repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
kobejean/tensorflow
tensorflow/contrib/learn/python/learn/estimators/estimator_input_test.py
46
13101
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Estimator input.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tempfile import numpy as np from tensorflow.python.training import training_util from tensorflow.contrib.layers.python.layers import optimizers from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn import models from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import queue_runner_impl _BOSTON_INPUT_DIM = 13 _IRIS_INPUT_DIM = 4 def boston_input_fn(num_epochs=None): boston = base.load_boston() features = input_lib.limit_epochs( array_ops.reshape( constant_op.constant(boston.data), [-1, _BOSTON_INPUT_DIM]), num_epochs=num_epochs) labels = array_ops.reshape(constant_op.constant(boston.target), [-1, 1]) return features, labels def boston_input_fn_with_queue(num_epochs=None): features, labels = boston_input_fn(num_epochs=num_epochs) # Create a minimal queue runner. fake_queue = data_flow_ops.FIFOQueue(30, dtypes.int32) queue_runner = queue_runner_impl.QueueRunner(fake_queue, [constant_op.constant(0)]) queue_runner_impl.add_queue_runner(queue_runner) return features, labels def iris_input_fn(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = array_ops.reshape(constant_op.constant(iris.target), [-1]) return features, labels def iris_input_fn_labels_dict(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = { 'labels': array_ops.reshape(constant_op.constant(iris.target), [-1]) } return features, labels def boston_eval_fn(): boston = base.load_boston() n_examples = len(boston.target) features = array_ops.reshape( constant_op.constant(boston.data), [n_examples, _BOSTON_INPUT_DIM]) labels = array_ops.reshape( constant_op.constant(boston.target), [n_examples, 1]) return array_ops.concat([features, features], 0), array_ops.concat([labels, labels], 0) def extract(data, key): if isinstance(data, dict): assert key in data return data[key] else: return data def linear_model_params_fn(features, labels, mode, params): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=params['learning_rate']) return prediction, loss, train_op def linear_model_fn(features, labels, mode): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) if isinstance(features, dict): (_, features), = features.items() prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return prediction, loss, train_op def linear_model_fn_with_model_fn_ops(features, labels, mode): """Same as linear_model_fn, but returns `ModelFnOps`.""" assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return model_fn.ModelFnOps( mode=mode, predictions=prediction, loss=loss, train_op=train_op) def logistic_model_no_mode_fn(features, labels): features = extract(features, 'input') labels = extract(labels, 'labels') labels = array_ops.one_hot(labels, 3, 1, 0) prediction, loss = (models.logistic_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return { 'class': math_ops.argmax(prediction, 1), 'prob': prediction }, loss, train_op VOCAB_FILE_CONTENT = 'emerson\nlake\npalmer\n' EXTRA_FILE_CONTENT = 'kermit\npiggy\nralph\n' class EstimatorInputTest(test.TestCase): def testContinueTrainingDictionaryInput(self): boston = base.load_boston() output_dir = tempfile.mkdtemp() est = estimator.Estimator(model_fn=linear_model_fn, model_dir=output_dir) boston_input = {'input': boston.data} float64_target = {'labels': boston.target.astype(np.float64)} est.fit(x=boston_input, y=float64_target, steps=50) scores = est.evaluate( x=boston_input, y=float64_target, metrics={ 'MSE': metric_ops.streaming_mean_squared_error }) del est # Create another estimator object with the same output dir. est2 = estimator.Estimator(model_fn=linear_model_fn, model_dir=output_dir) # Check we can evaluate and predict. scores2 = est2.evaluate( x=boston_input, y=float64_target, metrics={ 'MSE': metric_ops.streaming_mean_squared_error }) self.assertAllClose(scores2['MSE'], scores['MSE']) predictions = np.array(list(est2.predict(x=boston_input))) other_score = _sklearn.mean_squared_error(predictions, float64_target['labels']) self.assertAllClose(other_score, scores['MSE']) def testBostonAll(self): boston = base.load_boston() est = estimator.SKCompat(estimator.Estimator(model_fn=linear_model_fn)) float64_labels = boston.target.astype(np.float64) est.fit(x=boston.data, y=float64_labels, steps=100) scores = est.score( x=boston.data, y=float64_labels, metrics={ 'MSE': metric_ops.streaming_mean_squared_error }) predictions = np.array(list(est.predict(x=boston.data))) other_score = _sklearn.mean_squared_error(predictions, boston.target) self.assertAllClose(scores['MSE'], other_score) self.assertTrue('global_step' in scores) self.assertEqual(100, scores['global_step']) def testBostonAllDictionaryInput(self): boston = base.load_boston() est = estimator.Estimator(model_fn=linear_model_fn) boston_input = {'input': boston.data} float64_target = {'labels': boston.target.astype(np.float64)} est.fit(x=boston_input, y=float64_target, steps=100) scores = est.evaluate( x=boston_input, y=float64_target, metrics={ 'MSE': metric_ops.streaming_mean_squared_error }) predictions = np.array(list(est.predict(x=boston_input))) other_score = _sklearn.mean_squared_error(predictions, boston.target) self.assertAllClose(other_score, scores['MSE']) self.assertTrue('global_step' in scores) self.assertEqual(scores['global_step'], 100) def testIrisAll(self): iris = base.load_iris() est = estimator.SKCompat( estimator.Estimator(model_fn=logistic_model_no_mode_fn)) est.fit(iris.data, iris.target, steps=100) scores = est.score( x=iris.data, y=iris.target, metrics={ ('accuracy', 'class'): metric_ops.streaming_accuracy }) predictions = est.predict(x=iris.data) predictions_class = est.predict(x=iris.data, outputs=['class'])['class'] self.assertEqual(predictions['prob'].shape[0], iris.target.shape[0]) self.assertAllClose(predictions['class'], predictions_class) self.assertAllClose(predictions['class'], np.argmax(predictions['prob'], axis=1)) other_score = _sklearn.accuracy_score(iris.target, predictions['class']) self.assertAllClose(scores['accuracy'], other_score) self.assertTrue('global_step' in scores) self.assertEqual(100, scores['global_step']) def testIrisAllDictionaryInput(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) iris_data = {'input': iris.data} iris_target = {'labels': iris.target} est.fit(iris_data, iris_target, steps=100) scores = est.evaluate( x=iris_data, y=iris_target, metrics={ ('accuracy', 'class'): metric_ops.streaming_accuracy }) predictions = list(est.predict(x=iris_data)) predictions_class = list(est.predict(x=iris_data, outputs=['class'])) self.assertEqual(len(predictions), iris.target.shape[0]) classes_batch = np.array([p['class'] for p in predictions]) self.assertAllClose(classes_batch, np.array([p['class'] for p in predictions_class])) self.assertAllClose(classes_batch, np.argmax( np.array([p['prob'] for p in predictions]), axis=1)) other_score = _sklearn.accuracy_score(iris.target, classes_batch) self.assertAllClose(other_score, scores['accuracy']) self.assertTrue('global_step' in scores) self.assertEqual(scores['global_step'], 100) def testIrisInputFn(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) est.fit(input_fn=iris_input_fn, steps=100) _ = est.evaluate(input_fn=iris_input_fn, steps=1) predictions = list(est.predict(x=iris.data)) self.assertEqual(len(predictions), iris.target.shape[0]) def testIrisInputFnLabelsDict(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) est.fit(input_fn=iris_input_fn_labels_dict, steps=100) _ = est.evaluate( input_fn=iris_input_fn_labels_dict, steps=1, metrics={ 'accuracy': metric_spec.MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='class', label_key='labels') }) predictions = list(est.predict(x=iris.data)) self.assertEqual(len(predictions), iris.target.shape[0]) def testTrainInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_eval_fn, steps=1) def testPredictInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn, num_epochs=1) output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0]) def testPredictInputFnWithQueue(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn_with_queue, num_epochs=2) output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0] * 2) def testPredictConstInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) def input_fn(): features = array_ops.reshape( constant_op.constant(boston.data), [-1, _BOSTON_INPUT_DIM]) labels = array_ops.reshape(constant_op.constant(boston.target), [-1, 1]) return features, labels output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0]) if __name__ == '__main__': test.main()
