where *x*, *y* are 1-D
sequences of the same length, *N*.
Keyword arguments:
*s*:
size in points^2. It is a scalar or an array of the same
length as *x* and *y*.
*c*:
a color. *c* can be a single color format string, or a
sequence of color specifications of length *N*, or a
sequence of *N* numbers to be mapped to colors using the
*cmap* and *norm* specified via kwargs (see below). Note
that *c* should not be a single numeric RGB or RGBA
sequence because that is indistinguishable from an array
of values to be colormapped. *c* can be a 2-D array in
which the rows are RGB or RGBA, however.
*marker*:
can be one of:
===== ==============
Value Description
===== ==============
's' square
'o' circle
'^' triangle up
'>' triangle right
'v' triangle down
'<' triangle left
'd' diamond
'p' pentagram
'h' hexagon
'8' octagon
'+' plus
'x' cross
===== ==============
The marker can also be a tuple (*numsides*, *style*,
*angle*), which will create a custom, regular symbol.
*numsides*:
the number of sides
*style*:
the style of the regular symbol:
===== =============================================
Value Description
===== =============================================
0 a regular polygon
1 a star-like symbol
2 an asterisk
3 a circle (*numsides* and *angle* is ignored)
===== =============================================
*angle*:
the angle of rotation of the symbol
Finally, *marker* can be (*verts*, 0): *verts* is a
sequence of (*x*, *y*) vertices for a custom scatter
symbol. Alternatively, use the kwarg combination
*marker* = *None*, *verts* = *verts*.
Any or all of *x*, *y*, *s*, and *c* may be masked arrays, in
which case all masks will be combined and only unmasked points
will be plotted.
Other keyword arguments: the color mapping and normalization
arguments will be used only if *c* is an array of floats.
*cmap*: [ None | Colormap ]
A :class:`matplotlib.colors.Colormap` instance. If *None*,
defaults to rc ``image.cmap``. *cmap* is only used if *c*
is an array of floats.
*norm*: [ None | Normalize ]
A :class:`matplotlib.colors.Normalize` instance is used to
scale luminance data to 0, 1. If *None*, use the default
:func:`normalize`. *norm* is only used if *c* is an array
of floats.
*vmin*/*vmax*:
*vmin* and *vmax* are used in conjunction with norm to
normalize luminance data. If either are None, the min and
max of the color array *C* is used. Note if you pass a
*norm* instance, your settings for *vmin* and *vmax* will
be ignored.
*alpha*: 0 <= scalar <= 1
The alpha value for the patches
*linewidths*: [ None | scalar | sequence ]
If *None*, defaults to (lines.linewidth,). Note that this
is a tuple, and if you set the linewidths argument you
must set it as a sequence of floats, as required by
:class:`~matplotlib.collections.RegularPolyCollection`.
Optional kwargs control the
:class:`~matplotlib.collections.Collection` properties; in
particular:
*edgecolors*:
'none' to plot faces with no outlines
*facecolors*:
'none' to plot unfilled outlines
Here are the standard descriptions of all the
:class:`~matplotlib.collections.Collection` kwargs:
%(Collection)s
A :class:`~matplotlib.collections.Collection` instance is
returned.
"""
if not self._hold: self.cla()
syms = { # a dict from symbol to (numsides, angle)
's' : (4,math.pi/4.0,0), # square
'o' : (20,3,0), # circle
'^' : (3,0,0), # triangle up
'>' : (3,math.pi/2.0,0), # triangle right
'v' : (3,math.pi,0), # triangle down
'<' : (3,3*math.pi/2.0,0), # triangle left
'd' : (4,0,0), # diamond
'p' : (5,0,0), # pentagram
'h' : (6,0,0), # hexagon
'8' : (8,0,0), # octagon
'+' : (4,0,2), # plus
'x' : (4,math.pi/4.0,2) # cross
}
self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)
x, y, s, c = cbook.delete_masked_points(x, y, s, c)
if is_string_like(c) or cbook.is_sequence_of_strings(c):
colors = mcolors.colorConverter.to_rgba_array(c, alpha)
else:
sh = np.shape(c)
# The inherent ambiguity is resolved in favor of color
# mapping, not interpretation as rgb or rgba:
if len(sh) == 1 and sh[0] == len(x):
colors = None # use cmap, norm after collection is created
else:
colors = mcolors.colorConverter.to_rgba_array(c, alpha)
if not iterable(s):
scales = (s,)
else:
scales = s
if faceted:
edgecolors = None
else:
edgecolors = 'none'
warnings.warn(
'''replace "faceted=False" with "edgecolors='none'"''',
DeprecationWarning) #2008/04/18
sym = None
symstyle = 0
# to be API compatible
if marker is None and not (verts is None):
marker = (verts, 0)
verts = None
if is_string_like(marker):
# the standard way to define symbols using a string character
sym = syms.get(marker)
if sym is None and verts is None:
raise ValueError('Unknown marker symbol to scatter')
numsides, rotation, symstyle = syms[marker]
elif iterable(marker):
# accept marker to be:
# (numsides, style, [angle])
# or
# (verts[], style, [angle])
if len(marker)<2 or len(marker)>3:
raise ValueError('Cannot create markersymbol from marker')
if cbook.is_numlike(marker[0]):
# (numsides, style, [angle])
if len(marker)==2:
numsides, rotation = marker[0], 0.
elif len(marker)==3:
numsides, rotation = marker[0], marker[2]
sym = True
if marker[1] in (1,2):
symstyle = marker[1]
else:
verts = np.asarray(marker[0])
if sym is not None:
if symstyle==0:
collection = mcoll.RegularPolyCollection(
numsides, rotation, scales,
facecolors = colors,
edgecolors = edgecolors,
linewidths = linewidths,
offsets = zip(x,y),
transOffset = self.transData,
)
elif symstyle==1:
collection = mcoll.StarPolygonCollection(
numsides, rotation, scales,
facecolors = colors,
edgecolors = edgecolors,
linewidths = linewidths,
offsets = zip(x,y),
transOffset = self.transData,
)
elif symstyle==2:
collection = mcoll.AsteriskPolygonCollection(
numsides, rotation, scales,
facecolors = colors,
edgecolors = edgecolors,
linewidths = linewidths,
offsets = zip(x,y),
transOffset = self.transData,
)
elif symstyle==3:
collection = mcoll.CircleCollection(
scales,
facecolors = colors,
edgecolors = edgecolors,
linewidths = linewidths,
offsets = zip(x,y),
transOffset = self.transData,
)
else:
rescale = np.sqrt(max(verts[:,0]**2+verts[:,1]**2))
verts /= rescale
collection = mcoll.PolyCollection(
(verts,), scales,
facecolors = colors,
edgecolors = edgecolors,
linewidths = linewidths,
offsets = zip(x,y),
transOffset = self.transData,
)
collection.set_transform(mtransforms.IdentityTransform())
collection.set_alpha(alpha)
collection.update(kwargs)
if colors is None:
if norm is not None: assert(isinstance(norm, mcolors.Normalize))
if cmap is not None: assert(isinstance(cmap, mcolors.Colormap))
collection.set_array(np.asarray(c))
collection.set_cmap(cmap)
collection.set_norm(norm)
if vmin is not None or vmax is not None:
collection.set_clim(vmin, vmax)
else:
collection.autoscale_None()
temp_x = x
temp_y = y
minx = np.amin(temp_x)
maxx = np.amax(temp_x)
miny = np.amin(temp_y)
maxy = np.amax(temp_y)
w = maxx-minx
h = maxy-miny
# the pad is a little hack to deal with the fact that we don't
# want to transform all the symbols whose scales are in points
# to data coords to get the exact bounding box for efficiency
# reasons. It can be done right if this is deemed important
padx, pady = 0.05*w, 0.05*h
corners = (minx-padx, miny-pady), (maxx+padx, maxy+pady)
self.update_datalim( corners)
self.autoscale_view()
# add the collection last
self.add_collection(collection)
return collection
scatter.__doc__ = cbook.dedent(scatter.__doc__) % martist.kwdocd
def hexbin(self, x, y, C = None, gridsize = 100, bins = None,
xscale = 'linear', yscale = 'linear',
cmap=None, norm=None, vmin=None, vmax=None,
alpha=1.0, linewidths=None, edgecolors='none',
reduce_C_function = np.mean,
**kwargs):
"""
call signature::
hexbin(x, y, C = None, gridsize = 100, bins = None,
xscale = 'linear', yscale = 'linear',
cmap=None, norm=None, vmin=None, vmax=None,
alpha=1.0, linewidths=None, edgecolors='none'
reduce_C_function = np.mean,
**kwargs)
Make a hexagonal binning plot of *x* versus *y*, where *x*,
*y* are 1-D sequences of the same length, *N*. If *C* is None
(the default), this is a histogram of the number of occurences
of the observations at (x[i],y[i]).
If *C* is specified, it specifies values at the coordinate
(x[i],y[i]). These values are accumulated for each hexagonal
bin and then reduced according to *reduce_C_function*, which
defaults to numpy's mean function (np.mean). (If *C* is
specified, it must also be a 1-D sequence of the same length
as *x* and *y*.)
*x*, *y* and/or *C* may be masked arrays, in which case only
unmasked points will be plotted.
Optional keyword arguments:
*gridsize*: [ 100 | integer ]
The number of hexagons in the *x*-direction, default is
100. The corresponding number of hexagons in the
*y*-direction is chosen such that the hexagons are
approximately regular. Alternatively, gridsize can be a
tuple with two elements specifying the number of hexagons
in the *x*-direction and the *y*-direction.
*bins*: [ None | 'log' | integer | sequence ]
If *None*, no binning is applied; the color of each hexagon
directly corresponds to its count value.
If 'log', use a logarithmic scale for the color
map. Internally, :math:`log_{10}(i+1)` is used to
determine the hexagon color.
If an integer, divide the counts in the specified number
of bins, and color the hexagons accordingly.
If a sequence of values, the values of the lower bound of
the bins to be used.
*xscale*: [ 'linear' | 'log' ]
Use a linear or log10 scale on the horizontal axis.
*scale*: [ 'linear' | 'log' ]
Use a linear or log10 scale on the vertical axis.
Other keyword arguments controlling color mapping and normalization
arguments:
*cmap*: [ None | Colormap ]
a :class:`matplotlib.cm.Colormap` instance. If *None*,
defaults to rc ``image.cmap``.
*norm*: [ None | Normalize ]
:class:`matplotlib.colors.Normalize` instance is used to
scale luminance data to 0,1.
*vmin*/*vmax*: scalar
*vmin* and *vmax* are used in conjunction with *norm* to normalize
luminance data. If either are *None*, the min and max of the color
array *C* is used. Note if you pass a norm instance, your settings
for *vmin* and *vmax* will be ignored.
*alpha*: scalar
the alpha value for the patches
*linewidths*: [ None | scalar ]
If *None*, defaults to rc lines.linewidth. Note that this
is a tuple, and if you set the linewidths argument you
must set it as a sequence of floats, as required by
:class:`~matplotlib.collections.RegularPolyCollection`.
Other keyword arguments controlling the Collection properties:
*edgecolors*: [ None | mpl color | color sequence ]
If 'none', draws the edges in the same color as the fill color.
This is the default, as it avoids unsightly unpainted pixels
between the hexagons.
If *None*, draws the outlines in the default color.
If a matplotlib color arg or sequence of rgba tuples, draws the
outlines in the specified color.
Here are the standard descriptions of all the
:class:`~matplotlib.collections.Collection` kwargs:
%(Collection)s
The return value is a
:class:`~matplotlib.collections.PolyCollection` instance; use
:meth:`~matplotlib.collection.PolyCollection.get_array` on
this :class:`~matplotlib.collections.PolyCollection` to get
the counts in each hexagon.
**Example:**
.. plot:: mpl_examples/pylab_examples/hexbin_demo.py
"""
if not self._hold: self.cla()
self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)
x, y, C = cbook.delete_masked_points(x, y, C)
# Set the size of the hexagon grid
if iterable(gridsize):
nx, ny = gridsize
else:
nx = gridsize
ny = int(nx/math.sqrt(3))
# Count the number of data in each hexagon
x = np.array(x, float)
y = np.array(y, float)
if xscale=='log':
x = np.log10(x)
if yscale=='log':
y = np.log10(y)
xmin = np.amin(x)
xmax = np.amax(x)
ymin = np.amin(y)
ymax = np.amax(y)
# In the x-direction, the hexagons exactly cover the region from
# xmin to xmax. Need some padding to avoid roundoff errors.
padding = 1.e-9 * (xmax - xmin)
xmin -= padding
xmax += padding
sx = (xmax-xmin) / nx
sy = (ymax-ymin) / ny
x = (x-xmin)/sx
y = (y-ymin)/sy
ix1 = np.round(x).astype(int)
iy1 = np.round(y).astype(int)
ix2 = np.floor(x).astype(int)
iy2 = np.floor(y).astype(int)
nx1 = nx + 1
ny1 = ny + 1
nx2 = nx
ny2 = ny
n = nx1*ny1+nx2*ny2
d1 = (x-ix1)**2 + 3.0 * (y-iy1)**2
d2 = (x-ix2-0.5)**2 + 3.0 * (y-iy2-0.5)**2
bdist = (d1<d2)
if C is None:
accum = np.zeros(n)
# Create appropriate views into "accum" array.
lattice1 = accum[:nx1*ny1]
lattice2 = accum[nx1*ny1:]
lattice1.shape = (nx1,ny1)
lattice2.shape = (nx2,ny2)
for i in xrange(len(x)):
if bdist[i]:
lattice1[ix1[i], iy1[i]]+=1
else:
lattice2[ix2[i], iy2[i]]+=1
else:
# create accumulation arrays
lattice1 = np.empty((nx1,ny1),dtype=object)
for i in xrange(nx1):
for j in xrange(ny1):
lattice1[i,j] = []
lattice2 = np.empty((nx2,ny2),dtype=object)
for i in xrange(nx2):
for j in xrange(ny2):
lattice2[i,j] = []
for i in xrange(len(x)):
if bdist[i]:
lattice1[ix1[i], iy1[i]].append( C[i] )
else:
lattice2[ix2[i], iy2[i]].append( C[i] )
for i in xrange(nx1):
for j in xrange(ny1):
vals = lattice1[i,j]
if len(vals):
lattice1[i,j] = reduce_C_function( vals )
else:
lattice1[i,j] = np.nan
for i in xrange(nx2):
for j in xrange(ny2):
vals = lattice2[i,j]
if len(vals):
lattice2[i,j] = reduce_C_function( vals )
else:
lattice2[i,j] = np.nan
accum = np.hstack((
lattice1.astype(float).ravel(), lattice2.astype(float).ravel()))
good_idxs = ~np.isnan(accum)
px = xmin + sx * np.array([ 0.5, 0.5, 0.0, -0.5, -0.5, 0.0])
py = ymin + sy * np.array([-0.5, 0.5, 1.0, 0.5, -0.5, -1.0]) / 3.0
polygons = np.zeros((6, n, 2), float)
polygons[:,:nx1*ny1,0] = np.repeat(np.arange(nx1), ny1)
polygons[:,:nx1*ny1,1] = np.tile(np.arange(ny1), nx1)
polygons[:,nx1*ny1:,0] = np.repeat(np.arange(nx2) + 0.5, ny2)
polygons[:,nx1*ny1:,1] = np.tile(np.arange(ny2), nx2) + 0.5
if C is not None:
# remove accumulation bins with no data
polygons = polygons[:,good_idxs,:]
accum = accum[good_idxs]
polygons = np.transpose(polygons, axes=[1,0,2])
polygons[:,:,0] *= sx
polygons[:,:,1] *= sy
polygons[:,:,0] += px
polygons[:,:,1] += py
if xscale=='log':
polygons[:,:,0] = 10**(polygons[:,:,0])
xmin = 10**xmin
xmax = 10**xmax
self.set_xscale('log')
if yscale=='log':
polygons[:,:,1] = 10**(polygons[:,:,1])
ymin = 10**ymin
ymax = 10**ymax
self.set_yscale('log')
if edgecolors=='none':
edgecolors = 'face'
collection = mcoll.PolyCollection(
polygons,
edgecolors = edgecolors,
linewidths = linewidths,
transOffset = self.transData,
)
# Transform accum if needed
if bins=='log':
accum = np.log10(accum+1)
elif bins!=None:
if not iterable(bins):
minimum, maximum = min(accum), max(accum)
bins-=1 # one less edge than bins
bins = minimum + (maximum-minimum)*np.arange(bins)/bins
bins = np.sort(bins)
accum = bins.searchsorted(accum)
if norm is not None: assert(isinstance(norm, mcolors.Normalize))
if cmap is not None: assert(isinstance(cmap, mcolors.Colormap))
collection.set_array(accum)
collection.set_cmap(cmap)
collection.set_norm(norm)
collection.set_alpha(alpha)
collection.update(kwargs)
if vmin is not None or vmax is not None:
collection.set_clim(vmin, vmax)
else:
collection.autoscale_None()
corners = ((xmin, ymin), (xmax, ymax))
self.update_datalim( corners)
self.autoscale_view()
# add the collection last
self.add_collection(collection)
return collection
hexbin.__doc__ = cbook.dedent(hexbin.__doc__) % martist.kwdocd
def arrow(self, x, y, dx, dy, **kwargs):
"""
call signature::
arrow(x, y, dx, dy, **kwargs)
Draws arrow on specified axis from (*x*, *y*) to (*x* + *dx*,
*y* + *dy*).
Optional kwargs control the arrow properties:
%(FancyArrow)s
**Example:**
.. plot:: mpl_examples/pylab_examples/arrow_demo.py
"""
a = mpatches.FancyArrow(x, y, dx, dy, **kwargs)
self.add_artist(a)
return a
arrow.__doc__ = cbook.dedent(arrow.__doc__) % martist.kwdocd
def quiverkey(self, *args, **kw):
qk = mquiver.QuiverKey(*args, **kw)
self.add_artist(qk)
return qk
quiverkey.__doc__ = mquiver.QuiverKey.quiverkey_doc
def quiver(self, *args, **kw):
if not self._hold: self.cla()
q = mquiver.Quiver(self, *args, **kw)
self.add_collection(q, False)
self.update_datalim(q.XY)
self.autoscale_view()
return q
quiver.__doc__ = mquiver.Quiver.quiver_doc
def barbs(self, *args, **kw):
"""
%(barbs_doc)s
**Example:**
.. plot:: mpl_examples/pylab_examples/barb_demo.py
"""
if not self._hold: self.cla()
b = mquiver.Barbs(self, *args, **kw)
self.add_collection(b)
self.update_datalim(b.get_offsets())
self.autoscale_view()
return b
barbs.__doc__ = cbook.dedent(barbs.__doc__) % {
'barbs_doc': mquiver.Barbs.barbs_doc}
def fill(self, *args, **kwargs):
"""
call signature::
fill(*args, **kwargs)
Plot filled polygons. *args* is a variable length argument,
allowing for multiple *x*, *y* pairs with an optional color
format string; see :func:`~matplotlib.pyplot.plot` for details
on the argument parsing. For example, to plot a polygon with
vertices at *x*, *y* in blue.::
ax.fill(x,y, 'b' )
An arbitrary number of *x*, *y*, *color* groups can be specified::
ax.fill(x1, y1, 'g', x2, y2, 'r')
Return value is a list of :class:`~matplotlib.patches.Patch`
instances that were added.
The same color strings that :func:`~matplotlib.pyplot.plot`
supports are supported by the fill format string.
If you would like to fill below a curve, eg. shade a region
between 0 and *y* along *x*, use :meth:`fill_between`
The *closed* kwarg will close the polygon when *True* (default).
kwargs control the Polygon properties:
%(Polygon)s
**Example:**
.. plot:: mpl_examples/pylab_examples/fill_demo.py
"""
if not self._hold: self.cla()
patches = []
for poly in self._get_patches_for_fill(*args, **kwargs):
self.add_patch( poly )
patches.append( poly )
self.autoscale_view()
return patches
fill.__doc__ = cbook.dedent(fill.__doc__) % martist.kwdocd
def fill_between(self, x, y1, y2=0, where=None, **kwargs):
"""
call signature::
fill_between(x, y1, y2=0, where=None, **kwargs)
Create a :class:`~matplotlib.collections.PolyCollection`
filling the regions between *y1* and *y2* where
``where==True``
*x*
an N length np array of the x data
*y1*
an N length scalar or np array of the x data
*y2*
an N length scalar or np array of the x data
*where*
if None, default to fill between everywhere. If not None,
it is a a N length numpy boolean array and the fill will
only happen over the regions where ``where==True``
*kwargs*
keyword args passed on to the :class:`PolyCollection`
kwargs control the Polygon properties:
%(PolyCollection)s
.. plot:: mpl_examples/pylab_examples/fill_between.py
"""
# Handle united data, such as dates
self._process_unit_info(xdata=x, ydata=y1, kwargs=kwargs)
self._process_unit_info(ydata=y2)
# Convert the arrays so we can work with them
x = np.asarray(self.convert_xunits(x))
y1 = np.asarray(self.convert_yunits(y1))
y2 = np.asarray(self.convert_yunits(y2))
if not cbook.iterable(y1):
y1 = np.ones_like(x)*y1
if not cbook.iterable(y2):
y2 = np.ones_like(x)*y2
if where is None:
where = np.ones(len(x), np.bool)
where = np.asarray(where)
assert( (len(x)==len(y1)) and (len(x)==len(y2)) and len(x)==len(where))
polys = []
for ind0, ind1 in mlab.contiguous_regions(where):
theseverts = []
xslice = x[ind0:ind1]
y1slice = y1[ind0:ind1]
y2slice = y2[ind0:ind1]
if not len(xslice):
continue
N = len(xslice)
X = np.zeros((2*N+2, 2), np.float)
# the purpose of the next two lines is for when y2 is a
# scalar like 0 and we want the fill to go all the way
# down to 0 even if none of the y1 sample points do
X[0] = xslice[0], y2slice[0]
X[N+1] = xslice[-1], y2slice[-1]
X[1:N+1,0] = xslice
X[1:N+1,1] = y1slice
X[N+2:,0] = xslice[::-1]
X[N+2:,1] = y2slice[::-1]
polys.append(X)
collection = mcoll.PolyCollection(polys, **kwargs)
# now update the datalim and autoscale
XY1 = np.array([x[where], y1[where]]).T
XY2 = np.array([x[where], y2[where]]).T
self.dataLim.update_from_data_xy(XY1, self.ignore_existing_data_limits,
updatex=True, updatey=True)
self.dataLim.update_from_data_xy(XY2, self.ignore_existing_data_limits,
updatex=False, updatey=True)
self.add_collection(collection)
self.autoscale_view()
return collection
fill_between.__doc__ = cbook.dedent(fill_between.__doc__) % martist.kwdocd
#### plotting z(x,y): imshow, pcolor and relatives, contour
def imshow(self, X, cmap=None, norm=None, aspect=None,
interpolation=None, alpha=1.0, vmin=None, vmax=None,
origin=None, extent=None, shape=None, filternorm=1,
filterrad=4.0, imlim=None, resample=None, url=None, **kwargs):
"""
call signature::
imshow(X, cmap=None, norm=None, aspect=None, interpolation=None,
alpha=1.0, vmin=None, vmax=None, origin=None, extent=None,
**kwargs)
Display the image in *X* to current axes. *X* may be a float
array, a uint8 array or a PIL image. If *X* is an array, *X*
can have the following shapes:
* MxN -- luminance (grayscale, float array only)
* MxNx3 -- RGB (float or uint8 array)
* MxNx4 -- RGBA (float or uint8 array)
The value for each component of MxNx3 and MxNx4 float arrays should be
in the range 0.0 to 1.0; MxN float arrays may be normalised.
An :class:`matplotlib.image.AxesImage` instance is returned.
Keyword arguments:
*cmap*: [ None | Colormap ]
A :class:`matplotlib.cm.Colormap` instance, eg. cm.jet.
If *None*, default to rc ``image.cmap`` value.
*cmap* is ignored when *X* has RGB(A) information
*aspect*: [ None | 'auto' | 'equal' | scalar ]
If 'auto', changes the image aspect ratio to match that of the axes
If 'equal', and *extent* is *None*, changes the axes
aspect ratio to match that of the image. If *extent* is
not *None*, the axes aspect ratio is changed to match that
of the extent.
If *None*, default to rc ``image.aspect`` value.
*interpolation*:
Acceptable values are *None*, 'nearest', 'bilinear',
'bicubic', 'spline16', 'spline36', 'hanning', 'hamming',
'hermite', 'kaiser', 'quadric', 'catrom', 'gaussian',
'bessel', 'mitchell', 'sinc', 'lanczos',
If *interpolation* is *None*, default to rc
``image.interpolation``. See also the *filternorm* and
*filterrad* parameters
*norm*: [ None | Normalize ]
An :class:`matplotlib.colors.Normalize` instance; if
*None*, default is ``normalization()``. This scales
luminance -> 0-1
*norm* is only used for an MxN float array.
*vmin*/*vmax*: [ None | scalar ]
Used to scale a luminance image to 0-1. If either is
*None*, the min and max of the luminance values will be
used. Note if *norm* is not *None*, the settings for
*vmin* and *vmax* will be ignored.
*alpha*: scalar
The alpha blending value, between 0 (transparent) and 1 (opaque)
*origin*: [ None | 'upper' | 'lower' ]
Place the [0,0] index of the array in the upper left or lower left
corner of the axes. If *None*, default to rc ``image.origin``.
*extent*: [ None | scalars (left, right, bottom, top) ]
Eata values of the axes. The default assigns zero-based row,
column indices to the *x*, *y* centers of the pixels.
*shape*: [ None | scalars (columns, rows) ]
For raw buffer images
*filternorm*:
A parameter for the antigrain image resize filter. From the
antigrain documentation, if *filternorm* = 1, the filter normalizes
integer values and corrects the rounding errors. It doesn't do
anything with the source floating point values, it corrects only
integers according to the rule of 1.0 which means that any sum of
pixel weights must be equal to 1.0. So, the filter function must
produce a graph of the proper shape.
*filterrad*:
The filter radius for filters that have a radius
parameter, i.e. when interpolation is one of: 'sinc',
'lanczos' or 'blackman'
Additional kwargs are :class:`~matplotlib.artist.Artist` properties:
%(Artist)s
**Example:**
.. plot:: mpl_examples/pylab_examples/image_demo.py
"""
if not self._hold: self.cla()
if norm is not None: assert(isinstance(norm, mcolors.Normalize))
if cmap is not None: assert(isinstance(cmap, mcolors.Colormap))
if aspect is None: aspect = rcParams['image.aspect']
self.set_aspect(aspect)
im = mimage.AxesImage(self, cmap, norm, interpolation, origin, extent,
filternorm=filternorm,
filterrad=filterrad, resample=resample, **kwargs)
im.set_data(X)
im.set_alpha(alpha)
self._set_artist_props(im)
im.set_clip_path(self.patch)
#if norm is None and shape is None:
# im.set_clim(vmin, vmax)
if vmin is not None or vmax is not None:
im.set_clim(vmin, vmax)
else:
im.autoscale_None()
im.set_url(url)
xmin, xmax, ymin, ymax = im.get_extent()
corners = (xmin, ymin), (xmax, ymax)
self.update_datalim(corners)
if self._autoscaleon:
self.set_xlim((xmin, xmax))
self.set_ylim((ymin, ymax))
self.images.append(im)
return im
imshow.__doc__ = cbook.dedent(imshow.__doc__) % martist.kwdocd
def _pcolorargs(self, funcname, *args):
if len(args)==1:
C = args[0]
numRows, numCols = C.shape
X, Y = np.meshgrid(np.arange(numCols+1), np.arange(numRows+1) )
elif len(args)==3:
X, Y, C = args
else:
raise TypeError(
'Illegal arguments to %s; see help(%s)' % (funcname, funcname))
Nx = X.shape[-1]
Ny = Y.shape[0]
if len(X.shape) <> 2 or X.shape[0] == 1:
x = X.reshape(1,Nx)
X = x.repeat(Ny, axis=0)
if len(Y.shape) <> 2 or Y.shape[1] == 1:
y = Y.reshape(Ny, 1)
Y = y.repeat(Nx, axis=1)
if X.shape != Y.shape:
raise TypeError(
'Incompatible X, Y inputs to %s; see help(%s)' % (
funcname, funcname))
return X, Y, C
def pcolor(self, *args, **kwargs):
"""
call signatures::
pcolor(C, **kwargs)
pcolor(X, Y, C, **kwargs)
Create a pseudocolor plot of a 2-D array.
*C* is the array of color values.
*X* and *Y*, if given, specify the (*x*, *y*) coordinates of
the colored quadrilaterals; the quadrilateral for C[i,j] has
corners at::
(X[i, j], Y[i, j]),
(X[i, j+1], Y[i, j+1]),
(X[i+1, j], Y[i+1, j]),
(X[i+1, j+1], Y[i+1, j+1]).
Ideally the dimensions of *X* and *Y* should be one greater
than those of *C*; if the dimensions are the same, then the
last row and column of *C* will be ignored.
Note that the the column index corresponds to the
*x*-coordinate, and the row index corresponds to *y*; for
details, see the :ref:`Grid Orientation
<axes-pcolor-grid-orientation>` section below.
If either or both of *X* and *Y* are 1-D arrays or column vectors,
they will be expanded as needed into the appropriate 2-D arrays,
making a rectangular grid.
*X*, *Y* and *C* may be masked arrays. If either C[i, j], or one
of the vertices surrounding C[i,j] (*X* or *Y* at [i, j], [i+1, j],
[i, j+1],[i+1, j+1]) is masked, nothing is plotted.
Keyword arguments:
*cmap*: [ None | Colormap ]
A :class:`matplotlib.cm.Colormap` instance. If *None*, use
rc settings.
norm: [ None | Normalize ]
An :class:`matplotlib.colors.Normalize` instance is used
to scale luminance data to 0,1. If *None*, defaults to
:func:`normalize`.
*vmin*/*vmax*: [ None | scalar ]
*vmin* and *vmax* are used in conjunction with *norm* to
normalize luminance data. If either are *None*, the min
and max of the color array *C* is used. If you pass a
*norm* instance, *vmin* and *vmax* will be ignored.
*shading*: [ 'flat' | 'faceted' ]
If 'faceted', a black grid is drawn around each rectangle; if
'flat', edges are not drawn. Default is 'flat', contrary to
Matlab(TM).
This kwarg is deprecated; please use 'edgecolors' instead:
* shading='flat' -- edgecolors='None'
* shading='faceted -- edgecolors='k'
*edgecolors*: [ None | 'None' | color | color sequence]
If *None*, the rc setting is used by default.
If 'None', edges will not be visible.
An mpl color or sequence of colors will set the edge color
*alpha*: 0 <= scalar <= 1
the alpha blending value
Return value is a :class:`matplotlib.collection.Collection`
instance.
.. _axes-pcolor-grid-orientation:
The grid orientation follows the Matlab(TM) convention: an
array *C* with shape (*nrows*, *ncolumns*) is plotted with
the column number as *X* and the row number as *Y*, increasing
up; hence it is plotted the way the array would be printed,
except that the *Y* axis is reversed. That is, *C* is taken
as *C*(*y*, *x*).
Similarly for :func:`~matplotlib.pyplot.meshgrid`::
x = np.arange(5)
y = np.arange(3)
X, Y = meshgrid(x,y)
is equivalent to:
X = array([[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]])
Y = array([[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2]])
so if you have::
C = rand( len(x), len(y))
then you need::
pcolor(X, Y, C.T)
or::
pcolor(C.T)
Matlab :func:`pcolor` always discards the last row and column
of *C*, but matplotlib displays the last row and column if *X* and
*Y* are not specified, or if *X* and *Y* have one more row and
column than *C*.
kwargs can be used to control the
:class:`~matplotlib.collection.PolyCollection` properties:
%(PolyCollection)s
"""
if not self._hold: self.cla()
alpha = kwargs.pop('alpha', 1.0)
norm = kwargs.pop('norm', None)
cmap = kwargs.pop('cmap', None)
vmin = kwargs.pop('vmin', None)
vmax = kwargs.pop('vmax', None)
shading = kwargs.pop('shading', 'flat')
X, Y, C = self._pcolorargs('pcolor', *args)
Ny, Nx = X.shape
# convert to MA, if necessary.
C = ma.asarray(C)
X = ma.asarray(X)
Y = ma.asarray(Y)
mask = ma.getmaskarray(X)+ma.getmaskarray(Y)
xymask = mask[0:-1,0:-1]+mask[1:,1:]+mask[0:-1,1:]+mask[1:,0:-1]
# don't plot if C or any of the surrounding vertices are masked.
mask = ma.getmaskarray(C)[0:Ny-1,0:Nx-1]+xymask
newaxis = np.newaxis
compress = np.compress
ravelmask = (mask==0).ravel()
X1 = compress(ravelmask, ma.filled(X[0:-1,0:-1]).ravel())
Y1 = compress(ravelmask, ma.filled(Y[0:-1,0:-1]).ravel())
X2 = compress(ravelmask, ma.filled(X[1:,0:-1]).ravel())
Y2 = compress(ravelmask, ma.filled(Y[1:,0:-1]).ravel())
X3 = compress(ravelmask, ma.filled(X[1:,1:]).ravel())
Y3 = compress(ravelmask, ma.filled(Y[1:,1:]).ravel())
X4 = compress(ravelmask, ma.filled(X[0:-1,1:]).ravel())
Y4 = compress(ravelmask, ma.filled(Y[0:-1,1:]).ravel())
npoly = len(X1)
xy = np.concatenate((X1[:,newaxis], Y1[:,newaxis],
X2[:,newaxis], Y2[:,newaxis],
X3[:,newaxis], Y3[:,newaxis],
X4[:,newaxis], Y4[:,newaxis],
X1[:,newaxis], Y1[:,newaxis]),
axis=1)
verts = xy.reshape((npoly, 5, 2))
#verts = zip(zip(X1,Y1),zip(X2,Y2),zip(X3,Y3),zip(X4,Y4))
C = compress(ravelmask, ma.filled(C[0:Ny-1,0:Nx-1]).ravel())
if shading == 'faceted':
edgecolors = (0,0,0,1),
linewidths = (0.25,)
else:
edgecolors = 'face'
linewidths = (1.0,)
kwargs.setdefault('edgecolors', edgecolors)
kwargs.setdefault('antialiaseds', (0,))
kwargs.setdefault('linewidths', linewidths)
collection = mcoll.PolyCollection(verts, **kwargs)
collection.set_alpha(alpha)
collection.set_array(C)
if norm is not None: assert(isinstance(norm, mcolors.Normalize))
if cmap is not None: assert(isinstance(cmap, mcolors.Colormap))
collection.set_cmap(cmap)
collection.set_norm(norm)
if vmin is not None or vmax is not None:
collection.set_clim(vmin, vmax)
else:
collection.autoscale_None()
self.grid(False)
x = X.compressed()
y = Y.compressed()
minx = np.amin(x)
maxx = np.amax(x)
miny = np.amin(y)
maxy = np.amax(y)
corners = (minx, miny), (maxx, maxy)
self.update_datalim( corners)
self.autoscale_view()
self.add_collection(collection)
return collection
pcolor.__doc__ = cbook.dedent(pcolor.__doc__) % martist.kwdocd
def pcolormesh(self, *args, **kwargs):
"""
call signatures::
pcolormesh(C)
pcolormesh(X, Y, C)
pcolormesh(C, **kwargs)
*C* may be a masked array, but *X* and *Y* may not. Masked
array support is implemented via *cmap* and *norm*; in
contrast, :func:`~matplotlib.pyplot.pcolor` simply does not
draw quadrilaterals with masked colors or vertices.
Keyword arguments:
*cmap*: [ None | Colormap ]
A :class:`matplotlib.cm.Colormap` instance. If None, use
rc settings.
*norm*: [ None | Normalize ]
A :class:`matplotlib.colors.Normalize` instance is used to
scale luminance data to 0,1. If None, defaults to
:func:`normalize`.
*vmin*/*vmax*: [ None | scalar ]
*vmin* and *vmax* are used in conjunction with *norm* to
normalize luminance data. If either are *None*, the min
and max of the color array *C* is used. If you pass a
*norm* instance, *vmin* and *vmax* will be ignored.
*shading*: [ 'flat' | 'faceted' ]
If 'faceted', a black grid is drawn around each rectangle; if
'flat', edges are not drawn. Default is 'flat', contrary to
Matlab(TM).
This kwarg is deprecated; please use 'edgecolors' instead:
* shading='flat' -- edgecolors='None'
* shading='faceted -- edgecolors='k'
*edgecolors*: [ None | 'None' | color | color sequence]
If None, the rc setting is used by default.
If 'None', edges will not be visible.
An mpl color or sequence of colors will set the edge color
*alpha*: 0 <= scalar <= 1
the alpha blending value
Return value is a :class:`matplotlib.collection.QuadMesh`
object.
kwargs can be used to control the
:class:`matplotlib.collections.QuadMesh`
properties:
%(QuadMesh)s
.. seealso::
:func:`~matplotlib.pyplot.pcolor`:
For an explanation of the grid orientation and the
expansion of 1-D *X* and/or *Y* to 2-D arrays.
"""
if not self._hold: self.cla()
alpha = kwargs.pop('alpha', 1.0)
norm = kwargs.pop('norm', None)
cmap = kwargs.pop('cmap', None)
vmin = kwargs.pop('vmin', None)
vmax = kwargs.pop('vmax', None)
shading = kwargs.pop('shading', 'flat')
edgecolors = kwargs.pop('edgecolors', 'None')
antialiased = kwargs.pop('antialiased', False)
X, Y, C = self._pcolorargs('pcolormesh', *args)
Ny, Nx = X.shape
# convert to one dimensional arrays
C = ma.ravel(C[0:Ny-1, 0:Nx-1]) # data point in each cell is value at
# lower left corner
X = X.ravel()
Y = Y.ravel()
coords = np.zeros(((Nx * Ny), 2), dtype=float)
coords[:, 0] = X
coords[:, 1] = Y
if shading == 'faceted' or edgecolors != 'None':
showedges = 1
else:
showedges = 0
collection = mcoll.QuadMesh(
Nx - 1, Ny - 1, coords, showedges,
antialiased=antialiased) # kwargs are not used
collection.set_alpha(alpha)
collection.set_array(C)
if norm is not None: assert(isinstance(norm, mcolors.Normalize))
if cmap is not None: assert(isinstance(cmap, mcolors.Colormap))
collection.set_cmap(cmap)
collection.set_norm(norm)
if vmin is not None or vmax is not None:
collection.set_clim(vmin, vmax)
else:
collection.autoscale_None()
self.grid(False)
minx = np.amin(X)
maxx = np.amax(X)
miny = np.amin(Y)
maxy = np.amax(Y)
corners = (minx, miny), (maxx, maxy)
self.update_datalim( corners)
self.autoscale_view()
self.add_collection(collection)
return collection
pcolormesh.__doc__ = cbook.dedent(pcolormesh.__doc__) % martist.kwdocd
def pcolorfast(self, *args, **kwargs):
"""
pseudocolor plot of a 2-D array
Experimental; this is a version of pcolor that
does not draw lines, that provides the fastest
possible rendering with the Agg backend, and that
can handle any quadrilateral grid.
Call signatures::
pcolor(C, **kwargs)
pcolor(xr, yr, C, **kwargs)
pcolor(x, y, C, **kwargs)
pcolor(X, Y, C, **kwargs)
C is the 2D array of color values corresponding to quadrilateral
cells. Let (nr, nc) be its shape. C may be a masked array.
``pcolor(C, **kwargs)`` is equivalent to
``pcolor([0,nc], [0,nr], C, **kwargs)``
*xr*, *yr* specify the ranges of *x* and *y* corresponding to the
rectangular region bounding *C*. If::
xr = [x0, x1]
and::
yr = [y0,y1]
then *x* goes from *x0* to *x1* as the second index of *C* goes
from 0 to *nc*, etc. (*x0*, *y0*) is the outermost corner of
cell (0,0), and (*x1*, *y1*) is the outermost corner of cell
(*nr*-1, *nc*-1). All cells are rectangles of the same size.
This is the fastest version.
*x*, *y* are 1D arrays of length *nc* +1 and *nr* +1, respectively,
giving the x and y boundaries of the cells. Hence the cells are
rectangular but the grid may be nonuniform. The speed is
intermediate. (The grid is checked, and if found to be
uniform the fast version is used.)
*X* and *Y* are 2D arrays with shape (*nr* +1, *nc* +1) that specify
the (x,y) coordinates of the corners of the colored
quadrilaterals; the quadrilateral for C[i,j] has corners at
(X[i,j],Y[i,j]), (X[i,j+1],Y[i,j+1]), (X[i+1,j],Y[i+1,j]),
(X[i+1,j+1],Y[i+1,j+1]). The cells need not be rectangular.
This is the most general, but the slowest to render. It may
produce faster and more compact output using ps, pdf, and
svg backends, however.
Note that the the column index corresponds to the x-coordinate,
and the row index corresponds to y; for details, see
the "Grid Orientation" section below.
Optional keyword arguments:
*cmap*: [ None | Colormap ]
A cm Colormap instance from cm. If None, use rc settings.
*norm*: [ None | Normalize ]
An mcolors.Normalize instance is used to scale luminance data to
0,1. If None, defaults to normalize()
*vmin*/*vmax*: [ None | scalar ]
*vmin* and *vmax* are used in conjunction with norm to normalize
luminance data. If either are *None*, the min and max of the color
array *C* is used. If you pass a norm instance, *vmin* and *vmax*
will be *None*.
*alpha*: 0 <= scalar <= 1
the alpha blending value
Return value is an image if a regular or rectangular grid
is specified, and a QuadMesh collection in the general
quadrilateral case.
"""
if not self._hold: self.cla()
alpha = kwargs.pop('alpha', 1.0)
norm = kwargs.pop('norm', None)
cmap = kwargs.pop('cmap', None)
vmin = kwargs.pop('vmin', None)
vmax = kwargs.pop('vmax', None)
if norm is not None: assert(isinstance(norm, mcolors.Normalize))
if cmap is not None: assert(isinstance(cmap, mcolors.Colormap))
C = args[-1]
nr, nc = C.shape
if len(args) == 1:
style = "image"
x = [0, nc]
y = [0, nr]
elif len(args) == 3:
x, y = args[:2]
x = np.asarray(x)
y = np.asarray(y)
if x.ndim == 1 and y.ndim == 1:
if x.size == 2 and y.size == 2:
style = "image"
else:
dx = np.diff(x)
dy = np.diff(y)
if (np.ptp(dx) < 0.01*np.abs(dx.mean()) and
np.ptp(dy) < 0.01*np.abs(dy.mean())):
style = "image"
else:
style = "pcolorimage"
elif x.ndim == 2 and y.ndim == 2:
style = "quadmesh"
else:
raise TypeError("arguments do not match valid signatures")
else:
raise TypeError("need 1 argument or 3 arguments")
if style == "quadmesh":
# convert to one dimensional arrays
# This should also be moved to the QuadMesh class
C = ma.ravel(C) # data point in each cell is value
# at lower left corner
X = x.ravel()
Y = y.ravel()
Nx = nc+1
Ny = nr+1
# The following needs to be cleaned up; the renderer
# requires separate contiguous arrays for X and Y,
# but the QuadMesh class requires the 2D array.
coords = np.empty(((Nx * Ny), 2), np.float64)
coords[:, 0] = X
coords[:, 1] = Y
# The QuadMesh class can also be changed to
# handle relevant superclass kwargs; the initializer
# should do much more than it does now.
collection = mcoll.QuadMesh(nc, nr, coords, 0)
collection.set_alpha(alpha)
collection.set_array(C)
collection.set_cmap(cmap)
collection.set_norm(norm)
self.add_collection(collection)
xl, xr, yb, yt = X.min(), X.max(), Y.min(), Y.max()
ret = collection
else:
# One of the image styles:
xl, xr, yb, yt = x[0], x[-1], y[0], y[-1]
if style == "image":
im = mimage.AxesImage(self, cmap, norm,
interpolation='nearest',
origin='lower',
extent=(xl, xr, yb, yt),
**kwargs)
im.set_data(C)
im.set_alpha(alpha)
self.images.append(im)
ret = im
if style == "pcolorimage":
im = mimage.PcolorImage(self, x, y, C,
cmap=cmap,
norm=norm,
alpha=alpha,
**kwargs)
self.images.append(im)
ret = im
self._set_artist_props(ret)
if vmin is not None or vmax is not None:
ret.set_clim(vmin, vmax)
else:
ret.autoscale_None()
self.update_datalim(np.array([[xl, yb], [xr, yt]]))
self.autoscale_view(tight=True)
return ret
def contour(self, *args, **kwargs):
if not self._hold: self.cla()
kwargs['filled'] = False
return mcontour.ContourSet(self, *args, **kwargs)
contour.__doc__ = mcontour.ContourSet.contour_doc
def contourf(self, *args, **kwargs):
if not self._hold: self.cla()
kwargs['filled'] = True
return mcontour.ContourSet(self, *args, **kwargs)
contourf.__doc__ = mcontour.ContourSet.contour_doc
def clabel(self, CS, *args, **kwargs):
return CS.clabel(*args, **kwargs)
clabel.__doc__ = mcontour.ContourSet.clabel.__doc__
def table(self, **kwargs):
"""
call signature::
table(cellText=None, cellColours=None,
cellLoc='right', colWidths=None,
rowLabels=None, rowColours=None, rowLoc='left',
colLabels=None, colColours=None, colLoc='center',
loc='bottom', bbox=None):
Add a table to the current axes. Returns a
:class:`matplotlib.table.Table` instance. For finer grained
control over tables, use the :class:`~matplotlib.table.Table`
class and add it to the axes with
:meth:`~matplotlib.axes.Axes.add_table`.
Thanks to John Gill for providing the class and table.
kwargs control the :class:`~matplotlib.table.Table`
properties:
%(Table)s
"""
return mtable.table(self, **kwargs)
table.__doc__ = cbook.dedent(table.__doc__) % martist.kwdocd
def twinx(self):
"""
call signature::
ax = twinx()
create a twin of Axes for generating a plot with a sharex
x-axis but independent y axis. The y-axis of self will have
ticks on left and the returned axes will have ticks on the
right
"""
ax2 = self.figure.add_axes(self.get_position(True), sharex=self,
frameon=False)
ax2.yaxis.tick_right()
ax2.yaxis.set_label_position('right')
self.yaxis.tick_left()
return ax2
def twiny(self):
"""
call signature::
ax = twiny()
create a twin of Axes for generating a plot with a shared
y-axis but independent x axis. The x-axis of self will have
ticks on bottom and the returned axes will have ticks on the
top
"""
ax2 = self.figure.add_axes(self.get_position(True), sharey=self,
frameon=False)
ax2.xaxis.tick_top()
ax2.xaxis.set_label_position('top')
self.xaxis.tick_bottom()
return ax2
def get_shared_x_axes(self):
'Return a copy of the shared axes Grouper object for x axes'
return self._shared_x_axes
def get_shared_y_axes(self):
'Return a copy of the shared axes Grouper object for y axes'
return self._shared_y_axes
#### Data analysis
def hist(self, x, bins=10, range=None, normed=False, cumulative=False,
bottom=None, histtype='bar', align='mid',
orientation='vertical', rwidth=None, log=False, **kwargs):
"""
call signature::
hist(x, bins=10, range=None, normed=False, cumulative=False,
bottom=None, histtype='bar', align='mid',
orientation='vertical', rwidth=None, log=False, **kwargs)
Compute and draw the histogram of *x*. The return value is a
tuple (*n*, *bins*, *patches*) or ([*n0*, *n1*, ...], *bins*,
[*patches0*, *patches1*,...]) if the input contains multiple
data.
Keyword arguments:
*bins*:
Either an integer number of bins or a sequence giving the
bins. *x* are the data to be binned. *x* can be an array,
a 2D array with multiple data in its columns, or a list of
arrays with data of different length. Note, if *bins*
is an integer input argument=numbins, *bins* + 1 bin edges
will be returned, compatible with the semantics of
:func:`numpy.histogram` with the *new* = True argument.
Unequally spaced bins are supported if *bins* is a sequence.
*range*:
The lower and upper range of the bins. Lower and upper outliers
are ignored. If not provided, *range* is (x.min(), x.max()).
Range has no effect if *bins* is a sequence.
If *bins* is a sequence or *range* is specified, autoscaling is
set off (*autoscale_on* is set to *False*) and the xaxis limits
are set to encompass the full specified bin range.
*normed*:
If *True*, the first element of the return tuple will
be the counts normalized to form a probability density, i.e.,
``n/(len(x)*dbin)``. In a probability density, the integral of
the histogram should be 1; you can verify that with a
trapezoidal integration of the probability density function::
pdf, bins, patches = ax.hist(...)
print np.sum(pdf * np.diff(bins))
*cumulative*:
If *True*, then a histogram is computed where each bin
gives the counts in that bin plus all bins for smaller values.
The last bin gives the total number of datapoints. If *normed*
is also *True* then the histogram is normalized such that the
last bin equals 1. If *cumulative* evaluates to less than 0
(e.g. -1), the direction of accumulation is reversed. In this
case, if *normed* is also *True*, then the histogram is normalized
such that the first bin equals 1.
*histtype*: [ 'bar' | 'barstacked' | 'step' | 'stepfilled' ]
The type of histogram to draw.
- 'bar' is a traditional bar-type histogram. If multiple data
are given the bars are aranged side by side.
- 'barstacked' is a bar-type histogram where multiple
data are stacked on top of each other.
- 'step' generates a lineplot that is by default
unfilled.
- 'stepfilled' generates a lineplot that is by default
filled.
*align*: ['left' | 'mid' | 'right' ]
Controls how the histogram is plotted.
- 'left': bars are centered on the left bin edges.
- 'mid': bars are centered between the bin edges.
- 'right': bars are centered on the right bin edges.
*orientation*: [ 'horizontal' | 'vertical' ]
If 'horizontal', :func:`~matplotlib.pyplot.barh` will be
used for bar-type histograms and the *bottom* kwarg will be
the left edges.
*rwidth*:
The relative width of the bars as a fraction of the bin
width. If *None*, automatically compute the width. Ignored
if *histtype* = 'step' or 'stepfilled'.
*log*:
If *True*, the histogram axis will be set to a log scale.
If *log* is *True* and *x* is a 1D array, empty bins will
be filtered out and only the non-empty (*n*, *bins*,
*patches*) will be returned.
kwargs are used to update the properties of the hist
:class:`~matplotlib.patches.Rectangle` instances:
%(Rectangle)s
You can use labels for your histogram, and only the first
:class:`~matplotlib.patches.Rectangle` gets the label (the
others get the magic string '_nolegend_'. This will make the
histograms work in the intuitive way for bar charts::
ax.hist(10+2*np.random.randn(1000), label='men')
ax.hist(12+3*np.random.randn(1000), label='women', alpha=0.5)
ax.legend()
**Example:**
.. plot:: mpl_examples/pylab_examples/histogram_demo.py
"""
if not self._hold: self.cla()
# NOTE: the range keyword overwrites the built-in func range !!!
# needs to be fixed in with numpy !!!
if kwargs.get('width') is not None:
raise DeprecationWarning(
'hist now uses the rwidth to give relative width '
'and not absolute width')
try:
# make sure a copy is created: don't use asarray
x = np.transpose(np.array(x))
if len(x.shape)==1:
x.shape = (1,x.shape[0])
elif len(x.shape)==2 and x.shape[1]<x.shape[0]:
warnings.warn('2D hist should be nsamples x nvariables; '
'this looks transposed')
except ValueError:
# multiple hist with data of different length
if iterable(x[0]) and not is_string_like(x[0]):
tx = []
for i in xrange(len(x)):
tx.append( np.array(x[i]) )
x = tx
else:
raise ValueError, 'Can not use providet data to create a histogram'
# Check whether bins or range are given explicitly. In that
# case do not autoscale axes.
binsgiven = (cbook.iterable(bins) or range != None)
# check the version of the numpy
if np.__version__ < "1.3": # version 1.1 and 1.2
hist_kwargs = dict(range=range,
normed=bool(normed), new=True)
else: # version 1.3 and later, drop new=True
hist_kwargs = dict(range=range,
normed=bool(normed))
n = []
for i in xrange(len(x)):
# this will automatically overwrite bins,
# so that each histogram uses the same bins
m, bins = np.histogram(x[i], bins, **hist_kwargs)
n.append(m)
if cumulative:
slc = slice(None)
if cbook.is_numlike(cumulative) and cumulative < 0:
slc = slice(None,None,-1)
if normed:
n = [(m * np.diff(bins))[slc].cumsum()[slc] for m in n]
else:
n = [m[slc].cumsum()[slc] for m in n]
patches = []
if histtype.startswith('bar'):
totwidth = np.diff(bins)
stacked = False
if rwidth is not None: dr = min(1., max(0., rwidth))
elif len(n)>1: dr = 0.8
else: dr = 1.0
if histtype=='bar':
width = dr*totwidth/len(n)
dw = width
if len(n)>1:
boffset = -0.5*dr*totwidth*(1.-1./len(n))
else:
boffset = 0.0
elif histtype=='barstacked':
width = dr*totwidth
boffset, dw = 0.0, 0.0
stacked = True
else:
raise ValueError, 'invalid histtype: %s' % histtype
if align == 'mid' or align == 'edge':
boffset += 0.5*totwidth
elif align == 'right':
boffset += totwidth
elif align != 'left' and align != 'center':
raise ValueError, 'invalid align: %s' % align
if orientation == 'horizontal':
for m in n:
color = self._get_lines._get_next_cycle_color()
patch = self.barh(bins[:-1]+boffset, m, height=width,
left=bottom, align='center', log=log,
color=color)
patches.append(patch)
if stacked:
if bottom is None: bottom = 0.0
bottom += m
boffset += dw
elif orientation == 'vertical':
for m in n:
color = self._get_lines._get_next_cycle_color()
patch = self.bar(bins[:-1]+boffset, m, width=width,
bottom=bottom, align='center', log=log,
color=color)
patches.append(patch)
if stacked:
if bottom is None: bottom = 0.0
bottom += m
boffset += dw
else:
raise ValueError, 'invalid orientation: %s' % orientation
elif histtype.startswith('step'):
x = np.zeros( 2*len(bins), np.float )
y = np.zeros( 2*len(bins), np.float )
x[0::2], x[1::2] = bins, bins
if align == 'left' or align == 'center':
x -= 0.5*(bins[1]-bins[0])
elif align == 'right':
x += 0.5*(bins[1]-bins[0])
elif align != 'mid' and align != 'edge':
raise ValueError, 'invalid align: %s' % align
if log:
y[0],y[-1] = 1e-100, 1e-100
if orientation == 'horizontal':
self.set_xscale('log')
elif orientation == 'vertical':
self.set_yscale('log')
fill = False
if histtype == 'stepfilled':
fill = True
elif histtype != 'step':
raise ValueError, 'invalid histtype: %s' % histtype
for m in n:
y[1:-1:2], y[2::2] = m, m
if orientation == 'horizontal':
x,y = y,x
elif orientation != 'vertical':
raise ValueError, 'invalid orientation: %s' % orientation
color = self._get_lines._get_next_cycle_color()
if fill:
patches.append( self.fill(x, y,
closed=False, facecolor=color) )
else:
patches.append( self.fill(x, y,
closed=False, edgecolor=color, fill=False) )
# adopted from adjust_x/ylim part of the bar method
if orientation == 'horizontal':
xmin, xmax = 0, self.dataLim.intervalx[1]
for m in n:
xmin = np.amin(m[m!=0]) # filter out the 0 height bins
xmin = max(xmin*0.9, 1e-100)
self.dataLim.intervalx = (xmin, xmax)
elif orientation == 'vertical':
ymin, ymax = 0, self.dataLim.intervaly[1]
for m in n:
ymin = np.amin(m[m!=0]) # filter out the 0 height bins
ymin = max(ymin*0.9, 1e-100)
self.dataLim.intervaly = (ymin, ymax)
self.autoscale_view()
else:
raise ValueError, 'invalid histtype: %s' % histtype
label = kwargs.pop('label', '')
for patch in patches:
for p in patch:
p.update(kwargs)
p.set_label(label)
label = '_nolegend_'
if binsgiven:
self.set_autoscale_on(False)
if orientation == 'vertical':
self.autoscale_view(scalex=False, scaley=True)
XL = self.xaxis.get_major_locator().view_limits(bins[0], bins[-1])
self.set_xbound(XL)
else:
self.autoscale_view(scalex=True, scaley=False)
YL = self.yaxis.get_major_locator().view_limits(bins[0], bins[-1])
self.set_ybound(YL)
if len(n)==1:
return n[0], bins, cbook.silent_list('Patch', patches[0])
else:
return n, bins, cbook.silent_list('Lists of Patches', patches)
hist.__doc__ = cbook.dedent(hist.__doc__) % martist.kwdocd
def psd(self, x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides='default', scale_by_freq=None, **kwargs):
"""
call signature::
psd(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides='default', scale_by_freq=None, **kwargs)
The power spectral density by Welch's average periodogram
method. The vector *x* is divided into *NFFT* length
segments. Each segment is detrended by function *detrend* and
windowed by function *window*. *noverlap* gives the length of
the overlap between segments. The :math:`|\mathrm{fft}(i)|^2`
of each segment :math:`i` are averaged to compute *Pxx*, with a
scaling to correct for power loss due to windowing. *Fs* is the
sampling frequency.
