repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
cybernet14/scikit-learn
examples/feature_stacker.py
246
1906
""" ================================================= Concatenating multiple feature extraction methods ================================================= In many real-world examples, there are many ways to extract features from a dataset. Often it is beneficial to combine several methods to obtain good performance. This example shows how to use ``FeatureUnion`` to combine features obtained by PCA and univariate selection. Combining features using this transformer has the benefit that it allows cross validation and grid searches over the whole process. The combination used in this example is not particularly helpful on this dataset and is only used to illustrate the usage of FeatureUnion. """ # Author: Andreas Mueller <[email protected]> # # License: BSD 3 clause from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.grid_search import GridSearchCV from sklearn.svm import SVC from sklearn.datasets import load_iris from sklearn.decomposition import PCA from sklearn.feature_selection import SelectKBest iris = load_iris() X, y = iris.data, iris.target # This dataset is way to high-dimensional. Better do PCA: pca = PCA(n_components=2) # Maybe some original features where good, too? selection = SelectKBest(k=1) # Build estimator from PCA and Univariate selection: combined_features = FeatureUnion([("pca", pca), ("univ_select", selection)]) # Use combined features to transform dataset: X_features = combined_features.fit(X, y).transform(X) svm = SVC(kernel="linear") # Do grid search over k, n_components and C: pipeline = Pipeline([("features", combined_features), ("svm", svm)]) param_grid = dict(features__pca__n_components=[1, 2, 3], features__univ_select__k=[1, 2], svm__C=[0.1, 1, 10]) grid_search = GridSearchCV(pipeline, param_grid=param_grid, verbose=10) grid_search.fit(X, y) print(grid_search.best_estimator_)
bsd-3-clause
HeraclesHX/scikit-learn
benchmarks/bench_plot_neighbors.py
287
6433
""" Plot the scaling of the nearest neighbors algorithms with k, D, and N """ from time import time import numpy as np import pylab as pl from matplotlib import ticker from sklearn import neighbors, datasets def get_data(N, D, dataset='dense'): if dataset == 'dense': np.random.seed(0) return np.random.random((N, D)) elif dataset == 'digits': X = datasets.load_digits().data i = np.argsort(X[0])[::-1] X = X[:, i] return X[:N, :D] else: raise ValueError("invalid dataset: %s" % dataset) def barplot_neighbors(Nrange=2 ** np.arange(1, 11), Drange=2 ** np.arange(7), krange=2 ** np.arange(10), N=1000, D=64, k=5, leaf_size=30, dataset='digits'): algorithms = ('kd_tree', 'brute', 'ball_tree') fiducial_values = {'N': N, 'D': D, 'k': k} #------------------------------------------------------------ # varying N N_results_build = dict([(alg, np.zeros(len(Nrange))) for alg in algorithms]) N_results_query = dict([(alg, np.zeros(len(Nrange))) for alg in algorithms]) for i, NN in enumerate(Nrange): print("N = %i (%i out of %i)" % (NN, i + 1, len(Nrange))) X = get_data(NN, D, dataset) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=min(NN, k), algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() N_results_build[algorithm][i] = (t1 - t0) N_results_query[algorithm][i] = (t2 - t1) #------------------------------------------------------------ # varying D D_results_build = dict([(alg, np.zeros(len(Drange))) for alg in algorithms]) D_results_query = dict([(alg, np.zeros(len(Drange))) for alg in algorithms]) for i, DD in enumerate(Drange): print("D = %i (%i out of %i)" % (DD, i + 1, len(Drange))) X = get_data(N, DD, dataset) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=k, algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() D_results_build[algorithm][i] = (t1 - t0) D_results_query[algorithm][i] = (t2 - t1) #------------------------------------------------------------ # varying k k_results_build = dict([(alg, np.zeros(len(krange))) for alg in algorithms]) k_results_query = dict([(alg, np.zeros(len(krange))) for alg in algorithms]) X = get_data(N, DD, dataset) for i, kk in enumerate(krange): print("k = %i (%i out of %i)" % (kk, i + 1, len(krange))) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=kk, algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() k_results_build[algorithm][i] = (t1 - t0) k_results_query[algorithm][i] = (t2 - t1) pl.figure(figsize=(8, 11)) for (sbplt, vals, quantity, build_time, query_time) in [(311, Nrange, 'N', N_results_build, N_results_query), (312, Drange, 'D', D_results_build, D_results_query), (313, krange, 'k', k_results_build, k_results_query)]: ax = pl.subplot(sbplt, yscale='log') pl.grid(True) tick_vals = [] tick_labels = [] bottom = 10 ** np.min([min(np.floor(np.log10(build_time[alg]))) for alg in algorithms]) for i, alg in enumerate(algorithms): xvals = 0.1 + i * (1 + len(vals)) + np.arange(len(vals)) width = 0.8 c_bar = pl.bar(xvals, build_time[alg] - bottom, width, bottom, color='r') q_bar = pl.bar(xvals, query_time[alg], width, build_time[alg], color='b') tick_vals += list(xvals + 0.5 * width) tick_labels += ['%i' % val for val in vals] pl.text((i + 0.02) / len(algorithms), 0.98, alg, transform=ax.transAxes, ha='left', va='top', bbox=dict(facecolor='w', edgecolor='w', alpha=0.5)) pl.ylabel('Time (s)') ax.xaxis.set_major_locator(ticker.FixedLocator(tick_vals)) ax.xaxis.set_major_formatter(ticker.FixedFormatter(tick_labels)) for label in ax.get_xticklabels(): label.set_rotation(-90) label.set_fontsize(10) title_string = 'Varying %s' % quantity descr_string = '' for s in 'NDk': if s == quantity: pass else: descr_string += '%s = %i, ' % (s, fiducial_values[s]) descr_string = descr_string[:-2] pl.text(1.01, 0.5, title_string, transform=ax.transAxes, rotation=-90, ha='left', va='center', fontsize=20) pl.text(0.99, 0.5, descr_string, transform=ax.transAxes, rotation=-90, ha='right', va='center') pl.gcf().suptitle("%s data set" % dataset.capitalize(), fontsize=16) pl.figlegend((c_bar, q_bar), ('construction', 'N-point query'), 'upper right') if __name__ == '__main__': barplot_neighbors(dataset='digits') barplot_neighbors(dataset='dense') pl.show()
bsd-3-clause
mrcslws/htmresearch
projects/capybara/cla_vs_sdr_classifier/run_sdr_classifier.py
9
8898
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2014, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import matplotlib as mpl import matplotlib.pyplot as plt import numpy import os from nupic.algorithms.sdr_classifier import SDRClassifier from nupic.algorithms.CLAClassifier import CLAClassifier from nupic.encoders.sdrcategory import SDRCategoryEncoder plt.ion() plt.close('all') mpl.rcParams['pdf.fonttype'] = 42 def myLog(x): x = 0.001 if x < 0.001 else x return numpy.log(x) def initializeEncoder(Nelements, seed): # initialize classifiers encoder = SDRCategoryEncoder(1024, 40, categoryList=range(0, Nelements), encoderSeed=seed) return encoder def initializeClassifiers(Nelements, encoder): claClassiiier = CLAClassifier(steps=[0]) sdrClassifier = SDRClassifier(steps=[0], alpha=0.1) patternNZ = list(numpy.where(encoder.encode(Nelements - 1))[0]) classification = {'bucketIdx': Nelements - 1, 'actValue': Nelements - 1} # feed in the pattern with the highest bucket index claRetval = claClassiiier.compute(0, patternNZ, classification, learn=True, infer=True) sdrRetval = sdrClassifier.compute(0, patternNZ, classification, learn=True, infer=True) return claClassiiier, sdrClassifier def runSimulation(encoder, cla, sdrClassifier, noiseLevel=0.0, changeTaskAfter=-1, nstep=1000): accuracyTrack = [] negLLTrack = [] for recordNum in xrange(nstep): # use a different encoder to test continuous learning if recordNum == changeTaskAfter: encoder = initializeEncoder(encoder.ncategories - 1, seed=2) inputSymbol = numpy.random.randint(encoder.ncategories - 1) activation = encoder.encode(inputSymbol) # add noise to the SDR to increase task difficulty if noiseLevel > 0: numMissBits = numpy.int(encoder.w * noiseLevel) activeBits = numpy.where(activation)[0] activation[activeBits[:numMissBits]] = 0 numRandBits = numpy.int(encoder.w * noiseLevel) newBits = numpy.random.randint(encoder.n, size=(numRandBits,)) activation[newBits] = 1 patternNZ = list(numpy.where(activation)[0]) classification = {'bucketIdx': inputSymbol, 'actValue': inputSymbol} claRetval = cla.compute(recordNum, patternNZ, classification, learn=True, infer=True) sdrRetval = sdrClassifier.compute(recordNum, patternNZ, classification, learn=True, infer=True) NNNegLL = myLog(sdrRetval[0][inputSymbol]) ClaNegLL = myLog(claRetval[0][inputSymbol]) NNBestPrediction = numpy.argmax(sdrRetval[0]) NNAccuracy = (NNBestPrediction == inputSymbol) ClaBestPrediction = numpy.argmax(claRetval[0]) ClaAccuracy = (ClaBestPrediction == inputSymbol) negLLTrack.append([ClaNegLL, NNNegLL]) accuracyTrack.append([int(ClaAccuracy), int(NNAccuracy)]) return (negLLTrack, accuracyTrack) def runExperiemnt1(): """ Run both classifiers on noise-free streams :return: """ negLLTrackSum = 0 accuracyTrackSum = 0 Nrpt = 10 for rpt in range(Nrpt): Nelements = 20 noiseLevel = 0.0 encoder = initializeEncoder(Nelements, seed=1) cla, sdrClassifier = initializeClassifiers(Nelements, encoder) (negLLTrack, accuracyTrack) = runSimulation(encoder, cla, sdrClassifier, noiseLevel, nstep=500) negLLTrack = numpy.array(negLLTrack) accuracyTrack = numpy.array(accuracyTrack).astype('float32') negLLTrackSum = negLLTrackSum + negLLTrack accuracyTrackSum = accuracyTrackSum + accuracyTrack negLLTrackSum /= Nrpt accuracyTrackSum /= Nrpt plt.figure(1) plt.subplot(2, 2, 1) v = numpy.ones((5,)) / 5 plt.plot(numpy.convolve(negLLTrackSum[:, 1], v, 'valid')) plt.plot(numpy.convolve(negLLTrackSum[:, 0], v, 'valid'), '--') plt.ylim([-4, 0.1]) plt.ylabel(' Log-Likelihood') plt.xlabel(' Iteration ') plt.title(' Noise Level: ' + str(noiseLevel)) plt.legend(['SDR Classifier', 'CLA Classifier'], loc=4) plt.subplot(2, 2, 2) plt.plot(numpy.convolve(accuracyTrackSum[:, 1], v, 'valid')) plt.plot(numpy.convolve(accuracyTrackSum[:, 0], v, 'valid'), '--') plt.ylim([0, 1.05]) plt.ylabel(' Accuracy ') plt.xlabel(' Iteration ') plt.title(' Noise Level: ' + str(noiseLevel)) plt.legend(['SDR Classifier', 'CLA Classifier'], loc=4) if not os.path.exists('results'): os.makedirs('results') plt.savefig(os.path.join('results', 'LLvsTraining.pdf')) # prediction of one input element after training patternNZ = list(numpy.where(encoder.encode(10))[0]) classification = {'bucketIdx': 10, 'actValue': 10} numIterations = cla._learnIteration + 1 claRetval = cla.compute(numIterations, patternNZ, classification, learn=False, infer=True) sdrRetval = sdrClassifier.compute(numIterations, patternNZ, classification, learn=False, infer=True) plt.figure(3) plt.plot(sdrRetval[0]) plt.plot(claRetval[0]) plt.xlabel('Possible Inputs') plt.ylabel(' Predicted Probability') plt.title(' Noise Level: ' + str(noiseLevel)) plt.legend(['SDR', 'CLA']) if not os.path.exists('results'): os.makedirs('results') plt.savefig(os.path.join('results', 'ExamplePredictionAfterTraining.pdf')) def runExperiment2(): """ plot LL after training vs. noise level """ Nelements = 20 noiseLevelList = numpy.linspace(0, 1.0, num=21) negLLCLA = [] negLLSDR = [] accuracyCLA = [] accuracySDR = [] for noiseLevel in noiseLevelList: encoder = initializeEncoder(Nelements, seed=1) claClassifier, sdrClassifier = initializeClassifiers(Nelements, encoder) (negLLTrack, accuracyTrack) = runSimulation( encoder, claClassifier, sdrClassifier, noiseLevel) negLLTrack = numpy.array(negLLTrack) accuracyTrack = numpy.array(accuracyTrack) negLLCLA.append(numpy.mean(negLLTrack[-100:, 0])) negLLSDR.append(numpy.mean(negLLTrack[-100:, 1])) accuracyCLA.append(numpy.mean(accuracyTrack[-100:, 0])) accuracySDR.append(numpy.mean(accuracyTrack[-100:, 1])) noiseLevelList = noiseLevelList * 40 plt.figure(4) plt.subplot(2, 2, 1) plt.plot(noiseLevelList, negLLSDR, '-o') plt.plot(noiseLevelList, negLLCLA, '-s') plt.xlabel(' Noise Level (# random bits) ') plt.ylabel(' Log-likelihood') plt.legend(['SDR Classifier', 'CLA Classifier'], loc=3) plt.subplot(2, 2, 2) plt.plot(noiseLevelList, accuracySDR, '-o') plt.plot(noiseLevelList, accuracyCLA, '-s') plt.xlabel(' Noise Level (# random bits) ') plt.ylabel(' Accuracy ') plt.legend(['SDR Classifier', 'CLA Classifier'], loc=3) if not os.path.exists('results'): os.makedirs('results') plt.savefig(os.path.join('results', 'LLvsNoise.pdf')) def runExperiment3(): """ Change task at iteration=500, test continuous learning :return: """ Nelements = 20 noiseLevel = 0.0 encoder = initializeEncoder(Nelements, seed=1) cla, sdrClassifier = initializeClassifiers(Nelements, encoder) (negLLTrack, accuracyTrack) = runSimulation(encoder, cla, sdrClassifier, noiseLevel, changeTaskAfter=500) plt.figure(5) negLLTrack = numpy.array(negLLTrack) v = numpy.ones((5,)) / 5 plt.subplot(2, 2, 1) plt.plot(numpy.convolve(negLLTrack[:, 1], v, 'valid')) plt.plot(numpy.convolve(negLLTrack[:, 0], v, 'valid')) plt.ylim([-4, .1]) plt.ylabel(' Log-Likelihood') plt.xlabel(' Iteration ') plt.title(' Noise Level: ' + str(noiseLevel)) plt.legend(['SDR Classifier', 'CLA Classifier'], loc=4) if not os.path.exists('results'): os.makedirs('results') plt.savefig(os.path.join('results', 'LLvsTraining_ChangeAt500.pdf')) if __name__ == "__main__": # Example prediction with noise-free streams runExperiemnt1() # LL vs Noise runExperiment2() # Continus learning task runExperiment3()
agpl-3.0
rtavenar/tslearn
tslearn/docs/examples/metrics/plot_dtw.py
1
4283
# -*- coding: utf-8 -*- """ DTW computation =============== This example illustrates DTW computation between time series and plots the optimal alignment path [1]. The image represents cost matrix, that is the squared Euclidean distance for each time point between both time series, which are represented at the left and at the top of the cost matrix. The optimal path, that is the path that minimizes the total cost to go from the first time point to the last one, is represented in white on the image. [1] H. Sakoe and S. Chiba, "Dynamic programming algorithm optimization for spoken word recognition". IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1), 43-49 (1978). """ # Author: Romain Tavenard # License: BSD 3 clause import numpy from scipy.spatial.distance import cdist import matplotlib.pyplot as plt from tslearn.generators import random_walks from tslearn.preprocessing import TimeSeriesScalerMeanVariance from tslearn import metrics numpy.random.seed(0) s_x = numpy.array( [-0.790, -0.765, -0.734, -0.700, -0.668, -0.639, -0.612, -0.587, -0.564, -0.544, -0.529, -0.518, -0.509, -0.502, -0.494, -0.488, -0.482, -0.475, -0.472, -0.470, -0.465, -0.464, -0.461, -0.458, -0.459, -0.460, -0.459, -0.458, -0.448, -0.431, -0.408, -0.375, -0.333, -0.277, -0.196, -0.090, 0.047, 0.220, 0.426, 0.671, 0.962, 1.300, 1.683, 2.096, 2.510, 2.895, 3.219, 3.463, 3.621, 3.700, 3.713, 3.677, 3.606, 3.510, 3.400, 3.280, 3.158, 3.038, 2.919, 2.801, 2.676, 2.538, 2.382, 2.206, 2.016, 1.821, 1.627, 1.439, 1.260, 1.085, 0.917, 0.758, 0.608, 0.476, 0.361, 0.259, 0.173, 0.096, 0.027, -0.032, -0.087, -0.137, -0.179, -0.221, -0.260, -0.293, -0.328, -0.359, -0.385, -0.413, -0.437, -0.458, -0.480, -0.498, -0.512, -0.526, -0.536, -0.544, -0.552, -0.556, -0.561, -0.565, -0.568, -0.570, -0.570, -0.566, -0.560, -0.549, -0.532, -0.510, -0.480, -0.443, -0.402, -0.357, -0.308, -0.256, -0.200, -0.139, -0.073, -0.003, 0.066, 0.131, 0.186, 0.229, 0.259, 0.276, 0.280, 0.272, 0.256, 0.234, 0.209, 0.186, 0.162, 0.139, 0.112, 0.081, 0.046, 0.008, -0.032, -0.071, -0.110, -0.147, -0.180, -0.210, -0.235, -0.256, -0.275, -0.292, -0.307, -0.320, -0.332, -0.344, -0.355, -0.363, -0.367, -0.364, -0.351, -0.330, -0.299, -0.260, -0.217, -0.172, -0.128, -0.091, -0.060, -0.036, -0.022, -0.016, -0.020, -0.037, -0.065, -0.104, -0.151, -0.201, -0.253, -0.302, -0.347, -0.388, -0.426, -0.460, -0.491, -0.517, -0.539, -0.558, -0.575, -0.588, -0.600, -0.606, -0.607, -0.604, -0.598, -0.589, -0.577, -0.558, -0.531, -0.496, -0.454, -0.410, -0.364, -0.318, -0.276, -0.237, -0.203, -0.176, -0.157, -0.145, -0.142, -0.145, -0.154, -0.168, -0.185, -0.206, -0.230, -0.256, -0.286, -0.318, -0.351, -0.383, -0.414, -0.442, -0.467, -0.489, -0.508, -0.523, -0.535, -0.544, -0.552, -0.557, -0.560, -0.560, -0.557, -0.551, -0.542, -0.531, -0.519, -0.507, -0.494, -0.484, -0.476, -0.469, -0.463, -0.456, -0.449, -0.442, -0.435, -0.431, -0.429, -0.430, -0.435, -0.442, -0.452, -0.465, -0.479, -0.493, -0.506, -0.517, -0.526, -0.535, -0.548, -0.567, -0.592, -0.622, -0.655, -0.690, -0.728, -0.764, -0.795, -0.815, -0.823, -0.821]) s_y1 = numpy.concatenate((s_x, s_x)).reshape((-1, 1)) s_y2 = numpy.concatenate((s_x, s_x[::-1])).reshape((-1, 1)) sz = s_y1.shape[0] path, sim = metrics.dtw_path(s_y1, s_y2) plt.figure(1, figsize=(8, 8)) # definitions for the axes left, bottom = 0.01, 0.1 w_ts = h_ts = 0.2 left_h = left + w_ts + 0.02 width = height = 0.65 bottom_h = bottom + height + 0.02 rect_s_y = [left, bottom, w_ts, height] rect_gram = [left_h, bottom, width, height] rect_s_x = [left_h, bottom_h, width, h_ts] ax_gram = plt.axes(rect_gram) ax_s_x = plt.axes(rect_s_x) ax_s_y = plt.axes(rect_s_y) mat = cdist(s_y1, s_y2) ax_gram.imshow(mat, origin='lower') ax_gram.axis("off") ax_gram.autoscale(False) ax_gram.plot([j for (i, j) in path], [i for (i, j) in path], "w-", linewidth=3.) ax_s_x.plot(numpy.arange(sz), s_y2, "b-", linewidth=3.) ax_s_x.axis("off") ax_s_x.set_xlim((0, sz - 1)) ax_s_y.plot(- s_y1, numpy.arange(sz), "b-", linewidth=3.) ax_s_y.axis("off") ax_s_y.set_ylim((0, sz - 1)) plt.tight_layout() plt.show()
bsd-2-clause
mindriot101/bokeh
examples/plotting/file/unemployment.py
5
1905
from math import pi import pandas as pd from bokeh.io import show from bokeh.models import LinearColorMapper, BasicTicker, PrintfTickFormatter, ColorBar from bokeh.plotting import figure from bokeh.sampledata.unemployment1948 import data data['Year'] = data['Year'].astype(str) data = data.set_index('Year') data.drop('Annual', axis=1, inplace=True) data.columns.name = 'Month' years = list(data.index) months = list(data.columns) # reshape to 1D array or rates with a month and year for each row. df = pd.DataFrame(data.stack(), columns=['rate']).reset_index() # this is the colormap from the original NYTimes plot colors = ["#75968f", "#a5bab7", "#c9d9d3", "#e2e2e2", "#dfccce", "#ddb7b1", "#cc7878", "#933b41", "#550b1d"] mapper = LinearColorMapper(palette=colors, low=df.rate.min(), high=df.rate.max()) TOOLS = "hover,save,pan,box_zoom,reset,wheel_zoom" p = figure(title="US Unemployment ({0} - {1})".format(years[0], years[-1]), x_range=years, y_range=list(reversed(months)), x_axis_location="above", plot_width=900, plot_height=400, tools=TOOLS, toolbar_location='below', tooltips=[('date', '@Month @Year'), ('rate', '@rate%')]) p.grid.grid_line_color = None p.axis.axis_line_color = None p.axis.major_tick_line_color = None p.axis.major_label_text_font_size = "5pt" p.axis.major_label_standoff = 0 p.xaxis.major_label_orientation = pi / 3 p.rect(x="Year", y="Month", width=1, height=1, source=df, fill_color={'field': 'rate', 'transform': mapper}, line_color=None) color_bar = ColorBar(color_mapper=mapper, major_label_text_font_size="5pt", ticker=BasicTicker(desired_num_ticks=len(colors)), formatter=PrintfTickFormatter(format="%d%%"), label_standoff=6, border_line_color=None, location=(0, 0)) p.add_layout(color_bar, 'right') show(p) # show the plot
bsd-3-clause
JoshuaW1990/bus_arrival_prediction
implementation/feature_selection.py
1
12422
""" Feature selection: compare the mse result with different feature list """ # import the modules import pandas as pd import os from sklearn.model_selection import train_test_split from sklearn import linear_model, svm, neural_network, preprocessing from sklearn.metrics import mean_squared_error as MSE import json import matplotlib.pyplot as plt import GPy def preprocess_dataset(origin_dataset): """ Preprocess the dataset for obtaining the input matrix :param origin_dataset: original dataset read from the dataset table :return: the preprocessed dataset which only extracts the necessary information """ # preprocess to obtain the dataset full_dataset = pd.DataFrame() full_dataset['weather'] = origin_dataset['weather'] full_dataset['rush_hour'] = origin_dataset['rush_hour'] full_dataset['baseline_result'] = origin_dataset['baseline_result'] full_dataset['ratio_baseline'] = origin_dataset['actual_arrival_time'] / origin_dataset['baseline_result'] full_dataset['ratio_current_trip'] = origin_dataset['ratio_current_trip'] full_dataset['ratio_prev_trip'] = origin_dataset['ratio_prev_trip'] full_dataset['ratio_prev_seg'] = origin_dataset['actual_arrival_time'] / origin_dataset['prev_arrival_time'] full_dataset['prev_arrival_time'] = origin_dataset['prev_arrival_time'] full_dataset['actual_arrival_time'] = origin_dataset['actual_arrival_time'] return full_dataset def split_dataset(dataset, feature_list): """ Split the dataset into training set and test set :param dataset: preprcessed dataset which only contains the necessary information :param feature_list: the list of features :return: list of matrix for training set and test set """ X = dataset.as_matrix(columns=feature_list) y = dataset.as_matrix(columns=['ratio_baseline', 'baseline_result', 'actual_arrival_time']) # normalization X_normalized = preprocessing.normalize(X, norm='l2') # split the dataset X_train, X_test, output_train, output_test = train_test_split(X_normalized, y, test_size=0.33, random_state=42) output_train = output_train.transpose() output_test = output_test.transpose() return X_train, X_test, output_train, output_test def generate_ratio_result(X_train, X_test, y_train, y_test): """ Predict the ratio: true_arrival_time/baseline_arrival_time :param X_train: the features of the training set :param X_test: the output of the training set :param y_train: the features of the test set :param y_test: the output of the test set :return: dataframe of the predicted result under different models """ # generate the result for random samples ratio_result = pd.DataFrame(y_test, columns=['ratio_baseline']) print 'linear regression' model1 = linear_model.LinearRegression() model1.fit(X_train, y_train) y_pred = model1.predict(X_test) ratio_result['linear_regression'] = y_pred print 'SVM' model2 = svm.SVR() model2.fit(X_train, y_train) y_pred = model2.predict(X_test) ratio_result['SVM'] = y_pred print 'NN' model3 = neural_network.MLPRegressor(solver='lbfgs', max_iter=1000, learning_rate_init=0.005) model3.fit(X_train, y_train) y_pred = model3.predict(X_test) ratio_result['NN'] = y_pred print "Gaussian Process" m_full = GPy.models.SparseGPRegression(X_train, y_train.reshape(len(y_train), 1)) m_full.optimize('bfgs') y_pred, y_var = m_full.predict(X_test) ratio_result['GP'] = y_pred return ratio_result def check_performance(output_test, ratio_result): """ Convert the ratio result into actual values and calculate the MSE for the ratios and actual values :param output_test: the list of information for each predicted outputs including the predicted result from the baseline algorithm and the actual arrival time. Each record of these information are necessary to assess the performance of the predicted result :param ratio_result: the predicted result from each model :return: the predicted arrival time, predicted ratio and the corresponding MSEs """ # process the result to obtain the pred arrival time with different models time_result = pd.DataFrame(output_test[2], columns=['actual']) time_result['baseline'] = output_test[1] time_result['linear_regression'] = time_result['baseline'] * ratio_result['linear_regression'] time_result['SVM'] = time_result['baseline'] * ratio_result['SVM'] time_result['NN'] = time_result['baseline'] * ratio_result['NN'] time_result['GP'] = time_result['baseline'] * ratio_result['GP'] # calculate the MSE of the arrival time columns = time_result.columns mse_time = dict() for column in columns: if column == 'actual': continue mse_time[column] = MSE(time_result['actual'], time_result[column]) # process the result to obtain the ratio(actual_arrival_time / pred_arrival_time) ratio_result['linear_regression'] = ratio_result['ratio_baseline'] / ratio_result['linear_regression'] ratio_result['SVM'] = ratio_result['ratio_baseline'] / ratio_result['SVM'] ratio_result['NN'] = ratio_result['ratio_baseline'] / ratio_result['NN'] ratio_result['GP'] = ratio_result['ratio_baseline'] / ratio_result['GP'] # calculate the MSE of ratio columns = ratio_result.columns true_ratio = [1.0] * len(ratio_result) mse_ratio = dict() for column in columns: mse_ratio[column] = MSE(true_ratio, ratio_result[column]) return time_result, mse_time, ratio_result, mse_ratio def export_files(time_result, mse_time, ratio_result, mse_ratio, feature, feature_list, save_path): """ Export the results: ratios, actual values, MSEs :param time_result: the predicted arrival time under different models :param mse_time: the corresponding MSE for time_result :param ratio_result: the predicted ratio under different models :param mse_ratio: the corresponding MSE for ratio_result :param feature: the feature need to be removed :param feature_list: the list of remained features :param save_path: the path to export the files :return: None """ if not os.path.exists(save_path): os.mkdir(save_path) path = save_path + str(len(feature_list)) + '/' + feature + '/' if not os.path.exists(save_path + str(len(feature_list)) + '/'): os.mkdir(save_path + str(len(feature_list)) + '/') print "prepare to export file: ", path if not os.path.exists(path): os.mkdir(path) with open(path + 'descrip.txt', 'w') as f: f.write(str(feature_list)) # export figures columns = time_result.columns for column in columns: if column == 'actual': continue filename = column + '.png' figure = time_result.plot(kind='scatter', y=column, x='actual', xlim=(0, 6000), ylim=(0, 6000)) fig = figure.get_figure() fig.savefig(path + filename) plt.close(fig) # export mse files with open(path + 'mse_ratio.json', 'w') as f: json.dump(mse_ratio, f) with open(path + 'mse_time.json', 'w') as f: json.dump(mse_time, f) # export the csv file time_result.to_csv(path + 'time_result.csv') ratio_result.to_csv(path + 'ratio_result.csv') ################################################################################################################# # main function # ################################################################################################################# def run_feature_selection(dataset, tablename=None, save_path=None, engine=None): """ run an incomplete feature selection for the models :param dataset: the dataframe for dataset table :param save_path: the path to export result :param engine: the database connector :return: the dataframe of the feature selection under different models """ plt.style.use('ggplot') dataset.reset_index(inplace=True) full_dataset = preprocess_dataset(dataset) features = ['weather', 'rush_hour', 'baseline_result', 'ratio_current_trip', 'ratio_prev_trip', 'prev_arrival_time'] mse_compare = pd.DataFrame( columns=['feature_removed', 'time_baseline', 'time_linear_regression', 'time_SVM', 'time_NN', 'time_GP', 'ratio_baseline', 'ratio_linear_regression', 'ratio_SVM', 'ratio_NN', 'ratio_GP']) # complete features X_train, X_test, output_train, output_test = split_dataset(full_dataset, features) y_train = output_train[0] y_test = output_test[0] ratio_result = generate_ratio_result(X_train, X_test, y_train, y_test) time_result, mse_time, ratio_result, mse_ratio = check_performance(output_test, ratio_result) removed_features = ['None'] if save_path is not None: export_files(time_result, mse_time, ratio_result, mse_ratio, 'AND'.join(removed_features), features, save_path) mse_compare.loc[len(mse_compare)] = ['AND'.join(removed_features), mse_time['baseline'], mse_time['linear_regression'], mse_time['SVM'], mse_time['NN'], mse_time['GP'], mse_ratio['ratio_baseline'], mse_ratio['linear_regression'], mse_ratio['SVM'], mse_ratio['NN'], mse_ratio['GP']] # remove one feature for i in xrange(len(features)): feature1 = features[i] tmp_features = list(features) tmp_features.remove(feature1) X_train, X_test, output_train, output_test = split_dataset(full_dataset, tmp_features) y_train = output_train[0] y_test = output_test[0] ratio_result = generate_ratio_result(X_train, X_test, y_train, y_test) time_result, mse_time, ratio_result, mse_ratio = check_performance(output_test, ratio_result) removed_features = [feature1] if save_path is not None: export_files(time_result, mse_time, ratio_result, mse_ratio, 'AND'.join(removed_features), tmp_features, save_path) mse_compare.loc[len(mse_compare)] = ['AND'.join(removed_features), mse_time['baseline'], mse_time['linear_regression'], mse_time['SVM'], mse_time['NN'], mse_time['GP'], mse_ratio['ratio_baseline'], mse_ratio['linear_regression'], mse_ratio['SVM'], mse_ratio['NN'], mse_ratio['GP']] # remove two features for i in xrange(len(features)): for j in xrange(i + 1, len(features)): feature1 = features[i] feature2 = features[j] tmp_features = list(features) tmp_features.remove(feature1) tmp_features.remove(feature2) print tmp_features X_train, X_test, output_train, output_test = split_dataset(full_dataset, tmp_features) y_train = output_train[0] y_test = output_test[0] ratio_result = generate_ratio_result(X_train, X_test, y_train, y_test) time_result, mse_time, ratio_result, mse_ratio = check_performance(output_test, ratio_result) removed_features = [feature1, feature2] if save_path is not None: export_files(time_result, mse_time, ratio_result, mse_ratio, 'AND'.join(removed_features), tmp_features, save_path) mse_compare.loc[len(mse_compare)] = ['AND'.join(removed_features), mse_time['baseline'], mse_time['linear_regression'], mse_time['SVM'], mse_time['NN'], mse_time['GP'], mse_ratio['ratio_baseline'], mse_ratio['linear_regression'], mse_ratio['SVM'], mse_ratio['NN'], mse_ratio['GP']] if save_path is not None: if not os.path.exists(save_path): os.mkdir(save_path) mse_compare.to_csv(save_path + tablename + '.csv') if engine is not None: mse_compare.to_sql(name=tablename, con=engine, if_exists='replace', index_label='id') return mse_compare
mit
sabersf/Botnets
Sector_pred.py
1
11255
from __future__ import print_function __author__ = 'Saber Shokat Fadaee' #from gensim import corpora, models, similarities #from gensim.models.doc2vec import TaggedDocument, LabeledSentence, Doc2Vec #import gensim from sklearn import manifold, datasets import numpy as np from itertools import chain import multiprocessing import csv import matplotlib as ml import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import re from matplotlib.backends.backend_pdf import PdfPages import random import numpy as np import lda from sklearn.datasets import make_checkerboard from sklearn.datasets import samples_generator as sg from sklearn.cluster.bicluster import SpectralBiclustering from sklearn.cluster.bicluster import SpectralCoclustering from sklearn.cluster.bicluster import SpectralCoclustering from sklearn.cluster import MiniBatchKMeans from sklearn.externals.six import iteritems from sklearn.datasets.twenty_newsgroups import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.cluster import v_measure_score from sklearn.utils.extmath import * from sklearn.metrics import consensus_score import operator storage = {} i = 1.0 EID_set = set() botnet_set = set() event_set = set() drop_ent = [] file1 = open('drop_ent.txt') for line in file1: drop_ent.append(line.strip()) file1.close() file1 = open('EID.txt') for line in file1: EID = line.strip() EID_set.add(EID) file1.close() file1= open("botnets.txt") for line in file1: botnet = line.strip() botnet_set.add(botnet) file1.close() count = np.loadtxt("count.txt") botnet_family = [] file1= open("bot_relations.txt") for line in file1: botnet_family.append(line.strip().split()) file1.close() #Plus one for the unidentified classes num_classes = len(botnet_family) + 1 EID_set = sorted(EID_set) botnet_set = sorted(botnet_set) event_set = sorted(event_set) #Set colors to each category def sec_to_col(argument): switcher = { 'Aerospace/Defense': 'aqua', 'Business Services': 'blueviolet', 'Consumer Goods': 'brown', 'Education': 'coral', 'Energy/Resources': 'crimson', 'Engineering': 'darkgreen', 'Finance': 'gold', 'Food Production': 'green', 'Government/Politics': 'lime', 'Healthcare/Wellness': 'magenta', 'Insurance': 'mintcream', 'Legal': 'olive', 'Manufacturing': 'orchid', 'Media/Entertainment': 'peru', 'Nonprofit/NGO': 'purple', 'Real Estate': 'red', 'Retail': 'skyblue', 'Technology': 'silver', 'Telecommunications': 'tomato', 'Tourism/Hospitality': 'peachpuff', 'Transportation': 'rosybrown', 'Unknown': 'dimgray', 'Utilities': 'royalblue', } return switcher.get(argument, "yellow") #Set color to the different sizes def size_to_col(argument): switcher = { '0-100': 'red', '100-1000': 'blue', '1000-10000': 'brown', '10000-50000': 'green', '50000+': 'gold', 'Unknown': 'lime', } return switcher.get(argument, "yellow") # Assigns the topics to the documents in corpus col = [] col_size = [] sector = {} count_range = {} #Adding extra information with open('extra.csv', 'rb' ) as theFile: reader = csv.DictReader( theFile ) for line in reader: ind = int(line['']) eid = line['entity_id_hash'] sec = line['industry_sector'] cnt = line['employee_count_range'] sector[eid] = sec count_range[eid] = cnt #Set numbers to each category def sec_to_num(argument): switcher = { 'Aerospace/Defense': 0, 'Business Services': 1, 'Consumer Goods': 2, 'Education': 3, 'Energy/Resources': 4, 'Engineering': 5, 'Finance': 6, 'Food Production': 7, 'Government/Politics': 8, 'Healthcare/Wellness': 9, 'Insurance': 10, 'Legal': 11, 'Manufacturing': 12, 'Media/Entertainment': 13, 'Nonprofit/NGO': 14, 'Real Estate': 15, 'Retail': 16, 'Technology': 17, 'Telecommunications': 18, 'Tourism/Hospitality': 19, 'Transportation': 20, 'Unknown': 21, 'Utilities': 22, } return switcher.get(argument, 23) #Set numbers to each size def size_to_num(argument): switcher = { '0-100': 50, '100-1000': 500, '1000-10000': 5000, '10000-50000': 50000, '50000+': 100000, 'Unknown': 1, } return switcher.get(argument, 6) #Set numbers to each size def size_to_category(argument): switcher = { '0-100': 1, '100-1000': 2, '1000-10000': 3, '10000-50000': 4, '50000+': 5, 'Unknown': 0, } return switcher.get(argument, 6) #Set category to each number def num_to_sec(argument): switcher = { 0:'Aerospace/Defense', 1:'Business Services', 2:'Consumer Goods', 3:'Education', 4:'Energy/Resources', 5:'Engineering', 6:'Finance', 7:'Food Production', 8:'Government/Politics', 9:'Healthcare/Wellness', 10:'Insurance', 11:'Legal', 12:'Manufacturing', 13:'Media/Entertainment', 14:'Nonprofit/NGO', 15:'Real Estate', 16:'Retail', 17:'Technology', 18:'Telecommunications', 19:'Tourism/Hospitality', 20:'Transportation', 21:'Unknown', 22:'Utilities', } return switcher.get(argument,23) #Set numbers to each size def num_to_size(argument): switcher = { 0:'0-100', 1:'100-1000', 2:'1000-10000', 3:'10000-50000', 4:'50000+', 5:'Unknown', } return switcher.get(argument, 6) # In[36]: def in_list(item,L): for i in L: if item in i: return L.index(i) return num_classes - 1 def bot_to_vector(bot): output = [0] * num_classes output[in_list(bot, botnet_family)] = 1 return output def included_entry(entry_name): #if sector[entry_name] == 'Education': # return False #if sector[entry_name] == 'Technology': # return False #if sector[entry_name] == 'Tourism/Hospitality': # return False #if sector[entry_name] == 'Telecommunications': # return False #if sector[entry_name] == 'Unknown': # return False return True def sectors_count(botnet_group): sectors_count = [0]*23 res = dict() for i in range(len(EID_set_new)): if count_new[botnet_group,i] > 0: sectors_count[sec_to_num(sector[EID_set_new[i]])] += count_new[botnet_group,i] for i in range(23): res[num_to_sec(i)] = sectors_count[i] return res def sectors_count_botnet(bot): sectors_count = [0]*23 for i in range(len(EID_set_new)): if count_new1[bot,i] > 0: sectors_count[sec_to_num(sector[EID_set_new[i]])] += count_new1[bot,i] return sectors_count print(sum(included_entry(entity) for entity in EID_set)) #Normalizing the count matrix by dividing the attacks on each entity by its size #for i in range(207): # for j in range(5916): # count[i,j] = (count[i,j] + 0.0) / (0.0 + size_to_num(count_range[EID_set[j]])) #index = 2899 index = 4475 count_new1 = np.zeros((207,index)) #Build a new count matrix excluding the unwanted sectors index = 0 EID_set_new = [] for i in range(len(EID_set)): if included_entry(EID_set[i]) and (EID_set[i] not in drop_ent): count_new1[:,index] = count[:,i] EID_set_new.append(EID_set[i]) index += 1 print("Total number of entities: %d"%index) count_new = np.zeros((num_classes,index)) #for i in range(len(botnet_set)): # count_new[in_list(botnet_set[i], botnet_family) ,:] += count_new1[i,:] for i in range(len(botnet_set)): count_new[in_list(botnet_set[i], botnet_family) ,:] += count_new1[i,:] print(count_new.shape) sum_count_new = 0 for i in range(num_classes): sum_count_new += sum(count_new[i,:]) print("Total number of attacks by botnets on the new entities : %d"%sum_count_new) # In[ ]: #Draw plots of bot-family sector def draw_plots(): for i in range(num_classes-1): x = range(23) y = sectors_count(i).values() labels = sectors_count(i).keys() plt.figure(figsize=(16,18)) plt.plot(x, y, 'r-') plt.title(("Group: %d. Contains botnets like: %s %s")%(i+1,botnet_family[i][0],botnet_family[i][1])) plt.xticks(x, labels, rotation='vertical') plt.savefig("Group_%d.png"%(i+1)) plt.close() # In[37]: count_new.shape # In[43]: #Create test, train data sets for deep net input/output from sklearn.cross_validation import train_test_split count_sec = [0]* 23 input1 = [] output = [] #18 is the number of sec that has any elements #30 is the min that all sectors can get while sum(count_sec) < 23*30: i = random.randint(0, len(EID_set_new) - 1) if count_sec[sec_to_num(sector[EID_set_new[i]])] >= 30: continue else: input1.append(count_new[:,i]) sec_to_vec = [0]*23 sec_to_vec[sec_to_num(sector[EID_set_new[i]])] = 1 count_sec[sec_to_num(sector[EID_set_new[i]])] += 1 output.append(sec_to_vec) print(len(input1), len(input1[0])) print(len(output), len(output[0])) # In[ ]: # In[44]: print(count_sec) #Randomizing the input inp = np.array(input1) out = np.array(output) X_train, X_test, Y_train, Y_test = train_test_split(inp, out, test_size=0.05, random_state=42) print(len(X_train), len(X_test), len(Y_train), len(Y_test) ) # In[31]: np.random.seed(1337) # for reproducibility import theano #import theano.sandbox.cuda #theano.sandbox.cuda.use("gpu0") from keras.datasets import mnist from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.optimizers import SGD, Adam, RMSprop from keras.utils import np_utils #training the sequential model model = Sequential() model.add(Dense(32, input_shape=(20,))) model.add(Activation('tanh')) model.add(Dropout(0.05)) #model.add(Dense(128)) #model.add(Activation('tanh')) #model.add(Dropout(0.05)) #model.add(Dense(32)) #model.add(Activation('tanh')) #model.add(Dropout(0.05)) model.add(Dense(64)) model.add(Activation('tanh')) model.add(Dropout(0.05)) model.add(Dense(23)) model.add(Activation('softmax')) model.summary() batch_size = 16 nb_classes = 23 nb_epoch = 1000 try: #target = open("NN_out.txt", 'w') model.compile(loss='categorical_crossentropy', optimizer=SGD(), class_mode="categorical") history = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=1, validation_data=(X_test, Y_test)) except Exception,e: print(str(e)) score = model.evaluate(X_test, Y_test, verbose=0) print('Test score:', score) p = model.predict(X_test) yy = np.argmax(p, axis=1) yyy = np.argmax(Y_test, axis=1) a = np.equal(yy, yyy) test_acc = ( 100.0 * (0.0 + sum(a)) / (len(a) + 0.0 )) p = model.predict(X_train) yy = np.argmax(p, axis=1) yyy = np.argmax(Y_train, axis=1) a = np.equal(yy, yyy) train_acc = ( 100.0 * (0.0 + sum(a)) / (len(a) + 0.0 )) print("NB_EPOCH : " , str(nb_epoch) , " Score: " , str(score) , " test accuracy: " , str(test_acc) , " Train accuracy: " , str(train_acc) + "\n") #target.close() # In[ ]: print(yy) # In[ ]: print(yyy) # In[ ]: X_train[0] # In[ ]: ans = 0.0 p = model.predict(X_test) yy = np.argmax(p, axis=1) yyy = np.argmax(Y_test, axis=1) for i in range(len(Y_test)): pred = p[i].argsort()[-3:][::-1] if np.argmax(Y_test[i]) in pred: ans += 1.0 print("Top 3 prediction precision: %.2f"%(100.0*ans / (len(Y_test) + 0.0)))
mit
zaxliu/deepnap
experiments/kdd-exps/experiment_DynaQNN_Feb13_2358.py
1
5180
# System built-in modules import time from datetime import datetime import sys import os from multiprocessing import Pool # Project dependency modules import pandas as pd pd.set_option('mode.chained_assignment', None) # block warnings due to DataFrame value assignment import lasagne # Project modules sys.path.append('../') from sleep_control.traffic_emulator import TrafficEmulator from sleep_control.traffic_server import TrafficServer from sleep_control.controller import QController, DummyController, NController from sleep_control.integration import Emulation from sleep_control.env_models import SJTUModel from rl.qtable import QAgent from rl.qnn_theano import QAgentNN from rl.mixin import PhiMixin, DynaMixin sys_stdout = sys.stdout log_prefix = '_'.join(['msg'] + os.path.basename(__file__).replace('.', '_').split('_')[1:4]) log_file_name = "{}_{}.log".format(log_prefix, sys.argv[1]) # Composite classes class Dyna_QAgentNN(DynaMixin, QAgentNN): def __init__(self, **kwargs): super(Dyna_QAgentNN, self).__init__(**kwargs) # Parameters # |- Data location = 'mdB' # |- Agent # |- QAgent actions = [(True, None), (False, 'serve_all')] gamma, alpha = 0.9, 0.9 # TD backup explore_strategy, epsilon = 'epsilon', 0.02 # exploration # |- QAgentNN # | - Phi # phi_length = 5 # dim_state = (1, phi_length, 3+2) # range_state_slice = [(0, 10), (0, 10), (0, 10), (0, 1), (0, 1)] # range_state = [[range_state_slice]*phi_length] # | - No Phi phi_length = 0 dim_state = (1, 1, 3) range_state = ((((0, 10), (0, 10), (0, 10)),),) # | - Other params momentum, learning_rate = 0.9, 0.01 # SGD num_buffer, memory_size, batch_size, update_period, freeze_period = 2, 200, 100, 4, 16 reward_scaling, reward_scaling_update, rs_period = 1, 'adaptive', 32 # reward scaling # |- Env model model_type, traffic_window_size = 'IPP', 50 stride, n_iter, adjust_offset = 2, 3, 1e-22 eval_period, eval_len = 4, 100 n_belief_bins, max_queue_len = 0, 20 Rs, Rw, Rf, Co, Cw = 1.0, -1.0, -10.0, -5.0, -0.5 traffic_params = (model_type, traffic_window_size, stride, n_iter, adjust_offset, eval_period, eval_len, n_belief_bins) queue_params = (max_queue_len,) beta = 0.5 # R = (1-beta)*ServiceReward + beta*Cost reward_params = (Rs, Rw, Rf, Co, Cw, beta) # |- DynaQ num_sim = 5 # |- Env # |- Time start_time = pd.to_datetime("2014-10-15 09:40:00") total_time = pd.Timedelta(days=7) time_step = pd.Timedelta(seconds=2) backoff_epochs = num_buffer*memory_size+phi_length head_datetime = start_time - time_step*backoff_epochs tail_datetime = head_datetime + total_time TOTAL_EPOCHS = int(total_time/time_step) # |- Reward rewarding = {'serve': Rs, 'wait': Rw, 'fail': Rf} # load from processed data session_df =pd.read_csv( filepath_or_buffer='../data/trace_{}.dat'.format(location), parse_dates=['startTime_datetime', 'endTime_datetime'] ) te = TrafficEmulator( session_df=session_df, time_step=time_step, head_datetime=head_datetime, tail_datetime=tail_datetime, rewarding=rewarding, verbose=2) ts = TrafficServer(cost=(Co, Cw), verbose=2) env_model = SJTUModel(traffic_params, queue_params, reward_params, 2) agent = Dyna_QAgentNN( env_model=env_model, num_sim=num_sim, dim_state=dim_state, range_state=range_state, f_build_net = None, batch_size=batch_size, learning_rate=learning_rate, momentum=momentum, reward_scaling=reward_scaling, reward_scaling_update=reward_scaling_update, rs_period=rs_period, update_period=update_period, freeze_period=freeze_period, memory_size=memory_size, num_buffer=num_buffer, # Below is QAgent params actions=actions, alpha=alpha, gamma=gamma, explore_strategy=explore_strategy, epsilon=epsilon, verbose=2) c = QController(agent=agent) emu = Emulation(te=te, ts=ts, c=c, beta=beta) # Heavyliftings t = time.time() sys.stdout = sys_stdout log_path = './log/' if os.path.isfile(log_path+log_file_name): print "Log file {} already exist. Experiment cancelled.".format(log_file_name) else: log_file = open(log_path+log_file_name,"w") print datetime.now().strftime('[%Y-%m-%d %H:%M:%S]'), print '{}%'.format(int(100.0*emu.epoch/TOTAL_EPOCHS)), print log_file_name time.sleep(1) sys.stdout = log_file while emu.epoch is not None and emu.epoch<TOTAL_EPOCHS: # log time print "Epoch {},".format(emu.epoch), left = emu.te.head_datetime + emu.te.epoch*emu.te.time_step right = left + emu.te.time_step print "{} - {}".format(left.strftime("%Y-%m-%d %H:%M:%S"), right.strftime("%Y-%m-%d %H:%M:%S")) emu.step() print if emu.epoch%(0.05*TOTAL_EPOCHS)==0: sys.stdout = sys_stdout print datetime.now().strftime('[%Y-%m-%d %H:%M:%S]'), print '{}%'.format(int(100.0*emu.epoch/TOTAL_EPOCHS)), print log_file_name time.sleep(1) sys.stdout = log_file sys.stdout = sys_stdout log_file.close() print print log_file_name, print '{:.3f} sec,'.format(time.time()-t), print '{:.3f} min'.format((time.time()-t)/60)
bsd-3-clause
cl4rke/scikit-learn
sklearn/cross_decomposition/tests/test_pls.py
215
11427
import numpy as np from sklearn.utils.testing import (assert_array_almost_equal, assert_array_equal, assert_true, assert_raise_message) from sklearn.datasets import load_linnerud from sklearn.cross_decomposition import pls_ from nose.tools import assert_equal def test_pls(): d = load_linnerud() X = d.data Y = d.target # 1) Canonical (symmetric) PLS (PLS 2 blocks canonical mode A) # =========================================================== # Compare 2 algo.: nipals vs. svd # ------------------------------ pls_bynipals = pls_.PLSCanonical(n_components=X.shape[1]) pls_bynipals.fit(X, Y) pls_bysvd = pls_.PLSCanonical(algorithm="svd", n_components=X.shape[1]) pls_bysvd.fit(X, Y) # check equalities of loading (up to the sign of the second column) assert_array_almost_equal( pls_bynipals.x_loadings_, np.multiply(pls_bysvd.x_loadings_, np.array([1, -1, 1])), decimal=5, err_msg="nipals and svd implementation lead to different x loadings") assert_array_almost_equal( pls_bynipals.y_loadings_, np.multiply(pls_bysvd.y_loadings_, np.array([1, -1, 1])), decimal=5, err_msg="nipals and svd implementation lead to different y loadings") # Check PLS properties (with n_components=X.shape[1]) # --------------------------------------------------- plsca = pls_.PLSCanonical(n_components=X.shape[1]) plsca.fit(X, Y) T = plsca.x_scores_ P = plsca.x_loadings_ Wx = plsca.x_weights_ U = plsca.y_scores_ Q = plsca.y_loadings_ Wy = plsca.y_weights_ def check_ortho(M, err_msg): K = np.dot(M.T, M) assert_array_almost_equal(K, np.diag(np.diag(K)), err_msg=err_msg) # Orthogonality of weights # ~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(Wx, "x weights are not orthogonal") check_ortho(Wy, "y weights are not orthogonal") # Orthogonality of latent scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(T, "x scores are not orthogonal") check_ortho(U, "y scores are not orthogonal") # Check X = TP' and Y = UQ' (with (p == q) components) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # center scale X, Y Xc, Yc, x_mean, y_mean, x_std, y_std =\ pls_._center_scale_xy(X.copy(), Y.copy(), scale=True) assert_array_almost_equal(Xc, np.dot(T, P.T), err_msg="X != TP'") assert_array_almost_equal(Yc, np.dot(U, Q.T), err_msg="Y != UQ'") # Check that rotations on training data lead to scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Xr = plsca.transform(X) assert_array_almost_equal(Xr, plsca.x_scores_, err_msg="rotation on X failed") Xr, Yr = plsca.transform(X, Y) assert_array_almost_equal(Xr, plsca.x_scores_, err_msg="rotation on X failed") assert_array_almost_equal(Yr, plsca.y_scores_, err_msg="rotation on Y failed") # "Non regression test" on canonical PLS # -------------------------------------- # The results were checked against the R-package plspm pls_ca = pls_.PLSCanonical(n_components=X.shape[1]) pls_ca.fit(X, Y) x_weights = np.array( [[-0.61330704, 0.25616119, -0.74715187], [-0.74697144, 0.11930791, 0.65406368], [-0.25668686, -0.95924297, -0.11817271]]) assert_array_almost_equal(pls_ca.x_weights_, x_weights) x_rotations = np.array( [[-0.61330704, 0.41591889, -0.62297525], [-0.74697144, 0.31388326, 0.77368233], [-0.25668686, -0.89237972, -0.24121788]]) assert_array_almost_equal(pls_ca.x_rotations_, x_rotations) y_weights = np.array( [[+0.58989127, 0.7890047, 0.1717553], [+0.77134053, -0.61351791, 0.16920272], [-0.23887670, -0.03267062, 0.97050016]]) assert_array_almost_equal(pls_ca.y_weights_, y_weights) y_rotations = np.array( [[+0.58989127, 0.7168115, 0.30665872], [+0.77134053, -0.70791757, 0.19786539], [-0.23887670, -0.00343595, 0.94162826]]) assert_array_almost_equal(pls_ca.y_rotations_, y_rotations) # 2) Regression PLS (PLS2): "Non regression test" # =============================================== # The results were checked against the R-packages plspm, misOmics and pls pls_2 = pls_.PLSRegression(n_components=X.shape[1]) pls_2.fit(X, Y) x_weights = np.array( [[-0.61330704, -0.00443647, 0.78983213], [-0.74697144, -0.32172099, -0.58183269], [-0.25668686, 0.94682413, -0.19399983]]) assert_array_almost_equal(pls_2.x_weights_, x_weights) x_loadings = np.array( [[-0.61470416, -0.24574278, 0.78983213], [-0.65625755, -0.14396183, -0.58183269], [-0.51733059, 1.00609417, -0.19399983]]) assert_array_almost_equal(pls_2.x_loadings_, x_loadings) y_weights = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) assert_array_almost_equal(pls_2.y_weights_, y_weights) y_loadings = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) assert_array_almost_equal(pls_2.y_loadings_, y_loadings) # 3) Another non-regression test of Canonical PLS on random dataset # ================================================================= # The results were checked against the R-package plspm n = 500 p_noise = 10 q_noise = 5 # 2 latents vars: np.random.seed(11) l1 = np.random.normal(size=n) l2 = np.random.normal(size=n) latents = np.array([l1, l1, l2, l2]).T X = latents + np.random.normal(size=4 * n).reshape((n, 4)) Y = latents + np.random.normal(size=4 * n).reshape((n, 4)) X = np.concatenate( (X, np.random.normal(size=p_noise * n).reshape(n, p_noise)), axis=1) Y = np.concatenate( (Y, np.random.normal(size=q_noise * n).reshape(n, q_noise)), axis=1) np.random.seed(None) pls_ca = pls_.PLSCanonical(n_components=3) pls_ca.fit(X, Y) x_weights = np.array( [[0.65803719, 0.19197924, 0.21769083], [0.7009113, 0.13303969, -0.15376699], [0.13528197, -0.68636408, 0.13856546], [0.16854574, -0.66788088, -0.12485304], [-0.03232333, -0.04189855, 0.40690153], [0.1148816, -0.09643158, 0.1613305], [0.04792138, -0.02384992, 0.17175319], [-0.06781, -0.01666137, -0.18556747], [-0.00266945, -0.00160224, 0.11893098], [-0.00849528, -0.07706095, 0.1570547], [-0.00949471, -0.02964127, 0.34657036], [-0.03572177, 0.0945091, 0.3414855], [0.05584937, -0.02028961, -0.57682568], [0.05744254, -0.01482333, -0.17431274]]) assert_array_almost_equal(pls_ca.x_weights_, x_weights) x_loadings = np.array( [[0.65649254, 0.1847647, 0.15270699], [0.67554234, 0.15237508, -0.09182247], [0.19219925, -0.67750975, 0.08673128], [0.2133631, -0.67034809, -0.08835483], [-0.03178912, -0.06668336, 0.43395268], [0.15684588, -0.13350241, 0.20578984], [0.03337736, -0.03807306, 0.09871553], [-0.06199844, 0.01559854, -0.1881785], [0.00406146, -0.00587025, 0.16413253], [-0.00374239, -0.05848466, 0.19140336], [0.00139214, -0.01033161, 0.32239136], [-0.05292828, 0.0953533, 0.31916881], [0.04031924, -0.01961045, -0.65174036], [0.06172484, -0.06597366, -0.1244497]]) assert_array_almost_equal(pls_ca.x_loadings_, x_loadings) y_weights = np.array( [[0.66101097, 0.18672553, 0.22826092], [0.69347861, 0.18463471, -0.23995597], [0.14462724, -0.66504085, 0.17082434], [0.22247955, -0.6932605, -0.09832993], [0.07035859, 0.00714283, 0.67810124], [0.07765351, -0.0105204, -0.44108074], [-0.00917056, 0.04322147, 0.10062478], [-0.01909512, 0.06182718, 0.28830475], [0.01756709, 0.04797666, 0.32225745]]) assert_array_almost_equal(pls_ca.y_weights_, y_weights) y_loadings = np.array( [[0.68568625, 0.1674376, 0.0969508], [0.68782064, 0.20375837, -0.1164448], [0.11712173, -0.68046903, 0.12001505], [0.17860457, -0.6798319, -0.05089681], [0.06265739, -0.0277703, 0.74729584], [0.0914178, 0.00403751, -0.5135078], [-0.02196918, -0.01377169, 0.09564505], [-0.03288952, 0.09039729, 0.31858973], [0.04287624, 0.05254676, 0.27836841]]) assert_array_almost_equal(pls_ca.y_loadings_, y_loadings) # Orthogonality of weights # ~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(pls_ca.x_weights_, "x weights are not orthogonal") check_ortho(pls_ca.y_weights_, "y weights are not orthogonal") # Orthogonality of latent scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(pls_ca.x_scores_, "x scores are not orthogonal") check_ortho(pls_ca.y_scores_, "y scores are not orthogonal") def test_PLSSVD(): # Let's check the PLSSVD doesn't return all possible component but just # the specificied number d = load_linnerud() X = d.data Y = d.target n_components = 2 for clf in [pls_.PLSSVD, pls_.PLSRegression, pls_.PLSCanonical]: pls = clf(n_components=n_components) pls.fit(X, Y) assert_equal(n_components, pls.y_scores_.shape[1]) def test_univariate_pls_regression(): # Ensure 1d Y is correctly interpreted d = load_linnerud() X = d.data Y = d.target clf = pls_.PLSRegression() # Compare 1d to column vector model1 = clf.fit(X, Y[:, 0]).coef_ model2 = clf.fit(X, Y[:, :1]).coef_ assert_array_almost_equal(model1, model2) def test_predict_transform_copy(): # check that the "copy" keyword works d = load_linnerud() X = d.data Y = d.target clf = pls_.PLSCanonical() X_copy = X.copy() Y_copy = Y.copy() clf.fit(X, Y) # check that results are identical with copy assert_array_almost_equal(clf.predict(X), clf.predict(X.copy(), copy=False)) assert_array_almost_equal(clf.transform(X), clf.transform(X.copy(), copy=False)) # check also if passing Y assert_array_almost_equal(clf.transform(X, Y), clf.transform(X.copy(), Y.copy(), copy=False)) # check that copy doesn't destroy # we do want to check exact equality here assert_array_equal(X_copy, X) assert_array_equal(Y_copy, Y) # also check that mean wasn't zero before (to make sure we didn't touch it) assert_true(np.all(X.mean(axis=0) != 0)) def test_scale(): d = load_linnerud() X = d.data Y = d.target # causes X[:, -1].std() to be zero X[:, -1] = 1.0 for clf in [pls_.PLSCanonical(), pls_.PLSRegression(), pls_.PLSSVD()]: clf.set_params(scale=True) clf.fit(X, Y) def test_pls_errors(): d = load_linnerud() X = d.data Y = d.target for clf in [pls_.PLSCanonical(), pls_.PLSRegression(), pls_.PLSSVD()]: clf.n_components = 4 assert_raise_message(ValueError, "Invalid number of components", clf.fit, X, Y)
bsd-3-clause
bibsian/database-development
poplerGUI/ui_logic_session.py
1
3959
#!/usr/bin/env python from PyQt4 import QtGui, QtCore from Views import ui_dialog_session as dsess from poplerGUI import class_inputhandler as ini from poplerGUI import class_modelviewpandas as view class SessionDialog(QtGui.QDialog, dsess.Ui_Dialog): ''' Dialog box prompts the user to inpute unique metadata relating to the file that will be loaded into the database. Pass this information into the mainwindow once it has been verified as correct/raw data file is uploaded. Any input generated from this table get directed to the user facade class. ''' raw_data_model = QtCore.pyqtSignal(object) webview_url = QtCore.pyqtSignal(object) def __init__(self, parent=None): super().__init__(parent) self.setupUi(self) # Attributes self.metaini = None self.fileini = None self.verify = None # User facade composed from main window self.facade = None # Signal self.btnVerifyMeta.clicked.connect(self.meta_handler) self.btnSelectFile.clicked.connect(self.file_handler) self.btnCancel.clicked.connect(self.close) self.btnSaveClose.clicked.connect(self.close) # Status Message boxes self.error = QtGui.QErrorMessage() self.message = QtGui.QMessageBox def meta_handler(self): ''' Method to verify the user input regarding the metadata record (globalid/url) they'll be working from. Url is passed to main window up verification.Note, take user input and wraps it in a InputHandler class. ''' entries = { 'globalid': int(self.lnedGlobalId.text().strip()), 'metaurl': self.lnedMetadataUrl.text().strip(), 'lter': self.cboxLTERloc.currentText().strip() } self.metaini = ini.InputHandler( name='metacheck', tablename=None, lnedentry=entries, verify=self.verify) self.facade.input_register(self.metaini) try: print(self.metaini.lnedentry['metaurl']) self.facade.meta_verify() self.webview_url.emit( self.metaini.lnedentry['metaurl']) self.message.about(self, 'Status', 'Entries recorded') except Exception as e: print(str(e)) self.error.showMessage('Invalid entries: ' + str(e)) raise LookupError('Invalid metadata entries') def file_handler(self): ''' Method to pass the user input about the file to load. Note this is only tested for CSV file: Still have to run more test to make it more flexible. Note, takes user input and wraps it in a InputHandler class. ''' lned = { 'sheet': str(self.lnedExcelSheet.text().strip()), 'delim': str(self.lnedDelimiter.text().strip()), 'tskip': str(self.lnedSkipTop.text().strip()), 'bskip': str(self.lnedSkipBottom.text().strip()), 'header': '' } rbtn = { 'csv': self.rbtnCsv.isChecked(), 'xlsx': self.rbtnExcel.isChecked(), 'txt': self.rbtnTxt.isChecked() } name = str(QtGui.QFileDialog.getOpenFileName( self, 'Select File')) headers = self.ckHeader.isChecked() self.fileini = ini.InputHandler( name='fileoptions', tablename=None, rbtns=rbtn, lnedentry=lned, filename=name, checks=headers ) self.facade.input_register(self.fileini) try: self.facade.load_data() self.raw_data_model.emit('loaded_data') except Exception as e: raise IOError('Could not load data') @QtCore.pyqtSlot(object) def info_updates(self, message): ''' Method to display message updates from mainwindow ''' self.message.about(self, 'Status', message)
mit
janelia-flyem/gala
tests/test_gala.py
1
11479
import os import glob import functools from contextlib import contextmanager import pytest from numpy.testing import assert_allclose import numpy as np from scipy import ndimage as ndi from sklearn.linear_model import LogisticRegression import subprocess as sp from gala import imio, features, agglo, evaluate as ev LR = functools.partial(LogisticRegression, solver='liblinear') @contextmanager def tar_extract(fn): sp.call(['tar', '-xzf', fn + '.tar.gz']) ext_fn = os.path.basename(fn) yield ext_fn os.remove(ext_fn) for sub_fn in glob.glob(ext_fn + '_*'): os.remove(sub_fn) rundir = os.path.dirname(__file__) ### fixtures def dummy_data_source(): frag = np.arange(1, 17, dtype=int).reshape((4, 4)) gt = np.array([[1, 1, 2, 2], [1, 1, 2, 2], [3] * 4, [3] * 4], dtype=int) fman = features.base.Mock(frag, gt) g = agglo.Rag(frag, feature_manager=fman, use_slow=True) return frag, gt, g, fman @pytest.fixture def dummy_data(): return dummy_data_source() @pytest.fixture def dummy_data_fast(dummy_data): frag, gt, _, fman = dummy_data frag = ndi.zoom(frag, 2, order=0) gt = ndi.zoom(gt, 2, order=0) g = agglo.Rag(frag, feature_manager=fman) return frag, gt, g, fman ### tests def test_generate_flat_learning_edges(dummy_data): """Run a flat epoch and ensure all edges are correctly represented.""" frag, gt, g, fman = dummy_data feat, target, weights, edges = g.learn_flat(gt, fman) assert feat.shape == (24, 2) assert tuple(edges[0]) == (1, 2) assert tuple(edges[-1]) == (15, 16) assert np.sum(target[:, 0] == 1) == 6 # number of non-merge edges def test_generate_flat_learning_edges_fast(dummy_data_fast): """Run a flat epoch and ensure all edges are correctly represented.""" frag, gt, g, fman = dummy_data_fast feat, target, weights, edges = g.learn_flat(gt, fman) assert feat.shape == (24, 2) assert tuple(edges[0]) == (1, 2) assert tuple(edges[-1]) == (15, 16) assert np.sum(target[:, 0] == 1) == 6 # number of non-merge edges def test_generate_lash_examples(dummy_data): """Run a flat epoch and an active epoch of learning, compare learned sets. The mock feature manager places all merge examples at (0, 0) in feature space, and all non-merge examples at (1, 0), *in flat learning*. During agglomeration, non-merge examples go to (0, 1), which confuses the flat classifier (which has only learned the difference along the first feature dimension). This test checks for those differences in learning using a simple logistic regression. """ frag, gt, g, fman = dummy_data np.random.seed(99) summary, allepochs = g.learn_agglomerate(gt, fman, learning_mode='permissive', classifier='logistic regression', min_num_epochs=5) feat, target, weights, edges = summary ffeat, ftarget, fweights, fedges = allepochs[0] # flat lr = LR().fit(feat, target[:, 0]) flr = LR().fit(ffeat, ftarget[:, 0]) def pred(v): return lr.predict_proba([v])[0, 1] def fpred(v): return flr.predict_proba([v])[0, 1] assert len(allepochs[1][0]) == 15 # number of merges is |nodes| - 1 # approx. same learning results at (0., 0.) and (1., 0.) print([(fpred(i), pred(i)) for i in [[0, 0], [1, 0], [0, 1]]]) assert_allclose(fpred([0, 0]), 0.2, atol=0.1) assert_allclose(pred([0, 0]), 0.2, atol=0.1) assert_allclose(fpred([1, 0]), 0.65, atol=0.1) assert_allclose(pred([1, 0]), 0.65, atol=0.1) # difference between agglomerative and flat learning in point (0., 1.) assert_allclose(fpred([0, 1]), 0.2, atol=0.1) assert_allclose(pred([0, 1]), 0.6, atol=0.1) def test_generate_lash_examples_fast(dummy_data_fast): """Run a flat epoch and an active epoch of learning, compare learned sets. The mock feature manager places all merge examples at (0, 0) in feature space, and all non-merge examples at (1, 0), *in flat learning*. During agglomeration, non-merge examples go to (0, 1), which confuses the flat classifier (which has only learned the difference along the first feature dimension). This test checks for those differences in learning using a simple logistic regression. """ frag, gt, g, fman = dummy_data_fast np.random.seed(99) summary, allepochs = g.learn_agglomerate(gt, fman, learning_mode='permissive', classifier='logistic regression', min_num_epochs=5) feat, target, weights, edges = summary ffeat, ftarget, fweights, fedges = allepochs[0] # flat lr = LR().fit(feat, target[:, 0]) flr = LR().fit(ffeat, ftarget[:, 0]) def pred(v): return lr.predict_proba([v])[0, 1] def fpred(v): return flr.predict_proba([v])[0, 1] assert len(allepochs[1][0]) == 15 # number of merges is |nodes| - 1 # approx. same learning results at (0., 0.) and (1., 0.) print([(fpred(i), pred(i)) for i in [[0, 0], [1, 0], [0, 1]]]) assert_allclose(fpred([0, 0]), 0.2, atol=0.2) assert_allclose(pred([0, 0]), 0.2, atol=0.2) assert_allclose(fpred([1, 0]), 0.65, atol=0.15) assert_allclose(pred([1, 0]), 0.65, atol=0.15) # difference between agglomerative and flat learning in point (0., 1.) assert_allclose(fpred([0, 1]), 0.2, atol=0.2) # < 0.4 assert_allclose(pred([0, 1]), 0.65, atol=0.2) # > 0.45 def test_generate_gala_examples(dummy_data): """As `test_generate_lash_examples`, but using strict learning. """ frag, gt, g, fman = dummy_data np.random.seed(99) summary, allepochs = g.learn_agglomerate(gt, fman, learning_mode='strict', classifier='logistic regression', min_num_epochs=5) feat, target, weights, edges = summary ffeat, ftarget, fweights, fedges = allepochs[0] # flat lr = LR().fit(feat, target[:, 0]) flr = LR().fit(ffeat, ftarget[:, 0]) def pred(v): return lr.predict_proba([v])[0, 1] def fpred(v): return flr.predict_proba([v])[0, 1] assert len(allepochs[1][0]) > 15 # number of merges is more than LASH # approx. same learning results at (0., 0.) and (1., 0.) assert_allclose(fpred([0, 0]), 0.2, atol=0.1) assert_allclose(pred([0, 0]), 0.2, atol=0.1) assert_allclose(fpred([1, 0]), 0.64, atol=0.1) assert_allclose(pred([1, 0]), 0.64, atol=0.1) # difference between agglomerative and flat learning in point (0., 1.); # greater separation than with LASH assert_allclose(fpred([0, 1]), 0.2, atol=0.1) assert_allclose(pred([0, 1]), 0.7, atol=0.1) def test_generate_gala_examples_fast_updateedges(dummy_data_fast): """As `test_generate_lash_examples`, but using strict learning. """ frag, gt, g, fman = dummy_data_fast g = agglo.Rag(frag, feature_manager=fman, update_unchanged_edges=True) np.random.seed(99) summary, allepochs = g.learn_agglomerate(gt, fman, learning_mode='strict', classifier='logistic regression') feat, target, weights, edges = summary ffeat, ftarget, fweights, fedges = allepochs[0] # flat lr = LR().fit(feat, target[:, 0]) flr = LR().fit(ffeat, ftarget[:, 0]) def pred(v): return lr.predict_proba([v])[0, 1] def fpred(v): return flr.predict_proba([v])[0, 1] assert len(allepochs[1][0]) > 15 # number of merges is more than LASH # approx. same learning results at (0., 0.) and (1., 0.) assert_allclose(fpred([0, 0]), 0.2, atol=0.2) assert_allclose(pred([0, 0]), 0.2, atol=0.2) assert_allclose(fpred([1, 0]), 0.65, atol=0.15) assert_allclose(pred([1, 0]), 0.65, atol=0.15) # difference between agglomerative and flat learning in point (0., 1.); # greater separation than with LASH assert_allclose(fpred([0, 1]), 0.2, atol=0.15) assert_allclose(pred([0, 1]), 0.7, atol=0.15) def test_generate_gala_examples_fast(dummy_data_fast): """As `test_generate_lash_examples`, but using strict learning. """ frag, gt, g, fman = dummy_data_fast np.random.seed(99) summary, allepochs = g.learn_agglomerate(gt, fman, learning_mode='strict', classifier='logistic regression', min_num_epochs=5) feat, target, weights, edges = summary ffeat, ftarget, fweights, fedges = allepochs[0] # flat lr = LR().fit(feat, target[:, 0]) flr = LR().fit(ffeat, ftarget[:, 0]) def pred(v): return lr.predict_proba([v])[0, 1] def fpred(v): return flr.predict_proba([v])[0, 1] assert len(allepochs[1][0]) > 15 # number of merges is more than LASH # approx. same learning results at (0., 0.) and (1., 0.) assert_allclose(fpred([0, 0]), 0.2, atol=0.2) assert_allclose(pred([0, 0]), 0.2, atol=0.2) assert_allclose(fpred([1, 0]), 0.65, atol=0.15) assert_allclose(pred([1, 0]), 0.65, atol=0.15) # difference between agglomerative and flat learning in point (0., 1.); # greater separation than with LASH assert_allclose(fpred([0, 1]), 0.2, atol=0.15) assert_allclose(pred([0, 1]), 0.7, atol=0.15) def test_segment_with_gala_classifer(dummy_data_fast): frag, gt, g, fman = dummy_data_fast np.random.seed(5) summary, allepochs = g.learn_agglomerate(gt, fman, learning_mode='strict', classifier='logistic regression', min_num_epochs=5) feat, target, weights, edges = summary ffeat, ftarget, fweights, fedges = allepochs[0] # flat lr = LR().fit(feat, target[:, 0]) gala_policy = agglo.classifier_probability(fman, lr) flr = LR().fit(ffeat, ftarget[:, 0]) flat_policy = agglo.classifier_probability(fman, flr) gtest = agglo.Rag(frag, feature_manager=fman, merge_priority_function=gala_policy) gtest.agglomerate(0.5) assert ev.vi(gtest.get_segmentation(), gt) == 0 gtest_flat = agglo.Rag(frag, feature_manager=fman, merge_priority_function=flat_policy) assert ev.vi(gtest_flat.get_segmentation(0.5), gt) == 1.5 def test_split_vi(): ws_test = imio.read_h5_stack( os.path.join(rundir, 'example-data/test-ws.lzf.h5')) gt_test = imio.read_h5_stack( os.path.join(rundir, 'example-data/test-gt.lzf.h5')) seg_test1 = imio.read_h5_stack( os.path.join(rundir, 'example-data/test-seg1.lzf.h5')) seg_test4 = imio.read_h5_stack( os.path.join(rundir, 'example-data/test-seg4.lzf.h5')) result = np.vstack(( ev.split_vi(ws_test, gt_test), ev.split_vi(seg_test1, gt_test), ev.split_vi(seg_test4, gt_test) )) expected = np.load(os.path.join(rundir, 'example-data/vi-results.npy')) assert_allclose(result, expected, atol=1e-6) if __name__ == '__main__': np.random.RandomState(0) from numpy import testing testing.run_module_suite()
bsd-3-clause
jakejhansen/minesweeper_solver
policy_gradients/test_condensed_v4.py
1
8720
# review solution import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.python.ops.nn import relu, softmax import gym import sys import os sys.path.append('../') from minesweeper_tk import Minesweeper model = "condensed_6x6_v4" # training settings epochs = 100000 # number of training batches batch_size = 200 # number of timesteps in a batch rollout_limit = 50 # max rollout length discount_factor = 0 # reward discount factor (gamma), 1.0 = no discount learning_rate = 0.000002 # you know this by now #0.001, #4400: 56% win --> LR: 0.0003 #5600: 69% win --> LR: 0.0001 #7200: 74% win --> LR: 0.00003 #8400: 77% win --> LR: 0.00001 #9600: 75% win --> LR: 0.000005 #10400: 75% win --> LR: 0.000002 early_stop_loss = 0 # stop training if loss < early_stop_loss, 0 or False to disable """ condensed epochs = 100000 # number of training batches batch_size = 400 # number of timesteps in a batch rollout_limit = 50 # max rollout length discount_factor = 0 # reward discount factor (gamma), 1.0 = no discount learning_rate = 0.00004 # you know this by now #0.0005 early_stop_loss = 0 # stop training if loss < early_stop_loss, 0 or False to disable """ """ 261 epocs to learn 2 specific board (overfit) epochs = 10000 # number of training batches batch_size = 200 # number of timesteps in a batch rollout_limit = 130 # max rollout length discount_factor = 0 # reward discount factor (gamma), 1.0 = no discount learning_rate = 0.001 # you know this by now early_stop_loss = 0 # stop training if loss < early_stop_loss, 0 or False to disable """ # setup policy network n = 6 n_inputs = 6*6*2 n_hidden = 6*6*8 n_hidden2 = 220 n_hidden3 = 220 n_hidden4 = 220 n_outputs = 6*6 dropout = 0 tf.reset_default_graph() states_pl = tf.placeholder(tf.float32, [None, n_inputs], name='states_pl') actions_pl = tf.placeholder(tf.int32, [None, 2], name='actions_pl') advantages_pl = tf.placeholder(tf.float32, [None], name='advantages_pl') learning_rate_pl = tf.placeholder(tf.float32, name='learning_rate_pl') input_layer = tf.reshape(states_pl, [-1, n, n, 2]) conv1 = tf.layers.conv2d(inputs=input_layer,filters=18,kernel_size=[5, 5],padding="same", activation=tf.nn.relu) conv2 = tf.layers.conv2d(inputs=conv1,filters=36,kernel_size=[3, 3],padding="same", activation=tf.nn.relu) conv2_flat = tf.contrib.layers.flatten(conv2) l_hidden = tf.layers.dense(inputs=conv2_flat, units=n_hidden, activation=relu, name='l_hidden') l_hidden2 = tf.layers.dense(inputs=l_hidden, units=n_hidden2, activation=relu, name='l_hidden2') l_hidden2 = tf.layers.dropout(l_hidden2, rate=dropout) l_hidden3 = tf.layers.dense(inputs=l_hidden2, units=n_hidden3, activation=relu, name='l_hidden3') l_hidden3 = tf.layers.dropout(l_hidden3, rate=dropout) #l_hidden4 = tf.layers.dense(inputs=l_hidden3, units=n_hidden4, activation=relu, name='l_hidden4') l_hidden3 = tf.layers.dropout(l_hidden3, rate=dropout) l_out = tf.layers.dense(inputs=l_hidden3, units=n_outputs, activation=softmax, name='l_out') # print network print('states_pl:', states_pl.get_shape()) print('actions_pl:', actions_pl.get_shape()) print('advantages_pl:', advantages_pl.get_shape()) print('l_hidden:', l_hidden.get_shape()) print('l_hidden2:', l_hidden2.get_shape()) print('l_hidden3:', l_hidden3.get_shape()) print('l_out:', l_out.get_shape()) # define loss and optimizer loss_f = -tf.reduce_mean(tf.multiply(tf.log(tf.gather_nd(l_out, actions_pl)), advantages_pl)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate_pl, beta1=0.8, beta2=0.92) train_f = optimizer.minimize(loss_f) saver = tf.train.Saver() # we use this later to save the model # test forward pass from minesweeper_tk import Minesweeper env = Minesweeper(display=False, ROWS = 6, COLS = 6, MINES = 7, OUT = "CONDENSED", rewards = {"win" : 1, "loss" : -1, "progress" : 0.9, "noprogress" : -0.3, "YOLO" : -0.3}) state = env.stateConverter(env.get_state()).flatten() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) action_probabilities = sess.run(fetches=l_out, feed_dict={states_pl: [state]}) print(action_probabilities) # helper functions def get_rollout(sess, env, rollout_limit=None, stochastic=False, seed=None): """Generate rollout by iteratively evaluating the current policy on the environment.""" rollout_limit = rollout_limit env.reset() s = env.stateConverter(env.get_state()).flatten() states, actions, rewards = [], [], [] for i in range(rollout_limit): a = get_action(sess, s, stochastic) s1, r, done, _ = env.step(a) states.append(s) actions.append(a) rewards.append(r) s = s1 if done: break return states, actions, rewards, i+1 def get_action(sess, state, stochastic=False): """Choose an action, given a state, with the current policy network.""" # get action probabilities a_prob = sess.run(fetches=l_out, feed_dict={states_pl: np.atleast_2d(state)}) #valid_moves = env.get_validMoves() #a_prob[~valid_moves.flatten().reshape(1,36)] = 0 #a_prob[a_prob < 0.00001] = 0.000001 #a_prob / np.sum(a_prob) #a_prob = normalize(a_prob, norm = 'l1') #if abs(1-np.sum(a_prob)) > 0.01: # a_prob = sess.run(fetches=l_out, feed_dict={states_pl: np.atleast_2d(state)}) if stochastic: # sample action from distribution return (np.cumsum(np.asarray(a_prob)) > np.random.rand()).argmax() else: # select action with highest probability return a_prob.argmax() def get_advantages(rewards, rollout_limit, discount_factor, eps=1e-12): """Compute advantages""" returns = get_returns(rewards, rollout_limit, discount_factor) # standardize columns of returns to get advantages advantages = (returns - np.mean(returns, axis=0)) / (np.std(returns, axis=0) + eps) # restore original rollout lengths advantages = [adv[:len(rewards[i])] for i, adv in enumerate(advantages)] return advantages def get_returns(rewards, rollout_limit, discount_factor): """Compute the cumulative discounted rewards, a.k.a. returns.""" returns = np.zeros((len(rewards), rollout_limit)) for i, r in enumerate(rewards): returns[i, len(r) - 1] = r[-1] for j in reversed(range(len(r)-1)): returns[i,j] = r[j] + discount_factor * returns[i,j+1] return returns import time if __name__ == "__main__": import time display = False env = Minesweeper(display=display, ROWS = 6, COLS = 6, MINES = 6, OUT = "CONDENSED", rewards = {"win" : 1, "loss" : -1, "progress" : 0.1, "noprogress" : -0.3, "YOLO": -0.3}) i = 0 #start = time.time() with tf.Session() as sess: saver = tf.train.Saver() saver.restore(sess, "{}/{}_best.ckpt".format(model,model)) #view = Viewer(env, custom_render=True) games = 0 moves = 0 stuck = 0 won_games = 0 lost_games = 0 while games < 10000: if games % 500 == 0: print(games) r = 1 r_prev = 1 while True: if display: input() s = env.stateConverter(env.get_state()).flatten() if r < 0: a = get_action(sess, s, stochastic=True) else: a = get_action(sess, s, stochastic=False) moves += 1 r_prev = r s, r, done, _ = env.step(a) s = s.flatten() if display: print("Reward = ", r) #print("\nReward = {}".format(r)) if r == 1: won_games += 1 if r == -1: lost_games += 1 if done: games += 1 env.reset() moves = 0 break elif moves >= 30: stuck += 1 games += 1 env.lost = env.lost + 1 env.reset() moves = 0 break #print(env.lost) #print(env.won) print("games: {}, won: {}, lost: {}, stuck: {}, win_rate : {:.1f}%".format(games, won_games, lost_games, stuck, won_games/games * 100)) #view.render(close=True, display_gif=True) #69% win-rate for 54000 epochs
mit
darothen/pyrcel
pyrcel/postprocess.py
2
2032
""" Collection of output post-processing routines. """ import numpy as np import pandas as pd from .activation import binned_activation def simulation_activation(model, parcel_df, aerosols_panel): """ Given the DataFrame output from a parcel model simulation, compute activation kinetic limitation diagnostics. Parameters ---------- model : ParcelModel The ParcelModel parcel_df : DataFrame used to generate the results to be analyzed The DataFrame containing the parcel's thermodynamic trajectory aerosols_panel : Panel A Panel collection of DataFrames containing the aerosol size evolution Returns ------- act_stats : DataFrame A DataFrame containing the activation statistics """ initial_row = parcel_df.iloc[0] Smax_i, T_i = initial_row["S"], initial_row["T"] acts = {"eq": [], "kn": [], "alpha": [], "phi": []} initial_aerosols = model.aerosols N_all_modes = np.sum([aer.total_N for aer in initial_aerosols]) N_fracs = { aer.species: aer.total_N / N_all_modes for aer in initial_aerosols } for i in range(len(parcel_df)): row_par = parcel_df.iloc[i] rows_aer = {key: aerosols_panel[key].iloc[i] for key in aerosols_panel} # Update thermo T_i = row_par["T"] if row_par["S"] > Smax_i: Smax_i = row_par["S"] eq_tot, kn_tot, alpha_tot, phi_tot = 0.0, 0.0, 0.0, 0.0 for aerosol in initial_aerosols: N_frac = N_fracs[aerosol.species] rs = rows_aer[aerosol.species] eq, kn, alpha, phi = binned_activation(Smax_i, T_i, rs, aerosol) eq_tot += eq * N_frac kn_tot += kn * N_frac alpha_tot += alpha * N_frac phi_tot += phi * N_frac acts["kn"].append(kn_tot) acts["eq"].append(eq_tot) acts["alpha"].append(alpha_tot) acts["phi"].append(phi_tot) acts_total = pd.DataFrame(acts, index=parcel_df.index) return acts_total
bsd-3-clause
nehz/keras
tests/manual/check_callbacks.py
82
7540
import numpy as np import random import theano from keras.models import Sequential from keras.callbacks import Callback from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.regularizers import l2 from keras.layers.convolutional import Convolution2D, MaxPooling2D from keras.utils import np_utils from keras.datasets import mnist import keras.callbacks as cbks from matplotlib import pyplot as plt from matplotlib import animation ############################## # model DrawActivations test # ############################## print('Running DrawActivations test') nb_classes = 10 batch_size = 128 nb_epoch = 10 max_train_samples = 512 max_test_samples = 1 np.random.seed(1337) # the data, shuffled and split between tran and test sets (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = X_train.reshape(-1,1,28,28)[:max_train_samples] X_train = X_train.astype("float32") X_train /= 255 X_test = X_test.reshape(-1,1,28,28)[:max_test_samples] X_test = X_test.astype("float32") X_test /= 255 # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, nb_classes)[:max_train_samples] class Frames(object): def __init__(self, n_plots=16): self._n_frames = 0 self._framedata = [] self._titles = [] for i in range(n_plots): self._framedata.append([]) def add_frame(self, i, frame): self._framedata[i].append(frame) def set_title(self, title): self._titles.append(title) class SubplotTimedAnimation(animation.TimedAnimation): def __init__(self, fig, frames, grid=(4, 4), interval=10, blit=False, **kwargs): self.n_plots = grid[0] * grid[1] self.axes = [fig.add_subplot(grid[0], grid[1], i + 1) for i in range(self.n_plots)] for axis in self.axes: axis.get_xaxis().set_ticks([]) axis.get_yaxis().set_ticks([]) self.frames = frames self.imgs = [self.axes[i].imshow(frames._framedata[i][0], interpolation='nearest', cmap='bone') for i in range(self.n_plots)] self.title = fig.suptitle('') super(SubplotTimedAnimation, self).__init__(fig, interval=interval, blit=blit, **kwargs) def _draw_frame(self, j): for i in range(self.n_plots): self.imgs[i].set_data(self.frames._framedata[i][j]) if len(self.frames._titles) > j: self.title.set_text(self.frames._titles[j]) self._drawn_artists = self.imgs def new_frame_seq(self): return iter(range(len(self.frames._framedata[0]))) def _init_draw(self): for img in self.imgs: img.set_data([[]]) def combine_imgs(imgs, grid=(1,1)): n_imgs, img_h, img_w = imgs.shape if n_imgs != grid[0] * grid[1]: raise ValueError() combined = np.zeros((grid[0] * img_h, grid[1] * img_w)) for i in range(grid[0]): for j in range(grid[1]): combined[img_h*i:img_h*(i+1),img_w*j:img_w*(j+1)] = imgs[grid[0] * i + j] return combined class DrawActivations(Callback): def __init__(self, figsize): self.fig = plt.figure(figsize=figsize) def on_train_begin(self, logs={}): self.imgs = Frames(n_plots=5) layers_0_ids = np.random.choice(32, 16, replace=False) self.test_layer0 = theano.function([self.model.get_input()], self.model.layers[1].get_output(train=False)[0, layers_0_ids]) layers_1_ids = np.random.choice(64, 36, replace=False) self.test_layer1 = theano.function([self.model.get_input()], self.model.layers[5].get_output(train=False)[0, layers_1_ids]) self.test_layer2 = theano.function([self.model.get_input()], self.model.layers[10].get_output(train=False)[0]) def on_epoch_begin(self, epoch, logs={}): self.epoch = epoch def on_batch_end(self, batch, logs={}): if batch % 5 == 0: self.imgs.add_frame(0, X_test[0,0]) self.imgs.add_frame(1, combine_imgs(self.test_layer0(X_test), grid=(4, 4))) self.imgs.add_frame(2, combine_imgs(self.test_layer1(X_test), grid=(6, 6))) self.imgs.add_frame(3, self.test_layer2(X_test).reshape((16,16))) self.imgs.add_frame(4, self.model._predict(X_test)[0].reshape((1,10))) self.imgs.set_title('Epoch #%d - Batch #%d' % (self.epoch, batch)) def on_train_end(self, logs={}): anim = SubplotTimedAnimation(self.fig, self.imgs, grid=(1,5), interval=10, blit=False, repeat_delay=1000) # anim.save('test_gif.gif', fps=15, writer='imagemagick') plt.show() # model = Sequential() # model.add(Dense(784, 50)) # model.add(Activation('relu')) # model.add(Dense(50, 10)) # model.add(Activation('softmax')) model = Sequential() model.add(Convolution2D(32, 1, 3, 3, border_mode='full')) model.add(Activation('relu')) model.add(MaxPooling2D(poolsize=(2, 2))) model.add(Dropout(0.25)) model.add(Convolution2D(64, 32, 3, 3, border_mode='full')) model.add(Activation('relu')) model.add(MaxPooling2D(poolsize=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(64*8*8, 256)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(256, 10, W_regularizer = l2(0.1))) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') # Fit the model draw_weights = DrawActivations(figsize=(5.4, 1.35)) model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=1, callbacks=[draw_weights]) ########################## # model checkpoint tests # ########################## print('Running ModelCheckpoint test') nb_classes = 10 batch_size = 128 nb_epoch = 20 # small sample size to overfit on training data max_train_samples = 50 max_test_samples = 1000 np.random.seed(1337) # for reproducibility # the data, shuffled and split between tran and test sets (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = X_train.reshape(60000,784)[:max_train_samples] X_test = X_test.reshape(10000,784)[:max_test_samples] X_train = X_train.astype("float32") X_test = X_test.astype("float32") X_train /= 255 X_test /= 255 # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, nb_classes)[:max_train_samples] Y_test = np_utils.to_categorical(y_test, nb_classes)[:max_test_samples] # Create a slightly larger network than required to test best validation save only model = Sequential() model.add(Dense(784, 500)) model.add(Activation('relu')) model.add(Dense(500, 10)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') # test file location path = "/tmp" filename = "model_weights.hdf5" import os f = os.path.join(path, filename) print("Test model checkpointer") # only store best validation model in checkpointer checkpointer = cbks.ModelCheckpoint(filepath=f, verbose=1, save_best_only=True) model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=0, validation_data=(X_test, Y_test), callbacks =[checkpointer]) if not os.path.isfile(f): raise Exception("Model weights were not saved to %s" % (f)) print("Test model checkpointer without validation data") import warnings warnings.filterwarnings('error') try: # this should issue a warning model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=0, callbacks =[checkpointer]) except: print("Tests passed") import sys sys.exit(0) raise Exception("Modelcheckpoint tests did not pass")
mit
WarrenWeckesser/scikits-image
doc/ext/plot_directive.py
89
20530
""" A special directive for generating a matplotlib plot. .. warning:: This is a hacked version of plot_directive.py from Matplotlib. It's very much subject to change! Usage ----- Can be used like this:: .. plot:: examples/example.py .. plot:: import matplotlib.pyplot as plt plt.plot([1,2,3], [4,5,6]) .. plot:: A plotting example: >>> import matplotlib.pyplot as plt >>> plt.plot([1,2,3], [4,5,6]) The content is interpreted as doctest formatted if it has a line starting with ``>>>``. The ``plot`` directive supports the options format : {'python', 'doctest'} Specify the format of the input include-source : bool Whether to display the source code. Default can be changed in conf.py and the ``image`` directive options ``alt``, ``height``, ``width``, ``scale``, ``align``, ``class``. Configuration options --------------------- The plot directive has the following configuration options: plot_include_source Default value for the include-source option plot_pre_code Code that should be executed before each plot. plot_basedir Base directory, to which plot:: file names are relative to. (If None or empty, file names are relative to the directoly where the file containing the directive is.) plot_formats File formats to generate. List of tuples or strings:: [(suffix, dpi), suffix, ...] that determine the file format and the DPI. For entries whose DPI was omitted, sensible defaults are chosen. plot_html_show_formats Whether to show links to the files in HTML. TODO ---- * Refactor Latex output; now it's plain images, but it would be nice to make them appear side-by-side, or in floats. """ from __future__ import division, absolute_import, print_function import sys, os, glob, shutil, imp, warnings, re, textwrap, traceback import sphinx if sys.version_info[0] >= 3: from io import StringIO else: from io import StringIO import warnings warnings.warn("A plot_directive module is also available under " "matplotlib.sphinxext; expect this numpydoc.plot_directive " "module to be deprecated after relevant features have been " "integrated there.", FutureWarning, stacklevel=2) #------------------------------------------------------------------------------ # Registration hook #------------------------------------------------------------------------------ def setup(app): setup.app = app setup.config = app.config setup.confdir = app.confdir app.add_config_value('plot_pre_code', '', True) app.add_config_value('plot_include_source', False, True) app.add_config_value('plot_formats', ['png', 'hires.png', 'pdf'], True) app.add_config_value('plot_basedir', None, True) app.add_config_value('plot_html_show_formats', True, True) app.add_directive('plot', plot_directive, True, (0, 1, False), **plot_directive_options) #------------------------------------------------------------------------------ # plot:: directive #------------------------------------------------------------------------------ from docutils.parsers.rst import directives from docutils import nodes def plot_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): return run(arguments, content, options, state_machine, state, lineno) plot_directive.__doc__ = __doc__ def _option_boolean(arg): if not arg or not arg.strip(): # no argument given, assume used as a flag return True elif arg.strip().lower() in ('no', '0', 'false'): return False elif arg.strip().lower() in ('yes', '1', 'true'): return True else: raise ValueError('"%s" unknown boolean' % arg) def _option_format(arg): return directives.choice(arg, ('python', 'lisp')) def _option_align(arg): return directives.choice(arg, ("top", "middle", "bottom", "left", "center", "right")) plot_directive_options = {'alt': directives.unchanged, 'height': directives.length_or_unitless, 'width': directives.length_or_percentage_or_unitless, 'scale': directives.nonnegative_int, 'align': _option_align, 'class': directives.class_option, 'include-source': _option_boolean, 'format': _option_format, } #------------------------------------------------------------------------------ # Generating output #------------------------------------------------------------------------------ from docutils import nodes, utils try: # Sphinx depends on either Jinja or Jinja2 import jinja2 def format_template(template, **kw): return jinja2.Template(template).render(**kw) except ImportError: import jinja def format_template(template, **kw): return jinja.from_string(template, **kw) TEMPLATE = """ {{ source_code }} {{ only_html }} {% if source_link or (html_show_formats and not multi_image) %} ( {%- if source_link -%} `Source code <{{ source_link }}>`__ {%- endif -%} {%- if html_show_formats and not multi_image -%} {%- for img in images -%} {%- for fmt in img.formats -%} {%- if source_link or not loop.first -%}, {% endif -%} `{{ fmt }} <{{ dest_dir }}/{{ img.basename }}.{{ fmt }}>`__ {%- endfor -%} {%- endfor -%} {%- endif -%} ) {% endif %} {% for img in images %} .. figure:: {{ build_dir }}/{{ img.basename }}.png {%- for option in options %} {{ option }} {% endfor %} {% if html_show_formats and multi_image -%} ( {%- for fmt in img.formats -%} {%- if not loop.first -%}, {% endif -%} `{{ fmt }} <{{ dest_dir }}/{{ img.basename }}.{{ fmt }}>`__ {%- endfor -%} ) {%- endif -%} {% endfor %} {{ only_latex }} {% for img in images %} .. image:: {{ build_dir }}/{{ img.basename }}.pdf {% endfor %} """ class ImageFile(object): def __init__(self, basename, dirname): self.basename = basename self.dirname = dirname self.formats = [] def filename(self, format): return os.path.join(self.dirname, "%s.%s" % (self.basename, format)) def filenames(self): return [self.filename(fmt) for fmt in self.formats] def run(arguments, content, options, state_machine, state, lineno): if arguments and content: raise RuntimeError("plot:: directive can't have both args and content") document = state_machine.document config = document.settings.env.config options.setdefault('include-source', config.plot_include_source) # determine input rst_file = document.attributes['source'] rst_dir = os.path.dirname(rst_file) if arguments: if not config.plot_basedir: source_file_name = os.path.join(rst_dir, directives.uri(arguments[0])) else: source_file_name = os.path.join(setup.confdir, config.plot_basedir, directives.uri(arguments[0])) code = open(source_file_name, 'r').read() output_base = os.path.basename(source_file_name) else: source_file_name = rst_file code = textwrap.dedent("\n".join(map(str, content))) counter = document.attributes.get('_plot_counter', 0) + 1 document.attributes['_plot_counter'] = counter base, ext = os.path.splitext(os.path.basename(source_file_name)) output_base = '%s-%d.py' % (base, counter) base, source_ext = os.path.splitext(output_base) if source_ext in ('.py', '.rst', '.txt'): output_base = base else: source_ext = '' # ensure that LaTeX includegraphics doesn't choke in foo.bar.pdf filenames output_base = output_base.replace('.', '-') # is it in doctest format? is_doctest = contains_doctest(code) if 'format' in options: if options['format'] == 'python': is_doctest = False else: is_doctest = True # determine output directory name fragment source_rel_name = relpath(source_file_name, setup.confdir) source_rel_dir = os.path.dirname(source_rel_name) while source_rel_dir.startswith(os.path.sep): source_rel_dir = source_rel_dir[1:] # build_dir: where to place output files (temporarily) build_dir = os.path.join(os.path.dirname(setup.app.doctreedir), 'plot_directive', source_rel_dir) if not os.path.exists(build_dir): os.makedirs(build_dir) # output_dir: final location in the builder's directory dest_dir = os.path.abspath(os.path.join(setup.app.builder.outdir, source_rel_dir)) # how to link to files from the RST file dest_dir_link = os.path.join(relpath(setup.confdir, rst_dir), source_rel_dir).replace(os.path.sep, '/') build_dir_link = relpath(build_dir, rst_dir).replace(os.path.sep, '/') source_link = dest_dir_link + '/' + output_base + source_ext # make figures try: results = makefig(code, source_file_name, build_dir, output_base, config) errors = [] except PlotError as err: reporter = state.memo.reporter sm = reporter.system_message( 2, "Exception occurred in plotting %s: %s" % (output_base, err), line=lineno) results = [(code, [])] errors = [sm] # generate output restructuredtext total_lines = [] for j, (code_piece, images) in enumerate(results): if options['include-source']: if is_doctest: lines = [''] lines += [row.rstrip() for row in code_piece.split('\n')] else: lines = ['.. code-block:: python', ''] lines += [' %s' % row.rstrip() for row in code_piece.split('\n')] source_code = "\n".join(lines) else: source_code = "" opts = [':%s: %s' % (key, val) for key, val in list(options.items()) if key in ('alt', 'height', 'width', 'scale', 'align', 'class')] only_html = ".. only:: html" only_latex = ".. only:: latex" if j == 0: src_link = source_link else: src_link = None result = format_template( TEMPLATE, dest_dir=dest_dir_link, build_dir=build_dir_link, source_link=src_link, multi_image=len(images) > 1, only_html=only_html, only_latex=only_latex, options=opts, images=images, source_code=source_code, html_show_formats=config.plot_html_show_formats) total_lines.extend(result.split("\n")) total_lines.extend("\n") if total_lines: state_machine.insert_input(total_lines, source=source_file_name) # copy image files to builder's output directory if not os.path.exists(dest_dir): os.makedirs(dest_dir) for code_piece, images in results: for img in images: for fn in img.filenames(): shutil.copyfile(fn, os.path.join(dest_dir, os.path.basename(fn))) # copy script (if necessary) if source_file_name == rst_file: target_name = os.path.join(dest_dir, output_base + source_ext) f = open(target_name, 'w') f.write(unescape_doctest(code)) f.close() return errors #------------------------------------------------------------------------------ # Run code and capture figures #------------------------------------------------------------------------------ import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.image as image from matplotlib import _pylab_helpers import exceptions def contains_doctest(text): try: # check if it's valid Python as-is compile(text, '<string>', 'exec') return False except SyntaxError: pass r = re.compile(r'^\s*>>>', re.M) m = r.search(text) return bool(m) def unescape_doctest(text): """ Extract code from a piece of text, which contains either Python code or doctests. """ if not contains_doctest(text): return text code = "" for line in text.split("\n"): m = re.match(r'^\s*(>>>|\.\.\.) (.*)$', line) if m: code += m.group(2) + "\n" elif line.strip(): code += "# " + line.strip() + "\n" else: code += "\n" return code def split_code_at_show(text): """ Split code at plt.show() """ parts = [] is_doctest = contains_doctest(text) part = [] for line in text.split("\n"): if (not is_doctest and line.strip() == 'plt.show()') or \ (is_doctest and line.strip() == '>>> plt.show()'): part.append(line) parts.append("\n".join(part)) part = [] else: part.append(line) if "\n".join(part).strip(): parts.append("\n".join(part)) return parts class PlotError(RuntimeError): pass def run_code(code, code_path, ns=None): # Change the working directory to the directory of the example, so # it can get at its data files, if any. pwd = os.getcwd() old_sys_path = list(sys.path) if code_path is not None: dirname = os.path.abspath(os.path.dirname(code_path)) os.chdir(dirname) sys.path.insert(0, dirname) # Redirect stdout stdout = sys.stdout sys.stdout = StringIO() # Reset sys.argv old_sys_argv = sys.argv sys.argv = [code_path] try: try: code = unescape_doctest(code) if ns is None: ns = {} if not ns: exec(setup.config.plot_pre_code, ns) exec(code, ns) except (Exception, SystemExit) as err: raise PlotError(traceback.format_exc()) finally: os.chdir(pwd) sys.argv = old_sys_argv sys.path[:] = old_sys_path sys.stdout = stdout return ns #------------------------------------------------------------------------------ # Generating figures #------------------------------------------------------------------------------ def out_of_date(original, derived): """ Returns True if derivative is out-of-date wrt original, both of which are full file paths. """ return (not os.path.exists(derived) or os.stat(derived).st_mtime < os.stat(original).st_mtime) def makefig(code, code_path, output_dir, output_base, config): """ Run a pyplot script *code* and save the images under *output_dir* with file names derived from *output_base* """ # -- Parse format list default_dpi = {'png': 80, 'hires.png': 200, 'pdf': 50} formats = [] for fmt in config.plot_formats: if isinstance(fmt, str): formats.append((fmt, default_dpi.get(fmt, 80))) elif type(fmt) in (tuple, list) and len(fmt)==2: formats.append((str(fmt[0]), int(fmt[1]))) else: raise PlotError('invalid image format "%r" in plot_formats' % fmt) # -- Try to determine if all images already exist code_pieces = split_code_at_show(code) # Look for single-figure output files first all_exists = True img = ImageFile(output_base, output_dir) for format, dpi in formats: if out_of_date(code_path, img.filename(format)): all_exists = False break img.formats.append(format) if all_exists: return [(code, [img])] # Then look for multi-figure output files results = [] all_exists = True for i, code_piece in enumerate(code_pieces): images = [] for j in range(1000): img = ImageFile('%s_%02d_%02d' % (output_base, i, j), output_dir) for format, dpi in formats: if out_of_date(code_path, img.filename(format)): all_exists = False break img.formats.append(format) # assume that if we have one, we have them all if not all_exists: all_exists = (j > 0) break images.append(img) if not all_exists: break results.append((code_piece, images)) if all_exists: return results # -- We didn't find the files, so build them results = [] ns = {} for i, code_piece in enumerate(code_pieces): # Clear between runs plt.close('all') # Run code run_code(code_piece, code_path, ns) # Collect images images = [] fig_managers = _pylab_helpers.Gcf.get_all_fig_managers() for j, figman in enumerate(fig_managers): if len(fig_managers) == 1 and len(code_pieces) == 1: img = ImageFile(output_base, output_dir) else: img = ImageFile("%s_%02d_%02d" % (output_base, i, j), output_dir) images.append(img) for format, dpi in formats: try: figman.canvas.figure.savefig(img.filename(format), dpi=dpi) except exceptions.BaseException as err: raise PlotError(traceback.format_exc()) img.formats.append(format) # Results results.append((code_piece, images)) return results #------------------------------------------------------------------------------ # Relative pathnames #------------------------------------------------------------------------------ try: from os.path import relpath except ImportError: # Copied from Python 2.7 if 'posix' in sys.builtin_module_names: def relpath(path, start=os.path.curdir): """Return a relative version of a path""" from os.path import sep, curdir, join, abspath, commonprefix, \ pardir if not path: raise ValueError("no path specified") start_list = abspath(start).split(sep) path_list = abspath(path).split(sep) # Work out how much of the filepath is shared by start and path. i = len(commonprefix([start_list, path_list])) rel_list = [pardir] * (len(start_list)-i) + path_list[i:] if not rel_list: return curdir return join(*rel_list) elif 'nt' in sys.builtin_module_names: def relpath(path, start=os.path.curdir): """Return a relative version of a path""" from os.path import sep, curdir, join, abspath, commonprefix, \ pardir, splitunc if not path: raise ValueError("no path specified") start_list = abspath(start).split(sep) path_list = abspath(path).split(sep) if start_list[0].lower() != path_list[0].lower(): unc_path, rest = splitunc(path) unc_start, rest = splitunc(start) if bool(unc_path) ^ bool(unc_start): raise ValueError("Cannot mix UNC and non-UNC paths (%s and %s)" % (path, start)) else: raise ValueError("path is on drive %s, start on drive %s" % (path_list[0], start_list[0])) # Work out how much of the filepath is shared by start and path. for i in range(min(len(start_list), len(path_list))): if start_list[i].lower() != path_list[i].lower(): break else: i += 1 rel_list = [pardir] * (len(start_list)-i) + path_list[i:] if not rel_list: return curdir return join(*rel_list) else: raise RuntimeError("Unsupported platform (no relpath available!)")