apache-2.0
anirudhjayaraman/scikit-learn
benchmarks/bench_20newsgroups.py
377
3555
from __future__ import print_function, division from time import time import argparse import numpy as np from sklearn.dummy import DummyClassifier from sklearn.datasets import fetch_20newsgroups_vectorized from sklearn.metrics import accuracy_score from sklearn.utils.validation import check_array from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import MultinomialNB ESTIMATORS = { "dummy": DummyClassifier(), "random_forest": RandomForestClassifier(n_estimators=100, max_features="sqrt", min_samples_split=10), "extra_trees": ExtraTreesClassifier(n_estimators=100, max_features="sqrt", min_samples_split=10), "logistic_regression": LogisticRegression(), "naive_bayes": MultinomialNB(), "adaboost": AdaBoostClassifier(n_estimators=10), } ############################################################################### # Data if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-e', '--estimators', nargs="+", required=True, choices=ESTIMATORS) args = vars(parser.parse_args()) data_train = fetch_20newsgroups_vectorized(subset="train") data_test = fetch_20newsgroups_vectorized(subset="test") X_train = check_array(data_train.data, dtype=np.float32, accept_sparse="csc") X_test = check_array(data_test.data, dtype=np.float32, accept_sparse="csr") y_train = data_train.target y_test = data_test.target print("20 newsgroups") print("=============") print("X_train.shape = {0}".format(X_train.shape)) print("X_train.format = {0}".format(X_train.format)) print("X_train.dtype = {0}".format(X_train.dtype)) print("X_train density = {0}" "".format(X_train.nnz / np.product(X_train.shape))) print("y_train {0}".format(y_train.shape)) print("X_test {0}".format(X_test.shape)) print("X_test.format = {0}".format(X_test.format)) print("X_test.dtype = {0}".format(X_test.dtype)) print("y_test {0}".format(y_test.shape)) print() print("Classifier Training") print("===================") accuracy, train_time, test_time = {}, {}, {} for name in sorted(args["estimators"]): clf = ESTIMATORS[name] try: clf.set_params(random_state=0) except (TypeError, ValueError): pass print("Training %s ... " % name, end="") t0 = time() clf.fit(X_train, y_train) train_time[name] = time() - t0 t0 = time() y_pred = clf.predict(X_test) test_time[name] = time() - t0 accuracy[name] = accuracy_score(y_test, y_pred) print("done") print() print("Classification performance:") print("===========================") print() print("%s %s %s %s" % ("Classifier ", "train-time", "test-time", "Accuracy")) print("-" * 44) for name in sorted(accuracy, key=accuracy.get): print("%s %s %s %s" % (name.ljust(16), ("%.4fs" % train_time[name]).center(10), ("%.4fs" % test_time[name]).center(10), ("%.4f" % accuracy[name]).center(10))) print()
bsd-3-clause
Sentient07/scikit-learn
sklearn/decomposition/tests/test_kernel_pca.py
74
8472
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import (assert_array_almost_equal, assert_less, assert_equal, assert_not_equal, assert_raises) from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets import make_circles from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn.metrics.pairwise import rbf_kernel def test_kernel_pca(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) def histogram(x, y, **kwargs): # Histogram kernel implemented as a callable. assert_equal(kwargs, {}) # no kernel_params that we didn't ask for return np.minimum(x, y).sum() for eigen_solver in ("auto", "dense", "arpack"): for kernel in ("linear", "rbf", "poly", histogram): # histogram kernel produces singular matrix inside linalg.solve # XXX use a least-squares approximation? inv = not callable(kernel) # transform fit data kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver, fit_inverse_transform=inv) X_fit_transformed = kpca.fit_transform(X_fit) X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit) assert_array_almost_equal(np.abs(X_fit_transformed), np.abs(X_fit_transformed2)) # non-regression test: previously, gamma would be 0 by default, # forcing all eigenvalues to 0 under the poly kernel assert_not_equal(X_fit_transformed.size, 0) # transform new data X_pred_transformed = kpca.transform(X_pred) assert_equal(X_pred_transformed.shape[1], X_fit_transformed.shape[1]) # inverse transform if inv: X_pred2 = kpca.inverse_transform(X_pred_transformed) assert_equal(X_pred2.shape, X_pred.shape) def test_kernel_pca_invalid_parameters(): assert_raises(ValueError, KernelPCA, 10, fit_inverse_transform=True, kernel='precomputed') def test_kernel_pca_consistent_transform(): # X_fit_ needs to retain the old, unmodified copy of X state = np.random.RandomState(0) X = state.rand(10, 10) kpca = KernelPCA(random_state=state).fit(X) transformed1 = kpca.transform(X) X_copy = X.copy() X[:, 0] = 666 transformed2 = kpca.transform(X_copy) assert_array_almost_equal(transformed1, transformed2) def test_kernel_pca_sparse(): rng = np.random.RandomState(0) X_fit = sp.csr_matrix(rng.random_sample((5, 4))) X_pred = sp.csr_matrix(rng.random_sample((2, 4))) for eigen_solver in ("auto", "arpack"): for kernel in ("linear", "rbf", "poly"): # transform fit data kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver, fit_inverse_transform=False) X_fit_transformed = kpca.fit_transform(X_fit) X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit) assert_array_almost_equal(np.abs(X_fit_transformed), np.abs(X_fit_transformed2)) # transform new data X_pred_transformed = kpca.transform(X_pred) assert_equal(X_pred_transformed.shape[1], X_fit_transformed.shape[1]) # inverse transform # X_pred2 = kpca.inverse_transform(X_pred_transformed) # assert_equal(X_pred2.shape, X_pred.shape) def test_kernel_pca_linear_kernel(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) # for a linear kernel, kernel PCA should find the same projection as PCA # modulo the sign (direction) # fit only the first four components: fifth is near zero eigenvalue, so # can be trimmed due to roundoff error assert_array_almost_equal( np.abs(KernelPCA(4).fit(X_fit).transform(X_pred)), np.abs(PCA(4).fit(X_fit).transform(X_pred))) def test_kernel_pca_n_components(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) for eigen_solver in ("dense", "arpack"): for c in [1, 2, 4]: kpca = KernelPCA(n_components=c, eigen_solver=eigen_solver) shape = kpca.fit(X_fit).transform(X_pred).shape assert_equal(shape, (2, c)) def test_remove_zero_eig(): X = np.array([[1 - 1e-30, 1], [1, 1], [1, 1 - 1e-20]]) # n_components=None (default) => remove_zero_eig is True kpca = KernelPCA() Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 0)) kpca = KernelPCA(n_components=2) Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 2)) kpca = KernelPCA(n_components=2, remove_zero_eig=True) Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 0)) def test_kernel_pca_precomputed(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) for eigen_solver in ("dense", "arpack"): X_kpca = KernelPCA(4, eigen_solver=eigen_solver).