%(PSD)s
*Fc*: integer
The center frequency of *x* (defaults to 0), which offsets
the x extents of the plot to reflect the frequency range used
when a signal is acquired and then filtered and downsampled to
baseband.
Returns the tuple (*Pxx*, *freqs*).
For plotting, the power is plotted as
:math:`10\log_{10}(P_{xx})` for decibels, though *Pxx* itself
is returned.
References:
Bendat & Piersol -- Random Data: Analysis and Measurement
Procedures, John Wiley & Sons (1986)
kwargs control the :class:`~matplotlib.lines.Line2D` properties:
%(Line2D)s
**Example:**
.. plot:: mpl_examples/pylab_examples/psd_demo.py
"""
if not self._hold: self.cla()
pxx, freqs = mlab.psd(x, NFFT, Fs, detrend, window, noverlap, pad_to,
sides, scale_by_freq)
pxx.shape = len(freqs),
freqs += Fc
if scale_by_freq in (None, True):
psd_units = 'dB/Hz'
else:
psd_units = 'dB'
self.plot(freqs, 10*np.log10(pxx), **kwargs)
self.set_xlabel('Frequency')
self.set_ylabel('Power Spectral Density (%s)' % psd_units)
self.grid(True)
vmin, vmax = self.viewLim.intervaly
intv = vmax-vmin
logi = int(np.log10(intv))
if logi==0: logi=.1
step = 10*logi
#print vmin, vmax, step, intv, math.floor(vmin), math.ceil(vmax)+1
ticks = np.arange(math.floor(vmin), math.ceil(vmax)+1, step)
self.set_yticks(ticks)
return pxx, freqs
psd_doc_dict = dict()
psd_doc_dict.update(martist.kwdocd)
psd_doc_dict.update(mlab.kwdocd)
psd_doc_dict['PSD'] = cbook.dedent(psd_doc_dict['PSD'])
psd.__doc__ = cbook.dedent(psd.__doc__) % psd_doc_dict
def csd(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides='default', scale_by_freq=None, **kwargs):
"""
call signature::
csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides='default', scale_by_freq=None, **kwargs)
The cross spectral density :math:`P_{xy}` by Welch's average
periodogram method. The vectors *x* and *y* are divided into
*NFFT* length segments. Each segment is detrended by function
*detrend* and windowed by function *window*. The product of
the direct FFTs of *x* and *y* are averaged over each segment
to compute :math:`P_{xy}`, with a scaling to correct for power
loss due to windowing.
Returns the tuple (*Pxy*, *freqs*). *P* is the cross spectrum
(complex valued), and :math:`10\log_{10}|P_{xy}|` is
plotted.
%(PSD)s
*Fc*: integer
The center frequency of *x* (defaults to 0), which offsets
the x extents of the plot to reflect the frequency range used
when a signal is acquired and then filtered and downsampled to
baseband.
References:
Bendat & Piersol -- Random Data: Analysis and Measurement
Procedures, John Wiley & Sons (1986)
kwargs control the Line2D properties:
%(Line2D)s
**Example:**
.. plot:: mpl_examples/pylab_examples/csd_demo.py
.. seealso:
:meth:`psd`
For a description of the optional parameters.
"""
if not self._hold: self.cla()
pxy, freqs = mlab.csd(x, y, NFFT, Fs, detrend, window, noverlap,
pad_to, sides, scale_by_freq)
pxy.shape = len(freqs),
# pxy is complex
freqs += Fc
self.plot(freqs, 10*np.log10(np.absolute(pxy)), **kwargs)
self.set_xlabel('Frequency')
self.set_ylabel('Cross Spectrum Magnitude (dB)')
self.grid(True)
vmin, vmax = self.viewLim.intervaly
intv = vmax-vmin
step = 10*int(np.log10(intv))
ticks = np.arange(math.floor(vmin), math.ceil(vmax)+1, step)
self.set_yticks(ticks)
return pxy, freqs
csd.__doc__ = cbook.dedent(csd.__doc__) % psd_doc_dict
def cohere(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides='default', scale_by_freq=None, **kwargs):
"""
call signature::
cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend = mlab.detrend_none,
window = mlab.window_hanning, noverlap=0, pad_to=None,
sides='default', scale_by_freq=None, **kwargs)
cohere the coherence between *x* and *y*. Coherence is the normalized
cross spectral density:
.. math::
C_{xy} = \\frac{|P_{xy}|^2}{P_{xx}P_{yy}}
%(PSD)s
*Fc*: integer
The center frequency of *x* (defaults to 0), which offsets
the x extents of the plot to reflect the frequency range used
when a signal is acquired and then filtered and downsampled to
baseband.
The return value is a tuple (*Cxy*, *f*), where *f* are the
frequencies of the coherence vector.
kwargs are applied to the lines.
References:
* Bendat & Piersol -- Random Data: Analysis and Measurement
Procedures, John Wiley & Sons (1986)
kwargs control the :class:`~matplotlib.lines.Line2D`
properties of the coherence plot:
%(Line2D)s
**Example:**
.. plot:: mpl_examples/pylab_examples/cohere_demo.py
"""
if not self._hold: self.cla()
cxy, freqs = mlab.cohere(x, y, NFFT, Fs, detrend, window, noverlap,
scale_by_freq)
freqs += Fc
self.plot(freqs, cxy, **kwargs)
self.set_xlabel('Frequency')
self.set_ylabel('Coherence')
self.grid(True)
return cxy, freqs
cohere.__doc__ = cbook.dedent(cohere.__doc__) % psd_doc_dict
def specgram(self, x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=128,
cmap=None, xextent=None, pad_to=None, sides='default',
scale_by_freq=None):
"""
call signature::
specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=128,
cmap=None, xextent=None, pad_to=None, sides='default',
scale_by_freq=None)
Compute a spectrogram of data in *x*. Data are split into
*NFFT* length segments and the PSD of each section is
computed. The windowing function *window* is applied to each
segment, and the amount of overlap of each segment is
specified with *noverlap*.
%(PSD)s
*Fc*: integer
The center frequency of *x* (defaults to 0), which offsets
the y extents of the plot to reflect the frequency range used
when a signal is acquired and then filtered and downsampled to
baseband.
*cmap*:
A :class:`matplotlib.cm.Colormap` instance; if *None* use
default determined by rc
*xextent*:
The image extent along the x-axis. xextent = (xmin,xmax)
The default is (0,max(bins)), where bins is the return
value from :func:`mlab.specgram`
Return value is (*Pxx*, *freqs*, *bins*, *im*):
- *bins* are the time points the spectrogram is calculated over
- *freqs* is an array of frequencies
- *Pxx* is a len(times) x len(freqs) array of power
- *im* is a :class:`matplotlib.image.AxesImage` instance
Note: If *x* is real (i.e. non-complex), only the positive
spectrum is shown. If *x* is complex, both positive and
negative parts of the spectrum are shown. This can be
overridden using the *sides* keyword argument.
**Example:**
.. plot:: mpl_examples/pylab_examples/specgram_demo.py
"""
if not self._hold: self.cla()
Pxx, freqs, bins = mlab.specgram(x, NFFT, Fs, detrend,
window, noverlap, pad_to, sides, scale_by_freq)
Z = 10. * np.log10(Pxx)
Z = np.flipud(Z)
if xextent is None: xextent = 0, np.amax(bins)
xmin, xmax = xextent
freqs += Fc
extent = xmin, xmax, freqs[0], freqs[-1]
im = self.imshow(Z, cmap, extent=extent)
self.axis('auto')
return Pxx, freqs, bins, im
specgram.__doc__ = cbook.dedent(specgram.__doc__) % psd_doc_dict
del psd_doc_dict #So that this does not become an Axes attribute
def spy(self, Z, precision=0, marker=None, markersize=None,
aspect='equal', **kwargs):
"""
call signature::
spy(Z, precision=0, marker=None, markersize=None,
aspect='equal', **kwargs)
``spy(Z)`` plots the sparsity pattern of the 2-D array *Z*.
If *precision* is 0, any non-zero value will be plotted;
else, values of :math:`|Z| > precision` will be plotted.
For :class:`scipy.sparse.spmatrix` instances, there is a
special case: if *precision* is 'present', any value present in
the array will be plotted, even if it is identically zero.
The array will be plotted as it would be printed, with
the first index (row) increasing down and the second
index (column) increasing to the right.
By default aspect is 'equal', so that each array element
occupies a square space; set the aspect kwarg to 'auto'
to allow the plot to fill the plot box, or to any scalar
number to specify the aspect ratio of an array element
directly.
Two plotting styles are available: image or marker. Both
are available for full arrays, but only the marker style
works for :class:`scipy.sparse.spmatrix` instances.
If *marker* and *markersize* are *None*, an image will be
returned and any remaining kwargs are passed to
:func:`~matplotlib.pyplot.imshow`; else, a
:class:`~matplotlib.lines.Line2D` object will be returned with
the value of marker determining the marker type, and any
remaining kwargs passed to the
:meth:`~matplotlib.axes.Axes.plot` method.
If *marker* and *markersize* are *None*, useful kwargs include:
* *cmap*
* *alpha*
.. seealso::
:func:`~matplotlib.pyplot.imshow`
For controlling colors, e.g. cyan background and red marks,
use::
cmap = mcolors.ListedColormap(['c','r'])
If *marker* or *markersize* is not *None*, useful kwargs include:
* *marker*
* *markersize*
* *color*
Useful values for *marker* include:
* 's' square (default)
* 'o' circle
* '.' point
* ',' pixel
.. seealso::
:func:`~matplotlib.pyplot.plot`
"""
if precision is None:
precision = 0
warnings.DeprecationWarning("Use precision=0 instead of None")
# 2008/10/03
if marker is None and markersize is None and hasattr(Z, 'tocoo'):
marker = 's'
if marker is None and markersize is None:
Z = np.asarray(Z)
mask = np.absolute(Z)>precision
if 'cmap' not in kwargs:
kwargs['cmap'] = mcolors.ListedColormap(['w', 'k'],
name='binary')
nr, nc = Z.shape
extent = [-0.5, nc-0.5, nr-0.5, -0.5]
ret = self.imshow(mask, interpolation='nearest', aspect=aspect,
extent=extent, origin='upper', **kwargs)
else:
if hasattr(Z, 'tocoo'):
c = Z.tocoo()
if precision == 'present':
y = c.row
x = c.col
else:
nonzero = np.absolute(c.data) > precision
y = c.row[nonzero]
x = c.col[nonzero]
else:
Z = np.asarray(Z)
nonzero = np.absolute(Z)>precision
y, x = np.nonzero(nonzero)
if marker is None: marker = 's'
if markersize is None: markersize = 10
marks = mlines.Line2D(x, y, linestyle='None',
marker=marker, markersize=markersize, **kwargs)
self.add_line(marks)
nr, nc = Z.shape
self.set_xlim(xmin=-0.5, xmax=nc-0.5)
self.set_ylim(ymin=nr-0.5, ymax=-0.5)
self.set_aspect(aspect)
ret = marks
self.title.set_y(1.05)
self.xaxis.tick_top()
self.xaxis.set_ticks_position('both')
self.xaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
steps=[1, 2, 5, 10],
integer=True))
self.yaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
steps=[1, 2, 5, 10],
integer=True))
return ret
def matshow(self, Z, **kwargs):
'''
Plot a matrix or array as an image.
The matrix will be shown the way it would be printed,
with the first row at the top. Row and column numbering
is zero-based.
Argument:
*Z* anything that can be interpreted as a 2-D array
kwargs all are passed to :meth:`~matplotlib.axes.Axes.imshow`.
:meth:`matshow` sets defaults for *extent*, *origin*,
*interpolation*, and *aspect*; use care in overriding the
*extent* and *origin* kwargs, because they interact. (Also,
if you want to change them, you probably should be using
imshow directly in your own version of matshow.)
Returns: an :class:`matplotlib.image.AxesImage` instance.
'''
Z = np.asarray(Z)
nr, nc = Z.shape
extent = [-0.5, nc-0.5, nr-0.5, -0.5]
kw = {'extent': extent,
'origin': 'upper',
'interpolation': 'nearest',
'aspect': 'equal'} # (already the imshow default)
kw.update(kwargs)
im = self.imshow(Z, **kw)
self.title.set_y(1.05)
self.xaxis.tick_top()
self.xaxis.set_ticks_position('both')
self.xaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
steps=[1, 2, 5, 10],
integer=True))
self.yaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
steps=[1, 2, 5, 10],
integer=True))
return im
class SubplotBase:
"""
Base class for subplots, which are :class:`Axes` instances with
additional methods to facilitate generating and manipulating a set
of :class:`Axes` within a figure.
"""
def __init__(self, fig, *args, **kwargs):
"""
*fig* is a :class:`matplotlib.figure.Figure` instance.
*args* is the tuple (*numRows*, *numCols*, *plotNum*), where
the array of subplots in the figure has dimensions *numRows*,
*numCols*, and where *plotNum* is the number of the subplot
being created. *plotNum* starts at 1 in the upper left
corner and increases to the right.
If *numRows* <= *numCols* <= *plotNum* < 10, *args* can be the
decimal integer *numRows* * 100 + *numCols* * 10 + *plotNum*.
"""
self.figure = fig
if len(args)==1:
s = str(args[0])
if len(s) != 3:
raise ValueError('Argument to subplot must be a 3 digits long')
rows, cols, num = map(int, s)
elif len(args)==3:
rows, cols, num = args
else:
raise ValueError( 'Illegal argument to subplot')
total = rows*cols
num -= 1 # convert from matlab to python indexing
# ie num in range(0,total)
if num >= total:
raise ValueError( 'Subplot number exceeds total subplots')
self._rows = rows
self._cols = cols
self._num = num
self.update_params()
# _axes_class is set in the subplot_class_factory
self._axes_class.__init__(self, fig, self.figbox, **kwargs)
def get_geometry(self):
'get the subplot geometry, eg 2,2,3'
return self._rows, self._cols, self._num+1
# COVERAGE NOTE: Never used internally or from examples
def change_geometry(self, numrows, numcols, num):
'change subplot geometry, eg. from 1,1,1 to 2,2,3'
self._rows = numrows
self._cols = numcols
self._num = num-1
self.update_params()
self.set_position(self.figbox)
def update_params(self):
'update the subplot position from fig.subplotpars'
rows = self._rows
cols = self._cols
num = self._num
pars = self.figure.subplotpars
left = pars.left
right = pars.right
bottom = pars.bottom
top = pars.top
wspace = pars.wspace
hspace = pars.hspace
totWidth = right-left
totHeight = top-bottom
figH = totHeight/(rows + hspace*(rows-1))
sepH = hspace*figH
figW = totWidth/(cols + wspace*(cols-1))
sepW = wspace*figW
rowNum, colNum = divmod(num, cols)
figBottom = top - (rowNum+1)*figH - rowNum*sepH
figLeft = left + colNum*(figW + sepW)
self.figbox = mtransforms.Bbox.from_bounds(figLeft, figBottom,
figW, figH)
self.rowNum = rowNum
self.colNum = colNum
self.numRows = rows
self.numCols = cols
if 0:
print 'rcn', rows, cols, num
print 'lbrt', left, bottom, right, top
print 'self.figBottom', self.figBottom
print 'self.figLeft', self.figLeft
print 'self.figW', self.figW
print 'self.figH', self.figH
print 'self.rowNum', self.rowNum
print 'self.colNum', self.colNum
print 'self.numRows', self.numRows
print 'self.numCols', self.numCols
def is_first_col(self):
return self.colNum==0
def is_first_row(self):
return self.rowNum==0
def is_last_row(self):
return self.rowNum==self.numRows-1
def is_last_col(self):
return self.colNum==self.numCols-1
# COVERAGE NOTE: Never used internally or from examples
def label_outer(self):
"""
set the visible property on ticklabels so xticklabels are
visible only if the subplot is in the last row and yticklabels
are visible only if the subplot is in the first column
"""
lastrow = self.is_last_row()
firstcol = self.is_first_col()
for label in self.get_xticklabels():
label.set_visible(lastrow)
for label in self.get_yticklabels():
label.set_visible(firstcol)
_subplot_classes = {}
def subplot_class_factory(axes_class=None):
# This makes a new class that inherits from SubclassBase and the
# given axes_class (which is assumed to be a subclass of Axes).
# This is perhaps a little bit roundabout to make a new class on
# the fly like this, but it means that a new Subplot class does
# not have to be created for every type of Axes.
if axes_class is None:
axes_class = Axes
new_class = _subplot_classes.get(axes_class)
if new_class is None:
new_class = new.classobj("%sSubplot" % (axes_class.__name__),
(SubplotBase, axes_class),
{'_axes_class': axes_class})
_subplot_classes[axes_class] = new_class
return new_class
# This is provided for backward compatibility
Subplot = subplot_class_factory()
martist.kwdocd['Axes'] = martist.kwdocd['Subplot'] = martist.kwdoc(Axes)
"""
# this is some discarded code I was using to find the minimum positive
# data point for some log scaling fixes. I realized there was a
# cleaner way to do it, but am keeping this around as an example for
# how to get the data out of the axes. Might want to make something
# like this a method one day, or better yet make get_verts an Artist
# method
minx, maxx = self.get_xlim()
if minx<=0 or maxx<=0:
# find the min pos value in the data
xs = []
for line in self.lines:
xs.extend(line.get_xdata(orig=False))
for patch in self.patches:
xs.extend([x for x,y in patch.get_verts()])
for collection in self.collections:
xs.extend([x for x,y in collection.get_verts()])
posx = [x for x in xs if x>0]
if len(posx):
minx = min(posx)
maxx = max(posx)
# warning, probably breaks inverted axis
self.set_xlim((0.1*minx, maxx))
"""
|
agpl-3.0
|
petteyg/intellij-community
|
python/helpers/pydev/pydev_ipython/matplotlibtools.py
|
52
|
5401
|
import sys
backends = {'tk': 'TkAgg',
'gtk': 'GTKAgg',
'wx': 'WXAgg',
'qt': 'Qt4Agg', # qt3 not supported
'qt4': 'Qt4Agg',
'osx': 'MacOSX'}
# We also need a reverse backends2guis mapping that will properly choose which
# GUI support to activate based on the desired matplotlib backend. For the
# most part it's just a reverse of the above dict, but we also need to add a
# few others that map to the same GUI manually:
backend2gui = dict(zip(backends.values(), backends.keys()))
backend2gui['Qt4Agg'] = 'qt'
# In the reverse mapping, there are a few extra valid matplotlib backends that
# map to the same GUI support
backend2gui['GTK'] = backend2gui['GTKCairo'] = 'gtk'
backend2gui['WX'] = 'wx'
backend2gui['CocoaAgg'] = 'osx'
def do_enable_gui(guiname):
from pydev_versioncheck import versionok_for_gui
if versionok_for_gui():
try:
from pydev_ipython.inputhook import enable_gui
enable_gui(guiname)
except:
sys.stderr.write("Failed to enable GUI event loop integration for '%s'\n" % guiname)
import traceback
traceback.print_exc()
elif guiname not in ['none', '', None]:
# Only print a warning if the guiname was going to do something
sys.stderr.write("Debug console: Python version does not support GUI event loop integration for '%s'\n" % guiname)
# Return value does not matter, so return back what was sent
return guiname
def find_gui_and_backend():
"""Return the gui and mpl backend."""
matplotlib = sys.modules['matplotlib']
# WARNING: this assumes matplotlib 1.1 or newer!!
backend = matplotlib.rcParams['backend']
# In this case, we need to find what the appropriate gui selection call
# should be for IPython, so we can activate inputhook accordingly
gui = backend2gui.get(backend, None)
return gui, backend
def is_interactive_backend(backend):
""" Check if backend is interactive """
matplotlib = sys.modules['matplotlib']
from matplotlib.rcsetup import interactive_bk, non_interactive_bk
if backend in interactive_bk:
return True
elif backend in non_interactive_bk:
return False
else:
return matplotlib.is_interactive()
def patch_use(enable_gui_function):
""" Patch matplotlib function 'use' """
matplotlib = sys.modules['matplotlib']
def patched_use(*args, **kwargs):
matplotlib.real_use(*args, **kwargs)
gui, backend = find_gui_and_backend()
enable_gui_function(gui)
setattr(matplotlib, "real_use", getattr(matplotlib, "use"))
setattr(matplotlib, "use", patched_use)
def patch_is_interactive():
""" Patch matplotlib function 'use' """
matplotlib = sys.modules['matplotlib']
def patched_is_interactive():
return matplotlib.rcParams['interactive']
setattr(matplotlib, "real_is_interactive", getattr(matplotlib, "is_interactive"))
setattr(matplotlib, "is_interactive", patched_is_interactive)
def activate_matplotlib(enable_gui_function):
"""Set interactive to True for interactive backends.
enable_gui_function - Function which enables gui, should be run in the main thread.
"""
matplotlib = sys.modules['matplotlib']
gui, backend = find_gui_and_backend()
is_interactive = is_interactive_backend(backend)
if is_interactive:
enable_gui_function(gui)
if not matplotlib.is_interactive():
sys.stdout.write("Backend %s is interactive backend. Turning interactive mode on.\n" % backend)
matplotlib.interactive(True)
else:
if matplotlib.is_interactive():
sys.stdout.write("Backend %s is non-interactive backend. Turning interactive mode off.\n" % backend)
matplotlib.interactive(False)
patch_use(enable_gui_function)
patch_is_interactive()
def flag_calls(func):
"""Wrap a function to detect and flag when it gets called.
This is a decorator which takes a function and wraps it in a function with
a 'called' attribute. wrapper.called is initialized to False.
The wrapper.called attribute is set to False right before each call to the
wrapped function, so if the call fails it remains False. After the call
completes, wrapper.called is set to True and the output is returned.
Testing for truth in wrapper.called allows you to determine if a call to
func() was attempted and succeeded."""
# don't wrap twice
if hasattr(func, 'called'):
return func
def wrapper(*args,**kw):
wrapper.called = False
out = func(*args,**kw)
wrapper.called = True
return out
wrapper.called = False
wrapper.__doc__ = func.__doc__
return wrapper
def activate_pylab():
pylab = sys.modules['pylab']
pylab.show._needmain = False
# We need to detect at runtime whether show() is called by the user.
# For this, we wrap it into a decorator which adds a 'called' flag.
pylab.draw_if_interactive = flag_calls(pylab.draw_if_interactive)
def activate_pyplot():
pyplot = sys.modules['matplotlib.pyplot']
pyplot.show._needmain = False
# We need to detect at runtime whether show() is called by the user.
# For this, we wrap it into a decorator which adds a 'called' flag.
pyplot.draw_if_interactive = flag_calls(pyplot.draw_if_interactive)
|
apache-2.0
|
hewittc/proxmark3lcd
|
fpga/tests/plot_edgedetect.py
|
14
|
1553
|
#!/usr/bin/env python
#-----------------------------------------------------------------------------
# Copyright (C) 2014 iZsh <izsh at fail0verflow.com>
#
# This code is licensed to you under the terms of the GNU GPL, version 2 or,
# at your option, any later version. See the LICENSE.txt file for the text of
# the license.
#-----------------------------------------------------------------------------
import numpy
import matplotlib.pyplot as plt
import sys
if len(sys.argv) != 2:
print "Usage: %s <basename>" % sys.argv[0]
sys.exit(1)
BASENAME = sys.argv[1]
nx = numpy.fromfile(BASENAME + ".time")
def plot_time(dat1):
plt.plot(nx, dat1)
sig = open(BASENAME + ".filtered").read()
sig = map(lambda x: ord(x), sig)
min_vals = open(BASENAME + ".min").read()
min_vals = map(lambda x: ord(x), min_vals)
max_vals = open(BASENAME + ".max").read()
max_vals = map(lambda x: ord(x), max_vals)
states = open(BASENAME + ".state").read()
states = map(lambda x: ord(x) * 10 + 65, states)
toggles = open(BASENAME+ ".toggle").read()
toggles = map(lambda x: ord(x) * 10 + 80, toggles)
high = open(BASENAME + ".high").read()
high = map(lambda x: ord(x), high)
highz = open(BASENAME + ".highz").read()
highz = map(lambda x: ord(x), highz)
lowz = open(BASENAME + ".lowz").read()
lowz = map(lambda x: ord(x), lowz)
low = open(BASENAME + ".low").read()
low = map(lambda x: ord(x), low)
plot_time(sig)
plot_time(min_vals)
plot_time(max_vals)
plot_time(states)
plot_time(toggles)
plot_time(high)
plot_time(highz)
plot_time(lowz)
plot_time(low)
plt.show()
|
gpl-2.0
|
wazeerzulfikar/scikit-learn
|
benchmarks/bench_mnist.py
|
45
|
6977
|
"""
=======================
MNIST dataset benchmark
=======================
Benchmark on the MNIST dataset. The dataset comprises 70,000 samples
and 784 features. Here, we consider the task of predicting
10 classes - digits from 0 to 9 from their raw images. By contrast to the
covertype dataset, the feature space is homogenous.
Example of output :
[..]
Classification performance:
===========================
Classifier train-time test-time error-rate
------------------------------------------------------------
MLP_adam 53.46s 0.11s 0.0224
Nystroem-SVM 112.97s 0.92s 0.0228
MultilayerPerceptron 24.33s 0.14s 0.0287
ExtraTrees 42.99s 0.57s 0.0294
RandomForest 42.70s 0.49s 0.0318
SampledRBF-SVM 135.81s 0.56s 0.0486
LinearRegression-SAG 16.67s 0.06s 0.0824
CART 20.69s 0.02s 0.1219
dummy 0.00s 0.01s 0.8973
"""
from __future__ import division, print_function
# Author: Issam H. Laradji
# Arnaud Joly <[email protected]>
# License: BSD 3 clause
import os
from time import time
import argparse
import numpy as np
from sklearn.datasets import fetch_mldata
from sklearn.datasets import get_data_home
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.dummy import DummyClassifier
from sklearn.externals.joblib import Memory
from sklearn.kernel_approximation import Nystroem
from sklearn.kernel_approximation import RBFSampler
from sklearn.metrics import zero_one_loss
from sklearn.pipeline import make_pipeline
from sklearn.svm import LinearSVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.utils import check_array
from sklearn.linear_model import LogisticRegression
from sklearn.neural_network import MLPClassifier
# Memoize the data extraction and memory map the resulting
# train / test splits in readonly mode
memory = Memory(os.path.join(get_data_home(), 'mnist_benchmark_data'),
mmap_mode='r')
@memory.cache
def load_data(dtype=np.float32, order='F'):
"""Load the data, then cache and memmap the train/test split"""
######################################################################
# Load dataset
print("Loading dataset...")
data = fetch_mldata('MNIST original')
X = check_array(data['data'], dtype=dtype, order=order)
y = data["target"]
# Normalize features
X = X / 255
# Create train-test split (as [Joachims, 2006])
print("Creating train-test split...")
n_train = 60000
X_train = X[:n_train]
y_train = y[:n_train]
X_test = X[n_train:]
y_test = y[n_train:]
return X_train, X_test, y_train, y_test
ESTIMATORS = {
"dummy": DummyClassifier(),
'CART': DecisionTreeClassifier(),
'ExtraTrees': ExtraTreesClassifier(n_estimators=100),
'RandomForest': RandomForestClassifier(n_estimators=100),
'Nystroem-SVM': make_pipeline(
Nystroem(gamma=0.015, n_components=1000), LinearSVC(C=100)),
'SampledRBF-SVM': make_pipeline(
RBFSampler(gamma=0.015, n_components=1000), LinearSVC(C=100)),
'LogisticRegression-SAG': LogisticRegression(solver='sag', tol=1e-1,
C=1e4),
'LogisticRegression-SAGA': LogisticRegression(solver='saga', tol=1e-1,
C=1e4),
'MultilayerPerceptron': MLPClassifier(
hidden_layer_sizes=(100, 100), max_iter=400, alpha=1e-4,
solver='sgd', learning_rate_init=0.2, momentum=0.9, verbose=1,
tol=1e-4, random_state=1),
'MLP-adam': MLPClassifier(
hidden_layer_sizes=(100, 100), max_iter=400, alpha=1e-4,
solver='adam', learning_rate_init=0.001, verbose=1,
tol=1e-4, random_state=1)
}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--classifiers', nargs="+",
choices=ESTIMATORS, type=str,
default=['ExtraTrees', 'Nystroem-SVM'],
help="list of classifiers to benchmark.")
parser.add_argument('--n-jobs', nargs="?", default=1, type=int,
help="Number of concurrently running workers for "
"models that support parallelism.")
parser.add_argument('--order', nargs="?", default="C", type=str,
choices=["F", "C"],
help="Allow to choose between fortran and C ordered "
"data")
parser.add_argument('--random-seed', nargs="?", default=0, type=int,
help="Common seed used by random number generator.")
args = vars(parser.parse_args())
print(__doc__)
X_train, X_test, y_train, y_test = load_data(order=args["order"])
print("")
print("Dataset statistics:")
print("===================")
print("%s %d" % ("number of features:".ljust(25), X_train.shape[1]))
print("%s %d" % ("number of classes:".ljust(25), np.unique(y_train).size))
print("%s %s" % ("data type:".ljust(25), X_train.dtype))
print("%s %d (size=%dMB)" % ("number of train samples:".ljust(25),
X_train.shape[0], int(X_train.nbytes / 1e6)))
print("%s %d (size=%dMB)" % ("number of test samples:".ljust(25),
X_test.shape[0], int(X_test.nbytes / 1e6)))
print()
print("Training Classifiers")
print("====================")
error, train_time, test_time = {}, {}, {}
for name in sorted(args["classifiers"]):
print("Training %s ... " % name, end="")
estimator = ESTIMATORS[name]
estimator_params = estimator.get_params()
estimator.set_params(**{p: args["random_seed"]
for p in estimator_params
if p.endswith("random_state")})
if "n_jobs" in estimator_params:
estimator.set_params(n_jobs=args["n_jobs"])
time_start = time()
estimator.fit(X_train, y_train)
train_time[name] = time() - time_start
time_start = time()
y_pred = estimator.predict(X_test)
test_time[name] = time() - time_start
error[name] = zero_one_loss(y_test, y_pred)
print("done")
print()
print("Classification performance:")
print("===========================")
print("{0: <24} {1: >10} {2: >11} {3: >12}"
"".format("Classifier ", "train-time", "test-time", "error-rate"))
print("-" * 60)
for name in sorted(args["classifiers"], key=error.get):
print("{0: <23} {1: >10.2f}s {2: >10.2f}s {3: >12.4f}"
"".format(name, train_time[name], test_time[name], error[name]))
print()
|
bsd-3-clause
|
mehdidc/scikit-learn
|
examples/applications/plot_stock_market.py
|
29
|
8284
|
"""
=======================================
Visualizing the stock market structure
=======================================
This example employs several unsupervised learning techniques to extract
the stock market structure from variations in historical quotes.
The quantity that we use is the daily variation in quote price: quotes
that are linked tend to cofluctuate during a day.
.. _stock_market:
Learning a graph structure
--------------------------
We use sparse inverse covariance estimation to find which quotes are
correlated conditionally on the others. Specifically, sparse inverse
covariance gives us a graph, that is a list of connection. For each
symbol, the symbols that it is connected too are those useful to explain
its fluctuations.
Clustering
----------
We use clustering to group together quotes that behave similarly. Here,
amongst the :ref:`various clustering techniques <clustering>` available
in the scikit-learn, we use :ref:`affinity_propagation` as it does
not enforce equal-size clusters, and it can choose automatically the
number of clusters from the data.
Note that this gives us a different indication than the graph, as the
graph reflects conditional relations between variables, while the
clustering reflects marginal properties: variables clustered together can
be considered as having a similar impact at the level of the full stock
market.
Embedding in 2D space
---------------------
For visualization purposes, we need to lay out the different symbols on a
2D canvas. For this we use :ref:`manifold` techniques to retrieve 2D
embedding.
Visualization
-------------
The output of the 3 models are combined in a 2D graph where nodes
represents the stocks and edges the:
- cluster labels are used to define the color of the nodes
- the sparse covariance model is used to display the strength of the edges
- the 2D embedding is used to position the nodes in the plan
This example has a fair amount of visualization-related code, as
visualization is crucial here to display the graph. One of the challenge
is to position the labels minimizing overlap. For this we use an
heuristic based on the direction of the nearest neighbor along each
axis.
"""
print(__doc__)
# Author: Gael Varoquaux [email protected]
# License: BSD 3 clause
import datetime
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import finance
from matplotlib.collections import LineCollection
from sklearn import cluster, covariance, manifold
###############################################################################
# Retrieve the data from Internet
# Choose a time period reasonnably calm (not too long ago so that we get
# high-tech firms, and before the 2008 crash)
d1 = datetime.datetime(2003, 1, 1)
d2 = datetime.datetime(2008, 1, 1)
# kraft symbol has now changed from KFT to MDLZ in yahoo
symbol_dict = {
'TOT': 'Total',
'XOM': 'Exxon',
'CVX': 'Chevron',
'COP': 'ConocoPhillips',
'VLO': 'Valero Energy',
'MSFT': 'Microsoft',
'IBM': 'IBM',
'TWX': 'Time Warner',
'CMCSA': 'Comcast',
'CVC': 'Cablevision',
'YHOO': 'Yahoo',
'DELL': 'Dell',
'HPQ': 'HP',
'AMZN': 'Amazon',
'TM': 'Toyota',
'CAJ': 'Canon',
'MTU': 'Mitsubishi',
'SNE': 'Sony',
'F': 'Ford',
'HMC': 'Honda',
'NAV': 'Navistar',
'NOC': 'Northrop Grumman',
'BA': 'Boeing',
'KO': 'Coca Cola',
'MMM': '3M',
'MCD': 'Mc Donalds',
'PEP': 'Pepsi',
'MDLZ': 'Kraft Foods',
'K': 'Kellogg',
'UN': 'Unilever',
'MAR': 'Marriott',
'PG': 'Procter Gamble',
'CL': 'Colgate-Palmolive',
'GE': 'General Electrics',
'WFC': 'Wells Fargo',
'JPM': 'JPMorgan Chase',
'AIG': 'AIG',
'AXP': 'American express',
'BAC': 'Bank of America',
'GS': 'Goldman Sachs',
'AAPL': 'Apple',
'SAP': 'SAP',
'CSCO': 'Cisco',
'TXN': 'Texas instruments',
'XRX': 'Xerox',
'LMT': 'Lookheed Martin',
'WMT': 'Wal-Mart',
'WAG': 'Walgreen',
'HD': 'Home Depot',
'GSK': 'GlaxoSmithKline',
'PFE': 'Pfizer',
'SNY': 'Sanofi-Aventis',
'NVS': 'Novartis',
'KMB': 'Kimberly-Clark',
'R': 'Ryder',
'GD': 'General Dynamics',
'RTN': 'Raytheon',
'CVS': 'CVS',
'CAT': 'Caterpillar',
'DD': 'DuPont de Nemours'}
symbols, names = np.array(list(symbol_dict.items())).T
quotes = [finance.quotes_historical_yahoo(symbol, d1, d2, asobject=True)
for symbol in symbols]
open = np.array([q.open for q in quotes]).astype(np.float)
close = np.array([q.close for q in quotes]).astype(np.float)
# The daily variations of the quotes are what carry most information
variation = close - open
###############################################################################
# Learn a graphical structure from the correlations
edge_model = covariance.GraphLassoCV()
# standardize the time series: using correlations rather than covariance
# is more efficient for structure recovery
X = variation.copy().T
X /= X.std(axis=0)
edge_model.fit(X)
###############################################################################
# Cluster using affinity propagation
_, labels = cluster.affinity_propagation(edge_model.covariance_)
n_labels = labels.max()
for i in range(n_labels + 1):
print('Cluster %i: %s' % ((i + 1), ', '.join(names[labels == i])))
###############################################################################
# Find a low-dimension embedding for visualization: find the best position of
# the nodes (the stocks) on a 2D plane
# We use a dense eigen_solver to achieve reproducibility (arpack is
# initiated with random vectors that we don't control). In addition, we
# use a large number of neighbors to capture the large-scale structure.
node_position_model = manifold.LocallyLinearEmbedding(
n_components=2, eigen_solver='dense', n_neighbors=6)
embedding = node_position_model.fit_transform(X.T).T
###############################################################################
# Visualization
plt.figure(1, facecolor='w', figsize=(10, 8))
plt.clf()
ax = plt.axes([0., 0., 1., 1.])
plt.axis('off')
# Display a graph of the partial correlations
partial_correlations = edge_model.precision_.copy()
d = 1 / np.sqrt(np.diag(partial_correlations))
partial_correlations *= d
partial_correlations *= d[:, np.newaxis]
non_zero = (np.abs(np.triu(partial_correlations, k=1)) > 0.02)
# Plot the nodes using the coordinates of our embedding
plt.scatter(embedding[0], embedding[1], s=100 * d ** 2, c=labels,
cmap=plt.cm.spectral)
# Plot the edges
start_idx, end_idx = np.where(non_zero)
#a sequence of (*line0*, *line1*, *line2*), where::
# linen = (x0, y0), (x1, y1), ... (xm, ym)
segments = [[embedding[:, start], embedding[:, stop]]
for start, stop in zip(start_idx, end_idx)]
values = np.abs(partial_correlations[non_zero])
lc = LineCollection(segments,
zorder=0, cmap=plt.cm.hot_r,
norm=plt.Normalize(0, .7 * values.max()))
lc.set_array(values)
lc.set_linewidths(15 * values)
ax.add_collection(lc)
# Add a label to each node. The challenge here is that we want to
# position the labels to avoid overlap with other labels
for index, (name, label, (x, y)) in enumerate(
zip(names, labels, embedding.T)):
dx = x - embedding[0]
dx[index] = 1
dy = y - embedding[1]
dy[index] = 1
this_dx = dx[np.argmin(np.abs(dy))]
this_dy = dy[np.argmin(np.abs(dx))]
if this_dx > 0:
horizontalalignment = 'left'
x = x + .002
else:
horizontalalignment = 'right'
x = x - .002
if this_dy > 0:
verticalalignment = 'bottom'
y = y + .002
else:
verticalalignment = 'top'
y = y - .002
plt.text(x, y, name, size=10,
horizontalalignment=horizontalalignment,
verticalalignment=verticalalignment,
bbox=dict(facecolor='w',
edgecolor=plt.cm.spectral(label / float(n_labels)),
alpha=.6))
plt.xlim(embedding[0].min() - .15 * embedding[0].ptp(),
embedding[0].max() + .10 * embedding[0].ptp(),)
plt.ylim(embedding[1].min() - .03 * embedding[1].ptp(),
embedding[1].max() + .03 * embedding[1].ptp())
plt.show()
|
bsd-3-clause
|
klfranco/klfranco.github.io
|
markdown_generator/publications.py
|
197
|
3887
|
# coding: utf-8
# # Publications markdown generator for academicpages
#
# Takes a TSV of publications with metadata and converts them for use with [academicpages.github.io](academicpages.github.io). This is an interactive Jupyter notebook, with the core python code in publications.py. Run either from the `markdown_generator` folder after replacing `publications.tsv` with one that fits your format.
#
# TODO: Make this work with BibTex and other databases of citations, rather than Stuart's non-standard TSV format and citation style.
#
# ## Data format
#
# The TSV needs to have the following columns: pub_date, title, venue, excerpt, citation, site_url, and paper_url, with a header at the top.
#
# - `excerpt` and `paper_url` can be blank, but the others must have values.
# - `pub_date` must be formatted as YYYY-MM-DD.
# - `url_slug` will be the descriptive part of the .md file and the permalink URL for the page about the paper. The .md file will be `YYYY-MM-DD-[url_slug].md` and the permalink will be `https://[yourdomain]/publications/YYYY-MM-DD-[url_slug]`
# ## Import pandas
#
# We are using the very handy pandas library for dataframes.
# In[2]:
import pandas as pd
# ## Import TSV
#
# Pandas makes this easy with the read_csv function. We are using a TSV, so we specify the separator as a tab, or `\t`.
#
# I found it important to put this data in a tab-separated values format, because there are a lot of commas in this kind of data and comma-separated values can get messed up. However, you can modify the import statement, as pandas also has read_excel(), read_json(), and others.
# In[3]:
publications = pd.read_csv("publications.tsv", sep="\t", header=0)
publications
# ## Escape special characters
#
# YAML is very picky about how it takes a valid string, so we are replacing single and double quotes (and ampersands) with their HTML encoded equivilents. This makes them look not so readable in raw format, but they are parsed and rendered nicely.
# In[4]:
html_escape_table = {
"&": "&",
'"': """,
"'": "'"
}
def html_escape(text):
"""Produce entities within text."""
return "".join(html_escape_table.get(c,c) for c in text)
# ## Creating the markdown files
#
# This is where the heavy lifting is done. This loops through all the rows in the TSV dataframe, then starts to concatentate a big string (```md```) that contains the markdown for each type. It does the YAML metadata first, then does the description for the individual page. If you don't want something to appear (like the "Recommended citation")
# In[5]:
import os
for row, item in publications.iterrows():
md_filename = str(item.pub_date) + "-" + item.url_slug + ".md"
html_filename = str(item.pub_date) + "-" + item.url_slug
year = item.pub_date[:4]
## YAML variables
md = "---\ntitle: \"" + item.title + '"\n'
md += """collection: publications"""
md += """\npermalink: /publication/""" + html_filename
if len(str(item.excerpt)) > 5:
md += "\nexcerpt: '" + html_escape(item.excerpt) + "'"
md += "\ndate: " + str(item.pub_date)
md += "\nvenue: '" + html_escape(item.venue) + "'"
if len(str(item.paper_url)) > 5:
md += "\npaperurl: '" + item.paper_url + "'"
md += "\ncitation: '" + html_escape(item.citation) + "'"
md += "\n---"
## Markdown description for individual page
if len(str(item.paper_url)) > 5:
md += "\n\n<a href='" + item.paper_url + "'>Download paper here</a>\n"
if len(str(item.excerpt)) > 5:
md += "\n" + html_escape(item.excerpt) + "\n"
md += "\nRecommended citation: " + item.citation
md_filename = os.path.basename(md_filename)
with open("../_publications/" + md_filename, 'w') as f:
f.write(md)
|
mit
|
pdebuyl-lab/RMPCDMD
|
experiments/03-single-janus/rotation_analysis.py
|
2
|
2482
|
#!/usr/bin/env python
"""
Analyze the rotational motion of a L-shaped colloid.
"""
from __future__ import print_function, division
import numpy as np
import h5py
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('file')
parser.add_argument('--plot', action='store_true')
parser.add_argument('--nx', type=int, default=5,
help='number of beads along the bottom of the L')
parser.add_argument('--ny', type=int, default=8,
help='number of beads along the long arm of the L')
parser.add_argument('--n-tiles', type=int, default=2,
help='number of tiles for the thickness of the bottom arm')
parser.add_argument('--arm-width', type=int, default=2,
help='width of long arm')
args = parser.parse_args()
with h5py.File(args.file, 'r') as a:
edges = a['particles/janus/box/edges'][:]
pos = a['particles/janus/position/value'][:]
im = a['particles/janus/image/value'][:]
vel = a['particles/janus/velocity/value'][:]
pos_com = a['observables/janus_pos/value'][:]
vel_com = vel.mean(axis=1)
pos = pos + im*edges.reshape((1,1,-1))
n_planar = args.nx * args.n_tiles + args.arm_width * (args.ny - args.n_tiles)
print(n_planar)
one_z = pos[:,n_planar,:] - pos[:,0,:]
one_z = one_z / np.sqrt(np.sum(one_z**2, axis=1)).reshape((-1,1))
v12 = vel[:,n_planar-args.arm_width,:] - vel[:,0,:]
v12_inplane = v12 - np.sum(v12*one_z, axis=1).reshape((-1,1))*one_z
off_in = np.sum(v12_inplane*one_z, axis=1)
r12 = pos[:,n_planar-args.arm_width,:] - pos[:,0,:]
dist12 = np.sqrt(np.sum((pos[0,n_planar-args.arm_width,:]-pos[0,0,:])**2))
r12 /= dist12
one_y = np.cross(one_z, r12)
omega_z = np.sum(v12_inplane*one_y, axis=1)/dist12
dir_v = np.sum(r12*vel_com, axis=1)
oz_mean = np.mean(omega_z)
print('mean omega_z', oz_mean)
print('mean directed velocity', dir_v.mean())
print('rotation radius', dir_v.mean()/oz_mean)
if args.plot:
import matplotlib.pyplot as plt
plt.figure()
plt.subplot(221)
plt.ylabel('directed velocity')
plt.plot(dir_v)
plt.subplot(222)
plt.hist(dir_v, bins=32, normed=True)
plt.axvline(dir_v.mean(), color='red')
plt.subplot(223)
plt.plot(omega_z)
plt.ylabel('rotational velocity')
plt.subplot(224)
plt.hist(omega_z, bins=32, normed=True)
plt.axvline(oz_mean, color='red')
plt.figure()
x, y, z = pos_com.T
plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('y')
plt.show()
|
bsd-3-clause
|
yinquan529/platform-external-chromium_org
|
ppapi/native_client/tests/breakpad_crash_test/crash_dump_tester.py
|
154
|
8545
|
#!/usr/bin/python
# Copyright (c) 2012 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
import os
import subprocess
import sys
import tempfile
import time
script_dir = os.path.dirname(__file__)
sys.path.append(os.path.join(script_dir,
'../../tools/browser_tester'))
import browser_tester
import browsertester.browserlauncher
# This script extends browser_tester to check for the presence of
# Breakpad crash dumps.
# This reads a file of lines containing 'key:value' pairs.
# The file contains entries like the following:
# plat:Win32
# prod:Chromium
# ptype:nacl-loader
# rept:crash svc
def ReadDumpTxtFile(filename):
dump_info = {}
fh = open(filename, 'r')
for line in fh:
if ':' in line:
key, value = line.rstrip().split(':', 1)
dump_info[key] = value
fh.close()
return dump_info
def StartCrashService(browser_path, dumps_dir, windows_pipe_name,
cleanup_funcs, crash_service_exe,
skip_if_missing=False):
# Find crash_service.exe relative to chrome.exe. This is a bit icky.
browser_dir = os.path.dirname(browser_path)
crash_service_path = os.path.join(browser_dir, crash_service_exe)
if skip_if_missing and not os.path.exists(crash_service_path):
return
proc = subprocess.Popen([crash_service_path,
'--v=1', # Verbose output for debugging failures
'--dumps-dir=%s' % dumps_dir,
'--pipe-name=%s' % windows_pipe_name])
def Cleanup():
# Note that if the process has already exited, this will raise
# an 'Access is denied' WindowsError exception, but
# crash_service.exe is not supposed to do this and such
# behaviour should make the test fail.
proc.terminate()
status = proc.wait()
sys.stdout.write('crash_dump_tester: %s exited with status %s\n'
% (crash_service_exe, status))
cleanup_funcs.append(Cleanup)
def ListPathsInDir(dir_path):
if os.path.exists(dir_path):
return [os.path.join(dir_path, name)
for name in os.listdir(dir_path)]
else:
return []
def GetDumpFiles(dumps_dirs):
all_files = [filename
for dumps_dir in dumps_dirs
for filename in ListPathsInDir(dumps_dir)]
sys.stdout.write('crash_dump_tester: Found %i files\n' % len(all_files))
for dump_file in all_files:
sys.stdout.write(' %s (size %i)\n'
% (dump_file, os.stat(dump_file).st_size))
return [dump_file for dump_file in all_files
if dump_file.endswith('.dmp')]
def Main(cleanup_funcs):
parser = browser_tester.BuildArgParser()
parser.add_option('--expected_crash_dumps', dest='expected_crash_dumps',
type=int, default=0,
help='The number of crash dumps that we should expect')
parser.add_option('--expected_process_type_for_crash',
dest='expected_process_type_for_crash',
type=str, default='nacl-loader',
help='The type of Chromium process that we expect the '
'crash dump to be for')
# Ideally we would just query the OS here to find out whether we are
# running x86-32 or x86-64 Windows, but Python's win32api module
# does not contain a wrapper for GetNativeSystemInfo(), which is
# what NaCl uses to check this, or for IsWow64Process(), which is
# what Chromium uses. Instead, we just rely on the build system to
# tell us.
parser.add_option('--win64', dest='win64', action='store_true',
help='Pass this if we are running tests for x86-64 Windows')
options, args = parser.parse_args()
temp_dir = tempfile.mkdtemp(prefix='nacl_crash_dump_tester_')
def CleanUpTempDir():
browsertester.browserlauncher.RemoveDirectory(temp_dir)
cleanup_funcs.append(CleanUpTempDir)
# To get a guaranteed unique pipe name, use the base name of the
# directory we just created.
windows_pipe_name = r'\\.\pipe\%s_crash_service' % os.path.basename(temp_dir)
# This environment variable enables Breakpad crash dumping in
# non-official builds of Chromium.
os.environ['CHROME_HEADLESS'] = '1'
if sys.platform == 'win32':
dumps_dir = temp_dir
# Override the default (global) Windows pipe name that Chromium will
# use for out-of-process crash reporting.
os.environ['CHROME_BREAKPAD_PIPE_NAME'] = windows_pipe_name
# Launch the x86-32 crash service so that we can handle crashes in
# the browser process.
StartCrashService(options.browser_path, dumps_dir, windows_pipe_name,
cleanup_funcs, 'crash_service.exe')
if options.win64:
# Launch the x86-64 crash service so that we can handle crashes
# in the NaCl loader process (nacl64.exe).
# Skip if missing, since in win64 builds crash_service.exe is 64-bit
# and crash_service64.exe does not exist.
StartCrashService(options.browser_path, dumps_dir, windows_pipe_name,
cleanup_funcs, 'crash_service64.exe',
skip_if_missing=True)
# We add a delay because there is probably a race condition:
# crash_service.exe might not have finished doing
# CreateNamedPipe() before NaCl does a crash dump and tries to
# connect to that pipe.
# TODO(mseaborn): We could change crash_service.exe to report when
# it has successfully created the named pipe.
time.sleep(1)
elif sys.platform == 'darwin':
dumps_dir = temp_dir
os.environ['BREAKPAD_DUMP_LOCATION'] = dumps_dir
elif sys.platform.startswith('linux'):
# The "--user-data-dir" option is not effective for the Breakpad
# setup in Linux Chromium, because Breakpad is initialized before
# "--user-data-dir" is read. So we set HOME to redirect the crash
# dumps to a temporary directory.
home_dir = temp_dir
os.environ['HOME'] = home_dir
options.enable_crash_reporter = True
result = browser_tester.Run(options.url, options)
# Find crash dump results.
if sys.platform.startswith('linux'):
# Look in "~/.config/*/Crash Reports". This will find crash
# reports under ~/.config/chromium or ~/.config/google-chrome, or
# under other subdirectories in case the branding is changed.
dumps_dirs = [os.path.join(path, 'Crash Reports')
for path in ListPathsInDir(os.path.join(home_dir, '.config'))]
else:
dumps_dirs = [dumps_dir]
dmp_files = GetDumpFiles(dumps_dirs)
failed = False
msg = ('crash_dump_tester: ERROR: Got %i crash dumps but expected %i\n' %
(len(dmp_files), options.expected_crash_dumps))
if len(dmp_files) != options.expected_crash_dumps:
sys.stdout.write(msg)
failed = True
for dump_file in dmp_files:
# Sanity check: Make sure dumping did not fail after opening the file.
msg = 'crash_dump_tester: ERROR: Dump file is empty\n'
if os.stat(dump_file).st_size == 0:
sys.stdout.write(msg)
failed = True
# On Windows, the crash dumps should come in pairs of a .dmp and
# .txt file.
if sys.platform == 'win32':
second_file = dump_file[:-4] + '.txt'
msg = ('crash_dump_tester: ERROR: File %r is missing a corresponding '
'%r file\n' % (dump_file, second_file))
if not os.path.exists(second_file):
sys.stdout.write(msg)
failed = True
continue
# Check that the crash dump comes from the NaCl process.
dump_info = ReadDumpTxtFile(second_file)
if 'ptype' in dump_info:
msg = ('crash_dump_tester: ERROR: Unexpected ptype value: %r != %r\n'
% (dump_info['ptype'], options.expected_process_type_for_crash))
if dump_info['ptype'] != options.expected_process_type_for_crash:
sys.stdout.write(msg)
failed = True
else:
sys.stdout.write('crash_dump_tester: ERROR: Missing ptype field\n')
failed = True
# TODO(mseaborn): Ideally we would also check that a backtrace
# containing an expected function name can be extracted from the
# crash dump.
if failed:
sys.stdout.write('crash_dump_tester: FAILED\n')
result = 1
else:
sys.stdout.write('crash_dump_tester: PASSED\n')
return result
def MainWrapper():
cleanup_funcs = []
try:
return Main(cleanup_funcs)
finally:
for func in cleanup_funcs:
func()
if __name__ == '__main__':
sys.exit(MainWrapper())
|
bsd-3-clause
|
ammarkhann/FinalSeniorCode
|
lib/python2.7/site-packages/pandas/core/indexes/api.py
|
7
|
4180
|
from pandas.core.indexes.base import (Index, _new_Index, # noqa
_ensure_index, _get_na_value,
InvalidIndexError)
from pandas.core.indexes.category import CategoricalIndex # noqa
from pandas.core.indexes.multi import MultiIndex # noqa
from pandas.core.indexes.interval import IntervalIndex # noqa
from pandas.core.indexes.numeric import (NumericIndex, Float64Index, # noqa
Int64Index, UInt64Index)
from pandas.core.indexes.range import RangeIndex # noqa
from pandas.core.indexes.timedeltas import TimedeltaIndex
from pandas.core.indexes.period import PeriodIndex
from pandas.core.indexes.datetimes import DatetimeIndex
import pandas.core.common as com
from pandas._libs import lib
from pandas._libs.tslib import NaT
# TODO: there are many places that rely on these private methods existing in
# pandas.core.index
__all__ = ['Index', 'MultiIndex', 'NumericIndex', 'Float64Index', 'Int64Index',
'CategoricalIndex', 'IntervalIndex', 'RangeIndex', 'UInt64Index',
'InvalidIndexError', 'TimedeltaIndex',
'PeriodIndex', 'DatetimeIndex',
'_new_Index', 'NaT',
'_ensure_index', '_get_na_value', '_get_combined_index',
'_get_distinct_indexes', '_union_indexes',
'_get_consensus_names',
'_all_indexes_same']
def _get_combined_index(indexes, intersect=False):
# TODO: handle index names!
indexes = _get_distinct_indexes(indexes)
if len(indexes) == 0:
return Index([])
if len(indexes) == 1:
return indexes[0]
if intersect:
index = indexes[0]
for other in indexes[1:]:
index = index.intersection(other)
return index
union = _union_indexes(indexes)
return _ensure_index(union)
def _get_distinct_indexes(indexes):
return list(dict((id(x), x) for x in indexes).values())
def _union_indexes(indexes):
if len(indexes) == 0:
raise AssertionError('Must have at least 1 Index to union')
if len(indexes) == 1:
result = indexes[0]
if isinstance(result, list):
result = Index(sorted(result))
return result
indexes, kind = _sanitize_and_check(indexes)
def _unique_indices(inds):
def conv(i):
if isinstance(i, Index):
i = i.tolist()
return i
return Index(lib.fast_unique_multiple_list([conv(i) for i in inds]))
if kind == 'special':
result = indexes[0]
if hasattr(result, 'union_many'):
return result.union_many(indexes[1:])
else:
for other in indexes[1:]:
result = result.union(other)
return result
elif kind == 'array':
index = indexes[0]
for other in indexes[1:]:
if not index.equals(other):
return _unique_indices(indexes)
name = _get_consensus_names(indexes)[0]
if name != index.name:
index = index._shallow_copy(name=name)
return index
else:
return _unique_indices(indexes)
def _sanitize_and_check(indexes):
kinds = list(set([type(index) for index in indexes]))
if list in kinds:
if len(kinds) > 1:
indexes = [Index(com._try_sort(x))
if not isinstance(x, Index) else
x for x in indexes]
kinds.remove(list)
else:
return indexes, 'list'
if len(kinds) > 1 or Index not in kinds:
return indexes, 'special'
else:
return indexes, 'array'
def _get_consensus_names(indexes):
# find the non-none names, need to tupleify to make
# the set hashable, then reverse on return
consensus_names = set([tuple(i.names) for i in indexes
if any(n is not None for n in i.names)])
if len(consensus_names) == 1:
return list(list(consensus_names)[0])
return [None] * indexes[0].nlevels
def _all_indexes_same(indexes):
first = indexes[0]
for index in indexes[1:]:
if not first.equals(index):
return False
return True
|
mit
|
bthirion/scikit-learn
|
sklearn/feature_extraction/text.py
|
2
|
52194
|
# -*- coding: utf-8 -*-
# Authors: Olivier Grisel <[email protected]>
# Mathieu Blondel <[email protected]>
# Lars Buitinck
# Robert Layton <[email protected]>
# Jochen Wersdörfer <[email protected]>
# Roman Sinayev <[email protected]>
#
# License: BSD 3 clause
"""
The :mod:`sklearn.feature_extraction.text` submodule gathers utilities to
build feature vectors from text documents.