bsd-3-clause
X-DataInitiative/tick
tick/dataset/fetch_url_dataset.py
2
3229
# License: BSD 3 clause import os import tarfile import numpy as np import scipy from sklearn.datasets import load_svmlight_file from tick.dataset.download_helper import download_dataset, get_data_home dataset_path = 'url/url_svmlight.tar.gz' dataset_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/url/url_svmlight.tar.gz' _N_FEATURES = 3231961 def load_url_dataset_day(cache_path, days): """Loads url dataset from a tar file Parameters ---------- cache_path : `str` Path to the tar file days : `list` or `range` Days to be loaded Returns ------- X : `np.ndarray` A sparse matrix containing the features y : `np.ndarray` An array containing the labels """ tar_file = tarfile.open(cache_path, "r:gz") X, y = None, None for day in days: data_filename = 'url_svmlight/Day{}.svm'.format(day) with tar_file.extractfile(data_filename) as data_file: X_day, y_day = load_svmlight_file(data_file, n_features=_N_FEATURES) if X is None: X, y = X_day, y_day else: X = scipy.sparse.vstack((X, X_day)) y = np.hstack((y, y_day)) return X, y def download_url_dataset(data_home=None, verbose=False): """Downloads URL dataset and stores it locally Parameters ---------- data_home : `str`, optional, default=None Specify a download and cache folder for the datasets. If None and not configured with TICK_DATASETS environement variable all tick datasets are stored in '~/tick_datasets' subfolders. verbose : `bool`, default=True If True, download progress bar will be printed Returns ------- cache_path : `str` File path of the downloaded data """ return download_dataset(dataset_url, dataset_path, data_home=data_home, verbose=verbose) def fetch_url_dataset(n_days=120, data_home=None, verbose=True): """Loads URL dataset Uses cache if this dataset has already been downloaded. Parameters ---------- data_home : `str`, optional, default=None Specify a download and cache folder for the datasets. If None and not configured with TICK_DATASETS environement variable all tick datasets are stored in '~/tick_datasets' subfolders. verbose : `bool`, default=True If True, download progress bar will be printed Returns ------- X : `np.ndarray` A sparse matrix containing the features y : `np.ndarray` An array containing the labels """ data_home = get_data_home(data_home) cache_path = os.path.join(data_home, dataset_path) dataset = None if os.path.exists(cache_path): try: dataset = load_url_dataset_day(cache_path, range(n_days)) except Exception as e: print(80 * '_') print('Cache loading failed') print(80 * '_') print(e) if dataset is None: download_url_dataset(data_home=data_home, verbose=verbose) dataset = load_url_dataset_day(cache_path, range(n_days)) return dataset
bsd-3-clause
tjhei/burnman_old2
burnman/seismic.py
2
9383
# BurnMan - a lower mantle toolkit # Copyright (C) 2012, 2013, Heister, T., Unterborn, C., Rose, I. and Cottaar, S. # Released under GPL v2 or later. import numpy as np import tools import matplotlib.pyplot as plt import math class seismic_data: """ base class for all seismic models """ def __init__(self): pass # depth in km def internal_depth_list(self): """ returns a sorted list of depths where this seismic data is computed at """ return np.arange(0.,6000.0, 100.0) def evaluate_all_at(self, depth_list): """ returns pressure[Pa], density[kg/m^3], Vp[m/s], Vs[m/s] and Vphi[m/s] for a list of depths[m] """ pressures = np.array([self.pressure(r) for r in depth_list]) density = np.array([self.density(r) for r in depth_list]) v_p = np.array([self.v_p(r) for r in depth_list]) v_s = np.array([self.v_s(r) for r in depth_list]) v_phi = np.array([self.v_phi(r) for r in depth_list]) return pressures, density, v_p, v_s, v_phi def pressure(self, depth): raise ValueError, "not implemented" return 0 def v_p(self, depth): raise ValueError, "not implemented" return 0 def v_s(self, depth): raise ValueError, "not implemented" return 0 def v_phi(self, depth): raise ValueError, "not implemented" return 0 def density(self, depth): raise ValueError, "not implemented" return 0 def depth(self, pressure): raise ValueError, "not implemented" return -1 class radiustable(seismic_data): """ this is a base class that gets the information from a table indexed and sorted by radius. Fill the tables in the constructor after deriving from this class. Note: all tables need to be sorted by increasing radius. Alternatively, you can also overwrite the _lookup function if you want to access with something else like depth than radius. """ def __init__(self): seismic_data.__init__(self) self.table_radius = [] self.table_pressure = [] self.table_density = [] self.table_vp = [] self.table_vs = [] self.earth_radius = 6371.0e3 def internal_depth_list(self): return (self.earth_radius - self.table_radius)[::-1] #radius is sorted in increasing order, so we need to reverse the depth list def pressure(self, depth): return self._lookup(depth, self.table_pressure) def v_p(self, depth): return self._lookup(depth, self.table_vp) def v_s(self, depth): return self._lookup(depth, self.table_vs) def v_phi(self, depth): v_s=self.v_s(depth) v_p=self.v_p(depth) return math.sqrt(v_p*v_p-4./3.*v_s*v_s) def density(self, depth): return self._lookup(depth, self.table_density) def depth(self, pressure): radius = tools.lookup_and_interpolate(self.table_pressure[::-1], self.table_radius[::-1], pressure) return self.earth_radius - radius def _lookup(self, depth, value_table): radius = self.earth_radius - depth return tools.lookup_and_interpolate(self.table_radius, value_table, radius) class prem(radiustable): """ reads in the table for PREM (input_seismic/prem_table.txt) using the base class radiustable """ def __init__(self): radiustable.__init__(self) table = tools.read_table("input_seismic/prem_table.txt") # radius, pressure, density, v_p, v_s table = np.array(table) self.table_radius = table[:,0] self.table_pressure = table[:,1] self.table_density = table[:,2] self.table_vp = table[:,3] self.table_vs = table[:,4] def grav(self,depths): table = tools.read_table("input_seismic/grav_for_PREM.txt") # radius, g table = np.array(table) table_rad = table[:,0] table_g = table[:,1] return np.interp(self.earth_radius-depths, table_rad,table_g) class slow(radiustable): """ Inserts the mean profiles for slower regions in the lower mantle (Lekic et al. 2012). We need to stitch together three tables. Note that prem_lowermantle has a wider range, so we cut away rows at the top and bottom. Interpolation is not necessary, because all tables where generated with at the same depths """ def __init__(self): radiustable.__init__(self) table = tools.read_table("input_seismic/prem_lowermantle.txt")#data is: radius pressure density V_p V_s Q_K Q_G table = np.array(table) table[:,0] = table[:,0] table2 = tools.read_table("input_seismic/swave_slow.txt") table2 = np.array(table2) table3 = tools.read_table("input_seismic/pwave_slow.txt") table3 = np.array(table3) min_radius = self.earth_radius-max(table2[:,0]) max_radius = self.earth_radius-min(table2[:,0]) table=np.array(filter(lambda x: (x[0]>=min_radius and x[0]<=max_radius), table)) assert(len(table) == len(table2)) assert(len(table) == len(table3)) self.table_radius = table[:,0] self.table_pressure = table[:,1] self.table_density = table[:,2] self.table_vp = table3[:,1] self.table_vs = table2[:,1] class fast(radiustable): """ Inserts the mean profiles for faster regions in the lower mantle (Lekic et al. 2012). We need to stitch together three tables. Note that prem_lowermantle has a wider range, so we cut away rows at the top and bottom. Interpolation is not necessary, because all tables where generated with at the same depths """ def __init__(self): radiustable.__init__(self) table = tools.read_table("input_seismic/prem_lowermantle.txt")#data is: radius pressure density V_p V_s Q_K Q_G table = np.array(table) table[:,0] = table[:,0] table2 = tools.read_table("input_seismic/swave_fast.txt") table2 = np.array(table2) table3 = tools.read_table("input_seismic/pwave_fast.txt") table3 = np.array(table3) min_radius = self.earth_radius-max(table2[:,0]) max_radius = self.earth_radius-min(table2[:,0]) table=np.array(filter(lambda x: (x[0]>=min_radius and x[0]<=max_radius), table)) assert(len(table) == len(table2)) assert(len(table) == len(table3)) self.table_radius = table[:,0] self.table_pressure = table[:,1] self.table_density = table[:,2] self.table_vp = table3[:,1] self.table_vs = table2[:,1] # this uses prem_lowermantle table class prem_test(radiustable): def __init__(self): radiustable.__init__(self) table = tools.read_table("input_seismic/prem_lowermantle.txt")#data is: radius pressure density V_p V_s Q_K Q_G table = np.array(table) self.table_radius = table[:,0] self.table_pressure = table[:,1] self.table_density = table[:,2] self.table_vp = table[:,3] self.table_vs = table[:,4] def attenuation_correction(v_p,v_s,v_phi,Qs,Qphi): """ Applies the attenuation correction following Matas et al. (2007), page 4. This is a minor effect on the velocities """ beta = 0.3 # Matas et al. (2007) page 4 Qp = 3./4.*pow((v_p/v_s),2.)*Qs # Matas et al. (2007) page 4 cot=1./np.tan(beta*np.pi/2.) v_p = v_p*(1.-1./2.*cot*1./Qp) # Matas et al. (2007) page 1 v_s = v_s*(1.-1./2.*cot*1./Qs) v_phi= v_phi*(1.-1./2.*cot*1./Qphi) return v_p, v_s, v_phi # shared variable of prem, so that other routines do not need to create # prem over and over. See geotherm for example. prem_model = prem() if __name__ == "__main__": #create a seismic dataset from prem: s=prem() depths = s.internal_depth_list() pressures, density, v_p, v_s, v_phi = s.evaluate_all_at(depths) print depths, pressures, density, v_p, v_s, v_phi # specify where we want to evaluate, here we map from pressure to depth, because we can #p = np.arange(1e9,360e9,5e9) #depths = map(s.depth, p) #we could also just specify some depth levels directly like this: #depths = np.arange(35e3,5600e3,100e3) #now evaluate everything at the given depths levels (using interpolation) #pressures, density, v_p, v_s, v_phi = s.evaluate_all_at(depths) # plot vs and vp and v_phi (note that v_phi is computed!) plt.plot(depths/1.e3,v_p/1.e3,'+-r', label='v_p') plt.plot(depths/1.e3,v_s/1.e3,'+-b', label='v_s') plt.plot(depths/1.e3,v_phi/1.e3,'--g', label='v_phi') plt.legend() plt.xlabel('depth in km') plt.ylabel('km/s') plt.show() s1=prem() depths=s1.internal_depth_list() pressures, density, v_p, v_s, v_phi = s1.evaluate_all_at(depths) plt.plot(depths/1.e3,v_p/1.e3,'+-r', label='v_p') plt.plot(depths/1.e3,v_s/1.e3,'+-b', label='v_s') plt.plot(depths/1.e3,v_phi/1.e3,'--g', label='v_phi') s2=prem_test() depths=s2.internal_depth_list() pressures, density, v_p, v_s, v_phi = s2.evaluate_all_at(depths) plt.plot(depths,v_p/1.e3,'x-r', label='v_p') plt.plot(depths,v_s/1.e3,'x-b', label='v_s') plt.plot(depths,v_phi/1.e3,'x-g', label='v_phi') plt.show()
gpl-2.0
datalyze-solutions/pandas-qt
setup.py
1
2771
from __future__ import print_function from setuptools import setup, find_packages from setuptools.command.test import test as TestCommand import io import codecs import os import re import sys # TODO: sip is only needed for PyQt4, they should be imported together. try: import sip except ImportError as e: raise ImportError, "install sip first (comming with PyQt4)" try: import PyQt4 except ImportError as e: # TODO: try to import PySide. raise ImportError, "install PyQt4 or PySide" here = os.path.abspath(os.path.dirname(__file__)) version_file = open(os.path.join(here, 'pandasqt', '__init__.py'), 'rU') __version__ = re.sub( r".*\b__version__\s+=\s+'([^']+)'.*", r'\1', [ line.strip() for line in version_file if '__version__' in line ].pop(0) ) version_file.close() def read(*filenames, **kwargs): encoding = kwargs.get('encoding', 'utf-8') sep = kwargs.get('sep', '\n') buf = [] for filename in filenames: with io.open(filename, encoding=encoding) as f: buf.append(f.read()) return sep.join(buf) long_description = read('README') class PyTest(TestCommand): def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): import pytest errcode = pytest.main(self.test_args) sys.exit(errcode) tests_require = ['easygui', 'pandas == 0.17.1', 'pyside', 'pytest', 'pytest-cov', 'pytest-qt', 'python-magic==0.4.6'] setup( name='pandas-qt', version=__version__, url='https://github.com/datalyze-solutions/pandas-qt', license='MIT License', namespace_packages = ['pandasqt'], author='Matthias Ludwig, Marcel Radischat', tests_require=tests_require, install_requires=['easygui', 'pandas==0.17.1', 'pytest', 'pytest-qt==1.2.2', 'pytest-cov', 'python-magic==0.4.6'], cmdclass={'test': PyTest}, author_email='[email protected]', description='Utilities to use pandas (the data analysis / manipulation library for Python) with Qt.', long_description=long_description, include_package_data=True, packages=['pandasqt'], platforms='any', test_suite='tests', classifiers = [ 'Programming Language :: Python', 'Development Status :: 4 - Beta', 'Natural Language :: German', 'Environment :: X11 Applications :: Qt', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Software Development :: User Interfaces' ], extras_require={ 'testing': tests_require, } )
mit
datachand/h2o-3
h2o-py/tests/testdir_algos/glm/pyunit_link_functions_poissonGLM.py
5
2254
import sys sys.path.insert(1, "../../../") import h2o, tests import pandas as pd import zipfile import statsmodels.api as sm def link_functions_poisson(): print("Read in prostate data.") h2o_data = h2o.import_file(path=h2o.locate("smalldata/prostate/prostate_complete.csv.zip")) sm_data = pd.read_csv(zipfile.ZipFile(h2o.locate("smalldata/prostate/prostate_complete.csv.zip")). open("prostate_complete.csv")).as_matrix() sm_data_response = sm_data[:,9] sm_data_features = sm_data[:,1:9] print("Testing for family: POISSON") print("Set variables for h2o.") myY = "GLEASON" myX = ["ID","AGE","RACE","CAPSULE","DCAPS","PSA","VOL","DPROS"] print("Create h2o model with canonical link: LOG") h2o_model_log = h2o.glm(x=h2o_data[myX], y=h2o_data[myY], family="poisson", link="log",alpha=[0.5], Lambda=[0]) print("Create statsmodel model with canonical link: LOG") sm_model_log = sm.GLM(endog=sm_data_response, exog=sm_data_features, family=sm.families.Poisson(sm.families.links.log)).fit() print("Compare model deviances for link function log") h2o_deviance_log = h2o_model_log.residual_deviance() / h2o_model_log.null_deviance() sm_deviance_log = sm_model_log.deviance / sm_model_log.null_deviance assert h2o_deviance_log - sm_deviance_log < 0.01, "expected h2o to have an equivalent or better deviance measures" print("Create h2o models with link: IDENTITY") h2o_model_id = h2o.glm(x=h2o_data[myX], y=h2o_data[myY], family="poisson", link="identity",alpha=[0.5], Lambda=[0]) print("Create statsmodel models with link: IDENTITY") sm_model_id = sm.GLM(endog=sm_data_response, exog=sm_data_features, family=sm.families.Poisson(sm.families.links.identity)).fit() print("Compare model deviances for link function identity") h2o_deviance_id = h2o_model_id.residual_deviance() / h2o_model_id.null_deviance() sm_deviance_id = sm_model_id.deviance / sm_model_id.null_deviance assert h2o_deviance_id - sm_deviance_id < 0.01, "expected h2o to have an equivalent or better deviance measures" if __name__ == "__main__": tests.run_test(sys.argv, link_functions_poisson)
apache-2.0
raincoatrun/ThinkStats2
code/chap12soln.py
68
4459
"""This file contains code for use with "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import pandas import numpy as np import statsmodels.formula.api as smf import thinkplot import thinkstats2 import regression import timeseries def RunQuadraticModel(daily): """Runs a linear model of prices versus years. daily: DataFrame of daily prices returns: model, results """ daily['years2'] = daily.years**2 model = smf.ols('ppg ~ years + years2', data=daily) results = model.fit() return model, results def PlotQuadraticModel(daily, name): """ """ model, results = RunQuadraticModel(daily) regression.SummarizeResults(results) timeseries.PlotFittedValues(model, results, label=name) thinkplot.Save(root='timeseries11', title='fitted values', xlabel='years', xlim=[-0.1, 3.8], ylabel='price per gram ($)') timeseries.PlotResidualPercentiles(model, results) thinkplot.Save(root='timeseries12', title='residuals', xlabel='years', ylabel='price per gram ($)') years = np.linspace(0, 5, 101) thinkplot.Scatter(daily.years, daily.ppg, alpha=0.1, label=name) timeseries.PlotPredictions(daily, years, func=RunQuadraticModel) thinkplot.Save(root='timeseries13', title='predictions', xlabel='years', xlim=[years[0]-0.1, years[-1]+0.1], ylabel='price per gram ($)') def PlotEwmaPredictions(daily, name): """ """ # use EWMA to estimate slopes filled = timeseries.FillMissing(daily) filled['slope'] = pandas.ewma(filled.ppg.diff(), span=180) filled[-1:] # extract the last inter and slope start = filled.index[-1] inter = filled.ewma[-1] slope = filled.slope[-1] # reindex the DataFrame, adding a year to the end dates = pandas.date_range(filled.index.min(), filled.index.max() + np.timedelta64(365, 'D')) predicted = filled.reindex(dates) # generate predicted values and add them to the end predicted['date'] = predicted.index one_day = np.timedelta64(1, 'D') predicted['days'] = (predicted.date - start) / one_day predict = inter + slope * predicted.days predicted.ewma.fillna(predict, inplace=True) # plot the actual values and predictions thinkplot.Scatter(daily.ppg, alpha=0.1, label=name) thinkplot.Plot(predicted.ewma) thinkplot.Save() class SerialCorrelationTest(thinkstats2.HypothesisTest): """Tests serial correlations by permutation.""" def TestStatistic(self, data): """Computes the test statistic. data: tuple of xs and ys """ series, lag = data test_stat = abs(thinkstats2.SerialCorr(series, lag)) return test_stat def RunModel(self): """Run the model of the null hypothesis. returns: simulated data """ series, lag = self.data permutation = series.reindex(np.random.permutation(series.index)) return permutation, lag def TestSerialCorr(daily): """Tests serial correlations in daily prices and their residuals. daily: DataFrame of daily prices """ # test the correlation between consecutive prices series = daily.ppg test = SerialCorrelationTest((series, 1)) pvalue = test.PValue() print(test.actual, pvalue) # test for serial correlation in residuals of the linear model _, results = timeseries.RunLinearModel(daily) series = results.resid test = SerialCorrelationTest((series, 1)) pvalue = test.PValue() print(test.actual, pvalue) # test for serial correlation in residuals of the quadratic model _, results = RunQuadraticModel(daily) series = results.resid test = SerialCorrelationTest((series, 1)) pvalue = test.PValue() print(test.actual, pvalue) def main(name): transactions = timeseries.ReadData() dailies = timeseries.GroupByQualityAndDay(transactions) name = 'high' daily = dailies[name] PlotQuadraticModel(daily, name) TestSerialCorr(daily) PlotEwmaPredictions(daily, name) if __name__ == '__main__': import sys main(*sys.argv)
gpl-3.0
yyjiang/scikit-learn
examples/manifold/plot_manifold_sphere.py
258
5101
#!/usr/bin/python # -*- coding: utf-8 -*- """ ============================================= Manifold Learning methods on a severed sphere ============================================= An application of the different :ref:`manifold` techniques on a spherical data-set. Here one can see the use of dimensionality reduction in order to gain some intuition regarding the manifold learning methods. Regarding the dataset, the poles are cut from the sphere, as well as a thin slice down its side. This enables the manifold learning techniques to 'spread it open' whilst projecting it onto two dimensions. For a similar example, where the methods are applied to the S-curve dataset, see :ref:`example_manifold_plot_compare_methods.py` Note that the purpose of the :ref:`MDS <multidimensional_scaling>` is to find a low-dimensional representation of the data (here 2D) in which the distances respect well the distances in the original high-dimensional space, unlike other manifold-learning algorithms, it does not seeks an isotropic representation of the data in the low-dimensional space. Here the manifold problem matches fairly that of representing a flat map of the Earth, as with `map projection <http://en.wikipedia.org/wiki/Map_projection>`_ """ # Author: Jaques Grobler <[email protected]> # License: BSD 3 clause print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.ticker import NullFormatter from sklearn import manifold from sklearn.utils import check_random_state # Next line to silence pyflakes. Axes3D # Variables for manifold learning. n_neighbors = 10 n_samples = 1000 # Create our sphere. random_state = check_random_state(0) p = random_state.rand(n_samples) * (2 * np.pi - 0.55) t = random_state.rand(n_samples) * np.pi # Sever the poles from the sphere. indices = ((t < (np.pi - (np.pi / 8))) & (t > ((np.pi / 8)))) colors = p[indices] x, y, z = np.sin(t[indices]) * np.cos(p[indices]), \ np.sin(t[indices]) * np.sin(p[indices]), \ np.cos(t[indices]) # Plot our dataset. fig = plt.figure(figsize=(15, 8)) plt.suptitle("Manifold Learning with %i points, %i neighbors" % (1000, n_neighbors), fontsize=14) ax = fig.add_subplot(251, projection='3d') ax.scatter(x, y, z, c=p[indices], cmap=plt.cm.rainbow) try: # compatibility matplotlib < 1.0 ax.view_init(40, -10) except: pass sphere_data = np.array([x, y, z]).T # Perform Locally Linear Embedding Manifold learning methods = ['standard', 'ltsa', 'hessian', 'modified'] labels = ['LLE', 'LTSA', 'Hessian LLE', 'Modified LLE'] for i, method in enumerate(methods): t0 = time() trans_data = manifold\ .LocallyLinearEmbedding(n_neighbors, 2, method=method).fit_transform(sphere_data).T t1 = time() print("%s: %.2g sec" % (methods[i], t1 - t0)) ax = fig.add_subplot(252 + i) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("%s (%.2g sec)" % (labels[i], t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') # Perform Isomap Manifold learning. t0 = time() trans_data = manifold.Isomap(n_neighbors, n_components=2)\ .fit_transform(sphere_data).T t1 = time() print("%s: %.2g sec" % ('ISO', t1 - t0)) ax = fig.add_subplot(257) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("%s (%.2g sec)" % ('Isomap', t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') # Perform Multi-dimensional scaling. t0 = time() mds = manifold.MDS(2, max_iter=100, n_init=1) trans_data = mds.fit_transform(sphere_data).T t1 = time() print("MDS: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(258) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("MDS (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') # Perform Spectral Embedding. t0 = time() se = manifold.SpectralEmbedding(n_components=2, n_neighbors=n_neighbors) trans_data = se.fit_transform(sphere_data).T t1 = time() print("Spectral Embedding: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(259) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("Spectral Embedding (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') # Perform t-distributed stochastic neighbor embedding. t0 = time() tsne = manifold.TSNE(n_components=2, init='pca', random_state=0) trans_data = tsne.fit_transform(sphere_data).T t1 = time() print("t-SNE: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(250) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("t-SNE (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') plt.show()
bsd-3-clause
3324fr/spinalcordtoolbox
scripts/sct_viewer.py
1
40399
#!/usr/bin/env python ######################################################################################### # # Visualizer for MRI volumes # # # --------------------------------------------------------------------------------------- # Copyright (c) 2015 Polytechnique Montreal <www.neuro.polymtl.ca> # Authors: Benjamin De Leener # Created: 2015-01-30 # # Notes on how to use classes in this script. # If you are interested into selecting manually some points in an image, you can use the following code. # from sct_viewer import ClickViewer # from msct_image import Image # # im_input = Image('my_image.nii.gz') # # im_input_SAL = im_input.copy() # # SAL orientation is mandatory # im_input_SAL.change_orientation('SAL') # # The viewer is composed by a primary plot and a secondary plot. The primary plot is the one you will click points in. # # The secondary plot will help you go throughout slices in another dimensions to help manual selection. # viewer = ClickViewer(im_input_SAL, orientation_subplot=['sag', 'ax']) # viewer.number_of_slices = X # Change X appropriately. # viewer.gap_inter_slice = Y # this number should reflect image spacing # viewer.calculate_list_slices() # # start the viewer that ask the user to enter a few points along the spinal cord # mask_points = viewer.start() # print mask_points # # About the license: see the file LICENSE.TXT ######################################################################################### import sys from msct_parser import Parser from msct_image import Image from bisect import bisect from numpy import arange, max, pad, linspace, mean, median, std, percentile import numpy as np from msct_types import * import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.lines import Line2D from matplotlib import cm import sct_utils as sct from time import time from copy import copy from matplotlib.widgets import Slider, Button, RadioButtons import webbrowser class SinglePlot: """ This class manages mouse events on one image. """ def __init__(self, ax, images, viewer, view=2, display_cross='hv', im_params=None): self.axes = ax self.images = images # this is a list of images self.viewer = viewer self.view = view self.display_cross = display_cross self.image_dim = self.images[0].data.shape self.figs = [] self.cross_to_display = None self.aspect_ratio = None for i, image in enumerate(images): data_to_display = None if self.view == 1: self.cross_to_display = [[[self.viewer.current_point.y, self.viewer.current_point.y], [-10000, 10000]], [[-10000, 10000], [self.viewer.current_point.z, self.viewer.current_point.z]]] self.aspect_ratio = self.viewer.aspect_ratio[0] data_to_display = image.data[int(self.image_dim[0] / 2), :, :] elif self.view == 2: self.cross_to_display = [[[self.viewer.current_point.x, self.viewer.current_point.x], [-10000, 10000]], [[-10000, 10000], [self.viewer.current_point.z, self.viewer.current_point.z]]] self.aspect_ratio = self.viewer.aspect_ratio[1] data_to_display = image.data[:, int(self.image_dim[1] / 2), :] elif self.view == 3: self.cross_to_display = [[[self.viewer.current_point.x, self.viewer.current_point.x], [-10000, 10000]], [[-10000, 10000], [self.viewer.current_point.y, self.viewer.current_point.y]]] self.aspect_ratio = self.viewer.aspect_ratio[2] data_to_display = image.data[:, :, int(self.image_dim[2] / 2)] if str(i) in im_params.images_parameters: my_cmap = copy(cm.get_cmap(im_params.images_parameters[str(i)].cmap)) my_interpolation = im_params.images_parameters[str(i)].interp my_alpha = float(im_params.images_parameters[str(i)].alpha) else: my_cmap = cm.get_cmap('gray') my_interpolation = 'nearest' my_alpha = 1.0 my_cmap.set_under('b', alpha=0) self.figs.append(self.axes.imshow(data_to_display, aspect=self.aspect_ratio, alpha=my_alpha)) self.figs[-1].set_cmap(my_cmap) self.figs[-1].set_interpolation(my_interpolation) self.axes.set_axis_bgcolor('black') self.axes.set_xticks([]) self.axes.set_yticks([]) self.line_horizontal = Line2D(self.cross_to_display[1][1], self.cross_to_display[1][0], color='white') self.line_vertical = Line2D(self.cross_to_display[0][1], self.cross_to_display[0][0], color='white') if 'h' in display_cross: self.axes.add_line(self.line_horizontal) if 'v' in display_cross: self.axes.add_line(self.line_vertical) self.zoom_factor = 1.0 def connect(self): """ connect to all the events we need :return: """ self.cidpress_click = self.figs[0].figure.canvas.mpl_connect('button_press_event', self.on_press) self.cidscroll = self.figs[0].figure.canvas.mpl_connect('scroll_event', self.on_scroll) self.cidrelease = self.figs[0].figure.canvas.mpl_connect('button_release_event', self.on_release) self.cidmotion = self.figs[0].figure.canvas.mpl_connect('motion_notify_event', self.on_motion) def draw(self): self.figs[0].figure.canvas.draw() def update_slice(self, target, data_update=True): """ This function change the viewer to update the current slice :param target: number of the slice to go on :param data_update: False if you don't want to update data :return: """ if isinstance(target, list): target_slice = target[self.view - 1] list_remaining_views = list([0, 1, 2]) list_remaining_views.remove(self.view - 1) self.cross_to_display[0][0] = [target[list_remaining_views[0]], target[list_remaining_views[0]]] self.cross_to_display[1][1] = [target[list_remaining_views[1]], target[list_remaining_views[1]]] else: target_slice = target if self.view == 1: if 0 <= target_slice < self.images[0].data.shape[0]: if data_update: for i, image in enumerate(self.images): self.figs[i].set_data(image.data[target_slice, :, :]) if 'v' in self.display_cross: self.line_vertical.set_ydata(self.cross_to_display[0][0]) if 'h' in self.display_cross: self.line_horizontal.set_xdata(self.cross_to_display[1][1]) elif self.view == 2: if 0 <= target_slice < self.images[0].data.shape[1]: if data_update: for i, image in enumerate(self.images): self.figs[i].set_data(image.data[:, target_slice, :]) if 'v' in self.display_cross: self.line_vertical.set_ydata(self.cross_to_display[0][0]) if 'h' in self.display_cross: self.line_horizontal.set_xdata(self.cross_to_display[1][1]) elif self.view == 3: if 0 <= target_slice < self.images[0].data.shape[2]: if data_update: for i, image in enumerate(self.images): self.figs[i].set_data(image.data[:, :, target_slice]) if 'v' in self.display_cross: self.line_vertical.set_ydata(self.cross_to_display[0][0]) if 'h' in self.display_cross: self.line_horizontal.set_xdata(self.cross_to_display[1][1]) self.figs[0].figure.canvas.draw() def on_press(self, event): """ when pressing on the screen, add point into a list, then change current slice if finished, close the window and send the result :param event: :return: """ if event.button == 1 and event.inaxes == self.axes: self.viewer.on_press(event, self) return def change_intensity(self, min_intensity, max_intensity, id_image=0): self.figs[id_image].set_clim(min_intensity, max_intensity) self.figs[id_image].figure.canvas.draw() def on_motion(self, event): if event.button == 1 and event.inaxes == self.axes: return self.viewer.on_motion(event, self) elif event.button == 3 and event.inaxes == self.axes: return self.viewer.change_intensity(event, self) else: return def on_release(self, event): if event.button == 1: return self.viewer.on_release(event, self) elif event.button == 3: return self.viewer.change_intensity(event, self) else: return def update_xy_lim(self, x_center=None, y_center=None, x_scale_factor=1.0, y_scale_factor=1.0, zoom=True): # get the current x and y limits cur_xlim = self.axes.get_xlim() cur_ylim = self.axes.get_ylim() if x_center is None: x_center = (cur_xlim[1] - cur_xlim[0]) / 2.0 if y_center is None: y_center = (cur_ylim[1] - cur_ylim[0]) / 2.0 # Get distance from the cursor to the edge of the figure frame x_left = x_center - cur_xlim[0] x_right = cur_xlim[1] - x_center y_top = y_center - cur_ylim[0] y_bottom = cur_ylim[1] - y_center if zoom: scale_factor = (x_scale_factor + y_scale_factor) / 2.0 if 0.005 < self.zoom_factor * scale_factor <= 3.0: self.zoom_factor *= scale_factor self.axes.set_xlim([x_center - x_left * x_scale_factor, x_center + x_right * x_scale_factor]) self.axes.set_ylim([y_center - y_top * y_scale_factor, y_center + y_bottom * y_scale_factor]) self.figs[0].figure.canvas.draw() else: self.axes.set_xlim([x_center - x_left * x_scale_factor, x_center + x_right * x_scale_factor]) self.axes.set_ylim([y_center - y_top * y_scale_factor, y_center + y_bottom * y_scale_factor]) self.figs[0].figure.canvas.draw() def on_scroll(self, event): """ when scrooling with the wheel, image is zoomed toward position on the screen :param event: :return: """ if event.inaxes == self.axes: base_scale = 0.5 xdata, ydata = event.xdata, event.ydata if event.button == 'up': # deal with zoom in scale_factor = 1 / base_scale elif event.button == 'down': # deal with zoom out scale_factor = base_scale else: # deal with something that should never happen scale_factor = 1.0 print event.button self.update_xy_lim(x_center=xdata, y_center=ydata, x_scale_factor=scale_factor, y_scale_factor=scale_factor, zoom=True) return class Viewer(object): def __init__(self, list_images, visualization_parameters=None): self.images = [] for im in list_images: if isinstance(im, Image): self.images.append(im) else: print "Error, one of the images is actually not an image..." # TODO: check same space # TODO: check if at least one image self.im_params = visualization_parameters # initialisation of plot self.fig = plt.figure(figsize=(8, 8)) self.fig.subplots_adjust(bottom=0.1, left=0.1) self.fig.patch.set_facecolor('lightgrey') # pad the image so that it is square in axial view (useful for zooming) self.image_dim = self.images[0].data.shape nx, ny, nz, nt, px, py, pz, pt = self.images[0].dim self.im_spacing = [px, py, pz] self.aspect_ratio = [float(self.im_spacing[1]) / float(self.im_spacing[2]), float(self.im_spacing[0]) / float(self.im_spacing[2]), float(self.im_spacing[0]) / float(self.im_spacing[1])] self.offset = [0.0, 0.0, 0.0] self.current_point = Coordinate([int(nx / 2), int(ny / 2), int(nz / 2)]) self.windows = [] self.press = [0, 0] self.mean_intensity = [] self.std_intensity = [] self.last_update = time() self.update_freq = 1.0/15.0 # 10 Hz def compute_offset(self): array_dim = [self.image_dim[0]*self.im_spacing[0], self.image_dim[1]*self.im_spacing[1], self.image_dim[2]*self.im_spacing[2]] index_max = np.argmax(array_dim) max_size = array_dim[index_max] self.offset = [int(round((max_size - array_dim[0]) / self.im_spacing[0]) / 2), int(round((max_size - array_dim[1]) / self.im_spacing[1]) / 2), int(round((max_size - array_dim[2]) / self.im_spacing[2]) / 2)] def pad_data(self): for image in self.images: image.data = pad(image.data, ((self.offset[0], self.offset[0]), (self.offset[1], self.offset[1]), (self.offset[2], self.offset[2])), 'constant', constant_values=(0, 0)) def setup_intensity(self): # TODO: change for segmentation images for i, image in enumerate(self.images): if str(i) in self.im_params.images_parameters: vmin = self.im_params.images_parameters[str(i)].vmin vmax = self.im_params.images_parameters[str(i)].vmax vmean = self.im_params.images_parameters[str(i)].vmean if self.im_params.images_parameters[str(i)].vmode == 'percentile': flattened_volume = image.flatten() first_percentile = percentile(flattened_volume[flattened_volume > 0], int(vmin)) last_percentile = percentile(flattened_volume[flattened_volume > 0], int(vmax)) mean_intensity = percentile(flattened_volume[flattened_volume > 0], int(vmean)) std_intensity = last_percentile - first_percentile elif self.im_params.images_parameters[str(i)].vmode == 'mean-std': mean_intensity = (float(vmax) + float(vmin)) / 2.0 std_intensity = (float(vmax) - float(vmin)) / 2.0 else: flattened_volume = image.flatten() first_percentile = percentile(flattened_volume[flattened_volume > 0], 0) last_percentile = percentile(flattened_volume[flattened_volume > 0], 99) mean_intensity = percentile(flattened_volume[flattened_volume > 0], 98) std_intensity = last_percentile - first_percentile self.mean_intensity.append(mean_intensity) self.std_intensity.append(std_intensity) min_intensity = mean_intensity - std_intensity max_intensity = mean_intensity + std_intensity for window in self.windows: window.figs[i].set_clim(min_intensity, max_intensity) def is_point_in_image(self, target_point): return 0 <= target_point.x < self.image_dim[0] and 0 <= target_point.y < self.image_dim[1] and 0 <= target_point.z < self.image_dim[2] def change_intensity(self, event, plot=None): if abs(event.xdata - self.press[0]) < 1 and abs(event.ydata - self.press[1]) < 1: self.press = event.xdata, event.ydata return if time() - self.last_update <= self.update_freq: return self.last_update = time() xlim, ylim = self.windows[0].axes.get_xlim(), self.windows[0].axes.get_ylim() mean_intensity_factor = (event.xdata - xlim[0]) / float(xlim[1] - xlim[0]) std_intensity_factor = (event.ydata - ylim[1]) / float(ylim[0] - ylim[1]) mean_factor = self.mean_intensity[0] - (mean_intensity_factor - 0.5) * self.mean_intensity[0] * 3.0 std_factor = self.std_intensity[0] + (std_intensity_factor - 0.5) * self.std_intensity[0] * 2.0 min_intensity = mean_factor - std_factor max_intensity = mean_factor + std_factor for window in self.windows: window.change_intensity(min_intensity, max_intensity) def get_event_coordinates(self, event, plot=None): point = None if plot.view == 1: point = Coordinate([self.current_point.x, int(round(event.ydata)), int(round(event.xdata)), 1]) elif plot.view == 2: point = Coordinate([int(round(event.ydata)), self.current_point.y, int(round(event.xdata)), 1]) elif plot.view == 3: point = Coordinate([int(round(event.ydata)), int(round(event.xdata)), self.current_point.z, 1]) return point def draw(self): for window in self.windows: window.fig.figure.canvas.draw() def start(self): plt.show() class ThreeViewer(Viewer): """ This class is a visualizer for volumes (3D images) and ask user to click on axial slices. Assumes AIL orientation """ def __init__(self, list_images, visualization_parameters=None): if isinstance(list_images, Image): list_images = [list_images] if not visualization_parameters: visualization_parameters = ParamMultiImageVisualization([ParamImageVisualization()]) super(ThreeViewer, self).__init__(list_images, visualization_parameters) self.compute_offset() self.pad_data() self.current_point = Coordinate([int(self.images[0].data.shape[0] / 2), int(self.images[0].data.shape[1] / 2), int(self.images[0].data.shape[2] / 2)]) ax = self.fig.add_subplot(222) self.windows.append(SinglePlot(ax=ax, images=self.images, viewer=self, view=1, im_params=visualization_parameters)) # SAL --> axial ax = self.fig.add_subplot(223) self.windows.append(SinglePlot(ax=ax, images=self.images, viewer=self, view=2, im_params=visualization_parameters)) # SAL --> frontal ax = self.fig.add_subplot(221) self.windows.append(SinglePlot(ax=ax, images=self.images, viewer=self, view=3, im_params=visualization_parameters)) # SAL --> sagittal for window in self.windows: window.connect() self.setup_intensity() def move(self, event, plot): is_in_axes = False for window in self.windows: if event.inaxes == window.axes: is_in_axes = True if not is_in_axes: return if event.xdata and abs(event.xdata - self.press[0]) < 0.5 and abs(event.ydata - self.press[1]) < 0.5: self.press = event.xdata, event.ydata return if time() - self.last_update <= self.update_freq: return self.last_update = time() self.current_point = self.get_event_coordinates(event, plot) point = [self.current_point.x, self.current_point.y, self.current_point.z] for window in self.windows: if window is plot: window.update_slice(point, data_update=False) else: window.update_slice(point, data_update=True) self.press = event.xdata, event.ydata return def on_press(self, event, plot=None): if event.button == 1: return self.move(event, plot) else: return def on_motion(self, event, plot=None): if event.button == 1: return self.move(event, plot) else: return def on_release(self, event, plot=None): if event.button == 1: return self.move(event, plot) else: return class ClickViewer(Viewer): """ This class is a visualizer for volumes (3D images) and ask user to click on axial slices. Assumes SAL orientation orientation_subplot: list of two views that will be plotted next to each other. The first view is the main one (right) and the second view is the smaller one (left). Orientations are: ax, sag, cor. """ def __init__(self, list_images, visualization_parameters=None, orientation_subplot=['ax', 'sag']): self.orientation = {'ax': 1, 'cor': 2, 'sag': 3} if isinstance(list_images, Image): list_images = [list_images] if not visualization_parameters: visualization_parameters = ParamMultiImageVisualization([ParamImageVisualization()]) super(ClickViewer, self).__init__(list_images, visualization_parameters) self.primary_subplot = orientation_subplot[0] self.secondary_subplot = orientation_subplot[1] self.current_slice = 0 self.number_of_slices = 0 self.gap_inter_slice = 0 self.compute_offset() self.pad_data() self.current_point = Coordinate([int(self.images[0].data.shape[0] / 2), int(self.images[0].data.shape[1] / 2), int(self.images[0].data.shape[2] / 2)]) # display axes, specific to viewer import matplotlib.gridspec as gridspec gs = gridspec.GridSpec(1, 3) # main plot on the right ax = self.fig.add_subplot(gs[0, 1:], axisbg='k') self.windows.append(SinglePlot(ax, self.images, self, view=self.orientation[self.primary_subplot], display_cross='', im_params=visualization_parameters)) self.plot_points, = self.windows[0].axes.plot([], [], '.r', markersize=10) if self.primary_subplot == 'ax': self.windows[0].axes.set_xlim([0, self.images[0].data.shape[2]]) self.windows[0].axes.set_ylim([self.images[0].data.shape[1], 0]) elif self.primary_subplot == 'cor': self.windows[0].axes.set_xlim([0, self.images[0].data.shape[2]]) self.windows[0].axes.set_ylim([self.images[0].data.shape[0], 0]) elif self.primary_subplot == 'sag': self.windows[0].axes.set_xlim([0, self.images[0].data.shape[0]]) self.windows[0].axes.set_ylim([self.images[0].data.shape[1], 0]) # smaller plot on the left display_cross = '' if self.primary_subplot == 'ax': display_cross = 'v' elif self.primary_subplot == 'cor': display_cross = 'h' elif self.primary_subplot == 'sag': display_cross = 'h' ax = self.fig.add_subplot(gs[0, 0], axisbg='k') self.windows.append(SinglePlot(ax, self.images, self, view=self.orientation[self.secondary_subplot], display_cross=display_cross, im_params=visualization_parameters)) for window in self.windows: window.connect() self.ax_help = plt.axes([0.81, 0.05, 0.1, 0.075]) button_help = Button(self.ax_help, 'Help') self.fig.canvas.mpl_connect('button_press_event', self.help) self.help_url = 'https://sourceforge.net/p/spinalcordtoolbox/wiki/Home/' # specialized for Click viewer self.list_points = [] self.list_points_useful_notation = '' # compute slices to display self.list_slices = [] self.calculate_list_slices() # variable to check if all slices have been processed self.all_processed = False self.setup_intensity() def calculate_list_slices(self): if self.number_of_slices != 0 and self.gap_inter_slice != 0: # mode multiple points with fixed gap central_slice = int(self.image_dim[self.orientation[self.primary_subplot]-1] / 2) first_slice = central_slice - (self.number_of_slices / 2) * self.gap_inter_slice last_slice = central_slice + (self.number_of_slices / 2) * self.gap_inter_slice if first_slice < 0: first_slice = 0 if last_slice >= self.image_dim[self.orientation[self.primary_subplot]-1]: last_slice = self.image_dim[self.orientation[self.primary_subplot]-1] - 1 self.list_slices = [int(item) for item in linspace(first_slice, last_slice, self.number_of_slices, endpoint=True)] elif self.number_of_slices != 0: self.list_slices = [int(item) for item in linspace(0, self.image_dim[self.orientation[self.primary_subplot]-1] - 1, self.number_of_slices, endpoint=True)] if self.list_slices[-1] != self.image_dim[self.orientation[self.primary_subplot]-1] - 1: self.list_slices.append(self.image_dim[self.orientation[self.primary_subplot]-1] - 1) elif self.gap_inter_slice != 0: self.list_slices = list(arange(0, self.image_dim[self.orientation[self.primary_subplot]-1], self.gap_inter_slice)) if self.list_slices[-1] != self.image_dim[self.orientation[self.primary_subplot]-1] - 1: self.list_slices.append(self.image_dim[self.orientation[self.primary_subplot]-1] - 1) else: self.gap_inter_slice = int(max([round(self.image_dim[self.orientation[self.primary_subplot]-1] / 15.0), 1])) self.number_of_slices = int(round(self.image_dim[self.orientation[self.primary_subplot]-1] / self.gap_inter_slice)) self.list_slices = [int(item) for item in linspace(0, self.image_dim[self.orientation[self.primary_subplot]-1] - 1, self.number_of_slices, endpoint=True)] if self.list_slices[-1] != self.image_dim[self.orientation[self.primary_subplot]-1] - 1: self.list_slices.append(self.image_dim[self.orientation[self.primary_subplot]-1] - 1) point = [self.current_point.x, self.current_point.y, self.current_point.z] point[self.orientation[self.primary_subplot]-1] = self.list_slices[self.current_slice] for window in self.windows: if window.view == self.orientation[self.secondary_subplot]: window.update_slice(point, data_update=False) else: window.update_slice(point, data_update=True) self.windows[1].axes.set_title('Click and hold\nto move around') self.title = self.windows[0].axes.set_title('Please select a new point on slice ' + str(self.list_slices[self.current_slice]) + '/' + str( self.image_dim[self.orientation[self.primary_subplot]-1] - 1) + ' (' + str(self.current_slice + 1) + '/' + str(len(self.list_slices)) + ')') def compute_offset(self): if self.primary_subplot == 'ax': array_dim = [self.image_dim[1] * self.im_spacing[1], self.image_dim[2] * self.im_spacing[2]] index_max = np.argmax(array_dim) max_size = array_dim[index_max] self.offset = [0, int(round((max_size - array_dim[0]) / self.im_spacing[1]) / 2), int(round((max_size - array_dim[1]) / self.im_spacing[2]) / 2)] elif self.primary_subplot == 'cor': array_dim = [self.image_dim[0] * self.im_spacing[0], self.image_dim[2] * self.im_spacing[2]] index_max = np.argmax(array_dim) max_size = array_dim[index_max] self.offset = [int(round((max_size - array_dim[0]) / self.im_spacing[0]) / 2), 0, int(round((max_size - array_dim[1]) / self.im_spacing[2]) / 2)] elif self.primary_subplot == 'sag': array_dim = [self.image_dim[0] * self.im_spacing[0], self.image_dim[1] * self.im_spacing[1]] index_max = np.argmax(array_dim) max_size = array_dim[index_max] self.offset = [int(round((max_size - array_dim[0]) / self.im_spacing[0]) / 2), int(round((max_size - array_dim[1]) / self.im_spacing[1]) / 2), 0] def on_press(self, event, plot=None): # below is the subplot that refers to the label collection if event.inaxes and plot.view == self.orientation[self.primary_subplot]: if self.primary_subplot == 'ax': target_point = Coordinate([int(self.list_slices[self.current_slice]), int(event.ydata) - self.offset[1], int(event.xdata) - self.offset[2], 1]) elif self.primary_subplot == 'cor': target_point = Coordinate([int(event.ydata) - self.offset[0], int(self.list_slices[self.current_slice]), int(event.xdata) - self.offset[2], 1]) elif self.primary_subplot == 'sag': target_point = Coordinate([int(event.ydata) - self.offset[0], int(event.xdata) - self.offset[1], int(self.list_slices[self.current_slice]), 1]) if self.is_point_in_image(target_point): self.list_points.append(target_point) self.current_slice += 1 if self.current_slice < len(self.list_slices): point = [self.current_point.x, self.current_point.y, self.current_point.z] point[self.orientation[self.secondary_subplot]-1] = self.list_slices[self.current_slice] self.current_point = Coordinate(point) self.windows[0].update_slice(self.list_slices[self.current_slice]) title_obj = self.windows[0].axes.set_title('Please select a new point on slice ' + str(self.list_slices[self.current_slice]) + '/' + str(self.image_dim[self.orientation[self.primary_subplot]-1] - 1) + ' (' + str(self.current_slice + 1) + '/' + str(len(self.list_slices)) + ')') plt.setp(title_obj, color='k') plot.draw() self.windows[1].update_slice(point, data_update=False) else: for coord in self.list_points: if self.list_points_useful_notation != '': self.list_points_useful_notation += ':' self.list_points_useful_notation = self.list_points_useful_notation + str(coord.x) + ',' + str( coord.y) + ',' + str(coord.z) + ',' + str(coord.value) self.all_processed = True plt.close() else: title_obj = self.windows[0].axes.set_title('The point you selected in not in the image. Please try again.') plt.setp(title_obj, color='r') plot.draw() elif event.inaxes and plot.view == self.orientation[self.secondary_subplot]: is_in_axes = False for window in self.windows: if event.inaxes == window.axes: is_in_axes = True if not is_in_axes: return self.last_update = time() self.current_point = self.get_event_coordinates(event, plot) point = [self.current_point.x, self.current_point.y, self.current_point.z] for window in self.windows: if window is plot: window.update_slice(point, data_update=False) else: self.draw_points(window, self.current_point.x) window.update_slice(point, data_update=True) def draw_points(self, window, current_slice): if window.view == self.orientation[self.primary_subplot]: x_data, y_data = [], [] for pt in self.list_points: if pt.x == current_slice: x_data.append(pt.z + self.offset[2]) y_data.append(pt.y + self.offset[1]) self.plot_points.set_xdata(x_data) self.plot_points.set_ydata(y_data) def on_release(self, event, plot=None): """ This subplot refers to the secondary window. It captures event "release" :param event: :param plot: :return: """ if event.button == 1 and event.inaxes and plot.view == self.orientation[self.secondary_subplot]: point = [self.current_point.x, self.current_point.y, self.current_point.z] point[self.orientation[self.primary_subplot]-1] = self.list_slices[self.current_slice] for window in self.windows: if window is plot: window.update_slice(point, data_update=False) else: self.draw_points(window, self.current_point.y) window.update_slice(point, data_update=True) return def on_motion(self, event, plot=None): """ This subplot refers to the secondary window. It captures event "motion" :param event: :param plot: :return: """ if event.button == 1 and event.inaxes and plot.view == self.orientation[self.secondary_subplot] and time() - self.last_update > self.update_freq: is_in_axes = False for window in self.windows: if event.inaxes == window.axes: is_in_axes = True if not is_in_axes: return self.last_update = time() self.current_point = self.get_event_coordinates(event, plot) point = [self.current_point.x, self.current_point.y, self.current_point.z] for window in self.windows: if window is plot: window.update_slice(point, data_update=False) else: self.draw_points(window, self.current_point.x) window.update_slice(point, data_update=True) return def get_results(self): if self.list_points: return self.list_points else: return None def help(self, event): if event.inaxes == self.ax_help: webbrowser.open(self.help_url, new=0, autoraise=True) def start(self): super(ClickViewer, self).start() if self.all_processed: return self.list_points_useful_notation else: return None def get_parser(): parser = Parser(__file__) parser.usage.set_description('Volume Viewer') parser.add_option(name="-i", type_value=[[','], 'file'], description="Images to display.", mandatory=True, example="anat.nii.gz") parser.add_option(name='-mode', type_value='multiple_choice', description='Display mode.' '\nviewer: standard three-window viewer.' '\naxial: one-window viewer for manual centerline.\n', mandatory=False, default_value='viewer', example=['viewer', 'axial']) parser.add_option(name='-param', type_value=[[':'], 'str'], description='Parameters for visualization. ' 'Separate images with \",\". Separate parameters with \":\".' '\nid: number of image in the "-i" list' '\ncmap: image colormap' '\ninterp: image interpolation. Accepts: [\'nearest\' | \'bilinear\' | \'bicubic\' | \'spline16\' | ' '\'spline36\' | \'hanning\' | \'hamming\' | \'hermite\' | \'kaiser\' | ' '\'quadric\' | \'catrom\' | \'gaussian\' | \'bessel\' | \'mitchell\' | ' '\'sinc\' | \'lanczos\' | \'none\' |]' '\nvmin:' '\nvmax:' '\nvmean:' '\nperc: ', mandatory=False, example=['cmap=red:vmin=0:vmax=1', 'cmap=grey']) parser.add_option(name="-v", type_value="multiple_choice", description="""Verbose. 0: nothing. 1: basic. 2: extended.""", mandatory=False, default_value='0', example=['0', '1', '2']) return parser class ParamImageVisualization(object): def __init__(self, id='0', mode='image', cmap='gray', interp='nearest', vmin='0', vmax='99', vmean='98', vmode='percentile', alpha='1.0'): self.id = id self.mode = mode self.cmap = cmap self.interp = interp self.vmin = vmin self.vmax = vmax self.vmean = vmean self.vmode = vmode self.alpha = alpha def update(self, params): list_objects = params.split(',') for obj in list_objects: if len(obj) < 2: sct.printv('Please check parameter -param (usage changed from previous version)', 1, type='error') objs = obj.split('=') setattr(self, objs[0], objs[1]) class ParamMultiImageVisualization(object): """ This class contains a dictionary with the params of multiple images visualization """ def __init__(self, list_param): self.ids = [] self.images_parameters = dict() for param_image in list_param: if isinstance(param_image, ParamImageVisualization): self.images_parameters[param_image.id] = param_image else: self.addImage(param_image) def addImage(self, param_image): param_im = ParamImageVisualization() param_im.update(param_image) if param_im.id != 0: if param_im.id in self.images_parameters: self.images_parameters[param_im.id].update(param_image) else: self.images_parameters[param_im.id] = param_im else: sct.printv("ERROR: parameters must contain 'id'", 1, 'error') def prepare(list_images): fname_images, orientation_images = [], [] for fname_im in list_images: from sct_image import orientation orientation_images.append(orientation(Image(fname_im), get=True, verbose=False)) path_fname, file_fname, ext_fname = sct.extract_fname(fname_im) reoriented_image_filename = 'tmp.' + sct.add_suffix(file_fname + ext_fname, "_SAL") sct.run('sct_image -i ' + fname_im + ' -o ' + reoriented_image_filename + ' -setorient SAL -v 0', verbose=False) fname_images.append(reoriented_image_filename) return fname_images, orientation_images def clean(): sct.run('rm -rf ' + 'tmp.*', verbose=False) #======================================================================================================================= # Start program #======================================================================================================================= if __name__ == "__main__": parser = get_parser() arguments = parser.parse(sys.argv[1:]) fname_images, orientation_images = prepare(arguments["-i"]) list_images = [Image(fname) for fname in fname_images] mode = arguments['-mode'] param_image1 = ParamImageVisualization() visualization_parameters = ParamMultiImageVisualization([param_image1]) if "-param" in arguments: param_images = arguments['-param'] # update registration parameters for param in param_images: visualization_parameters.addImage(param) if mode == 'viewer': # 3 views viewer = ThreeViewer(list_images, visualization_parameters) viewer.start() elif mode == 'axial': # only one axial view viewer = ClickViewer(list_images, visualization_parameters) viewer.start() clean()
mit
ye-zhi/project-epsilon
code/utils/scripts/plot_mosaic.py
4
2092
""" """ from __future__ import division, print_function import sys, os, pdb import numpy as np import nibabel as nib def plot_mosaic(img_data, transpose=False): """ Return a mosaic plot for each slice of the 3rd dimension of img_data Parameters: ---------- img_data = 3D array Returns: ------- grid_2D : a 2D image with each slice of the 3rd dimension of img_data plotted in a mosaic """ n_slices = img_data.shape[2] # Dimensions of the mosaic grid n_rows = int(np.ceil(float(np.sqrt(n_slices)))) n_cols = int(np.ceil(float(n_slices)/float(n_rows))) # Define the 2D mosaic grid_2D = np.zeros((n_rows*img_data.shape[0], n_cols*img_data.shape[1])) z = 0 for i in range(n_rows): for j in range(n_cols): if z < n_slices: if transpose==True: img_data_slice = img_data[:,::-1,z].T else: img_data_slice = img_data[:,::-1,z] grid_2D[i*img_data.shape[0]:(i+1)*img_data.shape[0],\ j*img_data.shape[1]:(j+1)*img_data.shape[1]] = img_data_slice z += 1 return grid_2D if __name__=='__main__': import matplotlib.pyplot as plt plt.rcParams['image.cmap'] = 'gray' plt.rcParams['image.interpolation'] = 'nearest' project_path='../../../' #img = nib.load(\ #'../../../data/ds005/sub001/BOLD/task001_run001/bold.nii.gz') template = nib.load(project_path+\ 'data/mni_icbm152_t1_tal_nlin_asym_09c_2mm.nii') template_data_int = template.get_data() template_data = template_data_int.astype(float) img = nib.load(project_path+\ 'data/ds005/sub001/model/model001/task001_run001.feat/' + \ 'masked_filtered_func_data_mni.nii.gz') img_data_int = img.get_data() img_data = img_data_int.astype(float) mean_data = np.mean(img_data, axis=-1) plt.title('In brain voxels - mean values') plt.imshow(plot_mosaic(template_data, transpose=False), cmap='gray', alpha=1) plt.imshow(plot_mosaic(mean_data, transpose=False), cmap='gray', alpha=1) plt.colorbar() plt.show()
bsd-3-clause
britodasilva/pyhfo
pyhfo/core/book_reader.py
1
4490
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' License: For personnal, educationnal, and research purpose, this software is provided under the Gnu GPL (V.3) license. To use this software in commercial application, please contact the authors. Authors: Jaroslaw Zygierewicz ([email protected]), Piotr J. Durka ([email protected]), Magdalena Zieleniewska ([email protected]) Date : September, 2014 ''' from __future__ import print_function, division import numpy as np import collections import sys, os from operator import itemgetter import matplotlib.pyplot as py #import pandas as pd import struct from scipy.signal import filtfilt, butter from scipy.stats import scoreatpercentile class BookImporter(object): def __init__(self, book_file): """ Class for reading books from mp5 decomposition. Input: book_file -- string -- book file """ super(BookImporter, self).__init__() f = open(book_file,'rb') data, signals, atoms, epoch_s = self._read_book(f) self.epoch_s = epoch_s self.atoms = atoms self.signals = signals self.fs = data[5]['Fs'] self.ptspmV = data[5]['ptspmV'] def _get_type(self, ident, f): if ident == 1: com_s = np.fromfile(f, '>u4', count=1)[0] if not com_s==0: ## comment return np.dtype([('comment', 'S'+str(com_s))]) else: return None elif ident == 2: ## header head_s = np.fromfile(f, '>u4', count=1)[0] return None elif ident == 3: ## www address www_s = np.fromfile(f, '>u1', count=1)[0] return np.dtype([('www', 'S'+str(www_s))]) elif ident == 4: ## date date_s = np.fromfile(f, '>u1', count=1)[0] return np.dtype([('date', 'S'+str(date_s))]) elif ident == 5: ## signal info #print 'here' sig_info_s = np.fromfile(f, '>u1', count=1)[0] return np.dtype([('Fs', '>f4'), ('ptspmV', '>f4'), ('chnl_cnt', '>u2')]) elif ident == 6: ## decomposition info dec_info_s = np.fromfile(f, '>u1', count=1)[0] return np.dtype([('percent', '>f4'), ('maxiterations', '>u4'), ('dict_size', '>u4'), ('dict_type', '>S1')]) elif ident == 10: #dirac # return atom_s = np.fromfile(f, '>u1', count=1)[0] return np.dtype([('modulus', '>f4'), ('amplitude', '>f4'), ('t', '>f4')]) elif ident == 11: #gauss atom_s = np.fromfile(f, '>u1', count=1)[0] return np.dtype([('modulus', '>f4'), ('amplitude', '>f4'), ('t', '>f4'), ('scale', '>f4')]) elif ident == 12: #sinus atom_s = np.fromfile(f, '>u1', count=1)[0] return np.dtype([('modulus', '>f4'), ('amplitude', '>f4'), ('f', '>f4'), ('phase', '>f4')]) elif ident == 13: #gabor atom_s = np.fromfile(f, '>u1', count=1)[0] return np.dtype([('modulus', '>f4'), ('amplitude', '>f4'), ('t', '>f4'), ('scale', '>f4'), ('f', '>f4'), ('phase', '>f4')]) else: return None def _get_signal(self, f, epoch_nr, epoch_s): sig_s = np.fromfile(f, '>u4', count=1)[0] chnl_nr = np.fromfile(f, '>u2', count=1)[0] signal = np.fromfile(f, '>f4', count= epoch_s) return chnl_nr, signal def _get_atoms(self, f): atoms = list() atoms_s = np.fromfile(f, '>u4', count=1)[0] a_chnl_nr = np.fromfile(f, '>u2', count=1)[0] ident = np.fromfile(f, '>u1', count=1) while ident in [10, 11, 12, 13]: atom = np.fromfile(f, self._get_type(ident[0], f), count=1)[0] atoms.append({'params': atom, 'type': ident[0]}) ident = np.fromfile(f, '>u1', count=1) f.seek(f.tell()-1) return atoms, a_chnl_nr def _read_book(self, f): try: f = open(f, 'rb') except Exception: f = f version = np.fromfile(f, 'S6', count=1) data = {} ident = np.fromfile(f, 'u1', count=1)[0] ct = self._get_type(ident, f) signals = collections.defaultdict(list) atoms = collections.defaultdict(list) while ident: if ct: point = np.fromfile(f,ct, count=1)[0] data[ident] = point elif ident ==7: data_s = np.fromfile(f, '>u4', count=1)[0] epoch_nr = np.fromfile(f, '>u2', count=1)[0] epoch_s = np.fromfile(f, '>u4', count=1)[0] elif ident == 8: chnl_nr, signal = self._get_signal(f, epoch_nr, epoch_s) signals[epoch_nr].append(signal) elif ident == 9: pl = f.tell() atom, a_chnl_nr = self._get_atoms(f) atoms[epoch_nr] = atom try: ident = np.fromfile(f, '>u1', count=1) if ident: ident = ident[0] ct = self._get_type(ident, f) except Exception: pass return data, signals, atoms, epoch_s
mit
rosflight/firmware
scripts/plot_estimator_test.py
1
1214
import numpy as np import matplotlib.pyplot as plt stateType = np.dtype([ ('t', np.float64), ('q', (np.float64,4)), ('qhat', (np.float64,4)), ('err', (np.float64,3)), ('eulerErr', (np.float64,3)), ('bias', (np.float32,3)) ]) def plotResults(filename): data = np.fromfile("../test/build/"+filename, dtype=stateType) plt.figure(figsize=[12,9]) plt.suptitle(filename) for i in range(4): plt.subplot(4, 3, 3*i+1) plt.plot(data['t'], data['q'][:,i], label="q") plt.plot(data['t'], data['qhat'][:,i], label="qhat") if i == 0: plt.legend() for i in range(3): plt.subplot(4,3,3*i+2) plt.plot(data['t'], data['err'][:,i]) plt.subplot(4,3,11) err_norm = np.sqrt(np.sum(np.square(data['err']),axis=1)) plt.plot(data['t'], err_norm) for i in range(3): plt.subplot(4,3,3*i+3) plt.plot(data['t'], data['bias'][:,i]) print("{} max error: {}".format(filename, np.max(err_norm))) if __name__ == '__main__': plotResults("linearGyro.bin") plotResults("quadGyro.bin") plotResults("expInt.bin") plotResults("expQuadInt.bin") plotResults("acc.bin") plotResults("estState.bin") plotResults("estBias.bin") plotResults("estStateExtAtt.bin") plotResults("movingExtAtt.bin") plt.show()
bsd-3-clause
fqez/JdeRobot
src/drivers/MAVLinkServer/MAVProxy/modules/lib/live_graph.py
8
2928
#!/usr/bin/env python """ MAVProxy realtime graphing module, partly based on the wx graphing demo by Eli Bendersky ([email protected]) http://eli.thegreenplace.net/files/prog_code/wx_mpl_dynamic_graph.py.txt """ from MAVProxy.modules.lib import mp_util class LiveGraph(): ''' a live graph object using wx and matplotlib All of the GUI work is done in a child process to provide some insulation from the parent mavproxy instance and prevent instability in the GCS New data is sent to the LiveGraph instance via a pipe ''' def __init__(self, fields, title='MAVProxy: LiveGraph', timespan=20.0, tickresolution=0.2, colors=[ 'red', 'green', 'blue', 'orange', 'olive', 'cyan', 'magenta', 'brown', 'dark green', 'violet', 'purple', 'grey', 'black']): import multiprocessing self.fields = fields self.colors = colors self.title = title self.timespan = timespan self.tickresolution = tickresolution self.values = [None]*len(self.fields) self.parent_pipe,self.child_pipe = multiprocessing.Pipe() self.close_graph = multiprocessing.Event() self.close_graph.clear() self.child = multiprocessing.Process(target=self.child_task) self.child.start() def child_task(self): '''child process - this holds all the GUI elements''' mp_util.child_close_fds() import matplotlib import wx_processguard from wx_loader import wx from live_graph_ui import GraphFrame matplotlib.use('WXAgg') app = wx.App(False) app.frame = GraphFrame(state=self) app.frame.Show() app.MainLoop() def add_values(self, values): '''add some data to the graph''' if self.child.is_alive(): self.parent_pipe.send(values) def close(self): '''close the graph''' self.close_graph.set() if self.is_alive(): self.child.join(2) def is_alive(self): '''check if graph is still going''' return self.child.is_alive() if __name__ == "__main__": # test the graph import time, math livegraph = LiveGraph(['sin(t)', 'cos(t)', 'sin(t+1)', 'cos(t+1)', 'sin(t+2)', 'cos(t+2)', 'cos(t+1)', 'sin(t+2)', 'cos(t+2)', 'x'], timespan=30, title='Graph Test') while livegraph.is_alive(): t = time.time() livegraph.add_values([math.sin(t), math.cos(t), math.sin(t+1), math.cos(t+1), math.sin(t+1), math.cos(t+1), math.sin(t+1), math.cos(t+1), math.sin(t+2), math.cos(t+2)]) time.sleep(0.05)
gpl-3.0
fergalbyrne/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/numerix/__init__.py
69
5473
""" numerix imports either Numeric or numarray based on various selectors. 0. If the value "--numpy","--numarray" or "--Numeric" is specified on the command line, then numerix imports the specified array package. 1. The value of numerix in matplotlibrc: either Numeric or numarray 2. If none of the above is done, the default array package is Numeric. Because the matplotlibrc always provides *some* value for numerix (it has it's own system of default values), this default is most likely never used. To summarize: the commandline is examined first, the rc file second, and the default array package is Numeric. """ import sys, os, struct from matplotlib import rcParams, verbose which = None, None use_maskedarray = None # First, see if --numarray or --Numeric was specified on the command # line: for a in sys.argv: if a in ["--Numeric", "--numeric", "--NUMERIC", "--Numarray", "--numarray", "--NUMARRAY", "--NumPy", "--numpy", "--NUMPY", "--Numpy", ]: which = a[2:], "command line" if a == "--maskedarray": use_maskedarray = True if a == "--ma": use_maskedarray = False try: del a except NameError: pass if which[0] is None: try: # In theory, rcParams always has *some* value for numerix. which = rcParams['numerix'], "rc" except KeyError: pass if use_maskedarray is None: try: use_maskedarray = rcParams['maskedarray'] except KeyError: use_maskedarray = False # If all the above fail, default to Numeric. Most likely not used. if which[0] is None: which = "numeric", "defaulted" which = which[0].strip().lower(), which[1] if which[0] not in ["numeric", "numarray", "numpy"]: raise ValueError("numerix selector must be either 'Numeric', 'numarray', or 'numpy' but the value obtained from the %s was '%s'." % (which[1], which[0])) if which[0] == "numarray": import warnings warnings.warn("numarray use as a numerix backed for matplotlib is deprecated", DeprecationWarning, stacklevel=1) #from na_imports import * from numarray import * from _na_imports import nx, inf, infinity, Infinity, Matrix, isnan, all from numarray.numeric import nonzero from numarray.convolve import cross_correlate, convolve import numarray version = 'numarray %s'%numarray.__version__ nan = struct.unpack('d', struct.pack('Q', 0x7ff8000000000000))[0] elif which[0] == "numeric": import warnings warnings.warn("Numeric use as a numerix backed for matplotlib is deprecated", DeprecationWarning, stacklevel=1) #from nc_imports import * from Numeric import * from _nc_imports import nx, inf, infinity, Infinity, isnan, all, any from Matrix import Matrix import Numeric version = 'Numeric %s'%Numeric.__version__ nan = struct.unpack('d', struct.pack('Q', 0x7ff8000000000000))[0] elif which[0] == "numpy": try: import numpy.oldnumeric as numpy from numpy.oldnumeric import * except ImportError: import numpy from numpy import * print 'except asarray', asarray from _sp_imports import nx, infinity, rand, randn, isnan, all, any from _sp_imports import UInt8, UInt16, UInt32, Infinity try: from numpy.oldnumeric.matrix import Matrix except ImportError: Matrix = matrix version = 'numpy %s' % numpy.__version__ from numpy import nan else: raise RuntimeError("invalid numerix selector") # Some changes are only applicable to the new numpy: if (which[0] == 'numarray' or which[0] == 'numeric'): from mlab import amin, amax newaxis = NewAxis def typecode(a): return a.typecode() def iscontiguous(a): return a.iscontiguous() def byteswapped(a): return a.byteswapped() def itemsize(a): return a.itemsize() def angle(a): return arctan2(a.imag, a.real) else: # We've already checked for a valid numerix selector, # so assume numpy. from mlab import amin, amax newaxis = NewAxis from numpy import angle def typecode(a): return a.dtype.char def iscontiguous(a): return a.flags.contiguous def byteswapped(a): return a.byteswap() def itemsize(a): return a.itemsize verbose.report('numerix %s'%version) # a bug fix for blas numeric suggested by Fernando Perez matrixmultiply=dot asum = sum def _import_fail_message(module, version): """Prints a message when the array package specific version of an extension fails to import correctly. """ _dict = { "which" : which[0], "module" : module, "specific" : version + module } print """ The import of the %(which)s version of the %(module)s module, %(specific)s, failed. This is is either because %(which)s was unavailable when matplotlib was compiled, because a dependency of %(specific)s could not be satisfied, or because the build flag for this module was turned off in setup.py. If it appears that %(specific)s was not built, make sure you have a working copy of %(which)s and then re-install matplotlib. Otherwise, the following traceback gives more details:\n""" % _dict g = globals() l = locals() __import__('ma', g, l) __import__('fft', g, l) __import__('linear_algebra', g, l) __import__('random_array', g, l) __import__('mlab', g, l) la = linear_algebra ra = random_array
agpl-3.0
shahankhatch/scikit-learn
sklearn/tests/test_lda.py
7
6707
import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.datasets import make_blobs from sklearn import lda # Data is just 6 separable points in the plane X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]], dtype='f') y = np.array([1, 1, 1, 2, 2, 2]) y3 = np.array([1, 1, 2, 2, 3, 3]) # Degenerate data with only one feature (still should be separable) X1 = np.array([[-2, ], [-1, ], [-1, ], [1, ], [1, ], [2, ]], dtype='f') solver_shrinkage = [('svd', None), ('lsqr', None), ('eigen', None), ('lsqr', 'auto'), ('lsqr', 0), ('lsqr', 0.43), ('eigen', 'auto'), ('eigen', 0), ('eigen', 0.43)] def test_lda_predict(): # Test LDA classification. # This checks that LDA implements fit and predict and returns correct values # for simple toy data. for test_case in solver_shrinkage: solver, shrinkage = test_case clf = lda.LDA(solver=solver, shrinkage=shrinkage) y_pred = clf.fit(X, y).predict(X) assert_array_equal(y_pred, y, 'solver %s' % solver) # Assert that it works with 1D data y_pred1 = clf.fit(X1, y).predict(X1) assert_array_equal(y_pred1, y, 'solver %s' % solver) # Test probability estimates y_proba_pred1 = clf.predict_proba(X1) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y, 'solver %s' % solver) y_log_proba_pred1 = clf.predict_log_proba(X1) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8, 'solver %s' % solver) # Primarily test for commit 2f34950 -- "reuse" of priors y_pred3 = clf.fit(X, y3).predict(X) # LDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y3), 'solver %s' % solver) # Test invalid shrinkages clf = lda.LDA(solver="lsqr", shrinkage=-0.2231) assert_raises(ValueError, clf.fit, X, y) clf = lda.LDA(solver="eigen", shrinkage="dummy") assert_raises(ValueError, clf.fit, X, y) clf = lda.LDA(solver="svd", shrinkage="auto") assert_raises(NotImplementedError, clf.fit, X, y) # Test unknown solver clf = lda.LDA(solver="dummy") assert_raises(ValueError, clf.fit, X, y) def test_lda_coefs(): # Test if the coefficients of the solvers are approximately the same. n_features = 2 n_classes = 2 n_samples = 1000 X, y = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_classes, random_state=11) clf_lda_svd = lda.LDA(solver="svd") clf_lda_lsqr = lda.LDA(solver="lsqr") clf_lda_eigen = lda.LDA(solver="eigen") clf_lda_svd.fit(X, y) clf_lda_lsqr.fit(X, y) clf_lda_eigen.fit(X, y) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_lsqr.coef_, 1) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_eigen.coef_, 1) assert_array_almost_equal(clf_lda_eigen.coef_, clf_lda_lsqr.coef_, 1) def test_lda_explained_variance_ratio(): # Test if the sum of the normalized eigen vectors values equals 1 n_features = 2 n_classes = 2 n_samples = 1000 X, y = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_classes, random_state=11) clf_lda_eigen = lda.LDA(solver="eigen") clf_lda_eigen.fit(X, y) assert_almost_equal(clf_lda_eigen.explained_variance_ratio_.sum(), 1.0, 3) def test_lda_transform(): # Test LDA transform. clf = lda.LDA(solver="svd", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = lda.LDA(solver="eigen", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = lda.LDA(solver="lsqr", n_components=1) clf.fit(X, y) msg = "transform not implemented for 'lsqr'" assert_raise_message(NotImplementedError, msg, clf.transform, X) def test_lda_orthogonality(): # arrange four classes with their means in a kite-shaped pattern # the longer distance should be transformed to the first component, and # the shorter distance to the second component. means = np.array([[0, 0, -1], [0, 2, 0], [0, -2, 0], [0, 0, 5]]) # We construct perfectly symmetric distributions, so the LDA can estimate # precise means. scatter = np.array([[0.1, 0, 0], [-0.1, 0, 0], [0, 0.1, 0], [0, -0.1, 0], [0, 0, 0.1], [0, 0, -0.1]]) X = (means[:, np.newaxis, :] + scatter[np.newaxis, :, :]).reshape((-1, 3)) y = np.repeat(np.arange(means.shape[0]), scatter.shape[0]) # Fit LDA and transform the means clf = lda.LDA(solver="svd").fit(X, y) means_transformed = clf.transform(means) d1 = means_transformed[3] - means_transformed[0] d2 = means_transformed[2] - means_transformed[1] d1 /= np.sqrt(np.sum(d1 ** 2)) d2 /= np.sqrt(np.sum(d2 ** 2)) # the transformed within-class covariance should be the identity matrix assert_almost_equal(np.cov(clf.transform(scatter).T), np.eye(2)) # the means of classes 0 and 3 should lie on the first component assert_almost_equal(np.abs(np.dot(d1[:2], [1, 0])), 1.0) # the means of classes 1 and 2 should lie on the second component assert_almost_equal(np.abs(np.dot(d2[:2], [0, 1])), 1.0) def test_lda_scaling(): # Test if classification works correctly with differently scaled features. n = 100 rng = np.random.RandomState(1234) # use uniform distribution of features to make sure there is absolutely no # overlap between classes. x1 = rng.uniform(-1, 1, (n, 3)) + [-10, 0, 0] x2 = rng.uniform(-1, 1, (n, 3)) + [10, 0, 0] x = np.vstack((x1, x2)) * [1, 100, 10000] y = [-1] * n + [1] * n for solver in ('svd', 'lsqr', 'eigen'): clf = lda.LDA(solver=solver) # should be able to separate the data perfectly assert_equal(clf.fit(x, y).score(x, y), 1.0, 'using covariance: %s' % solver) def test_covariance(): x, y = make_blobs(n_samples=100, n_features=5, centers=1, random_state=42) # make features correlated x = np.dot(x, np.arange(x.shape[1] ** 2).reshape(x.shape[1], x.shape[1])) c_e = lda._cov(x, 'empirical') assert_almost_equal(c_e, c_e.T) c_s = lda._cov(x, 'auto') assert_almost_equal(c_s, c_s.T)
bsd-3-clause
yeahkun/tushare
tushare/stock/billboard.py
19
12058
#!/usr/bin/env python # -*- coding:utf-8 -*- """ 龙虎榜数据 Created on 2015年6月10日 @author: Jimmy Liu @group : waditu @contact: [email protected] """ import pandas as pd from pandas.compat import StringIO from tushare.stock import cons as ct import numpy as np import time import re import lxml.html from lxml import etree from tushare.util import dateu as du from tushare.stock import ref_vars as rv try: from urllib.request import urlopen, Request except ImportError: from urllib2 import urlopen, Request def top_list(date = None, retry_count=3, pause=0.001): """ 获取每日龙虎榜列表 Parameters -------- date:string 明细数据日期 format:YYYY-MM-DD 如果为空,返回最近一个交易日的数据 retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 Return ------ DataFrame code:代码 name :名称 pchange:涨跌幅 amount:龙虎榜成交额(万) buy:买入额(万) bratio:占总成交比例 sell:卖出额(万) sratio :占总成交比例 reason:上榜原因 date :日期 """ if date is None: if du.get_hour() < 18: date = du.last_tddate() else: date = du.today() else: if(du.is_holiday(date)): return None for _ in range(retry_count): time.sleep(pause) try: request = Request(rv.LHB_URL%(ct.P_TYPE['http'], ct.DOMAINS['em'], date)) text = urlopen(request, timeout=10).read() text = text.decode('GBK') html = lxml.html.parse(StringIO(text)) res = html.xpath("//table[@id=\"dt_1\"]") if ct.PY3: sarr = [etree.tostring(node).decode('utf-8') for node in res] else: sarr = [etree.tostring(node) for node in res] sarr = ''.join(sarr) df = pd.read_html(sarr)[0] df.columns = [i for i in range(1,12)] df = df.apply(_f_rows, axis=1) df = df.fillna(method='ffill') df = df.drop([1, 4], axis=1) df.columns = rv.LHB_COLS df = df.drop_duplicates() df['code'] = df['code'].astype(int) df['code'] = df['code'].map(lambda x: str(x).zfill(6)) df['date'] = date except: pass else: return df raise IOError(ct.NETWORK_URL_ERROR_MSG) def cap_tops(days= 5, retry_count= 3, pause= 0.001): """ 获取个股上榜统计数据 Parameters -------- days:int 天数,统计n天以来上榜次数,默认为5天,其余是10、30、60 retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 Return ------ DataFrame code:代码 name:名称 count:上榜次数 bamount:累积购买额(万) samount:累积卖出额(万) net:净额(万) bcount:买入席位数 scount:卖出席位数 """ if ct._check_lhb_input(days) is True: ct._write_head() df = _cap_tops(days, pageNo=1, retry_count=retry_count, pause=pause) df['code'] = df['code'].map(lambda x: str(x).zfill(6)) if df is not None: df = df.drop_duplicates('code') return df def _cap_tops(last=5, pageNo=1, retry_count=3, pause=0.001, dataArr=pd.DataFrame()): ct._write_console() for _ in range(retry_count): time.sleep(pause) try: request = Request(rv.LHB_SINA_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'], rv.LHB_KINDS[0], ct.PAGES['fd'], last, pageNo)) text = urlopen(request, timeout=10).read() text = text.decode('GBK') html = lxml.html.parse(StringIO(text)) res = html.xpath("//table[@id=\"dataTable\"]/tr") if ct.PY3: sarr = [etree.tostring(node).decode('utf-8') for node in res] else: sarr = [etree.tostring(node) for node in res] sarr = ''.join(sarr) sarr = '<table>%s</table>'%sarr df = pd.read_html(sarr)[0] df.columns = rv.LHB_GGTJ_COLS dataArr = dataArr.append(df, ignore_index=True) nextPage = html.xpath('//div[@class=\"pages\"]/a[last()]/@onclick') if len(nextPage)>0: pageNo = re.findall(r'\d+', nextPage[0])[0] return _cap_tops(last, pageNo, retry_count, pause, dataArr) else: return dataArr except Exception as e: print(e) def broker_tops(days= 5, retry_count= 3, pause= 0.001): """ 获取营业部上榜统计数据 Parameters -------- days:int 天数,统计n天以来上榜次数,默认为5天,其余是10、30、60 retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 Return --------- broker:营业部名称 count:上榜次数 bamount:累积购买额(万) bcount:买入席位数 samount:累积卖出额(万) scount:卖出席位数 top3:买入前三股票 """ if ct._check_lhb_input(days) is True: ct._write_head() df = _broker_tops(days, pageNo=1, retry_count=retry_count, pause=pause) return df def _broker_tops(last=5, pageNo=1, retry_count=3, pause=0.001, dataArr=pd.DataFrame()): ct._write_console() for _ in range(retry_count): time.sleep(pause) try: request = Request(rv.LHB_SINA_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'], rv.LHB_KINDS[1], ct.PAGES['fd'], last, pageNo)) text = urlopen(request, timeout=10).read() text = text.decode('GBK') html = lxml.html.parse(StringIO(text)) res = html.xpath("//table[@id=\"dataTable\"]/tr") if ct.PY3: sarr = [etree.tostring(node).decode('utf-8') for node in res] else: sarr = [etree.tostring(node) for node in res] sarr = ''.join(sarr) sarr = '<table>%s</table>'%sarr df = pd.read_html(sarr)[0] df.columns = rv.LHB_YYTJ_COLS dataArr = dataArr.append(df, ignore_index=True) nextPage = html.xpath('//div[@class=\"pages\"]/a[last()]/@onclick') if len(nextPage)>0: pageNo = re.findall(r'\d+', nextPage[0])[0] return _broker_tops(last, pageNo, retry_count, pause, dataArr) else: return dataArr except Exception as e: print(e) def inst_tops(days= 5, retry_count= 3, pause= 0.001): """ 获取机构席位追踪统计数据 Parameters -------- days:int 天数,统计n天以来上榜次数,默认为5天,其余是10、30、60 retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 Return -------- code:代码 name:名称 bamount:累积买入额(万) bcount:买入次数 samount:累积卖出额(万) scount:卖出次数 net:净额(万) """ if ct._check_lhb_input(days) is True: ct._write_head() df = _inst_tops(days, pageNo=1, retry_count=retry_count, pause=pause) df['code'] = df['code'].map(lambda x: str(x).zfill(6)) return df def _inst_tops(last=5, pageNo=1, retry_count=3, pause=0.001, dataArr=pd.DataFrame()): ct._write_console() for _ in range(retry_count): time.sleep(pause) try: request = Request(rv.LHB_SINA_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'], rv.LHB_KINDS[2], ct.PAGES['fd'], last, pageNo)) text = urlopen(request, timeout=10).read() text = text.decode('GBK') html = lxml.html.parse(StringIO(text)) res = html.xpath("//table[@id=\"dataTable\"]/tr") if ct.PY3: sarr = [etree.tostring(node).decode('utf-8') for node in res] else: sarr = [etree.tostring(node) for node in res] sarr = ''.join(sarr) sarr = '<table>%s</table>'%sarr df = pd.read_html(sarr)[0] df = df.drop([2,3], axis=1) df.columns = rv.LHB_JGZZ_COLS dataArr = dataArr.append(df, ignore_index=True) nextPage = html.xpath('//div[@class=\"pages\"]/a[last()]/@onclick') if len(nextPage)>0: pageNo = re.findall(r'\d+', nextPage[0])[0] return _inst_tops(last, pageNo, retry_count, pause, dataArr) else: return dataArr except Exception as e: print(e) def inst_detail(retry_count= 3, pause= 0.001): """ 获取最近一个交易日机构席位成交明细统计数据 Parameters -------- retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 Return ---------- code:股票代码 name:股票名称 date:交易日期 bamount:机构席位买入额(万) samount:机构席位卖出额(万) type:类型 """ ct._write_head() df = _inst_detail(pageNo=1, retry_count=retry_count, pause=pause) if len(df)>0: df['code'] = df['code'].map(lambda x: str(x).zfill(6)) return df def _inst_detail(pageNo=1, retry_count=3, pause=0.001, dataArr=pd.DataFrame()): ct._write_console() for _ in range(retry_count): time.sleep(pause) try: request = Request(rv.LHB_SINA_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'], rv.LHB_KINDS[3], ct.PAGES['fd'], '', pageNo)) text = urlopen(request, timeout=10).read() text = text.decode('GBK') html = lxml.html.parse(StringIO(text)) res = html.xpath("//table[@id=\"dataTable\"]/tr") if ct.PY3: sarr = [etree.tostring(node).decode('utf-8') for node in res] else: sarr = [etree.tostring(node) for node in res] sarr = ''.join(sarr) sarr = '<table>%s</table>'%sarr df = pd.read_html(sarr)[0] df.columns = rv.LHB_JGMX_COLS dataArr = dataArr.append(df, ignore_index=True) nextPage = html.xpath('//div[@class=\"pages\"]/a[last()]/@onclick') if len(nextPage)>0: pageNo = re.findall(r'\d+', nextPage[0])[0] return _inst_detail(pageNo, retry_count, pause, dataArr) else: return dataArr except Exception as e: print(e) def _f_rows(x): if '%' in x[3]: x[11] = x[6] for i in range(6, 11): x[i] = x[i-5] for i in range(1, 6): x[i] = np.NaN return x if __name__ == "__main__": print(top_list('2015-06-17')) # print(inst_detail())
bsd-3-clause
ContinuumIO/blaze
blaze/compatibility.py
3
3880
from __future__ import absolute_import, division, print_function import sys from types import MethodType import pandas.util.testing as tm from toolz import identity PY3 = sys.version_info[0] == 3 PY2 = sys.version_info[0] == 2 if PY3: import builtins def apply(f, args, **kwargs): return f(*args, **kwargs) else: import __builtin__ as builtins apply = builtins.apply try: import cPickle as pickle except ImportError: import pickle # Portions of this taken from the six library, licensed as follows. # # Copyright (c) 2010-2013 Benjamin Peterson # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from toolz.compatibility import map, zip, range, reduce if PY2: _inttypes = (int, long) unicode = builtins.unicode basestring = builtins.basestring _strtypes = (str, unicode) def boundmethod(func, instance): return MethodType(func, instance, type(instance)) from itertools import izip_longest as zip_longest from contextlib2 import ExitStack else: _inttypes = (int,) _strtypes = (str,) unicode = str basestring = str boundmethod = MethodType from itertools import zip_longest from contextlib import ExitStack import io try: SEEK_END = io.SEEK_END except AttributeError: SEEK_END = 2 try: import pytest skipif = pytest.mark.skipif xfail = pytest.mark.xfail min_python_version = skipif(sys.version_info < (2, 7), reason="Python >= 2.7 required") raises = pytest.raises except ImportError: # TODO: move the above into a separate testing utils module pass if sys.version_info >= (2, 7): from ctypes import c_ssize_t else: import ctypes if ctypes.sizeof(ctypes.c_void_p) == 4: c_ssize_t = ctypes.c_int32 else: c_ssize_t = ctypes.c_int64 try: from StringIO import StringIO except ImportError: from io import StringIO def assert_series_equal(left, right, check_names=True, **kwargs): """Backwards compatibility wrapper for ``pandas.util.testing.assert_series_equal`` Examples -------- >>> import pandas as pd >>> s = pd.Series(list('abc'), name='a') >>> s2 = pd.Series(list('abc'), name='b') >>> assert_series_equal(s, s2) # doctest: +ELLIPSIS Traceback (most recent call last): ... AssertionError: ... >>> assert_series_equal(s, s2, check_names=False) See Also -------- pandas.util.testing.assert_series_equal """ try: return tm.assert_series_equal(left, right, check_names=check_names, **kwargs) except TypeError: if check_names: assert left.name == right.name return tm.assert_series_equal(left, right, **kwargs) if PY2: def u8(cs): return cs.decode('utf-8') else: u8 = identity
bsd-3-clause
hainm/scikit-learn
examples/svm/plot_svm_margin.py
318
2328
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM Margins Example ========================================================= The plots below illustrate the effect the parameter `C` has on the separation line. A large value of `C` basically tells our model that we do not have that much faith in our data's distribution, and will only consider points close to line of separation. A small value of `C` includes more/all the observations, allowing the margins to be calculated using all the data in the area. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # figure number fignum = 1 # fit the model for name, penalty in (('unreg', 1), ('reg', 0.05)): clf = svm.SVC(kernel='linear', C=penalty) clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors margin = 1 / np.sqrt(np.sum(clf.coef_ ** 2)) yy_down = yy + a * margin yy_up = yy - a * margin # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10) plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired) plt.axis('tight') x_min = -4.8 x_max = 4.2 y_min = -6 y_max = 6 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.predict(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) plt.pcolormesh(XX, YY, Z, cmap=plt.cm.Paired) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show()
bsd-3-clause
YetAnotherTomek/egfrd
samples/irreversible/plot.py
3
2672
#!/usr/bin/python # # Make sure that the egfrd system is added to your PYTHONPATH # This means, in bash for example: # $ export PYTHONPATH=$HOME/egfrd # # python plot.py irr.-2.out 0.000000125 irr.-1.out 0.00000125 irr.0.out 0.0000125 irr.1.out 0.000125 irr.2.out 0.00125 irr.3.out 0.0125 # irr.-3.out 0.0000000125 import sys import numpy import scipy.io from matplotlib.pylab import * import _gfrd from p_irr import p_irr N_A = 6.0221367e23 N = 1000 sigma = 5e-9 r0 = sigma D_tot = 2e-12 kf = 100 * sigma * D_tot #kf = 0 tau = sigma*sigma / D_tot rmin = sigma def load_data(filename): infile = open(filename) data = array([float(x) for x in infile.read().split()], numpy.float) infile.close() return data def plot_sol(t): rmax = 3.1 * math.sqrt(6 * D_tot * t) + rmin logrmin = math.log(rmin) logrmax = math.log(rmax) tick=(logrmax-logrmin)/N loggrid = numpy.mgrid[logrmin:logrmax:tick] grid = numpy.exp(loggrid) parray = array([p_irr(r, t, r0, kf, D_tot, sigma) for r in grid]) return loglog(grid / sigma , parray * sigma, 'k-')[0] #plot(rarray / sigma , parray, 'k-', label='theory') def plot_hist(data, T, i): bins = 30 nonreactions = numpy.compress(data >= sigma, data) print 'max', max(nonreactions) hist, r = numpy.histogram(numpy.log(nonreactions), bins=bins) r = r[:-1] histsum = hist.sum() S_sim = float(len(nonreactions)) / len(data) print 'S_sim', S_sim hist = hist.astype(numpy.float) r = numpy.concatenate([r, [r[-1] - r[-2]]]) r = numpy.exp(r) xticks = r[1:]-r[:-1] hist /= len(data) * xticks r = r[:-1] + (xticks * .5) #print 'x', x #pStyles = ['o', '^', 'v', '<', '>', 's', '+'] colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k'] loglog(r / sigma, hist * sigma, colors[i] + 'o', label=r'$T = \tau^{%d}$' % round(math.log10(T/tau))) if __name__ == '__main__': axes([.15,.15,.8,.8]) for i in range(len(sys.argv[1:])/2): filename = sys.argv[i*2+1] T = float(sys.argv[i*2+2]) print filename,T data = load_data(filename) plot_hist(data, T, i) solline = plot_sol(T) xlabel(r'$r / \sigma$', size=28) ylabel(r'$p_{irr}$', size=28) xlim(0.9, 2.2e2) ylim(2e-6, 2e1) xticks([1, 10, 100], ['1', '10', '100'], size=22) yticks(size=18) #solline.set_label(r'theory') #legend(handlelen=0.02, pad=0.02,handletextsep=0.01, labelsep=0.001) #grid() show() #>>> _gfrd.S_irr(.0001 * 1e-8**2/1e-12, 1e-8, 10 * 1e-8 * 1e-12, 1e-12, 1e-8) #0.99116163945434221
gpl-2.0
procoder317/scikit-learn
examples/applications/wikipedia_principal_eigenvector.py
233
7819
""" =============================== Wikipedia principal eigenvector =============================== A classical way to assert the relative importance of vertices in a graph is to compute the principal eigenvector of the adjacency matrix so as to assign to each vertex the values of the components of the first eigenvector as a centrality score: http://en.wikipedia.org/wiki/Eigenvector_centrality On the graph of webpages and links those values are called the PageRank scores by Google. The goal of this example is to analyze the graph of links inside wikipedia articles to rank articles by relative importance according to this eigenvector centrality. The traditional way to compute the principal eigenvector is to use the power iteration method: http://en.wikipedia.org/wiki/Power_iteration Here the computation is achieved thanks to Martinsson's Randomized SVD algorithm implemented in the scikit. The graph data is fetched from the DBpedia dumps. DBpedia is an extraction of the latent structured data of the Wikipedia content. """ # Author: Olivier Grisel <[email protected]> # License: BSD 3 clause from __future__ import print_function from bz2 import BZ2File import os from datetime import datetime from pprint import pprint from time import time import numpy as np from scipy import sparse from sklearn.decomposition import randomized_svd from sklearn.externals.joblib import Memory from sklearn.externals.six.moves.urllib.request import urlopen from sklearn.externals.six import iteritems print(__doc__) ############################################################################### # Where to download the data, if not already on disk redirects_url = "http://downloads.dbpedia.org/3.5.1/en/redirects_en.nt.bz2" redirects_filename = redirects_url.rsplit("/", 1)[1] page_links_url = "http://downloads.dbpedia.org/3.5.1/en/page_links_en.nt.bz2" page_links_filename = page_links_url.rsplit("/", 1)[1] resources = [ (redirects_url, redirects_filename), (page_links_url, page_links_filename), ] for url, filename in resources: if not os.path.exists(filename): print("Downloading data from '%s', please wait..." % url) opener = urlopen(url) open(filename, 'wb').write(opener.read()) print() ############################################################################### # Loading the redirect files memory = Memory(cachedir=".") def index(redirects, index_map, k): """Find the index of an article name after redirect resolution""" k = redirects.get(k, k) return index_map.setdefault(k, len(index_map)) DBPEDIA_RESOURCE_PREFIX_LEN = len("http://dbpedia.org/resource/") SHORTNAME_SLICE = slice(DBPEDIA_RESOURCE_PREFIX_LEN + 1, -1) def short_name(nt_uri): """Remove the < and > URI markers and the common URI prefix""" return nt_uri[SHORTNAME_SLICE] def get_redirects(redirects_filename): """Parse the redirections and build a transitively closed map out of it""" redirects = {} print("Parsing the NT redirect file") for l, line in enumerate(BZ2File(redirects_filename)): split = line.split() if len(split) != 4: print("ignoring malformed line: " + line) continue redirects[short_name(split[0])] = short_name(split[2]) if l % 1000000 == 0: print("[%s] line: %08d" % (datetime.now().isoformat(), l)) # compute the transitive closure print("Computing the transitive closure of the redirect relation") for l, source in enumerate(redirects.keys()): transitive_target = None target = redirects[source] seen = set([source]) while True: transitive_target = target target = redirects.get(target) if target is None or target in seen: break seen.add(target) redirects[source] = transitive_target if l % 1000000 == 0: print("[%s] line: %08d" % (datetime.now().isoformat(), l)) return redirects # disabling joblib as the pickling of large dicts seems much too slow #@memory.cache def get_adjacency_matrix(redirects_filename, page_links_filename, limit=None): """Extract the adjacency graph as a scipy sparse matrix Redirects are resolved first. Returns X, the scipy sparse adjacency matrix, redirects as python dict from article names to article names and index_map a python dict from article names to python int (article indexes). """ print("Computing the redirect map") redirects = get_redirects(redirects_filename) print("Computing the integer index map") index_map = dict() links = list() for l, line in enumerate(BZ2File(page_links_filename)): split = line.split() if len(split) != 4: print("ignoring malformed line: " + line) continue i = index(redirects, index_map, short_name(split[0])) j = index(redirects, index_map, short_name(split[2])) links.append((i, j)) if l % 1000000 == 0: print("[%s] line: %08d" % (datetime.now().isoformat(), l)) if limit is not None and l >= limit - 1: break print("Computing the adjacency matrix") X = sparse.lil_matrix((len(index_map), len(index_map)), dtype=np.float32) for i, j in links: X[i, j] = 1.0 del links print("Converting to CSR representation") X = X.tocsr() print("CSR conversion done") return X, redirects, index_map # stop after 5M links to make it possible to work in RAM X, redirects, index_map = get_adjacency_matrix( redirects_filename, page_links_filename, limit=5000000) names = dict((i, name) for name, i in iteritems(index_map)) print("Computing the principal singular vectors using randomized_svd") t0 = time() U, s, V = randomized_svd(X, 5, n_iter=3) print("done in %0.3fs" % (time() - t0)) # print the names of the wikipedia related strongest compenents of the the # principal singular vector which should be similar to the highest eigenvector print("Top wikipedia pages according to principal singular vectors") pprint([names[i] for i in np.abs(U.T[0]).argsort()[-10:]]) pprint([names[i] for i in np.abs(V[0]).argsort()[-10:]]) def centrality_scores(X, alpha=0.85, max_iter=100, tol=1e-10): """Power iteration computation of the principal eigenvector This method is also known as Google PageRank and the implementation is based on the one from the NetworkX project (BSD licensed too) with copyrights by: Aric Hagberg <[email protected]> Dan Schult <[email protected]> Pieter Swart <[email protected]> """ n = X.shape[0] X = X.copy() incoming_counts = np.asarray(X.sum(axis=1)).ravel() print("Normalizing the graph") for i in incoming_counts.nonzero()[0]: X.data[X.indptr[i]:X.indptr[i + 1]] *= 1.0 / incoming_counts[i] dangle = np.asarray(np.where(X.sum(axis=1) == 0, 1.0 / n, 0)).ravel() scores = np.ones(n, dtype=np.float32) / n # initial guess for i in range(max_iter): print("power iteration #%d" % i) prev_scores = scores scores = (alpha * (scores * X + np.dot(dangle, prev_scores)) + (1 - alpha) * prev_scores.sum() / n) # check convergence: normalized l_inf norm scores_max = np.abs(scores).max() if scores_max == 0.0: scores_max = 1.0 err = np.abs(scores - prev_scores).max() / scores_max print("error: %0.6f" % err) if err < n * tol: return scores return scores print("Computing principal eigenvector score using a power iteration method") t0 = time() scores = centrality_scores(X, max_iter=100, tol=1e-10) print("done in %0.3fs" % (time() - t0)) pprint([names[i] for i in np.abs(scores).argsort()[-10:]])
bsd-3-clause
courtarro/gnuradio-wg-grc
gr-digital/examples/example_fll.py
49
5715
#!/usr/bin/env python # # Copyright 2011-2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, digital, filter from gnuradio import blocks from gnuradio import channels from gnuradio import eng_notation from gnuradio.eng_option import eng_option from optparse import OptionParser import sys try: import scipy except ImportError: print "Error: could not import scipy (http://www.scipy.org/)" sys.exit(1) try: import pylab except ImportError: print "Error: could not import pylab (http://matplotlib.sourceforge.net/)" sys.exit(1) class example_fll(gr.top_block): def __init__(self, N, sps, rolloff, ntaps, bw, noise, foffset, toffset, poffset): gr.top_block.__init__(self) rrc_taps = filter.firdes.root_raised_cosine( sps, sps, 1.0, rolloff, ntaps) data = 2.0*scipy.random.randint(0, 2, N) - 1.0 data = scipy.exp(1j*poffset) * data self.src = blocks.vector_source_c(data.tolist(), False) self.rrc = filter.interp_fir_filter_ccf(sps, rrc_taps) self.chn = channels.channel_model(noise, foffset, toffset) self.fll = digital.fll_band_edge_cc(sps, rolloff, ntaps, bw) self.vsnk_src = blocks.vector_sink_c() self.vsnk_fll = blocks.vector_sink_c() self.vsnk_frq = blocks.vector_sink_f() self.vsnk_phs = blocks.vector_sink_f() self.vsnk_err = blocks.vector_sink_f() self.connect(self.src, self.rrc, self.chn, self.fll, self.vsnk_fll) self.connect(self.rrc, self.vsnk_src) self.connect((self.fll,1), self.vsnk_frq) self.connect((self.fll,2), self.vsnk_phs) self.connect((self.fll,3), self.vsnk_err) def main(): parser = OptionParser(option_class=eng_option, conflict_handler="resolve") parser.add_option("-N", "--nsamples", type="int", default=2000, help="Set the number of samples to process [default=%default]") parser.add_option("-S", "--sps", type="int", default=4, help="Set the samples per symbol [default=%default]") parser.add_option("-r", "--rolloff", type="eng_float", default=0.35, help="Set the rolloff factor [default=%default]") parser.add_option("-W", "--bandwidth", type="eng_float", default=2*scipy.pi/100.0, help="Set the loop bandwidth [default=%default]") parser.add_option("-n", "--ntaps", type="int", default=45, help="Set the number of taps in the filters [default=%default]") parser.add_option("", "--noise", type="eng_float", default=0.0, help="Set the simulation noise voltage [default=%default]") parser.add_option("-f", "--foffset", type="eng_float", default=0.2, help="Set the simulation's normalized frequency offset (in Hz) [default=%default]") parser.add_option("-t", "--toffset", type="eng_float", default=1.0, help="Set the simulation's timing offset [default=%default]") parser.add_option("-p", "--poffset", type="eng_float", default=0.0, help="Set the simulation's phase offset [default=%default]") (options, args) = parser.parse_args () # Adjust N for the interpolation by sps options.nsamples = options.nsamples // options.sps # Set up the program-under-test put = example_fll(options.nsamples, options.sps, options.rolloff, options.ntaps, options.bandwidth, options.noise, options.foffset, options.toffset, options.poffset) put.run() data_src = scipy.array(put.vsnk_src.data()) data_err = scipy.array(put.vsnk_err.data()) # Convert the FLL's LO frequency from rads/sec to Hz data_frq = scipy.array(put.vsnk_frq.data()) / (2.0*scipy.pi) # adjust this to align with the data. There are 2 filters of # ntaps long and the channel introduces another 4 sample delay. data_fll = scipy.array(put.vsnk_fll.data()[2*options.ntaps-4:]) # Plot the FLL's LO frequency f1 = pylab.figure(1, figsize=(12,10)) s1 = f1.add_subplot(2,2,1) s1.plot(data_frq) s1.set_title("FLL LO") s1.set_xlabel("Samples") s1.set_ylabel("Frequency (normalized Hz)") # Plot the FLL's error s2 = f1.add_subplot(2,2,2) s2.plot(data_err) s2.set_title("FLL Error") s2.set_xlabel("Samples") s2.set_ylabel("FLL Loop error") # Plot the IQ symbols s3 = f1.add_subplot(2,2,3) s3.plot(data_src.real, data_src.imag, "o") s3.plot(data_fll.real, data_fll.imag, "rx") s3.set_title("IQ") s3.set_xlabel("Real part") s3.set_ylabel("Imag part") # Plot the symbols in time s4 = f1.add_subplot(2,2,4) s4.plot(data_src.real, "o-") s4.plot(data_fll.real, "rx-") s4.set_title("Symbols") s4.set_xlabel("Samples") s4.set_ylabel("Real Part of Signals") pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
mtb-za/fatiando
cookbook/seismic_wavefd_rayleigh_wave.py
9
2865
""" Seismic: 2D finite difference simulation of elastic P and SV wave propagation in a medium with a discontinuity (i.e., Moho), generating Rayleigh waves """ import numpy as np from matplotlib import animation from fatiando import gridder from fatiando.seismic import wavefd from fatiando.vis import mpl # Set the parameters of the finite difference grid shape = (150, 900) area = [0, 540000, 0, 90000] # Make a density and wave velocity model density = 2400 * np.ones(shape) svel = 3700 * np.ones(shape) pvel = 6600 * np.ones(shape) moho = 50 density[moho:] = 2800 svel[moho:] = 4300 pvel[moho:] = 7500 mu = wavefd.lame_mu(svel, density) lamb = wavefd.lame_lamb(pvel, svel, density) # Make a wave source from a mexican hat wavelet for the x and z directions sources = [ [wavefd.MexHatSource(10000, 10000, area, shape, 100000, 0.5, delay=2)], [wavefd.MexHatSource(10000, 10000, area, shape, 100000, 0.5, delay=2)]] # Get the iterator. This part only generates an iterator object. The actual # computations take place at each iteration in the for loop below dt = wavefd.maxdt(area, shape, pvel.max()) duration = 130 maxit = int(duration / dt) stations = [[400000, 0]] snapshots = int(1. / dt) simulation = wavefd.elastic_psv(lamb, mu, density, area, dt, maxit, sources, stations, snapshots, padding=70, taper=0.005, xz2ps=True) # This part makes an animation using matplotlibs animation API background = 10 ** -5 * ((density - density.min()) / density.max()) fig = mpl.figure(figsize=(10, 8)) mpl.subplots_adjust(right=0.98, left=0.11, hspace=0.3, top=0.93) mpl.subplot(3, 1, 1) mpl.title('x seismogram') xseismogram, = mpl.plot([], [], '-k') mpl.xlim(0, duration) mpl.ylim(-0.05, 0.05) mpl.ylabel('Amplitude') mpl.subplot(3, 1, 2) mpl.title('z seismogram') zseismogram, = mpl.plot([], [], '-k') mpl.xlim(0, duration) mpl.ylim(-0.05, 0.05) mpl.ylabel('Amplitude') ax = mpl.subplot(3, 1, 3) mpl.title('time: 0.0 s') wavefield = mpl.imshow(background, extent=area, cmap=mpl.cm.gray_r, vmin=-0.00001, vmax=0.00001) mpl.points(stations, '^b', size=8) mpl.text(500000, 20000, 'Crust') mpl.text(500000, 60000, 'Mantle') fig.text(0.7, 0.31, 'Seismometer') mpl.xlim(area[:2]) mpl.ylim(area[2:][::-1]) mpl.xlabel('x (km)') mpl.ylabel('z (km)') mpl.m2km() times = np.linspace(0, dt * maxit, maxit) # This function updates the plot every few timesteps def animate(i): t, p, s, xcomp, zcomp = simulation.next() mpl.title('time: %0.1f s' % (times[t])) wavefield.set_array((background + p + s)[::-1]) xseismogram.set_data(times[:t + 1], xcomp[0][:t + 1]) zseismogram.set_data(times[:t + 1], zcomp[0][:t + 1]) return wavefield, xseismogram, zseismogram anim = animation.FuncAnimation( fig, animate, frames=maxit / snapshots, interval=1) mpl.show()
bsd-3-clause
fabianp/scikit-learn
sklearn/cluster/tests/test_hierarchical.py
230
19795
""" Several basic tests for hierarchical clustering procedures """ # Authors: Vincent Michel, 2010, Gael Varoquaux 2012, # Matteo Visconti di Oleggio Castello 2014 # License: BSD 3 clause from tempfile import mkdtemp import shutil from functools import partial import numpy as np from scipy import sparse from scipy.cluster import hierarchy from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.cluster import ward_tree from sklearn.cluster import AgglomerativeClustering, FeatureAgglomeration from sklearn.cluster.hierarchical import (_hc_cut, _TREE_BUILDERS, linkage_tree) from sklearn.feature_extraction.image import grid_to_graph from sklearn.metrics.pairwise import PAIRED_DISTANCES, cosine_distances,\ manhattan_distances, pairwise_distances from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.neighbors.graph import kneighbors_graph from sklearn.cluster._hierarchical import average_merge, max_merge from sklearn.utils.fast_dict import IntFloatDict from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns def test_linkage_misc(): # Misc tests on linkage rng = np.random.RandomState(42) X = rng.normal(size=(5, 5)) assert_raises(ValueError, AgglomerativeClustering(linkage='foo').fit, X) assert_raises(ValueError, linkage_tree, X, linkage='foo') assert_raises(ValueError, linkage_tree, X, connectivity=np.ones((4, 4))) # Smoke test FeatureAgglomeration FeatureAgglomeration().fit(X) # test hiearchical clustering on a precomputed distances matrix dis = cosine_distances(X) res = linkage_tree(dis, affinity="precomputed") assert_array_equal(res[0], linkage_tree(X, affinity="cosine")[0]) # test hiearchical clustering on a precomputed distances matrix res = linkage_tree(X, affinity=manhattan_distances) assert_array_equal(res[0], linkage_tree(X, affinity="manhattan")[0]) def test_structured_linkage_tree(): # Check that we obtain the correct solution for structured linkage trees. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) # Avoiding a mask with only 'True' entries mask[4:7, 4:7] = 0 X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for tree_builder in _TREE_BUILDERS.values(): children, n_components, n_leaves, parent = \ tree_builder(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) # Check that ward_tree raises a ValueError with a connectivity matrix # of the wrong shape assert_raises(ValueError, tree_builder, X.T, np.ones((4, 4))) # Check that fitting with no samples raises an error assert_raises(ValueError, tree_builder, X.T[:0], connectivity) def test_unstructured_linkage_tree(): # Check that we obtain the correct solution for unstructured linkage trees. rng = np.random.RandomState(0) X = rng.randn(50, 100) for this_X in (X, X[0]): # With specified a number of clusters just for the sake of # raising a warning and testing the warning code with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, ward_tree, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) for tree_builder in _TREE_BUILDERS.values(): for this_X in (X, X[0]): with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, tree_builder, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) def test_height_linkage_tree(): # Check that the height of the results of linkage tree is sorted. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for linkage_func in _TREE_BUILDERS.values(): children, n_nodes, n_leaves, parent = linkage_func(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) def test_agglomerative_clustering(): # Check that we obtain the correct number of clusters with # agglomerative clustering. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) n_samples = 100 X = rng.randn(n_samples, 50) connectivity = grid_to_graph(*mask.shape) for linkage in ("ward", "complete", "average"): clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage=linkage) clustering.fit(X) # test caching try: tempdir = mkdtemp() clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, memory=tempdir, linkage=linkage) clustering.fit(X) labels = clustering.labels_ assert_true(np.size(np.unique(labels)) == 10) finally: shutil.rmtree(tempdir) # Turn caching off now clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, linkage=linkage) # Check that we obtain the same solution with early-stopping of the # tree building clustering.compute_full_tree = False clustering.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering.labels_, labels), 1) clustering.connectivity = None clustering.fit(X) assert_true(np.size(np.unique(clustering.labels_)) == 10) # Check that we raise a TypeError on dense matrices clustering = AgglomerativeClustering( n_clusters=10, connectivity=sparse.lil_matrix( connectivity.toarray()[:10, :10]), linkage=linkage) assert_raises(ValueError, clustering.fit, X) # Test that using ward with another metric than euclidean raises an # exception clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity.toarray(), affinity="manhattan", linkage="ward") assert_raises(ValueError, clustering.fit, X) # Test using another metric than euclidean works with linkage complete for affinity in PAIRED_DISTANCES.keys(): # Compare our (structured) implementation to scipy clustering = AgglomerativeClustering( n_clusters=10, connectivity=np.ones((n_samples, n_samples)), affinity=affinity, linkage="complete") clustering.fit(X) clustering2 = AgglomerativeClustering( n_clusters=10, connectivity=None, affinity=affinity, linkage="complete") clustering2.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering2.labels_, clustering.labels_), 1) # Test that using a distance matrix (affinity = 'precomputed') has same # results (with connectivity constraints) clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage="complete") clustering.fit(X) X_dist = pairwise_distances(X) clustering2 = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, affinity='precomputed', linkage="complete") clustering2.fit(X_dist) assert_array_equal(clustering.labels_, clustering2.labels_) def test_ward_agglomeration(): # Check that we obtain the correct solution in a simplistic case rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity) agglo.fit(X) assert_true(np.size(np.unique(agglo.labels_)) == 5) X_red = agglo.transform(X) assert_true(X_red.shape[1] == 5) X_full = agglo.inverse_transform(X_red) assert_true(np.unique(X_full[0]).size == 5) assert_array_almost_equal(agglo.transform(X_full), X_red) # Check that fitting with no samples raises a ValueError assert_raises(ValueError, agglo.fit, X[:0]) def assess_same_labelling(cut1, cut2): """Util for comparison with scipy""" co_clust = [] for cut in [cut1, cut2]: n = len(cut) k = cut.max() + 1 ecut = np.zeros((n, k)) ecut[np.arange(n), cut] = 1 co_clust.append(np.dot(ecut, ecut.T)) assert_true((co_clust[0] == co_clust[1]).all()) def test_scikit_vs_scipy(): # Test scikit linkage with full connectivity (i.e. unstructured) vs scipy n, p, k = 10, 5, 3 rng = np.random.RandomState(0) # Not using a lil_matrix here, just to check that non sparse # matrices are well handled connectivity = np.ones((n, n)) for linkage in _TREE_BUILDERS.keys(): for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out = hierarchy.linkage(X, method=linkage) children_ = out[:, :2].astype(np.int) children, _, n_leaves, _ = _TREE_BUILDERS[linkage](X, connectivity) cut = _hc_cut(k, children, n_leaves) cut_ = _hc_cut(k, children_, n_leaves) assess_same_labelling(cut, cut_) # Test error management in _hc_cut assert_raises(ValueError, _hc_cut, n_leaves + 1, children, n_leaves) def test_connectivity_propagation(): # Check that connectivity in the ward tree is propagated correctly during # merging. X = np.array([(.014, .120), (.014, .099), (.014, .097), (.017, .153), (.017, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .152), (.018, .149), (.018, .144)]) connectivity = kneighbors_graph(X, 10, include_self=False) ward = AgglomerativeClustering( n_clusters=4, connectivity=connectivity, linkage='ward') # If changes are not propagated correctly, fit crashes with an # IndexError ward.fit(X) def test_ward_tree_children_order(): # Check that children are ordered in the same way for both structured and # unstructured versions of ward_tree. # test on five random datasets n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X) out_structured = ward_tree(X, connectivity=connectivity) assert_array_equal(out_unstructured[0], out_structured[0]) def test_ward_linkage_tree_return_distance(): # Test return_distance option on linkage and ward trees # test that return_distance when set true, gives same # output on both structured and unstructured clustering. n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X, return_distance=True) out_structured = ward_tree(X, connectivity=connectivity, return_distance=True) # get children children_unstructured = out_unstructured[0] children_structured = out_structured[0] # check if we got the same clusters assert_array_equal(children_unstructured, children_structured) # check if the distances are the same dist_unstructured = out_unstructured[-1] dist_structured = out_structured[-1] assert_array_almost_equal(dist_unstructured, dist_structured) for linkage in ['average', 'complete']: structured_items = linkage_tree( X, connectivity=connectivity, linkage=linkage, return_distance=True)[-1] unstructured_items = linkage_tree( X, linkage=linkage, return_distance=True)[-1] structured_dist = structured_items[-1] unstructured_dist = unstructured_items[-1] structured_children = structured_items[0] unstructured_children = unstructured_items[0] assert_array_almost_equal(structured_dist, unstructured_dist) assert_array_almost_equal( structured_children, unstructured_children) # test on the following dataset where we know the truth # taken from scipy/cluster/tests/hierarchy_test_data.py X = np.array([[1.43054825, -7.5693489], [6.95887839, 6.82293382], [2.87137846, -9.68248579], [7.87974764, -6.05485803], [8.24018364, -6.09495602], [7.39020262, 8.54004355]]) # truth linkage_X_ward = np.array([[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 9.10208346, 4.], [7., 9., 24.7784379, 6.]]) linkage_X_complete = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.96742194, 4.], [7., 9., 18.77445997, 6.]]) linkage_X_average = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.55832839, 4.], [7., 9., 15.44089605, 6.]]) n_samples, n_features = np.shape(X) connectivity_X = np.ones((n_samples, n_samples)) out_X_unstructured = ward_tree(X, return_distance=True) out_X_structured = ward_tree(X, connectivity=connectivity_X, return_distance=True) # check that the labels are the same assert_array_equal(linkage_X_ward[:, :2], out_X_unstructured[0]) assert_array_equal(linkage_X_ward[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(linkage_X_ward[:, 2], out_X_unstructured[4]) assert_array_almost_equal(linkage_X_ward[:, 2], out_X_structured[4]) linkage_options = ['complete', 'average'] X_linkage_truth = [linkage_X_complete, linkage_X_average] for (linkage, X_truth) in zip(linkage_options, X_linkage_truth): out_X_unstructured = linkage_tree( X, return_distance=True, linkage=linkage) out_X_structured = linkage_tree( X, connectivity=connectivity_X, linkage=linkage, return_distance=True) # check that the labels are the same assert_array_equal(X_truth[:, :2], out_X_unstructured[0]) assert_array_equal(X_truth[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(X_truth[:, 2], out_X_unstructured[4]) assert_array_almost_equal(X_truth[:, 2], out_X_structured[4]) def test_connectivity_fixing_non_lil(): # Check non regression of a bug if a non item assignable connectivity is # provided with more than one component. # create dummy data x = np.array([[0, 0], [1, 1]]) # create a mask with several components to force connectivity fixing m = np.array([[True, False], [False, True]]) c = grid_to_graph(n_x=2, n_y=2, mask=m) w = AgglomerativeClustering(connectivity=c, linkage='ward') assert_warns(UserWarning, w.fit, x) def test_int_float_dict(): rng = np.random.RandomState(0) keys = np.unique(rng.randint(100, size=10).astype(np.intp)) values = rng.rand(len(keys)) d = IntFloatDict(keys, values) for key, value in zip(keys, values): assert d[key] == value other_keys = np.arange(50).astype(np.intp)[::2] other_values = 0.5 * np.ones(50)[::2] other = IntFloatDict(other_keys, other_values) # Complete smoke test max_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) average_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) def test_connectivity_callable(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering( connectivity=partial(kneighbors_graph, n_neighbors=3, include_self=False)) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_connectivity_ignores_diagonal(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) connectivity_include_self = kneighbors_graph(X, 3, include_self=True) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering(connectivity=connectivity_include_self) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_compute_full_tree(): # Test that the full tree is computed if n_clusters is small rng = np.random.RandomState(0) X = rng.randn(10, 2) connectivity = kneighbors_graph(X, 5, include_self=False) # When n_clusters is less, the full tree should be built # that is the number of merges should be n_samples - 1 agc = AgglomerativeClustering(n_clusters=2, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - 1) # When n_clusters is large, greater than max of 100 and 0.02 * n_samples. # we should stop when there are n_clusters. n_clusters = 101 X = rng.randn(200, 2) connectivity = kneighbors_graph(X, 10, include_self=False) agc = AgglomerativeClustering(n_clusters=n_clusters, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - n_clusters) def test_n_components(): # Test n_components returned by linkage, average and ward tree rng = np.random.RandomState(0) X = rng.rand(5, 5) # Connectivity matrix having five components. connectivity = np.eye(5) for linkage_func in _TREE_BUILDERS.values(): assert_equal(ignore_warnings(linkage_func)(X, connectivity)[1], 5) def test_agg_n_clusters(): # Test that an error is raised when n_clusters <= 0 rng = np.random.RandomState(0) X = rng.rand(20, 10) for n_clus in [-1, 0]: agc = AgglomerativeClustering(n_clusters=n_clus) msg = ("n_clusters should be an integer greater than 0." " %s was provided." % str(agc.n_clusters)) assert_raise_message(ValueError, msg, agc.fit, X)
bsd-3-clause
gojomo/gensim
gensim/sklearn_api/d2vmodel.py
1
9435
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2011 Radim Rehurek <[email protected]> # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """Scikit learn interface for :class:`~gensim.models.doc2vec.Doc2Vec`. Follows scikit-learn API conventions to facilitate using gensim along with scikit-learn. Examples -------- .. sourcecode:: pycon >>> from gensim.test.utils import common_texts >>> from gensim.sklearn_api import D2VTransformer >>> >>> model = D2VTransformer(min_count=1, size=5) >>> docvecs = model.fit_transform(common_texts) # represent `common_texts` as vectors """ import numpy as np from six import string_types from sklearn.base import TransformerMixin, BaseEstimator from sklearn.exceptions import NotFittedError from gensim import models from gensim.models import doc2vec class D2VTransformer(TransformerMixin, BaseEstimator): """Base Doc2Vec module, wraps :class:`~gensim.models.doc2vec.Doc2Vec`. This model based on `Quoc Le, Tomas Mikolov: "Distributed Representations of Sentences and Documents" <https://cs.stanford.edu/~quocle/paragraph_vector.pdf>`_. """ def __init__(self, dm_mean=None, dm=1, dbow_words=0, dm_concat=0, dm_tag_count=1, dv=None, dv_mapfile=None, comment=None, trim_rule=None, vector_size=100, alpha=0.025, window=5, min_count=5, max_vocab_size=None, sample=1e-3, seed=1, workers=3, min_alpha=0.0001, hs=0, negative=5, cbow_mean=1, hashfxn=hash, epochs=5, sorted_vocab=1, batch_words=10000): """ Parameters ---------- dm_mean : int {1,0}, optional If 0, use the sum of the context word vectors. If 1, use the mean. Only applies when `dm_concat=0`. dm : int {1,0}, optional Defines the training algorithm. If `dm=1` - distributed memory (PV-DM) is used. Otherwise, distributed bag of words (PV-DBOW) is employed. dbow_words : int {1,0}, optional If set to 1 - trains word-vectors (in skip-gram fashion) simultaneous with DBOW doc-vector training, If 0, only trains doc-vectors (faster). dm_concat : int {1,0}, optional If 1, use concatenation of context vectors rather than sum/average. Note concatenation results in a much-larger model, as the input is no longer the size of one (sampled or arithmetically combined) word vector, but the size of the tag(s) and all words in the context strung together. dm_tag_count : int, optional Expected constant number of document tags per document, when using dm_concat mode. dv : :class:`~gensim.models.keyedvectors.KeyedVectors` A mapping from a string or int tag to its vector representation. dv_mapfile : str, optional Path to a file containing the docvecs mapping. If `dv` is None, this file will be used to create it. comment : str, optional A model descriptive comment, used for logging and debugging purposes. trim_rule : function ((str, int, int) -> int), optional Vocabulary trimming rule that accepts (word, count, min_count). Specifies whether certain words should remain in the vocabulary (:attr:`gensim.utils.RULE_KEEP`), be trimmed away (:attr:`gensim.utils.RULE_DISCARD`), or handled using the default (:attr:`gensim.utils.RULE_DEFAULT`). If None, then :func:`gensim.utils.keep_vocab_item` will be used. vector_size : int, optional Dimensionality of the feature vectors. alpha : float, optional The initial learning rate. window : int, optional The maximum distance between the current and predicted word within a sentence. min_count : int, optional Ignores all words with total frequency lower than this. max_vocab_size : int, optional Limits the RAM during vocabulary building; if there are more unique words than this, then prune the infrequent ones. Every 10 million word types need about 1GB of RAM. Set to `None` for no limit. sample : float, optional The threshold for configuring which higher-frequency words are randomly downsampled, useful range is (0, 1e-5). seed : int, optional Seed for the random number generator. Initial vectors for each word are seeded with a hash of the concatenation of word + `str(seed)`. Note that for a **fully deterministically-reproducible run**, you **must also limit the model to a single worker thread (`workers=1`)**, to eliminate ordering jitter from OS thread scheduling. In Python 3, reproducibility between interpreter launches also requires use of the `PYTHONHASHSEED` environment variable to control hash randomization. workers : int, optional Use this many worker threads to train the model. Will yield a speedup when training with multicore machines. min_alpha : float, optional Learning rate will linearly drop to `min_alpha` as training progresses. hs : int {1,0}, optional If 1, hierarchical softmax will be used for model training. If set to 0, and `negative` is non-zero, negative sampling will be used. negative : int, optional If > 0, negative sampling will be used, the int for negative specifies how many "noise words" should be drawn (usually between 5-20). If set to 0, no negative sampling is used. cbow_mean : int, optional Same as `dm_mean`, **unused**. hashfxn : function (object -> int), optional A hashing function. Used to create an initial random reproducible vector by hashing the random seed. epochs : int, optional Number of epochs to iterate through the corpus. sorted_vocab : bool, optional Whether the vocabulary should be sorted internally. batch_words : int, optional Number of words to be handled by each job. """ self.gensim_model = None self.dm_mean = dm_mean self.dm = dm self.dbow_words = dbow_words self.dm_concat = dm_concat self.dm_tag_count = dm_tag_count self.dv = dv self.dv_mapfile = dv_mapfile self.comment = comment self.trim_rule = trim_rule # attributes associated with gensim.models.Word2Vec self.vector_size = vector_size self.alpha = alpha self.window = window self.min_count = min_count self.max_vocab_size = max_vocab_size self.sample = sample self.seed = seed self.workers = workers self.min_alpha = min_alpha self.hs = hs self.negative = negative self.cbow_mean = int(cbow_mean) self.hashfxn = hashfxn self.epochs = epochs self.sorted_vocab = sorted_vocab self.batch_words = batch_words def fit(self, X, y=None): """Fit the model according to the given training data. Parameters ---------- X : {iterable of :class:`~gensim.models.doc2vec.TaggedDocument`, iterable of list of str} A collection of tagged documents used for training the model. Returns ------- :class:`~gensim.sklearn_api.d2vmodel.D2VTransformer` The trained model. """ if isinstance([i for i in X[:1]][0], doc2vec.TaggedDocument): d2v_sentences = X else: d2v_sentences = [doc2vec.TaggedDocument(words, [i]) for i, words in enumerate(X)] self.gensim_model = models.Doc2Vec( documents=d2v_sentences, dm_mean=self.dm_mean, dm=self.dm, dbow_words=self.dbow_words, dm_concat=self.dm_concat, dm_tag_count=self.dm_tag_count, dv=self.dv, dv_mapfile=self.dv_mapfile, comment=self.comment, trim_rule=self.trim_rule, vector_size=self.vector_size, alpha=self.alpha, window=self.window, min_count=self.min_count, max_vocab_size=self.max_vocab_size, sample=self.sample, seed=self.seed, workers=self.workers, min_alpha=self.min_alpha, hs=self.hs, negative=self.negative, cbow_mean=self.cbow_mean, hashfxn=self.hashfxn, epochs=self.epochs, sorted_vocab=self.sorted_vocab, batch_words=self.batch_words ) return self def transform(self, docs): """Infer the vector representations for the input documents. Parameters ---------- docs : {iterable of list of str, list of str} Input document or sequence of documents. Returns ------- numpy.ndarray of shape [`len(docs)`, `size`] The vector representation of the `docs`. """ if self.gensim_model is None: raise NotFittedError( "This model has not been fitted yet. Call 'fit' with appropriate arguments before using this method." ) # The input as array of array if isinstance(docs[0], string_types): docs = [docs] vectors = [self.gensim_model.infer_vector(doc) for doc in docs] return np.reshape(np.array(vectors), (len(docs), self.gensim_model.vector_size))
lgpl-2.1
tatsuy/ardupilot
Tools/LogAnalyzer/tests/TestOptFlow.py
26
14969
from LogAnalyzer import Test,TestResult import DataflashLog from math import sqrt import numpy as np import matplotlib.pyplot as plt class TestFlow(Test): '''test optical flow sensor scale factor calibration''' # # Use the following procedure to log the calibration data. is assumed that the optical flow sensor has been # correctly aligned, is focussed and the test is performed over a textured surface with adequate lighting. # Note that the strobing effect from non incandescent artifical lighting can produce poor optical flow measurements. # # 1) Set LOG_DISARMED and FLOW_ENABLE to 1 and verify that ATT and OF messages are being logged onboard # 2) Place on level ground, apply power and wait for EKF to complete attitude alignment # 3) Keeping the copter level, lift it to shoulder height and rock between +-20 and +-30 degrees # in roll about an axis that passes through the flow sensor lens assembly. The time taken to rotate from # maximum left roll to maximum right roll should be about 1 second. # 4) Repeat 3) about the pitch axis # 5) Holding the copter level, lower it to the ground and remove power # 6) Transfer the logfile from the sdcard. # 7) Open a terminal and cd to the ardupilot/Tools/LogAnalyzer directory # 8) Enter to run the analysis 'python LogAnalyzer.py <log file name including full path>' # 9) Check the OpticalFlow test status printed to the screen. The analysis plots are saved to # flow_calibration.pdf and the recommended scale factors to flow_calibration.param def __init__(self): Test.__init__(self) self.name = "OpticalFlow" def run(self, logdata, verbose): self.result = TestResult() self.result.status = TestResult.StatusType.GOOD def FAIL(): self.result.status = TestResult.StatusType.FAIL def WARN(): if self.result.status != TestResult.StatusType.FAIL: self.result.status = TestResult.StatusType.WARN try: # tuning parameters used by the algorithm tilt_threshold = 15 # roll and pitch threshold used to start and stop calibration (deg) quality_threshold = 124 # minimum flow quality required for data to be used by the curve fit (N/A) min_rate_threshold = 0.0 # if the gyro rate is less than this, the data will not be used by the curve fit (rad/sec) max_rate_threshold = 2.0 # if the gyro rate is greter than this, the data will not be used by the curve fit (rad/sec) param_std_threshold = 5.0 # maximum allowable 1-std uncertainty in scaling parameter (scale factor * 1000) param_abs_threshold = 200 # max/min allowable scale factor parameter. Values of FLOW_FXSCALER and FLOW_FYSCALER outside the range of +-param_abs_threshold indicate a sensor configuration problem. min_num_points = 100 # minimum number of points required for a curve fit - this is necessary, but not sufficient condition - the standard deviation estimate of the fit gradient is also important. # get the existing scale parameters flow_fxscaler = logdata.parameters["FLOW_FXSCALER"] flow_fyscaler = logdata.parameters["FLOW_FYSCALER"] # load required optical flow data if "OF" in logdata.channels: flowX = np.zeros(len(logdata.channels["OF"]["flowX"].listData)) for i in range(len(logdata.channels["OF"]["flowX"].listData)): (line, flowX[i]) = logdata.channels["OF"]["flowX"].listData[i] bodyX = np.zeros(len(logdata.channels["OF"]["bodyX"].listData)) for i in range(len(logdata.channels["OF"]["bodyX"].listData)): (line, bodyX[i]) = logdata.channels["OF"]["bodyX"].listData[i] flowY = np.zeros(len(logdata.channels["OF"]["flowY"].listData)) for i in range(len(logdata.channels["OF"]["flowY"].listData)): (line, flowY[i]) = logdata.channels["OF"]["flowY"].listData[i] bodyY = np.zeros(len(logdata.channels["OF"]["bodyY"].listData)) for i in range(len(logdata.channels["OF"]["bodyY"].listData)): (line, bodyY[i]) = logdata.channels["OF"]["bodyY"].listData[i] flow_time_us = np.zeros(len(logdata.channels["OF"]["TimeUS"].listData)) for i in range(len(logdata.channels["OF"]["TimeUS"].listData)): (line, flow_time_us[i]) = logdata.channels["OF"]["TimeUS"].listData[i] flow_qual = np.zeros(len(logdata.channels["OF"]["Qual"].listData)) for i in range(len(logdata.channels["OF"]["Qual"].listData)): (line, flow_qual[i]) = logdata.channels["OF"]["Qual"].listData[i] else: FAIL() self.result.statusMessage = "FAIL: no optical flow data\n" return # load required attitude data if "ATT" in logdata.channels: Roll = np.zeros(len(logdata.channels["ATT"]["Roll"].listData)) for i in range(len(logdata.channels["ATT"]["Roll"].listData)): (line, Roll[i]) = logdata.channels["ATT"]["Roll"].listData[i] Pitch = np.zeros(len(logdata.channels["ATT"]["Pitch"].listData)) for i in range(len(logdata.channels["ATT"]["Pitch"].listData)): (line, Pitch[i]) = logdata.channels["ATT"]["Pitch"].listData[i] att_time_us = np.zeros(len(logdata.channels["ATT"]["TimeUS"].listData)) for i in range(len(logdata.channels["ATT"]["TimeUS"].listData)): (line, att_time_us[i]) = logdata.channels["ATT"]["TimeUS"].listData[i] else: FAIL() self.result.statusMessage = "FAIL: no attitude data\n" return # calculate the start time for the roll calibration startTime = int(0) startRollIndex = int(0) for i in range(len(Roll)): if abs(Roll[i]) > tilt_threshold: startTime = att_time_us[i] break for i in range(len(flow_time_us)): if flow_time_us[i] > startTime: startRollIndex = i break # calculate the end time for the roll calibration endTime = int(0) endRollIndex = int(0) for i in range(len(Roll)-1,-1,-1): if abs(Roll[i]) > tilt_threshold: endTime = att_time_us[i] break for i in range(len(flow_time_us)-1,-1,-1): if flow_time_us[i] < endTime: endRollIndex = i break # check we have enough roll data points if (endRollIndex - startRollIndex <= min_num_points): FAIL() self.result.statusMessage = "FAIL: insufficient roll data pointsa\n" return # resample roll test data excluding data before first movement and after last movement # also exclude data where there is insufficient angular rate flowX_resampled = [] bodyX_resampled = [] flowX_time_us_resampled = [] for i in range(len(Roll)): if (i >= startRollIndex) and (i <= endRollIndex) and (abs(bodyX[i]) > min_rate_threshold) and (abs(bodyX[i]) < max_rate_threshold) and (flow_qual[i] > quality_threshold): flowX_resampled.append(flowX[i]) bodyX_resampled.append(bodyX[i]) flowX_time_us_resampled.append(flow_time_us[i]) # calculate the start time for the pitch calibration startTime = 0 startPitchIndex = int(0) for i in range(len(Pitch)): if abs(Pitch[i]) > tilt_threshold: startTime = att_time_us[i] break for i in range(len(flow_time_us)): if flow_time_us[i] > startTime: startPitchIndex = i break # calculate the end time for the pitch calibration endTime = 0 endPitchIndex = int(0) for i in range(len(Pitch)-1,-1,-1): if abs(Pitch[i]) > tilt_threshold: endTime = att_time_us[i] break for i in range(len(flow_time_us)-1,-1,-1): if flow_time_us[i] < endTime: endPitchIndex = i break # check we have enough pitch data points if (endPitchIndex - startPitchIndex <= min_num_points): FAIL() self.result.statusMessage = "FAIL: insufficient pitch data pointsa\n" return # resample pitch test data excluding data before first movement and after last movement # also exclude data where there is insufficient or too much angular rate flowY_resampled = [] bodyY_resampled = [] flowY_time_us_resampled = [] for i in range(len(Roll)): if (i >= startPitchIndex) and (i <= endPitchIndex) and (abs(bodyY[i]) > min_rate_threshold) and (abs(bodyY[i]) < max_rate_threshold) and (flow_qual[i] > quality_threshold): flowY_resampled.append(flowY[i]) bodyY_resampled.append(bodyY[i]) flowY_time_us_resampled.append(flow_time_us[i]) # fit a straight line to the flow vs body rate data and calculate the scale factor parameter required to achieve a slope of 1 coef_flow_x , cov_x = np.polyfit(bodyX_resampled,flowX_resampled,1,rcond=None, full=False, w=None, cov=True) coef_flow_y , cov_y = np.polyfit(bodyY_resampled,flowY_resampled,1,rcond=None, full=False, w=None, cov=True) # taking the exisiting scale factor parameters into account, calculate the parameter values reequired to achieve a unity slope flow_fxscaler_new = int(1000 * (((1 + 0.001 * float(flow_fxscaler))/coef_flow_x[0] - 1))) flow_fyscaler_new = int(1000 * (((1 + 0.001 * float(flow_fyscaler))/coef_flow_y[0] - 1))) # Do a sanity check on the scale factor variance if sqrt(cov_x[0][0]) > param_std_threshold or sqrt(cov_y[0][0]) > param_std_threshold: FAIL() self.result.statusMessage = "FAIL: inaccurate fit - poor quality or insufficient data\nFLOW_FXSCALER 1STD = %u\nFLOW_FYSCALER 1STD = %u\n" % (round(1000*sqrt(cov_x[0][0])),round(1000*sqrt(cov_y[0][0]))) # Do a sanity check on the scale factors if abs(flow_fxscaler_new) > param_abs_threshold or abs(flow_fyscaler_new) > param_abs_threshold: FAIL() self.result.statusMessage = "FAIL: required scale factors are excessive\nFLOW_FXSCALER=%i\nFLOW_FYSCALER=%i\n" % (flow_fxscaler,flow_fyscaler) # display recommended scale factors self.result.statusMessage = "Set FLOW_FXSCALER to %i\nSet FLOW_FYSCALER to %i\n\nCal plots saved to flow_calibration.pdf\nCal parameters saved to flow_calibration.param\n\nFLOW_FXSCALER 1STD = %u\nFLOW_FYSCALER 1STD = %u\n" % (flow_fxscaler_new,flow_fyscaler_new,round(1000*sqrt(cov_x[0][0])),round(1000*sqrt(cov_y[0][0]))) # calculate fit display data body_rate_display = [-max_rate_threshold,max_rate_threshold] fit_coef_x = np.poly1d(coef_flow_x) flowX_display = fit_coef_x(body_rate_display) fit_coef_y = np.poly1d(coef_flow_y) flowY_display = fit_coef_y(body_rate_display) # plot and save calibration test points to PDF from matplotlib.backends.backend_pdf import PdfPages output_plot_filename = "flow_calibration.pdf" pp = PdfPages(output_plot_filename) plt.figure(1,figsize=(20,13)) plt.subplot(2,1,1) plt.plot(bodyX_resampled,flowX_resampled,'b', linestyle=' ', marker='o',label="test points") plt.plot(body_rate_display,flowX_display,'r',linewidth=2.5,label="linear fit") plt.title('X axis flow rate vs gyro rate') plt.ylabel('flow rate (rad/s)') plt.xlabel('gyro rate (rad/sec)') plt.grid() plt.legend(loc='upper left') # draw plots plt.subplot(2,1,2) plt.plot(bodyY_resampled,flowY_resampled,'b', linestyle=' ', marker='o',label="test points") plt.plot(body_rate_display,flowY_display,'r',linewidth=2.5,label="linear fit") plt.title('Y axis flow rate vs gyro rate') plt.ylabel('flow rate (rad/s)') plt.xlabel('gyro rate (rad/sec)') plt.grid() plt.legend(loc='upper left') pp.savefig() plt.figure(2,figsize=(20,13)) plt.subplot(2,1,1) plt.plot(flow_time_us,flowX,'b',label="flow rate - all") plt.plot(flow_time_us,bodyX,'r',label="gyro rate - all") plt.plot(flowX_time_us_resampled,flowX_resampled,'c', linestyle=' ', marker='o',label="flow rate - used") plt.plot(flowX_time_us_resampled,bodyX_resampled,'m', linestyle=' ', marker='o',label="gyro rate - used") plt.title('X axis flow and body rate vs time') plt.ylabel('rate (rad/s)') plt.xlabel('time (usec)') plt.grid() plt.legend(loc='upper left') # draw plots plt.subplot(2,1,2) plt.plot(flow_time_us,flowY,'b',label="flow rate - all") plt.plot(flow_time_us,bodyY,'r',label="gyro rate - all") plt.plot(flowY_time_us_resampled,flowY_resampled,'c', linestyle=' ', marker='o',label="flow rate - used") plt.plot(flowY_time_us_resampled,bodyY_resampled,'m', linestyle=' ', marker='o',label="gyro rate - used") plt.title('Y axis flow and body rate vs time') plt.ylabel('rate (rad/s)') plt.xlabel('time (usec)') plt.grid() plt.legend(loc='upper left') pp.savefig() # close the pdf file pp.close() # close all figures plt.close("all") # write correction parameters to file test_results_filename = "flow_calibration.param" file = open(test_results_filename,"w") file.write("FLOW_FXSCALER"+" "+str(flow_fxscaler_new)+"\n") file.write("FLOW_FYSCALER"+" "+str(flow_fyscaler_new)+"\n") file.close() except KeyError as e: self.result.status = TestResult.StatusType.FAIL self.result.statusMessage = str(e) + ' not found'