\ fit(X_fit).transform(X_pred) X_kpca2 = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit( np.dot(X_fit, X_fit.T)).transform(np.dot(X_pred, X_fit.T)) X_kpca_train = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit_transform(np.dot(X_fit, X_fit.T)) X_kpca_train2 = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit( np.dot(X_fit, X_fit.T)).transform(np.dot(X_fit, X_fit.T)) assert_array_almost_equal(np.abs(X_kpca), np.abs(X_kpca2)) assert_array_almost_equal(np.abs(X_kpca_train), np.abs(X_kpca_train2)) def test_kernel_pca_invalid_kernel(): rng = np.random.RandomState(0) X_fit = rng.random_sample((2, 4)) kpca = KernelPCA(kernel="tototiti") assert_raises(ValueError, kpca.fit, X_fit) def test_gridsearch_pipeline(): # Test if we can do a grid-search to find parameters to separate # circles with a perceptron model. X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) kpca = KernelPCA(kernel="rbf", n_components=2) pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron())]) param_grid = dict(kernel_pca__gamma=2. ** np.arange(-2, 2)) grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid) grid_search.fit(X, y) assert_equal(grid_search.best_score_, 1) def test_gridsearch_pipeline_precomputed(): # Test if we can do a grid-search to find parameters to separate # circles with a perceptron model using a precomputed kernel. X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) kpca = KernelPCA(kernel="precomputed", n_components=2) pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron())]) param_grid = dict(Perceptron__n_iter=np.arange(1, 5)) grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid) X_kernel = rbf_kernel(X, gamma=2.) grid_search.fit(X_kernel, y) assert_equal(grid_search.best_score_, 1) def test_nested_circles(): # Test the linear separability of the first 2D KPCA transform X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) # 2D nested circles are not linearly separable train_score = Perceptron().fit(X, y).score(X, y) assert_less(train_score, 0.8) # Project the circles data into the first 2 components of a RBF Kernel # PCA model. # Note that the gamma value is data dependent. If this test breaks # and the gamma value has to be updated, the Kernel PCA example will # have to be updated too. kpca = KernelPCA(kernel="rbf", n_components=2, fit_inverse_transform=True, gamma=2.) X_kpca = kpca.fit_transform(X) # The data is perfectly linearly separable in that space train_score = Perceptron().fit(X_kpca, y).score(X_kpca, y) assert_equal(train_score, 1.0)
bsd-3-clause
harisbal/pandas
pandas/tests/io/test_pytables.py
1
215736
import pytest import os import tempfile from contextlib import contextmanager from warnings import catch_warnings, simplefilter from distutils.version import LooseVersion import datetime from datetime import timedelta import numpy as np import pandas as pd from pandas import (Series, DataFrame, Panel, MultiIndex, Int64Index, RangeIndex, Categorical, bdate_range, date_range, timedelta_range, Index, DatetimeIndex, isna, compat, concat, Timestamp) import pandas.util.testing as tm import pandas.util._test_decorators as td from pandas.util.testing import (assert_panel_equal, assert_frame_equal, assert_series_equal, set_timezone) from pandas.compat import (is_platform_windows, is_platform_little_endian, PY35, PY36, BytesIO, text_type, range, lrange, u) from pandas.io.formats.printing import pprint_thing from pandas.core.dtypes.common import is_categorical_dtype tables = pytest.importorskip('tables') from pandas.io import pytables as pytables # noqa:E402 from pandas.io.pytables import (TableIterator, # noqa:E402 HDFStore, Term, read_hdf, PossibleDataLossError, ClosedFileError) _default_compressor = ('blosc' if LooseVersion(tables.__version__) >= LooseVersion('2.2') else 'zlib') ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) # contextmanager to ensure the file cleanup def safe_remove(path): if path is not None: try: os.remove(path) except: pass def safe_close(store): try: if store is not None: store.close() except: pass def create_tempfile(path): """ create an unopened named temporary file """ return os.path.join(tempfile.gettempdir(), path) @contextmanager def ensure_clean_store(path, mode='a', complevel=None, complib=None, fletcher32=False): try: # put in the temporary path if we don't have one already if not len(os.path.dirname(path)): path = create_tempfile(path) store = HDFStore(path, mode=mode, complevel=complevel, complib=complib, fletcher32=False) yield store finally: safe_close(store) if mode == 'w' or mode == 'a': safe_remove(path) @contextmanager def ensure_clean_path(path): """ return essentially a named temporary file that is not opened and deleted on existing; if path is a list, then create and return list of filenames """ try: if isinstance(path, list): filenames = [create_tempfile(p) for p in path] yield filenames else: filenames = [create_tempfile(path)] yield filenames[0] finally: for f in filenames: safe_remove(f) # set these parameters so we don't have file sharing tables.parameters.MAX_NUMEXPR_THREADS = 1 tables.parameters.MAX_BLOSC_THREADS = 1 tables.parameters.MAX_THREADS = 1 def _maybe_remove(store, key): """For tests using tables, try removing the table to be sure there is no content from previous tests using the same table name.""" try: store.remove(key) except: pass class Base(object): @classmethod def setup_class(cls): # Pytables 3.0.0 deprecates lots of things tm.reset_testing_mode() @classmethod def teardown_class(cls): # Pytables 3.0.0 deprecates lots of things tm.set_testing_mode() def setup_method(self, method): self.path = 'tmp.__%s__.h5' % tm.rands(10) def teardown_method(self, method): pass @pytest.mark.single @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") class TestHDFStore(Base): def test_context(self): path = create_tempfile(self.path) try: with HDFStore(path) as tbl: raise ValueError('blah') except ValueError: pass finally: safe_remove(path) try: with HDFStore(path) as tbl: tbl['a'] = tm.makeDataFrame() with HDFStore(path) as tbl: assert len(tbl) == 1 assert type(tbl['a']) == DataFrame finally: safe_remove(path) def test_conv_read_write(self): path = create_tempfile(self.path) try: def roundtrip(key, obj, **kwargs): obj.to_hdf(path, key, **kwargs) return read_hdf(path, key) o = tm.makeTimeSeries() assert_series_equal(o, roundtrip('series', o)) o = tm.makeStringSeries() assert_series_equal(o, roundtrip('string_series', o)) o = tm.makeDataFrame() assert_frame_equal(o, roundtrip('frame', o)) with catch_warnings(record=True): o = tm.makePanel() assert_panel_equal(o, roundtrip('panel', o)) # table df = DataFrame(dict(A=lrange(5), B=lrange(5))) df.to_hdf(path, 'table', append=True) result = read_hdf(path, 'table', where=['index>2']) assert_frame_equal(df[df.index > 2], result) finally: safe_remove(path) def test_long_strings(self): # GH6166 # unconversion of long strings was being chopped in earlier # versions of numpy < 1.7.2 df = DataFrame({'a': tm.rands_array(100, size=10)}, index=tm.rands_array(100, size=10)) with ensure_clean_store(self.path) as store: store.append('df', df, data_columns=['a']) result = store.select('df') assert_frame_equal(df, result) def test_api(self): # GH4584 # API issue when to_hdf doesn't acdept append AND format args with ensure_clean_path(self.path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, 'df', append=True, format='table') df.iloc[10:].to_hdf(path, 'df', append=True, format='table') assert_frame_equal(read_hdf(path, 'df'), df) # append to False df.iloc[:10].to_hdf(path, 'df', append=False, format='table') df.iloc[10:].to_hdf(path, 'df', append=True, format='table') assert_frame_equal(read_hdf(path, 'df'), df) with ensure_clean_path(self.path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, 'df', append=True) df.iloc[10:].to_hdf(path, 'df', append=True, format='table') assert_frame_equal(read_hdf(path, 'df'), df) # append