"""
from __future__ import unicode_literals
import array
from collections import Mapping, defaultdict
import numbers
from operator import itemgetter
import re
import unicodedata
import numpy as np
import scipy.sparse as sp
from ..base import BaseEstimator, TransformerMixin
from ..externals import six
from ..externals.six.moves import xrange
from ..preprocessing import normalize
from .hashing import FeatureHasher
from .stop_words import ENGLISH_STOP_WORDS
from ..utils.fixes import frombuffer_empty, bincount
from ..utils.validation import check_is_fitted
__all__ = ['CountVectorizer',
'ENGLISH_STOP_WORDS',
'TfidfTransformer',
'TfidfVectorizer',
'strip_accents_ascii',
'strip_accents_unicode',
'strip_tags']
def strip_accents_unicode(s):
"""Transform accentuated unicode symbols into their simple counterpart
Warning: the python-level loop and join operations make this
implementation 20 times slower than the strip_accents_ascii basic
normalization.
See also
--------
strip_accents_ascii
Remove accentuated char for any unicode symbol that has a direct
ASCII equivalent.
"""
normalized = unicodedata.normalize('NFKD', s)
if normalized == s:
return s
else:
return ''.join([c for c in normalized if not unicodedata.combining(c)])
def strip_accents_ascii(s):
"""Transform accentuated unicode symbols into ascii or nothing
Warning: this solution is only suited for languages that have a direct
transliteration to ASCII symbols.
See also
--------
strip_accents_unicode
Remove accentuated char for any unicode symbol.
"""
nkfd_form = unicodedata.normalize('NFKD', s)
return nkfd_form.encode('ASCII', 'ignore').decode('ASCII')
def strip_tags(s):
"""Basic regexp based HTML / XML tag stripper function
For serious HTML/XML preprocessing you should rather use an external
library such as lxml or BeautifulSoup.
"""
return re.compile(r"<([^>]+)>", flags=re.UNICODE).sub(" ", s)
def _check_stop_list(stop):
if stop == "english":
return ENGLISH_STOP_WORDS
elif isinstance(stop, six.string_types):
raise ValueError("not a built-in stop list: %s" % stop)
elif stop is None:
return None
else: # assume it's a collection
return frozenset(stop)
class VectorizerMixin(object):
"""Provides common code for text vectorizers (tokenization logic)."""
_white_spaces = re.compile(r"\s\s+")
def decode(self, doc):
"""Decode the input into a string of unicode symbols
The decoding strategy depends on the vectorizer parameters.
"""
if self.input == 'filename':
with open(doc, 'rb') as fh:
doc = fh.read()
elif self.input == 'file':
doc = doc.read()
if isinstance(doc, bytes):
doc = doc.decode(self.encoding, self.decode_error)
if doc is np.nan:
raise ValueError("np.nan is an invalid document, expected byte or "
"unicode string.")
return doc
def _word_ngrams(self, tokens, stop_words=None):
"""Turn tokens into a sequence of n-grams after stop words filtering"""
# handle stop words
if stop_words is not None:
tokens = [w for w in tokens if w not in stop_words]
# handle token n-grams
min_n, max_n = self.ngram_range
if max_n != 1:
original_tokens = tokens
tokens = []
n_original_tokens = len(original_tokens)
for n in xrange(min_n,
min(max_n + 1, n_original_tokens + 1)):
for i in xrange(n_original_tokens - n + 1):
tokens.append(" ".join(original_tokens[i: i + n]))
return tokens
def _char_ngrams(self, text_document):
"""Tokenize text_document into a sequence of character n-grams"""
# normalize white spaces
text_document = self._white_spaces.sub(" ", text_document)
text_len = len(text_document)
ngrams = []
min_n, max_n = self.ngram_range
for n in xrange(min_n, min(max_n + 1, text_len + 1)):
for i in xrange(text_len - n + 1):
ngrams.append(text_document[i: i + n])
return ngrams
def _char_wb_ngrams(self, text_document):
"""Whitespace sensitive char-n-gram tokenization.
Tokenize text_document into a sequence of character n-grams
operating only inside word boundaries. n-grams at the edges
of words are padded with space."""
# normalize white spaces
text_document = self._white_spaces.sub(" ", text_document)
min_n, max_n = self.ngram_range
ngrams = []
for w in text_document.split():
w = ' ' + w + ' '
w_len = len(w)
for n in xrange(min_n, max_n + 1):
offset = 0
ngrams.append(w[offset:offset + n])
while offset + n < w_len:
offset += 1
ngrams.append(w[offset:offset + n])
if offset == 0: # count a short word (w_len < n) only once
break
return ngrams
def build_preprocessor(self):
"""Return a function to preprocess the text before tokenization"""
if self.preprocessor is not None:
return self.preprocessor
# unfortunately python functools package does not have an efficient
# `compose` function that would have allowed us to chain a dynamic
# number of functions. However the cost of a lambda call is a few
# hundreds of nanoseconds which is negligible when compared to the
# cost of tokenizing a string of 1000 chars for instance.
noop = lambda x: x
# accent stripping
if not self.strip_accents:
strip_accents = noop
elif callable(self.strip_accents):
strip_accents = self.strip_accents
elif self.strip_accents == 'ascii':
strip_accents = strip_accents_ascii
elif self.strip_accents == 'unicode':
strip_accents = strip_accents_unicode
else:
raise ValueError('Invalid value for "strip_accents": %s' %
self.strip_accents)
if self.lowercase:
return lambda x: strip_accents(x.lower())
else:
return strip_accents
def build_tokenizer(self):
"""Return a function that splits a string into a sequence of tokens"""
if self.tokenizer is not None:
return self.tokenizer
token_pattern = re.compile(self.token_pattern)
return lambda doc: token_pattern.findall(doc)
def get_stop_words(self):
"""Build or fetch the effective stop words list"""
return _check_stop_list(self.stop_words)
def build_analyzer(self):
"""Return a callable that handles preprocessing and tokenization"""
if callable(self.analyzer):
return self.analyzer
preprocess = self.build_preprocessor()
if self.analyzer == 'char':
return lambda doc: self._char_ngrams(preprocess(self.decode(doc)))
elif self.analyzer == 'char_wb':
return lambda doc: self._char_wb_ngrams(
preprocess(self.decode(doc)))
elif self.analyzer == 'word':
stop_words = self.get_stop_words()
tokenize = self.build_tokenizer()
return lambda doc: self._word_ngrams(
tokenize(preprocess(self.decode(doc))), stop_words)
else:
raise ValueError('%s is not a valid tokenization scheme/analyzer' %
self.analyzer)
def _validate_vocabulary(self):
vocabulary = self.vocabulary
if vocabulary is not None:
if isinstance(vocabulary, set):
vocabulary = sorted(vocabulary)
if not isinstance(vocabulary, Mapping):
vocab = {}
for i, t in enumerate(vocabulary):
if vocab.setdefault(t, i) != i:
msg = "Duplicate term in vocabulary: %r" % t
raise ValueError(msg)
vocabulary = vocab
else:
indices = set(six.itervalues(vocabulary))
if len(indices) != len(vocabulary):
raise ValueError("Vocabulary contains repeated indices.")
for i in xrange(len(vocabulary)):
if i not in indices:
msg = ("Vocabulary of size %d doesn't contain index "
"%d." % (len(vocabulary), i))
raise ValueError(msg)
if not vocabulary:
raise ValueError("empty vocabulary passed to fit")
self.fixed_vocabulary_ = True
self.vocabulary_ = dict(vocabulary)
else:
self.fixed_vocabulary_ = False
def _check_vocabulary(self):
"""Check if vocabulary is empty or missing (not fit-ed)"""
msg = "%(name)s - Vocabulary wasn't fitted."
check_is_fitted(self, 'vocabulary_', msg=msg),
if len(self.vocabulary_) == 0:
raise ValueError("Vocabulary is empty")
class HashingVectorizer(BaseEstimator, VectorizerMixin):
"""Convert a collection of text documents to a matrix of token occurrences
It turns a collection of text documents into a scipy.sparse matrix holding
token occurrence counts (or binary occurrence information), possibly
normalized as token frequencies if norm='l1' or projected on the euclidean
unit sphere if norm='l2'.
This text vectorizer implementation uses the hashing trick to find the
token string name to feature integer index mapping.
This strategy has several advantages:
- it is very low memory scalable to large datasets as there is no need to
store a vocabulary dictionary in memory
- it is fast to pickle and un-pickle as it holds no state besides the
constructor parameters
- it can be used in a streaming (partial fit) or parallel pipeline as there
is no state computed during fit.
There are also a couple of cons (vs using a CountVectorizer with an
in-memory vocabulary):
- there is no way to compute the inverse transform (from feature indices to
string feature names) which can be a problem when trying to introspect
which features are most important to a model.
- there can be collisions: distinct tokens can be mapped to the same
feature index. However in practice this is rarely an issue if n_features
is large enough (e.g. 2 ** 18 for text classification problems).
- no IDF weighting as this would render the transformer stateful.
The hash function employed is the signed 32-bit version of Murmurhash3.
Read more in the :ref:`User Guide <text_feature_extraction>`.
Parameters
----------
input : string {'filename', 'file', 'content'}
If 'filename', the sequence passed as an argument to fit is
expected to be a list of filenames that need reading to fetch
the raw content to analyze.
If 'file', the sequence items must have a 'read' method (file-like
object) that is called to fetch the bytes in memory.
Otherwise the input is expected to be the sequence strings or
bytes items are expected to be analyzed directly.
encoding : string, default='utf-8'
If bytes or files are given to analyze, this encoding is used to
decode.
decode_error : {'strict', 'ignore', 'replace'}
Instruction on what to do if a byte sequence is given to analyze that
contains characters not of the given `encoding`. By default, it is
'strict', meaning that a UnicodeDecodeError will be raised. Other
values are 'ignore' and 'replace'.
strip_accents : {'ascii', 'unicode', None}
Remove accents during the preprocessing step.
'ascii' is a fast method that only works on characters that have
an direct ASCII mapping.
'unicode' is a slightly slower method that works on any characters.
None (default) does nothing.
analyzer : string, {'word', 'char', 'char_wb'} or callable
Whether the feature should be made of word or character n-grams.
Option 'char_wb' creates character n-grams only from text inside
word boundaries; n-grams at the edges of words are padded with space.
If a callable is passed it is used to extract the sequence of features
out of the raw, unprocessed input.
preprocessor : callable or None (default)
Override the preprocessing (string transformation) stage while
preserving the tokenizing and n-grams generation steps.
tokenizer : callable or None (default)
Override the string tokenization step while preserving the
preprocessing and n-grams generation steps.
Only applies if ``analyzer == 'word'``.
ngram_range : tuple (min_n, max_n), default=(1, 1)
The lower and upper boundary of the range of n-values for different
n-grams to be extracted. All values of n such that min_n <= n <= max_n
will be used.
stop_words : string {'english'}, list, or None (default)
If 'english', a built-in stop word list for English is used.
If a list, that list is assumed to contain stop words, all of which
will be removed from the resulting tokens.
Only applies if ``analyzer == 'word'``.
lowercase : boolean, default=True
Convert all characters to lowercase before tokenizing.
token_pattern : string
Regular expression denoting what constitutes a "token", only used
if ``analyzer == 'word'``. The default regexp selects tokens of 2
or more alphanumeric characters (punctuation is completely ignored
and always treated as a token separator).
n_features : integer, default=(2 ** 20)
The number of features (columns) in the output matrices. Small numbers
of features are likely to cause hash collisions, but large numbers
will cause larger coefficient dimensions in linear learners.
norm : 'l1', 'l2' or None, optional
Norm used to normalize term vectors. None for no normalization.
binary : boolean, default=False.
If True, all non zero counts are set to 1. This is useful for discrete
probabilistic models that model binary events rather than integer
counts.
dtype : type, optional
Type of the matrix returned by fit_transform() or transform().
non_negative : boolean, default=False
Whether output matrices should contain non-negative values only;
effectively calls abs on the matrix prior to returning it.
When True, output values can be interpreted as frequencies.
When False, output values will have expected value zero.
See also
--------
CountVectorizer, TfidfVectorizer
"""
def __init__(self, input='content', encoding='utf-8',
decode_error='strict', strip_accents=None,
lowercase=True, preprocessor=None, tokenizer=None,
stop_words=None, token_pattern=r"(?u)\b\w\w+\b",
ngram_range=(1, 1), analyzer='word', n_features=(2 ** 20),
binary=False, norm='l2', non_negative=False,
dtype=np.float64):
self.input = input
self.encoding = encoding
self.decode_error = decode_error
self.strip_accents = strip_accents
self.preprocessor = preprocessor
self.tokenizer = tokenizer
self.analyzer = analyzer
self.lowercase = lowercase
self.token_pattern = token_pattern
self.stop_words = stop_words
self.n_features = n_features
self.ngram_range = ngram_range
self.binary = binary
self.norm = norm
self.non_negative = non_negative
self.dtype = dtype
def partial_fit(self, X, y=None):
"""Does nothing: this transformer is stateless.
This method is just there to mark the fact that this transformer
can work in a streaming setup.
"""
return self
def fit(self, X, y=None):
"""Does nothing: this transformer is stateless."""
# triggers a parameter validation
if isinstance(X, six.string_types):
raise ValueError(
"Iterable over raw text documents expected, "
"string object received.")
self._get_hasher().fit(X, y=y)
return self
def transform(self, X, y=None):
"""Transform a sequence of documents to a document-term matrix.
Parameters
----------
X : iterable over raw text documents, length = n_samples
Samples. Each sample must be a text document (either bytes or
unicode strings, file name or file object depending on the
constructor argument) which will be tokenized and hashed.
y : (ignored)
Returns
-------
X : scipy.sparse matrix, shape = (n_samples, self.n_features)
Document-term matrix.
"""
if isinstance(X, six.string_types):
raise ValueError(
"Iterable over raw text documents expected, "
"string object received.")
analyzer = self.build_analyzer()
X = self._get_hasher().transform(analyzer(doc) for doc in X)
if self.binary:
X.data.fill(1)
if self.norm is not None:
X = normalize(X, norm=self.norm, copy=False)
return X
# Alias transform to fit_transform for convenience
fit_transform = transform
def _get_hasher(self):
return FeatureHasher(n_features=self.n_features,
input_type='string', dtype=self.dtype,
non_negative=self.non_negative)
def _document_frequency(X):
"""Count the number of non-zero values for each feature in sparse X."""
if sp.isspmatrix_csr(X):
return bincount(X.indices, minlength=X.shape[1])
else:
return np.diff(sp.csc_matrix(X, copy=False).indptr)
class CountVectorizer(BaseEstimator, VectorizerMixin):
"""Convert a collection of text documents to a matrix of token counts
This implementation produces a sparse representation of the counts using
scipy.sparse.csr_matrix.
If you do not provide an a-priori dictionary and you do not use an analyzer
that does some kind of feature selection then the number of features will
be equal to the vocabulary size found by analyzing the data.
Read more in the :ref:`User Guide <text_feature_extraction>`.
Parameters
----------
input : string {'filename', 'file', 'content'}
If 'filename', the sequence passed as an argument to fit is
expected to be a list of filenames that need reading to fetch
the raw content to analyze.
If 'file', the sequence items must have a 'read' method (file-like
object) that is called to fetch the bytes in memory.
Otherwise the input is expected to be the sequence strings or
bytes items are expected to be analyzed directly.
encoding : string, 'utf-8' by default.
If bytes or files are given to analyze, this encoding is used to
decode.
decode_error : {'strict', 'ignore', 'replace'}
Instruction on what to do if a byte sequence is given to analyze that
contains characters not of the given `encoding`. By default, it is
'strict', meaning that a UnicodeDecodeError will be raised. Other
values are 'ignore' and 'replace'.
strip_accents : {'ascii', 'unicode', None}
Remove accents during the preprocessing step.
'ascii' is a fast method that only works on characters that have
an direct ASCII mapping.
'unicode' is a slightly slower method that works on any characters.
None (default) does nothing.
analyzer : string, {'word', 'char', 'char_wb'} or callable
Whether the feature should be made of word or character n-grams.
Option 'char_wb' creates character n-grams only from text inside
word boundaries; n-grams at the edges of words are padded with space.
If a callable is passed it is used to extract the sequence of features
out of the raw, unprocessed input.
preprocessor : callable or None (default)
Override the preprocessing (string transformation) stage while
preserving the tokenizing and n-grams generation steps.
tokenizer : callable or None (default)
Override the string tokenization step while preserving the
preprocessing and n-grams generation steps.
Only applies if ``analyzer == 'word'``.
ngram_range : tuple (min_n, max_n)
The lower and upper boundary of the range of n-values for different
n-grams to be extracted. All values of n such that min_n <= n <= max_n
will be used.
stop_words : string {'english'}, list, or None (default)
If 'english', a built-in stop word list for English is used.
If a list, that list is assumed to contain stop words, all of which
will be removed from the resulting tokens.
Only applies if ``analyzer == 'word'``.
If None, no stop words will be used. max_df can be set to a value
in the range [0.7, 1.0) to automatically detect and filter stop
words based on intra corpus document frequency of terms.
lowercase : boolean, True by default
Convert all characters to lowercase before tokenizing.
token_pattern : string
Regular expression denoting what constitutes a "token", only used
if ``analyzer == 'word'``. The default regexp select tokens of 2
or more alphanumeric characters (punctuation is completely ignored
and always treated as a token separator).
max_df : float in range [0.0, 1.0] or int, default=1.0
When building the vocabulary ignore terms that have a document
frequency strictly higher than the given threshold (corpus-specific
stop words).
If float, the parameter represents a proportion of documents, integer
absolute counts.
This parameter is ignored if vocabulary is not None.
min_df : float in range [0.0, 1.0] or int, default=1
When building the vocabulary ignore terms that have a document
frequency strictly lower than the given threshold. This value is also
called cut-off in the literature.
If float, the parameter represents a proportion of documents, integer
absolute counts.
This parameter is ignored if vocabulary is not None.
max_features : int or None, default=None
If not None, build a vocabulary that only consider the top
max_features ordered by term frequency across the corpus.
This parameter is ignored if vocabulary is not None.
vocabulary : Mapping or iterable, optional
Either a Mapping (e.g., a dict) where keys are terms and values are
indices in the feature matrix, or an iterable over terms. If not
given, a vocabulary is determined from the input documents. Indices
in the mapping should not be repeated and should not have any gap
between 0 and the largest index.
binary : boolean, default=False
If True, all non zero counts are set to 1. This is useful for discrete
probabilistic models that model binary events rather than integer
counts.
dtype : type, optional
Type of the matrix returned by fit_transform() or transform().
Attributes
----------
vocabulary_ : dict
A mapping of terms to feature indices.
stop_words_ : set
Terms that were ignored because they either:
- occurred in too many documents (`max_df`)
- occurred in too few documents (`min_df`)
- were cut off by feature selection (`max_features`).
This is only available if no vocabulary was given.
See also
--------
HashingVectorizer, TfidfVectorizer
Notes
-----
The ``stop_words_`` attribute can get large and increase the model size
when pickling. This attribute is provided only for introspection and can
be safely removed using delattr or set to None before pickling.
"""
def __init__(self, input='content', encoding='utf-8',
decode_error='strict', strip_accents=None,
lowercase=True, preprocessor=None, tokenizer=None,
stop_words=None, token_pattern=r"(?u)\b\w\w+\b",
ngram_range=(1, 1), analyzer='word',
max_df=1.0, min_df=1, max_features=None,
vocabulary=None, binary=False, dtype=np.int64):
self.input = input
self.encoding = encoding
self.decode_error = decode_error
self.strip_accents = strip_accents
self.preprocessor = preprocessor
self.tokenizer = tokenizer
self.analyzer = analyzer
self.lowercase = lowercase
self.token_pattern = token_pattern
self.stop_words = stop_words
self.max_df = max_df
self.min_df = min_df
if max_df < 0 or min_df < 0:
raise ValueError("negative value for max_df or min_df")
self.max_features = max_features
if max_features is not None:
if (not isinstance(max_features, numbers.Integral) or
max_features <= 0):
raise ValueError(
"max_features=%r, neither a positive integer nor None"
% max_features)
self.ngram_range = ngram_range
self.vocabulary = vocabulary
self.binary = binary
self.dtype = dtype
def _sort_features(self, X, vocabulary):
"""Sort features by name
Returns a reordered matrix and modifies the vocabulary in place
"""
sorted_features = sorted(six.iteritems(vocabulary))
map_index = np.empty(len(sorted_features), dtype=np.int32)
for new_val, (term, old_val) in enumerate(sorted_features):
vocabulary[term] = new_val
map_index[old_val] = new_val
X.indices = map_index.take(X.indices, mode='clip')
return X
def _limit_features(self, X, vocabulary, high=None, low=None,
limit=None):
"""Remove too rare or too common features.
Prune features that are non zero in more samples than high or less
documents than low, modifying the vocabulary, and restricting it to
at most the limit most frequent.
This does not prune samples with zero features.
"""
if high is None and low is None and limit is None:
return X, set()
# Calculate a mask based on document frequencies
dfs = _document_frequency(X)
tfs = np.asarray(X.sum(axis=0)).ravel()
mask = np.ones(len(dfs), dtype=bool)
if high is not None:
mask &= dfs <= high
if low is not None:
mask &= dfs >= low
if limit is not None and mask.sum() > limit:
mask_inds = (-tfs[mask]).argsort()[:limit]
new_mask = np.zeros(len(dfs), dtype=bool)
new_mask[np.where(mask)[0][mask_inds]] = True
mask = new_mask
new_indices = np.cumsum(mask) - 1 # maps old indices to new
removed_terms = set()
for term, old_index in list(six.iteritems(vocabulary)):
if mask[old_index]:
vocabulary[term] = new_indices[old_index]
else:
del vocabulary[term]
removed_terms.add(term)
kept_indices = np.where(mask)[0]
if len(kept_indices) == 0:
raise ValueError("After pruning, no terms remain. Try a lower"
" min_df or a higher max_df.")
return X[:, kept_indices], removed_terms
def _count_vocab(self, raw_documents, fixed_vocab):
"""Create sparse feature matrix, and vocabulary where fixed_vocab=False
"""
if fixed_vocab:
vocabulary = self.vocabulary_
else:
# Add a new value when a new vocabulary item is seen
vocabulary = defaultdict()
vocabulary.default_factory = vocabulary.__len__
analyze = self.build_analyzer()
j_indices = []
indptr = _make_int_array()
values = _make_int_array()
indptr.append(0)
for doc in raw_documents:
feature_counter = {}
for feature in analyze(doc):
try:
feature_idx = vocabulary[feature]
if feature_idx not in feature_counter:
feature_counter[feature_idx] = 1
else:
feature_counter[feature_idx] += 1
except KeyError:
# Ignore out-of-vocabulary items for fixed_vocab=True
continue
j_indices.extend(feature_counter.keys())
values.extend(feature_counter.values())
indptr.append(len(j_indices))
if not fixed_vocab:
# disable defaultdict behaviour
vocabulary = dict(vocabulary)
if not vocabulary:
raise ValueError("empty vocabulary; perhaps the documents only"
" contain stop words")
j_indices = np.asarray(j_indices, dtype=np.intc)
indptr = np.frombuffer(indptr, dtype=np.intc)
values = frombuffer_empty(values, dtype=np.intc)
X = sp.csr_matrix((values, j_indices, indptr),
shape=(len(indptr) - 1, len(vocabulary)),
dtype=self.dtype)
X.sort_indices()
return vocabulary, X
def fit(self, raw_documents, y=None):
"""Learn a vocabulary dictionary of all tokens in the raw documents.
Parameters
----------
raw_documents : iterable
An iterable which yields either str, unicode or file objects.
Returns
-------
self
"""
self.fit_transform(raw_documents)
return self
def fit_transform(self, raw_documents, y=None):
"""Learn the vocabulary dictionary and return term-document matrix.
This is equivalent to fit followed by transform, but more efficiently
implemented.
Parameters
----------
raw_documents : iterable
An iterable which yields either str, unicode or file objects.
Returns
-------
X : array, [n_samples, n_features]
Document-term matrix.
"""
# We intentionally don't call the transform method to make
# fit_transform overridable without unwanted side effects in
# TfidfVectorizer.
if isinstance(raw_documents, six.string_types):
raise ValueError(
"Iterable over raw text documents expected, "
"string object received.")
self._validate_vocabulary()
max_df = self.max_df
min_df = self.min_df
max_features = self.max_features
vocabulary, X = self._count_vocab(raw_documents,
self.fixed_vocabulary_)
if self.binary:
X.data.fill(1)
if not self.fixed_vocabulary_:
X = self._sort_features(X, vocabulary)
n_doc = X.shape[0]
max_doc_count = (max_df
if isinstance(max_df, numbers.Integral)
else max_df * n_doc)
min_doc_count = (min_df
if isinstance(min_df, numbers.Integral)
else min_df * n_doc)
if max_doc_count < min_doc_count:
raise ValueError(
"max_df corresponds to < documents than min_df")
X, self.stop_words_ = self._limit_features(X, vocabulary,
max_doc_count,
min_doc_count,
max_features)
self.vocabulary_ = vocabulary
return X
def transform(self, raw_documents):
"""Transform documents to document-term matrix.
Extract token counts out of raw text documents using the vocabulary
fitted with fit or the one provided to the constructor.
Parameters
----------
raw_documents : iterable
An iterable which yields either str, unicode or file objects.
Returns
-------
X : sparse matrix, [n_samples, n_features]
Document-term matrix.
"""
if isinstance(raw_documents, six.string_types):
raise ValueError(
"Iterable over raw text documents expected, "
"string object received.")
if not hasattr(self, 'vocabulary_'):
self._validate_vocabulary()
self._check_vocabulary()
# use the same matrix-building strategy as fit_transform
_, X = self._count_vocab(raw_documents, fixed_vocab=True)
if self.binary:
X.data.fill(1)
return X
def inverse_transform(self, X):
"""Return terms per document with nonzero entries in X.
Parameters
----------
X : {array, sparse matrix}, shape = [n_samples, n_features]
Returns
-------
X_inv : list of arrays, len = n_samples
List of arrays of terms.
"""
self._check_vocabulary()
if sp.issparse(X):
# We need CSR format for fast row manipulations.
X = X.tocsr()
else:
# We need to convert X to a matrix, so that the indexing
# returns 2D objects
X = np.asmatrix(X)
n_samples = X.shape[0]
terms = np.array(list(self.vocabulary_.keys()))
indices = np.array(list(self.vocabulary_.values()))
inverse_vocabulary = terms[np.argsort(indices)]
return [inverse_vocabulary[X[i, :].nonzero()[1]].ravel()
for i in range(n_samples)]
def get_feature_names(self):
"""Array mapping from feature integer indices to feature name"""
self._check_vocabulary()
return [t for t, i in sorted(six.iteritems(self.vocabulary_),
key=itemgetter(1))]
def _make_int_array():
"""Construct an array.array of a type suitable for scipy.sparse indices."""
return array.array(str("i"))
class TfidfTransformer(BaseEstimator, TransformerMixin):
"""Transform a count matrix to a normalized tf or tf-idf representation
Tf means term-frequency while tf-idf means term-frequency times inverse
document-frequency. This is a common term weighting scheme in information
retrieval, that has also found good use in document classification.
The goal of using tf-idf instead of the raw frequencies of occurrence of a
token in a given document is to scale down the impact of tokens that occur
very frequently in a given corpus and that are hence empirically less
informative than features that occur in a small fraction of the training
corpus.
The formula that is used to compute the tf-idf of term t is
tf-idf(d, t) = tf(t) * idf(d, t), and the idf is computed as
idf(d, t) = log [ n / df(d, t) ] + 1 (if ``smooth_idf=False``),
where n is the total number of documents and df(d, t) is the
document frequency; the document frequency is the number of documents d
that contain term t. The effect of adding "1" to the idf in the equation
above is that terms with zero idf, i.e., terms that occur in all documents
in a training set, will not be entirely ignored.
(Note that the idf formula above differs from the standard
textbook notation that defines the idf as
idf(d, t) = log [ n / (df(d, t) + 1) ]).
If ``smooth_idf=True`` (the default), the constant "1" is added to the
numerator and denominator of the idf as if an extra document was seen
containing every term in the collection exactly once, which prevents
zero divisions: idf(d, t) = log [ (1 + n) / (1 + df(d, t)) ] + 1.
Furthermore, the formulas used to compute tf and idf depend
on parameter settings that correspond to the SMART notation used in IR
as follows:
Tf is "n" (natural) by default, "l" (logarithmic) when
``sublinear_tf=True``.
Idf is "t" when use_idf is given, "n" (none) otherwise.
Normalization is "c" (cosine) when ``norm='l2'``, "n" (none)
when ``norm=None``.
Read more in the :ref:`User Guide <text_feature_extraction>`.
Parameters
----------
norm : 'l1', 'l2' or None, optional
Norm used to normalize term vectors. None for no normalization.
use_idf : boolean, default=True
Enable inverse-document-frequency reweighting.
smooth_idf : boolean, default=True
Smooth idf weights by adding one to document frequencies, as if an
extra document was seen containing every term in the collection
exactly once. Prevents zero divisions.
sublinear_tf : boolean, default=False
Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf).
References
----------
.. [Yates2011] `R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern
Information Retrieval. Addison Wesley, pp. 68-74.`
.. [MRS2008] `C.D. Manning, P. Raghavan and H. Schütze (2008).
Introduction to Information Retrieval. Cambridge University
Press, pp. 118-120.`
"""
def __init__(self, norm='l2', use_idf=True, smooth_idf=True,
sublinear_tf=False):
self.norm = norm
self.use_idf = use_idf
self.smooth_idf = smooth_idf
self.sublinear_tf = sublinear_tf
def fit(self, X, y=None):
"""Learn the idf vector (global term weights)
Parameters
----------
X : sparse matrix, [n_samples, n_features]
a matrix of term/token counts
"""
if not sp.issparse(X):
X = sp.csc_matrix(X)
if self.use_idf:
n_samples, n_features = X.shape
df = _document_frequency(X)
# perform idf smoothing if required
df += int(self.smooth_idf)
n_samples += int(self.smooth_idf)
# log+1 instead of log makes sure terms with zero idf don't get
# suppressed entirely.
idf = np.log(float(n_samples) / df) + 1.0
self._idf_diag = sp.spdiags(idf, diags=0, m=n_features,
n=n_features, format='csr')
return self
def transform(self, X, copy=True):
"""Transform a count matrix to a tf or tf-idf representation
Parameters
----------
X : sparse matrix, [n_samples, n_features]
a matrix of term/token counts
copy : boolean, default True
Whether to copy X and operate on the copy or perform in-place
operations.
Returns
-------
vectors : sparse matrix, [n_samples, n_features]
"""
if hasattr(X, 'dtype') and np.issubdtype(X.dtype, np.float):
# preserve float family dtype
X = sp.csr_matrix(X, copy=copy)
else:
# convert counts or binary occurrences to floats
X = sp.csr_matrix(X, dtype=np.float64, copy=copy)
n_samples, n_features = X.shape
if self.sublinear_tf:
np.log(X.data, X.data)
X.data += 1
if self.use_idf:
check_is_fitted(self, '_idf_diag', 'idf vector is not fitted')
expected_n_features = self._idf_diag.shape[0]
if n_features != expected_n_features:
raise ValueError("Input has n_features=%d while the model"
" has been trained with n_features=%d" % (
n_features, expected_n_features))
# *= doesn't work
X = X * self._idf_diag
if self.norm:
X = normalize(X, norm=self.norm, copy=False)
return X
@property
def idf_(self):
# if _idf_diag is not set, this will raise an attribute error,
# which means hasattr(self, "idf_") is False
return np.ravel(self._idf_diag.sum(axis=0))
class TfidfVectorizer(CountVectorizer):
"""Convert a collection of raw documents to a matrix of TF-IDF features.
Equivalent to CountVectorizer followed by TfidfTransformer.
Read more in the :ref:`User Guide <text_feature_extraction>`.
Parameters
----------
input : string {'filename', 'file', 'content'}
If 'filename', the sequence passed as an argument to fit is
expected to be a list of filenames that need reading to fetch
the raw content to analyze.
If 'file', the sequence items must have a 'read' method (file-like
object) that is called to fetch the bytes in memory.
Otherwise the input is expected to be the sequence strings or
bytes items are expected to be analyzed directly.
encoding : string, 'utf-8' by default.
If bytes or files are given to analyze, this encoding is used to
decode.
decode_error : {'strict', 'ignore', 'replace'}
Instruction on what to do if a byte sequence is given to analyze that
contains characters not of the given `encoding`. By default, it is
'strict', meaning that a UnicodeDecodeError will be raised. Other
values are 'ignore' and 'replace'.
strip_accents : {'ascii', 'unicode', None}
Remove accents during the preprocessing step.
'ascii' is a fast method that only works on characters that have
an direct ASCII mapping.
'unicode' is a slightly slower method that works on any characters.
None (default) does nothing.
analyzer : string, {'word', 'char'} or callable
Whether the feature should be made of word or character n-grams.
If a callable is passed it is used to extract the sequence of features
out of the raw, unprocessed input.
preprocessor : callable or None (default)
Override the preprocessing (string transformation) stage while
preserving the tokenizing and n-grams generation steps.
tokenizer : callable or None (default)
Override the string tokenization step while preserving the
preprocessing and n-grams generation steps.
Only applies if ``analyzer == 'word'``.
ngram_range : tuple (min_n, max_n)
The lower and upper boundary of the range of n-values for different
n-grams to be extracted. All values of n such that min_n <= n <= max_n
will be used.
stop_words : string {'english'}, list, or None (default)
If a string, it is passed to _check_stop_list and the appropriate stop
list is returned. 'english' is currently the only supported string
value.
If a list, that list is assumed to contain stop words, all of which
will be removed from the resulting tokens.
Only applies if ``analyzer == 'word'``.
If None, no stop words will be used. max_df can be set to a value
in the range [0.7, 1.0) to automatically detect and filter stop
words based on intra corpus document frequency of terms.
lowercase : boolean, default True
Convert all characters to lowercase before tokenizing.
token_pattern : string
Regular expression denoting what constitutes a "token", only used
if ``analyzer == 'word'``. The default regexp selects tokens of 2
or more alphanumeric characters (punctuation is completely ignored
and always treated as a token separator).
max_df : float in range [0.0, 1.0] or int, default=1.0
When building the vocabulary ignore terms that have a document
frequency strictly higher than the given threshold (corpus-specific
stop words).
If float, the parameter represents a proportion of documents, integer
absolute counts.
This parameter is ignored if vocabulary is not None.
min_df : float in range [0.0, 1.0] or int, default=1
When building the vocabulary ignore terms that have a document
frequency strictly lower than the given threshold. This value is also
called cut-off in the literature.
If float, the parameter represents a proportion of documents, integer
absolute counts.
This parameter is ignored if vocabulary is not None.
max_features : int or None, default=None
If not None, build a vocabulary that only consider the top
max_features ordered by term frequency across the corpus.
This parameter is ignored if vocabulary is not None.
vocabulary : Mapping or iterable, optional
Either a Mapping (e.g., a dict) where keys are terms and values are
indices in the feature matrix, or an iterable over terms. If not
given, a vocabulary is determined from the input documents.
binary : boolean, default=False
If True, all non-zero term counts are set to 1. This does not mean
outputs will have only 0/1 values, only that the tf term in tf-idf
is binary. (Set idf and normalization to False to get 0/1 outputs.)
dtype : type, optional
Type of the matrix returned by fit_transform() or transform().
norm : 'l1', 'l2' or None, optional
Norm used to normalize term vectors. None for no normalization.
use_idf : boolean, default=True
Enable inverse-document-frequency reweighting.
smooth_idf : boolean, default=True
Smooth idf weights by adding one to document frequencies, as if an
extra document was seen containing every term in the collection
exactly once. Prevents zero divisions.
sublinear_tf : boolean, default=False
Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf).
Attributes
----------
vocabulary_ : dict
A mapping of terms to feature indices.
idf_ : array, shape = [n_features], or None
The learned idf vector (global term weights)
when ``use_idf`` is set to True, None otherwise.
stop_words_ : set
Terms that were ignored because they either:
- occurred in too many documents (`max_df`)
- occurred in too few documents (`min_df`)
- were cut off by feature selection (`max_features`).
This is only available if no vocabulary was given.
See also
--------
CountVectorizer
Tokenize the documents and count the occurrences of token and return
them as a sparse matrix
TfidfTransformer
Apply Term Frequency Inverse Document Frequency normalization to a
sparse matrix of occurrence counts.
Notes
-----
The ``stop_words_`` attribute can get large and increase the model size
when pickling. This attribute is provided only for introspection and can
be safely removed using delattr or set to None before pickling.
"""
def __init__(self, input='content', encoding='utf-8',
decode_error='strict', strip_accents=None, lowercase=True,
preprocessor=None, tokenizer=None, analyzer='word',
stop_words=None, token_pattern=r"(?u)\b\w\w+\b",
ngram_range=(1, 1), max_df=1.0, min_df=1,
max_features=None, vocabulary=None, binary=False,
dtype=np.int64, norm='l2', use_idf=True, smooth_idf=True,
sublinear_tf=False):
super(TfidfVectorizer, self).__init__(
input=input, encoding=encoding, decode_error=decode_error,
strip_accents=strip_accents, lowercase=lowercase,
preprocessor=preprocessor, tokenizer=tokenizer, analyzer=analyzer,
stop_words=stop_words, token_pattern=token_pattern,
ngram_range=ngram_range, max_df=max_df, min_df=min_df,
max_features=max_features, vocabulary=vocabulary, binary=binary,
dtype=dtype)
self._tfidf = TfidfTransformer(norm=norm, use_idf=use_idf,
smooth_idf=smooth_idf,
sublinear_tf=sublinear_tf)
# Broadcast the TF-IDF parameters to the underlying transformer instance
# for easy grid search and repr
@property
def norm(self):
return self._tfidf.norm
@norm.setter
def norm(self, value):
self._tfidf.norm = value
@property
def use_idf(self):
return self._tfidf.use_idf
@use_idf.setter
def use_idf(self, value):
self._tfidf.use_idf = value
@property
def smooth_idf(self):
return self._tfidf.smooth_idf
@smooth_idf.setter
def smooth_idf(self, value):
self._tfidf.smooth_idf = value
@property
def sublinear_tf(self):
return self._tfidf.sublinear_tf
@sublinear_tf.setter
def sublinear_tf(self, value):
self._tfidf.sublinear_tf = value
@property
def idf_(self):
return self._tfidf.idf_
def fit(self, raw_documents, y=None):
"""Learn vocabulary and idf from training set.
Parameters
----------
raw_documents : iterable
an iterable which yields either str, unicode or file objects
Returns
-------
self : TfidfVectorizer
"""
X = super(TfidfVectorizer, self).fit_transform(raw_documents)
self._tfidf.fit(X)
return self
def fit_transform(self, raw_documents, y=None):
"""Learn vocabulary and idf, return term-document matrix.
This is equivalent to fit followed by transform, but more efficiently
implemented.
Parameters
----------
raw_documents : iterable
an iterable which yields either str, unicode or file objects
Returns
-------
X : sparse matrix, [n_samples, n_features]
Tf-idf-weighted document-term matrix.
"""
X = super(TfidfVectorizer, self).fit_transform(raw_documents)
self._tfidf.fit(X)
# X is already a transformed view of raw_documents so
# we set copy to False
return self._tfidf.transform(X, copy=False)
def transform(self, raw_documents, copy=True):
"""Transform documents to document-term matrix.
Uses the vocabulary and document frequencies (df) learned by fit (or
fit_transform).
Parameters
----------
raw_documents : iterable
an iterable which yields either str, unicode or file objects
copy : boolean, default True
Whether to copy X and operate on the copy or perform in-place
operations.
Returns
-------
X : sparse matrix, [n_samples, n_features]
Tf-idf-weighted document-term matrix.
"""
check_is_fitted(self, '_tfidf', 'The tfidf vector is not fitted')
X = super(TfidfVectorizer, self).transform(raw_documents)
return self._tfidf.transform(X, copy=False)
|
bsd-3-clause
|
themrmax/scikit-learn
|
doc/tutorial/text_analytics/solutions/exercise_01_language_train_model.py
|
73
|
2264
|
"""Build a language detector model
The goal of this exercise is to train a linear classifier on text features
that represent sequences of up to 3 consecutive characters so as to be
recognize natural languages by using the frequencies of short character
sequences as 'fingerprints'.
"""
# Author: Olivier Grisel <[email protected]>
# License: Simplified BSD
import sys
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import Perceptron
from sklearn.pipeline import Pipeline
from sklearn.datasets import load_files
from sklearn.model_selection import train_test_split
from sklearn import metrics
# The training data folder must be passed as first argument
languages_data_folder = sys.argv[1]
dataset = load_files(languages_data_folder)
# Split the dataset in training and test set:
docs_train, docs_test, y_train, y_test = train_test_split(
dataset.data, dataset.target, test_size=0.5)
# TASK: Build a vectorizer that splits strings into sequence of 1 to 3
# characters instead of word tokens
vectorizer = TfidfVectorizer(ngram_range=(1, 3), analyzer='char',
use_idf=False)
# TASK: Build a vectorizer / classifier pipeline using the previous analyzer
# the pipeline instance should stored in a variable named clf
clf = Pipeline([
('vec', vectorizer),
('clf', Perceptron()),
])
# TASK: Fit the pipeline on the training set
clf.fit(docs_train, y_train)
# TASK: Predict the outcome on the testing set in a variable named y_predicted
y_predicted = clf.predict(docs_test)
# Print the classification report
print(metrics.classification_report(y_test, y_predicted,
target_names=dataset.target_names))
# Plot the confusion matrix
cm = metrics.confusion_matrix(y_test, y_predicted)
print(cm)
#import matlotlib.pyplot as plt
#plt.matshow(cm, cmap=plt.cm.jet)
#plt.show()
# Predict the result on some short new sentences:
sentences = [
u'This is a language detection test.',
u'Ceci est un test de d\xe9tection de la langue.',
u'Dies ist ein Test, um die Sprache zu erkennen.',
]
predicted = clf.predict(sentences)
for s, p in zip(sentences, predicted):
print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
|
bsd-3-clause
|
mjgrav2001/scikit-learn
|
doc/sphinxext/gen_rst.py
|
142
|
40026
|
"""
Example generation for the scikit learn
Generate the rst files for the examples by iterating over the python
example files.
Files that generate images should start with 'plot'
"""
from __future__ import division, print_function
from time import time
import ast
import os
import re
import shutil
import traceback
import glob
import sys
import gzip
import posixpath
import subprocess
import warnings
from sklearn.externals import six
# Try Python 2 first, otherwise load from Python 3
try:
from StringIO import StringIO
import cPickle as pickle
import urllib2 as urllib
from urllib2 import HTTPError, URLError
except ImportError:
from io import StringIO
import pickle
import urllib.request
import urllib.error
import urllib.parse
from urllib.error import HTTPError, URLError
try:
# Python 2 built-in
execfile
except NameError:
def execfile(filename, global_vars=None, local_vars=None):
with open(filename, encoding='utf-8') as f:
code = compile(f.read(), filename, 'exec')
exec(code, global_vars, local_vars)
try:
basestring
except NameError:
basestring = str
import token
import tokenize
import numpy as np
try:
# make sure that the Agg backend is set before importing any
# matplotlib
import matplotlib
matplotlib.use('Agg')
except ImportError:
# this script can be imported by nosetest to find tests to run: we should not
# impose the matplotlib requirement in that case.
pass
from sklearn.externals import joblib
###############################################################################
# A tee object to redict streams to multiple outputs
class Tee(object):
def __init__(self, file1, file2):
self.file1 = file1
self.file2 = file2
def write(self, data):
self.file1.write(data)
self.file2.write(data)
def flush(self):
self.file1.flush()
self.file2.flush()
###############################################################################
# Documentation link resolver objects
def _get_data(url):
"""Helper function to get data over http or from a local file"""
if url.startswith('http://'):
# Try Python 2, use Python 3 on exception
try:
resp = urllib.urlopen(url)
encoding = resp.headers.dict.get('content-encoding', 'plain')
except AttributeError:
resp = urllib.request.urlopen(url)
encoding = resp.headers.get('content-encoding', 'plain')
data = resp.read()
if encoding == 'plain':
pass
elif encoding == 'gzip':
data = StringIO(data)
data = gzip.GzipFile(fileobj=data).read()
else:
raise RuntimeError('unknown encoding')
else:
with open(url, 'r') as fid:
data = fid.read()
fid.close()
return data
mem = joblib.Memory(cachedir='_build')
get_data = mem.cache(_get_data)
def parse_sphinx_searchindex(searchindex):
"""Parse a Sphinx search index
Parameters
----------
searchindex : str
The Sphinx search index (contents of searchindex.js)
Returns
-------
filenames : list of str
The file names parsed from the search index.
objects : dict
The objects parsed from the search index.
"""
def _select_block(str_in, start_tag, end_tag):
"""Select first block delimited by start_tag and end_tag"""
start_pos = str_in.find(start_tag)
if start_pos < 0:
raise ValueError('start_tag not found')
depth = 0
for pos in range(start_pos, len(str_in)):
if str_in[pos] == start_tag:
depth += 1
elif str_in[pos] == end_tag:
depth -= 1
if depth == 0:
break
sel = str_in[start_pos + 1:pos]
return sel
def _parse_dict_recursive(dict_str):
"""Parse a dictionary from the search index"""
dict_out = dict()
pos_last = 0
pos = dict_str.find(':')
while pos >= 0:
key = dict_str[pos_last:pos]
if dict_str[pos + 1] == '[':
# value is a list
pos_tmp = dict_str.find(']', pos + 1)
if pos_tmp < 0:
raise RuntimeError('error when parsing dict')
value = dict_str[pos + 2: pos_tmp].split(',')
# try to convert elements to int
for i in range(len(value)):
try:
value[i] = int(value[i])
except ValueError:
pass
elif dict_str[pos + 1] == '{':
# value is another dictionary
subdict_str = _select_block(dict_str[pos:], '{', '}')
value = _parse_dict_recursive(subdict_str)
pos_tmp = pos + len(subdict_str)
else:
raise ValueError('error when parsing dict: unknown elem')
key = key.strip('"')
if len(key) > 0:
dict_out[key] = value
pos_last = dict_str.find(',', pos_tmp)
if pos_last < 0:
break
pos_last += 1
pos = dict_str.find(':', pos_last)
return dict_out
# Make sure searchindex uses UTF-8 encoding
if hasattr(searchindex, 'decode'):
searchindex = searchindex.decode('UTF-8')
# parse objects
query = 'objects:'
pos = searchindex.find(query)
if pos < 0:
raise ValueError('"objects:" not found in search index')
sel = _select_block(searchindex[pos:], '{', '}')
objects = _parse_dict_recursive(sel)
# parse filenames
query = 'filenames:'
pos = searchindex.find(query)
if pos < 0:
raise ValueError('"filenames:" not found in search index')
filenames = searchindex[pos + len(query) + 1:]
filenames = filenames[:filenames.find(']')]
filenames = [f.strip('"') for f in filenames.split(',')]
return filenames, objects
class SphinxDocLinkResolver(object):
""" Resolve documentation links using searchindex.js generated by Sphinx
Parameters
----------
doc_url : str
The base URL of the project website.
searchindex : str
Filename of searchindex, relative to doc_url.
extra_modules_test : list of str
List of extra module names to test.
relative : bool
Return relative links (only useful for links to documentation of this
package).
"""
def __init__(self, doc_url, searchindex='searchindex.js',
extra_modules_test=None, relative=False):
self.doc_url = doc_url
self.relative = relative
self._link_cache = {}
self.extra_modules_test = extra_modules_test
self._page_cache = {}
if doc_url.startswith('http://'):
if relative:
raise ValueError('Relative links are only supported for local '
'URLs (doc_url cannot start with "http://)"')
searchindex_url = doc_url + '/' + searchindex
else:
searchindex_url = os.path.join(doc_url, searchindex)
# detect if we are using relative links on a Windows system
if os.name.lower() == 'nt' and not doc_url.startswith('http://'):
if not relative:
raise ValueError('You have to use relative=True for the local'
' package on a Windows system.')
self._is_windows = True
else:
self._is_windows = False
# download and initialize the search index
sindex = get_data(searchindex_url)
filenames, objects = parse_sphinx_searchindex(sindex)
self._searchindex = dict(filenames=filenames, objects=objects)
def _get_link(self, cobj):
"""Get a valid link, False if not found"""
fname_idx = None
full_name = cobj['module_short'] + '.' + cobj['name']
if full_name in self._searchindex['objects']:
value = self._searchindex['objects'][full_name]
if isinstance(value, dict):
value = value[next(iter(value.keys()))]
fname_idx = value[0]
elif cobj['module_short'] in self._searchindex['objects']:
value = self._searchindex['objects'][cobj['module_short']]
if cobj['name'] in value.keys():
fname_idx = value[cobj['name']][0]
if fname_idx is not None:
fname = self._searchindex['filenames'][fname_idx] + '.html'
if self._is_windows:
fname = fname.replace('/', '\\')
link = os.path.join(self.doc_url, fname)
else:
link = posixpath.join(self.doc_url, fname)
if hasattr(link, 'decode'):
link = link.decode('utf-8', 'replace')
if link in self._page_cache:
html = self._page_cache[link]
else:
html = get_data(link)
self._page_cache[link] = html
# test if cobj appears in page
comb_names = [cobj['module_short'] + '.' + cobj['name']]
if self.extra_modules_test is not None:
for mod in self.extra_modules_test:
comb_names.append(mod + '.' + cobj['name'])
url = False
if hasattr(html, 'decode'):
# Decode bytes under Python 3
html = html.decode('utf-8', 'replace')
for comb_name in comb_names:
if hasattr(comb_name, 'decode'):
# Decode bytes under Python 3
comb_name = comb_name.decode('utf-8', 'replace')
if comb_name in html:
url = link + u'#' + comb_name
link = url
else:
link = False
return link
def resolve(self, cobj, this_url):
"""Resolve the link to the documentation, returns None if not found
Parameters
----------
cobj : dict
Dict with information about the "code object" for which we are
resolving a link.
cobi['name'] : function or class name (str)
cobj['module_short'] : shortened module name (str)
cobj['module'] : module name (str)
this_url: str
URL of the current page. Needed to construct relative URLs
(only used if relative=True in constructor).
Returns
-------
link : str | None
The link (URL) to the documentation.
"""
full_name = cobj['module_short'] + '.' + cobj['name']
link = self._link_cache.get(full_name, None)
if link is None:
# we don't have it cached
link = self._get_link(cobj)
# cache it for the future
self._link_cache[full_name] = link
if link is False or link is None:
# failed to resolve
return None
if self.relative:
link = os.path.relpath(link, start=this_url)
if self._is_windows:
# replace '\' with '/' so it on the web
link = link.replace('\\', '/')
# for some reason, the relative link goes one directory too high up
link = link[3:]
return link
###############################################################################
rst_template = """
.. _example_%(short_fname)s:
%(docstring)s
**Python source code:** :download:`%(fname)s <%(fname)s>`
.. literalinclude:: %(fname)s
:lines: %(end_row)s-
"""
plot_rst_template = """
.. _example_%(short_fname)s:
%(docstring)s
%(image_list)s
%(stdout)s
**Python source code:** :download:`%(fname)s <%(fname)s>`
.. literalinclude:: %(fname)s
:lines: %(end_row)s-
**Total running time of the example:** %(time_elapsed) .2f seconds
(%(time_m) .0f minutes %(time_s) .2f seconds)
"""
# The following strings are used when we have several pictures: we use
# an html div tag that our CSS uses to turn the lists into horizontal
# lists.
HLIST_HEADER = """
.. rst-class:: horizontal
"""
HLIST_IMAGE_TEMPLATE = """
*
.. image:: images/%s
:scale: 47
"""
SINGLE_IMAGE = """
.. image:: images/%s
:align: center
"""
# The following dictionary contains the information used to create the
# thumbnails for the front page of the scikit-learn home page.
# key: first image in set
# values: (number of plot in set, height of thumbnail)
carousel_thumbs = {'plot_classifier_comparison_001.png': (1, 600),
'plot_outlier_detection_001.png': (3, 372),
'plot_gp_regression_001.png': (2, 250),
'plot_adaboost_twoclass_001.png': (1, 372),
'plot_compare_methods_001.png': (1, 349)}
def extract_docstring(filename, ignore_heading=False):
""" Extract a module-level docstring, if any
"""
if six.PY2:
lines = open(filename).readlines()
else:
lines = open(filename, encoding='utf-8').readlines()
start_row = 0
if lines[0].startswith('#!'):
lines.pop(0)
start_row = 1
docstring = ''
first_par = ''
line_iterator = iter(lines)
tokens = tokenize.generate_tokens(lambda: next(line_iterator))
for tok_type, tok_content, _, (erow, _), _ in tokens:
tok_type = token.tok_name[tok_type]
if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'):
continue
elif tok_type == 'STRING':
docstring = eval(tok_content)
# If the docstring is formatted with several paragraphs, extract
# the first one:
paragraphs = '\n'.join(
line.rstrip() for line
in docstring.split('\n')).split('\n\n')
if paragraphs:
if ignore_heading:
if len(paragraphs) > 1:
first_par = re.sub('\n', ' ', paragraphs[1])
first_par = ((first_par[:95] + '...')
if len(first_par) > 95 else first_par)
else:
raise ValueError("Docstring not found by gallery.\n"
"Please check the layout of your"
" example file:\n {}\n and make sure"
" it's correct".format(filename))
else:
first_par = paragraphs[0]
break
return docstring, first_par, erow + 1 + start_row
def generate_example_rst(app):
""" Generate the list of examples, as well as the contents of
examples.