gpl-3.0
pprett/scikit-learn
sklearn/cluster/hierarchical.py
2
33540
"""Hierarchical Agglomerative Clustering These routines perform some hierarchical agglomerative clustering of some input data. Authors : Vincent Michel, Bertrand Thirion, Alexandre Gramfort, Gael Varoquaux License: BSD 3 clause """ from heapq import heapify, heappop, heappush, heappushpop import warnings import numpy as np from scipy import sparse from ..base import BaseEstimator, ClusterMixin from ..externals.joblib import Memory from ..externals import six from ..metrics.pairwise import paired_distances, pairwise_distances from ..utils import check_array from ..utils.sparsetools import connected_components from . import _hierarchical from ._feature_agglomeration import AgglomerationTransform from ..utils.fast_dict import IntFloatDict from ..externals.six.moves import xrange ############################################################################### # For non fully-connected graphs def _fix_connectivity(X, connectivity, n_components=None, affinity="euclidean"): """ Fixes the connectivity matrix - copies it - makes it symmetric - converts it to LIL if necessary - completes it if necessary """ n_samples = X.shape[0] if (connectivity.shape[0] != n_samples or connectivity.shape[1] != n_samples): raise ValueError('Wrong shape for connectivity matrix: %s ' 'when X is %s' % (connectivity.shape, X.shape)) # Make the connectivity matrix symmetric: connectivity = connectivity + connectivity.T # Convert connectivity matrix to LIL if not sparse.isspmatrix_lil(connectivity): if not sparse.isspmatrix(connectivity): connectivity = sparse.lil_matrix(connectivity) else: connectivity = connectivity.tolil() # Compute the number of nodes n_components, labels = connected_components(connectivity) if n_components > 1: warnings.warn("the number of connected components of the " "connectivity matrix is %d > 1. Completing it to avoid " "stopping the tree early." % n_components, stacklevel=2) # XXX: Can we do without completing the matrix? for i in xrange(n_components): idx_i = np.where(labels == i)[0] Xi = X[idx_i] for j in xrange(i): idx_j = np.where(labels == j)[0] Xj = X[idx_j] D = pairwise_distances(Xi, Xj, metric=affinity) ii, jj = np.where(D == np.min(D)) ii = ii[0] jj = jj[0] connectivity[idx_i[ii], idx_j[jj]] = True connectivity[idx_j[jj], idx_i[ii]] = True return connectivity, n_components ############################################################################### # Hierarchical tree building functions def ward_tree(X, connectivity=None, n_clusters=None, return_distance=False): """Ward clustering based on a Feature matrix. Recursively merges the pair of clusters that minimally increases within-cluster variance. The inertia matrix uses a Heapq-based representation. This is the structured version, that takes into account some topological structure between samples. Read more in the :ref:`User Guide <hierarchical_clustering>`. Parameters ---------- X : array, shape (n_samples, n_features) feature matrix representing n_samples samples to be clustered connectivity : sparse matrix (optional). connectivity matrix. Defines for each sample the neighboring samples following a given structure of the data. The matrix is assumed to be symmetric and only the upper triangular half is used. Default is None, i.e, the Ward algorithm is unstructured. n_clusters : int (optional) Stop early the construction of the tree at n_clusters. This is useful to decrease computation time if the number of clusters is not small compared to the number of samples. In this case, the complete tree is not computed, thus the 'children' output is of limited use, and the 'parents' output should rather be used. This option is valid only when specifying a connectivity matrix. return_distance : bool (optional) If True, return the distance between the clusters. Returns ------- children : 2D array, shape (n_nodes-1, 2) The children of each non-leaf node. Values less than `n_samples` correspond to leaves of the tree which are the original samples. A node `i` greater than or equal to `n_samples` is a non-leaf node and has children `children_[i - n_samples]`. Alternatively at the i-th iteration, children[i][0] and children[i][1] are merged to form node `n_samples + i` n_components : int The number of connected components in the graph. n_leaves : int The number of leaves in the tree parents : 1D array, shape (n_nodes, ) or None The parent of each node. Only returned when a connectivity matrix is specified, elsewhere 'None' is returned. distances : 1D array, shape (n_nodes-1, ) Only returned if return_distance is set to True (for compatibility). The distances between the centers of the nodes. `distances[i]` corresponds to a weighted euclidean distance between the nodes `children[i, 1]` and `children[i, 2]`. If the nodes refer to leaves of the tree, then `distances[i]` is their unweighted euclidean distance. Distances are updated in the following way (from scipy.hierarchy.linkage): The new entry :math:`d(u,v)` is computed as follows, .. math:: d(u,v) = \\sqrt{\\frac{|v|+|s|} {T}d(v,s)^2 + \\frac{|v|+|t|} {T}d(v,t)^2 - \\frac{|v|} {T}d(s,t)^2} where :math:`u` is the newly joined cluster consisting of clusters :math:`s` and :math:`t`, :math:`v` is an unused cluster in the forest, :math:`T=|v|+|s|+|t|`, and :math:`|*|` is the cardinality of its argument. This is also known as the incremental algorithm. """ X = np.asarray(X) if X.ndim == 1: X = np.reshape(X, (-1, 1)) n_samples, n_features = X.shape if connectivity is None: from scipy.cluster import hierarchy # imports PIL if n_clusters is not None: warnings.warn('Partial build of the tree is implemented ' 'only for structured clustering (i.e. with ' 'explicit connectivity). The algorithm ' 'will build the full tree and only ' 'retain the lower branches required ' 'for the specified number of clusters', stacklevel=2) out = hierarchy.ward(X) children_ = out[:, :2].astype(np.intp) if return_distance: distances = out[:, 2] return children_, 1, n_samples, None, distances else: return children_, 1, n_samples, None connectivity, n_components = _fix_connectivity(X, connectivity) if n_clusters is None: n_nodes = 2 * n_samples - 1 else: if n_clusters > n_samples: raise ValueError('Cannot provide more clusters than samples. ' '%i n_clusters was asked, and there are %i samples.' % (n_clusters, n_samples)) n_nodes = 2 * n_samples - n_clusters # create inertia matrix coord_row = [] coord_col = [] A = [] for ind, row in enumerate(connectivity.rows): A.append(row) # We keep only the upper triangular for the moments # Generator expressions are faster than arrays on the following row = [i for i in row if i < ind] coord_row.extend(len(row) * [ind, ]) coord_col.extend(row) coord_row = np.array(coord_row, dtype=np.intp, order='C') coord_col = np.array(coord_col, dtype=np.intp, order='C') # build moments as a list moments_1 = np.zeros(n_nodes, order='C') moments_1[:n_samples] = 1 moments_2 = np.zeros((n_nodes, n_features), order='C') moments_2[:n_samples] = X inertia = np.empty(len(coord_row), dtype=np.float64, order='C') _hierarchical.compute_ward_dist(moments_1, moments_2, coord_row, coord_col, inertia) inertia = list(six.moves.zip(inertia, coord_row, coord_col)) heapify(inertia) # prepare the main fields parent = np.arange(n_nodes, dtype=np.intp) used_node = np.ones(n_nodes, dtype=bool) children = [] if return_distance: distances = np.empty(n_nodes - n_samples) not_visited = np.empty(n_nodes, dtype=np.int8, order='C') # recursive merge loop for k in range(n_samples, n_nodes): # identify the merge while True: inert, i, j = heappop(inertia) if used_node[i] and used_node[j]: break parent[i], parent[j] = k, k children.append((i, j)) used_node[i] = used_node[j] = False if return_distance: # store inertia value distances[k - n_samples] = inert # update the moments moments_1[k] = moments_1[i] + moments_1[j] moments_2[k] = moments_2[i] + moments_2[j] # update the structure matrix A and the inertia matrix coord_col = [] not_visited.fill(1) not_visited[k] = 0 _hierarchical._get_parents(A[i], coord_col, parent, not_visited) _hierarchical._get_parents(A[j], coord_col, parent, not_visited) # List comprehension is faster than a for loop [A[l].append(k) for l in coord_col] A.append(coord_col) coord_col = np.array(coord_col, dtype=np.intp, order='C') coord_row = np.empty(coord_col.shape, dtype=np.intp, order='C') coord_row.fill(k) n_additions = len(coord_row) ini = np.empty(n_additions, dtype=np.float64, order='C') _hierarchical.compute_ward_dist(moments_1, moments_2, coord_row, coord_col, ini) # List comprehension is faster than a for loop [heappush(inertia, (ini[idx], k, coord_col[idx])) for idx in range(n_additions)] # Separate leaves in children (empty lists up to now) n_leaves = n_samples # sort children to get consistent output with unstructured version children = [c[::-1] for c in children] children = np.array(children) # return numpy array for efficient caching if return_distance: # 2 is scaling factor to compare w/ unstructured version distances = np.sqrt(2. * distances) return children, n_components, n_leaves, parent, distances else: return children, n_components, n_leaves, parent # average and complete linkage def linkage_tree(X, connectivity=None, n_components=None, n_clusters=None, linkage='complete', affinity="euclidean", return_distance=False): """Linkage agglomerative clustering based on a Feature matrix. The inertia matrix uses a Heapq-based representation. This is the structured version, that takes into account some topological structure between samples. Read more in the :ref:`User Guide <hierarchical_clustering>`. Parameters ---------- X : array, shape (n_samples, n_features) feature matrix representing n_samples samples to be clustered connectivity : sparse matrix (optional). connectivity matrix. Defines for each sample the neighboring samples following a given structure of the data. The matrix is assumed to be symmetric and only the upper triangular half is used. Default is None, i.e, the Ward algorithm is unstructured. n_clusters : int (optional) Stop early the construction of the tree at n_clusters. This is useful to decrease computation time if the number of clusters is not small compared to the number of samples. In this case, the complete tree is not computed, thus the 'children' output is of limited use, and the 'parents' output should rather be used. This option is valid only when specifying a connectivity matrix. linkage : {"average", "complete"}, optional, default: "complete" Which linkage criteria to use. The linkage criterion determines which distance to use between sets of observation. - average uses the average of the distances of each observation of the two sets - complete or maximum linkage uses the maximum distances between all observations of the two sets. affinity : string or callable, optional, default: "euclidean". which metric to use. Can be "euclidean", "manhattan", or any distance know to paired distance (see metric.pairwise) return_distance : bool, default False whether or not to return the distances between the clusters. Returns ------- children : 2D array, shape (n_nodes-1, 2) The children of each non-leaf node. Values less than `n_samples` correspond to leaves of the tree which are the original samples. A node `i` greater than or equal to `n_samples` is a non-leaf node and has children `children_[i - n_samples]`. Alternatively at the i-th iteration, children[i][0] and children[i][1] are merged to form node `n_samples + i` n_components : int The number of connected components in the graph. n_leaves : int The number of leaves in the tree. parents : 1D array, shape (n_nodes, ) or None The parent of each node. Only returned when a connectivity matrix is specified, elsewhere 'None' is returned. distances : ndarray, shape (n_nodes-1,) Returned when return_distance is set to True. distances[i] refers to the distance between children[i][0] and children[i][1] when they are merged. See also -------- ward_tree : hierarchical clustering with ward linkage """ X = np.asarray(X) if X.ndim == 1: X = np.reshape(X, (-1, 1)) n_samples, n_features = X.shape linkage_choices = {'complete': _hierarchical.max_merge, 'average': _hierarchical.average_merge} try: join_func = linkage_choices[linkage] except KeyError: raise ValueError( 'Unknown linkage option, linkage should be one ' 'of %s, but %s was given' % (linkage_choices.keys(), linkage)) if connectivity is None: from scipy.cluster import hierarchy # imports PIL if n_clusters is not None: warnings.warn('Partial build of the tree is implemented ' 'only for structured clustering (i.e. with ' 'explicit connectivity). The algorithm ' 'will build the full tree and only ' 'retain the lower branches required ' 'for the specified number of clusters', stacklevel=2) if affinity == 'precomputed': # for the linkage function of hierarchy to work on precomputed # data, provide as first argument an ndarray of the shape returned # by pdist: it is a flat array containing the upper triangular of # the distance matrix. i, j = np.triu_indices(X.shape[0], k=1) X = X[i, j] elif affinity == 'l2': # Translate to something understood by scipy affinity = 'euclidean' elif affinity in ('l1', 'manhattan'): affinity = 'cityblock' elif callable(affinity): X = affinity(X) i, j = np.triu_indices(X.shape[0], k=1) X = X[i, j] out = hierarchy.linkage(X, method=linkage, metric=affinity) children_ = out[:, :2].astype(np.int) if return_distance: distances = out[:, 2] return children_, 1, n_samples, None, distances return children_, 1, n_samples, None connectivity, n_components = _fix_connectivity(X, connectivity) connectivity = connectivity.tocoo() # Put the diagonal to zero diag_mask = (connectivity.row != connectivity.col) connectivity.row = connectivity.row[diag_mask] connectivity.col = connectivity.col[diag_mask] connectivity.data = connectivity.data[diag_mask] del diag_mask if affinity == 'precomputed': distances = X[connectivity.row, connectivity.col] else: # FIXME We compute all the distances, while we could have only computed # the "interesting" distances distances = paired_distances(X[connectivity.row], X[connectivity.col], metric=affinity) connectivity.data = distances if n_clusters is None: n_nodes = 2 * n_samples - 1 else: assert n_clusters <= n_samples n_nodes = 2 * n_samples - n_clusters if return_distance: distances = np.empty(n_nodes - n_samples) # create inertia heap and connection matrix A = np.empty(n_nodes, dtype=object) inertia = list() # LIL seems to the best format to access the rows quickly, # without the numpy overhead of slicing CSR indices and data. connectivity = connectivity.tolil() # We are storing the graph in a list of IntFloatDict for ind, (data, row) in enumerate(zip(connectivity.data, connectivity.rows)): A[ind] = IntFloatDict(np.asarray(row, dtype=np.intp), np.asarray(data, dtype=np.float64)) # We keep only the upper triangular for the heap # Generator expressions are faster than arrays on the following inertia.extend(_hierarchical.WeightedEdge(d, ind, r) for r, d in zip(row, data) if r < ind) del connectivity heapify(inertia) # prepare the main fields parent = np.arange(n_nodes, dtype=np.intp) used_node = np.ones(n_nodes, dtype=np.intp) children = [] # recursive merge loop for k in xrange(n_samples, n_nodes): # identify the merge while True: edge = heappop(inertia) if used_node[edge.a] and used_node[edge.b]: break i = edge.a j = edge.b if return_distance: # store distances distances[k - n_samples] = edge.weight parent[i] = parent[j] = k children.append((i, j)) # Keep track of the number of elements per cluster n_i = used_node[i] n_j = used_node[j] used_node[k] = n_i + n_j used_node[i] = used_node[j] = False # update the structure matrix A and the inertia matrix # a clever 'min', or 'max' operation between A[i] and A[j] coord_col = join_func(A[i], A[j], used_node, n_i, n_j) for l, d in coord_col: A[l].append(k, d) # Here we use the information from coord_col (containing the # distances) to update the heap heappush(inertia, _hierarchical.WeightedEdge(d, k, l)) A[k] = coord_col # Clear A[i] and A[j] to save memory A[i] = A[j] = 0 # Separate leaves in children (empty lists up to now) n_leaves = n_samples # # return numpy array for efficient caching children = np.array(children)[:, ::-1] if return_distance: return children, n_components, n_leaves, parent, distances return children, n_components, n_leaves, parent # Matching names to tree-building strategies def _complete_linkage(*args, **kwargs): kwargs['linkage'] = 'complete' return linkage_tree(*args, **kwargs) def _average_linkage(*args, **kwargs): kwargs['linkage'] = 'average' return linkage_tree(*args, **kwargs) _TREE_BUILDERS = dict( ward=ward_tree, complete=_complete_linkage, average=_average_linkage) ############################################################################### # Functions for cutting hierarchical clustering tree def _hc_cut(n_clusters, children, n_leaves): """Function cutting the ward tree for a given number of clusters. Parameters ---------- n_clusters : int or ndarray The number of clusters to form. children : 2D array, shape (n_nodes-1, 2) The children of each non-leaf node. Values less than `n_samples` correspond to leaves of the tree which are the original samples. A node `i` greater than or equal to `n_samples` is a non-leaf node and has children `children_[i - n_samples]`. Alternatively at the i-th iteration, children[i][0] and children[i][1] are merged to form node `n_samples + i` n_leaves : int Number of leaves of the tree. Returns ------- labels : array [n_samples] cluster labels for each point """ if n_clusters > n_leaves: raise ValueError('Cannot extract more clusters than samples: ' '%s clusters where given for a tree with %s leaves.' % (n_clusters, n_leaves)) # In this function, we store nodes as a heap to avoid recomputing # the max of the nodes: the first element is always the smallest # We use negated indices as heaps work on smallest elements, and we # are interested in largest elements # children[-1] is the root of the tree nodes = [-(max(children[-1]) + 1)] for i in xrange(n_clusters - 1): # As we have a heap, nodes[0] is the smallest element these_children = children[-nodes[0] - n_leaves] # Insert the 2 children and remove the largest node heappush(nodes, -these_children[0]) heappushpop(nodes, -these_children[1]) label = np.zeros(n_leaves, dtype=np.intp) for i, node in enumerate(nodes): label[_hierarchical._hc_get_descendent(-node, children, n_leaves)] = i return label ############################################################################### class AgglomerativeClustering(BaseEstimator, ClusterMixin): """ Agglomerative Clustering Recursively merges the pair of clusters that minimally increases a given linkage distance. Read more in the :ref:`User Guide <hierarchical_clustering>`. Parameters ---------- n_clusters : int, default=2 The number of clusters to find. connectivity : array-like or callable, optional Connectivity matrix. Defines for each sample the neighboring samples following a given structure of the data. This can be a connectivity matrix itself or a callable that transforms the data into a connectivity matrix, such as derived from kneighbors_graph. Default is None, i.e, the hierarchical clustering algorithm is unstructured. affinity : string or callable, default: "euclidean" Metric used to compute the linkage. Can be "euclidean", "l1", "l2", "manhattan", "cosine", or 'precomputed'. If linkage is "ward", only "euclidean" is accepted. memory : Instance of sklearn.externals.joblib.Memory or string, optional \ (default=None) Used to cache the output of the computation of the tree. By default, no caching is done. If a string is given, it is the path to the caching directory. compute_full_tree : bool or 'auto' (optional) Stop early the construction of the tree at n_clusters. This is useful to decrease computation time if the number of clusters is not small compared to the number of samples. This option is useful only when specifying a connectivity matrix. Note also that when varying the number of clusters and using caching, it may be advantageous to compute the full tree. linkage : {"ward", "complete", "average"}, optional, default: "ward" Which linkage criterion to use. The linkage criterion determines which distance to use between sets of observation. The algorithm will merge the pairs of cluster that minimize this criterion. - ward minimizes the variance of the clusters being merged. - average uses the average of the distances of each observation of the two sets. - complete or maximum linkage uses the maximum distances between all observations of the two sets. pooling_func : callable, default=np.mean This combines the values of agglomerated features into a single value, and should accept an array of shape [M, N] and the keyword argument ``axis=1``, and reduce it to an array of size [M]. Attributes ---------- labels_ : array [n_samples] cluster labels for each point n_leaves_ : int Number of leaves in the hierarchical tree. n_components_ : int The estimated number of connected components in the graph. children_ : array-like, shape (n_nodes-1, 2) The children of each non-leaf node. Values less than `n_samples` correspond to leaves of the tree which are the original samples. A node `i` greater than or equal to `n_samples` is a non-leaf node and has children `children_[i - n_samples]`. Alternatively at the i-th iteration, children[i][0] and children[i][1] are merged to form node `n_samples + i` """ def __init__(self, n_clusters=2, affinity="euclidean", memory=None, connectivity=None, compute_full_tree='auto', linkage='ward', pooling_func=np.mean): self.n_clusters = n_clusters self.memory = memory self.connectivity = connectivity self.compute_full_tree = compute_full_tree self.linkage = linkage self.affinity = affinity self.pooling_func = pooling_func def fit(self, X, y=None): """Fit the hierarchical clustering on the data Parameters ---------- X : array-like, shape = [n_samples, n_features] The samples a.k.a. observations. Returns ------- self """ X = check_array(X, ensure_min_samples=2, estimator=self) memory = self.memory if memory is None: memory = Memory(cachedir=None, verbose=0) elif isinstance(memory, six.string_types): memory = Memory(cachedir=memory, verbose=0) elif not isinstance(memory, Memory): raise ValueError("'memory' should either be a string or" " a sklearn.externals.joblib.Memory" " instance, got 'memory={!r}' instead.".format( type(memory))) if self.n_clusters <= 0: raise ValueError("n_clusters should be an integer greater than 0." " %s was provided." % str(self.n_clusters)) if self.linkage == "ward" and self.affinity != "euclidean": raise ValueError("%s was provided as affinity. Ward can only " "work with euclidean distances." % (self.affinity, )) if self.linkage not in _TREE_BUILDERS: raise ValueError("Unknown linkage type %s." "Valid options are %s" % (self.linkage, _TREE_BUILDERS.keys())) tree_builder = _TREE_BUILDERS[self.linkage] connectivity = self.connectivity if self.connectivity is not None: if callable(self.connectivity): connectivity = self.connectivity(X) connectivity = check_array( connectivity, accept_sparse=['csr', 'coo', 'lil']) n_samples = len(X) compute_full_tree = self.compute_full_tree if self.connectivity is None: compute_full_tree = True if compute_full_tree == 'auto': # Early stopping is likely to give a speed up only for # a large number of clusters. The actual threshold # implemented here is heuristic compute_full_tree = self.n_clusters < max(100, .02 * n_samples) n_clusters = self.n_clusters if compute_full_tree: n_clusters = None # Construct the tree kwargs = {} if self.linkage != 'ward': kwargs['linkage'] = self.linkage kwargs['affinity'] = self.affinity self.children_, self.n_components_, self.n_leaves_, parents = \ memory.cache(tree_builder)(X, connectivity, n_clusters=n_clusters, **kwargs) # Cut the tree if compute_full_tree: self.labels_ = _hc_cut(self.n_clusters, self.children_, self.n_leaves_) else: labels = _hierarchical.hc_get_heads(parents, copy=False) # copy to avoid holding a reference on the original array labels = np.copy(labels[:n_samples]) # Reassign cluster numbers self.labels_ = np.searchsorted(np.unique(labels), labels) return self class FeatureAgglomeration(AgglomerativeClustering, AgglomerationTransform): """Agglomerate features. Similar to AgglomerativeClustering, but recursively merges features instead of samples. Read more in the :ref:`User Guide <hierarchical_clustering>`. Parameters ---------- n_clusters : int, default 2 The number of clusters to find. connectivity : array-like or callable, optional Connectivity matrix. Defines for each feature the neighboring features following a given structure of the data. This can be a connectivity matrix itself or a callable that transforms the data into a connectivity matrix, such as derived from kneighbors_graph. Default is None, i.e, the hierarchical clustering algorithm is unstructured. affinity : string or callable, default "euclidean" Metric used to compute the linkage. Can be "euclidean", "l1", "l2", "manhattan", "cosine", or 'precomputed'. If linkage is "ward", only "euclidean" is accepted. memory : Instance of sklearn.externals.joblib.Memory or string, optional \ (default=None) Used to cache the output of the computation of the tree. By default, no caching is done. If a string is given, it is the path to the caching directory. compute_full_tree : bool or 'auto', optional, default "auto" Stop early the construction of the tree at n_clusters. This is useful to decrease computation time if the number of clusters is not small compared to the number of features. This option is useful only when specifying a connectivity matrix. Note also that when varying the number of clusters and using caching, it may be advantageous to compute the full tree. linkage : {"ward", "complete", "average"}, optional, default "ward" Which linkage criterion to use. The linkage criterion determines which distance to use between sets of features. The algorithm will merge the pairs of cluster that minimize this criterion. - ward minimizes the variance of the clusters being merged. - average uses the average of the distances of each feature of the two sets. - complete or maximum linkage uses the maximum distances between all features of the two sets. pooling_func : callable, default np.mean This combines the values of agglomerated features into a single value, and should accept an array of shape [M, N] and the keyword argument `axis=1`, and reduce it to an array of size [M]. Attributes ---------- labels_ : array-like, (n_features,) cluster labels for each feature. n_leaves_ : int Number of leaves in the hierarchical tree. n_components_ : int The estimated number of connected components in the graph. children_ : array-like, shape (n_nodes-1, 2) The children of each non-leaf node. Values less than `n_features` correspond to leaves of the tree which are the original samples. A node `i` greater than or equal to `n_features` is a non-leaf node and has children `children_[i - n_features]`. Alternatively at the i-th iteration, children[i][0] and children[i][1] are merged to form node `n_features + i` """ def fit(self, X, y=None, **params): """Fit the hierarchical clustering on the data Parameters ---------- X : array-like, shape = [n_samples, n_features] The data Returns ------- self """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], ensure_min_features=2, estimator=self) return AgglomerativeClustering.fit(self, X.T, **params) @property def fit_predict(self): raise AttributeError
bsd-3-clause
mwinton/pyml-book
logistic_regression_w_scikit_sepal_petal.py
1
7374
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Oct 19 21:24:25 2017 @author: mike """ from sklearn import datasets from sklearn.model_selection import train_test_split as tts from sklearn.preprocessing import StandardScaler from sklearn.linear_model import Perceptron from sklearn.metrics import accuracy_score from matplotlib.colors import ListedColormap import matplotlib.pyplot as plt import numpy as np iris = datasets.load_iris() X = iris.data[:, [0,2]] # sepal length, petal length y = iris.target # Subset data set to only classes 0,1 X_01 = X[(y==0) | (y==1)] y_01 = y[(y==0) | (y==1)] print('Class labels:', np.unique(y_01)) X_train, X_test, y_train, y_test = tts(X_01,y_01,test_size=0.3, random_state=1, stratify=y_01) # Split original data into train/test sets with equal proportions of each class #print('Class labels:', np.unique(y)) #X_train, X_test, y_train, y_test = tts(X,y,test_size=0.3, random_state=1, stratify=y) print('Label counts in y:', np.bincount(y)) print('Label counts in y_train:', np.bincount(y_train)) print('Label counts in y_test:', np.bincount(y_test)) # Apply feature scaling to standardize the train/test sets. (Both use mu/sigma from training) print('Applying standardization to data set') sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_test_std = sc.transform(X_test) # Train perceptron #lrgd = LogisticRegressionGD(n_iter=40, eta=0.1, random_state=1) # Python ML book lrgd = LogisticRegressionGD(n_iter=100, alpha = 2.0, random_state=1) # Andrew Ng book lrgd.fit(X_train_std, y_train) # Make prediction for test set y_pred = lrgd.predict(X_test_std) print('Correctly classified samples: %d' % (y_test == y_pred).sum()) print('Misclassified samples: %d' % (y_test != y_pred).sum()) print('Accuracy: %.2f' % accuracy_score(y_test, y_pred)) #print('Accuracy: %.2f' % lrgd.score(X_test_std, y_test)) #equivalent to above #Plot costs vs. # iterations to verify convergence plt.plot(range(1, len(lrgd.cost_) + 1),lrgd.cost_, marker='o') plt.xlabel('Epochs') plt.ylabel('Gradient descent cost function') plt.title('Convergence of Logistic Regression model') plt.show() # Plot data and decision regions X_combined_std = np.vstack((X_train_std, X_test_std)) y_combined = np.hstack((y_train, y_test)) plot_decision_regions(X=X_combined_std, y=y_combined, classifier=lrgd, test_idx=range(y_train.shape[0],y_train.shape[0]+y_test.shape[0])) plt.title('Iris Classification by logistic regression') plt.xlabel('sepal length (standardized)') plt.ylabel('petal length (standardized)') plt.legend() plt.show() class LogisticRegressionGD(object): """Logistic Regression classifier with gradient descent Parameters ------------ eta : float Learning rate (between 0.0 and 1.0) alpha : float Learning rate (between 0.0 and 1.0) n_iter : int Passes over the training dataset. random_state : int Random number generator seed for random weight initialization. Attributes ----------- w_ : 1d-array Weights after fitting. cost_ : list Sum of squares cost function value in each epoch. """ def __init__(self, alpha = 2.0, eta=0.05, n_iter=100, random_state=1): self.eta = eta #Py ML book self.alpha = alpha # Andrew Ng self.n_iter = n_iter self.random_state = random_state def fit(self, X, y): """ Fits training data. Optimizes w_ with gradient descent. Parameters ---------- X : {array-like}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. Returns ------- self : object """ # Set up initial values for weights rgen = np.random.RandomState(self.random_state) self.w_ = rgen.normal(loc=0.0, scale=0.01, size=1 + X.shape[1]) self.cost_ = [] m = len(y) # Andrew Ng definition #Run gradient descent (NOTE: it keeps running through n_iter no matter what) for i in range(self.n_iter): net_input = self.net_input(X) #scalar output = self.sigmoid(net_input) #vector errors = (y - output) #vector # self.w_[0] += self.eta * errors.sum() #vector; w_[0] is bias unit # self.w_[1:] += self.eta * X.T.dot(errors) #vector self.w_[0] += (self.alpha / m) * errors.sum() #vector; w_[0] is bias unit self.w_[1:] += (self.alpha / m) * X.T.dot(errors) #vector cost = self.cost_function(y, output) self.cost_.append(cost) #used to verify convergence return self def net_input(self, X): """Calculate net input. This term is z in Andrew Ng's class """ return np.dot(X, self.w_[1:]) + self.w_[0] def sigmoid (self, z): '''Calculate sigmoid function fron net_input (z)''' # z values > 250 (or < -250) are clipped at 250 return 1.0 / (1.0 + np.exp(-np.clip(z,-250,250))) def cost_function (self,y,output): '''Calculate the logistic regression cost function''' m = len(y) cost = (1/m) * (-y.dot(np.log(output)) - ((1.-y).dot(np.log(1.-output)))) return cost def predict(self, X): """Return class label based on sigmoid function""" #Due to shape of sigmoid function, these two options are equivalent #return np.where(self.net_input(X) >= 0, 1, 0) return np.where(self.sigmoid(self.net_input(X)) >= 0.5, 1, 0) def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02): ''' Helper function to plot the decision regions. ''' # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # plot class samples for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=colors[idx], marker=markers[idx], label=cl, edgecolor='black') # highlight test samples if test_idx: # plot all samples X_test, y_test = X[test_idx,:], y[test_idx] plt.scatter(X_test[:,0], X_test[:,1], alpha=1.0, c='', linewidth = 1, marker='o', s=100, label='test set', edgecolor='black')
mit
chjost/clebsch_gordan
group/group_cg.py
1
13406
"""Class for the clebsch-gordan coefficients of a group.""" import numpy as np import itertools as it import pandas as pd from pandas import Series, DataFrame import group_class import utils from rotations import _all_rotations class OhCG(object): def __init__(self, p, p1, p2, groups=None): """p, p1, and p2 are the magnitudes of the momenta. """ self.prec = 1e-6 # save the norm of the momenta for the combined system # and each particle self.p = p self.p1 = p1 self.p2 = p2 # lookup table for reference momenta lpref = [np.asarray([0.,0.,0.]), np.asarray([0.,0.,1.]), np.asarray([1.,1.,0.]), np.asarray([1.,1.,1.])] # save reference momenta self.pref = lpref[p] self.pref1 = lpref[p1] self.pref2 = lpref[p2] # get the basic groups if groups is None: self.g0 = None self.g = None self.g1 = None self.g2 = None else: self.g0 = groups[0] self.g = groups[p] self.g1 = groups[p1] self.g2 = groups[p2] # get the cosets, always in the maximal group (2O here) # is set to None if at least one group is None self.coset1 = self.gen_coset(self.g1) self.coset2 = self.gen_coset(self.g2) #print(self.coset1) #print(self.coset2) # generate the allowed momentum combinations and sort them into cosets self.gen_momenta() if groups is not None: self.sort_momenta() # calculate induced rep gamma # here for p1 and p2 the A1(A2) irreps are hard-coded # since only these contribute to pi-pi scattering if groups is None: self.gamma1 = None self.gamma2 = None else: irstr = "A1" if p1 < 1e-6 else "A2" self.gamma1 = self.gen_ind_reps(self.g, self.g1, irstr, self.coset1) irstr = "A1" if p2 < 1e-6 else "A2" self.gamma2 = self.gen_ind_reps(self.g, self.g2, irstr, self.coset2) #print(self.gamma1[:5]) self.irreps = [] self.cgs = [] # choose mu1, mu2 and i1, i2, according to Dudek paper # since A1 and A2 are 1D, set mu to 0 self.mu1 = 0 self.mu2 = 0 if self.p == 0: # in this case chose the hightest option self.i1 = -1 self.i2 = -1 self.i1i2 = [(self.pref, -1, -1)] else: self.i1i2 = [] for m in self.momenta: for ((m1, i1), (m2, i2)) in it.product(self.smomenta1, self.smomenta2): if utils._eq(m1+m2-m): self.i1i2.append((m,i1,i2)) self.i1 = i1 self.i2 = i2 break def gen_momenta(self): pm = 4 # maximum component in each direction def _abs(x): return np.dot(x, x) <= pm def _abs1(x,a): return np.dot(x, x) == a gen = it.ifilter(_abs, it.product(range(-pm,pm+1), repeat=3)) lp3 = [np.asarray(y, dtype=int) for y in gen] self.momenta = [y for y in it.ifilter(lambda x: _abs1(x,self.p), lp3)] self.momenta1 = [y for y in it.ifilter(lambda x: _abs1(x,self.p1), lp3)] self.momenta2 = [y for y in it.ifilter(lambda x: _abs1(x,self.p2), lp3)] self.allmomenta = [] # only save allowed momenta combinations for p in self.momenta: for p1 in self.momenta1: for p2 in self.momenta2: if utils._eq(p1+p2-p): self.allmomenta.append((p, p1, p2)) def gen_coset(self, g1): """Cosets contain the numbers of the rotation objects """ if self.g0 is None or g1 is None: return None n = int(self.g0.order/g1.order) if n == 0: raise RuntimeError("number of cosets is 0!") coset = np.zeros((n, g1.order), dtype=int) l = self.g0.order l1 = g1.order # set the subgroup count = 0 for r in range(l1): elem = g1.lrotations[r] if elem in self.g0.lrotations: coset[0, count] = elem count += 1 # calc the cosets uniq = np.unique(coset) cnum = 1 # coset number for elem in self.g0.lrotations: if elem in uniq: continue count = 0 for elem1 in g1.lrotations: if elem1 in self.g0.lrotations: # multiplication table contains numbers # [0, g.order), so lookup the element look = self.g0.lrotations.index(elem1) el = self.g0.tmult[look, elem] coset[cnum, count] = self.g0.lrotations[el] count += 1 cnum += 1 uniq = np.unique(coset) if len(uniq) != self.g0.order: print("some elements got lost!") if cnum != n: print("some coset not found!") return coset def gen_ind_reps(self, g, g1, irstr, coset): ir = g1.instances[g1.lirreps.index(irstr)] dim = ir.dim ndim = (self.g0.order, coset.shape[0]*dim, coset.shape[0]*dim) gamma = np.zeros(ndim, dtype=complex) for ind, r in enumerate(self.g0.lrotations): # take the first elements of the coset as representatives for c1, rj in enumerate(coset[:,0]): # translate to multiplication table el1 = self.g0.lrotations.index(rj) # get element rrj = self.g0.tmult[ind,el1] ind1 = slice(c1*dim, (c1+1)*dim) for c2, ri in enumerate(coset[:,0]): # translate to multiplication table and get inverse el2 = self.g0.lrotations.index(ri) riinv = self.g0.Inverse(el2) # get element riinvrrj = self.g0.tmult[riinv, rrj] # translate to rotation element and check # if in subgroup el3 = self.g0.lrotations[riinvrrj] if el3 not in coset[0]: continue # if in subgroup, look up position of element elem = g1.lrotations.index(el3) ind2 = slice(c2*dim,(c2+1)*dim) # set induced representation gamma[ind, ind1, ind2] = ir.mx[elem] return gamma def sort_momenta(self): # check if cosets exists if self.coset1 is None or self.coset2 is None: self.smomenta1 = None self.smomenta2 = None return # search for conjugacy class so that # R*p_ref = p res1 = [] res2 = [] for p, p1, p2 in self.allmomenta: #print("momentum coset search") done = False # check if already in list for r in res1: if utils._eq(r[0],p1): done=True break # if not get coset if not done: #print("%r not in list" % p1) for i, c in enumerate(self.coset1): t = self.check_coset(self.pref1, p1, c) #print(t) if np.all(t): #print(" in coset %d" %i) res1.append((p1, i)) break #else: # print(" not in coset %d" %i) #else: # print("%r already in list" % p1) done = False # check if already in list for r in res2: if utils._eq(r[0],p2): done=True break if not done: for i, c in enumerate(self.coset2): t = self.check_coset(self.pref2, p2, c) if np.all(t): res2.append((p2, i)) break self.smomenta1 = res1 if len(self.smomenta1) != len(self.momenta1): print("some vectors not sorted") self.smomenta2 = res2 if len(self.smomenta2) != len(self.momenta2): print("some vectors not sorted") def check_coset(self, pref, p, coset): res = [] for elem in coset: rot = _all_rotations[elem] rvec = rot.rot_vector(pref) c1 = utils._eq(rvec, p) c2 = utils._eq(rvec, -p) if c1 or c2: res.append(True) else: res.append(False) return res def check_all_cosets(self, p, p1, p2): j1, j2 = None, None i1, i2 = None, None for m, j in self.smomenta1: if utils._eq(p1,m): j1 = j break for m, j in self.smomenta2: if utils._eq(p2,m): j2 = j break for m, k1, k2 in self.i1i2: if utils._eq(p, m): i1, i2 = k1, k2 break return j1, j2, i1, i2 def calc_pion_cg(self, p, p1, p2, irname): """Calculate the elements of the Clebsch-Gordan matrix. Assumes that p=p1+p2, where all three are 3-vectors. """ # get irrep of group g ir = self.g.instances[self.g.lirreps.index(irname)] # j1 and j2 are the conjugacy classes containing # the given momenta p1 and p2 j1, j2, i1, i2 = self.check_all_cosets(p, p1, p2) #print(j1, j2, p1) cg = np.zeros((ir.dim,ir.dim), dtype=complex) for ind, r in enumerate(self.g.lrotations): rep = ir.mx[ind] # hard coded for pi-pi scattering g1 = self.gamma1[r,j1, i1] if utils._eq(g1): continue g2 = self.gamma2[r,j2, i2] if utils._eq(g2): continue cg += rep.conj()*g1*g2 cg *= float(ir.dim)/self.g.order return cg def get_pion_cg(self, irname): try: ind = self.irreps.index(irname) return irname, self.cgs[ind], self.allmomenta except: pass result = [] # iterate over momenta for p, p1, p2 in self.allmomenta: res = self.calc_pion_cg(p, p1, p2, irname) if res is None: continue result.append(res) result = np.asarray(result) # check if all coefficients are zero if utils._eq(result): cgs = None else: # orthonormalize the basis cgs = self._norm_cgs(result) self.irreps.append(irname) self.cgs.append(cgs) return irname, cgs, self.allmomenta def _norm_cgs(self, data): # prepare result array res = np.zeros(data.shape[:-1], dtype=complex) # sort by final momentum, so that all final momenta are # normalized seperately ind = [[] for x in self.momenta] for i, m in enumerate(self.allmomenta): for j, fm in enumerate(self.momenta): if np.array_equal(m[0], fm): ind[j].append(i) break # norm the data # set starting variables mup = 0 for i in range(data.shape[1]): for j in ind: tmp = data[j,i,mup] if np.any(tmp): norm = np.sqrt(np.vdot(tmp, tmp)) res[j,i] = tmp/norm mup += 1 return res def display(data, mom, empty=None): def _d1(data): tmp = ["%2d" % x for x in data] tmp = ",".join(tmp) tmp = "".join(("(", tmp, ")")) return tmp def _d2(data): tmp = ["%+.3f%+.3fj" % (x.real, x.imag) for x in data] tmp = ", ".join(tmp) tmp = "".join(("[", tmp, "]")) return tmp count = 0 for d, m in zip(data, mom): print("% 11s = %11s + %11s => %s" % (\ _d1(m[0]), _d1(m[1]), _d1(m[2]), _d2(d))) if empty is not None: count += 1 if count == empty: count = 0 print("") def cg_to_pandas(data, mom): """Converts the Clebsch-Gordan coefficients for a two-particle operator into a pandas DataFrame according to the conventions used in subduction.py. """ nb_mom = len(mom) nb_rows = len(data[0]) # convert momenta into tuples (p_so, p_si) and copy for every row # fill \gamma_5 as gamma structure i. e. two pions hardcoded # flatten data to one list with row running faster than momentum df = DataFrame({'p' : [tuple([tuple(m[1]), tuple(m[2])]) \ for m in mom for _i in range(nb_rows)], \ '\gamma' : [(5,5)] * nb_mom*nb_rows, \ 'cg-coefficients' : [cg for cg_row in data for cg in cg_row]}, \ index = pd.Index( range(nb_rows) * nb_mom, name='\mu')) print df if __name__ == "__main__": print("for checks execute the test script")
gpl-3.0
bikong2/scikit-learn
examples/calibration/plot_compare_calibration.py
241
5008
""" ======================================== Comparison of Calibration of Classifiers ======================================== Well calibrated classifiers are probabilistic classifiers for which the output of the predict_proba method can be directly interpreted as a confidence level. For instance a well calibrated (binary) classifier should classify the samples such that among the samples to which it gave a predict_proba value close to 0.8, approx. 80% actually belong to the positive class. LogisticRegression returns well calibrated predictions as it directly optimizes log-loss. In contrast, the other methods return biased probilities, with different biases per method: * GaussianNaiveBayes tends to push probabilties to 0 or 1 (note the counts in the histograms). This is mainly because it makes the assumption that features are conditionally independent given the class, which is not the case in this dataset which contains 2 redundant features. * RandomForestClassifier shows the opposite behavior: the histograms show peaks at approx. 0.2 and 0.9 probability, while probabilities close to 0 or 1 are very rare. An explanation for this is given by Niculescu-Mizil and Caruana [1]: "Methods such as bagging and random forests that average predictions from a base set of models can have difficulty making predictions near 0 and 1 because variance in the underlying base models will bias predictions that should be near zero or one away from these values. Because predictions are restricted to the interval [0,1], errors caused by variance tend to be one- sided near zero and one. For example, if a model should predict p = 0 for a case, the only way bagging can achieve this is if all bagged trees predict zero. If we add noise to the trees that bagging is averaging over, this noise will cause some trees to predict values larger than 0 for this case, thus moving the average prediction of the bagged ensemble away from 0. We observe this effect most strongly with random forests because the base-level trees trained with random forests have relatively high variance due to feature subseting." As a result, the calibration curve shows a characteristic sigmoid shape, indicating that the classifier could trust its "intuition" more and return probabilties closer to 0 or 1 typically. * Support Vector Classification (SVC) shows an even more sigmoid curve as the RandomForestClassifier, which is typical for maximum-margin methods (compare Niculescu-Mizil and Caruana [1]), which focus on hard samples that are close to the decision boundary (the support vectors). .. topic:: References: .. [1] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005 """ print(__doc__) # Author: Jan Hendrik Metzen <[email protected]> # License: BSD Style. import numpy as np np.random.seed(0) import matplotlib.pyplot as plt from sklearn import datasets from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.svm import LinearSVC from sklearn.calibration import calibration_curve X, y = datasets.make_classification(n_samples=100000, n_features=20, n_informative=2, n_redundant=2) train_samples = 100 # Samples used for training the models X_train = X[:train_samples] X_test = X[train_samples:] y_train = y[:train_samples] y_test = y[train_samples:] # Create classifiers lr = LogisticRegression() gnb = GaussianNB() svc = LinearSVC(C=1.0) rfc = RandomForestClassifier(n_estimators=100) ############################################################################### # Plot calibration plots plt.figure(figsize=(10, 10)) ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2) ax2 = plt.subplot2grid((3, 1), (2, 0)) ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated") for clf, name in [(lr, 'Logistic'), (gnb, 'Naive Bayes'), (svc, 'Support Vector Classification'), (rfc, 'Random Forest')]: clf.fit(X_train, y_train) if hasattr(clf, "predict_proba"): prob_pos = clf.predict_proba(X_test)[:, 1] else: # use decision function prob_pos = clf.decision_function(X_test) prob_pos = \ (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) fraction_of_positives, mean_predicted_value = \ calibration_curve(y_test, prob_pos, n_bins=10) ax1.plot(mean_predicted_value, fraction_of_positives, "s-", label="%s" % (name, )) ax2.hist(prob_pos, range=(0, 1), bins=10, label=name, histtype="step", lw=2) ax1.set_ylabel("Fraction of positives") ax1.set_ylim([-0.05, 1.05]) ax1.legend(loc="lower right") ax1.set_title('Calibration plots (reliability curve)') ax2.set_xlabel("Mean predicted value") ax2.set_ylabel("Count") ax2.legend(loc="upper center", ncol=2) plt.tight_layout() plt.show()
bsd-3-clause
sujithvm/internationality-journals
src/SNIPvsourSNIP.py
3
3829
__author__ = 'Sukrit' import csv import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit f = open('../output/both_journal_list.txt', 'r') #reading list of journals present in Aminer x = f.readlines() xn = [] for line in x: #line = line.replace('&','and') #converting & to 'and' [UGH] xn.append(line.rstrip()) SNIP = pd.read_csv("../data/journal_SNIP_values.csv") journals = SNIP['Source Title'] #taking only 'Source Title' column jlist = [] i = 0 j = 0 for jname in journals : for name in xn : if jname == name : jlist.append(jname) i += 1 #print jlist SNIP_2 = pd.DataFrame() #now we corroborate SNIP values. for name in jlist : SNIP_2 = SNIP_2.append(SNIP[ SNIP['Source Title'] == name ],ignore_index = True) #copy all SNIP/IPP values for which we have citations in Aminer #print SNIP_2 SNIP_2 = SNIP_2.fillna(0) SNIP_2010 = SNIP_2[['Source Title','2010 SNIP']].copy() #copying 'Source Title' and '2010 SNIP' columns to new df #print SNIP_2010 our_SNIP2 = {'Applied Mathematics and Computation': 0 , 'Artificial Intelligence' :1.99047619048 , 'Artificial Intelligence in Medicine' : 0.707346904582 , 'Automatica' : 0.373679952833 , 'Computer Communications' :0.42907910953 , 'Computer Methods and Programs in Biomedicine' :0.379046231074 , 'Computer Networks' : 0.749387157754 , 'Computer Vision and Image Understanding' :1.67294857909 , 'Computers and Education' : 0.704265888257, 'Computers and Geosciences' : 0.188574973214, 'Computers and Graphics' :0.442495274102 , 'Computers and Mathematics with Applications' : 0.329331757583 , 'Computers and Security' : 0 , 'Computers in Human Behavior' :0.650123718628 , 'Discrete Mathematics' : 0 , 'Environmental Modelling and Software' :0.367386629266 ,'Expert Systems with Applications' : 0.588827994966,'Future Generation Computer Systems' :1.07051816557 ,'Games and Economic Behavior' :0.00331943617232,'Information and Management' : 1.03949275362,'Information Processing Letters' : 0 , 'Information Sciences' : 0.453232588419, 'Journal of Approximation Theory' : 0.162687560813, 'Mathematics and Computers in Simulation' :0.173084886128 , 'Neural Networks' :0.678374260303 , 'Neurocomputing' : 0.634644582471, 'Parallel Computing' : 0.712270531401, 'Pattern Recognition' : 1.17715942029, 'Performance Evaluation' :0.713109730849 , 'Robotics and Autonomous Systems' : 0.739277818718, 'Science of Computer Programming' : 0 , 'Signal Processing' :0.554988312295 , 'Speech Communication' :0.540711462451 , 'Systems and Control Letters' : 0 } our_SNIP = pd.read_csv('../output/SNIP_all_journals.csv',usecols=[1,3]) #print our_SNIP jname = our_SNIP['Jname'] SNIP_full = pd.DataFrame(); for name in jname : SNIP_full = SNIP_2010.append(SNIP_2010[ SNIP_2010['Source Title'] == name ],ignore_index = True) #copy all SNIP/IPP values for which we have citations in Aminer #print len(SNIP_full.index) xarray = [] yarr = [] yarray = [] i = 0 print SNIP_full print our_SNIP #print jlist #jlist.remove("Games and Economic Behavior") for name in jname : if ( our_SNIP['SNIP'][ our_SNIP['Jname']== name ].values != 0 and SNIP_full['2010 SNIP'][ SNIP_full['Source Title'] == name ].values != 0 ) : xarray.append(our_SNIP['SNIP'][our_SNIP['Jname']== name ].values) yarr.append(SNIP_full['2010 SNIP'][SNIP_full['Source Title'] == name ].values) #plt.plot(xarray,yarray,'ro') #plt.plot(xarray, np.poly1d(np.polyfit(xarray, yarray, 1))(xarray)) #plt.show() yarr = [float(i) for i in yarr] for item in yarr : yarray.append(item) print xarray print yarray print "\n\n" data = [xarray,yarray] with open('../data/SNIP_ourSNIP3.csv','wb') as f: out = csv.writer(f, delimiter=',',quoting=csv.QUOTE_ALL) out.writerows(zip(*data))
mit
ornlneutronimaging/ResoFit
ResoFit/model.py
1
3451
import numpy as np import matplotlib.pyplot as plt from lmfit.lineshapes import pvoigt from lmfit import Model def ikeda_carpenter(t, alpha, beta, fraction, t0, norm_factor=1): _t = t - t0 # _t = t1[np.logical_not(t1 < 0)] _t[_t < 0] = 0 # t>=0 required # α=vΣ # Σ is the macroscopic neutron scattering cross-section of the moderator # (Σ=1.6 cm-1 for polyethylene in the high energy limit) and # v is the neutron speed part1 = 0.5 * alpha * (alpha*_t)**2 * np.exp(-alpha*_t) part2_1 = alpha**3 * beta / (alpha - beta)**3 # jparc uses alpha**2 instead of alpha**3 in the original function part2_2 = np.exp(-beta*_t) - np.exp(-alpha*_t) * (1 + (alpha - beta) * _t + 0.5 * (alpha - beta)**2 * _t**2) part2 = part2_1 * part2_2 f = ((1 - fraction) * part1 + fraction * part2) * norm_factor return f def ikeda_carpenter_jparc(t, alpha, beta, fraction, t0, norm_factor=1): _t = t - t0 # _t = t1[np.logical_not(t1 < 0)] _t[_t < 0] = 0 # t>=0 required part1 = 0.5 * alpha * (alpha*_t)**2 * np.exp(-alpha*_t) part2_1 = alpha**2 * beta / (alpha - beta)**3 # jparc uses alpha**2 instead of alpha**3 in the original function part2_2 = np.exp(-beta*_t) - np.exp(-alpha*_t) * (1 + (alpha - beta) * _t + 0.5 * (alpha - beta)**2 * _t**2) part2 = part2_1 * part2_2 f = ((1 - fraction) * part1 + fraction * part2) * norm_factor return f def cole_windsor(t, sig1, sig2, gamma, fraction, t0, norm_factor=1): _t = t - t0 f = [] for each_t in _t: # for F1 if each_t <= 0: f1 = np.exp(-0.5 * (each_t / sig1) ** 2) if 0 < each_t <= gamma * sig2 ** 2: f1 = np.exp(-0.5 * (each_t / sig2) ** 2) if gamma * sig2 ** 2 < each_t: f1 = np.exp(0.5 * (gamma * sig2) ** 2 - gamma * each_t) # for F2 if each_t <= 0: f2 = np.exp(-0.5 * (each_t / sig1) ** 2) if 0 < each_t <= gamma * sig2 ** 2: f2 = np.exp(0.5 * (each_t / sig2) ** 2) if gamma * sig2 ** 2 < each_t: f2 = np.exp(0.5 * (gamma * sig2) ** 2 - gamma * each_t) each_f = norm_factor * ((1 - fraction) * f1 + fraction * f2) f.append(each_f) f = np.array(f) return f def pseudo_voigt(t, beta, sigma, fraction): gauss = 1 / (1 + (t / beta)**2) lorentz = np.exp(-(t / sigma)**2) f = (1 - fraction) * gauss + fraction * lorentz return f def cole_windsor_jparc(t, sig1, sig2, gam1, gam2, fraction, t0, norm_factor=1): _t = t - t0 f = [] for each_t in _t: # for F1 if each_t <= 0: f1 = np.exp(-0.5 * (each_t / sig1) ** 2) if 0 < each_t <= gam1 * sig2 ** 2: f1 = np.exp(-0.5 * (each_t / sig2) ** 2) if gam1 * sig2 ** 2 < each_t: f1 = np.exp(0.5 * (gam1 * sig2) ** 2 - gam1 * each_t) # for F2 if each_t <= 0: f2 = np.exp(-0.5 * (each_t / sig1) ** 2) if 0 < each_t <= gam2 * sig2 ** 2: f2 = np.exp(0.5 * (each_t / sig2) ** 2) if gam2 * sig2 ** 2 < each_t: f2 = np.exp(0.5 * (gam2 * sig2) ** 2 - gam2 * each_t) each_f = norm_factor * ((1 - fraction) * f1 + fraction * f2) f.append(each_f) f = np.array(f) return f def loglog_linear(x, slope, intercept): _x_log = np.log10(x) _y_log = slope * _x_log + intercept y = np.power(10, _y_log) return y
bsd-3-clause
Windy-Ground/scikit-learn
examples/linear_model/plot_iris_logistic.py
283
1678
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Logistic Regression 3-class Classifier ========================================================= Show below is a logistic-regression classifiers decision boundaries on the `iris <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ dataset. The datapoints are colored according to their labels. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target h = .02 # step size in the mesh logreg = linear_model.LogisticRegression(C=1e5) # we create an instance of Neighbours Classifier and fit the data. logreg.fit(X, Y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1, figsize=(4, 3)) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
pchrista/AliPhysics
PWGHF/vertexingHF/macros/AnalyseAODMismatchTree.py
15
5530
import uproot import numpy as np import pandas as pd from ROOT import TH1F, TH2F, TCanvas, TLegend from ROOT import kRed, kAzure, gStyle, kIsland def GetMaskOfBits(bits): ''' Helper method to get bit mask from bits Arguments ---------- - list of bits Returns ---------- - mask corresponding to the input bits ''' mask = 0 for bit in bits: mask += 2**bit return mask def FilterBitDf(dfToFilter, column, bitsToTest, logic='or'): ''' Method to apply selection testing one or more bits Arguments ---------- - pandas dataframe to filter - colum with bitmap - list of bits to test - logic to combine the bits (and, or) Returns ---------- - filtered pandas dataframe ''' maskOfBits = GetMaskOfBits(bitsToTest) flags = dfToFilter[column].astype(int) & maskOfBits if logic == 'or': flags = flags.astype('bool') elif logic == 'and': flags -= maskOfBits flags = ~flags.astype('bool') elif logic == 'not': flags = ~flags.astype('bool') else: print('Error: only and, or, and not logics are supported for bitwise operations') return None dfFilt = dfToFilter[flags.values] return dfFilt def main(): ''' Main function ''' prod = 'LHC20g11a' tree = uproot.open('AnalysisResults.root')['AOD_dAOD_Matching/fTreeMismatch'] df = tree.pandas.df() df = df.sort_values(by=['file_name']) pd.set_option('display.max_colwidth', None) nFiles = len(df) nEvents = sum(df['n_events'].values) dfSel = {'good_files': df.query('mismatch_status == 0'), 'mism_ev': FilterBitDf(df, 'mismatch_status', [0]), 'mism_TProcessID': FilterBitDf(df, 'mismatch_status', [1]), 'mism_cand': FilterBitDf(df, 'mismatch_status', [2]), 'mism_ev_and_TProcessID': FilterBitDf(df, 'mismatch_status', [0, 1], logic='and'), 'mism_ev_and_cand': FilterBitDf(df, 'mismatch_status', [0, 2], logic='and'), 'mism_cand_and_TProcessID': FilterBitDf(df, 'mismatch_status', [1, 2], logic='and'), 'mism_all': FilterBitDf(df, 'mismatch_status', [1, 2, 3], logic='and')} fracFiles, fracEv = {}, {} for mism in dfSel: fracFiles[mism] = len(dfSel[mism]) / nFiles fracEv[mism] = sum(dfSel[mism]['n_events'].values) / nEvents print(f'\nfraction of files with flag \"{mism}\": {fracFiles[mism]}') print(f'fraction of events with flag \"{mism}\": {fracEv[mism]}') gStyle.SetTitleSize(0.045, 'xy') gStyle.SetLabelSize(0.04, 'xy') gStyle.SetPadTopMargin(0.035) gStyle.SetPadRightMargin(0.035) gStyle.SetPadBottomMargin(0.15) gStyle.SetPadLeftMargin(0.12) gStyle.SetPadTickX(1) gStyle.SetPadTickY(1) gStyle.SetOptStat(0) gStyle.SetPalette(kIsland) hAODMism = TH1F('hAODMism', ';;fraction', 8, 0.5, 8.5) hAODMism.SetLineWidth(2) hAODMism.SetLineColor(kRed+1) hAODMism.GetYaxis().SetRangeUser(1.e-5, 1.) hEventMism = TH1F('hEventMism', ';;fraction', 8, 0.5, 8.5) hEventMism.SetLineWidth(2) hEventMism.SetLineColor(kAzure+4) hEventMism.GetYaxis().SetRangeUser(1.e-5, 1.) for iMism, mism in enumerate(dfSel): hAODMism.GetXaxis().SetBinLabel(iMism+1, mism) hEventMism.GetXaxis().SetBinLabel(iMism+1, mism) hAODMism.SetBinContent(iMism+1, fracFiles[mism]) hEventMism.SetBinContent(iMism+1, fracEv[mism]) leg = TLegend(0.6, 0.7, 0.8, 0.9) leg.SetBorderSize(0) leg.SetFillStyle(0) leg.AddEntry(hAODMism, 'AOD files', 'l') leg.AddEntry(hEventMism, 'events', 'l') cMismFrac = TCanvas('cMismFrac', '', 1920, 1080) cMismFrac.SetLogy() hAODMism.Draw() hEventMism.Draw('same') leg.Draw() cMismFrac.Modified() cMismFrac.Update() dfSel['mism_cand'][['file_name']].to_csv(f'AOD_mismatch_{prod}_cand.txt', header=False, index=False) dfSel['mism_ev'][['file_name']].to_csv(f'AOD_mismatch_{prod}_nevents.txt', header=False, index=False) dfSel['mism_TProcessID'][['file_name']].to_csv(f'AOD_mismatch_{prod}_TProcessID.txt', header=False, index=False) cMismFrac.SaveAs(f'AODMismatch_fractions_{prod}.pdf') # check for files not tested (jobs failed) runs = np.unique(df['run_number'].values) nRuns = len(runs) for iRun, run in enumerate(runs): dfRunSel = df.query(f'run_number == {run}') lastProcessedFile = list(dfRunSel['file_name'].values)[-1] numLastProcFile = int(lastProcessedFile.decode().rpartition('AOD/')[2].rpartition('/')[0]) hFilesTested = TH2F(f'hFilesTested{run}', f'run {run};AOD number;', numLastProcFile, 0.5, numLastProcFile+0.5, 1, 0., 1.) hFilesTested.GetZaxis().SetRangeUser(-0.001, 1.) cFilesTested = TCanvas(f'cFilesTested{run}', '', 1920, 1080) cFilesTested.SetTopMargin(0.12) cFilesTested.SetRightMargin(0.12) for fileName in dfRunSel['file_name']: numProcFile = int(fileName.decode().rpartition('AOD/')[2].rpartition('/')[0]) hFilesTested.Fill(numProcFile, 0.5) hFilesTested.Draw('colz') cFilesTested.Modified() cFilesTested.Update() if iRun == 0: cFilesTested.SaveAs(f'FilesTested_{prod}.pdf[') cFilesTested.SaveAs(f'FilesTested_{prod}.pdf') if iRun == nRuns-1: cFilesTested.SaveAs(f'FilesTested_{prod}.pdf]') input() # call main function main()
bsd-3-clause
arlewis/galaxy_cutouts
extract_stamp.py
1
35179
import numpy as np import astropy.io.fits import astropy.wcs import montage_wrapper as montage from matplotlib.path import Path import os import sys import shutil import glob import time import scipy.ndimage as sp from pdb import set_trace # directories that contain the input data _TOP_DIR = '/data/tycho/0/leroy.42/allsky/' _INDEX_DIR = os.path.join(_TOP_DIR, 'z0mgs/') _WISE_DIR = os.path.join(_TOP_DIR, 'unwise', 'atlas') # directories to do the work in _WORK_DIR = '/data/tycho/0/leroy.42/allsky/galex/atlas' #_WORK_DIR = '/data/tycho/0/lewis.1590/atlas/' _MOSAIC_DIR = os.path.join(_WORK_DIR, 'cutouts') # CALIBRATION FROM GALEX COUNTS TO ABMAG FUV2AB = 18.82 NUV2AB = 20.08 UV2AB = {'fuv': FUV2AB, 'nuv': NUV2AB} GALEX_PIX_AS = 1.5 ## galex pixel scale in arcseconds -- from documentation class GalaxyHeader(object): def __init__(self, name, gal_dir, ra_ctr, dec_ctr, pix_len, pix_scale, factor=1): self.name = name self.gal_dir = gal_dir self.ra_ctr = ra_ctr self.dec_ctr = dec_ctr self.hdr, self.hdrfile = self._create_hdr_output(pix_len, pix_scale, factor=1) self.hdr_ext, self.hdrfile_ext = self._create_hdr_output(pix_len, pix_scale, factor=factor) def _create_hdr_obj(self, pix_len, pix_scale): """ Create a FITS header Parameters ---------- ra_ctr : float RA of center of galaxy dec_ctr : float Dec of center of galaxy pix_len : float Length of each axis (square, so the same for x and y) pix_scale : float Pixel scale in degrees Returns ------- hdr : astropy Header() object Newly created header object """ hdr = astropy.io.fits.Header() hdr['NAXIS'] = 2 hdr['NAXIS1'] = pix_len hdr['NAXIS2'] = pix_len hdr['CTYPE1'] = 'RA---TAN' hdr['CRVAL1'] = float(self.ra_ctr) hdr['CRPIX1'] = (pix_len / 2.) * 1. hdr['CDELT1'] = -1.0 * pix_scale hdr['CTYPE2'] = 'DEC--TAN' hdr['CRVAL2'] = float(self.dec_ctr) hdr['CRPIX2'] = (pix_len / 2.) * 1. hdr['CDELT2'] = pix_scale hdr['EQUINOX'] = 2000 return hdr def _create_hdr_output(self, size_degrees, pixel_scale, factor=1): """ Create a header and write it to an ascii file for use in Montage Parameters ---------- galname : str Name of the galaxy ra_ctr : float Central RA of galaxy dec_ctr : float Central Dec of galaxy size_degrees : float size of cutout, in degrees pixel_scale : float pixel scale of output in arcseconds per pixel factor : int, optional Number by which to multiply size_degrees to extend the size of the cutout for bg modeling. (Default: 1) Returns ------- target_hdr : astropy.header object The output header object header_file : str Path to the ascii file containing the header information """ pix_len = int(np.ceil(size_degrees * factor / pixel_scale)) hdr = self._create_hdr_obj(pix_len, pixel_scale) ri_targ, di_targ = self._make_axes(hdr) sz_out = ri_targ.shape outim = ri_targ * np.nan prihdu = astropy.io.fits.PrimaryHDU(data=outim, header=hdr) target_hdr = prihdu.header suff = '_template.hdr' if factor != 1: suff = suff.replace('.hdr', '_ext.hdr') header_file = os.path.join(self.gal_dir, self.name + suff) self.write_headerfile(header_file, target_hdr) return target_hdr, header_file def _make_axes(self, hdr, quiet=False, novec=False, vonly=False, simple=False): """ Create axes arrays for the new mosaiced image. This is a simple translation to Python of Adam's IDL routine of the same name. Parameters ---------- hdr : FITS header object FITS header to hold astrometry of desired output image quiet : bool, optional NOT USED novec : bool Find RA and Dec for every point (Default: False) vonly : bool Return only velocity data (Default: False) simple : bool Do the simplest thing (Default: False) Returns ------- rimg : array array for ouptut RA dimg : array array for output Dec """ # PULL THE IMAGE/CUBE SIZES FROM THE HEADER naxis = int(hdr['NAXIS']) naxis1 = int(hdr['NAXIS1']) naxis2 = int(hdr['NAXIS2']) if naxis > 2: naxis3 = hdr['NAXIS3'] ## EXTRACT FITS ASTROMETRY STRUCTURE ww = astropy.wcs.WCS(hdr) #IF DATASET IS A CUBE THEN WE MAKE THE THIRD AXIS IN THE SIMPLEST WAY POSSIBLE (NO COMPLICATED ASTROMETRY WORRIES FOR FREQUENCY INFORMATION) if naxis > 3: #GRAB THE RELEVANT INFORMATION FROM THE ASTROMETRY HEADER cd = ww.wcs.cd crpix = ww.wcs.crpix cdelt = ww.wcs.crelt crval = ww.wcs.crval if naxis > 2: # MAKE THE VELOCITY AXIS (WILL BE M/S) v = np.arange(naxis3) * 1.0 vdif = v - (hdr['CRPIX3']-1) vaxis = (vdif * hdr['CDELT3'] + hdr['CRVAL3']) # CUT OUT HERE IF WE ONLY WANT VELOCITY INFO if vonly: return vaxis #IF 'SIMPLE' IS CALLED THEN DO THE REALLY TRIVIAL THING: if simple: print('Using simple aproach to make axes.') print('BE SURE THIS IS WHAT YOU WANT! It probably is not.') raxis = np.arange(naxis1) * 1.0 rdif = raxis - (hdr['CRPIX1'] - 1) raxis = (rdif * hdr['CDELT1'] + hdr['CRVAL1']) daxis = np.arange(naxis2) * 1.0 ddif = daxis - (hdr['CRPIX1'] - 1) daxis = (ddif * hdr['CDELT1'] + hdr['CRVAL1']) rimg = raxis # (fltarr(naxis2) + 1.) dimg = (np.asarray(naxis1) + 1.) # daxis return rimg, dimg # OBNOXIOUS SFL/GLS THING glspos = ww.wcs.ctype[0].find('GLS') if glspos != -1: ctstr = ww.wcs.ctype[0] newtype = 'SFL' ctstr.replace('GLS', 'SFL') ww.wcs.ctype[0] = ctstr print('Replaced GLS with SFL; CTYPE1 now =' + ww.wcs.ctype[0]) glspos = ww.wcs.ctype[1].find('GLS') if glspos != -1: ctstr = ww.wcs.ctype[1] newtype = 'SFL' ctstr.replace('GLS', 'SFL') ww.wcs.ctype[1] = ctstr print('Replaced GLS with SFL; CTYPE2 now = ' + ww.wcs.ctype[1]) # CALL 'xy2ad' TO FIND THE RA AND DEC FOR EVERY POINT IN THE IMAGE if novec: rimg = np.zeros((naxis1, naxis2)) dimg = np.zeros((naxis1, naxis2)) for i in range(naxis1): j = np.asarray([0 for i in xrange(naxis2)]) pixcrd = np.array([[zip(float(i), float(j))]], numpy.float_) ra, dec = ww.all_pix2world(pixcrd, 1) rimg[i, :] = ra dimg[i, :] = dec else: ximg = np.arange(naxis1) * 1.0 yimg = np.arange(naxis1) * 1.0 X, Y = np.meshgrid(ximg, yimg, indexing='xy') ss = X.shape xx, yy = X.flatten(), Y.flatten() pixcrd = np.array(zip(xx, yy), np.float_) img_new = ww.all_pix2world(pixcrd, 0) rimg_new, dimg_new = img_new[:,0], img_new[:,1] rimg = rimg_new.reshape(ss) dimg = dimg_new.reshape(ss) # GET AXES FROM THE IMAGES. USE THE CENTRAL COLUMN AND CENTRAL ROW raxis = np.squeeze(rimg[:, naxis2/2]) daxis = np.squeeze(dimg[naxis1/2, :]) return rimg, dimg def write_headerfile(self, header_file, header): """ Write out the header for the output mosaiced image Parameters ---------- header_file : str Path to file to which to write header header : array The header to which to write to ASCII file """ f = open(header_file, 'w') for iii in range(len(header)): outline = str(header[iii:iii+1]).strip().rstrip('END').strip()+'\n' f.write(outline) f.close() def append2hdr(self, keyword=None, value=None, ext=False): """ Append information to the header and write to ASCII file Parameters ---------- headerfile : str The path to the ascii file containing the header information keyword : str, optional The keyword in the header that you want to create (Default: None) value : multiple, optional The value to apply to the keyword (Default: None) """ if keyword is not None: if ext: self.hdr_ext[keyword] = value self.write_headerfile(self.hdrfile_ext, self.hdr_ext) else: self.hdr[keyword] = value self.write_headerfile(self.hdrfile, self.hdr) def calc_tile_overlap(ra_ctr, dec_ctr, pad=0.0, min_ra=0., max_ra=180., min_dec=-90., max_dec=90.): """ Find all tiles that fall within a given overlap (pad) of (ra_ctr, dec_ctr) Parameters ---------- ra_ctr : float Central RA dec_ctr : float Central Dec pad : float, optional Size of region about center (Default: 0.0) min_ra : float. optional Min RA of box to search in for overlaps (Default: 0.) max_ra : float, optional Max RA of box to search in (Default 180.) min_dec : float, optional Min Dec of box to search in (Default: -90.) max_dec : float, optional Max Dec of box to search in (Default: 90.) Returns ------- overlap : bool array Bool arrat indicatinng which tiles in the index file fall within the given region """ overlap = ((min_dec - pad) < dec_ctr) & ((max_dec + pad) > dec_ctr) #TRAP HIGH LATITUDE CASE AND (I GUESS) TOSS BACK ALL TILES. DO BETTER LATER mean_dec = (min_dec + max_dec) * 0.5 if np.abs(dec_ctr) + pad > 88.0: return overlap ra_pad = pad / np.cos(np.radians(mean_dec)) # MERIDIAN CASES merid = np.where(max_ra < min_ra) overlap[merid] = overlap[merid] & ( ((min_ra-ra_pad) < ra_ctr) | ((max_ra+ra_pad) > ra_ctr) )[merid] # BORING CASE normal = np.where(max_ra > min_ra) overlap[normal] = overlap[normal] & ((((min_ra-ra_pad) < ra_ctr) & ((max_ra+ra_pad) > ra_ctr)))[normal] return overlap def galex(band='fuv', ra_ctr=None, dec_ctr=None, size_deg=None, index=None, name=None, pgcname=None, model_bg=True, weight_ims=True, convert_mjysr=True, desired_pix_scale=GALEX_PIX_AS, imtype='intbgsub', wttype='rrhr'): """ Create cutouts of a galaxy in a single GALEX band. Parameters ---------- band : str GALEX band to use ra_ctr : float Central RA of galaxy dec_ctr : float Central Dec of galaxy size_deg : float Desired side length of each cutout, in degrees index : array, optional Structured array containing the galbase information. The default is to read it in inside this code. (Default: None) name : str, optional Name of the galaxy for which to generate a cutout pgcname : str, optional PGC name of the galaxy model_bg : bool, optional Model the background of the mosaiced image (Default: False) weight_ims : bool, optional weight the input images with the weights images convert_mjysr : bool, optional convert input images from counts/sec to MJy/sr desired_pix_scale : float, optional Desired pixel scale of output image. Default is currently set to GALEX pixel scale (Default: 1.5) imtype : str, optional input image type to use from galex (Default: int) wttype : str, optional input weights image type to use from galex (Default: rrhr) """ ttype = 'galex' data_dir = os.path.join(_TOP_DIR, ttype, 'sorted_tiles') problem_file = os.path.join(_WORK_DIR, 'problem_galaxies_{}.txt'.format(band)) numbers_file = os.path.join(_WORK_DIR, 'gal_reproj_info_{}.txt'.format(band)) galaxy_mosaic_file = os.path.join(_MOSAIC_DIR, '_'.join([pgcname, band]).upper() + '.FITS') if not os.path.exists(galaxy_mosaic_file): start_time = time.time() print pgcname, band.upper() # READ THE INDEX FILE (IF NOT PASSED IN) if index is None: indexfile = os.path.join(_INDEX_DIR, 'galex_index_file.fits') ext = 1 index, hdr = astropy.io.fits.getdata(indexfile, ext, header=True) # CALCULATE TILE OVERLAP tile_overlaps = calc_tile_overlap(ra_ctr, dec_ctr, pad=size_deg, min_ra=index['MIN_RA'], max_ra=index['MAX_RA'], min_dec=index['MIN_DEC'], max_dec=index['MAX_DEC']) # FIND OVERLAPPING TILES WITH RIGHT BAND # index file set up such that index['fuv'] = 1 where fuv and # index['nuv'] = 1 where nuv ind = np.where((index[band]) & tile_overlaps) # MAKE SURE THERE ARE OVERLAPPING TILES ct_overlap = len(ind[0]) if ct_overlap == 0: with open(problem_file, 'a') as myfile: myfile.write(pgcname + ': ' + 'No overlapping tiles\n') return pix_scale = desired_pix_scale / 3600. # 1.5 arbitrary: how should I set it? try: # CREATE NEW TEMP DIRECTORY TO STORE TEMPORARY FILES gal_dir = os.path.join(_WORK_DIR, '_'.join([pgcname, band]).upper()) os.makedirs(gal_dir) # MAKE HEADER AND EXTENDED HEADER AND WRITE TO FILE gal_hdr = GalaxyHeader(pgcname, gal_dir, ra_ctr, dec_ctr, size_deg, pix_scale, factor=3) # GATHER THE INPUT FILES input_dir = os.path.join(gal_dir, 'input') if not os.path.exists(input_dir): os.makedirs(input_dir) nfiles = get_input(index, ind, data_dir, input_dir, hdr=gal_hdr) im_dir, wt_dir = input_dir, input_dir # WRITE TABLE OF INPUT IMAGE INFORMATION input_table = os.path.join(im_dir, 'input.tbl') montage.mImgtbl(im_dir, input_table, corners=True) if convert_mjysr: converted_dir = os.path.join(gal_dir, 'converted') if not os.path.exists(converted_dir): os.makedirs(converted_dir) convert_to_flux_input(im_dir, converted_dir, band, desired_pix_scale, imtype=imtype) im_dir = converted_dir # MASK IMAGES masked_dir = os.path.join(gal_dir, 'masked') im_masked_dir = os.path.join(masked_dir, imtype) wt_masked_dir = os.path.join(masked_dir, wttype) for outdir in [masked_dir, im_masked_dir, wt_masked_dir]: os.makedirs(outdir) mask_images(im_dir, wt_dir, im_masked_dir, wt_masked_dir, imtype=imtype, wttype=wttype) im_dir = im_masked_dir wt_dir = wt_masked_dir # REPROJECT IMAGES WITH EXTENDED HEADER reprojected_dir = os.path.join(gal_dir, 'reprojected') reproj_im_dir = os.path.join(reprojected_dir, imtype) reproj_wt_dir = os.path.join(reprojected_dir, wttype) for outdir in [reprojected_dir, reproj_im_dir, reproj_wt_dir]: os.makedirs(outdir) reproject_images(gal_hdr.hdrfile_ext, im_dir, reproj_im_dir, imtype) reproject_images(gal_hdr.hdrfile_ext, wt_dir, reproj_wt_dir, wttype) im_dir = reproj_im_dir wt_dir = reproj_wt_dir # MODEL THE BACKGROUND IN THE IMAGE FILES WITH THE EXTENDED HEADER if model_bg: bg_model_dir = os.path.join(gal_dir, 'background_model') diff_dir = os.path.join(bg_model_dir, 'differences') corr_dir = os.path.join(bg_model_dir, 'corrected') for outdir in [bg_model_dir, diff_dir, corr_dir]: os.makedirs(outdir) bg_model(im_dir, bg_model_dir, diff_dir, corr_dir, gal_hdr.hdrfile_ext, im_type=imtype, level_only=False) im_dir = os.path.join(corr_dir, imtype) # WEIGHT IMAGES if weight_ims: weight_dir = os.path.join(gal_dir, 'weighted') im_weight_dir = os.path.join(weight_dir, imtype) wt_weight_dir = os.path.join(weight_dir, wttype) for outdir in [weight_dir, im_weight_dir, wt_weight_dir]: os.makedirs(outdir) weight_images(im_dir, wt_dir, weight_dir, im_weight_dir, wt_weight_dir, imtype=imtype, wttype=wttype) im_dir = im_weight_dir wt_dir = wt_weight_dir # CREATE THE METADATA TABLES NEEDED FOR COADDITION weight_table = create_table(wt_dir, dir_type=wttype) weighted_table = create_table(im_dir, dir_type=imtype) # COADD THE REPROJECTED, WEIGHTED IMAGES AND THE WEIGHT IMAGES WITH THE REGULAR HEADER FILE penultimate_dir = os.path.join(gal_dir, 'large_mosaic') final_dir = os.path.join(gal_dir, 'mosaic') for outdir in [penultimate_dir, final_dir]: os.makedirs(outdir) coadd(gal_hdr.hdrfile, penultimate_dir, im_dir, output=imtype, add_type='mean') coadd(gal_hdr.hdrfile, penultimate_dir, wt_dir, output=wttype, add_type='mean') # DIVIDE OUT THE WEIGHTS AND CONVERT TO MJY/SR imagefile, wtfile = finish_weight(penultimate_dir, imtype=imtype, wttype=wttype) # COPY IMAGE AND WEIGHTS MOSAIC TO FINAL DIRECTORY outfile = os.path.join(final_dir, 'final_mosaic.fits') shutil.copy(imagefile, outfile) shutil.copy(wtfile, os.path.join(final_dir, '{}_mosaic.fits'.format(wttype))) # COPY MOSAIC FILES TO CUTOUTS DIRECTORY mosaic_file = os.path.join(final_dir, 'final_mosaic.fits') weight_file = os.path.join(final_dir, '{}_mosaic.fits'.format(wttype)) newsuffs = ['.FITS', '_weight.FITS'] oldfiles = [mosaic_file, weight_file] newfiles = ['_'.join([pgcname, band]).upper() + s for s in newsuffs] for files in zip(oldfiles, newfiles): shutil.copy(files[0], os.path.join(_MOSAIC_DIR, files[1])) # REMOVE TEMP GALAXY DIRECTORY AND EXTRA FILES shutil.rmtree(gal_dir, ignore_errors=True) # NOTE TIME TO FINISH stop_time = time.time() total_time = (stop_time - start_time) / 60. # WRITE OUT THE NUMBER OF TILES THAT OVERLAP THE GIVEN GALAXY out_arr = [pgcname, band.upper(), nfiles, np.around(total_time, 2)] with open(numbers_file, 'a') as nfile: nfile.write('{0: >10}'.format(out_arr[0])) nfile.write('{0: >6}'.format(out_arr[1])) nfile.write('{0: >6}'.format(out_arr[2])) nfile.write('{0: >6}'.format(out_arr[3]) + '\n') # SOMETHING WENT WRONG -- WRITE ERROR TO FILE except Exception as inst: me = sys.exc_info()[0] with open(problem_file, 'a') as myfile: myfile.write(pgcname + ': ' + str(me) + ': '+str(inst)+'\n') shutil.rmtree(gal_dir, ignore_errors=True) return def get_input(index, ind, data_dir, input_dir, hdr=None): """ Gather the input files for creating mosaics and copy them into a temporary directory Parameters ---------- index : np.array structured array from galbase FITS file ind : np.array(np.dtype(int)) An array of indices into the index locating the correct files data_dir : str Path to location of raw data downloaded from GALEX (or other) server input_dir : str Path to newly created temporary directory for storing temp files used in mosaicing Returns ------- len(input_files) : int The number of files that will go into the mosaic. """ infiles = index[ind[0]]['fname'] wtfiles = index[ind[0]]['rrhrfile'] flgfiles = index[ind[0]]['flagfile'] infiles = [os.path.join(data_dir, f) for f in infiles] wtfiles = [os.path.join(data_dir, f) for f in wtfiles] flgfiles = [os.path.join(data_dir, f) for f in flgfiles] for i, infile in enumerate(infiles): basename = os.path.basename(infile) new_in_file = os.path.join(input_dir, basename) os.symlink(infile, new_in_file) if hdr is not None: keyw = 'INFILE{}'.format(str(i+1).zfill(2)) hdr.append2hdr(keyword=keyw, value=basename, ext=False) for wtfile in wtfiles: basename = os.path.basename(wtfile) new_wt_file = os.path.join(input_dir, basename) os.symlink(wtfile, new_wt_file) for flgfile in flgfiles: basename = os.path.basename(flgfile) new_flg_file = os.path.join(input_dir, basename) os.symlink(flgfile, new_flg_file) return len(infiles) def mask_images(im_dir, wt_dir, im_masked_dir, wt_masked_dir, imtype='intbgsub', wttype='rrhr'): """ Mask pixels in the input images Parameters ---------- im_dir : str Path to directory containing the images wt_dir : str Path to directory containing the weights im_masked_dir : str Path to temp directory for this galaxy in which to store masked image files wt_masked_dir : str Path to temp directory for this galaxy in which to store masked weight files """ int_suff, rrhr_suff = '*-{}.fits'.format(imtype), '*-{}.fits'.format(wttype) int_images = sorted(glob.glob(os.path.join(im_dir, int_suff))) rrhr_images = sorted(glob.glob(os.path.join(wt_dir, rrhr_suff))) for i in range(len(int_images)): image_infile = int_images[i] wt_infile = rrhr_images[i] image_outfile = os.path.join(im_masked_dir, os.path.basename(image_infile)) wt_outfile = os.path.join(wt_masked_dir, os.path.basename(wt_infile)) mask_galex(image_infile, wt_infile, image_outfile, wt_outfile) def mask_galex(intfile, wtfile, out_intfile, out_wtfile, chip_rad=1400, chip_x0=1920, chip_y0=1920): """ The actual masking routine. Selects pixels that are close to the edges of the chips or that have bad values, and masks them. Parameters ---------- intfile : str input image file wtfile : str input weight file chip_rad : int Radius of the GALEX chip to use. The actual radius of data is ~1500 pixels. There are known edge effects. (Default: 1400) chip_x0 : int Center of GALEX chip on the x-axis (Default: 1920) chip_y0 : int Center of GALEX chip on the y-axis (Default: 1920) out_intfile : str, optional Path to output, masked image file. If not included, it will default to replacing the input file name as '.fits' --> '_masked.fits' (Default: None) out_wtfile : str, optional Path to output, masked weight file. If not included, it will default to replacing the input file name as '.fits' --> '_masked.fits' (Default: None) """ if not os.path.exists(out_intfile): # read in the data data, hdr = astropy.io.fits.getdata(intfile, header=True) wt, whdr = astropy.io.fits.getdata(wtfile, header=True) # determine distance of each pixel from the center x = np.arange(data.shape[1]).reshape(1, -1) + 1 y = np.arange(data.shape[0]).reshape(-1, 1) + 1 r = np.sqrt((x - chip_x0)**2 + (y - chip_y0)**2) # make pixel selections for masking i = (r > chip_rad) j = (wt == -1.1e30) # mask pixels that meet eithr of the above criterion data = np.where(i | j, np.nan, data) #0 wt = np.where(i | j, np.nan, wt) #1e-20 # write new data to file astropy.io.fits.writeto(out_intfile, data, hdr) astropy.io.fits.writeto(out_wtfile, wt, whdr) def reproject_images(template_header, input_dir, reproj_dir, imtype, whole=True, exact=True, corners=True, img_list=None): """ Reproject input images to a new WCS as given by a template header Parameters ---------- template_header : ascii file ASCII file containing the WCS to which you want to reproject. This is what Montage requires. input_dir : str Path to directory containing input data reproj_imtype_dir : Path to new directory for storing reprojected data imtype : str The type of image you are reprojecting; one of [int, rrhr] whole : bool, optional Montage argument: Force reprojection of whole images, even if they exceed the area of the FITS header template (Default: True) exact : bool, optional Montage argument: Flag indicating output image should exactly match the FITS header template, and not crop off blank pixels (Default: True) corners : bool, optional Montage argument: Adds 8 columns for the RA and Dec of the image corners to the output metadata table (Default: True) img_list : list of strs, optional Montage argument: only process files with names specified in table img_list, ignoring any other files in the directory. (Default: None) """ # get image metadata from input images input_table = os.path.join(input_dir, imtype + '_input.tbl') montage.mImgtbl(input_dir, input_table, corners=corners, img_list=img_list) # Create reprojection directory, reproject, and get image metadata stats_table = os.path.join(reproj_dir, imtype+'_mProjExec_stats.log') montage.mProjExec(input_table, template_header, reproj_dir, stats_table, raw_dir=input_dir, whole=whole, exact=exact) reprojected_table = os.path.join(reproj_dir, imtype + '_reprojected.tbl') montage.mImgtbl(reproj_dir, reprojected_table, corners=corners) def bg_model(reprojected_dir, bg_model_dir, diff_dir, corr_dir, template_header, im_type='intbgsub', level_only=True): """ Model the background for the mosaiced image Parameters ---------- reprojected_dir : str Path to temp directory containing reprojected images bg_model_dir : str Path to directory inside gal_dir to hold the background modeling information diff_dir : str Path to directory inside bg_model_dir to hold the difference images corr_dir : str Path to directory inside bg_model_dir to hold the background corrected images template_header : ascii file Path to file containing the WCS to which we want to reproject our images im_type : str Type of image used (Default: intbgsub) level_only : bool, optional Montage argument: Adjust background levels only, don't try to fit the slope (Default: True) """ # FIND OVERLAPS diff_dir = os.path.join(diff_dir, im_type) os.makedirs(diff_dir) reprojected_table = os.path.join(reprojected_dir, im_type + '_reprojected.tbl') diffs_table = os.path.join(diff_dir, 'differences.tbl') montage.mOverlaps(reprojected_table, diffs_table) # CALCULATE DIFFERENCES BETWEEN OVERLAPPING IMAGES montage.mDiffExec(diffs_table, template_header, diff_dir, proj_dir=reprojected_dir) # BEST-FIT PLANE COEFFICIENTS fits_table = os.path.join(diff_dir, 'fits.tbl') montage.mFitExec(diffs_table, fits_table, diff_dir) # CALCULATE CORRECTIONS corr_dir = os.path.join(corr_dir, im_type) os.makedirs(corr_dir) corrections_table = os.path.join(corr_dir, 'corrections.tbl') montage.mBgModel(reprojected_table, fits_table, corrections_table, level_only=level_only) # APPLY CORRECTIONS montage.mBgExec(reprojected_table, corrections_table, corr_dir, proj_dir=reprojected_dir) def weight_images(im_dir, wt_dir, weight_dir, im_weight_dir, wt_weight_dir, imtype='intbgsub', wttype='rrhr'): """ Weight the input images by a set of weights images Parameters ---------- im_dir : str Path to directory containing the images wt_dir : str Path to directory containing the weights weight_dir : str Path to directory for the newly weighted images im_weight_dir : str Path to subdirectory containing the weighted images wt_weight_dir : str Path to subdirectory containgn the weights images (same as before, they haven't changed) imtype : str, optional Type of input image used (Default: intbgsub) wttype : str, optional Type of weight image used (Defaaut: rrhr) """ im_suff, wt_suff = '*-{}.fits'.format(imtype), '*-{}.fits'.format(wttype) imfiles = sorted(glob.glob(os.path.join(im_dir, im_suff))) wtfiles = sorted(glob.glob(os.path.join(wt_dir, wt_suff))) # weight each image for i in range(len(imfiles)): # read in the data imfile = imfiles[i] wtfile = os.path.join(os.path.dirname(wtfiles[i]), os.path.basename(imfile).replace(imtype, wttype)) im, hdr = astropy.io.fits.getdata(imfile, header=True) rrhr, rrhrhdr = astropy.io.fits.getdata(wtfile, header=True) # weight the data by the exposure time wt = rrhr newim = im * wt # write data to new files and copy the *_area.fits files created by Montage to have the same naming convention newfile = os.path.join(im_weight_dir, os.path.basename(imfile)) astropy.io.fits.writeto(newfile, newim, hdr) old_area_file = imfile.replace('.fits', '_area.fits') if os.path.exists(old_area_file): new_area_file = newfile.replace('.fits', '_area.fits') shutil.copy(old_area_file, new_area_file) weightfile = os.path.join(wt_weight_dir, os.path.basename(wtfile)) astropy.io.fits.writeto(weightfile, wt, rrhrhdr) old_area_file = wtfile.replace('.fits', '_area.fits') if os.path.exists(old_area_file): new_area_file = weightfile.replace('.fits', '_area.fits') shutil.copy(old_area_file, new_area_file) def create_table(in_dir, dir_type=None): """ Create a metadata table using Montage for all the files in a given directory Parameters ---------- in_dir : str Path to directory containing the files dir_type : str, optional type of file you are creating a table for, e.g., 'intbgsub, rrhr, wt' (Default: None) Returns ------- reprojected_table Path to the table containing the metadata """ if dir_type is None: reprojected_table = os.path.join(in_dir, 'reprojected.tbl') else: reprojected_table = os.path.join(in_dir, dir_type + '_reprojected.tbl') montage.mImgtbl(in_dir, reprojected_table, corners=True) return reprojected_table def coadd(template_header, output_dir, input_dir, output=None, add_type=None): """ Coadd input images to create mosaic. Parameters ---------- template_header : ascii file File containing new WCS output_dir : str Path to directory contianing the output image input_dir : str path to directory containing the input images output : str, optional Type of mosaic you're making: e.g., int, wt, count (Default: None) add_type : str, optional Montage argument -- type of coadding to perform (Default: None -- defaults to Montage's default) """ img_dir = input_dir # output is either 'weights' or 'int' if output is None: reprojected_table = os.path.join(img_dir, 'reprojected.tbl') out_image = os.path.join(output_dir, 'mosaic.fits') else: reprojected_table = os.path.join(img_dir, output + '_reprojected.tbl') out_image = os.path.join(output_dir, output + '_mosaic.fits') montage.mAdd(reprojected_table, template_header, out_image, img_dir=img_dir, exact=True, type=add_type) def finish_weight(output_dir, imtype='intbgsub', wttype='rrhr'): """ Divide out the weights from the final image to get back to flux density units Parameters ---------- output_dir : str Path to directory containing the output image Returns ------- newfile : str Path to new, mosaiced file """ image_file = os.path.join(output_dir, '{}_mosaic.fits'.format(imtype)) wt_file = os.path.join(output_dir, '{}_mosaic.fits'.format(wttype)) im, hdr = astropy.io.fits.getdata(image_file, header=True) wt = astropy.io.fits.getdata(wt_file) newim = im / wt newfile = os.path.join(output_dir, 'image_mosaic.fits') astropy.io.fits.writeto(newfile, newim, hdr) return newfile, wt_file def counts2jy_galex(counts, cal, pix_as): """ Convert GALEX counts/s to MJy/sr Parameters ---------- counts : float Array containing counts data to be converted cal : float Calibration value from counts to AB mag for desired band (FUV or NUV) pix_as : float Pixel scale in arcseconds Returns ------- val : float Count rate converted to MJy/sr """ # first convert to abmag abmag = -2.5 * np.log10(counts) + cal # then convert to Jy f_nu = 10**(abmag/-2.5) * 3631. # then to MJy f_nu *= 1e-6 # then to MJy/sr pix_rad = np.radians(pix_as / 3600.) # pixel scale coverted from arcsec to radians pix_sr = pix_rad ** 2. # pixel scale converted from radians to steradians val = f_nu / pix_sr return val def convert_to_flux_input(indir, outdir, band, pix_as, imtype='intbgsub'): infiles = sorted(glob.glob(os.path.join(indir, '*-{}.fits'.format(imtype)))) for infile in infiles: data, hdr = astropy.io.fits.getdata(infile, header=True) newdata = counts2jy_galex(data, UV2AB[band.lower()], pix_as) hdr['BUNIT'] = 'MJY/SR' outfile = os.path.join(outdir, os.path.basename(infile)) astropy.io.fits.writeto(outfile, newdata, hdr) def convert_to_flux_final(mosaicfile, band, pix_as): data, hdr = astropy.io.fits.getdata(mosaicfile, header=True) newim = counts2jy_galex(data, UV2AB[band.lower()], pix_as) # APPEND UNIT INFORMATION TO NEW HEADER AND WRITE OUT HEADER FILE hdr['BUNIT'] = 'MJY/SR' #gal_hdr.append2hdr(keyword='BUNIT', value='MJY/SR', ext=False) newfile = os.path.join(os.path.dirname(mosaicfile), 'image_mosaic_mjysr.fits') astropy.io.fits.writeto(newfile, newim, hdr)
mit
kyleam/seaborn
seaborn/linearmodels.py
7
57401
"""Plotting functions for linear models (broadly construed).""" from __future__ import division import copy import itertools from textwrap import dedent import numpy as np import pandas as pd from scipy.spatial import distance import matplotlib as mpl import matplotlib.pyplot as plt import warnings try: import statsmodels assert statsmodels _has_statsmodels = True except ImportError: _has_statsmodels = False from .external.six import string_types from .external.six.moves import range from . import utils from . import algorithms as algo from .palettes import color_palette from .axisgrid import FacetGrid, PairGrid, _facet_docs from .distributions import kdeplot class _LinearPlotter(object): """Base class for plotting relational data in tidy format. To get anything useful done you'll have to inherit from this, but setup code that can be abstracted out should be put here. """ def establish_variables(self, data, **kws): """Extract variables from data or use directly.""" self.data = data # Validate the inputs any_strings = any([isinstance(v, string_types) for v in kws.values()]) if any_strings and data is None: raise ValueError("Must pass `data` if using named variables.") # Set the variables for var, val in kws.items(): if isinstance(val, string_types): setattr(self, var, data[val]) else: setattr(self, var, val) def dropna(self, *vars): """Remove observations with missing data.""" vals = [getattr(self, var) for var in vars] vals = [v for v in vals if v is not None] not_na = np.all(np.column_stack([pd.notnull(v) for v in vals]), axis=1) for var in vars: val = getattr(self, var) if val is not None: setattr(self, var, val[not_na]) def plot(self, ax): raise NotImplementedError class _RegressionPlotter(_LinearPlotter): """Plotter for numeric independent variables with regression model. This does the computations and drawing for the `regplot` function, and is thus also used indirectly by `lmplot`. """ def __init__(self, x, y, data=None, x_estimator=None, x_bins=None, x_ci="ci", scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None, order=1, logistic=False, lowess=False, robust=False, logx=False, x_partial=None, y_partial=None, truncate=False, dropna=True, x_jitter=None, y_jitter=None, color=None, label=None): # Set member attributes self.x_estimator = x_estimator self.ci = ci self.x_ci = ci if x_ci == "ci" else x_ci self.n_boot = n_boot self.scatter = scatter self.fit_reg = fit_reg self.order = order self.logistic = logistic self.lowess = lowess self.robust = robust self.logx = logx self.truncate = truncate self.x_jitter = x_jitter self.y_jitter = y_jitter self.color = color self.label = label # Validate the regression options: if sum((order > 1, logistic, robust, lowess, logx)) > 1: raise ValueError("Mutually exclusive regression options.") # Extract the data vals from the arguments or passed dataframe self.establish_variables(data, x=x, y=y, units=units, x_partial=x_partial, y_partial=y_partial) # Drop null observations if dropna: self.dropna("x", "y", "units", "x_partial", "y_partial") # Regress nuisance variables out of the data if self.x_partial is not None: self.x = self.regress_out(self.x, self.x_partial) if self.y_partial is not None: self.y = self.regress_out(self.y, self.y_partial) # Possibly bin the predictor variable, which implies a point estimate if x_bins is not None: self.x_estimator = np.mean if x_estimator is None else x_estimator x_discrete, x_bins = self.bin_predictor(x_bins) self.x_discrete = x_discrete else: self.x_discrete = self.x # Save the range of the x variable for the grid later self.x_range = self.x.min(), self.x.max() @property def scatter_data(self): """Data where each observation is a point.""" x_j = self.x_jitter if x_j is None: x = self.x else: x = self.x + np.random.uniform(-x_j, x_j, len(self.x)) y_j = self.y_jitter if y_j is None: y = self.y else: y = self.y + np.random.uniform(-y_j, y_j, len(self.y)) return x, y @property def estimate_data(self): """Data with a point estimate and CI for each discrete x value.""" x, y = self.x_discrete, self.y vals = sorted(np.unique(x)) points, cis = [], [] for val in vals: # Get the point estimate of the y variable _y = y[x == val] est = self.x_estimator(_y) points.append(est) # Compute the confidence interval for this estimate if self.x_ci is None: cis.append(None) else: units = None if self.units is not None: units = self.units[x == val] boots = algo.bootstrap(_y, func=self.x_estimator, n_boot=self.n_boot, units=units) _ci = utils.ci(boots, self.x_ci) cis.append(_ci) return vals, points, cis def fit_regression(self, ax=None, x_range=None, grid=None): """Fit the regression model.""" # Create the grid for the regression if grid is None: if self.truncate: x_min, x_max = self.x_range else: if ax is None: x_min, x_max = x_range else: x_min, x_max = ax.get_xlim() grid = np.linspace(x_min, x_max, 100) ci = self.ci # Fit the regression if self.order > 1: yhat, yhat_boots = self.fit_poly(grid, self.order) elif self.logistic: from statsmodels.genmod.generalized_linear_model import GLM from statsmodels.genmod.families import Binomial yhat, yhat_boots = self.fit_statsmodels(grid, GLM, family=Binomial()) elif self.lowess: ci = None grid, yhat = self.fit_lowess() elif self.robust: from statsmodels.robust.robust_linear_model import RLM yhat, yhat_boots = self.fit_statsmodels(grid, RLM) elif self.logx: yhat, yhat_boots = self.fit_logx(grid) else: yhat, yhat_boots = self.fit_fast(grid) # Compute the confidence interval at each grid point if ci is None: err_bands = None else: err_bands = utils.ci(yhat_boots, ci, axis=0) return grid, yhat, err_bands def fit_fast(self, grid): """Low-level regression and prediction using linear algebra.""" X, y = np.c_[np.ones(len(self.x)), self.x], self.y grid = np.c_[np.ones(len(grid)), grid] reg_func = lambda _x, _y: np.linalg.pinv(_x).dot(_y) yhat = grid.dot(reg_func(X, y)) if self.ci is None: return yhat, None beta_boots = algo.bootstrap(X, y, func=reg_func, n_boot=self.n_boot, units=self.units).T yhat_boots = grid.dot(beta_boots).T return yhat, yhat_boots def fit_poly(self, grid, order): """Regression using numpy polyfit for higher-order trends.""" x, y = self.x, self.y reg_func = lambda _x, _y: np.polyval(np.polyfit(_x, _y, order), grid) yhat = reg_func(x, y) if self.ci is None: return yhat, None yhat_boots = algo.bootstrap(x, y, func=reg_func, n_boot=self.n_boot, units=self.units) return yhat, yhat_boots def fit_statsmodels(self, grid, model, **kwargs): """More general regression function using statsmodels objects.""" X, y = np.c_[np.ones(len(self.x)), self.x], self.y grid = np.c_[np.ones(len(grid)), grid] reg_func = lambda _x, _y: model(_y, _x, **kwargs).fit().predict(grid) yhat = reg_func(X, y) if self.ci is None: return yhat, None yhat_boots = algo.bootstrap(X, y, func=reg_func, n_boot=self.n_boot, units=self.units) return yhat, yhat_boots def fit_lowess(self): """Fit a locally-weighted regression, which returns its own grid.""" from statsmodels.nonparametric.smoothers_lowess import lowess grid, yhat = lowess(self.y, self.x).T return grid, yhat def fit_logx(self, grid): """Fit the model in log-space.""" X, y = np.c_[np.ones(len(self.x)), self.x], self.y grid = np.c_[np.ones(len(grid)), np.log(grid)] def reg_func(_x, _y): _x = np.c_[_x[:, 0], np.log(_x[:, 1])] return np.linalg.pinv(_x).dot(_y) yhat = grid.dot(reg_func(X, y)) if self.ci is None: return yhat, None beta_boots = algo.bootstrap(X, y, func=reg_func, n_boot=self.n_boot, units=self.units).T yhat_boots = grid.dot(beta_boots).T return yhat, yhat_boots def bin_predictor(self, bins): """Discretize a predictor by assigning value to closest bin.""" x = self.x if np.isscalar(bins): percentiles = np.linspace(0, 100, bins + 2)[1:-1] bins = np.c_[utils.percentiles(x, percentiles)] else: bins = np.c_[np.ravel(bins)] dist = distance.cdist(np.c_[x], bins) x_binned = bins[np.argmin(dist, axis=1)].ravel() return x_binned, bins.ravel() def regress_out(self, a, b): """Regress b from a keeping a's original mean.""" a_mean = a.mean() a = a - a_mean b = b - b.mean() b = np.c_[b] a_prime = a - b.dot(np.linalg.pinv(b).dot(a)) return (a_prime + a_mean).reshape(a.shape) def plot(self, ax, scatter_kws, line_kws): """Draw the full plot.""" # Insert the plot label into the correct set of keyword arguments if self.scatter: scatter_kws["label"] = self.label else: line_kws["label"] = self.label # Use the current color cycle state as a default if self.color is None: lines, = plt.plot(self.x.mean(), self.y.mean()) color = lines.get_color() lines.remove() else: color = self.color # Let color in keyword arguments override overall plot color scatter_kws.setdefault("color", color) line_kws.setdefault("color", color) # Draw the constituent plots if self.scatter: self.scatterplot(ax, scatter_kws) if self.fit_reg: self.lineplot(ax, line_kws) # Label the axes if hasattr(self.x, "name"): ax.set_xlabel(self.x.name) if hasattr(self.y, "name"): ax.set_ylabel(self.y.name) def scatterplot(self, ax, kws): """Draw the data.""" # Treat the line-based markers specially, explicitly setting larger # linewidth than is provided by the seaborn style defaults. # This would ideally be handled better in matplotlib (i.e., distinguish # between edgewidth for solid glyphs and linewidth for line glyphs # but this should do for now. line_markers = ["1", "2", "3", "4", "+", "x", "|", "_"] if self.x_estimator is None: if "marker" in kws and kws["marker"] in line_markers: lw = mpl.rcParams["lines.linewidth"] else: lw = mpl.rcParams["lines.markeredgewidth"] kws.setdefault("linewidths", lw) if not hasattr(kws['color'], 'shape') or kws['color'].shape[1] < 4: kws.setdefault("alpha", .8) x, y = self.scatter_data ax.scatter(x, y, **kws) else: # TODO abstraction ci_kws = {"color": kws["color"]} ci_kws["linewidth"] = mpl.rcParams["lines.linewidth"] * 1.75 kws.setdefault("s", 50) xs, ys, cis = self.estimate_data if [ci for ci in cis if ci is not None]: for x, ci in zip(xs, cis): ax.plot([x, x], ci, **ci_kws) ax.scatter(xs, ys, **kws) def lineplot(self, ax, kws): """Draw the model.""" xlim = ax.get_xlim() # Fit the regression model grid, yhat, err_bands = self.fit_regression(ax) # Get set default aesthetics fill_color = kws["color"] lw = kws.pop("lw", mpl.rcParams["lines.linewidth"] * 1.5) kws.setdefault("linewidth", lw) # Draw the regression line and confidence interval ax.plot(grid, yhat, **kws) if err_bands is not None: ax.fill_between(grid, *err_bands, color=fill_color, alpha=.15) ax.set_xlim(*xlim) _regression_docs = dict( model_api=dedent("""\ There are a number of mutually exclusive options for estimating the regression model: ``order``, ``logistic``, ``lowess``, ``robust``, and ``logx``. See the parameter docs for more information on these options.\ """), regplot_vs_lmplot=dedent("""\ Understanding the difference between :func:`regplot` and :func:`lmplot` can be a bit tricky. In fact, they are closely related, as :func:`lmplot` uses :func:`regplot` internally and takes most of its parameters. However, :func:`regplot` is an axes-level function, so it draws directly onto an axes (either the currently active axes or the one provided by the ``ax`` parameter), while :func:`lmplot` is a figure-level function and creates its own figure, which is managed through a :class:`FacetGrid`. This has a few consequences, namely that :func:`regplot` can happily coexist in a figure with other kinds of plots and will follow the global matplotlib color cycle. In contrast, :func:`lmplot` needs to occupy an entire figure, and the size and color cycle are controlled through function parameters, ignoring the global defaults.\ """), x_estimator=dedent("""\ x_estimator : callable that maps vector -> scalar, optional Apply this function to each unique value of ``x`` and plot the resulting estimate. This is useful when ``x`` is a discrete variable. If ``x_ci`` is not ``None``, this estimate will be bootstrapped and a confidence interval will be drawn.\ """), x_bins=dedent("""\ x_bins : int or vector, optional Bin the ``x`` variable into discrete bins and then estimate the central tendency and a confidence interval. This binning only influences how the scatterplot is drawn; the regression is still fit to the original data. This parameter is interpreted either as the number of evenly-sized (not necessary spaced) bins or the positions of the bin centers. When this parameter is used, it implies that the default of ``x_estimator`` is ``numpy.mean``.\ """), x_ci=dedent("""\ x_ci : "ci", int in [0, 100] or None, optional Size of the confidence interval used when plotting a central tendency for discrete values of ``x``. If "ci", defer to the value of the``ci`` parameter.\ """), scatter=dedent("""\ scatter : bool, optional If ``True``, draw a scatterplot with the underlying observations (or the ``x_estimator`` values).\ """), fit_reg=dedent("""\ fit_reg : bool, optional If ``True``, estimate and plot a regression model relating the ``x`` and ``y`` variables.\ """), ci=dedent("""\ ci : int in [0, 100] or None, optional Size of the confidence interval for the regression estimate. This will be drawn using translucent bands around the regression line. The confidence interval is estimated using a bootstrap; for large datasets, it may be advisable to avoid that computation by setting this parameter to None.\ """), n_boot=dedent("""\ n_boot : int, optional Number of bootstrap resamples used to estimate the ``ci``. The default value attempts to balance time and stability; you may want to increase this value for "final" versions of plots.\ """), units=dedent("""\ units : variable name in ``data``, optional If the ``x`` and ``y`` observations are nested within sampling units, those can be specified here. This will be taken into account when computing the confidence intervals by performing a multilevel bootstrap that resamples both units and observations (within unit). This does not otherwise influence how the regression is estimated or drawn.\ """), order=dedent("""\ order : int, optional If ``order`` is greater than 1, use ``numpy.polyfit`` to estimate a polynomial regression.\ """), logistic=dedent("""\ logistic : bool, optional If ``True``, assume that ``y`` is a binary variable and use ``statsmodels`` to estimate a logistic regression model. Note that this is substantially more computationally intensive than linear regression, so you may wish to decrease the number of bootstrap resamples (``n_boot``) or set ``ci`` to None.\ """), lowess=dedent("""\ lowess : bool, optional If ``True``, use ``statsmodels`` to estimate a nonparametric lowess model (locally weighted linear regression). Note that confidence intervals cannot currently be drawn for this kind of model.\ """), robust=dedent("""\ robust : bool, optional If ``True``, use ``statsmodels`` to estimate a robust regression. This will de-weight outliers. Note that this is substantially more computationally intensive than standard linear regression, so you may wish to decrease the number of bootstrap resamples (``n_boot``) or set ``ci`` to None.\ """), logx=dedent("""\ logx : bool, optional If ``True``, estimate a linear regression of the form y ~ log(x), but plot the scatterplot and regression model in the input space. Note that ``x`` must be positive for this to work.\ """), xy_partial=dedent("""\ {x,y}_partial : strings in ``data`` or matrices Confounding variables to regress out of the ``x`` or ``y`` variables before plotting.\ """), truncate=dedent("""\ truncate : bool, optional By default, the regression line is drawn to fill the x axis limits after the scatterplot is drawn. If ``truncate`` is ``True``, it will instead by bounded by the data limits.\ """), xy_jitter=dedent("""\ {x,y}_jitter : floats, optional Add uniform random noise of this size to either the ``x`` or ``y`` variables. The noise is added to a copy of the data after fitting the regression, and only influences the look of the scatterplot. This can be helpful when plotting variables that take discrete values.\ """), scatter_line_kws=dedent("""\ {scatter,line}_kws : dictionaries Additional keyword arguments to pass to ``plt.scatter`` and ``plt.plot``.\ """), ) _regression_docs.update(_facet_docs) def lmplot(x, y, data, hue=None, col=None, row=None, palette=None, col_wrap=None, size=5, aspect=1, markers="o", sharex=True, sharey=True, hue_order=None, col_order=None, row_order=None, legend=True, legend_out=True, x_estimator=None, x_bins=None, x_ci="ci", scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None, order=1, logistic=False, lowess=False, robust=False, logx=False, x_partial=None, y_partial=None, truncate=False, x_jitter=None, y_jitter=None, scatter_kws=None, line_kws=None): # Reduce the dataframe to only needed columns need_cols = [x, y, hue, col, row, units, x_partial, y_partial] cols = np.unique([a for a in need_cols if a is not None]).tolist() data = data[cols] # Initialize the grid facets = FacetGrid(data, row, col, hue, palette=palette, row_order=row_order, col_order=col_order, hue_order=hue_order, size=size, aspect=aspect, col_wrap=col_wrap, sharex=sharex, sharey=sharey, legend_out=legend_out) # Add the markers here as FacetGrid has figured out how many levels of the # hue variable are needed and we don't want to duplicate that process if facets.hue_names is None: n_markers = 1 else: n_markers = len(facets.hue_names) if not isinstance(markers, list): markers = [markers] * n_markers if len(markers) != n_markers: raise ValueError(("markers must be a singeton or a list of markers " "for each level of the hue variable")) facets.hue_kws = {"marker": markers} # Hack to set the x limits properly, which needs to happen here # because the extent of the regression estimate is determined # by the limits of the plot if sharex: for ax in facets.axes.flat: scatter = ax.scatter(data[x], np.ones(len(data)) * data[y].mean()) scatter.remove() # Draw the regression plot on each facet regplot_kws = dict( x_estimator=x_estimator, x_bins=x_bins, x_ci=x_ci, scatter=scatter, fit_reg=fit_reg, ci=ci, n_boot=n_boot, units=units, order=order, logistic=logistic, lowess=lowess, robust=robust, logx=logx, x_partial=x_partial, y_partial=y_partial, truncate=truncate, x_jitter=x_jitter, y_jitter=y_jitter, scatter_kws=scatter_kws, line_kws=line_kws, ) facets.map_dataframe(regplot, x, y, **regplot_kws) # Add a legend if legend and (hue is not None) and (hue not in [col, row]): facets.add_legend() return facets lmplot.__doc__ = dedent("""\ Plot data and regression model fits across a FacetGrid. This function combines :func:`regplot` and :class:`FacetGrid`. It is intended as a convenient interface to fit regression models across conditional subsets of a dataset. When thinking about how to assign variables to different facets, a general rule is that it makes sense to use ``hue`` for the most important comparison, followed by ``col`` and ``row``. However, always think about your particular dataset and the goals of the visualization you are creating. {model_api} The parameters to this function span most of the options in :class:`FacetGrid`, although there may be occasional cases where you will want to use that class and :func:`regplot` directly. Parameters ---------- x, y : strings, optional Input variables; these should be column names in ``data``. {data} hue, col, row : strings Variables that define subsets of the data, which will be drawn on separate facets in the grid. See the ``*_order`` parameters to control the order of levels of this variable. {palette} {col_wrap} {size} {aspect} markers : matplotlib marker code or list of marker codes, optional Markers for the scatterplot. If a list, each marker in the list will be used for each level of the ``hue`` variable. {share_xy} {{hue,col,row}}_order : lists, optional Order for the levels of the faceting variables. By default, this will be the order that the levels appear in ``data`` or, if the variables are pandas categoricals, the category order. legend : bool, optional If ``True`` and there is a ``hue`` variable, add a legend. {legend_out} {x_estimator} {x_bins} {x_ci} {scatter} {fit_reg} {ci} {n_boot} {units} {order} {logistic} {lowess} {robust} {logx} {xy_partial} {truncate} {xy_jitter} {scatter_line_kws} See Also -------- regplot : Plot data and a conditional model fit. FacetGrid : Subplot grid for plotting conditional relationships. pairplot : Combine :func:`regplot` and :class:`PairGrid` (when used with ``kind="reg"``). Notes ----- {regplot_vs_lmplot} Examples -------- These examples focus on basic regression model plots to exhibit the various faceting options; see the :func:`regplot` docs for demonstrations of the other options for plotting the data and models. There are also other examples for how to manipulate plot using the returned object on the :class:`FacetGrid` docs. Plot a simple linear relationship between two variables: .. plot:: :context: close-figs >>> import seaborn as sns; sns.set(color_codes=True) >>> tips = sns.load_dataset("tips") >>> g = sns.lmplot(x="total_bill", y="tip", data=tips) Condition on a third variable and plot the levels in different colors: .. plot:: :context: close-figs >>> g = sns.lmplot(x="total_bill", y="tip", hue="smoker", data=tips) Use different markers as well as colors so the plot will reproduce to black-and-white more easily: .. plot:: :context: close-figs >>> g = sns.lmplot(x="total_bill", y="tip", hue="smoker", data=tips, ... markers=["o", "x"]) Use a different color palette: .. plot:: :context: close-figs >>> g = sns.lmplot(x="total_bill", y="tip", hue="smoker", data=tips, ... palette="Set1") Map ``hue`` levels to colors with a dictionary: .. plot:: :context: close-figs >>> g = sns.lmplot(x="total_bill", y="tip", hue="smoker", data=tips, ... palette=dict(Yes="g", No="m")) Plot the levels of the third variable across different columns: .. plot:: :context: close-figs >>> g = sns.lmplot(x="total_bill", y="tip", col="smoker", data=tips) Change the size and aspect ratio of the facets: .. plot:: :context: close-figs >>> g = sns.lmplot(x="size", y="total_bill", hue="day", col="day", ... data=tips, aspect=.4, x_jitter=.1) Wrap the levels of the column variable into multiple rows: .. plot:: :context: close-figs >>> g = sns.lmplot(x="total_bill", y="tip", col="day", hue="day", ... data=tips, col_wrap=2, size=3) Condition on two variables to make a full grid: .. plot:: :context: close-figs >>> g = sns.lmplot(x="total_bill", y="tip", row="sex", col="time", ... data=tips, size=3) Use methods on the returned :class:`FacetGrid` instance to further tweak the plot: .. plot:: :context: close-figs >>> g = sns.lmplot(x="total_bill", y="tip", row="sex", col="time", ... data=tips, size=3) >>> g = (g.set_axis_labels("Total bill (US Dollars)", "Tip") ... .set(xlim=(0, 60), ylim=(0, 12), ... xticks=[10, 30, 50], yticks=[2, 6, 10]) ... .fig.subplots_adjust(wspace=.02)) """).format(**_regression_docs) def regplot(x, y, data=None, x_estimator=None, x_bins=None, x_ci="ci", scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None, order=1, logistic=False, lowess=False, robust=False, logx=False, x_partial=None, y_partial=None, truncate=False, dropna=True, x_jitter=None, y_jitter=None, label=None, color=None, marker="o", scatter_kws=None, line_kws=None, ax=None): plotter = _RegressionPlotter(x, y, data, x_estimator, x_bins, x_ci, scatter, fit_reg, ci, n_boot, units, order, logistic, lowess, robust, logx, x_partial, y_partial, truncate, dropna, x_jitter, y_jitter, color, label) if ax is None: ax = plt.gca() scatter_kws = {} if scatter_kws is None else copy.copy(scatter_kws) scatter_kws["marker"] = marker line_kws = {} if line_kws is None else copy.copy(line_kws) plotter.plot(ax, scatter_kws, line_kws) return ax regplot.__doc__ = dedent("""\ Plot data and a linear regression model fit. {model_api} Parameters ---------- x, y: string, series, or vector array Input variables. If strings, these should correspond with column names in ``data``. When pandas objects are used, axes will be labeled with the series name. {data} {x_estimator} {x_bins} {x_ci} {scatter} {fit_reg} {ci} {n_boot} {units} {order} {logistic} {lowess} {robust} {logx} {xy_partial} {truncate} {xy_jitter} label : string Label to apply to ether the scatterplot or regression line (if ``scatter`` is ``False``) for use in a legend. color : matplotlib color Color to apply to all plot elements; will be superseded by colors passed in ``scatter_kws`` or ``line_kws``. marker : matplotlib marker code Marker to use for the scatterplot glyphs. {scatter_line_kws} ax : matplotlib Axes, optional Axes object to draw the plot onto, otherwise uses the current Axes. Returns ------- ax : matplotlib Axes The Axes object containing the plot. See Also -------- lmplot : Combine :func:`regplot` and :class:`FacetGrid` to plot multiple linear relationships in a dataset. jointplot : Combine :func:`regplot` and :class:`JointGrid` (when used with ``kind="reg"``). pairplot : Combine :func:`regplot` and :class:`PairGrid` (when used with ``kind="reg"``). residplot : Plot the residuals of a linear regression model. interactplot : Plot a two-way interaction between continuous variables Notes ----- {regplot_vs_lmplot} It's also easy to combine combine :func:`regplot` and :class:`JointGrid` or :class:`PairGrid` through the :func:`jointplot` and :func:`pairplot` functions, although these do not directly accept all of :func:`regplot`'s parameters. Examples -------- Plot the relationship between two variables in a DataFrame: .. plot:: :context: close-figs >>> import seaborn as sns; sns.set(color_codes=True) >>> tips = sns.load_dataset("tips") >>> ax = sns.regplot(x="total_bill", y="tip", data=tips) Plot with two variables defined as numpy arrays; use a different color: .. plot:: :context: close-figs >>> import numpy as np; np.random.seed(8) >>> mean, cov = [4, 6], [(1.5, .7), (.7, 1)] >>> x, y = np.random.multivariate_normal(mean, cov, 80).T >>> ax = sns.regplot(x=x, y=y, color="g") Plot with two variables defined as pandas Series; use a different marker: .. plot:: :context: close-figs >>> import pandas as pd >>> x, y = pd.Series(x, name="x_var"), pd.Series(y, name="y_var") >>> ax = sns.regplot(x=x, y=y, marker="+") Use a 68% confidence interval, which corresponds with the standard error of the estimate: .. plot:: :context: close-figs >>> ax = sns.regplot(x=x, y=y, ci=68) Plot with a discrete ``x`` variable and add some jitter: .. plot:: :context: close-figs >>> ax = sns.regplot(x="size", y="total_bill", data=tips, x_jitter=.1) Plot with a discrete ``x`` variable showing means and confidence intervals for unique values: .. plot:: :context: close-figs >>> ax = sns.regplot(x="size", y="total_bill", data=tips, ... x_estimator=np.mean) Plot with a continuous variable divided into discrete bins: .. plot:: :context: close-figs >>> ax = sns.regplot(x=x, y=y, x_bins=4) Fit a higher-order polynomial regression and truncate the model prediction: .. plot:: :context: close-figs >>> ans = sns.load_dataset("anscombe") >>> ax = sns.regplot(x="x", y="y", data=ans.loc[ans.dataset == "II"], ... scatter_kws={{"s": 80}}, ... order=2, ci=None, truncate=True) Fit a robust regression and don't plot a confidence interval: .. plot:: :context: close-figs >>> ax = sns.regplot(x="x", y="y", data=ans.loc[ans.dataset == "III"], ... scatter_kws={{"s": 80}}, ... robust=True, ci=None) Fit a logistic regression; jitter the y variable and use fewer bootstrap iterations: .. plot:: :context: close-figs >>> tips["big_tip"] = (tips.tip / tips.total_bill) > .175 >>> ax = sns.regplot(x="total_bill", y="big_tip", data=tips, ... logistic=True, n_boot=500, y_jitter=.03) Fit the regression model using log(x) and truncate the model prediction: .. plot:: :context: close-figs >>> ax = sns.regplot(x="size", y="total_bill", data=tips, ... x_estimator=np.mean, logx=True, truncate=True) """).format(**_regression_docs) def residplot(x, y, data=None, lowess=False, x_partial=None, y_partial=None, order=1, robust=False, dropna=True, label=None, color=None, scatter_kws=None, line_kws=None, ax=None): """Plot the residuals of a linear regression. This function will regress y on x (possibly as a robust or polynomial regression) and then draw a scatterplot of the residuals. You can optionally fit a lowess smoother to the residual plot, which can help in determining if there is structure to the residuals. Parameters ---------- x : vector or string Data or column name in `data` for the predictor variable. y : vector or string Data or column name in `data` for the response variable. data : DataFrame, optional DataFrame to use if `x` and `y` are column names. lowess : boolean, optional Fit a lowess smoother to the residual scatterplot. {x, y}_partial : matrix or string(s) , optional Matrix with same first dimension as `x`, or column name(s) in `data`. These variables are treated as confounding and are removed from the `x` or `y` variables before plotting. order : int, optional Order of the polynomial to fit when calculating the residuals. robust : boolean, optional Fit a robust linear regression when calculating the residuals. dropna : boolean, optional If True, ignore observations with missing data when fitting and plotting. label : string, optional Label that will be used in any plot legends. color : matplotlib color, optional Color to use for all elements of the plot. {scatter, line}_kws : dictionaries, optional Additional keyword arguments passed to scatter() and plot() for drawing the components of the plot. ax : matplotlib axis, optional Plot into this axis, otherwise grab the current axis or make a new one if not existing. Returns ------- ax: matplotlib axes Axes with the regression plot. See Also -------- regplot : Plot a simple linear regression model. jointplot (with kind="resid"): Draw a residplot with univariate marginal distrbutions. """ plotter = _RegressionPlotter(x, y, data, ci=None, order=order, robust=robust, x_partial=x_partial, y_partial=y_partial, dropna=dropna, color=color, label=label) if ax is None: ax = plt.gca() # Calculate the residual from a linear regression _, yhat, _ = plotter.fit_regression(grid=plotter.x) plotter.y = plotter.y - yhat # Set the regression option on the plotter if lowess: plotter.lowess = True else: plotter.fit_reg = False # Plot a horizontal line at 0 ax.axhline(0, ls=":", c=".2") # Draw the scatterplot scatter_kws = {} if scatter_kws is None else scatter_kws line_kws = {} if line_kws is None else line_kws plotter.plot(ax, scatter_kws, line_kws) return ax def coefplot(formula, data, groupby=None, intercept=False, ci=95, palette="husl"): """Plot the coefficients from a linear model. Parameters ---------- formula : string patsy formula for ols model data : dataframe data for the plot; formula terms must appear in columns groupby : grouping object, optional object to group data with to fit conditional models intercept : bool, optional if False, strips the intercept term before plotting ci : float, optional size of confidence intervals palette : seaborn color palette, optional palette for the horizonal plots """ if not _has_statsmodels: raise ImportError("The `coefplot` function requires statsmodels") import statsmodels.formula.api as sf alpha = 1 - ci / 100 if groupby is None: coefs = sf.ols(formula, data).fit().params cis = sf.ols(formula, data).fit().conf_int(alpha) else: grouped = data.groupby(groupby) coefs = grouped.apply(lambda d: sf.ols(formula, d).fit().params).T cis = grouped.apply(lambda d: sf.ols(formula, d).fit().conf_int(alpha)) # Possibly ignore the intercept if not intercept: coefs = coefs.ix[1:] n_terms = len(coefs) # Plot seperately depending on groupby w, h = mpl.rcParams["figure.figsize"] hsize = lambda n: n * (h / 2) wsize = lambda n: n * (w / (4 * (n / 5))) if groupby is None: colors = itertools.cycle(color_palette(palette, n_terms)) f, ax = plt.subplots(1, 1, figsize=(wsize(n_terms), hsize(1))) for i, term in enumerate(coefs.index): color = next(colors) low, high = cis.ix[term] ax.plot([i, i], [low, high], c=color, solid_capstyle="round", lw=2.5) ax.plot(i, coefs.ix[term], "o", c=color, ms=8) ax.set_xlim(-.5, n_terms - .5) ax.axhline(0, ls="--", c="dimgray") ax.set_xticks(range(n_terms)) ax.set_xticklabels(coefs.index) else: n_groups = len(coefs.columns) f, axes = plt.subplots(n_terms, 1, sharex=True, figsize=(wsize(n_groups), hsize(n_terms))) if n_terms == 1: axes = [axes] colors = itertools.cycle(color_palette(palette, n_groups)) for ax, term in zip(axes, coefs.index): for i, group in enumerate(coefs.columns): color = next(colors) low, high = cis.ix[(group, term)] ax.plot([i, i], [low, high], c=color, solid_capstyle="round", lw=2.5) ax.plot(i, coefs.loc[term, group], "o", c=color, ms=8) ax.set_xlim(-.5, n_groups - .5) ax.axhline(0, ls="--", c="dimgray") ax.set_title(term) ax.set_xlabel(groupby) ax.set_xticks(range(n_groups)) ax.set_xticklabels(coefs.columns) def interactplot(x1, x2, y, data=None, filled=False, cmap="RdBu_r", colorbar=True, levels=30, logistic=False, contour_kws=None, scatter_kws=None, ax=None, **kwargs): """Visualize a continuous two-way interaction with a contour plot. Parameters ---------- x1, x2, y, strings or array-like Either the two independent variables and the dependent variable, or keys to extract them from `data` data : DataFrame Pandas DataFrame with the data in the columns. filled : bool Whether to plot with filled or unfilled contours cmap : matplotlib colormap Colormap to represent yhat in the countour plot. colorbar : bool Whether to draw the colorbar for interpreting the color values. levels : int or sequence Number or position of contour plot levels. logistic : bool Fit a logistic regression model instead of linear regression. contour_kws : dictionary Keyword arguments for contour[f](). scatter_kws : dictionary Keyword arguments for plot(). ax : matplotlib axis Axis to draw plot in. Returns ------- ax : Matplotlib axis Axis with the contour plot. """ if not _has_statsmodels: raise ImportError("The `interactplot` function requires statsmodels") from statsmodels.regression.linear_model import OLS from statsmodels.genmod.generalized_linear_model import GLM from statsmodels.genmod.families import Binomial # Handle the form of the data if data is not None: x1 = data[x1] x2 = data[x2] y = data[y] if hasattr(x1, "name"): xlabel = x1.name else: xlabel = None if hasattr(x2, "name"): ylabel = x2.name else: ylabel = None if hasattr(y, "name"): clabel = y.name else: clabel = None x1 = np.asarray(x1) x2 = np.asarray(x2) y = np.asarray(y) # Initialize the scatter keyword dictionary if scatter_kws is None: scatter_kws = {} if not ("color" in scatter_kws or "c" in scatter_kws): scatter_kws["color"] = "#222222" if "alpha" not in scatter_kws: scatter_kws["alpha"] = 0.75 # Intialize the contour keyword dictionary if contour_kws is None: contour_kws = {} # Initialize the axis if ax is None: ax = plt.gca() # Plot once to let matplotlib sort out the axis limits ax.plot(x1, x2, "o", **scatter_kws) # Find the plot limits x1min, x1max = ax.get_xlim() x2min, x2max = ax.get_ylim() # Make the grid for the contour plot x1_points = np.linspace(x1min, x1max, 100) x2_points = np.linspace(x2min, x2max, 100) xx1, xx2 = np.meshgrid(x1_points, x2_points) # Fit the model with an interaction X = np.c_[np.ones(x1.size), x1, x2, x1 * x2] if logistic: lm = GLM(y, X, family=Binomial()).fit() else: lm = OLS(y, X).fit() # Evaluate the model on the grid eval = np.vectorize(lambda x1_, x2_: lm.predict([1, x1_, x2_, x1_ * x2_])) yhat = eval(xx1, xx2) # Default color limits put the midpoint at mean(y) y_bar = y.mean() c_min = min(np.percentile(y, 2), yhat.min()) c_max = max(np.percentile(y, 98), yhat.max()) delta = max(c_max - y_bar, y_bar - c_min) c_min, cmax = y_bar - delta, y_bar + delta contour_kws.setdefault("vmin", c_min) contour_kws.setdefault("vmax", c_max) # Draw the contour plot func_name = "contourf" if filled else "contour" contour = getattr(ax, func_name) c = contour(xx1, xx2, yhat, levels, cmap=cmap, **contour_kws) # Draw the scatter again so it's visible ax.plot(x1, x2, "o", **scatter_kws) # Draw a colorbar, maybe if colorbar: bar = plt.colorbar(c) # Label the axes if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) if clabel is not None and colorbar: clabel = "P(%s)" % clabel if logistic else clabel bar.set_label(clabel, labelpad=15, rotation=270) return ax def corrplot(data, names=None, annot=True, sig_stars=True, sig_tail="both", sig_corr=True, cmap=None, cmap_range=None, cbar=True, diag_names=True, method=None, ax=None, **kwargs): """Plot a correlation matrix with colormap and r values. NOTE: This function is deprecated in favor of :func:`heatmap` and will be removed in a forthcoming release. Parameters ---------- data : Dataframe or nobs x nvars array Rectangular input data with variabes in the columns. names : sequence of strings Names to associate with variables if `data` is not a DataFrame. annot : bool Whether to annotate the upper triangle with correlation coefficients. sig_stars : bool If True, get significance with permutation test and denote with stars. sig_tail : both | upper | lower Direction for significance test. Also controls the default colorbar. sig_corr : bool If True, use FWE-corrected p values for the sig stars. cmap : colormap Colormap name as string or colormap object. cmap_range : None, "full", (low, high) Either truncate colormap at (-max(abs(r)), max(abs(r))), use the full range (-1, 1), or specify (min, max) values for the colormap. cbar : bool If true, plot the colorbar legend. method: None (pearson) | kendall | spearman Correlation method to compute pairwise correlations. Methods other than the default pearson correlation will not have a significance computed. ax : matplotlib axis Axis to draw plot in. kwargs : other keyword arguments Passed to ax.matshow() Returns ------- ax : matplotlib axis Axis object with plot. """ warnings.warn(("The `corrplot` function has been deprecated in favor " "of `heatmap` and will be removed in a forthcoming " "release. Please update your code.")) if not isinstance(data, pd.DataFrame): if names is None: names = ["var_%d" % i for i in range(data.shape[1])] data = pd.DataFrame(data, columns=names, dtype=np.float) # Calculate the correlation matrix of the dataframe if method is None: corrmat = data.corr() else: corrmat = data.corr(method=method) # Pandas will drop non-numeric columns; let's keep track of that operation names = corrmat.columns data = data[names] # Get p values with a permutation test if annot and sig_stars and method is None: p_mat = algo.randomize_corrmat(data.values.T, sig_tail, sig_corr) else: p_mat = None # Sort out the color range if cmap_range is None: triu = np.triu_indices(len(corrmat), 1) vmax = min(1, np.max(np.abs(corrmat.values[triu])) * 1.15) vmin = -vmax if sig_tail == "both": cmap_range = vmin, vmax elif sig_tail == "upper": cmap_range = 0, vmax elif sig_tail == "lower": cmap_range = vmin, 0 elif cmap_range == "full": cmap_range = (-1, 1) # Find a colormapping, somewhat intelligently if cmap is None: if min(cmap_range) >= 0: cmap = "OrRd" elif max(cmap_range) <= 0: cmap = "PuBu_r" else: cmap = "coolwarm" if cmap == "jet": # Paternalism raise ValueError("Never use the 'jet' colormap!") # Plot using the more general symmatplot function ax = symmatplot(corrmat, p_mat, names, cmap, cmap_range, cbar, annot, diag_names, ax, **kwargs) return ax def symmatplot(mat, p_mat=None, names=None, cmap="Greys", cmap_range=None, cbar=True, annot=True, diag_names=True, ax=None, **kwargs): """Plot a symmetric matrix with colormap and statistic values. NOTE: This function is deprecated in favor of :func:`heatmap` and will be removed in a forthcoming release. """ warnings.warn(("The `symmatplot` function has been deprecated in favor " "of `heatmap` and will be removed in a forthcoming " "release. Please update your code.")) if ax is None: ax = plt.gca() nvars = len(mat) if isinstance(mat, pd.DataFrame): plotmat = mat.values.copy() mat = mat.values else: plotmat = mat.copy() plotmat[np.triu_indices(nvars)] = np.nan if cmap_range is None: vmax = np.nanmax(plotmat) * 1.15 vmin = np.nanmin(plotmat) * 1.15 elif len(cmap_range) == 2: vmin, vmax = cmap_range else: raise ValueError("cmap_range argument not understood") mat_img = ax.matshow(plotmat, cmap=cmap, vmin=vmin, vmax=vmax, **kwargs) if cbar: plt.colorbar(mat_img, shrink=.75) if p_mat is None: p_mat = np.ones((nvars, nvars)) if annot: for i, j in zip(*np.triu_indices(nvars, 1)): val = mat[i, j] stars = utils.sig_stars(p_mat[i, j]) ax.text(j, i, "\n%.2g\n%s" % (val, stars), fontdict=dict(ha="center", va="center")) else: fill = np.ones_like(plotmat) fill[np.tril_indices_from(fill, -1)] = np.nan ax.matshow(fill, cmap="Greys", vmin=0, vmax=0, zorder=2) if names is None: names = ["var%d" % i for i in range(nvars)] if diag_names: for i, name in enumerate(names): ax.text(i, i, name, fontdict=dict(ha="center", va="center", weight="bold", rotation=45)) ax.set_xticklabels(()) ax.set_yticklabels(()) else: ax.xaxis.set_ticks_position("bottom") xnames = names if annot else names[:-1] ax.set_xticklabels(xnames, rotation=90) ynames = names if annot else names[1:] ax.set_yticklabels(ynames) minor_ticks = np.linspace(-.5, nvars - 1.5, nvars) ax.set_xticks(minor_ticks, True) ax.set_yticks(minor_ticks, True) major_ticks = np.linspace(0, nvars - 1, nvars) xticks = major_ticks if annot else major_ticks[:-1] ax.set_xticks(xticks) yticks = major_ticks if annot else major_ticks[1:] ax.set_yticks(yticks) ax.grid(False, which="major") ax.grid(True, which="minor", linestyle="-") return ax def pairplot(data, hue=None, hue_order=None, palette=None, vars=None, x_vars=None, y_vars=None, kind="scatter", diag_kind="hist", markers=None, size=2.5, aspect=1, dropna=True, plot_kws=None, diag_kws=None, grid_kws=None): """Plot pairwise relationships in a dataset. By default, this function will create a grid of Axes such that each variable in ``data`` will by shared in the y-axis across a single row and in the x-axis across a single column. The diagonal Axes are treated differently, drawing a plot to show the univariate distribution of the data for the variable in that column. It is also possible to show a subset of variables or plot different variables on the rows and columns. This is a high-level interface for :class:`PairGrid` that is intended to make it easy to draw a few common styles. You should use :class`PairGrid` directly if you need more flexibility. Parameters ---------- data : DataFrame Tidy (long-form) dataframe where each column is a variable and each row is an observation. hue : string (variable name), optional Variable in ``data`` to map plot aspects to different colors. hue_order : list of strings Order for the levels of the hue variable in the palette palette : dict or seaborn color palette Set of colors for mapping the ``hue`` variable. If a dict, keys should be values in the ``hue`` variable. vars : list of variable names, optional Variables within ``data`` to use, otherwise use every column with a numeric datatype. {x, y}_vars : lists of variable names, optional Variables within ``data`` to use separately for the rows and columns of the figure; i.e. to make a non-square plot. kind : {'scatter', 'reg'}, optional Kind of plot for the non-identity relationships. diag_kind : {'hist', 'kde'}, optional Kind of plot for the diagonal subplots. markers : single matplotlib marker code or list, optional Either the marker to use for all datapoints or a list of markers with a length the same as the number of levels in the hue variable so that differently colored points will also have different scatterplot markers. size : scalar, optional Height (in inches) of each facet. aspect : scalar, optional Aspect * size gives the width (in inches) of each facet. dropna : boolean, optional Drop missing values from the data before plotting. {plot, diag, grid}_kws : dicts, optional Dictionaries of keyword arguments. Returns ------- grid : PairGrid Returns the underlying ``PairGrid`` instance for further tweaking. See Also -------- PairGrid : Subplot grid for more flexible plotting of pairwise relationships. Examples -------- Draw scatterplots for joint relationships and histograms for univariate distributions: .. plot:: :context: close-figs >>> import seaborn as sns; sns.set(style="ticks", color_codes=True) >>> iris = sns.load_dataset("iris") >>> g = sns.pairplot(iris) Show different levels of a categorical variable by the color of plot elements: .. plot:: :context: close-figs >>> g = sns.pairplot(iris, hue="species") Use a different color palette: .. plot:: :context: close-figs >>> g = sns.pairplot(iris, hue="species", palette="husl") Use different markers for each level of the hue variable: .. plot:: :context: close-figs >>> g = sns.pairplot(iris, hue="species", markers=["o", "s", "D"]) Plot a subset of variables: .. plot:: :context: close-figs >>> g = sns.pairplot(iris, vars=["sepal_width", "sepal_length"]) Draw larger plots: .. plot:: :context: close-figs >>> g = sns.pairplot(iris, size=3, ... vars=["sepal_width", "sepal_length"]) Plot different variables in the rows and columns: .. plot:: :context: close-figs >>> g = sns.pairplot(iris, ... x_vars=["sepal_width", "sepal_length"], ... y_vars=["petal_width", "petal_length"]) Use kernel density estimates for univariate plots: .. plot:: :context: close-figs >>> g = sns.pairplot(iris, diag_kind="kde") Fit linear regression models to the scatter plots: .. plot:: :context: close-figs >>> g = sns.pairplot(iris, kind="reg") Pass keyword arguments down to the underlying functions (it may be easier to use :class:`PairGrid` directly): .. plot:: :context: close-figs >>> g = sns.pairplot(iris, diag_kind="kde", markers="+", ... plot_kws=dict(s=50, edgecolor="b", linewidth=1), ... diag_kws=dict(shade=True)) """ if plot_kws is None: plot_kws = {} if diag_kws is None: diag_kws = {} if grid_kws is None: grid_kws = {} # Set up the PairGrid diag_sharey = diag_kind == "hist" grid = PairGrid(data, vars=vars, x_vars=x_vars, y_vars=y_vars, hue=hue, hue_order=hue_order, palette=palette, diag_sharey=diag_sharey, size=size, aspect=aspect, dropna=dropna, **grid_kws) # Add the markers here as PairGrid has figured out how many levels of the # hue variable are needed and we don't want to duplicate that process if markers is not None: if grid.hue_names is None: n_markers = 1 else: n_markers = len(grid.hue_names) if not isinstance(markers, list): markers = [markers] * n_markers if len(markers) != n_markers: raise ValueError(("markers must be a singeton or a list of markers" " for each level of the hue variable")) grid.hue_kws = {"marker": markers} # Maybe plot on the diagonal if grid.square_grid: if diag_kind == "hist": grid.map_diag(plt.hist, **diag_kws) elif diag_kind == "kde": diag_kws["legend"] = False grid.map_diag(kdeplot, **diag_kws) # Maybe plot on the off-diagonals if grid.square_grid and diag_kind is not None: plotter = grid.map_offdiag else: plotter = grid.map if kind == "scatter": plot_kws.setdefault("edgecolor", "white") plotter(plt.scatter, **plot_kws) elif kind == "reg": plotter(regplot, **plot_kws) # Add a legend if hue is not None: grid.add_legend() return grid