to False df.iloc[:10].to_hdf(path, 'df', append=False, format='table') df.iloc[10:].to_hdf(path, 'df', append=True) assert_frame_equal(read_hdf(path, 'df'), df) with ensure_clean_path(self.path) as path: df = tm.makeDataFrame() df.to_hdf(path, 'df', append=False, format='fixed') assert_frame_equal(read_hdf(path, 'df'), df) df.to_hdf(path, 'df', append=False, format='f') assert_frame_equal(read_hdf(path, 'df'), df) df.to_hdf(path, 'df', append=False) assert_frame_equal(read_hdf(path, 'df'), df) df.to_hdf(path, 'df') assert_frame_equal(read_hdf(path, 'df'), df) with ensure_clean_store(self.path) as store: path = store._path df = tm.makeDataFrame() _maybe_remove(store, 'df') store.append('df', df.iloc[:10], append=True, format='table') store.append('df', df.iloc[10:], append=True, format='table') assert_frame_equal(store.select('df'), df) # append to False _maybe_remove(store, 'df') store.append('df', df.iloc[:10], append=False, format='table') store.append('df', df.iloc[10:], append=True, format='table') assert_frame_equal(store.select('df'), df) # formats _maybe_remove(store, 'df') store.append('df', df.iloc[:10], append=False, format='table') store.append('df', df.iloc[10:], append=True, format='table') assert_frame_equal(store.select('df'), df) _maybe_remove(store, 'df') store.append('df', df.iloc[:10], append=False, format='table') store.append('df', df.iloc[10:], append=True, format=None) assert_frame_equal(store.select('df'), df) with ensure_clean_path(self.path) as path: # invalid df = tm.makeDataFrame() pytest.raises(ValueError, df.to_hdf, path, 'df', append=True, format='f') pytest.raises(ValueError, df.to_hdf, path, 'df', append=True, format='fixed') pytest.raises(TypeError, df.to_hdf, path, 'df', append=True, format='foo') pytest.raises(TypeError, df.to_hdf, path, 'df', append=False, format='bar') # File path doesn't exist path = "" pytest.raises(compat.FileNotFoundError, read_hdf, path, 'df') def test_api_default_format(self): # default_format option with ensure_clean_store(self.path) as store: df = tm.makeDataFrame() pd.set_option('io.hdf.default_format', 'fixed') _maybe_remove(store, 'df') store.put('df', df) assert not store.get_storer('df').is_table pytest.raises(ValueError, store.append, 'df2', df) pd.set_option('io.hdf.default_format', 'table') _maybe_remove(store, 'df') store.put('df', df) assert store.get_storer('df').is_table _maybe_remove(store, 'df2') store.append('df2', df) assert store.get_storer('df').is_table pd.set_option('io.hdf.default_format', None) with ensure_clean_path(self.path) as path: df = tm.makeDataFrame() pd.set_option('io.hdf.default_format', 'fixed') df.to_hdf(path, 'df') with HDFStore(path) as store: assert not store.get_storer('df').is_table pytest.raises(ValueError, df.to_hdf, path, 'df2', append=True) pd.set_option('io.hdf.default_format', 'table') df.to_hdf(path, 'df3') with HDFStore(path) as store: assert store.get_storer('df3').is_table df.to_hdf(path, 'df4', append=True) with HDFStore(path) as store: assert store.get_storer('df4').is_table pd.set_option('io.hdf.default_format', None) def test_keys(self): with ensure_clean_store(self.path) as store: store['a'] = tm.makeTimeSeries() store['b'] = tm.makeStringSeries() store['c'] = tm.makeDataFrame() with catch_warnings(record=True): store['d'] = tm.makePanel() store['foo/bar'] = tm.makePanel() assert len(store) == 5 expected = {'/a', '/b', '/c', '/d', '/foo/bar'} assert set(store.keys()) == expected assert set(store) == expected def test_keys_ignore_hdf_softlink(self): # GH 20523 # Puts a softlink into HDF file and rereads with ensure_clean_store(self.path) as store: df = DataFrame(dict(A=lrange(5), B=lrange(5))) store.put("df", df) assert store.keys() == ["/df"] store._handle.create_soft_link(store._handle.root, "symlink", "df") # Should ignore the softlink assert store.keys() == ["/df"] def test_iter_empty(self): with ensure_clean_store(self.path) as store: # GH 12221 assert list(store) == [] def test_repr(self): with ensure_clean_store(self.path) as store: repr(store) store.info() store['a'] = tm.makeTimeSeries() store['b'] = tm.makeStringSeries() store['c'] = tm.makeDataFrame() with catch_warnings(record=True): store['d'] = tm.makePanel() store['foo/bar'] = tm.makePanel() store.append('e', tm.makePanel()) df = tm.makeDataFrame() df['obj1'] = 'foo' df['obj2'] = 'bar' df['bool1'] = df['A'] > 0 df['bool2'] = df['B'] > 0 df['bool3'] = True df['int1'] = 1 df['int2'] = 2 df['timestamp1'] = Timestamp('20010102') df['timestamp2'] = Timestamp('20010103') df['datetime1'] = datetime.datetime(2001, 1, 2, 0, 0) df['datetime2'] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ['obj1']] = np.nan df = df._consolidate()._convert(datetime=True) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store['df'] = df # make a random group in hdf space store._handle.create_group(store._handle.root, 'bah') assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(self.path) as store: df = tm.makeDataFrame() store.append('df', df) s = store.get_storer('df') repr(s) str(s) @ignore_natural_naming_warning def test_contains(self): with ensure_clean_store(self.path) as store: store['a'] = tm.makeTimeSeries() store['b'] = tm.makeDataFrame() store['foo/bar'] = tm.makeDataFrame() assert 'a' in store assert 'b' in store assert 'c' not in store assert 'foo/bar' in store assert '/foo/bar' in store assert '/foo/b' not in store assert 'bar' not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store['node())'] = tm.makeDataFrame() assert 'node())' in store def test_versioning(self): with ensure_clean_store(self.path) as store: store['a'] = tm.makeTimeSeries() store['b'] = tm.makeDataFrame() df = tm.makeTimeDataFrame() _maybe_remove(store, 'df1') store.append('df1', df[:10]) store.append('df1', df[10:]) assert store.root.a._v_attrs.pandas_version == '0.15.2' assert store.root.b._v_attrs.pandas_version == '0.15.2' assert store.root.df1._v_attrs.pandas_version == '0.15.2' # write a file and wipe its versioning _maybe_remove(store, 'df2') store.append('df2', df) # this is an error because its table_type is appendable, but no # version info store.get_node('df2')._v_attrs.pandas_version = None pytest.raises(Exception, store.select, 'df2') def test_mode(self): df = tm.makeTimeDataFrame() def check(mode): with ensure_clean_path(self.path) as path: # constructor if mode in ['r', 'r+']: pytest.raises(IOError, HDFStore, path, mode=mode) else: store = HDFStore(path, mode=mode) assert store._handle.mode == mode store.close() with ensure_clean_path(self.path) as path: # context if mode in ['r', 'r+']: def f(): with HDFStore(path, mode=mode) as store: # noqa pass pytest.raises(IOError, f) else: with HDFStore(path, mode=mode) as store: assert store._handle.mode == mode with ensure_clean_path(self.path) as path: # conv write if mode in ['r', 'r+']: pytest.raises(IOError, df.to_hdf, path, 'df', mode=mode) df.to_hdf(path, 'df', mode='w') else: df.to_hdf(path, 'df', mode=mode) # conv read if mode in ['w']: pytest.raises(ValueError, read_hdf, path, 'df', mode=mode) else: result = read_hdf(path, 'df', mode=mode) assert_frame_equal(result, df) def check_default_mode(): # read_hdf uses default mode with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', mode='w') result = read_hdf(path, 'df') assert_frame_equal(result, df) check('r') check('r+') check('a') check('w') check_default_mode() def test_reopen_handle(self): with ensure_clean_path(self.path) as path: store = HDFStore(path, mode='a') store['a'] = tm.makeTimeSeries() # invalid mode change pytest.raises(PossibleDataLossError, store.open, 'w') store.close() assert not store.is_open # truncation ok here store.open('w') assert store.is_open assert len(store) == 0 store.close() assert not store.is_open store = HDFStore(path, mode='a') store['a'] = tm.makeTimeSeries() # reopen as read store.open('r') assert store.is_open assert