"""
root_dir = os.path.join(app.builder.srcdir, 'auto_examples')
example_dir = os.path.abspath(os.path.join(app.builder.srcdir, '..',
'examples'))
generated_dir = os.path.abspath(os.path.join(app.builder.srcdir,
'modules', 'generated'))
try:
plot_gallery = eval(app.builder.config.plot_gallery)
except TypeError:
plot_gallery = bool(app.builder.config.plot_gallery)
if not os.path.exists(example_dir):
os.makedirs(example_dir)
if not os.path.exists(root_dir):
os.makedirs(root_dir)
if not os.path.exists(generated_dir):
os.makedirs(generated_dir)
# we create an index.rst with all examples
fhindex = open(os.path.join(root_dir, 'index.rst'), 'w')
# Note: The sidebar button has been removed from the examples page for now
# due to how it messes up the layout. Will be fixed at a later point
fhindex.write("""\
.. raw:: html
<style type="text/css">
div#sidebarbutton {
/* hide the sidebar collapser, while ensuring vertical arrangement */
display: none;
}
</style>
.. _examples-index:
Examples
========
""")
# Here we don't use an os.walk, but we recurse only twice: flat is
# better than nested.
seen_backrefs = set()
generate_dir_rst('.', fhindex, example_dir, root_dir, plot_gallery, seen_backrefs)
for directory in sorted(os.listdir(example_dir)):
if os.path.isdir(os.path.join(example_dir, directory)):
generate_dir_rst(directory, fhindex, example_dir, root_dir, plot_gallery, seen_backrefs)
fhindex.flush()
def extract_line_count(filename, target_dir):
# Extract the line count of a file
example_file = os.path.join(target_dir, filename)
if six.PY2:
lines = open(example_file).readlines()
else:
lines = open(example_file, encoding='utf-8').readlines()
start_row = 0
if lines and lines[0].startswith('#!'):
lines.pop(0)
start_row = 1
line_iterator = iter(lines)
tokens = tokenize.generate_tokens(lambda: next(line_iterator))
check_docstring = True
erow_docstring = 0
for tok_type, _, _, (erow, _), _ in tokens:
tok_type = token.tok_name[tok_type]
if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'):
continue
elif (tok_type == 'STRING') and check_docstring:
erow_docstring = erow
check_docstring = False
return erow_docstring+1+start_row, erow+1+start_row
def line_count_sort(file_list, target_dir):
# Sort the list of examples by line-count
new_list = [x for x in file_list if x.endswith('.py')]
unsorted = np.zeros(shape=(len(new_list), 2))
unsorted = unsorted.astype(np.object)
for count, exmpl in enumerate(new_list):
docstr_lines, total_lines = extract_line_count(exmpl, target_dir)
unsorted[count][1] = total_lines - docstr_lines
unsorted[count][0] = exmpl
index = np.lexsort((unsorted[:, 0].astype(np.str),
unsorted[:, 1].astype(np.float)))
if not len(unsorted):
return []
return np.array(unsorted[index][:, 0]).tolist()
def _thumbnail_div(subdir, full_dir, fname, snippet):
"""Generates RST to place a thumbnail in a gallery"""
thumb = os.path.join(full_dir, 'images', 'thumb', fname[:-3] + '.png')
link_name = os.path.join(full_dir, fname).replace(os.path.sep, '_')
ref_name = os.path.join(subdir, fname).replace(os.path.sep, '_')
if ref_name.startswith('._'):
ref_name = ref_name[2:]
out = []
out.append("""
.. raw:: html
<div class="thumbnailContainer" tooltip="{}">
""".format(snippet))
out.append('.. figure:: %s\n' % thumb)
if link_name.startswith('._'):
link_name = link_name[2:]
if full_dir != '.':
out.append(' :target: ./%s/%s.html\n\n' % (full_dir, fname[:-3]))
else:
out.append(' :target: ./%s.html\n\n' % link_name[:-3])
out.append(""" :ref:`example_%s`
.. raw:: html
</div>
""" % (ref_name))
return ''.join(out)
def generate_dir_rst(directory, fhindex, example_dir, root_dir, plot_gallery, seen_backrefs):
""" Generate the rst file for an example directory.
"""
if not directory == '.':
target_dir = os.path.join(root_dir, directory)
src_dir = os.path.join(example_dir, directory)
else:
target_dir = root_dir
src_dir = example_dir
if not os.path.exists(os.path.join(src_dir, 'README.txt')):
raise ValueError('Example directory %s does not have a README.txt' %
src_dir)
fhindex.write("""
%s
""" % open(os.path.join(src_dir, 'README.txt')).read())
if not os.path.exists(target_dir):
os.makedirs(target_dir)
sorted_listdir = line_count_sort(os.listdir(src_dir),
src_dir)
if not os.path.exists(os.path.join(directory, 'images', 'thumb')):
os.makedirs(os.path.join(directory, 'images', 'thumb'))
for fname in sorted_listdir:
if fname.endswith('py'):
backrefs = generate_file_rst(fname, target_dir, src_dir, root_dir, plot_gallery)
new_fname = os.path.join(src_dir, fname)
_, snippet, _ = extract_docstring(new_fname, True)
fhindex.write(_thumbnail_div(directory, directory, fname, snippet))
fhindex.write("""
.. toctree::
:hidden:
%s/%s
""" % (directory, fname[:-3]))
for backref in backrefs:
include_path = os.path.join(root_dir, '../modules/generated/%s.examples' % backref)
seen = backref in seen_backrefs
with open(include_path, 'a' if seen else 'w') as ex_file:
if not seen:
# heading
print(file=ex_file)
print('Examples using ``%s``' % backref, file=ex_file)
print('-----------------%s--' % ('-' * len(backref)),
file=ex_file)
print(file=ex_file)
rel_dir = os.path.join('../../auto_examples', directory)
ex_file.write(_thumbnail_div(directory, rel_dir, fname, snippet))
seen_backrefs.add(backref)
fhindex.write("""
.. raw:: html
<div class="clearer"></div>
""") # clear at the end of the section
# modules for which we embed links into example code
DOCMODULES = ['sklearn', 'matplotlib', 'numpy', 'scipy']
def make_thumbnail(in_fname, out_fname, width, height):
"""Make a thumbnail with the same aspect ratio centered in an
image with a given width and height
"""
# local import to avoid testing dependency on PIL:
try:
from PIL import Image
except ImportError:
import Image
img = Image.open(in_fname)
width_in, height_in = img.size
scale_w = width / float(width_in)
scale_h = height / float(height_in)
if height_in * scale_w <= height:
scale = scale_w
else:
scale = scale_h
width_sc = int(round(scale * width_in))
height_sc = int(round(scale * height_in))
# resize the image
img.thumbnail((width_sc, height_sc), Image.ANTIALIAS)
# insert centered
thumb = Image.new('RGB', (width, height), (255, 255, 255))
pos_insert = ((width - width_sc) // 2, (height - height_sc) // 2)
thumb.paste(img, pos_insert)
thumb.save(out_fname)
# Use optipng to perform lossless compression on the resized image if
# software is installed
if os.environ.get('SKLEARN_DOC_OPTIPNG', False):
try:
subprocess.call(["optipng", "-quiet", "-o", "9", out_fname])
except Exception:
warnings.warn('Install optipng to reduce the size of the generated images')
def get_short_module_name(module_name, obj_name):
""" Get the shortest possible module name """
parts = module_name.split('.')
short_name = module_name
for i in range(len(parts) - 1, 0, -1):
short_name = '.'.join(parts[:i])
try:
exec('from %s import %s' % (short_name, obj_name))
except ImportError:
# get the last working module name
short_name = '.'.join(parts[:(i + 1)])
break
return short_name
class NameFinder(ast.NodeVisitor):
"""Finds the longest form of variable names and their imports in code
Only retains names from imported modules.
"""
def __init__(self):
super(NameFinder, self).__init__()
self.imported_names = {}
self.accessed_names = set()
def visit_Import(self, node, prefix=''):
for alias in node.names:
local_name = alias.asname or alias.name
self.imported_names[local_name] = prefix + alias.name
def visit_ImportFrom(self, node):
self.visit_Import(node, node.module + '.')
def visit_Name(self, node):
self.accessed_names.add(node.id)
def visit_Attribute(self, node):
attrs = []
while isinstance(node, ast.Attribute):
attrs.append(node.attr)
node = node.value
if isinstance(node, ast.Name):
# This is a.b, not e.g. a().b
attrs.append(node.id)
self.accessed_names.add('.'.join(reversed(attrs)))
else:
# need to get a in a().b
self.visit(node)
def get_mapping(self):
for name in self.accessed_names:
local_name = name.split('.', 1)[0]
remainder = name[len(local_name):]
if local_name in self.imported_names:
# Join import path to relative path
full_name = self.imported_names[local_name] + remainder
yield name, full_name
def identify_names(code):
"""Builds a codeobj summary by identifying and resovles used names
>>> code = '''
... from a.b import c
... import d as e
... print(c)
... e.HelloWorld().f.g
... '''
>>> for name, o in sorted(identify_names(code).items()):
... print(name, o['name'], o['module'], o['module_short'])
c c a.b a.b
e.HelloWorld HelloWorld d d
"""
finder = NameFinder()
finder.visit(ast.parse(code))
example_code_obj = {}
for name, full_name in finder.get_mapping():
# name is as written in file (e.g. np.asarray)
# full_name includes resolved import path (e.g. numpy.asarray)
module, attribute = full_name.rsplit('.', 1)
# get shortened module name
module_short = get_short_module_name(module, attribute)
cobj = {'name': attribute, 'module': module,
'module_short': module_short}
example_code_obj[name] = cobj
return example_code_obj
def generate_file_rst(fname, target_dir, src_dir, root_dir, plot_gallery):
""" Generate the rst file for a given example.
Returns the set of sklearn functions/classes imported in the example.
"""
base_image_name = os.path.splitext(fname)[0]
image_fname = '%s_%%03d.png' % base_image_name
this_template = rst_template
last_dir = os.path.split(src_dir)[-1]
# to avoid leading . in file names, and wrong names in links
if last_dir == '.' or last_dir == 'examples':
last_dir = ''
else:
last_dir += '_'
short_fname = last_dir + fname
src_file = os.path.join(src_dir, fname)
example_file = os.path.join(target_dir, fname)
shutil.copyfile(src_file, example_file)
# The following is a list containing all the figure names
figure_list = []
image_dir = os.path.join(target_dir, 'images')
thumb_dir = os.path.join(image_dir, 'thumb')
if not os.path.exists(image_dir):
os.makedirs(image_dir)
if not os.path.exists(thumb_dir):
os.makedirs(thumb_dir)
image_path = os.path.join(image_dir, image_fname)
stdout_path = os.path.join(image_dir,
'stdout_%s.txt' % base_image_name)
time_path = os.path.join(image_dir,
'time_%s.txt' % base_image_name)
thumb_file = os.path.join(thumb_dir, base_image_name + '.png')
time_elapsed = 0
if plot_gallery and fname.startswith('plot'):
# generate the plot as png image if file name
# starts with plot and if it is more recent than an
# existing image.
first_image_file = image_path % 1
if os.path.exists(stdout_path):
stdout = open(stdout_path).read()
else:
stdout = ''
if os.path.exists(time_path):
time_elapsed = float(open(time_path).read())
if not os.path.exists(first_image_file) or \
os.stat(first_image_file).st_mtime <= os.stat(src_file).st_mtime:
# We need to execute the code
print('plotting %s' % fname)
t0 = time()
import matplotlib.pyplot as plt
plt.close('all')
cwd = os.getcwd()
try:
# First CD in the original example dir, so that any file
# created by the example get created in this directory
orig_stdout = sys.stdout
os.chdir(os.path.dirname(src_file))
my_buffer = StringIO()
my_stdout = Tee(sys.stdout, my_buffer)
sys.stdout = my_stdout
my_globals = {'pl': plt}
execfile(os.path.basename(src_file), my_globals)
time_elapsed = time() - t0
sys.stdout = orig_stdout
my_stdout = my_buffer.getvalue()
if '__doc__' in my_globals:
# The __doc__ is often printed in the example, we
# don't with to echo it
my_stdout = my_stdout.replace(
my_globals['__doc__'],
'')
my_stdout = my_stdout.strip().expandtabs()
if my_stdout:
stdout = '**Script output**::\n\n %s\n\n' % (
'\n '.join(my_stdout.split('\n')))
open(stdout_path, 'w').write(stdout)
open(time_path, 'w').write('%f' % time_elapsed)
os.chdir(cwd)
# In order to save every figure we have two solutions :
# * iterate from 1 to infinity and call plt.fignum_exists(n)
# (this requires the figures to be numbered
# incrementally: 1, 2, 3 and not 1, 2, 5)
# * iterate over [fig_mngr.num for fig_mngr in
# matplotlib._pylab_helpers.Gcf.get_all_fig_managers()]
fig_managers = matplotlib._pylab_helpers.Gcf.get_all_fig_managers()
for fig_mngr in fig_managers:
# Set the fig_num figure as the current figure as we can't
# save a figure that's not the current figure.
fig = plt.figure(fig_mngr.num)
kwargs = {}
to_rgba = matplotlib.colors.colorConverter.to_rgba
for attr in ['facecolor', 'edgecolor']:
fig_attr = getattr(fig, 'get_' + attr)()
default_attr = matplotlib.rcParams['figure.' + attr]
if to_rgba(fig_attr) != to_rgba(default_attr):
kwargs[attr] = fig_attr
fig.savefig(image_path % fig_mngr.num, **kwargs)
figure_list.append(image_fname % fig_mngr.num)
except:
print(80 * '_')
print('%s is not compiling:' % fname)
traceback.print_exc()
print(80 * '_')
finally:
os.chdir(cwd)
sys.stdout = orig_stdout
print(" - time elapsed : %.2g sec" % time_elapsed)
else:
figure_list = [f[len(image_dir):]
for f in glob.glob(image_path.replace("%03d",
'[0-9][0-9][0-9]'))]
figure_list.sort()
# generate thumb file
this_template = plot_rst_template
car_thumb_path = os.path.join(os.path.split(root_dir)[0], '_build/html/stable/_images/')
# Note: normaly, make_thumbnail is used to write to the path contained in `thumb_file`
# which is within `auto_examples/../images/thumbs` depending on the example.
# Because the carousel has different dimensions than those of the examples gallery,
# I did not simply reuse them all as some contained whitespace due to their default gallery
# thumbnail size. Below, for a few cases, seperate thumbnails are created (the originals can't
# just be overwritten with the carousel dimensions as it messes up the examples gallery layout).
# The special carousel thumbnails are written directly to _build/html/stable/_images/,
# as for some reason unknown to me, Sphinx refuses to copy my 'extra' thumbnails from the
# auto examples gallery to the _build folder. This works fine as is, but it would be cleaner to
# have it happen with the rest. Ideally the should be written to 'thumb_file' as well, and then
# copied to the _images folder during the `Copying Downloadable Files` step like the rest.
if not os.path.exists(car_thumb_path):
os.makedirs(car_thumb_path)
if os.path.exists(first_image_file):
# We generate extra special thumbnails for the carousel
carousel_tfile = os.path.join(car_thumb_path, base_image_name + '_carousel.png')
first_img = image_fname % 1
if first_img in carousel_thumbs:
make_thumbnail((image_path % carousel_thumbs[first_img][0]),
carousel_tfile, carousel_thumbs[first_img][1], 190)
make_thumbnail(first_image_file, thumb_file, 400, 280)
if not os.path.exists(thumb_file):
# create something to replace the thumbnail
make_thumbnail('images/no_image.png', thumb_file, 200, 140)
docstring, short_desc, end_row = extract_docstring(example_file)
# Depending on whether we have one or more figures, we're using a
# horizontal list or a single rst call to 'image'.
if len(figure_list) == 1:
figure_name = figure_list[0]
image_list = SINGLE_IMAGE % figure_name.lstrip('/')
else:
image_list = HLIST_HEADER
for figure_name in figure_list:
image_list += HLIST_IMAGE_TEMPLATE % figure_name.lstrip('/')
time_m, time_s = divmod(time_elapsed, 60)
f = open(os.path.join(target_dir, base_image_name + '.rst'), 'w')
f.write(this_template % locals())
f.flush()
# save variables so we can later add links to the documentation
if six.PY2:
example_code_obj = identify_names(open(example_file).read())
else:
example_code_obj = \
identify_names(open(example_file, encoding='utf-8').read())
if example_code_obj:
codeobj_fname = example_file[:-3] + '_codeobj.pickle'
with open(codeobj_fname, 'wb') as fid:
pickle.dump(example_code_obj, fid, pickle.HIGHEST_PROTOCOL)
backrefs = set('{module_short}.{name}'.format(**entry)
for entry in example_code_obj.values()
if entry['module'].startswith('sklearn'))
return backrefs
def embed_code_links(app, exception):
"""Embed hyperlinks to documentation into example code"""
if exception is not None:
return
print('Embedding documentation hyperlinks in examples..')
if app.builder.name == 'latex':
# Don't embed hyperlinks when a latex builder is used.
return
# Add resolvers for the packages for which we want to show links
doc_resolvers = {}
doc_resolvers['sklearn'] = SphinxDocLinkResolver(app.builder.outdir,
relative=True)
resolver_urls = {
'matplotlib': 'http://matplotlib.org',
'numpy': 'http://docs.scipy.org/doc/numpy-1.6.0',
'scipy': 'http://docs.scipy.org/doc/scipy-0.11.0/reference',
}
for this_module, url in resolver_urls.items():
try:
doc_resolvers[this_module] = SphinxDocLinkResolver(url)
except HTTPError as e:
print("The following HTTP Error has occurred:\n")
print(e.code)
except URLError as e:
print("\n...\n"
"Warning: Embedding the documentation hyperlinks requires "
"internet access.\nPlease check your network connection.\n"
"Unable to continue embedding `{0}` links due to a URL "
"Error:\n".format(this_module))
print(e.args)
example_dir = os.path.join(app.builder.srcdir, 'auto_examples')
html_example_dir = os.path.abspath(os.path.join(app.builder.outdir,
'auto_examples'))
# patterns for replacement
link_pattern = '<a href="%s">%s</a>'
orig_pattern = '<span class="n">%s</span>'
period = '<span class="o">.</span>'
for dirpath, _, filenames in os.walk(html_example_dir):
for fname in filenames:
print('\tprocessing: %s' % fname)
full_fname = os.path.join(html_example_dir, dirpath, fname)
subpath = dirpath[len(html_example_dir) + 1:]
pickle_fname = os.path.join(example_dir, subpath,
fname[:-5] + '_codeobj.pickle')
if os.path.exists(pickle_fname):
# we have a pickle file with the objects to embed links for
with open(pickle_fname, 'rb') as fid:
example_code_obj = pickle.load(fid)
fid.close()
str_repl = {}
# generate replacement strings with the links
for name, cobj in example_code_obj.items():
this_module = cobj['module'].split('.')[0]
if this_module not in doc_resolvers:
continue
try:
link = doc_resolvers[this_module].resolve(cobj,
full_fname)
except (HTTPError, URLError) as e:
print("The following error has occurred:\n")
print(repr(e))
continue
if link is not None:
parts = name.split('.')
name_html = period.join(orig_pattern % part
for part in parts)
str_repl[name_html] = link_pattern % (link, name_html)
# do the replacement in the html file
# ensure greediness
names = sorted(str_repl, key=len, reverse=True)
expr = re.compile(r'(?<!\.)\b' + # don't follow . or word
'|'.join(re.escape(name)
for name in names))
def substitute_link(match):
return str_repl[match.group()]
if len(str_repl) > 0:
with open(full_fname, 'rb') as fid:
lines_in = fid.readlines()
with open(full_fname, 'wb') as fid:
for line in lines_in:
line = line.decode('utf-8')
line = expr.sub(substitute_link, line)
fid.write(line.encode('utf-8'))
print('[done]')
def setup(app):
app.connect('builder-inited', generate_example_rst)
app.add_config_value('plot_gallery', True, 'html')
# embed links after build is finished
app.connect('build-finished', embed_code_links)
# Sphinx hack: sphinx copies generated images to the build directory
# each time the docs are made. If the desired image name already
# exists, it appends a digit to prevent overwrites. The problem is,
# the directory is never cleared. This means that each time you build
# the docs, the number of images in the directory grows.
#
# This question has been asked on the sphinx development list, but there
# was no response: http://osdir.com/ml/sphinx-dev/2011-02/msg00123.html
#
# The following is a hack that prevents this behavior by clearing the
# image build directory each time the docs are built. If sphinx
# changes their layout between versions, this will not work (though
# it should probably not cause a crash). Tested successfully
# on Sphinx 1.0.7
build_image_dir = '_build/html/_images'
if os.path.exists(build_image_dir):
filelist = os.listdir(build_image_dir)
for filename in filelist:
if filename.endswith('png'):
os.remove(os.path.join(build_image_dir, filename))
def setup_module():
# HACK: Stop nosetests running setup() above
pass
|
bsd-3-clause
|
ClimbsRocks/scikit-learn
|
examples/applications/plot_outlier_detection_housing.py
|
110
|
5681
|
"""
====================================
Outlier detection on a real data set
====================================
This example illustrates the need for robust covariance estimation
on a real data set. It is useful both for outlier detection and for
a better understanding of the data structure.
We selected two sets of two variables from the Boston housing data set
as an illustration of what kind of analysis can be done with several
outlier detection tools. For the purpose of visualization, we are working
with two-dimensional examples, but one should be aware that things are
not so trivial in high-dimension, as it will be pointed out.
In both examples below, the main result is that the empirical covariance
estimate, as a non-robust one, is highly influenced by the heterogeneous
structure of the observations. Although the robust covariance estimate is
able to focus on the main mode of the data distribution, it sticks to the
assumption that the data should be Gaussian distributed, yielding some biased
estimation of the data structure, but yet accurate to some extent.
The One-Class SVM does not assume any parametric form of the data distribution
and can therefore model the complex shape of the data much better.
First example
-------------
The first example illustrates how robust covariance estimation can help
concentrating on a relevant cluster when another one exists. Here, many
observations are confounded into one and break down the empirical covariance
estimation.
Of course, some screening tools would have pointed out the presence of two
clusters (Support Vector Machines, Gaussian Mixture Models, univariate
outlier detection, ...). But had it been a high-dimensional example, none
of these could be applied that easily.
Second example
--------------
The second example shows the ability of the Minimum Covariance Determinant
robust estimator of covariance to concentrate on the main mode of the data
distribution: the location seems to be well estimated, although the covariance
is hard to estimate due to the banana-shaped distribution. Anyway, we can
get rid of some outlying observations.
The One-Class SVM is able to capture the real data structure, but the
difficulty is to adjust its kernel bandwidth parameter so as to obtain
a good compromise between the shape of the data scatter matrix and the
risk of over-fitting the data.
"""
print(__doc__)
# Author: Virgile Fritsch <[email protected]>
# License: BSD 3 clause
import numpy as np
from sklearn.covariance import EllipticEnvelope
from sklearn.svm import OneClassSVM
import matplotlib.pyplot as plt
import matplotlib.font_manager
from sklearn.datasets import load_boston
# Get data
X1 = load_boston()['data'][:, [8, 10]] # two clusters
X2 = load_boston()['data'][:, [5, 12]] # "banana"-shaped
# Define "classifiers" to be used
classifiers = {
"Empirical Covariance": EllipticEnvelope(support_fraction=1.,
contamination=0.261),
"Robust Covariance (Minimum Covariance Determinant)":
EllipticEnvelope(contamination=0.261),
"OCSVM": OneClassSVM(nu=0.261, gamma=0.05)}
colors = ['m', 'g', 'b']
legend1 = {}
legend2 = {}
# Learn a frontier for outlier detection with several classifiers
xx1, yy1 = np.meshgrid(np.linspace(-8, 28, 500), np.linspace(3, 40, 500))
xx2, yy2 = np.meshgrid(np.linspace(3, 10, 500), np.linspace(-5, 45, 500))
for i, (clf_name, clf) in enumerate(classifiers.items()):
plt.figure(1)
clf.fit(X1)
Z1 = clf.decision_function(np.c_[xx1.ravel(), yy1.ravel()])
Z1 = Z1.reshape(xx1.shape)
legend1[clf_name] = plt.contour(
xx1, yy1, Z1, levels=[0], linewidths=2, colors=colors[i])
plt.figure(2)
clf.fit(X2)
Z2 = clf.decision_function(np.c_[xx2.ravel(), yy2.ravel()])
Z2 = Z2.reshape(xx2.shape)
legend2[clf_name] = plt.contour(
xx2, yy2, Z2, levels=[0], linewidths=2, colors=colors[i])
legend1_values_list = list(legend1.values())
legend1_keys_list = list(legend1.keys())
# Plot the results (= shape of the data points cloud)
plt.figure(1) # two clusters
plt.title("Outlier detection on a real data set (boston housing)")
plt.scatter(X1[:, 0], X1[:, 1], color='black')
bbox_args = dict(boxstyle="round", fc="0.8")
arrow_args = dict(arrowstyle="->")
plt.annotate("several confounded points", xy=(24, 19),
xycoords="data", textcoords="data",
xytext=(13, 10), bbox=bbox_args, arrowprops=arrow_args)
plt.xlim((xx1.min(), xx1.max()))
plt.ylim((yy1.min(), yy1.max()))
plt.legend((legend1_values_list[0].collections[0],
legend1_values_list[1].collections[0],
legend1_values_list[2].collections[0]),
(legend1_keys_list[0], legend1_keys_list[1], legend1_keys_list[2]),
loc="upper center",
prop=matplotlib.font_manager.FontProperties(size=12))
plt.ylabel("accessibility to radial highways")
plt.xlabel("pupil-teacher ratio by town")
legend2_values_list = list(legend2.values())
legend2_keys_list = list(legend2.keys())
plt.figure(2) # "banana" shape
plt.title("Outlier detection on a real data set (boston housing)")
plt.scatter(X2[:, 0], X2[:, 1], color='black')
plt.xlim((xx2.min(), xx2.max()))
plt.ylim((yy2.min(), yy2.max()))
plt.legend((legend2_values_list[0].collections[0],
legend2_values_list[1].collections[0],
legend2_values_list[2].collections[0]),
(legend2_keys_list[0], legend2_keys_list[1], legend2_keys_list[2]),
loc="upper center",
prop=matplotlib.font_manager.FontProperties(size=12))
plt.ylabel("% lower status of the population")
plt.xlabel("average number of rooms per dwelling")
plt.show()
|
bsd-3-clause
|
lbishal/scikit-learn
|
examples/svm/plot_svm_kernels.py
|
329
|
1971
|
#!/usr/bin/python
# -*- coding: utf-8 -*-
"""
=========================================================
SVM-Kernels
=========================================================
Three different types of SVM-Kernels are displayed below.
The polynomial and RBF are especially useful when the
data-points are not linearly separable.
"""
print(__doc__)
# Code source: Gaël Varoquaux
# License: BSD 3 clause
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
# Our dataset and targets
X = np.c_[(.4, -.7),
(-1.5, -1),
(-1.4, -.9),
(-1.3, -1.2),
(-1.1, -.2),
(-1.2, -.4),
(-.5, 1.2),
(-1.5, 2.1),
(1, 1),
# --
(1.3, .8),
(1.2, .5),
(.2, -2),
(.5, -2.4),
(.2, -2.3),
(0, -2.7),
(1.3, 2.1)].T
Y = [0] * 8 + [1] * 8
# figure number
fignum = 1
# fit the model
for kernel in ('linear', 'poly', 'rbf'):
clf = svm.SVC(kernel=kernel, gamma=2)
clf.fit(X, Y)
# plot the line, the points, and the nearest vectors to the plane
plt.figure(fignum, figsize=(4, 3))
plt.clf()
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80,
facecolors='none', zorder=10)
plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired)
plt.axis('tight')
x_min = -3
x_max = 3
y_min = -3
y_max = 3
XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])
# Put the result into a color plot
Z = Z.reshape(XX.shape)
plt.figure(fignum, figsize=(4, 3))
plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired)
plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'],
levels=[-.5, 0, .5])
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())
fignum = fignum + 1
plt.show()
|
bsd-3-clause
|
harisbal/pandas
|
pandas/io/common.py
|
1
|
19676
|
"""Common IO api utilities"""
import codecs
from contextlib import closing, contextmanager
import csv
import mmap
import os
import zipfile
import pandas.compat as compat
from pandas.compat import BytesIO, StringIO, string_types, text_type
from pandas.errors import ( # noqa
DtypeWarning, EmptyDataError, ParserError, ParserWarning)
from pandas.core.dtypes.common import is_file_like, is_number
import pandas.core.common as com
from pandas.io.formats.printing import pprint_thing
# gh-12665: Alias for now and remove later.
CParserError = ParserError
# common NA values
# no longer excluding inf representations
# '1.#INF','-1.#INF', '1.#INF000000',
_NA_VALUES = {'-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A N/A', '#N/A',
'N/A', 'n/a', 'NA', '#NA', 'NULL', 'null', 'NaN', '-NaN', 'nan',
'-nan', ''}
if compat.PY3:
from urllib.request import urlopen, pathname2url
_urlopen = urlopen
from urllib.parse import urlparse as parse_url
from urllib.parse import (uses_relative, uses_netloc, uses_params,
urlencode, urljoin)
from urllib.error import URLError
from http.client import HTTPException # noqa
else:
from urllib2 import urlopen as _urlopen
from urllib import urlencode, pathname2url # noqa
from urlparse import urlparse as parse_url
from urlparse import uses_relative, uses_netloc, uses_params, urljoin
from urllib2 import URLError # noqa
from httplib import HTTPException # noqa
from contextlib import contextmanager, closing # noqa
from functools import wraps # noqa
# @wraps(_urlopen)
@contextmanager
def urlopen(*args, **kwargs):
with closing(_urlopen(*args, **kwargs)) as f:
yield f
_VALID_URLS = set(uses_relative + uses_netloc + uses_params)
_VALID_URLS.discard('')
class BaseIterator(object):
"""Subclass this and provide a "__next__()" method to obtain an iterator.
Useful only when the object being iterated is non-reusable (e.g. OK for a
parser, not for an in-memory table, yes for its iterator)."""
def __iter__(self):
return self
def __next__(self):
raise com.AbstractMethodError(self)
if not compat.PY3:
BaseIterator.next = lambda self: self.__next__()
def _is_url(url):
"""Check to see if a URL has a valid protocol.
Parameters
----------
url : str or unicode
Returns
-------
isurl : bool
If `url` has a valid protocol return True otherwise False.
"""
try:
return parse_url(url).scheme in _VALID_URLS
except Exception:
return False
def _expand_user(filepath_or_buffer):
"""Return the argument with an initial component of ~ or ~user
replaced by that user's home directory.
Parameters
----------
filepath_or_buffer : object to be converted if possible
Returns
-------
expanded_filepath_or_buffer : an expanded filepath or the
input if not expandable
"""
if isinstance(filepath_or_buffer, string_types):
return os.path.expanduser(filepath_or_buffer)
return filepath_or_buffer
def _validate_header_arg(header):
if isinstance(header, bool):
raise TypeError("Passing a bool to header is invalid. "
"Use header=None for no header or "
"header=int or list-like of ints to specify "
"the row(s) making up the column names")
def _stringify_path(filepath_or_buffer):
"""Attempt to convert a path-like object to a string.
Parameters
----------
filepath_or_buffer : object to be converted
Returns
-------
str_filepath_or_buffer : maybe a string version of the object
Notes
-----
Objects supporting the fspath protocol (python 3.6+) are coerced
according to its __fspath__ method.
For backwards compatibility with older pythons, pathlib.Path and
py.path objects are specially coerced.
Any other object is passed through unchanged, which includes bytes,
strings, buffers, or anything else that's not even path-like.
"""
try:
import pathlib
_PATHLIB_INSTALLED = True
except ImportError:
_PATHLIB_INSTALLED = False
try:
from py.path import local as LocalPath
_PY_PATH_INSTALLED = True
except ImportError:
_PY_PATH_INSTALLED = False
if hasattr(filepath_or_buffer, '__fspath__'):
return filepath_or_buffer.__fspath__()
if _PATHLIB_INSTALLED and isinstance(filepath_or_buffer, pathlib.Path):
return text_type(filepath_or_buffer)
if _PY_PATH_INSTALLED and isinstance(filepath_or_buffer, LocalPath):
return filepath_or_buffer.strpath
return filepath_or_buffer
def is_s3_url(url):
"""Check for an s3, s3n, or s3a url"""
try:
return parse_url(url).scheme in ['s3', 's3n', 's3a']
except Exception:
return False
def is_gcs_url(url):
"""Check for a gcs url"""
try:
return parse_url(url).scheme in ['gcs', 'gs']
except Exception:
return False
def get_filepath_or_buffer(filepath_or_buffer, encoding=None,
compression=None, mode=None):
"""
If the filepath_or_buffer is a url, translate and return the buffer.
Otherwise passthrough.
Parameters
----------
filepath_or_buffer : a url, filepath (str, py.path.local or pathlib.Path),
or buffer
encoding : the encoding to use to decode py3 bytes, default is 'utf-8'
mode : str, optional
Returns
-------
tuple of ({a filepath_ or buffer or S3File instance},
encoding, str,
compression, str,
should_close, bool)
"""
filepath_or_buffer = _stringify_path(filepath_or_buffer)
if _is_url(filepath_or_buffer):
req = _urlopen(filepath_or_buffer)
content_encoding = req.headers.get('Content-Encoding', None)
if content_encoding == 'gzip':
# Override compression based on Content-Encoding header
compression = 'gzip'
reader = BytesIO(req.read())
req.close()
return reader, encoding, compression, True
if is_s3_url(filepath_or_buffer):
from pandas.io import s3
return s3.get_filepath_or_buffer(filepath_or_buffer,
encoding=encoding,
compression=compression,
mode=mode)
if is_gcs_url(filepath_or_buffer):
from pandas.io import gcs
return gcs.get_filepath_or_buffer(filepath_or_buffer,
encoding=encoding,
compression=compression,
mode=mode)
if isinstance(filepath_or_buffer, (compat.string_types,
compat.binary_type,
mmap.mmap)):
return _expand_user(filepath_or_buffer), None, compression, False
if not is_file_like(filepath_or_buffer):
msg = "Invalid file path or buffer object type: {_type}"
raise ValueError(msg.format(_type=type(filepath_or_buffer)))
return filepath_or_buffer, None, compression, False
def file_path_to_url(path):
"""
converts an absolute native path to a FILE URL.
Parameters
----------
path : a path in native format
Returns
-------
a valid FILE URL
"""
return urljoin('file:', pathname2url(path))
_compression_to_extension = {
'gzip': '.gz',
'bz2': '.bz2',
'zip': '.zip',
'xz': '.xz',
}
def _infer_compression(filepath_or_buffer, compression):
"""
Get the compression method for filepath_or_buffer. If compression='infer',
the inferred compression method is returned. Otherwise, the input
compression method is returned unchanged, unless it's invalid, in which
case an error is raised.
Parameters
----------
filepath_or_buffer :
a path (str) or buffer
compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}
If 'infer' and `filepath_or_buffer` is path-like, then detect
compression from the following extensions: '.gz', '.bz2', '.zip',
or '.xz' (otherwise no compression).
Returns
-------
string or None :
compression method
Raises
------
ValueError on invalid compression specified
"""
# No compression has been explicitly specified
if compression is None:
return None
# Infer compression
if compression == 'infer':
# Convert all path types (e.g. pathlib.Path) to strings
filepath_or_buffer = _stringify_path(filepath_or_buffer)
if not isinstance(filepath_or_buffer, compat.string_types):
# Cannot infer compression of a buffer, assume no compression
return None
# Infer compression from the filename/URL extension
for compression, extension in _compression_to_extension.items():
if filepath_or_buffer.endswith(extension):
return compression
return None
# Compression has been specified. Check that it's valid
if compression in _compression_to_extension:
return compression
msg = 'Unrecognized compression type: {}'.format(compression)
valid = ['infer', None] + sorted(_compression_to_extension)
msg += '\nValid compression types are {}'.format(valid)
raise ValueError(msg)
def _get_handle(path_or_buf, mode, encoding=None, compression=None,
memory_map=False, is_text=True):
"""
Get file handle for given path/buffer and mode.
Parameters
----------
path_or_buf :
a path (str) or buffer
mode : str
mode to open path_or_buf with
encoding : str or None
compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default None
If 'infer' and `filepath_or_buffer` is path-like, then detect
compression from the following extensions: '.gz', '.bz2', '.zip',
or '.xz' (otherwise no compression).
memory_map : boolean, default False
See parsers._parser_params for more information.
is_text : boolean, default True
whether file/buffer is in text format (csv, json, etc.), or in binary
mode (pickle, etc.)
Returns
-------
f : file-like
A file-like object
handles : list of file-like objects
A list of file-like object that were opened in this function.
"""
try:
from s3fs import S3File
need_text_wrapping = (BytesIO, S3File)
except ImportError:
need_text_wrapping = (BytesIO,)
handles = list()
f = path_or_buf
# Convert pathlib.Path/py.path.local or string
path_or_buf = _stringify_path(path_or_buf)
is_path = isinstance(path_or_buf, compat.string_types)
if is_path:
compression = _infer_compression(path_or_buf, compression)
if compression:
if compat.PY2 and not is_path and encoding:
msg = 'compression with encoding is not yet supported in Python 2'
raise ValueError(msg)
# GZ Compression
if compression == 'gzip':
import gzip
if is_path:
f = gzip.open(path_or_buf, mode)
else:
f = gzip.GzipFile(fileobj=path_or_buf)
# BZ Compression
elif compression == 'bz2':
import bz2
if is_path:
f = bz2.BZ2File(path_or_buf, mode)
elif compat.PY2:
# Python 2's bz2 module can't take file objects, so have to
# run through decompress manually
f = StringIO(bz2.decompress(path_or_buf.read()))
path_or_buf.close()
else:
f = bz2.BZ2File(path_or_buf)
# ZIP Compression
elif compression == 'zip':
zf = BytesZipFile(path_or_buf, mode)
# Ensure the container is closed as well.
handles.append(zf)
if zf.mode == 'w':
f = zf
elif zf.mode == 'r':
zip_names = zf.namelist()
if len(zip_names) == 1:
f = zf.open(zip_names.pop())
elif len(zip_names) == 0:
raise ValueError('Zero files found in ZIP file {}'
.format(path_or_buf))
else:
raise ValueError('Multiple files found in ZIP file.'
' Only one file per ZIP: {}'
.format(zip_names))
# XZ Compression
elif compression == 'xz':
lzma = compat.import_lzma()
f = lzma.LZMAFile(path_or_buf, mode)
# Unrecognized Compression
else:
msg = 'Unrecognized compression type: {}'.format(compression)
raise ValueError(msg)
handles.append(f)
elif is_path:
if compat.PY2:
# Python 2
mode = "wb" if mode == "w" else mode
f = open(path_or_buf, mode)
elif encoding:
# Python 3 and encoding
f = open(path_or_buf, mode, encoding=encoding, newline="")
elif is_text:
# Python 3 and no explicit encoding
f = open(path_or_buf, mode, errors='replace', newline="")
else:
# Python 3 and binary mode
f = open(path_or_buf, mode)
handles.append(f)
# in Python 3, convert BytesIO or fileobjects passed with an encoding
if (compat.PY3 and is_text and
(compression or isinstance(f, need_text_wrapping))):
from io import TextIOWrapper
f = TextIOWrapper(f, encoding=encoding)
handles.append(f)
if memory_map and hasattr(f, 'fileno'):
try:
g = MMapWrapper(f)
f.close()
f = g
except Exception:
# we catch any errors that may have occurred
# because that is consistent with the lower-level
# functionality of the C engine (pd.read_csv), so
# leave the file handler as is then
pass
return f, handles
class BytesZipFile(zipfile.ZipFile, BytesIO):
"""
Wrapper for standard library class ZipFile and allow the returned file-like
handle to accept byte strings via `write` method.
BytesIO provides attributes of file-like object and ZipFile.writestr writes
bytes strings into a member of the archive.
"""
# GH 17778
def __init__(self, file, mode, compression=zipfile.ZIP_DEFLATED, **kwargs):
if mode in ['wb', 'rb']:
mode = mode.replace('b', '')
super(BytesZipFile, self).__init__(file, mode, compression, **kwargs)
def write(self, data):
super(BytesZipFile, self).writestr(self.filename, data)
@property
def closed(self):
return self.fp is None
class MMapWrapper(BaseIterator):
"""
Wrapper for the Python's mmap class so that it can be properly read in
by Python's csv.reader class.
Parameters
----------
f : file object
File object to be mapped onto memory. Must support the 'fileno'
method or have an equivalent attribute
"""
def __init__(self, f):
self.mmap = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ)
def __getattr__(self, name):
return getattr(self.mmap, name)
def __iter__(self):
return self
def __next__(self):
newline = self.mmap.readline()
# readline returns bytes, not str, in Python 3,
# but Python's CSV reader expects str, so convert
# the output to str before continuing
if compat.PY3:
newline = compat.bytes_to_str(newline)
# mmap doesn't raise if reading past the allocated
# data but instead returns an empty string, so raise
# if that is returned
if newline == '':
raise StopIteration
return newline
if not compat.PY3:
MMapWrapper.next = lambda self: self.__next__()
class UTF8Recoder(BaseIterator):
"""
Iterator that reads an encoded stream and reencodes the input to UTF-8
"""
def __init__(self, f, encoding):
self.reader = codecs.getreader(encoding)(f)
def read(self, bytes=-1):
return self.reader.read(bytes).encode("utf-8")
def readline(self):
return self.reader.readline().encode("utf-8")
def next(self):
return next(self.reader).encode("utf-8")
if compat.PY3: # pragma: no cover
def UnicodeReader(f, dialect=csv.excel, encoding="utf-8", **kwds):
# ignore encoding
return csv.reader(f, dialect=dialect, **kwds)
def UnicodeWriter(f, dialect=csv.excel, encoding="utf-8", **kwds):
return csv.writer(f, dialect=dialect, **kwds)
else:
class UnicodeReader(BaseIterator):
"""
A CSV reader which will iterate over lines in the CSV file "f",
which is encoded in the given encoding.
On Python 3, this is replaced (below) by csv.reader, which handles
unicode.
"""
def __init__(self, f, dialect=csv.excel, encoding="utf-8", **kwds):
f = UTF8Recoder(f, encoding)
self.reader = csv.reader(f, dialect=dialect, **kwds)
def __next__(self):
row = next(self.reader)
return [compat.text_type(s, "utf-8") for s in row]
class UnicodeWriter(object):
"""
A CSV writer which will write rows to CSV file "f",
which is encoded in the given encoding.
"""
def __init__(self, f, dialect=csv.excel, encoding="utf-8", **kwds):
# Redirect output to a queue
self.queue = StringIO()
self.writer = csv.writer(self.queue, dialect=dialect, **kwds)
self.stream = f
self.encoder = codecs.getincrementalencoder(encoding)()
self.quoting = kwds.get("quoting", None)
def writerow(self, row):
def _check_as_is(x):
return (self.quoting == csv.QUOTE_NONNUMERIC and
is_number(x)) or isinstance(x, str)
row = [x if _check_as_is(x)
else pprint_thing(x).encode("utf-8") for x in row]
self.writer.writerow([s for s in row])
# Fetch UTF-8 output from the queue ...
data = self.queue.getvalue()
data = data.decode("utf-8")
# ... and re-encode it into the target encoding
data = self.encoder.encode(data)
# write to the target stream
self.stream.write(data)
# empty queue
self.queue.truncate(0)
def writerows(self, rows):
def _check_as_is(x):
return (self.quoting == csv.QUOTE_NONNUMERIC and
is_number(x)) or isinstance(x, str)
for i, row in enumerate(rows):
rows[i] = [x if _check_as_is(x)
else pprint_thing(x).encode("utf-8") for x in row]
self.writer.writerows([[s for s in row] for row in rows])
# Fetch UTF-8 output from the queue ...
data = self.queue.getvalue()
data = data.decode("utf-8")
# ... and re-encode it into the target encoding
data = self.encoder.encode(data)
# write to the target stream
self.stream.write(data)
# empty queue
self.queue.truncate(0)
|
bsd-3-clause
|
Obus/scikit-learn
|
benchmarks/bench_isotonic.py
|
268
|
3046
|
"""
Benchmarks of isotonic regression performance.
We generate a synthetic dataset of size 10^n, for n in [min, max], and
examine the time taken to run isotonic regression over the dataset.
The timings are then output to stdout, or visualized on a log-log scale
with matplotlib.
This alows the scaling of the algorithm with the problem size to be
visualized and understood.
"""
from __future__ import print_function
import numpy as np
import gc
from datetime import datetime
from sklearn.isotonic import isotonic_regression
from sklearn.utils.bench import total_seconds
import matplotlib.pyplot as plt
import argparse
def generate_perturbed_logarithm_dataset(size):
return np.random.randint(-50, 50, size=n) \
+ 50. * np.log(1 + np.arange(n))
def generate_logistic_dataset(size):
X = np.sort(np.random.normal(size=size))
return np.random.random(size=size) < 1.0 / (1.0 + np.exp(-X))
DATASET_GENERATORS = {
'perturbed_logarithm': generate_perturbed_logarithm_dataset,
'logistic': generate_logistic_dataset
}
def bench_isotonic_regression(Y):
"""
Runs a single iteration of isotonic regression on the input data,
and reports the total time taken (in seconds).
"""
gc.collect()
tstart = datetime.now()
isotonic_regression(Y)
delta = datetime.now() - tstart
return total_seconds(delta)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description="Isotonic Regression benchmark tool")
parser.add_argument('--iterations', type=int, required=True,
help="Number of iterations to average timings over "
"for each problem size")
parser.add_argument('--log_min_problem_size', type=int, required=True,
help="Base 10 logarithm of the minimum problem size")
parser.add_argument('--log_max_problem_size', type=int, required=True,
help="Base 10 logarithm of the maximum problem size")
parser.add_argument('--show_plot', action='store_true',
help="Plot timing output with matplotlib")
parser.add_argument('--dataset', choices=DATASET_GENERATORS.keys(),
required=True)
args = parser.parse_args()
timings = []
for exponent in range(args.log_min_problem_size,
args.log_max_problem_size):
n = 10 ** exponent
Y = DATASET_GENERATORS[args.dataset](n)
time_per_iteration = \
[bench_isotonic_regression(Y) for i in range(args.iterations)]
timing = (n, np.mean(time_per_iteration))
timings.append(timing)
# If we're not plotting, dump the timing to stdout
if not args.show_plot:
print(n, np.mean(time_per_iteration))
if args.show_plot:
plt.plot(*zip(*timings))
plt.title("Average time taken running isotonic regression")
plt.xlabel('Number of observations')
plt.ylabel('Time (s)')
plt.axis('tight')
plt.loglog()
plt.show()
|
bsd-3-clause
|
mjgrav2001/scikit-learn
|
sklearn/linear_model/tests/test_logistic.py
|
105
|
26588
|
import numpy as np
import scipy.sparse as sp
from scipy import linalg, optimize, sparse
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_true
from sklearn.utils.testing import assert_warns
from sklearn.utils.testing import raises
from sklearn.utils.testing import ignore_warnings
from sklearn.utils.testing import assert_raise_message
from sklearn.utils import ConvergenceWarning
from sklearn.linear_model.logistic import (
LogisticRegression,
logistic_regression_path, LogisticRegressionCV,
_logistic_loss_and_grad, _logistic_grad_hess,
_multinomial_grad_hess, _logistic_loss,
)
from sklearn.cross_validation import StratifiedKFold
from sklearn.datasets import load_iris, make_classification
X = [[-1, 0], [0, 1], [1, 1]]
X_sp = sp.csr_matrix(X)
Y1 = [0, 1, 1]
Y2 = [2, 1, 0]
iris = load_iris()
def check_predictions(clf, X, y):
"""Check that the model is able to fit the classification data"""
n_samples = len(y)
classes = np.unique(y)
n_classes = classes.shape[0]
predicted = clf.fit(X, y).predict(X)
assert_array_equal(clf.classes_, classes)
assert_equal(predicted.shape, (n_samples,))
assert_array_equal(predicted, y)
probabilities = clf.predict_proba(X)
assert_equal(probabilities.shape, (n_samples, n_classes))
assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples))
assert_array_equal(probabilities.argmax(axis=1), y)
def test_predict_2_classes():
# Simple sanity check on a 2 classes dataset
# Make sure it predicts the correct result on simple datasets.
check_predictions(LogisticRegression(random_state=0), X, Y1)
check_predictions(LogisticRegression(random_state=0), X_sp, Y1)
check_predictions(LogisticRegression(C=100, random_state=0), X, Y1)
check_predictions(LogisticRegression(C=100, random_state=0), X_sp, Y1)
check_predictions(LogisticRegression(fit_intercept=False,
random_state=0), X, Y1)
check_predictions(LogisticRegression(fit_intercept=False,
random_state=0), X_sp, Y1)
def test_error():
# Test for appropriate exception on errors
msg = "Penalty term must be positive"
assert_raise_message(ValueError, msg,
LogisticRegression(C=-1).fit, X, Y1)
assert_raise_message(ValueError, msg,
LogisticRegression(C="test").fit, X, Y1)
for LR in [LogisticRegression, LogisticRegressionCV]:
msg = "Tolerance for stopping criteria must be positive"
assert_raise_message(ValueError, msg, LR(tol=-1).fit, X, Y1)
assert_raise_message(ValueError, msg, LR(tol="test").fit, X, Y1)
msg = "Maximum number of iteration must be positive"
assert_raise_message(ValueError, msg, LR(max_iter=-1).fit, X, Y1)
assert_raise_message(ValueError, msg, LR(max_iter="test").fit, X, Y1)
def test_predict_3_classes():
check_predictions(LogisticRegression(C=10), X, Y2)
check_predictions(LogisticRegression(C=10), X_sp, Y2)
def test_predict_iris():
# Test logistic regression with the iris dataset
n_samples, n_features = iris.data.shape
target = iris.target_names[iris.target]
# Test that both multinomial and OvR solvers handle
# multiclass data correctly and give good accuracy
# score (>0.95) for the training data.
for clf in [LogisticRegression(C=len(iris.data)),
LogisticRegression(C=len(iris.data), solver='lbfgs',
multi_class='multinomial'),
LogisticRegression(C=len(iris.data), solver='newton-cg',
multi_class='multinomial')]:
clf.fit(iris.data, target)
assert_array_equal(np.unique(target), clf.classes_)
pred = clf.predict(iris.data)
assert_greater(np.mean(pred == target), .95)
probabilities = clf.predict_proba(iris.data)
assert_array_almost_equal(probabilities.sum(axis=1),
np.ones(n_samples))
pred = iris.target_names[probabilities.argmax(axis=1)]
assert_greater(np.mean(pred == target), .95)
def test_multinomial_validation():
for solver in ['lbfgs', 'newton-cg']:
lr = LogisticRegression(C=-1, solver=solver, multi_class='multinomial')
assert_raises(ValueError, lr.fit, [[0, 1], [1, 0]], [0, 1])
def test_check_solver_option():
X, y = iris.data, iris.target
for LR in [LogisticRegression, LogisticRegressionCV]:
msg = ("Logistic Regression supports only liblinear, newton-cg and"
" lbfgs solvers, got wrong_name")
lr = LR(solver="wrong_name")
assert_raise_message(ValueError, msg, lr.fit, X, y)
msg = "multi_class should be either multinomial or ovr, got wrong_name"
lr = LR(solver='newton-cg', multi_class="wrong_name")
assert_raise_message(ValueError, msg, lr.fit, X, y)
# all solver except 'newton-cg' and 'lfbgs'
for solver in ['liblinear']:
msg = ("Solver %s does not support a multinomial backend." %
solver)
lr = LR(solver=solver, multi_class='multinomial')
assert_raise_message(ValueError, msg, lr.fit, X, y)
# all solvers except 'liblinear'
for solver in ['newton-cg', 'lbfgs']:
msg = ("Solver %s supports only l2 penalties, got l1 penalty." %
solver)
lr = LR(solver=solver, penalty='l1')
assert_raise_message(ValueError, msg, lr.fit, X, y)
msg = ("Solver %s supports only dual=False, got dual=True" %
solver)
lr = LR(solver=solver, dual=True)
assert_raise_message(ValueError, msg, lr.fit, X, y)
def test_multinomial_binary():
# Test multinomial LR on a binary problem.
target = (iris.target > 0).astype(np.intp)
target = np.array(["setosa", "not-setosa"])[target]
for solver in ['lbfgs', 'newton-cg']:
clf = LogisticRegression(solver=solver, multi_class='multinomial')
clf.fit(iris.data, target)
assert_equal(clf.coef_.shape, (1, iris.data.shape[1]))
assert_equal(clf.intercept_.shape, (1,))
assert_array_equal(clf.predict(iris.data), target)
mlr = LogisticRegression(solver=solver, multi_class='multinomial',
fit_intercept=False)
mlr.fit(iris.data, target)
pred = clf.classes_[np.argmax(clf.predict_log_proba(iris.data),
axis=1)]
assert_greater(np.mean(pred == target), .9)
def test_sparsify():
# Test sparsify and densify members.
n_samples, n_features = iris.data.shape
target = iris.target_names[iris.target]
clf = LogisticRegression(random_state=0).fit(iris.data, target)
pred_d_d = clf.decision_function(iris.data)
clf.sparsify()
assert_true(sp.issparse(clf.coef_))
pred_s_d = clf.decision_function(iris.data)
sp_data = sp.coo_matrix(iris.data)
pred_s_s = clf.decision_function(sp_data)
clf.densify()
pred_d_s = clf.decision_function(sp_data)
assert_array_almost_equal(pred_d_d, pred_s_d)
assert_array_almost_equal(pred_d_d, pred_s_s)
assert_array_almost_equal(pred_d_d, pred_d_s)
def test_inconsistent_input():
# Test that an exception is raised on inconsistent input
rng = np.random.RandomState(0)
X_ = rng.random_sample((5, 10))
y_ = np.ones(X_.shape[0])
y_[0] = 0
clf = LogisticRegression(random_state=0)
# Wrong dimensions for training data
y_wrong = y_[:-1]
assert_raises(ValueError, clf.fit, X, y_wrong)
# Wrong dimensions for test data
assert_raises(ValueError, clf.fit(X_, y_).predict,
rng.random_sample((3, 12)))
def test_write_parameters():
# Test that we can write to coef_ and intercept_
clf = LogisticRegression(random_state=0)
clf.fit(X, Y1)
clf.coef_[:] = 0
clf.intercept_[:] = 0
assert_array_almost_equal(clf.decision_function(X), 0)
@raises(ValueError)
def test_nan():
# Test proper NaN handling.
# Regression test for Issue #252: fit used to go into an infinite loop.
Xnan = np.array(X, dtype=np.float64)
Xnan[0, 1] = np.nan
LogisticRegression(random_state=0).fit(Xnan, Y1)
def test_consistency_path():
# Test that the path algorithm is consistent
rng = np.random.RandomState(0)
X = np.concatenate((rng.randn(100, 2) + [1, 1], rng.randn(100, 2)))
y = [1] * 100 + [-1] * 100
Cs = np.logspace(0, 4, 10)
f = ignore_warnings
# can't test with fit_intercept=True since LIBLINEAR
# penalizes the intercept
for method in ('lbfgs', 'newton-cg', 'liblinear'):
coefs, Cs = f(logistic_regression_path)(
X, y, Cs=Cs, fit_intercept=False, tol=1e-16, solver=method)
for i, C in enumerate(Cs):
lr = LogisticRegression(C=C, fit_intercept=False, tol=1e-16)
lr.fit(X, y)
lr_coef = lr.coef_.ravel()
assert_array_almost_equal(lr_coef, coefs[i], decimal=4)
# test for fit_intercept=True
for method in ('lbfgs', 'newton-cg', 'liblinear'):
Cs = [1e3]
coefs, Cs = f(logistic_regression_path)(
X, y, Cs=Cs, fit_intercept=True, tol=1e-4, solver=method)
lr = LogisticRegression(C=Cs[0], fit_intercept=True, tol=1e-4,
intercept_scaling=10000)
lr.fit(X, y)
lr_coef = np.concatenate([lr.coef_.ravel(), lr.intercept_])
assert_array_almost_equal(lr_coef, coefs[0], decimal=4)
def test_liblinear_dual_random_state():
# random_state is relevant for liblinear solver only if dual=True
X, y = make_classification(n_samples=20)
lr1 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15)
lr1.fit(X, y)
lr2 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15)
lr2.fit(X, y)
lr3 = LogisticRegression(random_state=8, dual=True, max_iter=1, tol=1e-15)
lr3.fit(X, y)
# same result for same random state
assert_array_almost_equal(lr1.coef_, lr2.coef_)
# different results for different random states
msg = "Arrays are not almost equal to 6 decimals"
assert_raise_message(AssertionError, msg,
assert_array_almost_equal, lr1.coef_, lr3.coef_)
def test_logistic_loss_and_grad():
X_ref, y = make_classification(n_samples=20)
n_features = X_ref.shape[1]
X_sp = X_ref.copy()
X_sp[X_sp < .1] = 0
X_sp = sp.csr_matrix(X_sp)
for X in (X_ref, X_sp):
w = np.zeros(n_features)
# First check that our derivation of the grad is correct
loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.)
approx_grad = optimize.approx_fprime(
w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3
)
assert_array_almost_equal(grad, approx_grad, decimal=2)
# Second check that our intercept implementation is good
w = np.zeros(n_features + 1)
loss_interp, grad_interp = _logistic_loss_and_grad(
w, X, y, alpha=1.