bsd-3-clause
pombo-lab/gamtools
lib/gamtools/permutation.py
1
5968
""" ====================== The permutation module ====================== The permutation module contains functions for randomly permuting GAM :ref:`segregation tables <segregation_table>`, which can be a useful way of generating random backgrounds for comparison with real datasets. """ import numpy as np import pandas as pd from . import segregation def permute_by_offset(sample_segregation, offset): """Circularly permute a single column of a segregation table. This function takes one single column from a :ref:`segregation_table` (i.e. one sample, or one NP) and circularly permutes it by "offset" bins. :param sample_segregation: Input column of a segregation table to permute. :param int offset: Number of bins to permute by. :returns: Returns a newly randomized :ref:`segregation_table` """ offset = offset % len(sample_segregation) # Moving each value in an array of length L right by x bins is the same # as splitting the data at bin (L - x) and swapping the two halves corrected_offset = len(sample_segregation) - offset new_start = sample_segregation.iloc[corrected_offset:] new_end = sample_segregation.iloc[:corrected_offset] new_col = pd.concat([new_start, new_end]).values return new_col def permute_by_chromosome(sample_segregation, offset): """Separately permute each chromosome from a single column of a segregation table. This function takes one single column from a :ref:`segregation_table` (i.e. one sample, or one NP) and circularly permutes each chromosome separately by "offset" bins. :param sample_segregation: Input column of a segregation table to permute. :param int offset: Number of bins to permute by. :returns: Returns a newly randomized :ref:`segregation_table` """ permuted_chromosomes = [] chrom_index = sample_segregation.index.get_level_values(0) for chrom in chrom_index.unique(): original_chromosome = sample_segregation[chrom_index == chrom] permuted_chromosome = permute_by_offset(original_chromosome, offset) permuted_chromosomes.append(permuted_chromosome) permuted_segregation = np.concatenate(permuted_chromosomes) return permuted_segregation def permute_segregation(input_segregation): """Circularly permute each column of a segregation table. This function takes a table of GAM segregation data (see :ref:`segregation_table`) and circularly permutes each column by a random amount. For example, if the column contains [ 0, 0, 0, 1, 1, 1 ] then a circular permutation by one unit would give: [ 1, 0, 0, 0, 1, 1 ]. This can be useful because it preserves the scaling features of a GAM matrix (i.e. windows which lie next to each other are still more likely to co-segregate in the same tube) but it randomizes long-range interactions. Another feature of "real" GAM data is that it contains unmappable regions with no signal. In order to preserve this feature, genomic regions which are never detected in the input :ref:`segregation_table` are not subjected to permutation. :param input_segregation: Input segregation table to permute. :type input_segregation: :ref:`segregation_table` :returns: Returns a newly randomized :ref:`segregation_table` """ # Only permute positions that were mapped at least once # This means we preserve the locations of centromeres etc, # but requires that the input data has a large number of # columns mappable = input_segregation.sum(axis=1).astype(bool) no_windows, no_samples = input_segregation[mappable].shape # Make a copy of the original data permutation = input_segregation.copy() # Loop over columns for i in range(no_samples): # Choose a random position to break the segregation in two, # Swap the two chunks around and write them to the copied df offset = np.random.randint(no_windows) new_col = permute_by_chromosome(input_segregation.iloc[mappable.values, i], offset) permutation.iloc[mappable.values, i] = new_col return permutation def permute_segregation_autosomal(input_segregation, autosomes=None): """Circularly permute each autosomal chromosome in a segregation table This function takes a table of GAM segregation data (see :ref:`segregation_table`) and circularly permutes each autosomal chromosome by a random amount. For each GAM sample, The last n values covering each chromosome are moved from the end of the chromosome to the beginning, where n is a random integer between 0 and the length of the chromosome. Separately permuting each chromosome preserves their individual detection frequencies, and avoids permuting genomic regions with very different detection frequencies (e.g. mitochondrial DNA and sex chromosomes) into one another. :param input_segregation: Input segregation table to permute. :type input_segregation: :ref:`segregation_table` :returns: Returns a newly randomized :ref:`segregation_table` """ # Sex chromosomes, unjoined contigs and mtDNA behave weirdly, # so don't permute them into the autosomal regions. autosomes = ['chr{0}'.format(c) for c in range(1, 20)] is_autosomal = input_segregation.index.get_level_values(0).isin(autosomes) segregation_to_permute = input_segregation.loc[is_autosomal] permuted_segregation = permute_segregation(segregation_to_permute) return permuted_segregation def permute_segregation_from_args(args): """Extract parameters from an argparse namespace object and pass them to permute_segregation_autosomal. """ input_segregation = segregation.open_segregation(args.segregation_file) permuted_segregation = permute_segregation_autosomal(input_segregation) permuted_segregation.to_csv( args.output_file, sep='\t', header=True, index=True)
apache-2.0
jniediek/mne-python
examples/decoding/plot_decoding_spatio_temporal_source.py
3
5973
""" ========================== Decoding source space data ========================== Decoding, a.k.a MVPA or supervised machine learning applied to MEG data in source space on the left cortical surface. Here f-test feature selection is employed to confine the classification to the potentially relevant features. The classifier then is trained to selected features of epochs in source space. """ # Author: Denis A. Engemann <[email protected]> # Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import mne import os import numpy as np from mne import io from mne.datasets import sample from mne.minimum_norm import apply_inverse_epochs, read_inverse_operator print(__doc__) data_path = sample.data_path() fname_fwd = data_path + 'MEG/sample/sample_audvis-meg-oct-6-fwd.fif' fname_evoked = data_path + '/MEG/sample/sample_audvis-ave.fif' subjects_dir = data_path + '/subjects' subject = os.environ['SUBJECT'] = subjects_dir + '/sample' os.environ['SUBJECTS_DIR'] = subjects_dir ############################################################################### # Set parameters raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' fname_cov = data_path + '/MEG/sample/sample_audvis-cov.fif' label_names = 'Aud-rh', 'Vis-rh' fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif' tmin, tmax = -0.2, 0.5 event_id = dict(aud_r=2, vis_r=4) # load contra-lateral conditions # Setup for reading the raw data raw = io.read_raw_fif(raw_fname, preload=True) raw.filter(2, None, method='iir') # replace baselining with high-pass events = mne.read_events(event_fname) # Set up pick list: MEG - bad channels (modify to your needs) raw.info['bads'] += ['MEG 2443'] # mark bads picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=True, eog=True, exclude='bads') # Read epochs epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks, baseline=None, preload=True, reject=dict(grad=4000e-13, eog=150e-6), decim=5) # decimate to save memory and increase speed epochs.equalize_event_counts(list(event_id.keys()), 'mintime', copy=False) epochs_list = [epochs[k] for k in event_id] # Compute inverse solution snr = 3.0 lambda2 = 1.0 / snr ** 2 method = "dSPM" # use dSPM method (could also be MNE or sLORETA) n_times = len(epochs.times) n_vertices = 3732 n_epochs = len(epochs.events) # Load data and compute inverse solution and stcs for each epoch. noise_cov = mne.read_cov(fname_cov) inverse_operator = read_inverse_operator(fname_inv) X = np.zeros([n_epochs, n_vertices, n_times]) # to save memory, we'll load and transform our epochs step by step. for condition_count, ep in zip([0, n_epochs / 2], epochs_list): stcs = apply_inverse_epochs(ep, inverse_operator, lambda2, method, pick_ori="normal", # saves us memory return_generator=True) for jj, stc in enumerate(stcs): X[condition_count + jj] = stc.lh_data ############################################################################### # Decoding in sensor space using a linear SVM # Make arrays X and y such that : # X is 3d with X.shape[0] is the total number of epochs to classify # y is filled with integers coding for the class to predict # We must have X.shape[0] equal to y.shape[0] # we know the first half belongs to the first class, the second one y = np.repeat([0, 1], len(X) / 2) # belongs to the second class X = X.reshape(n_epochs, n_vertices * n_times) # we have to normalize the data before supplying them to our classifier X -= X.mean(axis=0) X /= X.std(axis=0) # prepare classifier from sklearn.svm import SVC # noqa from sklearn.cross_validation import ShuffleSplit # noqa # Define a monte-carlo cross-validation generator (reduce variance): n_splits = 10 clf = SVC(C=1, kernel='linear') cv = ShuffleSplit(len(X), n_splits, test_size=0.2) # setup feature selection and classification pipeline from sklearn.feature_selection import SelectKBest, f_classif # noqa from sklearn.pipeline import Pipeline # noqa # we will use an ANOVA f-test to preselect relevant spatio-temporal units feature_selection = SelectKBest(f_classif, k=500) # take the best 500 # to make life easier we will create a pipeline object anova_svc = Pipeline([('anova', feature_selection), ('svc', clf)]) # initialize score and feature weights result arrays scores = np.zeros(n_splits) feature_weights = np.zeros([n_vertices, n_times]) # hold on, this may take a moment for ii, (train, test) in enumerate(cv): anova_svc.fit(X[train], y[train]) y_pred = anova_svc.predict(X[test]) y_test = y[test] scores[ii] = np.sum(y_pred == y_test) / float(len(y_test)) feature_weights += feature_selection.inverse_transform(clf.coef_) \ .reshape(n_vertices, n_times) print('Average prediction accuracy: %0.3f | standard deviation: %0.3f' % (scores.mean(), scores.std())) # prepare feature weights for visualization feature_weights /= (ii + 1) # create average weights # create mask to avoid division error feature_weights = np.ma.masked_array(feature_weights, feature_weights == 0) # normalize scores for visualization purposes feature_weights /= feature_weights.std(axis=1)[:, None] feature_weights -= feature_weights.mean(axis=1)[:, None] # unmask, take absolute values, emulate f-value scale feature_weights = np.abs(feature_weights.data) * 10 vertices = [stc.lh_vertno, np.array([], int)] # empty array for right hemi stc_feat = mne.SourceEstimate(feature_weights, vertices=vertices, tmin=stc.tmin, tstep=stc.tstep, subject='sample') brain = stc_feat.plot(hemi='split', views=['lat', 'med'], transparent=True, initial_time=0.1, time_unit='s')
bsd-3-clause
amolkahat/pandas
pandas/tests/indexing/test_categorical.py
5
26870
# -*- coding: utf-8 -*- import pytest import pandas as pd import pandas.compat as compat import numpy as np from pandas import (Series, DataFrame, Timestamp, Categorical, CategoricalIndex, Interval, Index) from pandas.util.testing import assert_series_equal, assert_frame_equal from pandas.util import testing as tm from pandas.core.dtypes.common import is_categorical_dtype from pandas.api.types import CategoricalDtype as CDT from pandas.core.dtypes.dtypes import CategoricalDtype class TestCategoricalIndex(object): def setup_method(self, method): self.df = DataFrame({'A': np.arange(6, dtype='int64'), 'B': Series(list('aabbca')).astype( CDT(list('cab')))}).set_index('B') self.df2 = DataFrame({'A': np.arange(6, dtype='int64'), 'B': Series(list('aabbca')).astype( CDT(list('cabe')))}).set_index('B') self.df3 = DataFrame({'A': np.arange(6, dtype='int64'), 'B': (Series([1, 1, 2, 1, 3, 2]) .astype(CDT([3, 2, 1], ordered=True))) }).set_index('B') self.df4 = DataFrame({'A': np.arange(6, dtype='int64'), 'B': (Series([1, 1, 2, 1, 3, 2]) .astype(CDT([3, 2, 1], ordered=False))) }).set_index('B') def test_loc_scalar(self): result = self.df.loc['a'] expected = (DataFrame({'A': [0, 1, 5], 'B': (Series(list('aaa')) .astype(CDT(list('cab'))))}) .set_index('B')) assert_frame_equal(result, expected) df = self.df.copy() df.loc['a'] = 20 expected = (DataFrame({'A': [20, 20, 2, 3, 4, 20], 'B': (Series(list('aabbca')) .astype(CDT(list('cab'))))}) .set_index('B')) assert_frame_equal(df, expected) # value not in the categories pytest.raises(KeyError, lambda: df.loc['d']) def f(): df.loc['d'] = 10 pytest.raises(TypeError, f) def f(): df.loc['d', 'A'] = 10 pytest.raises(TypeError, f) def f(): df.loc['d', 'C'] = 10 pytest.raises(TypeError, f) def test_getitem_scalar(self): cats = Categorical([Timestamp('12-31-1999'), Timestamp('12-31-2000')]) s = Series([1, 2], index=cats) expected = s.iloc[0] result = s[cats[0]] assert result == expected def test_slicing_directly(self): cat = Categorical(["a", "b", "c", "d", "a", "b", "c"]) sliced = cat[3] assert sliced == "d" sliced = cat[3:5] expected = Categorical(["d", "a"], categories=['a', 'b', 'c', 'd']) tm.assert_numpy_array_equal(sliced._codes, expected._codes) tm.assert_index_equal(sliced.categories, expected.categories) def test_slicing(self): cat = Series(Categorical([1, 2, 3, 4])) reversed = cat[::-1] exp = np.array([4, 3, 2, 1], dtype=np.int64) tm.assert_numpy_array_equal(reversed.__array__(), exp) df = DataFrame({'value': (np.arange(100) + 1).astype('int64')}) df['D'] = pd.cut(df.value, bins=[0, 25, 50, 75, 100]) expected = Series([11, Interval(0, 25)], index=['value', 'D'], name=10) result = df.iloc[10] tm.assert_series_equal(result, expected) expected = DataFrame({'value': np.arange(11, 21).astype('int64')}, index=np.arange(10, 20).astype('int64')) expected['D'] = pd.cut(expected.value, bins=[0, 25, 50, 75, 100]) result = df.iloc[10:20] tm.assert_frame_equal(result, expected) expected = Series([9, Interval(0, 25)], index=['value', 'D'], name=8) result = df.loc[8] tm.assert_series_equal(result, expected) def test_slicing_and_getting_ops(self): # systematically test the slicing operations: # for all slicing ops: # - returning a dataframe # - returning a column # - returning a row # - returning a single value cats = Categorical( ["a", "c", "b", "c", "c", "c", "c"], categories=["a", "b", "c"]) idx = Index(["h", "i", "j", "k", "l", "m", "n"]) values = [1, 2, 3, 4, 5, 6, 7] df = DataFrame({"cats": cats, "values": values}, index=idx) # the expected values cats2 = Categorical(["b", "c"], categories=["a", "b", "c"]) idx2 = Index(["j", "k"]) values2 = [3, 4] # 2:4,: | "j":"k",: exp_df = DataFrame({"cats": cats2, "values": values2}, index=idx2) # :,"cats" | :,0 exp_col = Series(cats, index=idx, name='cats') # "j",: | 2,: exp_row = Series(["b", 3], index=["cats", "values"], dtype="object", name="j") # "j","cats | 2,0 exp_val = "b" # iloc # frame res_df = df.iloc[2:4, :] tm.assert_frame_equal(res_df, exp_df) assert is_categorical_dtype(res_df["cats"]) # row res_row = df.iloc[2, :] tm.assert_series_equal(res_row, exp_row) assert isinstance(res_row["cats"], compat.string_types) # col res_col = df.iloc[:, 0] tm.assert_series_equal(res_col, exp_col) assert is_categorical_dtype(res_col) # single value res_val = df.iloc[2, 0] assert res_val == exp_val # loc # frame res_df = df.loc["j":"k", :] tm.assert_frame_equal(res_df, exp_df) assert is_categorical_dtype(res_df["cats"]) # row res_row = df.loc["j", :] tm.assert_series_equal(res_row, exp_row) assert isinstance(res_row["cats"], compat.string_types) # col res_col = df.loc[:, "cats"] tm.assert_series_equal(res_col, exp_col) assert is_categorical_dtype(res_col) # single value res_val = df.loc["j", "cats"] assert res_val == exp_val # ix # frame # res_df = df.loc["j":"k",[0,1]] # doesn't work? res_df = df.loc["j":"k", :] tm.assert_frame_equal(res_df, exp_df) assert is_categorical_dtype(res_df["cats"]) # row res_row = df.loc["j", :] tm.assert_series_equal(res_row, exp_row) assert isinstance(res_row["cats"], compat.string_types) # col res_col = df.loc[:, "cats"] tm.assert_series_equal(res_col, exp_col) assert is_categorical_dtype(res_col) # single value res_val = df.loc["j", df.columns[0]] assert res_val == exp_val # iat res_val = df.iat[2, 0] assert res_val == exp_val # at res_val = df.at["j", "cats"] assert res_val == exp_val # fancy indexing exp_fancy = df.iloc[[2]] res_fancy = df[df["cats"] == "b"] tm.assert_frame_equal(res_fancy, exp_fancy) res_fancy = df[df["values"] == 3] tm.assert_frame_equal(res_fancy, exp_fancy) # get_value res_val = df.at["j", "cats"] assert res_val == exp_val # i : int, slice, or sequence of integers res_row = df.iloc[2] tm.assert_series_equal(res_row, exp_row) assert isinstance(res_row["cats"], compat.string_types) res_df = df.iloc[slice(2, 4)] tm.assert_frame_equal(res_df, exp_df) assert is_categorical_dtype(res_df["cats"]) res_df = df.iloc[[2, 3]] tm.assert_frame_equal(res_df, exp_df) assert is_categorical_dtype(res_df["cats"]) res_col = df.iloc[:, 0] tm.assert_series_equal(res_col, exp_col) assert is_categorical_dtype(res_col) res_df = df.iloc[:, slice(0, 2)] tm.assert_frame_equal(res_df, df) assert is_categorical_dtype(res_df["cats"]) res_df = df.iloc[:, [0, 1]] tm.assert_frame_equal(res_df, df) assert is_categorical_dtype(res_df["cats"]) def test_slicing_doc_examples(self): # GH 7918 cats = Categorical(["a", "b", "b", "b", "c", "c", "c"], categories=["a", "b", "c"]) idx = Index(["h", "i", "j", "k", "l", "m", "n", ]) values = [1, 2, 2, 2, 3, 4, 5] df = DataFrame({"cats": cats, "values": values}, index=idx) result = df.iloc[2:4, :] expected = DataFrame( {"cats": Categorical(['b', 'b'], categories=['a', 'b', 'c']), "values": [2, 2]}, index=['j', 'k']) tm.assert_frame_equal(result, expected) result = df.iloc[2:4, :].dtypes expected = Series(['category', 'int64'], ['cats', 'values']) tm.assert_series_equal(result, expected) result = df.loc["h":"j", "cats"] expected = Series(Categorical(['a', 'b', 'b'], categories=['a', 'b', 'c']), index=['h', 'i', 'j'], name='cats') tm.assert_series_equal(result, expected) result = df.loc["h":"j", df.columns[0:1]] expected = DataFrame({'cats': Categorical(['a', 'b', 'b'], categories=['a', 'b', 'c'])}, index=['h', 'i', 'j']) tm.assert_frame_equal(result, expected) def test_getitem_category_type(self): # GH 14580 # test iloc() on Series with Categorical data s = Series([1, 2, 3]).astype('category') # get slice result = s.iloc[0:2] expected = Series([1, 2]).astype(CategoricalDtype([1, 2, 3])) tm.assert_series_equal(result, expected) # get list of indexes result = s.iloc[[0, 1]] expected = Series([1, 2]).astype(CategoricalDtype([1, 2, 3])) tm.assert_series_equal(result, expected) # get boolean array result = s.iloc[[True, False, False]] expected = Series([1]).astype(CategoricalDtype([1, 2, 3])) tm.assert_series_equal(result, expected) def test_loc_listlike(self): # list of labels result = self.df.loc[['c', 'a']] expected = self.df.iloc[[4, 0, 1, 5]] assert_frame_equal(result, expected, check_index_type=True) result = self.df2.loc[['a', 'b', 'e']] exp_index = CategoricalIndex( list('aaabbe'), categories=list('cabe'), name='B') expected = DataFrame({'A': [0, 1, 5, 2, 3, np.nan]}, index=exp_index) assert_frame_equal(result, expected, check_index_type=True) # element in the categories but not in the values pytest.raises(KeyError, lambda: self.df2.loc['e']) # assign is ok df = self.df2.copy() df.loc['e'] = 20 result = df.loc[['a', 'b', 'e']] exp_index = CategoricalIndex( list('aaabbe'), categories=list('cabe'), name='B') expected = DataFrame({'A': [0, 1, 5, 2, 3, 20]}, index=exp_index) assert_frame_equal(result, expected) df = self.df2.copy() result = df.loc[['a', 'b', 'e']] exp_index = CategoricalIndex( list('aaabbe'), categories=list('cabe'), name='B') expected = DataFrame({'A': [0, 1, 5, 2, 3, np.nan]}, index=exp_index) assert_frame_equal(result, expected, check_index_type=True) # not all labels in the categories with pytest.raises(KeyError): self.df2.loc[['a', 'd']] def test_loc_listlike_dtypes(self): # GH 11586 # unique categories and codes index = CategoricalIndex(['a', 'b', 'c']) df = DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, index=index) # unique slice res = df.loc[['a', 'b']] exp_index = CategoricalIndex(['a', 'b'], categories=index.categories) exp = DataFrame({'A': [1, 2], 'B': [4, 5]}, index=exp_index) tm.assert_frame_equal(res, exp, check_index_type=True) # duplicated slice res = df.loc[['a', 'a', 'b']] exp_index = CategoricalIndex(['a', 'a', 'b'], categories=index.categories) exp = DataFrame({'A': [1, 1, 2], 'B': [4, 4, 5]}, index=exp_index) tm.assert_frame_equal(res, exp, check_index_type=True) with tm.assert_raises_regex( KeyError, 'a list-indexer must only include values that are ' 'in the categories'): df.loc[['a', 'x']] # duplicated categories and codes index = CategoricalIndex(['a', 'b', 'a']) df = DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, index=index) # unique slice res = df.loc[['a', 'b']] exp = DataFrame({'A': [1, 3, 2], 'B': [4, 6, 5]}, index=CategoricalIndex(['a', 'a', 'b'])) tm.assert_frame_equal(res, exp, check_index_type=True) # duplicated slice res = df.loc[['a', 'a', 'b']] exp = DataFrame( {'A': [1, 3, 1, 3, 2], 'B': [4, 6, 4, 6, 5 ]}, index=CategoricalIndex(['a', 'a', 'a', 'a', 'b'])) tm.assert_frame_equal(res, exp, check_index_type=True) with tm.assert_raises_regex( KeyError, 'a list-indexer must only include values ' 'that are in the categories'): df.loc[['a', 'x']] # contains unused category index = CategoricalIndex( ['a', 'b', 'a', 'c'], categories=list('abcde')) df = DataFrame({'A': [1, 2, 3, 4], 'B': [5, 6, 7, 8]}, index=index) res = df.loc[['a', 'b']] exp = DataFrame({'A': [1, 3, 2], 'B': [5, 7, 6]}, index=CategoricalIndex(['a', 'a', 'b'], categories=list('abcde'))) tm.assert_frame_equal(res, exp, check_index_type=True) res = df.loc[['a', 'e']] exp = DataFrame({'A': [1, 3, np.nan], 'B': [5, 7, np.nan]}, index=CategoricalIndex(['a', 'a', 'e'], categories=list('abcde'))) tm.assert_frame_equal(res, exp, check_index_type=True) # duplicated slice res = df.loc[['a', 'a', 'b']] exp = DataFrame({'A': [1, 3, 1, 3, 2], 'B': [5, 7, 5, 7, 6]}, index=CategoricalIndex(['a', 'a', 'a', 'a', 'b'], categories=list('abcde'))) tm.assert_frame_equal(res, exp, check_index_type=True) with tm.assert_raises_regex( KeyError, 'a list-indexer must only include values ' 'that are in the categories'): df.loc[['a', 'x']] def test_get_indexer_array(self): arr = np.array([Timestamp('1999-12-31 00:00:00'), Timestamp('2000-12-31 00:00:00')], dtype=object) cats = [Timestamp('1999-12-31 00:00:00'), Timestamp('2000-12-31 00:00:00')] ci = CategoricalIndex(cats, categories=cats, ordered=False, dtype='category') result = ci.get_indexer(arr) expected = np.array([0, 1], dtype='intp') tm.assert_numpy_array_equal(result, expected) def test_get_indexer_same_categories_same_order(self): ci = CategoricalIndex(['a', 'b'], categories=['a', 'b']) result = ci.get_indexer(CategoricalIndex(['b', 'b'], categories=['a', 'b'])) expected = np.array([1, 1], dtype='intp') tm.assert_numpy_array_equal(result, expected) def test_get_indexer_same_categories_different_order(self): # https://github.com/pandas-dev/pandas/issues/19551 ci = CategoricalIndex(['a', 'b'], categories=['a', 'b']) result = ci.get_indexer(CategoricalIndex(['b', 'b'], categories=['b', 'a'])) expected = np.array([1, 1], dtype='intp') tm.assert_numpy_array_equal(result, expected) def test_getitem_with_listlike(self): # GH 16115 cats = Categorical([Timestamp('12-31-1999'), Timestamp('12-31-2000')]) expected = DataFrame([[1, 0], [0, 1]], dtype='uint8', index=[0, 1], columns=cats) dummies = pd.get_dummies(cats) result = dummies[[c for c in dummies.columns]] assert_frame_equal(result, expected) def test_setitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype( np.int8)).add_categories([-1000]) indexer = np.array([100000]).astype(np.int64) c[indexer] = -1000 # we are asserting the code result here # which maps to the -1000 category result = c.codes[np.array([100000]).astype(np.int64)] tm.assert_numpy_array_equal(result, np.array([5], dtype='int8')) def test_ix_categorical_index(self): # GH 12531 df = DataFrame(np.random.randn(3, 3), index=list('ABC'), columns=list('XYZ')) cdf = df.copy() cdf.index = CategoricalIndex(df.index) cdf.columns = CategoricalIndex(df.columns) expect = Series(df.loc['A', :], index=cdf.columns, name='A') assert_series_equal(cdf.loc['A', :], expect) expect = Series(df.loc[:, 'X'], index=cdf.index, name='X') assert_series_equal(cdf.loc[:, 'X'], expect) exp_index = CategoricalIndex(list('AB'), categories=['A', 'B', 'C']) expect = DataFrame(df.loc[['A', 'B'], :], columns=cdf.columns, index=exp_index) assert_frame_equal(cdf.loc[['A', 'B'], :], expect) exp_columns = CategoricalIndex(list('XY'), categories=['X', 'Y', 'Z']) expect = DataFrame(df.loc[:, ['X', 'Y']], index=cdf.index, columns=exp_columns) assert_frame_equal(cdf.loc[:, ['X', 'Y']], expect) # non-unique df = DataFrame(np.random.randn(3, 3), index=list('ABA'), columns=list('XYX')) cdf = df.copy() cdf.index = CategoricalIndex(df.index) cdf.columns = CategoricalIndex(df.columns) exp_index = CategoricalIndex(list('AA'), categories=['A', 'B']) expect = DataFrame(df.loc['A', :], columns=cdf.columns, index=exp_index) assert_frame_equal(cdf.loc['A', :], expect) exp_columns = CategoricalIndex(list('XX'), categories=['X', 'Y']) expect = DataFrame(df.loc[:, 'X'], index=cdf.index, columns=exp_columns) assert_frame_equal(cdf.loc[:, 'X'], expect) expect = DataFrame(df.loc[['A', 'B'], :], columns=cdf.columns, index=CategoricalIndex(list('AAB'))) assert_frame_equal(cdf.loc[['A', 'B'], :], expect) expect = DataFrame(df.loc[:, ['X', 'Y']], index=cdf.index, columns=CategoricalIndex(list('XXY'))) assert_frame_equal(cdf.loc[:, ['X', 'Y']], expect) def test_read_only_source(self): # GH 10043 rw_array = np.eye(10) rw_df = DataFrame(rw_array) ro_array = np.eye(10) ro_array.setflags(write=False) ro_df = DataFrame(ro_array) assert_frame_equal(rw_df.iloc[[1, 2, 3]], ro_df.iloc[[1, 2, 3]]) assert_frame_equal(rw_df.iloc[[1]], ro_df.iloc[[1]]) assert_series_equal(rw_df.iloc[1], ro_df.iloc[1]) assert_frame_equal(rw_df.iloc[1:3], ro_df.iloc[1:3]) assert_frame_equal(rw_df.loc[[1, 2, 3]], ro_df.loc[[1, 2, 3]]) assert_frame_equal(rw_df.loc[[1]], ro_df.loc[[1]]) assert_series_equal(rw_df.loc[1], ro_df.loc[1]) assert_frame_equal(rw_df.loc[1:3], ro_df.loc[1:3]) def test_reindexing(self): # reindexing # convert to a regular index result = self.df2.reindex(['a', 'b', 'e']) expected = DataFrame({'A': [0, 1, 5, 2, 3, np.nan], 'B': Series(list('aaabbe'))}).set_index('B') assert_frame_equal(result, expected, check_index_type=True) result = self.df2.reindex(['a', 'b']) expected = DataFrame({'A': [0, 1, 5, 2, 3], 'B': Series(list('aaabb'))}).set_index('B') assert_frame_equal(result, expected, check_index_type=True) result = self.df2.reindex(['e']) expected = DataFrame({'A': [np.nan], 'B': Series(['e'])}).set_index('B') assert_frame_equal(result, expected, check_index_type=True) result = self.df2.reindex(['d']) expected = DataFrame({'A': [np.nan], 'B': Series(['d'])}).set_index('B') assert_frame_equal(result, expected, check_index_type=True) # since we are actually reindexing with a Categorical # then return a Categorical cats = list('cabe') result = self.df2.reindex(Categorical(['a', 'd'], categories=cats)) expected = DataFrame({'A': [0, 1, 5, np.nan], 'B': Series(list('aaad')).astype( CDT(cats))}).set_index('B') assert_frame_equal(result, expected, check_index_type=True) result = self.df2.reindex(Categorical(['a'], categories=cats)) expected = DataFrame({'A': [0, 1, 5], 'B': Series(list('aaa')).astype( CDT(cats))}).set_index('B') assert_frame_equal(result, expected, check_index_type=True) result = self.df2.reindex(['a', 'b', 'e']) expected = DataFrame({'A': [0, 1, 5, 2, 3, np.nan], 'B': Series(list('aaabbe'))}).set_index('B') assert_frame_equal(result, expected, check_index_type=True) result = self.df2.reindex(['a', 'b']) expected = DataFrame({'A': [0, 1, 5, 2, 3], 'B': Series(list('aaabb'))}).set_index('B') assert_frame_equal(result, expected, check_index_type=True) result = self.df2.reindex(['e']) expected = DataFrame({'A': [np.nan], 'B': Series(['e'])}).set_index('B') assert_frame_equal(result, expected, check_index_type=True) # give back the type of categorical that we received result = self.df2.reindex(Categorical( ['a', 'd'], categories=cats, ordered=True)) expected = DataFrame( {'A': [0, 1, 5, np.nan], 'B': Series(list('aaad')).astype( CDT(cats, ordered=True))}).set_index('B') assert_frame_equal(result, expected, check_index_type=True) result = self.df2.reindex(Categorical( ['a', 'd'], categories=['a', 'd'])) expected = DataFrame({'A': [0, 1, 5, np.nan], 'B': Series(list('aaad')).astype( CDT(['a', 'd']))}).set_index('B') assert_frame_equal(result, expected, check_index_type=True) # passed duplicate indexers are not allowed pytest.raises(ValueError, lambda: self.df2.reindex(['a', 'a'])) # args NotImplemented ATM pytest.raises(NotImplementedError, lambda: self.df2.reindex(['a'], method='ffill')) pytest.raises(NotImplementedError, lambda: self.df2.reindex(['a'], level=1)) pytest.raises(NotImplementedError, lambda: self.df2.reindex(['a'], limit=2)) def test_loc_slice(self): # slicing # not implemented ATM # GH9748 pytest.raises(TypeError, lambda: self.df.loc[1:5]) # result = df.loc[1:5] # expected = df.iloc[[1,2,3,4]] # assert_frame_equal(result, expected) def test_boolean_selection(self): df3 = self.df3 df4 = self.df4 result = df3[df3.index == 'a'] expected = df3.iloc[[]] assert_frame_equal(result, expected) result = df4[df4.index == 'a'] expected = df4.iloc[[]] assert_frame_equal(result, expected) result = df3[df3.index == 1] expected = df3.iloc[[0, 1, 3]] assert_frame_equal(result, expected) result = df4[df4.index == 1] expected = df4.iloc[[0, 1, 3]] assert_frame_equal(result, expected) # since we have an ordered categorical # CategoricalIndex([1, 1, 2, 1, 3, 2], # categories=[3, 2, 1], # ordered=True, # name=u'B') result = df3[df3.index < 2] expected = df3.iloc[[4]] assert_frame_equal(result, expected) result = df3[df3.index > 1] expected = df3.iloc[[]] assert_frame_equal(result, expected) # unordered # cannot be compared # CategoricalIndex([1, 1, 2, 1, 3, 2], # categories=[3, 2, 1], # ordered=False, # name=u'B') pytest.raises(TypeError, lambda: df4[df4.index < 2]) pytest.raises(TypeError, lambda: df4[df4.index > 1]) def test_indexing_with_category(self): # https://github.com/pandas-dev/pandas/issues/12564 # consistent result if comparing as Dataframe cat = DataFrame({'A': ['foo', 'bar', 'baz']}) exp = DataFrame({'A': [True, False, False]}) res = (cat[['A']] == 'foo') tm.assert_frame_equal(res, exp) cat['A'] = cat['A'].astype('category') res = (cat[['A']] == 'foo') tm.assert_frame_equal(res, exp) def test_map_with_dict_or_series(self): orig_values = ['a', 'B', 1, 'a'] new_values = ['one', 2, 3.0, 'one'] cur_index = pd.CategoricalIndex(orig_values, name='XXX') expected = pd.CategoricalIndex(new_values, name='XXX', categories=[3.0, 2, 'one']) mapper = pd.Series(new_values[:-1], index=orig_values[:-1]) output = cur_index.map(mapper) # Order of categories in output can be different tm.assert_index_equal(expected, output) mapper = {o: n for o, n in zip(orig_values[:-1], new_values[:-1])} output = cur_index.map(mapper) # Order of categories in output can be different tm.assert_index_equal(expected, output)
bsd-3-clause
amaliujia/lenskit
lenskit-integration-tests/src/it/gradle/external-algorithms/verify.py
7
1551
# LensKit, an open source recommender systems toolkit. # Copyright 2010-2014 Regents of the University of Minnesota and contributors # Work on LensKit has been funded by the National Science Foundation under # grants IIS 05-34939, 08-08692, 08-12148, and 10-17697. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation; either version 2.1 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., 51 # Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # Verification script to make sure that all 3 algorithms produce the same output. # Uses Pandas. import sys import pandas as pd preds = pd.read_csv('predictions.csv') algos = set(preds['Algorithm']) preds_wide = preds.pivot_table(index=['User', 'Item', 'Rating'], columns='Algorithm', values='Prediction') pred_range = preds_wide.max(1) - preds_wide.min(1) bad = preds_wide[pred_range >= 0.001] if len(bad) > 0: print >>sys.stderr, "Have %d bad predictions" % (len(bad),) print bad sys.exit(1)
lgpl-2.1
jlegendary/scikit-learn
examples/applications/plot_outlier_detection_housing.py
243
5577
""" ==================================== Outlier detection on a real data set ==================================== This example illustrates the need for robust covariance estimation on a real data set. It is useful both for outlier detection and for a better understanding of the data structure. We selected two sets of two variables from the Boston housing data set as an illustration of what kind of analysis can be done with several outlier detection tools. For the purpose of visualization, we are working with two-dimensional examples, but one should be aware that things are not so trivial in high-dimension, as it will be pointed out. In both examples below, the main result is that the empirical covariance estimate, as a non-robust one, is highly influenced by the heterogeneous structure of the observations. Although the robust covariance estimate is able to focus on the main mode of the data distribution, it sticks to the assumption that the data should be Gaussian distributed, yielding some biased estimation of the data structure, but yet accurate to some extent. The One-Class SVM algorithm First example ------------- The first example illustrates how robust covariance estimation can help concentrating on a relevant cluster when another one exists. Here, many observations are confounded into one and break down the empirical covariance estimation. Of course, some screening tools would have pointed out the presence of two clusters (Support Vector Machines, Gaussian Mixture Models, univariate outlier detection, ...). But had it been a high-dimensional example, none of these could be applied that easily. Second example -------------- The second example shows the ability of the Minimum Covariance Determinant robust estimator of covariance to concentrate on the main mode of the data distribution: the location seems to be well estimated, although the covariance is hard to estimate due to the banana-shaped distribution. Anyway, we can get rid of some outlying observations. The One-Class SVM is able to capture the real data structure, but the difficulty is to adjust its kernel bandwidth parameter so as to obtain a good compromise between the shape of the data scatter matrix and the risk of over-fitting the data. """ print(__doc__) # Author: Virgile Fritsch <[email protected]> # License: BSD 3 clause import numpy as np from sklearn.covariance import EllipticEnvelope from sklearn.svm import OneClassSVM import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn.datasets import load_boston # Get data X1 = load_boston()['data'][:, [8, 10]] # two clusters X2 = load_boston()['data'][:, [5, 12]] # "banana"-shaped # Define "classifiers" to be used classifiers = { "Empirical Covariance": EllipticEnvelope(support_fraction=1., contamination=0.261), "Robust Covariance (Minimum Covariance Determinant)": EllipticEnvelope(contamination=0.261), "OCSVM": OneClassSVM(nu=0.261, gamma=0.05)} colors = ['m', 'g', 'b'] legend1 = {} legend2 = {} # Learn a frontier for outlier detection with several classifiers xx1, yy1 = np.meshgrid(np.linspace(-8, 28, 500), np.linspace(3, 40, 500)) xx2, yy2 = np.meshgrid(np.linspace(3, 10, 500), np.linspace(-5, 45, 500)) for i, (clf_name, clf) in enumerate(classifiers.items()): plt.figure(1) clf.fit(X1) Z1 = clf.decision_function(np.c_[xx1.ravel(), yy1.ravel()]) Z1 = Z1.reshape(xx1.shape) legend1[clf_name] = plt.contour( xx1, yy1, Z1, levels=[0], linewidths=2, colors=colors[i]) plt.figure(2) clf.fit(X2) Z2 = clf.decision_function(np.c_[xx2.ravel(), yy2.ravel()]) Z2 = Z2.reshape(xx2.shape) legend2[clf_name] = plt.contour( xx2, yy2, Z2, levels=[0], linewidths=2, colors=colors[i]) legend1_values_list = list( legend1.values() ) legend1_keys_list = list( legend1.keys() ) # Plot the results (= shape of the data points cloud) plt.figure(1) # two clusters plt.title("Outlier detection on a real data set (boston housing)") plt.scatter(X1[:, 0], X1[:, 1], color='black') bbox_args = dict(boxstyle="round", fc="0.8") arrow_args = dict(arrowstyle="->") plt.annotate("several confounded points", xy=(24, 19), xycoords="data", textcoords="data", xytext=(13, 10), bbox=bbox_args, arrowprops=arrow_args) plt.xlim((xx1.min(), xx1.max())) plt.ylim((yy1.min(), yy1.max())) plt.legend((legend1_values_list[0].collections[0], legend1_values_list[1].collections[0], legend1_values_list[2].collections[0]), (legend1_keys_list[0], legend1_keys_list[1], legend1_keys_list[2]), loc="upper center", prop=matplotlib.font_manager.FontProperties(size=12)) plt.ylabel("accessibility to radial highways") plt.xlabel("pupil-teacher ratio by town") legend2_values_list = list( legend2.values() ) legend2_keys_list = list( legend2.keys() ) plt.figure(2) # "banana" shape plt.title("Outlier detection on a real data set (boston housing)") plt.scatter(X2[:, 0], X2[:, 1], color='black') plt.xlim((xx2.min(), xx2.max())) plt.ylim((yy2.min(), yy2.max())) plt.legend((legend2_values_list[0].collections[0], legend2_values_list[1].collections[0], legend2_values_list[2].collections[0]), (legend2_values_list[0], legend2_values_list[1], legend2_values_list[2]), loc="upper center", prop=matplotlib.font_manager.FontProperties(size=12)) plt.ylabel("% lower status of the population") plt.xlabel("average number of rooms per dwelling") plt.show()
bsd-3-clause
GoogleCloudPlatform/keras-idiomatic-programmer
zoo/pretraining_c.py
1
12034
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from tensorflow.keras import Sequential, Model, Input from tensorflow.keras import layers from tensorflow.keras.layers import ReLU, Dense, Conv2D, Conv2DTranspose from tensorflow.keras.layers import DepthwiseConv2D, SeparableConv2D, Dropout from tensorflow.keras.layers import GlobalAveragePooling2D, Activation, BatchNormalization from tensorflow.keras.regularizers import l2 from tensorflow.keras.optimizers import Adam, SGD from tensorflow.compat.v1.keras.initializers import glorot_uniform, he_normal from tensorflow.keras.callbacks import LearningRateScheduler from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.utils import to_categorical import tensorflow_datasets as tfds import tensorflow.keras.backend as K import numpy as np from sklearn.model_selection import train_test_split import random import math import sys, os, json class Pretraining(object): ''' Pretraining base (super) class for Composable Models ''' def __init__(self): """ Constructor """ pass ### # Pre-Training ### # training variables w_lr = 0 # target warmup rate w_epochs = 0 # number of epochs in warmup def init_draw(self, x_train=None, y_train=None, ndraws=5, epochs=3, steps=350, lr=1e-06, batch_size=32, metric='loss', early=False, save=None): """ Use the lottery ticket principle to find the best weight initialization x_train : training images y_train : training labels ndraws : number of draws to find the winning lottery ticket epochs : number of trial epochs steps : number of steps per epoch lr : tiny learning rate batch_size: batch size metric : metric used for determining best draw early : whether to early stop when best draw found save : file to save initialized weights to """ print("\n*** Initialize Draw") if x_train is None: x_train = self.x_train y_train = self.y_train loss = sys.float_info.max acc = 0 w_best = None # previous values prev = None p_draws = 0 if save is not None: for path in [ save, save + '/init']: try: os.mkdir(path) except: pass if os.path.exists(save + '/init/best.json'): with open(save + '/init/best.json', 'r') as f: data = json.load(f) loss = float(data['loss']) acc = float(data['acc']) p_draws = int(data['ndraws']) self.model.load_weights(save + '/init/chkpt') w_best = self.model.get_weights() print("Previous best, loss =", loss, 'acc = ', acc) try: prev = [ data['prev'], { 'loss': loss, 'acc': acc, 'ndraws': p_draws } ] except: prev = { 'loss': loss, 'acc': acc, 'ndraws': p_draws } for _ in range(ndraws): self.model = tf.keras.models.clone_model(self.model) self.compile(optimizer=Adam(lr)) w = self.model.get_weights() # Create generator for training in steps datagen = ImageDataGenerator() print("\n*** Lottery", _ + 1, "of", ndraws) self.model.fit(datagen.flow(x_train, y_train, batch_size=batch_size), epochs=epochs, steps_per_epoch=steps, verbose=1) # Next Best d_loss = self.model.history.history['loss'][epochs-1] d_acc = self.model.history.history['acc'][epochs-1] if d_loss < loss: loss = d_loss acc = d_acc w_best = self.model.get_weights() print("\n*** Current Best:", metric, loss) if early: ndraws = _ + 1 break if save is not None: self._save_best(save, loss, acc, p_draws + _ + 1, epochs, steps, prev) # Set the best if w_best is not None: self.model.set_weights(w_best) # Save the initialized weights if save is not None: self._save_best(save, loss, acc, p_draws + ndraws, epochs, steps, prev) print("\n*** Selected Draw:", metric, loss) def _save_best(self, save, loss, acc, ndraws, epochs, steps, prev=None): """ Save current best weights save : directort to save weights loss : metric information acc : metric information ndraws: total number of draws epochs: number of epochs steps : number of steps per epoch prev : previous results """ # Late Resetting self.model.save_weights(save + '/init/chkpt') with open(save + "/init/best.json", "w") as f: if prev is None: data = {'loss': loss, 'acc': acc, 'ndraws': ndraws, 'epochs': epochs, 'steps': steps} else: data = {'loss': loss, 'acc': acc, 'ndraws': ndraws, 'epochs': epochs, 'steps': steps, 'prev': prev} data = json.dumps(data) f.write(data) def warmup_scheduler(self, epoch, lr): """ learning rate schedular for warmup training epoch : current epoch iteration lr : current learning rate """ if epoch == 0: return lr if epoch == 2: # loss is diverging if self.model.history.history['loss'][1] > self.model.history.history['loss'][0]: print("*** Loss is diverging, Reducing Warmnup Rate") self.w_lr /= 10 return epoch * self.w_lr / self.w_epochs def warmup(self, x_train=None, y_train=None, epochs=5, batch_size=32, s_lr=1e-6, e_lr=0.001, loss='categorical_crossentropy', metrics=['acc'], save=None): """ Warmup for numerical stability x_train : training images y_train : training labels epochs : number of epochs for warmup batch_size: batch size s_lr : start warmup learning rate e_lr : end warmup learning rate loss : loss function metrics : training metrics to report save : file to save warmup weights """ print("\n*** Warmup (for numerical stability)") if x_train is None: x_train = self.x_train y_train = self.y_train # Load selected weight initialization draw if save is not None: for path in [ save, save + '/warmup']: try: os.mkdir(path) except: pass if os.path.exists(save + '/init/chkpt.index'): self.model.load_weights(save + '/init/chkpt') print("Load weights from Lottery Draw initialization") # Setup learning rate scheduler self.compile(optimizer=Adam(s_lr), loss=loss, metrics=metrics) lrate = LearningRateScheduler(self.warmup_scheduler, verbose=1) self.w_epochs = epochs self.w_lr = e_lr - s_lr # Train the model self.model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, verbose=1, callbacks=[lrate]) if save is not None: self.model.save_weights(save + '/warmup/chkpt') with open(save + '/warmup/hp.json', 'w') as f: data = {'s_lr': s_lr, 'e_lr': e_lr, 'epochs': epochs } json.dump(data, f) def pretext(self, x_train= None, zigsaw=9, epochs=10, batch_size=32, lr=0.001, loss='mse', metrics=['mse'], save=None): """ Pretrain using unsupervised pre-text task for zigsaw puzzle to learn essential features x_train : training images zigsaw : number of tiles in zigsaw puzzle epochs : number of epochs for pretext task training batch_size: batch size lr : pre-text learning rate loss : loss function metrics : training metrics to report save : file to save pretext weights """ print("\n*** Pretext Task (for essential features)") if x_train is None: x_train = self.x_train # Load selected weight after hypertune if save is not None: for path in [ save, save + '/pretext']: try: os.mkdir(path) except: pass if os.path.exists(save + '/tune/chkpt.index'): self.model.load_weights(save + '/tune/chkpt') elif os.path.exists(save + '/warmup/chkpt.index'): self.model.load_weights(save + '/warmup/chkpt') elif os.path.exists(save + '/init/chkpt.index'): self.model.load_weights(save + '/init/chkpt') if lr is None: with open(save + '/tune/hp.json') as f: data = json.load(f) lr = data['lr'] batch_size = data['bs'] # Get the pooling layer before the final dense output layer pooling = self.model.layers[len(self.model.layers)-2].output # Attach a new top for the zigsaw puzzle outputs = self.Dense(pooling, zigsaw) self.relu = zigsaw outputs = self.ReLU(outputs) # Construct wrapper model with the new top layer wrapper = Model(self.model.inputs, outputs) wrapper.compile(loss=loss, optimizer=Adam(lr=lr), metrics=metrics) # Rows/Columns R = x_train.shape[1] C = x_train.shape[2] # Slicing if zigsaw == 4: M = int(x_train.shape[1] / 2) N = int(x_train.shape[2] / 2) ix = [0, 1, 2, 3] elif zigsaw == 9: M = int(x_train.shape[1] / 3) N = int(x_train.shape[2] / 3) ix = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] px_train = [] py_train = [] for _ in range(len(x_train)): tiles = [x_train[_][x:x+M,y:y+N] for x in range(0,R,M) for y in range(0,C,N)] random.shuffle(ix) if zigsaw == 4: r1 = np.concatenate((tiles[ix[0]], tiles[ix[1]])) r2 = np.concatenate((tiles[ix[2]], tiles[ix[3]])) image = np.concatenate((r1, r2), axis=1) else: r1 = np.concatenate((tiles[ix[0]], tiles[ix[1]], tiles[ix[2]])) r2 = np.concatenate((tiles[ix[3]], tiles[ix[4]], tiles[ix[5]])) r3 = np.concatenate((tiles[ix[6]], tiles[ix[7]], tiles[ix[8]])) image = np.concatenate((r1, r2, r3), axis=1) px_train.append(image) py_train.append(ix) px_train = np.asarray(px_train) py_train = np.asarray(py_train) # Train the model wrapper.fit(px_train, py_train, epochs=epochs, batch_size=batch_size, verbose=1) if save is not None: self.model.save_weights(save + '/pretext/chkpt')
apache-2.0
mblondel/scikit-learn
sklearn/feature_selection/tests/test_base.py
170
3666
import numpy as np from scipy import sparse as sp from nose.tools import assert_raises, assert_equal from numpy.testing import assert_array_equal from sklearn.base import BaseEstimator from sklearn.feature_selection.base import SelectorMixin from sklearn.utils import check_array class StepSelector(SelectorMixin, BaseEstimator): """Retain every `step` features (beginning with 0)""" def __init__(self, step=2): self.step = step def fit(self, X, y=None): X = check_array(X, 'csc') self.n_input_feats = X.shape[1] return self def _get_support_mask(self): mask = np.zeros(self.n_input_feats, dtype=bool) mask[::self.step] = True return mask support = [True, False] * 5 support_inds = [0, 2, 4, 6, 8] X = np.arange(20).reshape(2, 10) Xt = np.arange(0, 20, 2).reshape(2, 5) Xinv = X.copy() Xinv[:, 1::2] = 0 y = [0, 1] feature_names = list('ABCDEFGHIJ') feature_names_t = feature_names[::2] feature_names_inv = np.array(feature_names) feature_names_inv[1::2] = '' def test_transform_dense(): sel = StepSelector() Xt_actual = sel.fit(X, y).transform(X) Xt_actual2 = StepSelector().fit_transform(X, y) assert_array_equal(Xt, Xt_actual) assert_array_equal(Xt, Xt_actual2) # Check dtype matches assert_equal(np.int32, sel.transform(X.astype(np.int32)).dtype) assert_equal(np.float32, sel.transform(X.astype(np.float32)).dtype) # Check 1d list and other dtype: names_t_actual = sel.transform(feature_names) assert_array_equal(feature_names_t, names_t_actual.ravel()) # Check wrong shape raises error assert_raises(ValueError, sel.transform, np.array([[1], [2]])) def test_transform_sparse(): sparse = sp.csc_matrix sel = StepSelector() Xt_actual = sel.fit(sparse(X)).transform(sparse(X)) Xt_actual2 = sel.fit_transform(sparse(X)) assert_array_equal(Xt, Xt_actual.toarray()) assert_array_equal(Xt, Xt_actual2.toarray()) # Check dtype matches assert_equal(np.int32, sel.transform(sparse(X).astype(np.int32)).dtype) assert_equal(np.float32, sel.transform(sparse(X).astype(np.float32)).dtype) # Check wrong shape raises error assert_raises(ValueError, sel.transform, np.array([[1], [2]])) def test_inverse_transform_dense(): sel = StepSelector() Xinv_actual = sel.fit(X, y).inverse_transform(Xt) assert_array_equal(Xinv, Xinv_actual) # Check dtype matches assert_equal(np.int32, sel.inverse_transform(Xt.astype(np.int32)).dtype) assert_equal(np.float32, sel.inverse_transform(Xt.astype(np.float32)).dtype) # Check 1d list and other dtype: names_inv_actual = sel.inverse_transform(feature_names_t) assert_array_equal(feature_names_inv, names_inv_actual.ravel()) # Check wrong shape raises error assert_raises(ValueError, sel.inverse_transform, np.array([[1], [2]])) def test_inverse_transform_sparse(): sparse = sp.csc_matrix sel = StepSelector() Xinv_actual = sel.fit(sparse(X)).inverse_transform(sparse(Xt)) assert_array_equal(Xinv, Xinv_actual.toarray()) # Check dtype matches assert_equal(np.int32, sel.inverse_transform(sparse(Xt).astype(np.int32)).dtype) assert_equal(np.float32, sel.inverse_transform(sparse(Xt).astype(np.float32)).dtype) # Check wrong shape raises error assert_raises(ValueError, sel.inverse_transform, np.array([[1], [2]])) def test_get_support(): sel = StepSelector() sel.fit(X, y) assert_array_equal(support, sel.get_support()) assert_array_equal(support_inds, sel.get_support(indices=True))
bsd-3-clause
datapythonista/pandas
pandas/core/internals/__init__.py
3
1603
from pandas.core.internals.api import make_block # pseudo-public version from pandas.core.internals.array_manager import ( ArrayManager, SingleArrayManager, ) from pandas.core.internals.base import ( DataManager, SingleDataManager, ) from pandas.core.internals.blocks import ( # io.pytables, io.packers Block, DatetimeTZBlock, ExtensionBlock, NumericBlock, ObjectBlock, ) from pandas.core.internals.concat import concatenate_managers from pandas.core.internals.managers import ( BlockManager, SingleBlockManager, create_block_manager_from_arrays, create_block_manager_from_blocks, ) __all__ = [ "Block", "CategoricalBlock", "NumericBlock", "DatetimeTZBlock", "ExtensionBlock", "ObjectBlock", "make_block", "DataManager", "ArrayManager", "BlockManager", "SingleDataManager", "SingleBlockManager", "SingleArrayManager", "concatenate_managers", # those two are preserved here for downstream compatibility (GH-33892) "create_block_manager_from_arrays", "create_block_manager_from_blocks", ] def __getattr__(name: str): import warnings if name == "CategoricalBlock": warnings.warn( "CategoricalBlock is deprecated and will be removed in a future version. " "Use ExtensionBlock instead.", DeprecationWarning, stacklevel=2, ) from pandas.core.internals.blocks import CategoricalBlock return CategoricalBlock raise AttributeError(f"module 'pandas.core.internals' has no attribute '{name}'")
bsd-3-clause
isomerase/mozziesniff
roboskeeter/io/i_o.py
2
6947
# -*- coding: utf-8 -*- """ Created on Tue Apr 21 17:21:42 2015 @author: richard """ import os import string from Tkinter import Tk from tkFileDialog import askdirectory import numpy as np import pandas as pd def load_single_csv_to_df(csv_dir): """ Parameters ---------- csv_dir str, full directory of csv Returns ------- pandas df """ col_labels = [ # TODO: check that Sharri's kinematics are the same as your kinematics 'position_x', 'position_y', 'position_z', 'velocity_x', 'velocity_y', 'velocity_z', 'acceleration_x', 'acceleration_y', 'acceleration_z', 'heading_angleS', 'angular_velo_xyS', 'angular_velo_yzS', 'curvatureS' ] # map string "NaN" to np.nan # header=None is needed to make sure dtype float is assigned properly, apparently dataframe = pd.read_csv(csv_dir, na_values="NaN", names=col_labels, header=None, dtype=np.float32) dataframe.fillna(value=0, inplace=True) # TODO: there shouldn't be NaNs in data df_len = len(dataframe.position_x) # take fname number fname = os.path.split(csv_dir)[1] fname_num = extract_number_from_fname(fname) dataframe['trajectory_num'] = [fname_num] * df_len dataframe['tsi'] = np.arange(df_len) # plume related stuff will get set inside Experiment() return dataframe def experiment_condition_to_DF(experimental_condition): """ Given an experimental condition, load the appropriate dataset into a dataframe. Parameters ---------- experimental_condition (string) Control, Left, or Right, or list thereof Returns ------- df """ if type(experimental_condition) is str: experimental_condition = [experimental_condition] experimental_condition = [string.upper(i) for i in experimental_condition] df_list = [] for condition in experimental_condition: dir_label = "EXP_TRAJECTORIES_" + condition directory = get_directory(dir_label) for fname in [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))]: # list files print "Loading {} from {}".format(fname, directory) file_path = os.path.join(directory, fname) dataframe = load_single_csv_to_df(file_path) df_list.append(dataframe) df = pd.concat(df_list) return df def get_csv_name_list(path, relative=True): if relative: return os.listdir(os.path.join(os.path.realpath('.'), path)) else: return os.listdir(path) def get_csv_filepath_list(path, csv_list): """ Parameters ---------- path csv_list Returns ------- """ paths = [os.path.join(path, fname) for fname in csv_list] return paths def get_directory(selection=None): """Centralized func to define directories, or select using dialog box In: Selection None, open dialog box PROJECT_PATH = os.path.dirname(trajectory.__file__) MODEL_PATH = os.path.join(PROJECT_PATH, 'data', 'model') EXPERIMENT_PATH = os.path.join(PROJECT_PATH, 'data', 'experiments') CONTROL_EXP_PATH = os.path.join(EXPERIMENT_PATH, 'control_processed_and_filtered') Out: directory path """ dirname = os.path.dirname PROJECT_PATH = dirname(dirname(dirname(__file__))) EXPERIMENTS_PATH = os.path.join(PROJECT_PATH, 'data', 'experiments') MODEL_PATH = os.path.join(PROJECT_PATH, 'data', 'model') EXPERIMENTAL_TRAJECTORIES = os.path.join(EXPERIMENTS_PATH, 'trajectories') EXP_TRAJECTORIES_CONTROL = os.path.join(EXPERIMENTAL_TRAJECTORIES, 'control') EXP_TRAJECTORIES_LEFT = os.path.join(EXPERIMENTAL_TRAJECTORIES, 'left') EXP_TRAJECTORIES_RIGHT = os.path.join(EXPERIMENTAL_TRAJECTORIES, 'right') TEMPERATURES_PATH = os.path.join(EXPERIMENTS_PATH, 'temperature') RAW = os.path.join(TEMPERATURES_PATH, 'raw-data') TIMEAVG = os.path.join(TEMPERATURES_PATH, 'timeavg-data') VAR = os.path.join(TEMPERATURES_PATH, 'variance-model') BOOL = os.path.join(TEMPERATURES_PATH, 'boolean-model') VAR_LEFT_CSV = os.path.join(VAR, 'left', 'LeftplumeVar_nonan.csv') VAR_RIGHT_CSV = os.path.join(VAR, 'right', 'RightplumeVar_nonan.csv') THERMOCOUPLE_RAW_LEFT_CSV = os.path.join(RAW, 'left', 'raw_left.csv') THERMOCOUPLE_RAW_RIGHT_CSV = os.path.join(RAW, 'right', 'raw_right.csv') THERMOCOUPLE_TIMEAVG_LEFT_CSV = os.path.join(TIMEAVG, 'left', 'timeavg_left.csv') THERMOCOUPLE_TIMEAVG_LEFT_PADDED_CSV = os.path.join(TIMEAVG, 'left', 'timeavg_left_padded.csv') THERMOCOUPLE_TIMEAVG_LEFT_INTERPOLATED_CSV = os.path.join(TIMEAVG, 'left', 'timeavg_left_interpolated.csv') THERMOCOUPLE_TIMEAVG_RIGHT_CSV = os.path.join(TIMEAVG, 'right', 'timeavg_right.csv') THERMOCOUPLE_TIMEAVG_RIGHT_PADDED_CSV = os.path.join(TIMEAVG, 'right', 'timeavg_right_padded.csv') THERMOCOUPLE_TIMEAVG_RIGHT_INTERPOLATED_CSV = os.path.join(TIMEAVG, 'right', 'timeavg_right_interpolated.csv') BOOL_LEFT_CSV = os.path.join(BOOL, 'left', 'left_plume_bounds.csv') BOOL_RIGHT_CSV = os.path.join(BOOL, 'right', 'right_plume_bounds.csv') dirs = { 'PROJECT_PATH': PROJECT_PATH, 'MODEL_PATH': MODEL_PATH, 'EXPERIMENT_PATH': EXPERIMENTS_PATH, 'EXPERIMENTAL_TRAJECTORIES': EXPERIMENTAL_TRAJECTORIES, 'EXP_TRAJECTORIES_CONTROL': EXP_TRAJECTORIES_CONTROL, 'EXP_TRAJECTORIES_LEFT': EXP_TRAJECTORIES_LEFT, 'EXP_TRAJECTORIES_RIGHT': EXP_TRAJECTORIES_RIGHT, 'THERMOCOUPLE_RAW_LEFT': THERMOCOUPLE_RAW_LEFT_CSV, 'THERMOCOUPLE_TIMEAVG_LEFT_PADDED_CSV': THERMOCOUPLE_TIMEAVG_LEFT_PADDED_CSV, 'THERMOCOUPLE_TIMEAVG_LEFT_INTERPOLATED_CSV': THERMOCOUPLE_TIMEAVG_LEFT_INTERPOLATED_CSV, 'THERMOCOUPLE_RAW_RIGHT': THERMOCOUPLE_RAW_RIGHT_CSV, 'THERMOCOUPLE_TIMEAVG_RIGHT_PADDED_CSV': THERMOCOUPLE_TIMEAVG_RIGHT_PADDED_CSV, 'THERMOCOUPLE_TIMEAVG_RIGHT_INTERPOLATED_CSV': THERMOCOUPLE_TIMEAVG_RIGHT_INTERPOLATED_CSV, 'THERMOCOUPLE_TIMEAVG_LEFT_CSV': THERMOCOUPLE_TIMEAVG_LEFT_CSV, 'THERMOCOUPLE_TIMEAVG_RIGHT_CSV': THERMOCOUPLE_TIMEAVG_RIGHT_CSV, 'BOOL_LEFT_CSV': BOOL_LEFT_CSV, 'BOOL_RIGHT_CSV': BOOL_RIGHT_CSV, 'VAR_LEFT_CSV': VAR_LEFT_CSV, 'VAR_RIGHT_CSV': VAR_RIGHT_CSV } if selection is None: print("Enter directory with experimental data") Tk().withdraw() directory = askdirectory() else: directory = dirs[selection] print("Directory selected: {}".format(directory)) return directory def extract_number_from_fname(token): extract_digits = lambda stng: "".join(char for char in stng if char in string.digits) to_int = lambda x: int(float(x)) if x.count(".") <= 1 else None number = to_int(extract_digits(token)) return number
mit
chibill/EMCP
runtime/lib/tqdm/_tqdm_pandas.py
5
1700
# future division is important to divide integers and get as # a result precise floating numbers (instead of truncated int) from __future__ import absolute_import __author__ = "github.com/casperdcl" __all__ = ['tqdm_pandas'] def tqdm_pandas(t): # pragma: no cover """ Registers the given `tqdm` instance with `pandas.core.groupby.DataFrameGroupBy.progress_apply`. It will even close() the `tqdm` instance upon completion. Examples -------- >>> import pandas as pd >>> import numpy as np >>> from tqdm import tqdm, tqdm_pandas >>> >>> df = pd.DataFrame(np.random.randint(0, 100, (100000, 6))) >>> tqdm_pandas(tqdm()) # can use tqdm_gui, optional kwargs, etc >>> # Now you can use `progress_apply` instead of `apply` >>> df.groupby(0).progress_apply(lambda x: x**2) References ---------- https://stackoverflow.com/questions/18603270/ progress-indicator-during-pandas-operations-python """ from pandas.core.groupby import DataFrameGroupBy def inner(groups, func, *args, **kwargs): """ Parameters ---------- groups : DataFrameGroupBy Grouped data. func : function To be applied on the grouped data. *args and *kwargs are transmitted to DataFrameGroupBy.apply() """ t.total = len(groups) + 1 # pandas calls update once too many def wrapper(*args, **kwargs): t.update() return func(*args, **kwargs) result = groups.apply(wrapper, *args, **kwargs) t.close() return result # Enable custom tqdm progress in pandas! DataFrameGroupBy.progress_apply = inner
gpl-3.0
antoinecarme/pyaf
pyaf/TS/Scikit_Models.py
1
10386
import numpy as np import pandas as pd from . import SignalDecomposition_AR as tsar from . import Utils as tsutil import sys class cAbstract_Scikit_Model(tsar.cAbstractAR): def __init__(self , cycle_residue_name, P , iExogenousInfo = None): super().__init__(cycle_residue_name, iExogenousInfo) self.mNbLags = P; self.mNbExogenousLags = P; self.mScikitModel = None; def dumpCoefficients(self, iMax=10): # print(self.mScikitModel.__dict__); pass def build_Scikit_Model(self): assert(0); def set_name(self): assert(0); def is_used(self, name): if(self.mFeatureSelector): return (name in self.mInputNamesAfterSelection) return True def fit(self): # print("ESTIMATE_SCIKIT_MODEL_START" , self.mCycleResidueName); self.build_Scikit_Model(); self.set_name(); series = self.mCycleResidueName; self.mTime = self.mTimeInfo.mTime; self.mSignal = self.mTimeInfo.mSignal; lAREstimFrame = self.mSplit.getEstimPart(self.mARFrame) # print("mAREstimFrame columns :" , self.mAREstimFrame.columns); lARInputs = lAREstimFrame[self.mInputNames].values lARTarget = lAREstimFrame[series].values # print(len(self.mInputNames), lARInputs.shape , lARTarget.shape) assert(lARInputs.shape[1] > 0); assert(lARTarget.shape[0] > 0); from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import f_regression lMaxFeatures = self.mOptions.mMaxFeatureForAutoreg; if(lMaxFeatures >= lARInputs.shape[1]): lMaxFeatures = lARInputs.shape[1]; if(lMaxFeatures >= (lARInputs.shape[0] // 4)): lMaxFeatures = lARInputs.shape[0] // 4; self.mFeatureSelector = SelectKBest(f_regression, k= lMaxFeatures); try: self.mFeatureSelector.fit(lARInputs, lARTarget); except Exception as e: print("SCIKIT_MODEL_FEATURE_SELECTION_FAILURE" , self.mOutName, lARInputs.shape, e); if(self.mOptions.mDebug): df1 = pd.DataFrame(lARInputs); df1.columns = self.mInputNames df1['TGT'] = lARTarget; # df1.to_csv("SCIKIT_MODEL_FEATURE_SELECTION_FAILURE.csv.gz" , compression='gzip'); # issue #72 : ignore feature selection in case of failure. self.mFeatureSelector = None if(self.mFeatureSelector): lARInputsAfterSelection = self.mFeatureSelector.transform(lARInputs); # print(self.mInputNames , self.mFeatureSelector.get_support(indices=True)); lSupport = self.mFeatureSelector.get_support(indices=True); self.mInputNamesAfterSelection = [self.mInputNames[k] for k in lSupport]; else: lARInputsAfterSelection = lARInputs; self.mInputNamesAfterSelection = self.mInputNames; self.mComplexity = len(self.mInputNamesAfterSelection) assert(len(self.mInputNamesAfterSelection) == lARInputsAfterSelection.shape[1]); # print("FEATURE_SELECTION" , self.mOutName, lARInputs.shape[1] , lARInputsAfterSelection.shape[1]); del lARInputs; try: self.mScikitModel.fit(lARInputsAfterSelection, lARTarget) except Exception as e: print("SCIKIT_MODEL_FIT_FAILURE" , self.mOutName, lARInputsAfterSelection.shape, e); if(self.mOptions.mDebug): df1 = pd.DataFrame(lARInputsAfterSelection); df1.columns = self.mInputNamesAfterSelection df1['TGT'] = lARTarget; # df1.to_csv("SCIKIT_MODEL_FIT_FAILURE.csv.gz" , compression='gzip'); del self.mScikitModel self.mScikitModel = None; del lARInputsAfterSelection; del lARTarget; del lAREstimFrame; if(self.mScikitModel is not None): lFullARInputs = self.mARFrame[self.mInputNames].values; lFullARInputsAfterSelection = self.mFeatureSelector.transform(lFullARInputs) if self.mFeatureSelector else lFullARInputs; lPredicted = self.mScikitModel.predict(lFullARInputsAfterSelection); self.mARFrame[self.mOutName] = lPredicted else: # issue_34 failure SVD does not converge self.mARFrame[self.mOutName] = self.mDefaultValues[series] self.mARFrame[self.mOutName + '_residue'] = self.mARFrame[series] - self.mARFrame[self.mOutName] # print("ESTIMATE_SCIKIT_MODEL_END" , self.mOutName); def transformDataset(self, df, horizon_index = 1): series = self.mCycleResidueName; if(self.mExogenousInfo is not None): df = self.mExogenousInfo.transformDataset(df); # print(df.columns); # print(df.info()); # print(df.head()); # print(df.tail()); lag_df = self.generateLagsForForecast(df); # print(self.mInputNames); # print(self.mFormula, "\n", lag_df.columns); # lag_df.to_csv("LAGGED_ " + str(self.mNbLags) + ".csv"); # print(len(list(lag_df.columns)) , len(self.mInputNamesAfterSelection)) inputs_after_feat_selection = lag_df.values[:,1:] # the first column is the signal # inputs_after_feat_selection = self.mFeatureSelector.transform(inputs) if self.mFeatureSelector else inputs; if(self.mScikitModel is not None): pred = self.mScikitModel.predict(inputs_after_feat_selection) df[self.mOutName] = pred; else: df[self.mOutName] = self.mDefaultValues[series]; target = df[series].values df[self.mOutName + '_residue'] = target - df[self.mOutName].values return df; class cAutoRegressiveModel(cAbstract_Scikit_Model): def __init__(self , cycle_residue_name, P , iExogenousInfo = None): super().__init__(cycle_residue_name, P, iExogenousInfo) self.mComplexity = P; def dumpCoefficients(self, iMax=10): logger = tsutil.get_pyaf_logger(); lDict = dict(zip(self.mInputNamesAfterSelection , self.mScikitModel.coef_)); lDict1 = dict(zip(self.mInputNamesAfterSelection , abs(self.mScikitModel.coef_))); i = 1; lOrderedVariables = sorted(lDict1.keys(), key=lDict1.get, reverse=True); for k in lOrderedVariables[0:iMax]: logger.info("AR_MODEL_COEFF " + str(i) + " " + str(k) + " " + str(lDict[k])); i = i + 1; def build_Scikit_Model(self): import sklearn.linear_model as linear_model # issue_22 : warning about singular matrix => change the solver by default. self.mScikitModel = linear_model.Ridge(solver='svd') def set_name(self): self.mOutName = self.mCycleResidueName + '_AR(' + str(self.mNbLags) + ")"; self.mFormula = "AR" # (" + str(self.mNbLags) + ")"; if(self.mExogenousInfo is not None): self.mOutName = self.mCycleResidueName + '_ARX(' + str(self.mNbLags) + ")"; self.mFormula = "ARX" # (" + str(self.mNbExogenousLags) + ")"; class cSVR_Model(cAbstract_Scikit_Model): def __init__(self , cycle_residue_name, P , iExogenousInfo = None): super().__init__(cycle_residue_name, P, iExogenousInfo) self.mComplexity = 2*P; def dumpCoefficients(self, iMax=10): pass def build_Scikit_Model(self): import sklearn.svm as svm self.mScikitModel = svm.SVR(kernel='rbf', gamma='scale') def set_name(self): self.mOutName = self.mCycleResidueName + '_SVR(' + str(self.mNbLags) + ")"; self.mFormula = "SVR" # (" + str(self.mNbLags) + ")"; if(self.mExogenousInfo is not None): self.mOutName = self.mCycleResidueName + '_SVRX(' + str(self.mNbLags) + ")"; self.mFormula = "SVRX" # (" + str(self.mNbExogenousLags) + ")"; class cXGBoost_Model(cAbstract_Scikit_Model): def __init__(self , cycle_residue_name, P , iExogenousInfo = None): super().__init__(cycle_residue_name, P, iExogenousInfo) self.mComplexity = 2*P; def dumpCoefficients(self, iMax=10): pass def get_default_xgb_options(self): lXGBOptions = dict(n_estimators=10, nthread=1, min_child_weight=10, max_depth=3, seed=self.mOptions.mSeed) return lXGBOptions def build_Scikit_Model(self): import xgboost as xgb lXGBOptions = self.mOptions.mXGBOptions; if(lXGBOptions is None): lXGBOptions = self.get_default_xgb_options() self.mScikitModel = xgb.XGBRegressor(**lXGBOptions) def set_name(self): self.mOutName = self.mCycleResidueName + '_XGB(' + str(self.mNbLags) + ")"; self.mFormula = "XGB" # + str(self.mNbLags) + ")"; if(self.mExogenousInfo is not None): self.mOutName = self.mCycleResidueName + '_XGBX(' + str(self.mNbLags) + ")"; self.mFormula = "XGBX" # (" + str(self.mNbExogenousLags) + ")"; class cLightGBM_Model(cAbstract_Scikit_Model): def __init__(self , cycle_residue_name, P , iExogenousInfo = None): super().__init__(cycle_residue_name, P, iExogenousInfo) self.mComplexity = 2*P; def dumpCoefficients(self, iMax=10): pass def get_default_lgbm_options(self): lLGBMOptions = dict(objective='regression', n_estimators=32, random_state=self.mOptions.mSeed) return lLGBMOptions def build_Scikit_Model(self): import lightgbm as lgb lLGBMOptions = self.mOptions.mLGBMOptions; if(lLGBMOptions is None): lLGBMOptions = self.get_default_lgbm_options() self.mScikitModel = lgb.LGBMRegressor(**lLGBMOptions) def set_name(self): self.mOutName = self.mCycleResidueName + '_LGB(' + str(self.mNbLags) + ")"; self.mFormula = "LGB" # + str(self.mNbLags) + ")"; if(self.mExogenousInfo is not None): self.mOutName = self.mCycleResidueName + '_LGBX(' + str(self.mNbLags) + ")"; self.mFormula = "LGBX" # (" + str(self.mNbExogenousLags) + ")";
bsd-3-clause
damaggu/SAMRI
samri/pipelines/preprocess.py
1
17941
from os import path, listdir, getcwd, remove from samri.pipelines.extra_functions import get_data_selection, get_scan, write_bids_metadata_file, write_events_file, force_dummy_scans, BIDS_METADATA_EXTRACTION_DICTS import re import inspect import shutil from copy import deepcopy from itertools import product import nipype.interfaces.ants as ants import nipype.interfaces.io as nio import nipype.interfaces.utility as util # utility import nipype.pipeline.engine as pe # pypeline engine import pandas as pd from nipype.interfaces import afni, bru2nii, fsl, nipy from samri.pipelines.nodes import * from samri.pipelines.utils import bids_naming, ss_to_path, sss_filename, fslmaths_invert_values from samri.utilities import N_PROCS from samri.fetch.templates import fetch_rat_waxholm, fetch_mouse_DSURQE DUMMY_SCANS=10 N_PROCS=max(N_PROCS-4, 2) #set all outputs to compressed NIfTI afni.base.AFNICommand.set_default_output_type('NIFTI_GZ') fsl.FSLCommand.set_default_output_type('NIFTI_GZ') def bruker(measurements_base, template, DEBUG=False, exclude={}, functional_match={}, structural_match={}, sessions=[], subjects=[], actual_size=True, functional_blur_xy=False, functional_registration_method="structural", highpass_sigma=225, lowpass_sigma=None, negative_contrast_agent=False, n_procs=N_PROCS, realign="time", registration_mask=False, tr=1, very_nasty_bruker_delay_hack=False, workflow_name="generic", keep_work=False, autorotate=False, strict=False, verbose=False, ): ''' realign: {"space","time","spacetime",""} Parameter that dictates slictiming correction and realignment of slices. "time" (FSL.SliceTimer) is default, since it works safely. Use others only with caution! ''' if template: if template == "mouse": template = fetch_mouse_DSURQE()['template'] registration_mask = fetch_mouse_DSURQE()['mask'] elif template == "rat": template = fetch_rat_waxholm()['template'] registration_mask = fetch_rat_waxholm()['mask'] else: pass else: raise ValueError("No species or template specified") return -1 measurements_base = path.abspath(path.expanduser(measurements_base)) # add subject and session filters if present if subjects: structural_scan_types['subject'] = subjects if sessions: structural_scan_types['session'] = sessions # define measurement directories to be processed, and populate the list either with the given include_measurements, or with an intelligent selection data_selection = pd.DataFrame([]) if structural_match: s_data_selection = get_data_selection(measurements_base, match=structural_match, exclude=exclude, ) structural_scan_types = s_data_selection['scan_type'].unique() data_selection = pd.concat([data_selection,s_data_selection]) if functional_match: f_data_selection = get_data_selection(measurements_base, match=functional_match, exclude=exclude, ) functional_scan_types = f_data_selection['scan_type'].unique() data_selection = pd.concat([data_selection,f_data_selection]) # we currently only support one structural scan type per session #if functional_registration_method in ("structural", "composite") and structural_scan_types: # structural_scan_types = [structural_scan_types[0]] # we start to define nipype workflow elements (nodes, connections, meta) subjects_sessions = data_selection[["subject","session"]].drop_duplicates().values.tolist() if debug: print('Data selection:') print(data_selection) print('Iterating over:') print(subjects_sessions) infosource = pe.Node(interface=util.IdentityInterface(fields=['subject_session'], mandatory_inputs=False), name="infosource") infosource.iterables = [('subject_session', subjects_sessions)] get_f_scan = pe.Node(name='get_f_scan', interface=util.Function(function=get_scan,input_names=inspect.getargspec(get_scan)[0], output_names=['scan_path','scan_type','trial'])) if not strict: get_f_scan.inputs.ignore_exception = True get_f_scan.inputs.data_selection = data_selection get_f_scan.inputs.measurements_base = measurements_base get_f_scan.iterables = ("scan_type", functional_scan_types) f_bru2nii = pe.Node(interface=bru2nii.Bru2(), name="f_bru2nii") f_bru2nii.inputs.actual_size=actual_size dummy_scans = pe.Node(name='dummy_scans', interface=util.Function(function=force_dummy_scans,input_names=inspect.getargspec(force_dummy_scans)[0], output_names=['out_file'])) dummy_scans.inputs.desired_dummy_scans = DUMMY_SCANS bandpass = pe.Node(interface=fsl.maths.TemporalFilter(), name="bandpass") bandpass.inputs.highpass_sigma = highpass_sigma if lowpass_sigma: bandpass.inputs.lowpass_sigma = lowpass_sigma else: bandpass.inputs.lowpass_sigma = tr #bids_filename = pe.Node(name='bids_filename', interface=util.Function(function=sss_filename,input_names=inspect.getargspec(sss_filename)[0], output_names=['filename'])) bids_filename = pe.Node(name='bids_filename', interface=util.Function(function=bids_naming,input_names=inspect.getargspec(bids_naming)[0], output_names=['filename'])) bids_filename.inputs.metadata = data_selection #bids_stim_filename = pe.Node(name='bids_stim_filename', interface=util.Function(function=sss_filename,input_names=inspect.getargspec(sss_filename)[0], output_names=['filename'])) bids_stim_filename = pe.Node(name='bids_stim_filename', interface=util.Function(function=bids_naming,input_names=inspect.getargspec(bids_naming)[0], output_names=['filename'])) bids_stim_filename.inputs.suffix = "events" bids_stim_filename.inputs.extension = ".tsv" bids_stim_filename.inputs.metadata = data_selection events_file = pe.Node(name='events_file', interface=util.Function(function=write_events_file,input_names=inspect.getargspec(write_events_file)[0], output_names=['out_file'])) events_file.inputs.dummy_scans_ms = DUMMY_SCANS * tr * 1000 events_file.inputs.stim_protocol_dictionary = STIM_PROTOCOL_DICTIONARY events_file.inputs.very_nasty_bruker_delay_hack = very_nasty_bruker_delay_hack if not (strict or verbose): events_file.inputs.ignore_exception = True datasink = pe.Node(nio.DataSink(), name='datasink') datasink.inputs.base_directory = path.join(measurements_base,"preprocessing",workflow_name) datasink.inputs.parameterization = False if not (strict or verbose): datasink.inputs.ignore_exception = True workflow_connections = [ (infosource, get_f_scan, [('subject_session', 'selector')]), (infosource, bids_stim_filename, [('subject_session', 'subject_session')]), (get_f_scan, bids_stim_filename, [('scan_type', 'scan_type')]), (get_f_scan, f_bru2nii, [('scan_path', 'input_dir')]), (f_bru2nii, dummy_scans, [('nii_file', 'in_file')]), (get_f_scan, dummy_scans, [('scan_path', 'scan_dir')]), (get_f_scan, events_file, [ ('trial', 'trial'), ('scan_path', 'scan_dir') ]), (events_file, datasink, [('out_file', 'func.@events')]), (bids_stim_filename, events_file, [('filename', 'out_file')]), (infosource, datasink, [(('subject_session',ss_to_path), 'container')]), (infosource, bids_filename, [('subject_session', 'subject_session')]), (get_f_scan, bids_filename, [('scan_type', 'scan_type')]), (bids_filename, bandpass, [('filename', 'out_file')]), (bandpass, datasink, [('out_file', 'func')]), ] if realign == "space": realigner = pe.Node(interface=spm.Realign(), name="realigner") realigner.inputs.register_to_mean = True workflow_connections.extend([ (dummy_scans, realigner, [('out_file', 'in_file')]), ]) elif realign == "spacetime": realigner = pe.Node(interface=nipy.SpaceTimeRealigner(), name="realigner") realigner.inputs.slice_times = "asc_alt_2" realigner.inputs.tr = tr realigner.inputs.slice_info = 3 #3 for coronal slices (2 for horizontal, 1 for sagittal) workflow_connections.extend([ (dummy_scans, realigner, [('out_file', 'in_file')]), ]) elif realign == "time": realigner = pe.Node(interface=fsl.SliceTimer(), name="slicetimer") realigner.inputs.time_repetition = tr workflow_connections.extend([ (dummy_scans, realigner, [('out_file', 'in_file')]), ]) #ADDING SELECTABLE NODES AND EXTENDING WORKFLOW AS APPROPRIATE: if actual_size: s_biascorrect, f_biascorrect = real_size_nodes() else: s_biascorrect, f_biascorrect = inflated_size_nodes() if structural_scan_types.any(): get_s_scan = pe.Node(name='get_s_scan', interface=util.Function(function=get_scan, input_names=inspect.getargspec(get_scan)[0], output_names=['scan_path','scan_type','trial'])) if not strict: get_s_scan.inputs.ignore_exception = True get_s_scan.inputs.data_selection = data_selection get_s_scan.inputs.measurements_base = measurements_base get_s_scan.iterables = ("scan_type", structural_scan_types) s_bru2nii = pe.Node(interface=bru2nii.Bru2(), name="s_bru2nii") s_bru2nii.inputs.force_conversion=True s_bru2nii.inputs.actual_size=actual_size #s_bids_filename = pe.Node(name='s_bids_filename', interface=util.Function(function=sss_filename,input_names=inspect.getargspec(sss_filename)[0], output_names=['filename'])) s_bids_filename = pe.Node(name='s_bids_filename', interface=util.Function(function=bids_naming,input_names=inspect.getargspec(bids_naming)[0], output_names=['filename'])) s_bids_filename.inputs.metadata = data_selection if actual_size: s_register, s_warp, _, _ = DSURQEc_structural_registration(template, registration_mask) #TODO: incl. in func registration if autorotate: workflow_connections.extend([ (s_biascorrect, s_rotated, [('output_image', 'out_file')]), (s_rotated, s_register, [('out_file', 'moving_image')]), ]) else: workflow_connections.extend([ (s_biascorrect, s_register, [('output_image', 'moving_image')]), (s_register, s_warp, [('composite_transform', 'transforms')]), (s_bru2nii, s_warp, [('nii_file', 'input_image')]), (s_warp, datasink, [('output_image', 'anat')]), ]) else: s_reg_biascorrect = pe.Node(interface=ants.N4BiasFieldCorrection(), name="s_reg_biascorrect") s_reg_biascorrect.inputs.dimension = 3 s_reg_biascorrect.inputs.bspline_fitting_distance = 95 s_reg_biascorrect.inputs.shrink_factor = 2 s_reg_biascorrect.inputs.n_iterations = [500,500,500,500] s_reg_biascorrect.inputs.convergence_threshold = 1e-14 s_cutoff = pe.Node(interface=fsl.ImageMaths(), name="s_cutoff") s_cutoff.inputs.op_string = "-thrP 20 -uthrp 98" s_BET = pe.Node(interface=fsl.BET(), name="s_BET") s_BET.inputs.mask = True s_BET.inputs.frac = 0.3 s_BET.inputs.robust = True s_mask = pe.Node(interface=fsl.ApplyMask(), name="s_mask") s_register, s_warp, f_warp = structural_registration(template) workflow_connections.extend([ (s_bru2nii, s_reg_biascorrect, [('nii_file', 'input_image')]), (s_reg_biascorrect, s_cutoff, [('output_image', 'in_file')]), (s_cutoff, s_BET, [('out_file', 'in_file')]), (s_biascorrect, s_mask, [('output_image', 'in_file')]), (s_BET, s_mask, [('mask_file', 'mask_file')]), ]) #TODO: incl. in func registration if autorotate: workflow_connections.extend([ (s_mask, s_rotated, [('out_file', 'out_file')]), (s_rotated, s_register, [('out_file', 'moving_image')]), ]) else: workflow_connections.extend([ (s_mask, s_register, [('out_file', 'moving_image')]), (s_register, s_warp, [('composite_transform', 'transforms')]), (s_bru2nii, s_warp, [('nii_file', 'input_image')]), (s_warp, datasink, [('output_image', 'anat')]), ]) if autorotate: s_rotated = autorotate(template) workflow_connections.extend([ (infosource, get_s_scan, [('subject_session', 'selector')]), (infosource, s_bids_filename, [('subject_session', 'subject_session')]), (get_s_scan, s_bru2nii, [('scan_path','input_dir')]), (get_s_scan, s_bids_filename, [('scan_type', 'scan_type')]), (s_bids_filename, s_warp, [('filename','output_image')]), (s_bru2nii, s_biascorrect, [('nii_file', 'input_image')]), ]) if functional_registration_method == "structural": if not structural_scan_types: raise ValueError('The option `registration="structural"` requires there to be a structural scan type.') workflow_connections.extend([ (s_register, f_warp, [('composite_transform', 'transforms')]), ]) if realign == "space": workflow_connections.extend([ (realigner, f_warp, [('realigned_files', 'input_image')]), ]) elif realign == "spacetime": workflow_connections.extend([ (realigner, f_warp, [('out_file', 'input_image')]), ]) elif realign == "time": workflow_connections.extend([ (realigner, f_warp, [('slice_time_corrected_file', 'input_image')]), ]) else: workflow_connections.extend([ (dummy_scans, f_warp, [('out_file', 'input_image')]), ]) if functional_registration_method == "composite": if not structural_scan_types.any(): raise ValueError('The option `registration="composite"` requires there to be a structural scan type.') _, _, f_register, f_warp = DSURQEc_structural_registration(template, registration_mask) temporal_mean = pe.Node(interface=fsl.MeanImage(), name="temporal_mean") merge = pe.Node(util.Merge(2), name='merge') workflow_connections.extend([ (temporal_mean, f_biascorrect, [('out_file', 'input_image')]), (f_biascorrect, f_register, [('output_image', 'moving_image')]), (s_biascorrect, f_register, [('output_image', 'fixed_image')]), (f_register, merge, [('composite_transform', 'in1')]), (s_register, merge, [('composite_transform', 'in2')]), (merge, f_warp, [('out', 'transforms')]), ]) if realign == "space": workflow_connections.extend([ (realigner, temporal_mean, [('realigned_files', 'in_file')]), (realigner, f_warp, [('realigned_files', 'input_image')]), ]) elif realign == "spacetime": workflow_connections.extend([ (realigner, temporal_mean, [('out_file', 'in_file')]), (realigner, f_warp, [('out_file', 'input_image')]), ]) elif realign == "time": workflow_connections.extend([ (realigner, temporal_mean, [('slice_time_corrected_file', 'in_file')]), (realigner, f_warp, [('slice_time_corrected_file', 'input_image')]), ]) else: workflow_connections.extend([ (dummy_scans, temporal_mean, [('out_file', 'in_file')]), (dummy_scans, f_warp, [('out_file', 'input_image')]), ]) elif functional_registration_method == "functional": f_register, f_warp = functional_registration(template) temporal_mean = pe.Node(interface=fsl.MeanImage(), name="temporal_mean") #f_cutoff = pe.Node(interface=fsl.ImageMaths(), name="f_cutoff") #f_cutoff.inputs.op_string = "-thrP 30" #f_BET = pe.Node(interface=fsl.BET(), name="f_BET") #f_BET.inputs.mask = True #f_BET.inputs.frac = 0.5 workflow_connections.extend([ (temporal_mean, f_biascorrect, [('out_file', 'input_image')]), #(f_biascorrect, f_cutoff, [('output_image', 'in_file')]), #(f_cutoff, f_BET, [('out_file', 'in_file')]), #(f_BET, f_register, [('out_file', 'moving_image')]), (f_biascorrect, f_register, [('output_image', 'moving_image')]), (f_register, f_warp, [('composite_transform', 'transforms')]), ]) if realign == "space": workflow_connections.extend([ (realigner, temporal_mean, [('realigned_files', 'in_file')]), (realigner, f_warp, [('realigned_files', 'input_image')]), ]) elif realign == "spacetime": workflow_connections.extend([ (realigner, temporal_mean, [('out_file', 'in_file')]), (realigner, f_warp, [('out_file', 'input_image')]), ]) elif realign == "time": workflow_connections.extend([ (realigner, temporal_mean, [('slice_time_corrected_file', 'in_file')]), (realigner, f_warp, [('slice_time_corrected_file', 'input_image')]), ]) else: workflow_connections.extend([ (dummy_scans, temporal_mean, [('out_file', 'in_file')]), (dummy_scans, f_warp, [('out_file', 'input_image')]), ]) invert = pe.Node(interface=fsl.ImageMaths(), name="invert") if functional_blur_xy and negative_contrast_agent: blur = pe.Node(interface=afni.preprocess.BlurToFWHM(), name="blur") blur.inputs.fwhmxy = functional_blur_xy workflow_connections.extend([ (f_warp, blur, [('output_image', 'in_file')]), (blur, invert, [(('out_file', fslmaths_invert_values), 'op_string')]), (blur, invert, [('out_file', 'in_file')]), (invert, bandpass, [('out_file', 'in_file')]), ]) elif functional_blur_xy: blur = pe.Node(interface=afni.preprocess.BlurToFWHM(), name="blur") blur.inputs.fwhmxy = functional_blur_xy workflow_connections.extend([ (f_warp, blur, [('output_image', 'in_file')]), (blur, bandpass, [('out_file', 'in_file')]), ]) elif negative_contrast_agent: blur = pe.Node(interface=afni.preprocess.BlurToFWHM(), name="blur") blur.inputs.fwhmxy = functional_blur_xy workflow_connections.extend([ (f_warp, invert, [(('output_image', fslmaths_invert_values), 'op_string')]), (f_warp, invert, [('output_image', 'in_file')]), (invert, bandpass, [('out_file', 'in_file')]), ]) else: workflow_connections.extend([ (f_warp, bandpass, [('output_image', 'in_file')]), ]) workflow_config = {'execution': {'crashdump_dir': path.join(measurements_base,'preprocessing/crashdump'),}} if debug: workflow_config['logging'] = { 'workflow_level':'DEBUG', 'utils_level':'DEBUG', 'interface_level':'DEBUG', 'filemanip_level':'DEBUG', 'log_to_file':'true', } workdir_name = workflow_name+"_work" workflow = pe.Workflow(name=workdir_name) workflow.connect(workflow_connections) workflow.base_dir = path.join(measurements_base,"preprocessing") workflow.config = workflow_config workflow.write_graph(dotfilename=path.join(workflow.base_dir,workdir_name,"graph.dot"), graph2use="hierarchical", format="png") workflow.run(plugin="MultiProc", plugin_args={'n_procs' : n_procs}) if not keep_work: shutil.rmtree(path.join(workflow.base_dir,workdir_name))
gpl-3.0
kagayakidan/scikit-learn
sklearn/metrics/cluster/tests/test_supervised.py
206
7643
import numpy as np from sklearn.metrics.cluster import adjusted_rand_score from sklearn.metrics.cluster import homogeneity_score from sklearn.metrics.cluster import completeness_score from sklearn.metrics.cluster import v_measure_score from sklearn.metrics.cluster import homogeneity_completeness_v_measure from sklearn.metrics.cluster import adjusted_mutual_info_score from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.metrics.cluster import mutual_info_score from sklearn.metrics.cluster import expected_mutual_information from sklearn.metrics.cluster import contingency_matrix from sklearn.metrics.cluster import entropy from sklearn.utils.testing import assert_raise_message from nose.tools import assert_almost_equal from nose.tools import assert_equal from numpy.testing import assert_array_almost_equal score_funcs = [ adjusted_rand_score, homogeneity_score, completeness_score, v_measure_score, adjusted_mutual_info_score, normalized_mutual_info_score, ] def test_error_messages_on_wrong_input(): for score_func in score_funcs: expected = ('labels_true and labels_pred must have same size,' ' got 2 and 3') assert_raise_message(ValueError, expected, score_func, [0, 1], [1, 1, 1]) expected = "labels_true must be 1D: shape is (2" assert_raise_message(ValueError, expected, score_func, [[0, 1], [1, 0]], [1, 1, 1]) expected = "labels_pred must be 1D: shape is (2" assert_raise_message(ValueError, expected, score_func, [0, 1, 0], [[1, 1], [0, 0]]) def test_perfect_matches(): for score_func in score_funcs: assert_equal(score_func([], []), 1.0) assert_equal(score_func([0], [1]), 1.0) assert_equal(score_func([0, 0, 0], [0, 0, 0]), 1.0) assert_equal(score_func([0, 1, 0], [42, 7, 42]), 1.0) assert_equal(score_func([0., 1., 0.], [42., 7., 42.]), 1.0) assert_equal(score_func([0., 1., 2.], [42., 7., 2.]), 1.0) assert_equal(score_func([0, 1, 2], [42, 7, 2]), 1.0) def test_homogeneous_but_not_complete_labeling(): # homogeneous but not complete clustering h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 2, 2]) assert_almost_equal(h, 1.00, 2) assert_almost_equal(c, 0.69, 2) assert_almost_equal(v, 0.81, 2) def test_complete_but_not_homogeneous_labeling(): # complete but not homogeneous clustering h, c, v = homogeneity_completeness_v_measure( [0, 0, 1, 1, 2, 2], [0, 0, 1, 1, 1, 1]) assert_almost_equal(h, 0.58, 2) assert_almost_equal(c, 1.00, 2) assert_almost_equal(v, 0.73, 2) def test_not_complete_and_not_homogeneous_labeling(): # neither complete nor homogeneous but not so bad either h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) def test_non_consicutive_labels(): # regression tests for labels with gaps h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 2, 2, 2], [0, 1, 0, 1, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) ari_1 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2]) ari_2 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2]) assert_almost_equal(ari_1, 0.24, 2) assert_almost_equal(ari_2, 0.24, 2) def uniform_labelings_scores(score_func, n_samples, k_range, n_runs=10, seed=42): # Compute score for random uniform cluster labelings random_labels = np.random.RandomState(seed).random_integers scores = np.zeros((len(k_range), n_runs)) for i, k in enumerate(k_range): for j in range(n_runs): labels_a = random_labels(low=0, high=k - 1, size=n_samples) labels_b = random_labels(low=0, high=k - 1, size=n_samples) scores[i, j] = score_func(labels_a, labels_b) return scores def test_adjustment_for_chance(): # Check that adjusted scores are almost zero on random labels n_clusters_range = [2, 10, 50, 90] n_samples = 100 n_runs = 10 scores = uniform_labelings_scores( adjusted_rand_score, n_samples, n_clusters_range, n_runs) max_abs_scores = np.abs(scores).max(axis=1) assert_array_almost_equal(max_abs_scores, [0.02, 0.03, 0.03, 0.02], 2) def test_adjusted_mutual_info_score(): # Compute the Adjusted Mutual Information and test against known values labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]) labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2]) # Mutual information mi = mutual_info_score(labels_a, labels_b) assert_almost_equal(mi, 0.41022, 5) # Expected mutual information C = contingency_matrix(labels_a, labels_b) n_samples = np.sum(C) emi = expected_mutual_information(C, n_samples) assert_almost_equal(emi, 0.15042, 5) # Adjusted mutual information ami = adjusted_mutual_info_score(labels_a, labels_b) assert_almost_equal(ami, 0.27502, 5) ami = adjusted_mutual_info_score([1, 1, 2, 2], [2, 2, 3, 3]) assert_equal(ami, 1.0) # Test with a very large array a110 = np.array([list(labels_a) * 110]).flatten() b110 = np.array([list(labels_b) * 110]).flatten() ami = adjusted_mutual_info_score(a110, b110) # This is not accurate to more than 2 places assert_almost_equal(ami, 0.37, 2) def test_entropy(): ent = entropy([0, 0, 42.]) assert_almost_equal(ent, 0.6365141, 5) assert_almost_equal(entropy([]), 1) def test_contingency_matrix(): labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]) labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2]) C = contingency_matrix(labels_a, labels_b) C2 = np.histogram2d(labels_a, labels_b, bins=(np.arange(1, 5), np.arange(1, 5)))[0] assert_array_almost_equal(C, C2) C = contingency_matrix(labels_a, labels_b, eps=.1) assert_array_almost_equal(C, C2 + .1) def test_exactly_zero_info_score(): # Check numerical stability when information is exactly zero for i in np.logspace(1, 4, 4).astype(np.int): labels_a, labels_b = np.ones(i, dtype=np.int),\ np.arange(i, dtype=np.int) assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0) assert_equal(v_measure_score(labels_a, labels_b), 0.0) assert_equal(adjusted_mutual_info_score(labels_a, labels_b), 0.0) assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0) def test_v_measure_and_mutual_information(seed=36): # Check relation between v_measure, entropy and mutual information for i in np.logspace(1, 4, 4).astype(np.int): random_state = np.random.RandomState(seed) labels_a, labels_b = random_state.random_integers(0, 10, i),\ random_state.random_integers(0, 10, i) assert_almost_equal(v_measure_score(labels_a, labels_b), 2.0 * mutual_info_score(labels_a, labels_b) / (entropy(labels_a) + entropy(labels_b)), 0)
bsd-3-clause
akloster/bokeh
examples/compat/mpl/lc_offsets.py
34
1096
from matplotlib.collections import LineCollection import matplotlib.pyplot as plt import numpy as np from bokeh import mpl from bokeh.plotting import output_file, show # Simulate a series of ocean current profiles, successively # offset by 0.1 m/s so that they form what is sometimes called # a "waterfall" plot or a "stagger" plot. nverts = 60 ncurves = 20 offs = (0.1, 0.0) rs = np.random.RandomState([12345678]) yy = np.linspace(0, 2 * np.pi, nverts) ym = np.amax(yy) xx = (0.2 + (ym - yy) / ym) ** 2 * np.cos(yy - 0.4) * 0.5 segs = [] for i in range(ncurves): xxx = xx + 0.02 * rs.randn(nverts) curve = list(zip(xxx, yy * 100)) segs.append(curve) colors = [(1.0, 0.0, 0.0, 1.0), (0.0, 0.5, 0.0, 1.0), (0.0, 0.0, 1.0, 1.0), (0.0, 0.75, 0.75, 1.0), (0.75, 0.75, 0, 1.0), (0.75, 0, 0.75, 1.0), (0.0, 0.0, 0.0, 1.0)] col = LineCollection(segs, linewidth=5, offsets=offs) ax = plt.axes() ax.add_collection(col, autolim=True) col.set_color(colors) ax.set_title('Successive data offsets') fig = plt.gcf() output_file("lc_offsets.html") show(mpl.to_bokeh())
bsd-3-clause
ethz-asl/segmatch
segmappy/setup.py
1
1338
from setuptools import setup, find_packages # check some version of tensorflow has been installed try: import tensorflow if not tensorflow.__version__.startswith('1.8'): print("Warning: You are running tensorflow version {}. segmappy was tested with version 1.8.0 . If you encounter issues, please report them to the segmap developers.".format(tensorflow.__version__)) except ImportError: print("Error: segmappy requires some version of Tensorflow (with/without GPU).") raise # python package setup setup( name="segmappy", version="0.1", description="Segmap Python Tools", url="http://github.com/ethz-asl/segmap", author="Andrei Cramariuc", author_email="[email protected]", license="MIT", packages=find_packages(), scripts=["bin/ensure_segmappy_is_installed.py", "bin/segmappy_train_cnn", "bin/segmappy_train_semantics", "bin/segmappy_plot_roc_from_matches", "bin/segmappy_plot_acc_versus_size", "bin/segmappy_download_datasets"], package_data = {'segmappy': ['config/*.ini']}, install_requires = [ "scikit-learn>=0.19.1", "scipy>=0.19.1", "configparser>=3.5.0", "future>=0.16.0", "matplotlib>=2.2.2", "numpy>=1.14.3", "pandas>=0.22.0" ], zip_safe=False, )
bsd-3-clause
codles/UpDownMethods
UpDownMethods/plot.py
1
1966
import matplotlib.pyplot as plt import UpDownMethods as ud def plot_results(results, midpoints=False, figure=None, estimate=False, reversals=False, runs=True): if figure is None: figure = plt.figure() figure.clf() figure.add_subplot(111) plt.hold(True) # Plot correct responses corr = results[results['Responses'] == True] if len(corr) > 0: plt.scatter(corr.index+1, corr.Value, s=50, marker='+', c='k') # Plot incorrect responses incorr = results[results['Responses'] == False] if len(incorr) > 0: plt.scatter(incorr.index+1, incorr.Value, s=50, marker='_', c='k') # Indicate reversals if reversals: reversal = results[results['Reversal'] == True] if len(reversal) > 0: plt.scatter(reversal.index+1, reversal.Value, facecolors='none', edgecolors='k', s=200) # Track the runs if runs is not False: runs = ud.runs(results) for i in range(len(runs)): r = runs.iloc[[i]] start = r["Start"] end = r["Finish"] mid = start + (end-start)/2 runY = min(results.Value)-1 plt.errorbar(mid, runY, xerr=(end-start)/2, c='k') plt.annotate(str(int(i+1)), xy=(mid, runY-0.5), xytext=(mid, runY-0.5)) if estimate is not False: est = ud.estimate_reversals(results, num=estimate) if est is not None: plt.axhline(y=est, ls='--') plt.text(0, est+0.05, "Estimate = " + str(est), fontsize=12) if midpoints: mids = ud.midpoints(results) for i in range(len(mids)): plt.scatter(mids['CentreTrial'].values[i], mids['Midpoint'].values[i], c='r') if len(results) > 0: plt.xlim(-0.5, max(results.index) + 2.5) plt.ylabel('Stimulus Value', fontsize=14) plt.xlabel('Trial Number', fontsize=14) return figure
mit
cybernet14/scikit-learn
sklearn/manifold/tests/test_mds.py
324
1862
import numpy as np from numpy.testing import assert_array_almost_equal from nose.tools import assert_raises from sklearn.manifold import mds def test_smacof(): # test metric smacof using the data of "Modern Multidimensional Scaling", # Borg & Groenen, p 154 sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.451, .252], [.016, -.238], [-.200, .524]]) X, _ = mds.smacof(sim, init=Z, n_components=2, max_iter=1, n_init=1) X_true = np.array([[-1.415, -2.471], [1.633, 1.107], [.249, -.067], [-.468, 1.431]]) assert_array_almost_equal(X, X_true, decimal=3) def test_smacof_error(): # Not symmetric similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # Not squared similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # init not None and not correct format: sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.016, -.238], [-.200, .524]]) assert_raises(ValueError, mds.smacof, sim, init=Z, n_init=1) def test_MDS(): sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) mds_clf = mds.MDS(metric=False, n_jobs=3, dissimilarity="precomputed") mds_clf.fit(sim)
bsd-3-clause
wanghaven/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/lines.py
69
48233
""" This module contains all the 2D line class which can draw with a variety of line styles, markers and colors. """ # TODO: expose cap and join style attrs from __future__ import division import numpy as np from numpy import ma from matplotlib import verbose import artist from artist import Artist from cbook import iterable, is_string_like, is_numlike, ls_mapper, dedent,\ flatten from colors import colorConverter from path import Path from transforms import Affine2D, Bbox, TransformedPath, IdentityTransform from matplotlib import rcParams # special-purpose marker identifiers: (TICKLEFT, TICKRIGHT, TICKUP, TICKDOWN, CARETLEFT, CARETRIGHT, CARETUP, CARETDOWN) = range(8) # COVERAGE NOTE: Never called internally or from examples def unmasked_index_ranges(mask, compressed = True): warnings.warn("Import this directly from matplotlib.cbook", DeprecationWarning) # Warning added 2008/07/22 from matplotlib.cbook import unmasked_index_ranges as _unmasked_index_ranges return _unmasked_index_ranges(mask, compressed=compressed) def segment_hits(cx, cy, x, y, radius): """ Determine if any line segments are within radius of a point. Returns the list of line segments that are within that radius. """ # Process single points specially if len(x) < 2: res, = np.nonzero( (cx - x)**2 + (cy - y)**2 <= radius**2 ) return res # We need to lop the last element off a lot. xr,yr = x[:-1],y[:-1] # Only look at line segments whose nearest point to C on the line # lies within the segment. dx,dy = x[1:]-xr, y[1:]-yr Lnorm_sq = dx**2+dy**2 # Possibly want to eliminate Lnorm==0 u = ( (cx-xr)*dx + (cy-yr)*dy )/Lnorm_sq candidates = (u>=0) & (u<=1) #if any(candidates): print "candidates",xr[candidates] # Note that there is a little area near one side of each point # which will be near neither segment, and another which will # be near both, depending on the angle of the lines. The # following radius test eliminates these ambiguities. point_hits = (cx - x)**2 + (cy - y)**2 <= radius**2 #if any(point_hits): print "points",xr[candidates] candidates = candidates & ~(point_hits[:-1] | point_hits[1:]) # For those candidates which remain, determine how far they lie away # from the line. px,py = xr+u*dx,yr+u*dy line_hits = (cx-px)**2 + (cy-py)**2 <= radius**2 #if any(line_hits): print "lines",xr[candidates] line_hits = line_hits & candidates points, = point_hits.ravel().nonzero() lines, = line_hits.ravel().nonzero() #print points,lines return np.concatenate((points,lines)) class Line2D(Artist): """ A line - the line can have both a solid linestyle connecting all the vertices, and a marker at each vertex. Additionally, the drawing of the solid line is influenced by the drawstyle, eg one can create "stepped" lines in various styles. """ lineStyles = _lineStyles = { # hidden names deprecated '-' : '_draw_solid', '--' : '_draw_dashed', '-.' : '_draw_dash_dot', ':' : '_draw_dotted', 'None' : '_draw_nothing', ' ' : '_draw_nothing', '' : '_draw_nothing', } _drawStyles_l = { 'default' : '_draw_lines', 'steps-mid' : '_draw_steps_mid', 'steps-pre' : '_draw_steps_pre', 'steps-post' : '_draw_steps_post', } _drawStyles_s = { 'steps' : '_draw_steps_pre', } drawStyles = {} drawStyles.update(_drawStyles_l) drawStyles.update(_drawStyles_s) markers = _markers = { # hidden names deprecated '.' : '_draw_point', ',' : '_draw_pixel', 'o' : '_draw_circle', 'v' : '_draw_triangle_down', '^' : '_draw_triangle_up', '<' : '_draw_triangle_left', '>' : '_draw_triangle_right', '1' : '_draw_tri_down', '2' : '_draw_tri_up', '3' : '_draw_tri_left', '4' : '_draw_tri_right', 's' : '_draw_square', 'p' : '_draw_pentagon', '*' : '_draw_star', 'h' : '_draw_hexagon1', 'H' : '_draw_hexagon2', '+' : '_draw_plus', 'x' : '_draw_x', 'D' : '_draw_diamond', 'd' : '_draw_thin_diamond', '|' : '_draw_vline', '_' : '_draw_hline', TICKLEFT : '_draw_tickleft', TICKRIGHT : '_draw_tickright', TICKUP : '_draw_tickup', TICKDOWN : '_draw_tickdown', CARETLEFT : '_draw_caretleft', CARETRIGHT : '_draw_caretright', CARETUP : '_draw_caretup', CARETDOWN : '_draw_caretdown', 'None' : '_draw_nothing', ' ' : '_draw_nothing', '' : '_draw_nothing', } filled_markers = ('o', '^', 'v', '<', '>', 's', 'd', 'D', 'h', 'H', 'p', '*') zorder = 2 validCap = ('butt', 'round', 'projecting') validJoin = ('miter', 'round', 'bevel') def __str__(self): if self._label != "": return "Line2D(%s)"%(self._label) elif hasattr(self, '_x') and len(self._x) > 3: return "Line2D((%g,%g),(%g,%g),...,(%g,%g))"\ %(self._x[0],self._y[0],self._x[0],self._y[0],self._x[-1],self._y[-1]) elif hasattr(self, '_x'): return "Line2D(%s)"\ %(",".join(["(%g,%g)"%(x,y) for x,y in zip(self._x,self._y)])) else: return "Line2D()" def __init__(self, xdata, ydata, linewidth = None, # all Nones default to rc linestyle = None, color = None, marker = None, markersize = None, markeredgewidth = None, markeredgecolor = None, markerfacecolor = None, antialiased = None, dash_capstyle = None, solid_capstyle = None, dash_joinstyle = None, solid_joinstyle = None, pickradius = 5, drawstyle = None, **kwargs ): """ Create a :class:`~matplotlib.lines.Line2D` instance with *x* and *y* data in sequences *xdata*, *ydata*. The kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s See :meth:`set_linestyle` for a decription of the line styles, :meth:`set_marker` for a description of the markers, and :meth:`set_drawstyle` for a description of the draw styles. """ Artist.__init__(self) #convert sequences to numpy arrays if not iterable(xdata): raise RuntimeError('xdata must be a sequence') if not iterable(ydata): raise RuntimeError('ydata must be a sequence') if linewidth is None : linewidth=rcParams['lines.linewidth'] if linestyle is None : linestyle=rcParams['lines.linestyle'] if marker is None : marker=rcParams['lines.marker'] if color is None : color=rcParams['lines.color'] if markersize is None : markersize=rcParams['lines.markersize'] if antialiased is None : antialiased=rcParams['lines.antialiased'] if dash_capstyle is None : dash_capstyle=rcParams['lines.dash_capstyle'] if dash_joinstyle is None : dash_joinstyle=rcParams['lines.dash_joinstyle'] if solid_capstyle is None : solid_capstyle=rcParams['lines.solid_capstyle'] if solid_joinstyle is None : solid_joinstyle=rcParams['lines.solid_joinstyle'] if drawstyle is None : drawstyle='default' self.set_dash_capstyle(dash_capstyle) self.set_dash_joinstyle(dash_joinstyle) self.set_solid_capstyle(solid_capstyle) self.set_solid_joinstyle(solid_joinstyle) self.set_linestyle(linestyle) self.set_drawstyle(drawstyle) self.set_linewidth(linewidth) self.set_color(color) self.set_marker(marker) self.set_antialiased(antialiased) self.set_markersize(markersize) self._dashSeq = None self.set_markerfacecolor(markerfacecolor) self.set_markeredgecolor(markeredgecolor) self.set_markeredgewidth(markeredgewidth) self._point_size_reduction = 0.5 self.verticalOffset = None # update kwargs before updating data to give the caller a # chance to init axes (and hence unit support) self.update(kwargs) self.pickradius = pickradius if is_numlike(self._picker): self.pickradius = self._picker self._xorig = np.asarray([]) self._yorig = np.asarray([]) self._invalid = True self.set_data(xdata, ydata) def contains(self, mouseevent): """ Test whether the mouse event occurred on the line. The pick radius determines the precision of the location test (usually within five points of the value). Use :meth:`~matplotlib.lines.Line2D.get_pickradius` or :meth:`~matplotlib.lines.Line2D.set_pickradius` to view or modify it. Returns *True* if any values are within the radius along with ``{'ind': pointlist}``, where *pointlist* is the set of points within the radius. TODO: sort returned indices by distance """ if callable(self._contains): return self._contains(self,mouseevent) if not is_numlike(self.pickradius): raise ValueError,"pick radius should be a distance" # Make sure we have data to plot if self._invalid: self.recache() if len(self._xy)==0: return False,{} # Convert points to pixels path, affine = self._transformed_path.get_transformed_path_and_affine() path = affine.transform_path(path) xy = path.vertices xt = xy[:, 0] yt = xy[:, 1] # Convert pick radius from points to pixels if self.figure == None: warning.warn('no figure set when check if mouse is on line') pixels = self.pickradius else: pixels = self.figure.dpi/72. * self.pickradius # Check for collision if self._linestyle in ['None',None]: # If no line, return the nearby point(s) d = (xt-mouseevent.x)**2 + (yt-mouseevent.y)**2 ind, = np.nonzero(np.less_equal(d, pixels**2)) else: # If line, return the nearby segment(s) ind = segment_hits(mouseevent.x,mouseevent.y,xt,yt,pixels) # Debugging message if False and self._label != u'': print "Checking line",self._label,"at",mouseevent.x,mouseevent.y print 'xt', xt print 'yt', yt #print 'dx,dy', (xt-mouseevent.x)**2., (yt-mouseevent.y)**2. print 'ind',ind # Return the point(s) within radius return len(ind)>0,dict(ind=ind) def get_pickradius(self): 'return the pick radius used for containment tests' return self.pickradius def setpickradius(self,d): """Sets the pick radius used for containment tests ACCEPTS: float distance in points """ self.pickradius = d def set_picker(self,p): """Sets the event picker details for the line. ACCEPTS: float distance in points or callable pick function ``fn(artist, event)`` """ if callable(p): self._contains = p else: self.pickradius = p self._picker = p def get_window_extent(self, renderer): bbox = Bbox.unit() bbox.update_from_data_xy(self.get_transform().transform(self.get_xydata()), ignore=True) # correct for marker size, if any if self._marker is not None: ms = (self._markersize / 72.0 * self.figure.dpi) * 0.5 bbox = bbox.padded(ms) return bbox def set_axes(self, ax): Artist.set_axes(self, ax) if ax.xaxis is not None: self._xcid = ax.xaxis.callbacks.connect('units', self.recache) if ax.yaxis is not None: self._ycid = ax.yaxis.callbacks.connect('units', self.recache) set_axes.__doc__ = Artist.set_axes.__doc__ def set_data(self, *args): """ Set the x and y data ACCEPTS: 2D array """ if len(args)==1: x, y = args[0] else: x, y = args not_masked = 0 if not ma.isMaskedArray(x): x = np.asarray(x) not_masked += 1 if not ma.isMaskedArray(y): y = np.asarray(y) not_masked += 1 if (not_masked < 2 or (x is not self._xorig and (x.shape != self._xorig.shape or np.any(x != self._xorig))) or (y is not self._yorig and (y.shape != self._yorig.shape or np.any(y != self._yorig)))): self._xorig = x self._yorig = y self._invalid = True def recache(self): #if self.axes is None: print 'recache no axes' #else: print 'recache units', self.axes.xaxis.units, self.axes.yaxis.units if ma.isMaskedArray(self._xorig) or ma.isMaskedArray(self._yorig): x = ma.asarray(self.convert_xunits(self._xorig), float) y = ma.asarray(self.convert_yunits(self._yorig), float) x = ma.ravel(x) y = ma.ravel(y) else: x = np.asarray(self.convert_xunits(self._xorig), float) y = np.asarray(self.convert_yunits(self._yorig), float) x = np.ravel(x) y = np.ravel(y) if len(x)==1 and len(y)>1: x = x * np.ones(y.shape, float) if len(y)==1 and len(x)>1: y = y * np.ones(x.shape, float) if len(x) != len(y): raise RuntimeError('xdata and ydata must be the same length') x = x.reshape((len(x), 1)) y = y.reshape((len(y), 1)) if ma.isMaskedArray(x) or ma.isMaskedArray(y): self._xy = ma.concatenate((x, y), 1) else: self._xy = np.concatenate((x, y), 1) self._x = self._xy[:, 0] # just a view self._y = self._xy[:, 1] # just a view # Masked arrays are now handled by the Path class itself self._path = Path(self._xy) self._transformed_path = TransformedPath(self._path, self.get_transform()) self._invalid = False def set_transform(self, t): """ set the Transformation instance used by this artist ACCEPTS: a :class:`matplotlib.transforms.Transform` instance """ Artist.set_transform(self, t) self._invalid = True # self._transformed_path = TransformedPath(self._path, self.get_transform()) def _is_sorted(self, x): "return true if x is sorted" if len(x)<2: return 1 return np.alltrue(x[1:]-x[0:-1]>=0) def draw(self, renderer): if self._invalid: self.recache() renderer.open_group('line2d') if not self._visible: return gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_foreground(self._color) gc.set_antialiased(self._antialiased) gc.set_linewidth(self._linewidth) gc.set_alpha(self._alpha) if self.is_dashed(): cap = self._dashcapstyle join = self._dashjoinstyle else: cap = self._solidcapstyle join = self._solidjoinstyle gc.set_joinstyle(join) gc.set_capstyle(cap) gc.set_snap(self.get_snap()) funcname = self._lineStyles.get(self._linestyle, '_draw_nothing') if funcname != '_draw_nothing': tpath, affine = self._transformed_path.get_transformed_path_and_affine() self._lineFunc = getattr(self, funcname) funcname = self.drawStyles.get(self._drawstyle, '_draw_lines') drawFunc = getattr(self, funcname) drawFunc(renderer, gc, tpath, affine.frozen()) if self._marker is not None: gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_foreground(self.get_markeredgecolor()) gc.set_linewidth(self._markeredgewidth) gc.set_alpha(self._alpha) funcname = self._markers.get(self._marker, '_draw_nothing') if funcname != '_draw_nothing': tpath, affine = self._transformed_path.get_transformed_points_and_affine() markerFunc = getattr(self, funcname) markerFunc(renderer, gc, tpath, affine.frozen()) renderer.close_group('line2d') def get_antialiased(self): return self._antialiased def get_color(self): return self._color def get_drawstyle(self): return self._drawstyle def get_linestyle(self): return self._linestyle def get_linewidth(self): return self._linewidth def get_marker(self): return self._marker def get_markeredgecolor(self): if (is_string_like(self._markeredgecolor) and self._markeredgecolor == 'auto'): if self._marker in self.filled_markers: return 'k' else: return self._color else: return self._markeredgecolor return self._markeredgecolor def get_markeredgewidth(self): return self._markeredgewidth def get_markerfacecolor(self): if (self._markerfacecolor is None or (is_string_like(self._markerfacecolor) and self._markerfacecolor.lower()=='none') ): return self._markerfacecolor elif (is_string_like(self._markerfacecolor) and self._markerfacecolor.lower() == 'auto'): return self._color else: return self._markerfacecolor def get_markersize(self): return self._markersize def get_data(self, orig=True): """ Return the xdata, ydata. If *orig* is *True*, return the original data """ return self.get_xdata(orig=orig), self.get_ydata(orig=orig) def get_xdata(self, orig=True): """ Return the xdata. If *orig* is *True*, return the original data, else the processed data. """ if orig: return self._xorig if self._invalid: self.recache() return self._x def get_ydata(self, orig=True): """ Return the ydata. If *orig* is *True*, return the original data, else the processed data. """ if orig: return self._yorig if self._invalid: self.recache() return self._y def get_path(self): """ Return the :class:`~matplotlib.path.Path` object associated with this line. """ if self._invalid: self.recache() return self._path def get_xydata(self): """ Return the *xy* data as a Nx2 numpy array. """ if self._invalid: self.recache() return self._xy def set_antialiased(self, b): """ True if line should be drawin with antialiased rendering ACCEPTS: [True | False] """ self._antialiased = b def set_color(self, color): """ Set the color of the line ACCEPTS: any matplotlib color """ self._color = color def set_drawstyle(self, drawstyle): """ Set the drawstyle of the plot 'default' connects the points with lines. The steps variants produce step-plots. 'steps' is equivalent to 'steps-pre' and is maintained for backward-compatibility. ACCEPTS: [ 'default' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' ] """ self._drawstyle = drawstyle def set_linewidth(self, w): """ Set the line width in points ACCEPTS: float value in points """ self._linewidth = w def set_linestyle(self, linestyle): """ Set the linestyle of the line (also accepts drawstyles) ================ ================= linestyle description ================ ================= '-' solid '--' dashed '-.' dash_dot ':' dotted 'None' draw nothing ' ' draw nothing '' draw nothing ================ ================= 'steps' is equivalent to 'steps-pre' and is maintained for backward-compatibility. .. seealso:: :meth:`set_drawstyle` ACCEPTS: [ '-' | '--' | '-.' | ':' | 'None' | ' ' | '' ] and any drawstyle in combination with a linestyle, e.g. 'steps--'. """ # handle long drawstyle names before short ones ! for ds in flatten([k.keys() for k in (self._drawStyles_l, self._drawStyles_s)], is_string_like): if linestyle.startswith(ds): self.set_drawstyle(ds) if len(linestyle) > len(ds): linestyle = linestyle[len(ds):] else: linestyle = '-' if linestyle not in self._lineStyles: if linestyle in ls_mapper: linestyle = ls_mapper[linestyle] else: verbose.report('Unrecognized line style %s, %s' % (linestyle, type(linestyle))) if linestyle in [' ','']: linestyle = 'None' self._linestyle = linestyle def set_marker(self, marker): """ Set the line marker ========== ========================== marker description ========== ========================== '.' point ',' pixel 'o' circle 'v' triangle_down '^' triangle_up '<' triangle_left '>' triangle_right '1' tri_down '2' tri_up '3' tri_left '4' tri_right 's' square 'p' pentagon '*' star 'h' hexagon1 'H' hexagon2 '+' plus 'x' x 'D' diamond 'd' thin_diamond '|' vline '_' hline TICKLEFT tickleft TICKRIGHT tickright TICKUP tickup TICKDOWN tickdown CARETLEFT caretleft CARETRIGHT caretright CARETUP caretup CARETDOWN caretdown 'None' nothing ' ' nothing '' nothing ========== ========================== ACCEPTS: [ '+' | '*' | ',' | '.' | '1' | '2' | '3' | '4' | '<' | '>' | 'D' | 'H' | '^' | '_' | 'd' | 'h' | 'o' | 'p' | 's' | 'v' | 'x' | '|' | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | 'None' | ' ' | '' ] """ if marker not in self._markers: verbose.report('Unrecognized marker style %s, %s' % (marker, type(marker))) if marker in [' ','']: marker = 'None' self._marker = marker self._markerFunc = self._markers[marker] def set_markeredgecolor(self, ec): """ Set the marker edge color ACCEPTS: any matplotlib color """ if ec is None : ec = 'auto' self._markeredgecolor = ec def set_markeredgewidth(self, ew): """ Set the marker edge width in points ACCEPTS: float value in points """ if ew is None : ew = rcParams['lines.markeredgewidth'] self._markeredgewidth = ew def set_markerfacecolor(self, fc): """ Set the marker face color ACCEPTS: any matplotlib color """ if fc is None : fc = 'auto' self._markerfacecolor = fc def set_markersize(self, sz): """ Set the marker size in points ACCEPTS: float """ self._markersize = sz def set_xdata(self, x): """ Set the data np.array for x ACCEPTS: 1D array """ x = np.asarray(x) self.set_data(x, self._yorig) def set_ydata(self, y): """ Set the data np.array for y ACCEPTS: 1D array """ y = np.asarray(y) self.set_data(self._xorig, y) def set_dashes(self, seq): """ Set the dash sequence, sequence of dashes with on off ink in points. If seq is empty or if seq = (None, None), the linestyle will be set to solid. ACCEPTS: sequence of on/off ink in points """ if seq == (None, None) or len(seq)==0: self.set_linestyle('-') else: self.set_linestyle('--') self._dashSeq = seq # TODO: offset ignored for now def _draw_lines(self, renderer, gc, path, trans): self._lineFunc(renderer, gc, path, trans) def _draw_steps_pre(self, renderer, gc, path, trans): vertices = self._xy steps = ma.zeros((2*len(vertices)-1, 2), np.float_) steps[0::2, 0], steps[1::2, 0] = vertices[:, 0], vertices[:-1, 0] steps[0::2, 1], steps[1:-1:2, 1] = vertices[:, 1], vertices[1:, 1] path = Path(steps) path = path.transformed(self.get_transform()) self._lineFunc(renderer, gc, path, IdentityTransform()) def _draw_steps_post(self, renderer, gc, path, trans): vertices = self._xy steps = ma.zeros((2*len(vertices)-1, 2), np.float_) steps[::2, 0], steps[1:-1:2, 0] = vertices[:, 0], vertices[1:, 0] steps[0::2, 1], steps[1::2, 1] = vertices[:, 1], vertices[:-1, 1] path = Path(steps) path = path.transformed(self.get_transform()) self._lineFunc(renderer, gc, path, IdentityTransform()) def _draw_steps_mid(self, renderer, gc, path, trans): vertices = self._xy steps = ma.zeros((2*len(vertices), 2), np.float_) steps[1:-1:2, 0] = 0.5 * (vertices[:-1, 0] + vertices[1:, 0]) steps[2::2, 0] = 0.5 * (vertices[:-1, 0] + vertices[1:, 0]) steps[0, 0] = vertices[0, 0] steps[-1, 0] = vertices[-1, 0] steps[0::2, 1], steps[1::2, 1] = vertices[:, 1], vertices[:, 1] path = Path(steps) path = path.transformed(self.get_transform()) self._lineFunc(renderer, gc, path, IdentityTransform()) def _draw_nothing(self, *args, **kwargs): pass def _draw_solid(self, renderer, gc, path, trans): gc.set_linestyle('solid') renderer.draw_path(gc, path, trans) def _draw_dashed(self, renderer, gc, path, trans): gc.set_linestyle('dashed') if self._dashSeq is not None: gc.set_dashes(0, self._dashSeq) renderer.draw_path(gc, path, trans) def _draw_dash_dot(self, renderer, gc, path, trans): gc.set_linestyle('dashdot') renderer.draw_path(gc, path, trans) def _draw_dotted(self, renderer, gc, path, trans): gc.set_linestyle('dotted') renderer.draw_path(gc, path, trans) def _draw_point(self, renderer, gc, path, path_trans): w = renderer.points_to_pixels(self._markersize) * \ self._point_size_reduction * 0.5 gc.set_snap(renderer.points_to_pixels(self._markersize) > 3.0) rgbFace = self._get_rgb_face() transform = Affine2D().scale(w) renderer.draw_markers( gc, Path.unit_circle(), transform, path, path_trans, rgbFace) _draw_pixel_transform = Affine2D().translate(-0.5, -0.5) def _draw_pixel(self, renderer, gc, path, path_trans): rgbFace = self._get_rgb_face() gc.set_snap(False) renderer.draw_markers(gc, Path.unit_rectangle(), self._draw_pixel_transform, path, path_trans, rgbFace) def _draw_circle(self, renderer, gc, path, path_trans): w = renderer.points_to_pixels(self._markersize) * 0.5 gc.set_snap(renderer.points_to_pixels(self._markersize) > 3.0) rgbFace = self._get_rgb_face() transform = Affine2D().scale(w, w) renderer.draw_markers( gc, Path.unit_circle(), transform, path, path_trans, rgbFace) _triangle_path = Path([[0.0, 1.0], [-1.0, -1.0], [1.0, -1.0], [0.0, 1.0]]) def _draw_triangle_up(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset, offset) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, self._triangle_path, transform, path, path_trans, rgbFace) def _draw_triangle_down(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset, -offset) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, self._triangle_path, transform, path, path_trans, rgbFace) def _draw_triangle_left(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset, offset).rotate_deg(90) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, self._triangle_path, transform, path, path_trans, rgbFace) def _draw_triangle_right(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset, offset).rotate_deg(-90) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, self._triangle_path, transform, path, path_trans, rgbFace) def _draw_square(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 2.0) side = renderer.points_to_pixels(self._markersize) transform = Affine2D().translate(-0.5, -0.5).scale(side) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, Path.unit_rectangle(), transform, path, path_trans, rgbFace) def _draw_diamond(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) side = renderer.points_to_pixels(self._markersize) transform = Affine2D().translate(-0.5, -0.5).rotate_deg(45).scale(side) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, Path.unit_rectangle(), transform, path, path_trans, rgbFace) def _draw_thin_diamond(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 3.0) offset = renderer.points_to_pixels(self._markersize) transform = Affine2D().translate(-0.5, -0.5) \ .rotate_deg(45).scale(offset * 0.6, offset) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, Path.unit_rectangle(), transform, path, path_trans, rgbFace) def _draw_pentagon(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5 * renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, Path.unit_regular_polygon(5), transform, path, path_trans, rgbFace) def _draw_star(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5 * renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) rgbFace = self._get_rgb_face() _starpath = Path.unit_regular_star(5, innerCircle=0.381966) renderer.draw_markers(gc, _starpath, transform, path, path_trans, rgbFace) def _draw_hexagon1(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5 * renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, Path.unit_regular_polygon(6), transform, path, path_trans, rgbFace) def _draw_hexagon2(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5 * renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(30) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, Path.unit_regular_polygon(6), transform, path, path_trans, rgbFace) _line_marker_path = Path([[0.0, -1.0], [0.0, 1.0]]) def _draw_vline(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 1.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) renderer.draw_markers(gc, self._line_marker_path, transform, path, path_trans) def _draw_hline(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 1.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(90) renderer.draw_markers(gc, self._line_marker_path, transform, path, path_trans) _tickhoriz_path = Path([[0.0, 0.0], [1.0, 0.0]]) def _draw_tickleft(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 1.0) offset = renderer.points_to_pixels(self._markersize) marker_transform = Affine2D().scale(-offset, 1.0) renderer.draw_markers(gc, self._tickhoriz_path, marker_transform, path, path_trans) def _draw_tickright(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 1.0) offset = renderer.points_to_pixels(self._markersize) marker_transform = Affine2D().scale(offset, 1.0) renderer.draw_markers(gc, self._tickhoriz_path, marker_transform, path, path_trans) _tickvert_path = Path([[-0.0, 0.0], [-0.0, 1.0]]) def _draw_tickup(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 1.0) offset = renderer.points_to_pixels(self._markersize) marker_transform = Affine2D().scale(1.0, offset) renderer.draw_markers(gc, self._tickvert_path, marker_transform, path, path_trans) def _draw_tickdown(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 1.0) offset = renderer.points_to_pixels(self._markersize) marker_transform = Affine2D().scale(1.0, -offset) renderer.draw_markers(gc, self._tickvert_path, marker_transform, path, path_trans) _plus_path = Path([[-1.0, 0.0], [1.0, 0.0], [0.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]) def _draw_plus(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 3.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) renderer.draw_markers(gc, self._plus_path, transform, path, path_trans) _tri_path = Path([[0.0, 0.0], [0.0, -1.0], [0.0, 0.0], [0.8, 0.5], [0.0, 0.0], [-0.8, 0.5]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]) def _draw_tri_down(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) renderer.draw_markers(gc, self._tri_path, transform, path, path_trans) def _draw_tri_up(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(180) renderer.draw_markers(gc, self._tri_path, transform, path, path_trans) def _draw_tri_left(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(90) renderer.draw_markers(gc, self._tri_path, transform, path, path_trans) def _draw_tri_right(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(270) renderer.draw_markers(gc, self._tri_path, transform, path, path_trans) _caret_path = Path([[-1.0, 1.5], [0.0, 0.0], [1.0, 1.5]]) def _draw_caretdown(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 3.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) renderer.draw_markers(gc, self._caret_path, transform, path, path_trans) def _draw_caretup(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 3.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(180) renderer.draw_markers(gc, self._caret_path, transform, path, path_trans) def _draw_caretleft(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 3.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(270) renderer.draw_markers(gc, self._caret_path, transform, path, path_trans) def _draw_caretright(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 3.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(90) renderer.draw_markers(gc, self._caret_path, transform, path, path_trans) _x_path = Path([[-1.0, -1.0], [1.0, 1.0], [-1.0, 1.0], [1.0, -1.0]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]) def _draw_x(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 3.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) renderer.draw_markers(gc, self._x_path, transform, path, path_trans) def update_from(self, other): 'copy properties from other to self' Artist.update_from(self, other) self._linestyle = other._linestyle self._linewidth = other._linewidth self._color = other._color self._markersize = other._markersize self._markerfacecolor = other._markerfacecolor self._markeredgecolor = other._markeredgecolor self._markeredgewidth = other._markeredgewidth self._dashSeq = other._dashSeq self._dashcapstyle = other._dashcapstyle self._dashjoinstyle = other._dashjoinstyle self._solidcapstyle = other._solidcapstyle self._solidjoinstyle = other._solidjoinstyle self._linestyle = other._linestyle self._marker = other._marker self._drawstyle = other._drawstyle def _get_rgb_face(self): facecolor = self.get_markerfacecolor() if is_string_like(facecolor) and facecolor.lower()=='none': rgbFace = None else: rgbFace = colorConverter.to_rgb(facecolor) return rgbFace # some aliases.... def set_aa(self, val): 'alias for set_antialiased' self.set_antialiased(val) def set_c(self, val): 'alias for set_color' self.set_color(val) def set_ls(self, val): 'alias for set_linestyle' self.set_linestyle(val) def set_lw(self, val): 'alias for set_linewidth' self.set_linewidth(val) def set_mec(self, val): 'alias for set_markeredgecolor' self.set_markeredgecolor(val) def set_mew(self, val): 'alias for set_markeredgewidth' self.set_markeredgewidth(val) def set_mfc(self, val): 'alias for set_markerfacecolor' self.set_markerfacecolor(val) def set_ms(self, val): 'alias for set_markersize' self.set_markersize(val) def get_aa(self): 'alias for get_antialiased' return self.get_antialiased() def get_c(self): 'alias for get_color' return self.get_color() def get_ls(self): 'alias for get_linestyle' return self.get_linestyle() def get_lw(self): 'alias for get_linewidth' return self.get_linewidth() def get_mec(self): 'alias for get_markeredgecolor' return self.get_markeredgecolor() def get_mew(self): 'alias for get_markeredgewidth' return self.get_markeredgewidth() def get_mfc(self): 'alias for get_markerfacecolor' return self.get_markerfacecolor() def get_ms(self): 'alias for get_markersize' return self.get_markersize() def set_dash_joinstyle(self, s): """ Set the join style for dashed linestyles ACCEPTS: ['miter' | 'round' | 'bevel'] """ s = s.lower() if s not in self.validJoin: raise ValueError('set_dash_joinstyle passed "%s";\n' % (s,) + 'valid joinstyles are %s' % (self.validJoin,)) self._dashjoinstyle = s def set_solid_joinstyle(self, s): """ Set the join style for solid linestyles ACCEPTS: ['miter' | 'round' | 'bevel'] """ s = s.lower() if s not in self.validJoin: raise ValueError('set_solid_joinstyle passed "%s";\n' % (s,) + 'valid joinstyles are %s' % (self.validJoin,)) self._solidjoinstyle = s def get_dash_joinstyle(self): """ Get the join style for dashed linestyles """ return self._dashjoinstyle def get_solid_joinstyle(self): """ Get the join style for solid linestyles """ return self._solidjoinstyle def set_dash_capstyle(self, s): """ Set the cap style for dashed linestyles ACCEPTS: ['butt' | 'round' | 'projecting'] """ s = s.lower() if s not in self.validCap: raise ValueError('set_dash_capstyle passed "%s";\n' % (s,) + 'valid capstyles are %s' % (self.validCap,)) self._dashcapstyle = s def set_solid_capstyle(self, s): """ Set the cap style for solid linestyles ACCEPTS: ['butt' | 'round' | 'projecting'] """ s = s.lower() if s not in self.validCap: raise ValueError('set_solid_capstyle passed "%s";\n' % (s,) + 'valid capstyles are %s' % (self.validCap,)) self._solidcapstyle = s def get_dash_capstyle(self): """ Get the cap style for dashed linestyles """ return self._dashcapstyle def get_solid_capstyle(self): """ Get the cap style for solid linestyles """ return self._solidcapstyle def is_dashed(self): 'return True if line is dashstyle' return self._linestyle in ('--', '-.', ':') class VertexSelector: """ Manage the callbacks to maintain a list of selected vertices for :class:`matplotlib.lines.Line2D`. Derived classes should override :meth:`~matplotlib.lines.VertexSelector.process_selected` to do something with the picks. Here is an example which highlights the selected verts with red circles:: import numpy as np import matplotlib.pyplot as plt import matplotlib.lines as lines class HighlightSelected(lines.VertexSelector): def __init__(self, line, fmt='ro', **kwargs): lines.VertexSelector.__init__(self, line) self.markers, = self.axes.plot([], [], fmt, **kwargs) def process_selected(self, ind, xs, ys): self.markers.set_data(xs, ys) self.canvas.draw() fig = plt.figure() ax = fig.add_subplot(111) x, y = np.random.rand(2, 30) line, = ax.plot(x, y, 'bs-', picker=5) selector = HighlightSelected(line) plt.show() """ def __init__(self, line): """ Initialize the class with a :class:`matplotlib.lines.Line2D` instance. The line should already be added to some :class:`matplotlib.axes.Axes` instance and should have the picker property set. """ if not hasattr(line, 'axes'): raise RuntimeError('You must first add the line to the Axes') if line.get_picker() is None: raise RuntimeError('You must first set the picker property of the line') self.axes = line.axes self.line = line self.canvas = self.axes.figure.canvas self.cid = self.canvas.mpl_connect('pick_event', self.onpick) self.ind = set() def process_selected(self, ind, xs, ys): """ Default "do nothing" implementation of the :meth:`process_selected` method. *ind* are the indices of the selected vertices. *xs* and *ys* are the coordinates of the selected vertices. """ pass def onpick(self, event): 'When the line is picked, update the set of selected indicies.' if event.artist is not self.line: return for i in event.ind: if i in self.ind: self.ind.remove(i) else: self.ind.add(i) ind = list(self.ind) ind.sort() xdata, ydata = self.line.get_data() self.process_selected(ind, xdata[ind], ydata[ind]) lineStyles = Line2D._lineStyles lineMarkers = Line2D._markers drawStyles = Line2D.drawStyles artist.kwdocd['Line2D'] = artist.kwdoc(Line2D) # You can not set the docstring of an instancemethod, # but you can on the underlying function. Go figure. Line2D.__init__.im_func.__doc__ = dedent(Line2D.__init__.__doc__) % artist.kwdocd
agpl-3.0
sugartom/tensorflow-alien
tensorflow/contrib/learn/python/learn/estimators/estimator.py
8
53916