len(store) == 1 assert store._mode == 'r' store.close() assert not store.is_open # reopen as append store.open('a') assert store.is_open assert len(store) == 1 assert store._mode == 'a' store.close() assert not store.is_open # reopen as append (again) store.open('a') assert store.is_open assert len(store) == 1 assert store._mode == 'a' store.close() assert not store.is_open def test_open_args(self): with ensure_clean_path(self.path) as path: df = tm.makeDataFrame() # create an in memory store store = HDFStore(path, mode='a', driver='H5FD_CORE', driver_core_backing_store=0) store['df'] = df store.append('df2', df) tm.assert_frame_equal(store['df'], df) tm.assert_frame_equal(store['df2'], df) store.close() # the file should not have actually been written assert not os.path.exists(path) def test_flush(self): with ensure_clean_store(self.path) as store: store['a'] = tm.makeTimeSeries() store.flush() store.flush(fsync=True) def test_get(self): with ensure_clean_store(self.path) as store: store['a'] = tm.makeTimeSeries() left = store.get('a') right = store['a'] tm.assert_series_equal(left, right) left = store.get('/a') right = store['/a'] tm.assert_series_equal(left, right) pytest.raises(KeyError, store.get, 'b') @pytest.mark.parametrize('where, expected', [ ('/', { '': ({'first_group', 'second_group'}, set()), '/first_group': (set(), {'df1', 'df2'}), '/second_group': ({'third_group'}, {'df3', 's1'}), '/second_group/third_group': (set(), {'df4'}), }), ('/second_group', { '/second_group': ({'third_group'}, {'df3', 's1'}), '/second_group/third_group': (set(), {'df4'}), }) ]) def test_walk(self, where, expected): # GH10143 objs = { 'df1': pd.DataFrame([1, 2, 3]), 'df2': pd.DataFrame([4, 5, 6]), 'df3': pd.DataFrame([6, 7, 8]), 'df4': pd.DataFrame([9, 10, 11]), 's1': pd.Series([10, 9, 8]), # Next 3 items aren't pandas objects and should be ignored 'a1': np.array([[1, 2, 3], [4, 5, 6]]), 'tb1': np.array([(1, 2, 3), (4, 5, 6)], dtype='i,i,i'), 'tb2': np.array([(7, 8, 9), (10, 11, 12)], dtype='i,i,i') } with ensure_clean_store('walk_groups.hdf', mode='w') as store: store.put('/first_group/df1', objs['df1']) store.put('/first_group/df2', objs['df2']) store.put('/second_group/df3', objs['df3']) store.put('/second_group/s1', objs['s1']) store.put('/second_group/third_group/df4', objs['df4']) # Create non-pandas objects store._handle.create_array('/first_group', 'a1', objs['a1']) store._handle.create_table('/first_group', 'tb1', obj=objs['tb1']) store._handle.create_table('/second_group', 'tb2', obj=objs['tb2']) assert len(list(store.walk(where=where))) == len(expected) for path, groups, leaves in store.walk(where=where): assert path in expected expected_groups, expected_frames = expected[path] assert expected_groups == set(groups) assert expected_frames == set(leaves) for leaf in leaves: frame_path = '/'.join([path, leaf]) obj = store.get(frame_path) if 'df' in leaf: tm.assert_frame_equal(obj, objs[leaf]) else: tm.assert_series_equal(obj, objs[leaf]) def test_getattr(self): with ensure_clean_store(self.path) as store: s = tm.makeTimeSeries() store['a'] = s # test attribute access result = store.a tm.assert_series_equal(result, s) result = getattr(store, 'a') tm.assert_series_equal(result, s) df = tm.makeTimeDataFrame() store['df'] = df result = store.df tm.assert_frame_equal(result, df) # errors pytest.raises(AttributeError, getattr, store, 'd') for x in ['mode', 'path', 'handle', 'complib']: pytest.raises(AttributeError, getattr, store, x) # not stores for x in ['mode', 'path', 'handle', 'complib']: getattr(store, "_%s" % x) def test_put(self): with ensure_clean_store(self.path) as store: ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() store['a'] = ts store['b'] = df[:10] store['foo/bar/bah'] = df[:10] store['foo'] = df[:10] store['/foo'] = df[:10] store.put('c', df[:10], format='table') # not OK, not a table pytest.raises( ValueError, store.put, 'b', df[10:], append=True) # node does not currently exist, test _is_table_type returns False # in this case # _maybe_remove(store, 'f') # pytest.raises(ValueError, store.put, 'f', df[10:], # append=True) # can't put to a table (use append instead) pytest.raises(ValueError, store.put, 'c', df[10:], append=True) # overwrite table store.put('c', df[:10], format='table', append=False) tm.assert_frame_equal(df[:10], store['c']) def test_put_string_index(self): with ensure_clean_store(self.path) as store: index = Index( ["I am a very long string index: %s" % i for i in range(20)]) s = Series(np.arange(20), index=index) df = DataFrame({'A': s, 'B': s}) store['a'] = s tm.assert_series_equal(store['a'], s) store['b'] = df tm.assert_frame_equal(store['b'], df) # mixed length index = Index(['abcdefghijklmnopqrstuvwxyz1234567890'] + ["I am a very long string index: %s" % i for i in range(20)]) s = Series(np.arange(21), index=index) df = DataFrame({'A': s, 'B': s}) store['a'] = s tm.assert_series_equal(store['a'], s) store['b'] = df tm.assert_frame_equal(store['b'], df) def test_put_compression(self): with ensure_clean_store(self.path) as store: df = tm.makeTimeDataFrame() store.put('c', df, format='table', complib='zlib') tm.assert_frame_equal(store['c'], df) # can't compress if format='fixed' pytest.raises(ValueError, store.put, 'b', df, format='fixed', complib='zlib') @td.skip_if_windows_python_3 def test_put_compression_blosc(self): df = tm.makeTimeDataFrame() with ensure_clean_store(self.path) as store: # can't compress if format='fixed' pytest.raises(ValueError, store.put, 'b', df, format='fixed', complib='blosc') store.put('c', df, format='table', complib='blosc') tm.assert_frame_equal(store['c'], df) def test_complibs_default_settings(self): # GH15943 df = tm.makeDataFrame() # Set complevel and check if complib is automatically set to # default value with ensure_clean_path(self.path) as tmpfile: df.to_hdf(tmpfile, 'df', complevel=9) result = pd.read_hdf(tmpfile, 'df') tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode='r') as h5file: for node in h5file.walk_nodes(where='/df', classname='Leaf'): assert node.filters.complevel == 9 assert node.filters.complib == 'zlib' # Set complib and check to see if compression is disabled with ensure_clean_path(self.path) as tmpfile: df.to_hdf(tmpfile, 'df', complib='zlib') result = pd.read_hdf(tmpfile, 'df') tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode='r') as h5file: for node in h5file.walk_nodes(where='/df', classname='Leaf'): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if not setting complib or complevel results in no compression with ensure_clean_path(self.path) as tmpfile: df.to_hdf(tmpfile, 'df') result = pd.read_hdf(tmpfile, 'df') tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode='r') as h5file: for node in h5file.walk_nodes(where='/df', classname='Leaf'): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if file-defaults can be overridden on a per table basis with ensure_clean_path(self.path) as tmpfile: store = pd.HDFStore(tmpfile) store.append('dfc', df, complevel=9, complib='blosc') store.append('df', df) store.close() with tables.open_file(tmpfile, mode='r') as h5file: for node in h5file.walk_nodes(where='/df', classname='Leaf'): assert node.filters.complevel == 0 assert node.filters.complib is None for node in h5file.walk_nodes(where='/dfc', classname='Leaf'): assert node.filters.complevel == 9 assert node.filters.complib == 'blosc' def test_complibs(self): # GH14478 df = tm.makeDataFrame() # Building list of all complibs and complevels tuples all_complibs = tables.filters.all_complibs # Remove lzo if its not available on this platform if not tables.which_lib_version('lzo'): all_complibs.remove('lzo') # Remove bzip2 if its not available on this platform if not tables.which_lib_version("bzip2"): all_complibs.remove("bzip2") all_levels = range(0, 10) all_tests = [(lib, lvl) for lib in all_complibs for lvl in