)
assert_array_almost_equal(loss, loss_interp)
approx_grad = optimize.approx_fprime(
w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3
)
assert_array_almost_equal(grad_interp, approx_grad, decimal=2)
def test_logistic_grad_hess():
rng = np.random.RandomState(0)
n_samples, n_features = 50, 5
X_ref = rng.randn(n_samples, n_features)
y = np.sign(X_ref.dot(5 * rng.randn(n_features)))
X_ref -= X_ref.mean()
X_ref /= X_ref.std()
X_sp = X_ref.copy()
X_sp[X_sp < .1] = 0
X_sp = sp.csr_matrix(X_sp)
for X in (X_ref, X_sp):
w = .1 * np.ones(n_features)
# First check that _logistic_grad_hess is consistent
# with _logistic_loss_and_grad
loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.)
grad_2, hess = _logistic_grad_hess(w, X, y, alpha=1.)
assert_array_almost_equal(grad, grad_2)
# Now check our hessian along the second direction of the grad
vector = np.zeros_like(grad)
vector[1] = 1
hess_col = hess(vector)
# Computation of the Hessian is particularly fragile to numerical
# errors when doing simple finite differences. Here we compute the
# grad along a path in the direction of the vector and then use a
# least-square regression to estimate the slope
e = 1e-3
d_x = np.linspace(-e, e, 30)
d_grad = np.array([
_logistic_loss_and_grad(w + t * vector, X, y, alpha=1.)[1]
for t in d_x
])
d_grad -= d_grad.mean(axis=0)
approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel()
assert_array_almost_equal(approx_hess_col, hess_col, decimal=3)
# Second check that our intercept implementation is good
w = np.zeros(n_features + 1)
loss_interp, grad_interp = _logistic_loss_and_grad(w, X, y, alpha=1.)
loss_interp_2 = _logistic_loss(w, X, y, alpha=1.)
grad_interp_2, hess = _logistic_grad_hess(w, X, y, alpha=1.)
assert_array_almost_equal(loss_interp, loss_interp_2)
assert_array_almost_equal(grad_interp, grad_interp_2)
def test_logistic_cv():
# test for LogisticRegressionCV object
n_samples, n_features = 50, 5
rng = np.random.RandomState(0)
X_ref = rng.randn(n_samples, n_features)
y = np.sign(X_ref.dot(5 * rng.randn(n_features)))
X_ref -= X_ref.mean()
X_ref /= X_ref.std()
lr_cv = LogisticRegressionCV(Cs=[1.], fit_intercept=False,
solver='liblinear')
lr_cv.fit(X_ref, y)
lr = LogisticRegression(C=1., fit_intercept=False)
lr.fit(X_ref, y)
assert_array_almost_equal(lr.coef_, lr_cv.coef_)
assert_array_equal(lr_cv.coef_.shape, (1, n_features))
assert_array_equal(lr_cv.classes_, [-1, 1])
assert_equal(len(lr_cv.classes_), 2)
coefs_paths = np.asarray(list(lr_cv.coefs_paths_.values()))
assert_array_equal(coefs_paths.shape, (1, 3, 1, n_features))
assert_array_equal(lr_cv.Cs_.shape, (1, ))
scores = np.asarray(list(lr_cv.scores_.values()))
assert_array_equal(scores.shape, (1, 3, 1))
def test_logistic_cv_sparse():
X, y = make_classification(n_samples=50, n_features=5,
random_state=0)
X[X < 1.0] = 0.0
csr = sp.csr_matrix(X)
clf = LogisticRegressionCV(fit_intercept=True)
clf.fit(X, y)
clfs = LogisticRegressionCV(fit_intercept=True)
clfs.fit(csr, y)
assert_array_almost_equal(clfs.coef_, clf.coef_)
assert_array_almost_equal(clfs.intercept_, clf.intercept_)
assert_equal(clfs.C_, clf.C_)
def test_intercept_logistic_helper():
n_samples, n_features = 10, 5
X, y = make_classification(n_samples=n_samples, n_features=n_features,
random_state=0)
# Fit intercept case.
alpha = 1.
w = np.ones(n_features + 1)
grad_interp, hess_interp = _logistic_grad_hess(w, X, y, alpha)
loss_interp = _logistic_loss(w, X, y, alpha)
# Do not fit intercept. This can be considered equivalent to adding
# a feature vector of ones, i.e column of one vectors.
X_ = np.hstack((X, np.ones(10)[:, np.newaxis]))
grad, hess = _logistic_grad_hess(w, X_, y, alpha)
loss = _logistic_loss(w, X_, y, alpha)
# In the fit_intercept=False case, the feature vector of ones is
# penalized. This should be taken care of.
assert_almost_equal(loss_interp + 0.5 * (w[-1] ** 2), loss)
# Check gradient.
assert_array_almost_equal(grad_interp[:n_features], grad[:n_features])
assert_almost_equal(grad_interp[-1] + alpha * w[-1], grad[-1])
rng = np.random.RandomState(0)
grad = rng.rand(n_features + 1)
hess_interp = hess_interp(grad)
hess = hess(grad)
assert_array_almost_equal(hess_interp[:n_features], hess[:n_features])
assert_almost_equal(hess_interp[-1] + alpha * grad[-1], hess[-1])
def test_ovr_multinomial_iris():
# Test that OvR and multinomial are correct using the iris dataset.
train, target = iris.data, iris.target
n_samples, n_features = train.shape
# Use pre-defined fold as folds generated for different y
cv = StratifiedKFold(target, 3)
clf = LogisticRegressionCV(cv=cv)
clf.fit(train, target)
clf1 = LogisticRegressionCV(cv=cv)
target_copy = target.copy()
target_copy[target_copy == 0] = 1
clf1.fit(train, target_copy)
assert_array_almost_equal(clf.scores_[2], clf1.scores_[2])
assert_array_almost_equal(clf.intercept_[2:], clf1.intercept_)
assert_array_almost_equal(clf.coef_[2][np.newaxis, :], clf1.coef_)
# Test the shape of various attributes.
assert_equal(clf.coef_.shape, (3, n_features))
assert_array_equal(clf.classes_, [0, 1, 2])
coefs_paths = np.asarray(list(clf.coefs_paths_.values()))
assert_array_almost_equal(coefs_paths.shape, (3, 3, 10, n_features + 1))
assert_equal(clf.Cs_.shape, (10, ))
scores = np.asarray(list(clf.scores_.values()))
assert_equal(scores.shape, (3, 3, 10))
# Test that for the iris data multinomial gives a better accuracy than OvR
for solver in ['lbfgs', 'newton-cg']:
clf_multi = LogisticRegressionCV(
solver=solver, multi_class='multinomial', max_iter=15
)
clf_multi.fit(train, target)
multi_score = clf_multi.score(train, target)
ovr_score = clf.score(train, target)
assert_greater(multi_score, ovr_score)
# Test attributes of LogisticRegressionCV
assert_equal(clf.coef_.shape, clf_multi.coef_.shape)
assert_array_equal(clf_multi.classes_, [0, 1, 2])
coefs_paths = np.asarray(list(clf_multi.coefs_paths_.values()))
assert_array_almost_equal(coefs_paths.shape, (3, 3, 10,
n_features + 1))
assert_equal(clf_multi.Cs_.shape, (10, ))
scores = np.asarray(list(clf_multi.scores_.values()))
assert_equal(scores.shape, (3, 3, 10))
def test_logistic_regression_solvers():
X, y = make_classification(n_features=10, n_informative=5, random_state=0)
clf_n = LogisticRegression(solver='newton-cg', fit_intercept=False)
clf_n.fit(X, y)
clf_lbf = LogisticRegression(solver='lbfgs', fit_intercept=False)
clf_lbf.fit(X, y)
clf_lib = LogisticRegression(fit_intercept=False)
clf_lib.fit(X, y)
assert_array_almost_equal(clf_n.coef_, clf_lib.coef_, decimal=3)
assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=3)
assert_array_almost_equal(clf_n.coef_, clf_lbf.coef_, decimal=3)
def test_logistic_regression_solvers_multiclass():
X, y = make_classification(n_samples=20, n_features=20, n_informative=10,
n_classes=3, random_state=0)
clf_n = LogisticRegression(solver='newton-cg', fit_intercept=False)
clf_n.fit(X, y)
clf_lbf = LogisticRegression(solver='lbfgs', fit_intercept=False)
clf_lbf.fit(X, y)
clf_lib = LogisticRegression(fit_intercept=False)
clf_lib.fit(X, y)
assert_array_almost_equal(clf_n.coef_, clf_lib.coef_, decimal=4)
assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4)
assert_array_almost_equal(clf_n.coef_, clf_lbf.coef_, decimal=4)
def test_logistic_regressioncv_class_weights():
X, y = make_classification(n_samples=20, n_features=20, n_informative=10,
n_classes=3, random_state=0)
# Test the liblinear fails when class_weight of type dict is
# provided, when it is multiclass. However it can handle
# binary problems.
clf_lib = LogisticRegressionCV(class_weight={0: 0.1, 1: 0.2},
solver='liblinear')
assert_raises(ValueError, clf_lib.fit, X, y)
y_ = y.copy()
y_[y == 2] = 1
clf_lib.fit(X, y_)
assert_array_equal(clf_lib.classes_, [0, 1])
# Test for class_weight=balanced
X, y = make_classification(n_samples=20, n_features=20, n_informative=10,
random_state=0)
clf_lbf = LogisticRegressionCV(solver='lbfgs', fit_intercept=False,
class_weight='balanced')
clf_lbf.fit(X, y)
clf_lib = LogisticRegressionCV(solver='liblinear', fit_intercept=False,
class_weight='balanced')
clf_lib.fit(X, y)
assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4)
def test_logistic_regression_convergence_warnings():
# Test that warnings are raised if model does not converge
X, y = make_classification(n_samples=20, n_features=20)
clf_lib = LogisticRegression(solver='liblinear', max_iter=2, verbose=1)
assert_warns(ConvergenceWarning, clf_lib.fit, X, y)
assert_equal(clf_lib.n_iter_, 2)
def test_logistic_regression_multinomial():
# Tests for the multinomial option in logistic regression
# Some basic attributes of Logistic Regression
n_samples, n_features, n_classes = 50, 20, 3
X, y = make_classification(n_samples=n_samples,
n_features=n_features,
n_informative=10,
n_classes=n_classes, random_state=0)
clf_int = LogisticRegression(solver='lbfgs', multi_class='multinomial')
clf_int.fit(X, y)
assert_array_equal(clf_int.coef_.shape, (n_classes, n_features))
clf_wint = LogisticRegression(solver='lbfgs', multi_class='multinomial',
fit_intercept=False)
clf_wint.fit(X, y)
assert_array_equal(clf_wint.coef_.shape, (n_classes, n_features))
# Similar tests for newton-cg solver option
clf_ncg_int = LogisticRegression(solver='newton-cg',
multi_class='multinomial')
clf_ncg_int.fit(X, y)
assert_array_equal(clf_ncg_int.coef_.shape, (n_classes, n_features))
clf_ncg_wint = LogisticRegression(solver='newton-cg', fit_intercept=False,
multi_class='multinomial')
clf_ncg_wint.fit(X, y)
assert_array_equal(clf_ncg_wint.coef_.shape, (n_classes, n_features))
# Compare solutions between lbfgs and newton-cg
assert_almost_equal(clf_int.coef_, clf_ncg_int.coef_, decimal=3)
assert_almost_equal(clf_wint.coef_, clf_ncg_wint.coef_, decimal=3)
assert_almost_equal(clf_int.intercept_, clf_ncg_int.intercept_, decimal=3)
# Test that the path give almost the same results. However since in this
# case we take the average of the coefs after fitting across all the
# folds, it need not be exactly the same.
for solver in ['lbfgs', 'newton-cg']:
clf_path = LogisticRegressionCV(solver=solver,
multi_class='multinomial', Cs=[1.])
clf_path.fit(X, y)
assert_array_almost_equal(clf_path.coef_, clf_int.coef_, decimal=3)
assert_almost_equal(clf_path.intercept_, clf_int.intercept_, decimal=3)
def test_multinomial_grad_hess():
rng = np.random.RandomState(0)
n_samples, n_features, n_classes = 100, 5, 3
X = rng.randn(n_samples, n_features)
w = rng.rand(n_classes, n_features)
Y = np.zeros((n_samples, n_classes))
ind = np.argmax(np.dot(X, w.T), axis=1)
Y[range(0, n_samples), ind] = 1
w = w.ravel()
sample_weights = np.ones(X.shape[0])
grad, hessp = _multinomial_grad_hess(w, X, Y, alpha=1.,
sample_weight=sample_weights)
# extract first column of hessian matrix
vec = np.zeros(n_features * n_classes)
vec[0] = 1
hess_col = hessp(vec)
# Estimate hessian using least squares as done in
# test_logistic_grad_hess
e = 1e-3
d_x = np.linspace(-e, e, 30)
d_grad = np.array([
_multinomial_grad_hess(w + t * vec, X, Y, alpha=1.,
sample_weight=sample_weights)[0]
for t in d_x
])
d_grad -= d_grad.mean(axis=0)
approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel()
assert_array_almost_equal(hess_col, approx_hess_col)
def test_liblinear_decision_function_zero():
# Test negative prediction when decision_function values are zero.
# Liblinear predicts the positive class when decision_function values
# are zero. This is a test to verify that we do not do the same.
# See Issue: https://github.com/scikit-learn/scikit-learn/issues/3600
# and the PR https://github.com/scikit-learn/scikit-learn/pull/3623
X, y = make_classification(n_samples=5, n_features=5)
clf = LogisticRegression(fit_intercept=False)
clf.fit(X, y)
# Dummy data such that the decision function becomes zero.
X = np.zeros((5, 5))
assert_array_equal(clf.predict(X), np.zeros(5))
def test_liblinear_logregcv_sparse():
# Test LogRegCV with solver='liblinear' works for sparse matrices
X, y = make_classification(n_samples=10, n_features=5)
clf = LogisticRegressionCV(solver='liblinear')
clf.fit(sparse.csr_matrix(X), y)
def test_logreg_intercept_scaling():
# Test that the right error message is thrown when intercept_scaling <= 0
for i in [-1, 0]:
clf = LogisticRegression(intercept_scaling=i)
msg = ('Intercept scaling is %r but needs to be greater than 0.'
' To disable fitting an intercept,'
' set fit_intercept=False.' % clf.intercept_scaling)
assert_raise_message(ValueError, msg, clf.fit, X, Y1)
def test_logreg_intercept_scaling_zero():
# Test that intercept_scaling is ignored when fit_intercept is False
clf = LogisticRegression(fit_intercept=False)
clf.fit(X, Y1)
assert_equal(clf.intercept_, 0.)
def test_logreg_cv_penalty():
# Test that the correct penalty is passed to the final fit.
X, y = make_classification(n_samples=50, n_features=20, random_state=0)
lr_cv = LogisticRegressionCV(penalty="l1", Cs=[1.0], solver='liblinear')
lr_cv.fit(X, y)
lr = LogisticRegression(penalty="l1", C=1.0, solver='liblinear')
lr.fit(X, y)
assert_equal(np.count_nonzero(lr_cv.coef_), np.count_nonzero(lr.coef_))
|
bsd-3-clause
|
Ichaelus/Github-Classifier
|
Application/Models/ClassificationModules/gbrtfilesandfolders.py
|
1
|
3372
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from Models.FeatureProcessing import *
import sklearn
from sklearn.ensemble import GradientBoostingClassifier
import numpy as np
import abc
from ClassificationModule import ClassificationModule
class gbrtfilesandfolders(ClassificationModule):
"""A Gradient Tree Boosting Classifier """
def __init__(self, file_corpus, foldername_corpus, n_estimators=150):
description = "Gradient Tree Boosting / Gradient Boosted Regression Trees (GBRT)."
ClassificationModule.__init__(self, "Files and Folders Gradient Tree Boosting", description)
self.fileVectorizer = getTextVectorizer(50)
self.foldernameVectorizer = getTextVectorizer(50)
# Vectorizer for filetypes
corpus = []
for type in file_corpus:
corpus.append(type)
self.fileVectorizer.fit(corpus)
# Vectorizer for foldernames
corpus = []
for folder in foldername_corpus:
corpus.append(folder)
self.foldernameVectorizer.fit(corpus)
self.clf = GradientBoostingClassifier(n_estimators=n_estimators)
print "\t-", self.name
def resetAllTraining(self):
"""Reset classification module to status before training"""
self.clf = sklearn.base.clone(self.clf)
def trainOnSample(self, sample, nb_epoch=10, shuffle=True, verbose=True):
"""Trainiere (inkrementell) mit Sample. Evtl zusätzlich mit best. Menge alter Daten, damit overfitten auf neue Daten verhindert wird."""
readme_vec = self.formatInputData(sample)
label_index = getLabelIndex(sample)
return self.clf.fit(readme_vec, np.expand_dims(label_index, axis=0))
def train(self, samples, nb_epoch=10, shuffle=True, verbose=True):
"""Trainiere mit Liste von Daten. Evtl weitere Paramter nötig (nb_epoch, learning_rate, ...)"""
train_samples = []
train_lables = []
for sample in samples:
formatted_sample = self.formatInputData(sample)[0].tolist()
train_samples.append(formatted_sample)
train_lables.append(getLabelIndex(sample))
train_lables = np.asarray(train_lables)
train_result = self.clf.fit(train_samples, train_lables)
self.isTrained = True
return train_result
def predictLabel(self, sample):
"""Gibt zurück, wie der Klassifikator ein gegebenes Sample klassifizieren würde"""
if not self.isTrained:
return 0
sample = self.formatInputData(sample)
return self.clf.predict(sample)[0]
def predictLabelAndProbability(self, sample):
"""Return the probability the module assignes each label"""
if not self.isTrained:
return [0, 0, 0, 0, 0, 0, 0, 0]
sample = self.formatInputData(sample)
prediction = self.clf.predict_proba(sample)[0]
return [np.argmax(prediction)] + list(prediction)
def formatInputData(self, sample):
"""Extract description and transform to vector"""
sd = getReadme(sample)
arr = list(self.fileVectorizer.transform([getFiletypesString(sample)]).toarray()[0])
arr += list(self.foldernameVectorizer.transform([getFoldernames(sample)]).toarray()[0])
# Returns numpy array which contains 1 array with features
return np.asarray([arr])
|
mit
|
jstoxrocky/statsmodels
|
statsmodels/sandbox/distributions/mv_measures.py
|
33
|
6257
|
'''using multivariate dependence and divergence measures
The standard correlation coefficient measures only linear dependence between
random variables.
kendall's tau measures any monotonic relationship also non-linear.
mutual information measures any kind of dependence, but does not distinguish
between positive and negative relationship
mutualinfo_kde and mutualinfo_binning follow Khan et al. 2007
Shiraj Khan, Sharba Bandyopadhyay, Auroop R. Ganguly, Sunil Saigal,
David J. Erickson, III, Vladimir Protopopescu, and George Ostrouchov,
Relative performance of mutual information estimation methods for
quantifying the dependence among short and noisy data,
Phys. Rev. E 76, 026209 (2007)
http://pre.aps.org/abstract/PRE/v76/i2/e026209
'''
import numpy as np
from scipy import stats
from scipy.stats import gaussian_kde
import statsmodels.sandbox.infotheo as infotheo
def mutualinfo_kde(y, x, normed=True):
'''mutual information of two random variables estimated with kde
'''
nobs = len(x)
if not len(y) == nobs:
raise ValueError('both data arrays need to have the same size')
x = np.asarray(x, float)
y = np.asarray(y, float)
yx = np.vstack((y,x))
kde_x = gaussian_kde(x)(x)
kde_y = gaussian_kde(y)(y)
kde_yx = gaussian_kde(yx)(yx)
mi_obs = np.log(kde_yx) - np.log(kde_x) - np.log(kde_y)
mi = mi_obs.sum() / nobs
if normed:
mi_normed = np.sqrt(1. - np.exp(-2 * mi))
return mi_normed
else:
return mi
def mutualinfo_kde_2sample(y, x, normed=True):
'''mutual information of two random variables estimated with kde
'''
nobs = len(x)
x = np.asarray(x, float)
y = np.asarray(y, float)
#yx = np.vstack((y,x))
kde_x = gaussian_kde(x.T)(x.T)
kde_y = gaussian_kde(y.T)(x.T)
#kde_yx = gaussian_kde(yx)(yx)
mi_obs = np.log(kde_x) - np.log(kde_y)
if len(mi_obs) != nobs:
raise ValueError("Wrong number of observations")
mi = mi_obs.mean()
if normed:
mi_normed = np.sqrt(1. - np.exp(-2 * mi))
return mi_normed
else:
return mi
def mutualinfo_binned(y, x, bins, normed=True):
'''mutual information of two random variables estimated with kde
Notes
-----
bins='auto' selects the number of bins so that approximately 5 observations
are expected to be in each bin under the assumption of independence. This
follows roughly the description in Kahn et al. 2007
'''
nobs = len(x)
if not len(y) == nobs:
raise ValueError('both data arrays need to have the same size')
x = np.asarray(x, float)
y = np.asarray(y, float)
#yx = np.vstack((y,x))
## fyx, binsy, binsx = np.histogram2d(y, x, bins=bins)
## fx, binsx_ = np.histogram(x, bins=binsx)
## fy, binsy_ = np.histogram(y, bins=binsy)
if bins == 'auto':
ys = np.sort(y)
xs = np.sort(x)
#quantiles = np.array([0,0.25, 0.4, 0.6, 0.75, 1])
qbin_sqr = np.sqrt(5./nobs)
quantiles = np.linspace(0, 1, 1./qbin_sqr)
quantile_index = ((nobs-1)*quantiles).astype(int)
#move edges so that they don't coincide with an observation
shift = 1e-6 + np.ones(quantiles.shape)
shift[0] -= 2*1e-6
binsy = ys[quantile_index] + shift
binsx = xs[quantile_index] + shift
elif np.size(bins) == 1:
binsy = bins
binsx = bins
elif (len(bins) == 2):
binsy, binsx = bins
## if np.size(bins[0]) == 1:
## binsx = bins[0]
## if np.size(bins[1]) == 1:
## binsx = bins[1]
fx, binsx = np.histogram(x, bins=binsx)
fy, binsy = np.histogram(y, bins=binsy)
fyx, binsy, binsx = np.histogram2d(y, x, bins=(binsy, binsx))
pyx = fyx * 1. / nobs
px = fx * 1. / nobs
py = fy * 1. / nobs
mi_obs = pyx * (np.log(pyx+1e-10) - np.log(py)[:,None] - np.log(px))
mi = mi_obs.sum()
if normed:
mi_normed = np.sqrt(1. - np.exp(-2 * mi))
return mi_normed, (pyx, py, px, binsy, binsx), mi_obs
else:
return mi
if __name__ == '__main__':
import statsmodels.api as sm
funtype = ['linear', 'quadratic'][1]
nobs = 200
sig = 2#5.
#x = np.linspace(-3, 3, nobs) + np.random.randn(nobs)
x = np.sort(3*np.random.randn(nobs))
exog = sm.add_constant(x, prepend=True)
#y = 0 + np.log(1+x**2) + sig * np.random.randn(nobs)
if funtype == 'quadratic':
y = 0 + x**2 + sig * np.random.randn(nobs)
if funtype == 'linear':
y = 0 + x + sig * np.random.randn(nobs)
print('correlation')
print(np.corrcoef(y,x)[0, 1])
print('pearsonr', stats.pearsonr(y,x))
print('spearmanr', stats.spearmanr(y,x))
print('kendalltau', stats.kendalltau(y,x))
pxy, binsx, binsy = np.histogram2d(x,y, bins=5)
px, binsx_ = np.histogram(x, bins=binsx)
py, binsy_ = np.histogram(y, bins=binsy)
print('mutualinfo', infotheo.mutualinfo(px*1./nobs, py*1./nobs,
1e-15+pxy*1./nobs, logbase=np.e))
print('mutualinfo_kde normed', mutualinfo_kde(y,x))
print('mutualinfo_kde ', mutualinfo_kde(y,x, normed=False))
mi_normed, (pyx2, py2, px2, binsy2, binsx2), mi_obs = \
mutualinfo_binned(y, x, 5, normed=True)
print('mutualinfo_binned normed', mi_normed)
print('mutualinfo_binned ', mi_obs.sum())
mi_normed, (pyx2, py2, px2, binsy2, binsx2), mi_obs = \
mutualinfo_binned(y, x, 'auto', normed=True)
print('auto')
print('mutualinfo_binned normed', mi_normed)
print('mutualinfo_binned ', mi_obs.sum())
ys = np.sort(y)
xs = np.sort(x)
by = ys[((nobs-1)*np.array([0, 0.25, 0.4, 0.6, 0.75, 1])).astype(int)]
bx = xs[((nobs-1)*np.array([0, 0.25, 0.4, 0.6, 0.75, 1])).astype(int)]
mi_normed, (pyx2, py2, px2, binsy2, binsx2), mi_obs = \
mutualinfo_binned(y, x, (by,bx), normed=True)
print('quantiles')
print('mutualinfo_binned normed', mi_normed)
print('mutualinfo_binned ', mi_obs.sum())
doplot = 1#False
if doplot:
import matplotlib.pyplot as plt
plt.plot(x, y, 'o')
olsres = sm.OLS(y, exog).fit()
plt.plot(x, olsres.fittedvalues)
|
bsd-3-clause
|
xccui/flink
|
flink-python/pyflink/table/serializers.py
|
13
|
3089
|
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
import io
from pyflink.serializers import Serializer
from pyflink.table.utils import arrow_to_pandas, pandas_to_arrow
class ArrowSerializer(Serializer):
"""
Serializes pandas.Series into Arrow streaming format data.
"""
def __init__(self, schema, row_type, timezone):
super(ArrowSerializer, self).__init__()
self._schema = schema
self._field_types = row_type.field_types()
self._timezone = timezone
def __repr__(self):
return "ArrowSerializer"
def dump_to_stream(self, iterator, stream):
writer = None
try:
for cols in iterator:
batch = pandas_to_arrow(self._schema, self._timezone, self._field_types, cols)
if writer is None:
import pyarrow as pa
writer = pa.RecordBatchStreamWriter(stream, batch.schema)
writer.write_batch(batch)
finally:
if writer is not None:
writer.close()
def load_from_stream(self, stream):
import pyarrow as pa
reader = pa.ipc.open_stream(stream)
for batch in reader:
yield arrow_to_pandas(self._timezone, self._field_types, [batch])
def load_from_iterator(self, itor):
class IteratorIO(io.RawIOBase):
def __init__(self, itor):
super(IteratorIO, self).__init__()
self.itor = itor
self.leftover = None
def readable(self):
return True
def readinto(self, b):
output_buffer_len = len(b)
input = self.leftover or (self.itor.next() if self.itor.hasNext() else None)
if input is None:
return 0
output, self.leftover = input[:output_buffer_len], input[output_buffer_len:]
b[:len(output)] = output
return len(output)
import pyarrow as pa
reader = pa.ipc.open_stream(
io.BufferedReader(IteratorIO(itor), buffer_size=io.DEFAULT_BUFFER_SIZE))
for batch in reader:
yield batch
|
apache-2.0
|
anntzer/scikit-learn
|
sklearn/cluster/tests/test_mean_shift.py
|
5
|
6724
|
"""
Testing for mean shift clustering methods
"""
import numpy as np
import warnings
import pytest
from scipy import sparse
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_allclose
from sklearn.cluster import MeanShift
from sklearn.cluster import mean_shift
from sklearn.cluster import estimate_bandwidth
from sklearn.cluster import get_bin_seeds
from sklearn.datasets import make_blobs
from sklearn.metrics import v_measure_score
n_clusters = 3
centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10
X, _ = make_blobs(n_samples=300, n_features=2, centers=centers,
cluster_std=0.4, shuffle=True, random_state=11)
def test_estimate_bandwidth():
# Test estimate_bandwidth
bandwidth = estimate_bandwidth(X, n_samples=200)
assert 0.9 <= bandwidth <= 1.5
def test_estimate_bandwidth_1sample():
# Test estimate_bandwidth when n_samples=1 and quantile<1, so that
# n_neighbors is set to 1.
bandwidth = estimate_bandwidth(X, n_samples=1, quantile=0.3)
assert bandwidth == pytest.approx(0., abs=1e-5)
@pytest.mark.parametrize("bandwidth, cluster_all, expected, "
"first_cluster_label",
[(1.2, True, 3, 0), (1.2, False, 4, -1)])
def test_mean_shift(bandwidth, cluster_all, expected, first_cluster_label):
# Test MeanShift algorithm
ms = MeanShift(bandwidth=bandwidth, cluster_all=cluster_all)
labels = ms.fit(X).labels_
labels_unique = np.unique(labels)
n_clusters_ = len(labels_unique)
assert n_clusters_ == expected
assert labels_unique[0] == first_cluster_label
cluster_centers, labels_mean_shift = mean_shift(X, cluster_all=cluster_all)
labels_mean_shift_unique = np.unique(labels_mean_shift)
n_clusters_mean_shift = len(labels_mean_shift_unique)
assert n_clusters_mean_shift == expected
assert labels_mean_shift_unique[0] == first_cluster_label
def test_mean_shift_negative_bandwidth():
bandwidth = -1
ms = MeanShift(bandwidth=bandwidth)
msg = (r"bandwidth needs to be greater than zero or None,"
r" got -1\.000000")
with pytest.raises(ValueError, match=msg):
ms.fit(X)
def test_estimate_bandwidth_with_sparse_matrix():
# Test estimate_bandwidth with sparse matrix
X = sparse.lil_matrix((1000, 1000))
msg = "A sparse matrix was passed, but dense data is required."
with pytest.raises(TypeError, match=msg):
estimate_bandwidth(X)
def test_parallel():
centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10
X, _ = make_blobs(n_samples=50, n_features=2, centers=centers,
cluster_std=0.4, shuffle=True, random_state=11)
ms1 = MeanShift(n_jobs=2)
ms1.fit(X)
ms2 = MeanShift()
ms2.fit(X)
assert_array_almost_equal(ms1.cluster_centers_, ms2.cluster_centers_)
assert_array_equal(ms1.labels_, ms2.labels_)
def test_meanshift_predict():
# Test MeanShift.predict
ms = MeanShift(bandwidth=1.2)
labels = ms.fit_predict(X)
labels2 = ms.predict(X)
assert_array_equal(labels, labels2)
def test_meanshift_all_orphans():
# init away from the data, crash with a sensible warning
ms = MeanShift(bandwidth=0.1, seeds=[[-9, -9], [-10, -10]])
msg = "No point was within bandwidth=0.1"
with pytest.raises(ValueError, match=msg):
ms.fit(X,)
def test_unfitted():
# Non-regression: before fit, there should be not fitted attributes.
ms = MeanShift()
assert not hasattr(ms, "cluster_centers_")
assert not hasattr(ms, "labels_")
def test_cluster_intensity_tie():
X = np.array([[1, 1], [2, 1], [1, 0],
[4, 7], [3, 5], [3, 6]])
c1 = MeanShift(bandwidth=2).fit(X)
X = np.array([[4, 7], [3, 5], [3, 6],
[1, 1], [2, 1], [1, 0]])
c2 = MeanShift(bandwidth=2).fit(X)
assert_array_equal(c1.labels_, [1, 1, 1, 0, 0, 0])
assert_array_equal(c2.labels_, [0, 0, 0, 1, 1, 1])
def test_bin_seeds():
# Test the bin seeding technique which can be used in the mean shift
# algorithm
# Data is just 6 points in the plane
X = np.array([[1., 1.], [1.4, 1.4], [1.8, 1.2],
[2., 1.], [2.1, 1.1], [0., 0.]])
# With a bin coarseness of 1.0 and min_bin_freq of 1, 3 bins should be
# found
ground_truth = {(1., 1.), (2., 1.), (0., 0.)}
test_bins = get_bin_seeds(X, 1, 1)
test_result = set(tuple(p) for p in test_bins)
assert len(ground_truth.symmetric_difference(test_result)) == 0
# With a bin coarseness of 1.0 and min_bin_freq of 2, 2 bins should be
# found
ground_truth = {(1., 1.), (2., 1.)}
test_bins = get_bin_seeds(X, 1, 2)
test_result = set(tuple(p) for p in test_bins)
assert len(ground_truth.symmetric_difference(test_result)) == 0
# With a bin size of 0.01 and min_bin_freq of 1, 6 bins should be found
# we bail and use the whole data here.
with warnings.catch_warnings(record=True):
test_bins = get_bin_seeds(X, 0.01, 1)
assert_array_almost_equal(test_bins, X)
# tight clusters around [0, 0] and [1, 1], only get two bins
X, _ = make_blobs(n_samples=100, n_features=2, centers=[[0, 0], [1, 1]],
cluster_std=0.1, random_state=0)
test_bins = get_bin_seeds(X, 1)
assert_array_equal(test_bins, [[0, 0], [1, 1]])
@pytest.mark.parametrize('max_iter', [1, 100])
def test_max_iter(max_iter):
clusters1, _ = mean_shift(X, max_iter=max_iter)
ms = MeanShift(max_iter=max_iter).fit(X)
clusters2 = ms.cluster_centers_
assert ms.n_iter_ <= ms.max_iter
assert len(clusters1) == len(clusters2)
for c1, c2 in zip(clusters1, clusters2):
assert np.allclose(c1, c2)
def test_mean_shift_zero_bandwidth():
# Check that mean shift works when the estimated bandwidth is 0.
X = np.array([1, 1, 1, 2, 2, 2, 3, 3]).reshape(-1, 1)
# estimate_bandwidth with default args returns 0 on this dataset
bandwidth = estimate_bandwidth(X)
assert bandwidth == 0
# get_bin_seeds with a 0 bin_size should return the dataset itself
assert get_bin_seeds(X, bin_size=bandwidth) is X
# MeanShift with binning and a 0 estimated bandwidth should be equivalent
# to no binning.
ms_binning = MeanShift(bin_seeding=True, bandwidth=None).fit(X)
ms_nobinning = MeanShift(bin_seeding=False).fit(X)
expected_labels = np.array([0, 0, 0, 1, 1, 1, 2, 2])
assert v_measure_score(ms_binning.labels_, expected_labels) == 1
assert v_measure_score(ms_nobinning.labels_, expected_labels) == 1
assert_allclose(ms_binning.cluster_centers_, ms_nobinning.cluster_centers_)
|
bsd-3-clause
|
fierval/retina
|
DiabeticRetinopathy/Features/extract_features.py
|
1
|
2129
|
import numpy as np
import pandas as pd
from kobra.dr import Labels
from kobra import TrainFiles
from kobra.tr_utils import prep_out_path, time_now_str
import os
from os import path
import mahotas as mh
import mahotas.labeled as mhl
import cv2
import time
preprocessed = '/kaggle/retina/train/labelled'
masks = '/kaggle/retina/train/masks'
orig = '/kaggle/retina/train/sample/split'
output = '/kaggle/retina/train/sample/features'
n_bins = 100
prep_out_path(output)
for i in range(0, 5):
prefix = str(i)
print "Starting extraction @ ", time_now_str()
files = os.listdir(path.join(preprocessed, prefix))
# intermediate output will be stored here
# we will save all the files first then join them into one csv file
df = pd.DataFrame(columns = range(n_bins * 2 + 1))
j = 0
for f in files:
start = time.time()
im_file = path.join(prefix, f)
extractor = DarkBrightDetector(preprocessed, orig, im_file, masks, is_debug = False)
labels = extractor.find_bright_regions()
drusen = extractor.get_predicted_region(Labels.Drusen)
blood = extractor.get_predicted_region(Labels.Haemorage)
Bc = np.ones((5, 5))
labels_drusen, n_drusen = mh.label(drusen, Bc)
labels_blood, n_blood = mh.label(blood, Bc)
area = float(cv2.countNonZero(extractor.mask))
outp = np.array([], dtype = np.int)
# sizes excluding background
sizes_drusen = mhl.labeled_size(labels_drusen)[1:] / area
sizes_blood = mhl.labeled_size(labels_blood)[1:] / area
hist_druzen, _ = np.histogram(sizes_drusen, n_bins, (0, 1e-3))
hist_blood, _ = np.histogram(sizes_blood, n_bins, (0, 1e-3))
outp = np.r_[outp, hist_druzen]
outp = np.r_[outp, hist_blood]
outp = np.r_[outp, i]
df.loc[j] = outp
j += 1
print "Extracted: {0}, took {1:02.2f} sec ".format(im_file, time.time() - start)
# write out the csv
df.to_csv(path.join(output, prefix + ".txt"), index = False, header=False)
print "Extracted: ", prefix, "@", time_now_str()
|
mit
|
ppries/tensorflow
|
tensorflow/contrib/learn/python/learn/tests/dataframe/feeding_functions_test.py
|
30
|
4777
|
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests feeding functions using arrays and `DataFrames`."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
import tensorflow.contrib.learn.python.learn.dataframe.queues.feeding_functions as ff
# pylint: disable=g-import-not-at-top
try:
import pandas as pd
HAS_PANDAS = True
except ImportError:
HAS_PANDAS = False
def vals_to_list(a):
return {key: val.tolist() if isinstance(val, np.ndarray) else val
for key, val in a.items()}
class _FeedingFunctionsTestCase(tf.test.TestCase):
"""Tests for feeding functions."""
def testArrayFeedFnBatchOne(self):
array = np.arange(32).reshape([16, 2])
placeholders = ["index_placeholder", "value_placeholder"]
aff = ff._ArrayFeedFn(placeholders, array, 1)
# cycle around a couple times
for x in range(0, 100):
i = x % 16
expected = {"index_placeholder": [i],
"value_placeholder": [[2 * i, 2 * i + 1]]}
actual = aff()
self.assertEqual(expected, vals_to_list(actual))
def testArrayFeedFnBatchFive(self):
array = np.arange(32).reshape([16, 2])
placeholders = ["index_placeholder", "value_placeholder"]
aff = ff._ArrayFeedFn(placeholders, array, 5)
# cycle around a couple times
for _ in range(0, 101, 2):
aff()
expected = {"index_placeholder": [15, 0, 1, 2, 3],
"value_placeholder": [[30, 31], [0, 1], [2, 3], [4, 5], [6, 7]]}
actual = aff()
self.assertEqual(expected, vals_to_list(actual))
def testArrayFeedFnBatchOneHundred(self):
array = np.arange(32).reshape([16, 2])
placeholders = ["index_placeholder", "value_placeholder"]
aff = ff._ArrayFeedFn(placeholders, array, 100)
expected = {"index_placeholder": list(range(0, 16)) * 6 + list(range(0, 4)),
"value_placeholder": np.arange(32).reshape([16, 2]).tolist() * 6
+ [[0, 1], [2, 3], [4, 5], [6, 7]]}
actual = aff()
self.assertEqual(expected, vals_to_list(actual))
def testPandasFeedFnBatchOne(self):
if not HAS_PANDAS:
return
array1 = np.arange(32, 64)
array2 = np.arange(64, 96)
df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(96, 128))
placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"]
aff = ff._PandasFeedFn(placeholders, df, 1)
# cycle around a couple times
for x in range(0, 100):
i = x % 32
expected = {"index_placeholder": [i + 96],
"a_placeholder": [32 + i],
"b_placeholder": [64 + i]}
actual = aff()
self.assertEqual(expected, vals_to_list(actual))
def testPandasFeedFnBatchFive(self):
if not HAS_PANDAS:
return
array1 = np.arange(32, 64)
array2 = np.arange(64, 96)
df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(96, 128))
placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"]
aff = ff._PandasFeedFn(placeholders, df, 5)
# cycle around a couple times
for _ in range(0, 101, 2):
aff()
expected = {"index_placeholder": [127, 96, 97, 98, 99],
"a_placeholder": [63, 32, 33, 34, 35],
"b_placeholder": [95, 64, 65, 66, 67]}
actual = aff()
self.assertEqual(expected, vals_to_list(actual))
def testPandasFeedFnBatchOneHundred(self):
if not HAS_PANDAS:
return
array1 = np.arange(32, 64)
array2 = np.arange(64, 96)
df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(96, 128))
placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"]
aff = ff._PandasFeedFn(placeholders, df, 100)
expected = {
"index_placeholder": list(range(96, 128)) * 3 + list(range(96, 100)),
"a_placeholder": list(range(32, 64)) * 3 + list(range(32, 36)),
"b_placeholder": list(range(64, 96)) * 3 + list(range(64, 68))
}
actual = aff()
self.assertEqual(expected, vals_to_list(actual))
if __name__ == "__main__":
tf.test.main()
|
apache-2.0
|
jart/tensorflow
|
tensorflow/contrib/learn/python/learn/learn_io/data_feeder_test.py
|
14
|
13555
|
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for `DataFeeder`."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os.path
import numpy as np
import six
from six.moves import xrange # pylint: disable=redefined-builtin
# pylint: disable=wildcard-import
from tensorflow.contrib.learn.python.learn.learn_io import *
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.lib.io import file_io
from tensorflow.python.platform import test
# pylint: enable=wildcard-import
class DataFeederTest(test.TestCase):
# pylint: disable=undefined-variable
"""Tests for `DataFeeder`."""
def setUp(self):
self._base_dir = os.path.join(self.get_temp_dir(), 'base_dir')
file_io.create_dir(self._base_dir)
def tearDown(self):
file_io.delete_recursively(self._base_dir)
def _wrap_dict(self, data, prepend=''):
return {prepend + '1': data, prepend + '2': data}
def _assert_raises(self, input_data):
with self.assertRaisesRegexp(TypeError, 'annot convert'):
data_feeder.DataFeeder(input_data, None, n_classes=0, batch_size=1)
def _assert_dtype(self, expected_np_dtype, expected_tf_dtype, input_data):
feeder = data_feeder.DataFeeder(input_data, None, n_classes=0, batch_size=1)
if isinstance(input_data, dict):
for v in list(feeder.input_dtype.values()):
self.assertEqual(expected_np_dtype, v)
else:
self.assertEqual(expected_np_dtype, feeder.input_dtype)
with ops.Graph().as_default() as g, self.test_session(g):
inp, _ = feeder.input_builder()
if isinstance(inp, dict):
for v in list(inp.values()):
self.assertEqual(expected_tf_dtype, v.dtype)
else:
self.assertEqual(expected_tf_dtype, inp.dtype)
def test_input_int8(self):
data = np.matrix([[1, 2], [3, 4]], dtype=np.int8)
self._assert_dtype(np.int8, dtypes.int8, data)
self._assert_dtype(np.int8, dtypes.int8, self._wrap_dict(data))
def test_input_int16(self):
data = np.matrix([[1, 2], [3, 4]], dtype=np.int16)
self._assert_dtype(np.int16, dtypes.int16, data)
self._assert_dtype(np.int16, dtypes.int16, self._wrap_dict(data))
def test_input_int32(self):
data = np.matrix([[1, 2], [3, 4]], dtype=np.int32)
self._assert_dtype(np.int32, dtypes.int32, data)
self._assert_dtype(np.int32, dtypes.int32, self._wrap_dict(data))
def test_input_int64(self):
data = np.matrix([[1, 2], [3, 4]], dtype=np.int64)
self._assert_dtype(np.int64, dtypes.int64, data)
self._assert_dtype(np.int64, dtypes.int64, self._wrap_dict(data))
def test_input_uint32(self):
data = np.matrix([[1, 2], [3, 4]], dtype=np.uint32)
self._assert_dtype(np.uint32, dtypes.uint32, data)
self._assert_dtype(np.uint32, dtypes.uint32, self._wrap_dict(data))
def test_input_uint64(self):
data = np.matrix([[1, 2], [3, 4]], dtype=np.uint64)
self._assert_dtype(np.uint64, dtypes.uint64, data)
self._assert_dtype(np.uint64, dtypes.uint64, self._wrap_dict(data))
def test_input_uint8(self):
data = np.matrix([[1, 2], [3, 4]], dtype=np.uint8)
self._assert_dtype(np.uint8, dtypes.uint8, data)
self._assert_dtype(np.uint8, dtypes.uint8, self._wrap_dict(data))
def test_input_uint16(self):
data = np.matrix([[1, 2], [3, 4]], dtype=np.uint16)
self._assert_dtype(np.uint16, dtypes.uint16, data)
self._assert_dtype(np.uint16, dtypes.uint16, self._wrap_dict(data))
def test_input_float16(self):
data = np.matrix([[1, 2], [3, 4]], dtype=np.float16)
self._assert_dtype(np.float16, dtypes.float16, data)
self._assert_dtype(np.float16, dtypes.float16, self._wrap_dict(data))
def test_input_float32(self):
data = np.matrix([[1, 2], [3, 4]], dtype=np.float32)
self._assert_dtype(np.float32, dtypes.float32, data)
self._assert_dtype(np.float32, dtypes.float32, self._wrap_dict(data))
def test_input_float64(self):
data = np.matrix([[1, 2], [3, 4]], dtype=np.float64)
self._assert_dtype(np.float64, dtypes.float64, data)
self._assert_dtype(np.float64, dtypes.float64, self._wrap_dict(data))
def test_input_bool(self):
data = np.array([[False for _ in xrange(2)] for _ in xrange(2)])
self._assert_dtype(np.bool, dtypes.bool, data)
self._assert_dtype(np.bool, dtypes.bool, self._wrap_dict(data))
def test_input_string(self):
input_data = np.array([['str%d' % i for i in xrange(2)] for _ in xrange(2)])
self._assert_dtype(input_data.dtype, dtypes.string, input_data)
self._assert_dtype(input_data.dtype, dtypes.string,
self._wrap_dict(input_data))
def _assertAllClose(self, src, dest, src_key_of=None, src_prop=None):
def func(x):
val = getattr(x, src_prop) if src_prop else x
return val if src_key_of is None else src_key_of[val]
if isinstance(src, dict):
for k in list(src.keys()):
self.assertAllClose(func(src[k]), dest)
else:
self.assertAllClose(func(src), dest)
def test_unsupervised(self):
def func(feeder):
with self.test_session():
inp, _ = feeder.input_builder()
feed_dict_fn = feeder.get_feed_dict_fn()
feed_dict = feed_dict_fn()
self._assertAllClose(inp, [[1, 2]], feed_dict, 'name')
data = np.matrix([[1, 2], [2, 3], [3, 4]])
func(data_feeder.DataFeeder(data, None, n_classes=0, batch_size=1))
func(
data_feeder.DataFeeder(
self._wrap_dict(data), None, n_classes=0, batch_size=1))
def test_data_feeder_regression(self):
def func(df):
inp, out = df.input_builder()
feed_dict_fn = df.get_feed_dict_fn()
feed_dict = feed_dict_fn()
self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name')
self._assertAllClose(out, [2, 1], feed_dict, 'name')
x = np.matrix([[1, 2], [3, 4]])
y = np.array([1, 2])
func(data_feeder.DataFeeder(x, y, n_classes=0, batch_size=3))
func(
data_feeder.DataFeeder(
self._wrap_dict(x, 'in'),
self._wrap_dict(y, 'out'),
n_classes=self._wrap_dict(0, 'out'),
batch_size=3))
def test_epoch(self):
def func(feeder):
with self.test_session():
feeder.input_builder()
epoch = feeder.make_epoch_variable()
feed_dict_fn = feeder.get_feed_dict_fn()
# First input
feed_dict = feed_dict_fn()
self.assertAllClose(feed_dict[epoch.name], [0])
# Second input
feed_dict = feed_dict_fn()
self.assertAllClose(feed_dict[epoch.name], [0])
# Third input
feed_dict = feed_dict_fn()
self.assertAllClose(feed_dict[epoch.name], [0])
# Back to the first input again, so new epoch.
feed_dict = feed_dict_fn()
self.assertAllClose(feed_dict[epoch.name], [1])
data = np.matrix([[1, 2], [2, 3], [3, 4]])
labels = np.array([0, 0, 1])
func(data_feeder.DataFeeder(data, labels, n_classes=0, batch_size=1))
func(
data_feeder.DataFeeder(
self._wrap_dict(data, 'in'),
self._wrap_dict(labels, 'out'),
n_classes=self._wrap_dict(0, 'out'),
batch_size=1))
def test_data_feeder_multioutput_regression(self):
def func(df):
inp, out = df.input_builder()
feed_dict_fn = df.get_feed_dict_fn()
feed_dict = feed_dict_fn()
self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name')
self._assertAllClose(out, [[3, 4], [1, 2]], feed_dict, 'name')
x = np.matrix([[1, 2], [3, 4]])
y = np.array([[1, 2], [3, 4]])
func(data_feeder.DataFeeder(x, y, n_classes=0, batch_size=2))
func(
data_feeder.DataFeeder(
self._wrap_dict(x, 'in'),
self._wrap_dict(y, 'out'),
n_classes=self._wrap_dict(0, 'out'),
batch_size=2))
def test_data_feeder_multioutput_classification(self):
def func(df):
inp, out = df.input_builder()
feed_dict_fn = df.get_feed_dict_fn()
feed_dict = feed_dict_fn()
self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name')
self._assertAllClose(
out, [[[0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]],
[[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0]]], feed_dict,
'name')
x = np.matrix([[1, 2], [3, 4]])
y = np.array([[0, 1, 2], [2, 3, 4]])
func(data_feeder.DataFeeder(x, y, n_classes=5, batch_size=2))
func(
data_feeder.DataFeeder(
self._wrap_dict(x, 'in'),
self._wrap_dict(y, 'out'),
n_classes=self._wrap_dict(5, 'out'),
batch_size=2))
def test_streaming_data_feeder(self):
def func(df):
inp, out = df.input_builder()
feed_dict_fn = df.get_feed_dict_fn()
feed_dict = feed_dict_fn()
self._assertAllClose(inp, [[[1, 2]], [[3, 4]]], feed_dict, 'name')
self._assertAllClose(out, [[[1], [2]], [[2], [2]]], feed_dict, 'name')
def x_iter(wrap_dict=False):
yield np.array([[1, 2]]) if not wrap_dict else self._wrap_dict(
np.array([[1, 2]]), 'in')
yield np.array([[3, 4]]) if not wrap_dict else self._wrap_dict(
np.array([[3, 4]]), 'in')
def y_iter(wrap_dict=False):
yield np.array([[1], [2]]) if not wrap_dict else self._wrap_dict(
np.array([[1], [2]]), 'out')
yield np.array([[2], [2]]) if not wrap_dict else self._wrap_dict(
np.array([[2], [2]]), 'out')
func(
data_feeder.StreamingDataFeeder(
x_iter(), y_iter(), n_classes=0, batch_size=2))
func(
data_feeder.StreamingDataFeeder(
x_iter(True),
y_iter(True),
n_classes=self._wrap_dict(0, 'out'),
batch_size=2))
# Test non-full batches.
func(
data_feeder.StreamingDataFeeder(
x_iter(), y_iter(), n_classes=0, batch_size=10))
func(
data_feeder.StreamingDataFeeder(
x_iter(True),
y_iter(True),
n_classes=self._wrap_dict(0, 'out'),
batch_size=10))
def test_dask_data_feeder(self):
if HAS_PANDAS and HAS_DASK:
x = pd.DataFrame(
dict(
a=np.array([.1, .3, .4, .6, .2, .1, .6]),
b=np.array([.7, .8, .1, .2, .5, .3, .9])))
x = dd.from_pandas(x, npartitions=2)
y = pd.DataFrame(dict(labels=np.array([1, 0, 2, 1, 0, 1, 2])))
y = dd.from_pandas(y, npartitions=2)
# TODO(ipolosukhin): Remove or restore this.
# x = extract_dask_data(x)
# y = extract_dask_labels(y)
df = data_feeder.DaskDataFeeder(x, y, n_classes=2, batch_size=2)
inp, out = df.input_builder()
feed_dict_fn = df.get_feed_dict_fn()
feed_dict = feed_dict_fn()
self.assertAllClose(feed_dict[inp.name], [[0.40000001, 0.1],
[0.60000002, 0.2]])
self.assertAllClose(feed_dict[out.name], [[0., 0., 1.], [0., 1., 0.]])