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base Estimator class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import copy import inspect import os import tempfile import numpy as np import six from tensorflow.contrib import framework as contrib_framework from tensorflow.contrib import layers from tensorflow.contrib import metrics as metrics_lib from tensorflow.contrib.framework import deprecated from tensorflow.contrib.framework import deprecated_args from tensorflow.contrib.framework import list_variables from tensorflow.contrib.framework import load_variable from tensorflow.contrib.framework.python.ops import variables as contrib_variables from tensorflow.contrib.learn.python.learn import evaluable from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn import monitors as monitor_lib from tensorflow.contrib.learn.python.learn import trainable from tensorflow.contrib.learn.python.learn.estimators import _sklearn as sklearn from tensorflow.contrib.learn.python.learn.estimators import metric_key from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import tensor_signature from tensorflow.contrib.learn.python.learn.estimators._sklearn import NotFittedError from tensorflow.contrib.learn.python.learn.learn_io import data_feeder from tensorflow.contrib.learn.python.learn.utils import export from tensorflow.contrib.learn.python.learn.utils import saved_model_export_utils from tensorflow.contrib.training.python.training import evaluation from tensorflow.core.framework import summary_pb2 from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session as tf_session from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import variables from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging as logging from tensorflow.python.saved_model import builder as saved_model_builder from tensorflow.python.saved_model import tag_constants from tensorflow.python.training import basic_session_run_hooks from tensorflow.python.training import device_setter from tensorflow.python.training import monitored_session from tensorflow.python.training import saver from tensorflow.python.training import summary_io from tensorflow.python.util import compat AS_ITERABLE_DATE = '2016-09-15' AS_ITERABLE_INSTRUCTIONS = ( 'The default behavior of predict() is changing. The default value for\n' 'as_iterable will change to True, and then the flag will be removed\n' 'altogether. The behavior of this flag is described below.') SCIKIT_DECOUPLE_DATE = '2016-12-01' SCIKIT_DECOUPLE_INSTRUCTIONS = ( 'Estimator is decoupled from Scikit Learn interface by moving into\n' 'separate class SKCompat. Arguments x, y and batch_size are only\n' 'available in the SKCompat class, Estimator will only accept input_fn.\n' 'Example conversion:\n' ' est = Estimator(...) -> est = SKCompat(Estimator(...))') def _verify_input_args(x, y, input_fn, feed_fn, batch_size): """Verifies validity of co-existance of input arguments.""" if input_fn is None: if x is None: raise ValueError('Either x or input_fn must be provided.') if contrib_framework.is_tensor(x) or (y is not None and contrib_framework.is_tensor(y)): raise ValueError('Inputs cannot be tensors. Please provide input_fn.') if feed_fn is not None: raise ValueError('Can not provide both feed_fn and x or y.') else: if (x is not None) or (y is not None): raise ValueError('Can not provide both input_fn and x or y.') if batch_size is not None: raise ValueError('Can not provide both input_fn and batch_size.') def _get_input_fn(x, y, input_fn, feed_fn, batch_size, shuffle=False, epochs=1): """Make inputs into input and feed functions. Args: x: Numpy, Pandas or Dask matrix or iterable. y: Numpy, Pandas or Dask matrix or iterable. input_fn: Pre-defined input function for training data. feed_fn: Pre-defined data feeder function. batch_size: Size to split data into parts. Must be >= 1. shuffle: Whether to shuffle the inputs. epochs: Number of epochs to run. Returns: Data input and feeder function based on training data. Raises: ValueError: Only one of `(x & y)` or `input_fn` must be provided. """ _verify_input_args(x, y, input_fn, feed_fn, batch_size) if input_fn is not None: return input_fn, feed_fn df = data_feeder.setup_train_data_feeder( x, y, n_classes=None, batch_size=batch_size, shuffle=shuffle, epochs=epochs) return df.input_builder, df.get_feed_dict_fn() def infer_real_valued_columns_from_input_fn(input_fn): """Creates `FeatureColumn` objects for inputs defined by `input_fn`. This interprets all inputs as dense, fixed-length float values. This creates a local graph in which it calls `input_fn` to build the tensors, then discards it. Args: input_fn: Input function returning a tuple of: features - Dictionary of string feature name to `Tensor` or `Tensor`. labels - `Tensor` of label values. Returns: List of `FeatureColumn` objects. """ with ops.Graph().as_default(): features, _ = input_fn() return layers.infer_real_valued_columns(features) def infer_real_valued_columns_from_input(x): """Creates `FeatureColumn` objects for inputs defined by input `x`. This interprets all inputs as dense, fixed-length float values. Args: x: Real-valued matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. Returns: List of `FeatureColumn` objects. """ input_fn, _ = _get_input_fn( x=x, y=None, input_fn=None, feed_fn=None, batch_size=None) return infer_real_valued_columns_from_input_fn(input_fn) def _get_arguments(func): """Returns list of arguments this function has.""" if hasattr(func, '__code__'): # Regular function. return inspect.getargspec(func).args elif hasattr(func, '__call__'): # Callable object. return _get_arguments(func.__call__) elif hasattr(func, 'func'): # Partial function. return _get_arguments(func.func) def _get_replica_device_setter(config): """Creates a replica device setter if required. Args: config: A RunConfig instance. Returns: A replica device setter, or None. """ ps_ops = [ 'Variable', 'VariableV2', 'AutoReloadVariable', 'MutableHashTable', 'MutableHashTableOfTensors', 'MutableDenseHashTable' ] if config.task_type: worker_device = '/job:%s/task:%d' % (config.task_type, config.task_id) else: worker_device = '/job:worker' if config.num_ps_replicas > 0: return device_setter.replica_device_setter( ps_tasks=config.num_ps_replicas, worker_device=worker_device, merge_devices=True, ps_ops=ps_ops, cluster=config.cluster_spec) else: return None def _make_metrics_ops(metrics, features, labels, predictions): """Add metrics based on `features`, `labels`, and `predictions`. `metrics` contains a specification for how to run metrics. It is a dict mapping friendly names to either `MetricSpec` objects, or directly to a metric function (assuming that `predictions` and `labels` are single tensors), or to `(pred_name, metric)` `tuple`, which passes `predictions[pred_name]` and `labels` to `metric` (assuming `labels` is a single tensor). Users are encouraged to use `MetricSpec` objects, which are more flexible and cleaner. They also lead to clearer errors. Args: metrics: A dict mapping names to metrics specification, for example `MetricSpec` objects. features: A dict of tensors returned from an input_fn as features/inputs. labels: A single tensor or a dict of tensors returned from an input_fn as labels. predictions: A single tensor or a dict of tensors output from a model as predictions. Returns: A dict mapping the friendly given in `metrics` to the result of calling the given metric function. Raises: ValueError: If metrics specifications do not work with the type of `features`, `labels`, or `predictions` provided. Mostly, a dict is given but no pred_name specified. """ metrics = metrics or {} # If labels is a dict with a single key, unpack into a single tensor. labels_tensor_or_dict = labels if isinstance(labels, dict) and len(labels) == 1: labels_tensor_or_dict = labels[list(labels.keys())[0]] result = {} # Iterate in lexicographic order, so the graph is identical among runs. for name, metric in sorted(six.iteritems(metrics)): if isinstance(metric, metric_spec.MetricSpec): result[name] = metric.create_metric_ops(features, labels, predictions) continue # TODO(b/31229024): Remove the rest of this loop logging.warning('Please specify metrics using MetricSpec. Using bare ' 'functions or (key, fn) tuples is deprecated and support ' 'for it will be removed on Oct 1, 2016.') if isinstance(name, tuple): # Multi-head metrics. if len(name) != 2: raise ValueError('Invalid metric for {}. It returned a tuple with ' 'len {}, expected 2.'.format(name, len(name))) if not isinstance(predictions, dict): raise ValueError( 'Metrics passed provide (name, prediction), ' 'but predictions are not dict. ' 'Metrics: %s, Predictions: %s.' % (metrics, predictions)) # Here are two options: labels are single Tensor or a dict. if isinstance(labels, dict) and name[1] in labels: # If labels are dict and the prediction name is in it, apply metric. result[name[0]] = metric(predictions[name[1]], labels[name[1]]) else: # Otherwise pass the labels to the metric. result[name[0]] = metric(predictions[name[1]], labels_tensor_or_dict) else: # Single head metrics. if isinstance(predictions, dict): raise ValueError( 'Metrics passed provide only name, no prediction, ' 'but predictions are dict. ' 'Metrics: %s, Labels: %s.' % (metrics, labels_tensor_or_dict)) result[name] = metric(predictions, labels_tensor_or_dict) return result def _dict_to_str(dictionary): """Get a `str` representation of a `dict`. Args: dictionary: The `dict` to be represented as `str`. Returns: A `str` representing the `dictionary`. """ return ', '.join('%s = %s' % (k, v) for k, v in sorted(dictionary.items())) def _write_dict_to_summary(output_dir, dictionary, current_global_step): """Writes a `dict` into summary file in given output directory. Args: output_dir: `str`, directory to write the summary file in. dictionary: the `dict` to be written to summary file. current_global_step: `int`, the current global step. """ logging.info('Saving dict for global step %d: %s', current_global_step, _dict_to_str(dictionary)) summary_writer = summary_io.SummaryWriterCache.get(output_dir) summary_proto = summary_pb2.Summary() for key in dictionary: if dictionary[key] is None: continue value = summary_proto.value.add() value.tag = key if (isinstance(dictionary[key], np.float32) or isinstance(dictionary[key], float)): value.simple_value = float(dictionary[key]) else: logging.warn('Skipping summary for %s, must be a float or np.float32.', key) summary_writer.add_summary(summary_proto, current_global_step) summary_writer.flush() class BaseEstimator( sklearn.BaseEstimator, evaluable.Evaluable, trainable.Trainable): """Abstract BaseEstimator class to train and evaluate TensorFlow models. Users should not instantiate or subclass this class. Instead, use `Estimator`. """ __metaclass__ = abc.ABCMeta # Note that for Google users, this is overriden with # learn_runner.EstimatorConfig. # TODO(wicke): Remove this once launcher takes over config functionality _Config = run_config.RunConfig # pylint: disable=invalid-name def __init__(self, model_dir=None, config=None): """Initializes a BaseEstimator instance. Args: model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. If `None`, the model_dir in `config` will be used if set. If both are set, they must be same. config: A RunConfig instance. """ # Create a run configuration. if config is None: self._config = BaseEstimator._Config() logging.info('Using default config.') else: self._config = config logging.info('Using config: %s', str(vars(self._config))) # Model directory. if (model_dir is not None) and (self._config.model_dir is not None): if model_dir != self._config.model_dir: # TODO(b/9965722): remove this suppression after it is no longer # necessary. # pylint: disable=g-doc-exception raise ValueError( "model_dir are set both in constructor and RunConfig, but with " "different values. In constructor: '{}', in RunConfig: " "'{}' ".format(model_dir, self._config.model_dir)) self._model_dir = model_dir or self._config.model_dir if self._model_dir is None: self._model_dir = tempfile.mkdtemp() logging.warning('Using temporary folder as model directory: %s', self._model_dir) # Set device function depending if there are replicas or not. self._device_fn = _get_replica_device_setter(self._config) # Features and labels TensorSignature objects. # TODO(wicke): Rename these to something more descriptive self._features_info = None self._labels_info = None self._graph = None @property def config(self): # TODO(wicke): make RunConfig immutable, and then return it without a copy. return copy.deepcopy(self._config) @deprecated_args( SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('y', None), ('batch_size', None) ) def fit(self, x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None): # pylint: disable=g-doc-args,g-doc-return-or-yield """See `Trainable`. Raises: ValueError: If `x` or `y` are not `None` while `input_fn` is not `None`. ValueError: If both `steps` and `max_steps` are not `None`. """ if (steps is not None) and (max_steps is not None): raise ValueError('Can not provide both steps and max_steps.') _verify_input_args(x, y, input_fn, None, batch_size) if x is not None: SKCompat(self).fit(x, y, batch_size, steps, max_steps, monitors) return self if max_steps is not None: try: start_step = load_variable(self._model_dir, ops.GraphKeys.GLOBAL_STEP) if max_steps <= start_step: logging.info('Skipping training since max_steps has already saved.') return self except: # pylint: disable=bare-except pass hooks = monitor_lib.replace_monitors_with_hooks(monitors, self) if steps is not None or max_steps is not None: hooks.append(basic_session_run_hooks.StopAtStepHook(steps, max_steps)) loss = self._train_model(input_fn=input_fn, hooks=hooks) logging.info('Loss for final step: %s.', loss) return self @deprecated_args( SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('y', None), ('batch_size', None) ) def partial_fit( self, x=None, y=None, input_fn=None, steps=1, batch_size=None, monitors=None): """Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different or the same chunks of the dataset. This either can implement iterative training or out-of-core/online training. This is especially useful when the whole dataset is too big to fit in memory at the same time. Or when model is taking long time to converge, and you want to split up training into subparts. Args: x: Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set, `input_fn` must be `None`. y: Vector or matrix [n_samples] or [n_samples, n_outputs]. Can be iterator that returns array of labels. The training label values (class labels in classification, real numbers in regression). If set, `input_fn` must be `None`. input_fn: Input function. If set, `x`, `y`, and `batch_size` must be `None`. steps: Number of steps for which to train model. If `None`, train forever. batch_size: minibatch size to use on the input, defaults to first dimension of `x`. Must be `None` if `input_fn` is provided. monitors: List of `BaseMonitor` subclass instances. Used for callbacks inside the training loop. Returns: `self`, for chaining. Raises: ValueError: If at least one of `x` and `y` is provided, and `input_fn` is provided. """ logging.warning('The current implementation of partial_fit is not optimized' ' for use in a loop. Consider using fit() instead.') return self.fit(x=x, y=y, input_fn=input_fn, steps=steps, batch_size=batch_size, monitors=monitors) @deprecated_args( SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('y', None), ('batch_size', None) ) def evaluate(self, x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None, checkpoint_path=None, hooks=None, log_progress=True): # pylint: disable=g-doc-args,g-doc-return-or-yield """See `Evaluable`. Raises: ValueError: If at least one of `x` or `y` is provided, and at least one of `input_fn` or `feed_fn` is provided. Or if `metrics` is not `None` or `dict`. """ _verify_input_args(x, y, input_fn, feed_fn, batch_size) if x is not None: return SKCompat(self).score(x, y, batch_size, steps, metrics) if metrics is not None and not isinstance(metrics, dict): raise ValueError('Metrics argument should be None or dict. ' 'Got %s.' % metrics) eval_results, global_step = self._evaluate_model( input_fn=input_fn, feed_fn=feed_fn, steps=steps, metrics=metrics, name=name, checkpoint_path=checkpoint_path, hooks=hooks, log_progress=log_progress) if eval_results is not None: eval_results.update({'global_step': global_step}) return eval_results @deprecated_args( SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('batch_size', None), ('as_iterable', True) ) def predict( self, x=None, input_fn=None, batch_size=None, outputs=None, as_iterable=True): """Returns predictions for given features. Args: x: Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set, `input_fn` must be `None`. input_fn: Input function. If set, `x` and 'batch_size' must be `None`. batch_size: Override default batch size. If set, 'input_fn' must be 'None'. outputs: list of `str`, name of the output to predict. If `None`, returns all. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: A numpy array of predicted classes or regression values if the constructor's `model_fn` returns a `Tensor` for `predictions` or a `dict` of numpy arrays if `model_fn` returns a `dict`. Returns an iterable of predictions if as_iterable is True. Raises: ValueError: If x and input_fn are both provided or both `None`. """ _verify_input_args(x, None, input_fn, None, batch_size) if x is not None and not as_iterable: return SKCompat(self).predict(x, batch_size) input_fn, feed_fn = _get_input_fn(x, None, input_fn, None, batch_size) return self._infer_model( input_fn=input_fn, feed_fn=feed_fn, outputs=outputs, as_iterable=as_iterable) def get_variable_value(self, name): """Returns value of the variable given by name. Args: name: string, name of the tensor. Returns: Numpy array - value of the tensor. """ return load_variable(self.model_dir, name) def get_variable_names(self): """Returns list of all variable names in this model. Returns: List of names. """ return [name for name, _ in list_variables(self.model_dir)] @property def model_dir(self): return self._model_dir @deprecated('2017-03-25', 'Please use Estimator.export_savedmodel() instead.') def export(self, export_dir, input_fn=export._default_input_fn, # pylint: disable=protected-access input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, prediction_key=None, default_batch_size=1, exports_to_keep=None, checkpoint_path=None): """Exports inference graph into given dir. Args: export_dir: A string containing a directory to write the exported graph and checkpoints. input_fn: If `use_deprecated_input_fn` is true, then a function that given `Tensor` of `Example` strings, parses it into features that are then passed to the model. Otherwise, a function that takes no argument and returns a tuple of (features, labels), where features is a dict of string key to `Tensor` and labels is a `Tensor` that's currently not used (and so can be `None`). input_feature_key: Only used if `use_deprecated_input_fn` is false. String key into the features dict returned by `input_fn` that corresponds to a the raw `Example` strings `Tensor` that the exported model will take as input. Can only be `None` if you're using a custom `signature_fn` that does not use the first arg (examples). use_deprecated_input_fn: Determines the signature format of `input_fn`. signature_fn: Function that returns a default signature and a named signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s for features and `Tensor` or `dict` of `Tensor`s for predictions. prediction_key: The key for a tensor in the `predictions` dict (output from the `model_fn`) to use as the `predictions` input to the `signature_fn`. Optional. If `None`, predictions will pass to `signature_fn` without filtering. default_batch_size: Default batch size of the `Example` placeholder. exports_to_keep: Number of exports to keep. checkpoint_path: the checkpoint path of the model to be exported. If it is `None` (which is default), will use the latest checkpoint in export_dir. Returns: The string path to the exported directory. NB: this functionality was added ca. 2016/09/25; clients that depend on the return value may need to handle the case where this function returns None because subclasses are not returning a value. """ # pylint: disable=protected-access return export._export_estimator( estimator=self, export_dir=export_dir, signature_fn=signature_fn, prediction_key=prediction_key, input_fn=input_fn, input_feature_key=input_feature_key, use_deprecated_input_fn=use_deprecated_input_fn, default_batch_size=default_batch_size, exports_to_keep=exports_to_keep, checkpoint_path=checkpoint_path) @abc.abstractproperty def _get_train_ops(self, features, labels): """Method that builds model graph and returns trainer ops. Expected to be overridden by sub-classes that require custom support. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. Returns: A `ModelFnOps` object. """ pass @abc.abstractproperty def _get_predict_ops(self, features): """Method that builds model graph and returns prediction ops. Args: features: `Tensor` or `dict` of `Tensor` objects. Returns: A `ModelFnOps` object. """ pass def _get_eval_ops(self, features, labels, metrics): """Method that builds model graph and returns evaluation ops. Expected to be overriden by sub-classes that require custom support. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. metrics: Dict of metrics to run. If None, the default metric functions are used; if {}, no metrics are used. Otherwise, `metrics` should map friendly names for the metric to a `MetricSpec` object defining which model outputs to evaluate against which labels with which metric function. Metric ops should support streaming, e.g., returning update_op and value tensors. See more details in `../../../../metrics/python/metrics/ops/streaming_metrics.py` and `../metric_spec.py`. Returns: A `ModelFnOps` object. """ raise NotImplementedError('_get_eval_ops not implemented in BaseEstimator') @deprecated( '2016-09-23', 'The signature of the input_fn accepted by export is changing to be ' 'consistent with what\'s used by tf.Learn Estimator\'s train/evaluate, ' 'which makes this function useless. This will be removed after the ' 'deprecation date.') def _get_feature_ops_from_example(self, examples_batch): """Returns feature parser for given example batch using features info. This function requires `fit()` has been called. Args: examples_batch: batch of tf.Example Returns: features: `Tensor` or `dict` of `Tensor` objects. Raises: ValueError: If `_features_info` attribute is not available (usually because `fit()` has not been called). """ if self._features_info is None: raise ValueError('Features information missing, was fit() ever called?') return tensor_signature.create_example_parser_from_signatures( self._features_info, examples_batch) def _check_inputs(self, features, labels): if self._features_info is not None: logging.debug('Given features: %s, required signatures: %s.', str(features), str(self._features_info)) if not tensor_signature.tensors_compatible(features, self._features_info): raise ValueError('Features are incompatible with given information. ' 'Given features: %s, required signatures: %s.' % (str(features), str(self._features_info))) else: self._features_info = tensor_signature.create_signatures(features) logging.debug('Setting feature info to %s.', str(self._features_info)) if labels is not None: if self._labels_info is not None: logging.debug('Given labels: %s, required signatures: %s.', str(labels), str(self._labels_info)) if not tensor_signature.tensors_compatible(labels, self._labels_info): raise ValueError('Labels are incompatible with given information. ' 'Given labels: %s, required signatures: %s.' % (str(labels), str(self._labels_info))) else: self._labels_info = tensor_signature.create_signatures(labels) logging.debug('Setting labels info to %s', str(self._labels_info)) def _extract_metric_update_ops(self, eval_dict): """Separate update operations from metric value operations.""" update_ops = [] value_ops = {} for name, metric_ops in six.iteritems(eval_dict): if isinstance(metric_ops, (list, tuple)): if len(metric_ops) == 2: value_ops[name] = metric_ops[0] update_ops.append(metric_ops[1]) else: logging.warning( 'Ignoring metric {}. It returned a list|tuple with len {}, ' 'expected 2'.format(name, len(metric_ops))) value_ops[name] = metric_ops else: value_ops[name] = metric_ops if update_ops: update_ops = control_flow_ops.group(*update_ops) else: update_ops = None return update_ops, value_ops def _evaluate_model(self, input_fn, steps, feed_fn=None, metrics=None, name='', checkpoint_path=None, hooks=None, log_progress=True): # TODO(wicke): Remove this once Model and associated code are gone. if (hasattr(self._config, 'execution_mode') and self._config.execution_mode not in ('all', 'evaluate', 'eval_evalset')): return None, None # Check that model has been trained (if nothing has been set explicitly). if not checkpoint_path: latest_path = saver.latest_checkpoint(self._model_dir) if not latest_path: raise NotFittedError("Couldn't find trained model at %s." % self._model_dir) checkpoint_path = latest_path # Setup output directory. eval_dir = os.path.join(self._model_dir, 'eval' if not name else 'eval_' + name) with ops.Graph().as_default() as g: random_seed.set_random_seed(self._config.tf_random_seed) global_step = contrib_framework.create_global_step(g) features, labels = input_fn() self._check_inputs(features, labels) eval_dict = self._get_eval_ops(features, labels, metrics).eval_metric_ops update_op, eval_dict = self._extract_metric_update_ops(eval_dict) # We need to copy the hook array as we modify it, thus [:]. hooks = hooks[:] if hooks else [] if feed_fn: hooks.append(basic_session_run_hooks.FeedFnHook(feed_fn)) if steps: hooks.append( evaluation.StopAfterNEvalsHook( steps, log_progress=log_progress)) global_step_key = 'global_step' while global_step_key in eval_dict: global_step_key = '_' + global_step_key eval_dict[global_step_key] = global_step eval_results = evaluation.evaluate_once( checkpoint_path=checkpoint_path, master=self._config.evaluation_master, eval_ops=update_op, final_ops=eval_dict, hooks=hooks, config=config_pb2.ConfigProto(allow_soft_placement=True)) current_global_step = eval_results[global_step_key] _write_dict_to_summary(eval_dir, eval_results, current_global_step) return eval_results, current_global_step def _get_features_from_input_fn(self, input_fn): result = input_fn() if isinstance(result, (list, tuple)): return result[0] return result def _infer_model(self, input_fn, feed_fn=None, outputs=None, as_iterable=True, iterate_batches=False): # Check that model has been trained. checkpoint_path = saver.latest_checkpoint(self._model_dir) if not checkpoint_path: raise NotFittedError("Couldn't find trained model at %s." % self._model_dir) with ops.Graph().as_default() as g: random_seed.set_random_seed(self._config.tf_random_seed) contrib_framework.create_global_step(g) features = self._get_features_from_input_fn(input_fn) infer_ops = self._get_predict_ops(features) predictions = self._filter_predictions(infer_ops.predictions, outputs) mon_sess = monitored_session.MonitoredSession( session_creator=monitored_session.ChiefSessionCreator( checkpoint_filename_with_path=checkpoint_path, config=config_pb2.ConfigProto(allow_soft_placement=True))) if not as_iterable: with mon_sess: if not mon_sess.should_stop(): return mon_sess.run(predictions, feed_fn() if feed_fn else None) else: return self._predict_generator(mon_sess, predictions, feed_fn, iterate_batches) def _predict_generator(self, mon_sess, predictions, feed_fn, iterate_batches): with mon_sess: while not mon_sess.should_stop(): preds = mon_sess.run(predictions, feed_fn() if feed_fn else None) if iterate_batches: yield preds elif not isinstance(predictions, dict): for pred in preds: yield pred else: first_tensor = list(preds.values())[0] if isinstance(first_tensor, sparse_tensor.SparseTensorValue): batch_length = first_tensor.dense_shape[0] else: batch_length = first_tensor.shape[0] for i in range(batch_length): yield {key: value[i] for key, value in six.iteritems(preds)} if self._is_input_constant(feed_fn, mon_sess.graph): return def _is_input_constant(self, feed_fn, graph): # If there are no queue_runners, the input `predictions` is a # constant, and we should stop after the first epoch. If, # instead, there are queue_runners, eventually they should throw # an `OutOfRangeError`. if graph.get_collection(ops.GraphKeys.QUEUE_RUNNERS): return False # data_feeder uses feed_fn to generate `OutOfRangeError`. if feed_fn is not None: return False return True def _filter_predictions(self, predictions, outputs): if not outputs: return predictions if not isinstance(predictions, dict): raise ValueError( 'outputs argument is not valid in case of non-dict predictions.') existing_keys = predictions.keys() predictions = { key: value for key, value in six.iteritems(predictions) if key in outputs } if not predictions: raise ValueError('Expected to run at least one output from %s, ' 'provided %s.' % (existing_keys, outputs)) return predictions def _train_model(self, input_fn, hooks): all_hooks = [] self._graph = ops.Graph() with self._graph.as_default() as g, g.device(self._device_fn): random_seed.set_random_seed(self._config.tf_random_seed) global_step = contrib_framework.create_global_step(g) features, labels = input_fn() self._check_inputs(features, labels) model_fn_ops = self._get_train_ops(features, labels) ops.add_to_collection(ops.GraphKeys.LOSSES, model_fn_ops.loss) all_hooks.extend([ basic_session_run_hooks.NanTensorHook(model_fn_ops.loss), basic_session_run_hooks.LoggingTensorHook( { 'loss': model_fn_ops.loss, 'step': global_step }, every_n_iter=100) ]) all_hooks.extend(hooks) scaffold = model_fn_ops.scaffold or monitored_session.Scaffold() if not (scaffold.saver or ops.get_collection(ops.GraphKeys.SAVERS)): ops.add_to_collection( ops.GraphKeys.SAVERS, saver.Saver( sharded=True, max_to_keep=self._config.keep_checkpoint_max, defer_build=True)) chief_hooks = [] if (self._config.save_checkpoints_secs or self._config.save_checkpoints_steps): saver_hook_exists = any([ isinstance(h, basic_session_run_hooks.CheckpointSaverHook) for h in (all_hooks + model_fn_ops.training_hooks + chief_hooks + model_fn_ops.training_chief_hooks) ]) if not saver_hook_exists: chief_hooks = [ basic_session_run_hooks.CheckpointSaverHook( self._model_dir, save_secs=self._config.save_checkpoints_secs, save_steps=self._config.save_checkpoints_steps, scaffold=scaffold) ] with monitored_session.MonitoredTrainingSession( master=self._config.master, is_chief=self._config.is_chief, checkpoint_dir=self._model_dir, scaffold=scaffold, hooks=all_hooks + model_fn_ops.training_hooks, chief_only_hooks=chief_hooks + model_fn_ops.training_chief_hooks, save_checkpoint_secs=0, # Saving is handled by a hook. save_summaries_steps=self._config.save_summary_steps, config=config_pb2.ConfigProto(allow_soft_placement=True) ) as mon_sess: loss = None while not mon_sess.should_stop(): _, loss = mon_sess.run([model_fn_ops.train_op, model_fn_ops.loss]) summary_io.SummaryWriterCache.clear() return loss def _identity_feature_engineering_fn(features, labels): return features, labels class Estimator(BaseEstimator): """Estimator class is the basic TensorFlow model trainer/evaluator. """ def __init__(self, model_fn=None, model_dir=None, config=None, params=None, feature_engineering_fn=None): """Constructs an `Estimator` instance. Args: model_fn: Model function. Follows the signature: * Args: * `features`: single `Tensor` or `dict` of `Tensor`s (depending on data passed to `fit`), * `labels`: `Tensor` or `dict` of `Tensor`s (for multi-head models). If mode is `ModeKeys.INFER`, `labels=None` will be passed. If the `model_fn`'s signature does not accept `mode`, the `model_fn` must still be able to handle `labels=None`. * `mode`: Optional. Specifies if this training, evaluation or prediction. See `ModeKeys`. * `params`: Optional `dict` of hyperparameters. Will receive what is passed to Estimator in `params` parameter. This allows to configure Estimators from hyper parameter tuning. * `config`: Optional configuration object. Will receive what is passed to Estimator in `config` parameter, or the default `config`. Allows updating things in your model_fn based on configuration such as `num_ps_replicas`. * `model_dir`: Optional directory where model parameters, graph etc are saved. Will receive what is passed to Estimator in `model_dir` parameter, or the default `model_dir`. Allows updating things in your model_fn that expect model_dir, such as training hooks. * Returns: `ModelFnOps` Also supports a legacy signature which returns tuple of: * predictions: `Tensor`, `SparseTensor` or dictionary of same. Can also be any type that is convertible to a `Tensor` or `SparseTensor`, or dictionary of same. * loss: Scalar loss `Tensor`. * train_op: Training update `Tensor` or `Operation`. Supports next three signatures for the function: * `(features, labels) -> (predictions, loss, train_op)` * `(features, labels, mode) -> (predictions, loss, train_op)` * `(features, labels, mode, params) -> (predictions, loss, train_op)` * `(features, labels, mode, params, config) -> (predictions, loss, train_op)` * `(features, labels, mode, params, config, model_dir) -> (predictions, loss, train_op)` model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. config: Configuration object. params: `dict` of hyper parameters that will be passed into `model_fn`. Keys are names of parameters, values are basic python types. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into `model_fn`. Please check `model_fn` for a definition of features and labels. Raises: ValueError: parameters of `model_fn` don't match `params`. """ super(Estimator, self).__init__(model_dir=model_dir, config=config) if model_fn is not None: # Check number of arguments of the given function matches requirements. model_fn_args = _get_arguments(model_fn) if params is not None and 'params' not in model_fn_args: raise ValueError('Estimator\'s model_fn (%s) has less than 4 ' 'arguments, but not None params (%s) are passed.' % (model_fn, params)) if params is None and 'params' in model_fn_args: logging.warning('Estimator\'s model_fn (%s) includes params ' 'argument, but params are not passed to Estimator.', model_fn) self._model_fn = model_fn self.params = params self._feature_engineering_fn = ( feature_engineering_fn or _identity_feature_engineering_fn) def _call_model_fn(self, features, labels, mode): """Calls model function with support of 2, 3 or 4 arguments. Args: features: features dict. labels: labels dict. mode: ModeKeys Returns: A `ModelFnOps` object. If model_fn returns a tuple, wraps them up in a `ModelFnOps` object. Raises: ValueError: if model_fn returns invalid objects. """ features, labels = self._feature_engineering_fn(features, labels) model_fn_args = _get_arguments(self._model_fn) kwargs = {} if 'mode' in model_fn_args: kwargs['mode'] = mode if 'params' in model_fn_args: kwargs['params'] = self.params if 'config' in model_fn_args: kwargs['config'] = self.config if 'model_dir' in model_fn_args: kwargs['model_dir'] = self.model_dir model_fn_results = self._model_fn(features, labels, **kwargs) if isinstance(model_fn_results, model_fn_lib.ModelFnOps): return model_fn_results # Here model_fn_ops should be a tuple with 3 elements. if len(model_fn_results) != 3: raise ValueError('Unrecognized value returned by model_fn, ' 'please return ModelFnOps.') return model_fn_lib.ModelFnOps( mode=mode, predictions=model_fn_results[0], loss=model_fn_results[1], train_op=model_fn_results[2]) def _get_train_ops(self, features, labels): """Method that builds model graph and returns trainer ops. Expected to be overriden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. Returns: `ModelFnOps` object. """ return self._call_model_fn(features, labels, model_fn_lib.ModeKeys.TRAIN) def _get_eval_ops(self, features, labels, metrics): """Method that builds model graph and returns evaluation ops. Expected to be overriden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. metrics: Dict of metrics to run. If None, the default metric functions are used; if {}, no metrics are used. Otherwise, `metrics` should map friendly names for the metric to a `MetricSpec` object defining which model outputs to evaluate against which labels with which metric function. Metric ops should support streaming, e.g., returning update_op and value tensors. See more details in `../../../../metrics/python/metrics/ops/streaming_metrics.py` and `../metric_spec.py`. Returns: `ModelFnOps` object. Raises: ValueError: if `metrics` don't match `labels`. """ model_fn_ops = self._call_model_fn( features, labels, model_fn_lib.ModeKeys.EVAL) features, labels = self._feature_engineering_fn(features, labels) # Custom metrics should overwrite defaults. if metrics: model_fn_ops.eval_metric_ops.update(_make_metrics_ops( metrics, features, labels, model_fn_ops.predictions)) if metric_key.MetricKey.LOSS not in model_fn_ops.eval_metric_ops: model_fn_ops.eval_metric_ops[metric_key.MetricKey.LOSS] = ( metrics_lib.streaming_mean(model_fn_ops.loss)) return model_fn_ops def _get_predict_ops(self, features): """Method that builds model graph and returns prediction ops. Expected to be overriden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. Returns: `ModelFnOps` object. """ labels = tensor_signature.create_placeholders_from_signatures( self._labels_info) return self._call_model_fn(features, labels, model_fn_lib.ModeKeys.INFER) def export_savedmodel( self, export_dir_base, serving_input_fn, default_output_alternative_key=None, assets_extra=None, as_text=False, checkpoint_path=None): """Exports inference graph as a SavedModel into given dir. Args: export_dir_base: A string containing a directory to write the exported graph and checkpoints. serving_input_fn: A function that takes no argument and returns an `InputFnOps`. default_output_alternative_key: the name of the head to serve when none is specified. Not needed for single-headed models. assets_extra: A dict specifying how to populate the assets.extra directory within the exported SavedModel. Each key should give the destination path (including the filename) relative to the assets.extra directory. The corresponding value gives the full path of the source file to be copied. For example, the simple case of copying a single file without renaming it is specified as `{'my_asset_file.txt': '/path/to/my_asset_file.txt'}`. as_text: whether to write the SavedModel proto in text format. checkpoint_path: The checkpoint path to export. If None (the default), the most recent checkpoint found within the model directory is chosen. Returns: The string path to the exported directory. Raises: ValueError: if an unrecognized export_type is requested. """ if serving_input_fn is None: raise ValueError('serving_input_fn must be defined.') with ops.Graph().as_default() as g: contrib_variables.create_global_step(g) # Call the serving_input_fn and collect the input alternatives. input_ops = serving_input_fn() input_alternatives, features = ( saved_model_export_utils.get_input_alternatives(input_ops)) # Call the model_fn and collect the output alternatives. model_fn_ops = self._call_model_fn(features, None, model_fn_lib.ModeKeys.INFER) output_alternatives, actual_default_output_alternative_key = ( saved_model_export_utils.get_output_alternatives( model_fn_ops, default_output_alternative_key)) # Build the SignatureDefs from all pairs of input and output alternatives signature_def_map = saved_model_export_utils.build_all_signature_defs( input_alternatives, output_alternatives, actual_default_output_alternative_key) if not checkpoint_path: # Locate the latest checkpoint checkpoint_path = saver.latest_checkpoint(self._model_dir) if not checkpoint_path: raise NotFittedError("Couldn't find trained model at %s." % self._model_dir) export_dir = saved_model_export_utils.get_timestamped_export_dir( export_dir_base) with tf_session.Session('') as session: variables.initialize_local_variables() data_flow_ops.tables_initializer() saver_for_restore = saver.Saver( variables.global_variables(), sharded=True) saver_for_restore.restore(session, checkpoint_path) init_op = control_flow_ops.group( variables.local_variables_initializer(), data_flow_ops.tables_initializer()) # Perform the export builder = saved_model_builder.SavedModelBuilder(export_dir) builder.add_meta_graph_and_variables( session, [tag_constants.SERVING], signature_def_map=signature_def_map, assets_collection=ops.get_collection( ops.GraphKeys.ASSET_FILEPATHS), legacy_init_op=init_op) builder.save(as_text) # Add the extra assets if assets_extra: assets_extra_path = os.path.join(compat.as_bytes(export_dir), compat.as_bytes('assets.extra')) for dest_relative, source in assets_extra.items(): dest_absolute = os.path.join(compat.as_bytes(assets_extra_path), compat.as_bytes(dest_relative)) dest_path = os.path.dirname(dest_absolute) gfile.MakeDirs(dest_path) gfile.Copy(source, dest_absolute) return export_dir # For time of deprecation x,y from Estimator allow direct access. # pylint: disable=protected-access class SKCompat(sklearn.BaseEstimator): """Scikit learn wrapper for TensorFlow Learn Estimator.""" def __init__(self, estimator): self._estimator = estimator def fit(self, x, y, batch_size=128, steps=None, max_steps=None, monitors=None): input_fn, feed_fn = _get_input_fn(x, y, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=True, epochs=None) all_monitors = [] if feed_fn: all_monitors = [basic_session_run_hooks.FeedFnHook(feed_fn)] if monitors: all_monitors.extend(monitors) self._estimator.fit(input_fn=input_fn, steps=steps, max_steps=max_steps, monitors=all_monitors) return self def score(self, x, y, batch_size=128, steps=None, metrics=None): input_fn, feed_fn = _get_input_fn(x, y, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=False, epochs=1) if metrics is not None and not isinstance(metrics, dict): raise ValueError('Metrics argument should be None or dict. ' 'Got %s.' % metrics) eval_results, global_step = self._estimator._evaluate_model( input_fn=input_fn, feed_fn=feed_fn, steps=steps, metrics=metrics, name='score') if eval_results is not None: eval_results.update({'global_step': global_step}) return eval_results def predict(self, x, batch_size=128, outputs=None): input_fn, feed_fn = _get_input_fn( x, None, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=False, epochs=1) results = list( self._estimator._infer_model( input_fn=input_fn, feed_fn=feed_fn, outputs=outputs, as_iterable=True, iterate_batches=True)) if not isinstance(results[0], dict): return np.concatenate([output for output in results], axis=0) return { key: np.concatenate( [output[key] for output in results], axis=0) for key in results[0] }
apache-2.0
potash/scikit-learn
sklearn/manifold/locally_linear.py
37
25852
"""Locally Linear Embedding""" # Author: Fabian Pedregosa -- <[email protected]> # Jake Vanderplas -- <[email protected]> # License: BSD 3 clause (C) INRIA 2011 import numpy as np from scipy.linalg import eigh, svd, qr, solve from scipy.sparse import eye, csr_matrix from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, check_array from ..utils.arpack import eigsh from ..utils.validation import check_is_fitted from ..utils.validation import FLOAT_DTYPES from ..neighbors import NearestNeighbors def barycenter_weights(X, Z, reg=1e-3): """Compute barycenter weights of X from Y along the first axis We estimate the weights to assign to each point in Y[i] to recover the point X[i]. The barycenter weights sum to 1. Parameters ---------- X : array-like, shape (n_samples, n_dim) Z : array-like, shape (n_samples, n_neighbors, n_dim) reg: float, optional amount of regularization to add for the problem to be well-posed in the case of n_neighbors > n_dim Returns ------- B : array-like, shape (n_samples, n_neighbors) Notes ----- See developers note for more information. """ X = check_array(X, dtype=FLOAT_DTYPES) Z = check_array(Z, dtype=FLOAT_DTYPES, allow_nd=True) n_samples, n_neighbors = X.shape[0], Z.shape[1] B = np.empty((n_samples, n_neighbors), dtype=X.dtype) v = np.ones(n_neighbors, dtype=X.dtype) # this might raise a LinalgError if G is singular and has trace # zero for i, A in enumerate(Z.transpose(0, 2, 1)): C = A.T - X[i] # broadcasting G = np.dot(C, C.T) trace = np.trace(G) if trace > 0: R = reg * trace else: R = reg G.flat[::Z.shape[1] + 1] += R w = solve(G, v, sym_pos=True) B[i, :] = w / np.sum(w) return B def barycenter_kneighbors_graph(X, n_neighbors, reg=1e-3, n_jobs=1): """Computes the barycenter weighted graph of k-Neighbors for points in X Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, sparse array, precomputed tree, or NearestNeighbors object. n_neighbors : int Number of neighbors for each sample. reg : float, optional Amount of regularization when solving the least-squares problem. Only relevant if mode='barycenter'. If None, use the default. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. See also -------- sklearn.neighbors.kneighbors_graph sklearn.neighbors.radius_neighbors_graph """ knn = NearestNeighbors(n_neighbors + 1, n_jobs=n_jobs).fit(X) X = knn._fit_X n_samples = X.shape[0] ind = knn.kneighbors(X, return_distance=False)[:, 1:] data = barycenter_weights(X, X[ind], reg=reg) indptr = np.arange(0, n_samples * n_neighbors + 1, n_neighbors) return csr_matrix((data.ravel(), ind.ravel(), indptr), shape=(n_samples, n_samples)) def null_space(M, k, k_skip=1, eigen_solver='arpack', tol=1E-6, max_iter=100, random_state=None): """ Find the null space of a matrix M. Parameters ---------- M : {array, matrix, sparse matrix, LinearOperator} Input covariance matrix: should be symmetric positive semi-definite k : integer Number of eigenvalues/vectors to return k_skip : integer, optional Number of low eigenvalues to skip. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method. Not used if eigen_solver=='dense'. max_iter : maximum number of iterations for 'arpack' method not used if eigen_solver=='dense' random_state: numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random. """ if eigen_solver == 'auto': if M.shape[0] > 200 and k + k_skip < 10: eigen_solver = 'arpack' else: eigen_solver = 'dense' if eigen_solver == 'arpack': random_state = check_random_state(random_state) # initialize with [-1,1] as in ARPACK v0 = random_state.uniform(-1, 1, M.shape[0]) try: eigen_values, eigen_vectors = eigsh(M, k + k_skip, sigma=0.0, tol=tol, maxiter=max_iter, v0=v0) except RuntimeError as msg: raise ValueError("Error in determining null-space with ARPACK. " "Error message: '%s'. " "Note that method='arpack' can fail when the " "weight matrix is singular or otherwise " "ill-behaved. method='dense' is recommended. " "See online documentation for more information." % msg) return eigen_vectors[:, k_skip:], np.sum(eigen_values[k_skip:]) elif eigen_solver == 'dense': if hasattr(M, 'toarray'): M = M.toarray() eigen_values, eigen_vectors = eigh( M, eigvals=(k_skip, k + k_skip - 1), overwrite_a=True) index = np.argsort(np.abs(eigen_values)) return eigen_vectors[:, index], np.sum(eigen_values) else: raise ValueError("Unrecognized eigen_solver '%s'" % eigen_solver) def locally_linear_embedding( X, n_neighbors, n_components, reg=1e-3, eigen_solver='auto', tol=1e-6, max_iter=100, method='standard', hessian_tol=1E-4, modified_tol=1E-12, random_state=None, n_jobs=1): """Perform a Locally Linear Embedding analysis on the data. Read more in the :ref:`User Guide <locally_linear_embedding>`. Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, sparse array, precomputed tree, or NearestNeighbors object. n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold. reg : float regularization constant, multiplies the trace of the local covariance matrix of the distances. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method Not used if eigen_solver=='dense'. max_iter : integer maximum number of iterations for the arpack solver. method : {'standard', 'hessian', 'modified', 'ltsa'} standard : use the standard locally linear embedding algorithm. see reference [1]_ hessian : use the Hessian eigenmap method. This method requires n_neighbors > n_components * (1 + (n_components + 1) / 2. see reference [2]_ modified : use the modified locally linear embedding algorithm. see reference [3]_ ltsa : use local tangent space alignment algorithm see reference [4]_ hessian_tol : float, optional Tolerance for Hessian eigenmapping method. Only used if method == 'hessian' modified_tol : float, optional Tolerance for modified LLE method. Only used if method == 'modified' random_state: numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Returns ------- Y : array-like, shape [n_samples, n_components] Embedding vectors. squared_error : float Reconstruction error for the embedding vectors. Equivalent to ``norm(Y - W Y, 'fro')**2``, where W are the reconstruction weights. References ---------- .. [1] `Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000).` .. [2] `Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003).` .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights.` http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382 .. [4] `Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004)` """ if eigen_solver not in ('auto', 'arpack', 'dense'): raise ValueError("unrecognized eigen_solver '%s'" % eigen_solver) if method not in ('standard', 'hessian', 'modified', 'ltsa'): raise ValueError("unrecognized method '%s'" % method) nbrs = NearestNeighbors(n_neighbors=n_neighbors + 1, n_jobs=n_jobs) nbrs.fit(X) X = nbrs._fit_X N, d_in = X.shape if n_components > d_in: raise ValueError("output dimension must be less than or equal " "to input dimension") if n_neighbors >= N: raise ValueError("n_neighbors must be less than number of points") if n_neighbors <= 0: raise ValueError("n_neighbors must be positive") M_sparse = (eigen_solver != 'dense') if method == 'standard': W = barycenter_kneighbors_graph( nbrs, n_neighbors=n_neighbors, reg=reg, n_jobs=n_jobs) # we'll compute M = (I-W)'(I-W) # depending on the solver, we'll do this differently if M_sparse: M = eye(*W.shape, format=W.format) - W M = (M.T * M).tocsr() else: M = (W.T * W - W.T - W).toarray() M.flat[::M.shape[0] + 1] += 1 # W = W - I = W - I elif method == 'hessian': dp = n_components * (n_components + 1) // 2 if n_neighbors <= n_components + dp: raise ValueError("for method='hessian', n_neighbors must be " "greater than " "[n_components * (n_components + 3) / 2]") neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] Yi = np.empty((n_neighbors, 1 + n_components + dp), dtype=np.float64) Yi[:, 0] = 1 M = np.zeros((N, N), dtype=np.float64) use_svd = (n_neighbors > d_in) for i in range(N): Gi = X[neighbors[i]] Gi -= Gi.mean(0) # build Hessian estimator if use_svd: U = svd(Gi, full_matrices=0)[0] else: Ci = np.dot(Gi, Gi.T) U = eigh(Ci)[1][:, ::-1] Yi[:, 1:1 + n_components] = U[:, :n_components] j = 1 + n_components for k in range(n_components): Yi[:, j:j + n_components - k] = (U[:, k:k + 1] * U[:, k:n_components]) j += n_components - k Q, R = qr(Yi) w = Q[:, n_components + 1:] S = w.sum(0) S[np.where(abs(S) < hessian_tol)] = 1 w /= S nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] += np.dot(w, w.T) if M_sparse: M = csr_matrix(M) elif method == 'modified': if n_neighbors < n_components: raise ValueError("modified LLE requires " "n_neighbors >= n_components") neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] # find the eigenvectors and eigenvalues of each local covariance # matrix. We want V[i] to be a [n_neighbors x n_neighbors] matrix, # where the columns are eigenvectors V = np.zeros((N, n_neighbors, n_neighbors)) nev = min(d_in, n_neighbors) evals = np.zeros([N, nev]) # choose the most efficient way to find the eigenvectors use_svd = (n_neighbors > d_in) if use_svd: for i in range(N): X_nbrs = X[neighbors[i]] - X[i] V[i], evals[i], _ = svd(X_nbrs, full_matrices=True) evals **= 2 else: for i in range(N): X_nbrs = X[neighbors[i]] - X[i] C_nbrs = np.dot(X_nbrs, X_nbrs.T) evi, vi = eigh(C_nbrs) evals[i] = evi[::-1] V[i] = vi[:, ::-1] # find regularized weights: this is like normal LLE. # because we've already computed the SVD of each covariance matrix, # it's faster to use this rather than np.linalg.solve reg = 1E-3 * evals.sum(1) tmp = np.dot(V.transpose(0, 2, 1), np.ones(n_neighbors)) tmp[:, :nev] /= evals + reg[:, None] tmp[:, nev:] /= reg[:, None] w_reg = np.zeros((N, n_neighbors)) for i in range(N): w_reg[i] = np.dot(V[i], tmp[i]) w_reg /= w_reg.sum(1)[:, None] # calculate eta: the median of the ratio of small to large eigenvalues # across the points. This is used to determine s_i, below rho = evals[:, n_components:].sum(1) / evals[:, :n_components].sum(1) eta = np.median(rho) # find s_i, the size of the "almost null space" for each point: # this is the size of the largest set of eigenvalues # such that Sum[v; v in set]/Sum[v; v not in set] < eta s_range = np.zeros(N, dtype=int) evals_cumsum = np.cumsum(evals, 1) eta_range = evals_cumsum[:, -1:] / evals_cumsum[:, :-1] - 1 for i in range(N): s_range[i] = np.searchsorted(eta_range[i, ::-1], eta) s_range += n_neighbors - nev # number of zero eigenvalues # Now calculate M. # This is the [N x N] matrix whose null space is the desired embedding M = np.zeros((N, N), dtype=np.float64) for i in range(N): s_i = s_range[i] # select bottom s_i eigenvectors and calculate alpha Vi = V[i, :, n_neighbors - s_i:] alpha_i = np.linalg.norm(Vi.sum(0)) / np.sqrt(s_i) # compute Householder matrix which satisfies # Hi*Vi.T*ones(n_neighbors) = alpha_i*ones(s) # using prescription from paper h = alpha_i * np.ones(s_i) - np.dot(Vi.T, np.ones(n_neighbors)) norm_h = np.linalg.norm(h) if norm_h < modified_tol: h *= 0 else: h /= norm_h # Householder matrix is # >> Hi = np.identity(s_i) - 2*np.outer(h,h) # Then the weight matrix is # >> Wi = np.dot(Vi,Hi) + (1-alpha_i) * w_reg[i,:,None] # We do this much more efficiently: Wi = (Vi - 2 * np.outer(np.dot(Vi, h), h) + (1 - alpha_i) * w_reg[i, :, None]) # Update M as follows: # >> W_hat = np.zeros( (N,s_i) ) # >> W_hat[neighbors[i],:] = Wi # >> W_hat[i] -= 1 # >> M += np.dot(W_hat,W_hat.T) # We can do this much more efficiently: nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] += np.dot(Wi, Wi.T) Wi_sum1 = Wi.sum(1) M[i, neighbors[i]] -= Wi_sum1 M[neighbors[i], i] -= Wi_sum1 M[i, i] += s_i if M_sparse: M = csr_matrix(M) elif method == 'ltsa': neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] M = np.zeros((N, N)) use_svd = (n_neighbors > d_in) for i in range(N): Xi = X[neighbors[i]] Xi -= Xi.mean(0) # compute n_components largest eigenvalues of Xi * Xi^T if use_svd: v = svd(Xi, full_matrices=True)[0] else: Ci = np.dot(Xi, Xi.T) v = eigh(Ci)[1][:, ::-1] Gi = np.zeros((n_neighbors, n_components + 1)) Gi[:, 1:] = v[:, :n_components] Gi[:, 0] = 1. / np.sqrt(n_neighbors) GiGiT = np.dot(Gi, Gi.T) nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] -= GiGiT M[neighbors[i], neighbors[i]] += 1 return null_space(M, n_components, k_skip=1, eigen_solver=eigen_solver, tol=tol, max_iter=max_iter, random_state=random_state) class LocallyLinearEmbedding(BaseEstimator, TransformerMixin): """Locally Linear Embedding Read more in the :ref:`User Guide <locally_linear_embedding>`. Parameters ---------- n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold reg : float regularization constant, multiplies the trace of the local covariance matrix of the distances. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method Not used if eigen_solver=='dense'. max_iter : integer maximum number of iterations for the arpack solver. Not used if eigen_solver=='dense'. method : string ('standard', 'hessian', 'modified' or 'ltsa') standard : use the standard locally linear embedding algorithm. see reference [1] hessian : use the Hessian eigenmap method. This method requires ``n_neighbors > n_components * (1 + (n_components + 1) / 2`` see reference [2] modified : use the modified locally linear embedding algorithm. see reference [3] ltsa : use local tangent space alignment algorithm see reference [4] hessian_tol : float, optional Tolerance for Hessian eigenmapping method. Only used if ``method == 'hessian'`` modified_tol : float, optional Tolerance for modified LLE method. Only used if ``method == 'modified'`` neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree'] algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance random_state: numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random. n_jobs : int, optional (default = 1) The number of parallel jobs to run. If ``-1``, then the number of jobs is set to the number of CPU cores. Attributes ---------- embedding_vectors_ : array-like, shape [n_components, n_samples] Stores the embedding vectors reconstruction_error_ : float Reconstruction error associated with `embedding_vectors_` nbrs_ : NearestNeighbors object Stores nearest neighbors instance, including BallTree or KDtree if applicable. References ---------- .. [1] `Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000).` .. [2] `Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003).` .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights.` http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382 .. [4] `Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004)` """ def __init__(self, n_neighbors=5, n_components=2, reg=1E-3, eigen_solver='auto', tol=1E-6, max_iter=100, method='standard', hessian_tol=1E-4, modified_tol=1E-12, neighbors_algorithm='auto', random_state=None, n_jobs=1): self.n_neighbors = n_neighbors self.n_components = n_components self.reg = reg self.eigen_solver = eigen_solver self.tol = tol self.max_iter = max_iter self.method = method self.hessian_tol = hessian_tol self.modified_tol = modified_tol self.random_state = random_state self.neighbors_algorithm = neighbors_algorithm self.n_jobs = n_jobs def _fit_transform(self, X): self.nbrs_ = NearestNeighbors(self.n_neighbors, algorithm=self.neighbors_algorithm, n_jobs=self.n_jobs) random_state = check_random_state(self.random_state) X = check_array(X) self.nbrs_.fit(X) self.embedding_, self.reconstruction_error_ = \ locally_linear_embedding( self.nbrs_, self.n_neighbors, self.n_components, eigen_solver=self.eigen_solver, tol=self.tol, max_iter=self.max_iter, method=self.method, hessian_tol=self.hessian_tol, modified_tol=self.modified_tol, random_state=random_state, reg=self.reg, n_jobs=self.n_jobs) def fit(self, X, y=None): """Compute the embedding vectors for data X Parameters ---------- X : array-like of shape [n_samples, n_features] training set. Returns ------- self : returns an instance of self. """ self._fit_transform(X) return self def fit_transform(self, X, y=None): """Compute the embedding vectors for data X and transform X. Parameters ---------- X : array-like of shape [n_samples, n_features] training set. Returns ------- X_new: array-like, shape (n_samples, n_components) """ self._fit_transform(X) return self.embedding_ def transform(self, X): """ Transform new points into embedding space. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- X_new : array, shape = [n_samples, n_components] Notes ----- Because of scaling performed by this method, it is discouraged to use it together with methods that are not scale-invariant (like SVMs) """ check_is_fitted(self, "nbrs_") X = check_array(X) ind = self.nbrs_.kneighbors(X, n_neighbors=self.n_neighbors, return_distance=False) weights = barycenter_weights(X, self.nbrs_._fit_X[ind], reg=self.reg) X_new = np.empty((X.shape[0], self.n_components)) for i in range(X.shape[0]): X_new[i] = np.dot(self.embedding_[ind[i]].T, weights[i]) return X_new
bsd-3-clause
bdh1011/wau
venv/lib/python2.7/site-packages/pandas/tseries/tests/test_period.py
1
120042
"""Tests suite for Period handling. Parts derived from scikits.timeseries code, original authors: - Pierre Gerard-Marchant & Matt Knox - pierregm_at_uga_dot_edu - mattknow_ca_at_hotmail_dot_com """ from datetime import datetime, date, timedelta from numpy.ma.testutils import assert_equal from pandas import Timestamp from pandas.tseries.frequencies import MONTHS, DAYS, _period_code_map from pandas.tseries.period import Period, PeriodIndex, period_range from pandas.tseries.index import DatetimeIndex, date_range, Index from pandas.tseries.tools import to_datetime import pandas.tseries.period as period import pandas.tseries.offsets as offsets import pandas.core.datetools as datetools import pandas as pd import numpy as np from numpy.random import randn from pandas.compat import range, lrange, lmap, zip from pandas import Series, TimeSeries, DataFrame, _np_version_under1p9 from pandas import tslib from pandas.util.testing import(assert_series_equal, assert_almost_equal, assertRaisesRegexp) import pandas.util.testing as tm from pandas import compat from numpy.testing import assert_array_equal class TestPeriodProperties(tm.TestCase): "Test properties such as year, month, weekday, etc...." # def test_quarterly_negative_ordinals(self): p = Period(ordinal=-1, freq='Q-DEC') self.assertEqual(p.year, 1969) self.assertEqual(p.quarter, 4) p = Period(ordinal=-2, freq='Q-DEC') self.assertEqual(p.year, 1969) self.assertEqual(p.quarter, 3) p = Period(ordinal=-2, freq='M') self.assertEqual(p.year, 1969) self.assertEqual(p.month, 11) def test_period_cons_quarterly(self): # bugs in scikits.timeseries for month in MONTHS: freq = 'Q-%s' % month exp = Period('1989Q3', freq=freq) self.assertIn('1989Q3', str(exp)) stamp = exp.to_timestamp('D', how='end') p = Period(stamp, freq=freq) self.assertEqual(p, exp) def test_period_cons_annual(self): # bugs in scikits.timeseries for month in MONTHS: freq = 'A-%s' % month exp = Period('1989', freq=freq) stamp = exp.to_timestamp('D', how='end') + timedelta(days=30) p = Period(stamp, freq=freq) self.assertEqual(p, exp + 1) def test_period_cons_weekly(self): for num in range(10, 17): daystr = '2011-02-%d' % num for day in DAYS: freq = 'W-%s' % day result = Period(daystr, freq=freq) expected = Period(daystr, freq='D').asfreq(freq) self.assertEqual(result, expected) def test_period_cons_nat(self): p = Period('NaT', freq='M') self.assertEqual(p.ordinal, tslib.iNaT) self.assertEqual(p.freq, 'M') p = Period('nat', freq='W-SUN') self.assertEqual(p.ordinal, tslib.iNaT) self.assertEqual(p.freq, 'W-SUN') p = Period(tslib.iNaT, freq='D') self.assertEqual(p.ordinal, tslib.iNaT) self.assertEqual(p.freq, 'D') self.assertRaises(ValueError, Period, 'NaT') def test_timestamp_tz_arg(self): import pytz p = Period('1/1/2005', freq='M').to_timestamp(tz='Europe/Brussels') self.assertEqual(p.tz, pytz.timezone('Europe/Brussels').normalize(p).tzinfo) def test_timestamp_tz_arg_dateutil(self): from pandas.tslib import _dateutil_gettz as gettz from pandas.tslib import maybe_get_tz p = Period('1/1/2005', freq='M').to_timestamp(tz=maybe_get_tz('dateutil/Europe/Brussels')) self.assertEqual(p.tz, gettz('Europe/Brussels')) def test_timestamp_tz_arg_dateutil_from_string(self): from pandas.tslib import _dateutil_gettz as gettz p = Period('1/1/2005', freq='M').to_timestamp(tz='dateutil/Europe/Brussels') self.assertEqual(p.tz, gettz('Europe/Brussels')) def test_timestamp_nat_tz(self): t = Period('NaT', freq='M').to_timestamp() self.assertTrue(t is tslib.NaT) t = Period('NaT', freq='M').to_timestamp(tz='Asia/Tokyo') self.assertTrue(t is tslib.NaT) def test_period_constructor(self): i1 = Period('1/1/2005', freq='M') i2 = Period('Jan 2005') self.assertEqual(i1, i2) i1 = Period('2005', freq='A') i2 = Period('2005') i3 = Period('2005', freq='a') self.assertEqual(i1, i2) self.assertEqual(i1, i3) i4 = Period('2005', freq='M') i5 = Period('2005', freq='m') self.assertRaises(ValueError, i1.__ne__, i4) self.assertEqual(i4, i5) i1 = Period.now('Q') i2 = Period(datetime.now(), freq='Q') i3 = Period.now('q') self.assertEqual(i1, i2) self.assertEqual(i1, i3) # Biz day construction, roll forward if non-weekday i1 = Period('3/10/12', freq='B') i2 = Period('3/10/12', freq='D') self.assertEqual(i1, i2.asfreq('B')) i2 = Period('3/11/12', freq='D') self.assertEqual(i1, i2.asfreq('B')) i2 = Period('3/12/12', freq='D') self.assertEqual(i1, i2.asfreq('B')) i3 = Period('3/10/12', freq='b') self.assertEqual(i1, i3) i1 = Period(year=2005, quarter=1, freq='Q') i2 = Period('1/1/2005', freq='Q') self.assertEqual(i1, i2) i1 = Period(year=2005, quarter=3, freq='Q') i2 = Period('9/1/2005', freq='Q') self.assertEqual(i1, i2) i1 = Period(year=2005, month=3, day=1, freq='D') i2 = Period('3/1/2005', freq='D') self.assertEqual(i1, i2) i3 = Period(year=2005, month=3, day=1, freq='d') self.assertEqual(i1, i3) i1 = Period(year=2012, month=3, day=10, freq='B') i2 = Period('3/12/12', freq='B') self.assertEqual(i1, i2) i1 = Period('2005Q1') i2 = Period(year=2005, quarter=1, freq='Q') i3 = Period('2005q1') self.assertEqual(i1, i2) self.assertEqual(i1, i3) i1 = Period('05Q1') self.assertEqual(i1, i2) lower = Period('05q1') self.assertEqual(i1, lower) i1 = Period('1Q2005') self.assertEqual(i1, i2) lower = Period('1q2005') self.assertEqual(i1, lower) i1 = Period('1Q05') self.assertEqual(i1, i2) lower = Period('1q05') self.assertEqual(i1, lower) i1 = Period('4Q1984') self.assertEqual(i1.year, 1984) lower = Period('4q1984') self.assertEqual(i1, lower) i1 = Period('1982', freq='min') i2 = Period('1982', freq='MIN') self.assertEqual(i1, i2) i2 = Period('1982', freq=('Min', 1)) self.assertEqual(i1, i2) expected = Period('2007-01', freq='M') i1 = Period('200701', freq='M') self.assertEqual(i1, expected) i1 = Period('200701', freq='M') self.assertEqual(i1, expected) i1 = Period(200701, freq='M') self.assertEqual(i1, expected) i1 = Period(ordinal=200701, freq='M') self.assertEqual(i1.year, 18695) i1 = Period(datetime(2007, 1, 1), freq='M') i2 = Period('200701', freq='M') self.assertEqual(i1, i2) i1 = Period(date(2007, 1, 1), freq='M') i2 = Period(datetime(2007, 1, 1), freq='M') i3 = Period(np.datetime64('2007-01-01'), freq='M') i4 = Period(np.datetime64('2007-01-01 00:00:00Z'), freq='M') i5 = Period(np.datetime64('2007-01-01 00:00:00.000Z'), freq='M') self.assertEqual(i1, i2) self.assertEqual(i1, i3) self.assertEqual(i1, i4) self.assertEqual(i1, i5) i1 = Period('2007-01-01 09:00:00.001') expected = Period(datetime(2007, 1, 1, 9, 0, 0, 1000), freq='L') self.assertEqual(i1, expected) expected = Period(np.datetime64('2007-01-01 09:00:00.001Z'), freq='L') self.assertEqual(i1, expected) i1 = Period('2007-01-01 09:00:00.00101') expected = Period(datetime(2007, 1, 1, 9, 0, 0, 1010), freq='U') self.assertEqual(i1, expected) expected = Period(np.datetime64('2007-01-01 09:00:00.00101Z'), freq='U') self.assertEqual(i1, expected) self.assertRaises(ValueError, Period, ordinal=200701) self.assertRaises(ValueError, Period, '2007-1-1', freq='X') def test_freq_str(self): i1 = Period('1982', freq='Min') self.assertNotEqual(i1.freq[0], '1') def test_repr(self): p = Period('Jan-2000') self.assertIn('2000-01', repr(p)) p = Period('2000-12-15') self.assertIn('2000-12-15', repr(p)) def test_repr_nat(self): p = Period('nat', freq='M') self.assertIn(repr(tslib.NaT), repr(p)) def test_millisecond_repr(self): p = Period('2000-01-01 12:15:02.123') self.assertEqual("Period('2000-01-01 12:15:02.123', 'L')", repr(p)) def test_microsecond_repr(self): p = Period('2000-01-01 12:15:02.123567') self.assertEqual("Period('2000-01-01 12:15:02.123567', 'U')", repr(p)) def test_strftime(self): p = Period('2000-1-1 12:34:12', freq='S') res = p.strftime('%Y-%m-%d %H:%M:%S') self.assertEqual(res, '2000-01-01 12:34:12') tm.assert_isinstance(res, compat.text_type) # GH3363 def test_sub_delta(self): left, right = Period('2011', freq='A'), Period('2007', freq='A') result = left - right self.assertEqual(result, 4) self.assertRaises(ValueError, left.__sub__, Period('2007-01', freq='M')) def test_to_timestamp(self): p = Period('1982', freq='A') start_ts = p.to_timestamp(how='S') aliases = ['s', 'StarT', 'BEGIn'] for a in aliases: self.assertEqual(start_ts, p.to_timestamp('D', how=a)) end_ts = p.to_timestamp(how='E') aliases = ['e', 'end', 'FINIsH'] for a in aliases: self.assertEqual(end_ts, p.to_timestamp('D', how=a)) from_lst = ['A', 'Q', 'M', 'W', 'B', 'D', 'H', 'Min', 'S'] def _ex(p): return Timestamp((p + 1).start_time.value - 1) for i, fcode in enumerate(from_lst): p = Period('1982', freq=fcode) result = p.to_timestamp().to_period(fcode) self.assertEqual(result, p) self.assertEqual(p.start_time, p.to_timestamp(how='S')) self.assertEqual(p.end_time, _ex(p)) # Frequency other than daily p = Period('1985', freq='A') result = p.to_timestamp('H', how='end') expected = datetime(1985, 12, 31, 23) self.assertEqual(result, expected) result = p.to_timestamp('T', how='end') expected = datetime(1985, 12, 31, 23, 59) self.assertEqual(result, expected) result = p.to_timestamp(how='end') expected = datetime(1985, 12, 31) self.assertEqual(result, expected) expected = datetime(1985, 1, 1) result = p.to_timestamp('H', how='start') self.assertEqual(result, expected) result = p.to_timestamp('T', how='start') self.assertEqual(result, expected) result = p.to_timestamp('S', how='start') self.assertEqual(result, expected) assertRaisesRegexp(ValueError, 'Only mult == 1', p.to_timestamp, '5t') p = Period('NaT', freq='W') self.assertTrue(p.to_timestamp() is tslib.NaT) def test_start_time(self): freq_lst = ['A', 'Q', 'M', 'D', 'H', 'T', 'S'] xp = datetime(2012, 1, 1) for f in freq_lst: p = Period('2012', freq=f) self.assertEqual(p.start_time, xp) self.assertEqual(Period('2012', freq='B').start_time, datetime(2012, 1, 2)) self.assertEqual(Period('2012', freq='W').start_time, datetime(2011, 12, 26)) p = Period('NaT', freq='W') self.assertTrue(p.start_time is tslib.NaT) def test_end_time(self): p = Period('2012', freq='A') def _ex(*args): return Timestamp(Timestamp(datetime(*args)).value - 1) xp = _ex(2013, 1, 1) self.assertEqual(xp, p.end_time) p = Period('2012', freq='Q') xp = _ex(2012, 4, 1) self.assertEqual(xp, p.end_time) p = Period('2012', freq='M') xp = _ex(2012, 2, 1) self.assertEqual(xp, p.end_time) xp = _ex(2012, 1, 2) p = Period('2012', freq='D') self.assertEqual(p.end_time, xp) xp = _ex(2012, 1, 1, 1) p = Period('2012', freq='H') self.assertEqual(p.end_time, xp) xp = _ex(2012, 1, 3) self.assertEqual(Period('2012', freq='B').end_time, xp) xp = _ex(2012, 1, 2) self.assertEqual(Period('2012', freq='W').end_time, xp) p = Period('NaT', freq='W') self.assertTrue(p.end_time is tslib.NaT) def test_anchor_week_end_time(self): def _ex(*args): return Timestamp(Timestamp(datetime(*args)).value - 1) p = Period('2013-1-1', 'W-SAT') xp = _ex(2013, 1, 6) self.assertEqual(p.end_time, xp) def test_properties_annually(self): # Test properties on Periods with annually frequency. a_date = Period(freq='A', year=2007) assert_equal(a_date.year, 2007) def test_properties_quarterly(self): # Test properties on Periods with daily frequency. qedec_date = Period(freq="Q-DEC", year=2007, quarter=1) qejan_date = Period(freq="Q-JAN", year=2007, quarter=1) qejun_date = Period(freq="Q-JUN", year=2007, quarter=1) # for x in range(3): for qd in (qedec_date, qejan_date, qejun_date): assert_equal((qd + x).qyear, 2007) assert_equal((qd + x).quarter, x + 1) def test_properties_monthly(self): # Test properties on Periods with daily frequency. m_date = Period(freq='M', year=2007, month=1) for x in range(11): m_ival_x = m_date + x assert_equal(m_ival_x.year, 2007) if 1 <= x + 1 <= 3: assert_equal(m_ival_x.quarter, 1) elif 4 <= x + 1 <= 6: assert_equal(m_ival_x.quarter, 2) elif 7 <= x + 1 <= 9: assert_equal(m_ival_x.quarter, 3) elif 10 <= x + 1 <= 12: assert_equal(m_ival_x.quarter, 4) assert_equal(m_ival_x.month, x + 1) def test_properties_weekly(self): # Test properties on Periods with daily frequency. w_date = Period(freq='WK', year=2007, month=1, day=7) # assert_equal(w_date.year, 2007) assert_equal(w_date.quarter, 1) assert_equal(w_date.month, 1) assert_equal(w_date.week, 1) assert_equal((w_date - 1).week, 52) assert_equal(w_date.days_in_month, 31) assert_equal(Period(freq='WK', year=2012, month=2, day=1).days_in_month, 29) def test_properties_daily(self): # Test properties on Periods with daily frequency. b_date = Period(freq='B', year=2007, month=1, day=1) # assert_equal(b_date.year, 2007) assert_equal(b_date.quarter, 1) assert_equal(b_date.month, 1) assert_equal(b_date.day, 1) assert_equal(b_date.weekday, 0) assert_equal(b_date.dayofyear, 1) assert_equal(b_date.days_in_month, 31) assert_equal(Period(freq='B', year=2012, month=2, day=1).days_in_month, 29) # d_date = Period(freq='D', year=2007, month=1, day=1) # assert_equal(d_date.year, 2007) assert_equal(d_date.quarter, 1) assert_equal(d_date.month, 1) assert_equal(d_date.day, 1) assert_equal(d_date.weekday, 0) assert_equal(d_date.dayofyear, 1) assert_equal(d_date.days_in_month, 31) assert_equal(Period(freq='D', year=2012, month=2, day=1).days_in_month, 29) def test_properties_hourly(self): # Test properties on Periods with hourly frequency. h_date = Period(freq='H', year=2007, month=1, day=1, hour=0) # assert_equal(h_date.year, 2007) assert_equal(h_date.quarter, 1) assert_equal(h_date.month, 1) assert_equal(h_date.day, 1) assert_equal(h_date.weekday, 0) assert_equal(h_date.dayofyear, 1) assert_equal(h_date.hour, 0) assert_equal(h_date.days_in_month, 31) assert_equal(Period(freq='H', year=2012, month=2, day=1, hour=0).days_in_month, 29) # def test_properties_minutely(self): # Test properties on Periods with minutely frequency. t_date = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) # assert_equal(t_date.quarter, 1) assert_equal(t_date.month, 1) assert_equal(t_date.day, 1) assert_equal(t_date.weekday, 0) assert_equal(t_date.dayofyear, 1) assert_equal(t_date.hour, 0) assert_equal(t_date.minute, 0) assert_equal(t_date.days_in_month, 31) assert_equal(Period(freq='D', year=2012, month=2, day=1, hour=0, minute=0).days_in_month, 29) def test_properties_secondly(self): # Test properties on Periods with secondly frequency. s_date = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0, second=0) # assert_equal(s_date.year, 2007) assert_equal(s_date.quarter, 1) assert_equal(s_date.month, 1) assert_equal(s_date.day, 1) assert_equal(s_date.weekday, 0) assert_equal(s_date.dayofyear, 1) assert_equal(s_date.hour, 0) assert_equal(s_date.minute, 0) assert_equal(s_date.second, 0) assert_equal(s_date.days_in_month, 31) assert_equal(Period(freq='Min', year=2012, month=2, day=1, hour=0, minute=0, second=0).days_in_month, 29) def test_properties_nat(self): p_nat = Period('NaT', freq='M') t_nat = pd.Timestamp('NaT') # confirm Period('NaT') work identical with Timestamp('NaT') for f in ['year', 'month', 'day', 'hour', 'minute', 'second', 'week', 'dayofyear', 'quarter', 'days_in_month']: self.assertTrue(np.isnan(getattr(p_nat, f))) self.assertTrue(np.isnan(getattr(t_nat, f))) for f in ['weekofyear', 'dayofweek', 'weekday', 'qyear']: self.assertTrue(np.isnan(getattr(p_nat, f))) def test_pnow(self): dt = datetime.now() val = period.pnow('D') exp = Period(dt, freq='D') self.assertEqual(val, exp) def test_constructor_corner(self): self.assertRaises(ValueError, Period, year=2007, month=1, freq='2M') self.assertRaises(ValueError, Period, datetime.now()) self.assertRaises(ValueError, Period, datetime.now().date()) self.assertRaises(ValueError, Period, 1.6, freq='D') self.assertRaises(ValueError, Period, ordinal=1.6, freq='D') self.assertRaises(ValueError, Period, ordinal=2, value=1, freq='D') self.assertRaises(ValueError, Period) self.assertRaises(ValueError, Period, month=1) p = Period('2007-01-01', freq='D') result = Period(p, freq='A') exp = Period('2007', freq='A') self.assertEqual(result, exp) def test_constructor_infer_freq(self): p = Period('2007-01-01') self.assertEqual(p.freq, 'D') p = Period('2007-01-01 07') self.assertEqual(p.freq, 'H') p = Period('2007-01-01 07:10') self.assertEqual(p.freq, 'T') p = Period('2007-01-01 07:10:15') self.assertEqual(p.freq, 'S') p = Period('2007-01-01 07:10:15.123') self.assertEqual(p.freq, 'L') p = Period('2007-01-01 07:10:15.123000') self.assertEqual(p.freq, 'L') p = Period('2007-01-01 07:10:15.123400') self.assertEqual(p.freq, 'U') def test_asfreq_MS(self): initial = Period("2013") self.assertEqual(initial.asfreq(freq="M", how="S"), Period('2013-01', 'M')) self.assertRaises(ValueError, initial.asfreq, freq="MS", how="S") tm.assertRaisesRegexp(ValueError, "Unknown freqstr: MS", pd.Period, '2013-01', 'MS') self.assertTrue(_period_code_map.get("MS") is None) def noWrap(item): return item class TestFreqConversion(tm.TestCase): "Test frequency conversion of date objects" def test_asfreq_corner(self): val = Period(freq='A', year=2007) self.assertRaises(ValueError, val.asfreq, '5t') def test_conv_annual(self): # frequency conversion tests: from Annual Frequency ival_A = Period(freq='A', year=2007) ival_AJAN = Period(freq="A-JAN", year=2007) ival_AJUN = Period(freq="A-JUN", year=2007) ival_ANOV = Period(freq="A-NOV", year=2007) ival_A_to_Q_start = Period(freq='Q', year=2007, quarter=1) ival_A_to_Q_end = Period(freq='Q', year=2007, quarter=4) ival_A_to_M_start = Period(freq='M', year=2007, month=1) ival_A_to_M_end = Period(freq='M', year=2007, month=12) ival_A_to_W_start = Period(freq='WK', year=2007, month=1, day=1) ival_A_to_W_end = Period(freq='WK', year=2007, month=12, day=31) ival_A_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_A_to_B_end = Period(freq='B', year=2007, month=12, day=31) ival_A_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_A_to_D_end = Period(freq='D', year=2007, month=12, day=31) ival_A_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_A_to_H_end = Period(freq='H', year=2007, month=12, day=31, hour=23) ival_A_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_A_to_T_end = Period(freq='Min', year=2007, month=12, day=31, hour=23, minute=59) ival_A_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_A_to_S_end = Period(freq='S', year=2007, month=12, day=31, hour=23, minute=59, second=59) ival_AJAN_to_D_end = Period(freq='D', year=2007, month=1, day=31) ival_AJAN_to_D_start = Period(freq='D', year=2006, month=2, day=1) ival_AJUN_to_D_end = Period(freq='D', year=2007, month=6, day=30) ival_AJUN_to_D_start = Period(freq='D', year=2006, month=7, day=1) ival_ANOV_to_D_end = Period(freq='D', year=2007, month=11, day=30) ival_ANOV_to_D_start = Period(freq='D', year=2006, month=12, day=1) assert_equal(ival_A.asfreq('Q', 'S'), ival_A_to_Q_start) assert_equal(ival_A.asfreq('Q', 'e'), ival_A_to_Q_end) assert_equal(ival_A.asfreq('M', 's'), ival_A_to_M_start) assert_equal(ival_A.asfreq('M', 'E'), ival_A_to_M_end) assert_equal(ival_A.asfreq('WK', 'S'), ival_A_to_W_start) assert_equal(ival_A.asfreq('WK', 'E'), ival_A_to_W_end) assert_equal(ival_A.asfreq('B', 'S'), ival_A_to_B_start) assert_equal(ival_A.asfreq('B', 'E'), ival_A_to_B_end) assert_equal(ival_A.asfreq('D', 'S'), ival_A_to_D_start) assert_equal(ival_A.asfreq('D', 'E'), ival_A_to_D_end) assert_equal(ival_A.asfreq('H', 'S'), ival_A_to_H_start) assert_equal(ival_A.asfreq('H', 'E'), ival_A_to_H_end) assert_equal(ival_A.asfreq('min', 'S'), ival_A_to_T_start) assert_equal(ival_A.asfreq('min', 'E'), ival_A_to_T_end) assert_equal(ival_A.asfreq('T', 'S'), ival_A_to_T_start) assert_equal(ival_A.asfreq('T', 'E'), ival_A_to_T_end) assert_equal(ival_A.asfreq('S', 'S'), ival_A_to_S_start) assert_equal(ival_A.asfreq('S', 'E'), ival_A_to_S_end) assert_equal(ival_AJAN.asfreq('D', 'S'), ival_AJAN_to_D_start) assert_equal(ival_AJAN.asfreq('D', 'E'), ival_AJAN_to_D_end) assert_equal(ival_AJUN.asfreq('D', 'S'), ival_AJUN_to_D_start) assert_equal(ival_AJUN.asfreq('D', 'E'), ival_AJUN_to_D_end) assert_equal(ival_ANOV.asfreq('D', 'S'), ival_ANOV_to_D_start) assert_equal(ival_ANOV.asfreq('D', 'E'), ival_ANOV_to_D_end) assert_equal(ival_A.asfreq('A'), ival_A) def test_conv_quarterly(self): # frequency conversion tests: from Quarterly Frequency ival_Q = Period(freq='Q', year=2007, quarter=1) ival_Q_end_of_year = Period(freq='Q', year=2007, quarter=4) ival_QEJAN = Period(freq="Q-JAN", year=2007, quarter=1) ival_QEJUN = Period(freq="Q-JUN", year=2007, quarter=1) ival_Q_to_A = Period(freq='A', year=2007) ival_Q_to_M_start = Period(freq='M', year=2007, month=1) ival_Q_to_M_end = Period(freq='M', year=2007, month=3) ival_Q_to_W_start = Period(freq='WK', year=2007, month=1, day=1) ival_Q_to_W_end = Period(freq='WK', year=2007, month=3, day=31) ival_Q_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_Q_to_B_end = Period(freq='B', year=2007, month=3, day=30) ival_Q_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_Q_to_D_end = Period(freq='D', year=2007, month=3, day=31) ival_Q_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_Q_to_H_end = Period(freq='H', year=2007, month=3, day=31, hour=23) ival_Q_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_Q_to_T_end = Period(freq='Min', year=2007, month=3, day=31, hour=23, minute=59) ival_Q_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_Q_to_S_end = Period(freq='S', year=2007, month=3, day=31, hour=23, minute=59, second=59) ival_QEJAN_to_D_start = Period(freq='D', year=2006, month=2, day=1) ival_QEJAN_to_D_end = Period(freq='D', year=2006, month=4, day=30) ival_QEJUN_to_D_start = Period(freq='D', year=2006, month=7, day=1) ival_QEJUN_to_D_end = Period(freq='D', year=2006, month=9, day=30) assert_equal(ival_Q.asfreq('A'), ival_Q_to_A) assert_equal(ival_Q_end_of_year.asfreq('A'), ival_Q_to_A) assert_equal(ival_Q.asfreq('M', 'S'), ival_Q_to_M_start) assert_equal(ival_Q.asfreq('M', 'E'), ival_Q_to_M_end) assert_equal(ival_Q.asfreq('WK', 'S'), ival_Q_to_W_start) assert_equal(ival_Q.asfreq('WK', 'E'), ival_Q_to_W_end) assert_equal(ival_Q.asfreq('B', 'S'), ival_Q_to_B_start) assert_equal(ival_Q.asfreq('B', 'E'), ival_Q_to_B_end) assert_equal(ival_Q.asfreq('D', 'S'), ival_Q_to_D_start) assert_equal(ival_Q.asfreq('D', 'E'), ival_Q_to_D_end) assert_equal(ival_Q.asfreq('H', 'S'), ival_Q_to_H_start) assert_equal(ival_Q.asfreq('H', 'E'), ival_Q_to_H_end) assert_equal(ival_Q.asfreq('Min', 'S'), ival_Q_to_T_start) assert_equal(ival_Q.asfreq('Min', 'E'), ival_Q_to_T_end) assert_equal(ival_Q.asfreq('S', 'S'), ival_Q_to_S_start) assert_equal(ival_Q.asfreq('S', 'E'), ival_Q_to_S_end) assert_equal(ival_QEJAN.asfreq('D', 'S'), ival_QEJAN_to_D_start) assert_equal(ival_QEJAN.asfreq('D', 'E'), ival_QEJAN_to_D_end) assert_equal(ival_QEJUN.asfreq('D', 'S'), ival_QEJUN_to_D_start) assert_equal(ival_QEJUN.asfreq('D', 'E'), ival_QEJUN_to_D_end) assert_equal(ival_Q.asfreq('Q'), ival_Q) def test_conv_monthly(self): # frequency conversion tests: from Monthly Frequency ival_M = Period(freq='M', year=2007, month=1) ival_M_end_of_year = Period(freq='M', year=2007, month=12) ival_M_end_of_quarter = Period(freq='M', year=2007, month=3) ival_M_to_A = Period(freq='A', year=2007) ival_M_to_Q = Period(freq='Q', year=2007, quarter=1) ival_M_to_W_start = Period(freq='WK', year=2007, month=1, day=1) ival_M_to_W_end = Period(freq='WK', year=2007, month=1, day=31) ival_M_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_M_to_B_end = Period(freq='B', year=2007, month=1, day=31) ival_M_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_M_to_D_end = Period(freq='D', year=2007, month=1, day=31) ival_M_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_M_to_H_end = Period(freq='H', year=2007, month=1, day=31, hour=23) ival_M_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_M_to_T_end = Period(freq='Min', year=2007, month=1, day=31, hour=23, minute=59) ival_M_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_M_to_S_end = Period(freq='S', year=2007, month=1, day=31, hour=23, minute=59, second=59) assert_equal(ival_M.asfreq('A'), ival_M_to_A) assert_equal(ival_M_end_of_year.asfreq('A'), ival_M_to_A) assert_equal(ival_M.asfreq('Q'), ival_M_to_Q) assert_equal(ival_M_end_of_quarter.asfreq('Q'), ival_M_to_Q) assert_equal(ival_M.asfreq('WK', 'S'), ival_M_to_W_start) assert_equal(ival_M.asfreq('WK', 'E'), ival_M_to_W_end) assert_equal(ival_M.asfreq('B', 'S'), ival_M_to_B_start) assert_equal(ival_M.asfreq('B', 'E'), ival_M_to_B_end) assert_equal(ival_M.asfreq('D', 'S'), ival_M_to_D_start) assert_equal(ival_M.asfreq('D', 'E'), ival_M_to_D_end) assert_equal(ival_M.asfreq('H', 'S'), ival_M_to_H_start) assert_equal(ival_M.asfreq('H', 'E'), ival_M_to_H_end) assert_equal(ival_M.asfreq('Min', 'S'), ival_M_to_T_start) assert_equal(ival_M.asfreq('Min', 'E'), ival_M_to_T_end) assert_equal(ival_M.asfreq('S', 'S'), ival_M_to_S_start) assert_equal(ival_M.asfreq('S', 'E'), ival_M_to_S_end) assert_equal(ival_M.asfreq('M'), ival_M) def test_conv_weekly(self): # frequency conversion tests: from Weekly Frequency ival_W = Period(freq='WK', year=2007, month=1, day=1) ival_WSUN = Period(freq='WK', year=2007, month=1, day=7) ival_WSAT = Period(freq='WK-SAT', year=2007, month=1, day=6) ival_WFRI = Period(freq='WK-FRI', year=2007, month=1, day=5) ival_WTHU = Period(freq='WK-THU', year=2007, month=1, day=4) ival_WWED = Period(freq='WK-WED', year=2007, month=1, day=3) ival_WTUE = Period(freq='WK-TUE', year=2007, month=1, day=2) ival_WMON = Period(freq='WK-MON', year=2007, month=1, day=1) ival_WSUN_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_WSUN_to_D_end = Period(freq='D', year=2007, month=1, day=7) ival_WSAT_to_D_start = Period(freq='D', year=2006, month=12, day=31) ival_WSAT_to_D_end = Period(freq='D', year=2007, month=1, day=6) ival_WFRI_to_D_start = Period(freq='D', year=2006, month=12, day=30) ival_WFRI_to_D_end = Period(freq='D', year=2007, month=1, day=5) ival_WTHU_to_D_start = Period(freq='D', year=2006, month=12, day=29) ival_WTHU_to_D_end = Period(freq='D', year=2007, month=1, day=4) ival_WWED_to_D_start = Period(freq='D', year=2006, month=12, day=28) ival_WWED_to_D_end = Period(freq='D', year=2007, month=1, day=3) ival_WTUE_to_D_start = Period(freq='D', year=2006, month=12, day=27) ival_WTUE_to_D_end = Period(freq='D', year=2007, month=1, day=2) ival_WMON_to_D_start = Period(freq='D', year=2006, month=12, day=26) ival_WMON_to_D_end = Period(freq='D', year=2007, month=1, day=1) ival_W_end_of_year = Period(freq='WK', year=2007, month=12, day=31) ival_W_end_of_quarter = Period(freq='WK', year=2007, month=3, day=31) ival_W_end_of_month = Period(freq='WK', year=2007, month=1, day=31) ival_W_to_A = Period(freq='A', year=2007) ival_W_to_Q = Period(freq='Q', year=2007, quarter=1) ival_W_to_M = Period(freq='M', year=2007, month=1) if Period(freq='D', year=2007, month=12, day=31).weekday == 6: ival_W_to_A_end_of_year = Period(freq='A', year=2007) else: ival_W_to_A_end_of_year = Period(freq='A', year=2008) if Period(freq='D', year=2007, month=3, day=31).weekday == 6: ival_W_to_Q_end_of_quarter = Period(freq='Q', year=2007, quarter=1) else: ival_W_to_Q_end_of_quarter = Period(freq='Q', year=2007, quarter=2) if Period(freq='D', year=2007, month=1, day=31).weekday == 6: ival_W_to_M_end_of_month = Period(freq='M', year=2007, month=1) else: ival_W_to_M_end_of_month = Period(freq='M', year=2007, month=2) ival_W_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_W_to_B_end = Period(freq='B', year=2007, month=1, day=5) ival_W_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_W_to_D_end = Period(freq='D', year=2007, month=1, day=7) ival_W_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_W_to_H_end = Period(freq='H', year=2007, month=1, day=7, hour=23) ival_W_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_W_to_T_end = Period(freq='Min', year=2007, month=1, day=7, hour=23, minute=59) ival_W_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_W_to_S_end = Period(freq='S', year=2007, month=1, day=7, hour=23, minute=59, second=59) assert_equal(ival_W.asfreq('A'), ival_W_to_A) assert_equal(ival_W_end_of_year.asfreq('A'), ival_W_to_A_end_of_year) assert_equal(ival_W.asfreq('Q'), ival_W_to_Q) assert_equal(ival_W_end_of_quarter.asfreq('Q'), ival_W_to_Q_end_of_quarter) assert_equal(ival_W.asfreq('M'), ival_W_to_M) assert_equal(ival_W_end_of_month.asfreq('M'), ival_W_to_M_end_of_month) assert_equal(ival_W.asfreq('B', 'S'), ival_W_to_B_start) assert_equal(ival_W.asfreq('B', 'E'), ival_W_to_B_end) assert_equal(ival_W.asfreq('D', 'S'), ival_W_to_D_start) assert_equal(ival_W.asfreq('D', 'E'), ival_W_to_D_end) assert_equal(ival_WSUN.asfreq('D', 'S'), ival_WSUN_to_D_start) assert_equal(ival_WSUN.asfreq('D', 'E'), ival_WSUN_to_D_end) assert_equal(ival_WSAT.asfreq('D', 'S'), ival_WSAT_to_D_start) assert_equal(ival_WSAT.asfreq('D', 'E'), ival_WSAT_to_D_end) assert_equal(ival_WFRI.asfreq('D', 'S'), ival_WFRI_to_D_start) assert_equal(ival_WFRI.asfreq('D', 'E'), ival_WFRI_to_D_end) assert_equal(ival_WTHU.asfreq('D', 'S'), ival_WTHU_to_D_start) assert_equal(ival_WTHU.asfreq('D', 'E'), ival_WTHU_to_D_end) assert_equal(ival_WWED.asfreq('D', 'S'), ival_WWED_to_D_start) assert_equal(ival_WWED.asfreq('D', 'E'), ival_WWED_to_D_end) assert_equal(ival_WTUE.asfreq('D', 'S'), ival_WTUE_to_D_start) assert_equal(ival_WTUE.asfreq('D', 'E'), ival_WTUE_to_D_end) assert_equal(ival_WMON.asfreq('D', 'S'), ival_WMON_to_D_start) assert_equal(ival_WMON.asfreq('D', 'E'), ival_WMON_to_D_end) assert_equal(ival_W.asfreq('H', 'S'), ival_W_to_H_start) assert_equal(ival_W.asfreq('H', 'E'), ival_W_to_H_end) assert_equal(ival_W.asfreq('Min', 'S'), ival_W_to_T_start) assert_equal(ival_W.asfreq('Min', 'E'), ival_W_to_T_end) assert_equal(ival_W.asfreq('S', 'S'), ival_W_to_S_start) assert_equal(ival_W.asfreq('S', 'E'), ival_W_to_S_end) assert_equal(ival_W.asfreq('WK'), ival_W) def test_conv_business(self): # frequency conversion tests: from Business Frequency" ival_B = Period(freq='B', year=2007, month=1, day=1) ival_B_end_of_year = Period(freq='B', year=2007, month=12, day=31) ival_B_end_of_quarter = Period(freq='B', year=2007, month=3, day=30) ival_B_end_of_month = Period(freq='B', year=2007, month=1, day=31) ival_B_end_of_week = Period(freq='B', year=2007, month=1, day=5) ival_B_to_A = Period(freq='A', year=2007) ival_B_to_Q = Period(freq='Q', year=2007, quarter=1) ival_B_to_M = Period(freq='M', year=2007, month=1) ival_B_to_W = Period(freq='WK', year=2007, month=1, day=7) ival_B_to_D = Period(freq='D', year=2007, month=1, day=1) ival_B_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_B_to_H_end = Period(freq='H', year=2007, month=1, day=1, hour=23) ival_B_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_B_to_T_end = Period(freq='Min', year=2007, month=1, day=1, hour=23, minute=59) ival_B_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_B_to_S_end = Period(freq='S', year=2007, month=1, day=1, hour=23, minute=59, second=59) assert_equal(ival_B.asfreq('A'), ival_B_to_A) assert_equal(ival_B_end_of_year.asfreq('A'), ival_B_to_A) assert_equal(ival_B.asfreq('Q'), ival_B_to_Q) assert_equal(ival_B_end_of_quarter.asfreq('Q'), ival_B_to_Q) assert_equal(ival_B.asfreq('M'), ival_B_to_M) assert_equal(ival_B_end_of_month.asfreq('M'), ival_B_to_M) assert_equal(ival_B.asfreq('WK'), ival_B_to_W) assert_equal(ival_B_end_of_week.asfreq('WK'), ival_B_to_W) assert_equal(ival_B.asfreq('D'), ival_B_to_D) assert_equal(ival_B.asfreq('H', 'S'), ival_B_to_H_start) assert_equal(ival_B.asfreq('H', 'E'), ival_B_to_H_end) assert_equal(ival_B.asfreq('Min', 'S'), ival_B_to_T_start) assert_equal(ival_B.asfreq('Min', 'E'), ival_B_to_T_end) assert_equal(ival_B.asfreq('S', 'S'), ival_B_to_S_start) assert_equal(ival_B.asfreq('S', 'E'), ival_B_to_S_end) assert_equal(ival_B.asfreq('B'), ival_B) def test_conv_daily(self): # frequency conversion tests: from Business Frequency" ival_D = Period(freq='D', year=2007, month=1, day=1) ival_D_end_of_year = Period(freq='D', year=2007, month=12, day=31) ival_D_end_of_quarter = Period(freq='D', year=2007, month=3, day=31) ival_D_end_of_month = Period(freq='D', year=2007, month=1, day=31) ival_D_end_of_week = Period(freq='D', year=2007, month=1, day=7) ival_D_friday = Period(freq='D', year=2007, month=1, day=5) ival_D_saturday = Period(freq='D', year=2007, month=1, day=6) ival_D_sunday = Period(freq='D', year=2007, month=1, day=7) ival_D_monday = Period(freq='D', year=2007, month=1, day=8) ival_B_friday = Period(freq='B', year=2007, month=1, day=5) ival_B_monday = Period(freq='B', year=2007, month=1, day=8) ival_D_to_A = Period(freq='A', year=2007) ival_Deoq_to_AJAN = Period(freq='A-JAN', year=2008) ival_Deoq_to_AJUN = Period(freq='A-JUN', year=2007) ival_Deoq_to_ADEC = Period(freq='A-DEC', year=2007) ival_D_to_QEJAN = Period(freq="Q-JAN", year=2007, quarter=4) ival_D_to_QEJUN = Period(freq="Q-JUN", year=2007, quarter=3) ival_D_to_QEDEC = Period(freq="Q-DEC", year=2007, quarter=1) ival_D_to_M = Period(freq='M', year=2007, month=1) ival_D_to_W = Period(freq='WK', year=2007, month=1, day=7) ival_D_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_D_to_H_end = Period(freq='H', year=2007, month=1, day=1, hour=23) ival_D_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_D_to_T_end = Period(freq='Min', year=2007, month=1, day=1, hour=23, minute=59) ival_D_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_D_to_S_end = Period(freq='S', year=2007, month=1, day=1, hour=23, minute=59, second=59) assert_equal(ival_D.asfreq('A'), ival_D_to_A) assert_equal(ival_D_end_of_quarter.asfreq('A-JAN'), ival_Deoq_to_AJAN) assert_equal(ival_D_end_of_quarter.asfreq('A-JUN'), ival_Deoq_to_AJUN) assert_equal(ival_D_end_of_quarter.asfreq('A-DEC'), ival_Deoq_to_ADEC) assert_equal(ival_D_end_of_year.asfreq('A'), ival_D_to_A) assert_equal(ival_D_end_of_quarter.asfreq('Q'), ival_D_to_QEDEC) assert_equal(ival_D.asfreq("Q-JAN"), ival_D_to_QEJAN) assert_equal(ival_D.asfreq("Q-JUN"), ival_D_to_QEJUN) assert_equal(ival_D.asfreq("Q-DEC"), ival_D_to_QEDEC) assert_equal(ival_D.asfreq('M'), ival_D_to_M) assert_equal(ival_D_end_of_month.asfreq('M'), ival_D_to_M) assert_equal(ival_D.asfreq('WK'), ival_D_to_W) assert_equal(ival_D_end_of_week.asfreq('WK'), ival_D_to_W) assert_equal(ival_D_friday.asfreq('B'), ival_B_friday) assert_equal(ival_D_saturday.asfreq('B', 'S'), ival_B_friday) assert_equal(ival_D_saturday.asfreq('B', 'E'), ival_B_monday) assert_equal(ival_D_sunday.asfreq('B', 'S'), ival_B_friday) assert_equal(ival_D_sunday.asfreq('B', 'E'), ival_B_monday) assert_equal(ival_D.asfreq('H', 'S'), ival_D_to_H_start) assert_equal(ival_D.asfreq('H', 'E'), ival_D_to_H_end) assert_equal(ival_D.asfreq('Min', 'S'), ival_D_to_T_start) assert_equal(ival_D.asfreq('Min', 'E'), ival_D_to_T_end) assert_equal(ival_D.asfreq('S', 'S'), ival_D_to_S_start) assert_equal(ival_D.asfreq('S', 'E'), ival_D_to_S_end) assert_equal(ival_D.asfreq('D'), ival_D) def test_conv_hourly(self): # frequency conversion tests: from Hourly Frequency" ival_H = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_H_end_of_year = Period(freq='H', year=2007, month=12, day=31, hour=23) ival_H_end_of_quarter = Period(freq='H', year=2007, month=3, day=31, hour=23) ival_H_end_of_month = Period(freq='H', year=2007, month=1, day=31, hour=23) ival_H_end_of_week = Period(freq='H', year=2007, month=1, day=7, hour=23) ival_H_end_of_day = Period(freq='H', year=2007, month=1, day=1, hour=23) ival_H_end_of_bus = Period(freq='H', year=2007, month=1, day=1, hour=23) ival_H_to_A = Period(freq='A', year=2007) ival_H_to_Q = Period(freq='Q', year=2007, quarter=1) ival_H_to_M = Period(freq='M', year=2007, month=1) ival_H_to_W = Period(freq='WK', year=2007, month=1, day=7) ival_H_to_D = Period(freq='D', year=2007, month=1, day=1) ival_H_to_B = Period(freq='B', year=2007, month=1, day=1) ival_H_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_H_to_T_end = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=59) ival_H_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_H_to_S_end = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=59, second=59) assert_equal(ival_H.asfreq('A'), ival_H_to_A) assert_equal(ival_H_end_of_year.asfreq('A'), ival_H_to_A) assert_equal(ival_H.asfreq('Q'), ival_H_to_Q) assert_equal(ival_H_end_of_quarter.asfreq('Q'), ival_H_to_Q) assert_equal(ival_H.asfreq('M'), ival_H_to_M) assert_equal(ival_H_end_of_month.asfreq('M'), ival_H_to_M) assert_equal(ival_H.asfreq('WK'), ival_H_to_W) assert_equal(ival_H_end_of_week.asfreq('WK'), ival_H_to_W) assert_equal(ival_H.asfreq('D'), ival_H_to_D) assert_equal(ival_H_end_of_day.asfreq('D'), ival_H_to_D) assert_equal(ival_H.asfreq('B'), ival_H_to_B) assert_equal(ival_H_end_of_bus.asfreq('B'), ival_H_to_B) assert_equal(ival_H.asfreq('Min', 'S'), ival_H_to_T_start) assert_equal(ival_H.asfreq('Min', 'E'), ival_H_to_T_end) assert_equal(ival_H.asfreq('S', 'S'), ival_H_to_S_start) assert_equal(ival_H.asfreq('S', 'E'), ival_H_to_S_end) assert_equal(ival_H.asfreq('H'), ival_H) def test_conv_minutely(self): # frequency conversion tests: from Minutely Frequency" ival_T = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_T_end_of_year = Period(freq='Min', year=2007, month=12, day=31, hour=23, minute=59) ival_T_end_of_quarter = Period(freq='Min', year=2007, month=3, day=31, hour=23, minute=59) ival_T_end_of_month = Period(freq='Min', year=2007, month=1, day=31, hour=23, minute=59) ival_T_end_of_week = Period(freq='Min', year=2007, month=1, day=7, hour=23, minute=59) ival_T_end_of_day = Period(freq='Min', year=2007, month=1, day=1, hour=23, minute=59) ival_T_end_of_bus = Period(freq='Min', year=2007, month=1, day=1, hour=23, minute=59) ival_T_end_of_hour = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=59) ival_T_to_A = Period(freq='A', year=2007) ival_T_to_Q = Period(freq='Q', year=2007, quarter=1) ival_T_to_M = Period(freq='M', year=2007, month=1) ival_T_to_W = Period(freq='WK', year=2007, month=1, day=7) ival_T_to_D = Period(freq='D', year=2007, month=1, day=1) ival_T_to_B = Period(freq='B', year=2007, month=1, day=1) ival_T_to_H = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_T_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_T_to_S_end = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=59) assert_equal(ival_T.asfreq('A'), ival_T_to_A) assert_equal(ival_T_end_of_year.asfreq('A'), ival_T_to_A) assert_equal(ival_T.asfreq('Q'), ival_T_to_Q) assert_equal(ival_T_end_of_quarter.asfreq('Q'), ival_T_to_Q) assert_equal(ival_T.asfreq('M'), ival_T_to_M) assert_equal(ival_T_end_of_month.asfreq('M'), ival_T_to_M) assert_equal(ival_T.asfreq('WK'), ival_T_to_W) assert_equal(ival_T_end_of_week.asfreq('WK'), ival_T_to_W) assert_equal(ival_T.asfreq('D'), ival_T_to_D) assert_equal(ival_T_end_of_day.asfreq('D'), ival_T_to_D) assert_equal(ival_T.asfreq('B'), ival_T_to_B) assert_equal(ival_T_end_of_bus.asfreq('B'), ival_T_to_B) assert_equal(ival_T.asfreq('H'), ival_T_to_H) assert_equal(ival_T_end_of_hour.asfreq('H'), ival_T_to_H) assert_equal(ival_T.asfreq('S', 'S'), ival_T_to_S_start) assert_equal(ival_T.asfreq('S', 'E'), ival_T_to_S_end) assert_equal(ival_T.asfreq('Min'), ival_T) def test_conv_secondly(self): # frequency conversion tests: from Secondly Frequency" ival_S = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_S_end_of_year = Period(freq='S', year=2007, month=12, day=31, hour=23, minute=59, second=59) ival_S_end_of_quarter = Period(freq='S', year=2007, month=3, day=31, hour=23, minute=59, second=59) ival_S_end_of_month = Period(freq='S', year=2007, month=1, day=31, hour=23, minute=59, second=59) ival_S_end_of_week = Period(freq='S', year=2007, month=1, day=7, hour=23, minute=59, second=59) ival_S_end_of_day = Period(freq='S', year=2007, month=1, day=1, hour=23, minute=59, second=59) ival_S_end_of_bus = Period(freq='S', year=2007, month=1, day=1, hour=23, minute=59, second=59) ival_S_end_of_hour = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=59, second=59) ival_S_end_of_minute = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=59) ival_S_to_A = Period(freq='A', year=2007) ival_S_to_Q = Period(freq='Q', year=2007, quarter=1) ival_S_to_M = Period(freq='M', year=2007, month=1) ival_S_to_W = Period(freq='WK', year=2007, month=1, day=7) ival_S_to_D = Period(freq='D', year=2007, month=1, day=1) ival_S_to_B = Period(freq='B', year=2007, month=1, day=1) ival_S_to_H = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_S_to_T = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) assert_equal(ival_S.asfreq('A'), ival_S_to_A) assert_equal(ival_S_end_of_year.asfreq('A'), ival_S_to_A) assert_equal(ival_S.asfreq('Q'), ival_S_to_Q) assert_equal(ival_S_end_of_quarter.asfreq('Q'), ival_S_to_Q) assert_equal(ival_S.asfreq('M'), ival_S_to_M) assert_equal(ival_S_end_of_month.asfreq('M'), ival_S_to_M) assert_equal(ival_S.asfreq('WK'), ival_S_to_W) assert_equal(ival_S_end_of_week.asfreq('WK'), ival_S_to_W) assert_equal(ival_S.asfreq('D'), ival_S_to_D) assert_equal(ival_S_end_of_day.asfreq('D'), ival_S_to_D) assert_equal(ival_S.asfreq('B'), ival_S_to_B) assert_equal(ival_S_end_of_bus.asfreq('B'), ival_S_to_B) assert_equal(ival_S.asfreq('H'), ival_S_to_H) assert_equal(ival_S_end_of_hour.asfreq('H'), ival_S_to_H) assert_equal(ival_S.asfreq('Min'), ival_S_to_T) assert_equal(ival_S_end_of_minute.asfreq('Min'), ival_S_to_T) assert_equal(ival_S.asfreq('S'), ival_S) def test_asfreq_nat(self): p = Period('NaT', freq='A') result = p.asfreq('M') self.assertEqual(result.ordinal, tslib.iNaT) self.assertEqual(result.freq, 'M') class TestPeriodIndex(tm.TestCase): def setUp(self): pass def test_hash_error(self): index = period_range('20010101', periods=10) with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(index).__name__): hash(index) def test_make_time_series(self): index = PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009') series = Series(1, index=index) tm.assert_isinstance(series, TimeSeries) def test_astype(self): idx = period_range('1990', '2009', freq='A') result = idx.astype('i8') self.assert_numpy_array_equal(result, idx.values) def test_constructor_use_start_freq(self): # GH #1118 p = Period('4/2/2012', freq='B') index = PeriodIndex(start=p, periods=10) expected = PeriodIndex(start='4/2/2012', periods=10, freq='B') self.assertTrue(index.equals(expected)) def test_constructor_field_arrays(self): # GH #1264 years = np.arange(1990, 2010).repeat(4)[2:-2] quarters = np.tile(np.arange(1, 5), 20)[2:-2] index = PeriodIndex(year=years, quarter=quarters, freq='Q-DEC') expected = period_range('1990Q3', '2009Q2', freq='Q-DEC') self.assertTrue(index.equals(expected)) self.assertRaises( ValueError, PeriodIndex, year=years, quarter=quarters, freq='2Q-DEC') index = PeriodIndex(year=years, quarter=quarters) self.assertTrue(index.equals(expected)) years = [2007, 2007, 2007] months = [1, 2] self.assertRaises(ValueError, PeriodIndex, year=years, month=months, freq='M') self.assertRaises(ValueError, PeriodIndex, year=years, month=months, freq='2M') self.assertRaises(ValueError, PeriodIndex, year=years, month=months, freq='M', start=Period('2007-01', freq='M')) years = [2007, 2007, 2007] months = [1, 2, 3] idx = PeriodIndex(year=years, month=months, freq='M') exp = period_range('2007-01', periods=3, freq='M') self.assertTrue(idx.equals(exp)) def test_constructor_U(self): # U was used as undefined period self.assertRaises(ValueError, period_range, '2007-1-1', periods=500, freq='X') def test_constructor_arrays_negative_year(self): years = np.arange(1960, 2000).repeat(4) quarters = np.tile(lrange(1, 5), 40) pindex = PeriodIndex(year=years, quarter=quarters) self.assert_numpy_array_equal(pindex.year, years) self.assert_numpy_array_equal(pindex.quarter, quarters) def test_constructor_invalid_quarters(self): self.assertRaises(ValueError, PeriodIndex, year=lrange(2000, 2004), quarter=lrange(4), freq='Q-DEC') def test_constructor_corner(self): self.assertRaises(ValueError, PeriodIndex, periods=10, freq='A') start = Period('2007', freq='A-JUN') end = Period('2010', freq='A-DEC') self.assertRaises(ValueError, PeriodIndex, start=start, end=end) self.assertRaises(ValueError, PeriodIndex, start=start) self.assertRaises(ValueError, PeriodIndex, end=end) result = period_range('2007-01', periods=10.5, freq='M') exp = period_range('2007-01', periods=10, freq='M') self.assertTrue(result.equals(exp)) def test_constructor_fromarraylike(self): idx = period_range('2007-01', periods=20, freq='M') self.assertRaises(ValueError, PeriodIndex, idx.values) self.assertRaises(ValueError, PeriodIndex, list(idx.values)) self.assertRaises(ValueError, PeriodIndex, data=Period('2007', freq='A')) result = PeriodIndex(iter(idx)) self.assertTrue(result.equals(idx)) result = PeriodIndex(idx) self.assertTrue(result.equals(idx)) result = PeriodIndex(idx, freq='M') self.assertTrue(result.equals(idx)) result = PeriodIndex(idx, freq='D') exp = idx.asfreq('D', 'e') self.assertTrue(result.equals(exp)) def test_constructor_datetime64arr(self): vals = np.arange(100000, 100000 + 10000, 100, dtype=np.int64) vals = vals.view(np.dtype('M8[us]')) self.assertRaises(ValueError, PeriodIndex, vals, freq='D') def test_constructor_simple_new(self): idx = period_range('2007-01', name='p', periods=20, freq='M') result = idx._simple_new(idx, 'p', freq=idx.freq) self.assertTrue(result.equals(idx)) result = idx._simple_new(idx.astype('i8'), 'p', freq=idx.freq) self.assertTrue(result.equals(idx)) def test_constructor_nat(self): self.assertRaises( ValueError, period_range, start='NaT', end='2011-01-01', freq='M') self.assertRaises( ValueError, period_range, start='2011-01-01', end='NaT', freq='M') def test_constructor_year_and_quarter(self): year = pd.Series([2001, 2002, 2003]) quarter = year - 2000 idx = PeriodIndex(year=year, quarter=quarter) strs = ['%dQ%d' % t for t in zip(quarter, year)] lops = list(map(Period, strs)) p = PeriodIndex(lops) tm.assert_index_equal(p, idx) def test_is_(self): create_index = lambda: PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009') index = create_index() self.assertEqual(index.is_(index), True) self.assertEqual(index.is_(create_index()), False) self.assertEqual(index.is_(index.view()), True) self.assertEqual(index.is_(index.view().view().view().view().view()), True) self.assertEqual(index.view().is_(index), True) ind2 = index.view() index.name = "Apple" self.assertEqual(ind2.is_(index), True) self.assertEqual(index.is_(index[:]), False) self.assertEqual(index.is_(index.asfreq('M')), False) self.assertEqual(index.is_(index.asfreq('A')), False) self.assertEqual(index.is_(index - 2), False) self.assertEqual(index.is_(index - 0), False) def test_comp_period(self): idx = period_range('2007-01', periods=20, freq='M') result = idx < idx[10] exp = idx.values < idx.values[10] self.assert_numpy_array_equal(result, exp) def test_getitem_ndim2(self): idx = period_range('2007-01', periods=3, freq='M') result = idx[:, None] # MPL kludge tm.assert_isinstance(result, PeriodIndex) def test_getitem_partial(self): rng = period_range('2007-01', periods=50, freq='M') ts = Series(np.random.randn(len(rng)), rng) self.assertRaises(KeyError, ts.__getitem__, '2006') result = ts['2008'] self.assertTrue((result.index.year == 2008).all()) result = ts['2008':'2009'] self.assertEqual(len(result), 24) result = ts['2008-1':'2009-12'] self.assertEqual(len(result), 24) result = ts['2008Q1':'2009Q4'] self.assertEqual(len(result), 24) result = ts[:'2009'] self.assertEqual(len(result), 36) result = ts['2009':] self.assertEqual(len(result), 50 - 24) exp = result result = ts[24:] assert_series_equal(exp, result) ts = ts[10:].append(ts[10:]) self.assertRaisesRegexp( KeyError, "left slice bound for non-unique label: '2008'", ts.__getitem__, slice('2008', '2009')) def test_getitem_datetime(self): rng = period_range(start='2012-01-01', periods=10, freq='W-MON') ts = Series(lrange(len(rng)), index=rng) dt1 = datetime(2011, 10, 2) dt4 = datetime(2012, 4, 20) rs = ts[dt1:dt4] assert_series_equal(rs, ts) def test_slice_with_negative_step(self): ts = Series(np.arange(20), period_range('2014-01', periods=20, freq='M')) SLC = pd.IndexSlice def assert_slices_equivalent(l_slc, i_slc): assert_series_equal(ts[l_slc], ts.iloc[i_slc]) assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc]) assert_series_equal(ts.ix[l_slc], ts.iloc[i_slc]) assert_slices_equivalent(SLC[Period('2014-10')::-1], SLC[9::-1]) assert_slices_equivalent(SLC['2014-10'::-1], SLC[9::-1]) assert_slices_equivalent(SLC[:Period('2014-10'):-1], SLC[:8:-1]) assert_slices_equivalent(SLC[:'2014-10':-1], SLC[:8:-1]) assert_slices_equivalent(SLC['2015-02':'2014-10':-1], SLC[13:8:-1]) assert_slices_equivalent(SLC[Period('2015-02'):Period('2014-10'):-1], SLC[13:8:-1]) assert_slices_equivalent(SLC['2015-02':Period('2014-10'):-1], SLC[13:8:-1]) assert_slices_equivalent(SLC[Period('2015-02'):'2014-10':-1], SLC[13:8:-1]) assert_slices_equivalent(SLC['2014-10':'2015-02':-1], SLC[:0]) def test_slice_with_zero_step_raises(self): ts = Series(np.arange(20), period_range('2014-01', periods=20, freq='M')) self.assertRaisesRegexp(ValueError, 'slice step cannot be zero', lambda: ts[::0]) self.assertRaisesRegexp(ValueError, 'slice step cannot be zero', lambda: ts.loc[::0]) self.assertRaisesRegexp(ValueError, 'slice step cannot be zero', lambda: ts.ix[::0]) def test_sub(self): rng = period_range('2007-01', periods=50) result = rng - 5 exp = rng + (-5) self.assertTrue(result.equals(exp)) def test_periods_number_check(self): self.assertRaises( ValueError, period_range, '2011-1-1', '2012-1-1', 'B') def test_tolist(self): index = PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009') rs = index.tolist() [tm.assert_isinstance(x, Period) for x in rs] recon = PeriodIndex(rs) self.assertTrue(index.equals(recon)) def test_to_timestamp(self): index = PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009') series = Series(1, index=index, name='foo') exp_index = date_range('1/1/2001', end='12/31/2009', freq='A-DEC') result = series.to_timestamp(how='end') self.assertTrue(result.index.equals(exp_index)) self.assertEqual(result.name, 'foo') exp_index = date_range('1/1/2001', end='1/1/2009', freq='AS-JAN') result = series.to_timestamp(how='start') self.assertTrue(result.index.equals(exp_index)) def _get_with_delta(delta, freq='A-DEC'): return date_range(to_datetime('1/1/2001') + delta, to_datetime('12/31/2009') + delta, freq=freq) delta = timedelta(hours=23) result = series.to_timestamp('H', 'end') exp_index = _get_with_delta(delta) self.assertTrue(result.index.equals(exp_index)) delta = timedelta(hours=23, minutes=59) result = series.to_timestamp('T', 'end') exp_index = _get_with_delta(delta) self.assertTrue(result.index.equals(exp_index)) result = series.to_timestamp('S', 'end') delta = timedelta(hours=23, minutes=59, seconds=59) exp_index = _get_with_delta(delta) self.assertTrue(result.index.equals(exp_index)) self.assertRaises(ValueError, index.to_timestamp, '5t') index = PeriodIndex(freq='H', start='1/1/2001', end='1/2/2001') series = Series(1, index=index, name='foo') exp_index = date_range('1/1/2001 00:59:59', end='1/2/2001 00:59:59', freq='H') result = series.to_timestamp(how='end') self.assertTrue(result.index.equals(exp_index)) self.assertEqual(result.name, 'foo') def test_to_timestamp_quarterly_bug(self): years = np.arange(1960, 2000).repeat(4) quarters = np.tile(lrange(1, 5), 40) pindex = PeriodIndex(year=years, quarter=quarters) stamps = pindex.to_timestamp('D', 'end') expected = DatetimeIndex([x.to_timestamp('D', 'end') for x in pindex]) self.assertTrue(stamps.equals(expected)) def test_to_timestamp_preserve_name(self): index = PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009', name='foo') self.assertEqual(index.name, 'foo') conv = index.to_timestamp('D') self.assertEqual(conv.name, 'foo') def test_to_timestamp_repr_is_code(self): zs=[Timestamp('99-04-17 00:00:00',tz='UTC'), Timestamp('2001-04-17 00:00:00',tz='UTC'), Timestamp('2001-04-17 00:00:00',tz='America/Los_Angeles'), Timestamp('2001-04-17 00:00:00',tz=None)] for z in zs: self.assertEqual( eval(repr(z)), z) def test_to_timestamp_period_nat(self): # GH 7228 index = PeriodIndex(['NaT', '2011-01', '2011-02'], freq='M', name='idx') result = index.to_timestamp('D') expected = DatetimeIndex([pd.NaT, datetime(2011, 1, 1), datetime(2011, 2, 1)], name='idx') self.assertTrue(result.equals(expected)) self.assertEqual(result.name, 'idx') result2 = result.to_period(freq='M') self.assertTrue(result2.equals(index)) self.assertEqual(result2.name, 'idx') def test_as_frame_columns(self): rng = period_range('1/1/2000', periods=5) df = DataFrame(randn(10, 5), columns=rng) ts = df[rng[0]] assert_series_equal(ts, df.ix[:, 0]) # GH # 1211 repr(df) ts = df['1/1/2000'] assert_series_equal(ts, df.ix[:, 0]) def test_indexing(self): # GH 4390, iat incorrectly indexing index = period_range('1/1/2001', periods=10) s = Series(randn(10), index=index) expected = s[index[0]] result = s.iat[0] self.assertEqual(expected, result) def test_frame_setitem(self): rng = period_range('1/1/2000', periods=5) rng.name = 'index' df = DataFrame(randn(5, 3), index=rng) df['Index'] = rng rs = Index(df['Index']) self.assertTrue(rs.equals(rng)) rs = df.reset_index().set_index('index') tm.assert_isinstance(rs.index, PeriodIndex) self.assertTrue(rs.index.equals(rng)) def test_period_set_index_reindex(self): # GH 6631 df = DataFrame(np.random.random(6)) idx1 = period_range('2011/01/01', periods=6, freq='M') idx2 = period_range('2013', periods=6, freq='A') df = df.set_index(idx1) self.assertTrue(df.index.equals(idx1)) df = df.set_index(idx2) self.assertTrue(df.index.equals(idx2)) def test_nested_dict_frame_constructor(self): rng = period_range('1/1/2000', periods=5) df = DataFrame(randn(10, 5), columns=rng) data = {} for col in df.columns: for row in df.index: data.setdefault(col, {})[row] = df.get_value(row, col) result = DataFrame(data, columns=rng) tm.assert_frame_equal(result, df) data = {} for col in df.columns: for row in df.index: data.setdefault(row, {})[col] = df.get_value(row, col) result = DataFrame(data, index=rng).T tm.assert_frame_equal(result, df) def test_frame_to_time_stamp(self): K = 5 index = PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009') df = DataFrame(randn(len(index), K), index=index) df['mix'] = 'a' exp_index = date_range('1/1/2001', end='12/31/2009', freq='A-DEC') result = df.to_timestamp('D', 'end') self.assertTrue(result.index.equals(exp_index)) assert_almost_equal(result.values, df.values) exp_index = date_range('1/1/2001', end='1/1/2009', freq='AS-JAN') result = df.to_timestamp('D', 'start') self.assertTrue(result.index.equals(exp_index)) def _get_with_delta(delta, freq='A-DEC'): return date_range(to_datetime('1/1/2001') + delta, to_datetime('12/31/2009') + delta, freq=freq) delta = timedelta(hours=23) result = df.to_timestamp('H', 'end') exp_index = _get_with_delta(delta) self.assertTrue(result.index.equals(exp_index)) delta = timedelta(hours=23, minutes=59) result = df.to_timestamp('T', 'end') exp_index = _get_with_delta(delta) self.assertTrue(result.index.equals(exp_index)) result = df.to_timestamp('S', 'end') delta = timedelta(hours=23, minutes=59, seconds=59) exp_index = _get_with_delta(delta) self.assertTrue(result.index.equals(exp_index)) # columns df = df.T exp_index = date_range('1/1/2001', end='12/31/2009', freq='A-DEC') result = df.to_timestamp('D', 'end', axis=1) self.assertTrue(result.columns.equals(exp_index)) assert_almost_equal(result.values, df.values) exp_index = date_range('1/1/2001', end='1/1/2009', freq='AS-JAN') result = df.to_timestamp('D', 'start', axis=1) self.assertTrue(result.columns.equals(exp_index)) delta = timedelta(hours=23) result = df.to_timestamp('H', 'end', axis=1) exp_index = _get_with_delta(delta) self.assertTrue(result.columns.equals(exp_index)) delta = timedelta(hours=23, minutes=59) result = df.to_timestamp('T', 'end', axis=1) exp_index = _get_with_delta(delta) self.assertTrue(result.columns.equals(exp_index)) result = df.to_timestamp('S', 'end', axis=1) delta = timedelta(hours=23, minutes=59, seconds=59) exp_index = _get_with_delta(delta) self.assertTrue(result.columns.equals(exp_index)) # invalid axis assertRaisesRegexp(ValueError, 'axis', df.to_timestamp, axis=2) assertRaisesRegexp(ValueError, 'Only mult == 1', df.to_timestamp, '5t', axis=1) def test_index_duplicate_periods(self): # monotonic idx = PeriodIndex([2000, 2007, 2007, 2009, 2009], freq='A-JUN') ts = Series(np.random.randn(len(idx)), index=idx) result = ts[2007] expected = ts[1:3] assert_series_equal(result, expected) result[:] = 1 self.assertTrue((ts[1:3] == 1).all()) # not monotonic idx = PeriodIndex([2000, 2007, 2007, 2009, 2007], freq='A-JUN') ts = Series(np.random.randn(len(idx)), index=idx) result = ts[2007] expected = ts[idx == 2007] assert_series_equal(result, expected) def test_index_unique(self): idx = PeriodIndex([2000, 2007, 2007, 2009, 2009], freq='A-JUN') expected = PeriodIndex([2000, 2007, 2009], freq='A-JUN') self.assert_numpy_array_equal(idx.unique(), expected.values) self.assertEqual(idx.nunique(), 3) idx = PeriodIndex([2000, 2007, 2007, 2009, 2007], freq='A-JUN', tz='US/Eastern') expected = PeriodIndex([2000, 2007, 2009], freq='A-JUN', tz='US/Eastern') self.assert_numpy_array_equal(idx.unique(), expected.values) self.assertEqual(idx.nunique(), 3) def test_constructor(self): pi = PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009') assert_equal(len(pi), 9) pi = PeriodIndex(freq='Q', start='1/1/2001', end='12/1/2009') assert_equal(len(pi), 4 * 9) pi = PeriodIndex(freq='M', start='1/1/2001', end='12/1/2009') assert_equal(len(pi), 12 * 9) pi = PeriodIndex(freq='D', start='1/1/2001', end='12/31/2009') assert_equal(len(pi), 365 * 9 + 2) pi = PeriodIndex(freq='B', start='1/1/2001', end='12/31/2009') assert_equal(len(pi), 261 * 9) pi = PeriodIndex(freq='H', start='1/1/2001', end='12/31/2001 23:00') assert_equal(len(pi), 365 * 24) pi = PeriodIndex(freq='Min', start='1/1/2001', end='1/1/2001 23:59') assert_equal(len(pi), 24 * 60) pi = PeriodIndex(freq='S', start='1/1/2001', end='1/1/2001 23:59:59') assert_equal(len(pi), 24 * 60 * 60) start = Period('02-Apr-2005', 'B') i1 = PeriodIndex(start=start, periods=20) assert_equal(len(i1), 20) assert_equal(i1.freq, start.freq) assert_equal(i1[0], start) end_intv = Period('2006-12-31', 'W') i1 = PeriodIndex(end=end_intv, periods=10) assert_equal(len(i1), 10) assert_equal(i1.freq, end_intv.freq) assert_equal(i1[-1], end_intv) end_intv = Period('2006-12-31', '1w') i2 = PeriodIndex(end=end_intv, periods=10) assert_equal(len(i1), len(i2)) self.assertTrue((i1 == i2).all()) assert_equal(i1.freq, i2.freq) end_intv = Period('2006-12-31', ('w', 1)) i2 = PeriodIndex(end=end_intv, periods=10) assert_equal(len(i1), len(i2)) self.assertTrue((i1 == i2).all()) assert_equal(i1.freq, i2.freq) try: PeriodIndex(start=start, end=end_intv) raise AssertionError('Cannot allow mixed freq for start and end') except ValueError: pass end_intv = Period('2005-05-01', 'B') i1 = PeriodIndex(start=start, end=end_intv) try: PeriodIndex(start=start) raise AssertionError( 'Must specify periods if missing start or end') except ValueError: pass # infer freq from first element i2 = PeriodIndex([end_intv, Period('2005-05-05', 'B')]) assert_equal(len(i2), 2) assert_equal(i2[0], end_intv) i2 = PeriodIndex(np.array([end_intv, Period('2005-05-05', 'B')])) assert_equal(len(i2), 2) assert_equal(i2[0], end_intv) # Mixed freq should fail vals = [end_intv, Period('2006-12-31', 'w')] self.assertRaises(ValueError, PeriodIndex, vals) vals = np.array(vals) self.assertRaises(ValueError, PeriodIndex, vals) def test_shift(self): pi1 = PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009') pi2 = PeriodIndex(freq='A', start='1/1/2002', end='12/1/2010') self.assertTrue(pi1.shift(0).equals(pi1)) assert_equal(len(pi1), len(pi2)) assert_equal(pi1.shift(1).values, pi2.values) pi1 = PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009') pi2 = PeriodIndex(freq='A', start='1/1/2000', end='12/1/2008') assert_equal(len(pi1), len(pi2)) assert_equal(pi1.shift(-1).values, pi2.values) pi1 = PeriodIndex(freq='M', start='1/1/2001', end='12/1/2009') pi2 = PeriodIndex(freq='M', start='2/1/2001', end='1/1/2010') assert_equal(len(pi1), len(pi2)) assert_equal(pi1.shift(1).values, pi2.values) pi1 = PeriodIndex(freq='M', start='1/1/2001', end='12/1/2009') pi2 = PeriodIndex(freq='M', start='12/1/2000', end='11/1/2009') assert_equal(len(pi1), len(pi2)) assert_equal(pi1.shift(-1).values, pi2.values) pi1 = PeriodIndex(freq='D', start='1/1/2001', end='12/1/2009') pi2 = PeriodIndex(freq='D', start='1/2/2001', end='12/2/2009') assert_equal(len(pi1), len(pi2)) assert_equal(pi1.shift(1).values, pi2.values) pi1 = PeriodIndex(freq='D', start='1/1/2001', end='12/1/2009') pi2 = PeriodIndex(freq='D', start='12/31/2000', end='11/30/2009') assert_equal(len(pi1), len(pi2)) assert_equal(pi1.shift(-1).values, pi2.values) def test_shift_nat(self): idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='M', name='idx') result = idx.shift(1) expected = PeriodIndex(['2011-02', '2011-03', 'NaT', '2011-05'], freq='M', name='idx') self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) def test_asfreq(self): pi1 = PeriodIndex(freq='A', start='1/1/2001', end='1/1/2001') pi2 = PeriodIndex(freq='Q', start='1/1/2001', end='1/1/2001') pi3 = PeriodIndex(freq='M', start='1/1/2001', end='1/1/2001') pi4 = PeriodIndex(freq='D', start='1/1/2001', end='1/1/2001') pi5 = PeriodIndex(freq='H', start='1/1/2001', end='1/1/2001 00:00') pi6 = PeriodIndex(freq='Min', start='1/1/2001', end='1/1/2001 00:00') pi7 = PeriodIndex(freq='S', start='1/1/2001', end='1/1/2001 00:00:00') self.assertEqual(pi1.asfreq('Q', 'S'), pi2) self.assertEqual(pi1.asfreq('Q', 's'), pi2) self.assertEqual(pi1.asfreq('M', 'start'), pi3) self.assertEqual(pi1.asfreq('D', 'StarT'), pi4) self.assertEqual(pi1.asfreq('H', 'beGIN'), pi5) self.assertEqual(pi1.asfreq('Min', 'S'), pi6) self.assertEqual(pi1.asfreq('S', 'S'), pi7) self.assertEqual(pi2.asfreq('A', 'S'), pi1) self.assertEqual(pi2.asfreq('M', 'S'), pi3) self.assertEqual(pi2.asfreq('D', 'S'), pi4) self.assertEqual(pi2.asfreq('H', 'S'), pi5) self.assertEqual(pi2.asfreq('Min', 'S'), pi6) self.assertEqual(pi2.asfreq('S', 'S'), pi7) self.assertEqual(pi3.asfreq('A', 'S'), pi1) self.assertEqual(pi3.asfreq('Q', 'S'), pi2) self.assertEqual(pi3.asfreq('D', 'S'), pi4) self.assertEqual(pi3.asfreq('H', 'S'), pi5) self.assertEqual(pi3.asfreq('Min', 'S'), pi6) self.assertEqual(pi3.asfreq('S', 'S'), pi7) self.assertEqual(pi4.asfreq('A', 'S'), pi1) self.assertEqual(pi4.asfreq('Q', 'S'), pi2) self.assertEqual(pi4.asfreq('M', 'S'), pi3) self.assertEqual(pi4.asfreq('H', 'S'), pi5) self.assertEqual(pi4.asfreq('Min', 'S'), pi6) self.assertEqual(pi4.asfreq('S', 'S'), pi7) self.assertEqual(pi5.asfreq('A', 'S'), pi1) self.assertEqual(pi5.asfreq('Q', 'S'), pi2) self.assertEqual(pi5.asfreq('M', 'S'), pi3) self.assertEqual(pi5.asfreq('D', 'S'), pi4) self.assertEqual(pi5.asfreq('Min', 'S'), pi6) self.assertEqual(pi5.asfreq('S', 'S'), pi7) self.assertEqual(pi6.asfreq('A', 'S'), pi1) self.assertEqual(pi6.asfreq('Q', 'S'), pi2) self.assertEqual(pi6.asfreq('M', 'S'), pi3) self.assertEqual(pi6.asfreq('D', 'S'), pi4) self.assertEqual(pi6.asfreq('H', 'S'), pi5) self.assertEqual(pi6.asfreq('S', 'S'), pi7) self.assertEqual(pi7.asfreq('A', 'S'), pi1) self.assertEqual(pi7.asfreq('Q', 'S'), pi2) self.assertEqual(pi7.asfreq('M', 'S'), pi3) self.assertEqual(pi7.asfreq('D', 'S'), pi4) self.assertEqual(pi7.asfreq('H', 'S'), pi5) self.assertEqual(pi7.asfreq('Min', 'S'), pi6) self.assertRaises(ValueError, pi7.asfreq, 'T', 'foo') self.assertRaises(ValueError, pi1.asfreq, '5t') def test_asfreq_nat(self): idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='M') result = idx.asfreq(freq='Q') expected = PeriodIndex(['2011Q1', '2011Q1', 'NaT', '2011Q2'], freq='Q') self.assertTrue(result.equals(expected)) def test_period_index_length(self): pi = PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009') assert_equal(len(pi), 9) pi = PeriodIndex(freq='Q', start='1/1/2001', end='12/1/2009') assert_equal(len(pi), 4 * 9) pi = PeriodIndex(freq='M', start='1/1/2001', end='12/1/2009') assert_equal(len(pi), 12 * 9) start = Period('02-Apr-2005', 'B') i1 = PeriodIndex(start=start, periods=20) assert_equal(len(i1), 20) assert_equal(i1.freq, start.freq) assert_equal(i1[0], start) end_intv = Period('2006-12-31', 'W') i1 = PeriodIndex(end=end_intv, periods=10) assert_equal(len(i1), 10) assert_equal(i1.freq, end_intv.freq) assert_equal(i1[-1], end_intv) end_intv = Period('2006-12-31', '1w') i2 = PeriodIndex(end=end_intv, periods=10) assert_equal(len(i1), len(i2)) self.assertTrue((i1 == i2).all()) assert_equal(i1.freq, i2.freq) end_intv = Period('2006-12-31', ('w', 1)) i2 = PeriodIndex(end=end_intv, periods=10) assert_equal(len(i1), len(i2)) self.assertTrue((i1 == i2).all()) assert_equal(i1.freq, i2.freq) try: PeriodIndex(start=start, end=end_intv) raise AssertionError('Cannot allow mixed freq for start and end') except ValueError: pass end_intv = Period('2005-05-01', 'B') i1 = PeriodIndex(start=start, end=end_intv) try: PeriodIndex(start=start) raise AssertionError( 'Must specify periods if missing start or end') except ValueError: pass # infer freq from first element i2 = PeriodIndex([end_intv, Period('2005-05-05', 'B')]) assert_equal(len(i2), 2) assert_equal(i2[0], end_intv) i2 = PeriodIndex(np.array([end_intv, Period('2005-05-05', 'B')])) assert_equal(len(i2), 2) assert_equal(i2[0], end_intv) # Mixed freq should fail vals = [end_intv, Period('2006-12-31', 'w')] self.assertRaises(ValueError, PeriodIndex, vals) vals = np.array(vals) self.assertRaises(ValueError, PeriodIndex, vals) def test_frame_index_to_string(self): index = PeriodIndex(['2011-1', '2011-2', '2011-3'], freq='M') frame = DataFrame(np.random.randn(3, 4), index=index) # it works! frame.to_string() def test_asfreq_ts(self): index = PeriodIndex(freq='A', start='1/1/2001', end='12/31/2010') ts = Series(np.random.randn(len(index)), index=index) df = DataFrame(np.random.randn(len(index), 3), index=index) result = ts.asfreq('D', how='end') df_result = df.asfreq('D', how='end') exp_index = index.asfreq('D', how='end') self.assertEqual(len(result), len(ts)) self.assertTrue(result.index.equals(exp_index)) self.assertTrue(df_result.index.equals(exp_index)) result = ts.asfreq('D', how='start') self.assertEqual(len(result), len(ts)) self.assertTrue(result.index.equals(index.asfreq('D', how='start'))) def test_badinput(self): self.assertRaises(datetools.DateParseError, Period, '1/1/-2000', 'A') # self.assertRaises(datetools.DateParseError, Period, '-2000', 'A') # self.assertRaises(datetools.DateParseError, Period, '0', 'A') def test_negative_ordinals(self): p = Period(ordinal=-1000, freq='A') p = Period(ordinal=0, freq='A') idx1 = PeriodIndex(ordinal=[-1, 0, 1], freq='A') idx2 = PeriodIndex(ordinal=np.array([-1, 0, 1]), freq='A') assert_array_equal(idx1,idx2) def test_dti_to_period(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') pi1 = dti.to_period() pi2 = dti.to_period(freq='D') self.assertEqual(pi1[0], Period('Jan 2005', freq='M')) self.assertEqual(pi2[0], Period('1/31/2005', freq='D')) self.assertEqual(pi1[-1], Period('Nov 2005', freq='M')) self.assertEqual(pi2[-1], Period('11/30/2005', freq='D')) def test_pindex_slice_index(self): pi = PeriodIndex(start='1/1/10', end='12/31/12', freq='M') s = Series(np.random.rand(len(pi)), index=pi) res = s['2010'] exp = s[0:12] assert_series_equal(res, exp) res = s['2011'] exp = s[12:24] assert_series_equal(res, exp) def test_getitem_day(self): # GH 6716 # Confirm DatetimeIndex and PeriodIndex works identically didx = DatetimeIndex(start='2013/01/01', freq='D', periods=400) pidx = PeriodIndex(start='2013/01/01', freq='D', periods=400) for idx in [didx, pidx]: # getitem against index should raise ValueError values = ['2014', '2013/02', '2013/01/02', '2013/02/01 9H', '2013/02/01 09:00'] for v in values: if _np_version_under1p9: with tm.assertRaises(ValueError): idx[v] else: # GH7116 # these show deprecations as we are trying # to slice with non-integer indexers #with tm.assertRaises(IndexError): # idx[v] continue s = Series(np.random.rand(len(idx)), index=idx) assert_series_equal(s['2013/01'], s[0:31]) assert_series_equal(s['2013/02'], s[31:59]) assert_series_equal(s['2014'], s[365:]) invalid = ['2013/02/01 9H', '2013/02/01 09:00'] for v in invalid: with tm.assertRaises(KeyError): s[v] def test_range_slice_day(self): # GH 6716 didx = DatetimeIndex(start='2013/01/01', freq='D', periods=400) pidx = PeriodIndex(start='2013/01/01', freq='D', periods=400) for idx in [didx, pidx]: # slices against index should raise IndexError values = ['2014', '2013/02', '2013/01/02', '2013/02/01 9H', '2013/02/01 09:00'] for v in values: with tm.assertRaises(IndexError): idx[v:] s = Series(np.random.rand(len(idx)), index=idx) assert_series_equal(s['2013/01/02':], s[1:]) assert_series_equal(s['2013/01/02':'2013/01/05'], s[1:5]) assert_series_equal(s['2013/02':], s[31:]) assert_series_equal(s['2014':], s[365:]) invalid = ['2013/02/01 9H', '2013/02/01 09:00'] for v in invalid: with tm.assertRaises(IndexError): idx[v:] def test_getitem_seconds(self): # GH 6716 didx = DatetimeIndex(start='2013/01/01 09:00:00', freq='S', periods=4000) pidx = PeriodIndex(start='2013/01/01 09:00:00', freq='S', periods=4000) for idx in [didx, pidx]: # getitem against index should raise ValueError values = ['2014', '2013/02', '2013/01/02', '2013/02/01 9H', '2013/02/01 09:00'] for v in values: if _np_version_under1p9: with tm.assertRaises(ValueError): idx[v] else: # GH7116 # these show deprecations as we are trying # to slice with non-integer indexers #with tm.assertRaises(IndexError): # idx[v] continue s = Series(np.random.rand(len(idx)), index=idx) assert_series_equal(s['2013/01/01 10:00'], s[3600:3660]) assert_series_equal(s['2013/01/01 9H'], s[:3600]) for d in ['2013/01/01', '2013/01', '2013']: assert_series_equal(s[d], s) def test_range_slice_seconds(self): # GH 6716 didx = DatetimeIndex(start='2013/01/01 09:00:00', freq='S', periods=4000) pidx = PeriodIndex(start='2013/01/01 09:00:00', freq='S', periods=4000) for idx in [didx, pidx]: # slices against index should raise IndexError values = ['2014', '2013/02', '2013/01/02', '2013/02/01 9H', '2013/02/01 09:00'] for v in values: with tm.assertRaises(IndexError): idx[v:] s = Series(np.random.rand(len(idx)), index=idx) assert_series_equal(s['2013/01/01 09:05':'2013/01/01 09:10'], s[300:660]) assert_series_equal(s['2013/01/01 10:00':'2013/01/01 10:05'], s[3600:3960]) assert_series_equal(s['2013/01/01 10H':], s[3600:]) assert_series_equal(s[:'2013/01/01 09:30'], s[:1860]) for d in ['2013/01/01', '2013/01', '2013']: assert_series_equal(s[d:], s) def test_range_slice_outofbounds(self): # GH 5407 didx = DatetimeIndex(start='2013/10/01', freq='D', periods=10) pidx = PeriodIndex(start='2013/10/01', freq='D', periods=10) for idx in [didx, pidx]: df = DataFrame(dict(units=[100 + i for i in range(10)]), index=idx) empty = DataFrame(index=idx.__class__([], freq='D'), columns=['units']) empty['units'] = empty['units'].astype('int64') tm.assert_frame_equal(df['2013/09/01':'2013/09/30'], empty) tm.assert_frame_equal(df['2013/09/30':'2013/10/02'], df.iloc[:2]) tm.assert_frame_equal(df['2013/10/01':'2013/10/02'], df.iloc[:2]) tm.assert_frame_equal(df['2013/10/02':'2013/09/30'], empty) tm.assert_frame_equal(df['2013/10/15':'2013/10/17'], empty) tm.assert_frame_equal(df['2013-06':'2013-09'], empty) tm.assert_frame_equal(df['2013-11':'2013-12'], empty) def test_pindex_fieldaccessor_nat(self): idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2012-03', '2012-04'], freq='D') self.assert_numpy_array_equal(idx.year, np.array([2011, 2011, -1, 2012, 2012])) self.assert_numpy_array_equal(idx.month, np.array([1, 2, -1, 3, 4])) def test_pindex_qaccess(self): pi = PeriodIndex(['2Q05', '3Q05', '4Q05', '1Q06', '2Q06'], freq='Q') s = Series(np.random.rand(len(pi)), index=pi).cumsum() # Todo: fix these accessors! self.assertEqual(s['05Q4'], s[2]) def test_period_dt64_round_trip(self): dti = date_range('1/1/2000', '1/7/2002', freq='B') pi = dti.to_period() self.assertTrue(pi.to_timestamp().equals(dti)) dti = date_range('1/1/2000', '1/7/2002', freq='B') pi = dti.to_period(freq='H') self.assertTrue(pi.to_timestamp().equals(dti)) def test_to_period_quarterly(self): # make sure we can make the round trip for month in MONTHS: freq = 'Q-%s' % month rng = period_range('1989Q3', '1991Q3', freq=freq) stamps = rng.to_timestamp() result = stamps.to_period(freq) self.assertTrue(rng.equals(result)) def test_to_period_quarterlyish(self): offsets = ['BQ', 'QS', 'BQS'] for off in offsets: rng = date_range('01-Jan-2012', periods=8, freq=off) prng = rng.to_period() self.assertEqual(prng.freq, 'Q-DEC') def test_to_period_annualish(self): offsets = ['BA', 'AS', 'BAS'] for off in offsets: rng = date_range('01-Jan-2012', periods=8, freq=off) prng = rng.to_period() self.assertEqual(prng.freq, 'A-DEC') def test_to_period_monthish(self): offsets = ['MS', 'EOM', 'BM'] for off in offsets: rng = date_range('01-Jan-2012', periods=8, freq=off) prng = rng.to_period() self.assertEqual(prng.freq, 'M') def test_no_multiples(self): self.assertRaises(ValueError, period_range, '1989Q3', periods=10, freq='2Q') self.assertRaises(ValueError, period_range, '1989', periods=10, freq='2A') self.assertRaises(ValueError, Period, '1989', freq='2A') # def test_pindex_multiples(self): # pi = PeriodIndex(start='1/1/10', end='12/31/12', freq='2M') # self.assertEqual(pi[0], Period('1/1/10', '2M')) # self.assertEqual(pi[1], Period('3/1/10', '2M')) # self.assertEqual(pi[0].asfreq('6M'), pi[2].asfreq('6M')) # self.assertEqual(pi[0].asfreq('A'), pi[2].asfreq('A')) # self.assertEqual(pi[0].asfreq('M', how='S'), # Period('Jan 2010', '1M')) # self.assertEqual(pi[0].asfreq('M', how='E'), # Period('Feb 2010', '1M')) # self.assertEqual(pi[1].asfreq('M', how='S'), # Period('Mar 2010', '1M')) # i = Period('1/1/2010 12:05:18', '5S') # self.assertEqual(i, Period('1/1/2010 12:05:15', '5S')) # i = Period('1/1/2010 12:05:18', '5S') # self.assertEqual(i.asfreq('1S', how='E'), # Period('1/1/2010 12:05:19', '1S')) def test_iteration(self): index = PeriodIndex(start='1/1/10', periods=4, freq='B') result = list(index) tm.assert_isinstance(result[0], Period) self.assertEqual(result[0].freq, index.freq) def test_take(self): index = PeriodIndex(start='1/1/10', end='12/31/12', freq='D', name='idx') expected = PeriodIndex([datetime(2010, 1, 6), datetime(2010, 1, 7), datetime(2010, 1, 9), datetime(2010, 1, 13)], freq='D', name='idx') taken1 = index.take([5, 6, 8, 12]) taken2 = index[[5, 6, 8, 12]] for taken in [taken1, taken2]: self.assertTrue(taken.equals(expected)) tm.assert_isinstance(taken, PeriodIndex) self.assertEqual(taken.freq, index.freq) self.assertEqual(taken.name, expected.name) def test_joins(self): index = period_range('1/1/2000', '1/20/2000', freq='D') for kind in ['inner', 'outer', 'left', 'right']: joined = index.join(index[:-5], how=kind) tm.assert_isinstance(joined, PeriodIndex) self.assertEqual(joined.freq, index.freq) def test_join_self(self): index = period_range('1/1/2000', '1/20/2000', freq='D') for kind in ['inner', 'outer', 'left', 'right']: res = index.join(index, how=kind) self.assertIs(index, res) def test_join_does_not_recur(self): df = tm.makeCustomDataframe(3, 2, data_gen_f=lambda *args: np.random.randint(2), c_idx_type='p', r_idx_type='dt') s = df.iloc[:2, 0] res = s.index.join(df.columns, how='outer') expected = Index([s.index[0], s.index[1], df.columns[0], df.columns[1]], object) tm.assert_index_equal(res, expected) def test_align_series(self): rng = period_range('1/1/2000', '1/1/2010', freq='A') ts = Series(np.random.randn(len(rng)), index=rng) result = ts + ts[::2] expected = ts + ts expected[1::2] = np.nan assert_series_equal(result, expected) result = ts + _permute(ts[::2]) assert_series_equal(result, expected) # it works! for kind in ['inner', 'outer', 'left', 'right']: ts.align(ts[::2], join=kind) with assertRaisesRegexp(ValueError, 'Only like-indexed'): ts + ts.asfreq('D', how="end") def test_align_frame(self): rng = period_range('1/1/2000', '1/1/2010', freq='A') ts = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts + ts[::2] expected = ts + ts expected.values[1::2] = np.nan tm.assert_frame_equal(result, expected) result = ts + _permute(ts[::2]) tm.assert_frame_equal(result, expected) def test_union(self): index = period_range('1/1/2000', '1/20/2000', freq='D') result = index[:-5].union(index[10:]) self.assertTrue(result.equals(index)) # not in order result = _permute(index[:-5]).union(_permute(index[10:])) self.assertTrue(result.equals(index)) # raise if different frequencies index = period_range('1/1/2000', '1/20/2000', freq='D') index2 = period_range('1/1/2000', '1/20/2000', freq='W-WED') self.assertRaises(ValueError, index.union, index2) self.assertRaises(ValueError, index.join, index.to_timestamp()) def test_intersection(self): index = period_range('1/1/2000', '1/20/2000', freq='D') result = index[:-5].intersection(index[10:]) self.assertTrue(result.equals(index[10:-5])) # not in order left = _permute(index[:-5]) right = _permute(index[10:]) result = left.intersection(right).order() self.assertTrue(result.equals(index[10:-5])) # raise if different frequencies index = period_range('1/1/2000', '1/20/2000', freq='D') index2 = period_range('1/1/2000', '1/20/2000', freq='W-WED') self.assertRaises(ValueError, index.intersection, index2) def test_fields(self): # year, month, day, hour, minute # second, weekofyear, week, dayofweek, weekday, dayofyear, quarter # qyear pi = PeriodIndex(freq='A', start='1/1/2001', end='12/1/2005') self._check_all_fields(pi) pi = PeriodIndex(freq='Q', start='1/1/2001', end='12/1/2002') self._check_all_fields(pi) pi = PeriodIndex(freq='M', start='1/1/2001', end='1/1/2002') self._check_all_fields(pi) pi = PeriodIndex(freq='D', start='12/1/2001', end='6/1/2001') self._check_all_fields(pi) pi = PeriodIndex(freq='B', start='12/1/2001', end='6/1/2001') self._check_all_fields(pi) pi = PeriodIndex(freq='H', start='12/31/2001', end='1/1/2002 23:00') self._check_all_fields(pi) pi = PeriodIndex(freq='Min', start='12/31/2001', end='1/1/2002 00:20') self._check_all_fields(pi) pi = PeriodIndex(freq='S', start='12/31/2001 00:00:00', end='12/31/2001 00:05:00') self._check_all_fields(pi) end_intv = Period('2006-12-31', 'W') i1 = PeriodIndex(end=end_intv, periods=10) self._check_all_fields(i1) def _check_all_fields(self, periodindex): fields = ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'weekday', 'dayofyear', 'quarter', 'qyear', 'days_in_month'] periods = list(periodindex) for field in fields: field_idx = getattr(periodindex, field) assert_equal(len(periodindex), len(field_idx)) for x, val in zip(periods, field_idx): assert_equal(getattr(x, field), val) def test_is_full(self): index = PeriodIndex([2005, 2007, 2009], freq='A') self.assertFalse(index.is_full) index = PeriodIndex([2005, 2006, 2007], freq='A') self.assertTrue(index.is_full) index = PeriodIndex([2005, 2005, 2007], freq='A') self.assertFalse(index.is_full) index = PeriodIndex([2005, 2005, 2006], freq='A') self.assertTrue(index.is_full) index = PeriodIndex([2006, 2005, 2005], freq='A') self.assertRaises(ValueError, getattr, index, 'is_full') self.assertTrue(index[:0].is_full) def test_map(self): index = PeriodIndex([2005, 2007, 2009], freq='A') result = index.map(lambda x: x + 1) expected = index + 1 self.assertTrue(result.equals(expected)) result = index.map(lambda x: x.ordinal) exp = [x.ordinal for x in index] assert_array_equal(result, exp) def test_map_with_string_constructor(self): raw = [2005, 2007, 2009] index = PeriodIndex(raw, freq='A') types = str, if compat.PY3: # unicode types += compat.text_type, for t in types: expected = np.array(lmap(t, raw), dtype=object) res = index.map(t) # should return an array tm.assert_isinstance(res, np.ndarray) # preserve element types self.assertTrue(all(isinstance(resi, t) for resi in res)) # dtype should be object self.assertEqual(res.dtype, np.dtype('object').type) # lastly, values should compare equal assert_array_equal(res, expected) def test_convert_array_of_periods(self): rng = period_range('1/1/2000', periods=20, freq='D') periods = list(rng) result = pd.Index(periods) tm.assert_isinstance(result, PeriodIndex) def test_with_multi_index(self): # #1705 index = date_range('1/1/2012', periods=4, freq='12H') index_as_arrays = [index.to_period(freq='D'), index.hour] s = Series([0, 1, 2, 3], index_as_arrays) tm.assert_isinstance(s.index.levels[0], PeriodIndex) tm.assert_isinstance(s.index.values[0][0], Period) def test_to_datetime_1703(self): index = period_range('1/1/2012', periods=4, freq='D') result = index.to_datetime() self.assertEqual(result[0], Timestamp('1/1/2012')) def test_get_loc_msg(self): idx = period_range('2000-1-1', freq='A', periods=10) bad_period = Period('2012', 'A') self.assertRaises(KeyError, idx.get_loc, bad_period) try: idx.get_loc(bad_period) except KeyError as inst: self.assertEqual(inst.args[0], bad_period) def test_append_concat(self): # #1815 d1 = date_range('12/31/1990', '12/31/1999', freq='A-DEC') d2 = date_range('12/31/2000', '12/31/2009', freq='A-DEC') s1 = Series(np.random.randn(10), d1) s2 = Series(np.random.randn(10), d2) s1 = s1.to_period() s2 = s2.to_period() # drops index result = pd.concat([s1, s2]) tm.assert_isinstance(result.index, PeriodIndex) self.assertEqual(result.index[0], s1.index[0]) def test_pickle_freq(self): # GH2891 import pickle prng = period_range('1/1/2011', '1/1/2012', freq='M') new_prng = self.round_trip_pickle(prng) self.assertEqual(new_prng.freq,'M') def test_slice_keep_name(self): idx = period_range('20010101', periods=10, freq='D', name='bob') self.assertEqual(idx.name, idx[1:].name) def test_factorize(self): idx1 = PeriodIndex(['2014-01', '2014-01', '2014-02', '2014-02', '2014-03', '2014-03'], freq='M') exp_arr = np.array([0, 0, 1, 1, 2, 2]) exp_idx = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') arr, idx = idx1.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) arr, idx = idx1.factorize(sort=True) self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) idx2 = pd.PeriodIndex(['2014-03', '2014-03', '2014-02', '2014-01', '2014-03', '2014-01'], freq='M') exp_arr = np.array([2, 2, 1, 0, 2, 0]) arr, idx = idx2.factorize(sort=True) self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) exp_arr = np.array([0, 0, 1, 2, 0, 2]) exp_idx = PeriodIndex(['2014-03', '2014-02', '2014-01'], freq='M') arr, idx = idx2.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) def test_recreate_from_data(self): for o in ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'N', 'H']: org = PeriodIndex(start='2001/04/01', freq=o, periods=1) idx = PeriodIndex(org.values, freq=o) self.assertTrue(idx.equals(org)) def test_combine_first(self): # GH 3367 didx = pd.DatetimeIndex(start='1950-01-31', end='1950-07-31', freq='M') pidx = pd.PeriodIndex(start=pd.Period('1950-1'), end=pd.Period('1950-7'), freq='M') # check to be consistent with DatetimeIndex for idx in [didx, pidx]: a = pd.Series([1, np.nan, np.nan, 4, 5, np.nan, 7], index=idx) b = pd.Series([9, 9, 9, 9, 9, 9, 9], index=idx) result = a.combine_first(b) expected = pd.Series([1, 9, 9, 4, 5, 9, 7], index=idx, dtype=np.float64) tm.assert_series_equal(result, expected) def test_searchsorted(self): pidx = pd.period_range('2014-01-01', periods=10, freq='D') self.assertEqual( pidx.searchsorted(pd.Period('2014-01-01', freq='D')), 0) self.assertRaisesRegexp( ValueError, 'Different period frequency: H', lambda: pidx.searchsorted(pd.Period('2014-01-01', freq='H'))) def _permute(obj): return obj.take(np.random.permutation(len(obj))) class TestMethods(tm.TestCase): "Base test class for MaskedArrays." def test_add(self): dt1 = Period(freq='D', year=2008, month=1, day=1) dt2 = Period(freq='D', year=2008, month=1, day=2) assert_equal(dt1 + 1, dt2) # # GH 4731 msg = "unsupported operand type\(s\)" with tm.assertRaisesRegexp(TypeError, msg): dt1 + "str" with tm.assertRaisesRegexp(TypeError, msg): dt1 + dt2 def test_add_offset(self): # freq is DateOffset p = Period('2011', freq='A') self.assertEqual(p + offsets.YearEnd(2), Period('2013', freq='A')) for o in [offsets.YearBegin(2), offsets.MonthBegin(1), offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: with tm.assertRaisesRegexp(ValueError, 'Input has different freq from Period'): p + o p = Period('2011-03', freq='M') self.assertEqual(p + offsets.MonthEnd(2), Period('2011-05', freq='M')) self.assertEqual(p + offsets.MonthEnd(12), Period('2012-03', freq='M')) for o in [offsets.YearBegin(2), offsets.MonthBegin(1), offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: with tm.assertRaisesRegexp(ValueError, 'Input has different freq from Period'): p + o # freq is Tick p = Period('2011-04-01', freq='D') self.assertEqual(p + offsets.Day(5), Period('2011-04-06', freq='D')) self.assertEqual(p + offsets.Hour(24), Period('2011-04-02', freq='D')) self.assertEqual(p + np.timedelta64(2, 'D'), Period('2011-04-03', freq='D')) self.assertEqual(p + np.timedelta64(3600 * 24, 's'), Period('2011-04-02', freq='D')) self.assertEqual(p + timedelta(-2), Period('2011-03-30', freq='D')) self.assertEqual(p + timedelta(hours=48), Period('2011-04-03', freq='D')) for o in [offsets.YearBegin(2), offsets.MonthBegin(1), offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23)]: with tm.assertRaisesRegexp(ValueError, 'Input has different freq from Period'): p + o p = Period('2011-04-01 09:00', freq='H') self.assertEqual(p + offsets.Day(2), Period('2011-04-03 09:00', freq='H')) self.assertEqual(p + offsets.Hour(3), Period('2011-04-01 12:00', freq='H')) self.assertEqual(p + np.timedelta64(3, 'h'), Period('2011-04-01 12:00', freq='H')) self.assertEqual(p + np.timedelta64(3600, 's'), Period('2011-04-01 10:00', freq='H')) self.assertEqual(p + timedelta(minutes=120), Period('2011-04-01 11:00', freq='H')) self.assertEqual(p + timedelta(days=4, minutes=180), Period('2011-04-05 12:00', freq='H')) for o in [offsets.YearBegin(2), offsets.MonthBegin(1), offsets.Minute(), np.timedelta64(3200, 's'), timedelta(hours=23, minutes=30)]: with tm.assertRaisesRegexp(ValueError, 'Input has different freq from Period'): p + o def test_add_offset_nat(self): # freq is DateOffset p = Period('NaT', freq='A') for o in [offsets.YearEnd(2)]: self.assertEqual((p + o).ordinal, tslib.iNaT) for o in [offsets.YearBegin(2), offsets.MonthBegin(1), offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: with tm.assertRaises(ValueError): p + o p = Period('NaT', freq='M') for o in [offsets.MonthEnd(2), offsets.MonthEnd(12)]: self.assertEqual((p + o).ordinal, tslib.iNaT) for o in [offsets.YearBegin(2), offsets.MonthBegin(1), offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: with tm.assertRaisesRegexp(ValueError, 'Input has different freq from Period'): p + o # freq is Tick p = Period('NaT', freq='D') for o in [offsets.Day(5), offsets.Hour(24), np.timedelta64(2, 'D'), np.timedelta64(3600 * 24, 's'), timedelta(-2), timedelta(hours=48)]: self.assertEqual((p + o).ordinal, tslib.iNaT) for o in [offsets.YearBegin(2), offsets.MonthBegin(1), offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23)]: with tm.assertRaisesRegexp(ValueError, 'Input has different freq from Period'): p + o p = Period('NaT', freq='H') for o in [offsets.Day(2), offsets.Hour(3), np.timedelta64(3, 'h'), np.timedelta64(3600, 's'), timedelta(minutes=120), timedelta(days=4, minutes=180)]: self.assertEqual((p + o).ordinal, tslib.iNaT) for o in [offsets.YearBegin(2), offsets.MonthBegin(1), offsets.Minute(), np.timedelta64(3200, 's'), timedelta(hours=23, minutes=30)]: with tm.assertRaisesRegexp(ValueError, 'Input has different freq from Period'): p + o def test_sub_offset(self): # freq is DateOffset p = Period('2011', freq='A') self.assertEqual(p - offsets.YearEnd(2), Period('2009', freq='A')) for o in [offsets.YearBegin(2), offsets.MonthBegin(1), offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: with tm.assertRaises(ValueError): p - o p = Period('2011-03', freq='M') self.assertEqual(p - offsets.MonthEnd(2), Period('2011-01', freq='M')) self.assertEqual(p - offsets.MonthEnd(12), Period('2010-03', freq='M')) for o in [offsets.YearBegin(2), offsets.MonthBegin(1), offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: with tm.assertRaises(ValueError): p - o # freq is Tick p = Period('2011-04-01', freq='D') self.assertEqual(p - offsets.Day(5), Period('2011-03-27', freq='D')) self.assertEqual(p - offsets.Hour(24), Period('2011-03-31', freq='D')) self.assertEqual(p - np.timedelta64(2, 'D'), Period('2011-03-30', freq='D')) self.assertEqual(p - np.timedelta64(3600 * 24, 's'), Period('2011-03-31', freq='D')) self.assertEqual(p - timedelta(-2), Period('2011-04-03', freq='D')) self.assertEqual(p - timedelta(hours=48), Period('2011-03-30', freq='D')) for o in [offsets.YearBegin(2), offsets.MonthBegin(1), offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23)]: with tm.assertRaises(ValueError): p - o p = Period('2011-04-01 09:00', freq='H') self.assertEqual(p - offsets.Day(2), Period('2011-03-30 09:00', freq='H')) self.assertEqual(p - offsets.Hour(3), Period('2011-04-01 06:00', freq='H')) self.assertEqual(p - np.timedelta64(3, 'h'), Period('2011-04-01 06:00', freq='H')) self.assertEqual(p - np.timedelta64(3600, 's'), Period('2011-04-01 08:00', freq='H')) self.assertEqual(p - timedelta(minutes=120), Period('2011-04-01 07:00', freq='H')) self.assertEqual(p - timedelta(days=4, minutes=180), Period('2011-03-28 06:00', freq='H')) for o in [offsets.YearBegin(2), offsets.MonthBegin(1), offsets.Minute(), np.timedelta64(3200, 's'), timedelta(hours=23, minutes=30)]: with tm.assertRaises(ValueError): p - o def test_sub_offset_nat(self): # freq is DateOffset p = Period('NaT', freq='A') for o in [offsets.YearEnd(2)]: self.assertEqual((p - o).ordinal, tslib.iNaT) for o in [offsets.YearBegin(2), offsets.MonthBegin(1), offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: with tm.assertRaises(ValueError): p - o p = Period('NaT', freq='M') for o in [offsets.MonthEnd(2), offsets.MonthEnd(12)]: self.assertEqual((p - o).ordinal, tslib.iNaT) for o in [offsets.YearBegin(2), offsets.MonthBegin(1), offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: with tm.assertRaises(ValueError): p - o # freq is Tick p = Period('NaT', freq='D') for o in [offsets.Day(5), offsets.Hour(24), np.timedelta64(2, 'D'), np.timedelta64(3600 * 24, 's'), timedelta(-2), timedelta(hours=48)]: self.assertEqual((p - o).ordinal, tslib.iNaT) for o in [offsets.YearBegin(2), offsets.MonthBegin(1), offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23)]: with tm.assertRaises(ValueError): p - o p = Period('NaT', freq='H') for o in [offsets.Day(2), offsets.Hour(3), np.timedelta64(3, 'h'), np.timedelta64(3600, 's'), timedelta(minutes=120), timedelta(days=4, minutes=180)]: self.assertEqual((p - o).ordinal, tslib.iNaT) for o in [offsets.YearBegin(2), offsets.MonthBegin(1), offsets.Minute(), np.timedelta64(3200, 's'), timedelta(hours=23, minutes=30)]: with tm.assertRaises(ValueError): p - o def test_nat_ops(self): p = Period('NaT', freq='M') self.assertEqual((p + 1).ordinal, tslib.iNaT) self.assertEqual((p - 1).ordinal, tslib.iNaT) self.assertEqual((p - Period('2011-01', freq='M')).ordinal, tslib.iNaT) self.assertEqual((Period('2011-01', freq='M') - p).ordinal, tslib.iNaT) def test_pi_ops_nat(self): idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='M', name='idx') result = idx + 2 expected = PeriodIndex(['2011-03', '2011-04', 'NaT', '2011-06'], freq='M', name='idx') self.assertTrue(result.equals(expected)) result2 = result - 2 self.assertTrue(result2.equals(idx)) msg = "unsupported operand type\(s\)" with tm.assertRaisesRegexp(TypeError, msg): idx + "str" class TestPeriodRepresentation(tm.TestCase): """ Wish to match NumPy units """ def test_annual(self): self._check_freq('A', 1970) def test_monthly(self): self._check_freq('M', '1970-01') def test_weekly(self): self._check_freq('W-THU', '1970-01-01') def test_daily(self): self._check_freq('D', '1970-01-01') def test_business_daily(self): self._check_freq('B', '1970-01-01') def test_hourly(self): self._check_freq('H', '1970-01-01') def test_minutely(self): self._check_freq('T', '1970-01-01') def test_secondly(self): self._check_freq('S', '1970-01-01') def test_millisecondly(self): self._check_freq('L', '1970-01-01') def test_microsecondly(self): self._check_freq('U', '1970-01-01') def test_nanosecondly(self): self._check_freq('N', '1970-01-01') def _check_freq(self, freq, base_date): rng = PeriodIndex(start=base_date, periods=10, freq=freq) exp = np.arange(10, dtype=np.int64) self.assert_numpy_array_equal(rng.values, exp) def test_negone_ordinals(self): freqs = ['A', 'M', 'Q', 'D', 'H', 'T', 'S'] period = Period(ordinal=-1, freq='D') for freq in freqs: repr(period.asfreq(freq)) for freq in freqs: period = Period(ordinal=-1, freq=freq) repr(period) self.assertEqual(period.year, 1969) period = Period(ordinal=-1, freq='B') repr(period) period = Period(ordinal=-1, freq='W') repr(period) class TestComparisons(tm.TestCase): def setUp(self): self.january1 = Period('2000-01', 'M') self.january2 = Period('2000-01', 'M') self.february = Period('2000-02', 'M') self.march = Period('2000-03', 'M') self.day = Period('2012-01-01', 'D') def test_equal(self): self.assertEqual(self.january1, self.january2) def test_equal_Raises_Value(self): with tm.assertRaises(ValueError): self.january1 == self.day def test_notEqual(self): self.assertNotEqual(self.january1, 1) self.assertNotEqual(self.january1, self.february) def test_greater(self): self.assertTrue(self.february > self.january1) def test_greater_Raises_Value(self): with tm.assertRaises(ValueError): self.january1 > self.day def test_greater_Raises_Type(self): with tm.assertRaises(TypeError): self.january1 > 1 def test_greaterEqual(self): self.assertTrue(self.january1 >= self.january2) def test_greaterEqual_Raises_Value(self): with tm.assertRaises(ValueError): self.january1 >= self.day with tm.assertRaises(TypeError): print(self.january1 >= 1) def test_smallerEqual(self): self.assertTrue(self.january1 <= self.january2) def test_smallerEqual_Raises_Value(self): with tm.assertRaises(ValueError): self.january1 <= self.day def test_smallerEqual_Raises_Type(self): with tm.assertRaises(TypeError): self.january1 <= 1 def test_smaller(self): self.assertTrue(self.january1 < self.february) def test_smaller_Raises_Value(self): with tm.assertRaises(ValueError): self.january1 < self.day def test_smaller_Raises_Type(self): with tm.assertRaises(TypeError): self.january1 < 1 def test_sort(self): periods = [self.march, self.january1, self.february] correctPeriods = [self.january1, self.february, self.march] self.assertEqual(sorted(periods), correctPeriods) def test_period_nat_comp(self): p_nat = Period('NaT', freq='D') p = Period('2011-01-01', freq='D') nat = pd.Timestamp('NaT') t = pd.Timestamp('2011-01-01') # confirm Period('NaT') work identical with Timestamp('NaT') for left, right in [(p_nat, p), (p, p_nat), (p_nat, p_nat), (nat, t), (t, nat), (nat, nat)]: self.assertEqual(left < right, False) self.assertEqual(left > right, False) self.assertEqual(left == right, False) self.assertEqual(left != right, True) self.assertEqual(left <= right, False) self.assertEqual(left >= right, False) def test_pi_nat_comp(self): idx1 = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-05'], freq='M') result = idx1 > Period('2011-02', freq='M') self.assert_numpy_array_equal(result, np.array([False, False, False, True])) result = idx1 == Period('NaT', freq='M') self.assert_numpy_array_equal(result, np.array([False, False, False, False])) result = idx1 != Period('NaT', freq='M') self.assert_numpy_array_equal(result, np.array([True, True, True, True])) idx2 = PeriodIndex(['2011-02', '2011-01', '2011-04', 'NaT'], freq='M') result = idx1 < idx2 self.assert_numpy_array_equal(result, np.array([True, False, False, False])) result = idx1 == idx1 self.assert_numpy_array_equal(result, np.array([True, True, False, True])) result = idx1 != idx1 self.assert_numpy_array_equal(result, np.array([False, False, True, False])) if __name__ == '__main__': import nose nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