all_levels] for (lib, lvl) in all_tests: with ensure_clean_path(self.path) as tmpfile: gname = 'foo' # Write and read file to see if data is consistent df.to_hdf(tmpfile, gname, complib=lib, complevel=lvl) result = pd.read_hdf(tmpfile, gname) tm.assert_frame_equal(result, df) # Open file and check metadata # for correct amount of compression h5table = tables.open_file(tmpfile, mode='r') for node in h5table.walk_nodes(where='/' + gname, classname='Leaf'): assert node.filters.complevel == lvl if lvl == 0: assert node.filters.complib is None else: assert node.filters.complib == lib h5table.close() def test_put_integer(self): # non-date, non-string index df = DataFrame(np.random.randn(50, 100)) self._check_roundtrip(df, tm.assert_frame_equal) def test_put_mixed_type(self): df = tm.makeTimeDataFrame() df['obj1'] = 'foo' df['obj2'] = 'bar' df['bool1'] = df['A'] > 0 df['bool2'] = df['B'] > 0 df['bool3'] = True df['int1'] = 1 df['int2'] = 2 df['timestamp1'] = Timestamp('20010102') df['timestamp2'] = Timestamp('20010103') df['datetime1'] = datetime.datetime(2001, 1, 2, 0, 0) df['datetime2'] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ['obj1']] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(self.path) as store: _maybe_remove(store, 'df') # PerformanceWarning with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store.put('df', df) expected = store.get('df') tm.assert_frame_equal(expected, df) @pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) def test_append(self): with ensure_clean_store(self.path) as store: # this is allowed by almost always don't want to do it # tables.NaturalNameWarning): with catch_warnings(record=True): df = tm.makeTimeDataFrame() _maybe_remove(store, 'df1') store.append('df1', df[:10]) store.append('df1', df[10:]) tm.assert_frame_equal(store['df1'], df) _maybe_remove(store, 'df2') store.put('df2', df[:10], format='table') store.append('df2', df[10:]) tm.assert_frame_equal(store['df2'], df) _maybe_remove(store, 'df3') store.append('/df3', df[:10]) store.append('/df3', df[10:]) tm.assert_frame_equal(store['df3'], df) # this is allowed by almost always don't want to do it # tables.NaturalNameWarning _maybe_remove(store, '/df3 foo') store.append('/df3 foo', df[:10]) store.append('/df3 foo', df[10:]) tm.assert_frame_equal(store['df3 foo'], df) # panel wp = tm.makePanel() _maybe_remove(store, 'wp1') store.append('wp1', wp.iloc[:, :10, :]) store.append('wp1', wp.iloc[:, 10:, :]) assert_panel_equal(store['wp1'], wp) # test using differt order of items on the non-index axes _maybe_remove(store, 'wp1') wp_append1 = wp.iloc[:, :10, :] store.append('wp1', wp_append1) wp_append2 = wp.iloc[:, 10:, :].reindex(items=wp.items[::-1]) store.append('wp1', wp_append2) assert_panel_equal(store['wp1'], wp) # dtype issues - mizxed type in a single object column df = DataFrame(data=[[1, 2], [0, 1], [1, 2], [0, 0]]) df['mixed_column'] = 'testing' df.loc[2, 'mixed_column'] = np.nan _maybe_remove(store, 'df') store.append('df', df) tm.assert_frame_equal(store['df'], df) # uints - test storage of uints uint_data = DataFrame({ 'u08': Series(np.random.randint(0, high=255, size=5), dtype=np.uint8), 'u16': Series(np.random.randint(0, high=65535, size=5), dtype=np.uint16), 'u32': Series(np.random.randint(0, high=2**30, size=5), dtype=np.uint32), 'u64': Series([2**58, 2**59, 2**60, 2**61, 2**62], dtype=np.uint64)}, index=np.arange(5)) _maybe_remove(store, 'uints') store.append('uints', uint_data) tm.assert_frame_equal(store['uints'], uint_data) # uints - test storage of uints in indexable columns _maybe_remove(store, 'uints') # 64-bit indices not yet supported store.append('uints', uint_data, data_columns=[ 'u08', 'u16', 'u32']) tm.assert_frame_equal(store['uints'], uint_data) def test_append_series(self): with ensure_clean_store(self.path) as store: # basic ss = tm.makeStringSeries() ts = tm.makeTimeSeries() ns = Series(np.arange(100)) store.append('ss', ss) result = store['ss'] tm.assert_series_equal(result, ss) assert result.name is None store.append('ts', ts) result = store['ts'] tm.assert_series_equal(result, ts) assert result.name is None ns.name = 'foo' store.append('ns', ns) result = store['ns'] tm.assert_series_equal(result, ns) assert result.name == ns.name # select on the values expected = ns[ns > 60] result = store.select('ns', 'foo>60') tm.assert_series_equal(result, expected) # select on the index and values expected = ns[(ns > 70) & (ns.index < 90)] result = store.select('ns', 'foo>70 and index<90') tm.assert_series_equal(result, expected) # multi-index mi = DataFrame(np.random.randn(5, 1), columns=['A']) mi['B'] = np.arange(len(mi)) mi['C'] = 'foo' mi.loc[3:5, 'C'] = 'bar' mi.set_index(['C', 'B'], inplace=True) s = mi.stack() s.index = s.index.droplevel(2) store.append('mi', s) tm.assert_series_equal(store['mi'], s) def test_store_index_types(self): # GH5386 # test storing various index types with ensure_clean_store(self.path) as store: def check(format, index): df = DataFrame(np.random.randn(10, 2), columns=list('AB')) df.index = index(len(df)) _maybe_remove(store, 'df') store.put('df', df, format=format) assert_frame_equal(df, store['df']) for index in [tm.makeFloatIndex, tm.makeStringIndex, tm.makeIntIndex, tm.makeDateIndex]: check('table', index) check('fixed', index) # period index currently broken for table # seee GH7796 FIXME check('fixed', tm.makePeriodIndex) # check('table',tm.makePeriodIndex) # unicode index = tm.makeUnicodeIndex if compat.PY3: check('table', index) check('fixed', index) else: # only support for fixed types (and they have a perf warning) pytest.raises(TypeError, check, 'table', index) # PerformanceWarning with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) check('fixed', index) @pytest.mark.skipif(not is_platform_little_endian(), reason="reason platform is not little endian") def test_encoding(self): with ensure_clean_store(self.path) as store: df = DataFrame(dict(A='foo', B='bar'), index=range(5)) df.loc[2, 'A'] = np.nan df.loc[3, 'B'] = np.nan _maybe_remove(store, 'df') store.append('df', df, encoding='ascii') tm.assert_frame_equal(store['df'], df) expected = df.reindex(columns=['A']) result = store.select('df', Term('columns=A', encoding='ascii')) tm.assert_frame_equal(result, expected) def test_latin_encoding(self): if compat.PY2: tm.assert_raises_regex( TypeError, r'\[unicode\] is not implemented as a table column') return values = [[b'E\xc9, 17', b'', b'a', b'b', b'c'], [b'E\xc9, 17', b'a', b'b', b'c'], [b'EE, 17', b'', b'a', b'b', b'c'], [b'E\xc9, 17', b'\xf8\xfc', b'a', b'b', b'c'], [b'', b'a', b'b', b'c'], [b'\xf8\xfc', b'a', b'b', b'c'], [b'A\xf8\xfc', b'', b'a', b'b', b'c'], [np.nan, b'', b'b', b'c'], [b'A\xf8\xfc', np.nan, b'', b'b', b'c']] def _try_decode(x, encoding='latin-1'): try: return x.decode(encoding) except AttributeError: return x # not sure how to remove latin-1 from code in python 2 and 3 values = [[_try_decode(x) for x in y] for y in values] examples = [] for dtype in ['category', object]: for val in values: examples.append(pd.Series(val, dtype=dtype)) def roundtrip(s, key='data', encoding='latin-1', nan_rep=''): with ensure_clean_path(self.path) as store: s.to_hdf(store, key, format='table', encoding=encoding, nan_rep=nan_rep) retr = read_hdf(store, key) s_nan = s.replace(nan_rep, np.nan) if is_categorical_dtype(s_nan): assert is_categorical_dtype(retr) assert_series_equal(s_nan, retr, check_dtype=False, check_categorical=False) else: assert_series_equal(s_nan, retr) for s in examples: roundtrip(s) # fails: # for x in examples: # roundtrip(s, nan_rep=b'\xf8\xfc') def test_append_some_nans(self): with ensure_clean_store(self.path) as store: df = DataFrame({'A': Series(np.random.randn(20)).astype('int32'), 'A1': np.random.randn(20), 'A2': np.random.randn(20), 'B': 'foo', 'C': 'bar', 'D': Timestamp("20010101"), 'E': datetime.datetime(2001, 1, 2, 0, 