# TODO(rohanj): Fix this test by fixing data_feeder. Currently, h5py doesn't
# support permutation based indexing lookups (More documentation at
# http://docs.h5py.org/en/latest/high/dataset.html#fancy-indexing)
def DISABLED_test_hdf5_data_feeder(self):
def func(df):
inp, out = df.input_builder()
feed_dict_fn = df.get_feed_dict_fn()
feed_dict = feed_dict_fn()
self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name')
self.assertAllClose(out, [2, 1], feed_dict, 'name')
try:
import h5py # pylint: disable=g-import-not-at-top
x = np.matrix([[1, 2], [3, 4]])
y = np.array([1, 2])
file_path = os.path.join(self._base_dir, 'test_hdf5.h5')
h5f = h5py.File(file_path, 'w')
h5f.create_dataset('x', data=x)
h5f.create_dataset('y', data=y)
h5f.close()
h5f = h5py.File(file_path, 'r')
x = h5f['x']
y = h5f['y']
func(data_feeder.DataFeeder(x, y, n_classes=0, batch_size=3))
func(
data_feeder.DataFeeder(
self._wrap_dict(x, 'in'),
self._wrap_dict(y, 'out'),
n_classes=self._wrap_dict(0, 'out'),
batch_size=3))
except ImportError:
print("Skipped test for hdf5 since it's not installed.")
class SetupPredictDataFeederTest(DataFeederTest):
"""Tests for `DataFeeder.setup_predict_data_feeder`."""
def test_iterable_data(self):
# pylint: disable=undefined-variable
def func(df):
self._assertAllClose(six.next(df), [[1, 2], [3, 4]])
self._assertAllClose(six.next(df), [[5, 6]])
data = [[1, 2], [3, 4], [5, 6]]
x = iter(data)
x_dict = iter([self._wrap_dict(v) for v in iter(data)])
func(data_feeder.setup_predict_data_feeder(x, batch_size=2))
func(data_feeder.setup_predict_data_feeder(x_dict, batch_size=2))
if __name__ == '__main__':
test.main()
|
apache-2.0
|
harisbal/pandas
|
pandas/tests/arrays/sparse/test_libsparse.py
|
1
|
21936
|
import operator
import numpy as np
import pytest
import pandas._libs.sparse as splib
import pandas.util._test_decorators as td
from pandas import Series
from pandas.core.arrays.sparse import BlockIndex, IntIndex, _make_index
import pandas.util.testing as tm
TEST_LENGTH = 20
plain_case = dict(xloc=[0, 7, 15], xlen=[3, 5, 5], yloc=[2, 9, 14],
ylen=[2, 3, 5], intersect_loc=[2, 9, 15],
intersect_len=[1, 3, 4])
delete_blocks = dict(xloc=[0, 5], xlen=[4, 4], yloc=[1], ylen=[4],
intersect_loc=[1], intersect_len=[3])
split_blocks = dict(xloc=[0], xlen=[10], yloc=[0, 5], ylen=[3, 7],
intersect_loc=[0, 5], intersect_len=[3, 5])
skip_block = dict(xloc=[10], xlen=[5], yloc=[0, 12], ylen=[5, 3],
intersect_loc=[12], intersect_len=[3])
no_intersect = dict(xloc=[0, 10], xlen=[4, 6], yloc=[5, 17], ylen=[4, 2],
intersect_loc=[], intersect_len=[])
def check_cases(_check_case):
def _check_case_dict(case):
_check_case(case['xloc'], case['xlen'], case['yloc'], case['ylen'],
case['intersect_loc'], case['intersect_len'])
_check_case_dict(plain_case)
_check_case_dict(delete_blocks)
_check_case_dict(split_blocks)
_check_case_dict(skip_block)
_check_case_dict(no_intersect)
# one or both is empty
_check_case([0], [5], [], [], [], [])
_check_case([], [], [], [], [], [])
class TestSparseIndexUnion(object):
def test_index_make_union(self):
def _check_case(xloc, xlen, yloc, ylen, eloc, elen):
xindex = BlockIndex(TEST_LENGTH, xloc, xlen)
yindex = BlockIndex(TEST_LENGTH, yloc, ylen)
bresult = xindex.make_union(yindex)
assert (isinstance(bresult, BlockIndex))
tm.assert_numpy_array_equal(bresult.blocs,
np.array(eloc, dtype=np.int32))
tm.assert_numpy_array_equal(bresult.blengths,
np.array(elen, dtype=np.int32))
ixindex = xindex.to_int_index()
iyindex = yindex.to_int_index()
iresult = ixindex.make_union(iyindex)
assert (isinstance(iresult, IntIndex))
tm.assert_numpy_array_equal(iresult.indices,
bresult.to_int_index().indices)
"""
x: ----
y: ----
r: --------
"""
xloc = [0]
xlen = [5]
yloc = [5]
ylen = [4]
eloc = [0]
elen = [9]
_check_case(xloc, xlen, yloc, ylen, eloc, elen)
"""
x: ----- -----
y: ----- --
"""
xloc = [0, 10]
xlen = [5, 5]
yloc = [2, 17]
ylen = [5, 2]
eloc = [0, 10, 17]
elen = [7, 5, 2]
_check_case(xloc, xlen, yloc, ylen, eloc, elen)
"""
x: ------
y: -------
r: ----------
"""
xloc = [1]
xlen = [5]
yloc = [3]
ylen = [5]
eloc = [1]
elen = [7]
_check_case(xloc, xlen, yloc, ylen, eloc, elen)
"""
x: ------ -----
y: -------
r: -------------
"""
xloc = [2, 10]
xlen = [4, 4]
yloc = [4]
ylen = [8]
eloc = [2]
elen = [12]
_check_case(xloc, xlen, yloc, ylen, eloc, elen)
"""
x: --- -----
y: -------
r: -------------
"""
xloc = [0, 5]
xlen = [3, 5]
yloc = [0]
ylen = [7]
eloc = [0]
elen = [10]
_check_case(xloc, xlen, yloc, ylen, eloc, elen)
"""
x: ------ -----
y: ------- ---
r: -------------
"""
xloc = [2, 10]
xlen = [4, 4]
yloc = [4, 13]
ylen = [8, 4]
eloc = [2]
elen = [15]
_check_case(xloc, xlen, yloc, ylen, eloc, elen)
"""
x: ----------------------
y: ---- ---- ---
r: ----------------------
"""
xloc = [2]
xlen = [15]
yloc = [4, 9, 14]
ylen = [3, 2, 2]
eloc = [2]
elen = [15]
_check_case(xloc, xlen, yloc, ylen, eloc, elen)
"""
x: ---- ---
y: --- ---
"""
xloc = [0, 10]
xlen = [3, 3]
yloc = [5, 15]
ylen = [2, 2]
eloc = [0, 5, 10, 15]
elen = [3, 2, 3, 2]
_check_case(xloc, xlen, yloc, ylen, eloc, elen)
def test_intindex_make_union(self):
a = IntIndex(5, np.array([0, 3, 4], dtype=np.int32))
b = IntIndex(5, np.array([0, 2], dtype=np.int32))
res = a.make_union(b)
exp = IntIndex(5, np.array([0, 2, 3, 4], np.int32))
assert res.equals(exp)
a = IntIndex(5, np.array([], dtype=np.int32))
b = IntIndex(5, np.array([0, 2], dtype=np.int32))
res = a.make_union(b)
exp = IntIndex(5, np.array([0, 2], np.int32))
assert res.equals(exp)
a = IntIndex(5, np.array([], dtype=np.int32))
b = IntIndex(5, np.array([], dtype=np.int32))
res = a.make_union(b)
exp = IntIndex(5, np.array([], np.int32))
assert res.equals(exp)
a = IntIndex(5, np.array([0, 1, 2, 3, 4], dtype=np.int32))
b = IntIndex(5, np.array([0, 1, 2, 3, 4], dtype=np.int32))
res = a.make_union(b)
exp = IntIndex(5, np.array([0, 1, 2, 3, 4], np.int32))
assert res.equals(exp)
a = IntIndex(5, np.array([0, 1], dtype=np.int32))
b = IntIndex(4, np.array([0, 1], dtype=np.int32))
with pytest.raises(ValueError):
a.make_union(b)
class TestSparseIndexIntersect(object):
@td.skip_if_windows
def test_intersect(self):
def _check_correct(a, b, expected):
result = a.intersect(b)
assert (result.equals(expected))
def _check_length_exc(a, longer):
pytest.raises(Exception, a.intersect, longer)
def _check_case(xloc, xlen, yloc, ylen, eloc, elen):
xindex = BlockIndex(TEST_LENGTH, xloc, xlen)
yindex = BlockIndex(TEST_LENGTH, yloc, ylen)
expected = BlockIndex(TEST_LENGTH, eloc, elen)
longer_index = BlockIndex(TEST_LENGTH + 1, yloc, ylen)
_check_correct(xindex, yindex, expected)
_check_correct(xindex.to_int_index(), yindex.to_int_index(),
expected.to_int_index())
_check_length_exc(xindex, longer_index)
_check_length_exc(xindex.to_int_index(),
longer_index.to_int_index())
check_cases(_check_case)
def test_intersect_empty(self):
xindex = IntIndex(4, np.array([], dtype=np.int32))
yindex = IntIndex(4, np.array([2, 3], dtype=np.int32))
assert xindex.intersect(yindex).equals(xindex)
assert yindex.intersect(xindex).equals(xindex)
xindex = xindex.to_block_index()
yindex = yindex.to_block_index()
assert xindex.intersect(yindex).equals(xindex)
assert yindex.intersect(xindex).equals(xindex)
def test_intersect_identical(self):
cases = [IntIndex(5, np.array([1, 2], dtype=np.int32)),
IntIndex(5, np.array([0, 2, 4], dtype=np.int32)),
IntIndex(0, np.array([], dtype=np.int32)),
IntIndex(5, np.array([], dtype=np.int32))]
for case in cases:
assert case.intersect(case).equals(case)
case = case.to_block_index()
assert case.intersect(case).equals(case)
class TestSparseIndexCommon(object):
def test_int_internal(self):
idx = _make_index(4, np.array([2, 3], dtype=np.int32), kind='integer')
assert isinstance(idx, IntIndex)
assert idx.npoints == 2
tm.assert_numpy_array_equal(idx.indices,
np.array([2, 3], dtype=np.int32))
idx = _make_index(4, np.array([], dtype=np.int32), kind='integer')
assert isinstance(idx, IntIndex)
assert idx.npoints == 0
tm.assert_numpy_array_equal(idx.indices,
np.array([], dtype=np.int32))
idx = _make_index(4, np.array([0, 1, 2, 3], dtype=np.int32),
kind='integer')
assert isinstance(idx, IntIndex)
assert idx.npoints == 4
tm.assert_numpy_array_equal(idx.indices,
np.array([0, 1, 2, 3], dtype=np.int32))
def test_block_internal(self):
idx = _make_index(4, np.array([2, 3], dtype=np.int32), kind='block')
assert isinstance(idx, BlockIndex)
assert idx.npoints == 2
tm.assert_numpy_array_equal(idx.blocs,
np.array([2], dtype=np.int32))
tm.assert_numpy_array_equal(idx.blengths,
np.array([2], dtype=np.int32))
idx = _make_index(4, np.array([], dtype=np.int32), kind='block')
assert isinstance(idx, BlockIndex)
assert idx.npoints == 0
tm.assert_numpy_array_equal(idx.blocs,
np.array([], dtype=np.int32))
tm.assert_numpy_array_equal(idx.blengths,
np.array([], dtype=np.int32))
idx = _make_index(4, np.array([0, 1, 2, 3], dtype=np.int32),
kind='block')
assert isinstance(idx, BlockIndex)
assert idx.npoints == 4
tm.assert_numpy_array_equal(idx.blocs,
np.array([0], dtype=np.int32))
tm.assert_numpy_array_equal(idx.blengths,
np.array([4], dtype=np.int32))
idx = _make_index(4, np.array([0, 2, 3], dtype=np.int32),
kind='block')
assert isinstance(idx, BlockIndex)
assert idx.npoints == 3
tm.assert_numpy_array_equal(idx.blocs,
np.array([0, 2], dtype=np.int32))
tm.assert_numpy_array_equal(idx.blengths,
np.array([1, 2], dtype=np.int32))
def test_lookup(self):
for kind in ['integer', 'block']:
idx = _make_index(4, np.array([2, 3], dtype=np.int32), kind=kind)
assert idx.lookup(-1) == -1
assert idx.lookup(0) == -1
assert idx.lookup(1) == -1
assert idx.lookup(2) == 0
assert idx.lookup(3) == 1
assert idx.lookup(4) == -1
idx = _make_index(4, np.array([], dtype=np.int32), kind=kind)
for i in range(-1, 5):
assert idx.lookup(i) == -1
idx = _make_index(4, np.array([0, 1, 2, 3], dtype=np.int32),
kind=kind)
assert idx.lookup(-1) == -1
assert idx.lookup(0) == 0
assert idx.lookup(1) == 1
assert idx.lookup(2) == 2
assert idx.lookup(3) == 3
assert idx.lookup(4) == -1
idx = _make_index(4, np.array([0, 2, 3], dtype=np.int32),
kind=kind)
assert idx.lookup(-1) == -1
assert idx.lookup(0) == 0
assert idx.lookup(1) == -1
assert idx.lookup(2) == 1
assert idx.lookup(3) == 2
assert idx.lookup(4) == -1
def test_lookup_array(self):
for kind in ['integer', 'block']:
idx = _make_index(4, np.array([2, 3], dtype=np.int32), kind=kind)
res = idx.lookup_array(np.array([-1, 0, 2], dtype=np.int32))
exp = np.array([-1, -1, 0], dtype=np.int32)
tm.assert_numpy_array_equal(res, exp)
res = idx.lookup_array(np.array([4, 2, 1, 3], dtype=np.int32))
exp = np.array([-1, 0, -1, 1], dtype=np.int32)
tm.assert_numpy_array_equal(res, exp)
idx = _make_index(4, np.array([], dtype=np.int32), kind=kind)
res = idx.lookup_array(np.array([-1, 0, 2, 4], dtype=np.int32))
exp = np.array([-1, -1, -1, -1], dtype=np.int32)
idx = _make_index(4, np.array([0, 1, 2, 3], dtype=np.int32),
kind=kind)
res = idx.lookup_array(np.array([-1, 0, 2], dtype=np.int32))
exp = np.array([-1, 0, 2], dtype=np.int32)
tm.assert_numpy_array_equal(res, exp)
res = idx.lookup_array(np.array([4, 2, 1, 3], dtype=np.int32))
exp = np.array([-1, 2, 1, 3], dtype=np.int32)
tm.assert_numpy_array_equal(res, exp)
idx = _make_index(4, np.array([0, 2, 3], dtype=np.int32),
kind=kind)
res = idx.lookup_array(np.array([2, 1, 3, 0], dtype=np.int32))
exp = np.array([1, -1, 2, 0], dtype=np.int32)
tm.assert_numpy_array_equal(res, exp)
res = idx.lookup_array(np.array([1, 4, 2, 5], dtype=np.int32))
exp = np.array([-1, -1, 1, -1], dtype=np.int32)
tm.assert_numpy_array_equal(res, exp)
def test_lookup_basics(self):
def _check(index):
assert (index.lookup(0) == -1)
assert (index.lookup(5) == 0)
assert (index.lookup(7) == 2)
assert (index.lookup(8) == -1)
assert (index.lookup(9) == -1)
assert (index.lookup(10) == -1)
assert (index.lookup(11) == -1)
assert (index.lookup(12) == 3)
assert (index.lookup(17) == 8)
assert (index.lookup(18) == -1)
bindex = BlockIndex(20, [5, 12], [3, 6])
iindex = bindex.to_int_index()
_check(bindex)
_check(iindex)
# corner cases
class TestBlockIndex(object):
def test_block_internal(self):
idx = _make_index(4, np.array([2, 3], dtype=np.int32), kind='block')
assert isinstance(idx, BlockIndex)
assert idx.npoints == 2
tm.assert_numpy_array_equal(idx.blocs,
np.array([2], dtype=np.int32))
tm.assert_numpy_array_equal(idx.blengths,
np.array([2], dtype=np.int32))
idx = _make_index(4, np.array([], dtype=np.int32), kind='block')
assert isinstance(idx, BlockIndex)
assert idx.npoints == 0
tm.assert_numpy_array_equal(idx.blocs,
np.array([], dtype=np.int32))
tm.assert_numpy_array_equal(idx.blengths,
np.array([], dtype=np.int32))
idx = _make_index(4, np.array([0, 1, 2, 3], dtype=np.int32),
kind='block')
assert isinstance(idx, BlockIndex)
assert idx.npoints == 4
tm.assert_numpy_array_equal(idx.blocs,
np.array([0], dtype=np.int32))
tm.assert_numpy_array_equal(idx.blengths,
np.array([4], dtype=np.int32))
idx = _make_index(4, np.array([0, 2, 3], dtype=np.int32), kind='block')
assert isinstance(idx, BlockIndex)
assert idx.npoints == 3
tm.assert_numpy_array_equal(idx.blocs,
np.array([0, 2], dtype=np.int32))
tm.assert_numpy_array_equal(idx.blengths,
np.array([1, 2], dtype=np.int32))
def test_make_block_boundary(self):
for i in [5, 10, 100, 101]:
idx = _make_index(i, np.arange(0, i, 2, dtype=np.int32),
kind='block')
exp = np.arange(0, i, 2, dtype=np.int32)
tm.assert_numpy_array_equal(idx.blocs, exp)
tm.assert_numpy_array_equal(idx.blengths,
np.ones(len(exp), dtype=np.int32))
def test_equals(self):
index = BlockIndex(10, [0, 4], [2, 5])
assert index.equals(index)
assert not index.equals(BlockIndex(10, [0, 4], [2, 6]))
def test_check_integrity(self):
locs = []
lengths = []
# 0-length OK
# TODO: index variables are not used...is that right?
index = BlockIndex(0, locs, lengths) # noqa
# also OK even though empty
index = BlockIndex(1, locs, lengths) # noqa
# block extend beyond end
pytest.raises(Exception, BlockIndex, 10, [5], [10])
# block overlap
pytest.raises(Exception, BlockIndex, 10, [2, 5], [5, 3])
def test_to_int_index(self):
locs = [0, 10]
lengths = [4, 6]
exp_inds = [0, 1, 2, 3, 10, 11, 12, 13, 14, 15]
block = BlockIndex(20, locs, lengths)
dense = block.to_int_index()
tm.assert_numpy_array_equal(dense.indices,
np.array(exp_inds, dtype=np.int32))
def test_to_block_index(self):
index = BlockIndex(10, [0, 5], [4, 5])
assert index.to_block_index() is index
class TestIntIndex(object):
def test_check_integrity(self):
# Too many indices than specified in self.length
msg = "Too many indices"
with tm.assert_raises_regex(ValueError, msg):
IntIndex(length=1, indices=[1, 2, 3])
# No index can be negative.
msg = "No index can be less than zero"
with tm.assert_raises_regex(ValueError, msg):
IntIndex(length=5, indices=[1, -2, 3])
# No index can be negative.
msg = "No index can be less than zero"
with tm.assert_raises_regex(ValueError, msg):
IntIndex(length=5, indices=[1, -2, 3])
# All indices must be less than the length.
msg = "All indices must be less than the length"
with tm.assert_raises_regex(ValueError, msg):
IntIndex(length=5, indices=[1, 2, 5])
with tm.assert_raises_regex(ValueError, msg):
IntIndex(length=5, indices=[1, 2, 6])
# Indices must be strictly ascending.
msg = "Indices must be strictly increasing"
with tm.assert_raises_regex(ValueError, msg):
IntIndex(length=5, indices=[1, 3, 2])
with tm.assert_raises_regex(ValueError, msg):
IntIndex(length=5, indices=[1, 3, 3])
def test_int_internal(self):
idx = _make_index(4, np.array([2, 3], dtype=np.int32), kind='integer')
assert isinstance(idx, IntIndex)
assert idx.npoints == 2
tm.assert_numpy_array_equal(idx.indices,
np.array([2, 3], dtype=np.int32))
idx = _make_index(4, np.array([], dtype=np.int32), kind='integer')
assert isinstance(idx, IntIndex)
assert idx.npoints == 0
tm.assert_numpy_array_equal(idx.indices,
np.array([], dtype=np.int32))
idx = _make_index(4, np.array([0, 1, 2, 3], dtype=np.int32),
kind='integer')
assert isinstance(idx, IntIndex)
assert idx.npoints == 4
tm.assert_numpy_array_equal(idx.indices,
np.array([0, 1, 2, 3], dtype=np.int32))
def test_equals(self):
index = IntIndex(10, [0, 1, 2, 3, 4])
assert index.equals(index)
assert not index.equals(IntIndex(10, [0, 1, 2, 3]))
def test_to_block_index(self):
def _check_case(xloc, xlen, yloc, ylen, eloc, elen):
xindex = BlockIndex(TEST_LENGTH, xloc, xlen)
yindex = BlockIndex(TEST_LENGTH, yloc, ylen)
# see if survive the round trip
xbindex = xindex.to_int_index().to_block_index()
ybindex = yindex.to_int_index().to_block_index()
assert isinstance(xbindex, BlockIndex)
assert xbindex.equals(xindex)
assert ybindex.equals(yindex)
check_cases(_check_case)
def test_to_int_index(self):
index = IntIndex(10, [2, 3, 4, 5, 6])
assert index.to_int_index() is index
class TestSparseOperators(object):
def _op_tests(self, sparse_op, python_op):
def _check_case(xloc, xlen, yloc, ylen, eloc, elen):
xindex = BlockIndex(TEST_LENGTH, xloc, xlen)
yindex = BlockIndex(TEST_LENGTH, yloc, ylen)
xdindex = xindex.to_int_index()
ydindex = yindex.to_int_index()
x = np.arange(xindex.npoints) * 10. + 1
y = np.arange(yindex.npoints) * 100. + 1
xfill = 0
yfill = 2
result_block_vals, rb_index, bfill = sparse_op(x, xindex, xfill, y,
yindex, yfill)
result_int_vals, ri_index, ifill = sparse_op(x, xdindex, xfill, y,
ydindex, yfill)
assert rb_index.to_int_index().equals(ri_index)
tm.assert_numpy_array_equal(result_block_vals, result_int_vals)
assert bfill == ifill
# check versus Series...
xseries = Series(x, xdindex.indices)
xseries = xseries.reindex(np.arange(TEST_LENGTH)).fillna(xfill)
yseries = Series(y, ydindex.indices)
yseries = yseries.reindex(np.arange(TEST_LENGTH)).fillna(yfill)
series_result = python_op(xseries, yseries)
series_result = series_result.reindex(ri_index.indices)
tm.assert_numpy_array_equal(result_block_vals,
series_result.values)
tm.assert_numpy_array_equal(result_int_vals, series_result.values)
check_cases(_check_case)
@pytest.mark.parametrize('opname',
['add', 'sub', 'mul', 'truediv', 'floordiv'])
def test_op(self, opname):
sparse_op = getattr(splib, 'sparse_%s_float64' % opname)
python_op = getattr(operator, opname)
self._op_tests(sparse_op, python_op)
|
bsd-3-clause
|
OshynSong/scikit-learn
|
examples/bicluster/plot_spectral_biclustering.py
|
403
|
2011
|
"""
=============================================
A demo of the Spectral Biclustering algorithm
=============================================
This example demonstrates how to generate a checkerboard dataset and
bicluster it using the Spectral Biclustering algorithm.
The data is generated with the ``make_checkerboard`` function, then
shuffled and passed to the Spectral Biclustering algorithm. The rows
and columns of the shuffled matrix are rearranged to show the
biclusters found by the algorithm.
The outer product of the row and column label vectors shows a
representation of the checkerboard structure.
"""
print(__doc__)
# Author: Kemal Eren <[email protected]>
# License: BSD 3 clause
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import make_checkerboard
from sklearn.datasets import samples_generator as sg
from sklearn.cluster.bicluster import SpectralBiclustering
from sklearn.metrics import consensus_score
n_clusters = (4, 3)
data, rows, columns = make_checkerboard(
shape=(300, 300), n_clusters=n_clusters, noise=10,
shuffle=False, random_state=0)
plt.matshow(data, cmap=plt.cm.Blues)
plt.title("Original dataset")
data, row_idx, col_idx = sg._shuffle(data, random_state=0)
plt.matshow(data, cmap=plt.cm.Blues)
plt.title("Shuffled dataset")
model = SpectralBiclustering(n_clusters=n_clusters, method='log',
random_state=0)
model.fit(data)
score = consensus_score(model.biclusters_,
(rows[:, row_idx], columns[:, col_idx]))
print("consensus score: {:.1f}".format(score))
fit_data = data[np.argsort(model.row_labels_)]
fit_data = fit_data[:, np.argsort(model.column_labels_)]
plt.matshow(fit_data, cmap=plt.cm.Blues)
plt.title("After biclustering; rearranged to show biclusters")
plt.matshow(np.outer(np.sort(model.row_labels_) + 1,
np.sort(model.column_labels_) + 1),
cmap=plt.cm.Blues)
plt.title("Checkerboard structure of rearranged data")
plt.show()
|
bsd-3-clause
|
jakobworldpeace/scikit-learn
|
examples/decomposition/plot_pca_vs_lda.py
|
176
|
2027
|
"""
=======================================================
Comparison of LDA and PCA 2D projection of Iris dataset
=======================================================
The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour
and Virginica) with 4 attributes: sepal length, sepal width, petal length
and petal width.
Principal Component Analysis (PCA) applied to this data identifies the
combination of attributes (principal components, or directions in the
feature space) that account for the most variance in the data. Here we
plot the different samples on the 2 first principal components.
Linear Discriminant Analysis (LDA) tries to identify attributes that
account for the most variance *between classes*. In particular,
LDA, in contrast to PCA, is a supervised method, using known class labels.
"""
print(__doc__)
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
iris = datasets.load_iris()
X = iris.data
y = iris.target
target_names = iris.target_names
pca = PCA(n_components=2)
X_r = pca.fit(X).transform(X)
lda = LinearDiscriminantAnalysis(n_components=2)
X_r2 = lda.fit(X, y).transform(X)
# Percentage of variance explained for each components
print('explained variance ratio (first two components): %s'
% str(pca.explained_variance_ratio_))
plt.figure()
colors = ['navy', 'turquoise', 'darkorange']
lw = 2
for color, i, target_name in zip(colors, [0, 1, 2], target_names):
plt.scatter(X_r[y == i, 0], X_r[y == i, 1], color=color, alpha=.8, lw=lw,
label=target_name)
plt.legend(loc='best', shadow=False, scatterpoints=1)
plt.title('PCA of IRIS dataset')
plt.figure()
for color, i, target_name in zip(colors, [0, 1, 2], target_names):
plt.scatter(X_r2[y == i, 0], X_r2[y == i, 1], alpha=.8, color=color,
label=target_name)
plt.legend(loc='best', shadow=False, scatterpoints=1)
plt.title('LDA of IRIS dataset')
plt.show()
|
bsd-3-clause
|
annahs/atmos_research
|
AL_core_vs_coat_hexbin_long_interval.py
|
1
|
4739
|
import sys
import os
import numpy as np
from pprint import pprint
from datetime import datetime
from datetime import timedelta
import mysql.connector
import math
import matplotlib.pyplot as plt
import matplotlib.colors
import matplotlib.cm as cm
from matplotlib import dates
import calendar
#database connection
cnx = mysql.connector.connect(user='root', password='Suresh15', host='localhost', database='black_carbon')
cursor = cnx.cursor()
save_file = False
start_date = datetime(2012,4,1)
end_date = datetime(2012,5,1)
hour_step = 1#336#168
min_BC_VED = 80
max_BC_VED = 220
min_rBC_mass = ((min_BC_VED/(10.**7))**3)*(math.pi/6.)*1.8*(10.**15)
max_rBC_mass = ((max_BC_VED/(10.**7))**3)*(math.pi/6.)*1.8*(10.**15)
##############initialize binning variables
bins = []
start_size = min_BC_VED #VED in nm
end_size = max_BC_VED #VED in nm
interval_length = 5 #in nm
#create list of size bins
while start_size < end_size:
bins.append(start_size)
start_size += interval_length
#create dictionary with size bins as keys
binned_data = {}
for bin in bins:
binned_data[bin] = [0,0]
os.chdir('C:/Users/Sarah Hanna/Documents/Data/Alert Data/coating data/')
new_data = []
while start_date < end_date:
print start_date
period_end = start_date + timedelta(hours = hour_step)
UNIX_start_time = calendar.timegm(start_date.utctimetuple())
UNIX_end_time = calendar.timegm(period_end.utctimetuple())
cursor.execute(('''SELECT rBC_mass_fg,coat_thickness_nm_min,coat_thickness_nm_max,LF_scat_amp,UNIX_UTC_ts
FROM alert_leo_coating_data
WHERE UNIX_UTC_ts >= %s and UNIX_UTC_ts < %s and HK_flag = 0 and rBC_mass_fg IS NOT NULL
LIMIT 10000'''),
(UNIX_start_time,UNIX_end_time))
coat_data = cursor.fetchall()
#hexbin plot
for row in coat_data:
mass = row[0]
min_coat = row[1]
max_coat = row[2]
LEO_amp = row[3]
UNIX_UTC_ts = row[4]
date_time = datetime.utcfromtimestamp(UNIX_UTC_ts)
VED = (((mass/(10**15*1.8))*6/math.pi)**(1/3.0))*10**7
for key in binned_data:
key_value = float(key)
interval_end = key_value + interval_length
if VED >= key_value and VED < interval_end:
binned_data[key][0] = binned_data[key][0] + 1
if LEO_amp >= 0:
binned_data[key][1] = binned_data[key][1] + 1
if min_coat != None and max_coat != None and LEO_amp > 100:
if VED < min_BC_VED:
continue
new_data.append([VED,min_coat,max_coat])
start_date = start_date + timedelta(hours = hour_step)
print len(new_data)
#fraction detectable
fractions_detectable = []
for bin, counts in binned_data.iteritems():
bin_midpoint = bin + interval_length/2.0
total_particles = counts[0]
detectable_notches = counts[1]
try:
fraction_detectable = detectable_notches*1.0/total_particles
except:
fraction_detectable=np.nan
fractions_detectable.append([bin,bin+interval_length,fraction_detectable])
fractions_detectable.sort()
bins = [row[0]+interval_length/2 for row in fractions_detectable]
fractions = [row[2] for row in fractions_detectable]
#number_max = np.max([row[3] for row in fractions_detectable])
#number_particles = [row[3]*1.0/number_max for row in fractions_detectable]
core_size = [row[0] for row in new_data]
coat_min_size = [row[1] for row in new_data]
coat_max_size = [row[2] for row in new_data]
#plotting
fig = plt.figure(figsize=(8,6))
ax1 = fig.add_subplot(111)
min = ax1.hexbin(core_size, coat_min_size, cmap=cm.jet, gridsize = 40,mincnt=1)#, norm= norm) #bins='log', norm=norm
#ax1.hist2d(core_size, coat_size, bins = 60)
ax1.set_xlabel('rBC core diameter')
ax1.set_ylabel('Coating thickness')
ax1.set_ylim(-30,220)
ax1.set_xlim(min_BC_VED,max_BC_VED)
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.9, 0.15, 0.02, 0.7])
cbar = fig.colorbar(min, cax=cbar_ax)
cbar.ax.get_yaxis().labelpad = 10
cbar.set_label('# of particles')
ax2 = ax1.twinx()
ax2.scatter(bins, fractions, color = 'r')
#ax2.scatter(bins, number_particles, color = 'k')
ax2.set_ylabel('fraction of detectable notch positions',color='r')
ax2.set_ylim(0,1)
plt.xlim(min_BC_VED,max_BC_VED)
#ax3 = fig.add_subplot(212)
#ax3.hexbin(core_size, coat_max_size, cmap=cm.jet, gridsize = 40,mincnt=1)#, norm= norm) #bins='log', norm=norm
#ax3.set_xlabel('rBC core diameter')
#ax3.set_ylabel('Maximum coating thickness')
#ax3.set_ylim(-30,220)
#ax3.set_xlim(min_BC_VED,max_BC_VED)
#
#ax4 = ax3.twinx()
#ax4.scatter(bins, fractions, color = 'r')
##ax4.scatter(bins, number_particles, color = 'k')
#ax4.set_ylabel('fraction of detectable notch positions',color='r')
#ax4.set_ylim(0,1)
#plt.xlim(min_BC_VED,max_BC_VED)
plt.savefig('C:/Users/Sarah Hanna/Documents/Data/Alert Data/seasonal coating/April 2012.png', bbox_inches='tight')
plt.show()
cnx.close()
|
mit
|
kagayakidan/scikit-learn
|
sklearn/metrics/pairwise.py
|
49
|
44088
|
# -*- coding: utf-8 -*-
# Authors: Alexandre Gramfort <[email protected]>
# Mathieu Blondel <[email protected]>
# Robert Layton <[email protected]>
# Andreas Mueller <[email protected]>
# Philippe Gervais <[email protected]>
# Lars Buitinck <[email protected]>
# Joel Nothman <[email protected]>
# License: BSD 3 clause
import itertools
import numpy as np
from scipy.spatial import distance
from scipy.sparse import csr_matrix
from scipy.sparse import issparse
from ..utils import check_array
from ..utils import gen_even_slices
from ..utils import gen_batches
from ..utils.fixes import partial
from ..utils.extmath import row_norms, safe_sparse_dot
from ..preprocessing import normalize
from ..externals.joblib import Parallel
from ..externals.joblib import delayed
from ..externals.joblib.parallel import cpu_count
from .pairwise_fast import _chi2_kernel_fast, _sparse_manhattan
# Utility Functions
def _return_float_dtype(X, Y):
"""
1. If dtype of X and Y is float32, then dtype float32 is returned.
2. Else dtype float is returned.
"""
if not issparse(X) and not isinstance(X, np.ndarray):
X = np.asarray(X)
if Y is None:
Y_dtype = X.dtype
elif not issparse(Y) and not isinstance(Y, np.ndarray):
Y = np.asarray(Y)
Y_dtype = Y.dtype
else:
Y_dtype = Y.dtype
if X.dtype == Y_dtype == np.float32:
dtype = np.float32
else:
dtype = np.float
return X, Y, dtype
def check_pairwise_arrays(X, Y, precomputed=False):
""" Set X and Y appropriately and checks inputs
If Y is None, it is set as a pointer to X (i.e. not a copy).
If Y is given, this does not happen.
All distance metrics should use this function first to assert that the
given parameters are correct and safe to use.
Specifically, this function first ensures that both X and Y are arrays,
then checks that they are at least two dimensional while ensuring that
their elements are floats. Finally, the function checks that the size
of the second dimension of the two arrays is equal, or the equivalent
check for a precomputed distance matrix.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples_a, n_features)
Y : {array-like, sparse matrix}, shape (n_samples_b, n_features)
precomputed : bool
True if X is to be treated as precomputed distances to the samples in
Y.
Returns
-------
safe_X : {array-like, sparse matrix}, shape (n_samples_a, n_features)
An array equal to X, guaranteed to be a numpy array.
safe_Y : {array-like, sparse matrix}, shape (n_samples_b, n_features)
An array equal to Y if Y was not None, guaranteed to be a numpy array.
If Y was None, safe_Y will be a pointer to X.
"""
X, Y, dtype = _return_float_dtype(X, Y)
if Y is X or Y is None:
X = Y = check_array(X, accept_sparse='csr', dtype=dtype)
else:
X = check_array(X, accept_sparse='csr', dtype=dtype)
Y = check_array(Y, accept_sparse='csr', dtype=dtype)
if precomputed:
if X.shape[1] != Y.shape[0]:
raise ValueError("Precomputed metric requires shape "
"(n_queries, n_indexed). Got (%d, %d) "
"for %d indexed." %
(X.shape[0], X.shape[1], Y.shape[0]))
elif X.shape[1] != Y.shape[1]:
raise ValueError("Incompatible dimension for X and Y matrices: "
"X.shape[1] == %d while Y.shape[1] == %d" % (
X.shape[1], Y.shape[1]))
return X, Y
def check_paired_arrays(X, Y):
""" Set X and Y appropriately and checks inputs for paired distances
All paired distance metrics should use this function first to assert that
the given parameters are correct and safe to use.
Specifically, this function first ensures that both X and Y are arrays,
then checks that they are at least two dimensional while ensuring that
their elements are floats. Finally, the function checks that the size
of the dimensions of the two arrays are equal.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples_a, n_features)
Y : {array-like, sparse matrix}, shape (n_samples_b, n_features)
Returns
-------
safe_X : {array-like, sparse matrix}, shape (n_samples_a, n_features)
An array equal to X, guaranteed to be a numpy array.
safe_Y : {array-like, sparse matrix}, shape (n_samples_b, n_features)
An array equal to Y if Y was not None, guaranteed to be a numpy array.
If Y was None, safe_Y will be a pointer to X.
"""
X, Y = check_pairwise_arrays(X, Y)
if X.shape != Y.shape:
raise ValueError("X and Y should be of same shape. They were "
"respectively %r and %r long." % (X.shape, Y.shape))
return X, Y
# Pairwise distances
def euclidean_distances(X, Y=None, Y_norm_squared=None, squared=False,
X_norm_squared=None):
"""
Considering the rows of X (and Y=X) as vectors, compute the
distance matrix between each pair of vectors.
For efficiency reasons, the euclidean distance between a pair of row
vector x and y is computed as::
dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y))
This formulation has two advantages over other ways of computing distances.
First, it is computationally efficient when dealing with sparse data.
Second, if one argument varies but the other remains unchanged, then
`dot(x, x)` and/or `dot(y, y)` can be pre-computed.
However, this is not the most precise way of doing this computation, and
the distance matrix returned by this function may not be exactly
symmetric as required by, e.g., ``scipy.spatial.distance`` functions.
Read more in the :ref:`User Guide <metrics>`.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples_1, n_features)
Y : {array-like, sparse matrix}, shape (n_samples_2, n_features)
Y_norm_squared : array-like, shape (n_samples_2, ), optional
Pre-computed dot-products of vectors in Y (e.g.,
``(Y**2).sum(axis=1)``)
squared : boolean, optional
Return squared Euclidean distances.
X_norm_squared : array-like, shape = [n_samples_1], optional
Pre-computed dot-products of vectors in X (e.g.,
``(X**2).sum(axis=1)``)
Returns
-------
distances : {array, sparse matrix}, shape (n_samples_1, n_samples_2)
Examples
--------
>>> from sklearn.metrics.pairwise import euclidean_distances
>>> X = [[0, 1], [1, 1]]
>>> # distance between rows of X
>>> euclidean_distances(X, X)
array([[ 0., 1.],
[ 1., 0.]])
>>> # get distance to origin
>>> euclidean_distances(X, [[0, 0]])
array([[ 1. ],
[ 1.41421356]])
See also
--------
paired_distances : distances betweens pairs of elements of X and Y.
"""
X, Y = check_pairwise_arrays(X, Y)
if X_norm_squared is not None:
XX = check_array(X_norm_squared)
if XX.shape == (1, X.shape[0]):
XX = XX.T
elif XX.shape != (X.shape[0], 1):
raise ValueError(
"Incompatible dimensions for X and X_norm_squared")
else:
XX = row_norms(X, squared=True)[:, np.newaxis]
if X is Y: # shortcut in the common case euclidean_distances(X, X)
YY = XX.T
elif Y_norm_squared is not None:
YY = np.atleast_2d(Y_norm_squared)
if YY.shape != (1, Y.shape[0]):
raise ValueError(
"Incompatible dimensions for Y and Y_norm_squared")
else:
YY = row_norms(Y, squared=True)[np.newaxis, :]
distances = safe_sparse_dot(X, Y.T, dense_output=True)
distances *= -2
distances += XX
distances += YY
np.maximum(distances, 0, out=distances)
if X is Y:
# Ensure that distances between vectors and themselves are set to 0.0.
# This may not be the case due to floating point rounding errors.
distances.flat[::distances.shape[0] + 1] = 0.0
return distances if squared else np.sqrt(distances, out=distances)
def pairwise_distances_argmin_min(X, Y, axis=1, metric="euclidean",
batch_size=500, metric_kwargs=None):
"""Compute minimum distances between one point and a set of points.
This function computes for each row in X, the index of the row of Y which
is closest (according to the specified distance). The minimal distances are
also returned.
This is mostly equivalent to calling:
(pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis),
pairwise_distances(X, Y=Y, metric=metric).min(axis=axis))
but uses much less memory, and is faster for large arrays.
Parameters
----------
X, Y : {array-like, sparse matrix}
Arrays containing points. Respective shapes (n_samples1, n_features)
and (n_samples2, n_features)
batch_size : integer
To reduce memory consumption over the naive solution, data are
processed in batches, comprising batch_size rows of X and
batch_size rows of Y. The default value is quite conservative, but
can be changed for fine-tuning. The larger the number, the larger the
memory usage.
metric : string or callable, default 'euclidean'
metric to use for distance computation. Any metric from scikit-learn
or scipy.spatial.distance can be used.
If metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable
should take two arrays as input and return one value indicating the
distance between them. This works for Scipy's metrics, but is less
efficient than passing the metric name as a string.
Distance matrices are not supported.
Valid values for metric are:
- from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2',
'manhattan']
- from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski',
'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto',
'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath',
'sqeuclidean', 'yule']
See the documentation for scipy.spatial.distance for details on these
metrics.
metric_kwargs : dict, optional
Keyword arguments to pass to specified metric function.
axis : int, optional, default 1
Axis along which the argmin and distances are to be computed.
Returns
-------
argmin : numpy.ndarray
Y[argmin[i], :] is the row in Y that is closest to X[i, :].
distances : numpy.ndarray
distances[i] is the distance between the i-th row in X and the
argmin[i]-th row in Y.
See also
--------
sklearn.metrics.pairwise_distances
sklearn.metrics.pairwise_distances_argmin
"""
dist_func = None
if metric in PAIRWISE_DISTANCE_FUNCTIONS:
dist_func = PAIRWISE_DISTANCE_FUNCTIONS[metric]
elif not callable(metric) and not isinstance(metric, str):
raise ValueError("'metric' must be a string or a callable")
X, Y = check_pairwise_arrays(X, Y)
if metric_kwargs is None:
metric_kwargs = {}
if axis == 0:
X, Y = Y, X
# Allocate output arrays
indices = np.empty(X.shape[0], dtype=np.intp)
values = np.empty(X.shape[0])
values.fill(np.infty)
for chunk_x in gen_batches(X.shape[0], batch_size):
X_chunk = X[chunk_x, :]
for chunk_y in gen_batches(Y.shape[0], batch_size):
Y_chunk = Y[chunk_y, :]
if dist_func is not None:
if metric == 'euclidean': # special case, for speed
d_chunk = safe_sparse_dot(X_chunk, Y_chunk.T,
dense_output=True)
d_chunk *= -2
d_chunk += row_norms(X_chunk, squared=True)[:, np.newaxis]
d_chunk += row_norms(Y_chunk, squared=True)[np.newaxis, :]
np.maximum(d_chunk, 0, d_chunk)
else:
d_chunk = dist_func(X_chunk, Y_chunk, **metric_kwargs)
else:
d_chunk = pairwise_distances(X_chunk, Y_chunk,
metric=metric, **metric_kwargs)
# Update indices and minimum values using chunk
min_indices = d_chunk.argmin(axis=1)
min_values = d_chunk[np.arange(chunk_x.stop - chunk_x.start),
min_indices]
flags = values[chunk_x] > min_values
indices[chunk_x][flags] = min_indices[flags] + chunk_y.start
values[chunk_x][flags] = min_values[flags]
if metric == "euclidean" and not metric_kwargs.get("squared", False):
np.sqrt(values, values)
return indices, values
def pairwise_distances_argmin(X, Y, axis=1, metric="euclidean",
batch_size=500, metric_kwargs=None):
"""Compute minimum distances between one point and a set of points.
This function computes for each row in X, the index of the row of Y which
is closest (according to the specified distance).
This is mostly equivalent to calling:
pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis)
but uses much less memory, and is faster for large arrays.
This function works with dense 2D arrays only.
Parameters
----------
X : array-like
Arrays containing points. Respective shapes (n_samples1, n_features)
and (n_samples2, n_features)
Y : array-like
Arrays containing points. Respective shapes (n_samples1, n_features)
and (n_samples2, n_features)
batch_size : integer
To reduce memory consumption over the naive solution, data are
processed in batches, comprising batch_size rows of X and
batch_size rows of Y. The default value is quite conservative, but
can be changed for fine-tuning. The larger the number, the larger the
memory usage.
metric : string or callable
metric to use for distance computation. Any metric from scikit-learn
or scipy.spatial.distance can be used.
If metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable
should take two arrays as input and return one value indicating the
distance between them. This works for Scipy's metrics, but is less
efficient than passing the metric name as a string.
Distance matrices are not supported.
Valid values for metric are:
- from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2',
'manhattan']
- from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski',
'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto',
'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath',
'sqeuclidean', 'yule']
See the documentation for scipy.spatial.distance for details on these
metrics.
metric_kwargs : dict
keyword arguments to pass to specified metric function.
axis : int, optional, default 1
Axis along which the argmin and distances are to be computed.
Returns
-------
argmin : numpy.ndarray
Y[argmin[i], :] is the row in Y that is closest to X[i, :].
See also
--------
sklearn.metrics.pairwise_distances
sklearn.metrics.pairwise_distances_argmin_min
"""
if metric_kwargs is None:
metric_kwargs = {}
return pairwise_distances_argmin_min(X, Y, axis, metric, batch_size,
metric_kwargs)[0]
def manhattan_distances(X, Y=None, sum_over_features=True,
size_threshold=5e8):
""" Compute the L1 distances between the vectors in X and Y.
With sum_over_features equal to False it returns the componentwise
distances.
Read more in the :ref:`User Guide <metrics>`.
Parameters
----------
X : array_like
An array with shape (n_samples_X, n_features).
Y : array_like, optional
An array with shape (n_samples_Y, n_features).
sum_over_features : bool, default=True
If True the function returns the pairwise distance matrix
else it returns the componentwise L1 pairwise-distances.
Not supported for sparse matrix inputs.
size_threshold : int, default=5e8
Unused parameter.
Returns
-------
D : array
If sum_over_features is False shape is
(n_samples_X * n_samples_Y, n_features) and D contains the
componentwise L1 pairwise-distances (ie. absolute difference),
else shape is (n_samples_X, n_samples_Y) and D contains
the pairwise L1 distances.
Examples
--------
>>> from sklearn.metrics.pairwise import manhattan_distances
>>> manhattan_distances([[3]], [[3]])#doctest:+ELLIPSIS
array([[ 0.]])
>>> manhattan_distances([[3]], [[2]])#doctest:+ELLIPSIS
array([[ 1.]])
>>> manhattan_distances([[2]], [[3]])#doctest:+ELLIPSIS
array([[ 1.]])
>>> manhattan_distances([[1, 2], [3, 4]],\
[[1, 2], [0, 3]])#doctest:+ELLIPSIS
array([[ 0., 2.],
[ 4., 4.]])
>>> import numpy as np
>>> X = np.ones((1, 2))
>>> y = 2 * np.ones((2, 2))
>>> manhattan_distances(X, y, sum_over_features=False)#doctest:+ELLIPSIS
array([[ 1., 1.],
[ 1., 1.]]...)
"""
X, Y = check_pairwise_arrays(X, Y)
if issparse(X) or issparse(Y):
if not sum_over_features:
raise TypeError("sum_over_features=%r not supported"
" for sparse matrices" % sum_over_features)
X = csr_matrix(X, copy=False)
Y = csr_matrix(Y, copy=False)
D = np.zeros((X.shape[0], Y.shape[0]))
_sparse_manhattan(X.data, X.indices, X.indptr,
Y.data, Y.indices, Y.indptr,
X.shape[1], D)
return D
if sum_over_features:
return distance.cdist(X, Y, 'cityblock')
D = X[:, np.newaxis, :] - Y[np.newaxis, :, :]
D = np.abs(D, D)
return D.reshape((-1, X.shape[1]))
def cosine_distances(X, Y=None):
"""
Compute cosine distance between samples in X and Y.
Cosine distance is defined as 1.0 minus the cosine similarity.
Read more in the :ref:`User Guide <metrics>`.
Parameters
----------
X : array_like, sparse matrix
with shape (n_samples_X, n_features).
Y : array_like, sparse matrix (optional)
with shape (n_samples_Y, n_features).
Returns
-------
distance matrix : array
An array with shape (n_samples_X, n_samples_Y).
See also
--------
sklearn.metrics.pairwise.cosine_similarity
scipy.spatial.distance.cosine (dense matrices only)
"""
# 1.0 - cosine_similarity(X, Y) without copy
S = cosine_similarity(X, Y)
S *= -1
S += 1
return S
# Paired distances
def paired_euclidean_distances(X, Y):
"""
Computes the paired euclidean distances between X and Y
Read more in the :ref:`User Guide <metrics>`.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Y : array-like, shape (n_samples, n_features)
Returns
-------
distances : ndarray (n_samples, )
"""
X, Y = check_paired_arrays(X, Y)
return row_norms(X - Y)
def paired_manhattan_distances(X, Y):
"""Compute the L1 distances between the vectors in X and Y.
Read more in the :ref:`User Guide <metrics>`.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Y : array-like, shape (n_samples, n_features)
Returns
-------
distances : ndarray (n_samples, )
"""
X, Y = check_paired_arrays(X, Y)
diff = X - Y
if issparse(diff):
diff.data = np.abs(diff.data)
return np.squeeze(np.array(diff.sum(axis=1)))
else:
return np.abs(diff).sum(axis=-1)
def paired_cosine_distances(X, Y):
"""
Computes the paired cosine distances between X and Y
Read more in the :ref:`User Guide <metrics>`.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Y : array-like, shape (n_samples, n_features)
Returns
-------
distances : ndarray, shape (n_samples, )
Notes
------
The cosine distance is equivalent to the half the squared
euclidean distance if each sample is normalized to unit norm
"""
X, Y = check_paired_arrays(X, Y)
return .5 * row_norms(normalize(X) - normalize(Y), squared=True)
PAIRED_DISTANCES = {
'cosine': paired_cosine_distances,
'euclidean': paired_euclidean_distances,
'l2': paired_euclidean_distances,
'l1': paired_manhattan_distances,
'manhattan': paired_manhattan_distances,
'cityblock': paired_manhattan_distances}
def paired_distances(X, Y, metric="euclidean", **kwds):
"""
Computes the paired distances between X and Y.
Computes the distances between (X[0], Y[0]), (X[1], Y[1]), etc...
Read more in the :ref:`User Guide <metrics>`.
Parameters
----------
X : ndarray (n_samples, n_features)
Array 1 for distance computation.
Y : ndarray (n_samples, n_features)
Array 2 for distance computation.
metric : string or callable
The metric to use when calculating distance between instances in a
feature array. If metric is a string, it must be one of the options
specified in PAIRED_DISTANCES, including "euclidean",
"manhattan", or "cosine".
Alternatively, if metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable
should take two arrays from X as input and return a value indicating
the distance between them.
Returns
-------
distances : ndarray (n_samples, )
Examples
--------
>>> from sklearn.metrics.pairwise import paired_distances
>>> X = [[0, 1], [1, 1]]
>>> Y = [[0, 1], [2, 1]]
>>> paired_distances(X, Y)
array([ 0., 1.])
See also
--------
pairwise_distances : pairwise distances.
"""
if metric in PAIRED_DISTANCES:
func = PAIRED_DISTANCES[metric]
return func(X, Y)
elif callable(metric):
# Check the matrix first (it is usually done by the metric)
X, Y = check_paired_arrays(X, Y)
distances = np.zeros(len(X))
for i in range(len(X)):
distances[i] = metric(X[i], Y[i])
return distances
else:
raise ValueError('Unknown distance %s' % metric)
# Kernels
def linear_kernel(X, Y=None):
"""
Compute the linear kernel between X and Y.
Read more in the :ref:`User Guide <linear_kernel>`.
Parameters
----------
X : array of shape (n_samples_1, n_features)
Y : array of shape (n_samples_2, n_features)
Returns
-------
Gram matrix : array of shape (n_samples_1, n_samples_2)
"""
X, Y = check_pairwise_arrays(X, Y)
return safe_sparse_dot(X, Y.T, dense_output=True)
def polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1):
"""
Compute the polynomial kernel between X and Y::
K(X, Y) = (gamma <X, Y> + coef0)^degree
Read more in the :ref:`User Guide <polynomial_kernel>`.
Parameters
----------
X : ndarray of shape (n_samples_1, n_features)
Y : ndarray of shape (n_samples_2, n_features)
coef0 : int, default 1
degree : int, default 3
Returns
-------
Gram matrix : array of shape (n_samples_1, n_samples_2)
"""
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 1.0 / X.shape[1]
K = safe_sparse_dot(X, Y.T, dense_output=True)
K *= gamma
K += coef0
K **= degree
return K
def sigmoid_kernel(X, Y=None, gamma=None, coef0=1):
"""
Compute the sigmoid kernel between X and Y::
K(X, Y) = tanh(gamma <X, Y> + coef0)
Read more in the :ref:`User Guide <sigmoid_kernel>`.
Parameters
----------
X : ndarray of shape (n_samples_1, n_features)
Y : ndarray of shape (n_samples_2, n_features)
coef0 : int, default 1
Returns
-------
Gram matrix: array of shape (n_samples_1, n_samples_2)
"""
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 1.0 / X.shape[1]
K = safe_sparse_dot(X, Y.T, dense_output=True)
K *= gamma
K += coef0
np.tanh(K, K) # compute tanh in-place
return K
def rbf_kernel(X, Y=None, gamma=None):
"""
Compute the rbf (gaussian) kernel between X and Y::
K(x, y) = exp(-gamma ||x-y||^2)
for each pair of rows x in X and y in Y.
Read more in the :ref:`User Guide <rbf_kernel>`.
Parameters
----------
X : array of shape (n_samples_X, n_features)
Y : array of shape (n_samples_Y, n_features)
gamma : float
Returns
-------
kernel_matrix : array of shape (n_samples_X, n_samples_Y)
"""
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 1.0 / X.shape[1]
K = euclidean_distances(X, Y, squared=True)
K *= -gamma
np.exp(K, K) # exponentiate K in-place
return K
def cosine_similarity(X, Y=None, dense_output=True):
"""Compute cosine similarity between samples in X and Y.
Cosine similarity, or the cosine kernel, computes similarity as the
normalized dot product of X and Y:
K(X, Y) = <X, Y> / (||X||*||Y||)
On L2-normalized data, this function is equivalent to linear_kernel.
Read more in the :ref:`User Guide <cosine_similarity>`.
Parameters
----------
X : ndarray or sparse array, shape: (n_samples_X, n_features)
Input data.
Y : ndarray or sparse array, shape: (n_samples_Y, n_features)
Input data. If ``None``, the output will be the pairwise
similarities between all samples in ``X``.
dense_output : boolean (optional), default True
Whether to return dense output even when the input is sparse. If
``False``, the output is sparse if both input arrays are sparse.
Returns
-------
kernel matrix : array
An array with shape (n_samples_X, n_samples_Y).
"""
# to avoid recursive import
X, Y = check_pairwise_arrays(X, Y)
X_normalized = normalize(X, copy=True)
if X is Y:
Y_normalized = X_normalized
else:
Y_normalized = normalize(Y, copy=True)
K = safe_sparse_dot(X_normalized, Y_normalized.T, dense_output=dense_output)
return K
def additive_chi2_kernel(X, Y=None):
"""Computes the additive chi-squared kernel between observations in X and Y
The chi-squared kernel is computed between each pair of rows in X and Y. X
and Y have to be non-negative. This kernel is most commonly applied to
histograms.
The chi-squared kernel is given by::
k(x, y) = -Sum [(x - y)^2 / (x + y)]
It can be interpreted as a weighted difference per entry.
Read more in the :ref:`User Guide <chi2_kernel>`.
Notes
-----
As the negative of a distance, this kernel is only conditionally positive
definite.
Parameters
----------
X : array-like of shape (n_samples_X, n_features)
Y : array of shape (n_samples_Y, n_features)
Returns
-------
kernel_matrix : array of shape (n_samples_X, n_samples_Y)
References
----------
* Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C.
Local features and kernels for classification of texture and object
categories: A comprehensive study
International Journal of Computer Vision 2007
http://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf
See also
--------
chi2_kernel : The exponentiated version of the kernel, which is usually
preferable.
sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation
to this kernel.
"""
if issparse(X) or issparse(Y):
raise ValueError("additive_chi2 does not support sparse matrices.")
X, Y = check_pairwise_arrays(X, Y)
if (X < 0).any():
raise ValueError("X contains negative values.")
if Y is not X and (Y < 0).any():
raise ValueError("Y contains negative values.")
result = np.zeros((X.shape[0], Y.shape[0]), dtype=X.dtype)
_chi2_kernel_fast(X, Y, result)
return result
def chi2_kernel(X, Y=None, gamma=1.):
"""Computes the exponential chi-squared kernel X and Y.
The chi-squared kernel is computed between each pair of rows in X and Y. X
and Y have to be non-negative. This kernel is most commonly applied to
histograms.
The chi-squared kernel is given by::
k(x, y) = exp(-gamma Sum [(x - y)^2 / (x + y)])
It can be interpreted as a weighted difference per entry.
Read more in the :ref:`User Guide <chi2_kernel>`.
Parameters
----------
X : array-like of shape (n_samples_X, n_features)
Y : array of shape (n_samples_Y, n_features)
gamma : float, default=1.
Scaling parameter of the chi2 kernel.
Returns
-------
kernel_matrix : array of shape (n_samples_X, n_samples_Y)
References
----------
* Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C.
Local features and kernels for classification of texture and object
categories: A comprehensive study
International Journal of Computer Vision 2007
http://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf
See also
--------
additive_chi2_kernel : The additive version of this kernel
sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation
to the additive version of this kernel.
"""
K = additive_chi2_kernel(X, Y)
K *= gamma
return np.exp(K, K)
# Helper functions - distance
PAIRWISE_DISTANCE_FUNCTIONS = {
# If updating this dictionary, update the doc in both distance_metrics()
# and also in pairwise_distances()!
'cityblock': manhattan_distances,
'cosine': cosine_distances,
'euclidean': euclidean_distances,
'l2': euclidean_distances,
'l1': manhattan_distances,
'manhattan': manhattan_distances,
'precomputed': None, # HACK: precomputed is always allowed, never called
}
def distance_metrics():
"""Valid metrics for pairwise_distances.
This function simply returns the valid pairwise distance metrics.
It exists to allow for a description of the mapping for
each of the valid strings.
The valid distance metrics, and the function they map to, are:
============ ====================================
metric Function
============ ====================================
'cityblock' metrics.pairwise.manhattan_distances
'cosine' metrics.pairwise.cosine_distances
'euclidean' metrics.pairwise.euclidean_distances
'l1' metrics.pairwise.manhattan_distances
'l2' metrics.pairwise.euclidean_distances
'manhattan' metrics.pairwise.manhattan_distances
============ ====================================
Read more in the :ref:`User Guide <metrics>`.
"""
return PAIRWISE_DISTANCE_FUNCTIONS
def _parallel_pairwise(X, Y, func, n_jobs, **kwds):
"""Break the pairwise matrix in n_jobs even slices
and compute them in parallel"""
if n_jobs < 0:
n_jobs = max(cpu_count() + 1 + n_jobs, 1)
if Y is None:
Y = X
if n_jobs == 1:
# Special case to avoid picklability checks in delayed
return func(X, Y, **kwds)
# TODO: in some cases, backend='threading' may be appropriate
fd = delayed(func)
ret = Parallel(n_jobs=n_jobs, verbose=0)(
fd(X, Y[s], **kwds)
for s in gen_even_slices(Y.shape[0], n_jobs))
return np.hstack(ret)
def _pairwise_callable(X, Y, metric, **kwds):
"""Handle the callable case for pairwise_{distances,kernels}
"""
X, Y = check_pairwise_arrays(X, Y)
if X is Y:
# Only calculate metric for upper triangle
out = np.zeros((X.shape[0], Y.shape[0]), dtype='float')
iterator = itertools.combinations(range(X.shape[0]), 2)
for i, j in iterator:
out[i, j] = metric(X[i], Y[j], **kwds)
# Make symmetric
# NB: out += out.T will produce incorrect results
out = out + out.T
# Calculate diagonal
# NB: nonzero diagonals are allowed for both metrics and kernels
for i in range(X.shape[0]):
x = X[i]
out[i, i] = metric(x, x, **kwds)
else:
# Calculate all cells
out = np.empty((X.shape[0], Y.shape[0]), dtype='float')
iterator = itertools.product(range(X.shape[0]), range(Y.shape[0]))
for i, j in iterator:
out[i, j] = metric(X[i], Y[j], **kwds)
return out
_VALID_METRICS = ['euclidean', 'l2', 'l1', 'manhattan', 'cityblock',
'braycurtis', 'canberra', 'chebyshev', 'correlation',
'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski',
'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto',
'russellrao', 'seuclidean', 'sokalmichener',
'sokalsneath', 'sqeuclidean', 'yule', "wminkowski"]
def pairwise_distances(X, Y=None, metric="euclidean", n_jobs=1, **kwds):
""" Compute the distance matrix from a vector array X and optional Y.
This method takes either a vector array or a distance matrix, and returns
a distance matrix. If the input is a vector array, the distances are
computed. If the input is a distances matrix, it is returned instead.
This method provides a safe way to take a distance matrix as input, while
preserving compatibility with many other algorithms that take a vector
array.
If Y is given (default is None), then the returned matrix is the pairwise
distance between the arrays from both X and Y.
Valid values for metric are:
- From scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2',
'manhattan']. These metrics support sparse matrix inputs.
- From scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis',
'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean',
'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule']
See the documentation for scipy.spatial.distance for details on these
metrics. These metrics do not support sparse matrix inputs.
Note that in the case of 'cityblock', 'cosine' and 'euclidean' (which are
valid scipy.spatial.distance metrics), the scikit-learn implementation
will be used, which is faster and has support for sparse matrices (except
for 'cityblock'). For a verbose description of the metrics from
scikit-learn, see the __doc__ of the sklearn.pairwise.distance_metrics
function.
Read more in the :ref:`User Guide <metrics>`.
Parameters
----------
X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \
[n_samples_a, n_features] otherwise
Array of pairwise distances between samples, or a feature array.