mit
kdebrab/pandas
pandas/tests/test_lib.py
7
7887
# -*- coding: utf-8 -*- import pytest import numpy as np from pandas import Index from pandas._libs import lib, writers as libwriters import pandas.util.testing as tm class TestMisc(object): def test_max_len_string_array(self): arr = a = np.array(['foo', 'b', np.nan], dtype='object') assert libwriters.max_len_string_array(arr) == 3 # unicode arr = a.astype('U').astype(object) assert libwriters.max_len_string_array(arr) == 3 # bytes for python3 arr = a.astype('S').astype(object) assert libwriters.max_len_string_array(arr) == 3 # raises pytest.raises(TypeError, lambda: libwriters.max_len_string_array(arr.astype('U'))) def test_fast_unique_multiple_list_gen_sort(self): keys = [['p', 'a'], ['n', 'd'], ['a', 's']] gen = (key for key in keys) expected = np.array(['a', 'd', 'n', 'p', 's']) out = lib.fast_unique_multiple_list_gen(gen, sort=True) tm.assert_numpy_array_equal(np.array(out), expected) gen = (key for key in keys) expected = np.array(['p', 'a', 'n', 'd', 's']) out = lib.fast_unique_multiple_list_gen(gen, sort=False) tm.assert_numpy_array_equal(np.array(out), expected) class TestIndexing(object): def test_maybe_indices_to_slice_left_edge(self): target = np.arange(100) # slice indices = np.array([], dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) for end in [1, 2, 5, 20, 99]: for step in [1, 2, 4]: indices = np.arange(0, end, step, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) # reverse indices = indices[::-1] maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) # not slice for case in [[2, 1, 2, 0], [2, 2, 1, 0], [0, 1, 2, 1], [-2, 0, 2], [2, 0, -2]]: indices = np.array(case, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert not isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(maybe_slice, indices) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) def test_maybe_indices_to_slice_right_edge(self): target = np.arange(100) # slice for start in [0, 2, 5, 20, 97, 98]: for step in [1, 2, 4]: indices = np.arange(start, 99, step, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) # reverse indices = indices[::-1] maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) # not slice indices = np.array([97, 98, 99, 100], dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert not isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(maybe_slice, indices) with pytest.raises(IndexError): target[indices] with pytest.raises(IndexError): target[maybe_slice] indices = np.array([100, 99, 98, 97], dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert not isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(maybe_slice, indices) with pytest.raises(IndexError): target[indices] with pytest.raises(IndexError): target[maybe_slice] for case in [[99, 97, 99, 96], [99, 99, 98, 97], [98, 98, 97, 96]]: indices = np.array(case, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert not isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(maybe_slice, indices) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) def test_maybe_indices_to_slice_both_edges(self): target = np.arange(10) # slice for step in [1, 2, 4, 5, 8, 9]: indices = np.arange(0, 9, step, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) # reverse indices = indices[::-1] maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) # not slice for case in [[4, 2, 0, -2], [2, 2, 1, 0], [0, 1, 2, 1]]: indices = np.array(case, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert not isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(maybe_slice, indices) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) def test_maybe_indices_to_slice_middle(self): target = np.arange(100) # slice for start, end in [(2, 10), (5, 25), (65, 97)]: for step in [1, 2, 4, 20]: indices = np.arange(start, end, step, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) # reverse indices = indices[::-1] maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) # not slice for case in [[14, 12, 10, 12], [12, 12, 11, 10], [10, 11, 12, 11]]: indices = np.array(case, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert not isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(maybe_slice, indices) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) def test_maybe_booleans_to_slice(self): arr = np.array([0, 0, 1, 1, 1, 0, 1], dtype=np.uint8) result = lib.maybe_booleans_to_slice(arr) assert result.dtype == np.bool_ result = lib.maybe_booleans_to_slice(arr[:0]) assert result == slice(0, 0) def test_get_reverse_indexer(self): indexer = np.array([-1, -1, 1, 2, 0, -1, 3, 4], dtype=np.int64) result = lib.get_reverse_indexer(indexer, 5) expected = np.array([4, 2, 3, 6, 7], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) def test_cache_readonly_preserve_docstrings(): # GH18197 assert Index.hasnans.__doc__ is not None
bsd-3-clause
shyamalschandra/scikit-learn
benchmarks/bench_sample_without_replacement.py
397
8008
""" Benchmarks for sampling without replacement of integer. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import operator import matplotlib.pyplot as plt import numpy as np import random from sklearn.externals.six.moves import xrange from sklearn.utils.random import sample_without_replacement def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_sample(sampling, n_population, n_samples): gc.collect() # start time t_start = datetime.now() sampling(n_population, n_samples) delta = (datetime.now() - t_start) # stop time time = compute_time(t_start, delta) return time if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Benchmark results are average over n_times experiments") op.add_option("--n-population", dest="n_population", default=100000, type=int, help="Size of the population to sample from.") op.add_option("--n-step", dest="n_steps", default=5, type=int, help="Number of step interval between 0 and n_population.") default_algorithms = "custom-tracking-selection,custom-auto," \ "custom-reservoir-sampling,custom-pool,"\ "python-core-sample,numpy-permutation" op.add_option("--algorithm", dest="selected_algorithm", default=default_algorithms, type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. \nAvailable: %default") # op.add_option("--random-seed", # dest="random_seed", default=13, type=int, # help="Seed used by the random number generators.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) selected_algorithm = opts.selected_algorithm.split(',') for key in selected_algorithm: if key not in default_algorithms.split(','): raise ValueError("Unknown sampling algorithm \"%s\" not in (%s)." % (key, default_algorithms)) ########################################################################### # List sampling algorithm ########################################################################### # We assume that sampling algorithm has the following signature: # sample(n_population, n_sample) # sampling_algorithm = {} ########################################################################### # Set Python core input sampling_algorithm["python-core-sample"] = \ lambda n_population, n_sample: \ random.sample(xrange(n_population), n_sample) ########################################################################### # Set custom automatic method selection sampling_algorithm["custom-auto"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="auto", random_state=random_state) ########################################################################### # Set custom tracking based method sampling_algorithm["custom-tracking-selection"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="tracking_selection", random_state=random_state) ########################################################################### # Set custom reservoir based method sampling_algorithm["custom-reservoir-sampling"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="reservoir_sampling", random_state=random_state) ########################################################################### # Set custom reservoir based method sampling_algorithm["custom-pool"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="pool", random_state=random_state) ########################################################################### # Numpy permutation based sampling_algorithm["numpy-permutation"] = \ lambda n_population, n_sample: \ np.random.permutation(n_population)[:n_sample] ########################################################################### # Remove unspecified algorithm sampling_algorithm = dict((key, value) for key, value in sampling_algorithm.items() if key in selected_algorithm) ########################################################################### # Perform benchmark ########################################################################### time = {} n_samples = np.linspace(start=0, stop=opts.n_population, num=opts.n_steps).astype(np.int) ratio = n_samples / opts.n_population print('Benchmarks') print("===========================") for name in sorted(sampling_algorithm): print("Perform benchmarks for %s..." % name, end="") time[name] = np.zeros(shape=(opts.n_steps, opts.n_times)) for step in xrange(opts.n_steps): for it in xrange(opts.n_times): time[name][step, it] = bench_sample(sampling_algorithm[name], opts.n_population, n_samples[step]) print("done") print("Averaging results...", end="") for name in sampling_algorithm: time[name] = np.mean(time[name], axis=1) print("done\n") # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Sampling algorithm performance:") print("===============================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") fig = plt.figure('scikit-learn sample w/o replacement benchmark results') plt.title("n_population = %s, n_times = %s" % (opts.n_population, opts.n_times)) ax = fig.add_subplot(111) for name in sampling_algorithm: ax.plot(ratio, time[name], label=name) ax.set_xlabel('ratio of n_sample / n_population') ax.set_ylabel('Time (s)') ax.legend() # Sort legend labels handles, labels = ax.get_legend_handles_labels() hl = sorted(zip(handles, labels), key=operator.itemgetter(1)) handles2, labels2 = zip(*hl) ax.legend(handles2, labels2, loc=0) plt.show()
bsd-3-clause
jobovy/apogee-maps
py/plot_ah_location.py
1
8658
############################################################################### # plot_ah_location: plot the range of extinctions effor a given location ############################################################################### import os, os.path import sys import pickle import numpy import matplotlib matplotlib.use('Agg') from galpy.util import save_pickles, bovy_plot from matplotlib import rc, pyplot import mwdust import apogee.select.apogeeSelect from define_rcsample import get_rcsample _PLOTDIST= True _LW= 1.5 def plot_ah_location(location,plotname): # Setup selection function selectFile= '../savs/selfunc-nospdata.sav' if os.path.exists(selectFile): with open(selectFile,'rb') as savefile: apo= pickle.load(savefile) else: # Setup selection function apo= apogee.select.apogeeSelect() # Delete these because they're big and we don't need them del apo._specdata del apo._photdata save_pickles(selectFile,apo) glon, glat= apo.glonGlat(location) glon= glon[0] glat= glat[0] ahFile= '../savs/ah-%i.sav' % location if not os.path.exists(ahFile): # Distances at which to calculate the extinction distmods= numpy.linspace(7.,15.5,301) ds= 10.**(distmods/5-2.) # Setup Green et al. (2015) dust map gd= mwdust.Green15(filter='2MASS H') pa, ah= gd.dust_vals_disk(glon,glat,ds,apo.radius(location)) meanah_default= numpy.sum(numpy.tile(pa,(len(ds),1)).T*ah,axis=0)/numpy.sum(pa) stdah_default= numpy.sqrt(numpy.sum(numpy.tile(pa,(len(ds),1)).T\ *ah**2.,axis=0)\ /numpy.sum(pa)-meanah_default**2.) # Marshall et al. (2006) marshall= mwdust.Marshall06(filter='2MASS H') try: pa, ah= marshall.dust_vals_disk(glon,glat,ds,apo.radius(location)) except IndexError: meanah_marshall= -numpy.ones_like(ds) stdah_marshall= -numpy.ones_like(ds) else: meanah_marshall= numpy.sum(numpy.tile(pa,(len(ds),1)).T*ah, axis=0)/numpy.sum(pa) stdah_marshall= numpy.sqrt(numpy.sum(numpy.tile(pa,(len(ds),1)).T\ *ah**2.,axis=0)\ /numpy.sum(pa)-meanah_marshall**2.) if True: # Drimmel et al. (2003) drimmel= mwdust.Drimmel03(filter='2MASS H') pa, ah= drimmel.dust_vals_disk(glon,glat,ds,apo.radius(location)) meanah_drimmel= numpy.sum(numpy.tile(pa,(len(ds),1)).T*ah,axis=0)/numpy.sum(pa) stdah_drimmel= numpy.sqrt(numpy.sum(numpy.tile(pa,(len(ds),1)).T\ *ah**2.,axis=0)\ /numpy.sum(pa)-meanah_drimmel**2.) else: meanah_drimmel= -numpy.ones_like(ds) stdah_drimmel= -numpy.ones_like(ds) if True: # Sale et al. (2014) sale= mwdust.Sale14(filter='2MASS H') try: pa, ah= sale.dust_vals_disk(glon,glat,ds,apo.radius(location)) meanah_sale= numpy.sum(numpy.tile(pa,(len(ds),1)).T*ah, axis=0)/numpy.sum(pa) except (TypeError,ValueError): meanah_sale= -numpy.ones_like(ds) stdah_sale= -numpy.ones_like(ds) else: stdah_sale= numpy.sqrt(numpy.sum(numpy.tile(pa,(len(ds),1)).T\ *ah**2.,axis=0)\ /numpy.sum(pa)-meanah_sale**2.) else: meanah_sale= -numpy.ones_like(ds) stdah_sale= -numpy.ones_like(ds) save_pickles(ahFile,distmods,meanah_default,stdah_default, meanah_marshall,stdah_marshall, meanah_drimmel,stdah_drimmel, meanah_sale,stdah_sale) else: with open(ahFile,'rb') as savefile: distmods= pickle.load(savefile) meanah_default= pickle.load(savefile) stdah_default= pickle.load(savefile) meanah_marshall= pickle.load(savefile) stdah_marshall= pickle.load(savefile) meanah_drimmel= pickle.load(savefile) stdah_drimmel= pickle.load(savefile) meanah_sale= pickle.load(savefile) stdah_sale= pickle.load(savefile) # Now plot bovy_plot.bovy_print(fig_height=3.) if _PLOTDIST: distmods= 10.**(distmods/5-2.) xrange= [0.,12.] xlabel=r'$D\,(\mathrm{kpc})$' else: xrange=[7.,15.8], xlabel=r'$\mathrm{distance\ modulus}\ \mu$' ylabel=r'$A_H$' yrange= [0.,1.2*numpy.amax(numpy.vstack((meanah_default+stdah_default, meanah_marshall+stdah_marshall, meanah_drimmel+stdah_drimmel, meanah_sale+stdah_sale)))] line_default= bovy_plot.bovy_plot(distmods,meanah_default, 'b-',lw=_LW,zorder=12, xrange=xrange, xlabel=xlabel, yrange=yrange, ylabel=ylabel) pyplot.fill_between(distmods, meanah_default-stdah_default, meanah_default+stdah_default, hatch='/',facecolor=(0,0,0,0), color='b',lw=0.25,zorder=4) line_marshall= bovy_plot.bovy_plot(distmods,meanah_marshall,'r-',lw=_LW, overplot=True, zorder=8) pyplot.fill_between(distmods, meanah_marshall-stdah_marshall, meanah_marshall+stdah_marshall, hatch='\\',facecolor=(0,0,0,0), color='r',lw=0.25,zorder=2) line_drimmel= bovy_plot.bovy_plot(distmods,meanah_drimmel,'-',lw=_LW, color='gold', overplot=True, zorder=7) pyplot.fill_between(distmods, meanah_drimmel-stdah_drimmel, meanah_drimmel+stdah_drimmel, hatch='///',facecolor=(0,0,0,0), color='gold',lw=0.25,zorder=1) line_sale= bovy_plot.bovy_plot(distmods,meanah_sale,'-',lw=_LW, color='c', overplot=True, zorder=9) pyplot.fill_between(distmods, meanah_sale-stdah_sale, meanah_sale+stdah_sale, hatch='//',facecolor=(0,0,0,0), color='c',lw=0.25,zorder=3) if True: data= get_rcsample() data= data[data['LOCATION_ID'] == location] bovy_plot.bovy_plot(data['RC_DIST'],data['AK_TARG']*1.55, 'ko',zorder=20,overplot=True,ms=2.) if location == 4318: pyplot.legend((line_default[0],line_sale[0]), (r'$\mathrm{Green\ et\ al.\ (2015)}$', r'$\mathrm{Sale\ et\ al.\ (2014)}$'), loc='lower right',#bbox_to_anchor=(.91,.375), numpoints=8, prop={'size':14}, frameon=False) elif location == 4242: pyplot.legend((line_marshall[0],line_drimmel[0]), (r'$\mathrm{Marshall\ et\ al.\ (2006)}$', r'$\mathrm{Drimmel\ et\ al.\ (2003)}$'), loc='lower right',#bbox_to_anchor=(.91,.375), numpoints=8, prop={'size':14}, frameon=False) # Label lcen, bcen= apo.glonGlat(location) if numpy.fabs(bcen) < 0.1: bcen= 0. bovy_plot.bovy_text(r'$(l,b) = (%.1f,%.1f)$' % (lcen,bcen), top_right=True,size=16.) bovy_plot.bovy_end_print(plotname,dpi=300, bbox_extra_artists=pyplot.gca().get_children(), bbox_inches='tight') return None if __name__ == '__main__': #4240 is 30,0 plot_ah_location(int(sys.argv[1]),sys.argv[2])
bsd-3-clause
mm22dl/MeinKPS
idc.py
1
13515
#! /usr/bin/python # -*- coding: utf-8 -*- """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Title: idc Author: David Leclerc Version: 0.1 Date: 30.06.2017 License: GNU General Public License, Version 3 (http://www.gnu.org/licenses/gpl.html) Overview: ... Notes: ... ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ # LIBRARIES import numpy as np import matplotlib.pyplot as plt # USER LIBRARIES import lib class IDC(object): def __init__(self, DIA, PIA = None): """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ INIT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Warning: all IDC curves take NEGATIVE time input! For example, if it has been 2 hours since a bolus has been given, then the corresponding time of said bolus is given by t = -2. """ # Define DIA self.DIA = float(DIA) # Define PIA self.PIA = PIA if PIA is None else float(PIA) # Define plot limits self.xlim = [-self.DIA, 0] self.ylim = [0, 1] def f(self, t): """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Gives fraction of active insulin remaining in body t hours after enacting it. Note: -DIA <= t <= 0 """ raise NotImplementedError def F(self, t): """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Implicit integration of IDC. Note: Only makes sense when taking difference between two values of the integral (e.g. dF = F2 - F1) """ raise NotImplementedError def correct(self, t): """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CORRECT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Bring back given time within insulin's range of action. """ # If too old: bring it back up if t < -self.DIA: t = -self.DIA # If too new: bring it back down elif t > 0: raise ValueError("Given insulin age is too new.") # Return corrected time return t def plot(self, show = True, color = "black", n = 1, size = [1, 1]): """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PLOT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ # Define subplot ax = plt.subplot(size[0], size[1], n) # Define title title = "IDCs" # Define axis labels x = "(h)" y = "(-)" # Define subplot label label = self.__class__.__name__ # Subplots if size[0] > 1 or size[1] > 1: # Title of each subplot corresponds to its label title = label # Set title ax.set_title(title, fontweight = "semibold") # Set axis labels ax.set_xlabel(x) ax.set_ylabel(y) # Set axis limits ax.set_xlim(self.xlim) ax.set_ylim(self.ylim) # Compute axes t = np.linspace(-self.DIA, 0, 100) y = np.vectorize(self.f)(t) # Add data to plot ax.plot(t, y, lw = 2, ls = "-", label = label, c = color) # Single plot: show legend if size == [1, 1]: ax.legend() # Ready to show? if show: plt.show() class FourthOrderIDC(IDC): def __init__(self, DIA): """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ INIT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Modelization of IDC as a 4th-order polynomial. """ # Start initialization super(FourthOrderIDC, self).__init__(DIA) # Initialize 4th-order parameters self.m0 = None self.m1 = None self.m2 = None self.m3 = None self.m4 = None def f(self, t): """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ # Correct time t = self.correct(t) # Compute f(t) of IDC f = (self.m4 * t ** 4 + self.m3 * t ** 3 + self.m2 * t ** 2 + self.m1 * t ** 1 + self.m0) # Return it return f def F(self, t): """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ # Correct time t = self.correct(t) # Compute F(t) of IDC F = (self.m4 * t ** 5 / 5 + self.m3 * t ** 4 / 4 + self.m2 * t ** 3 / 3 + self.m1 * t ** 2 / 2 + self.m0 * t ** 1 / 1) # Return it return F class ExponentialIDC(IDC): def __init__(self, DIA, PIA): """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ INIT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Modelization of IDC based on an exponential model. """ # Start initialization super(ExponentialIDC, self).__init__(DIA, PIA) # Time constant of exponential decay self.tau = self.PIA * ((1 - self.PIA / self.DIA) / (1 - 2 * self.PIA / self.DIA)) # Rise time factor self.a = 2 * self.tau / self.DIA # Auxiliary scale factor self.s = 1 / (1 - self.a + (1 + self.a) * np.exp(-self.DIA / self.tau)) def f(self, t): """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ # Correct time t = self.correct(t) # Compute IDC(t) f = 1 - self.s * (1 - self.a) * ((t ** 2 / (self.tau * self.DIA * (1 - self.a)) + t / self.tau - 1) * np.exp(t / self.tau) + 1) # Return it return f def F(self, t): """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ # Correct time t = self.correct(t) # Compute F(t) of IDC F = -(self.s * np.exp(t/self.tau) * (t * (-self.a * self.DIA - 2 * self.tau + self.DIA) + 2 * self.tau * ((self.a - 1) * self.DIA + self.tau) + t ** 2)) / self.DIA + (self.a - 1) * self.s * t + t # Return it return F class TriangleModelIDC(IDC): def __init__(self, DIA, PIA): """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ INIT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Modelization of IDC based on a triangle IAC. The IAC is given by the following formula (with negative times since injection): IAC(t) = m_0 * t + b_0 for t = [-DIA, -PIA] m_1 * t + b_1 for t = [-PIA, 0] where the units of IAC are given by [/h]. We assume that the IDC is given by the integral of the IAC: IDC(t) = S IAC(t) * dt = m_0 * t ** 2 / 2 + b_0 * t + c_0 for t = [-DIA, -PIA] m_1 * t ** 2 / 2 + b_1 * t + c_1 for t = [-PIA, 0] where S represents an integral on time t. """ # Start initialization super(TriangleModelIDC, self).__init__(DIA) # Define PIA self.PIA = float(PIA) # Compute value of IAC at peak of action [y0 = IAC(PIA)] using # normalization: S IAC(t) * dt = 1 self.y0 = 2 / self.DIA # Define coefficients for t = [-DIA, -PIA] self.m0 = self.y0 / (self.DIA - self.PIA) self.b0 = self.m0 * self.DIA self.c0 = self.DIA * (self.b0 - self.m0 * self.DIA / 2) # Define coefficients for t = [-PIA, 0] self.m1 = -self.y0 / self.PIA self.b1 = 0 self.c1 = 1 def f(self, t): """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ # Correct time t = self.correct(t) # From -DIA to PIA if -self.DIA <= t <= -self.PIA: # Link coefficients m = self.m0 b = self.b0 c = self.c0 # From PIA to 0 elif -self.PIA < t <= 0: # Link coefficients m = self.m1 b = self.b1 c = self.c1 # Compute IDC(t) f = m * t ** 2 / 2 + b * t + c # Return it return f def F(self, t): """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The integration of the piecewise IDC is based on the following rule: S_a^b f(t) * dt = S_u^b f(t) * dt - S_u^a f(t) * dt where S_a^b represents the integral on time of f(t) from a to b. """ # Define integral def I(t, m, b, c): return m * t ** 3 / 6 + b * t ** 2 / 2 + c * t # Correct time t = self.correct(t) # Initialize result F = 0 # From -DIA to PIA if -self.DIA <= t <= -self.PIA: # Define reference point T = -self.DIA # Link coefficients m = self.m0 b = self.b0 c = self.c0 # From PIA to 0 elif -self.PIA < t <= 0: # Define reference point T = -self.PIA # Link coefficients m = self.m1 b = self.b1 c = self.c1 # Add first part of integral F += self.F(T) # Compute it F += I(t, m, b, c) - I(T, m, b, c) # Return it return F class WalshIDC(FourthOrderIDC): def __init__(self, DIA): """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ INIT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ # Start initialization super(WalshIDC, self).__init__(DIA) # Define parameters of IDC for various DIA if DIA == 3: self.m4 = -4.151e-2 self.m3 = -2.925e-1 self.m2 = -6.332e-1 self.m1 = -5.553e-2 self.m0 = 9.995e-1 elif DIA == 4: self.m4 = -4.290e-3 self.m3 = -5.465e-2 self.m2 = -1.984e-1 self.m1 = 5.452e-2 self.m0 = 9.995e-1 elif DIA == 5: self.m4 = -3.823e-3 self.m3 = -5.011e-2 self.m2 = -1.998e-1 self.m1 = -2.694e-2 self.m0 = 9.930e-1 elif DIA == 6: self.m4 = -1.935e-3 self.m3 = -3.052e-2 self.m2 = -1.474e-1 self.m1 = -3.819e-2 self.m0 = 9.970e-1 # Bad DIA else: raise ValueError("Bad DIA: " + str(DIA)) class FiaspIDC(TriangleModelIDC): def __init__(self, DIA): """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ INIT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Set peak of insulin action at a 6th of the DIA by default. For example, if the insulin action lasts 6 hours, then the peak of action would be presumed to be at 1 hour after injection. """ # Start initialization super(FiaspIDC, self).__init__(DIA, DIA / 6.0) def main(): """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MAIN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ # Define DIAs DIAs = [5.0] # Initialize plot lib.initPlot() # Plot IDCs with various DIAs for DIA in DIAs: # Instanciate IDCs NovoRapid = WalshIDC(DIA) Fiasp = FiaspIDC(DIA) # Add them to plot NovoRapid.plot(False, "orange") Fiasp.plot(False, "#99e500") # Instanciate an exponential IDC ExponentialNovo = ExponentialIDC(6.0, 1.5) # Add it to plot ExponentialNovo.plot(False, "blue") # Show plot plt.show() # Run this when script is called from terminal if __name__ == "__main__": main()
gpl-3.0
Vimos/scikit-learn
sklearn/metrics/classification.py
4
72788
"""Metrics to assess performance on classification task given class prediction Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # Jatin Shah <[email protected]> # Saurabh Jha <[email protected]> # Bernardo Stein <[email protected]> # License: BSD 3 clause from __future__ import division import warnings import numpy as np from scipy.sparse import coo_matrix from scipy.sparse import csr_matrix from ..preprocessing import LabelBinarizer, label_binarize from ..preprocessing import LabelEncoder from ..utils import assert_all_finite from ..utils import check_array from ..utils import check_consistent_length from ..utils import column_or_1d from ..utils.multiclass import unique_labels from ..utils.multiclass import type_of_target from ..utils.validation import _num_samples from ..utils.sparsefuncs import count_nonzero from ..utils.fixes import bincount from ..exceptions import UndefinedMetricWarning def _check_targets(y_true, y_pred): """Check that y_true and y_pred belong to the same classification task This converts multiclass or binary types to a common shape, and raises a ValueError for a mix of multilabel and multiclass targets, a mix of multilabel formats, for the presence of continuous-valued or multioutput targets, or for targets of different lengths. Column vectors are squeezed to 1d, while multilabel formats are returned as CSR sparse label indicators. Parameters ---------- y_true : array-like y_pred : array-like Returns ------- type_true : one of {'multilabel-indicator', 'multiclass', 'binary'} The type of the true target data, as output by ``utils.multiclass.type_of_target`` y_true : array or indicator matrix y_pred : array or indicator matrix """ check_consistent_length(y_true, y_pred) type_true = type_of_target(y_true) type_pred = type_of_target(y_pred) y_type = set([type_true, type_pred]) if y_type == set(["binary", "multiclass"]): y_type = set(["multiclass"]) if len(y_type) > 1: raise ValueError("Can't handle mix of {0} and {1}" "".format(type_true, type_pred)) # We can't have more than one value on y_type => The set is no more needed y_type = y_type.pop() # No metrics support "multiclass-multioutput" format if (y_type not in ["binary", "multiclass", "multilabel-indicator"]): raise ValueError("{0} is not supported".format(y_type)) if y_type in ["binary", "multiclass"]: y_true = column_or_1d(y_true) y_pred = column_or_1d(y_pred) if y_type == "binary": unique_values = np.union1d(y_true, y_pred) if len(unique_values) > 2: y_type = "multiclass" if y_type.startswith('multilabel'): y_true = csr_matrix(y_true) y_pred = csr_matrix(y_pred) y_type = 'multilabel-indicator' return y_type, y_true, y_pred def _weighted_sum(sample_score, sample_weight, normalize=False): if normalize: return np.average(sample_score, weights=sample_weight) elif sample_weight is not None: return np.dot(sample_score, sample_weight) else: return sample_score.sum() def accuracy_score(y_true, y_pred, normalize=True, sample_weight=None): """Accuracy classification score. In multilabel classification, this function computes subset accuracy: the set of labels predicted for a sample must *exactly* match the corresponding set of labels in y_true. Read more in the :ref:`User Guide <accuracy_score>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. normalize : bool, optional (default=True) If ``False``, return the number of correctly classified samples. Otherwise, return the fraction of correctly classified samples. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- score : float If ``normalize == True``, return the correctly classified samples (float), else it returns the number of correctly classified samples (int). The best performance is 1 with ``normalize == True`` and the number of samples with ``normalize == False``. See also -------- jaccard_similarity_score, hamming_loss, zero_one_loss Notes ----- In binary and multiclass classification, this function is equal to the ``jaccard_similarity_score`` function. Examples -------- >>> import numpy as np >>> from sklearn.metrics import accuracy_score >>> y_pred = [0, 2, 1, 3] >>> y_true = [0, 1, 2, 3] >>> accuracy_score(y_true, y_pred) 0.5 >>> accuracy_score(y_true, y_pred, normalize=False) 2 In the multilabel case with binary label indicators: >>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2))) 0.5 """ # Compute accuracy for each possible representation y_type, y_true, y_pred = _check_targets(y_true, y_pred) if y_type.startswith('multilabel'): differing_labels = count_nonzero(y_true - y_pred, axis=1) score = differing_labels == 0 else: score = y_true == y_pred return _weighted_sum(score, sample_weight, normalize) def confusion_matrix(y_true, y_pred, labels=None, sample_weight=None): """Compute confusion matrix to evaluate the accuracy of a classification By definition a confusion matrix :math:`C` is such that :math:`C_{i, j}` is equal to the number of observations known to be in group :math:`i` but predicted to be in group :math:`j`. Thus in binary classification, the count of true negatives is :math:`C_{0,0}`, false negatives is :math:`C_{1,0}`, true positives is :math:`C_{1,1}` and false positives is :math:`C_{0,1}`. Read more in the :ref:`User Guide <confusion_matrix>`. Parameters ---------- y_true : array, shape = [n_samples] Ground truth (correct) target values. y_pred : array, shape = [n_samples] Estimated targets as returned by a classifier. labels : array, shape = [n_classes], optional List of labels to index the matrix. This may be used to reorder or select a subset of labels. If none is given, those that appear at least once in ``y_true`` or ``y_pred`` are used in sorted order. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- C : array, shape = [n_classes, n_classes] Confusion matrix References ---------- .. [1] `Wikipedia entry for the Confusion matrix <https://en.wikipedia.org/wiki/Confusion_matrix>`_ Examples -------- >>> from sklearn.metrics import confusion_matrix >>> y_true = [2, 0, 2, 2, 0, 1] >>> y_pred = [0, 0, 2, 2, 0, 2] >>> confusion_matrix(y_true, y_pred) array([[2, 0, 0], [0, 0, 1], [1, 0, 2]]) >>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"] >>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"] >>> confusion_matrix(y_true, y_pred, labels=["ant", "bird", "cat"]) array([[2, 0, 0], [0, 0, 1], [1, 0, 2]]) In the binary case, we can extract true positives, etc as follows: >>> tn, fp, fn, tp = confusion_matrix([0, 1, 0, 1], [1, 1, 1, 0]).ravel() >>> (tn, fp, fn, tp) (0, 2, 1, 1) """ y_type, y_true, y_pred = _check_targets(y_true, y_pred) if y_type not in ("binary", "multiclass"): raise ValueError("%s is not supported" % y_type) if labels is None: labels = unique_labels(y_true, y_pred) else: labels = np.asarray(labels) if np.all([l not in y_true for l in labels]): raise ValueError("At least one label specified must be in y_true") if sample_weight is None: sample_weight = np.ones(y_true.shape[0], dtype=np.int) else: sample_weight = np.asarray(sample_weight) check_consistent_length(sample_weight, y_true, y_pred) n_labels = labels.size label_to_ind = dict((y, x) for x, y in enumerate(labels)) # convert yt, yp into index y_pred = np.array([label_to_ind.get(x, n_labels + 1) for x in y_pred]) y_true = np.array([label_to_ind.get(x, n_labels + 1) for x in y_true]) # intersect y_pred, y_true with labels, eliminate items not in labels ind = np.logical_and(y_pred < n_labels, y_true < n_labels) y_pred = y_pred[ind] y_true = y_true[ind] # also eliminate weights of eliminated items sample_weight = sample_weight[ind] CM = coo_matrix((sample_weight, (y_true, y_pred)), shape=(n_labels, n_labels) ).toarray() return CM def cohen_kappa_score(y1, y2, labels=None, weights=None, sample_weight=None): """Cohen's kappa: a statistic that measures inter-annotator agreement. This function computes Cohen's kappa [1]_, a score that expresses the level of agreement between two annotators on a classification problem. It is defined as .. math:: \kappa = (p_o - p_e) / (1 - p_e) where :math:`p_o` is the empirical probability of agreement on the label assigned to any sample (the observed agreement ratio), and :math:`p_e` is the expected agreement when both annotators assign labels randomly. :math:`p_e` is estimated using a per-annotator empirical prior over the class labels [2]_. Read more in the :ref:`User Guide <cohen_kappa>`. Parameters ---------- y1 : array, shape = [n_samples] Labels assigned by the first annotator. y2 : array, shape = [n_samples] Labels assigned by the second annotator. The kappa statistic is symmetric, so swapping ``y1`` and ``y2`` doesn't change the value. labels : array, shape = [n_classes], optional List of labels to index the matrix. This may be used to select a subset of labels. If None, all labels that appear at least once in ``y1`` or ``y2`` are used. weights : str, optional List of weighting type to calculate the score. None means no weighted; "linear" means linear weighted; "quadratic" means quadratic weighted. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- kappa : float The kappa statistic, which is a number between -1 and 1. The maximum value means complete agreement; zero or lower means chance agreement. References ---------- .. [1] J. Cohen (1960). "A coefficient of agreement for nominal scales". Educational and Psychological Measurement 20(1):37-46. doi:10.1177/001316446002000104. .. [2] `R. Artstein and M. Poesio (2008). "Inter-coder agreement for computational linguistics". Computational Linguistics 34(4):555-596. <http://www.mitpressjournals.org/doi/abs/10.1162/coli.07-034-R2#.V0J1MJMrIWo>`_ .. [3] `Wikipedia entry for the Cohen's kappa. <https://en.wikipedia.org/wiki/Cohen%27s_kappa>`_ """ confusion = confusion_matrix(y1, y2, labels=labels, sample_weight=sample_weight) n_classes = confusion.shape[0] sum0 = np.sum(confusion, axis=0) sum1 = np.sum(confusion, axis=1) expected = np.outer(sum0, sum1) / np.sum(sum0) if weights is None: w_mat = np.ones([n_classes, n_classes], dtype=np.int) w_mat.flat[:: n_classes + 1] = 0 elif weights == "linear" or weights == "quadratic": w_mat = np.zeros([n_classes, n_classes], dtype=np.int) w_mat += np.arange(n_classes) if weights == "linear": w_mat = np.abs(w_mat - w_mat.T) else: w_mat = (w_mat - w_mat.T) ** 2 else: raise ValueError("Unknown kappa weighting type.") k = np.sum(w_mat * confusion) / np.sum(w_mat * expected) return 1 - k def jaccard_similarity_score(y_true, y_pred, normalize=True, sample_weight=None): """Jaccard similarity coefficient score The Jaccard index [1], or Jaccard similarity coefficient, defined as the size of the intersection divided by the size of the union of two label sets, is used to compare set of predicted labels for a sample to the corresponding set of labels in ``y_true``. Read more in the :ref:`User Guide <jaccard_similarity_score>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. normalize : bool, optional (default=True) If ``False``, return the sum of the Jaccard similarity coefficient over the sample set. Otherwise, return the average of Jaccard similarity coefficient. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- score : float If ``normalize == True``, return the average Jaccard similarity coefficient, else it returns the sum of the Jaccard similarity coefficient over the sample set. The best performance is 1 with ``normalize == True`` and the number of samples with ``normalize == False``. See also -------- accuracy_score, hamming_loss, zero_one_loss Notes ----- In binary and multiclass classification, this function is equivalent to the ``accuracy_score``. It differs in the multilabel classification problem. References ---------- .. [1] `Wikipedia entry for the Jaccard index <https://en.wikipedia.org/wiki/Jaccard_index>`_ Examples -------- >>> import numpy as np >>> from sklearn.metrics import jaccard_similarity_score >>> y_pred = [0, 2, 1, 3] >>> y_true = [0, 1, 2, 3] >>> jaccard_similarity_score(y_true, y_pred) 0.5 >>> jaccard_similarity_score(y_true, y_pred, normalize=False) 2 In the multilabel case with binary label indicators: >>> jaccard_similarity_score(np.array([[0, 1], [1, 1]]),\ np.ones((2, 2))) 0.75 """ # Compute accuracy for each possible representation y_type, y_true, y_pred = _check_targets(y_true, y_pred) if y_type.startswith('multilabel'): with np.errstate(divide='ignore', invalid='ignore'): # oddly, we may get an "invalid" rather than a "divide" error here pred_or_true = count_nonzero(y_true + y_pred, axis=1) pred_and_true = count_nonzero(y_true.multiply(y_pred), axis=1) score = pred_and_true / pred_or_true score[pred_or_true == 0.0] = 1.0 else: score = y_true == y_pred return _weighted_sum(score, sample_weight, normalize) def matthews_corrcoef(y_true, y_pred, sample_weight=None): """Compute the Matthews correlation coefficient (MCC) for binary classes The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary (two-class) classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] Only in the binary case does this relate to information about true and false positives and negatives. See references below. Read more in the :ref:`User Guide <matthews_corrcoef>`. Parameters ---------- y_true : array, shape = [n_samples] Ground truth (correct) target values. y_pred : array, shape = [n_samples] Estimated targets as returned by a classifier. sample_weight : array-like of shape = [n_samples], default None Sample weights. Returns ------- mcc : float The Matthews correlation coefficient (+1 represents a perfect prediction, 0 an average random prediction and -1 and inverse prediction). References ---------- .. [1] `Baldi, Brunak, Chauvin, Andersen and Nielsen, (2000). Assessing the accuracy of prediction algorithms for classification: an overview <http://dx.doi.org/10.1093/bioinformatics/16.5.412>`_ .. [2] `Wikipedia entry for the Matthews Correlation Coefficient <https://en.wikipedia.org/wiki/Matthews_correlation_coefficient>`_ Examples -------- >>> from sklearn.metrics import matthews_corrcoef >>> y_true = [+1, +1, +1, -1] >>> y_pred = [+1, -1, +1, +1] >>> matthews_corrcoef(y_true, y_pred) # doctest: +ELLIPSIS -0.33... """ y_type, y_true, y_pred = _check_targets(y_true, y_pred) if y_type != "binary": raise ValueError("%s is not supported" % y_type) lb = LabelEncoder() lb.fit(np.hstack([y_true, y_pred])) y_true = lb.transform(y_true) y_pred = lb.transform(y_pred) mean_yt = np.average(y_true, weights=sample_weight) mean_yp = np.average(y_pred, weights=sample_weight) y_true_u_cent = y_true - mean_yt y_pred_u_cent = y_pred - mean_yp cov_ytyp = np.average(y_true_u_cent * y_pred_u_cent, weights=sample_weight) var_yt = np.average(y_true_u_cent ** 2, weights=sample_weight) var_yp = np.average(y_pred_u_cent ** 2, weights=sample_weight) mcc = cov_ytyp / np.sqrt(var_yt * var_yp) if np.isnan(mcc): return 0. else: return mcc def zero_one_loss(y_true, y_pred, normalize=True, sample_weight=None): """Zero-one classification loss. If normalize is ``True``, return the fraction of misclassifications (float), else it returns the number of misclassifications (int). The best performance is 0. Read more in the :ref:`User Guide <zero_one_loss>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. normalize : bool, optional (default=True) If ``False``, return the number of misclassifications. Otherwise, return the fraction of misclassifications. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float or int, If ``normalize == True``, return the fraction of misclassifications (float), else it returns the number of misclassifications (int). Notes ----- In multilabel classification, the zero_one_loss function corresponds to the subset zero-one loss: for each sample, the entire set of labels must be correctly predicted, otherwise the loss for that sample is equal to one. See also -------- accuracy_score, hamming_loss, jaccard_similarity_score Examples -------- >>> from sklearn.metrics import zero_one_loss >>> y_pred = [1, 2, 3, 4] >>> y_true = [2, 2, 3, 4] >>> zero_one_loss(y_true, y_pred) 0.25 >>> zero_one_loss(y_true, y_pred, normalize=False) 1 In the multilabel case with binary label indicators: >>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2))) 0.5 """ score = accuracy_score(y_true, y_pred, normalize=normalize, sample_weight=sample_weight) if normalize: return 1 - score else: if sample_weight is not None: n_samples = np.sum(sample_weight) else: n_samples = _num_samples(y_true) return n_samples - score def f1_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the F1 score, also known as balanced F-score or F-measure The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal. The formula for the F1 score is:: F1 = 2 * (precision * recall) / (precision + recall) In the multi-class and multi-label case, this is the weighted average of the F1 score of each class. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. .. versionchanged:: 0.17 parameter *labels* improved for multiclass problem. pos_label : str or int, 1 by default The class to report if ``average='binary'`` and the data is binary. If the data are multiclass or multilabel, this will be ignored; setting ``labels=[pos_label]`` and ``average != 'binary'`` will report scores for that label only. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- f1_score : float or array of float, shape = [n_unique_labels] F1 score of the positive class in binary classification or weighted average of the F1 scores of each class for the multiclass task. References ---------- .. [1] `Wikipedia entry for the F1-score <https://en.wikipedia.org/wiki/F1_score>`_ Examples -------- >>> from sklearn.metrics import f1_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> f1_score(y_true, y_pred, average='macro') # doctest: +ELLIPSIS 0.26... >>> f1_score(y_true, y_pred, average='micro') # doctest: +ELLIPSIS 0.33... >>> f1_score(y_true, y_pred, average='weighted') # doctest: +ELLIPSIS 0.26... >>> f1_score(y_true, y_pred, average=None) array([ 0.8, 0. , 0. ]) """ return fbeta_score(y_true, y_pred, 1, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) def fbeta_score(y_true, y_pred, beta, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the F-beta score The F-beta score is the weighted harmonic mean of precision and recall, reaching its optimal value at 1 and its worst value at 0. The `beta` parameter determines the weight of precision in the combined score. ``beta < 1`` lends more weight to precision, while ``beta > 1`` favors recall (``beta -> 0`` considers only precision, ``beta -> inf`` only recall). Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. beta : float Weight of precision in harmonic mean. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. .. versionchanged:: 0.17 parameter *labels* improved for multiclass problem. pos_label : str or int, 1 by default The class to report if ``average='binary'`` and the data is binary. If the data are multiclass or multilabel, this will be ignored; setting ``labels=[pos_label]`` and ``average != 'binary'`` will report scores for that label only. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- fbeta_score : float (if average is not None) or array of float, shape =\ [n_unique_labels] F-beta score of the positive class in binary classification or weighted average of the F-beta score of each class for the multiclass task. References ---------- .. [1] R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 327-328. .. [2] `Wikipedia entry for the F1-score <https://en.wikipedia.org/wiki/F1_score>`_ Examples -------- >>> from sklearn.metrics import fbeta_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> fbeta_score(y_true, y_pred, average='macro', beta=0.5) ... # doctest: +ELLIPSIS 0.23... >>> fbeta_score(y_true, y_pred, average='micro', beta=0.5) ... # doctest: +ELLIPSIS 0.33... >>> fbeta_score(y_true, y_pred, average='weighted', beta=0.5) ... # doctest: +ELLIPSIS 0.23... >>> fbeta_score(y_true, y_pred, average=None, beta=0.5) ... # doctest: +ELLIPSIS array([ 0.71..., 0. , 0. ]) """ _, _, f, _ = precision_recall_fscore_support(y_true, y_pred, beta=beta, labels=labels, pos_label=pos_label, average=average, warn_for=('f-score',), sample_weight=sample_weight) return f def _prf_divide(numerator, denominator, metric, modifier, average, warn_for): """Performs division and handles divide-by-zero. On zero-division, sets the corresponding result elements to zero and raises a warning. The metric, modifier and average arguments are used only for determining an appropriate warning. """ result = numerator / denominator mask = denominator == 0.0 if not np.any(mask): return result # remove infs result[mask] = 0.0 # build appropriate warning # E.g. "Precision and F-score are ill-defined and being set to 0.0 in # labels with no predicted samples" axis0 = 'sample' axis1 = 'label' if average == 'samples': axis0, axis1 = axis1, axis0 if metric in warn_for and 'f-score' in warn_for: msg_start = '{0} and F-score are'.format(metric.title()) elif metric in warn_for: msg_start = '{0} is'.format(metric.title()) elif 'f-score' in warn_for: msg_start = 'F-score is' else: return result msg = ('{0} ill-defined and being set to 0.0 {{0}} ' 'no {1} {2}s.'.format(msg_start, modifier, axis0)) if len(mask) == 1: msg = msg.format('due to') else: msg = msg.format('in {0}s with'.format(axis1)) warnings.warn(msg, UndefinedMetricWarning, stacklevel=2) return result def precision_recall_fscore_support(y_true, y_pred, beta=1.0, labels=None, pos_label=1, average=None, warn_for=('precision', 'recall', 'f-score'), sample_weight=None): """Compute precision, recall, F-measure and support for each class The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of true positives and ``fp`` the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of true positives and ``fn`` the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The F-beta score can be interpreted as a weighted harmonic mean of the precision and recall, where an F-beta score reaches its best value at 1 and worst score at 0. The F-beta score weights recall more than precision by a factor of ``beta``. ``beta == 1.0`` means recall and precision are equally important. The support is the number of occurrences of each class in ``y_true``. If ``pos_label is None`` and in binary classification, this function returns the average precision, recall and F-measure if ``average`` is one of ``'micro'``, ``'macro'``, ``'weighted'`` or ``'samples'``. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. beta : float, 1.0 by default The strength of recall versus precision in the F-score. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. pos_label : str or int, 1 by default The class to report if ``average='binary'`` and the data is binary. If the data are multiclass or multilabel, this will be ignored; setting ``labels=[pos_label]`` and ``average != 'binary'`` will report scores for that label only. average : string, [None (default), 'binary', 'micro', 'macro', 'samples', \ 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). warn_for : tuple or set, for internal use This determines which warnings will be made in the case that this function is being used to return only one of its metrics. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- precision : float (if average is not None) or array of float, shape =\ [n_unique_labels] recall : float (if average is not None) or array of float, , shape =\ [n_unique_labels] fbeta_score : float (if average is not None) or array of float, shape =\ [n_unique_labels] support : int (if average is not None) or array of int, shape =\ [n_unique_labels] The number of occurrences of each label in ``y_true``. References ---------- .. [1] `Wikipedia entry for the Precision and recall <https://en.wikipedia.org/wiki/Precision_and_recall>`_ .. [2] `Wikipedia entry for the F1-score <https://en.wikipedia.org/wiki/F1_score>`_ .. [3] `Discriminative Methods for Multi-labeled Classification Advances in Knowledge Discovery and Data Mining (2004), pp. 22-30 by Shantanu Godbole, Sunita Sarawagi <http://www.godbole.net/shantanu/pubs/multilabelsvm-pakdd04.pdf>`_ Examples -------- >>> from sklearn.metrics import precision_recall_fscore_support >>> y_true = np.array(['cat', 'dog', 'pig', 'cat', 'dog', 'pig']) >>> y_pred = np.array(['cat', 'pig', 'dog', 'cat', 'cat', 'dog']) >>> precision_recall_fscore_support(y_true, y_pred, average='macro') ... # doctest: +ELLIPSIS (0.22..., 0.33..., 0.26..., None) >>> precision_recall_fscore_support(y_true, y_pred, average='micro') ... # doctest: +ELLIPSIS (0.33..., 0.33..., 0.33..., None) >>> precision_recall_fscore_support(y_true, y_pred, average='weighted') ... # doctest: +ELLIPSIS (0.22..., 0.33..., 0.26..., None) It is possible to compute per-label precisions, recalls, F1-scores and supports instead of averaging: >>> precision_recall_fscore_support(y_true, y_pred, average=None, ... labels=['pig', 'dog', 'cat']) ... # doctest: +ELLIPSIS,+NORMALIZE_WHITESPACE (array([ 0. , 0. , 0.66...]), array([ 0., 0., 1.]), array([ 0. , 0. , 0.8]), array([2, 2, 2])) """ average_options = (None, 'micro', 'macro', 'weighted', 'samples') if average not in average_options and average != 'binary': raise ValueError('average has to be one of ' + str(average_options)) if beta <= 0: raise ValueError("beta should be >0 in the F-beta score") y_type, y_true, y_pred = _check_targets(y_true, y_pred) present_labels = unique_labels(y_true, y_pred) if average == 'binary': if y_type == 'binary': if pos_label not in present_labels: if len(present_labels) < 2: # Only negative labels return (0., 0., 0., 0) else: raise ValueError("pos_label=%r is not a valid label: %r" % (pos_label, present_labels)) labels = [pos_label] else: raise ValueError("Target is %s but average='binary'. Please " "choose another average setting." % y_type) elif pos_label not in (None, 1): warnings.warn("Note that pos_label (set to %r) is ignored when " "average != 'binary' (got %r). You may use " "labels=[pos_label] to specify a single positive class." % (pos_label, average), UserWarning) if labels is None: labels = present_labels n_labels = None else: n_labels = len(labels) labels = np.hstack([labels, np.setdiff1d(present_labels, labels, assume_unique=True)]) # Calculate tp_sum, pred_sum, true_sum ### if y_type.startswith('multilabel'): sum_axis = 1 if average == 'samples' else 0 # All labels are index integers for multilabel. # Select labels: if not np.all(labels == present_labels): if np.max(labels) > np.max(present_labels): raise ValueError('All labels must be in [0, n labels). ' 'Got %d > %d' % (np.max(labels), np.max(present_labels))) if np.min(labels) < 0: raise ValueError('All labels must be in [0, n labels). ' 'Got %d < 0' % np.min(labels)) y_true = y_true[:, labels[:n_labels]] y_pred = y_pred[:, labels[:n_labels]] # calculate weighted counts true_and_pred = y_true.multiply(y_pred) tp_sum = count_nonzero(true_and_pred, axis=sum_axis, sample_weight=sample_weight) pred_sum = count_nonzero(y_pred, axis=sum_axis, sample_weight=sample_weight) true_sum = count_nonzero(y_true, axis=sum_axis, sample_weight=sample_weight) elif average == 'samples': raise ValueError("Sample-based precision, recall, fscore is " "not meaningful outside multilabel " "classification. See the accuracy_score instead.") else: le = LabelEncoder() le.fit(labels) y_true = le.transform(y_true) y_pred = le.transform(y_pred) sorted_labels = le.classes_ # labels are now from 0 to len(labels) - 1 -> use bincount tp = y_true == y_pred tp_bins = y_true[tp] if sample_weight is not None: tp_bins_weights = np.asarray(sample_weight)[tp] else: tp_bins_weights = None if len(tp_bins): tp_sum = bincount(tp_bins, weights=tp_bins_weights, minlength=len(labels)) else: # Pathological case true_sum = pred_sum = tp_sum = np.zeros(len(labels)) if len(y_pred): pred_sum = bincount(y_pred, weights=sample_weight, minlength=len(labels)) if len(y_true): true_sum = bincount(y_true, weights=sample_weight, minlength=len(labels)) # Retain only selected labels indices = np.searchsorted(sorted_labels, labels[:n_labels]) tp_sum = tp_sum[indices] true_sum = true_sum[indices] pred_sum = pred_sum[indices] if average == 'micro': tp_sum = np.array([tp_sum.sum()]) pred_sum = np.array([pred_sum.sum()]) true_sum = np.array([true_sum.sum()]) # Finally, we have all our sufficient statistics. Divide! # beta2 = beta ** 2 with np.errstate(divide='ignore', invalid='ignore'): # Divide, and on zero-division, set scores to 0 and warn: # Oddly, we may get an "invalid" rather than a "divide" error # here. precision = _prf_divide(tp_sum, pred_sum, 'precision', 'predicted', average, warn_for) recall = _prf_divide(tp_sum, true_sum, 'recall', 'true', average, warn_for) # Don't need to warn for F: either P or R warned, or tp == 0 where pos # and true are nonzero, in which case, F is well-defined and zero f_score = ((1 + beta2) * precision * recall / (beta2 * precision + recall)) f_score[tp_sum == 0] = 0.0 # Average the results if average == 'weighted': weights = true_sum if weights.sum() == 0: return 0, 0, 0, None elif average == 'samples': weights = sample_weight else: weights = None if average is not None: assert average != 'binary' or len(precision) == 1 precision = np.average(precision, weights=weights) recall = np.average(recall, weights=weights) f_score = np.average(f_score, weights=weights) true_sum = None # return no support return precision, recall, f_score, true_sum def precision_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the precision The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of true positives and ``fp`` the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The best value is 1 and the worst value is 0. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. .. versionchanged:: 0.17 parameter *labels* improved for multiclass problem. pos_label : str or int, 1 by default The class to report if ``average='binary'`` and the data is binary. If the data are multiclass or multilabel, this will be ignored; setting ``labels=[pos_label]`` and ``average != 'binary'`` will report scores for that label only. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- precision : float (if average is not None) or array of float, shape =\ [n_unique_labels] Precision of the positive class in binary classification or weighted average of the precision of each class for the multiclass task. Examples -------- >>> from sklearn.metrics import precision_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> precision_score(y_true, y_pred, average='macro') # doctest: +ELLIPSIS 0.22... >>> precision_score(y_true, y_pred, average='micro') # doctest: +ELLIPSIS 0.33... >>> precision_score(y_true, y_pred, average='weighted') ... # doctest: +ELLIPSIS 0.22... >>> precision_score(y_true, y_pred, average=None) # doctest: +ELLIPSIS array([ 0.66..., 0. , 0. ]) """ p, _, _, _ = precision_recall_fscore_support(y_true, y_pred, labels=labels, pos_label=pos_label, average=average, warn_for=('precision',), sample_weight=sample_weight) return p def recall_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the recall The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of true positives and ``fn`` the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The best value is 1 and the worst value is 0. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. .. versionchanged:: 0.17 parameter *labels* improved for multiclass problem. pos_label : str or int, 1 by default The class to report if ``average='binary'`` and the data is binary. If the data are multiclass or multilabel, this will be ignored; setting ``labels=[pos_label]`` and ``average != 'binary'`` will report scores for that label only. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- recall : float (if average is not None) or array of float, shape =\ [n_unique_labels] Recall of the positive class in binary classification or weighted average of the recall of each class for the multiclass task. Examples -------- >>> from sklearn.metrics import recall_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> recall_score(y_true, y_pred, average='macro') # doctest: +ELLIPSIS 0.33... >>> recall_score(y_true, y_pred, average='micro') # doctest: +ELLIPSIS 0.33... >>> recall_score(y_true, y_pred, average='weighted') # doctest: +ELLIPSIS 0.33... >>> recall_score(y_true, y_pred, average=None) array([ 1., 0., 0.]) """ _, r, _, _ = precision_recall_fscore_support(y_true, y_pred, labels=labels, pos_label=pos_label, average=average, warn_for=('recall',), sample_weight=sample_weight) return r def classification_report(y_true, y_pred, labels=None, target_names=None, sample_weight=None, digits=2): """Build a text report showing the main classification metrics Read more in the :ref:`User Guide <classification_report>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : array, shape = [n_labels] Optional list of label indices to include in the report. target_names : list of strings Optional display names matching the labels (same order). sample_weight : array-like of shape = [n_samples], optional Sample weights. digits : int Number of digits for formatting output floating point values Returns ------- report : string Text summary of the precision, recall, F1 score for each class. The reported averages are a prevalence-weighted macro-average across classes (equivalent to :func:`precision_recall_fscore_support` with ``average='weighted'``). Note that in binary classification, recall of the positive class is also known as "sensitivity"; recall of the negative class is "specificity". Examples -------- >>> from sklearn.metrics import classification_report >>> y_true = [0, 1, 2, 2, 2] >>> y_pred = [0, 0, 2, 2, 1] >>> target_names = ['class 0', 'class 1', 'class 2'] >>> print(classification_report(y_true, y_pred, target_names=target_names)) precision recall f1-score support <BLANKLINE> class 0 0.50 1.00 0.67 1 class 1 0.00 0.00 0.00 1 class 2 1.00 0.67 0.80 3 <BLANKLINE> avg / total 0.70 0.60 0.61 5 <BLANKLINE> """ if labels is None: labels = unique_labels(y_true, y_pred) else: labels = np.asarray(labels) if target_names is not None and len(labels) != len(target_names): warnings.warn( "labels size, {0}, does not match size of target_names, {1}" .format(len(labels), len(target_names)) ) last_line_heading = 'avg / total' if target_names is None: target_names = [u'%s' % l for l in labels] name_width = max(len(cn) for cn in target_names) width = max(name_width, len(last_line_heading), digits) headers = ["precision", "recall", "f1-score", "support"] head_fmt = u'{:>{width}s} ' + u' {:>9}' * len(headers) report = head_fmt.format(u'', *headers, width=width) report += u'\n\n' p, r, f1, s = precision_recall_fscore_support(y_true, y_pred, labels=labels, average=None, sample_weight=sample_weight) row_fmt = u'{:>{width}s} ' + u' {:>9.{digits}f}' * 3 + u' {:>9}\n' rows = zip(target_names, p, r, f1, s) for row in rows: report += row_fmt.format(*row, width=width, digits=digits) report += u'\n' # compute averages report += row_fmt.format(last_line_heading, np.average(p, weights=s), np.average(r, weights=s), np.average(f1, weights=s), np.sum(s), width=width, digits=digits) return report def hamming_loss(y_true, y_pred, labels=None, sample_weight=None, classes=None): """Compute the average Hamming loss. The Hamming loss is the fraction of labels that are incorrectly predicted. Read more in the :ref:`User Guide <hamming_loss>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. labels : array, shape = [n_labels], optional (default=None) Integer array of labels. If not provided, labels will be inferred from y_true and y_pred. .. versionadded:: 0.18 sample_weight : array-like of shape = [n_samples], optional Sample weights. .. versionadded:: 0.18 classes : array, shape = [n_labels], optional Integer array of labels. .. deprecated:: 0.18 This parameter has been deprecated in favor of ``labels`` in version 0.18 and will be removed in 0.20. Use ``labels`` instead. Returns ------- loss : float or int, Return the average Hamming loss between element of ``y_true`` and ``y_pred``. See Also -------- accuracy_score, jaccard_similarity_score, zero_one_loss Notes ----- In multiclass classification, the Hamming loss correspond to the Hamming distance between ``y_true`` and ``y_pred`` which is equivalent to the subset ``zero_one_loss`` function. In multilabel classification, the Hamming loss is different from the subset zero-one loss. The zero-one loss considers the entire set of labels for a given sample incorrect if it does entirely match the true set of labels. Hamming loss is more forgiving in that it penalizes the individual labels. The Hamming loss is upperbounded by the subset zero-one loss. When normalized over samples, the Hamming loss is always between 0 and 1. References ---------- .. [1] Grigorios Tsoumakas, Ioannis Katakis. Multi-Label Classification: An Overview. International Journal of Data Warehousing & Mining, 3(3), 1-13, July-September 2007. .. [2] `Wikipedia entry on the Hamming distance <https://en.wikipedia.org/wiki/Hamming_distance>`_ Examples -------- >>> from sklearn.metrics import hamming_loss >>> y_pred = [1, 2, 3, 4] >>> y_true = [2, 2, 3, 4] >>> hamming_loss(y_true, y_pred) 0.25 In the multilabel case with binary label indicators: >>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2))) 0.75 """ if classes is not None: warnings.warn("'classes' was renamed to 'labels' in version 0.18 and " "will be removed in 0.20.", DeprecationWarning) labels = classes y_type, y_true, y_pred = _check_targets(y_true, y_pred) if labels is None: labels = unique_labels(y_true, y_pred) else: labels = np.asarray(labels) if sample_weight is None: weight_average = 1. else: weight_average = np.mean(sample_weight) if y_type.startswith('multilabel'): n_differences = count_nonzero(y_true - y_pred, sample_weight=sample_weight) return (n_differences / (y_true.shape[0] * len(labels) * weight_average)) elif y_type in ["binary", "multiclass"]: return _weighted_sum(y_true != y_pred, sample_weight, normalize=True) else: raise ValueError("{0} is not supported".format(y_type)) def log_loss(y_true, y_pred, eps=1e-15, normalize=True, sample_weight=None, labels=None): """Log loss, aka logistic loss or cross-entropy loss. This is the loss function used in (multinomial) logistic regression and extensions of it such as neural networks, defined as the negative log-likelihood of the true labels given a probabilistic classifier's predictions. The log loss is only defined for two or more labels. For a single sample with true label yt in {0,1} and estimated probability yp that yt = 1, the log loss is -log P(yt|yp) = -(yt log(yp) + (1 - yt) log(1 - yp)) Read more in the :ref:`User Guide <log_loss>`. Parameters ---------- y_true : array-like or label indicator matrix Ground truth (correct) labels for n_samples samples. y_pred : array-like of float, shape = (n_samples, n_classes) or (n_samples,) Predicted probabilities, as returned by a classifier's predict_proba method. If ``y_pred.shape = (n_samples,)`` the probabilities provided are assumed to be that of the positive class. The labels in ``y_pred`` are assumed to be ordered alphabetically, as done by :class:`preprocessing.LabelBinarizer`. eps : float Log loss is undefined for p=0 or p=1, so probabilities are clipped to max(eps, min(1 - eps, p)). normalize : bool, optional (default=True) If true, return the mean loss per sample. Otherwise, return the sum of the per-sample losses. sample_weight : array-like of shape = [n_samples], optional Sample weights. labels : array-like, optional (default=None) If not provided, labels will be inferred from y_true. If ``labels`` is ``None`` and ``y_pred`` has shape (n_samples,) the labels are assumed to be binary and are inferred from ``y_true``. .. versionadded:: 0.18 Returns ------- loss : float Examples -------- >>> log_loss(["spam", "ham", "ham", "spam"], # doctest: +ELLIPSIS ... [[.1, .9], [.9, .1], [.8, .2], [.35, .65]]) 0.21616... References ---------- C.M. Bishop (2006). Pattern Recognition and Machine Learning. Springer, p. 209. Notes ----- The logarithm used is the natural logarithm (base-e). """ y_pred = check_array(y_pred, ensure_2d=False) check_consistent_length(y_pred, y_true) lb = LabelBinarizer() if labels is not None: lb.fit(labels) else: lb.fit(y_true) if len(lb.classes_) == 1: if labels is None: raise ValueError('y_true contains only one label ({0}). Please ' 'provide the true labels explicitly through the ' 'labels argument.'.format(lb.classes_[0])) else: raise ValueError('The labels array needs to contain at least two ' 'labels for log_loss, ' 'got {0}.'.format(lb.classes_)) transformed_labels = lb.transform(y_true) if transformed_labels.shape[1] == 1: transformed_labels = np.append(1 - transformed_labels, transformed_labels, axis=1) # Clipping y_pred = np.clip(y_pred, eps, 1 - eps) # If y_pred is of single dimension, assume y_true to be binary # and then check. if y_pred.ndim == 1: y_pred = y_pred[:, np.newaxis] if y_pred.shape[1] == 1: y_pred = np.append(1 - y_pred, y_pred, axis=1) # Check if dimensions are consistent. transformed_labels = check_array(transformed_labels) if len(lb.classes_) != y_pred.shape[1]: if labels is None: raise ValueError("y_true and y_pred contain different number of " "classes {0}, {1}. Please provide the true " "labels explicitly through the labels argument. " "Classes found in " "y_true: {2}".format(transformed_labels.shape[1], y_pred.shape[1], lb.classes_)) else: raise ValueError('The number of classes in labels is different ' 'from that in y_pred. Classes found in ' 'labels: {0}'.format(lb.classes_)) # Renormalize y_pred /= y_pred.sum(axis=1)[:, np.newaxis] loss = -(transformed_labels * np.log(y_pred)).sum(axis=1) return _weighted_sum(loss, sample_weight, normalize) def hinge_loss(y_true, pred_decision, labels=None, sample_weight=None): """Average hinge loss (non-regularized) In binary class case, assuming labels in y_true are encoded with +1 and -1, when a prediction mistake is made, ``margin = y_true * pred_decision`` is always negative (since the signs disagree), implying ``1 - margin`` is always greater than 1. The cumulated hinge loss is therefore an upper bound of the number of mistakes made by the classifier. In multiclass case, the function expects that either all the labels are included in y_true or an optional labels argument is provided which contains all the labels. The multilabel margin is calculated according to Crammer-Singer's method. As in the binary case, the cumulated hinge loss is an upper bound of the number of mistakes made by the classifier. Read more in the :ref:`User Guide <hinge_loss>`. Parameters ---------- y_true : array, shape = [n_samples] True target, consisting of integers of two values. The positive label must be greater than the negative label. pred_decision : array, shape = [n_samples] or [n_samples, n_classes] Predicted decisions, as output by decision_function (floats). labels : array, optional, default None Contains all the labels for the problem. Used in multiclass hinge loss. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float References ---------- .. [1] `Wikipedia entry on the Hinge loss <https://en.wikipedia.org/wiki/Hinge_loss>`_ .. [2] Koby Crammer, Yoram Singer. On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines. Journal of Machine Learning Research 2, (2001), 265-292 .. [3] `L1 AND L2 Regularization for Multiclass Hinge Loss Models by Robert C. Moore, John DeNero. <http://www.ttic.edu/sigml/symposium2011/papers/ Moore+DeNero_Regularization.pdf>`_ Examples -------- >>> from sklearn import svm >>> from sklearn.metrics import hinge_loss >>> X = [[0], [1]] >>> y = [-1, 1] >>> est = svm.LinearSVC(random_state=0) >>> est.fit(X, y) LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000, multi_class='ovr', penalty='l2', random_state=0, tol=0.0001, verbose=0) >>> pred_decision = est.decision_function([[-2], [3], [0.5]]) >>> pred_decision # doctest: +ELLIPSIS array([-2.18..., 2.36..., 0.09...]) >>> hinge_loss([-1, 1, 1], pred_decision) # doctest: +ELLIPSIS 0.30... In the multiclass case: >>> X = np.array([[0], [1], [2], [3]]) >>> Y = np.array([0, 1, 2, 3]) >>> labels = np.array([0, 1, 2, 3]) >>> est = svm.LinearSVC() >>> est.fit(X, Y) LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000, multi_class='ovr', penalty='l2', random_state=None, tol=0.0001, verbose=0) >>> pred_decision = est.decision_function([[-1], [2], [3]]) >>> y_true = [0, 2, 3] >>> hinge_loss(y_true, pred_decision, labels) #doctest: +ELLIPSIS 0.56... """ check_consistent_length(y_true, pred_decision, sample_weight) pred_decision = check_array(pred_decision, ensure_2d=False) y_true = column_or_1d(y_true) y_true_unique = np.unique(y_true) if y_true_unique.size > 2: if (labels is None and pred_decision.ndim > 1 and (np.size(y_true_unique) != pred_decision.shape[1])): raise ValueError("Please include all labels in y_true " "or pass labels as third argument") if labels is None: labels = y_true_unique le = LabelEncoder() le.fit(labels) y_true = le.transform(y_true) mask = np.ones_like(pred_decision, dtype=bool) mask[np.arange(y_true.shape[0]), y_true] = False margin = pred_decision[~mask] margin -= np.max(pred_decision[mask].reshape(y_true.shape[0], -1), axis=1) else: # Handles binary class case # this code assumes that positive and negative labels # are encoded as +1 and -1 respectively pred_decision = column_or_1d(pred_decision) pred_decision = np.ravel(pred_decision) lbin = LabelBinarizer(neg_label=-1) y_true = lbin.fit_transform(y_true)[:, 0] try: margin = y_true * pred_decision except TypeError: raise TypeError("pred_decision should be an array of floats.") losses = 1 - margin # The hinge_loss doesn't penalize good enough predictions. losses[losses <= 0] = 0 return np.average(losses, weights=sample_weight) def _check_binary_probabilistic_predictions(y_true, y_prob): """Check that y_true is binary and y_prob contains valid probabilities""" check_consistent_length(y_true, y_prob) labels = np.unique(y_true) if len(labels) > 2: raise ValueError("Only binary classification is supported. " "Provided labels %s." % labels) if y_prob.max() > 1: raise ValueError("y_prob contains values greater than 1.") if y_prob.min() < 0: raise ValueError("y_prob contains values less than 0.") return label_binarize(y_true, labels)[:, 0] def brier_score_loss(y_true, y_prob, sample_weight=None, pos_label=None): """Compute the Brier score. The smaller the Brier score, the better, hence the naming with "loss". Across all items in a set N predictions, the Brier score measures the mean squared difference between (1) the predicted probability assigned to the possible outcomes for item i, and (2) the actual outcome. Therefore, the lower the Brier score is for a set of predictions, the better the predictions are calibrated. Note that the Brier score always takes on a value between zero and one, since this is the largest possible difference between a predicted probability (which must be between zero and one) and the actual outcome (which can take on values of only 0 and 1). The Brier score is appropriate for binary and categorical outcomes that can be structured as true or false, but is inappropriate for ordinal variables which can take on three or more values (this is because the Brier score assumes that all possible outcomes are equivalently "distant" from one another). Which label is considered to be the positive label is controlled via the parameter pos_label, which defaults to 1. Read more in the :ref:`User Guide <calibration>`. Parameters ---------- y_true : array, shape (n_samples,) True targets. y_prob : array, shape (n_samples,) Probabilities of the positive class. sample_weight : array-like of shape = [n_samples], optional Sample weights. pos_label : int or str, default=None Label of the positive class. If None, the maximum label is used as positive class Returns ------- score : float Brier score Examples -------- >>> import numpy as np >>> from sklearn.metrics import brier_score_loss >>> y_true = np.array([0, 1, 1, 0]) >>> y_true_categorical = np.array(["spam", "ham", "ham", "spam"]) >>> y_prob = np.array([0.1, 0.9, 0.8, 0.3]) >>> brier_score_loss(y_true, y_prob) # doctest: +ELLIPSIS 0.037... >>> brier_score_loss(y_true, 1-y_prob, pos_label=0) # doctest: +ELLIPSIS 0.037... >>> brier_score_loss(y_true_categorical, y_prob, \ pos_label="ham") # doctest: +ELLIPSIS 0.037... >>> brier_score_loss(y_true, np.array(y_prob) > 0.5) 0.0 References ---------- .. [1] `Wikipedia entry for the Brier score. <https://en.wikipedia.org/wiki/Brier_score>`_ """ y_true = column_or_1d(y_true) y_prob = column_or_1d(y_prob) assert_all_finite(y_true) assert_all_finite(y_prob) if pos_label is None: pos_label = y_true.max() y_true = np.array(y_true == pos_label, int) y_true = _check_binary_probabilistic_predictions(y_true, y_prob) return np.average((y_true - y_prob) ** 2, weights=sample_weight)
bsd-3-clause
shyamalschandra/scikit-learn
sklearn/metrics/tests/test_regression.py
272
6066
from __future__ import division, print_function import numpy as np from itertools import product from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.metrics import explained_variance_score from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import median_absolute_error from sklearn.metrics import r2_score from sklearn.metrics.regression import _check_reg_targets def test_regression_metrics(n_samples=50): y_true = np.arange(n_samples) y_pred = y_true + 1 assert_almost_equal(mean_squared_error(y_true, y_pred), 1.) assert_almost_equal(mean_absolute_error(y_true, y_pred), 1.) assert_almost_equal(median_absolute_error(y_true, y_pred), 1.) assert_almost_equal(r2_score(y_true, y_pred), 0.995, 2) assert_almost_equal(explained_variance_score(y_true, y_pred), 1.) def test_multioutput_regression(): y_true = np.array([[1, 0, 0, 1], [0, 1, 1, 1], [1, 1, 0, 1]]) y_pred = np.array([[0, 0, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]) error = mean_squared_error(y_true, y_pred) assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.) # mean_absolute_error and mean_squared_error are equal because # it is a binary problem. error = mean_absolute_error(y_true, y_pred) assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.) error = r2_score(y_true, y_pred, multioutput='variance_weighted') assert_almost_equal(error, 1. - 5. / 2) error = r2_score(y_true, y_pred, multioutput='uniform_average') assert_almost_equal(error, -.875) def test_regression_metrics_at_limits(): assert_almost_equal(mean_squared_error([0.], [0.]), 0.00, 2) assert_almost_equal(mean_absolute_error([0.], [0.]), 0.00, 2) assert_almost_equal(median_absolute_error([0.], [0.]), 0.00, 2) assert_almost_equal(explained_variance_score([0.], [0.]), 1.00, 2) assert_almost_equal(r2_score([0., 1], [0., 1]), 1.00, 2) def test__check_reg_targets(): # All of length 3 EXAMPLES = [ ("continuous", [1, 2, 3], 1), ("continuous", [[1], [2], [3]], 1), ("continuous-multioutput", [[1, 1], [2, 2], [3, 1]], 2), ("continuous-multioutput", [[5, 1], [4, 2], [3, 1]], 2), ("continuous-multioutput", [[1, 3, 4], [2, 2, 2], [3, 1, 1]], 3), ] for (type1, y1, n_out1), (type2, y2, n_out2) in product(EXAMPLES, repeat=2): if type1 == type2 and n_out1 == n_out2: y_type, y_check1, y_check2, multioutput = _check_reg_targets( y1, y2, None) assert_equal(type1, y_type) if type1 == 'continuous': assert_array_equal(y_check1, np.reshape(y1, (-1, 1))) assert_array_equal(y_check2, np.reshape(y2, (-1, 1))) else: assert_array_equal(y_check1, y1) assert_array_equal(y_check2, y2) else: assert_raises(ValueError, _check_reg_targets, y1, y2, None) def test_regression_multioutput_array(): y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]] y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]] mse = mean_squared_error(y_true, y_pred, multioutput='raw_values') mae = mean_absolute_error(y_true, y_pred, multioutput='raw_values') r = r2_score(y_true, y_pred, multioutput='raw_values') evs = explained_variance_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(mse, [0.125, 0.5625], decimal=2) assert_array_almost_equal(mae, [0.25, 0.625], decimal=2) assert_array_almost_equal(r, [0.95, 0.93], decimal=2) assert_array_almost_equal(evs, [0.95, 0.93], decimal=2) # mean_absolute_error and mean_squared_error are equal because # it is a binary problem. y_true = [[0, 0]]*4 y_pred = [[1, 1]]*4 mse = mean_squared_error(y_true, y_pred, multioutput='raw_values') mae = mean_absolute_error(y_true, y_pred, multioutput='raw_values') r = r2_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(mse, [1., 1.], decimal=2) assert_array_almost_equal(mae, [1., 1.], decimal=2) assert_array_almost_equal(r, [0., 0.], decimal=2) r = r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='raw_values') assert_array_almost_equal(r, [0, -3.5], decimal=2) assert_equal(np.mean(r), r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='uniform_average')) evs = explained_variance_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='raw_values') assert_array_almost_equal(evs, [0, -1.25], decimal=2) # Checking for the condition in which both numerator and denominator is # zero. y_true = [[1, 3], [-1, 2]] y_pred = [[1, 4], [-1, 1]] r2 = r2_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(r2, [1., -3.], decimal=2) assert_equal(np.mean(r2), r2_score(y_true, y_pred, multioutput='uniform_average')) evs = explained_variance_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(evs, [1., -3.], decimal=2) assert_equal(np.mean(evs), explained_variance_score(y_true, y_pred)) def test_regression_custom_weights(): y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]] y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]] msew = mean_squared_error(y_true, y_pred, multioutput=[0.4, 0.6]) maew = mean_absolute_error(y_true, y_pred, multioutput=[0.4, 0.6]) rw = r2_score(y_true, y_pred, multioutput=[0.4, 0.6]) evsw = explained_variance_score(y_true, y_pred, multioutput=[0.4, 0.6]) assert_almost_equal(msew, 0.39, decimal=2) assert_almost_equal(maew, 0.475, decimal=3) assert_almost_equal(rw, 0.94, decimal=2) assert_almost_equal(evsw, 0.94, decimal=2)
bsd-3-clause
mvictor212/hmmlearn
examples/plot_hmm_stock_analysis.py
4
2785
""" ========================== Gaussian HMM of stock data ========================== This script shows how to use Gaussian HMM. It uses stock price data, which can be obtained from yahoo finance. For more information on how to get stock prices with matplotlib, please refer to date_demo1.py of matplotlib. """ from __future__ import print_function import datetime import numpy as np import pylab as pl from matplotlib.finance import quotes_historical_yahoo from matplotlib.dates import YearLocator, MonthLocator, DateFormatter from hmmlearn.hmm import GaussianHMM print(__doc__) ############################################################################### # Downloading the data date1 = datetime.date(1995, 1, 1) # start date date2 = datetime.date(2012, 1, 6) # end date # get quotes from yahoo finance quotes = quotes_historical_yahoo("INTC", date1, date2) if len(quotes) == 0: raise SystemExit # unpack quotes dates = np.array([q[0] for q in quotes], dtype=int) close_v = np.array([q[2] for q in quotes]) volume = np.array([q[5] for q in quotes])[1:] # take diff of close value # this makes len(diff) = len(close_t) - 1 # therefore, others quantity also need to be shifted diff = close_v[1:] - close_v[:-1] dates = dates[1:] close_v = close_v[1:] # pack diff and volume for training X = np.column_stack([diff, volume]) ############################################################################### # Run Gaussian HMM print("fitting to HMM and decoding ...", end='') n_components = 5 # make an HMM instance and execute fit model = GaussianHMM(n_components, covariance_type="diag", n_iter=1000) model.fit([X]) # predict the optimal sequence of internal hidden state hidden_states = model.predict(X) print("done\n") ############################################################################### # print trained parameters and plot print("Transition matrix") print(model.transmat_) print() print("means and vars of each hidden state") for i in range(n_components): print("%dth hidden state" % i) print("mean = ", model.means_[i]) print("var = ", np.diag(model.covars_[i])) print() years = YearLocator() # every year months = MonthLocator() # every month yearsFmt = DateFormatter('%Y') fig = pl.figure() ax = fig.add_subplot(111) for i in range(n_components): # use fancy indexing to plot data in each state idx = (hidden_states == i) ax.plot_date(dates[idx], close_v[idx], 'o', label="%dth hidden state" % i) ax.legend() # format the ticks ax.xaxis.set_major_locator(years) ax.xaxis.set_major_formatter(yearsFmt) ax.xaxis.set_minor_locator(months) ax.autoscale_view() # format the coords message box ax.fmt_xdata = DateFormatter('%Y-%m-%d') ax.fmt_ydata = lambda x: '$%1.2f' % x ax.grid(True) fig.autofmt_xdate() pl.show()
bsd-3-clause
kcyu2014/ml_project2
project2/utils/images2patches.py
1
5530
""" This module processes the dataset Massachusetts obained from https://www.cs.toronto.edu/~vmnih/data/. The original dataset contains sattelite images of Massachusetts and its surroundings. The images are ofsize 1500x1500, 3 channels, TIFF format. The dataset also contains separate labels for roads and buildings. This mdule only processes the road dataset. Processing: Adjusted for the needs of Project 2, Machine Learning course, EPFL (fall 2016). Since the original sattelite images are of different zoom level and size than the dataset provided for the project, it needs to be rescaled and cropped (both the sattelite image and its corresponding mask). From each original image the non-overlaping patches are taken and only those that contain at least `maskWhitePxRatioTh` * 100 percent of roads are kept. The resulting patches are stored in `outputPath` directory. """ from PIL import Image from matplotlib import pyplot as plt import os import numpy as np ######################################################################################################################## # INPUT PARAMETERS ######################################################################################################################## # Input dataset path. inputPath = '../../../ext_data/massachusetts/original/' outputPath = '../../../ext_data/massachusetts/patches/' mapDir = 'map' satDir = 'sat' # Threshold for all-white parts of the sattelite images - ratio of white pixels (intensity == 255). If the white/other # ratio is higher than this threshold, the image is dropped. whitePxRatioTh = 0.001 # Threshold of roads vs. background within mask patch - if the roads/background ratio is lower then this threshold, # the patch is dropped. maskWhitePxRatioTh = 0.005 # Upscale image and mask ratio. upscale = (2.0, 2.0) patchSize = (400, 400) ######################################################################################################################## # MAIN SCRIPT ######################################################################################################################## imagesFiles = [im for im in os.listdir(inputPath + satDir) if im.endswith('.tiff')] numFiles = len(imagesFiles) for idx, imgFile in enumerate(imagesFiles): print('Processing image {im} / {tot}'.format(im=idx + 1, tot=numFiles)) # Load satelite image. img = Image.open(inputPath + satDir + '/' + imgFile) assert(img.mode == 'RGB') # Get image size. imgSize = img.size # Convert image to grayscale. gsImg = img.convert(mode='L') hist = gsImg.histogram() whitePxRatio = float(hist[255]) / (imgSize[0] * imgSize[1]) # If the image contains no or insignificant white parts, process it further. if whitePxRatio < whitePxRatioTh: # Load ground truth road binary mask try: gtMask = Image.open(inputPath + mapDir + '/' + imgFile) except: print('Error: cannot open ground truth binary mask file {f}'.format(f=inputPath + mapDir + '/' + imgFile)) continue # Check that mask's size matches the corresponding image. assert(gtMask.size == imgSize) # Upscale the image and the mask. For upsampling, nearest neighbour (NEAREST) is used. # Another possible option is BICUBIC (only for sattelite img), which, however, blurs the image. We need to experiment # to find out which one is better. newSize = (int(imgSize[0] * upscale[0]), int(imgSize[1] * upscale[1])) imgSize = newSize # Check that at least one patch can fit in the original image. assert(newSize[0] // patchSize[0] > 0) assert(newSize[1] // patchSize[1] > 0) img = img.resize(newSize, resample=Image.NEAREST) gtMask = gtMask.resize(newSize, resample=Image.NEAREST) # Generate x,y coordinates of centers of patches. left = 0 right = imgSize[0] - patchSize[0] top = 0 bottom = imgSize[1] - patchSize[1] numPatchesInRow = imgSize[0] // patchSize[0] numPatchesInCol = imgSize[1] // patchSize[1] centersInRow = np.linspace(left, right, numPatchesInRow, dtype=np.int32) centersInCol = np.linspace(top, bottom, numPatchesInCol, dtype=np.int32) # Coordinates of patches (left, top, right, bottom) patchesCoords = [(l, t, l + patchSize[0], t + patchSize[1]) for t in centersInCol for l in centersInRow] # Process each patch for pc in patchesCoords: # Get a patch of img and mask. patchMask = gtMask.crop(pc) patchImg = img.crop(pc) # Check correct size of a patch. assert(patchMask.size == patchSize) # Find the ratio of white pixels (roads) to black pixels (background). patchMaskHist = patchMask.histogram() maskWhitePxRatio = float(patchMaskHist[255]) / (patchSize[0] * patchSize[1]) # Check whether there is sufficient amount of roads in this patch and if so, save the patch (img and mask). if maskWhitePxRatio > maskWhitePxRatioTh: nameSuffix = '_(' + str(pc[1] + patchSize[1] // 2) + ', ' + str(pc[0] + patchSize[0] // 2) + ')' name = imgFile[:-5] + nameSuffix + '.tiff' patchImg.save(outputPath + satDir + '/' + name) patchMask.save(outputPath + mapDir + '/' + name)
mit
stggh/PyAbel
doc/tools/smoothstep.py
3
1356
from __future__ import print_function, division import numpy as np import matplotlib.pyplot as plt n = 12 rmin = 2.5 rmax = 9.5 w = 1 r = np.linspace(0, n, n * 20) def smoothstep(r): if r < rmin - w or r > rmax + w: return 0 elif r < rmin + w: t = (r - (rmin - w)) / (2 * w) return t**2 * (3 - 2 * t) elif r > rmax - w: t = ((rmax + w) - r) / (2 * w) return t**2 * (3 - 2 * t) else: # rmin + w < r < rmax + w return 1 fig = plt.figure(figsize=(6, 2), frameon=False) ax = plt.gca() ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) plt.xlim((0, n)) plt.xticks([0, rmin, rmax], ['$0$', r'$r_{\rm min}$', r'$r_{\rm max}$']) plt.ylim((0, 1.1)) plt.ylim(bottom=0) plt.yticks([0, 0.5, 1], ['$0$', '$A/2$', '$A$']) plt.vlines([rmin - w, rmin, rmin + w], 0, 1, color='lightgray') plt.vlines([rmax - w, rmax, rmax + w], 0, 1, color='lightgray') plt.hlines([0.5, 1], 0, rmax + w, color='lightgray') textprm = {'horizontalalignment': 'center', 'verticalalignment': 'bottom'} plt.text(rmin - w/2, 1, '$w$', textprm) plt.text(rmin + w/2, 1, '$w$', textprm) plt.text(rmax - w/2, 1, '$w$', textprm) plt.text(rmax + w/2, 1, '$w$', textprm) plt.plot(r, [smoothstep(ri) for ri in r], color='red') plt.tight_layout() #plt.show() #plt.savefig('smoothstep.svg')
mit
ZENGXH/scikit-learn
sklearn/manifold/tests/test_locally_linear.py
232
4761
from itertools import product from nose.tools import assert_true import numpy as np from numpy.testing import assert_almost_equal, assert_array_almost_equal from scipy import linalg from sklearn import neighbors, manifold from sklearn.manifold.locally_linear import barycenter_kneighbors_graph from sklearn.utils.testing import assert_less from sklearn.utils.testing import ignore_warnings eigen_solvers = ['dense', 'arpack'] #---------------------------------------------------------------------- # Test utility routines def test_barycenter_kneighbors_graph(): X = np.array([[0, 1], [1.01, 1.], [2, 0]]) A = barycenter_kneighbors_graph(X, 1) assert_array_almost_equal( A.toarray(), [[0., 1., 0.], [1., 0., 0.], [0., 1., 0.]]) A = barycenter_kneighbors_graph(X, 2) # check that columns sum to one assert_array_almost_equal(np.sum(A.toarray(), 1), np.ones(3)) pred = np.dot(A.toarray(), X) assert_less(linalg.norm(pred - X) / X.shape[0], 1) #---------------------------------------------------------------------- # Test LLE by computing the reconstruction error on some manifolds. def test_lle_simple_grid(): # note: ARPACK is numerically unstable, so this test will fail for # some random seeds. We choose 2 because the tests pass. rng = np.random.RandomState(2) tol = 0.1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(5), repeat=2))) X = X + 1e-10 * rng.uniform(size=X.shape) n_components = 2 clf = manifold.LocallyLinearEmbedding(n_neighbors=5, n_components=n_components, random_state=rng) tol = 0.1 N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray() reconstruction_error = linalg.norm(np.dot(N, X) - X, 'fro') assert_less(reconstruction_error, tol) for solver in eigen_solvers: clf.set_params(eigen_solver=solver) clf.fit(X) assert_true(clf.embedding_.shape[1] == n_components) reconstruction_error = linalg.norm( np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2 assert_less(reconstruction_error, tol) assert_almost_equal(clf.reconstruction_error_, reconstruction_error, decimal=1) # re-embed a noisy version of X using the transform method noise = rng.randn(*X.shape) / 100 X_reembedded = clf.transform(X + noise) assert_less(linalg.norm(X_reembedded - clf.embedding_), tol) def test_lle_manifold(): rng = np.random.RandomState(0) # similar test on a slightly more complex manifold X = np.array(list(product(np.arange(18), repeat=2))) X = np.c_[X, X[:, 0] ** 2 / 18] X = X + 1e-10 * rng.uniform(size=X.shape) n_components = 2 for method in ["standard", "hessian", "modified", "ltsa"]: clf = manifold.LocallyLinearEmbedding(n_neighbors=6, n_components=n_components, method=method, random_state=0) tol = 1.5 if method == "standard" else 3 N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray() reconstruction_error = linalg.norm(np.dot(N, X) - X) assert_less(reconstruction_error, tol) for solver in eigen_solvers: clf.set_params(eigen_solver=solver) clf.fit(X) assert_true(clf.embedding_.shape[1] == n_components) reconstruction_error = linalg.norm( np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2 details = ("solver: %s, method: %s" % (solver, method)) assert_less(reconstruction_error, tol, msg=details) assert_less(np.abs(clf.reconstruction_error_ - reconstruction_error), tol * reconstruction_error, msg=details) def test_pipeline(): # check that LocallyLinearEmbedding works fine as a Pipeline # only checks that no error is raised. # TODO check that it actually does something useful from sklearn import pipeline, datasets X, y = datasets.make_blobs(random_state=0) clf = pipeline.Pipeline( [('filter', manifold.LocallyLinearEmbedding(random_state=0)), ('clf', neighbors.KNeighborsClassifier())]) clf.fit(X, y) assert_less(.9, clf.score(X, y)) # Test the error raised when the weight matrix is singular def test_singular_matrix(): from nose.tools import assert_raises M = np.ones((10, 3)) f = ignore_warnings assert_raises(ValueError, f(manifold.locally_linear_embedding), M, 2, 1, method='standard', eigen_solver='arpack')
bsd-3-clause
vivekmishra1991/scikit-learn
examples/cluster/plot_lena_segmentation.py
271
2444
""" ========================================= Segmenting the picture of Lena in regions ========================================= This example uses :ref:`spectral_clustering` on a graph created from voxel-to-voxel difference on an image to break this image into multiple partly-homogeneous regions. This procedure (spectral clustering on an image) is an efficient approximate solution for finding normalized graph cuts. There are two options to assign labels: * with 'kmeans' spectral clustering will cluster samples in the embedding space using a kmeans algorithm * whereas 'discrete' will iteratively search for the closest partition space to the embedding space. """ print(__doc__) # Author: Gael Varoquaux <[email protected]>, Brian Cheung # License: BSD 3 clause import time import numpy as np import scipy as sp import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering lena = sp.misc.lena() # Downsample the image by a factor of 4 lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(lena) # Take a decreasing function of the gradient: an exponential # The smaller beta is, the more independent the segmentation is of the # actual image. For beta=1, the segmentation is close to a voronoi beta = 5 eps = 1e-6 graph.data = np.exp(-beta * graph.data / lena.std()) + eps # Apply spectral clustering (this step goes much faster if you have pyamg # installed) N_REGIONS = 11 ############################################################################### # Visualize the resulting regions for assign_labels in ('kmeans', 'discretize'): t0 = time.time() labels = spectral_clustering(graph, n_clusters=N_REGIONS, assign_labels=assign_labels, random_state=1) t1 = time.time() labels = labels.reshape(lena.shape) plt.figure(figsize=(5, 5)) plt.imshow(lena, cmap=plt.cm.gray) for l in range(N_REGIONS): plt.contour(labels == l, contours=1, colors=[plt.cm.spectral(l / float(N_REGIONS)), ]) plt.xticks(()) plt.yticks(()) plt.title('Spectral clustering: %s, %.2fs' % (assign_labels, (t1 - t0))) plt.show()
bsd-3-clause
botswana-harvard/bcpp-export
bcpp_export/old_export/working/20161012.py
1
6412
import pandas as pd import numpy as np from bcpp_export.constants import hiv_options from bcpp_export.dataframes.longitudinal_subjects import LongitudinalSubjects pd.set_option('display.width', None) # load saved files (generated using bcpp_export) df_s1 = pd.read_csv('/Users/erikvw/Documents/bcpp/cdc/20161007/bcpp_export_year1_20161006_results.csv', low_memory=False) df_s1['appointment__visit_definition__code'] = 'T0' df_s1 = df_s1.query('pair >= 1 and pair <= 12 and intervention == True').drop_duplicates('subject_identifier') df_s2 = pd.read_csv('/Users/erikvw/Documents/bcpp/cdc/20161007/bcpp_export_year2_20161006_results.csv', low_memory=False) # df_s2 = df_s2.rename(columns={'appointment__visit_definition__code': 'timepoint'}) df_s2 = df_s2.query('pair >= 1 and pair <= 12 and intervention == True').drop_duplicates('subject_identifier') # merge to create Y2 dataframe and run through class to calculate derived vars df = pd.merge(df_s2, df_s1, how='left', on='subject_identifier', suffixes=['', '_y1']) subjects = LongitudinalSubjects(df) df = subjects.df # override two values for final_arv_status (agreed w/ Kara and Kathleen) df.loc[df['subject_identifier'] == '066-19260006-2', 'final_arv_status'] = 2.0 df.loc[df['subject_identifier'] == '066-31310013-6', 'final_arv_status'] = 2.0 # use same export columns as before subjects_columns = [ 'age_in_years', 'arv_clinic', 'cd4_date', 'cd4_tested', 'cd4_value', 'circumcised', 'community', 'consent_date', 'final_arv_status', 'final_hiv_status', 'final_hiv_status_date', 'gender', 'identity', 'identity256', 'pregnant', 'prev_result_known', 'prev_result', 'prev_result_date', 'referred', 'self_reported_result', 'subject_identifier', 'timepoint', 'survey', 'pair', 'timestamp'] # write final file path_or_buf_y2 = '/Users/erikvw/Documents/bcpp/cdc/20161007/df_tmp20161010F_y2.csv' df.to_csv(columns=subjects_columns, path_or_buf=path_or_buf_y2, index=False) df_s1 = pd.read_csv('/Users/erikvw/Documents/bcpp/cdc/20161007/bcpp_export_year1_20161006_results.csv', low_memory=False) df_s1 = df_s1[df_s1['intervention'] == True] path_or_buf_y1 = '/Users/erikvw/Documents/bcpp/cdc/20161007/df_tmp20161010E_y1.csv' df_s1.to_csv(columns=subjects_columns, path_or_buf=path_or_buf_y1, index=False) df_y1 = pd.read_csv(path_or_buf_y1, low_memory=False) df_y1['timepoint'] = 'T0' df_y2 = pd.read_csv(path_or_buf_y2, low_memory=False) df_final = pd.concat([df_y1, df_y2]) path_or_buf_final = '/Users/erikvw/Documents/bcpp/cdc/20161007/bcpp_subjects_20161012_pairs1-12.csv' df_final.to_csv(path_or_buf=path_or_buf_final, index=False) # jean df_jl = pd.read_csv('/Users/erikvw/Documents/bcpp/cdc/20161007/bcpp_subject_jean_y2_t1.csv', low_memory=True) df_jl['hiv_result_datetime'] = df_jl['hiv_result_datetime'].str[0:2] + '-' + df_jl['hiv_result_datetime'].str[2:5] + '-' + df_jl['hiv_result_datetime'].str[5:9] df_jl['hiv_result_datetime'] = pd.to_datetime(df_jl['hiv_result_datetime']) df_jl['prev_result_date'] = df_jl['prev_result_date'].str[0:2] + '-' + df_jl['prev_result_date'].str[2:5] + '-' + df_jl['prev_result_date'].str[5:9] df_jl['prev_result_date'] = pd.to_datetime(df_jl['prev_result_date']) df_jl = df_jl.rename(columns={ 'hiv_result_datetime': 'final_hiv_status_date', 'Pair': 'pair', 'Intervention': 'intervention', 'survey_slug': 'survey'}) arv_options_jl = { 'ARV naive': 1.0, 'ARV defaulter': 2.0, 'On ARVs': 3.0} intervention_options_jl = { 'CPC': 1.0, 'ECC': 0.0} df_jl['prev_result'] = df_jl['prev_result'].map(hiv_options.get) df_jl['final_arv_status'] = df_jl['final_arv_status'].map(arv_options_jl.get) df_jl['intervention'] = df_jl['intervention'].map(intervention_options_jl.get) ['age_in_years', 'arv_clinic', 'cd4_date', 'cd4_tested', 'cd4_value', 'circumcised', 'community', 'consent_date', 'final_arv_status', 'final_hiv_status', 'final_hiv_status_date', 'gender', 'identity', 'identity256', 'pair', 'pregnant', 'prev_result', 'prev_result_date', 'prev_result_known', 'referred', 'self_reported_result', 'subject_identifier', 'survey', 'timepoint', 'timestamp'] ['final_arv_status', 'final_hiv_status', 'final_hiv_status_date', 'pair', 'prev_result', 'prev_result_date', 'prev_result_known', 'subject_identifier', 'survey', 'timepoint'] # viral load # file from Moyo, 2016-10-12 df_vl = pd.read_csv('/Users/erikvw/Documents/bcpp/cdc/20161007/bhp066_auvl_all.csv', low_memory=True) # fix datetimes df_vl['sample_date_drawn'] = pd.to_datetime(df_vl['sample_date_drawn']) df_vl['date_received'] = pd.to_datetime(df_vl['date_received']) df_vl['sample_assay_date'] = pd.to_datetime(df_vl['sample_assay_date']) df_vl['report_date'] = pd.to_datetime(df_vl['reportDate']) df_vl = df_vl.drop('reportDate', axis=1) df_vl['specimen_identifier'] = df_vl['edc_specimen_identifier'].str.slice(0, 12) df_vl = df_vl.rename(columns={'edc_specimen_identifier': 'aliquot_identifier', 'RESULT': 'result'}) df_vl = df_vl[pd.notnull(df_vl['specimen_identifier'])] # file from bcpp-rdb (through runserver) df_req = pd.read_csv('/Users/erikvw/Documents/bcpp/cdc/20161007/bcpp_requisitions_2016-10-11.csv', low_memory=True) df_req = df_req[pd.notnull(df_req['specimen_identifier'])] df_vl2 = pd.merge(df_vl, df_req, on=['specimen_identifier'], how='left', suffixes=['', '_vl']) df_vl2 = df_vl2[pd.notnull(df_vl2['result'])] df_vl2 = df_vl2[df_vl2['result'] != '*'] # df_vl2['dupl'] = df_vl2.duplicated(['subject_identifier', 'specimen_identifier']) & (df_vl2['code'] == 'T1') # df_vl2['dupl'] = df_vl2.duplicated(['subject_identifier', 'specimen_identifier']) & (df_vl2['code'] == 'T0') & (df_vl2['dupl'] == False) # df_vl2 = df_vl2[df_vl2['dupl']==False] # df_vl2 = df_vl2.drop('dupl', axis=1) df_vl2 = df_vl2.rename(columns={'code': 'timepoint'}) df_vl2 = df_vl2.sort_values(['subject_identifier', 'timepoint', 'report_date']) df_vl2 = df_vl2.drop_duplicates(['subject_identifier', 'timepoint', 'report_date'], keep='last') df_vl2 = df_vl2.drop_duplicates(['subject_identifier', 'timepoint'], keep='last') # 4308 rows x 20 columns # returns an empty series # df_vl2[df_vl2.duplicated(['subject_identifier', 'code'])] df = pd.merge(df, df_vl2[['subject_identifier', 'timepoint', 'result', 'result_quantifier', 'sample_assay_date', 'is_drawn']], how='left', on=['subject_identifier', 'timepoint'], suffixes=['', '_vl'])
gpl-2.0
MJuddBooth/pandas
pandas/tests/frame/test_apply.py
1
45389
# -*- coding: utf-8 -*- from __future__ import print_function from collections import OrderedDict from datetime import datetime from itertools import chain import operator import warnings import numpy as np import pytest from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( DataFrame, MultiIndex, Series, Timestamp, compat, date_range, notna) from pandas.conftest import _get_cython_table_params from pandas.core.apply import frame_apply import pandas.util.testing as tm from pandas.util.testing import assert_frame_equal, assert_series_equal @pytest.fixture def int_frame_const_col(): """ Fixture for DataFrame of ints which are constant per column Columns are ['A', 'B', 'C'], with values (per column): [1, 2, 3] """ df = DataFrame(np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) return df class TestDataFrameApply(): def test_apply(self, float_frame): with np.errstate(all='ignore'): # ufunc applied = float_frame.apply(np.sqrt) tm.assert_series_equal(np.sqrt(float_frame['A']), applied['A']) # aggregator applied = float_frame.apply(np.mean) assert applied['A'] == np.mean(float_frame['A']) d = float_frame.index[0] applied = float_frame.apply(np.mean, axis=1) assert applied[d] == np.mean(float_frame.xs(d)) assert applied.index is float_frame.index # want this # invalid axis df = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=['a', 'a', 'c']) with pytest.raises(ValueError): df.apply(lambda x: x, 2) # GH 9573 df = DataFrame({'c0': ['A', 'A', 'B', 'B'], 'c1': ['C', 'C', 'D', 'D']}) df = df.apply(lambda ts: ts.astype('category')) assert df.shape == (4, 2) assert isinstance(df['c0'].dtype, CategoricalDtype) assert isinstance(df['c1'].dtype, CategoricalDtype) def test_apply_mixed_datetimelike(self): # mixed datetimelike # GH 7778 df = DataFrame({'A': date_range('20130101', periods=3), 'B': pd.to_timedelta(np.arange(3), unit='s')}) result = df.apply(lambda x: x, axis=1) assert_frame_equal(result, df) def test_apply_empty(self, float_frame): # empty empty_frame = DataFrame() applied = empty_frame.apply(np.sqrt) assert applied.empty applied = empty_frame.apply(np.mean) assert applied.empty no_rows = float_frame[:0] result = no_rows.apply(lambda x: x.mean()) expected = Series(np.nan, index=float_frame.columns) assert_series_equal(result, expected) no_cols = float_frame.loc[:, []] result = no_cols.apply(lambda x: x.mean(), axis=1) expected = Series(np.nan, index=float_frame.index) assert_series_equal(result, expected) # GH 2476 expected = DataFrame(index=['a']) result = expected.apply(lambda x: x['a'], axis=1) assert_frame_equal(expected, result) def test_apply_with_reduce_empty(self): # reduce with an empty DataFrame empty_frame = DataFrame() x = [] result = empty_frame.apply(x.append, axis=1, result_type='expand') assert_frame_equal(result, empty_frame) result = empty_frame.apply(x.append, axis=1, result_type='reduce') assert_series_equal(result, Series( [], index=pd.Index([], dtype=object))) empty_with_cols = DataFrame(columns=['a', 'b', 'c']) result = empty_with_cols.apply(x.append, axis=1, result_type='expand') assert_frame_equal(result, empty_with_cols) result = empty_with_cols.apply(x.append, axis=1, result_type='reduce') assert_series_equal(result, Series( [], index=pd.Index([], dtype=object))) # Ensure that x.append hasn't been called assert x == [] def test_apply_deprecate_reduce(self): empty_frame = DataFrame() x = [] with tm.assert_produces_warning(FutureWarning): empty_frame.apply(x.append, axis=1, reduce=True) def test_apply_standard_nonunique(self): df = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=['a', 'a', 'c']) result = df.apply(lambda s: s[0], axis=1) expected = Series([1, 4, 7], ['a', 'a', 'c']) assert_series_equal(result, expected) result = df.T.apply(lambda s: s[0], axis=0) assert_series_equal(result, expected) @pytest.mark.parametrize('func', ['sum', 'mean', 'min', 'max', 'std']) @pytest.mark.parametrize('args,kwds', [ pytest.param([], {}, id='no_args_or_kwds'), pytest.param([1], {}, id='axis_from_args'), pytest.param([], {'axis': 1}, id='axis_from_kwds'), pytest.param([], {'numeric_only': True}, id='optional_kwds'), pytest.param([1, None], {'numeric_only': True}, id='args_and_kwds') ]) def test_apply_with_string_funcs(self, float_frame, func, args, kwds): result = float_frame.apply(func, *args, **kwds) expected = getattr(float_frame, func)(*args, **kwds) tm.assert_series_equal(result, expected) def test_apply_broadcast_deprecated(self, float_frame): with tm.assert_produces_warning(FutureWarning): float_frame.apply(np.mean, broadcast=True) def test_apply_broadcast(self, float_frame, int_frame_const_col): # scalars result = float_frame.apply(np.mean, result_type='broadcast') expected = DataFrame([float_frame.mean()], index=float_frame.index) tm.assert_frame_equal(result, expected) result = float_frame.apply(np.mean, axis=1, result_type='broadcast') m = float_frame.mean(axis=1) expected = DataFrame({c: m for c in float_frame.columns}) tm.assert_frame_equal(result, expected) # lists result = float_frame.apply( lambda x: list(range(len(float_frame.columns))), axis=1, result_type='broadcast') m = list(range(len(float_frame.columns))) expected = DataFrame([m] * len(float_frame.index), dtype='float64', index=float_frame.index, columns=float_frame.columns) tm.assert_frame_equal(result, expected) result = float_frame.apply(lambda x: list(range(len(float_frame.index))), result_type='broadcast') m = list(range(len(float_frame.index))) expected = DataFrame({c: m for c in float_frame.columns}, dtype='float64', index=float_frame.index) tm.assert_frame_equal(result, expected) # preserve columns df = int_frame_const_col result = df.apply(lambda x: [1, 2, 3], axis=1, result_type='broadcast') tm.assert_frame_equal(result, df) df = int_frame_const_col result = df.apply(lambda x: Series([1, 2, 3], index=list('abc')), axis=1, result_type='broadcast') expected = df.copy() tm.assert_frame_equal(result, expected) def test_apply_broadcast_error(self, int_frame_const_col): df = int_frame_const_col # > 1 ndim with pytest.raises(ValueError): df.apply(lambda x: np.array([1, 2]).reshape(-1, 2), axis=1, result_type='broadcast') # cannot broadcast with pytest.raises(ValueError): df.apply(lambda x: [1, 2], axis=1, result_type='broadcast') with pytest.raises(ValueError): df.apply(lambda x: Series([1, 2]), axis=1, result_type='broadcast') def test_apply_raw(self, float_frame): result0 = float_frame.apply(np.mean, raw=True) result1 = float_frame.apply(np.mean, axis=1, raw=True) expected0 = float_frame.apply(lambda x: x.values.mean()) expected1 = float_frame.apply(lambda x: x.values.mean(), axis=1) assert_series_equal(result0, expected0) assert_series_equal(result1, expected1) # no reduction result = float_frame.apply(lambda x: x * 2, raw=True) expected = float_frame * 2 assert_frame_equal(result, expected) def test_apply_axis1(self, float_frame): d = float_frame.index[0] tapplied = float_frame.apply(np.mean, axis=1) assert tapplied[d] == np.mean(float_frame.xs(d)) def test_apply_ignore_failures(self, float_string_frame): result = frame_apply(float_string_frame, np.mean, 0, ignore_failures=True).apply_standard() expected = float_string_frame._get_numeric_data().apply(np.mean) assert_series_equal(result, expected) def test_apply_mixed_dtype_corner(self): df = DataFrame({'A': ['foo'], 'B': [1.]}) result = df[:0].apply(np.mean, axis=1) # the result here is actually kind of ambiguous, should it be a Series # or a DataFrame? expected = Series(np.nan, index=pd.Index([], dtype='int64')) assert_series_equal(result, expected) df = DataFrame({'A': ['foo'], 'B': [1.]}) result = df.apply(lambda x: x['A'], axis=1) expected = Series(['foo'], index=[0]) assert_series_equal(result, expected) result = df.apply(lambda x: x['B'], axis=1) expected = Series([1.], index=[0]) assert_series_equal(result, expected) def test_apply_empty_infer_type(self): no_cols = DataFrame(index=['a', 'b', 'c']) no_index = DataFrame(columns=['a', 'b', 'c']) def _check(df, f): with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", RuntimeWarning) test_res = f(np.array([], dtype='f8')) is_reduction = not isinstance(test_res, np.ndarray) def _checkit(axis=0, raw=False): result = df.apply(f, axis=axis, raw=raw) if is_reduction: agg_axis = df._get_agg_axis(axis) assert isinstance(result, Series) assert result.index is agg_axis else: assert isinstance(result, DataFrame) _checkit() _checkit(axis=1) _checkit(raw=True) _checkit(axis=0, raw=True) with np.errstate(all='ignore'): _check(no_cols, lambda x: x) _check(no_cols, lambda x: x.mean()) _check(no_index, lambda x: x) _check(no_index, lambda x: x.mean()) result = no_cols.apply(lambda x: x.mean(), result_type='broadcast') assert isinstance(result, DataFrame) def test_apply_with_args_kwds(self, float_frame): def add_some(x, howmuch=0): return x + howmuch def agg_and_add(x, howmuch=0): return x.mean() + howmuch def subtract_and_divide(x, sub, divide=1): return (x - sub) / divide result = float_frame.apply(add_some, howmuch=2) expected = float_frame.apply(lambda x: x + 2) assert_frame_equal(result, expected) result = float_frame.apply(agg_and_add, howmuch=2) expected = float_frame.apply(lambda x: x.mean() + 2) assert_series_equal(result, expected) result = float_frame.apply(subtract_and_divide, args=(2,), divide=2) expected = float_frame.apply(lambda x: (x - 2.) / 2.) assert_frame_equal(result, expected) def test_apply_yield_list(self, float_frame): result = float_frame.apply(list) assert_frame_equal(result, float_frame) def test_apply_reduce_Series(self, float_frame): float_frame.loc[::2, 'A'] = np.nan expected = float_frame.mean(1) result = float_frame.apply(np.mean, axis=1) assert_series_equal(result, expected) def test_apply_reduce_rows_to_dict(self): # GH 25196 data = pd.DataFrame([[1, 2], [3, 4]]) expected = pd.Series([{0: 1, 1: 3}, {0: 2, 1: 4}]) result = data.apply(dict) assert_series_equal(result, expected) def test_apply_differently_indexed(self): df = DataFrame(np.random.randn(20, 10)) result0 = df.apply(Series.describe, axis=0) expected0 = DataFrame({i: v.describe() for i, v in compat.iteritems(df)}, columns=df.columns) assert_frame_equal(result0, expected0) result1 = df.apply(Series.describe, axis=1) expected1 = DataFrame({i: v.describe() for i, v in compat.iteritems(df.T)}, columns=df.index).T assert_frame_equal(result1, expected1) def test_apply_modify_traceback(self): data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) data.loc[4, 'C'] = np.nan def transform(row): if row['C'].startswith('shin') and row['A'] == 'foo': row['D'] = 7 return row def transform2(row): if (notna(row['C']) and row['C'].startswith('shin') and row['A'] == 'foo'): row['D'] = 7 return row try: data.apply(transform, axis=1) except AttributeError as e: assert len(e.args) == 2 assert e.args[1] == 'occurred at index 4' assert e.args[0] == "'float' object has no attribute 'startswith'" def test_apply_bug(self): # GH 6125 positions = pd.DataFrame([[1, 'ABC0', 50], [1, 'YUM0', 20], [1, 'DEF0', 20], [2, 'ABC1', 50], [2, 'YUM1', 20], [2, 'DEF1', 20]], columns=['a', 'market', 'position']) def f(r): return r['market'] expected = positions.apply(f, axis=1) positions = DataFrame([[datetime(2013, 1, 1), 'ABC0', 50], [datetime(2013, 1, 2), 'YUM0', 20], [datetime(2013, 1, 3), 'DEF0', 20], [datetime(2013, 1, 4), 'ABC1', 50], [datetime(2013, 1, 5), 'YUM1', 20], [datetime(2013, 1, 6), 'DEF1', 20]], columns=['a', 'market', 'position']) result = positions.apply(f, axis=1) assert_series_equal(result, expected) def test_apply_convert_objects(self): data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) result = data.apply(lambda x: x, axis=1) assert_frame_equal(result._convert(datetime=True), data) def test_apply_attach_name(self, float_frame): result = float_frame.apply(lambda x: x.name) expected = Series(float_frame.columns, index=float_frame.columns) assert_series_equal(result, expected) result = float_frame.apply(lambda x: x.name, axis=1) expected = Series(float_frame.index, index=float_frame.index) assert_series_equal(result, expected) # non-reductions result = float_frame.apply(lambda x: np.repeat(x.name, len(x))) expected = DataFrame(np.tile(float_frame.columns, (len(float_frame.index), 1)), index=float_frame.index, columns=float_frame.columns) assert_frame_equal(result, expected) result = float_frame.apply(lambda x: np.repeat(x.name, len(x)), axis=1) expected = Series(np.repeat(t[0], len(float_frame.columns)) for t in float_frame.itertuples()) expected.index = float_frame.index assert_series_equal(result, expected) def test_apply_multi_index(self, float_frame): index = MultiIndex.from_arrays([['a', 'a', 'b'], ['c', 'd', 'd']]) s = DataFrame([[1, 2], [3, 4], [5, 6]], index=index, columns=['col1', 'col2']) result = s.apply( lambda x: Series({'min': min(x), 'max': max(x)}), 1) expected = DataFrame([[1, 2], [3, 4], [5, 6]], index=index, columns=['min', 'max']) assert_frame_equal(result, expected, check_like=True) def test_apply_dict(self): # GH 8735 A = DataFrame([['foo', 'bar'], ['spam', 'eggs']]) A_dicts = Series([dict([(0, 'foo'), (1, 'spam')]), dict([(0, 'bar'), (1, 'eggs')])]) B = DataFrame([[0, 1], [2, 3]]) B_dicts = Series([dict([(0, 0), (1, 2)]), dict([(0, 1), (1, 3)])]) fn = lambda x: x.to_dict() for df, dicts in [(A, A_dicts), (B, B_dicts)]: reduce_true = df.apply(fn, result_type='reduce') reduce_false = df.apply(fn, result_type='expand') reduce_none = df.apply(fn) assert_series_equal(reduce_true, dicts) assert_frame_equal(reduce_false, df) assert_series_equal(reduce_none, dicts) def test_applymap(self, float_frame): applied = float_frame.applymap(lambda x: x * 2) tm.assert_frame_equal(applied, float_frame * 2) float_frame.applymap(type) # GH 465: function returning tuples result = float_frame.applymap(lambda x: (x, x)) assert isinstance(result['A'][0], tuple) # GH 2909: object conversion to float in constructor? df = DataFrame(data=[1, 'a']) result = df.applymap(lambda x: x) assert result.dtypes[0] == object df = DataFrame(data=[1., 'a']) result = df.applymap(lambda x: x) assert result.dtypes[0] == object # GH 2786 df = DataFrame(np.random.random((3, 4))) df2 = df.copy() cols = ['a', 'a', 'a', 'a'] df.columns = cols expected = df2.applymap(str) expected.columns = cols result = df.applymap(str) tm.assert_frame_equal(result, expected) # datetime/timedelta df['datetime'] = Timestamp('20130101') df['timedelta'] = pd.Timedelta('1 min') result = df.applymap(str) for f in ['datetime', 'timedelta']: assert result.loc[0, f] == str(df.loc[0, f]) # GH 8222 empty_frames = [pd.DataFrame(), pd.DataFrame(columns=list('ABC')), pd.DataFrame(index=list('ABC')), pd.DataFrame({'A': [], 'B': [], 'C': []})] for frame in empty_frames: for func in [round, lambda x: x]: result = frame.applymap(func) tm.assert_frame_equal(result, frame) def test_applymap_box_timestamps(self): # GH 2689, GH 2627 ser = pd.Series(date_range('1/1/2000', periods=10)) def func(x): return (x.hour, x.day, x.month) # it works! pd.DataFrame(ser).applymap(func) def test_applymap_box(self): # ufunc will not be boxed. Same test cases as the test_map_box df = pd.DataFrame({'a': [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')], 'b': [pd.Timestamp('2011-01-01', tz='US/Eastern'), pd.Timestamp('2011-01-02', tz='US/Eastern')], 'c': [pd.Timedelta('1 days'), pd.Timedelta('2 days')], 'd': [pd.Period('2011-01-01', freq='M'), pd.Period('2011-01-02', freq='M')]}) result = df.applymap(lambda x: '{0}'.format(x.__class__.__name__)) expected = pd.DataFrame({'a': ['Timestamp', 'Timestamp'], 'b': ['Timestamp', 'Timestamp'], 'c': ['Timedelta', 'Timedelta'], 'd': ['Period', 'Period']}) tm.assert_frame_equal(result, expected) def test_frame_apply_dont_convert_datetime64(self): from pandas.tseries.offsets import BDay df = DataFrame({'x1': [datetime(1996, 1, 1)]}) df = df.applymap(lambda x: x + BDay()) df = df.applymap(lambda x: x + BDay()) assert df.x1.dtype == 'M8[ns]' def test_apply_non_numpy_dtype(self): # GH 12244 df = DataFrame({'dt': pd.date_range( "2015-01-01", periods=3, tz='Europe/Brussels')}) result = df.apply(lambda x: x) assert_frame_equal(result, df) result = df.apply(lambda x: x + pd.Timedelta('1day')) expected = DataFrame({'dt': pd.date_range( "2015-01-02", periods=3, tz='Europe/Brussels')}) assert_frame_equal(result, expected) df = DataFrame({'dt': ['a', 'b', 'c', 'a']}, dtype='category') result = df.apply(lambda x: x) assert_frame_equal(result, df) def test_apply_dup_names_multi_agg(self): # GH 21063 df = pd.DataFrame([[0, 1], [2, 3]], columns=['a', 'a']) expected = pd.DataFrame([[0, 1]], columns=['a', 'a'], index=['min']) result = df.agg(['min']) tm.assert_frame_equal(result, expected) class TestInferOutputShape(object): # the user has supplied an opaque UDF where # they are transforming the input that requires # us to infer the output def test_infer_row_shape(self): # GH 17437 # if row shape is changing, infer it df = pd.DataFrame(np.random.rand(10, 2)) result = df.apply(np.fft.fft, axis=0) assert result.shape == (10, 2) result = df.apply(np.fft.rfft, axis=0) assert result.shape == (6, 2) def test_with_dictlike_columns(self): # GH 17602 df = DataFrame([[1, 2], [1, 2]], columns=['a', 'b']) result = df.apply(lambda x: {'s': x['a'] + x['b']}, axis=1) expected = Series([{'s': 3} for t in df.itertuples()]) assert_series_equal(result, expected) df['tm'] = [pd.Timestamp('2017-05-01 00:00:00'), pd.Timestamp('2017-05-02 00:00:00')] result = df.apply(lambda x: {'s': x['a'] + x['b']}, axis=1) assert_series_equal(result, expected) # compose a series result = (df['a'] + df['b']).apply(lambda x: {'s': x}) expected = Series([{'s': 3}, {'s': 3}]) assert_series_equal(result, expected) # GH 18775 df = DataFrame() df["author"] = ["X", "Y", "Z"] df["publisher"] = ["BBC", "NBC", "N24"] df["date"] = pd.to_datetime(['17-10-2010 07:15:30', '13-05-2011 08:20:35', '15-01-2013 09:09:09']) result = df.apply(lambda x: {}, axis=1) expected = Series([{}, {}, {}]) assert_series_equal(result, expected) def test_with_dictlike_columns_with_infer(self): # GH 17602 df = DataFrame([[1, 2], [1, 2]], columns=['a', 'b']) result = df.apply(lambda x: {'s': x['a'] + x['b']}, axis=1, result_type='expand') expected = DataFrame({'s': [3, 3]}) assert_frame_equal(result, expected) df['tm'] = [pd.Timestamp('2017-05-01 00:00:00'), pd.Timestamp('2017-05-02 00:00:00')] result = df.apply(lambda x: {'s': x['a'] + x['b']}, axis=1, result_type='expand') assert_frame_equal(result, expected) def test_with_listlike_columns(self): # GH 17348 df = DataFrame({'a': Series(np.random.randn(4)), 'b': ['a', 'list', 'of', 'words'], 'ts': date_range('2016-10-01', periods=4, freq='H')}) result = df[['a', 'b']].apply(tuple, axis=1) expected = Series([t[1:] for t in df[['a', 'b']].itertuples()]) assert_series_equal(result, expected) result = df[['a', 'ts']].apply(tuple, axis=1) expected = Series([t[1:] for t in df[['a', 'ts']].itertuples()]) assert_series_equal(result, expected) # GH 18919 df = DataFrame({'x': Series([['a', 'b'], ['q']]), 'y': Series([['z'], ['q', 't']])}) df.index = MultiIndex.from_tuples([('i0', 'j0'), ('i1', 'j1')]) result = df.apply( lambda row: [el for el in row['x'] if el in row['y']], axis=1) expected = Series([[], ['q']], index=df.index) assert_series_equal(result, expected) def test_infer_output_shape_columns(self): # GH 18573 df = DataFrame({'number': [1., 2.], 'string': ['foo', 'bar'], 'datetime': [pd.Timestamp('2017-11-29 03:30:00'), pd.Timestamp('2017-11-29 03:45:00')]}) result = df.apply(lambda row: (row.number, row.string), axis=1) expected = Series([(t.number, t.string) for t in df.itertuples()]) assert_series_equal(result, expected) def test_infer_output_shape_listlike_columns(self): # GH 16353 df = DataFrame(np.random.randn(6, 3), columns=['A', 'B', 'C']) result = df.apply(lambda x: [1, 2, 3], axis=1) expected = Series([[1, 2, 3] for t in df.itertuples()]) assert_series_equal(result, expected) result = df.apply(lambda x: [1, 2], axis=1) expected = Series([[1, 2] for t in df.itertuples()]) assert_series_equal(result, expected) # GH 17970 df = DataFrame({"a": [1, 2, 3]}, index=list('abc')) result = df.apply(lambda row: np.ones(1), axis=1) expected = Series([np.ones(1) for t in df.itertuples()], index=df.index) assert_series_equal(result, expected) result = df.apply(lambda row: np.ones(2), axis=1) expected = Series([np.ones(2) for t in df.itertuples()], index=df.index) assert_series_equal(result, expected) # GH 17892 df = pd.DataFrame({'a': [pd.Timestamp('2010-02-01'), pd.Timestamp('2010-02-04'), pd.Timestamp('2010-02-05'), pd.Timestamp('2010-02-06')], 'b': [9, 5, 4, 3], 'c': [5, 3, 4, 2], 'd': [1, 2, 3, 4]}) def fun(x): return (1, 2) result = df.apply(fun, axis=1) expected = Series([(1, 2) for t in df.itertuples()]) assert_series_equal(result, expected) def test_consistent_coerce_for_shapes(self): # we want column names to NOT be propagated # just because the shape matches the input shape df = DataFrame(np.random.randn(4, 3), columns=['A', 'B', 'C']) result = df.apply(lambda x: [1, 2, 3], axis=1) expected = Series([[1, 2, 3] for t in df.itertuples()]) assert_series_equal(result, expected) result = df.apply(lambda x: [1, 2], axis=1) expected = Series([[1, 2] for t in df.itertuples()]) assert_series_equal(result, expected) def test_consistent_names(self, int_frame_const_col): # if a Series is returned, we should use the resulting index names df = int_frame_const_col result = df.apply(lambda x: Series([1, 2, 3], index=['test', 'other', 'cols']), axis=1) expected = int_frame_const_col.rename(columns={'A': 'test', 'B': 'other', 'C': 'cols'}) assert_frame_equal(result, expected) result = df.apply(lambda x: Series([1, 2], index=['test', 'other']), axis=1) expected = expected[['test', 'other']] assert_frame_equal(result, expected) def test_result_type(self, int_frame_const_col): # result_type should be consistent no matter which # path we take in the code df = int_frame_const_col result = df.apply(lambda x: [1, 2, 3], axis=1, result_type='expand') expected = df.copy() expected.columns = [0, 1, 2] assert_frame_equal(result, expected) result = df.apply(lambda x: [1, 2], axis=1, result_type='expand') expected = df[['A', 'B']].copy() expected.columns = [0, 1] assert_frame_equal(result, expected) # broadcast result result = df.apply(lambda x: [1, 2, 3], axis=1, result_type='broadcast') expected = df.copy() assert_frame_equal(result, expected) columns = ['other', 'col', 'names'] result = df.apply(lambda x: Series([1, 2, 3], index=columns), axis=1, result_type='broadcast') expected = df.copy() assert_frame_equal(result, expected) # series result result = df.apply(lambda x: Series([1, 2, 3], index=x.index), axis=1) expected = df.copy() assert_frame_equal(result, expected) # series result with other index columns = ['other', 'col', 'names'] result = df.apply(lambda x: Series([1, 2, 3], index=columns), axis=1) expected = df.copy() expected.columns = columns assert_frame_equal(result, expected) @pytest.mark.parametrize("result_type", ['foo', 1]) def test_result_type_error(self, result_type, int_frame_const_col): # allowed result_type df = int_frame_const_col with pytest.raises(ValueError): df.apply(lambda x: [1, 2, 3], axis=1, result_type=result_type) @pytest.mark.parametrize( "box", [lambda x: list(x), lambda x: tuple(x), lambda x: np.array(x, dtype='int64')], ids=['list', 'tuple', 'array']) def test_consistency_for_boxed(self, box, int_frame_const_col): # passing an array or list should not affect the output shape df = int_frame_const_col result = df.apply(lambda x: box([1, 2]), axis=1) expected = Series([box([1, 2]) for t in df.itertuples()]) assert_series_equal(result, expected) result = df.apply(lambda x: box([1, 2]), axis=1, result_type='expand') expected = int_frame_const_col[['A', 'B']].rename(columns={'A': 0, 'B': 1}) assert_frame_equal(result, expected) def zip_frames(frames, axis=1): """ take a list of frames, zip them together under the assumption that these all have the first frames' index/columns. Returns ------- new_frame : DataFrame """ if axis == 1: columns = frames[0].columns zipped = [f.loc[:, c] for c in columns for f in frames] return pd.concat(zipped, axis=1) else: index = frames[0].index zipped = [f.loc[i, :] for i in index for f in frames] return pd.DataFrame(zipped) class TestDataFrameAggregate(): def test_agg_transform(self, axis, float_frame): other_axis = 1 if axis in {0, 'index'} else 0 with np.errstate(all='ignore'): f_abs = np.abs(float_frame) f_sqrt = np.sqrt(float_frame) # ufunc result = float_frame.transform(np.sqrt, axis=axis) expected = f_sqrt.copy() assert_frame_equal(result, expected) result = float_frame.apply(np.sqrt, axis=axis) assert_frame_equal(result, expected) result = float_frame.transform(np.sqrt, axis=axis) assert_frame_equal(result, expected) # list-like result = float_frame.apply([np.sqrt], axis=axis) expected = f_sqrt.copy() if axis in {0, 'index'}: expected.columns = pd.MultiIndex.from_product( [float_frame.columns, ['sqrt']]) else: expected.index = pd.MultiIndex.from_product( [float_frame.index, ['sqrt']]) assert_frame_equal(result, expected) result = float_frame.transform([np.sqrt], axis=axis) assert_frame_equal(result, expected) # multiple items in list # these are in the order as if we are applying both # functions per series and then concatting result = float_frame.apply([np.abs, np.sqrt], axis=axis) expected = zip_frames([f_abs, f_sqrt], axis=other_axis) if axis in {0, 'index'}: expected.columns = pd.MultiIndex.from_product( [float_frame.columns, ['absolute', 'sqrt']]) else: expected.index = pd.MultiIndex.from_product( [float_frame.index, ['absolute', 'sqrt']]) assert_frame_equal(result, expected) result = float_frame.transform([np.abs, 'sqrt'], axis=axis) assert_frame_equal(result, expected) def test_transform_and_agg_err(self, axis, float_frame): # cannot both transform and agg with pytest.raises(ValueError): float_frame.transform(['max', 'min'], axis=axis) with pytest.raises(ValueError): with np.errstate(all='ignore'): float_frame.agg(['max', 'sqrt'], axis=axis) with pytest.raises(ValueError): with np.errstate(all='ignore'): float_frame.transform(['max', 'sqrt'], axis=axis) df = pd.DataFrame({'A': range(5), 'B': 5}) def f(): with np.errstate(all='ignore'): df.agg({'A': ['abs', 'sum'], 'B': ['mean', 'max']}, axis=axis) @pytest.mark.parametrize('method', [ 'abs', 'shift', 'pct_change', 'cumsum', 'rank', ]) def test_transform_method_name(self, method): # GH 19760 df = pd.DataFrame({"A": [-1, 2]}) result = df.transform(method) expected = operator.methodcaller(method)(df) tm.assert_frame_equal(result, expected) def test_demo(self): # demonstration tests df = pd.DataFrame({'A': range(5), 'B': 5}) result = df.agg(['min', 'max']) expected = DataFrame({'A': [0, 4], 'B': [5, 5]}, columns=['A', 'B'], index=['min', 'max']) tm.assert_frame_equal(result, expected) result = df.agg({'A': ['min', 'max'], 'B': ['sum', 'max']}) expected = DataFrame({'A': [4.0, 0.0, np.nan], 'B': [5.0, np.nan, 25.0]}, columns=['A', 'B'], index=['max', 'min', 'sum']) tm.assert_frame_equal(result.reindex_like(expected), expected) def test_agg_multiple_mixed_no_warning(self): # GH 20909 mdf = pd.DataFrame({'A': [1, 2, 3], 'B': [1., 2., 3.], 'C': ['foo', 'bar', 'baz'], 'D': pd.date_range('20130101', periods=3)}) expected = pd.DataFrame({"A": [1, 6], 'B': [1.0, 6.0], "C": ['bar', 'foobarbaz'], "D": [pd.Timestamp('2013-01-01'), pd.NaT]}, index=['min', 'sum']) # sorted index with tm.assert_produces_warning(None): result = mdf.agg(['min', 'sum']) tm.assert_frame_equal(result, expected) with tm.assert_produces_warning(None): result = mdf[['D', 'C', 'B', 'A']].agg(['sum', 'min']) # For backwards compatibility, the result's index is # still sorted by function name, so it's ['min', 'sum'] # not ['sum', 'min']. expected = expected[['D', 'C', 'B', 'A']] tm.assert_frame_equal(result, expected) def test_agg_dict_nested_renaming_depr(self): df = pd.DataFrame({'A': range(5), 'B': 5}) # nested renaming with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): df.agg({'A': {'foo': 'min'}, 'B': {'bar': 'max'}}) def test_agg_reduce(self, axis, float_frame): other_axis = 1 if axis in {0, 'index'} else 0 name1, name2 = float_frame.axes[other_axis].unique()[:2].sort_values() # all reducers expected = pd.concat([float_frame.mean(axis=axis), float_frame.max(axis=axis), float_frame.sum(axis=axis), ], axis=1) expected.columns = ['mean', 'max', 'sum'] expected = expected.T if axis in {0, 'index'} else expected result = float_frame.agg(['mean', 'max', 'sum'], axis=axis) assert_frame_equal(result, expected) # dict input with scalars func = OrderedDict([(name1, 'mean'), (name2, 'sum')]) result = float_frame.agg(func, axis=axis) expected = Series([float_frame.loc(other_axis)[name1].mean(), float_frame.loc(other_axis)[name2].sum()], index=[name1, name2]) assert_series_equal(result, expected) # dict input with lists func = OrderedDict([(name1, ['mean']), (name2, ['sum'])]) result = float_frame.agg(func, axis=axis) expected = DataFrame({ name1: Series([float_frame.loc(other_axis)[name1].mean()], index=['mean']), name2: Series([float_frame.loc(other_axis)[name2].sum()], index=['sum'])}) expected = expected.T if axis in {1, 'columns'} else expected assert_frame_equal(result, expected) # dict input with lists with multiple func = OrderedDict([(name1, ['mean', 'sum']), (name2, ['sum', 'max'])]) result = float_frame.agg(func, axis=axis) expected = DataFrame(OrderedDict([ (name1, Series([float_frame.loc(other_axis)[name1].mean(), float_frame.loc(other_axis)[name1].sum()], index=['mean', 'sum'])), (name2, Series([float_frame.loc(other_axis)[name2].sum(), float_frame.loc(other_axis)[name2].max()], index=['sum', 'max'])), ])) expected = expected.T if axis in {1, 'columns'} else expected assert_frame_equal(result, expected) def test_nuiscance_columns(self): # GH 15015 df = DataFrame({'A': [1, 2, 3], 'B': [1., 2., 3.], 'C': ['foo', 'bar', 'baz'], 'D': pd.date_range('20130101', periods=3)}) result = df.agg('min') expected = Series([1, 1., 'bar', pd.Timestamp('20130101')], index=df.columns) assert_series_equal(result, expected) result = df.agg(['min']) expected = DataFrame([[1, 1., 'bar', pd.Timestamp('20130101')]], index=['min'], columns=df.columns) assert_frame_equal(result, expected) result = df.agg('sum') expected = Series([6, 6., 'foobarbaz'], index=['A', 'B', 'C']) assert_series_equal(result, expected) result = df.agg(['sum']) expected = DataFrame([[6, 6., 'foobarbaz']], index=['sum'], columns=['A', 'B', 'C']) assert_frame_equal(result, expected) def test_non_callable_aggregates(self): # GH 16405 # 'size' is a property of frame/series # validate that this is working df = DataFrame({'A': [None, 2, 3], 'B': [1.0, np.nan, 3.0], 'C': ['foo', None, 'bar']}) # Function aggregate result = df.agg({'A': 'count'}) expected = Series({'A': 2}) assert_series_equal(result, expected) # Non-function aggregate result = df.agg({'A': 'size'}) expected = Series({'A': 3}) assert_series_equal(result, expected) # Mix function and non-function aggs result1 = df.agg(['count', 'size']) result2 = df.agg({'A': ['count', 'size'], 'B': ['count', 'size'], 'C': ['count', 'size']}) expected = pd.DataFrame({'A': {'count': 2, 'size': 3}, 'B': {'count': 2, 'size': 3}, 'C': {'count': 2, 'size': 3}}) assert_frame_equal(result1, result2, check_like=True) assert_frame_equal(result2, expected, check_like=True) # Just functional string arg is same as calling df.arg() result = df.agg('count') expected = df.count() assert_series_equal(result, expected) # Just a string attribute arg same as calling df.arg result = df.agg('size') expected = df.size assert result == expected @pytest.mark.parametrize("df, func, expected", chain( _get_cython_table_params( DataFrame(), [ ('sum', Series()), ('max', Series()), ('min', Series()), ('all', Series(dtype=bool)), ('any', Series(dtype=bool)), ('mean', Series()), ('prod', Series()), ('std', Series()), ('var', Series()), ('median', Series()), ]), _get_cython_table_params( DataFrame([[np.nan, 1], [1, 2]]), [ ('sum', Series([1., 3])), ('max', Series([1., 2])), ('min', Series([1., 1])), ('all', Series([True, True])), ('any', Series([True, True])), ('mean', Series([1, 1.5])), ('prod', Series([1., 2])), ('std', Series([np.nan, 0.707107])), ('var', Series([np.nan, 0.5])), ('median', Series([1, 1.5])), ]), )) def test_agg_cython_table(self, df, func, expected, axis): # GH 21224 # test reducing functions in # pandas.core.base.SelectionMixin._cython_table result = df.agg(func, axis=axis) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("df, func, expected", chain( _get_cython_table_params( DataFrame(), [ ('cumprod', DataFrame()), ('cumsum', DataFrame()), ]), _get_cython_table_params( DataFrame([[np.nan, 1], [1, 2]]), [ ('cumprod', DataFrame([[np.nan, 1], [1., 2.]])), ('cumsum', DataFrame([[np.nan, 1], [1., 3.]])), ]), )) def test_agg_cython_table_transform(self, df, func, expected, axis): # GH 21224 # test transforming functions in # pandas.core.base.SelectionMixin._cython_table (cumprod, cumsum) result = df.agg(func, axis=axis) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("df, func, expected", _get_cython_table_params( DataFrame([['a', 'b'], ['b', 'a']]), [ ['cumprod', TypeError], ]), ) def test_agg_cython_table_raises(self, df, func, expected, axis): # GH 21224 with pytest.raises(expected): df.agg(func, axis=axis) @pytest.mark.parametrize("num_cols", [2, 3, 5]) def test_frequency_is_original(self, num_cols): # GH 22150 index = pd.DatetimeIndex(["1950-06-30", "1952-10-24", "1953-05-29"]) original = index.copy() df = DataFrame(1, index=index, columns=range(num_cols)) df.apply(lambda x: x) assert index.freq == original.freq
bsd-3-clause