0)}, index=np.arange(20)) # some nans _maybe_remove(store, 'df1') df.loc[0:15, ['A1', 'B', 'D', 'E']] = np.nan store.append('df1', df[:10]) store.append('df1', df[10:]) tm.assert_frame_equal(store['df1'], df) # first column df1 = df.copy() df1.loc[:, 'A1'] = np.nan _maybe_remove(store, 'df1') store.append('df1', df1[:10]) store.append('df1', df1[10:]) tm.assert_frame_equal(store['df1'], df1) # 2nd column df2 = df.copy() df2.loc[:, 'A2'] = np.nan _maybe_remove(store, 'df2') store.append('df2', df2[:10]) store.append('df2', df2[10:]) tm.assert_frame_equal(store['df2'], df2) # datetimes df3 = df.copy() df3.loc[:, 'E'] = np.nan _maybe_remove(store, 'df3') store.append('df3', df3[:10]) store.append('df3', df3[10:]) tm.assert_frame_equal(store['df3'], df3) def test_append_all_nans(self): with ensure_clean_store(self.path) as store: df = DataFrame({'A1': np.random.randn(20), 'A2': np.random.randn(20)}, index=np.arange(20)) df.loc[0:15, :] = np.nan # nan some entire rows (dropna=True) _maybe_remove(store, 'df') store.append('df', df[:10], dropna=True) store.append('df', df[10:], dropna=True) tm.assert_frame_equal(store['df'], df[-4:]) # nan some entire rows (dropna=False) _maybe_remove(store, 'df2') store.append('df2', df[:10], dropna=False) store.append('df2', df[10:], dropna=False) tm.assert_frame_equal(store['df2'], df) # tests the option io.hdf.dropna_table pd.set_option('io.hdf.dropna_table', False) _maybe_remove(store, 'df3') store.append('df3', df[:10]) store.append('df3', df[10:]) tm.assert_frame_equal(store['df3'], df) pd.set_option('io.hdf.dropna_table', True) _maybe_remove(store, 'df4') store.append('df4', df[:10]) store.append('df4', df[10:]) tm.assert_frame_equal(store['df4'], df[-4:]) # nan some entire rows (string are still written!) df = DataFrame({'A1': np.random.randn(20), 'A2': np.random.randn(20), 'B': 'foo', 'C': 'bar'}, index=np.arange(20)) df.loc[0:15, :] = np.nan _maybe_remove(store, 'df') store.append('df', df[:10], dropna=True) store.append('df', df[10:], dropna=True) tm.assert_frame_equal(store['df'], df) _maybe_remove(store, 'df2') store.append('df2', df[:10], dropna=False) store.append('df2', df[10:], dropna=False) tm.assert_frame_equal(store['df2'], df) # nan some entire rows (but since we have dates they are still # written!) df = DataFrame({'A1': np.random.randn(20), 'A2': np.random.randn(20), 'B': 'foo', 'C': 'bar', 'D': Timestamp("20010101"), 'E': datetime.datetime(2001, 1, 2, 0, 0)}, index=np.arange(20)) df.loc[0:15, :] = np.nan _maybe_remove(store, 'df') store.append('df', df[:10], dropna=True) store.append('df', df[10:], dropna=True) tm.assert_frame_equal(store['df'], df) _maybe_remove(store, 'df2') store.append('df2', df[:10], dropna=False) store.append('df2', df[10:], dropna=False) tm.assert_frame_equal(store['df2'], df) # Test to make sure defaults are to not drop. # Corresponding to Issue 9382 df_with_missing = DataFrame( {'col1': [0, np.nan, 2], 'col2': [1, np.nan, np.nan]}) with ensure_clean_path(self.path) as path: df_with_missing.to_hdf(path, 'df_with_missing', format='table') reloaded = read_hdf(path, 'df_with_missing') tm.assert_frame_equal(df_with_missing, reloaded) matrix = [[[np.nan, np.nan, np.nan], [1, np.nan, np.nan]], [[np.nan, np.nan, np.nan], [np.nan, 5, 6]], [[np.nan, np.nan, np.nan], [np.nan, 3, np.nan]]] with catch_warnings(record=True): panel_with_missing = Panel(matrix, items=['Item1', 'Item2', 'Item3'], major_axis=[1, 2], minor_axis=['A', 'B', 'C']) with ensure_clean_path(self.path) as path: panel_with_missing.to_hdf( path, 'panel_with_missing', format='table') reloaded_panel = read_hdf(path, 'panel_with_missing') tm.assert_panel_equal(panel_with_missing, reloaded_panel) def test_append_frame_column_oriented(self): with ensure_clean_store(self.path) as store: # column oriented df = tm.makeTimeDataFrame() _maybe_remove(store, 'df1') store.append('df1', df.iloc[:, :2], axes=['columns']) store.append('df1', df.iloc[:, 2:]) tm.assert_frame_equal(store['df1'], df) result = store.select('df1', 'columns=A') expected = df.reindex(columns=['A']) tm.assert_frame_equal(expected, result) # selection on the non-indexable result = store.select( 'df1', ('columns=A', 'index=df.index[0:4]')) expected = df.reindex(columns=['A'], index=df.index[0:4]) tm.assert_frame_equal(expected, result) # this isn't supported with pytest.raises(TypeError): store.select('df1', 'columns=A and index>df.index[4]') def test_append_with_different_block_ordering(self): # GH 4096; using same frames, but different block orderings with ensure_clean_store(self.path) as store: for i in range(10): df = DataFrame(np.random.randn(10, 2), columns=list('AB')) df['index'] = range(10) df['index'] += i * 10 df['int64'] = Series([1] * len(df), dtype='int64') df['int16'] = Series([1] * len(df), dtype='int16') if i % 2 == 0: del df['int64'] df['int64'] = Series([1] * len(df), dtype='int64') if i % 3 == 0: a = df.pop('A') df['A'] = a df.set_index('index', inplace=True) store.append('df', df) # test a different ordering but with more fields (like invalid # combinate) with ensure_clean_store(self.path) as store: df = DataFrame(np.random.randn(10, 2), columns=list('AB'), dtype='float64') df['int64'] = Series([1] * len(df), dtype='int64') df['int16'] = Series([1] * len(df), dtype='int16') store.append('df', df) # store additional fields in different blocks df['int16_2'] = Series([1] * len(df), dtype='int16') pytest.raises(ValueError, store.append, 'df', df) # store multile additional fields in different blocks df['float_3'] = Series([1.] * len(df), dtype='float64') pytest.raises(ValueError, store.append, 'df', df) def test_append_with_strings(self): with ensure_clean_store(self.path) as store: with catch_warnings(record=True): simplefilter("ignore", FutureWarning) wp = tm.makePanel() wp2 = wp.rename( minor_axis={x: "%s_extra" % x for x in wp.minor_axis}) def check_col(key, name, size): assert getattr(store.get_storer(key) .table.description, name).itemsize == size store.append('s1', wp, min_itemsize=20) store.append('s1', wp2) expected = concat([wp, wp2], axis=2) expected = expected.reindex( minor_axis=sorted(expected.minor_axis)) assert_panel_equal(store['s1'], expected) check_col('s1', 'minor_axis', 20) # test dict format store.append('s2', wp, min_itemsize={'minor_axis': 20}) store.append('s2', wp2) expected = concat([wp, wp2], axis=2) expected = expected.reindex( minor_axis=sorted(expected.minor_axis)) assert_panel_equal(store['s2'], expected) check_col('s2', 'minor_axis', 20) # apply the wrong field (similar to #1) store.append('s3', wp, min_itemsize={'major_axis': 20}) pytest.raises(ValueError, store.append, 's3', wp2) # test truncation of bigger strings store.append('s4', wp) pytest.raises(ValueError, store.append, 's4', wp2) # avoid truncation on elements df = DataFrame([[123, 'asdqwerty'], [345, 'dggnhebbsdfbdfb']]) store.append('df_big', df) tm.assert_frame_equal(store.select('df_big'), df) check_col('df_big', 'values_block_1', 15) # appending smaller string ok df2 = DataFrame([[124, 'asdqy'], [346, 'dggnhefbdfb']]) store.append('df_big', df2) expected = concat([df, df2]) tm.assert_frame_equal(store.select('df_big'), expected) check_col('df_big', 'values_block_1', 15) # avoid truncation on elements df = DataFrame([[123, 'asdqwerty'], [345, 'dggnhebbsdfbdfb']]) store.append('df_big2', df, min_itemsize={'values': 50}) tm.assert_frame_equal(store.select('df_big2'), df) check_col('df_big2', 'values_block_1', 50) # bigger string on next append store.append('df_new', df) df_new = DataFrame( [[124, 'abcdefqhij'], [346, 'abcdefghijklmnopqrtsuvwxyz']]) pytest.raises(ValueError, store.append, 'df_new', df_new) # min_itemsize on Series index (GH 11412) df = tm.makeMixedDataFrame().set_index('C') store.append('ss', df['B'], min_itemsize={'index': 4}) tm.assert_series_equal(store.select('ss'), df['B']) # same as above, with data_columns=True