Y : array [n_samples_b, n_features], optional
An optional second feature array. Only allowed if metric != "precomputed".
metric : string, or callable
The metric to use when calculating distance between instances in a
feature array. If metric is a string, it must be one of the options
allowed by scipy.spatial.distance.pdist for its metric parameter, or
a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS.
If metric is "precomputed", X is assumed to be a distance matrix.
Alternatively, if metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable
should take two arrays from X as input and return a value indicating
the distance between them.
n_jobs : int
The number of jobs to use for the computation. This works by breaking
down the pairwise matrix into n_jobs even slices and computing them in
parallel.
If -1 all CPUs are used. If 1 is given, no parallel computing code is
used at all, which is useful for debugging. For n_jobs below -1,
(n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one
are used.
`**kwds` : optional keyword parameters
Any further parameters are passed directly to the distance function.
If using a scipy.spatial.distance metric, the parameters are still
metric dependent. See the scipy docs for usage examples.
Returns
-------
D : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b]
A distance matrix D such that D_{i, j} is the distance between the
ith and jth vectors of the given matrix X, if Y is None.
If Y is not None, then D_{i, j} is the distance between the ith array
from X and the jth array from Y.
"""
if (metric not in _VALID_METRICS and
not callable(metric) and metric != "precomputed"):
raise ValueError("Unknown metric %s. "
"Valid metrics are %s, or 'precomputed', or a "
"callable" % (metric, _VALID_METRICS))
if metric == "precomputed":
X, _ = check_pairwise_arrays(X, Y, precomputed=True)
return X
elif metric in PAIRWISE_DISTANCE_FUNCTIONS:
func = PAIRWISE_DISTANCE_FUNCTIONS[metric]
elif callable(metric):
func = partial(_pairwise_callable, metric=metric, **kwds)
else:
if issparse(X) or issparse(Y):
raise TypeError("scipy distance metrics do not"
" support sparse matrices.")
X, Y = check_pairwise_arrays(X, Y)
if n_jobs == 1 and X is Y:
return distance.squareform(distance.pdist(X, metric=metric,
**kwds))
func = partial(distance.cdist, metric=metric, **kwds)
return _parallel_pairwise(X, Y, func, n_jobs, **kwds)
# Helper functions - distance
PAIRWISE_KERNEL_FUNCTIONS = {
# If updating this dictionary, update the doc in both distance_metrics()
# and also in pairwise_distances()!
'additive_chi2': additive_chi2_kernel,
'chi2': chi2_kernel,
'linear': linear_kernel,
'polynomial': polynomial_kernel,
'poly': polynomial_kernel,
'rbf': rbf_kernel,
'sigmoid': sigmoid_kernel,
'cosine': cosine_similarity, }
def kernel_metrics():
""" Valid metrics for pairwise_kernels
This function simply returns the valid pairwise distance metrics.
It exists, however, to allow for a verbose description of the mapping for
each of the valid strings.
The valid distance metrics, and the function they map to, are:
=============== ========================================
metric Function
=============== ========================================
'additive_chi2' sklearn.pairwise.additive_chi2_kernel
'chi2' sklearn.pairwise.chi2_kernel
'linear' sklearn.pairwise.linear_kernel
'poly' sklearn.pairwise.polynomial_kernel
'polynomial' sklearn.pairwise.polynomial_kernel
'rbf' sklearn.pairwise.rbf_kernel
'sigmoid' sklearn.pairwise.sigmoid_kernel
'cosine' sklearn.pairwise.cosine_similarity
=============== ========================================
Read more in the :ref:`User Guide <metrics>`.
"""
return PAIRWISE_KERNEL_FUNCTIONS
KERNEL_PARAMS = {
"additive_chi2": (),
"chi2": (),
"cosine": (),
"exp_chi2": frozenset(["gamma"]),
"linear": (),
"poly": frozenset(["gamma", "degree", "coef0"]),
"polynomial": frozenset(["gamma", "degree", "coef0"]),
"rbf": frozenset(["gamma"]),
"sigmoid": frozenset(["gamma", "coef0"]),
}
def pairwise_kernels(X, Y=None, metric="linear", filter_params=False,
n_jobs=1, **kwds):
"""Compute the kernel between arrays X and optional array Y.
This method takes either a vector array or a kernel matrix, and returns
a kernel matrix. If the input is a vector array, the kernels are
computed. If the input is a kernel matrix, it is returned instead.
This method provides a safe way to take a kernel matrix as input, while
preserving compatibility with many other algorithms that take a vector
array.
If Y is given (default is None), then the returned matrix is the pairwise
kernel between the arrays from both X and Y.
Valid values for metric are::
['rbf', 'sigmoid', 'polynomial', 'poly', 'linear', 'cosine']
Read more in the :ref:`User Guide <metrics>`.
Parameters
----------
X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \
[n_samples_a, n_features] otherwise
Array of pairwise kernels between samples, or a feature array.
Y : array [n_samples_b, n_features]
A second feature array only if X has shape [n_samples_a, n_features].
metric : string, or callable
The metric to use when calculating kernel between instances in a
feature array. If metric is a string, it must be one of the metrics
in pairwise.PAIRWISE_KERNEL_FUNCTIONS.
If metric is "precomputed", X is assumed to be a kernel matrix.
Alternatively, if metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable
should take two arrays from X as input and return a value indicating
the distance between them.
n_jobs : int
The number of jobs to use for the computation. This works by breaking
down the pairwise matrix into n_jobs even slices and computing them in
parallel.
If -1 all CPUs are used. If 1 is given, no parallel computing code is
used at all, which is useful for debugging. For n_jobs below -1,
(n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one
are used.
filter_params: boolean
Whether to filter invalid parameters or not.
`**kwds` : optional keyword parameters
Any further parameters are passed directly to the kernel function.
Returns
-------
K : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b]
A kernel matrix K such that K_{i, j} is the kernel between the
ith and jth vectors of the given matrix X, if Y is None.
If Y is not None, then K_{i, j} is the kernel between the ith array
from X and the jth array from Y.
Notes
-----
If metric is 'precomputed', Y is ignored and X is returned.
"""
if metric == "precomputed":
X, _ = check_pairwise_arrays(X, Y, precomputed=True)
return X
elif metric in PAIRWISE_KERNEL_FUNCTIONS:
if filter_params:
kwds = dict((k, kwds[k]) for k in kwds
if k in KERNEL_PARAMS[metric])
func = PAIRWISE_KERNEL_FUNCTIONS[metric]
elif callable(metric):
func = partial(_pairwise_callable, metric=metric, **kwds)
else:
raise ValueError("Unknown kernel %r" % metric)
return _parallel_pairwise(X, Y, func, n_jobs, **kwds)
|
bsd-3-clause
|
CodeForPhilly/chime
|
src/chime_dash/app/utils/templates.py
|
1
|
7202
|
"""utils/templates
Utility functions for localization templates
templates themselves can be found in app/templates/en
"""
import dash_daq as daq
from typing import Dict, Any, Optional
from os import path
from yaml import safe_load
from numpy import mod
from pandas import DataFrame
from dash_html_components import Table, Thead, Tbody, Tr, Td, Th, H4, Hr
from dash_core_components import DatePickerSingle
from dash_bootstrap_components import FormGroup, Label, Input, Checklist
from penn_chime.model.parameters import Parameters
# Consider moving this to a config file eventually
TEMPLATE_DIR = path.join(
path.abspath(path.dirname(path.dirname(__file__))), "templates"
)
LABEL_STYLE = {"fontSize": "0.875rem", "marginBottom": "0.3333em"}
HEADER_STYLE = {
"fontSize": "1rem",
"fontWeight": "bold",
"margin-bottom": "1rem",
}
LINE_STYLE = {
"width": "30%",
"text-align": "center",
"color": "#cccccc"
}
def read_localization_yml(file: str, language: str) -> Dict[str, Any]:
"""Reads localization template.
Arguments:
file: Name of the section plus `.yml`
language: Localization info
Raises:
KeyError: If no template for file/language exists.
"""
file_address = path.join(TEMPLATE_DIR, language, file)
if not path.exists(file_address):
raise KeyError(
"No template found for language '{language}' and section '{file}'".format(
file=file, language=language
)
)
with open(file_address, "r") as stream:
yaml = safe_load(stream)
return yaml
def read_localization_markdown(file: str, language: str) -> str:
"""Reads localization template.
Arguments:
file: Name of the section plus `.md`
language: Localization info
Raises:
KeyError: If no template for file/language exists.
"""
file_address = path.join(TEMPLATE_DIR, language, file)
if not path.exists(file_address):
raise KeyError(
"No template found for langage '{language}' and section '{file}'".format(
file=file, language=language
)
)
with open(file_address, "r") as stream:
md = stream.read()
return md
def df_to_html_table(
dataframe: DataFrame,
data_only: bool = False,
n_mod: Optional[int] = None,
formats: Optional[Dict[Any, str]] = None,
) -> Table:
"""Converts pandas data frame to html table
"""
formats = formats or {}
def cast_type(val):
for dtype, cast in formats.items():
if isinstance(val, dtype):
try:
val = cast(val)
break
except ValueError:
break
return val
index_name = dataframe.index.name
index_name = index_name or "#"
tmp = dataframe.copy()
if n_mod is not None:
tmp = tmp[mod(tmp.index, n_mod) == 0].copy()
data = [
Thead([Tr([Th(index_name)] + [Th(col) for col in tmp.columns])]),
Tbody(
[
Tr([Th(cast_type(idx))] + [Td(cast_type(col)) for col in row])
for idx, row in tmp.iterrows()
]
),
]
return data if data_only else Table(data)
def create_number_input(
idx: str,
data: Dict[str, Any],
content: Dict[str, str],
defaults: Parameters,
debounce: bool = True,
):
"""Returns number formgroup for given form data.
Arguments:
idx: The name of the varibale (html id)
data: Input form kwargs.
content: Localization text
defaults: Parameters to infer defaults
debounce: Trigger callback on enter or unfocus
"""
input_kwargs = data.copy()
input_kwargs.pop("percent", None)
if not "value" in input_kwargs:
input_kwargs["value"] = _get_default_values(
idx, defaults, min_val=data.get("min", None), max_val=data.get("max", None)
)
return FormGroup(
id=f'group_{idx}',
children=[
Label(html_for=idx, children=content[idx], style=LABEL_STYLE),
Input(id=idx, debounce=debounce, **input_kwargs),
]
)
def create_header(idx: str, content: Dict[str, str]):
"""
Create heading element using localization map
"""
return H4(id=idx, children=content[idx], style=HEADER_STYLE)
def create_line_break(idx: str):
return Hr(id=idx, style=LINE_STYLE)
def create_date_input(
idx: str, data: Dict[str, Any], content: Dict[str, str], defaults: Parameters
):
"""Returns number formgroup for given form data.
Arguments:
idx: The name of the varibale (html id)
data: Input form kwargs.
content: Localization text
defaults: Parameters to infer defaults
"""
input_kwargs = data.copy()
input_kwargs.pop("type")
if not "date" in input_kwargs:
input_kwargs["date"] = input_kwargs[
"initial_visible_month"
] = _get_default_values(idx, defaults)
if 'style' in input_kwargs:
style = {'style': input_kwargs.pop('style')}
else:
style = {}
return FormGroup(
id=f'group_{idx}',
**style,
children=[
Label(html_for=idx, children=content[idx], style=LABEL_STYLE),
DatePickerSingle(
className="form-control",
day_size=32,
display_format='YYYY-MM-DD',
id=idx,
**input_kwargs
),
]
)
def create_switch_input(idx: str, data: Dict[str, Any], content: Dict[str, str]):
"""Returns switch for given form data.
Arguments:
idx: The name of the varibale (html id)
data: Input form kwargs.
content: Localization text
defaults: Parameters to infer defaults
"""
return daq.BooleanSwitch(
id=idx, on=False, label=content[idx]
)
def _get_default_values(
key: str,
defaults: Parameters,
min_val: Optional[float] = None,
max_val: Optional[float] = None,
) -> float:
"""Tries to infer default values given parameters.
Ensures that value is between min and max.
Min defaults to zero if not given. Max will be ignored if not given.
Arguments:
key: The name of the varibale (html id)
defaults: Parameters to infer defaults
min_val: Min boundary of form
max_val: Max boundary of form
"""
min_val = 0 if min_val is None else min_val
if "rate" in key:
val = (
defaults.dispositions[key.split("_")[0]].rate
if key.split("_")[0] in defaults.dispositions
else getattr(defaults, key, min_val)
) * 100
elif "los" in key:
val = (
defaults.dispositions[key.split("_")[0]].days
if key.split("_")[0] in defaults.dispositions
else getattr(defaults, key, min_val)
)
elif "share" in key:
val = getattr(defaults, key, min_val) * 100
elif "susceptible" in key:
val = defaults.region.susceptible
else:
val = getattr(defaults, key, min_val)
return min(max_val, val) if max_val is not None else val
|
mit
|
joshloyal/scikit-learn
|
sklearn/linear_model/least_angle.py
|
15
|
57631
|
"""
Least Angle Regression algorithm. See the documentation on the
Generalized Linear Model for a complete discussion.
"""
from __future__ import print_function
# Author: Fabian Pedregosa <[email protected]>
# Alexandre Gramfort <[email protected]>
# Gael Varoquaux
#
# License: BSD 3 clause
from math import log
import sys
import warnings
from distutils.version import LooseVersion
import numpy as np
from scipy import linalg, interpolate
from scipy.linalg.lapack import get_lapack_funcs
from .base import LinearModel
from ..base import RegressorMixin
from ..utils import arrayfuncs, as_float_array, check_X_y, deprecated
from ..model_selection import check_cv
from ..exceptions import ConvergenceWarning
from ..externals.joblib import Parallel, delayed
from ..externals.six.moves import xrange
from ..externals.six import string_types
import scipy
solve_triangular_args = {}
if LooseVersion(scipy.__version__) >= LooseVersion('0.12'):
solve_triangular_args = {'check_finite': False}
def lars_path(X, y, Xy=None, Gram=None, max_iter=500,
alpha_min=0, method='lar', copy_X=True,
eps=np.finfo(np.float).eps,
copy_Gram=True, verbose=0, return_path=True,
return_n_iter=False, positive=False):
"""Compute Least Angle Regression or Lasso path using LARS algorithm [1]
The optimization objective for the case method='lasso' is::
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
in the case of method='lars', the objective function is only known in
the form of an implicit equation (see discussion in [1])
Read more in the :ref:`User Guide <least_angle_regression>`.
Parameters
-----------
X : array, shape: (n_samples, n_features)
Input data.
y : array, shape: (n_samples)
Input targets.
positive : boolean (default=False)
Restrict coefficients to be >= 0.
When using this option together with method 'lasso' the model
coefficients will not converge to the ordinary-least-squares solution
for small values of alpha (neither will they when using method 'lar'
..). Only coefficients up to the smallest alpha value (``alphas_[alphas_ >
0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso
algorithm are typically in congruence with the solution of the
coordinate descent lasso_path function.
max_iter : integer, optional (default=500)
Maximum number of iterations to perform, set to infinity for no limit.
Gram : None, 'auto', array, shape: (n_features, n_features), optional
Precomputed Gram matrix (X' * X), if ``'auto'``, the Gram
matrix is precomputed from the given X, if there are more samples
than features.
alpha_min : float, optional (default=0)
Minimum correlation along the path. It corresponds to the
regularization parameter alpha parameter in the Lasso.
method : {'lar', 'lasso'}, optional (default='lar')
Specifies the returned model. Select ``'lar'`` for Least Angle
Regression, ``'lasso'`` for the Lasso.
eps : float, optional (default=``np.finfo(np.float).eps``)
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems.
copy_X : bool, optional (default=True)
If ``False``, ``X`` is overwritten.
copy_Gram : bool, optional (default=True)
If ``False``, ``Gram`` is overwritten.
verbose : int (default=0)
Controls output verbosity.
return_path : bool, optional (default=True)
If ``return_path==True`` returns the entire path, else returns only the
last point of the path.
return_n_iter : bool, optional (default=False)
Whether to return the number of iterations.
Returns
--------
alphas : array, shape: [n_alphas + 1]
Maximum of covariances (in absolute value) at each iteration.
``n_alphas`` is either ``max_iter``, ``n_features`` or the
number of nodes in the path with ``alpha >= alpha_min``, whichever
is smaller.
active : array, shape [n_alphas]
Indices of active variables at the end of the path.
coefs : array, shape (n_features, n_alphas + 1)
Coefficients along the path
n_iter : int
Number of iterations run. Returned only if return_n_iter is set
to True.
See also
--------
lasso_path
LassoLars
Lars
LassoLarsCV
LarsCV
sklearn.decomposition.sparse_encode
References
----------
.. [1] "Least Angle Regression", Effron et al.
http://statweb.stanford.edu/~tibs/ftp/lars.pdf
.. [2] `Wikipedia entry on the Least-angle regression
<https://en.wikipedia.org/wiki/Least-angle_regression>`_
.. [3] `Wikipedia entry on the Lasso
<https://en.wikipedia.org/wiki/Lasso_(statistics)>`_
"""
n_features = X.shape[1]
n_samples = y.size
max_features = min(max_iter, n_features)
if return_path:
coefs = np.zeros((max_features + 1, n_features))
alphas = np.zeros(max_features + 1)
else:
coef, prev_coef = np.zeros(n_features), np.zeros(n_features)
alpha, prev_alpha = np.array([0.]), np.array([0.]) # better ideas?
n_iter, n_active = 0, 0
active, indices = list(), np.arange(n_features)
# holds the sign of covariance
sign_active = np.empty(max_features, dtype=np.int8)
drop = False
# will hold the cholesky factorization. Only lower part is
# referenced.
# We are initializing this to "zeros" and not empty, because
# it is passed to scipy linalg functions and thus if it has NaNs,
# even if they are in the upper part that it not used, we
# get errors raised.
# Once we support only scipy > 0.12 we can use check_finite=False and
# go back to "empty"
L = np.zeros((max_features, max_features), dtype=X.dtype)
swap, nrm2 = linalg.get_blas_funcs(('swap', 'nrm2'), (X,))
solve_cholesky, = get_lapack_funcs(('potrs',), (X,))
if Gram is None:
if copy_X:
# force copy. setting the array to be fortran-ordered
# speeds up the calculation of the (partial) Gram matrix
# and allows to easily swap columns
X = X.copy('F')
elif isinstance(Gram, string_types) and Gram == 'auto':
Gram = None
if X.shape[0] > X.shape[1]:
Gram = np.dot(X.T, X)
elif copy_Gram:
Gram = Gram.copy()
if Xy is None:
Cov = np.dot(X.T, y)
else:
Cov = Xy.copy()
if verbose:
if verbose > 1:
print("Step\t\tAdded\t\tDropped\t\tActive set size\t\tC")
else:
sys.stdout.write('.')
sys.stdout.flush()
tiny = np.finfo(np.float).tiny # to avoid division by 0 warning
tiny32 = np.finfo(np.float32).tiny # to avoid division by 0 warning
equality_tolerance = np.finfo(np.float32).eps
while True:
if Cov.size:
if positive:
C_idx = np.argmax(Cov)
else:
C_idx = np.argmax(np.abs(Cov))
C_ = Cov[C_idx]
if positive:
C = C_
else:
C = np.fabs(C_)
else:
C = 0.
if return_path:
alpha = alphas[n_iter, np.newaxis]
coef = coefs[n_iter]
prev_alpha = alphas[n_iter - 1, np.newaxis]
prev_coef = coefs[n_iter - 1]
alpha[0] = C / n_samples
if alpha[0] <= alpha_min + equality_tolerance: # early stopping
if abs(alpha[0] - alpha_min) > equality_tolerance:
# interpolation factor 0 <= ss < 1
if n_iter > 0:
# In the first iteration, all alphas are zero, the formula
# below would make ss a NaN
ss = ((prev_alpha[0] - alpha_min) /
(prev_alpha[0] - alpha[0]))
coef[:] = prev_coef + ss * (coef - prev_coef)
alpha[0] = alpha_min
if return_path:
coefs[n_iter] = coef
break
if n_iter >= max_iter or n_active >= n_features:
break
if not drop:
##########################################################
# Append x_j to the Cholesky factorization of (Xa * Xa') #
# #
# ( L 0 ) #
# L -> ( ) , where L * w = Xa' x_j #
# ( w z ) and z = ||x_j|| #
# #
##########################################################
if positive:
sign_active[n_active] = np.ones_like(C_)
else:
sign_active[n_active] = np.sign(C_)
m, n = n_active, C_idx + n_active
Cov[C_idx], Cov[0] = swap(Cov[C_idx], Cov[0])
indices[n], indices[m] = indices[m], indices[n]
Cov_not_shortened = Cov
Cov = Cov[1:] # remove Cov[0]
if Gram is None:
X.T[n], X.T[m] = swap(X.T[n], X.T[m])
c = nrm2(X.T[n_active]) ** 2
L[n_active, :n_active] = \
np.dot(X.T[n_active], X.T[:n_active].T)
else:
# swap does only work inplace if matrix is fortran
# contiguous ...
Gram[m], Gram[n] = swap(Gram[m], Gram[n])
Gram[:, m], Gram[:, n] = swap(Gram[:, m], Gram[:, n])
c = Gram[n_active, n_active]
L[n_active, :n_active] = Gram[n_active, :n_active]
# Update the cholesky decomposition for the Gram matrix
if n_active:
linalg.solve_triangular(L[:n_active, :n_active],
L[n_active, :n_active],
trans=0, lower=1,
overwrite_b=True,
**solve_triangular_args)
v = np.dot(L[n_active, :n_active], L[n_active, :n_active])
diag = max(np.sqrt(np.abs(c - v)), eps)
L[n_active, n_active] = diag
if diag < 1e-7:
# The system is becoming too ill-conditioned.
# We have degenerate vectors in our active set.
# We'll 'drop for good' the last regressor added.
# Note: this case is very rare. It is no longer triggered by
# the test suite. The `equality_tolerance` margin added in 0.16
# to get early stopping to work consistently on all versions of
# Python including 32 bit Python under Windows seems to make it
# very difficult to trigger the 'drop for good' strategy.
warnings.warn('Regressors in active set degenerate. '
'Dropping a regressor, after %i iterations, '
'i.e. alpha=%.3e, '
'with an active set of %i regressors, and '
'the smallest cholesky pivot element being %.3e'
% (n_iter, alpha, n_active, diag),
ConvergenceWarning)
# XXX: need to figure a 'drop for good' way
Cov = Cov_not_shortened
Cov[0] = 0
Cov[C_idx], Cov[0] = swap(Cov[C_idx], Cov[0])
continue
active.append(indices[n_active])
n_active += 1
if verbose > 1:
print("%s\t\t%s\t\t%s\t\t%s\t\t%s" % (n_iter, active[-1], '',
n_active, C))
if method == 'lasso' and n_iter > 0 and prev_alpha[0] < alpha[0]:
# alpha is increasing. This is because the updates of Cov are
# bringing in too much numerical error that is greater than
# than the remaining correlation with the
# regressors. Time to bail out
warnings.warn('Early stopping the lars path, as the residues '
'are small and the current value of alpha is no '
'longer well controlled. %i iterations, alpha=%.3e, '
'previous alpha=%.3e, with an active set of %i '
'regressors.'
% (n_iter, alpha, prev_alpha, n_active),
ConvergenceWarning)
break
# least squares solution
least_squares, info = solve_cholesky(L[:n_active, :n_active],
sign_active[:n_active],
lower=True)
if least_squares.size == 1 and least_squares == 0:
# This happens because sign_active[:n_active] = 0
least_squares[...] = 1
AA = 1.
else:
# is this really needed ?
AA = 1. / np.sqrt(np.sum(least_squares * sign_active[:n_active]))
if not np.isfinite(AA):
# L is too ill-conditioned
i = 0
L_ = L[:n_active, :n_active].copy()
while not np.isfinite(AA):
L_.flat[::n_active + 1] += (2 ** i) * eps
least_squares, info = solve_cholesky(
L_, sign_active[:n_active], lower=True)
tmp = max(np.sum(least_squares * sign_active[:n_active]),
eps)
AA = 1. / np.sqrt(tmp)
i += 1
least_squares *= AA
if Gram is None:
# equiangular direction of variables in the active set
eq_dir = np.dot(X.T[:n_active].T, least_squares)
# correlation between each unactive variables and
# eqiangular vector
corr_eq_dir = np.dot(X.T[n_active:], eq_dir)
else:
# if huge number of features, this takes 50% of time, I
# think could be avoided if we just update it using an
# orthogonal (QR) decomposition of X
corr_eq_dir = np.dot(Gram[:n_active, n_active:].T,
least_squares)
g1 = arrayfuncs.min_pos((C - Cov) / (AA - corr_eq_dir + tiny))
if positive:
gamma_ = min(g1, C / AA)
else:
g2 = arrayfuncs.min_pos((C + Cov) / (AA + corr_eq_dir + tiny))
gamma_ = min(g1, g2, C / AA)
# TODO: better names for these variables: z
drop = False
z = -coef[active] / (least_squares + tiny32)
z_pos = arrayfuncs.min_pos(z)
if z_pos < gamma_:
# some coefficients have changed sign
idx = np.where(z == z_pos)[0][::-1]
# update the sign, important for LAR
sign_active[idx] = -sign_active[idx]
if method == 'lasso':
gamma_ = z_pos
drop = True
n_iter += 1
if return_path:
if n_iter >= coefs.shape[0]:
del coef, alpha, prev_alpha, prev_coef
# resize the coefs and alphas array
add_features = 2 * max(1, (max_features - n_active))
coefs = np.resize(coefs, (n_iter + add_features, n_features))
coefs[-add_features:] = 0
alphas = np.resize(alphas, n_iter + add_features)
alphas[-add_features:] = 0
coef = coefs[n_iter]
prev_coef = coefs[n_iter - 1]
alpha = alphas[n_iter, np.newaxis]
prev_alpha = alphas[n_iter - 1, np.newaxis]
else:
# mimic the effect of incrementing n_iter on the array references
prev_coef = coef
prev_alpha[0] = alpha[0]
coef = np.zeros_like(coef)
coef[active] = prev_coef[active] + gamma_ * least_squares
# update correlations
Cov -= gamma_ * corr_eq_dir
# See if any coefficient has changed sign
if drop and method == 'lasso':
# handle the case when idx is not length of 1
[arrayfuncs.cholesky_delete(L[:n_active, :n_active], ii) for ii in
idx]
n_active -= 1
m, n = idx, n_active
# handle the case when idx is not length of 1
drop_idx = [active.pop(ii) for ii in idx]
if Gram is None:
# propagate dropped variable
for ii in idx:
for i in range(ii, n_active):
X.T[i], X.T[i + 1] = swap(X.T[i], X.T[i + 1])
# yeah this is stupid
indices[i], indices[i + 1] = indices[i + 1], indices[i]
# TODO: this could be updated
residual = y - np.dot(X[:, :n_active], coef[active])
temp = np.dot(X.T[n_active], residual)
Cov = np.r_[temp, Cov]
else:
for ii in idx:
for i in range(ii, n_active):
indices[i], indices[i + 1] = indices[i + 1], indices[i]
Gram[i], Gram[i + 1] = swap(Gram[i], Gram[i + 1])
Gram[:, i], Gram[:, i + 1] = swap(Gram[:, i],
Gram[:, i + 1])
# Cov_n = Cov_j + x_j * X + increment(betas) TODO:
# will this still work with multiple drops ?
# recompute covariance. Probably could be done better
# wrong as Xy is not swapped with the rest of variables
# TODO: this could be updated
residual = y - np.dot(X, coef)
temp = np.dot(X.T[drop_idx], residual)
Cov = np.r_[temp, Cov]
sign_active = np.delete(sign_active, idx)
sign_active = np.append(sign_active, 0.) # just to maintain size
if verbose > 1:
print("%s\t\t%s\t\t%s\t\t%s\t\t%s" % (n_iter, '', drop_idx,
n_active, abs(temp)))
if return_path:
# resize coefs in case of early stop
alphas = alphas[:n_iter + 1]
coefs = coefs[:n_iter + 1]
if return_n_iter:
return alphas, active, coefs.T, n_iter
else:
return alphas, active, coefs.T
else:
if return_n_iter:
return alpha, active, coef, n_iter
else:
return alpha, active, coef
###############################################################################
# Estimator classes
class Lars(LinearModel, RegressorMixin):
"""Least Angle Regression model a.k.a. LAR
Read more in the :ref:`User Guide <least_angle_regression>`.
Parameters
----------
n_nonzero_coefs : int, optional
Target number of non-zero coefficients. Use ``np.inf`` for no limit.
fit_intercept : boolean
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
positive : boolean (default=False)
Restrict coefficients to be >= 0. Be aware that you might want to
remove fit_intercept which is set True by default.
verbose : boolean or integer, optional
Sets the verbosity amount
normalize : boolean, optional, default False
If True, the regressors X will be normalized before regression.
This parameter is ignored when `fit_intercept` is set to False.
When the regressors are normalized, note that this makes the
hyperparameters learnt more robust and almost independent of the number
of samples. The same property is not valid for standardized data.
However, if you wish to standardize, please use
`preprocessing.StandardScaler` before calling `fit` on an estimator
with `normalize=False`.
precompute : True | False | 'auto' | array-like
Whether to use a precomputed Gram matrix to speed up
calculations. If set to ``'auto'`` let us decide. The Gram
matrix can also be passed as argument.
copy_X : boolean, optional, default True
If ``True``, X will be copied; else, it may be overwritten.
eps : float, optional
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Unlike the ``tol`` parameter in some iterative
optimization-based algorithms, this parameter does not control
the tolerance of the optimization.
fit_path : boolean
If True the full path is stored in the ``coef_path_`` attribute.
If you compute the solution for a large problem or many targets,
setting ``fit_path`` to ``False`` will lead to a speedup, especially
with a small alpha.
Attributes
----------
alphas_ : array, shape (n_alphas + 1,) | list of n_targets such arrays
Maximum of covariances (in absolute value) at each iteration. \
``n_alphas`` is either ``n_nonzero_coefs`` or ``n_features``, \
whichever is smaller.
active_ : list, length = n_alphas | list of n_targets such lists
Indices of active variables at the end of the path.
coef_path_ : array, shape (n_features, n_alphas + 1) \
| list of n_targets such arrays
The varying values of the coefficients along the path. It is not
present if the ``fit_path`` parameter is ``False``.
coef_ : array, shape (n_features,) or (n_targets, n_features)
Parameter vector (w in the formulation formula).
intercept_ : float | array, shape (n_targets,)
Independent term in decision function.
n_iter_ : array-like or int
The number of iterations taken by lars_path to find the
grid of alphas for each target.
Examples
--------
>>> from sklearn import linear_model
>>> clf = linear_model.Lars(n_nonzero_coefs=1)
>>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
Lars(copy_X=True, eps=..., fit_intercept=True, fit_path=True,
n_nonzero_coefs=1, normalize=True, positive=False, precompute='auto',
verbose=False)
>>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
[ 0. -1.11...]
See also
--------
lars_path, LarsCV
sklearn.decomposition.sparse_encode
"""
method = 'lar'
def __init__(self, fit_intercept=True, verbose=False, normalize=True,
precompute='auto', n_nonzero_coefs=500,
eps=np.finfo(np.float).eps, copy_X=True, fit_path=True,
positive=False):
self.fit_intercept = fit_intercept
self.verbose = verbose
self.normalize = normalize
self.precompute = precompute
self.n_nonzero_coefs = n_nonzero_coefs
self.positive = positive
self.eps = eps
self.copy_X = copy_X
self.fit_path = fit_path
def _get_gram(self):
# precompute if n_samples > n_features
precompute = self.precompute
if hasattr(precompute, '__array__'):
Gram = precompute
elif precompute == 'auto':
Gram = 'auto'
else:
Gram = None
return Gram
def fit(self, X, y, Xy=None):
"""Fit the model using X, y as training data.
parameters
----------
X : array-like, shape (n_samples, n_features)
Training data.
y : array-like, shape (n_samples,) or (n_samples, n_targets)
Target values.
Xy : array-like, shape (n_samples,) or (n_samples, n_targets), \
optional
Xy = np.dot(X.T, y) that can be precomputed. It is useful
only when the Gram matrix is precomputed.
returns
-------
self : object
returns an instance of self.
"""
X, y = check_X_y(X, y, y_numeric=True, multi_output=True)
n_features = X.shape[1]
X, y, X_offset, y_offset, X_scale = self._preprocess_data(X, y,
self.fit_intercept,
self.normalize,
self.copy_X)
if y.ndim == 1:
y = y[:, np.newaxis]
n_targets = y.shape[1]
alpha = getattr(self, 'alpha', 0.)
if hasattr(self, 'n_nonzero_coefs'):
alpha = 0. # n_nonzero_coefs parametrization takes priority
max_iter = self.n_nonzero_coefs
else:
max_iter = self.max_iter
precompute = self.precompute
if not hasattr(precompute, '__array__') and (
precompute is True or
(precompute == 'auto' and X.shape[0] > X.shape[1]) or
(precompute == 'auto' and y.shape[1] > 1)):
Gram = np.dot(X.T, X)
else:
Gram = self._get_gram()
self.alphas_ = []
self.n_iter_ = []
self.coef_ = np.empty((n_targets, n_features))
if self.fit_path:
self.active_ = []
self.coef_path_ = []
for k in xrange(n_targets):
this_Xy = None if Xy is None else Xy[:, k]
alphas, active, coef_path, n_iter_ = lars_path(
X, y[:, k], Gram=Gram, Xy=this_Xy, copy_X=self.copy_X,
copy_Gram=True, alpha_min=alpha, method=self.method,
verbose=max(0, self.verbose - 1), max_iter=max_iter,
eps=self.eps, return_path=True,
return_n_iter=True, positive=self.positive)
self.alphas_.append(alphas)
self.active_.append(active)
self.n_iter_.append(n_iter_)
self.coef_path_.append(coef_path)
self.coef_[k] = coef_path[:, -1]
if n_targets == 1:
self.alphas_, self.active_, self.coef_path_, self.coef_ = [
a[0] for a in (self.alphas_, self.active_, self.coef_path_,
self.coef_)]
self.n_iter_ = self.n_iter_[0]
else:
for k in xrange(n_targets):
this_Xy = None if Xy is None else Xy[:, k]
alphas, _, self.coef_[k], n_iter_ = lars_path(
X, y[:, k], Gram=Gram, Xy=this_Xy, copy_X=self.copy_X,
copy_Gram=True, alpha_min=alpha, method=self.method,
verbose=max(0, self.verbose - 1), max_iter=max_iter,
eps=self.eps, return_path=False, return_n_iter=True,
positive=self.positive)
self.alphas_.append(alphas)
self.n_iter_.append(n_iter_)
if n_targets == 1:
self.alphas_ = self.alphas_[0]
self.n_iter_ = self.n_iter_[0]
self._set_intercept(X_offset, y_offset, X_scale)
return self
class LassoLars(Lars):
"""Lasso model fit with Least Angle Regression a.k.a. Lars
It is a Linear Model trained with an L1 prior as regularizer.
The optimization objective for Lasso is::
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
Read more in the :ref:`User Guide <least_angle_regression>`.
Parameters
----------
alpha : float
Constant that multiplies the penalty term. Defaults to 1.0.
``alpha = 0`` is equivalent to an ordinary least square, solved
by :class:`LinearRegression`. For numerical reasons, using
``alpha = 0`` with the LassoLars object is not advised and you
should prefer the LinearRegression object.
fit_intercept : boolean
whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
positive : boolean (default=False)
Restrict coefficients to be >= 0. Be aware that you might want to
remove fit_intercept which is set True by default.
Under the positive restriction the model coefficients will not converge
to the ordinary-least-squares solution for small values of alpha.
Only coefficients up to the smallest alpha value (``alphas_[alphas_ >
0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso
algorithm are typically in congruence with the solution of the
coordinate descent Lasso estimator.
verbose : boolean or integer, optional
Sets the verbosity amount
normalize : boolean, optional, default False
If True, the regressors X will be normalized before regression.
This parameter is ignored when `fit_intercept` is set to False.
When the regressors are normalized, note that this makes the
hyperparameters learnt more robust and almost independent of the number
of samples. The same property is not valid for standardized data.
However, if you wish to standardize, please use
`preprocessing.StandardScaler` before calling `fit` on an estimator
with `normalize=False`.
copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
precompute : True | False | 'auto' | array-like
Whether to use a precomputed Gram matrix to speed up
calculations. If set to ``'auto'`` let us decide. The Gram
matrix can also be passed as argument.
max_iter : integer, optional
Maximum number of iterations to perform.
eps : float, optional
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Unlike the ``tol`` parameter in some iterative
optimization-based algorithms, this parameter does not control
the tolerance of the optimization.
fit_path : boolean
If ``True`` the full path is stored in the ``coef_path_`` attribute.
If you compute the solution for a large problem or many targets,
setting ``fit_path`` to ``False`` will lead to a speedup, especially
with a small alpha.
Attributes
----------
alphas_ : array, shape (n_alphas + 1,) | list of n_targets such arrays
Maximum of covariances (in absolute value) at each iteration. \
``n_alphas`` is either ``max_iter``, ``n_features``, or the number of \
nodes in the path with correlation greater than ``alpha``, whichever \
is smaller.
active_ : list, length = n_alphas | list of n_targets such lists
Indices of active variables at the end of the path.
coef_path_ : array, shape (n_features, n_alphas + 1) or list
If a list is passed it's expected to be one of n_targets such arrays.
The varying values of the coefficients along the path. It is not
present if the ``fit_path`` parameter is ``False``.
coef_ : array, shape (n_features,) or (n_targets, n_features)
Parameter vector (w in the formulation formula).
intercept_ : float | array, shape (n_targets,)
Independent term in decision function.
n_iter_ : array-like or int.
The number of iterations taken by lars_path to find the
grid of alphas for each target.
Examples
--------
>>> from sklearn import linear_model
>>> clf = linear_model.LassoLars(alpha=0.01)
>>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1, 0, -1])
... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
LassoLars(alpha=0.01, copy_X=True, eps=..., fit_intercept=True,
fit_path=True, max_iter=500, normalize=True, positive=False,
precompute='auto', verbose=False)
>>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
[ 0. -0.963257...]
See also
--------
lars_path
lasso_path
Lasso
LassoCV
LassoLarsCV
sklearn.decomposition.sparse_encode
"""
method = 'lasso'
def __init__(self, alpha=1.0, fit_intercept=True, verbose=False,
normalize=True, precompute='auto', max_iter=500,
eps=np.finfo(np.float).eps, copy_X=True, fit_path=True,
positive=False):
self.alpha = alpha
self.fit_intercept = fit_intercept
self.max_iter = max_iter
self.verbose = verbose
self.normalize = normalize
self.positive = positive
self.precompute = precompute
self.copy_X = copy_X
self.eps = eps
self.fit_path = fit_path
###############################################################################
# Cross-validated estimator classes
def _check_copy_and_writeable(array, copy=False):
if copy or not array.flags.writeable:
return array.copy()
return array
def _lars_path_residues(X_train, y_train, X_test, y_test, Gram=None,
copy=True, method='lars', verbose=False,
fit_intercept=True, normalize=True, max_iter=500,
eps=np.finfo(np.float).eps, positive=False):
"""Compute the residues on left-out data for a full LARS path
Parameters
-----------
X_train : array, shape (n_samples, n_features)
The data to fit the LARS on
y_train : array, shape (n_samples)
The target variable to fit LARS on
X_test : array, shape (n_samples, n_features)
The data to compute the residues on
y_test : array, shape (n_samples)
The target variable to compute the residues on
Gram : None, 'auto', array, shape: (n_features, n_features), optional
Precomputed Gram matrix (X' * X), if ``'auto'``, the Gram
matrix is precomputed from the given X, if there are more samples
than features
copy : boolean, optional
Whether X_train, X_test, y_train and y_test should be copied;
if False, they may be overwritten.
method : 'lar' | 'lasso'
Specifies the returned model. Select ``'lar'`` for Least Angle
Regression, ``'lasso'`` for the Lasso.
verbose : integer, optional
Sets the amount of verbosity
fit_intercept : boolean
whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
positive : boolean (default=False)
Restrict coefficients to be >= 0. Be aware that you might want to
remove fit_intercept which is set True by default.
See reservations for using this option in combination with method
'lasso' for expected small values of alpha in the doc of LassoLarsCV
and LassoLarsIC.
normalize : boolean, optional, default False
If True, the regressors X will be normalized before regression.
This parameter is ignored when `fit_intercept` is set to False.
When the regressors are normalized, note that this makes the
hyperparameters learnt more robust and almost independent of the number
of samples. The same property is not valid for standardized data.
However, if you wish to standardize, please use
`preprocessing.StandardScaler` before calling `fit` on an estimator
with `normalize=False`.
max_iter : integer, optional
Maximum number of iterations to perform.
eps : float, optional
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Unlike the ``tol`` parameter in some iterative
optimization-based algorithms, this parameter does not control
the tolerance of the optimization.
Returns
--------
alphas : array, shape (n_alphas,)
Maximum of covariances (in absolute value) at each iteration.
``n_alphas`` is either ``max_iter`` or ``n_features``, whichever
is smaller.
active : list
Indices of active variables at the end of the path.
coefs : array, shape (n_features, n_alphas)
Coefficients along the path
residues : array, shape (n_alphas, n_samples)
Residues of the prediction on the test data
"""
X_train = _check_copy_and_writeable(X_train, copy)
y_train = _check_copy_and_writeable(y_train, copy)
X_test = _check_copy_and_writeable(X_test, copy)
y_test = _check_copy_and_writeable(y_test, copy)
if fit_intercept:
X_mean = X_train.mean(axis=0)
X_train -= X_mean
X_test -= X_mean
y_mean = y_train.mean(axis=0)
y_train = as_float_array(y_train, copy=False)
y_train -= y_mean
y_test = as_float_array(y_test, copy=False)
y_test -= y_mean
if normalize:
norms = np.sqrt(np.sum(X_train ** 2, axis=0))
nonzeros = np.flatnonzero(norms)
X_train[:, nonzeros] /= norms[nonzeros]
alphas, active, coefs = lars_path(
X_train, y_train, Gram=Gram, copy_X=False, copy_Gram=False,
method=method, verbose=max(0, verbose - 1), max_iter=max_iter, eps=eps,
positive=positive)
if normalize:
coefs[nonzeros] /= norms[nonzeros][:, np.newaxis]
residues = np.dot(X_test, coefs) - y_test[:, np.newaxis]
return alphas, active, coefs, residues.T
class LarsCV(Lars):
"""Cross-validated Least Angle Regression model
Read more in the :ref:`User Guide <least_angle_regression>`.
Parameters
----------
fit_intercept : boolean
whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
positive : boolean (default=False)
Restrict coefficients to be >= 0. Be aware that you might want to
remove fit_intercept which is set True by default.
verbose : boolean or integer, optional
Sets the verbosity amount
normalize : boolean, optional, default False
If True, the regressors X will be normalized before regression.
This parameter is ignored when `fit_intercept` is set to False.
When the regressors are normalized, note that this makes the
hyperparameters learnt more robust and almost independent of the number
of samples. The same property is not valid for standardized data.
However, if you wish to standardize, please use
`preprocessing.StandardScaler` before calling `fit` on an estimator
with `normalize=False`.
copy_X : boolean, optional, default True
If ``True``, X will be copied; else, it may be overwritten.
precompute : True | False | 'auto' | array-like
Whether to use a precomputed Gram matrix to speed up
calculations. If set to ``'auto'`` let us decide. The Gram
matrix can also be passed as argument.
max_iter : integer, optional
Maximum number of iterations to perform.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross-validation,
- integer, to specify the number of folds.
- An object to be used as a cross-validation generator.
- An iterable yielding train/test splits.
For integer/None inputs, :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
max_n_alphas : integer, optional
The maximum number of points on the path used to compute the
residuals in the cross-validation
n_jobs : integer, optional
Number of CPUs to use during the cross validation. If ``-1``, use
all the CPUs
eps : float, optional
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems.
Attributes
----------
coef_ : array, shape (n_features,)
parameter vector (w in the formulation formula)
intercept_ : float
independent term in decision function
coef_path_ : array, shape (n_features, n_alphas)
the varying values of the coefficients along the path
alpha_ : float
the estimated regularization parameter alpha
alphas_ : array, shape (n_alphas,)
the different values of alpha along the path
cv_alphas_ : array, shape (n_cv_alphas,)
all the values of alpha along the path for the different folds
mse_path_ : array, shape (n_folds, n_cv_alphas)
the mean square error on left-out for each fold along the path
(alpha values given by ``cv_alphas``)
n_iter_ : array-like or int
the number of iterations run by Lars with the optimal alpha.
See also
--------
lars_path, LassoLars, LassoLarsCV
"""
method = 'lar'
def __init__(self, fit_intercept=True, verbose=False, max_iter=500,
normalize=True, precompute='auto', cv=None,
max_n_alphas=1000, n_jobs=1, eps=np.finfo(np.float).eps,
copy_X=True, positive=False):
self.max_iter = max_iter
self.cv = cv
self.max_n_alphas = max_n_alphas
self.n_jobs = n_jobs
super(LarsCV, self).__init__(fit_intercept=fit_intercept,
verbose=verbose, normalize=normalize,
precompute=precompute,
n_nonzero_coefs=500,
eps=eps, copy_X=copy_X, fit_path=True,
positive=positive)
def fit(self, X, y):
"""Fit the model using X, y as training data.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training data.
y : array-like, shape (n_samples,)
Target values.
Returns
-------
self : object
returns an instance of self.
"""
X, y = check_X_y(X, y, y_numeric=True)
X = as_float_array(X, copy=self.copy_X)
y = as_float_array(y, copy=self.copy_X)
# init cross-validation generator
cv = check_cv(self.cv, classifier=False)
Gram = 'auto' if self.precompute else None
cv_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)(
delayed(_lars_path_residues)(
X[train], y[train], X[test], y[test], Gram=Gram, copy=False,
method=self.method, verbose=max(0, self.verbose - 1),
normalize=self.normalize, fit_intercept=self.fit_intercept,
max_iter=self.max_iter, eps=self.eps, positive=self.positive)
for train, test in cv.split(X, y))
all_alphas = np.concatenate(list(zip(*cv_paths))[0])
# Unique also sorts
all_alphas = np.unique(all_alphas)
# Take at most max_n_alphas values
stride = int(max(1, int(len(all_alphas) / float(self.max_n_alphas))))
all_alphas = all_alphas[::stride]
mse_path = np.empty((len(all_alphas), len(cv_paths)))
for index, (alphas, active, coefs, residues) in enumerate(cv_paths):
alphas = alphas[::-1]
residues = residues[::-1]
if alphas[0] != 0:
alphas = np.r_[0, alphas]
residues = np.r_[residues[0, np.newaxis], residues]
if alphas[-1] != all_alphas[-1]:
alphas = np.r_[alphas, all_alphas[-1]]
residues = np.r_[residues, residues[-1, np.newaxis]]
this_residues = interpolate.interp1d(alphas,
residues,
axis=0)(all_alphas)
this_residues **= 2
mse_path[:, index] = np.mean(this_residues, axis=-1)
mask = np.all(np.isfinite(mse_path), axis=-1)
all_alphas = all_alphas[mask]
mse_path = mse_path[mask]
# Select the alpha that minimizes left-out error
i_best_alpha = np.argmin(mse_path.mean(axis=-1))
best_alpha = all_alphas[i_best_alpha]
# Store our parameters
self.alpha_ = best_alpha
self.cv_alphas_ = all_alphas
self.mse_path_ = mse_path
# Now compute the full model
# it will call a lasso internally when self if LassoLarsCV
# as self.method == 'lasso'
Lars.fit(self, X, y)
return self
@property
def alpha(self):
# impedance matching for the above Lars.fit (should not be documented)
return self.alpha_
@property
@deprecated("Attribute cv_mse_path_ is deprecated in 0.18 and "
"will be removed in 0.20. Use 'mse_path_' instead")
def cv_mse_path_(self):
return self.mse_path_
class LassoLarsCV(LarsCV):
"""Cross-validated Lasso, using the LARS algorithm
The optimization objective for Lasso is::
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
Read more in the :ref:`User Guide <least_angle_regression>`.
Parameters
----------
fit_intercept : boolean
whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
positive : boolean (default=False)
Restrict coefficients to be >= 0. Be aware that you might want to
remove fit_intercept which is set True by default.
Under the positive restriction the model coefficients do not converge
to the ordinary-least-squares solution for small values of alpha.
Only coefficients up to the smallest alpha value (``alphas_[alphas_ >
0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso
algorithm are typically in congruence with the solution of the
coordinate descent Lasso estimator.
As a consequence using LassoLarsCV only makes sense for problems where
a sparse solution is expected and/or reached.
verbose : boolean or integer, optional
Sets the verbosity amount
normalize : boolean, optional, default False
If True, the regressors X will be normalized before regression.
This parameter is ignored when `fit_intercept` is set to False.
When the regressors are normalized, note that this makes the
hyperparameters learnt more robust and almost independent of the number
of samples. The same property is not valid for standardized data.
However, if you wish to standardize, please use
`preprocessing.StandardScaler` before calling `fit` on an estimator
with `normalize=False`.
precompute : True | False | 'auto' | array-like
Whether to use a precomputed Gram matrix to speed up
calculations. If set to ``'auto'`` let us decide. The Gram
matrix can also be passed as argument.
max_iter : integer, optional
Maximum number of iterations to perform.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross-validation,
- integer, to specify the number of folds.
- An object to be used as a cross-validation generator.
- An iterable yielding train/test splits.
For integer/None inputs, :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
max_n_alphas : integer, optional
The maximum number of points on the path used to compute the
residuals in the cross-validation
n_jobs : integer, optional
Number of CPUs to use during the cross validation. If ``-1``, use
all the CPUs
eps : float, optional
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems.
copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
Attributes
----------
coef_ : array, shape (n_features,)
parameter vector (w in the formulation formula)
intercept_ : float
independent term in decision function.
coef_path_ : array, shape (n_features, n_alphas)
the varying values of the coefficients along the path
alpha_ : float
the estimated regularization parameter alpha
alphas_ : array, shape (n_alphas,)
the different values of alpha along the path
cv_alphas_ : array, shape (n_cv_alphas,)
all the values of alpha along the path for the different folds
mse_path_ : array, shape (n_folds, n_cv_alphas)
the mean square error on left-out for each fold along the path
(alpha values given by ``cv_alphas``)
n_iter_ : array-like or int
the number of iterations run by Lars with the optimal alpha.
Notes
-----
The object solves the same problem as the LassoCV object. However,
unlike the LassoCV, it find the relevant alphas values by itself.
In general, because of this property, it will be more stable.
However, it is more fragile to heavily multicollinear datasets.
It is more efficient than the LassoCV if only a small number of
features are selected compared to the total number, for instance if
there are very few samples compared to the number of features.
See also
--------
lars_path, LassoLars, LarsCV, LassoCV
"""
method = 'lasso'
class LassoLarsIC(LassoLars):
"""Lasso model fit with Lars using BIC or AIC for model selection
The optimization objective for Lasso is::
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
AIC is the Akaike information criterion and BIC is the Bayes
Information criterion. Such criteria are useful to select the value
of the regularization parameter by making a trade-off between the
goodness of fit and the complexity of the model. A good model should
explain well the data while being simple.
Read more in the :ref:`User Guide <least_angle_regression>`.
Parameters
----------
criterion : 'bic' | 'aic'
The type of criterion to use.
fit_intercept : boolean
whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
positive : boolean (default=False)
Restrict coefficients to be >= 0. Be aware that you might want to
remove fit_intercept which is set True by default.
Under the positive restriction the model coefficients do not converge
to the ordinary-least-squares solution for small values of alpha.
Only coefficients up to the smallest alpha value (``alphas_[alphas_ >
0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso
algorithm are typically in congruence with the solution of the
coordinate descent Lasso estimator.
As a consequence using LassoLarsIC only makes sense for problems where
a sparse solution is expected and/or reached.
verbose : boolean or integer, optional
Sets the verbosity amount
normalize : boolean, optional, default False
If True, the regressors X will be normalized before regression.
This parameter is ignored when `fit_intercept` is set to False.
When the regressors are normalized, note that this makes the
hyperparameters learnt more robust and almost independent of the number
of samples. The same property is not valid for standardized data.
However, if you wish to standardize, please use
`preprocessing.StandardScaler` before calling `fit` on an estimator
with `normalize=False`.
copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
precompute : True | False | 'auto' | array-like
Whether to use a precomputed Gram matrix to speed up
calculations. If set to ``'auto'`` let us decide. The Gram
matrix can also be passed as argument.
max_iter : integer, optional
Maximum number of iterations to perform. Can be used for
early stopping.
eps : float, optional
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Unlike the ``tol`` parameter in some iterative
optimization-based algorithms, this parameter does not control
the tolerance of the optimization.
Attributes
----------
coef_ : array, shape (n_features,)
parameter vector (w in the formulation formula)
intercept_ : float
independent term in decision function.
alpha_ : float
the alpha parameter chosen by the information criterion
n_iter_ : int
number of iterations run by lars_path to find the grid of
alphas.
criterion_ : array, shape (n_alphas,)
The value of the information criteria ('aic', 'bic') across all
alphas. The alpha which has the smallest information criteria
is chosen.
Examples
--------
>>> from sklearn import linear_model
>>> clf = linear_model.LassoLarsIC(criterion='bic')
>>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
LassoLarsIC(copy_X=True, criterion='bic', eps=..., fit_intercept=True,
max_iter=500, normalize=True, positive=False, precompute='auto',
verbose=False)
>>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
[ 0. -1.11...]
Notes
-----
The estimation of the number of degrees of freedom is given by:
"On the degrees of freedom of the lasso"
Hui Zou, Trevor Hastie, and Robert Tibshirani
Ann. Statist. Volume 35, Number 5 (2007), 2173-2192.
https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Bayesian_information_criterion
See also
--------
lars_path, LassoLars, LassoLarsCV
"""
def __init__(self, criterion='aic', fit_intercept=True, verbose=False,
normalize=True, precompute='auto', max_iter=500,
eps=np.finfo(np.float).eps, copy_X=True, positive=False):
self.criterion = criterion
self.fit_intercept = fit_intercept
self.positive = positive
self.max_iter = max_iter
self.verbose = verbose
self.normalize = normalize
self.copy_X = copy_X
self.precompute = precompute
self.eps = eps
self.fit_path = True
def fit(self, X, y, copy_X=True):
"""Fit the model using X, y as training data.
Parameters
----------
X : array-like, shape (n_samples, n_features)
training data.
y : array-like, shape (n_samples,)
target values.
copy_X : boolean, optional, default True
If ``True``, X will be copied; else, it may be overwritten.
Returns
-------
self : object
returns an instance of self.
"""
X, y = check_X_y(X, y, y_numeric=True)
X, y, Xmean, ymean, Xstd = LinearModel._preprocess_data(
X, y, self.fit_intercept, self.normalize, self.copy_X)
max_iter = self.max_iter
Gram = self._get_gram()
alphas_, active_, coef_path_, self.n_iter_ = lars_path(
X, y, Gram=Gram, copy_X=copy_X, copy_Gram=True, alpha_min=0.0,
method='lasso', verbose=self.verbose, max_iter=max_iter,
eps=self.eps, return_n_iter=True, positive=self.positive)
n_samples = X.shape[0]
if self.criterion == 'aic':
K = 2 # AIC
elif self.criterion == 'bic':
K = log(n_samples) # BIC
else:
raise ValueError('criterion should be either bic or aic')
R = y[:, np.newaxis] - np.dot(X, coef_path_) # residuals
mean_squared_error = np.mean(R ** 2, axis=0)
df = np.zeros(coef_path_.shape[1], dtype=np.int) # Degrees of freedom
for k, coef in enumerate(coef_path_.T):
mask = np.abs(coef) > np.finfo(coef.dtype).eps
if not np.any(mask):
continue
# get the number of degrees of freedom equal to:
# Xc = X[:, mask]
# Trace(Xc * inv(Xc.T, Xc) * Xc.T) ie the number of non-zero coefs
df[k] = np.sum(mask)
self.alphas_ = alphas_
with np.errstate(divide='ignore'):
self.criterion_ = n_samples * np.log(mean_squared_error) + K * df
n_best = np.argmin(self.criterion_)
self.alpha_ = alphas_[n_best]
self.coef_ = coef_path_[:, n_best]
self._set_intercept(Xmean, ymean, Xstd)
return self
|
bsd-3-clause
|
pravsripad/mne-python
|
examples/preprocessing/plot_shift_evoked.py
|
29
|
1245
|
"""
==================================
Shifting time-scale in evoked data
==================================
"""
# Author: Mainak Jas <[email protected]>
#
# License: BSD (3-clause)
import matplotlib.pyplot as plt
import mne
from mne.viz import tight_layout
from mne.datasets import sample
print(__doc__)
data_path = sample.data_path()
fname = data_path + '/MEG/sample/sample_audvis-ave.fif'
# Reading evoked data
condition = 'Left Auditory'
evoked = mne.read_evokeds(fname, condition=condition, baseline=(None, 0),
proj=True)
ch_names = evoked.info['ch_names']
picks = mne.pick_channels(ch_names=ch_names, include=["MEG 2332"])
# Create subplots
f, (ax1, ax2, ax3) = plt.subplots(3)
evoked.plot(exclude=[], picks=picks, axes=ax1,
titles=dict(grad='Before time shifting'), time_unit='s')
# Apply relative time-shift of 500 ms
evoked.shift_time(0.5, relative=True)
evoked.plot(exclude=[], picks=picks, axes=ax2,
titles=dict(grad='Relative shift: 500 ms'), time_unit='s')
# Apply absolute time-shift of 500 ms
evoked.shift_time(0.5, relative=False)
evoked.plot(exclude=[], picks=picks, axes=ax3,
titles=dict(grad='Absolute shift: 500 ms'), time_unit='s')
tight_layout()
|
bsd-3-clause
|
MatthieuBizien/scikit-learn
|
examples/linear_model/plot_lasso_model_selection.py
|
311
|
5431
|
"""
===================================================
Lasso model selection: Cross-Validation / AIC / BIC
===================================================
Use the Akaike information criterion (AIC), the Bayes Information
criterion (BIC) and cross-validation to select an optimal value
of the regularization parameter alpha of the :ref:`lasso` estimator.