penny4860/object-detector
object_detector/utils.py
1
3338
#-*- coding: utf-8 -*- import cv2 import sklearn.feature_extraction.image as skimg def crop_bb(image, bb, padding=10, dst_size=(32, 32)): """Crop patches from an image with desired bounding box. Parameters ---------- image : array, shape (n_rows, n_cols, n_channels) or (n_rows, n_cols) Input image to crop. bb : tuple, (y1, y2, x1, x2) Desired bounding box. dst_size : tuple, (h_size, w_size) Desired size for returning bounding box. Returns ---------- patches : array, shape of dst_size Examples -------- >>> from skimage import data >>> img = data.camera() # Get Sample Image >>> patch = crop_bb(img, (0,10, 10, 20), 2, (6,6)) >>> patch array([[157, 157, 158, 157, 157, 158], [158, 158, 158, 158, 158, 156], [157, 158, 158, 157, 158, 156], [158, 158, 158, 158, 158, 156], [158, 156, 155, 155, 157, 155], [157, 155, 156, 156, 156, 152]], dtype=uint8) """ h = image.shape[0] w = image.shape[1] (y1, y2, x1, x2) = bb (x1, y1) = (max(x1 - padding, 0), max(y1 - padding, 0)) (x2, y2) = (min(x2 + padding, w), min(y2 + padding, h)) patch = image[y1:y2, x1:x2] # Caution : dst_size is ordered in (y, x) but desired parameter in cv2.resize() is (x, y) order. desired_ysize = dst_size[0] desired_xsize = dst_size[1] patch = cv2.resize(patch, (desired_xsize, desired_ysize), interpolation=cv2.INTER_AREA) return patch def crop_random(image, dst_size=(32, 32), n_patches=5): """Randomly crop patches from an image as desired size. Parameters ---------- image : array, shape (n_rows, n_cols, n_channels) or (n_rows, n_cols) Input image to crop. dst_size : tuple, (h_size, w_size) Desired size for croppig. max_patches : int Desired number of patches to crop Returns ---------- patches : array, shape (max_patches, n_rows, n_cols, n_channels) or (max_patches, n_rows, n_cols) Examples -------- >>> import numpy as np >>> import sklearn.feature_extraction.image as skimg >>> one_image = np.arange(100).reshape((10, 10)) >>> patches = crop_random(one_image, (5,5), 2) >>> patches.shape (2L, 5L, 5L) """ patches = skimg.extract_patches_2d(image, dst_size, max_patches=n_patches) return patches def get_file_id(filename): """Get file id from filename which has "($var)_($id).($extension)" format. ($var) and ($extension) can be allowed anything format. Parameters ---------- filename : str Input filename to extract id Returns ---------- file_id : str ($id) from "($var)_($id).($extension)" format Examples -------- >>> filename = "C:\Windows\System32\cmd.exe\image_0122.jpg" >>> get_file_id(filename) '0122' """ file_id = filename[filename.rfind("_") + 1:filename.rfind(".")] return file_id if __name__ == "__main__": import doctest doctest.testmod()
mit
yavalvas/yav_com
build/matplotlib/doc/mpl_examples/animation/histogram.py
7
1682
""" This example shows how to use a path patch to draw a bunch of rectangles for an animated histogram """ import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.path as path import matplotlib.animation as animation fig, ax = plt.subplots() # histogram our data with numpy data = np.random.randn(1000) n, bins = np.histogram(data, 100) # get the corners of the rectangles for the histogram left = np.array(bins[:-1]) right = np.array(bins[1:]) bottom = np.zeros(len(left)) top = bottom + n nrects = len(left) # here comes the tricky part -- we have to set up the vertex and path # codes arrays using moveto, lineto and closepoly # for each rect: 1 for the MOVETO, 3 for the LINETO, 1 for the # CLOSEPOLY; the vert for the closepoly is ignored but we still need # it to keep the codes aligned with the vertices nverts = nrects*(1+3+1) verts = np.zeros((nverts, 2)) codes = np.ones(nverts, int) * path.Path.LINETO codes[0::5] = path.Path.MOVETO codes[4::5] = path.Path.CLOSEPOLY verts[0::5,0] = left verts[0::5,1] = bottom verts[1::5,0] = left verts[1::5,1] = top verts[2::5,0] = right verts[2::5,1] = top verts[3::5,0] = right verts[3::5,1] = bottom barpath = path.Path(verts, codes) patch = patches.PathPatch(barpath, facecolor='green', edgecolor='yellow', alpha=0.5) ax.add_patch(patch) ax.set_xlim(left[0], right[-1]) ax.set_ylim(bottom.min(), top.max()) def animate(i): # simulate new data coming in data = np.random.randn(1000) n, bins = np.histogram(data, 100) top = bottom + n verts[1::5,1] = top verts[2::5,1] = top ani = animation.FuncAnimation(fig, animate, 100, repeat=False) plt.show()
mit
ilanfri/StatsML
bootstrap_general.py
1
6589
#!/usr/bin/python # IMPLEMENTS THE CLASSICAL BOOTSTRAP METHOD FOR NON-PARAMETRIC ESTIMATION # TESTS THE IMPLEMENTATION ON A SMALL DATA SAMPLE import numpy as np import numpy.random as npr #import pylab import matplotlib.pyplot as plt import scipy import scikits.bootstrap as btstrp import pandas as pan import os, shutil #from pandas.tools.plotting import bootstrap_plot from scipy import stats #import pickle_csv as pcsv def bootstrap(data, num_samples, statistic, alpha): """Returns the results from num_samples bootstrap samples for an input test statistic, its standard deviation, and its 100*(1-alpha)% confidence level interval.""" # Generate the indices for the required number of permutations/(resamplings with replacement) required idx = npr.randint(0, len(data), (num_samples, len(data))) # Generate the multiple resampled data set from the original one samples = data[idx] # Apply the 'statistic' function given to each of the data sets produced by the resampling and order the resulting statistic by decreasing size. stats = np.sort(statistic(samples, 1)) stat = stats.mean() # Return the value of the computed statistic at the upper and lower percentiles specified by the alpha parameter given. These are, by definition, the boundaries of the Confidence Interval for that value of alpha. E.g. alpha=0.05 ==> CI 95% low_ci = stats[int((alpha / 2.0) * num_samples)] high_ci = stats[int((1 - alpha / 2.0) * num_samples)] #sd = np.std(stat) # To include Bessel's correction for unbiased standard deviation: sd = np.sqrt(len(data) / (len(data) - 1)) * np.std(stats) return stat, sd, low_ci, high_ci if __name__ == '__main__': filename = '2008_test.csv' na_symbol = 'NA' # Read input data file in, create serialised copy if none exists #pklfilename=(str(filename).replace('.csv',''))+'.pkl' pklfilename = (str(filename).replace('.csv', '')) + '.h5' rootdir = os.getcwd() filepath = os.path.join(rootdir, pklfilename) if (os.path.exists(filepath) == True): #data=pan.read_pickle(pklfilename) data = pan.read_hdf(pklfilename, 'data') else: data = pan.read_csv(filename, na_values=na_symbol) #data.to_pickle(pklfilename) data.to_hdf(pklfilename, 'data', mode='w') # Choose two arbitrary (mutually exclusive) subsets of data for statistical comparison testdist1 = data["ArrDelay"].dropna()[data["Distance"] < 1000] testdist2 = data["ArrDelay"].dropna()[(data["Distance"] >= 1000) & (data["Distance"] < 2000)] #testdist2=data[data["Distance"]>=1000]["ArrDelay"] z, pmww = stats.ranksums(testdist1, testdist2) print "\n\nThe MWW RankSum p-value for flights less than 1000 miles vs [1000,2000) miles:\n{0:.3g}\n".format( pmww) #testdist3=data[data["Distance"]>2000]["ArrDelay"] testdist3 = data["ArrDelay"].dropna()[data["Distance"] >= 2000] f, panova = stats.f_oneway(testdist1, testdist2, testdist3) print "One-way ANOVA p-value for <1000, [1000,2000), and >= 2000 miles flight data sets:\n{0:.3g}".format( panova) nbootstraps = 10000 alpha = 0.05 # Observed sample mean and standard deviation print "\nOriginal-sample mean:\n{0:.3g}".format(testdist3.mean()) print "Original-sample standard deviation:\n{0:.3g}".format( stats.sem(testdist3)) # Compute bootstrap mean, SD of mean, and CI of mean meanbtstrp, meanbtstrpsd, lowmean, highmean = bootstrap( np.array(testdist3), nbootstraps, np.mean, alpha) print "\nBootstrap mean:\n{0:.3g}".format(meanbtstrp) print "Bootrstrap SD of the mean:\n{0:.3g}".format(meanbtstrpsd) print "\nBootstrapped 95% confidence intervals on the mean:\n[{0:.3g}, {1:.3g}]".format( lowmean, highmean) # Use Scipy's implementation of bootstrapping to do the same CIs = btstrp.ci(data=testdist3, statfunction=np.mean, n_samples=nbootstraps, alpha=alpha) print "Scipy Bootstrapped 95% confidence intervals on the mean:\n[{0:.3g}, {1:.3g}]\n\n".format( CIs[0], CIs[1]) # Options to deal with NA entries: # Drop all of the entries which contain a NA: data.dropna() # Drop NA entries in a particular column: data["Distance"].dropna() # Replace NA with a given value: data.fillna(0.0)["Distance"] # Fields are: # Year,Month,DayofMonth,DayOfWeek,DepTime,CRSDepTime,ArrTime,CRSArrTime,UniqueCarrier,FlightNum,TailNum,ActualElapsedTime,CRSElapsedTime,AirTime,ArrDelay,DepDelay,Origin,Dest,Distance,TaxiIn,TaxiOut,Cancelled,CancellationCode,Diverted,CarrierDelay,WeatherDelay,NASDelay,SecurityDelay,LateAircraftDelay # # make plots # plt.figure(figsize=(8,4)) # plt.subplot(121) # plt.hist(x, 50, histtype='step') # plt.title('Histogram of data') # plt.subplot(122) # plt.plot([-0.03,0.03], [np.mean(x), np.mean(x)], 'r', linewidth=2) # plt.scatter(0.1*(npr.random(len(x))-0.5), x) # plt.plot([0.19,0.21], [lowmean, lowmean], 'r', linewidth=2) # plt.plot([0.19,0.21], [highmean, highmean], 'r', linewidth=2) # plt.plot([0.2,0.2], [lowmean, highmean], 'r', linewidth=2, label="Mean CI") # # The SD interval # plt.plot([0.25,0.27], [np.mean(x)-np.std(x), np.mean(x)-np.std(x)], 'g', linewidth=2) # plt.plot([0.25,0.27], [np.mean(x)+np.std(x), np.mean(x)+np.std(x)], 'g', linewidth=2) # plt.plot([0.26,0.26], [np.mean(x)-np.std(x), np.mean(x)+np.std(x)], 'g', linewidth=2) # # CI bars on each of the downwards and upwards 1 SD bands about the mean # plt.plot([0.29,0.31], [np.mean(x)-np.std(x)-(np.std(x)-lowsd), np.mean(x)-np.std(x)-(np.std(x)-lowsd)], 'g', linewidth=2) # plt.plot([0.29,0.31], [np.mean(x)-np.std(x)+(highsd-np.std(x)), np.mean(x)-np.std(x)+(highsd-np.std(x))], 'g', linewidth=2) # plt.plot([0.3,0.3], [np.mean(x)-np.std(x)-(np.std(x)-lowsd), np.mean(x)-np.std(x)+(highsd-np.std(x))], 'g', linewidth=2) # plt.plot([0.29,0.31], [np.mean(x)+np.std(x)-(np.std(x)-lowsd), np.mean(x)+np.std(x)-(np.std(x)-lowsd)], 'g', linewidth=2) # plt.plot([0.29,0.31], [np.mean(x)+np.std(x)+(highsd-np.std(x)), np.mean(x)+np.std(x)+(highsd-np.std(x))], 'g', linewidth=2) # plt.plot([0.3,0.3], [np.mean(x)+np.std(x)-(np.std(x)-lowsd), np.mean(x)+np.std(x)+(highsd-np.std(x))], 'g', linewidth=2, label="SD CI") # plt.xlim([-0.2, 0.35]) # plt.title('Bootstrap 95% CIs') # plt.legend() # plt.show() # #plt.savefig('examples/boostrap.png')
bsd-3-clause
fridiculous/django-estimators
estimators/tests/test_estimators.py
1
3377
import pytest from django.core.exceptions import ValidationError from estimators.models.estimators import Estimator from estimators.tests.factories import EstimatorFactory @pytest.mark.django_db class TestEstimator(): def test_estimator_persistance_without_factory(self): m = Estimator(estimator='new string', description='another object') assert m.object_file.storage.exists(m.object_file.path) == False assert m.is_file_persisted == False m.save() assert m.object_file.storage.exists(m.object_file.path) == True assert m.is_file_persisted == True def test_object_hash_with_factory(self): m = EstimatorFactory(estimator=object) assert m.estimator == object del m n = Estimator.objects.filter(estimator=object).first() # sklearn hash of a object = 'd9c9f286391652b89978a6961b52b674' assert n.object_hash == 'd9c9f286391652b89978a6961b52b674' # assert loaded after calling n.estimator assert n.estimator == object assert Estimator._compute_hash( object) == 'd9c9f286391652b89978a6961b52b674' def test_get_or_create(self): m, created = Estimator.objects.get_or_create(estimator='new_string_as_object') m.save() assert m.estimator == 'new_string_as_object' assert created == True n, created = Estimator.objects.get_or_create(estimator='new_string_as_object') assert m == n assert created == False def test_update_or_create(self): e = 'estimator_obj' m, created = Estimator.objects.update_or_create(estimator=e) m.save() assert m.estimator == e assert created == True n, created = Estimator.objects.update_or_create(estimator=e) assert m == n assert created == False def test_create_from_file_with_factory(self): obj = "{'key': 'value'}" m = EstimatorFactory(estimator=obj) object_hash = m.object_hash file_path = m.object_file.name del m m = Estimator.create_from_file(file_path) assert m.estimator == obj assert m.object_hash == object_hash assert m.is_file_persisted == True def test_update_estimator_fail(self): m = Estimator(estimator='uneditable_object') m.estimator = 'object_edited_before_persistance' m.save() m.estimator = 'object_edited_after_persistance' with pytest.raises(ValidationError): m.save() def test_hashing_func(self): object_hash = Estimator._compute_hash('abcd') assert object_hash == '3062a9e3345c129799bd2c1603c2e966' def test_hash_without_estimator_fail(self): m = Estimator() m.object_hash = 'randomly set hash' with pytest.raises(ValidationError): m.save() def test_wrong_hash_fail(self): m = Estimator(estimator='unique_object') m.object_hash = 'randomly set hash' with pytest.raises(ValidationError): m.save() def test_prevent_double_file_save(self): EstimatorFactory(estimator='yes') hash_of_yes = 'b635788f4b614e8469b470b8e9f68174' e = Estimator.objects.get(object_hash=hash_of_yes) assert e.is_file_persisted == True e.save() assert e.object_file.name.endswith(hash_of_yes)
mit
MaxNoe/pyhexgrid
hexgrid/plotting.py
1
1203
import numpy as np import matplotlib.pyplot as plt from matplotlib.collections import PatchCollection from matplotlib.patches import RegularPolygon def plot_hexagons( hexpoints, ax=None, facecolor=None, edgecolor=None, linewidth=None, key=None, cmap=None, ): ax = ax or plt.gca() x, y = hexpoints.cartesian if hexpoints.orientation == 'pointy_top': orientation = 0 else: orientation = np.pi / 6 hexagons = [ RegularPolygon(xy, 6, radius=1, orientation=orientation) for xy in zip(x, y) ] collection = PatchCollection(hexagons) if facecolor is not None: collection.set_facecolor(facecolor) if edgecolor is not None: collection.set_edgecolor(edgecolor) if linewidth is not None: collection.set_linewidth(linewidth) if key is not None: collection.set_array(hexpoints.data[key]) collection.set_cmap(plt.get_cmap(cmap)) ax.add_collection(collection) ax.set_xlim(np.min(x) - 1, np.max(x) + 1) ax.set_ylim(np.min(y) - 1, np.max(y) + 1) ax.set_aspect(1) plt.draw_if_interactive() return collection
mit
embotech/forcesnlp-examples
quadcopter/ipopt/quadcopter.py
1
10839
import sys sys.path.append(r"/home/andrea/casadi-py27-np1.9.1-v2.4.2") from casadi import * from numpy import * from scipy.linalg import * import matplotlib matplotlib.use('Qt4Agg') import matplotlib.pyplot as plt from math import atan2, asin import pdb N = 5 # Control discretization T = 1.0 # End time nx = 17 nu = 4 T_sim = 8.0 N_sim = int(ceil(T_sim/(T/N))) # Declare variables (use scalar graph) u = SX.sym("u",nu) # control x = SX.sym("x",nx) # states # Dynamics definition rho = 1.23 A = 0.1 Cl = 0.25 Cd = 0.3*Cl m = 10 g = 9.81 L = 0.5 Jp = 1e-2 xi = 1e-2 J1 = 0.25 J2 = 0.25 J3 = 1 gain = 1e-4 alpha = 0.0 P1 = x[0] P2 = x[1] P3 = x[2] V1 = x[3] V2 = x[4] V3 = x[5] q1 = x[6] q2 = x[7] q3 = x[8] q4 = x[9] Omega1 = x[10] Omega2 = x[11] Omega3 = x[12] W1 = x[13] W2 = x[14] W3 = x[15] W4 = x[16] rW1 = u[0] rW2 = u[1] rW3 = u[2] rW4 = u[3] ode = vertcat([ V1,\ V2,\ V3,\ (A*Cl*rho*(2*q1*q3 + 2*q2*q4)*(W1*W1 + W2*W2 + W3*W3 + W4*W4))/(2*m),\ -(A*Cl*rho*(2*q1*q2 - 2*q3*q4)*(W1*W1 + W2*W2 + W3*W3 + W4*W4))/(2*m),\ (A*Cl*rho*(W1*W1 + W2*W2 + W3*W3 + W4*W4)*(q1*q1 - q2*q2 - q3*q3 + q4*q4))/(2*m) - g,\ - (Omega1*q2)/2 - (Omega2*q3)/2 - (Omega3*q4)/2 - (alpha*q1*(q1*q1 + q2*q2 + q3*q3 + q4*q4 - 1))/(q1*q1 + q2*q2 + q3*q3 + q4*q4),\ (Omega1*q1)/2 - (Omega3*q3)/2 + (Omega2*q4)/2 - (alpha*q2*(q1*q1 + q2*q2 + q3*q3 + q4*q4 - 1))/(q1*q1 + q2*q2 + q3*q3 + q4*q4),\ (Omega2*q1)/2 + (Omega3*q2)/2 - (Omega1*q4)/2 - (alpha*q3*(q1*q1 + q2*q2 + q3*q3 + q4*q4 - 1))/(q1*q1 + q2*q2 + q3*q3 + q4*q4),\ (Omega3*q1)/2 - (Omega2*q2)/2 + (Omega1*q3)/2 - (alpha*q4*(q1*q1 + q2*q2 + q3*q3 + q4*q4 - 1))/(q1*q1 + q2*q2 + q3*q3 + q4*q4),\ (J3*Omega2*Omega3 - J2*Omega2*Omega3 + (A*Cl*L*rho*(W2*W2 - W4*W4))/2)/J1,\ -(J3*Omega1*Omega3 - J1*Omega1*Omega3 + (A*Cl*L*rho*(W1*W1 - W3*W3))/2)/J2,\ (J2*Omega1*Omega2 - J1*Omega1*Omega2 + (A*Cd*rho*(W1*W1 - W2*W2 + W3*W3 - W4*W4))/2)/J3,\ rW1,\ rW2,\ rW3,\ rW4]) f = SXFunction([x,u],[ode]) f.init() # RK4 with M steps U = MX.sym("U",nu) X = MX.sym("X",nx) M = 1 ; DT = T/(N*M) XF = X QF = 0 for j in range(M): [k1] = f([XF, U]) [k2] = f([XF + DT/2 * k1, U]) [k3] = f([XF + DT/2 * k2, U]) [k4] = f([XF + DT * k3, U]) XF += DT/6*(k1 + 2*k2 + 2*k3 + k4) F = MXFunction([X,U],[XF]) F.init() # Formulate NLP (use matrix graph) nv = nu*N + nx*(N+1) v = MX.sym("v", nv) # Get the state for each shooting interval xk = [v[(nx + nu)*k : (nx + nu)*k + nx] for k in range(N+1)] # Get the control for each shooting interval uk = [v[(nx + nu)*k + nx:(nx + nu)*k + nx + nu] for k in range(N)] # Variable bounds and initial guess vmin = -100*ones(nv) vmax = 100*ones(nv) #vmin[nu*N + nx*(N):] = -5*ones(nx) #vmax[nu*N + nx*(N):] = 5*ones(nx) v0 = zeros(nv) # Control bounds max_rate = 40 vmin[0::nx+nu] = -10 vmin[1::nx+nu] = -10 vmin[2::nx+nu] = -10 vmin[3::nx+nu] = -100 vmin[4::nx+nu] = -100 vmin[5::nx+nu] = -100 vmin[6::nx+nu] = -5 vmin[7::nx+nu] = -5 vmin[8::nx+nu] = -5 vmin[9::nx+nu] = -5 vmin[10::nx+nu] = -40 vmin[11::nx+nu] = -40 vmin[12::nx+nu] = -40 vmin[13::nx+nu] = -50 vmin[14::nx+nu] = -50 vmin[15::nx+nu] = -50 vmin[16::nx+nu] = -50 vmin[nx+0::nx+nu] = -max_rate vmin[nx+1::nx+nu] = -max_rate vmin[nx+2::nx+nu] = -max_rate vmin[nx+3::nx+nu] = -max_rate vmax[0::nx+nu] = 10 vmax[1::nx+nu] = 10 vmax[2::nx+nu] = 10 vmax[3::nx+nu] = 100 vmax[4::nx+nu] = 100 vmax[5::nx+nu] = 100 vmax[6::nx+nu] = 5 vmax[7::nx+nu] = 5 vmax[8::nx+nu] = 5 vmax[9::nx+nu] = 5 vmax[10::nx+nu] = 40 vmax[11::nx+nu] = 40 vmax[12::nx+nu] = 40 vmax[13::nx+nu] = 50 vmax[14::nx+nu] = 50 vmax[15::nx+nu] = 50 vmax[16::nx+nu] = 50 vmax[nx+0::nx+nu] = max_rate vmax[nx+1::nx+nu] = max_rate vmax[nx+2::nx+nu] = max_rate vmax[nx+3::nx+nu] = max_rate initial_angle_rad = 3.0 # Initial condition hover_omega = 39.939 x0 = array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, cos(initial_angle_rad/2.0), sin(initial_angle_rad/2.0), 0.0, 0.0, 0.0, 0.0, 0.0, hover_omega, hover_omega, hover_omega, hover_omega]) for i in range(nx): vmin[i] = vmax[i] = v0[i] = x0[i] # Initial solution guess v0 = 1.0*ones(nv) # for k in range(N): # v0[(nx + nu)*k + nx:(nx + nu)*k + nx + nu] = [40, 40, 40, 40] # Constraint function with bounds g = []; gmin = []; gmax = [] # Objective function J=0.0 # Build up a graph of integrator calls w_pos = 50.0 w_vel = 5.0 w_att = 20.00 w_omega = 5.0 w_in = 0.01 w_rate = 0.01 H_end_diag = array([w_pos, w_pos, w_pos, w_vel, w_vel, w_vel, w_att, w_att, w_att, w_att, w_omega, w_omega, w_omega, w_in, w_in, w_in, w_in]) H_diag = array([w_pos, w_pos, w_pos, w_vel, w_vel, w_vel, w_att, w_att, w_att, w_att, w_omega, w_omega, w_omega, w_in, w_in, w_in, w_in, w_rate, w_rate, w_rate, w_rate]) for k in range(N): # Call the integrator [xf] = F([xk[k],uk[k]]) # position J+= 1.0/2.0*H_diag[0]*pow(xk[k][0],2) J+= 1.0/2.0*H_diag[1]*pow(xk[k][1],2) J+= 1.0/2.0*H_diag[2]*pow(xk[k][2],2) # velocities J+= 1.0/2.0*H_diag[3]*pow(xk[k][3],2) J+= 1.0/2.0*H_diag[4]*pow(xk[k][4],2) J+= 1.0/2.0*H_diag[5]*pow(xk[k][5],2) # attitude J+= 1.0/2.0*H_diag[6]*pow(xk[k][6] - 1.0,2) J+= 1.0/2.0*H_diag[7]*pow(xk[k][7],2) J+= 1.0/2.0*H_diag[8]*pow(xk[k][8],2) J+= 1.0/2.0*H_diag[9]*pow(xk[k][9],2) # omega J+= 1.0/2.0*H_diag[10]*pow(xk[k][10],2) J+= 1.0/2.0*H_diag[11]*pow(xk[k][11],2) J+= 1.0/2.0*H_diag[12]*pow(xk[k][12],2) # inputs J+= 1.0/2.0*H_diag[13]*pow(xk[k][13] - hover_omega,2) J+= 1.0/2.0*H_diag[14]*pow(xk[k][14] - hover_omega,2) J+= 1.0/2.0*H_diag[15]*pow(xk[k][15] - hover_omega,2) J+= 1.0/2.0*H_diag[16]*pow(xk[k][16] - hover_omega,2) for j in range(nu): J+= 1.0/2.0*H_diag[nx+j]*pow(uk[k][j],2) g.append(xf - xk[k+1]) gmin.append(zeros(nx)) gmax.append(zeros(nx)) # Terminal cost k = N # position J+= 1.0/2.0*H_end_diag[0]*pow(xk[k][0],2) J+= 1.0/2.0*H_end_diag[1]*pow(xk[k][1],2) J+= 1.0/2.0*H_end_diag[2]*pow(xk[k][2],2) # velocities J+= 1.0/2.0*H_end_diag[3]*pow(xk[k][3],2) J+= 1.0/2.0*H_end_diag[4]*pow(xk[k][4],2) J+= 1.0/2.0*H_end_diag[5]*pow(xk[k][5],2) # attitude J+= 1.0/2.0*H_end_diag[6]*pow(xk[k][6] - 1.0,2) J+= 1.0/2.0*H_end_diag[7]*pow(xk[k][7],2) J+= 1.0/2.0*H_end_diag[8]*pow(xk[k][8],2) J+= 1.0/2.0*H_end_diag[9]*pow(xk[k][9],2) # omega J+= 1.0/2.0*H_end_diag[10]*pow(xk[k][10],2) J+= 1.0/2.0*H_end_diag[11]*pow(xk[k][11],2) J+= 1.0/2.0*H_end_diag[12]*pow(xk[k][12],2) # inputs J+= 1.0/2.0*H_end_diag[13]*pow(xk[k][13] - hover_omega,2) J+= 1.0/2.0*H_end_diag[14]*pow(xk[k][14] - hover_omega,2) J+= 1.0/2.0*H_end_diag[15]*pow(xk[k][15] - hover_omega,2) J+= 1.0/2.0*H_end_diag[16]*pow(xk[k][16] - hover_omega,2) # Concatenate constraints g = vertcat(g) gmin = concatenate(gmin) gmax = concatenate(gmax) # Gauss-Newton hessian: H = block_diag(H_diag) H_end = block_diag(H_end_diag) Hgn = kron(eye(N),H) Hgn = block_diag(Hgn,H_end) h=SXFunction(hessLagIn(), hessLagOut(hess=Hgn)) # Create NLP solver instance opts = {'jit':True,"jit_options":{"flags":['-O0']}} nlp = MXFunction('nlp',nlpIn(x=v),nlpOut(f=J,g=g),opts) # nlp = MXFunction('nlp',nlpIn(x=v),nlpOut(f=J,g=g)) solver = NlpSolver("nlp_solver", "ipopt", nlp) # nlp = MXFunction(nlpIn(x=v),nlpOut(f=J,g=g)) # solver = NlpSolver("ipopt", nlp) #solver.setOption("tol",1.0e-4) #solver.setOption("constr_viol_tol",1.0e-4) #solver.setOption("compl_inf_tol",1.0e-4) #solver.setOption("dual_inf_tol",1.0e-4) #solver.setOption("accept_every_trial_step","yes") solver.setOption("limited_memory_update_type","bfgs") solver.setOption("print_level",5) solver.setOption("output_file","ipopt_log.txt") # solver.setOption("linear_solver","ma57") solver.init() # Set bounds and initial guess solver.setInput(v0, "x0") solver.setInput(vmin, "lbx") solver.setInput(vmax, "ubx") solver.setInput(gmin, "lbg") solver.setInput(gmax, "ubg") # Simulation loop X = zeros((nx,N_sim)) U = zeros((nu,N_sim)) full_time = zeros(N_sim) time = zeros(N_sim) iter = zeros(N_sim) #pdb.set_trace() for i in range(N_sim): # Solve the problem solver.evaluate() stat = solver.getStats() full_time[i] = stat["t_mainloop.proc"] time[i] = stat["t_mainloop.proc"] - stat["t_eval_f.proc"] - stat["t_eval_g.proc"] - stat["t_eval_grad_f.proc"] - stat["t_eval_jac_g.proc"] - stat["t_eval_h.proc"] iter[i] = stat["iter_count"] # Retrieve the solution v_opt = solver.getOutput("x") for j in range(nx): X[j,i] = v_opt[j] for j in range(nu): U[j,i] = v_opt[nx+j] # Update initial condition for j in range(nx): vmin[j] = vmax[j] = v_opt[nx+nu+j] solver.init() solver.setInput(v0, "x0") solver.setInput(vmin, "lbx") solver.setInput(vmax, "ubx") solver.setInput(gmin, "lbg") solver.setInput(gmax, "ubg") # Plot the results plt.figure(1) plt.clf() plt.subplot(311) plt.plot(linspace(0,DT*M*N_sim,N_sim),X[0,:],'--') plt.plot(linspace(0,DT*M*N_sim,N_sim),X[1,:],'--') plt.plot(linspace(0,DT*M*N_sim,N_sim),X[2,:],'--') plt.title("Quadcopter - Ipopt") plt.xlabel('time') plt.legend(['x','y','z']) plt.grid() # Convert quaternions to Euler angles (rad) angles = zeros((3,N_sim)) for i in range(N_sim): q0 = X[6,i] q1 = X[7,i] q2 = X[8,i] q3 = X[9,i] angles[0,i] = atan2(2*(q0*q1 + q2*q3),(1 - 2*(q1**2 + q2**2))) angles[1,i] = asin(2*(q0*q2 - q3*q1)) angles[2,i] = atan2(2*(q0*q3 + q1*q2),(1 - 2*(q2**2 + q3**2))) plt.subplot(312) plt.plot(linspace(0,DT*M*N_sim,N_sim),angles[0,:]) plt.plot(linspace(0,DT*M*N_sim,N_sim),angles[1,:]) plt.plot(linspace(0,DT*M*N_sim,N_sim),angles[2,:]) plt.xlabel('time') plt.legend(['phi','theta','psi']) plt.grid() #plt.step(linspace(0,T,N),u_opt,'-.') plt.subplot(313) plt.step(linspace(0,DT*M*N_sim,N_sim),U[0,:]) plt.step(linspace(0,DT*M*N_sim,N_sim),U[1,:]) plt.step(linspace(0,DT*M*N_sim,N_sim),U[2,:]) plt.step(linspace(0,DT*M*N_sim,N_sim),U[3,:]) plt.xlabel('time') plt.legend(['w1','w2','w3','w4']) plt.grid() #plt.legend(['force']) plt.figure(2) plt.subplot(211) plt.plot(linspace(0,DT*M*N_sim,N_sim),time) #plt.plot(linspace(0,T,N_sim),full_time,'--') plt.xlabel('time') plt.legend(['CPU time w/o f eval','total CPU time']) plt.grid() plt.subplot(212) plt.plot(linspace(0,DT*M*N_sim,N_sim),iter) plt.xlabel('time') plt.legend(['iter']) plt.grid() # Store results savez('quadcopter_sim_ipopt.mpy', X=X, U=U, time=time, full_time=full_time, iter=iter) savetxt('X.txt',X) savetxt('U.txt',U) savetxt('time_N5.txt',time) savetxt('full_time_N5.txt',full_time) savetxt('iter_N5.txt',iter) plt.show()
mit
yade/trunk
doc/sphinx/ipython_directive.py
2
18719
# -*- coding: utf-8 -*- """Sphinx directive to support embedded IPython code. This directive allows pasting of entire interactive IPython sessions, prompts and all, and their code will actually get re-executed at doc build time, with all prompts renumbered sequentially. To enable this directive, simply list it in your Sphinx ``conf.py`` file (making sure the directory where you placed it is visible to sphinx, as is needed for all Sphinx directives). By default this directive assumes that your prompts are unchanged IPython ones, but this can be customized. For example, the following code in your Sphinx config file will configure this directive for the following input/output prompts ``Yade [1]:`` and ``-> [1]:``:: import ipython_directive as id id.rgxin =re.compile(r'(?:In |Yade )\[(\d+)\]:\s?(.*)\s*') id.rgxout=re.compile(r'(?:Out| -> )\[(\d+)\]:\s?(.*)\s*') id.fmtin ='Yade [%d]:' id.fmtout=' -> [%d]:' id.rc_override=dict( prompt_in1="Yade [\#]:", prompt_in2=" .\D..", prompt_out=" -> [\#]:" ) id.reconfig_shell() import ipython_console_highlighting as ich ich.IPythonConsoleLexer.input_prompt= re.compile("(Yade \[[0-9]+\]: )|( \.\.\.+:)") ich.IPythonConsoleLexer.output_prompt= re.compile("(( -> )|(Out)\[[0-9]+\]: )|( \.\.\.+:)") ich.IPythonConsoleLexer.continue_prompt=re.compile(" \.\.\.+:") ToDo ---- - Turn the ad-hoc test() function into a real test suite. - Break up ipython-specific functionality from matplotlib stuff into better separated code. - Make sure %bookmarks used internally are removed on exit. Authors ------- - John D Hunter: orignal author. - Fernando Perez: refactoring, documentation, cleanups. - VáclavŠmilauer <eudoxos-AT-arcig.cz>: Prompt generatlizations. """ from __future__ import print_function #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Stdlib from future import standard_library standard_library.install_aliases() from builtins import range from builtins import object import io import imp import os import re import shutil import sys import warnings # To keep compatibility with various python versions try: from hashlib import md5 except ImportError: from md5 import md5 # Third-party import matplotlib import sphinx from docutils.parsers.rst import directives matplotlib.use('Agg') # Our own import IPython from IPython.Shell import MatplotlibShell #----------------------------------------------------------------------------- # Globals #----------------------------------------------------------------------------- sphinx_version = sphinx.__version__.split(".") # The split is necessary for sphinx beta versions where the string is # '6b1' sphinx_version = tuple([int(re.split('[a-z]', x)[0]) for x in sphinx_version[:2]]) COMMENT, INPUT, OUTPUT = list(range(3)) rc_override = {} rgxin = re.compile('In \[(\d+)\]:\s?(.*)\s*') rgxcont = re.compile(' \.+:\s?(.*)\s*') rgxout = re.compile('Out\[(\d+)\]:\s?(.*)\s*') fmtin = 'In [%d]:' fmtout = 'Out[%d]:' fmtcont = ' .\D.:' #----------------------------------------------------------------------------- # Functions and class declarations #----------------------------------------------------------------------------- def block_parser(part): """ part is a string of ipython text, comprised of at most one input, one ouput, comments, and blank lines. The block parser parses the text into a list of:: blocks = [ (TOKEN0, data0), (TOKEN1, data1), ...] where TOKEN is one of [COMMENT | INPUT | OUTPUT ] and data is, depending on the type of token:: COMMENT : the comment string INPUT: the (DECORATOR, INPUT_LINE, REST) where DECORATOR: the input decorator (or None) INPUT_LINE: the input as string (possibly multi-line) REST : any stdout generated by the input line (not OUTPUT) OUTPUT: the output string, possibly multi-line """ block = [] lines = part.split('\n') N = len(lines) i = 0 decorator = None while 1: if i==N: # nothing left to parse -- the last line break line = lines[i] i += 1 line_stripped = line.strip() if line_stripped.startswith('#'): block.append((COMMENT, line)) continue if line_stripped.startswith('@'): # we're assuming at most one decorator -- may need to # rethink decorator = line_stripped continue # does this look like an input line? matchin = rgxin.match(line) if matchin: lineno, inputline = int(matchin.group(1)), matchin.group(2) # the ....: continuation string #continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) #Nc = len(continuation) # input lines can continue on for more than one line, if # we have a '\' line continuation char or a function call # echo line 'print'. The input line can only be # terminated by the end of the block or an output line, so # we parse out the rest of the input line if it is # multiline as well as any echo text rest = [] while i<N: # look ahead; if the next line is blank, or a comment, or # an output line, we're done nextline = lines[i] matchout = rgxout.match(nextline) matchcont = rgxcont.match(nextline) #print "nextline=%s, continuation=%s, starts=%s"%(nextline, continuation, nextline.startswith(continuation)) if matchout or nextline.startswith('#'): break elif matchcont: #nextline.startswith(continuation): inputline += '\n' + matchcont.group(1) #nextline[Nc:] else: rest.append(nextline) i+= 1 block.append((INPUT, (decorator, inputline, '\n'.join(rest)))) continue # if it looks like an output line grab all the text to the end # of the block matchout = rgxout.match(line) if matchout: lineno, output = int(matchout.group(1)), matchout.group(2) if i<N-1: output = '\n'.join([output] + lines[i:]) block.append((OUTPUT, output)) break return block class EmbeddedSphinxShell(object): """An embedded IPython instance to run inside Sphinx""" def __init__(self): self.cout = io.StringIO() IPython.Shell.Term.cout = self.cout IPython.Shell.Term.cerr = self.cout argv = ['-autocall', '0'] self.user_ns = {} self.user_glocal_ns = {} self.IP = IPython.ipmaker.make_IPython( argv, self.user_ns, self.user_glocal_ns, embedded=True, #shell_class=IPython.Shell.InteractiveShell, shell_class=MatplotlibShell, rc_override = dict(colors = 'NoColor', **rc_override)) self.input = '' self.output = '' self.is_verbatim = False self.is_doctest = False self.is_suppress = False # on the first call to the savefig decorator, we'll import # pyplot as plt so we can make a call to the plt.gcf().savefig self._pyplot_imported = False # we need bookmark the current dir first so we can save # relative to it self.process_input_line('bookmark ipy_basedir') self.cout.seek(0) self.cout.truncate(0) def process_input_line(self, line): """process the input, capturing stdout""" #print "input='%s'"%self.input stdout = sys.stdout sys.stdout = self.cout #self.IP.resetbuffer() self.IP.push(self.IP.prefilter(line, 0)) #self.IP.runlines(line) sys.stdout = stdout # Callbacks for each type of token def process_input(self, data, input_prompt, lineno): """Process data block for INPUT token.""" decorator, input, rest = data image_file = None #print 'INPUT:', data is_verbatim = decorator=='@verbatim' or self.is_verbatim is_doctest = decorator=='@doctest' or self.is_doctest is_suppress = decorator=='@suppress' or self.is_suppress is_savefig = decorator is not None and \ decorator.startswith('@savefig') input_lines = input.split('\n') #continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) #Nc = len(continuation) if is_savefig: saveargs = decorator.split(' ') filename = saveargs[1] outfile = os.path.join('_static/%s'%filename) # build out an image directive like # .. image:: somefile.png # :width 4in # # from an input like # savefig somefile.png width=4in imagerows = ['.. image:: %s'%outfile] for kwarg in saveargs[2:]: arg, val = kwarg.split('=') arg = arg.strip() val = val.strip() imagerows.append(' :%s: %s'%(arg, val)) image_file = outfile image_directive = '\n'.join(imagerows) # TODO: can we get "rest" from ipython #self.process_input_line('\n'.join(input_lines)) ret = [] is_semicolon = False for i, line in enumerate(input_lines): if line.endswith(';'): is_semicolon = True if i==0: # process the first input line if is_verbatim: self.process_input_line('') else: # only submit the line in non-verbatim mode self.process_input_line(line) formatted_line = '%s %s'%(input_prompt, line) else: # process a continuation line if not is_verbatim: self.process_input_line(line) formatted_line = fmtcont.replace('\D','.'*len(str(lineno)))+line #'%s %s'%(continuation, line) if not is_suppress: ret.append(formatted_line) if not is_suppress: if len(rest.strip()): if is_verbatim: # the "rest" is the standard output of the # input, which needs to be added in # verbatim mode ret.append(rest) self.cout.seek(0) output = self.cout.read() if not is_suppress and not is_semicolon: ret.append(output) self.cout.truncate(0) return ret, input_lines, output, is_doctest, image_file #print 'OUTPUT', output # dbg def process_output(self, data, output_prompt, input_lines, output, is_doctest, image_file): """Process data block for OUTPUT token.""" if is_doctest: submitted = data.strip() found = output if found is not None: ind = found.find(output_prompt) if ind<0: raise RuntimeError('output prompt="%s" does not match out line=%s'%(output_prompt, found)) found = found[len(output_prompt):].strip() if found!=submitted: raise RuntimeError('doctest failure for input_lines="%s" with found_output="%s" and submitted output="%s"'%(input_lines, found, submitted)) #print 'doctest PASSED for input_lines="%s" with found_output="%s" and submitted output="%s"'%(input_lines, found, submitted) def process_comment(self, data): """Process data block for COMMENT token.""" if not self.is_suppress: return [data] def process_block(self, block): """ process block from the block_parser and return a list of processed lines """ ret = [] output = None input_lines = None m = rgxin.match(str(self.IP.outputcache.prompt1).strip()) lineno = int(m.group(1)) input_prompt = fmtin%lineno output_prompt = fmtout%lineno image_file = None image_directive = None # XXX - This needs a second refactor. There's too much state being # held globally, which makes for a very awkward interface and large, # hard to test functions. I've already broken this up at least into # three separate processors to isolate the logic better, but this only # serves to highlight the coupling. Next we need to clean it up... for token, data in block: if token==COMMENT: out_data = self.process_comment(data) elif token==INPUT: out_data, input_lines, output, is_doctest, image_file= \ self.process_input(data, input_prompt, lineno) elif token==OUTPUT: out_data = \ self.process_output(data, output_prompt, input_lines, output, is_doctest, image_file) if out_data: ret.extend(out_data) if image_file is not None: self.ensure_pyplot() command = 'plt.gcf().savefig("%s")'%image_file #print 'SAVEFIG', command # dbg self.process_input_line('bookmark ipy_thisdir') self.process_input_line('cd -b ipy_basedir') self.process_input_line(command) self.process_input_line('cd -b ipy_thisdir') self.cout.seek(0) self.cout.truncate(0) return ret, image_directive def ensure_pyplot(self): if self._pyplot_imported: return self.process_input_line('import matplotlib.pyplot as plt') # A global instance used below. XXX: not sure why this can't be created inside # ipython_directive itself. shell = EmbeddedSphinxShell() def reconfig_shell(): """Called after setting module-level variables to re-instantiate with the set values (since shell is instantiated first at import-time when module variables have default values)""" global shell shell = EmbeddedSphinxShell() def ipython_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine, ): debug = ipython_directive.DEBUG shell.is_suppress = 'suppress' in options shell.is_doctest = 'doctest' in options shell.is_verbatim = 'verbatim' in options #print 'ipy', shell.is_suppress, options parts = '\n'.join(content).split('\n\n') lines = ['.. sourcecode:: ipython', ''] figures = [] for part in parts: block = block_parser(part) if len(block): rows, figure = shell.process_block(block) for row in rows: lines.extend([' %s'%line for line in row.split('\n')]) if figure is not None: figures.append(figure) for figure in figures: lines.append('') lines.extend(figure.split('\n')) lines.append('') #print lines if len(lines)>2: if debug: print('\n'.join(lines)) else: #print 'INSERTING %d lines'%len(lines) state_machine.insert_input( lines, state_machine.input_lines.source(0)) return [] ipython_directive.DEBUG = False # Enable as a proper Sphinx directive def setup(app): setup.app = app options = {'suppress': directives.flag, 'doctest': directives.flag, 'verbatim': directives.flag, } app.add_directive('ipython', ipython_directive, True, (0, 2, 0), **options) # Simple smoke test, needs to be converted to a proper automatic test. def test(): examples = [ r""" In [9]: pwd Out[9]: '/home/jdhunter/py4science/book' In [10]: cd bookdata/ /home/jdhunter/py4science/book/bookdata In [2]: from pylab import * In [2]: ion() In [3]: im = imread('stinkbug.png') @savefig mystinkbug.png width=4in In [4]: imshow(im) Out[4]: <matplotlib.image.AxesImage object at 0x39ea850> """, r""" In [1]: x = 'hello world' # string methods can be # used to alter the string @doctest In [2]: x.upper() Out[2]: 'HELLO WORLD' @verbatim In [3]: x.st<TAB> x.startswith x.strip """, r""" In [130]: url = 'http://ichart.finance.yahoo.com/table.csv?s=CROX\ .....: &d=9&e=22&f=2009&g=d&a=1&br=8&c=2006&ignore=.csv' In [131]: print url.split('&') ['http://ichart.finance.yahoo.com/table.csv?s=CROX', 'd=9', 'e=22', 'f=2009', 'g=d', 'a=1', 'b=8', 'c=2006', 'ignore=.csv'] In [60]: import urllib """, r"""\ In [133]: import numpy.random @suppress In [134]: numpy.random.seed(2358) @doctest In [135]: np.random.rand(10,2) Out[135]: array([[ 0.64524308, 0.59943846], [ 0.47102322, 0.8715456 ], [ 0.29370834, 0.74776844], [ 0.99539577, 0.1313423 ], [ 0.16250302, 0.21103583], [ 0.81626524, 0.1312433 ], [ 0.67338089, 0.72302393], [ 0.7566368 , 0.07033696], [ 0.22591016, 0.77731835], [ 0.0072729 , 0.34273127]]) """, r""" In [106]: print x jdh In [109]: for i in range(10): .....: print i .....: .....: 0 1 2 3 4 5 6 7 8 9 """, r""" In [144]: from pylab import * In [145]: ion() # use a semicolon to suppress the output @savefig test_hist.png width=4in In [151]: hist(np.random.randn(10000), 100); @savefig test_plot.png width=4in In [151]: plot(np.random.randn(10000), 'o'); """, r""" # use a semicolon to suppress the output In [151]: plt.clf() @savefig plot_simple.png width=4in In [151]: plot([1,2,3]) @savefig hist_simple.png width=4in In [151]: hist(np.random.randn(10000), 100); """, r""" # update the current fig In [151]: ylabel('number') In [152]: title('normal distribution') @savefig hist_with_text.png In [153]: grid(True) """, ] ipython_directive.DEBUG = True #options = dict(suppress=True) options = dict() for example in examples: content = example.split('\n') ipython_directive('debug', arguments=None, options=options, content=content, lineno=0, content_offset=None, block_text=None, state=None, state_machine=None, ) # Run test suite as a script if __name__=='__main__': test()
gpl-2.0
AndKe/MAVProxy
MAVProxy/modules/lib/MacOS/backend_wxagg.py
7
5884
from __future__ import division, print_function import matplotlib from matplotlib.figure import Figure from backend_agg import FigureCanvasAgg import backend_wx # already uses wxversion.ensureMinimal('2.8') from backend_wx import FigureManager, FigureManagerWx, FigureCanvasWx, \ FigureFrameWx, DEBUG_MSG, NavigationToolbar2Wx, error_msg_wx, \ draw_if_interactive, show, Toolbar, backend_version import wx class FigureFrameWxAgg(FigureFrameWx): def get_canvas(self, fig): return FigureCanvasWxAgg(self, -1, fig) def _get_toolbar(self, statbar): if matplotlib.rcParams['toolbar']=='classic': toolbar = NavigationToolbarWx(self.canvas, True) elif matplotlib.rcParams['toolbar']=='toolbar2': toolbar = NavigationToolbar2WxAgg(self.canvas) toolbar.set_status_bar(statbar) else: toolbar = None return toolbar class FigureCanvasWxAgg(FigureCanvasAgg, FigureCanvasWx): """ The FigureCanvas contains the figure and does event handling. In the wxPython backend, it is derived from wxPanel, and (usually) lives inside a frame instantiated by a FigureManagerWx. The parent window probably implements a wxSizer to control the displayed control size - but we give a hint as to our preferred minimum size. """ def draw(self, drawDC=None): """ Render the figure using agg. """ DEBUG_MSG("draw()", 1, self) FigureCanvasAgg.draw(self) self.bitmap = _convert_agg_to_wx_bitmap(self.get_renderer(), None) self._isDrawn = True self.gui_repaint(drawDC=drawDC) def blit(self, bbox=None): """ Transfer the region of the agg buffer defined by bbox to the display. If bbox is None, the entire buffer is transferred. """ if bbox is None: self.bitmap = _convert_agg_to_wx_bitmap(self.get_renderer(), None) self.gui_repaint() return l, b, w, h = bbox.bounds r = l + w t = b + h x = int(l) y = int(self.bitmap.GetHeight() - t) srcBmp = _convert_agg_to_wx_bitmap(self.get_renderer(), None) srcDC = wx.MemoryDC() srcDC.SelectObject(srcBmp) destDC = wx.MemoryDC() destDC.SelectObject(self.bitmap) destDC.BeginDrawing() destDC.Blit(x, y, int(w), int(h), srcDC, x, y) destDC.EndDrawing() destDC.SelectObject(wx.NullBitmap) srcDC.SelectObject(wx.NullBitmap) self.gui_repaint() filetypes = FigureCanvasAgg.filetypes def print_figure(self, filename, *args, **kwargs): # Use pure Agg renderer to draw FigureCanvasAgg.print_figure(self, filename, *args, **kwargs) # Restore the current view; this is needed because the # artist contains methods rely on particular attributes # of the rendered figure for determining things like # bounding boxes. if self._isDrawn: self.draw() class NavigationToolbar2WxAgg(NavigationToolbar2Wx): def get_canvas(self, frame, fig): return FigureCanvasWxAgg(frame, -1, fig) def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ # in order to expose the Figure constructor to the pylab # interface we need to create the figure here DEBUG_MSG("new_figure_manager()", 3, None) backend_wx._create_wx_app() FigureClass = kwargs.pop('FigureClass', Figure) fig = FigureClass(*args, **kwargs) return new_figure_manager_given_figure(num, fig) def new_figure_manager_given_figure(num, figure): """ Create a new figure manager instance for the given figure. """ frame = FigureFrameWxAgg(num, figure) figmgr = frame.get_figure_manager() if matplotlib.is_interactive(): figmgr.frame.Show() return figmgr # # agg/wxPython image conversion functions (wxPython >= 2.8) # def _convert_agg_to_wx_image(agg, bbox): """ Convert the region of the agg buffer bounded by bbox to a wx.Image. If bbox is None, the entire buffer is converted. Note: agg must be a backend_agg.RendererAgg instance. """ if bbox is None: # agg => rgb -> image image = wx.EmptyImage(int(agg.width), int(agg.height)) image.SetData(agg.tostring_rgb()) return image else: # agg => rgba buffer -> bitmap => clipped bitmap => image return wx.ImageFromBitmap(_WX28_clipped_agg_as_bitmap(agg, bbox)) def _convert_agg_to_wx_bitmap(agg, bbox): """ Convert the region of the agg buffer bounded by bbox to a wx.Bitmap. If bbox is None, the entire buffer is converted. Note: agg must be a backend_agg.RendererAgg instance. """ if bbox is None: # agg => rgba buffer -> bitmap return wx.BitmapFromBufferRGBA(int(agg.width), int(agg.height), agg.buffer_rgba()) else: # agg => rgba buffer -> bitmap => clipped bitmap return _WX28_clipped_agg_as_bitmap(agg, bbox) def _WX28_clipped_agg_as_bitmap(agg, bbox): """ Convert the region of a the agg buffer bounded by bbox to a wx.Bitmap. Note: agg must be a backend_agg.RendererAgg instance. """ l, b, width, height = bbox.bounds r = l + width t = b + height srcBmp = wx.BitmapFromBufferRGBA(int(agg.width), int(agg.height), agg.buffer_rgba()) srcDC = wx.MemoryDC() srcDC.SelectObject(srcBmp) destBmp = wx.EmptyBitmap(int(width), int(height)) destDC = wx.MemoryDC() destDC.SelectObject(destBmp) destDC.BeginDrawing() x = int(l) y = int(int(agg.height) - t) destDC.Blit(0, 0, int(width), int(height), srcDC, x, y) destDC.EndDrawing() srcDC.SelectObject(wx.NullBitmap) destDC.SelectObject(wx.NullBitmap) return destBmp
gpl-3.0
jakevdp/seaborn
setup.py
6
3621
#! /usr/bin/env python # # Copyright (C) 2012-2014 Michael Waskom <[email protected]> import os # temporarily redirect config directory to prevent matplotlib importing # testing that for writeable directory which results in sandbox error in # certain easy_install versions os.environ["MPLCONFIGDIR"] = "." DESCRIPTION = "Seaborn: statistical data visualization" LONG_DESCRIPTION = """\ Seaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. Some of the features that seaborn offers are - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - Functions that visualize matrices of data and use clustering algorithms to discover structure in those matrices - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations """ DISTNAME = 'seaborn' MAINTAINER = 'Michael Waskom' MAINTAINER_EMAIL = '[email protected]' URL = 'http://stanford.edu/~mwaskom/software/seaborn/' LICENSE = 'BSD (3-clause)' DOWNLOAD_URL = 'https://github.com/mwaskom/seaborn/' VERSION = '0.6.dev' try: from setuptools import setup _has_setuptools = True except ImportError: from distutils.core import setup def check_dependencies(): install_requires = [] # Just make sure dependencies exist, I haven't rigorously # tested what the minimal versions that will work are # (help on that would be awesome) try: import numpy except ImportError: install_requires.append('numpy') try: import scipy except ImportError: install_requires.append('scipy') try: import matplotlib except ImportError: install_requires.append('matplotlib') try: import pandas except ImportError: install_requires.append('pandas') return install_requires if __name__ == "__main__": install_requires = check_dependencies() setup(name=DISTNAME, author=MAINTAINER, author_email=MAINTAINER_EMAIL, maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, description=DESCRIPTION, long_description=LONG_DESCRIPTION, license=LICENSE, url=URL, version=VERSION, download_url=DOWNLOAD_URL, install_requires=install_requires, packages=['seaborn', 'seaborn.external', 'seaborn.tests'], classifiers=[ 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'License :: OSI Approved :: BSD License', 'Topic :: Scientific/Engineering :: Visualization', 'Topic :: Multimedia :: Graphics', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS'], )
bsd-3-clause
zhangyaonju/Global_GPP_VPM_NCEP_C3C4
EVIgapfill/getVIref.py
1
12660
#------------------------------------------------------------------------------- # Name: Preprocessing for the EVI reference # Inputs: EVI for each 8-day from all tiles and quality layers # # Author: Yao Zhang # # Created: 3/29/2017 # Modified: # Copyright: (c) eomf 2015 # Licence: <your licence> #------------------------------------------------------------------------------- import multiprocessing import os from os import listdir from os.path import isfile, join from osgeo import gdal from osgeo.gdalconst import * from scipy.signal import savgol_filter from ctypes import * import numpy as np import numpy.ma as ma #from netCDF4 import Dataset import time import pandas as pd startTime = time.time() root = '/data/ifs/modis/products_006/mod09a1/geotiff/' dirref = '/data/ifs/VPM/driving_data/EVI_ref/' ''' def nan_helper(y): return np.isnan(y), lambda z: z.nonzero()[0] ''' def VIsmooth(ndvi): rdays = c_int(len(ndvi)) fun = cdll.LoadLibrary(os.getcwd() + '/bise.so') outndvi = (c_double * len(ndvi))() slidingperiod = c_int(np.sum(ndvi == 0)/(len(ndvi)/20)) #apply the bise algorithm fun.bise(byref(rdays), (c_double * len(ndvi))(*ndvi), byref(slidingperiod), outndvi) bisendvi = np.frombuffer(outndvi) #print bisendvi bisendvi[bisendvi == -1] = np.nan peaks = [] threshold = 1.5 check = np.argwhere(np.isnan(bisendvi)) #print check if len(check) < 3: return ndvi else: for i in range(0, len(check)): if i == 0: if bisendvi[check[i]] > (threshold * np.mean(bisendvi[np.array([(check[len(check)-1], check[i+1])])])): if bisendvi[check[i]] > 3000: peaks.append(check[i]) else: if i == (len(check)-1): if bisendvi[check[i]] > (threshold * np.mean(bisendvi[np.array([(check[i-1], check[1])])])): if bisendvi[check[i]] > 3000: peaks.append(check[i]) else: if bisendvi[check[i]] > (threshold * np.mean(bisendvi[check[np.array([i-1, i+1])]])): if bisendvi[check[i]] > 3000: peaks.append(check[i]) bisendvi[peaks] = np.nan return bisendvi # def buildVrtFile(root, doy, tile, product): fileList = [] for year in range(2000, 2017): tiledir = os.path.join(root, product, str(year), tile) for path, subdirs, files in os.walk(tiledir): for name in files: if (str(1000+doy)[1:] == name[13:16]) and (".tif" == name[-4:]): fileList.append([os.path.join(path, name)]) fileList.sort() print len(fileList), 'files were built into a vrt file' if len(fileList) == 0: return 0 filename = os.path.join('/data/ifs/users/yzhang/TEMP/VRT', str(1000+doy)[1:]+tile+product+'_list.txt') outFilelist = open(filename, 'w') for file in fileList: outFilelist.write(file[0]+'\r\n') outFilelist.close() return filename def write_file(output_name, output_array, GeoT, xsize, ysize, proJ, driverName='GTiff'): print "creating", output_name dr = gdal.GetDriverByName(driverName) dr.Register() do = dr.Create(output_name, xsize, ysize, 1, gdal.GDT_UInt16, options=['COMPRESS=LZW']) do.SetGeoTransform(GeoT) do.SetProjection(proJ) do.GetRasterBand(1).WriteArray(output_array) do.GetRasterBand(1).SetNoDataValue(32767) do = None def export_array (Rasters, directory, prod, tile, index): fileNum = Rasters.shape[0] for i in range(fileNum): fileName=os.path.join(directory, 'MOD09A1.'+str(1000+index[i])[1:]+'.'+tile+'.'+prod+'.tif') write_file(fileName, Rasters[i, :, :], geoTran, cols, rows, geoProj, "GTiff") def parallelize_dataframe(df): df_split = np.array_split(df, 5, axis=1) pool = multiprocessing.Pool(5) df = np.concatenate(pool.map(dataframeapply, df_split), axis=1) pool.close() pool.join() return df def dataframeapply(df): df = pd.DataFrame(np.concatenate([df[23:46, :], df, df[:23, :]])) df_smoothed = df.apply(VIsmooth) df_smoothed = df_smoothed.interpolate(axis=0) #make a SG filter df_select = df_smoothed.as_matrix()[23:69, :] df_select[np.isnan(df_select)] = 0 bisendviSG = savgol_filter(df_select, window_length=5, polyorder=3) #bisendvi = None bisendviSG[bisendviSG < 0] = 0 return bisendviSG def import_all_year_data(tile): temp = np.zeros([46, 2400*2400], np.dtype(float)) if int(tile[5:6])<2: temp[:]=np.nan for doy in range(1, 369, 8): evifile = buildVrtFile(root, doy, tile, 'evi') cloudfile = buildVrtFile(root, doy, tile, 'cloudmask') aerosolfile = buildVrtFile(root, doy, tile, 'aerosolmask') #if no file found for this DOY if evifile == 0: continue #doyList.append(doy) #build vrt for EVI vrtEVI = os.path.join(os.path.dirname(evifile), str(1000+doy)[1:]+tile+'EVI_vrt.vrt') print "Building the vrt file: ", evifile os.system('gdalbuildvrt -separate -input_file_list '+evifile+' '+vrtEVI) inEVI = gdal.Open(vrtEVI) EVI = inEVI.ReadAsArray() #build vrt for cloudmask vrtcloud = os.path.join(os.path.dirname(cloudfile), str(1000+doy)[1:]+tile+'cloud_vrt.vrt') print "Building the vrt file: ", cloudfile os.system('gdalbuildvrt -separate -input_file_list '+cloudfile+' '+vrtcloud) incloud = gdal.Open(vrtcloud) cloud = incloud.ReadAsArray() #build vrt for aerosol vrtaerosol = os.path.join(os.path.dirname(aerosolfile), str(1000+doy)[1:]+tile+'aerosol_vrt.vrt') print "Building the vrt file: ", aerosolfile os.system('gdalbuildvrt -separate -input_file_list '+aerosolfile+' '+vrtaerosol) inaerosol = gdal.Open(vrtaerosol) aerosol = inaerosol.ReadAsArray() global rows, cols, geoProj, geoTran rows = 2400 cols = 2400 geoTran = inEVI.GetGeoTransform() geoProj = inEVI.GetProjection() #mask for bad quality EVIgood = ma.masked_where((cloud != 1)|(aerosol == 0)|(EVI < 0)|(EVI > 10000), EVI) EVIgood = EVIgood.reshape(EVIgood.size/2400/2400, 2400*2400) medianEVI = np.nanmedian(EVIgood, axis=0) EVI = None aerosol = None cloud = None EVIgood = None #assign to the 46 layer of matrix temp[(doy-1)/8, :] = medianEVI meanEVI = None return temp def smooth(tile): #first use this function to get mean and save it in an array temp = import_all_year_data(tile) ####after get the mean value for all doy, I will run a bise gapfill first print temp.size ##when using the single processing #inputVI = pd.DataFrame(temp) #VIsmoothed = inputVI.apply(VIsmooth, axis=0) #VIsmoothed = VIsmoothed.as_matrix() #VIsmoothed = parallelize_dataframe(temp) ##when using the multiprocessing VIsmoothed = dataframeapply(temp) VIsmoothed = VIsmoothed.reshape(VIsmoothed.size/2400/2400, 2400, 2400) TILEdir = os.path.join(dirref, tile) if not os.path.exists(TILEdir): os.makedirs(TILEdir) export_array (Rasters=np.int16(VIsmoothed), directory=TILEdir, \ prod='EVI.BISE.SG', tile=tile, index=range(1, 369, 8)) temp = None inputVI = None VIsmoothed = None def process_list(tile=None, mp=True, count=1): if mp: #count = multiprocessing.cpu_count()-save_cpus pool = multiprocessing.Pool(processes=count) pool.map(smooth, tile) # ''' tile = ['h17v00','h12v01','h13v01','h14v01','h15v01','h16v01','h17v01','h18v01','h19v01','h20v01','h21v01',\ 'h22v01','h23v01','h09v02','h10v02','h11v02','h12v02','h13v02','h14v02','h15v02','h16v02','h17v02',\ 'h18v02','h19v02','h20v02','h21v02','h22v02','h23v02','h24v02','h25v02','h26v02','h06v03','h07v03',\ 'h08v03','h09v03','h10v03','h11v03','h12v03','h13v03','h14v03','h15v03','h17v03','h18v03','h19v03',\ 'h20v03','h21v03','h22v03','h23v03','h24v03','h25v03','h26v03','h27v03','h28v03','h29v03','h08v04',\ 'h09v04','h10v04','h11v04','h12v04','h13v04','h14v04','h17v04','h18v04','h19v04','h20v04','h21v04',\ 'h22v04','h23v04','h24v04','h25v04','h26v04','h27v04','h28v04','h07v05','h08v05','h09v05','h10v05',\ 'h11v05','h12v05','h15v05','h16v05','h17v05','h18v05','h19v05','h20v05','h21v05','h22v05','h23v05',\ 'h24v05','h25v05','h26v05','h27v05','h28v05','h29v05','h30v05','h02v06','h03v06','h07v06','h08v06',\ 'h09v06','h10v06','h11v06','h16v06','h17v06','h18v06','h19v06','h20v06','h21v06','h22v06','h23v06',\ 'h24v06','h25v06','h26v06','h27v06','h28v06','h29v06','h30v06','h31v06','h01v07','h03v07','h07v07',\ 'h08v07','h09v07','h10v07','h11v07','h12v07','h15v07','h16v07','h17v07','h18v07','h19v07','h20v07',\ 'h21v07','h22v07','h23v07','h24v07','h25v07','h26v07','h27v07','h28v07','h29v07','h30v07','h31v07',\ 'h32v07','h33v07','h34v07','h00v08','h01v08','h02v08','h08v08','h09v08','h10v08','h11v08','h12v08',\ 'h13v08','h16v08','h17v08','h18v08','h19v08','h20v08','h21v08','h22v08','h23v08','h25v08','h26v08',\ 'h27v08','h28v08','h29v08','h30v08','h31v08','h32v08','h33v08','h34v08','h35v08','h00v09','h01v09',\ 'h02v09','h03v09','h04v09','h08v09','h09v09','h10v09','h11v09','h12v09','h13v09','h14v09','h16v09',\ 'h18v09','h19v09','h20v09','h21v09','h22v09','h23v09','h25v09','h27v09','h28v09','h29v09','h30v09',\ 'h31v09','h32v09','h33v09','h34v09','h35v09',\ #southhemisphere 'h00v10','h01v10','h02v10','h03v10','h04v10','h05v10','h10v10','h11v10','h12v10','h13v10','h14v10',\ 'h17v10','h19v10','h20v10','h21v10','h22v10','h23v10','h27v10','h28v10','h29v10','h30v10','h31v10',\ 'h32v10','h33v10','h34v10','h35v10','h01v11','h02v11','h03v11','h04v11','h05v11','h06v11','h08v11',\ 'h10v11','h11v11','h12v11','h13v11','h14v11','h15v11','h19v11','h20v11','h21v11','h22v11','h23v11',\ 'h27v11','h28v11','h29v11','h30v11','h31v11','h32v11','h33v11','h11v12','h12v12','h13v12','h16v12',\ 'h17v12','h19v12','h20v12','h24v12','h27v12','h28v12','h29v12','h30v12','h31v12','h32v12','h05v13',\ 'h12v13','h13v13','h17v13','h20v13','h21v13','h22v13','h28v13','h29v13','h30v13','h31v13','h13v14',\ 'h14v14','h15v14','h16v14','h18v14','h22v14','h27v14','h28v14'] ''' ''' tile = ["h17v00","h13v01","h10v02","h21v02","h22v02","h20v04","h21v04","h23v04",\ "h24v04","h27v04","h08v05","h10v05","h11v05","h17v05","h19v05","h20v05","h21v05",\ "h22v05","h23v05","h24v05","h25v05","h26v05","h27v05","h28v05","h29v05","h30v05",\ "h02v06","h03v06","h07v06","h08v06","h09v06","h11v06","h16v06","h17v06","h18v06",\ "h19v06","h20v06","h21v06","h22v06","h23v06","h24v06","h25v06","h26v06","h27v06",\ "h28v06","h29v06","h30v06","h31v06","h01v07","h03v07","h08v07","h12v07","h24v07"] tile = ["h00v10","h01v10","h02v06","h02v10","h03v10","h04v10","h07v05","h08v06","h09v05",\ "h09v06","h10v05","h10v09","h10v10","h11v01","h11v05","h11v10","h12v09","h12v10",\ "h13v10","h14v00","h14v04","h14v10","h15v00","h16v00","h17v04","h17v05","h18v00",\ "h18v06","h19v00","h19v04","h19v05","h19v06","h20v00","h20v06","h21v00","h21v05",\ "h21v06","h21v10","h22v04","h22v05","h22v06","h23v04","h23v05","h23v06","h23v09",\ "h24v01","h24v05","h25v04","h25v05","h25v09","h26v04","h27v04","h27v05","h27v10",\ "h28v04","h28v09","h28v10","h29v09","h29v10","h30v05","h30v09","h30v10","h31v10",\ "h32v10","h35v09"] ''' tile = ["h11v01","h12v01","h13v01","h14v00","h14v01","h15v00","h15v01","h16v00","h16v01",\ "h17v00","h17v01","h18v00","h18v01","h19v00","h19v01","h20v00","h20v01","h21v00",\ "h21v01","h22v01","h23v01","h24v01"] #i = np.arange(0,5) #segtiles = tile[0:60] #lotus #segtiles = tile[60:120] #for peony #segtiles = tile[120:180] #for cattle #segtiles = tile[180:240] # crane #segtiles = tile[240:287] #lily #segtiles = tile[0:12] #for cattle #segtiles = tile[12:24] #for lily #segtiles = tile[24:36] #for crane #segtiles = tile[36:48] #for lotus #segtiles = tile[48:65] #for poeny #smooth(segtiles) #process_list(segtiles, mp=True, count=6) #segtiles = tile[0:5] #for cattle #segtiles = tile[5:10] #for lily #segtiles = tile[10:15] #for crane #segtiles = tile[15:20] #for lotus segtiles = tile[20:22] #for poeny process_list(segtiles, mp=True, count=5)
apache-2.0
wangshiphys/HamiltonianPy
HamiltonianPy/tools/Octahedron.py
1
2368
""" Plot the octahedron in 3D """ import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D color_map = plt.get_cmap("tab10") colors = color_map(range(color_map.N)) marker_size_center = 25 marker_size_corner = 22 line_width = 8 # Coordinates of the points point0 = [0, 0, 0] point1 = [1, -1, 0] point2 = [1, 1, 0] point3 = [-1, 1, 0] point4 = [-1, -1, 0] point5 = [0, 0, np.sqrt(2)] point6 = [0, 0, -np.sqrt(2)] fig = plt.figure() ax = fig.add_subplot(111, projection="3d") lines = [ [np.array([point1, point2]), "solid", line_width, None], [np.array([point2, point3]), "solid", line_width, None], [np.array([point3, point4]), "dashed", line_width, None], [np.array([point4, point1]), "solid", line_width, None], [np.array([point0, point1]), "dashed", line_width/2, "gray"], [np.array([point0, point2]), "dashed", line_width/2, "gray"], [np.array([point0, point3]), "dashed", line_width/2, "gray"], [np.array([point0, point4]), "dashed", line_width/2, "gray"], [np.array([point0, point5]), "dashed", line_width/2, "gray"], [np.array([point0, point6]), "dashed", line_width/2, "gray"], [np.array([point5, point1]), "solid", line_width, None], [np.array([point5, point2]), "solid", line_width, None], [np.array([point5, point3]), "solid", line_width, None], [np.array([point5, point4]), "solid", line_width, None], [np.array([point6, point1]), "solid", line_width, None], [np.array([point6, point2]), "solid", line_width, None], [np.array([point6, point3]), "dashed", line_width, None], [np.array([point6, point4]), "dashed", line_width, None], ] for endpoints, ls, lw, color in lines: ax.plot( endpoints[:, 0], endpoints[:, 1], endpoints[:, 2], lw=lw, ls=ls, color=color, ) # Plot the 7 points ax.plot( point0[0:1], point0[1:2], point0[2:], ls="", marker="o", color=colors[0], markersize=marker_size_center ) points = np.array([point1, point2, point3, point4, point5, point6]) ax.plot( points[:, 0], points[:, 1], points[:, 2], ls="", marker="o", color=colors[1], markersize=marker_size_corner ) azimuth = 0 # elevation = -36 elevation = 20 ax.view_init(elevation, azimuth) ax.set_axis_off() plt.show() fig.savefig( "Octahedron_azimuth={0}_elevation={1}.png".format(azimuth, elevation), ) plt.close("all")
gpl-3.0
DonBeo/statsmodels
statsmodels/formula/formulatools.py
32
3846
from statsmodels.compat.python import iterkeys import statsmodels.tools.data as data_util from patsy import dmatrices, NAAction import numpy as np # if users want to pass in a different formula framework, they can # add their handler here. how to do it interactively? # this is a mutable object, so editing it should show up in the below formula_handler = {} class NAAction(NAAction): # monkey-patch so we can handle missing values in 'extra' arrays later def _handle_NA_drop(self, values, is_NAs, origins): total_mask = np.zeros(is_NAs[0].shape[0], dtype=bool) for is_NA in is_NAs: total_mask |= is_NA good_mask = ~total_mask self.missing_mask = total_mask # "..." to handle 1- versus 2-dim indexing return [v[good_mask, ...] for v in values] def handle_formula_data(Y, X, formula, depth=0, missing='drop'): """ Returns endog, exog, and the model specification from arrays and formula Parameters ---------- Y : array-like Either endog (the LHS) of a model specification or all of the data. Y must define __getitem__ for now. X : array-like Either exog or None. If all the data for the formula is provided in Y then you must explicitly set X to None. formula : str or patsy.model_desc You can pass a handler by import formula_handler and adding a key-value pair where the key is the formula object class and the value is a function that returns endog, exog, formula object Returns ------- endog : array-like Should preserve the input type of Y,X exog : array-like Should preserve the input type of Y,X. Could be None. """ # half ass attempt to handle other formula objects if isinstance(formula, tuple(iterkeys(formula_handler))): return formula_handler[type(formula)] na_action = NAAction(on_NA=missing) if X is not None: if data_util._is_using_pandas(Y, X): result = dmatrices(formula, (Y, X), depth, return_type='dataframe', NA_action=na_action) else: result = dmatrices(formula, (Y, X), depth, return_type='dataframe', NA_action=na_action) else: if data_util._is_using_pandas(Y, None): result = dmatrices(formula, Y, depth, return_type='dataframe', NA_action=na_action) else: result = dmatrices(formula, Y, depth, return_type='dataframe', NA_action=na_action) # if missing == 'raise' there's not missing_mask missing_mask = getattr(na_action, 'missing_mask', None) if not np.any(missing_mask): missing_mask = None if len(result) > 1: # have RHS design design_info = result[1].design_info # detach it from DataFrame else: design_info = None # NOTE: is there ever a case where we'd need LHS design_info? return result, missing_mask, design_info def _remove_intercept_patsy(terms): """ Remove intercept from Patsy terms. """ from patsy.desc import INTERCEPT if INTERCEPT in terms: terms.remove(INTERCEPT) return terms def _has_intercept(design_info): from patsy.desc import INTERCEPT return INTERCEPT in design_info.terms def _intercept_idx(design_info): """ Returns boolean array index indicating which column holds the intercept """ from patsy.desc import INTERCEPT from numpy import array return array([INTERCEPT == i for i in design_info.terms]) def make_hypotheses_matrices(model_results, test_formula): """ """ from patsy.constraint import linear_constraint exog_names = model_results.model.exog_names LC = linear_constraint(test_formula, exog_names) return LC
bsd-3-clause
mraspaud/mpop
mpop/imageo/formats/tifffile.py
2
179637
#!/usr/bin/env python # -*- coding: utf-8 -*- # tifffile.py # Copyright (c) 2008-2014, Christoph Gohlke # Copyright (c) 2008-2014, The Regents of the University of California # Produced at the Laboratory for Fluorescence Dynamics # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holders nor the names of any # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Read and write image data from and to TIFF files. Image and metadata can be read from TIFF, BigTIFF, OME-TIFF, STK, LSM, NIH, SGI, ImageJ, MicroManager, FluoView, SEQ and GEL files. Only a subset of the TIFF specification is supported, mainly uncompressed and losslessly compressed 2**(0 to 6) bit integer, 16, 32 and 64-bit float, grayscale and RGB(A) images, which are commonly used in bio-scientific imaging. Specifically, reading JPEG and CCITT compressed image data or EXIF, IPTC, GPS, and XMP metadata is not implemented. Only primary info records are read for STK, FluoView, MicroManager, and NIH image formats. TIFF, the Tagged Image File Format, is under the control of Adobe Systems. BigTIFF allows for files greater than 4 GB. STK, LSM, FluoView, SGI, SEQ, GEL, and OME-TIFF, are custom extensions defined by Molecular Devices (Universal Imaging Corporation), Carl Zeiss MicroImaging, Olympus, Silicon Graphics International, Media Cybernetics, Molecular Dynamics, and the Open Microscopy Environment consortium respectively. For command line usage run ``python tifffile.py --help`` :Author: `Christoph Gohlke <http://www.lfd.uci.edu/~gohlke/>`_ :Organization: Laboratory for Fluorescence Dynamics, University of California, Irvine :Version: 2014.08.24 Requirements ------------ * `CPython 2.7 or 3.4 <http://www.python.org>`_ * `Numpy 1.8.2 <http://www.numpy.org>`_ * `Matplotlib 1.4 <http://www.matplotlib.org>`_ (optional for plotting) * `Tifffile.c 2013.11.05 <http://www.lfd.uci.edu/~gohlke/>`_ (recommended for faster decoding of PackBits and LZW encoded strings) Notes ----- The API is not stable yet and might change between revisions. Tested on little-endian platforms only. Other Python packages and modules for reading bio-scientific TIFF files: * `Imread <http://luispedro.org/software/imread>`_ * `PyLibTiff <http://code.google.com/p/pylibtiff>`_ * `SimpleITK <http://www.simpleitk.org>`_ * `PyLSM <https://launchpad.net/pylsm>`_ * `PyMca.TiffIO.py <http://pymca.sourceforge.net/>`_ (same as fabio.TiffIO) * `BioImageXD.Readers <http://www.bioimagexd.net/>`_ * `Cellcognition.io <http://cellcognition.org/>`_ * `CellProfiler.bioformats <https://github.com/CellProfiler/python-bioformats>`_ Acknowledgements ---------------- * Egor Zindy, University of Manchester, for cz_lsm_scan_info specifics. * Wim Lewis for a bug fix and some read_cz_lsm functions. * Hadrien Mary for help on reading MicroManager files. References ---------- (1) TIFF 6.0 Specification and Supplements. Adobe Systems Incorporated. http://partners.adobe.com/public/developer/tiff/ (2) TIFF File Format FAQ. http://www.awaresystems.be/imaging/tiff/faq.html (3) MetaMorph Stack (STK) Image File Format. http://support.meta.moleculardevices.com/docs/t10243.pdf (4) Image File Format Description LSM 5/7 Release 6.0 (ZEN 2010). Carl Zeiss MicroImaging GmbH. BioSciences. May 10, 2011 (5) File Format Description - LSM 5xx Release 2.0. http://ibb.gsf.de/homepage/karsten.rodenacker/IDL/Lsmfile.doc (6) The OME-TIFF format. http://www.openmicroscopy.org/site/support/file-formats/ome-tiff (7) UltraQuant(r) Version 6.0 for Windows Start-Up Guide. http://www.ultralum.com/images%20ultralum/pdf/UQStart%20Up%20Guide.pdf (8) Micro-Manager File Formats. http://www.micro-manager.org/wiki/Micro-Manager_File_Formats (9) Tags for TIFF and Related Specifications. Digital Preservation. http://www.digitalpreservation.gov/formats/content/tiff_tags.shtml Examples -------- >>> data = numpy.random.rand(5, 301, 219) >>> imsave('temp.tif', data) >>> image = imread('temp.tif') >>> numpy.testing.assert_array_equal(image, data) >>> with TiffFile('temp.tif') as tif: ... images = tif.asarray() ... for page in tif: ... for tag in page.tags.values(): ... t = tag.name, tag.value ... image = page.asarray() """ from __future__ import division, print_function import sys import os import re import glob import math import zlib import time import json import struct import warnings import tempfile import datetime import collections from fractions import Fraction from xml.etree import cElementTree as etree import numpy try: import _tifffile except ImportError: warnings.warn( "failed to import the optional _tifffile C extension module.\n" "Loading of some compressed images will be slow.\n" "Tifffile.c can be obtained at http://www.lfd.uci.edu/~gohlke/") __version__ = '2014.08.24' __docformat__ = 'restructuredtext en' __all__ = ('imsave', 'imread', 'imshow', 'TiffFile', 'TiffWriter', 'TiffSequence') def imsave(filename, data, **kwargs): """Write image data to TIFF file. Refer to the TiffWriter class and member functions for documentation. Parameters ---------- filename : str Name of file to write. data : array_like Input image. The last dimensions are assumed to be image depth, height, width, and samples. kwargs : dict Parameters 'byteorder', 'bigtiff', and 'software' are passed to the TiffWriter class. Parameters 'photometric', 'planarconfig', 'resolution', 'description', 'compress', 'volume', and 'extratags' are passed to the TiffWriter.save function. Examples -------- >>> data = numpy.random.rand(2, 5, 3, 301, 219) >>> description = u'{"shape": %s}' % str(list(data.shape)) >>> imsave('temp.tif', data, compress=6, ... extratags=[(270, 's', 0, description, True)]) Save tiles with compression enabled >>> data = numpy.random.rand(400, 300) >>> imsave('temp.tif', data, compress=6, tile_width=150, tile_length=100) >>> with TiffFile('temp.tif') as tif: ... image = tif.asarray() ... page = tif[0] >>> numpy.testing.assert_array_equal(image, data) >>> page.tags['tile_width'].value 150 >>> page.tags['tile_length'].value 100 Save tiles with compression disabled >>> data = numpy.random.rand(400, 300) >>> imsave('temp.tif', data, compress=0, tile_width=150, tile_length=100) >>> with TiffFile('temp.tif') as tif: ... image = tif.asarray() ... page = tif[0] >>> numpy.testing.assert_array_equal(image, data) >>> page.tags['tile_width'].value 150 >>> page.tags['tile_length'].value 100 Save tiles with compression enabled, 3 samples per pixel >>> data = numpy.random.rand(3, 400, 300) >>> imsave('temp.tif', data, compress=6, tile_width=150, tile_length=100) >>> with TiffFile('temp.tif') as tif: ... image = tif.asarray() ... page = tif[0] >>> numpy.testing.assert_array_equal(image, data) >>> page.tags['tile_width'].value 150 >>> page.tags['tile_length'].value 100 Save colormap >>> data = (numpy.random.rand(400, 300)*250).astype(numpy.uint8) >>> cmap1ch = [x*256 for x in range(256)] >>> cmap = cmap1ch + cmap1ch + cmap1ch >>> data_colored = numpy.take(cmap1ch, data) >>> data_colored = numpy.dstack((data_colored, data_colored, data_colored)) >>> data_colored = numpy.swapaxes(numpy.swapaxes(data_colored,0,2),1,2) >>> imsave('temp.tif', data, photometric='palette', colormap = cmap) >>> with TiffFile('temp.tif') as tif: ... image = tif.asarray() ... page = tif[0] >>> numpy.testing.assert_array_equal(image, data_colored) >>> numpy.testing.assert_array_equal(page.tags['color_map'].value, cmap) """ tifargs = {} for key in ('byteorder', 'bigtiff', 'software', 'writeshape'): if key in kwargs: tifargs[key] = kwargs[key] del kwargs[key] if 'writeshape' not in kwargs: kwargs['writeshape'] = True if 'bigtiff' not in tifargs and data.size*data.dtype.itemsize > 2000*2**20: tifargs['bigtiff'] = True with TiffWriter(filename, **tifargs) as tif: tif.save(data, **kwargs) class TiffWriter(object): """Write image data to TIFF file. TiffWriter instances must be closed using the close method, which is automatically called when using the 'with' statement. Examples -------- >>> data = numpy.random.rand(2, 5, 3, 301, 219) >>> with TiffWriter('temp.tif', bigtiff=True) as tif: ... for i in range(data.shape[0]): ... tif.save(data[i], compress=6) """ TYPES = {'B': 1, 's': 2, 'H': 3, 'I': 4, '2I': 5, 'b': 6, 'h': 8, 'i': 9, 'f': 11, 'd': 12, 'Q': 16, 'q': 17} TAGS = { 'new_subfile_type': 254, 'subfile_type': 255, 'image_width': 256, 'image_length': 257, 'bits_per_sample': 258, 'compression': 259, 'photometric': 262, 'fill_order': 266, 'document_name': 269, 'image_description': 270, 'strip_offsets': 273, 'orientation': 274, 'samples_per_pixel': 277, 'rows_per_strip': 278, 'strip_byte_counts': 279, 'x_resolution': 282, 'y_resolution': 283, 'planar_configuration': 284, 'page_name': 285, 'resolution_unit': 296, 'software': 305, 'datetime': 306, 'predictor': 317, 'color_map': 320, 'tile_width': 322, 'tile_length': 323, 'tile_offsets': 324, 'tile_byte_counts': 325, 'extra_samples': 338, 'sample_format': 339, 'image_depth': 32997, 'tile_depth': 32998} def __init__(self, filename, bigtiff=False, byteorder=None, software='tifffile.py'): """Create a new TIFF file for writing. Use bigtiff=True when creating files greater than 2 GB. Parameters ---------- filename : str Name of file to write. bigtiff : bool If True, the BigTIFF format is used. byteorder : {'<', '>'} The endianness of the data in the file. By default this is the system's native byte order. software : str Name of the software used to create the image. Saved with the first page only. """ if byteorder not in (None, '<', '>'): raise ValueError("invalid byteorder %s" % byteorder) if byteorder is None: byteorder = '<' if sys.byteorder == 'little' else '>' self._byteorder = byteorder self._software = software self._fh = open(filename, 'wb') self._fh.write({'<': b'II', '>': b'MM'}[byteorder]) if bigtiff: self._bigtiff = True self._offset_size = 8 self._tag_size = 20 self._numtag_format = 'Q' self._offset_format = 'Q' self._val_format = '8s' self._fh.write(struct.pack(byteorder+'HHH', 43, 8, 0)) else: self._bigtiff = False self._offset_size = 4 self._tag_size = 12 self._numtag_format = 'H' self._offset_format = 'I' self._val_format = '4s' self._fh.write(struct.pack(byteorder+'H', 42)) # first IFD self._ifd_offset = self._fh.tell() self._fh.write(struct.pack(byteorder+self._offset_format, 0)) def save(self, data, photometric=None, planarconfig=None, resolution=None, description=None, volume=False, writeshape=False, compress=0, colormap=None, extrasamples_type=1, tile_width=None, tile_length=None, extratags=()): """Write image data to TIFF file. Image data are written in one stripe per plane. Dimensions larger than 2 to 4 (depending on photometric mode, planar configuration, and SGI mode) are flattened and saved as separate pages. The 'sample_format' and 'bits_per_sample' TIFF tags are derived from the data type. Parameters ---------- data : array_like Input image. The last dimensions are assumed to be image depth, height, width, and samples. photometric : {'minisblack', 'miniswhite', 'rgb', 'palette'} The color space of the image data. By default this setting is inferred from the data shape. planarconfig : {'contig', 'planar'} Specifies if samples are stored contiguous or in separate planes. By default this setting is inferred from the data shape. 'contig': last dimension contains samples. 'planar': third last dimension contains samples. resolution : (float, float) or ((int, int), (int, int)) X and Y resolution in dots per inch as float or rational numbers. description : str The subject of the image. Saved with the first page only. compress : int Values from 0 to 9 controlling the level of zlib compression. If 0, data are written uncompressed (default). volume : bool If True, volume data are stored in one tile (if applicable) using the SGI image_depth and tile_depth tags. Image width and depth must be multiple of 16. Few software can read this format, e.g. MeVisLab. writeshape : bool If True, write the data shape to the image_description tag if necessary and no other description is given. colormap : list of uint16's (3 concatenated lists for RGB) Individual RGB arrays describing the color value for the corresponding data value. For example, image data with a data type of unsigned 8-bit integers have 256 possible values (0-255). So the colormap will have 3*256 values ranging from 0 to 65535 (2**16 - 1). tile_width : int If not none, data is stored in tiles of size (tile_length, tile_width). Only in conjunction with defined tile_length (default : None) tile_length : int If not none, data is stored in tiles of size (tile_length, tile_width). Only in conjunction with defined tile_width (default : None) extratags: sequence of tuples Additional tags as [(code, dtype, count, value, writeonce)]. code : int The TIFF tag Id. dtype : str Data type of items in 'value' in Python struct format. One of B, s, H, I, 2I, b, h, i, f, d, Q, or q. count : int Number of data values. Not used for string values. value : sequence 'Count' values compatible with 'dtype'. writeonce : bool If True, the tag is written to the first page only. """ if photometric not in (None, 'minisblack', 'miniswhite', 'rgb', 'palette'): raise ValueError("invalid photometric %s" % photometric) if planarconfig not in (None, 'contig', 'planar'): raise ValueError("invalid planarconfig %s" % planarconfig) if not 0 <= compress <= 9: raise ValueError("invalid compression level %s" % compress) fh = self._fh byteorder = self._byteorder numtag_format = self._numtag_format val_format = self._val_format offset_format = self._offset_format offset_size = self._offset_size tag_size = self._tag_size data = numpy.asarray(data, dtype=byteorder+data.dtype.char, order='C') data_shape = shape = data.shape data = numpy.atleast_2d(data) # enable tile writing if tile width and length specified if tile_length is not None and tile_width is not None: write_tiles = 1 else: write_tiles = 0 # normalize shape of data samplesperpixel = 1 extrasamples = 0 if volume and data.ndim < 3: volume = False if photometric is None: if planarconfig: photometric = 'rgb' elif data.ndim > 2 and shape[-1] in (3, 4): photometric = 'rgb' elif volume and data.ndim > 3 and shape[-4] in (3, 4): photometric = 'rgb' elif data.ndim > 2 and shape[-3] in (3, 4): photometric = 'rgb' else: photometric = 'minisblack' if planarconfig and len(shape) <= (3 if volume else 2) and ( photometric != 'palette'): planarconfig = None photometric = 'minisblack' if photometric == 'rgb': if len(shape) < 3: raise ValueError("not a RGB(A) image") if len(shape) < 4: volume = False if planarconfig is None: if shape[-1] in (3, 4): planarconfig = 'contig' elif shape[-4 if volume else -3] in (3, 4): planarconfig = 'planar' elif shape[-1] > shape[-4 if volume else -3]: planarconfig = 'planar' else: planarconfig = 'contig' if planarconfig == 'contig': data = data.reshape((-1, 1) + shape[(-4 if volume else -3):]) samplesperpixel = data.shape[-1] else: data = data.reshape( (-1,) + shape[(-4 if volume else -3):] + (1,)) samplesperpixel = data.shape[1] if samplesperpixel > 3: extrasamples = samplesperpixel - 3 elif photometric == 'palette': if len(shape) > 2: raise ValueError("not a 1-channel image") samplesperpixel = 1 planarconfig = None # remove trailing 1s while len(shape) > 2 and shape[-1] == 1: shape = shape[:-1] if len(shape) < 3: volume = False data = data.reshape( (-1, 1) + shape[(-3 if volume else -2):] + (1,)) elif planarconfig and len(shape) > (3 if volume else 2): if planarconfig == 'contig': data = data.reshape((-1, 1) + shape[(-4 if volume else -3):]) samplesperpixel = data.shape[-1] else: data = data.reshape( (-1,) + shape[(-4 if volume else -3):] + (1,)) samplesperpixel = data.shape[1] extrasamples = samplesperpixel - 1 else: planarconfig = None # remove trailing 1s while len(shape) > 2 and shape[-1] == 1: shape = shape[:-1] if len(shape) < 3: volume = False if False and ( len(shape) > (3 if volume else 2) and shape[-1] < 5 and all(shape[-1] < i for i in shape[(-4 if volume else -3):-1])): # DISABLED: non-standard TIFF, e.g. (220, 320, 2) planarconfig = 'contig' samplesperpixel = shape[-1] data = data.reshape((-1, 1) + shape[(-4 if volume else -3):]) else: data = data.reshape( (-1, 1) + shape[(-3 if volume else -2):] + (1,)) if samplesperpixel == 2: warnings.warn("writing non-standard TIFF (samplesperpixel 2)") if volume and (data.shape[-2] % 16 or data.shape[-3] % 16): warnings.warn("volume width or length are not multiple of 16") volume = False data = numpy.swapaxes(data, 1, 2) data = data.reshape( (data.shape[0] * data.shape[1],) + data.shape[2:]) # data.shape is now normalized 5D or 6D, depending on volume # (pages, planar_samples, (depth,) height, width, contig_samples) assert len(data.shape) in (5, 6) shape = data.shape bytestr = bytes if sys.version[0] == '2' else ( lambda x: bytes(x, 'utf-8') if isinstance(x, str) else x) tags = [] # list of (code, ifdentry, ifdvalue, writeonce) if volume or write_tiles: # use tiles to save volume data or explicitly requests tag_byte_counts = TiffWriter.TAGS['tile_byte_counts'] tag_offsets = TiffWriter.TAGS['tile_offsets'] else: # else use strips tag_byte_counts = TiffWriter.TAGS['strip_byte_counts'] tag_offsets = TiffWriter.TAGS['strip_offsets'] def pack(fmt, *val): return struct.pack(byteorder+fmt, *val) def addtag(code, dtype, count, value, writeonce=False): # Compute ifdentry & ifdvalue bytes from code, dtype, count, value. # Append (code, ifdentry, ifdvalue, writeonce) to tags list. code = int(TiffWriter.TAGS.get(code, code)) try: tifftype = TiffWriter.TYPES[dtype] except KeyError: raise ValueError("unknown dtype %s" % dtype) rawcount = count if dtype == 's': value = bytestr(value) + b'\0' count = rawcount = len(value) value = (value, ) if len(dtype) > 1: count *= int(dtype[:-1]) dtype = dtype[-1] ifdentry = [pack('HH', code, tifftype), pack(offset_format, rawcount)] ifdvalue = None if count == 1: if isinstance(value, (tuple, list)): value = value[0] ifdentry.append(pack(val_format, pack(dtype, value))) elif struct.calcsize(dtype) * count <= offset_size: ifdentry.append(pack(val_format, pack(str(count)+dtype, *value))) else: ifdentry.append(pack(offset_format, 0)) ifdvalue = pack(str(count)+dtype, *value) tags.append((code, b''.join(ifdentry), ifdvalue, writeonce)) def rational(arg, max_denominator=1000000): # return nominator and denominator from float or two integers try: f = Fraction.from_float(arg) except TypeError: f = Fraction(arg[0], arg[1]) f = f.limit_denominator(max_denominator) return f.numerator, f.denominator if self._software: addtag('software', 's', 0, self._software, writeonce=True) self._software = None # only save to first page if description: addtag('image_description', 's', 0, description, writeonce=True) elif writeshape and shape[0] > 1 and shape != data_shape: addtag('image_description', 's', 0, "shape=(%s)" % (",".join('%i' % i for i in data_shape)), writeonce=True) addtag('datetime', 's', 0, datetime.datetime.now().strftime("%Y:%m:%d %H:%M:%S"), writeonce=True) addtag('compression', 'H', 1, 32946 if compress else 1) addtag('orientation', 'H', 1, 1) addtag('image_width', 'I', 1, shape[-2]) addtag('image_length', 'I', 1, shape[-3]) if volume: addtag('image_depth', 'I', 1, shape[-4]) addtag('tile_depth', 'I', 1, shape[-4]) addtag('tile_width', 'I', 1, shape[-2]) addtag('tile_length', 'I', 1, shape[-3]) elif write_tiles: addtag('tile_width', 'I', 1, tile_width) addtag('tile_length', 'I', 1, tile_length) addtag('new_subfile_type', 'I', 1, 0 if shape[0] == 1 else 2) # addtag('sample_format', 'H', 1, # {'u': 1, 'i': 2, 'f': 3, 'c': 6}[data.dtype.kind]) addtag('sample_format', 'H', samplesperpixel, ({'u': 1, 'i': 2, 'f': 3, 'c': 6}[data.dtype.kind],) * samplesperpixel) addtag('photometric', 'H', 1, {'miniswhite': 0, 'minisblack': 1, 'rgb': 2, 'palette': 3}[photometric]) if photometric == 'palette': if colormap == None: raise ValueError( "photometric 'palette' specified but colormap missing") else: addtag('color_map', 'H', 3 * (2 ** (data.dtype.itemsize * 8 * samplesperpixel)), colormap) addtag('samples_per_pixel', 'H', 1, samplesperpixel) if planarconfig and samplesperpixel > 1: addtag('planar_configuration', 'H', 1, 1 if planarconfig == 'contig' else 2) addtag('bits_per_sample', 'H', samplesperpixel, (data.dtype.itemsize * 8, ) * samplesperpixel) else: addtag('bits_per_sample', 'H', 1, data.dtype.itemsize * 8) if extrasamples: if photometric == 'rgb' and extrasamples == 1: addtag('extra_samples', 'H', 1, extrasamples_type) # associated alpha channel else: addtag('extra_samples', 'H', extrasamples, (0,) * extrasamples) if resolution: addtag('x_resolution', '2I', 1, rational(resolution[0])) addtag('y_resolution', '2I', 1, rational(resolution[1])) addtag('resolution_unit', 'H', 1, 2) if not write_tiles: addtag('rows_per_strip', 'I', 1, shape[-3] * (shape[-4] if volume else 1)) if write_tiles: # use multiple tiles per plane tiles_x = (shape[3] + tile_width - 1) // tile_width tiles_y = (shape[2] + tile_length - 1) // tile_length strip_byte_counts = \ (tile_width * tile_length * shape[-1] * data.dtype.itemsize,) \ * shape[1] * tiles_x * tiles_y else: # use one strip or tile per plane tiles_x = tiles_y = 1 strip_byte_counts = \ (data[0, 0].size * data.dtype.itemsize,) * shape[1] addtag(tag_byte_counts, offset_format, shape[1] * tiles_x * tiles_y, strip_byte_counts) addtag(tag_offsets, offset_format, shape[1] * tiles_x * tiles_y, (0, ) * shape[1] * tiles_x * tiles_y) # add extra tags from users for t in extratags: addtag(*t) # the entries in an IFD must be sorted in ascending order by tag code tags = sorted(tags, key=lambda x: x[0]) if not self._bigtiff and (fh.tell() + data.size*data.dtype.itemsize > 2**31-1): raise ValueError("data too large for non-bigtiff file") for pageindex in range(shape[0]): # update pointer at ifd_offset pos = fh.tell() fh.seek(self._ifd_offset) fh.write(pack(offset_format, pos)) fh.seek(pos) # write ifdentries fh.write(pack(numtag_format, len(tags))) tag_offset = fh.tell() fh.write(b''.join(t[1] for t in tags)) self._ifd_offset = fh.tell() fh.write(pack(offset_format, 0)) # offset to next IFD # write tag values and patch offsets in ifdentries, if necessary for tagindex, tag in enumerate(tags): if tag[2]: pos = fh.tell() fh.seek(tag_offset + tagindex*tag_size + offset_size + 4) fh.write(pack(offset_format, pos)) fh.seek(pos) if tag[0] == tag_offsets: strip_offsets_offset = pos elif tag[0] == tag_byte_counts: strip_byte_counts_offset = pos fh.write(tag[2]) # write image data data_offset = fh.tell() if write_tiles: # multiple tiles per page if compress: # reset and use compress sizes strip_byte_counts = [] for plane in data[pageindex]: for ty in xrange(0, tiles_y): for tx in xrange(0, tiles_x): # allocate fixed size tile filled with zeros tile = numpy.zeros((tile_width * tile_length, shape[-1]), data.dtype) # clipping right and bottom if necessary # tile length filled with image data itl = min(tile_length, shape[2] - ty*tile_length) # tile width filled with image data itw = min(tile_width, shape[3] - tx*tile_width) ioffs = tx*tile_width for tl in xrange(0, itl): # copy data to tile line ir = ty*tile_length+tl tile[tl*tile_width:tl*tile_width+itw] \ = plane[ir, ioffs:ioffs+itw] if compress: tile = zlib.compress(tile, compress) strip_byte_counts.append(len(tile)) fh.write(tile) else: tile.tofile(fh) fh.flush() else: # one strip/tile per page if compress: strip_byte_counts = [] for plane in data[pageindex]: plane = zlib.compress(plane, compress) strip_byte_counts.append(len(plane)) fh.write(plane) else: # if this fails try update Python/numpy data[pageindex].tofile(fh) fh.flush() # update strip and tile offsets and byte_counts if necessary pos = fh.tell() for tagindex, tag in enumerate(tags): if tag[0] == tag_offsets: # strip or tile offsets if tag[2]: fh.seek(strip_offsets_offset) strip_offset = data_offset for size in strip_byte_counts: fh.write(pack(offset_format, strip_offset)) strip_offset += size else: fh.seek(tag_offset + tagindex*tag_size + offset_size + 4) fh.write(pack(offset_format, data_offset)) elif tag[0] == tag_byte_counts: # strip or tile byte_counts if compress: if tag[2]: fh.seek(strip_byte_counts_offset) for size in strip_byte_counts: fh.write(pack(offset_format, size)) else: fh.seek(tag_offset + tagindex*tag_size + offset_size + 4) fh.write(pack(offset_format, strip_byte_counts[0])) break fh.seek(pos) fh.flush() # remove tags that should be written only once if pageindex == 0: tags = [t for t in tags if not t[-1]] def close(self): self._fh.close() def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def imread(files, **kwargs): """Return image data from TIFF file(s) as numpy array. The first image series is returned if no arguments are provided. Parameters ---------- files : str or list File name, glob pattern, or list of file names. key : int, slice, or sequence of page indices Defines which pages to return as array. series : int Defines which series of pages in file to return as array. multifile : bool If True (default), OME-TIFF data may include pages from multiple files. pattern : str Regular expression pattern that matches axes names and indices in file names. kwargs : dict Additional parameters passed to the TiffFile or TiffSequence asarray function. Examples -------- >>> im = imread('test.tif', key=0) >>> im.shape (256, 256, 4) >>> ims = imread(['test.tif', 'test.tif']) >>> ims.shape (2, 256, 256, 4) """ kwargs_file = {} if 'multifile' in kwargs: kwargs_file['multifile'] = kwargs['multifile'] del kwargs['multifile'] else: kwargs_file['multifile'] = True kwargs_seq = {} if 'pattern' in kwargs: kwargs_seq['pattern'] = kwargs['pattern'] del kwargs['pattern'] if isinstance(files, basestring) and any(i in files for i in '?*'): files = glob.glob(files) if not files: raise ValueError('no files found') if len(files) == 1: files = files[0] if isinstance(files, basestring): with TiffFile(files, **kwargs_file) as tif: return tif.asarray(**kwargs) else: with TiffSequence(files, **kwargs_seq) as imseq: return imseq.asarray(**kwargs) class lazyattr(object): """Lazy object attribute whose value is computed on first access.""" __slots__ = ('func', ) def __init__(self, func): self.func = func def __get__(self, instance, owner): if instance is None: return self value = self.func(instance) if value is NotImplemented: return getattr(super(owner, instance), self.func.__name__) setattr(instance, self.func.__name__, value) return value class TiffFile(object): """Read image and metadata from TIFF, STK, LSM, and FluoView files. TiffFile instances must be closed using the close method, which is automatically called when using the 'with' statement. Attributes ---------- pages : list All TIFF pages in file. series : list of Records(shape, dtype, axes, TiffPages) TIFF pages with compatible shapes and types. micromanager_metadata: dict Extra MicroManager non-TIFF metadata in the file, if exists. All attributes are read-only. Examples -------- >>> with TiffFile('test.tif') as tif: ... data = tif.asarray() ... data.shape (256, 256, 4) """ def __init__(self, arg, name=None, offset=None, size=None, multifile=True, multifile_close=True): """Initialize instance from file. Parameters ---------- arg : str or open file Name of file or open file object. The file objects are closed in TiffFile.close(). name : str Optional name of file in case 'arg' is a file handle. offset : int Optional start position of embedded file. By default this is the current file position. size : int Optional size of embedded file. By default this is the number of bytes from the 'offset' to the end of the file. multifile : bool If True (default), series may include pages from multiple files. Currently applies to OME-TIFF only. multifile_close : bool If True (default), keep the handles of other files in multifile series closed. This is inefficient when few files refer to many pages. If False, the C runtime may run out of resources. """ self._fh = FileHandle(arg, name=name, offset=offset, size=size) self.offset_size = None self.pages = [] self._multifile = bool(multifile) self._multifile_close = bool(multifile_close) self._files = {self._fh.name: self} # cache of TiffFiles try: self._fromfile() except Exception: self._fh.close() raise @property def filehandle(self): """Return file handle.""" return self._fh @property def filename(self): """Return name of file handle.""" return self._fh.name def close(self): """Close open file handle(s).""" for tif in self._files.values(): tif._fh.close() self._files = {} def _fromfile(self): """Read TIFF header and all page records from file.""" self._fh.seek(0) try: self.byteorder = {b'II': '<', b'MM': '>'}[self._fh.read(2)] except KeyError: raise ValueError("not a valid TIFF file") version = struct.unpack(self.byteorder+'H', self._fh.read(2))[0] if version == 43: # BigTiff self.offset_size, zero = struct.unpack(self.byteorder+'HH', self._fh.read(4)) if zero or self.offset_size != 8: raise ValueError("not a valid BigTIFF file") elif version == 42: self.offset_size = 4 else: raise ValueError("not a TIFF file") self.pages = [] while True: try: page = TiffPage(self) self.pages.append(page) except StopIteration: break if not self.pages: raise ValueError("empty TIFF file") if self.is_micromanager: # MicroManager files contain metadata not stored in TIFF tags. self.micromanager_metadata = read_micromanager_metadata(self._fh) if self.is_lsm: self._fix_lsm_strip_offsets() self._fix_lsm_strip_byte_counts() def _fix_lsm_strip_offsets(self): """Unwrap strip offsets for LSM files greater than 4 GB.""" for series in self.series: wrap = 0 previous_offset = 0 for page in series.pages: strip_offsets = [] for current_offset in page.strip_offsets: if current_offset < previous_offset: wrap += 2**32 strip_offsets.append(current_offset + wrap) previous_offset = current_offset page.strip_offsets = tuple(strip_offsets) def _fix_lsm_strip_byte_counts(self): """Set strip_byte_counts to size of compressed data. The strip_byte_counts tag in LSM files contains the number of bytes for the uncompressed data. """ if not self.pages: return strips = {} for page in self.pages: assert len(page.strip_offsets) == len(page.strip_byte_counts) for offset, bytecount in zip(page.strip_offsets, page.strip_byte_counts): strips[offset] = bytecount offsets = sorted(strips.keys()) offsets.append(min(offsets[-1] + strips[offsets[-1]], self._fh.size)) for i, offset in enumerate(offsets[:-1]): strips[offset] = min(strips[offset], offsets[i+1] - offset) for page in self.pages: if page.compression: page.strip_byte_counts = tuple( strips[offset] for offset in page.strip_offsets) @lazyattr def series(self): """Return series of TiffPage with compatible shape and properties.""" if not self.pages: return [] series = [] page0 = self.pages[0] if self.is_ome: series = self._omeseries() elif self.is_fluoview: dims = {b'X': 'X', b'Y': 'Y', b'Z': 'Z', b'T': 'T', b'WAVELENGTH': 'C', b'TIME': 'T', b'XY': 'R', b'EVENT': 'V', b'EXPOSURE': 'L'} mmhd = list(reversed(page0.mm_header.dimensions)) series = [Record( axes=''.join(dims.get(i[0].strip().upper(), 'Q') for i in mmhd if i[1] > 1), shape=tuple(int(i[1]) for i in mmhd if i[1] > 1), pages=self.pages, dtype=numpy.dtype(page0.dtype))] elif self.is_lsm: lsmi = page0.cz_lsm_info axes = CZ_SCAN_TYPES[lsmi.scan_type] if page0.is_rgb: axes = axes.replace('C', '').replace('XY', 'XYC') axes = axes[::-1] shape = tuple(getattr(lsmi, CZ_DIMENSIONS[i]) for i in axes) pages = [p for p in self.pages if not p.is_reduced] series = [Record(axes=axes, shape=shape, pages=pages, dtype=numpy.dtype(pages[0].dtype))] if len(pages) != len(self.pages): # reduced RGB pages pages = [p for p in self.pages if p.is_reduced] cp = 1 i = 0 while cp < len(pages) and i < len(shape)-2: cp *= shape[i] i += 1 shape = shape[:i] + pages[0].shape axes = axes[:i] + 'CYX' series.append(Record(axes=axes, shape=shape, pages=pages, dtype=numpy.dtype(pages[0].dtype))) elif self.is_imagej: shape = [] axes = [] ij = page0.imagej_tags if 'frames' in ij: shape.append(ij['frames']) axes.append('T') if 'slices' in ij: shape.append(ij['slices']) axes.append('Z') if 'channels' in ij and not self.is_rgb: shape.append(ij['channels']) axes.append('C') remain = len(self.pages) // (product(shape) if shape else 1) if remain > 1: shape.append(remain) axes.append('I') shape.extend(page0.shape) axes.extend(page0.axes) axes = ''.join(axes) series = [Record(pages=self.pages, shape=tuple(shape), axes=axes, dtype=numpy.dtype(page0.dtype))] elif self.is_nih: if len(self.pages) == 1: shape = page0.shape axes = page0.axes else: shape = (len(self.pages),) + page0.shape axes = 'I' + page0.axes series = [Record(pages=self.pages, shape=shape, axes=axes, dtype=numpy.dtype(page0.dtype))] elif page0.is_shaped: # TODO: shaped files can contain multiple series shape = page0.tags['image_description'].value[7:-1] shape = tuple(int(i) for i in shape.split(b',')) series = [Record(pages=self.pages, shape=shape, axes='Q' * len(shape), dtype=numpy.dtype(page0.dtype))] # generic detection of series if not series: shapes = [] pages = {} for page in self.pages: if not page.shape: continue shape = page.shape + (page.axes, page.compression in TIFF_DECOMPESSORS) if shape not in pages: shapes.append(shape) pages[shape] = [page] else: pages[shape].append(page) series = [Record(pages=pages[s], axes=(('I' + s[-2]) if len(pages[s]) > 1 else s[-2]), dtype=numpy.dtype(pages[s][0].dtype), shape=((len(pages[s]), ) + s[:-2] if len(pages[s]) > 1 else s[:-2])) for s in shapes] # remove empty series, e.g. in MD Gel files series = [s for s in series if sum(s.shape) > 0] return series def asarray(self, key=None, series=None, memmap=False): """Return image data from multiple TIFF pages as numpy array. By default the first image series is returned. Parameters ---------- key : int, slice, or sequence of page indices Defines which pages to return as array. series : int Defines which series of pages to return as array. memmap : bool If True, return an array stored in a binary file on disk if possible. """ if key is None and series is None: series = 0 if series is not None: pages = self.series[series].pages else: pages = self.pages if key is None: pass elif isinstance(key, int): pages = [pages[key]] elif isinstance(key, slice): pages = pages[key] elif isinstance(key, collections.Iterable): pages = [pages[k] for k in key] else: raise TypeError("key must be an int, slice, or sequence") if not len(pages): raise ValueError("no pages selected") if self.is_nih: if pages[0].is_palette: result = stack_pages(pages, colormapped=False, squeeze=False) result = numpy.take(pages[0].color_map, result, axis=1) result = numpy.swapaxes(result, 0, 1) else: result = stack_pages(pages, memmap=memmap, colormapped=False, squeeze=False) elif len(pages) == 1: return pages[0].asarray(memmap=memmap) elif self.is_ome: assert not self.is_palette, "color mapping disabled for ome-tiff" if any(p is None for p in pages): # zero out missing pages firstpage = next(p for p in pages if p) nopage = numpy.zeros_like( firstpage.asarray(memmap=False)) s = self.series[series] if memmap: with tempfile.NamedTemporaryFile() as fh: result = numpy.memmap(fh, dtype=s.dtype, shape=s.shape) result = result.reshape(-1) else: result = numpy.empty(s.shape, s.dtype).reshape(-1) index = 0 class KeepOpen: # keep Tiff files open between consecutive pages def __init__(self, parent, close): self.master = parent self.parent = parent self._close = close def open(self, page): if self._close and page and page.parent != self.parent: if self.parent != self.master: self.parent.filehandle.close() self.parent = page.parent self.parent.filehandle.open() def close(self): if self._close and self.parent != self.master: self.parent.filehandle.close() keep = KeepOpen(self, self._multifile_close) for page in pages: keep.open(page) if page: a = page.asarray(memmap=False, colormapped=False, reopen=False) else: a = nopage try: result[index:index + a.size] = a.reshape(-1) except ValueError as e: warnings.warn("ome-tiff: %s" % e) break index += a.size keep.close() else: result = stack_pages(pages, memmap=memmap) if key is None: try: result.shape = self.series[series].shape except ValueError: try: warnings.warn("failed to reshape %s to %s" % ( result.shape, self.series[series].shape)) # try series of expected shapes result.shape = (-1,) + self.series[series].shape except ValueError: # revert to generic shape result.shape = (-1,) + pages[0].shape else: result.shape = (-1,) + pages[0].shape return result def _omeseries(self): """Return image series in OME-TIFF file(s).""" root = etree.fromstring(self.pages[0].tags['image_description'].value) uuid = root.attrib.get('UUID', None) self._files = {uuid: self} dirname = self._fh.dirname modulo = {} result = [] for element in root: if element.tag.endswith('BinaryOnly'): warnings.warn("ome-xml: not an ome-tiff master file") break if element.tag.endswith('StructuredAnnotations'): for annot in element: if not annot.attrib.get('Namespace', '').endswith('modulo'): continue for value in annot: for modul in value: for along in modul: if not along.tag[:-1].endswith('Along'): continue axis = along.tag[-1] newaxis = along.attrib.get('Type', 'other') newaxis = AXES_LABELS[newaxis] if 'Start' in along.attrib: labels = range( int(along.attrib['Start']), int(along.attrib['End']) + 1, int(along.attrib.get('Step', 1))) else: labels = [label.text for label in along if label.tag.endswith('Label')] modulo[axis] = (newaxis, labels) if not element.tag.endswith('Image'): continue for pixels in element: if not pixels.tag.endswith('Pixels'): continue atr = pixels.attrib dtype = atr.get('Type', None) axes = ''.join(reversed(atr['DimensionOrder'])) shape = list(int(atr['Size'+ax]) for ax in axes) size = product(shape[:-2]) ifds = [None] * size for data in pixels: if not data.tag.endswith('TiffData'): continue atr = data.attrib ifd = int(atr.get('IFD', 0)) num = int(atr.get('NumPlanes', 1 if 'IFD' in atr else 0)) num = int(atr.get('PlaneCount', num)) idx = [int(atr.get('First'+ax, 0)) for ax in axes[:-2]] try: idx = numpy.ravel_multi_index(idx, shape[:-2]) except ValueError: # ImageJ produces invalid ome-xml when cropping warnings.warn("ome-xml: invalid TiffData index") continue for uuid in data: if not uuid.tag.endswith('UUID'): continue if uuid.text not in self._files: if not self._multifile: # abort reading multifile OME series # and fall back to generic series return [] fname = uuid.attrib['FileName'] try: tif = TiffFile(os.path.join(dirname, fname)) except (IOError, ValueError): tif.close() warnings.warn( "ome-xml: failed to read '%s'" % fname) break self._files[uuid.text] = tif if self._multifile_close: tif.close() pages = self._files[uuid.text].pages try: for i in range(num if num else len(pages)): ifds[idx + i] = pages[ifd + i] except IndexError: warnings.warn("ome-xml: index out of range") # only process first uuid break else: pages = self.pages try: for i in range(num if num else len(pages)): ifds[idx + i] = pages[ifd + i] except IndexError: warnings.warn("ome-xml: index out of range") if all(i is None for i in ifds): # skip images without data continue dtype = next(i for i in ifds if i).dtype result.append(Record(axes=axes, shape=shape, pages=ifds, dtype=numpy.dtype(dtype))) for record in result: for axis, (newaxis, labels) in modulo.items(): i = record.axes.index(axis) size = len(labels) if record.shape[i] == size: record.axes = record.axes.replace(axis, newaxis, 1) else: record.shape[i] //= size record.shape.insert(i+1, size) record.axes = record.axes.replace(axis, axis+newaxis, 1) record.shape = tuple(record.shape) # squeeze dimensions for record in result: record.shape, record.axes = squeeze_axes(record.shape, record.axes) return result def __len__(self): """Return number of image pages in file.""" return len(self.pages) def __getitem__(self, key): """Return specified page.""" return self.pages[key] def __iter__(self): """Return iterator over pages.""" return iter(self.pages) def __str__(self): """Return string containing information about file.""" result = [ self._fh.name.capitalize(), format_size(self._fh.size), {'<': 'little endian', '>': 'big endian'}[self.byteorder]] if self.is_bigtiff: result.append("bigtiff") if len(self.pages) > 1: result.append("%i pages" % len(self.pages)) if len(self.series) > 1: result.append("%i series" % len(self.series)) if len(self._files) > 1: result.append("%i files" % (len(self._files))) return ", ".join(result) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() @lazyattr def fstat(self): try: return os.fstat(self._fh.fileno()) except Exception: # io.UnsupportedOperation return None @lazyattr def is_bigtiff(self): return self.offset_size != 4 @lazyattr def is_rgb(self): return all(p.is_rgb for p in self.pages) @lazyattr def is_palette(self): return all(p.is_palette for p in self.pages) @lazyattr def is_mdgel(self): return any(p.is_mdgel for p in self.pages) @lazyattr def is_mediacy(self): return any(p.is_mediacy for p in self.pages) @lazyattr def is_stk(self): return all(p.is_stk for p in self.pages) @lazyattr def is_lsm(self): return self.pages[0].is_lsm @lazyattr def is_imagej(self): return self.pages[0].is_imagej @lazyattr def is_micromanager(self): return self.pages[0].is_micromanager @lazyattr def is_nih(self): return self.pages[0].is_nih @lazyattr def is_fluoview(self): return self.pages[0].is_fluoview @lazyattr def is_ome(self): return self.pages[0].is_ome class TiffPage(object): """A TIFF image file directory (IFD). Attributes ---------- index : int Index of page in file. dtype : str {TIFF_SAMPLE_DTYPES} Data type of image, colormapped if applicable. shape : tuple Dimensions of the image array in TIFF page, colormapped and with one alpha channel if applicable. axes : str Axes label codes: 'X' width, 'Y' height, 'S' sample, 'I' image series|page|plane, 'Z' depth, 'C' color|em-wavelength|channel, 'E' ex-wavelength|lambda, 'T' time, 'R' region|tile, 'A' angle, 'P' phase, 'H' lifetime, 'L' exposure, 'V' event, 'Q' unknown, '_' missing tags : TiffTags Dictionary of tags in page. Tag values are also directly accessible as attributes. color_map : numpy array Color look up table, if exists. cz_lsm_scan_info: Record(dict) LSM scan info attributes, if exists. imagej_tags: Record(dict) Consolidated ImageJ description and metadata tags, if exists. uic_tags: Record(dict) Consolidated MetaMorph STK/UIC tags, if exists. All attributes are read-only. Notes ----- The internal, normalized '_shape' attribute is 6 dimensional: 0. number planes (stk) 1. planar samples_per_pixel 2. image_depth Z (sgi) 3. image_length Y 4. image_width X 5. contig samples_per_pixel """ def __init__(self, parent): """Initialize instance from file.""" self.parent = parent self.index = len(parent.pages) self.shape = self._shape = () self.dtype = self._dtype = None self.axes = "" self.tags = TiffTags() self._fromfile() self._process_tags() def _fromfile(self): """Read TIFF IFD structure and its tags from file. File cursor must be at storage position of IFD offset and is left at offset to next IFD. Raises StopIteration if offset (first bytes read) is 0. """ fh = self.parent.filehandle byteorder = self.parent.byteorder offset_size = self.parent.offset_size fmt = {4: 'I', 8: 'Q'}[offset_size] offset = struct.unpack(byteorder + fmt, fh.read(offset_size))[0] if not offset: raise StopIteration() # read standard tags tags = self.tags fh.seek(offset) fmt, size = {4: ('H', 2), 8: ('Q', 8)}[offset_size] try: numtags = struct.unpack(byteorder + fmt, fh.read(size))[0] except Exception: warnings.warn("corrupted page list") raise StopIteration() tagcode = 0 for _ in range(numtags): try: tag = TiffTag(self.parent) # print(tag) except TiffTag.Error as e: warnings.warn(str(e)) continue if tagcode > tag.code: # expected for early LSM and tifffile versions warnings.warn("tags are not ordered by code") tagcode = tag.code if tag.name not in tags: tags[tag.name] = tag else: # some files contain multiple IFD with same code # e.g. MicroManager files contain two image_description i = 1 while True: name = "%s_%i" % (tag.name, i) if name not in tags: tags[name] = tag break pos = fh.tell() if self.is_lsm or (self.index and self.parent.is_lsm): # correct non standard LSM bitspersample tags self.tags['bits_per_sample']._correct_lsm_bitspersample(self) if self.is_lsm: # read LSM info subrecords for name, reader in CZ_LSM_INFO_READERS.items(): try: offset = self.cz_lsm_info['offset_'+name] except KeyError: continue if offset < 8: # older LSM revision continue fh.seek(offset) try: setattr(self, 'cz_lsm_'+name, reader(fh)) except ValueError: pass elif self.is_stk and 'uic1tag' in tags and not tags['uic1tag'].value: # read uic1tag now that plane count is known uic1tag = tags['uic1tag'] fh.seek(uic1tag.value_offset) tags['uic1tag'].value = Record( read_uic1tag(fh, byteorder, uic1tag.dtype, uic1tag.count, tags['uic2tag'].count)) fh.seek(pos) def _process_tags(self): """Validate standard tags and initialize attributes. Raise ValueError if tag values are not supported. """ tags = self.tags for code, (name, default, dtype, count, validate) in TIFF_TAGS.items(): if not (name in tags or default is None): tags[name] = TiffTag(code, dtype=dtype, count=count, value=default, name=name) if name in tags and validate: try: if tags[name].count == 1: setattr(self, name, validate[tags[name].value]) else: setattr(self, name, tuple( validate[value] for value in tags[name].value)) except KeyError: raise ValueError("%s.value (%s) not supported" % (name, tags[name].value)) tag = tags['bits_per_sample'] if tag.count == 1: self.bits_per_sample = tag.value else: # LSM might list more items than samples_per_pixel value = tag.value[:self.samples_per_pixel] if any((v-value[0] for v in value)): self.bits_per_sample = value else: self.bits_per_sample = value[0] tag = tags['sample_format'] if tag.count == 1: self.sample_format = TIFF_SAMPLE_FORMATS[tag.value] else: value = tag.value[:self.samples_per_pixel] if any((v-value[0] for v in value)): self.sample_format = [TIFF_SAMPLE_FORMATS[v] for v in value] else: self.sample_format = TIFF_SAMPLE_FORMATS[value[0]] if 'photometric' not in tags: self.photometric = None if 'image_depth' not in tags: self.image_depth = 1 if 'image_length' in tags: self.strips_per_image = int(math.floor( float(self.image_length + self.rows_per_strip - 1) / self.rows_per_strip)) else: self.strips_per_image = 0 key = (self.sample_format, self.bits_per_sample) self.dtype = self._dtype = TIFF_SAMPLE_DTYPES.get(key, None) if 'image_length' not in self.tags or 'image_width' not in self.tags: # some GEL file pages are missing image data self.image_length = 0 self.image_width = 0 self.image_depth = 0 self.strip_offsets = 0 self._shape = () self.shape = () self.axes = '' if self.is_palette: self.dtype = self.tags['color_map'].dtype[1] self.color_map = numpy.array(self.color_map, self.dtype) dmax = self.color_map.max() if dmax < 256: self.dtype = numpy.uint8 self.color_map = self.color_map.astype(self.dtype) #else: # self.dtype = numpy.uint8 # self.color_map >>= 8 # self.color_map = self.color_map.astype(self.dtype) self.color_map.shape = (3, -1) # determine shape of data image_length = self.image_length image_width = self.image_width image_depth = self.image_depth samples_per_pixel = self.samples_per_pixel if self.is_stk: assert self.image_depth == 1 planes = self.tags['uic2tag'].count if self.is_contig: self._shape = (planes, 1, 1, image_length, image_width, samples_per_pixel) if samples_per_pixel == 1: self.shape = (planes, image_length, image_width) self.axes = 'YX' else: self.shape = (planes, image_length, image_width, samples_per_pixel) self.axes = 'YXS' else: self._shape = (planes, samples_per_pixel, 1, image_length, image_width, 1) if samples_per_pixel == 1: self.shape = (planes, image_length, image_width) self.axes = 'YX' else: self.shape = (planes, samples_per_pixel, image_length, image_width) self.axes = 'SYX' # detect type of series if planes == 1: self.shape = self.shape[1:] elif numpy.all(self.uic2tag.z_distance != 0): self.axes = 'Z' + self.axes elif numpy.all(numpy.diff(self.uic2tag.time_created) != 0): self.axes = 'T' + self.axes else: self.axes = 'I' + self.axes # DISABLED if self.is_palette: assert False, "color mapping disabled for stk" if self.color_map.shape[1] >= 2**self.bits_per_sample: if image_depth == 1: self.shape = (3, planes, image_length, image_width) else: self.shape = (3, planes, image_depth, image_length, image_width) self.axes = 'C' + self.axes else: warnings.warn("palette cannot be applied") self.is_palette = False elif self.is_palette: samples = 1 if 'extra_samples' in self.tags: samples += len(self.extra_samples) if self.is_contig: self._shape = (1, 1, image_depth, image_length, image_width, samples) else: self._shape = (1, samples, image_depth, image_length, image_width, 1) if self.color_map.shape[1] >= 2**self.bits_per_sample: if image_depth == 1: self.shape = (3, image_length, image_width) self.axes = 'CYX' else: self.shape = (3, image_depth, image_length, image_width) self.axes = 'CZYX' else: warnings.warn("palette cannot be applied") self.is_palette = False if image_depth == 1: self.shape = (image_length, image_width) self.axes = 'YX' else: self.shape = (image_depth, image_length, image_width) self.axes = 'ZYX' elif self.is_rgb or samples_per_pixel > 1: if self.is_contig: self._shape = (1, 1, image_depth, image_length, image_width, samples_per_pixel) if image_depth == 1: self.shape = (image_length, image_width, samples_per_pixel) self.axes = 'YXS' else: self.shape = (image_depth, image_length, image_width, samples_per_pixel) self.axes = 'ZYXS' else: self._shape = (1, samples_per_pixel, image_depth, image_length, image_width, 1) if image_depth == 1: self.shape = (samples_per_pixel, image_length, image_width) self.axes = 'SYX' else: self.shape = (samples_per_pixel, image_depth, image_length, image_width) self.axes = 'SZYX' if False and self.is_rgb and 'extra_samples' in self.tags: # DISABLED: only use RGB and first alpha channel if exists extra_samples = self.extra_samples if self.tags['extra_samples'].count == 1: extra_samples = (extra_samples, ) for exs in extra_samples: if exs in ('unassalpha', 'assocalpha', 'unspecified'): if self.is_contig: self.shape = self.shape[:-1] + (4,) else: self.shape = (4,) + self.shape[1:] break else: self._shape = (1, 1, image_depth, image_length, image_width, 1) if image_depth == 1: self.shape = (image_length, image_width) self.axes = 'YX' else: self.shape = (image_depth, image_length, image_width) self.axes = 'ZYX' if not self.compression and 'strip_byte_counts' not in tags: self.strip_byte_counts = ( product(self.shape) * (self.bits_per_sample // 8), ) assert len(self.shape) == len(self.axes) def asarray(self, squeeze=True, colormapped=True, rgbonly=False, scale_mdgel=False, memmap=False, reopen=True): """Read image data from file and return as numpy array. Raise ValueError if format is unsupported. If any of 'squeeze', 'colormapped', or 'rgbonly' are not the default, the shape of the returned array might be different from the page shape. Parameters ---------- squeeze : bool If True, all length-1 dimensions (except X and Y) are squeezed out from result. colormapped : bool If True, color mapping is applied for palette-indexed images. rgbonly : bool If True, return RGB(A) image without additional extra samples. memmap : bool If True, use numpy.memmap to read arrays from file if possible. For use on 64 bit systems and files with few huge contiguous data. reopen : bool If True and the parent file handle is closed, the file is temporarily re-opened (and closed if no exception occurs). scale_mdgel : bool If True, MD Gel data will be scaled according to the private metadata in the second TIFF page. The dtype will be float32. """ if not self._shape: return if self.dtype is None: raise ValueError("data type not supported: %s%i" % ( self.sample_format, self.bits_per_sample)) if self.compression not in TIFF_DECOMPESSORS: raise ValueError("cannot decompress %s" % self.compression) tag = self.tags['sample_format'] if tag.count != 1 and any((i-tag.value[0] for i in tag.value)): raise ValueError("sample formats don't match %s" % str(tag.value)) fh = self.parent.filehandle closed = fh.closed if closed: if reopen: fh.open() else: raise IOError("file handle is closed") dtype = self._dtype shape = self._shape image_width = self.image_width image_length = self.image_length image_depth = self.image_depth typecode = self.parent.byteorder + dtype bits_per_sample = self.bits_per_sample if self.is_tiled: if 'tile_offsets' in self.tags: byte_counts = self.tile_byte_counts offsets = self.tile_offsets else: byte_counts = self.strip_byte_counts offsets = self.strip_offsets tile_width = self.tile_width tile_length = self.tile_length tile_depth = self.tile_depth if 'tile_depth' in self.tags else 1 tw = (image_width + tile_width - 1) // tile_width tl = (image_length + tile_length - 1) // tile_length td = (image_depth + tile_depth - 1) // tile_depth shape = (shape[0], shape[1], td*tile_depth, tl*tile_length, tw*tile_width, shape[-1]) tile_shape = (tile_depth, tile_length, tile_width, shape[-1]) runlen = tile_width else: byte_counts = self.strip_byte_counts offsets = self.strip_offsets runlen = image_width if any(o < 2 for o in offsets): raise ValueError("corrupted page") if memmap and self._is_memmappable(rgbonly, colormapped): result = fh.memmap_array(typecode, shape, offset=offsets[0]) elif self.is_contiguous: fh.seek(offsets[0]) result = fh.read_array(typecode, product(shape)) result = result.astype('=' + dtype) else: if self.is_contig: runlen *= self.samples_per_pixel if bits_per_sample in (8, 16, 32, 64, 128): if (bits_per_sample * runlen) % 8: raise ValueError("data and sample size mismatch") def unpack(x): try: return numpy.fromstring(x, typecode) except ValueError as e: # strips may be missing EOI warnings.warn("unpack: %s" % e) xlen = ((len(x) // (bits_per_sample // 8)) * (bits_per_sample // 8)) return numpy.fromstring(x[:xlen], typecode) elif isinstance(bits_per_sample, tuple): def unpack(x): return unpackrgb(x, typecode, bits_per_sample) else: def unpack(x): return unpackints(x, typecode, bits_per_sample, runlen) decompress = TIFF_DECOMPESSORS[self.compression] if self.compression == 'jpeg': table = self.jpeg_tables if 'jpeg_tables' in self.tags else b'' decompress = lambda x: decodejpg(x, table, self.photometric) if self.is_tiled: result = numpy.empty(shape, dtype) tw, tl, td, pl = 0, 0, 0, 0 for offset, bytecount in zip(offsets, byte_counts): fh.seek(offset) tile = unpack(decompress(fh.read(bytecount))) tile.shape = tile_shape if self.predictor == 'horizontal': numpy.cumsum(tile, axis=-2, dtype=dtype, out=tile) result[0, pl, td:td+tile_depth, tl:tl+tile_length, tw:tw+tile_width, :] = tile del tile tw += tile_width if tw >= shape[4]: tw, tl = 0, tl + tile_length if tl >= shape[3]: tl, td = 0, td + tile_depth if td >= shape[2]: td, pl = 0, pl + 1 result = result[..., :image_depth, :image_length, :image_width, :] else: strip_size = (self.rows_per_strip * self.image_width * self.samples_per_pixel) result = numpy.empty(shape, dtype).reshape(-1) index = 0 for offset, bytecount in zip(offsets, byte_counts): fh.seek(offset) strip = fh.read(bytecount) strip = decompress(strip) strip = unpack(strip) size = min(result.size, strip.size, strip_size, result.size - index) result[index:index+size] = strip[:size] del strip index += size result.shape = self._shape if self.predictor == 'horizontal' and not (self.is_tiled and not self.is_contiguous): # work around bug in LSM510 software if not (self.parent.is_lsm and not self.compression): numpy.cumsum(result, axis=-2, dtype=dtype, out=result) if colormapped and self.is_palette: if self.color_map.shape[1] >= 2**bits_per_sample: # FluoView and LSM might fail here result = numpy.take(self.color_map, result[:, 0, :, :, :, 0], axis=1) elif rgbonly and self.is_rgb and 'extra_samples' in self.tags: # return only RGB and first alpha channel if exists extra_samples = self.extra_samples if self.tags['extra_samples'].count == 1: extra_samples = (extra_samples, ) for i, exs in enumerate(extra_samples): if exs in ('unassalpha', 'assocalpha', 'unspecified'): if self.is_contig: result = result[..., [0, 1, 2, 3+i]] else: result = result[:, [0, 1, 2, 3+i]] break else: if self.is_contig: result = result[..., :3] else: result = result[:, :3] if squeeze: try: result.shape = self.shape except ValueError: warnings.warn("failed to reshape from %s to %s" % ( str(result.shape), str(self.shape))) if scale_mdgel and self.parent.is_mdgel: # MD Gel stores private metadata in the second page tags = self.parent.pages[1] if tags.md_file_tag in (2, 128): scale = tags.md_scale_pixel scale = scale[0] / scale[1] # rational result = result.astype('float32') if tags.md_file_tag == 2: result **= 2 # squary root data format result *= scale if closed: # TODO: file remains open if an exception occurred above fh.close() return result def _is_memmappable(self, rgbonly, colormapped): """Return if image data in file can be memory mapped.""" if not self.parent.filehandle.is_file or not self.is_contiguous: return False return not (self.predictor or (rgbonly and 'extra_samples' in self.tags) or (colormapped and self.is_palette) or ({'big': '>', 'little': '<'}[sys.byteorder] != self.parent.byteorder)) @lazyattr def is_contiguous(self): """Return offset and size of contiguous data, else None. Excludes prediction and colormapping. """ if self.compression or self.bits_per_sample not in (8, 16, 32, 64): return if self.is_tiled: if (self.image_width != self.tile_width or self.image_length % self.tile_length or self.tile_width % 16 or self.tile_length % 16): return if ('image_depth' in self.tags and 'tile_depth' in self.tags and (self.image_length != self.tile_length or self.image_depth % self.tile_depth)): return offsets = self.tile_offsets byte_counts = self.tile_byte_counts else: offsets = self.strip_offsets byte_counts = self.strip_byte_counts if len(offsets) == 1: return offsets[0], byte_counts[0] if self.is_stk or all(offsets[i] + byte_counts[i] == offsets[i+1] or byte_counts[i+1] == 0 # no data/ignore offset for i in range(len(offsets)-1)): return offsets[0], sum(byte_counts) def __str__(self): """Return string containing information about page.""" s = ', '.join(s for s in ( ' x '.join(str(i) for i in self.shape), str(numpy.dtype(self.dtype)), '%s bit' % str(self.bits_per_sample), self.photometric if 'photometric' in self.tags else '', self.compression if self.compression else 'raw', '|'.join(t[3:] for t in ( 'is_stk', 'is_lsm', 'is_nih', 'is_ome', 'is_imagej', 'is_micromanager', 'is_fluoview', 'is_mdgel', 'is_mediacy', 'is_sgi', 'is_reduced', 'is_tiled', 'is_contiguous') if getattr(self, t))) if s) return "Page %i: %s" % (self.index, s) def __getattr__(self, name): """Return tag value.""" if name in self.tags: value = self.tags[name].value setattr(self, name, value) return value raise AttributeError(name) @lazyattr def uic_tags(self): """Consolidate UIC tags.""" if not self.is_stk: raise AttributeError("uic_tags") tags = self.tags result = Record() result.number_planes = tags['uic2tag'].count if 'image_description' in tags: result.plane_descriptions = self.image_description.split(b'\x00') if 'uic1tag' in tags: result.update(tags['uic1tag'].value) if 'uic3tag' in tags: result.update(tags['uic3tag'].value) # wavelengths if 'uic4tag' in tags: result.update(tags['uic4tag'].value) # override uic1 tags uic2tag = tags['uic2tag'].value result.z_distance = uic2tag.z_distance result.time_created = uic2tag.time_created result.time_modified = uic2tag.time_modified try: result.datetime_created = [ julian_datetime(*dt) for dt in zip(uic2tag.date_created, uic2tag.time_created)] result.datetime_modified = [ julian_datetime(*dt) for dt in zip(uic2tag.date_modified, uic2tag.time_modified)] except ValueError as e: warnings.warn("uic_tags: %s" % e) return result @lazyattr def imagej_tags(self): """Consolidate ImageJ metadata.""" if not self.is_imagej: raise AttributeError("imagej_tags") tags = self.tags if 'image_description_1' in tags: # MicroManager result = imagej_description(tags['image_description_1'].value) else: result = imagej_description(tags['image_description'].value) if 'imagej_metadata' in tags: try: result.update(imagej_metadata( tags['imagej_metadata'].value, tags['imagej_byte_counts'].value, self.parent.byteorder)) except Exception as e: warnings.warn(str(e)) return Record(result) @lazyattr def is_rgb(self): """True if page contains a RGB image.""" return ('photometric' in self.tags and self.tags['photometric'].value == 2) @lazyattr def is_contig(self): """True if page contains a contiguous image.""" return ('planar_configuration' in self.tags and self.tags['planar_configuration'].value == 1) @lazyattr def is_palette(self): """True if page contains a palette-colored image and not OME or STK.""" try: # turn off color mapping for OME-TIFF and STK if self.is_stk or self.is_ome or self.parent.is_ome: return False except IndexError: pass # OME-XML not found in first page return ('photometric' in self.tags and self.tags['photometric'].value == 3) @lazyattr def is_tiled(self): """True if page contains tiled image.""" return 'tile_width' in self.tags @lazyattr def is_reduced(self): """True if page is a reduced image of another image.""" return bool(self.tags['new_subfile_type'].value & 1) @lazyattr def is_mdgel(self): """True if page contains md_file_tag tag.""" return 'md_file_tag' in self.tags @lazyattr def is_mediacy(self): """True if page contains Media Cybernetics Id tag.""" return ('mc_id' in self.tags and self.tags['mc_id'].value.startswith(b'MC TIFF')) @lazyattr def is_stk(self): """True if page contains UIC2Tag tag.""" return 'uic2tag' in self.tags @lazyattr def is_lsm(self): """True if page contains LSM CZ_LSM_INFO tag.""" return 'cz_lsm_info' in self.tags @lazyattr def is_fluoview(self): """True if page contains FluoView MM_STAMP tag.""" return 'mm_stamp' in self.tags @lazyattr def is_nih(self): """True if page contains NIH image header.""" return 'nih_image_header' in self.tags @lazyattr def is_sgi(self): """True if page contains SGI image and tile depth tags.""" return 'image_depth' in self.tags and 'tile_depth' in self.tags @lazyattr def is_ome(self): """True if page contains OME-XML in image_description tag.""" return ('image_description' in self.tags and self.tags[ 'image_description'].value.startswith(b'<?xml version=')) @lazyattr def is_shaped(self): """True if page contains shape in image_description tag.""" return ('image_description' in self.tags and self.tags[ 'image_description'].value.startswith(b'shape=(')) @lazyattr def is_imagej(self): """True if page contains ImageJ description.""" return ( ('image_description' in self.tags and self.tags['image_description'].value.startswith(b'ImageJ=')) or ('image_description_1' in self.tags and # Micromanager self.tags['image_description_1'].value.startswith(b'ImageJ='))) @lazyattr def is_micromanager(self): """True if page contains Micro-Manager metadata.""" return 'micromanager_metadata' in self.tags class TiffTag(object): """A TIFF tag structure. Attributes ---------- name : string Attribute name of tag. code : int Decimal code of tag. dtype : str Datatype of tag data. One of TIFF_DATA_TYPES. count : int Number of values. value : various types Tag data as Python object. value_offset : int Location of value in file, if any. All attributes are read-only. """ __slots__ = ('code', 'name', 'count', 'dtype', 'value', 'value_offset', '_offset', '_value', '_type') class Error(Exception): pass def __init__(self, arg, **kwargs): """Initialize instance from file or arguments.""" self._offset = None if hasattr(arg, '_fh'): self._fromfile(arg, **kwargs) else: self._fromdata(arg, **kwargs) def _fromdata(self, code, dtype, count, value, name=None): """Initialize instance from arguments.""" self.code = int(code) self.name = name if name else str(code) self.dtype = TIFF_DATA_TYPES[dtype] self.count = int(count) self.value = value self._value = value self._type = dtype def _fromfile(self, parent): """Read tag structure from open file. Advance file cursor.""" fh = parent.filehandle byteorder = parent.byteorder self._offset = fh.tell() self.value_offset = self._offset + parent.offset_size + 4 fmt, size = {4: ('HHI4s', 12), 8: ('HHQ8s', 20)}[parent.offset_size] data = fh.read(size) code, dtype = struct.unpack(byteorder + fmt[:2], data[:4]) count, value = struct.unpack(byteorder + fmt[2:], data[4:]) self._value = value self._type = dtype if code in TIFF_TAGS: name = TIFF_TAGS[code][0] elif code in CUSTOM_TAGS: name = CUSTOM_TAGS[code][0] else: name = str(code) try: dtype = TIFF_DATA_TYPES[self._type] except KeyError: raise TiffTag.Error("unknown tag data type %i" % self._type) fmt = '%s%i%s' % (byteorder, count*int(dtype[0]), dtype[1]) size = struct.calcsize(fmt) if size > parent.offset_size or code in CUSTOM_TAGS: pos = fh.tell() tof = {4: 'I', 8: 'Q'}[parent.offset_size] self.value_offset = offset = struct.unpack(byteorder+tof, value)[0] if offset < 0 or offset > parent.filehandle.size: raise TiffTag.Error("corrupt file - invalid tag value offset") elif offset < 4: raise TiffTag.Error("corrupt value offset for tag %i" % code) fh.seek(offset) if code in CUSTOM_TAGS: readfunc = CUSTOM_TAGS[code][1] value = readfunc(fh, byteorder, dtype, count) if isinstance(value, dict): # numpy.core.records.record value = Record(value) elif code in TIFF_TAGS or dtype[-1] == 's': value = struct.unpack(fmt, fh.read(size)) else: value = read_numpy(fh, byteorder, dtype, count) fh.seek(pos) else: value = struct.unpack(fmt, value[:size]) if code not in CUSTOM_TAGS and code not in (273, 279, 324, 325): # scalar value if not strip/tile offsets/byte_counts if len(value) == 1: value = value[0] if (dtype.endswith('s') and isinstance(value, bytes) and self._type != 7): # TIFF ASCII fields can contain multiple strings, # each terminated with a NUL value = stripascii(value) self.code = code self.name = name self.dtype = dtype self.count = count self.value = value def _correct_lsm_bitspersample(self, parent): """Correct LSM bitspersample tag. Old LSM writers may use a separate region for two 16-bit values, although they fit into the tag value element of the tag. """ if self.code == 258 and self.count == 2: # TODO: test this. Need example file. warnings.warn("correcting LSM bitspersample tag") fh = parent.filehandle tof = {4: '<I', 8: '<Q'}[parent.offset_size] self.value_offset = struct.unpack(tof, self._value)[0] fh.seek(self.value_offset) self.value = struct.unpack("<HH", fh.read(4)) def as_str(self): """Return value as human readable string.""" return ((str(self.value).split('\n', 1)[0]) if (self._type != 7) else '<undefined>') def __str__(self): """Return string containing information about tag.""" return ' '.join(str(getattr(self, s)) for s in self.__slots__) class TiffSequence(object): """Sequence of image files. The data shape and dtype of all files must match. Properties ---------- files : list List of file names. shape : tuple Shape of image sequence. axes : str Labels of axes in shape. Examples -------- >>> tifs = TiffSequence("test.oif.files/*.tif") >>> tifs.shape, tifs.axes ((2, 100), 'CT') >>> data = tifs.asarray() >>> data.shape (2, 100, 256, 256) """ _patterns = { 'axes': r""" # matches Olympus OIF and Leica TIFF series _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4})) _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? """} class ParseError(Exception): pass def __init__(self, files, imread=TiffFile, pattern='axes', *args, **kwargs): """Initialize instance from multiple files. Parameters ---------- files : str, or sequence of str Glob pattern or sequence of file names. imread : function or class Image read function or class with asarray function returning numpy array from single file. pattern : str Regular expression pattern that matches axes names and sequence indices in file names. By default this matches Olympus OIF and Leica TIFF series. """ if isinstance(files, basestring): files = natural_sorted(glob.glob(files)) files = list(files) if not files: raise ValueError("no files found") #if not os.path.isfile(files[0]): # raise ValueError("file not found") self.files = files if hasattr(imread, 'asarray'): # redefine imread _imread = imread def imread(fname, *args, **kwargs): with _imread(fname) as im: return im.asarray(*args, **kwargs) self.imread = imread self.pattern = self._patterns.get(pattern, pattern) try: self._parse() if not self.axes: self.axes = 'I' except self.ParseError: self.axes = 'I' self.shape = (len(files),) self._start_index = (0,) self._indices = tuple((i,) for i in range(len(files))) def __str__(self): """Return string with information about image sequence.""" return "\n".join([ self.files[0], '* files: %i' % len(self.files), '* axes: %s' % self.axes, '* shape: %s' % str(self.shape)]) def __len__(self): return len(self.files) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): pass def asarray(self, memmap=False, *args, **kwargs): """Read image data from all files and return as single numpy array. If memmap is True, return an array stored in a binary file on disk. The args and kwargs parameters are passed to the imread function. Raise IndexError or ValueError if image shapes don't match. """ im = self.imread(self.files[0], *args, **kwargs) shape = self.shape + im.shape if memmap: with tempfile.NamedTemporaryFile() as fh: result = numpy.memmap(fh, dtype=im.dtype, shape=shape) else: result = numpy.zeros(shape, dtype=im.dtype) result = result.reshape(-1, *im.shape) for index, fname in zip(self._indices, self.files): index = [i-j for i, j in zip(index, self._start_index)] index = numpy.ravel_multi_index(index, self.shape) im = self.imread(fname, *args, **kwargs) result[index] = im result.shape = shape return result def _parse(self): """Get axes and shape from file names.""" if not self.pattern: raise self.ParseError("invalid pattern") pattern = re.compile(self.pattern, re.IGNORECASE | re.VERBOSE) matches = pattern.findall(self.files[0]) if not matches: raise self.ParseError("pattern doesn't match file names") matches = matches[-1] if len(matches) % 2: raise self.ParseError("pattern doesn't match axis name and index") axes = ''.join(m for m in matches[::2] if m) if not axes: raise self.ParseError("pattern doesn't match file names") indices = [] for fname in self.files: matches = pattern.findall(fname)[-1] if axes != ''.join(m for m in matches[::2] if m): raise ValueError("axes don't match within the image sequence") indices.append([int(m) for m in matches[1::2] if m]) shape = tuple(numpy.max(indices, axis=0)) start_index = tuple(numpy.min(indices, axis=0)) shape = tuple(i-j+1 for i, j in zip(shape, start_index)) if product(shape) != len(self.files): warnings.warn("files are missing. Missing data are zeroed") self.axes = axes.upper() self.shape = shape self._indices = indices self._start_index = start_index class Record(dict): """Dictionary with attribute access. Can also be initialized with numpy.core.records.record. """ __slots__ = () def __init__(self, arg=None, **kwargs): if kwargs: arg = kwargs elif arg is None: arg = {} try: dict.__init__(self, arg) except (TypeError, ValueError): for i, name in enumerate(arg.dtype.names): v = arg[i] self[name] = v if v.dtype.char != 'S' else stripnull(v) def __getattr__(self, name): return self[name] def __setattr__(self, name, value): self.__setitem__(name, value) def __str__(self): """Pretty print Record.""" s = [] lists = [] for k in sorted(self): try: if k.startswith('_'): # does not work with byte continue except AttributeError: pass v = self[k] if isinstance(v, (list, tuple)) and len(v): if isinstance(v[0], Record): lists.append((k, v)) continue elif isinstance(v[0], TiffPage): v = [i.index for i in v if i] s.append( ("* %s: %s" % (k, str(v))).split("\n", 1)[0] [:PRINT_LINE_LEN].rstrip()) for k, v in lists: l = [] for i, w in enumerate(v): l.append("* %s[%i]\n %s" % (k, i, str(w).replace("\n", "\n "))) s.append('\n'.join(l)) return '\n'.join(s) class TiffTags(Record): """Dictionary of TiffTag with attribute access.""" def __str__(self): """Return string with information about all tags.""" s = [] for tag in sorted(self.values(), key=lambda x: x.code): typecode = "%i%s" % (tag.count * int(tag.dtype[0]), tag.dtype[1]) line = "* %i %s (%s) %s" % ( tag.code, tag.name, typecode, tag.as_str()) s.append(line[:PRINT_LINE_LEN].lstrip()) return '\n'.join(s) class FileHandle(object): """Binary file handle. * Handle embedded files (for CZI within CZI files). * Allow to re-open closed files (for multi file formats such as OME-TIFF). * Read numpy arrays and records from file like objects. Only binary read, seek, tell, and close are supported on embedded files. When initialized from another file handle, do not use it unless this FileHandle is closed. Attributes ---------- name : str Name of the file. path : str Absolute path to file. size : int Size of file in bytes. is_file : bool If True, file has a filno and can be memory mapped. All attributes are read-only. """ __slots__ = ('_fh', '_arg', '_mode', '_name', '_dir', '_offset', '_size', '_close', 'is_file') def __init__(self, arg, mode='rb', name=None, offset=None, size=None): """Initialize file handle from file name or another file handle. Parameters ---------- arg : str, File, or FileHandle File name or open file handle. mode : str File open mode in case 'arg' is a file name. name : str Optional name of file in case 'arg' is a file handle. offset : int Optional start position of embedded file. By default this is the current file position. size : int Optional size of embedded file. By default this is the number of bytes from the 'offset' to the end of the file. """ self._fh = None self._arg = arg self._mode = mode self._name = name self._dir = '' self._offset = offset self._size = size self._close = True self.is_file = False self.open() def open(self): """Open or re-open file.""" if self._fh: return # file is open if isinstance(self._arg, basestring): # file name self._arg = os.path.abspath(self._arg) self._dir, self._name = os.path.split(self._arg) self._fh = open(self._arg, self._mode) self._close = True if self._offset is None: self._offset = 0 elif isinstance(self._arg, FileHandle): # FileHandle self._fh = self._arg._fh if self._offset is None: self._offset = 0 self._offset += self._arg._offset self._close = False if not self._name: if self._offset: name, ext = os.path.splitext(self._arg._name) self._name = "%s@%i%s" % (name, self._offset, ext) else: self._name = self._arg._name self._dir = self._arg._dir else: # open file object self._fh = self._arg if self._offset is None: self._offset = self._arg.tell() self._close = False if not self._name: try: self._dir, self._name = os.path.split(self._fh.name) except AttributeError: self._name = "Unnamed stream" if self._offset: self._fh.seek(self._offset) if self._size is None: pos = self._fh.tell() self._fh.seek(self._offset, 2) self._size = self._fh.tell() self._fh.seek(pos) try: self._fh.fileno() self.is_file = True except Exception: self.is_file = False def read(self, size=-1): """Read 'size' bytes from file, or until EOF is reached.""" if size < 0 and self._offset: size = self._size return self._fh.read(size) def memmap_array(self, dtype, shape, offset=0, mode='r', order='C'): """Return numpy.memmap of data stored in file.""" if not self.is_file: raise ValueError("Can not memory map file without fileno.") return numpy.memmap(self._fh, dtype=dtype, mode=mode, offset=self._offset + offset, shape=shape, order=order) def read_array(self, dtype, count=-1, sep=""): """Return numpy array from file. Work around numpy issue #2230, "numpy.fromfile does not accept StringIO object" https://github.com/numpy/numpy/issues/2230. """ try: return numpy.fromfile(self._fh, dtype, count, sep) except IOError: if count < 0: size = self._size else: size = count * numpy.dtype(dtype).itemsize data = self._fh.read(size) return numpy.fromstring(data, dtype, count, sep) def read_record(self, dtype, shape=1, byteorder=None): """Return numpy record from file.""" try: rec = numpy.rec.fromfile(self._fh, dtype, shape, byteorder=byteorder) except Exception: dtype = numpy.dtype(dtype) if shape is None: shape = self._size // dtype.itemsize size = product(sequence(shape)) * dtype.itemsize data = self._fh.read(size) return numpy.rec.fromstring(data, dtype, shape, byteorder=byteorder) return rec[0] if shape == 1 else rec def tell(self): """Return file's current position.""" return self._fh.tell() - self._offset def seek(self, offset, whence=0): """Set file's current position.""" if self._offset: if whence == 0: self._fh.seek(self._offset + offset, whence) return elif whence == 2: self._fh.seek(self._offset + self._size + offset, 0) return self._fh.seek(offset, whence) def close(self): """Close file.""" if self._close and self._fh: self._fh.close() self._fh = None self.is_file = False def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def __getattr__(self, name): """Return attribute from underlying file object.""" if self._offset: warnings.warn( "FileHandle: '%s' not implemented for embedded files" % name) return getattr(self._fh, name) @property def name(self): return self._name @property def dirname(self): return self._dir @property def path(self): return os.path.join(self._dir, self._name) @property def size(self): return self._size @property def closed(self): return self._fh is None def read_bytes(fh, byteorder, dtype, count): """Read tag data from file and return as byte string.""" dtype = 'b' if dtype[-1] == 's' else byteorder+dtype[-1] return fh.read_array(dtype, count).tostring() def read_numpy(fh, byteorder, dtype, count): """Read tag data from file and return as numpy array.""" dtype = 'b' if dtype[-1] == 's' else byteorder+dtype[-1] return fh.read_array(dtype, count) def read_json(fh, byteorder, dtype, count): """Read JSON tag data from file and return as object.""" data = fh.read(count) try: return json.loads(unicode(stripnull(data), 'utf-8')) except ValueError: warnings.warn("invalid JSON `%s`" % data) def read_mm_header(fh, byteorder, dtype, count): """Read MM_HEADER tag from file and return as numpy.rec.array.""" return fh.read_record(MM_HEADER, byteorder=byteorder) def read_mm_stamp(fh, byteorder, dtype, count): """Read MM_STAMP tag from file and return as numpy.array.""" return fh.read_array(byteorder+'f8', 8) def read_uic1tag(fh, byteorder, dtype, count, plane_count=None): """Read MetaMorph STK UIC1Tag from file and return as dictionary. Return empty dictionary if plane_count is unknown. """ assert dtype in ('2I', '1I') and byteorder == '<' result = {} if dtype == '2I': # pre MetaMorph 2.5 (not tested) values = fh.read_array('<u4', 2*count).reshape(count, 2) result = {'z_distance': values[:, 0] / values[:, 1]} elif plane_count: for i in range(count): tagid = struct.unpack('<I', fh.read(4))[0] if tagid in (28, 29, 37, 40, 41): # silently skip unexpected tags fh.read(4) continue name, value = read_uic_tag(fh, tagid, plane_count, offset=True) result[name] = value return result def read_uic2tag(fh, byteorder, dtype, plane_count): """Read MetaMorph STK UIC2Tag from file and return as dictionary.""" assert dtype == '2I' and byteorder == '<' values = fh.read_array('<u4', 6*plane_count).reshape(plane_count, 6) return { 'z_distance': values[:, 0] / values[:, 1], 'date_created': values[:, 2], # julian days 'time_created': values[:, 3], # milliseconds 'date_modified': values[:, 4], # julian days 'time_modified': values[:, 5], # milliseconds } def read_uic3tag(fh, byteorder, dtype, plane_count): """Read MetaMorph STK UIC3Tag from file and return as dictionary.""" assert dtype == '2I' and byteorder == '<' values = fh.read_array('<u4', 2*plane_count).reshape(plane_count, 2) return {'wavelengths': values[:, 0] / values[:, 1]} def read_uic4tag(fh, byteorder, dtype, plane_count): """Read MetaMorph STK UIC4Tag from file and return as dictionary.""" assert dtype == '1I' and byteorder == '<' result = {} while True: tagid = struct.unpack('<H', fh.read(2))[0] if tagid == 0: break name, value = read_uic_tag(fh, tagid, plane_count, offset=False) result[name] = value return result def read_uic_tag(fh, tagid, plane_count, offset): """Read a single UIC tag value from file and return tag name and value. UIC1Tags use an offset. """ def read_int(count=1): value = struct.unpack('<%iI' % count, fh.read(4*count)) return value[0] if count == 1 else value try: name, dtype = UIC_TAGS[tagid] except KeyError: # unknown tag return '_tagid_%i' % tagid, read_int() if offset: pos = fh.tell() if dtype not in (int, None): off = read_int() if off < 8: warnings.warn("invalid offset for uic tag '%s': %i" % (name, off)) return name, off fh.seek(off) if dtype is None: # skip name = '_' + name value = read_int() elif dtype is int: # int value = read_int() elif dtype is Fraction: # fraction value = read_int(2) value = value[0] / value[1] elif dtype is julian_datetime: # datetime value = julian_datetime(*read_int(2)) elif dtype is read_uic_image_property: # ImagePropertyEx value = read_uic_image_property(fh) elif dtype is str: # pascal string size = read_int() if 0 <= size < 2**10: value = struct.unpack('%is' % size, fh.read(size))[0][:-1] value = stripnull(value) elif offset: value = '' warnings.warn("corrupt string in uic tag '%s'" % name) else: raise ValueError("invalid string size %i" % size) elif dtype == '%ip': # sequence of pascal strings value = [] for i in range(plane_count): size = read_int() if 0 <= size < 2**10: string = struct.unpack('%is' % size, fh.read(size))[0][:-1] string = stripnull(string) value.append(string) elif offset: warnings.warn("corrupt string in uic tag '%s'" % name) else: raise ValueError("invalid string size %i" % size) else: # struct or numpy type dtype = '<' + dtype if '%i' in dtype: dtype = dtype % plane_count if '(' in dtype: # numpy type value = fh.read_array(dtype, 1)[0] if value.shape[-1] == 2: # assume fractions value = value[..., 0] / value[..., 1] else: # struct format value = struct.unpack(dtype, fh.read(struct.calcsize(dtype))) if len(value) == 1: value = value[0] if offset: fh.seek(pos + 4) return name, value def read_uic_image_property(fh): """Read UIC ImagePropertyEx tag from file and return as dict.""" # TODO: test this size = struct.unpack('B', fh.read(1))[0] name = struct.unpack('%is' % size, fh.read(size))[0][:-1] flags, prop = struct.unpack('<IB', fh.read(5)) if prop == 1: value = struct.unpack('II', fh.read(8)) value = value[0] / value[1] else: size = struct.unpack('B', fh.read(1))[0] value = struct.unpack('%is' % size, fh.read(size))[0] return dict(name=name, flags=flags, value=value) def read_cz_lsm_info(fh, byteorder, dtype, count): """Read CS_LSM_INFO tag from file and return as numpy.rec.array.""" assert byteorder == '<' magic_number, structure_size = struct.unpack('<II', fh.read(8)) if magic_number not in (50350412, 67127628): raise ValueError("not a valid CS_LSM_INFO structure") fh.seek(-8, 1) if structure_size < numpy.dtype(CZ_LSM_INFO).itemsize: # adjust structure according to structure_size cz_lsm_info = [] size = 0 for name, dtype in CZ_LSM_INFO: size += numpy.dtype(dtype).itemsize if size > structure_size: break cz_lsm_info.append((name, dtype)) else: cz_lsm_info = CZ_LSM_INFO return fh.read_record(cz_lsm_info, byteorder=byteorder) def read_cz_lsm_floatpairs(fh): """Read LSM sequence of float pairs from file and return as list.""" size = struct.unpack('<i', fh.read(4))[0] return fh.read_array('<2f8', count=size) def read_cz_lsm_positions(fh): """Read LSM positions from file and return as list.""" size = struct.unpack('<I', fh.read(4))[0] return fh.read_array('<2f8', count=size) def read_cz_lsm_time_stamps(fh): """Read LSM time stamps from file and return as list.""" size, count = struct.unpack('<ii', fh.read(8)) if size != (8 + 8 * count): raise ValueError("lsm_time_stamps block is too short") # return struct.unpack('<%dd' % count, fh.read(8*count)) return fh.read_array('<f8', count=count) def read_cz_lsm_event_list(fh): """Read LSM events from file and return as list of (time, type, text).""" count = struct.unpack('<II', fh.read(8))[1] events = [] while count > 0: esize, etime, etype = struct.unpack('<IdI', fh.read(16)) etext = stripnull(fh.read(esize - 16)) events.append((etime, etype, etext)) count -= 1 return events def read_cz_lsm_scan_info(fh): """Read LSM scan information from file and return as Record.""" block = Record() blocks = [block] unpack = struct.unpack if 0x10000000 != struct.unpack('<I', fh.read(4))[0]: # not a Recording sub block raise ValueError("not a lsm_scan_info structure") fh.read(8) while True: entry, dtype, size = unpack('<III', fh.read(12)) if dtype == 2: # ascii value = stripnull(fh.read(size)) elif dtype == 4: # long value = unpack('<i', fh.read(4))[0] elif dtype == 5: # rational value = unpack('<d', fh.read(8))[0] else: value = 0 if entry in CZ_LSM_SCAN_INFO_ARRAYS: blocks.append(block) name = CZ_LSM_SCAN_INFO_ARRAYS[entry] newobj = [] setattr(block, name, newobj) block = newobj elif entry in CZ_LSM_SCAN_INFO_STRUCTS: blocks.append(block) newobj = Record() block.append(newobj) block = newobj elif entry in CZ_LSM_SCAN_INFO_ATTRIBUTES: name = CZ_LSM_SCAN_INFO_ATTRIBUTES[entry] setattr(block, name, value) elif entry == 0xffffffff: # end sub block block = blocks.pop() else: # unknown entry setattr(block, "entry_0x%x" % entry, value) if not blocks: break return block def read_nih_image_header(fh, byteorder, dtype, count): """Read NIH_IMAGE_HEADER tag from file and return as numpy.rec.array.""" a = fh.read_record(NIH_IMAGE_HEADER, byteorder=byteorder) a = a.newbyteorder(byteorder) a.xunit = a.xunit[:a._xunit_len] a.um = a.um[:a._um_len] return a def read_micromanager_metadata(fh): """Read MicroManager non-TIFF settings from open file and return as dict. The settings can be used to read image data without parsing the TIFF file. Raise ValueError if file does not contain valid MicroManager metadata. """ fh.seek(0) try: byteorder = {b'II': '<', b'MM': '>'}[fh.read(2)] except IndexError: raise ValueError("not a MicroManager TIFF file") results = {} fh.seek(8) (index_header, index_offset, display_header, display_offset, comments_header, comments_offset, summary_header, summary_length ) = struct.unpack(byteorder + "IIIIIIII", fh.read(32)) if summary_header != 2355492: raise ValueError("invalid MicroManager summary_header") results['summary'] = read_json(fh, byteorder, None, summary_length) if index_header != 54773648: raise ValueError("invalid MicroManager index_header") fh.seek(index_offset) header, count = struct.unpack(byteorder + "II", fh.read(8)) if header != 3453623: raise ValueError("invalid MicroManager index_header") data = struct.unpack(byteorder + "IIIII"*count, fh.read(20*count)) results['index_map'] = { 'channel': data[::5], 'slice': data[1::5], 'frame': data[2::5], 'position': data[3::5], 'offset': data[4::5]} if display_header != 483765892: raise ValueError("invalid MicroManager display_header") fh.seek(display_offset) header, count = struct.unpack(byteorder + "II", fh.read(8)) if header != 347834724: raise ValueError("invalid MicroManager display_header") results['display_settings'] = read_json(fh, byteorder, None, count) if comments_header != 99384722: raise ValueError("invalid MicroManager comments_header") fh.seek(comments_offset) header, count = struct.unpack(byteorder + "II", fh.read(8)) if header != 84720485: raise ValueError("invalid MicroManager comments_header") results['comments'] = read_json(fh, byteorder, None, count) return results def imagej_metadata(data, bytecounts, byteorder): """Return dict from ImageJ metadata tag value.""" _str = str if sys.version_info[0] < 3 else lambda x: str(x, 'cp1252') def read_string(data, byteorder): return _str(stripnull(data[0 if byteorder == '<' else 1::2])) def read_double(data, byteorder): return struct.unpack(byteorder+('d' * (len(data) // 8)), data) def read_bytes(data, byteorder): #return struct.unpack('b' * len(data), data) return numpy.fromstring(data, 'uint8') metadata_types = { # big endian b'info': ('info', read_string), b'labl': ('labels', read_string), b'rang': ('ranges', read_double), b'luts': ('luts', read_bytes), b'roi ': ('roi', read_bytes), b'over': ('overlays', read_bytes)} metadata_types.update( # little endian dict((k[::-1], v) for k, v in metadata_types.items())) if not bytecounts: raise ValueError("no ImageJ metadata") if not data[:4] in (b'IJIJ', b'JIJI'): raise ValueError("invalid ImageJ metadata") header_size = bytecounts[0] if header_size < 12 or header_size > 804: raise ValueError("invalid ImageJ metadata header size") ntypes = (header_size - 4) // 8 header = struct.unpack(byteorder+'4sI'*ntypes, data[4:4+ntypes*8]) pos = 4 + ntypes * 8 counter = 0 result = {} for mtype, count in zip(header[::2], header[1::2]): values = [] name, func = metadata_types.get(mtype, (_str(mtype), read_bytes)) for _ in range(count): counter += 1 pos1 = pos + bytecounts[counter] values.append(func(data[pos:pos1], byteorder)) pos = pos1 result[name.strip()] = values[0] if count == 1 else values return result def imagej_description(description): """Return dict from ImageJ image_description tag.""" def _bool(val): return {b'true': True, b'false': False}[val.lower()] _str = str if sys.version_info[0] < 3 else lambda x: str(x, 'cp1252') result = {} for line in description.splitlines(): try: key, val = line.split(b'=') except Exception: continue key = key.strip() val = val.strip() for dtype in (int, float, _bool, _str): try: val = dtype(val) break except Exception: pass result[_str(key)] = val return result def _replace_by(module_function, package=None, warn=False): """Try replace decorated function by module.function.""" try: from importlib import import_module except ImportError: warnings.warn('could not import module importlib') return lambda func: func def decorate(func, module_function=module_function, warn=warn): try: module, function = module_function.split('.') if not package: module = import_module(module) else: module = import_module('.' + module, package=package) func, oldfunc = getattr(module, function), func globals()['__old_' + func.__name__] = oldfunc except Exception: if warn: warnings.warn("failed to import %s" % module_function) return func return decorate def decodejpg(encoded, tables=b'', photometric=None, ycbcr_subsampling=None, ycbcr_positioning=None): """Decode JPEG encoded byte string (using _czifile extension module).""" import _czifile image = _czifile.decodejpg(encoded, tables) if photometric == 'rgb' and ycbcr_subsampling and ycbcr_positioning: # TODO: convert YCbCr to RGB pass return image.tostring() @_replace_by('_tifffile.decodepackbits') def decodepackbits(encoded): """Decompress PackBits encoded byte string. PackBits is a simple byte-oriented run-length compression scheme. """ func = ord if sys.version[0] == '2' else lambda x: x result = [] result_extend = result.extend i = 0 try: while True: n = func(encoded[i]) + 1 i += 1 if n < 129: result_extend(encoded[i:i+n]) i += n elif n > 129: result_extend(encoded[i:i+1] * (258-n)) i += 1 except IndexError: pass return b''.join(result) if sys.version[0] == '2' else bytes(result) @_replace_by('_tifffile.decodelzw') def decodelzw(encoded): """Decompress LZW (Lempel-Ziv-Welch) encoded TIFF strip (byte string). The strip must begin with a CLEAR code and end with an EOI code. This is an implementation of the LZW decoding algorithm described in (1). It is not compatible with old style LZW compressed files like quad-lzw.tif. """ len_encoded = len(encoded) bitcount_max = len_encoded * 8 unpack = struct.unpack if sys.version[0] == '2': newtable = [chr(i) for i in range(256)] else: newtable = [bytes([i]) for i in range(256)] newtable.extend((0, 0)) def next_code(): """Return integer of `bitw` bits at `bitcount` position in encoded.""" start = bitcount // 8 s = encoded[start:start+4] try: code = unpack('>I', s)[0] except Exception: code = unpack('>I', s + b'\x00'*(4-len(s)))[0] code <<= bitcount % 8 code &= mask return code >> shr switchbitch = { # code: bit-width, shr-bits, bit-mask 255: (9, 23, int(9*'1'+'0'*23, 2)), 511: (10, 22, int(10*'1'+'0'*22, 2)), 1023: (11, 21, int(11*'1'+'0'*21, 2)), 2047: (12, 20, int(12*'1'+'0'*20, 2)), } bitw, shr, mask = switchbitch[255] bitcount = 0 if len_encoded < 4: raise ValueError("strip must be at least 4 characters long") if next_code() != 256: raise ValueError("strip must begin with CLEAR code") code = 0 oldcode = 0 result = [] result_append = result.append while True: code = next_code() # ~5% faster when inlining this function bitcount += bitw if code == 257 or bitcount >= bitcount_max: # EOI break if code == 256: # CLEAR table = newtable[:] table_append = table.append lentable = 258 bitw, shr, mask = switchbitch[255] code = next_code() bitcount += bitw if code == 257: # EOI break result_append(table[code]) else: if code < lentable: decoded = table[code] newcode = table[oldcode] + decoded[:1] else: newcode = table[oldcode] newcode += newcode[:1] decoded = newcode result_append(decoded) table_append(newcode) lentable += 1 oldcode = code if lentable in switchbitch: bitw, shr, mask = switchbitch[lentable] if code != 257: warnings.warn("unexpected end of lzw stream (code %i)" % code) return b''.join(result) @_replace_by('_tifffile.unpackints') def unpackints(data, dtype, itemsize, runlen=0): """Decompress byte string to array of integers of any bit size <= 32. Parameters ---------- data : byte str Data to decompress. dtype : numpy.dtype or str A numpy boolean or integer type. itemsize : int Number of bits per integer. runlen : int Number of consecutive integers, after which to start at next byte. """ if itemsize == 1: # bitarray data = numpy.fromstring(data, '|B') data = numpy.unpackbits(data) if runlen % 8: data = data.reshape(-1, runlen + (8 - runlen % 8)) data = data[:, :runlen].reshape(-1) return data.astype(dtype) dtype = numpy.dtype(dtype) if itemsize in (8, 16, 32, 64): return numpy.fromstring(data, dtype) if itemsize < 1 or itemsize > 32: raise ValueError("itemsize out of range: %i" % itemsize) if dtype.kind not in "biu": raise ValueError("invalid dtype") itembytes = next(i for i in (1, 2, 4, 8) if 8 * i >= itemsize) if itembytes != dtype.itemsize: raise ValueError("dtype.itemsize too small") if runlen == 0: runlen = len(data) // itembytes skipbits = runlen*itemsize % 8 if skipbits: skipbits = 8 - skipbits shrbits = itembytes*8 - itemsize bitmask = int(itemsize*'1'+'0'*shrbits, 2) dtypestr = '>' + dtype.char # dtype always big endian? unpack = struct.unpack l = runlen * (len(data)*8 // (runlen*itemsize + skipbits)) result = numpy.empty((l, ), dtype) bitcount = 0 for i in range(len(result)): start = bitcount // 8 s = data[start:start+itembytes] try: code = unpack(dtypestr, s)[0] except Exception: code = unpack(dtypestr, s + b'\x00'*(itembytes-len(s)))[0] code <<= bitcount % 8 code &= bitmask result[i] = code >> shrbits bitcount += itemsize if (i+1) % runlen == 0: bitcount += skipbits return result def unpackrgb(data, dtype='<B', bitspersample=(5, 6, 5), rescale=True): """Return array from byte string containing packed samples. Use to unpack RGB565 or RGB555 to RGB888 format. Parameters ---------- data : byte str The data to be decoded. Samples in each pixel are stored consecutively. Pixels are aligned to 8, 16, or 32 bit boundaries. dtype : numpy.dtype The sample data type. The byteorder applies also to the data stream. bitspersample : tuple Number of bits for each sample in a pixel. rescale : bool Upscale samples to the number of bits in dtype. Returns ------- result : ndarray Flattened array of unpacked samples of native dtype. Examples -------- >>> data = struct.pack('BBBB', 0x21, 0x08, 0xff, 0xff) >>> print(unpackrgb(data, '<B', (5, 6, 5), False)) [ 1 1 1 31 63 31] >>> print(unpackrgb(data, '<B', (5, 6, 5))) [ 8 4 8 255 255 255] >>> print(unpackrgb(data, '<B', (5, 5, 5))) [ 16 8 8 255 255 255] """ dtype = numpy.dtype(dtype) bits = int(numpy.sum(bitspersample)) if not (bits <= 32 and all(i <= dtype.itemsize*8 for i in bitspersample)): raise ValueError("sample size not supported %s" % str(bitspersample)) dt = next(i for i in 'BHI' if numpy.dtype(i).itemsize*8 >= bits) data = numpy.fromstring(data, dtype.byteorder+dt) result = numpy.empty((data.size, len(bitspersample)), dtype.char) for i, bps in enumerate(bitspersample): t = data >> int(numpy.sum(bitspersample[i+1:])) t &= int('0b'+'1'*bps, 2) if rescale: o = ((dtype.itemsize * 8) // bps + 1) * bps if o > data.dtype.itemsize * 8: t = t.astype('I') t *= (2**o - 1) // (2**bps - 1) t //= 2**(o - (dtype.itemsize * 8)) result[:, i] = t return result.reshape(-1) def reorient(image, orientation): """Return reoriented view of image array. Parameters ---------- image : numpy array Non-squeezed output of asarray() functions. Axes -3 and -2 must be image length and width respectively. orientation : int or str One of TIFF_ORIENTATIONS keys or values. """ o = TIFF_ORIENTATIONS.get(orientation, orientation) if o == 'top_left': return image elif o == 'top_right': return image[..., ::-1, :] elif o == 'bottom_left': return image[..., ::-1, :, :] elif o == 'bottom_right': return image[..., ::-1, ::-1, :] elif o == 'left_top': return numpy.swapaxes(image, -3, -2) elif o == 'right_top': return numpy.swapaxes(image, -3, -2)[..., ::-1, :] elif o == 'left_bottom': return numpy.swapaxes(image, -3, -2)[..., ::-1, :, :] elif o == 'right_bottom': return numpy.swapaxes(image, -3, -2)[..., ::-1, ::-1, :] def squeeze_axes(shape, axes, skip='XY'): """Return shape and axes with single-dimensional entries removed. Remove unused dimensions unless their axes are listed in 'skip'. >>> squeeze_axes((5, 1, 2, 1, 1), 'TZYXC') ((5, 2, 1), 'TYX') """ if len(shape) != len(axes): raise ValueError("dimensions of axes and shape don't match") shape, axes = zip(*(i for i in zip(shape, axes) if i[0] > 1 or i[1] in skip)) return shape, ''.join(axes) def transpose_axes(data, axes, asaxes='CTZYX'): """Return data with its axes permuted to match specified axes. A view is returned if possible. >>> transpose_axes(numpy.zeros((2, 3, 4, 5)), 'TYXC', asaxes='CTZYX').shape (5, 2, 1, 3, 4) """ for ax in axes: if ax not in asaxes: raise ValueError("unknown axis %s" % ax) # add missing axes to data shape = data.shape for ax in reversed(asaxes): if ax not in axes: axes = ax + axes shape = (1,) + shape data = data.reshape(shape) # transpose axes data = data.transpose([axes.index(ax) for ax in asaxes]) return data def stack_pages(pages, memmap=False, *args, **kwargs): """Read data from sequence of TiffPage and stack them vertically. If memmap is True, return an array stored in a binary file on disk. Additional parameters are passsed to the page asarray function. """ if len(pages) == 0: raise ValueError("no pages") if len(pages) == 1: return pages[0].asarray(memmap=memmap, *args, **kwargs) result = pages[0].asarray(*args, **kwargs) shape = (len(pages),) + result.shape if memmap: with tempfile.NamedTemporaryFile() as fh: result = numpy.memmap(fh, dtype=result.dtype, shape=shape) else: result = numpy.empty(shape, dtype=result.dtype) for i, page in enumerate(pages): result[i] = page.asarray(*args, **kwargs) return result def stripnull(string): """Return string truncated at first null character. Clean NULL terminated C strings. >>> stripnull(b'string\\x00') b'string' """ i = string.find(b'\x00') return string if (i < 0) else string[:i] def stripascii(string): """Return string truncated at last byte that is 7bit ASCII. Clean NULL separated and terminated TIFF strings. >>> stripascii(b'string\\x00string\\n\\x01\\x00') b'string\\x00string\\n' >>> stripascii(b'\\x00') b'' """ # TODO: pythonize this ord_ = ord if sys.version_info[0] < 3 else lambda x: x i = len(string) while i: i -= 1 if 8 < ord_(string[i]) < 127: break else: i = -1 return string[:i+1] def format_size(size): """Return file size as string from byte size.""" for unit in ('B', 'KB', 'MB', 'GB', 'TB'): if size < 2048: return "%.f %s" % (size, unit) size /= 1024.0 def sequence(value): """Return tuple containing value if value is not a sequence. >>> sequence(1) (1,) >>> sequence([1]) [1] """ try: len(value) return value except TypeError: return (value, ) def product(iterable): """Return product of sequence of numbers. Equivalent of functools.reduce(operator.mul, iterable, 1). >>> product([2**8, 2**30]) 274877906944 >>> product([]) 1 """ prod = 1 for i in iterable: prod *= i return prod def natural_sorted(iterable): """Return human sorted list of strings. E.g. for sorting file names. >>> natural_sorted(['f1', 'f2', 'f10']) ['f1', 'f2', 'f10'] """ def sortkey(x): return [(int(c) if c.isdigit() else c) for c in re.split(numbers, x)] numbers = re.compile(r'(\d+)') return sorted(iterable, key=sortkey) def excel_datetime(timestamp, epoch=datetime.datetime.fromordinal(693594)): """Return datetime object from timestamp in Excel serial format. Convert LSM time stamps. >>> excel_datetime(40237.029999999795) datetime.datetime(2010, 2, 28, 0, 43, 11, 999982) """ return epoch + datetime.timedelta(timestamp) def julian_datetime(julianday, milisecond=0): """Return datetime from days since 1/1/4713 BC and ms since midnight. Convert Julian dates according to MetaMorph. >>> julian_datetime(2451576, 54362783) datetime.datetime(2000, 2, 2, 15, 6, 2, 783) """ if julianday <= 1721423: # no datetime before year 1 return None a = julianday + 1 if a > 2299160: alpha = math.trunc((a - 1867216.25) / 36524.25) a += 1 + alpha - alpha // 4 b = a + (1524 if a > 1721423 else 1158) c = math.trunc((b - 122.1) / 365.25) d = math.trunc(365.25 * c) e = math.trunc((b - d) / 30.6001) day = b - d - math.trunc(30.6001 * e) month = e - (1 if e < 13.5 else 13) year = c - (4716 if month > 2.5 else 4715) hour, milisecond = divmod(milisecond, 1000 * 60 * 60) minute, milisecond = divmod(milisecond, 1000 * 60) second, milisecond = divmod(milisecond, 1000) return datetime.datetime(year, month, day, hour, minute, second, milisecond) def test_tifffile(directory='testimages', verbose=True): """Read all images in directory. Print error message on failure. >>> test_tifffile(verbose=False) """ successful = 0 failed = 0 start = time.time() for f in glob.glob(os.path.join(directory, '*.*')): if verbose: print("\n%s>\n" % f.lower(), end='') t0 = time.time() try: tif = TiffFile(f, multifile=True) except Exception as e: if not verbose: print(f, end=' ') print("ERROR:", e) failed += 1 continue try: img = tif.asarray() except ValueError: try: img = tif[0].asarray() except Exception as e: if not verbose: print(f, end=' ') print("ERROR:", e) failed += 1 continue finally: tif.close() successful += 1 if verbose: print("%s, %s %s, %s, %.0f ms" % ( str(tif), str(img.shape), img.dtype, tif[0].compression, (time.time()-t0) * 1e3)) if verbose: print("\nSuccessfully read %i of %i files in %.3f s\n" % ( successful, successful+failed, time.time()-start)) class TIFF_SUBFILE_TYPES(object): def __getitem__(self, key): result = [] if key & 1: result.append('reduced_image') if key & 2: result.append('page') if key & 4: result.append('mask') return tuple(result) TIFF_PHOTOMETRICS = { 0: 'miniswhite', 1: 'minisblack', 2: 'rgb', 3: 'palette', 4: 'mask', 5: 'separated', # CMYK 6: 'ycbcr', 8: 'cielab', 9: 'icclab', 10: 'itulab', 32803: 'cfa', # Color Filter Array 32844: 'logl', 32845: 'logluv', 34892: 'linear_raw' } TIFF_COMPESSIONS = { 1: None, 2: 'ccittrle', 3: 'ccittfax3', 4: 'ccittfax4', 5: 'lzw', 6: 'ojpeg', 7: 'jpeg', 8: 'adobe_deflate', 9: 't85', 10: 't43', 32766: 'next', 32771: 'ccittrlew', 32773: 'packbits', 32809: 'thunderscan', 32895: 'it8ctpad', 32896: 'it8lw', 32897: 'it8mp', 32898: 'it8bl', 32908: 'pixarfilm', 32909: 'pixarlog', 32946: 'deflate', 32947: 'dcs', 34661: 'jbig', 34676: 'sgilog', 34677: 'sgilog24', 34712: 'jp2000', 34713: 'nef', } TIFF_DECOMPESSORS = { None: lambda x: x, 'adobe_deflate': zlib.decompress, 'deflate': zlib.decompress, 'packbits': decodepackbits, 'lzw': decodelzw, # 'jpeg': decodejpg } TIFF_DATA_TYPES = { 1: '1B', # BYTE 8-bit unsigned integer. 2: '1s', # ASCII 8-bit byte that contains a 7-bit ASCII code; # the last byte must be NULL (binary zero). 3: '1H', # SHORT 16-bit (2-byte) unsigned integer 4: '1I', # LONG 32-bit (4-byte) unsigned integer. 5: '2I', # RATIONAL Two LONGs: the first represents the numerator of # a fraction; the second, the denominator. 6: '1b', # SBYTE An 8-bit signed (twos-complement) integer. 7: '1s', # UNDEFINED An 8-bit byte that may contain anything, # depending on the definition of the field. 8: '1h', # SSHORT A 16-bit (2-byte) signed (twos-complement) integer. 9: '1i', # SLONG A 32-bit (4-byte) signed (twos-complement) integer. 10: '2i', # SRATIONAL Two SLONGs: the first represents the numerator # of a fraction, the second the denominator. 11: '1f', # FLOAT Single precision (4-byte) IEEE format. 12: '1d', # DOUBLE Double precision (8-byte) IEEE format. 13: '1I', # IFD unsigned 4 byte IFD offset. #14: '', # UNICODE #15: '', # COMPLEX 16: '1Q', # LONG8 unsigned 8 byte integer (BigTiff) 17: '1q', # SLONG8 signed 8 byte integer (BigTiff) 18: '1Q', # IFD8 unsigned 8 byte IFD offset (BigTiff) } TIFF_SAMPLE_FORMATS = { 1: 'uint', 2: 'int', 3: 'float', #4: 'void', #5: 'complex_int', 6: 'complex', } TIFF_SAMPLE_DTYPES = { ('uint', 1): '?', # bitmap ('uint', 2): 'B', ('uint', 3): 'B', ('uint', 4): 'B', ('uint', 5): 'B', ('uint', 6): 'B', ('uint', 7): 'B', ('uint', 8): 'B', ('uint', 9): 'H', ('uint', 10): 'H', ('uint', 11): 'H', ('uint', 12): 'H', ('uint', 13): 'H', ('uint', 14): 'H', ('uint', 15): 'H', ('uint', 16): 'H', ('uint', 17): 'I', ('uint', 18): 'I', ('uint', 19): 'I', ('uint', 20): 'I', ('uint', 21): 'I', ('uint', 22): 'I', ('uint', 23): 'I', ('uint', 24): 'I', ('uint', 25): 'I', ('uint', 26): 'I', ('uint', 27): 'I', ('uint', 28): 'I', ('uint', 29): 'I', ('uint', 30): 'I', ('uint', 31): 'I', ('uint', 32): 'I', ('uint', 64): 'Q', ('int', 8): 'b', ('int', 16): 'h', ('int', 32): 'i', ('int', 64): 'q', ('float', 16): 'e', ('float', 32): 'f', ('float', 64): 'd', ('complex', 64): 'F', ('complex', 128): 'D', ('uint', (5, 6, 5)): 'B', } TIFF_ORIENTATIONS = { 1: 'top_left', 2: 'top_right', 3: 'bottom_right', 4: 'bottom_left', 5: 'left_top', 6: 'right_top', 7: 'right_bottom', 8: 'left_bottom', } # TODO: is there a standard for character axes labels? AXES_LABELS = { 'X': 'width', 'Y': 'height', 'Z': 'depth', 'S': 'sample', # rgb(a) 'I': 'series', # general sequence, plane, page, IFD 'T': 'time', 'C': 'channel', # color, emission wavelength 'A': 'angle', 'P': 'phase', # formerly F # P is Position in LSM! 'R': 'tile', # region, point, mosaic 'H': 'lifetime', # histogram 'E': 'lambda', # excitation wavelength 'L': 'exposure', # lux 'V': 'event', 'Q': 'other', #'M': 'mosaic', # LSM 6 } AXES_LABELS.update(dict((v, k) for k, v in AXES_LABELS.items())) # Map OME pixel types to numpy dtype OME_PIXEL_TYPES = { 'int8': 'i1', 'int16': 'i2', 'int32': 'i4', 'uint8': 'u1', 'uint16': 'u2', 'uint32': 'u4', 'float': 'f4', # 'bit': 'bit', 'double': 'f8', 'complex': 'c8', 'double-complex': 'c16', } # NIH Image PicHeader v1.63 NIH_IMAGE_HEADER = [ ('fileid', 'a8'), ('nlines', 'i2'), ('pixelsperline', 'i2'), ('version', 'i2'), ('oldlutmode', 'i2'), ('oldncolors', 'i2'), ('colors', 'u1', (3, 32)), ('oldcolorstart', 'i2'), ('colorwidth', 'i2'), ('extracolors', 'u2', (6, 3)), ('nextracolors', 'i2'), ('foregroundindex', 'i2'), ('backgroundindex', 'i2'), ('xscale', 'f8'), ('_x0', 'i2'), ('_x1', 'i2'), ('units_t', 'i2'), # NIH_UNITS_TYPE ('p1', [('x', 'i2'), ('y', 'i2')]), ('p2', [('x', 'i2'), ('y', 'i2')]), ('curvefit_t', 'i2'), # NIH_CURVEFIT_TYPE ('ncoefficients', 'i2'), ('coeff', 'f8', 6), ('_um_len', 'u1'), ('um', 'a15'), ('_x2', 'u1'), ('binarypic', 'b1'), ('slicestart', 'i2'), ('sliceend', 'i2'), ('scalemagnification', 'f4'), ('nslices', 'i2'), ('slicespacing', 'f4'), ('currentslice', 'i2'), ('frameinterval', 'f4'), ('pixelaspectratio', 'f4'), ('colorstart', 'i2'), ('colorend', 'i2'), ('ncolors', 'i2'), ('fill1', '3u2'), ('fill2', '3u2'), ('colortable_t', 'u1'), # NIH_COLORTABLE_TYPE ('lutmode_t', 'u1'), # NIH_LUTMODE_TYPE ('invertedtable', 'b1'), ('zeroclip', 'b1'), ('_xunit_len', 'u1'), ('xunit', 'a11'), ('stacktype_t', 'i2'), # NIH_STACKTYPE_TYPE ] NIH_COLORTABLE_TYPE = ( 'CustomTable', 'AppleDefault', 'Pseudo20', 'Pseudo32', 'Rainbow', 'Fire1', 'Fire2', 'Ice', 'Grays', 'Spectrum') NIH_LUTMODE_TYPE = ( 'PseudoColor', 'OldAppleDefault', 'OldSpectrum', 'GrayScale', 'ColorLut', 'CustomGrayscale') NIH_CURVEFIT_TYPE = ( 'StraightLine', 'Poly2', 'Poly3', 'Poly4', 'Poly5', 'ExpoFit', 'PowerFit', 'LogFit', 'RodbardFit', 'SpareFit1', 'Uncalibrated', 'UncalibratedOD') NIH_UNITS_TYPE = ( 'Nanometers', 'Micrometers', 'Millimeters', 'Centimeters', 'Meters', 'Kilometers', 'Inches', 'Feet', 'Miles', 'Pixels', 'OtherUnits') NIH_STACKTYPE_TYPE = ( 'VolumeStack', 'RGBStack', 'MovieStack', 'HSVStack') # Map Universal Imaging Corporation MetaMorph internal tag ids to name and type UIC_TAGS = { 0: ('auto_scale', int), 1: ('min_scale', int), 2: ('max_scale', int), 3: ('spatial_calibration', int), 4: ('x_calibration', Fraction), 5: ('y_calibration', Fraction), 6: ('calibration_units', str), 7: ('name', str), 8: ('thresh_state', int), 9: ('thresh_state_red', int), 10: ('tagid_10', None), # undefined 11: ('thresh_state_green', int), 12: ('thresh_state_blue', int), 13: ('thresh_state_lo', int), 14: ('thresh_state_hi', int), 15: ('zoom', int), 16: ('create_time', julian_datetime), 17: ('last_saved_time', julian_datetime), 18: ('current_buffer', int), 19: ('gray_fit', None), 20: ('gray_point_count', None), 21: ('gray_x', Fraction), 22: ('gray_y', Fraction), 23: ('gray_min', Fraction), 24: ('gray_max', Fraction), 25: ('gray_unit_name', str), 26: ('standard_lut', int), 27: ('wavelength', int), 28: ('stage_position', '(%i,2,2)u4'), # N xy positions as fractions 29: ('camera_chip_offset', '(%i,2,2)u4'), # N xy offsets as fractions 30: ('overlay_mask', None), 31: ('overlay_compress', None), 32: ('overlay', None), 33: ('special_overlay_mask', None), 34: ('special_overlay_compress', None), 35: ('special_overlay', None), 36: ('image_property', read_uic_image_property), 37: ('stage_label', '%ip'), # N str 38: ('autoscale_lo_info', Fraction), 39: ('autoscale_hi_info', Fraction), 40: ('absolute_z', '(%i,2)u4'), # N fractions 41: ('absolute_z_valid', '(%i,)u4'), # N long 42: ('gamma', int), 43: ('gamma_red', int), 44: ('gamma_green', int), 45: ('gamma_blue', int), 46: ('camera_bin', int), 47: ('new_lut', int), 48: ('image_property_ex', None), 49: ('plane_property', int), 50: ('user_lut_table', '(256,3)u1'), 51: ('red_autoscale_info', int), 52: ('red_autoscale_lo_info', Fraction), 53: ('red_autoscale_hi_info', Fraction), 54: ('red_minscale_info', int), 55: ('red_maxscale_info', int), 56: ('green_autoscale_info', int), 57: ('green_autoscale_lo_info', Fraction), 58: ('green_autoscale_hi_info', Fraction), 59: ('green_minscale_info', int), 60: ('green_maxscale_info', int), 61: ('blue_autoscale_info', int), 62: ('blue_autoscale_lo_info', Fraction), 63: ('blue_autoscale_hi_info', Fraction), 64: ('blue_min_scale_info', int), 65: ('blue_max_scale_info', int), #66: ('overlay_plane_color', read_uic_overlay_plane_color), } # Olympus FluoView MM_DIMENSION = [ ('name', 'a16'), ('size', 'i4'), ('origin', 'f8'), ('resolution', 'f8'), ('unit', 'a64'), ] MM_HEADER = [ ('header_flag', 'i2'), ('image_type', 'u1'), ('image_name', 'a257'), ('offset_data', 'u4'), ('palette_size', 'i4'), ('offset_palette0', 'u4'), ('offset_palette1', 'u4'), ('comment_size', 'i4'), ('offset_comment', 'u4'), ('dimensions', MM_DIMENSION, 10), ('offset_position', 'u4'), ('map_type', 'i2'), ('map_min', 'f8'), ('map_max', 'f8'), ('min_value', 'f8'), ('max_value', 'f8'), ('offset_map', 'u4'), ('gamma', 'f8'), ('offset', 'f8'), ('gray_channel', MM_DIMENSION), ('offset_thumbnail', 'u4'), ('voice_field', 'i4'), ('offset_voice_field', 'u4'), ] # Carl Zeiss LSM CZ_LSM_INFO = [ ('magic_number', 'u4'), ('structure_size', 'i4'), ('dimension_x', 'i4'), ('dimension_y', 'i4'), ('dimension_z', 'i4'), ('dimension_channels', 'i4'), ('dimension_time', 'i4'), ('data_type', 'i4'), # CZ_DATA_TYPES ('thumbnail_x', 'i4'), ('thumbnail_y', 'i4'), ('voxel_size_x', 'f8'), ('voxel_size_y', 'f8'), ('voxel_size_z', 'f8'), ('origin_x', 'f8'), ('origin_y', 'f8'), ('origin_z', 'f8'), ('scan_type', 'u2'), ('spectral_scan', 'u2'), ('type_of_data', 'u4'), # CZ_TYPE_OF_DATA ('offset_vector_overlay', 'u4'), ('offset_input_lut', 'u4'), ('offset_output_lut', 'u4'), ('offset_channel_colors', 'u4'), ('time_interval', 'f8'), ('offset_channel_data_types', 'u4'), ('offset_scan_info', 'u4'), # CZ_LSM_SCAN_INFO ('offset_ks_data', 'u4'), ('offset_time_stamps', 'u4'), ('offset_event_list', 'u4'), ('offset_roi', 'u4'), ('offset_bleach_roi', 'u4'), ('offset_next_recording', 'u4'), # LSM 2.0 ends here ('display_aspect_x', 'f8'), ('display_aspect_y', 'f8'), ('display_aspect_z', 'f8'), ('display_aspect_time', 'f8'), ('offset_mean_of_roi_overlay', 'u4'), ('offset_topo_isoline_overlay', 'u4'), ('offset_topo_profile_overlay', 'u4'), ('offset_linescan_overlay', 'u4'), ('offset_toolbar_flags', 'u4'), ('offset_channel_wavelength', 'u4'), ('offset_channel_factors', 'u4'), ('objective_sphere_correction', 'f8'), ('offset_unmix_parameters', 'u4'), # LSM 3.2, 4.0 end here ('offset_acquisition_parameters', 'u4'), ('offset_characteristics', 'u4'), ('offset_palette', 'u4'), ('time_difference_x', 'f8'), ('time_difference_y', 'f8'), ('time_difference_z', 'f8'), ('internal_use_1', 'u4'), ('dimension_p', 'i4'), ('dimension_m', 'i4'), ('dimensions_reserved', '16i4'), ('offset_tile_positions', 'u4'), ('reserved_1', '9u4'), ('offset_positions', 'u4'), ('reserved_2', '21u4'), # must be 0 ] # Import functions for LSM_INFO sub-records CZ_LSM_INFO_READERS = { 'scan_info': read_cz_lsm_scan_info, 'time_stamps': read_cz_lsm_time_stamps, 'event_list': read_cz_lsm_event_list, 'channel_colors': read_cz_lsm_floatpairs, 'positions': read_cz_lsm_floatpairs, 'tile_positions': read_cz_lsm_floatpairs, } # Map cz_lsm_info.scan_type to dimension order CZ_SCAN_TYPES = { 0: 'XYZCT', # x-y-z scan 1: 'XYZCT', # z scan (x-z plane) 2: 'XYZCT', # line scan 3: 'XYTCZ', # time series x-y 4: 'XYZTC', # time series x-z 5: 'XYTCZ', # time series 'Mean of ROIs' 6: 'XYZTC', # time series x-y-z 7: 'XYCTZ', # spline scan 8: 'XYCZT', # spline scan x-z 9: 'XYTCZ', # time series spline plane x-z 10: 'XYZCT', # point mode } # Map dimension codes to cz_lsm_info attribute CZ_DIMENSIONS = { 'X': 'dimension_x', 'Y': 'dimension_y', 'Z': 'dimension_z', 'C': 'dimension_channels', 'T': 'dimension_time', } # Description of cz_lsm_info.data_type CZ_DATA_TYPES = { 0: 'varying data types', 1: '8 bit unsigned integer', 2: '12 bit unsigned integer', 5: '32 bit float', } # Description of cz_lsm_info.type_of_data CZ_TYPE_OF_DATA = { 0: 'Original scan data', 1: 'Calculated data', 2: '3D reconstruction', 3: 'Topography height map', } CZ_LSM_SCAN_INFO_ARRAYS = { 0x20000000: "tracks", 0x30000000: "lasers", 0x60000000: "detection_channels", 0x80000000: "illumination_channels", 0xa0000000: "beam_splitters", 0xc0000000: "data_channels", 0x11000000: "timers", 0x13000000: "markers", } CZ_LSM_SCAN_INFO_STRUCTS = { # 0x10000000: "recording", 0x40000000: "track", 0x50000000: "laser", 0x70000000: "detection_channel", 0x90000000: "illumination_channel", 0xb0000000: "beam_splitter", 0xd0000000: "data_channel", 0x12000000: "timer", 0x14000000: "marker", } CZ_LSM_SCAN_INFO_ATTRIBUTES = { # recording 0x10000001: "name", 0x10000002: "description", 0x10000003: "notes", 0x10000004: "objective", 0x10000005: "processing_summary", 0x10000006: "special_scan_mode", 0x10000007: "scan_type", 0x10000008: "scan_mode", 0x10000009: "number_of_stacks", 0x1000000a: "lines_per_plane", 0x1000000b: "samples_per_line", 0x1000000c: "planes_per_volume", 0x1000000d: "images_width", 0x1000000e: "images_height", 0x1000000f: "images_number_planes", 0x10000010: "images_number_stacks", 0x10000011: "images_number_channels", 0x10000012: "linscan_xy_size", 0x10000013: "scan_direction", 0x10000014: "time_series", 0x10000015: "original_scan_data", 0x10000016: "zoom_x", 0x10000017: "zoom_y", 0x10000018: "zoom_z", 0x10000019: "sample_0x", 0x1000001a: "sample_0y", 0x1000001b: "sample_0z", 0x1000001c: "sample_spacing", 0x1000001d: "line_spacing", 0x1000001e: "plane_spacing", 0x1000001f: "plane_width", 0x10000020: "plane_height", 0x10000021: "volume_depth", 0x10000023: "nutation", 0x10000034: "rotation", 0x10000035: "precession", 0x10000036: "sample_0time", 0x10000037: "start_scan_trigger_in", 0x10000038: "start_scan_trigger_out", 0x10000039: "start_scan_event", 0x10000040: "start_scan_time", 0x10000041: "stop_scan_trigger_in", 0x10000042: "stop_scan_trigger_out", 0x10000043: "stop_scan_event", 0x10000044: "stop_scan_time", 0x10000045: "use_rois", 0x10000046: "use_reduced_memory_rois", 0x10000047: "user", 0x10000048: "use_bc_correction", 0x10000049: "position_bc_correction1", 0x10000050: "position_bc_correction2", 0x10000051: "interpolation_y", 0x10000052: "camera_binning", 0x10000053: "camera_supersampling", 0x10000054: "camera_frame_width", 0x10000055: "camera_frame_height", 0x10000056: "camera_offset_x", 0x10000057: "camera_offset_y", 0x10000059: "rt_binning", 0x1000005a: "rt_frame_width", 0x1000005b: "rt_frame_height", 0x1000005c: "rt_region_width", 0x1000005d: "rt_region_height", 0x1000005e: "rt_offset_x", 0x1000005f: "rt_offset_y", 0x10000060: "rt_zoom", 0x10000061: "rt_line_period", 0x10000062: "prescan", 0x10000063: "scan_direction_z", # track 0x40000001: "multiplex_type", # 0 after line; 1 after frame 0x40000002: "multiplex_order", 0x40000003: "sampling_mode", # 0 sample; 1 line average; 2 frame average 0x40000004: "sampling_method", # 1 mean; 2 sum 0x40000005: "sampling_number", 0x40000006: "acquire", 0x40000007: "sample_observation_time", 0x4000000b: "time_between_stacks", 0x4000000c: "name", 0x4000000d: "collimator1_name", 0x4000000e: "collimator1_position", 0x4000000f: "collimator2_name", 0x40000010: "collimator2_position", 0x40000011: "is_bleach_track", 0x40000012: "is_bleach_after_scan_number", 0x40000013: "bleach_scan_number", 0x40000014: "trigger_in", 0x40000015: "trigger_out", 0x40000016: "is_ratio_track", 0x40000017: "bleach_count", 0x40000018: "spi_center_wavelength", 0x40000019: "pixel_time", 0x40000021: "condensor_frontlens", 0x40000023: "field_stop_value", 0x40000024: "id_condensor_aperture", 0x40000025: "condensor_aperture", 0x40000026: "id_condensor_revolver", 0x40000027: "condensor_filter", 0x40000028: "id_transmission_filter1", 0x40000029: "id_transmission1", 0x40000030: "id_transmission_filter2", 0x40000031: "id_transmission2", 0x40000032: "repeat_bleach", 0x40000033: "enable_spot_bleach_pos", 0x40000034: "spot_bleach_posx", 0x40000035: "spot_bleach_posy", 0x40000036: "spot_bleach_posz", 0x40000037: "id_tubelens", 0x40000038: "id_tubelens_position", 0x40000039: "transmitted_light", 0x4000003a: "reflected_light", 0x4000003b: "simultan_grab_and_bleach", 0x4000003c: "bleach_pixel_time", # laser 0x50000001: "name", 0x50000002: "acquire", 0x50000003: "power", # detection_channel 0x70000001: "integration_mode", 0x70000002: "special_mode", 0x70000003: "detector_gain_first", 0x70000004: "detector_gain_last", 0x70000005: "amplifier_gain_first", 0x70000006: "amplifier_gain_last", 0x70000007: "amplifier_offs_first", 0x70000008: "amplifier_offs_last", 0x70000009: "pinhole_diameter", 0x7000000a: "counting_trigger", 0x7000000b: "acquire", 0x7000000c: "point_detector_name", 0x7000000d: "amplifier_name", 0x7000000e: "pinhole_name", 0x7000000f: "filter_set_name", 0x70000010: "filter_name", 0x70000013: "integrator_name", 0x70000014: "channel_name", 0x70000015: "detector_gain_bc1", 0x70000016: "detector_gain_bc2", 0x70000017: "amplifier_gain_bc1", 0x70000018: "amplifier_gain_bc2", 0x70000019: "amplifier_offset_bc1", 0x70000020: "amplifier_offset_bc2", 0x70000021: "spectral_scan_channels", 0x70000022: "spi_wavelength_start", 0x70000023: "spi_wavelength_stop", 0x70000026: "dye_name", 0x70000027: "dye_folder", # illumination_channel 0x90000001: "name", 0x90000002: "power", 0x90000003: "wavelength", 0x90000004: "aquire", 0x90000005: "detchannel_name", 0x90000006: "power_bc1", 0x90000007: "power_bc2", # beam_splitter 0xb0000001: "filter_set", 0xb0000002: "filter", 0xb0000003: "name", # data_channel 0xd0000001: "name", 0xd0000003: "acquire", 0xd0000004: "color", 0xd0000005: "sample_type", 0xd0000006: "bits_per_sample", 0xd0000007: "ratio_type", 0xd0000008: "ratio_track1", 0xd0000009: "ratio_track2", 0xd000000a: "ratio_channel1", 0xd000000b: "ratio_channel2", 0xd000000c: "ratio_const1", 0xd000000d: "ratio_const2", 0xd000000e: "ratio_const3", 0xd000000f: "ratio_const4", 0xd0000010: "ratio_const5", 0xd0000011: "ratio_const6", 0xd0000012: "ratio_first_images1", 0xd0000013: "ratio_first_images2", 0xd0000014: "dye_name", 0xd0000015: "dye_folder", 0xd0000016: "spectrum", 0xd0000017: "acquire", # timer 0x12000001: "name", 0x12000002: "description", 0x12000003: "interval", 0x12000004: "trigger_in", 0x12000005: "trigger_out", 0x12000006: "activation_time", 0x12000007: "activation_number", # marker 0x14000001: "name", 0x14000002: "description", 0x14000003: "trigger_in", 0x14000004: "trigger_out", } # Map TIFF tag code to attribute name, default value, type, count, validator TIFF_TAGS = { 254: ('new_subfile_type', 0, 4, 1, TIFF_SUBFILE_TYPES()), 255: ('subfile_type', None, 3, 1, {0: 'undefined', 1: 'image', 2: 'reduced_image', 3: 'page'}), 256: ('image_width', None, 4, 1, None), 257: ('image_length', None, 4, 1, None), 258: ('bits_per_sample', 1, 3, 1, None), 259: ('compression', 1, 3, 1, TIFF_COMPESSIONS), 262: ('photometric', None, 3, 1, TIFF_PHOTOMETRICS), 266: ('fill_order', 1, 3, 1, {1: 'msb2lsb', 2: 'lsb2msb'}), 269: ('document_name', None, 2, None, None), 270: ('image_description', None, 2, None, None), 271: ('make', None, 2, None, None), 272: ('model', None, 2, None, None), 273: ('strip_offsets', None, 4, None, None), 274: ('orientation', 1, 3, 1, TIFF_ORIENTATIONS), 277: ('samples_per_pixel', 1, 3, 1, None), 278: ('rows_per_strip', 2**32-1, 4, 1, None), 279: ('strip_byte_counts', None, 4, None, None), 280: ('min_sample_value', None, 3, None, None), 281: ('max_sample_value', None, 3, None, None), # 2**bits_per_sample 282: ('x_resolution', None, 5, 1, None), 283: ('y_resolution', None, 5, 1, None), 284: ('planar_configuration', 1, 3, 1, {1: 'contig', 2: 'separate'}), 285: ('page_name', None, 2, None, None), 286: ('x_position', None, 5, 1, None), 287: ('y_position', None, 5, 1, None), 296: ('resolution_unit', 2, 4, 1, {1: 'none', 2: 'inch', 3: 'centimeter'}), 297: ('page_number', None, 3, 2, None), 305: ('software', None, 2, None, None), 306: ('datetime', None, 2, None, None), 315: ('artist', None, 2, None, None), 316: ('host_computer', None, 2, None, None), 317: ('predictor', 1, 3, 1, {1: None, 2: 'horizontal'}), 318: ('white_point', None, 5, 2, None), 319: ('primary_chromaticities', None, 5, 6, None), 320: ('color_map', None, 3, None, None), 322: ('tile_width', None, 4, 1, None), 323: ('tile_length', None, 4, 1, None), 324: ('tile_offsets', None, 4, None, None), 325: ('tile_byte_counts', None, 4, None, None), 338: ('extra_samples', None, 3, None, {0: 'unspecified', 1: 'assocalpha', 2: 'unassalpha'}), 339: ('sample_format', 1, 3, 1, TIFF_SAMPLE_FORMATS), 340: ('smin_sample_value', None, None, None, None), 341: ('smax_sample_value', None, None, None, None), 347: ('jpeg_tables', None, 7, None, None), 530: ('ycbcr_subsampling', 1, 3, 2, None), 531: ('ycbcr_positioning', 1, 3, 1, None), 32996: ('sgi_matteing', None, None, 1, None), # use extra_samples 32996: ('sgi_datatype', None, None, 1, None), # use sample_format 32997: ('image_depth', None, 4, 1, None), 32998: ('tile_depth', None, 4, 1, None), 33432: ('copyright', None, 1, None, None), 33445: ('md_file_tag', None, 4, 1, None), 33446: ('md_scale_pixel', None, 5, 1, None), 33447: ('md_color_table', None, 3, None, None), 33448: ('md_lab_name', None, 2, None, None), 33449: ('md_sample_info', None, 2, None, None), 33450: ('md_prep_date', None, 2, None, None), 33451: ('md_prep_time', None, 2, None, None), 33452: ('md_file_units', None, 2, None, None), 33550: ('model_pixel_scale', None, 12, 3, None), 33922: ('model_tie_point', None, 12, None, None), 34665: ('exif_ifd', None, None, 1, None), 34735: ('geo_key_directory', None, 3, None, None), 34736: ('geo_double_params', None, 12, None, None), 34737: ('geo_ascii_params', None, 2, None, None), 34853: ('gps_ifd', None, None, 1, None), 37510: ('user_comment', None, None, None, None), 42112: ('gdal_metadata', None, 2, None, None), 42113: ('gdal_nodata', None, 2, None, None), 50289: ('mc_xy_position', None, 12, 2, None), 50290: ('mc_z_position', None, 12, 1, None), 50291: ('mc_xy_calibration', None, 12, 3, None), 50292: ('mc_lens_lem_na_n', None, 12, 3, None), 50293: ('mc_channel_name', None, 1, None, None), 50294: ('mc_ex_wavelength', None, 12, 1, None), 50295: ('mc_time_stamp', None, 12, 1, None), 50838: ('imagej_byte_counts', None, None, None, None), 65200: ('flex_xml', None, 2, None, None), # code: (attribute name, default value, type, count, validator) } # Map custom TIFF tag codes to attribute names and import functions CUSTOM_TAGS = { 700: ('xmp', read_bytes), 34377: ('photoshop', read_numpy), 33723: ('iptc', read_bytes), 34675: ('icc_profile', read_bytes), 33628: ('uic1tag', read_uic1tag), # Universal Imaging Corporation STK 33629: ('uic2tag', read_uic2tag), 33630: ('uic3tag', read_uic3tag), 33631: ('uic4tag', read_uic4tag), 34361: ('mm_header', read_mm_header), # Olympus FluoView 34362: ('mm_stamp', read_mm_stamp), 34386: ('mm_user_block', read_bytes), 34412: ('cz_lsm_info', read_cz_lsm_info), # Carl Zeiss LSM 43314: ('nih_image_header', read_nih_image_header), # 40001: ('mc_ipwinscal', read_bytes), 40100: ('mc_id_old', read_bytes), 50288: ('mc_id', read_bytes), 50296: ('mc_frame_properties', read_bytes), 50839: ('imagej_metadata', read_bytes), 51123: ('micromanager_metadata', read_json), } # Max line length of printed output PRINT_LINE_LEN = 79 def imshow(data, title=None, vmin=0, vmax=None, cmap=None, bitspersample=None, photometric='rgb', interpolation='nearest', dpi=96, figure=None, subplot=111, maxdim=8192, **kwargs): """Plot n-dimensional images using matplotlib.pyplot. Return figure, subplot and plot axis. Requires pyplot already imported ``from matplotlib import pyplot``. Parameters ---------- bitspersample : int or None Number of bits per channel in integer RGB images. photometric : {'miniswhite', 'minisblack', 'rgb', or 'palette'} The color space of the image data. title : str Window and subplot title. figure : matplotlib.figure.Figure (optional). Matplotlib to use for plotting. subplot : int A matplotlib.pyplot.subplot axis. maxdim : int maximum image size in any dimension. kwargs : optional Arguments for matplotlib.pyplot.imshow. """ #if photometric not in ('miniswhite', 'minisblack', 'rgb', 'palette'): # raise ValueError("Can't handle %s photometrics" % photometric) # TODO: handle photometric == 'separated' (CMYK) isrgb = photometric in ('rgb', 'palette') data = numpy.atleast_2d(data.squeeze()) data = data[(slice(0, maxdim), ) * len(data.shape)] dims = data.ndim if dims < 2: raise ValueError("not an image") elif dims == 2: dims = 0 isrgb = False else: if isrgb and data.shape[-3] in (3, 4): data = numpy.swapaxes(data, -3, -2) data = numpy.swapaxes(data, -2, -1) elif not isrgb and (data.shape[-1] < data.shape[-2] // 16 and data.shape[-1] < data.shape[-3] // 16 and data.shape[-1] < 5): data = numpy.swapaxes(data, -3, -1) data = numpy.swapaxes(data, -2, -1) isrgb = isrgb and data.shape[-1] in (3, 4) dims -= 3 if isrgb else 2 if photometric == 'palette' and isrgb: datamax = data.max() if datamax > 255: data >>= 8 # possible precision loss data = data.astype('B') elif data.dtype.kind in 'ui': if not (isrgb and data.dtype.itemsize <= 1) or bitspersample is None: try: bitspersample = int(math.ceil(math.log(data.max(), 2))) except Exception: bitspersample = data.dtype.itemsize * 8 elif not isinstance(bitspersample, int): # bitspersample can be tuple, e.g. (5, 6, 5) bitspersample = data.dtype.itemsize * 8 datamax = 2**bitspersample if isrgb: if bitspersample < 8: data <<= 8 - bitspersample elif bitspersample > 8: data >>= bitspersample - 8 # precision loss data = data.astype('B') elif data.dtype.kind == 'f': datamax = data.max() if isrgb and datamax > 1.0: if data.dtype.char == 'd': data = data.astype('f') data /= datamax elif data.dtype.kind == 'b': datamax = 1 elif data.dtype.kind == 'c': raise NotImplementedError("complex type") # TODO: handle complex types if not isrgb: if vmax is None: vmax = datamax if vmin is None: if data.dtype.kind == 'i': dtmin = numpy.iinfo(data.dtype).min vmin = numpy.min(data) if vmin == dtmin: vmin = numpy.min(data > dtmin) if data.dtype.kind == 'f': dtmin = numpy.finfo(data.dtype).min vmin = numpy.min(data) if vmin == dtmin: vmin = numpy.min(data > dtmin) else: vmin = 0 pyplot = sys.modules['matplotlib.pyplot'] if figure is None: pyplot.rc('font', family='sans-serif', weight='normal', size=8) figure = pyplot.figure(dpi=dpi, figsize=(10.3, 6.3), frameon=True, facecolor='1.0', edgecolor='w') try: figure.canvas.manager.window.title(title) except Exception: pass pyplot.subplots_adjust(bottom=0.03*(dims+2), top=0.9, left=0.1, right=0.95, hspace=0.05, wspace=0.0) subplot = pyplot.subplot(subplot) if title: try: title = unicode(title, 'Windows-1252') except TypeError: pass pyplot.title(title, size=11) if cmap is None: if data.dtype.kind in 'ubf' or vmin == 0: cmap = 'cubehelix' else: cmap = 'coolwarm' if photometric == 'miniswhite': cmap += '_r' image = pyplot.imshow(data[(0, ) * dims].squeeze(), vmin=vmin, vmax=vmax, cmap=cmap, interpolation=interpolation, **kwargs) if not isrgb: pyplot.colorbar() # panchor=(0.55, 0.5), fraction=0.05 def format_coord(x, y): # callback function to format coordinate display in toolbar x = int(x + 0.5) y = int(y + 0.5) try: if dims: return "%s @ %s [%4i, %4i]" % (cur_ax_dat[1][y, x], current, x, y) else: return "%s @ [%4i, %4i]" % (data[y, x], x, y) except IndexError: return "" pyplot.gca().format_coord = format_coord if dims: current = list((0, ) * dims) cur_ax_dat = [0, data[tuple(current)].squeeze()] sliders = [pyplot.Slider( pyplot.axes([0.125, 0.03*(axis+1), 0.725, 0.025]), 'Dimension %i' % axis, 0, data.shape[axis]-1, 0, facecolor='0.5', valfmt='%%.0f [%i]' % data.shape[axis]) for axis in range(dims)] for slider in sliders: slider.drawon = False def set_image(current, sliders=sliders, data=data): # change image and redraw canvas cur_ax_dat[1] = data[tuple(current)].squeeze() image.set_data(cur_ax_dat[1]) for ctrl, index in zip(sliders, current): ctrl.eventson = False ctrl.set_val(index) ctrl.eventson = True figure.canvas.draw() def on_changed(index, axis, data=data, current=current): # callback function for slider change event index = int(round(index)) cur_ax_dat[0] = axis if index == current[axis]: return if index >= data.shape[axis]: index = 0 elif index < 0: index = data.shape[axis] - 1 current[axis] = index set_image(current) def on_keypressed(event, data=data, current=current): # callback function for key press event key = event.key axis = cur_ax_dat[0] if str(key) in '0123456789': on_changed(key, axis) elif key == 'right': on_changed(current[axis] + 1, axis) elif key == 'left': on_changed(current[axis] - 1, axis) elif key == 'up': cur_ax_dat[0] = 0 if axis == len(data.shape)-1 else axis + 1 elif key == 'down': cur_ax_dat[0] = len(data.shape)-1 if axis == 0 else axis - 1 elif key == 'end': on_changed(data.shape[axis] - 1, axis) elif key == 'home': on_changed(0, axis) figure.canvas.mpl_connect('key_press_event', on_keypressed) for axis, ctrl in enumerate(sliders): ctrl.on_changed(lambda k, a=axis: on_changed(k, a)) return figure, subplot, image def _app_show(): """Block the GUI. For use as skimage plugin.""" pyplot = sys.modules['matplotlib.pyplot'] pyplot.show() def main(argv=None): """Command line usage main function.""" if float(sys.version[0:3]) < 2.6: print("This script requires Python version 2.6 or better.") print("This is Python version %s" % sys.version) return 0 if argv is None: argv = sys.argv import optparse parser = optparse.OptionParser( usage="usage: %prog [options] path", description="Display image data in TIFF files.", version="%%prog %s" % __version__) opt = parser.add_option opt('-p', '--page', dest='page', type='int', default=-1, help="display single page") opt('-s', '--series', dest='series', type='int', default=-1, help="display series of pages of same shape") opt('--nomultifile', dest='nomultifile', action='store_true', default=False, help="don't read OME series from multiple files") opt('--noplot', dest='noplot', action='store_true', default=False, help="don't display images") opt('--interpol', dest='interpol', metavar='INTERPOL', default='bilinear', help="image interpolation method") opt('--dpi', dest='dpi', type='int', default=96, help="set plot resolution") opt('--debug', dest='debug', action='store_true', default=False, help="raise exception on failures") opt('--test', dest='test', action='store_true', default=False, help="try read all images in path") opt('--doctest', dest='doctest', action='store_true', default=False, help="runs the docstring examples") opt('-v', '--verbose', dest='verbose', action='store_true', default=True) opt('-q', '--quiet', dest='verbose', action='store_false') settings, path = parser.parse_args() path = ' '.join(path) if settings.doctest: import doctest doctest.testmod() return 0 if not path: parser.error("No file specified") if settings.test: test_tifffile(path, settings.verbose) return 0 if any(i in path for i in '?*'): path = glob.glob(path) if not path: print('no files match the pattern') return 0 # TODO: handle image sequences #if len(path) == 1: path = path[0] print("Reading file structure...", end=' ') start = time.time() try: tif = TiffFile(path, multifile=not settings.nomultifile) except Exception as e: if settings.debug: raise else: print("\n", e) sys.exit(0) print("%.3f ms" % ((time.time()-start) * 1e3)) if tif.is_ome: settings.norgb = True images = [(None, tif[0 if settings.page < 0 else settings.page])] if not settings.noplot: print("Reading image data... ", end=' ') def notnone(x): return next(i for i in x if i is not None) start = time.time() try: if settings.page >= 0: images = [(tif.asarray(key=settings.page), tif[settings.page])] elif settings.series >= 0: images = [(tif.asarray(series=settings.series), notnone(tif.series[settings.series].pages))] else: images = [] for i, s in enumerate(tif.series): try: images.append( (tif.asarray(series=i), notnone(s.pages))) except ValueError as e: images.append((None, notnone(s.pages))) if settings.debug: raise else: print("\n* series %i failed: %s... " % (i, e), end='') print("%.3f ms" % ((time.time()-start) * 1e3)) except Exception as e: if settings.debug: raise else: print(e) tif.close() print("\nTIFF file:", tif) print() for i, s in enumerate(tif.series): print ("Series %i" % i) print(s) print() for i, page in images: print(page) print(page.tags) if page.is_palette: print("\nColor Map:", page.color_map.shape, page.color_map.dtype) for attr in ('cz_lsm_info', 'cz_lsm_scan_info', 'uic_tags', 'mm_header', 'imagej_tags', 'micromanager_metadata', 'nih_image_header'): if hasattr(page, attr): print("", attr.upper(), Record(getattr(page, attr)), sep="\n") print() if page.is_micromanager: print('MICROMANAGER_FILE_METADATA') print(Record(tif.micromanager_metadata)) if images and not settings.noplot: try: import matplotlib matplotlib.use('TkAgg') from matplotlib import pyplot except ImportError as e: warnings.warn("failed to import matplotlib.\n%s" % e) else: for img, page in images: if img is None: continue vmin, vmax = None, None if 'gdal_nodata' in page.tags: try: vmin = numpy.min(img[img > float(page.gdal_nodata)]) except ValueError: pass if page.is_stk: try: vmin = page.uic_tags['min_scale'] vmax = page.uic_tags['max_scale'] except KeyError: pass else: if vmax <= vmin: vmin, vmax = None, None title = "%s\n %s" % (str(tif), str(page)) imshow(img, title=title, vmin=vmin, vmax=vmax, bitspersample=page.bits_per_sample, photometric=page.photometric, interpolation=settings.interpol, dpi=settings.dpi) pyplot.show() TIFFfile = TiffFile # backwards compatibility if sys.version_info[0] > 2: basestring = str, bytes unicode = str if __name__ == "__main__": sys.exit(main())
gpl-3.0
petebachant/daqmx
examples/pulse_example_motion.py
1
3189
# -*- coding: utf-8 -*- """ Created on Tue May 21 21:06:37 2013 @author: Pete This program commands a National Instruments counter output device to send a pulse after a target position (read from the ACS controller) is reached. """ import daqmx import acsc import time import numpy as np import matplotlib matplotlib.use("TkAgg") import matplotlib.pyplot as plt def main(): taskhandle = daqmx.TaskHandle() daqmx.CreateTask("", taskhandle) phys_chan = "Dev1/ctr0" #Timing parameters rate = 200 # Pulse rate in Hz initialdelay = 0 lowtime = 1/rate/2 hightime = 1/rate/2 daqmx.CreateCOPulseChanTime(taskhandle, phys_chan, "", daqmx.Val_Seconds, daqmx.Val_Low, initialdelay, lowtime, hightime, False) # Set up communication with motion controller simulator = True # Parameters for plotting plotting = False plot_dynamic = True if simulator == True: hcomm = acsc.OpenCommDirect() else: hcomm = acsc.OpenCommEthernetTCP("10.0.0.100", 701) axis = 5 buffno = 6 target = 10000 timeout = 10 # Initialize arrays for storing time and position t = np.array(0) x = np.array(0) if plotting == True and plot_dynamic == True: plt.ioff() fig = plt.figure() ax = fig.add_subplot(111) # plt.xlim(0, timeout) # plt.ylim(0, target) line, = ax.plot([], []) fig.show() if hcomm == acsc.INVALID: print "Cannot connect to controller. Error:", acsc.GetLastError() else: acsc.Enable(hcomm, axis) rpos = acsc.GetRPosition(hcomm, axis) x = rpos t0 = time.time() if simulator == True: acsc.ToPoint(hcomm, 0, axis, target+50000) else: acsc.RunBuffer(hcomm, buffno, None, None) while True: rpos = acsc.GetRPosition(hcomm, axis) if rpos >= target: break x = np.append(x, rpos) t = np.append(t, time.time() - t0) if plotting == True and plot_dynamic == True: line.set_xdata(t) line.set_ydata(x) ax.relim() ax.autoscale_view() fig.canvas.draw() print "Axis is", acsc.GetAxisState(hcomm, axis)+'...' if time.time() - t0 > timeout: print "Motion timeout" print "Final axis position:", rpos break time.sleep(0.001) print "Target reached. Sending trigger pulse to", phys_chan + "..." daqmx.StartTask(taskhandle, fatalerror=False) daqmx.WaitUntilTaskDone(taskhandle, timeout=10, fatalerror=False) daqmx.ClearTask(taskhandle, fatalerror=False) acsc.CloseComm(hcomm) print "Triggered at", np.max(x) if plotting == True: if plot_dynamic == False: plt.plot(t, x) plt.show() return t, x if __name__ == "__main__": t, x = main()
gpl-2.0
aszek/fun-with-oeis
code/7.py
1
1242
from oeis import OEIS import json def compute(): o = OEIS(None, 12) names = [ 'prime', 'graph', 'automorphism', 'group', 'space', 'code', 'elliptic', 'algorithm', 'distribution', 'probability', 'differential', 'stochastic', 'poset', 'invariant', 'automatic', 'metric', 'binary', 'field', 'fraction', 'operator', 'norm', 'set', 'cardinality', 'modulo', 'quantum', 'convex', 'manifold', 'variety', 'category', 'process', 'extension', 'equivalence', 'algebraic', 'topology', 'kernel', 'approximation' ] stat = [] for name in names: res = o.count(name) print name, res if res > 0: stat.append((name, res)) o.pause() stat.sort(key = lambda x: x[1]) with open('../artifacts/7.json', 'w') as outfile: json.dump(stat, outfile) def plot(): with open('../artifacts/7.json', 'r') as infile: stat = json.load(infile) import matplotlib.pyplot as plt plt.barh(range(len(stat)), [_[1] for _ in stat], align='center') plt.yticks(range(len(stat)), [_[0] for _ in stat]) plt.show() #compute() plot()
gpl-3.0
rodluger/planetplanet
scripts/hist_mutual.py
1
15330
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' hist_mutual.py |github| ----------------------- Histograms of the mutual transit events in TRAPPIST-1. Shows histograms of the fractional depth and duration of these events for all pairs of planets. TRAPPIST-1b ~~~~~~~~~~~ .. image:: /b_mutual.jpg :width: 400px :align: center TRAPPIST-1c ~~~~~~~~~~~ .. image:: /c_mutual.jpg :width: 400px :align: center TRAPPIST-1d ~~~~~~~~~~~ .. image:: /d_mutual.jpg :width: 400px :align: center TRAPPIST-1e ~~~~~~~~~~~ .. image:: /e_mutual.jpg :width: 400px :align: center TRAPPIST-1f ~~~~~~~~~~~ .. image:: /f_mutual.jpg :width: 400px :align: center TRAPPIST-1g ~~~~~~~~~~~ .. image:: /g_mutual.jpg :width: 400px :align: center TRAPPIST-1h ~~~~~~~~~~~ .. image:: /h_mutual.jpg :width: 400px :align: center .. role:: raw-html(raw) :format: html .. |github| replace:: :raw-html:`<a href = "https://github.com/rodluger/planetplanet/blob/master/scripts/hist_mutual.py"><i class="fa fa-github" aria-hidden="true"></i></a>` ''' from __future__ import division, print_function, absolute_import, \ unicode_literals import os import subprocess import planetplanet from planetplanet import jwst from planetplanet import Trappist1 from planetplanet.constants import * from planetplanet.pool import Pool import matplotlib import matplotlib.pyplot as pl from matplotlib.ticker import FuncFormatter import numpy as np import corner from tqdm import tqdm from scipy.stats import norm datapath = os.path.join(os.path.dirname(os.path.dirname( os.path.abspath(planetplanet.__file__))), 'scripts', 'data') histpath = os.path.join(os.path.dirname(os.path.dirname( os.path.abspath(planetplanet.__file__))), 'scripts') if not os.path.exists(datapath): os.makedirs(datapath) def _test(): ''' This routine is too expensive to test on Travis, so I'm bypassing it for now. ''' pass def Submit(queue = None, email = None, walltime = 8, nodes = 5, ppn = 12, mpn = None, nsamp = 50000, batch_size = 30, nproc = None): ''' Submits a PBS cluster job to run :py:func:`Compute` in parallel. :param str queue: The name of the queue to submit to. \ Default :py:obj:`None` :param str email: The email to send job status notifications to. \ Default :py:obj:`None` :param int walltime: The number of hours to request. Default `8` :param int nodes: The number of nodes to request. Default `5` :param int ppn: The number of processors per node to request. Default `12` :param int nsamp: The number of prior samples to draw. Default `50,000` :param int batch_size: Size of each batch used in the parallelization. \ Default `100` :param int mpn: Memory per node in gb to request. Default no setting. :param int nproc: Number of processes to spawn. Default is the number of \ core. ''' if nproc is None: nproc = ppn * nodes str_w = 'walltime=%d:00:00' % walltime if mpn is not None: str_n = 'nodes=%d:ppn=%d,feature=%dcore,mem=%dgb' % \ (nodes, ppn, ppn, mpn * nodes) else: str_n = 'nodes=%d:ppn=%d,feature=%dcore' % (nodes, ppn, ppn) str_v = 'NPROC=%d,HISTPATH=%s,NSAMP=%d,BATCHSZ=%d' % \ (nproc, histpath, nsamp, batch_size) str_name = 'planetplanet' str_out = 'hist_mutual.log' qsub_args = ['qsub', 'hist_mutual.pbs', '-v', str_v, '-o', str_out, '-j', 'oe', '-N', str_name, '-l', str_n, '-l', str_w] if email is not None: qsub_args.append(['-M', email, '-m', 'ae']) if queue is not None: qsub_args += ['-q', queue] print("Submitting the job...") subprocess.call(qsub_args) class _FunctionWrapper(object): ''' A simple function wrapper class. Stores :py:obj:`args` and :py:obj:`kwargs` and allows an arbitrary function to be called via :py:func:`map`. Used internally. ''' def __init__(self, f, *args, **kwargs): ''' ''' self.f = f self.args = args self.kwargs = kwargs def __call__(self, x): ''' ''' return self.f(*self.args, **self.kwargs) def _Parallelize(nsamp, batch_size): ''' Runs the actual parallelized computations. Used internally. ''' # Get our function wrapper m = _FunctionWrapper(Compute, nsamp = batch_size, progress_bar = False) # Parallelize. We will run `N` iterations N = int(np.ceil(nsamp / batch_size)) with Pool() as pool: pool.map(m, range(N)) def histogram(system, tstart, tend, dt = 0.0001): ''' Computes statistical properties of mutual events (PPOs occuring on the face of the star). :param system: A system instance. :type system: :py:obj:`planetplanet.structs.System` :param float tstart: The integration start time (BJD − 2,450,000) :param float tend: The integration end time (BJD − 2,450,000) :param float dt: The time resolution in days. Occultations shorter \ than this will not be registered. ''' # Compute the orbits time = np.arange(tstart, tend, dt) system.compute_orbits(time) pairs = [] durs = [] depths = [] for bi, body in enumerate(system.bodies[1:]): # Loop over all times w/ occultations of the star inds = np.where(system.bodies[0].occultor)[0] for i in inds: # Get all bodies currently occulting the star occultors = [] for occ in range(1, len(system.bodies)): if (system.bodies[0].occultor[i] & 2 ** occ): occultors.append(occ) # Check if any of these occult each other if len(occultors) > 1: for occ1 in occultors: for occ2 in occultors: if system.bodies[occ1].occultor[i] & 2 ** occ2: # Sort the planet indices occ1, occ2 = sorted([occ1, occ2]) # Is this a new occultation? if (len(pairs)==0) or (pairs[-1] != [occ1, occ2]): pairs.append([occ1, occ2]) durs.append(0.) depths.append(0.) # Update the maximum depth. Based on # http://mathworld.wolfram.com/ # Circle-CircleIntersection.html dx2 = (system.bodies[occ1].x[i] - system.bodies[occ2].x[i]) ** 2 dy2 = (system.bodies[occ1].y[i] - system.bodies[occ2].y[i]) ** 2 d = np.sqrt(dx2 + dy2) r1 = system.bodies[occ1]._r r2 = system.bodies[occ2]._r A = r1 ** 2 * np.arccos((d ** 2 + r1 ** 2 - r2 ** 2) / (2 * d * r1)) \ + r2 ** 2 * np.arccos((d ** 2 + r2 ** 2 - r1 ** 2) / (2 * d * r2)) \ - 0.5 * np.sqrt((-d + r1 + r2) * (d + r1 - r2) * (d - r1 + r2) * (d + r1 + r2)) Astar = np.pi * (system.bodies[0]._r) ** 2 depth = A / Astar depths[-1] = max(depths[-1], depth) # Update the duration durs[-1] += dt return np.array(pairs, dtype = int), \ np.array(durs, dtype = float), \ np.array(depths, dtype = float) def Compute(nsamp = 100, nbody = True, progress_bar = True, **kwargs): ''' Runs the simulations. :param int nsamp: The number of prior samples to draw. Default `300` :param bool nbody: Use the N-Body solver? Default :py:obj:`True` :param bool progress_bar: Display a progress bar? Default :py:obj:`True` ''' # Draw samples from the prior pairs = np.empty([0, 2], dtype = int) durs = np.array([], dtype = float) depths = np.array([], dtype = float) if progress_bar: wrap = tqdm else: wrap = lambda x: x for n in wrap(range(nsamp)): # Instantiate the Trappist-1 system system = Trappist1(sample = True, nbody = nbody, quiet = True, **kwargs) system.settings.timestep = 1. / 24. # Run! try: p, t, d = histogram(system, OCTOBER_08_2016, OCTOBER_08_2016 + 365) except: print("ERROR in routine `hist.Compute()`") continue if len(p): pairs = np.vstack([pairs, p]) durs = np.append(durs, t) depths = np.append(depths, d) # Save n = 0 while os.path.exists(os.path.join(datapath, 'hist_mutual%03d.npz' % n)): n += 1 np.savez(os.path.join(datapath, 'hist_mutual%03d.npz' % n), pairs = pairs, durs = durs, depths = depths) def MergeFiles(): ''' Merge all the `npz` savesets into a single one for faster plotting. ''' # Load pairs = np.empty([0, 2], dtype = int) durs = np.array([], dtype = float) depths = np.array([], dtype = float) print("Loading...") for n in tqdm(range(1000)): if os.path.exists(os.path.join(datapath, 'hist_mutual%03d.npz' % n)): # Skip corrupt files try: data = np.load(os.path.join(datapath, 'hist_mutual%03d.npz' % n)) os.remove(os.path.join(datapath, 'hist_mutual%03d.npz' % n)) data['pairs'][0] data['durs'][0] data['depths'][0] except: continue else: break pairs = np.vstack([pairs, data['pairs']]) durs = np.append(durs, data['durs']) depths = np.append(depths, data['depths']) # Save as one big file if n > 0: print("Saving...") np.savez(os.path.join(datapath,'hist_mutual000.npz'), pairs = pairs, durs = durs, depths = depths) def Plot(): ''' ''' # Load pairs = np.empty([0, 2], dtype = int) durs = np.array([], dtype = float) depths = np.array([], dtype = float) print("Loading...") for n in tqdm(range(1000)): if os.path.exists(os.path.join(datapath, 'hist_mutual%03d.npz' % n)): # Skip corrupt files try: data = np.load(os.path.join(datapath, 'hist_mutual%03d.npz' % n)) data['pairs'][0] data['durs'][0] data['depths'][0] except: continue else: if n == 0: raise Exception("Please run `Compute()` first.") break pairs = np.vstack([pairs, data['pairs']]) durs = np.append(durs, data['durs']) depths = np.append(depths, data['depths']) # Dummy system to get colors system = Trappist1() colors = [system.bodies[n].color for n in range(1, 8)] # For the paper, we ran 30,000 simulations, so the average # number of mutual transits per year is... print("Mutual transits per year: %.3f" % (len(pairs) / 30000.)) # Loop over all planets for k in range(1, 8): # Indices of events involving this planet inds = np.where((pairs[:,0] == k) | (pairs[:,1] == k))[0] # Again, for the 30,000 simulations we ran... print("%s: %.3f" % (system.bodies[k].name, len(pairs[inds]) / 30000.)) # Duration dt = durs[inds] / MINUTE # Depth d = depths[inds] * 1e2 # Corner plot samples = np.vstack((dt, d)).T fig = corner.corner(samples, plot_datapoints = False, range = [(0, 60), (0, 1)], labels = ["Duration [min]", "Depth [%]"], bins = 30, hist_kwargs = {'color': 'w'}) # Indices of events involving each of the planets pinds = [[] for j in range(1, 8)] for j in range(1, 8): if j != k: pinds[j - 1] = np.where((pairs[inds,0] == j) | (pairs[inds,1] == j))[0] # Duration stacked histogram n, _, _ = fig.axes[0].hist([dt[p] for p in pinds], bins = 30, range = (0, 60), stacked = True, normed = 1, color = colors, alpha = 0.5) maxn = np.max(np.array(n)[-1]) fig.axes[0].hist(dt, bins = 30, range = (0, 60), normed = 1, color = 'k', alpha = 1, histtype = 'step') fig.axes[0].set_ylim(0, 1.1 * maxn) # Depth stacked histogram n, _, _ = fig.axes[3].hist([d[p] for p in pinds], bins = 30, range = (0, 1), stacked = True, normed = 1, color = colors, alpha = 0.5) maxn = np.max(np.array(n)[-1]) fig.axes[3].hist(d, bins = 30, range = (0, 1), normed = 1, color = 'k', alpha = 1, histtype = 'step') fig.axes[3].set_ylim(0, 1.1 * maxn) # Tweak appearance for i, ax in enumerate(fig.axes): ax.set_xlabel(ax.get_xlabel(), fontsize = 14, fontweight = 'bold') ax.set_ylabel(ax.get_ylabel(), fontsize = 14, fontweight = 'bold') for tick in ax.get_xticklabels() + ax.get_yticklabels(): tick.set_fontsize(12) # HACK: Legend for planet `b` if k == 1: for occultor in [2,3,4,5,7]: fig.axes[0].axhline(-1, color = system.bodies[occultor].color, lw = 4, alpha = 0.5, label = system.bodies[occultor].name) fig.axes[0].legend(loc = 'upper right', fontsize = 8, borderpad = 1) # Save! fig.savefig('%s_mutual.pdf' % system.bodies[k].name, bbox_inches = 'tight')
gpl-3.0
DouglasLeeTucker/DECam_PGCM
bin/sdss_galex_transform_u.py
1
45529
#!/usr/bin/env python """ sdss_galex_transform_u.py Example: sdss_galex_transform_u --help sdss_galex_transform_u.py --matchFile sdssdr13GUVCat_297.csv --verbose 2 """ ################################## import numpy as np import pandas as pd import math from scipy import interpolate from scipy.optimize import leastsq import os import sys import glob import datetime import extinction import matplotlib.pyplot as plt import plotly from plotly.offline import download_plotlyjs, plot, iplot import plotly.graph_objs as go import healpy as hp import healpixTools import paramFile def main(): import argparse import time """Create command line arguments""" parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('--matchFile', help='name of the input CSV match file', default='default') parser.add_argument('--resultsFile', help='name of the fitting results output CSV file', default='default') parser.add_argument('--planFile', help='name of the input plan file', default='sdss_galex_transform_u.par') parser.add_argument('--verbose', help='verbosity level of output to screen (0,1,2,...)', default=0, type=int) args = parser.parse_args() if args.verbose > 0: print args status = sdss_galex_transform_u(args) return status ################################## # sdss_galex_transform_u # def sdss_galex_transform_u(args): import os import sys import paramFile if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'sdss_galex_transform_u' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print # Read contents of planFile into python dictionary... planDict = paramFile.readParamFile(args.planFile, args.verbose) # Check that all the required keywords were found... requiredKeywordList = ['norder', 'nsigma', 'niter', 'matchDir', 'matchFile', 'resultsFile'] flag = 0 for requiredKeyword in requiredKeywordList: if requiredKeyword not in planDict: print """Required keyword '%s' not in planFile %s""" % (requiredKeyword, args.planFile) flag = flag + 1 if flag > 0: print 'Returning with error code 1 now...' return 1 # Extract the relevant info from the planDict... # Extract norder... # (Default is 2) if planDict['norder'].lower() == 'default': norder = 2 else: norder = int(planDict['norder']) if args.verbose > 0: print 'norder: ', norder # Extract nsigma... # (Default is 3.0) if planDict['nsigma'].lower() == 'default': nsigma = 3.0 else: nsigma = float(planDict['nsigma']) if args.verbose > 0: print 'nsigma: ', nsigma # Extract niter... # (Default is 3) if planDict['niter'].lower() == 'default': niter = 3 else: niter = int(planDict['niter']) if args.verbose > 0: print 'niter: ', norder # Grab matchFile name from command-line argument list.... # If it is not set, then extract the full path # (matchDir+matchFile) from the paramFile... matchFile = args.matchFile if matchFile == 'default': # Extract the name of the matchDir... matchDir = planDict['matchDir'] if matchDir.lower() == 'default': matchDir = '/data/des20.b/data/sallam/GALEX/GUVCat_AIS_Bianchietal2017/DLT-03-07-18/sdssdr13GUVCat' # Extract the name of the matchFile... matchFile = planDict['matchFile'] if matchFile.lower() == 'default': matchFile = 'sdssdr13GUVCat_297.csv' # Create full patch of the matchFile matchFile = os.path.join(matchDir,matchFile) # Check to make sure matchFile exists... if os.path.isfile(matchFile)==False: print """matchFile %s does not exist...""" % (matchFile) print 'Returning with error code 1 now...' return 1 if args.verbose > 0: print 'matchFile: ', matchFile # Grab resultsFile name from command-line argument list.... # If it is not set, then extract the full path # (resultsDir+resultsFile) from the paramFile... resultsFile = args.resultsFile if resultsFile == 'default': # Extract the name of the resultsDir... resultsDir = planDict['resultsDir'] if resultsDir.lower() == 'default': resultsDir = os.getcwd() # Extract the name of the matchFile... resultsFile = planDict['resultsFile'] if resultsFile.lower() == 'default': resultsFile = 'sdss_galex_transform_results.csv' # Create full patch of the matchFile resultsFile = os.path.join(resultsDir,resultsFile) # Create a full path base name for QA files based on the value of resultsFile... qaFileBaseName = os.path.splitext(resultsFile)[0] # Read in selected columns from file into Pandas dataframe: columns = ['psfMag_u','psfMag_g','psfMag_r','psfMag_i','psfMag_z','FUV_MAG','NUV_MAG'] df = pd.read_csv(matchFile, usecols=columns) df.head(10) # Rename columns... df.rename(columns={'psfMag_u':'u_sdss', 'psfMag_g':'g_sdss', 'psfMag_r':'r_sdss', 'psfMag_i':'i_sdss', 'psfMag_z':'z_sdss', 'FUV_MAG':'FUV_galex', 'NUV_MAG':'NUV_galex' },inplace=True) # Add color columns... df.loc[:,'ug_sdss'] = df.loc[:,'u_sdss'] - df.loc[:,'g_sdss'] df.loc[:,'gr_sdss'] = df.loc[:,'g_sdss'] - df.loc[:,'r_sdss'] df.loc[:,'ri_sdss'] = df.loc[:,'r_sdss'] - df.loc[:,'i_sdss'] df.loc[:,'iz_sdss'] = df.loc[:,'i_sdss'] - df.loc[:,'z_sdss'] df.loc[:,'gi_sdss'] = df.loc[:,'g_sdss'] - df.loc[:,'i_sdss'] df.loc[:,'uNUV'] = df.loc[:,'u_sdss'] - df.loc[:,'NUV_galex'] df.loc[:,'NUVg'] = df.loc[:,'NUV_galex'] - df.loc[:,'g_sdss'] df.loc[:,'FUVNUV'] = df.loc[:,'FUV_galex'] - df.loc[:,'NUV_galex'] # Create initial (and generous) mask... mask = ( ( df['ug_sdss'] > 0.5 ) & ( df['ug_sdss'] < 2.0 ) & ( df['gr_sdss'] > 0.2 ) & ( df['gr_sdss'] < 0.8 ) & ( df['gi_sdss'] > 0.3 ) & ( df['gi_sdss'] < 1.0 ) & ( df['uNUV'] > -10 ) & ( df['uNUV'] < 10.0 ) & ( df['NUVg'] > -10 ) & ( df['NUVg'] < 10.0 ) ) # Make a backup copy of original df... df_orig = df.copy() # Make a backup copy of original mask... mask_orig = mask.copy() # Open fit results output file... try: fout = open(resultsFile, 'w') except IOError: sys.exit('Unable to write to file ' + resultsFile) # Write header to fit results output file... hdr = createFitResultsHeaderOutputLine(norder) fout.write(hdr+'\n') # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Fit (u_sdss-NUV) vs. (NUV-g_sdss)... # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # if args.verbose > 0: print """# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #""" print """# Fit (u_sdss-NUV) vs. (NUV-g_sdss) #""" print """# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #""" print # Create names for use in QA plots... dmagName = '$u_{sdss} - NUV_{galex}$' colorName1 = '$(NUV_{galex} - g_{sdss})$' # Grab the original version of df from the backup copy... df = df_orig.copy() # Grab the original version of mask from the backup copy... mask = mask_orig.copy() # Iterate, with sigma-clipping... for i in range(niter): iiter = i + 1 if args.verbose > 0: print """ iter%d...""" % ( iiter ) # make a copy of original df, overwriting the old one... df = df[mask].copy() # Identify dmag and color1 series... dmag = df.loc[:,'uNUV'] color1 = df.loc[:,'NUVg'] # Perform fit... p,perr,rms = transformFit1(color1, dmag, norder, args.verbose) df.loc[:,'res'] = residuals1(p, color1, dmag) # Identify outliers... stddev = df['res'].std() mask = (np.abs(df.res)< nsigma*stddev) outputLine = createFitResultsOutputLine(2, p, perr, rms, 'uNUV', 'NUVg') fout.write(outputLine+'\n') if args.verbose > 0: print outputLine print # Create QA plots... res = df.loc[:,'res'] outputFileName = """%s.%s.%s.qa1.png""" % (qaFileBaseName, 'uNUV', 'NUVg') status = sdssGalexTransform1ColorQAPlots1(dmag, color1, res, norder, dmagName, colorName1, p, rms, outputFileName) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Fit (u_sdss-g_sdss) vs. (g_sdss-r_sdss)... # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # if args.verbose > 0: print """# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #""" print """# Fit (u_sdss-g_sdss) vs. (g_sdss-r_sdss) #""" print """# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #""" print # Create names for use in QA plots... dmagName = '$u_{sdss} - g_{sdss}$' colorName1 = '$(g-r)_{sdss}$' # Grab the original version of df from the backup copy... df = df_orig.copy() # Grab the original version of mask from the backup copy... mask = mask_orig.copy() # Iterate, with sigma-clipping... for i in range(niter): iiter = i + 1 if args.verbose > 0: print """ iter%d...""" % ( iiter ) # make a copy of original df, overwriting the old one... df = df[mask].copy() # Identify dmag and color1 series... dmag = df.loc[:,'ug_sdss'] color1 = df.loc[:,'gr_sdss'] # Perform fit... p,perr,rms = transformFit1(color1, dmag, norder, args.verbose) df.loc[:,'res'] = residuals1(p, color1, dmag) # Identify outliers... stddev = df['res'].std() mask = (np.abs(df.res)< nsigma*stddev) outputLine = createFitResultsOutputLine(2, p, perr, rms, 'ug_sdss', 'gr_sdss') fout.write(outputLine+'\n') if args.verbose > 0: print outputLine print # Create QA plots... res = df.loc[:,'res'] outputFileName = """%s.%s.%s.qa1.png""" % (qaFileBaseName, 'ug_sdss', 'gr_sdss') status = sdssGalexTransform1ColorQAPlots1(dmag, color1, res, norder, dmagName, colorName1, p, rms, outputFileName) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Fit (u_sdss-g_sdss) vs. (g_sdss-i_sdss)... # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # if args.verbose > 0: print """# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #""" print """# Fit (u_sdss-g_sdss) vs. (g_sdss-i_sdss) #""" print """# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #""" print # Create names for use in QA plots... dmagName = '$u_{sdss} - g_{sdss}$' colorName1 = '$(g-i)_{sdss}$' # Grab the original version of df from the backup copy... df = df_orig.copy() # Grab the original version of mask from the backup copy... mask = mask_orig.copy() # Iterate, with sigma-clipping... for i in range(niter): iiter = i + 1 if args.verbose > 0: print """ iter%d...""" % ( iiter ) # make a copy of original df, overwriting the old one... df = df[mask].copy() # Identify dmag and color1 series... dmag = df.loc[:,'ug_sdss'] color1 = df.loc[:,'gi_sdss'] # Perform fit... p,perr,rms = transformFit1(color1, dmag, norder, args.verbose) df.loc[:,'res'] = residuals1(p, color1, dmag) # Identify outliers... stddev = df['res'].std() mask = (np.abs(df.res)< nsigma*stddev) outputLine = createFitResultsOutputLine(2, p, perr, rms, 'ug_sdss', 'gi_sdss') fout.write(outputLine+'\n') if args.verbose > 0: print outputLine print # Create QA plots... res = df.loc[:,'res'] outputFileName = """%s.%s.%s.qa1.png""" % (qaFileBaseName, 'ug_sdss', 'gi_sdss') status = sdssGalexTransform1ColorQAPlots1(dmag, color1, res, norder, dmagName, colorName1, p, rms, outputFileName) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Fit (u_sdss-NUV) vs. (NUV-g_sdss) and (g_sdss-r_sdss)... # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # if args.verbose > 0: print """# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #""" print """# Fit (u_sdss-NUV) vs. (NUV-g_sdss) and (g_sdss-r_sdss)... #""" print """# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #""" print # Create names for use in QA plots... dmagName = '$u_{sdss} - NUV_{galex}$' colorName1 = '$(NUV_{galex} - g_{sdss})$' colorName2 = '$(g-r)_{sdss}$' # Grab the original version of df from the backup copy... df = df_orig.copy() # Grab the original version of mask from the backup copy... mask = mask_orig.copy() # Iterate, with sigma-clipping... for i in range(niter): iiter = i + 1 if args.verbose > 0: print """ iter%d...""" % ( iiter ) # make a copy of original df, overwriting the old one... df = df[mask].copy() # Identify dmag, color1, and color2 series... dmag = df.loc[:,'uNUV'] color1 = df.loc[:,'NUVg'] color2 = df.loc[:,'gr_sdss'] # Perform fit... p,perr,rms = transformFit2(color1, color2, dmag, norder, args.verbose) df.loc[:,'res'] = residuals2(p, color1, color2, dmag) # Identify outliers... stddev = df['res'].std() mask = (np.abs(df.res)< nsigma*stddev) outputLine = createFitResultsOutputLine(norder, p, perr, rms, 'uNUV', 'NUVg', 'gr_sdss') fout.write(outputLine+'\n') if args.verbose > 0: print outputLine print # Create QA plots... res = df.loc[:,'res'] outputFileName = """%s.%s.%s.%s.qa1.png""" % (qaFileBaseName, 'uNUV', 'NUVg', 'gr_sdss') status = sdssGalexTransform2ColorQAPlots1(dmag, color1, color2, res, norder, dmagName, colorName1, colorName2, p, rms, outputFileName) outputFileName = """%s.%s.%s.%s.qa2.html""" % (qaFileBaseName, 'uNUV', 'NUVg', 'gr_sdss') status = sdssGalexTransform2ColorQAPlots2(df, 'uNUV', 'NUVg', 'gr_sdss', 'res', dmagName, colorName1, colorName2, norder, p, rms, outputFileName) outputFileName = """%s.%s.%s.%s.qa3_res.html""" % (qaFileBaseName, 'uNUV', 'NUVg', 'gr_sdss') status = sdssGalexTransform2ColorQAPlots3(df, 'uNUV', 'NUVg', 'gr_sdss', 'res', dmagName, colorName1, colorName2, norder, p, rms, outputFileName) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Fit (u_sdss-NUV) vs. (NUV-g_sdss) and (g_sdss-i_sdss)... # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # if args.verbose > 0: print """# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #""" print """# Fit (u_sdss-NUV) vs. (NUV-g_sdss) and (g_sdss-i_sdss)... #""" print """# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #""" print # Create names for use in QA plots... dmagName = '$u_{sdss} - NUV_{galex}$' colorName1 = '$(NUV_{galex} - g_{sdss})$' colorName2 = '$(g-i)_{sdss}$' # Grab the original version of df from the backup copy... df = df_orig.copy() # Grab the original version of mask from the backup copy... mask = mask_orig.copy() # Iterate, with sigma-clipping... for i in range(niter): iiter = i + 1 if args.verbose > 0: print """ iter%d...""" % ( iiter ) # make a copy of original df, overwriting the old one... df = df[mask].copy() # Identify dmag, color1, and color2 series... dmag = df.loc[:,'uNUV'] color1 = df.loc[:,'NUVg'] color2 = df.loc[:,'gi_sdss'] # Perform fit... p,perr,rms = transformFit2(color1, color2, dmag, norder, args.verbose) df.loc[:,'res'] = residuals2(p, color1, color2, dmag) # Identify outliers... stddev = df['res'].std() mask = (np.abs(df.res)< nsigma*stddev) outputLine = createFitResultsOutputLine(norder, p, perr, rms, 'uNUV', 'NUVg', 'gi_sdss') fout.write(outputLine+'\n') if args.verbose > 0: print outputLine print # Create QA plots... res = df.loc[:,'res'] outputFileName = """%s.%s.%s.%s.qa1.png""" % (qaFileBaseName, 'uNUV', 'NUVg', 'gi_sdss') status = sdssGalexTransform2ColorQAPlots1(dmag, color1, color2, res, norder, dmagName, colorName1, colorName2, p, rms, outputFileName) outputFileName = """%s.%s.%s.%s.qa2.html""" % (qaFileBaseName, 'uNUV', 'NUVg', 'gi_sdss') status = sdssGalexTransform2ColorQAPlots2(df, 'uNUV', 'NUVg', 'gi_sdss', 'res', dmagName, colorName1, colorName2, norder, p, rms, outputFileName) outputFileName = """%s.%s.%s.%s.qa3_res.html""" % (qaFileBaseName, 'uNUV', 'NUVg', 'gi_sdss') status = sdssGalexTransform2ColorQAPlots3(df, 'uNUV', 'NUVg', 'gi_sdss', 'res', dmagName, colorName1, colorName2, norder, p, rms, outputFileName) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Fit (u_sdss-g_sdss) vs. (g_sdss-r_sdss) and (r_sdss-i_sdss)... # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # if args.verbose > 0: print """# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #""" print """# Fit (u_sdss-g_sdss) vs. (g_sdss-r_sdss) and (r_sdss-i_sdss)... #""" print """# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #""" print # Create names for use in QA plots... dmagName = '$u_{sdss} - g_{sdss}$' colorName1 = '$(g-r)_{sdss}$' colorName2 = '$(r-i)_{sdss}$' # Grab the original version of df from the backup copy... df = df_orig.copy() # Grab the original version of mask from the backup copy... mask = mask_orig.copy() # Iterate, with sigma-clipping... for i in range(niter): iiter = i + 1 if args.verbose > 0: print """ iter%d...""" % ( iiter ) # make a copy of original df, overwriting the old one... df = df[mask].copy() # Identify dmag, color1, and color2 series... dmag = df.loc[:,'ug_sdss'] color1 = df.loc[:,'gr_sdss'] color2 = df.loc[:,'ri_sdss'] # Perform fit... p,perr,rms = transformFit2(color1, color2, dmag, norder, args.verbose) df.loc[:,'res'] = residuals2(p, color1, color2, dmag) # Identify outliers... stddev = df['res'].std() mask = (np.abs(df.res)< nsigma*stddev) outputLine = createFitResultsOutputLine(norder, p, perr, rms, 'ug_sdss', 'gr_sdss', 'ri_sdss') fout.write(outputLine+'\n') if args.verbose > 0: print outputLine print # Create QA plots... res = df.loc[:,'res'] outputFileName = """%s.%s.%s.%s.qa1.png""" % (qaFileBaseName, 'ug_sdss', 'gr_sdss', 'ri_sdss') status = sdssGalexTransform2ColorQAPlots1(dmag, color1, color2, res, norder, dmagName, colorName1, colorName2, p, rms, outputFileName) outputFileName = """%s.%s.%s.%s.qa2.html""" % (qaFileBaseName, 'ug_sdss', 'gr_sdss', 'ri_sdss') status = sdssGalexTransform2ColorQAPlots2(df, 'ug_sdss', 'gr_sdss', 'ri_sdss', 'res', dmagName, colorName1, colorName2, norder, p, rms, outputFileName) outputFileName = """%s.%s.%s.%s.qa3_res.html""" % (qaFileBaseName, 'ug_sdss', 'gr_sdss', 'ri_sdss') status = sdssGalexTransform2ColorQAPlots3(df, 'ug_sdss', 'gr_sdss', 'ri_sdss', 'res', dmagName, colorName1, colorName2, norder, p, rms, outputFileName) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Fit (u_sdss-g_sdss) vs. (g_sdss-i_sdss) and (r_sdss-i_sdss)... # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # if args.verbose > 0: print """# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #""" print """# Fit (u_sdss-g_sdss) vs. (g_sdss-i_sdss) and (r_sdss-i_sdss)... #""" print """# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #""" print # Create names for use in QA plots... dmagName = '$u_{sdss} - g_{sdss}$' colorName1 = '$(g-i)_{sdss}$' colorName2 = '$(r-i)_{sdss}$' # Grab the original version of df from the backup copy... df = df_orig.copy() # Grab the original version of mask from the backup copy... mask = mask_orig.copy() # Iterate, with sigma-clipping... for i in range(niter): iiter = i + 1 if args.verbose > 0: print """ iter%d...""" % ( iiter ) # make a copy of original df, overwriting the old one... df = df[mask].copy() # Identify dmag, color1, and color2 series... dmag = df.loc[:,'ug_sdss'] color1 = df.loc[:,'gi_sdss'] color2 = df.loc[:,'ri_sdss'] # Perform fit... p,perr,rms = transformFit2(color1, color2, dmag, norder, args.verbose) df.loc[:,'res'] = residuals2(p, color1, color2, dmag) # Identify outliers... stddev = df['res'].std() mask = (np.abs(df.res)< nsigma*stddev) outputLine = createFitResultsOutputLine(norder, p, perr, rms, 'ug_sdss', 'gi_sdss', 'ri_sdss') fout.write(outputLine+'\n') if args.verbose > 0: print outputLine print # Create QA plots... res = df.loc[:,'res'] outputFileName = """%s.%s.%s.%s.qa1.png""" % (qaFileBaseName, 'ug_sdss', 'gi_sdss', 'ri_sdss') status = sdssGalexTransform2ColorQAPlots1(dmag, color1, color2, res, norder, dmagName, colorName1, colorName2, p, rms, outputFileName) outputFileName = """%s.%s.%s.%s.qa2.html""" % (qaFileBaseName, 'ug_sdss', 'gi_sdss', 'ri_sdss') status = sdssGalexTransform2ColorQAPlots2(df, 'ug_sdss', 'gi_sdss', 'ri_sdss', 'res', dmagName, colorName1, colorName2, norder, p, rms, outputFileName) outputFileName = """%s.%s.%s.%s.qa3_res.html""" % (qaFileBaseName, 'ug_sdss', 'gi_sdss', 'ri_sdss') status = sdssGalexTransform2ColorQAPlots3(df, 'ug_sdss', 'gi_sdss', 'ri_sdss', 'res', dmagName, colorName1, colorName2, norder, p, rms, outputFileName) # Close outputFile... fout.close() return 0 ################################## # # Define some functions for fitting dmag vs. color... # # These functions are based on a scripts found at # http://linuxgazette.net/115/andreasen.html (by Anders Andreasen) # and at # http://www.phy.uct.ac.za/courses/python/examples/fitresonance.py (University of Cape Town) ################################## # Parametric function: # p is the parameter vector; # For fp1, we assume a polynomial function in one color... def fp1(p,color1_array): #retValue = p[0] + p[1]*color1_array + p[2]*color1_array*color1_array norder = p.size-1 retValue = p[0] for i in range(norder): retValue = retValue + p[i+1]*color1_array**(i+1) return retValue ################################## # Error function: def residuals1(p,color1_array,dmag_array): err = (dmag_array-fp1(p,color1_array)) return err ################################## # Fitting code: def transformFit1(color1_array, dmag_array, norder=2, verbose=0): # Calculate the median of dmag for use as an initial guess # for the overall zeropoint offset.. mdn = np.median( dmag_array, None ) # Parameter names #pname = (['c_0', 'c_1', 'c_2']) pname = [] for i in range(0,norder+1): pname.append("""c_%d""" % i) # Initial parameter values #p0 = [mdn, 0.0, 0.0] p0 = (1+norder)*[0.0] p0[0] = mdn if verbose > 0: print print 'Initial parameter values: ', p0 # Perform fit p,cov,infodict,mesg,ier = leastsq(residuals1, p0, args=(color1_array, dmag_array), maxfev=10000, full_output=1) if ( ier>=1 and ier <=4): if verbose > 0: print "Converged" else: # Add an exception error or a non-zero return value? print "Not converged" print mesg # Calculate some descriptors of the fit # (similar to the output from gnuplot 2d fits) chisq=sum(infodict['fvec']*infodict['fvec']) dof=len(dmag_array)-len(p) rms=math.sqrt(chisq/dof) if verbose > 0: print "Converged with chi squared ",chisq print "degrees of freedom, dof ", dof print "RMS of residuals (i.e. sqrt(chisq/dof)) ", rms print "Reduced chisq (i.e. variance of residuals) ", chisq/dof print # uncertainties are calculated as per gnuplot, "fixing" the result # for non unit values of the reduced chisq. # values at min match gnuplot perr = [] if verbose > 0: print "Fitted parameters at minimum, with 68% C.I.:" for i,pmin in enumerate(p): if verbose > 0: print "%-10s %13g +/- %13g (%5f percent)" % (pname[i],pmin,math.sqrt(cov[i,i])*math.sqrt(chisq/dof), 100.*math.sqrt(cov[i,i])*math.sqrt(chisq/dof)/abs(pmin)) perr.append(math.sqrt(cov[i,i])*math.sqrt(chisq/dof)) if verbose > 0: print if verbose > 0: print "Correlation matrix:" # correlation matrix close to gnuplot print " ", for i in range(len(pname)): print "%-10s" % (pname[i],), print for i in range(len(p)): print "%-10s" % pname[i], for j in range(i+1): print "%10f" % (cov[i,j]/math.sqrt(cov[i,i]*cov[j,j]),), #endfor print #endfor print print print return p, perr, rms ################################## # # Define some functions for fitting dmag vs. color1 and color2... # # These functions are based on a scripts found at # http://linuxgazette.net/115/andreasen.html (by Anders Andreasen) # and at # http://www.phy.uct.ac.za/courses/python/examples/fitresonance.py (University of Cape Town) ################################## # Parametric function: # p is the parameter vector; # For fp2, we assume a polynomial in each of the 2 colors # but with no cross terms... def fp2(p,color1_array,color2_array): #retValue = p[0] + \ # p[1]*color1_array + p[2]*color1_array*color1_array + \ # p[3]*color2_array + p[4]*color2_array*color2_array norder = (p.size-1)/2 retValue = p[0] for i in range(norder): retValue = retValue + p[i+1]*color1_array**(i+1) retValue = retValue + p[i+norder+1]*color2_array**(i+1) return retValue ################################## # Error function: def residuals2(p,color1_array,color2_array,dmag_array): err = (dmag_array-fp2(p,color1_array,color2_array)) return err ################################## # Fitting code: def transformFit2(color1_array, color2_array, dmag_array, norder=2, verbose=0): # Calculate the median of dmag for use as an initial guess # for the overall zeropoint offset.. mdn = np.median( dmag_array, None ) # Parameter names #pname = (['c_0', 'c_1', 'c_2', 'c_3', 'c_4']) pname = [] for i in range(0,2*norder+1): pname.append("""c_%d""" % i) # Initial parameter values #p0 = [mdn, 0.0, 0.0, 0.0, 0.0] p0 = (1+2*norder)*[0.0] p0[0] = mdn if verbose > 0: print print 'Initial parameter values: ', p0 # Perform fit p,cov,infodict,mesg,ier = leastsq(residuals2, p0, args=(color1_array, color2_array, dmag_array), maxfev=10000, full_output=1) if ( ier>=1 and ier <=4): if verbose > 0: print "Converged" else: # Add an exception error or a non-zero return value? print "Not converged" print mesg # Calculate some descriptors of the fit # (similar to the output from gnuplot 2d fits) chisq=sum(infodict['fvec']*infodict['fvec']) dof=len(dmag_array)-len(p) rms=math.sqrt(chisq/dof) if verbose > 0: print "Converged with chi squared ",chisq print "degrees of freedom, dof ", dof print "RMS of residuals (i.e. sqrt(chisq/dof)) ", rms print "Reduced chisq (i.e. variance of residuals) ", chisq/dof print # uncertainties are calculated as per gnuplot, "fixing" the result # for non unit values of the reduced chisq. # values at min match gnuplot perr = [] if verbose > 0: print "Fitted parameters at minimum, with 68% C.I.:" for i,pmin in enumerate(p): if verbose > 0: print "%-10s %13g +/- %13g (%5f percent)" % (pname[i],pmin,math.sqrt(cov[i,i])*math.sqrt(chisq/dof), 100.*math.sqrt(cov[i,i])*math.sqrt(chisq/dof)/abs(pmin)) perr.append(math.sqrt(cov[i,i])*math.sqrt(chisq/dof)) if verbose > 0: print if verbose > 0: print "Correlation matrix:" # correlation matrix close to gnuplot print " ", for i in range(len(pname)): print "%-10s" % (pname[i],), print for i in range(len(p)): print "%-10s" % pname[i], for j in range(i+1): print "%10f" % (cov[i,j]/math.sqrt(cov[i,i]*cov[j,j]),), #endfor print #endfor print print print return p, perr, rms ################################## def createFitResultsOutputLine(norder, p, perr, rms, dmag_name, color1_name, color2_name=''): outputList = (2*(2*norder+1)+4)*[-9999.] outputList[0] = dmag_name outputList[1] = color1_name outputList[2] = color2_name for j in range(p.size): outputList[2*j+3] = p[j] outputList[2*j+4] = perr[j] outputList[2*(2*norder+1)+3] = rms outputLine = ','.join(map(str, outputList)) return outputLine ################################## def createFitResultsHeaderOutputLine(norder): outputList = (2*(2*norder+1)+4)*['c_'] outputList[0] = 'dmag_name' outputList[1] = 'color1_name' outputList[2] = 'color2_name' for j in range(2*norder+1): outputList[2*j+3] = ("""c_%d""" % j) outputList[2*j+4] = ("""cerr_%d""" % j) outputList[2*(2*norder+1)+3] = 'rms' outputLine = ','.join(map(str, outputList)) return outputLine ################################## def sdssGalexTransform1ColorQAPlots1(dmag, color1, res, norder, dmagName, colorName1, p, rms, outputFileName): # Prepare QA plots... fig = plt.figure(figsize=(10,5)) fig.subplots_adjust(hspace=0.3) #fig.suptitle("This is a supertitle!") # We will exclude the lowest and highets 1% of color1, color2, # dmag, and residuals when plotting the QA figures... color1_desc = color1.describe(percentiles=[0.01, 0.99]) dmag_desc = dmag.describe(percentiles=[0.01, 0.99]) #res_desc = df.res.describe(percentiles=[0.01, 0.99]) res_desc = res.describe(percentiles=[0.01, 0.99]) color1_min = color1_desc['1%'] color1_max = color1_desc['99%'] dmag_min = dmag_desc['1%'] dmag_max = dmag_desc['99%'] res_min = res_desc['1%'] res_max = res_desc['99%'] # Plot 1: Descriptive text... plt.subplot(231) if norder == 1: plot1Text = """%s = \n %.3f + \n %.3f*%s \n\n [rms: %.3f]""" % \ (dmagName, p[0], p[1], colorName1, rms) elif norder == 2: plot1Text = """%s = \n %.3f + \n %.3f*%s + \n %.3f*%s^2 \n\n [rms: %.3f]""" % \ (dmagName, p[0], p[1], colorName1, p[2], colorName1, rms) else: plot1Text = '' plt.text(0.1,0.25,plot1Text) plt.axis('off') # Plot 2: 2D hexbin histogram of dmag vs. color1... plt.subplot(232) hb=plt.hexbin(color1, dmag, gridsize=100, cmap='inferno') plt.axis([color1_min, color1_max, dmag_min, dmag_max]) plt.xlabel(colorName1) plt.ylabel(dmagName) cb = fig.colorbar(hb) cb.set_label('Number') plt.grid(color='white') plt.grid(True) # Plot 3: N/A # Plot 4: 1d histogram of residuals... plt.subplot(234) #plt.hist(df.loc[:,'res'],bins=100) plt.hist(res,bins=100) plt.xlabel('residuals [mag]') plt.ylabel('Number') plt.grid(True) plt.grid(color='black') # Plot 5: 2d hexbin histogram of residuals vs. color1... plt.subplot(235) #hb = plt.hexbin(color1, df.loc[:,'res'], gridsize=100, cmap='inferno') hb = plt.hexbin(color1, res, gridsize=100, cmap='inferno') plt.axis([color1_min, color1_max, res_min, res_max]) plt.xlabel(colorName1) plt.ylabel('residuals [mag]') cb = plt.colorbar(hb) cb.set_label('Number') plt.grid(True) plt.grid(color='white') # Plot 6: N/A # Plot... plt.tight_layout() #plt.show() plt.savefig(outputFileName) return 0 ################################## def sdssGalexTransform2ColorQAPlots1(dmag, color1, color2, res, norder, dmagName, colorName1, colorName2, p, rms, outputFileName): # Prepare QA plots... fig = plt.figure(figsize=(10,5)) fig.subplots_adjust(hspace=0.3) #fig.suptitle("This is a supertitle!") # We will exclude the lowest and highets 1% of color1, color2, # dmag, and residuals when plotting the QA figures... color1_desc = color1.describe(percentiles=[0.01, 0.99]) color2_desc = color2.describe(percentiles=[0.01, 0.99]) dmag_desc = dmag.describe(percentiles=[0.01, 0.99]) #res_desc = df.res.describe(percentiles=[0.01, 0.99]) res_desc = res.describe(percentiles=[0.01, 0.99]) color1_min = color1_desc['1%'] color1_max = color1_desc['99%'] color2_min = color2_desc['1%'] color2_max = color2_desc['99%'] dmag_min = dmag_desc['1%'] dmag_max = dmag_desc['99%'] res_min = res_desc['1%'] res_max = res_desc['99%'] # Plot 1: Descriptive text... plt.subplot(231) if norder == 1: plot1Text = """%s = \n %.3f + \n %.3f*%s + \n %.3f*%s \n\n [rms: %.3f]""" % \ (dmagName, p[0], p[1], colorName1, p[2], colorName2, rms) elif norder == 2: plot1Text = """%s = \n %.3f + \n %.3f*%s + \n %.3f*%s^2 + \n %.3f*%s + \n %.3f*%s^2 \n\n [rms: %.3f]""" % \ (dmagName, p[0], p[1], colorName1, p[2], colorName1, p[3], colorName2, p[4], colorName2, rms) else: plot1Text = '' plt.text(0.1,0.25,plot1Text) plt.axis('off') # Plot 2: 2D hexbin histogram of dmag vs. color1... plt.subplot(232) hb=plt.hexbin(color1, dmag, gridsize=100, cmap='inferno') plt.axis([color1_min, color1_max, dmag_min, dmag_max]) plt.xlabel(colorName1) plt.ylabel(dmagName) cb = fig.colorbar(hb) cb.set_label('Number') plt.grid(color='white') plt.grid(True) # Plot 3: 2D hexbin histogram of dmag vs. color2... plt.subplot(233) hb=plt.hexbin(color2, dmag, gridsize=100, cmap='inferno') plt.axis([color2_min, color2_max, dmag_min, dmag_max]) plt.xlabel(colorName2) plt.ylabel(dmagName) cb = plt.colorbar(hb) cb.set_label('Number') plt.grid(color='white') plt.grid(True) # Plot 4: 1d histogram of residuals... plt.subplot(234) #plt.hist(df.loc[:,'res'],bins=100) plt.hist(res,bins=100) plt.xlabel('residuals [mag]') plt.ylabel('Number') plt.grid(True) plt.grid(color='black') # Plot 5: 2d hexbin histogram of residuals vs. color1... plt.subplot(235) #hb = plt.hexbin(color1, df.loc[:,'res'], gridsize=100, cmap='inferno') hb = plt.hexbin(color1, res, gridsize=100, cmap='inferno') plt.axis([color1_min, color1_max, res_min, res_max]) plt.xlabel(colorName1) plt.ylabel('residuals [mag]') cb = plt.colorbar(hb) cb.set_label('Number') plt.grid(True) plt.grid(color='white') # Plot 6: 2d hexbin histogram of residuals vs. color2... plt.subplot(236) #hb = plt.hexbin(color2, df.loc[:,'res'], gridsize=100, cmap='inferno') hb = plt.hexbin(color2, res, gridsize=100, cmap='inferno') plt.axis([color2_min, color2_max, res_min, res_max]) plt.xlabel(colorName2) plt.ylabel('residuals [mag]') cb = plt.colorbar(hb) cb.set_label('Number') plt.grid(True) plt.grid(color='white') # Plot... plt.tight_layout() #plt.show() plt.savefig(outputFileName) return 0 ################################## # Based on plotly code at http://inversionlabs.com/2016/03/21/best-fit-surface.html def sdssGalexTransform2ColorQAPlots2(df, colName_dmag, colName_color1, colName_color2, colName_res, dmagName, colorName1, colorName2, norder, p, rms, outputFileName): # An initial sanity check... if norder > 2: print 'sdssGalexTransform2ColorQAPlots2 can not deal with norder > 2... skipping...' return 1 # Create data from color1, color2, and dmag... # If the sample size is larger than 1000, # take a random sample of 1000 elements... n_elements = df[colName_res].size if n_elements <= 1000: x = df.loc[:,colName_color1].values y = df.loc[:,colName_color2].values z = df.loc[:,colName_dmag].values else: df1000 = df.sample(n=1000,axis=0) n_elements = df1000[colName_res].size x = df1000.loc[:,colName_color1].values y = df1000.loc[:,colName_color2].values z = df1000.loc[:,colName_dmag].values data = np.c_[x,y,z] # Regular grid covering the domain of the data... mn = np.min(data, axis=0) mx = np.max(data, axis=0) X,Y = np.meshgrid(np.linspace(mn[0], mx[0], 20), np.linspace(mn[1], mx[1], 20)) XX = X.flatten() YY = Y.flatten() # Evaluate it on grid... if norder == 1: Z = p[0] + p[1]*X + p[2]*Y elif norder == 2: Z = p[0] + p[1]*X + p[2]*X**2 + p[3]*Y + p[4]*Y**2 # Create data_fit from color1, color2, and the fit parameters p[*]... x_fit = x y_fit = y if norder == 1: z_fit = p[0] + p[1]*x_fit + p[2]*y_fit elif norder == 2: z_fit = p[0] + p[1]*x_fit + p[2]*x_fit*x_fit + p[3]*y_fit + p[4]*y_fit*y_fit data_fit = np.c_[x_fit,y_fit,z_fit] #delta_z = z - z_fit # trace1 is the scatter plot of the original points... trace1 = go.Scatter3d( x=data[:,0], y=data[:,1], z=data[:,2], #z=delta_z, mode='markers', marker=dict(size=1, color='red', line=dict(color='black', width=0.5), opacity=0.5) ) # trace2 is the scatter plot of the fit values at the x,y positions of the original points... trace2 = go.Scatter3d( x=data_fit[:,0], y=data_fit[:,1], z=data_fit[:,2], mode='markers', marker=dict(size=2, color='yellow', line=dict(color='black', width=0.5), opacity=0.8) ) # trace3 is the 2D surface of the fit equation... trace3 = go.Surface(z=Z, x=X, y=Y, colorscale='RdBu', opacity=0.333) # Package the trace dictionaries into a data object data_go = go.Data([trace1, trace2, trace3]) # Dictionary of style options for all axes axis = dict( showbackground=True, # show axis background backgroundcolor="rgb(204, 204, 204)", # set background color to grey gridcolor="rgb(255, 255, 255)", # set grid line color zerolinecolor="rgb(255, 255, 255)", # set zero grid line color ) # Create a title... if norder == 1: titleText = """%s = %.3f + %.3f*%s + %.3f*%s [rms: %.3f]""" % \ (dmagName, p[0], p[1], colorName1, p[2], colorName2, rms) elif norder == 2: titleText = """%s = %.3f + %.3f*%s + %.3f*%s^2 + %.3f*%s + %.3f*%s^2\n[npts=%d, rms: %.3f]""" % \ (dmagName, p[0], p[1], colorName1, p[2], colorName1, p[3], colorName2, p[4], colorName2, n_elements, rms) else: titleText = '' titleText = titleText.replace('$','') # Make a layout object layout = go.Layout( title=titleText, # set plot title scene=go.Scene( # axes are part of a 'scene' in 3d plots xaxis=go.XAxis(axis), # set x-axis style yaxis=go.YAxis(axis), # set y-axis style zaxis=go.ZAxis(axis)), # set z-axis style ) # Make a figure object fig = go.Figure(data=data_go, layout=layout) # Create interactive plot and save as javascript to html file... #plotly.offline.iplot(fig, filename=outputFileName) plotly.offline.plot(fig, filename=outputFileName, auto_open=False) return 0 ################################## # Based on plotly code at http://inversionlabs.com/2016/03/21/best-fit-surface.html def sdssGalexTransform2ColorQAPlots3(df, colName_dmag, colName_color1, colName_color2, colName_res, dmagName, colorName1, colorName2, norder, p, rms, outputFileName): # An initial sanity check... if norder > 2: print 'sdssGalexTransform2ColorQAPlots3 can not deal with norder > 2... skipping...' return 1 # Create data from color1, color2, and res... # If the sample size is larger than 1000, # take a random sample of 1000 elements... n_elements = df[colName_res].size if n_elements <= 1000: x = df.loc[:,colName_color1].values y = df.loc[:,colName_color2].values z = df.loc[:,colName_res].values else: df1000 = df.sample(n=1000,axis=0) n_elements = df1000[colName_res].size x = df1000.loc[:,colName_color1].values y = df1000.loc[:,colName_color2].values z = df1000.loc[:,colName_res].values data = np.c_[x,y,z] # Regular grid covering the domain of the data... mn = np.min(data, axis=0) mx = np.max(data, axis=0) X,Y = np.meshgrid(np.linspace(mn[0], mx[0], 20), np.linspace(mn[1], mx[1], 20)) XX = X.flatten() YY = Y.flatten() # Evaluate it on grid... Z = 0.00 + 0.00*X + 0.00*Y # Create data_fit from color1, color2, and the fit parameters p[*]... x_fit = x y_fit = y z_fit = 0.00 + 0.00*x_fit + 0.00*y_fit data_fit = np.c_[x_fit,y_fit,z_fit] # trace1 is the scatter plot of the original points... trace1 = go.Scatter3d( x=data[:,0], y=data[:,1], z=data[:,2], mode='markers', marker=dict(size=1, color='red', line=dict(color='black', width=0.5), opacity=0.5) ) # trace2 is the scatter plot of the fit values at the x,y positions of the original points... trace2 = go.Scatter3d( x=data_fit[:,0], y=data_fit[:,1], z=data_fit[:,2], mode='markers', marker=dict(size=2, color='yellow', line=dict(color='black', width=0.5), opacity=0.8) ) # trace3 is the 2D surface of the fit equation... #trace3 = go.Surface(z=Z, x=X, y=Y, colorscale='RdBu', opacity=0.667) trace3 = go.Surface(z=Z, x=X, y=Y, colorscale='Greys', opacity=0.667) # Package the trace dictionaries into a data object data_go = go.Data([trace1, trace2, trace3]) # Dictionary of style options for all axes axis = dict( showbackground=True, # show axis background backgroundcolor="rgb(204, 204, 204)", # set background color to grey gridcolor="rgb(255, 255, 255)", # set grid line color zerolinecolor="rgb(255, 255, 255)", # set zero grid line color ) # Create a title... if norder == 1: titleText = """%s = %.3f + %.3f*%s + %.3f*%s [rms: %.3f]""" % \ (dmagName, p[0], p[1], colorName1, p[2], colorName2, rms) elif norder == 2: titleText = """%s = %.3f + %.3f*%s + %.3f*%s^2 + %.3f*%s + %.3f*%s^2\n[npts=%d, rms: %.3f]""" % \ (dmagName, p[0], p[1], colorName1, p[2], colorName1, p[3], colorName2, p[4], colorName2, n_elements, rms) else: titleText = '' titleText = titleText.replace('$','') # Make a layout object layout = go.Layout( title=titleText, # set plot title scene=go.Scene( # axes are part of a 'scene' in 3d plots xaxis=go.XAxis(axis), # set x-axis style yaxis=go.YAxis(axis), # set y-axis style zaxis=go.ZAxis(axis)), # set z-axis style ) # Make a figure object fig = go.Figure(data=data_go, layout=layout) # Create interactive plot and save as javascript to html file... #plotly.offline.iplot(fig, filename=outputFileName) plotly.offline.plot(fig, filename=outputFileName, auto_open=False) return 0 ################################## if __name__ == "__main__": main() ##################################
gpl-3.0
robin-lai/scikit-learn
examples/model_selection/plot_roc.py
96
4487
""" ======================================= Receiver Operating Characteristic (ROC) ======================================= Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality. ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the top left corner of the plot is the "ideal" point - a false positive rate of zero, and a true positive rate of one. This is not very realistic, but it does mean that a larger area under the curve (AUC) is usually better. The "steepness" of ROC curves is also important, since it is ideal to maximize the true positive rate while minimizing the false positive rate. Multiclass settings ------------------- ROC curves are typically used in binary classification to study the output of a classifier. In order to extend ROC curve and ROC area to multi-class or multi-label classification, it is necessary to binarize the output. One ROC curve can be drawn per label, but one can also draw a ROC curve by considering each element of the label indicator matrix as a binary prediction (micro-averaging). Another evaluation measure for multi-class classification is macro-averaging, which gives equal weight to the classification of each label. .. note:: See also :func:`sklearn.metrics.roc_auc_score`, :ref:`example_model_selection_plot_roc_crossval.py`. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.metrics import roc_curve, auc from sklearn.cross_validation import train_test_split from sklearn.preprocessing import label_binarize from sklearn.multiclass import OneVsRestClassifier # Import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target # Binarize the output y = label_binarize(y, classes=[0, 1, 2]) n_classes = y.shape[1] # Add noisy features to make the problem harder random_state = np.random.RandomState(0) n_samples, n_features = X.shape X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] # shuffle and split training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0) # Learn to predict each class against the other classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True, random_state=random_state)) y_score = classifier.fit(X_train, y_train).decision_function(X_test) # Compute ROC curve and ROC area for each class fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) ############################################################################## # Plot of a ROC curve for a specific class plt.figure() plt.plot(fpr[2], tpr[2], label='ROC curve (area = %0.2f)' % roc_auc[2]) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show() ############################################################################## # Plot ROC curves for the multiclass problem # Compute macro-average ROC curve and ROC area fpr["macro"] = np.mean([fpr[i] for i in range(n_classes)], axis=0) tpr["macro"] = np.mean([tpr[i] for i in range(n_classes)], axis=0) roc_auc["macro"] = auc(fpr["macro"], tpr["macro"]) plt.figure() plt.plot(fpr["micro"], tpr["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["micro"]), linewidth=2) plt.plot(fpr["macro"], tpr["macro"], label='macro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["macro"]), linewidth=2) for i in range(n_classes): plt.plot(fpr[i], tpr[i], label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc[i])) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Some extension of Receiver operating characteristic to multi-class') plt.legend(loc="lower right") plt.show()
bsd-3-clause