Results obtained with LassoLarsIC are based on AIC/BIC criteria.
Information-criterion based model selection is very fast, but it
relies on a proper estimation of degrees of freedom, are
derived for large samples (asymptotic results) and assume the model
is correct, i.e. that the data are actually generated by this model.
They also tend to break when the problem is badly conditioned
(more features than samples).
For cross-validation, we use 20-fold with 2 algorithms to compute the
Lasso path: coordinate descent, as implemented by the LassoCV class, and
Lars (least angle regression) as implemented by the LassoLarsCV class.
Both algorithms give roughly the same results. They differ with regards
to their execution speed and sources of numerical errors.
Lars computes a path solution only for each kink in the path. As a
result, it is very efficient when there are only of few kinks, which is
the case if there are few features or samples. Also, it is able to
compute the full path without setting any meta parameter. On the
opposite, coordinate descent compute the path points on a pre-specified
grid (here we use the default). Thus it is more efficient if the number
of grid points is smaller than the number of kinks in the path. Such a
strategy can be interesting if the number of features is really large
and there are enough samples to select a large amount. In terms of
numerical errors, for heavily correlated variables, Lars will accumulate
more errors, while the coordinate descent algorithm will only sample the
path on a grid.
Note how the optimal value of alpha varies for each fold. This
illustrates why nested-cross validation is necessary when trying to
evaluate the performance of a method for which a parameter is chosen by
cross-validation: this choice of parameter may not be optimal for unseen
data.
"""
print(__doc__)
# Author: Olivier Grisel, Gael Varoquaux, Alexandre Gramfort
# License: BSD 3 clause
import time
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LassoCV, LassoLarsCV, LassoLarsIC
from sklearn import datasets
diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target
rng = np.random.RandomState(42)
X = np.c_[X, rng.randn(X.shape[0], 14)] # add some bad features
# normalize data as done by Lars to allow for comparison
X /= np.sqrt(np.sum(X ** 2, axis=0))
##############################################################################
# LassoLarsIC: least angle regression with BIC/AIC criterion
model_bic = LassoLarsIC(criterion='bic')
t1 = time.time()
model_bic.fit(X, y)
t_bic = time.time() - t1
alpha_bic_ = model_bic.alpha_
model_aic = LassoLarsIC(criterion='aic')
model_aic.fit(X, y)
alpha_aic_ = model_aic.alpha_
def plot_ic_criterion(model, name, color):
alpha_ = model.alpha_
alphas_ = model.alphas_
criterion_ = model.criterion_
plt.plot(-np.log10(alphas_), criterion_, '--', color=color,
linewidth=3, label='%s criterion' % name)
plt.axvline(-np.log10(alpha_), color=color, linewidth=3,
label='alpha: %s estimate' % name)
plt.xlabel('-log(alpha)')
plt.ylabel('criterion')
plt.figure()
plot_ic_criterion(model_aic, 'AIC', 'b')
plot_ic_criterion(model_bic, 'BIC', 'r')
plt.legend()
plt.title('Information-criterion for model selection (training time %.3fs)'
% t_bic)
##############################################################################
# LassoCV: coordinate descent
# Compute paths
print("Computing regularization path using the coordinate descent lasso...")
t1 = time.time()
model = LassoCV(cv=20).fit(X, y)
t_lasso_cv = time.time() - t1
# Display results
m_log_alphas = -np.log10(model.alphas_)
plt.figure()
ymin, ymax = 2300, 3800
plt.plot(m_log_alphas, model.mse_path_, ':')
plt.plot(m_log_alphas, model.mse_path_.mean(axis=-1), 'k',
label='Average across the folds', linewidth=2)
plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k',
label='alpha: CV estimate')
plt.legend()
plt.xlabel('-log(alpha)')
plt.ylabel('Mean square error')
plt.title('Mean square error on each fold: coordinate descent '
'(train time: %.2fs)' % t_lasso_cv)
plt.axis('tight')
plt.ylim(ymin, ymax)
##############################################################################
# LassoLarsCV: least angle regression
# Compute paths
print("Computing regularization path using the Lars lasso...")
t1 = time.time()
model = LassoLarsCV(cv=20).fit(X, y)
t_lasso_lars_cv = time.time() - t1
# Display results
m_log_alphas = -np.log10(model.cv_alphas_)
plt.figure()
plt.plot(m_log_alphas, model.cv_mse_path_, ':')
plt.plot(m_log_alphas, model.cv_mse_path_.mean(axis=-1), 'k',
label='Average across the folds', linewidth=2)
plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k',
label='alpha CV')
plt.legend()
plt.xlabel('-log(alpha)')
plt.ylabel('Mean square error')
plt.title('Mean square error on each fold: Lars (train time: %.2fs)'
% t_lasso_lars_cv)
plt.axis('tight')
plt.ylim(ymin, ymax)
plt.show()
|
bsd-3-clause
|
nismod/energy_demand
|
energy_demand/plotting/_test.py
|
1
|
8956
|
from smif.data_layer import Results
import matplotlib.pyplot as plt
import os
import seaborn as sbn
import geopandas as gpd
import pandas as pd
'''path = "C:/Users/cenv0553/nismod2/results/electricworld/energy_demand_constrained/decision_0"
a = os.listdir(path)
for i in a:
print(i)'''
path = 'C:/Users/cenv0553/nismod2'
out_path = "//ouce-file1.ouce.ox.ac.uk/Users/staff/cenv0553/Desktop/arc_results"
'''
results = Results({'interface': 'local_csv', 'dir': path})
df = results.read(['energy_sd_optimised'], ['energy_demand_constrained'], ['service_gas']).drop(columns='decision')
agg = df.groupby(by=['model_run', 'timestep', 'lad_uk_2016'], squeeze=True, sort=False).sum().drop(columns='hourly')
agg = agg.reset_index()
plot_lads(agg, 'service_gas')'''
results = Results({'interface': 'local_csv','dir': path})
print("--------")
model_runs = results.list_model_runs()
for i in model_runs:
print(i)
filenames = [
'industry_biomass_boiler_biomass',
'industry_biomass_district_heating_biomass',
'industry_biomass_non_heating',
'industry_electricity_boiler_electricity',
'industry_electricity_district_heating_electricity',
'industry_electricity_heat_pumps_electricity',
'industry_electricity_non_heating',
'industry_gas_boiler_gas',
'industry_gas_district_heating_CHP_gas',
'industry_gas_non_heating',
'industry_hydrogen_boiler_hydrogen',
'industry_hydrogen_district_heating_fuel_cell',
'industry_hydrogen_fuel_cell_hydrogen',
'industry_hydrogen_heat_pumps_hydrogen',
'industry_hydrogen_non_heating',
'industry_oil_boiler_oil',
'industry_oil_non_heating',
'industry_solid_fuel_boiler_solid_fuel',
'industry_solid_fuel_non_heating',
'residential_biomass_boiler_biomass',
'residential_biomass_district_heating_biomass',
'residential_biomass_non_heating',
'residential_electricity_boiler_electricity',
'residential_electricity_district_heating_electricity',
'residential_electricity_heat_pumps_electricity',
'residential_electricity_non_heating',
'residential_gas_boiler_gas',
'residential_gas_district_heating_CHP_gas',
'residential_gas_non_heating',
'residential_hydrogen_boiler_hydrogen',
'residential_hydrogen_district_heating_fuel_cell',
'residential_hydrogen_fuel_cell_hydrogen',
'residential_hydrogen_heat_pumps_hydrogen',
'residential_hydrogen_non_heating',
'residential_oil_boiler_oil',
'residential_oil_non_heating',
'residential_solid_fuel_boiler_solid_fuel',
'residential_solid_fuel_non_heating',
'service_biomass_boiler_biomass',
'service_biomass_district_heating_biomass',
'service_biomass_non_heating',
'service_electricity_boiler_electricity',
'service_electricity_district_heating_electricity',
'service_electricity_heat_pumps_electricity',
'service_electricity_non_heating',
'service_gas_boiler_gas',
'service_gas_district_heating_CHP_gas',
'service_gas_non_heating',
'service_hydrogen_boiler_hydrogen',
'service_hydrogen_district_heating_fuel_cell',
'service_hydrogen_fuel_cell_hydrogen',
'service_hydrogen_heat_pumps_hydrogen',
'service_hydrogen_non_heating',
'service_oil_boiler_oil',
'service_oil_non_heating',
'service_solid_fuel_boiler_solid_fuel',
'service_solid_fuel_non_heating',
'service_solid_fuel_non_heating'
]
filenames_electricity = [
'industry_electricity_boiler_electricity',
'industry_electricity_district_heating_electricity',
'industry_electricity_heat_pumps_electricity',
'industry_electricity_non_heating',
'residential_electricity_boiler_electricity',
'residential_electricity_district_heating_electricity',
'residential_electricity_heat_pumps_electricity',
'residential_electricity_non_heating',
'service_electricity_boiler_electricity',
'service_electricity_district_heating_electricity',
'service_electricity_heat_pumps_electricity',
'service_electricity_non_heating',
]
# ['model_run', 'timestep', 'decision', 'lad_uk_2016', 'hourly', filenames...]
filenames = filenames_electricity #filenames_electricity
#filenames = ['industry_electricity_boiler_electricity','industry_electricity_district_heating_electricity']
model_runs = ['electricworld', 'multivector']
model_runs = ['energy_demand_constrained']
timesteps = [2015, 2020, 2030, 2050]
select_arc_regions = False
print("... reading in data ", flush=True)
df = results.read(
model_run_names=model_runs,
model_names=['energy_demand_constrained'],
output_names=filenames,
timesteps=timesteps)
print("... finished reading in data ", flush=True)
df = df.drop(columns=['decision'])
# Select regions
if select_arc_regions:
arc_regions = [
"E07000008", "E07000012", "E07000009", "E07000011", "E07000099", "E07000242", "E07000243",
"E07000178", "E07000180", "E07000179", "E07000181", "E07000177", "E06000030", "E06000042",
"E06000055", "E07000004", "E06000032", "E06000056", "E07000154", "E07000151", "E07000156",
"E07000155"]
df = df.loc[df['lad_uk_2016'].isin(arc_regions)]
df_grouped = df.groupby(
by=['model_run', 'lad_uk_2016', 'timestep', 'hourly'],
as_index=False).sum()
print("-----------grouped-------------")
print(type(df_grouped))
print(df.columns.tolist())
print(df.sample(n=3).values)
df_annual_sum = pd.DataFrame(columns=model_runs, index=timesteps)
df_peak = pd.DataFrame(columns=model_runs, index=timesteps)
regional_dict = {}
regions = list(set(df_grouped['lad_uk_2016'].values.tolist()))
for model_run in model_runs:
print("... {}".format(model_run), flush=True)
df_regions = pd.DataFrame(columns=regions, index=timesteps)
for timestep in timesteps:
print("... {}".format(timestep), flush=True)
# Select data
annual_all_reg_all_hourly = df_grouped[(
df_grouped['model_run'] == model_run) & (
df_grouped['timestep'] == timestep)]
annual_all_reg_all_hourly = annual_all_reg_all_hourly.drop(columns=['model_run', 'timestep'])
annual_tot_sum = annual_all_reg_all_hourly.groupby(by='lad_uk_2016', as_index=False).sum()
annual_hourly = annual_all_reg_all_hourly.groupby(by='hourly', as_index=False).sum()
#annual_regions = annual_all_reg_all_hourly.groupby(by='lad_uk_2016', as_index=False).sum()
annual_tot_sum = annual_tot_sum.drop(columns=['lad_uk_2016', 'hourly'])
annual_hourly = annual_hourly.drop(columns=['hourly'])
#annual_regions = annual_regions.drop(columns=['hourly'])
# National total
annual_tot_sum = annual_tot_sum.sum(axis=1).sum().sum()
df_annual_sum[model_run][timestep] = annual_tot_sum / 1000 #GW to TW
# Peak total
df_peak[model_run][timestep] = annual_hourly.sum(axis=1).max()
# Regional
#annual_regions = annual_regions.set_index('lad_uk_2016')
#annual_regions = annual_regions.T
#df_year = pd.DataFrame(annual_regions.tolist(), columns=regions)
#df_regions.append(df_year)
#regional_dict[model_run] = df_regions
# save figures
df_annual_sum.plot()
plt.savefig(os.path.join(out_path, "total_annual_sum.pdf"))
plt.close()
df_peak.plot()
plt.savefig(os.path.join(out_path, "peak_demand.pdf"))
plt.close()
#for key, df_values in df_regions.items():
# df_values.plot()
#plt.savefig(os.path.join(out_path, "regions.pdf"))
#plt.close()
print("... finished plotting")
raise Exception("tt")
for model_run in model_runs:
df_modelrun = df[df['model_run'] == model_run]
df_modelrun = df_modelrun.drop(columns='model_run')
for timestep in timesteps:
df_modelrun_year = df_modelrun[df_modelrun['timestep'] == timestep]
df_modelrun = df_modelrun.drop(columns='timestep')
df_modelrun_year = df_modelrun_year.groupby(by=['lad_uk_2016', 'hourly'], as_index=False).sum()
df_modelrun_year = df_modelrun_year.drop(columns=['lad_uk_2016', 'hourly'])
# Sum demand across timesteps and regions
df_modelrun_year = df_modelrun_year.sum()
print("...")
print(df_modelrun_year)
df_empty[model_run][timestep] = df_modelrun_year
#'model_run', 'timestep', 'seasonal_week
df = df.groupby(by=['model_run', 'lad_uk_2016', 'timestep', 'hourly']).sum()
print(" ")
print("A ==================")
print(df.columns.tolist())
print(df.shape)
print(df.sample(n=3))
print("Sum annual across all filenames")
df = df.sum(axis=1).to_frame()
print(" ")
print("B ==================")
print(df.shape)
print(df.sample(n=3))
# Sum across all regions
df = df.sum().to_frame()
print("___3_______")
print(df.shape)
print(df)
# Sum all filenames
#df = df.sum(axis=1)
df.plot()
#print(df.columns.tolist())
#print(df['residential_electricity_non_heating'].shape)
#df = df.reset_index()
#df['residential_electricity_non_heating'].plot()
#df.plot_lads('residential_electricity_non_heating')
plt.show()
|
mit
|
badlogicmanpreet/nupic
|
examples/opf/tools/MirrorImageViz/mirrorImageViz.py
|
50
|
7221
|
# ----------------------------------------------------------------------
# Numenta Platform for Intelligent Computing (NuPIC)
# Copyright (C) 2013, Numenta, Inc. Unless you have an agreement
# with Numenta, Inc., for a separate license for this software code, the
# following terms and conditions apply:
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero Public License version 3 as
# published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU Affero Public License for more details.
#
# You should have received a copy of the GNU Affero Public License
# along with this program. If not, see http://www.gnu.org/licenses.
#
# http://numenta.org/licenses/
# ----------------------------------------------------------------------
# Author: Surabhi Gupta
import sys
import numpy as np
import matplotlib.pylab as pyl
def analyzeOverlaps(activeCoincsFile, encodingsFile, dataset):
'''Mirror Image Visualization: Shows the encoding space juxtaposed against the
coincidence space. The encoding space is the bottom-up sensory encoding and
the coincidence space depicts the corresponding activation of coincidences in
the SP. Hence, the mirror image visualization is a visual depiction of the
mapping of SP cells to the input representations.
Note:
* The files spBUOut and sensorBUOut are assumed to be in the output format
used for LPF experiment outputs.
* BU outputs for some sample datasets are provided. Specify the name of the
dataset as an option while running this script.
'''
lines = activeCoincsFile.readlines()
inputs = encodingsFile.readlines()
w = len(inputs[0].split(' '))-1
patterns = set([])
encodings = set([])
coincs = [] #The set of all coincidences that have won at least once
reUsedCoincs = []
firstLine = inputs[0].split(' ')
size = int(firstLine.pop(0))
spOutput = np.zeros((len(lines),40))
inputBits = np.zeros((len(lines),w))
print 'Total n:', size
print 'Total number of records in the file:', len(lines), '\n'
print 'w:', w
count = 0
for x in xrange(len(lines)):
inputSpace = [] #Encoded representation for each input
spBUout = [int(z) for z in lines[x].split(' ')]
spBUout.pop(0) #The first element of each row of spBUOut is the size of the SP
temp = set(spBUout)
spOutput[x]=spBUout
input = [int(z) for z in inputs[x].split(' ')]
input.pop(0) #The first element of each row of sensorBUout is the size of the encoding space
tempInput = set(input)
inputBits[x]=input
#Creating the encoding space
for m in xrange(size):
if m in tempInput:
inputSpace.append(m)
else:
inputSpace.append('|') #A non-active bit
repeatedBits = tempInput.intersection(encodings) #Storing the bits that have been previously active
reUsed = temp.intersection(patterns) #Checking if any of the active cells have been previously active
#Dividing the coincidences into two difference categories.
if len(reUsed)==0:
coincs.append((count,temp,repeatedBits,inputSpace, tempInput)) #Pattern no, active cells, repeated bits, encoding (full), encoding (summary)
else:
reUsedCoincs.append((count,temp,repeatedBits,inputSpace, tempInput))
patterns=patterns.union(temp) #Adding the active cells to the set of coincs that have been active at least once
encodings = encodings.union(tempInput)
count +=1
overlap = {}
overlapVal = 0
seen = []
seen = (printOverlaps(coincs, coincs, seen))
print len(seen), 'sets of 40 cells'
seen = printOverlaps(reUsedCoincs, coincs, seen)
Summ=[]
for z in coincs:
c=0
for y in reUsedCoincs:
c += len(z[1].intersection(y[1]))
Summ.append(c)
print 'Sum: ', Summ
for m in xrange(3):
displayLimit = min(51, len(spOutput[m*200:]))
if displayLimit>0:
drawFile(dataset, np.zeros([len(inputBits[:(m+1)*displayLimit]),len(inputBits[:(m+1)*displayLimit])]), inputBits[:(m+1)*displayLimit], spOutput[:(m+1)*displayLimit], w, m+1)
else:
print 'No more records to display'
pyl.show()
def drawFile(dataset, matrix, patterns, cells, w, fnum):
'''The similarity of two patterns in the bit-encoding space is displayed alongside
their similarity in the sp-coinc space.'''
score=0
count = 0
assert len(patterns)==len(cells)
for p in xrange(len(patterns)-1):
matrix[p+1:,p] = [len(set(patterns[p]).intersection(set(q)))*100/w for q in patterns[p+1:]]
matrix[p,p+1:] = [len(set(cells[p]).intersection(set(r)))*5/2 for r in cells[p+1:]]
score += sum(abs(np.array(matrix[p+1:,p])-np.array(matrix[p,p+1:])))
count += len(matrix[p+1:,p])
print 'Score', score/count
fig = pyl.figure(figsize = (10,10), num = fnum)
pyl.matshow(matrix, fignum = fnum)
pyl.colorbar()
pyl.title('Coincidence Space', verticalalignment='top', fontsize=12)
pyl.xlabel('The Mirror Image Visualization for '+dataset, fontsize=17)
pyl.ylabel('Encoding space', fontsize=12)
def printOverlaps(comparedTo, coincs, seen):
""" Compare the results and return True if success, False if failure
Parameters:
--------------------------------------------------------------------
coincs: Which cells are we comparing?
comparedTo: The set of 40 cells we being compared to (they have no overlap with seen)
seen: Which of the cells we are comparing to have already been encountered.
This helps glue together the unique and reused coincs
"""
inputOverlap = 0
cellOverlap = 0
for y in comparedTo:
closestInputs = []
closestCells = []
if len(seen)>0:
inputOverlap = max([len(seen[m][1].intersection(y[4])) for m in xrange(len(seen))])
cellOverlap = max([len(seen[m][0].intersection(y[1])) for m in xrange(len(seen))])
for m in xrange( len(seen) ):
if len(seen[m][1].intersection(y[4]))==inputOverlap:
closestInputs.append(seen[m][2])
if len(seen[m][0].intersection(y[1]))==cellOverlap:
closestCells.append(seen[m][2])
seen.append((y[1], y[4], y[0]))
print 'Pattern',y[0]+1,':',' '.join(str(len(z[1].intersection(y[1]))).rjust(2) for z in coincs),'input overlap:', inputOverlap, ';', len(closestInputs), 'closest encodings:',','.join(str(m+1) for m in closestInputs).ljust(15), \
'cell overlap:', cellOverlap, ';', len(closestCells), 'closest set(s):',','.join(str(m+1) for m in closestCells)
return seen
if __name__=='__main__':
if len(sys.argv)<2: #Use basil if no dataset specified
print ('Input files required. Read documentation for details.')
else:
dataset = sys.argv[1]
activeCoincsPath = dataset+'/'+dataset+'_spBUOut.txt'
encodingsPath = dataset+'/'+dataset+'_sensorBUOut.txt'
activeCoincsFile=open(activeCoincsPath, 'r')
encodingsFile=open(encodingsPath, 'r')
analyzeOverlaps(activeCoincsFile, encodingsFile, dataset)
|
agpl-3.0
|
georgyberdyshev/ascend
|
models/steam/stab.py
|
1
|
3034
|
# this is a script that computes the stability of the DAE system of equations
# by using the sparse matrix routines in scipy and plotting with matplotlib.
#
# you could get fancy and produce a root locus using this technique...
import ascpy
L = ascpy.Library()
L.load('steam/dsgsat3.a4c')
T = L.findType('dsgsat3')
M = T.getSimulation('sim',False)
M.run(T.getMethod('on_load'))
print "STEADY-STATE SOLUTION..."
M.solve(ascpy.Solver('QRSlv'),ascpy.SolverReporter())
M.run(T.getMethod('configure_dynamic'))
M.solve(ascpy.Solver('QRSlv'),ascpy.SolverReporter())
M.run(T.getMethod('free_states'))
# here is the peturbation...
print "CREATING PETURBATION..."
M.qdot_s.setRealValueWithUnits(6000,"W/m")
# IDA has its own initial conditions solver, so no need to call QRSlv here
I = ascpy.Integrator(M)
I.setEngine('IDA')
I.setParameter('linsolver','DENSE')
I.setParameter('safeeval',True)
I.setParameter('rtol',1e-4)
I.setParameter('atolvect',False)
I.setParameter('atol',1e-4)
I.setParameter('maxord',2)
I.setParameter('calcic','YA_YDP')
I.setInitialSubStep(0.001)
I.setReporter(ascpy.IntegratorReporterConsole(I))
I.setLogTimesteps(ascpy.Units("s"), 0.001, 0.002, 10)
I.analyse()
F = file('gz.mm','w')
I.writeMatrix(F,'dg/dz')
F = file('gx.mm','w')
I.writeMatrix(F,'dg/dx')
F = file('fz.mm','w')
I.writeMatrix(F,'df/dz')
F = file('fx.mm','w')
I.writeMatrix(F,'df/dx')
F = file('fxp.mm','w')
I.writeMatrix(F,"df/dx'")
#I.solve()
from scipy import io
from scipy import linalg
gz = io.mmread('gz.mm')
gx = io.mmread('gx.mm')
fz = io.mmread('fz.mm')
fx = io.mmread('fx.mm')
fxp = io.mmread('fxp.mm')
print "gz", gz.shape
print "gx", gx.shape
print "fz", fz.shape
print "fx", fx.shape
print "fxp", fxp.shape
#import pylab
# dg/dy_a
#pylab.spy2(ga.todense())
#pylab.title("${dg}/{dy_a}$")
#pylab.show()
invgz = linalg.inv(gz.todense())
#pylab.figure()
#pylab.spy(invgz)
#pylab.title("$({dg}/{dy_d})^{-1}$")
#pylab.show()
# dg/dy_d
#pylab.figure()
#pylab.spy2(gd.todense())
#pylab.title("${dg}/{dy_d}$")
#pylab.show()
# df/dyd'
#pylab.figure()
#pylab.spy2(fdp.todense())
#pylab.title("${df}/{d\dot{y}_d}$")
#pylab.show()
invfxp = linalg.inv(fxp.todense())
#pylab.spy2(invfdp)
#pylab.title("$({df}/{dy_dp})^{-1}$")
#pylab.show()
dya_dyd = invgz * gx
print "gz^-1 gx",dya_dyd.shape
#pylab.spy2(dya_dyd.todense())
#pylab.title("${dy_a}/{dy_d}$")
#pylab.show()
B = fz * invgz * gx
print "fz gz^1 gz",B.shape
#pylab.spy2(fad.todense())
#pylab.title("${df}/{dy_a} * {dy_a}/{dy_d}$")
#pylab.show()
C = fx + B
D = - invfxp * C
e,v = linalg.eig(D.todense())
#print e
print "ROOT RANGE-----------"
print "max re(e)",max(e.real)
print "min re(e)",min(e.real)
print "max im(e)",max(e.imag)
print "min in(e)",min(e.imag)
sys.stdout.flush()
#I.solve()
import pylab, sys
sys.stderr.write("about to plot...")
pylab.plot(e.real,e.imag,'rx')
pylab.xlabel('Real axis')
pylab.ylabel('Imaginary axis')
pylab.show()
sys.stderr.write("DONE\n")
I.setLogTimesteps(ascpy.Units("s"), 0.0005, 3600, 10)
I.setParameter('calcic','Y')
I.solve()
|
gpl-2.0
|
gotm-model/code
|
scripts/python/plot_airsea.py
|
2
|
1051
|
#!/usr/bin/env python
# Documentation of 'plotfile' see -
# http://matplotlib.org/api/pyplot_api.html#module-matplotlib.pyplot
# This script is used to plot the data generated by - 'test_airsea'
from pylab import plotfile, show, gca, savefig
fname="fort.100"
plotfile(fname, (0, 1, 2, 3, 4), delimiter=' ',subplots=False)
gca().set_xlabel(r'hour')
gca().set_title(r'Solar zenith angle (1 day)')
savefig('solar_zenith_angle_day.png')
show()
fname="fort.101"
plotfile(fname, (0, 1, 2, 3, 4), delimiter=' ',subplots=False)
gca().set_xlabel(r'hour')
gca().set_title(r'Short wave radiation (1 day)')
savefig('short_wave_radiation_day.png')
show()
fname="fort.200"
plotfile(fname, (0, 1, 2, 3, 4), delimiter=' ',subplots=False)
gca().set_xlabel(r'day')
gca().set_title(r'Solar zenith angle (1 year)')
savefig('solar_zenith_angle_year.png')
show()
fname="fort.201"
plotfile(fname, (0, 1, 2, 3, 4), delimiter=' ',subplots=False)
gca().set_xlabel(r'day')
gca().set_title(r'Short wave radiation (1 year)')
savefig('short_wave_radiation_year.png')
show()
|
gpl-2.0
|
gef756/statsmodels
|
statsmodels/sandbox/examples/ex_random_panel.py
|
34
|
6012
|
# -*- coding: utf-8 -*-
"""
Created on Fri May 18 13:05:47 2012
Author: Josef Perktold
moved example from main of random_panel
"""
import numpy as np
from statsmodels.sandbox.panel.panel_short import ShortPanelGLS, ShortPanelGLS2
from statsmodels.sandbox.panel.random_panel import PanelSample
import statsmodels.sandbox.panel.correlation_structures as cs
import statsmodels.stats.sandwich_covariance as sw
#from statsmodels.stats.sandwich_covariance import (
# S_hac_groupsum, weights_bartlett, _HCCM2)
from statsmodels.stats.moment_helpers import cov2corr, se_cov
cov_nw_panel2 = sw.cov_nw_groupsum
examples = ['ex1']
if 'ex1' in examples:
nobs = 100
nobs_i = 5
n_groups = nobs // nobs_i
k_vars = 3
# dgp = PanelSample(nobs, k_vars, n_groups, corr_structure=cs.corr_equi,
# corr_args=(0.6,))
# dgp = PanelSample(nobs, k_vars, n_groups, corr_structure=cs.corr_ar,
# corr_args=([1, -0.95],))
dgp = PanelSample(nobs, k_vars, n_groups, corr_structure=cs.corr_arma,
corr_args=([1], [1., -0.9],), seed=377769)
print('seed', dgp.seed)
y = dgp.generate_panel()
noise = y - dgp.y_true
print(np.corrcoef(y.reshape(-1,n_groups, order='F')))
print(np.corrcoef(noise.reshape(-1,n_groups, order='F')))
mod = ShortPanelGLS2(y, dgp.exog, dgp.groups)
res = mod.fit()
print(res.params)
print(res.bse)
#Now what?
#res.resid is of transformed model
#np.corrcoef(res.resid.reshape(-1,n_groups, order='F'))
y_pred = np.dot(mod.exog, res.params)
resid = y - y_pred
print(np.corrcoef(resid.reshape(-1,n_groups, order='F')))
print(resid.std())
err = y_pred - dgp.y_true
print(err.std())
#OLS standard errors are too small
mod.res_pooled.params
mod.res_pooled.bse
#heteroscedasticity robust doesn't help
mod.res_pooled.HC1_se
#compare with cluster robust se
print(sw.se_cov(sw.cov_cluster(mod.res_pooled, dgp.groups.astype(int))))
#not bad, pretty close to panel estimator
#and with Newey-West Hac
print(sw.se_cov(sw.cov_nw_panel(mod.res_pooled, 4, mod.group.groupidx)))
#too small, assuming no bugs,
#see Peterson assuming it refers to same kind of model
print(dgp.cov)
mod2 = ShortPanelGLS(y, dgp.exog, dgp.groups)
res2 = mod2.fit_iterative(2)
print(res2.params)
print(res2.bse)
#both implementations produce the same results:
from numpy.testing import assert_almost_equal
assert_almost_equal(res.params, res2.params, decimal=12)
assert_almost_equal(res.bse, res2.bse, decimal=13)
mod5 = ShortPanelGLS(y, dgp.exog, dgp.groups)
res5 = mod5.fit_iterative(5)
print(res5.params)
print(res5.bse)
#fitting once is the same as OLS
#note: I need to create new instance, otherwise it continuous fitting
mod1 = ShortPanelGLS(y, dgp.exog, dgp.groups)
res1 = mod1.fit_iterative(1)
res_ols = mod1._fit_ols()
assert_almost_equal(res1.params, res_ols.params, decimal=12)
assert_almost_equal(res1.bse, res_ols.bse, decimal=13)
#cov_hac_panel with uniform_kernel is the same as cov_cluster for balanced
#panel with full length kernel
#I fixe default correction to be equal
mod2._fit_ols()
cov_clu = sw.cov_cluster(mod2.res_pooled, dgp.groups.astype(int))
clubse = se_cov(cov_clu)
cov_uni = sw.cov_nw_panel(mod2.res_pooled, 4, mod2.group.groupidx,
weights_func=sw.weights_uniform,
use_correction='cluster')
assert_almost_equal(cov_uni, cov_clu, decimal=7)
#without correction
cov_clu2 = sw.cov_cluster(mod2.res_pooled, dgp.groups.astype(int),
use_correction=False)
cov_uni2 = sw.cov_nw_panel(mod2.res_pooled, 4, mod2.group.groupidx,
weights_func=sw.weights_uniform,
use_correction=False)
assert_almost_equal(cov_uni2, cov_clu2, decimal=8)
cov_white = sw.cov_white_simple(mod2.res_pooled)
cov_pnw0 = sw.cov_nw_panel(mod2.res_pooled, 0, mod2.group.groupidx,
use_correction='hac')
assert_almost_equal(cov_pnw0, cov_white, decimal=13)
time = np.tile(np.arange(nobs_i), n_groups)
#time = mod2.group.group_int
cov_pnw1 = sw.cov_nw_panel(mod2.res_pooled, 4, mod2.group.groupidx)
cov_pnw2 = cov_nw_panel2(mod2.res_pooled, 4, time)
#s = sw.group_sums(x, time)
c2, ct, cg = sw.cov_cluster_2groups(mod2.res_pooled, time, dgp.groups.astype(int), use_correction=False)
ct_nw0 = cov_nw_panel2(mod2.res_pooled, 0, time, weights_func=sw.weights_uniform, use_correction=False)
cg_nw0 = cov_nw_panel2(mod2.res_pooled, 0, dgp.groups.astype(int), weights_func=sw.weights_uniform, use_correction=False)
assert_almost_equal(ct_nw0, ct, decimal=13)
assert_almost_equal(cg_nw0, cg, decimal=13) #pnw2 0 lags
assert_almost_equal(cov_clu2, cg, decimal=13)
assert_almost_equal(cov_uni2, cg, decimal=8) #pnw all lags
import pandas as pa
#pandas.DataFrame doesn't do inplace append
se = pa.DataFrame(res_ols.bse[None,:], index=['OLS'])
se = se.append(pa.DataFrame(res5.bse[None,:], index=['PGLSit5']))
clbse = sw.se_cov(sw.cov_cluster(mod.res_pooled, dgp.groups.astype(int)))
se = se.append(pa.DataFrame(clbse[None,:], index=['OLSclu']))
pnwse = sw.se_cov(sw.cov_nw_panel(mod.res_pooled, 4, mod.group.groupidx))
se = se.append(pa.DataFrame(pnwse[None,:], index=['OLSpnw']))
print(se)
#list(se.index)
from statsmodels.iolib.table import SimpleTable
headers = [str(i) for i in se.columns]
stubs=list(se.index)
# print SimpleTable(np.round(np.asarray(se), 4),
# headers=headers,
# stubs=stubs)
print(SimpleTable(np.asarray(se), headers=headers, stubs=stubs,
txt_fmt=dict(data_fmts=['%10.4f']),
title='Standard Errors'))
|
bsd-3-clause
|
viekie/tensorflow-tutorial
|
chap03/auto_encode_vision.py
|
1
|
3796
|
#!/usr/bin/env python
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=False)
learning_rate = 0.01
training_epochs = 10
batch_size = 256
display_step = 10
n_input = 784
X = tf.placeholder("float", [None, n_input])
n_hidden_1 = 128
n_hidden_2 = 64
n_hidden_3 = 10
n_hidden_4 = 2
weights = {
'encoder_h1': tf.Variable(tf.truncated_normal([n_input, n_hidden_1])),
'encoder_h2': tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2])),
'encoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3])),
'encoder_h4': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_4])),
'decoder_h1': tf.Variable(tf.truncated_normal([n_hidden_4, n_hidden_3])),
'decoder_h2': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_2])),
'decoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_1])),
'decoder_h4': tf.Variable(tf.truncated_normal([n_hidden_1, n_input]))
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])),
'encoder_b4': tf.Variable(tf.random_normal([n_hidden_4])),
'decoder_b1': tf.Variable(tf.random_normal([n_hidden_3])),
'decoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b3': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b4': tf.Variable(tf.random_normal([n_input]))
}
def encoder(x):
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']),
biases['encoder_b3']))
layer_4 = tf.add(tf.matmul(layer_3, weights['encoder_h4']),
biases['encoder_b4'])
return layer_4
def decoder(x):
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']),
biases['decoder_b3']))
layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights['decoder_h4']),
biases['decoder_b4']))
return layer_4
encoder_op = encoder(X)
decoder_op = decoder(encoder_op)
y_pred = decoder_op
y_true = X
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)
with tf.Session() as sess:
if int((tf.__version__).split('.')[1]) < 12 and \
int((tf.__version__).split('.')[0]) < 1:
init = tf.initialize_all_variables()
else:
init = tf.global_variables_initializer()
sess.run(init)
total_batch = int(mnist.train.num_examples/batch_size)
for epoch in range(training_epochs):
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c))
print("Optimization Finished!")
encoder_result = sess.run(encoder_op, feed_dict={X: mnist.test.images})
print(encoder_result)
plt.scatter(encoder_result[:, 0], encoder_result[:, 1], c=mnist.test.labels)
plt.colorbar()
plt.show()
|
apache-2.0
|
saiwing-yeung/scikit-learn
|
examples/decomposition/plot_kernel_pca.py
|
353
|
2011
|
"""
==========
Kernel PCA
==========
This example shows that Kernel PCA is able to find a projection of the data
that makes data linearly separable.
"""
print(__doc__)
# Authors: Mathieu Blondel
# Andreas Mueller
# License: BSD 3 clause
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA, KernelPCA
from sklearn.datasets import make_circles
np.random.seed(0)
X, y = make_circles(n_samples=400, factor=.3, noise=.05)
kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True, gamma=10)
X_kpca = kpca.fit_transform(X)
X_back = kpca.inverse_transform(X_kpca)
pca = PCA()
X_pca = pca.fit_transform(X)
# Plot results
plt.figure()
plt.subplot(2, 2, 1, aspect='equal')
plt.title("Original space")
reds = y == 0
blues = y == 1
plt.plot(X[reds, 0], X[reds, 1], "ro")
plt.plot(X[blues, 0], X[blues, 1], "bo")
plt.xlabel("$x_1$")
plt.ylabel("$x_2$")
X1, X2 = np.meshgrid(np.linspace(-1.5, 1.5, 50), np.linspace(-1.5, 1.5, 50))
X_grid = np.array([np.ravel(X1), np.ravel(X2)]).T
# projection on the first principal component (in the phi space)
Z_grid = kpca.transform(X_grid)[:, 0].reshape(X1.shape)
plt.contour(X1, X2, Z_grid, colors='grey', linewidths=1, origin='lower')
plt.subplot(2, 2, 2, aspect='equal')
plt.plot(X_pca[reds, 0], X_pca[reds, 1], "ro")
plt.plot(X_pca[blues, 0], X_pca[blues, 1], "bo")
plt.title("Projection by PCA")
plt.xlabel("1st principal component")
plt.ylabel("2nd component")
plt.subplot(2, 2, 3, aspect='equal')
plt.plot(X_kpca[reds, 0], X_kpca[reds, 1], "ro")
plt.plot(X_kpca[blues, 0], X_kpca[blues, 1], "bo")
plt.title("Projection by KPCA")
plt.xlabel("1st principal component in space induced by $\phi$")
plt.ylabel("2nd component")
plt.subplot(2, 2, 4, aspect='equal')
plt.plot(X_back[reds, 0], X_back[reds, 1], "ro")
plt.plot(X_back[blues, 0], X_back[blues, 1], "bo")
plt.title("Original space after inverse transform")
plt.xlabel("$x_1$")
plt.ylabel("$x_2$")
plt.subplots_adjust(0.02, 0.10, 0.98, 0.94, 0.04, 0.35)
plt.show()
|
bsd-3-clause
|
jldbc/pybaseball
|
pybaseball/statcast_pitcher_spin.py
|
1
|
5714
|
"""Statcast Pitcher Spin
These calculations are based on the work by Prof. Alan Nathan of the University
of Illinois.
Article: http://baseball.physics.illinois.edu/trackman/SpinAxis.pdf
Excel Workbook: http://baseball.physics.illinois.edu/trackman/MovementSpinEfficiencyTemplate-v2.xlsx
"""
from pybaseball import statcast_pitcher
import pandas as pd
import numpy as np
K = .005383 # Environmental Constant
DISTANCE_FROM_HOME_TO_MOUND = 60.5
DISTANCE_TO_PLATE_AT_VELOCITY_CAPTURE = 50
Y_VALUE_AT_FINAL_MEASUREMENT = 17/12
GRAVITATIONAL_ACCELERATION = 32.174
def statcast_pitcher_spin(start_dt=None, end_dt=None, player_id=None):
pitcher_data = statcast_pitcher(start_dt, end_dt, player_id)
spin_df = pitcher_data[[
'release_extension', 'vx0', 'vy0', 'vz0', 'ax',
'ay', 'az', 'release_spin_rate']].copy()
spin_df = find_intermediate_values(spin_df)
pitcher_data[['Mx', 'Mz', 'phi', 'theta']] = spin_df[[
'Mx', 'Mz', 'phi', 'theta']].copy()
return pitcher_data
# def get_statcast_pither_test_data():
# df = pd.read_csv("tests/statcast_pitching_test_data.csv")
# return df
def find_intermediate_values(spin_df):
"""Calls each intermediate function in sequence"""
spin_df = find_release_point(spin_df)
spin_df = find_release_time(spin_df)
spin_df = find_release_velocity_components(spin_df)
spin_df = find_flight_time(spin_df)
spin_df = find_average_velocity_components(spin_df)
spin_df = find_average_velocity(spin_df)
spin_df = find_average_drag(spin_df)
spin_df = find_magnus_acceleration_magnitude(spin_df)
spin_df = find_average_magnus_acceleration(spin_df)
spin_df = find_magnus_magnitude(spin_df)
spin_df = find_phi(spin_df)
spin_df = find_lift_coefficient(spin_df)
spin_df = find_spin_factor(spin_df)
spin_df = find_transverse_spin(spin_df)
spin_df = find_spin_efficiency(spin_df)
spin_df = find_theta(spin_df)
return spin_df
def find_release_point(df):
df['yR'] = (DISTANCE_FROM_HOME_TO_MOUND - df['release_extension'])
return df
def find_release_time(df):
df['tR'] = time_duration(
df['yR'],
df['vy0'],
df['ay'],
DISTANCE_TO_PLATE_AT_VELOCITY_CAPTURE,
False)
return df
def find_release_velocity_components(df):
df['vxR'] = (df['vx0'] + (df['ax'] * df['tR']))
df['vyR'] = (df['vy0'] + (df['ay'] * df['tR']))
df['vzR'] = (df['vz0'] + (df['az'] * df['tR']))
return df
def find_flight_time(df):
df['tf'] = time_duration(
df['yR'],
df['vyR'],
df['ay'],
Y_VALUE_AT_FINAL_MEASUREMENT,
True)
return df
def find_average_velocity_components(df):
df['vxbar'] = (2*df['vxR'] + df['ax']*df['tf'])/2
df['vybar'] = (2*df['vyR'] + df['ay']*df['tf'])/2
df['vzbar'] = (2*df['vzR'] + df['az']*df['tf'])/2
return df
def find_average_velocity(df):
df['vbar'] = three_comp_average(df['vxbar'], df['vybar'], df['vzbar'])
return df
def find_average_drag(df):
df['adrag'] = (-(df['ax']*df['vxbar'] + df['ay']*df['vybar'] + (df['az'] + GRAVITATIONAL_ACCELERATION)*df['vzbar'])/ df['vbar'])
return df
def find_magnus_acceleration_magnitude(df):
df['amagx'] = (df['ax'] + df['adrag']*df['vxbar']/df['vbar'])
df['amagy'] = (df['ay'] + df['adrag']*df['vybar']/df['vbar'])
df['amagz'] = (df['az'] + df['adrag']*df['vzbar']/df['vbar'] + GRAVITATIONAL_ACCELERATION)
return df
def find_average_magnus_acceleration(df):
df['amag'] = three_comp_average(df['amagx'], df['amagy'], df['amagz'])
return df
def find_magnus_magnitude(df):
df['Mx'] = (6 * df['amagx'] * (df['tf']**2))
df['Mz'] = (6 * df['amagz'] * (df['tf']**2))
return df
def find_phi(df):
df['phi'] = np.where(
df['amagz'] > 0,
np.arctan2(df['amagz'], df['amagx'])*180/np.pi,
360 + np.arctan2(df['amagz'], df['amagx'])*180/np.pi) + 90
df['phi'] = df['phi'].round(0).astype('int64')
return df
def find_lift_coefficient(df):
df['Cl'] = (df['amag']/(K*df['vbar']**2))
return df
def find_spin_factor(df):
"""Function to find spin factor
Spin Factor formula was derived from a regression of experimental data. The
formula below appears in the excel worksheet cited at the top of the file.
No explanation is given for the constant values included.
"""
df['S'] = (0.166*np.log(0.336/(0.336-df['Cl'])))
return df
def find_transverse_spin(df):
df['spinT'] = (78.92*df['S']*df['vbar'])
return df
def find_spin_efficiency(df):
df['spin eff'] = df['spinT']/df['release_spin_rate']
return df
def find_theta(df):
df['theta'] = df['spin eff'].where(
(df['spin eff'] >= -1.0) & (df['spin eff'] <= 1.0),
np.nan)
df['theta'] = df['theta'].where(
df['theta'].isna(),
np.arccos(df['theta']) * 180/np.pi).round(0)
return df
# HELPERS
def time_duration(s, v, acc, adj, forward):
"""
Finds flight time given an original position, velocity, accelaration, and target position.
Direction does not affect the time duration. It helps assign a positive or negative
value to the flight time.
s = (pd.Series) spacial point at known time
v = (pd.Series) velocity at known time
acc = (pd.Series) acceleration
adj = (pd.Series) spatial difference between known and unknown points
forward = (bool) indicating whether space_diff is in the positive or negative y direction
"""
return (-v - np.sqrt(v**2 - 2*acc*((1 if forward else -1) * (s-adj)))) / acc
def three_comp_average(comp1, comp2, comp3):
return np.sqrt(comp1**2 + comp2**2 + comp3**2)
|
mit
|
HaroldMills/Vesper
|
scripts/old_bird_detector_eval/evaluate_old_bird_detectors.py
|
1
|
7268
|
"""
Plots precision vs. recall curves for the Old Bird detectors run on the
BirdVox-full-night recordings.
"""
from collections import defaultdict
import csv
from matplotlib.backends.backend_pdf import PdfPages
from matplotlib.ticker import MultipleLocator
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scripts.old_bird_detector_eval.utils as utils
'''
Input columns:
Call centers: Center Index, Center Frequency
Old Bird Detections: Detector, Unit, Threshold, Start Index, Length
Output columns:
Detector, Unit, Threshold, Ground Truth Calls, Old Bird Calls,
Old Bird Clips, Precision, Recall, F1
Detector, Unit, Ground Truth Calls, Old Bird Calls,
Old Bird Clips, Precision, Recall, F1
'''
def main():
old_bird_clips = get_old_bird_clips()
show_old_bird_clip_counts(old_bird_clips)
ground_truth_call_centers = get_ground_truth_call_centers()
show_ground_truth_call_counts(ground_truth_call_centers)
rows = count_old_bird_calls(old_bird_clips, ground_truth_call_centers)
raw_df = create_raw_df(rows)
separated_df = create_separated_detectors_df(raw_df)
merged_df = create_merged_detectors_df(separated_df)
add_precision_recall_f1(raw_df)
add_precision_recall_f1(separated_df)
add_precision_recall_f1(merged_df)
print(raw_df.to_csv())
print(separated_df.to_csv())
print(merged_df.to_csv())
plot_precision_vs_recall(separated_df, merged_df)
def get_old_bird_clips():
clips = defaultdict(list)
with open(utils.OLD_BIRD_CLIPS_FILE_PATH) as file_:
reader = csv.reader(file_)
# Skip header.
next(reader)
for row in reader:
key = (row[0], int(row[1]), float(row[2]))
value = (int(row[3]), int(row[4]))
clips[key].append(value)
return clips
def show_old_bird_clip_counts(clips):
print('Old Bird clip counts:')
keys = sorted(clips.keys())
for key in keys:
print(' ', key, len(clips[key]))
def get_ground_truth_call_centers():
centers = defaultdict(list)
csv_files_dir_path = utils.BIRDVOX_70K_UNIT_CLIPS_CSV_FILES_DIR_PATH
for file_path in sorted(csv_files_dir_path.iterdir()):
if not file_path.name.endswith('.csv'):
continue
station_num = int(file_path.name.split()[1])
with open(file_path) as file_:
reader = csv.reader(file_)
# Skip header.
next(reader)
for row in reader:
index = int(row[0])
freq = int(row[1])
if freq != 0:
# clip is call
call_type = get_call_type(freq)
key = (call_type, station_num)
centers[key].append(index)
return centers
def get_call_type(freq):
return 'Tseep' if freq >= utils.FREQ_THRESHOLD else 'Thrush'
def show_ground_truth_call_counts(call_centers):
print('Ground truth call counts:')
keys = sorted(call_centers.keys())
for key in keys:
print(' ', key, len(call_centers[key]))
def count_old_bird_calls(old_bird_clips, ground_truth_call_center_indices):
rows = []
for (detector_name, unit_num, threshold), clips in old_bird_clips.items():
call_center_indices = \
ground_truth_call_center_indices[(detector_name, unit_num)]
window = utils.OLD_BIRD_CLIP_CALL_CENTER_WINDOWS[detector_name]
matches = utils.match_clips_with_calls(
clips, call_center_indices, window)
old_bird_call_count = len(matches)
old_bird_clip_count = len(clips)
ground_truth_call_count = len(call_center_indices)
rows.append([
detector_name, unit_num, threshold, ground_truth_call_count,
old_bird_call_count, old_bird_clip_count])
return rows
def create_raw_df(rows):
columns = [
'Detector', 'Unit', 'Threshold', 'Ground Truth Calls',
'Old Bird Calls', 'Old Bird Clips']
return pd.DataFrame(rows, columns=columns)
def create_separated_detectors_df(df):
df = df.drop(columns=['Unit'])
grouped = df.groupby(['Detector', 'Threshold'], as_index=False)
return grouped.aggregate(np.sum)
def create_merged_detectors_df(df):
df = df.drop(columns=['Detector'])
grouped = df.groupby(['Threshold'], as_index=False)
return grouped.aggregate(np.sum)
def sum_counts(df, detector):
if detector != 'All':
df = df.loc[df['Detector'] == detector]
return [
detector,
df['Ground Truth Calls'].sum(),
df['Old Bird Calls'].sum(),
df['Old Bird Clips'].sum()]
def add_precision_recall_f1(df):
p = df['Old Bird Calls'] / df['Old Bird Clips']
r = df['Old Bird Calls'] / df['Ground Truth Calls']
df['Precision'] = to_percent(p)
df['Recall'] = to_percent(r)
df['F1'] = to_percent(2 * p * r / (p + r))
def to_percent(x):
return round(1000 * x) / 10
def plot_precision_vs_recall(separated_df, merged_df):
with PdfPages('/Users/harold/Desktop/plot.pdf') as pdf:
_, axes = plt.subplots(figsize=(6, 6))
detector_data = {
('Tseep', 2, 'C0'),
('Thrush', 1.3, 'C1'),
}
# Plot separate detector curves.
for detector_name, threshold, color in detector_data:
# Plot curve.
df = separated_df.loc[separated_df['Detector'] == detector_name]
precisions = df['Precision'].values
recalls = df['Recall'].values
axes.plot(recalls, precisions, color=color, label=detector_name)
# Put marker at Old Bird detector point.
indices = dict(
(t, i) for i, t in enumerate(df['Threshold'].values))
i = indices[threshold]
axes.plot([recalls[i]], [precisions[i]], marker='o', color=color)
# Plot merged curve.
precisions = merged_df['Precision'].values
recalls = merged_df['Recall'].values
axes.plot(recalls, precisions, color='C2', label='Tseep and Thrush')
plt.xlabel('Recall (%)')
plt.ylabel('Precision (%)')
limits = (0, 100)
plt.xlim(limits)
plt.ylim(limits)
major_locator = MultipleLocator(25)
minor_locator = MultipleLocator(5)
axes.xaxis.set_major_locator(major_locator)
axes.xaxis.set_minor_locator(minor_locator)
axes.yaxis.set_major_locator(major_locator)
axes.yaxis.set_minor_locator(minor_locator)
plt.grid(which='both')
plt.grid(which='minor', alpha=.4)
axes.legend()
plt.title('Old Bird Detector Precision vs. Recall')
pdf.savefig()
plt.show()
if __name__ == '__main__':
main()
|
mit
|
Barmaley-exe/scikit-learn
|
examples/cluster/plot_kmeans_stability_low_dim_dense.py
|
338
|
4324
|
"""
============================================================
Empirical evaluation of the impact of k-means initialization
============================================================
Evaluate the ability of k-means initializations strategies to make
the algorithm convergence robust as measured by the relative standard
deviation of the inertia of the clustering (i.e. the sum of distances
to the nearest cluster center).
The first plot shows the best inertia reached for each combination
of the model (``KMeans`` or ``MiniBatchKMeans``) and the init method
(``init="random"`` or ``init="kmeans++"``) for increasing values of the
``n_init`` parameter that controls the number of initializations.
The second plot demonstrate one single run of the ``MiniBatchKMeans``
estimator using a ``init="random"`` and ``n_init=1``. This run leads to
a bad convergence (local optimum) with estimated centers stuck
between ground truth clusters.
The dataset used for evaluation is a 2D grid of isotropic Gaussian
clusters widely spaced.
"""
print(__doc__)
# Author: Olivier Grisel <[email protected]>
# License: BSD 3 clause
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from sklearn.utils import shuffle
from sklearn.utils import check_random_state
from sklearn.cluster import MiniBatchKMeans
from sklearn.cluster import KMeans
random_state = np.random.RandomState(0)
# Number of run (with randomly generated dataset) for each strategy so as
# to be able to compute an estimate of the standard deviation
n_runs = 5
# k-means models can do several random inits so as to be able to trade
# CPU time for convergence robustness
n_init_range = np.array([1, 5, 10, 15, 20])
# Datasets generation parameters
n_samples_per_center = 100
grid_size = 3
scale = 0.1
n_clusters = grid_size ** 2
def make_data(random_state, n_samples_per_center, grid_size, scale):
random_state = check_random_state(random_state)
centers = np.array([[i, j]
for i in range(grid_size)
for j in range(grid_size)])
n_clusters_true, n_features = centers.shape
noise = random_state.normal(
scale=scale, size=(n_samples_per_center, centers.shape[1]))
X = np.concatenate([c + noise for c in centers])
y = np.concatenate([[i] * n_samples_per_center
for i in range(n_clusters_true)])
return shuffle(X, y, random_state=random_state)
# Part 1: Quantitative evaluation of various init methods
fig = plt.figure()
plots = []
legends = []
cases = [
(KMeans, 'k-means++', {}),
(KMeans, 'random', {}),
(MiniBatchKMeans, 'k-means++', {'max_no_improvement': 3}),
(MiniBatchKMeans, 'random', {'max_no_improvement': 3, 'init_size': 500}),
]
for factory, init, params in cases:
print("Evaluation of %s with %s init" % (factory.__name__, init))
inertia = np.empty((len(n_init_range), n_runs))
for run_id in range(n_runs):
X, y = make_data(run_id, n_samples_per_center, grid_size, scale)
for i, n_init in enumerate(n_init_range):
km = factory(n_clusters=n_clusters, init=init, random_state=run_id,
n_init=n_init, **params).fit(X)
inertia[i, run_id] = km.inertia_
p = plt.errorbar(n_init_range, inertia.mean(axis=1), inertia.std(axis=1))
plots.append(p[0])
legends.append("%s with %s init" % (factory.__name__, init))
plt.xlabel('n_init')
plt.ylabel('inertia')
plt.legend(plots, legends)
plt.title("Mean inertia for various k-means init across %d runs" % n_runs)
# Part 2: Qualitative visual inspection of the convergence
X, y = make_data(random_state, n_samples_per_center, grid_size, scale)
km = MiniBatchKMeans(n_clusters=n_clusters, init='random', n_init=1,
random_state=random_state).fit(X)
fig = plt.figure()
for k in range(n_clusters):
my_members = km.labels_ == k
color = cm.spectral(float(k) / n_clusters, 1)
plt.plot(X[my_members, 0], X[my_members, 1], 'o', marker='.', c=color)
cluster_center = km.cluster_centers_[k]
plt.plot(cluster_center[0], cluster_center[1], 'o',
markerfacecolor=color, markeredgecolor='k', markersize=6)
plt.title("Example cluster allocation with a single random init\n"
"with MiniBatchKMeans")
plt.show()
|
bsd-3-clause
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.