store.append('ss2', df['B'], data_columns=True, min_itemsize={'index': 4}) tm.assert_series_equal(store.select('ss2'), df['B']) # min_itemsize in index without appending (GH 10381) store.put('ss3', df, format='table', min_itemsize={'index': 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C='longer').set_index('C') store.append('ss3', df2) tm.assert_frame_equal(store.select('ss3'), pd.concat([df, df2])) # same as above, with a Series store.put('ss4', df['B'], format='table', min_itemsize={'index': 6}) store.append('ss4', df2['B']) tm.assert_series_equal(store.select('ss4'), pd.concat([df['B'], df2['B']])) # with nans _maybe_remove(store, 'df') df = tm.makeTimeDataFrame() df['string'] = 'foo' df.loc[1:4, 'string'] = np.nan df['string2'] = 'bar' df.loc[4:8, 'string2'] = np.nan df['string3'] = 'bah' df.loc[1:, 'string3'] = np.nan store.append('df', df) result = store.select('df') tm.assert_frame_equal(result, df) with ensure_clean_store(self.path) as store: def check_col(key, name, size): assert getattr(store.get_storer(key) .table.description, name).itemsize, size df = DataFrame(dict(A='foo', B='bar'), index=range(10)) # a min_itemsize that creates a data_column _maybe_remove(store, 'df') store.append('df', df, min_itemsize={'A': 200}) check_col('df', 'A', 200) assert store.get_storer('df').data_columns == ['A'] # a min_itemsize that creates a data_column2 _maybe_remove(store, 'df') store.append('df', df, data_columns=['B'], min_itemsize={'A': 200}) check_col('df', 'A', 200) assert store.get_storer('df').data_columns == ['B', 'A'] # a min_itemsize that creates a data_column2 _maybe_remove(store, 'df') store.append('df', df, data_columns=[ 'B'], min_itemsize={'values': 200}) check_col('df', 'B', 200) check_col('df', 'values_block_0', 200) assert store.get_storer('df').data_columns == ['B'] # infer the .typ on subsequent appends _maybe_remove(store, 'df') store.append('df', df[:5], min_itemsize=200) store.append('df', df[5:], min_itemsize=200) tm.assert_frame_equal(store['df'], df) # invalid min_itemsize keys df = DataFrame(['foo', 'foo', 'foo', 'barh', 'barh', 'barh'], columns=['A']) _maybe_remove(store, 'df') pytest.raises(ValueError, store.append, 'df', df, min_itemsize={'foo': 20, 'foobar': 20}) def test_append_with_empty_string(self): with ensure_clean_store(self.path) as store: # with all empty strings (GH 12242) df = DataFrame({'x': ['a', 'b', 'c', 'd', 'e', 'f', '']}) store.append('df', df[:-1], min_itemsize={'x': 1}) store.append('df', df[-1:], min_itemsize={'x': 1}) tm.assert_frame_equal(store.select('df'), df) def test_to_hdf_with_min_itemsize(self): with ensure_clean_path(self.path) as path: # min_itemsize in index with to_hdf (GH 10381) df = tm.makeMixedDataFrame().set_index('C') df.to_hdf(path, 'ss3', format='table', min_itemsize={'index': 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C='longer').set_index('C') df2.to_hdf(path, 'ss3', append=True, format='table') tm.assert_frame_equal(pd.read_hdf(path, 'ss3'), pd.concat([df, df2])) # same as above, with a Series df['B'].to_hdf(path, 'ss4', format='table', min_itemsize={'index': 6}) df2['B'].to_hdf(path, 'ss4', append=True, format='table') tm.assert_series_equal(pd.read_hdf(path, 'ss4'), pd.concat([df['B'], df2['B']])) @pytest.mark.parametrize("format", ['fixed', 'table']) def test_to_hdf_errors(self, format): data = ['\ud800foo'] ser = pd.Series(data, index=pd.Index(data)) with ensure_clean_path(self.path) as path: # GH 20835 ser.to_hdf(path, 'table', format=format, errors='surrogatepass') result = pd.read_hdf(path, 'table', errors='surrogatepass') tm.assert_series_equal(result, ser) def test_append_with_data_columns(self): with ensure_clean_store(self.path) as store: df = tm.makeTimeDataFrame() df.iloc[0, df.columns.get_loc('B')] = 1. _maybe_remove(store, 'df') store.append('df', df[:2], data_columns=['B']) store.append('df', df[2:]) tm.assert_frame_equal(store['df'], df) # check that we have indices created assert(store._handle.root.df.table.cols.index.is_indexed is True) assert(store._handle.root.df.table.cols.B.is_indexed is True) # data column searching result = store.select('df', 'B>0') expected = df[df.B > 0] tm.assert_frame_equal(result, expected) # data column searching (with an indexable and a data_columns) result = store.select( 'df', 'B>0 and index>df.index[3]') df_new = df.reindex(index=df.index[4:]) expected = df_new[df_new.B > 0] tm.assert_frame_equal(result, expected) # data column selection with a string data_column df_new = df.copy() df_new['string'] = 'foo' df_new.loc[1:4, 'string'] = np.nan df_new.loc[5:6, 'string'] = 'bar' _maybe_remove(store, 'df') store.append('df', df_new, data_columns=['string']) result = store.select('df', "string='foo'") expected = df_new[df_new.string == 'foo'] tm.assert_frame_equal(result, expected) # using min_itemsize and a data column def check_col(key, name, size): assert getattr(store.get_storer(key) .table.description, name).itemsize == size with ensure_clean_store(self.path) as store: _maybe_remove(store, 'df') store.append('df', df_new, data_columns=['string'], min_itemsize={'string': 30}) check_col('df', 'string', 30) _maybe_remove(store, 'df') store.append( 'df', df_new, data_columns=['string'], min_itemsize=30) check_col('df', 'string', 30) _maybe_remove(store, 'df') store.append('df', df_new, data_columns=['string'], min_itemsize={'values': 30}) check_col('df', 'string', 30) with ensure_clean_store(self.path) as store: df_new['string2'] = 'foobarbah' df_new['string_block1'] = 'foobarbah1' df_new['string_block2'] = 'foobarbah2' _maybe_remove(store, 'df') store.append('df', df_new, data_columns=['string', 'string2'], min_itemsize={'string': 30, 'string2': 40, 'values': 50}) check_col('df', 'string', 30) check_col('df', 'string2', 40) check_col('df', 'values_block_1', 50) with ensure_clean_store(self.path) as store: # multiple data columns df_new = df.copy() df_new.iloc[0, df_new.columns.get_loc('A')] = 1. df_new.iloc[0, df_new.columns.get_loc('B')] = -1. df_new['string'] = 'foo' sl = df_new.columns.get_loc('string') df_new.iloc[1:4, sl] = np.nan df_new.iloc[5:6, sl] = 'bar' df_new['string2'] = 'foo' sl = df_new.columns.get_loc('string2') df_new.iloc[2:5, sl] = np.nan df_new.iloc[7:8, sl] = 'bar' _maybe_remove(store, 'df') store.append( 'df', df_new, data_columns=['A', 'B', 'string', 'string2']) result = store.select('df', "string='foo' and string2='foo'" " and A>0 and B<0") expected = df_new[(df_new.string == 'foo') & ( df_new.string2 == 'foo') & (df_new.A > 0) & (df_new.B < 0)] tm.assert_frame_equal(result, expected, check_index_type=False) # yield an empty frame result = store.select('df', "string='foo' and string2='cool'") expected = df_new[(df_new.string == 'foo') & ( df_new.string2 == 'cool')] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(self.path) as store: # doc example df_dc = df.copy() df_dc['string'] = 'foo' df_dc.loc[4:6, 'string'] = np.nan df_dc.loc[7:9, 'string'] = 'bar' df_dc['string2'] = 'cool' df_dc['datetime'] = Timestamp('20010102') df_dc = df_dc._convert(datetime=True) df_dc.loc[3:5, ['A', 'B', 'datetime']] = np.nan _maybe_remove(store, 'df_dc') store.append('df_dc', df_dc, data_columns=['B', 'C', 'string', 'string2', 'datetime']) result = store.select('df_dc', 'B>0') expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected, check_index_type=False) result = store.select( 'df_dc', ['B > 0', 'C > 0', 'string == foo']) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & ( df_dc.string == 'foo')] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(self.path) as store: # doc example part 2 np.random.seed(1234) index = date_range('1/1/2000', periods=8) df_dc = DataFrame(np.random.randn(8, 3), index=index, columns=['A', 'B', 'C']) df_dc['string'] = 'foo' df_dc.loc[4:6, 'string'] = np.nan df_dc.loc[7:9, 'string'] = 'bar' df_dc.loc[:, ['B', 'C']] = df_dc.loc[:, ['B', 'C']].abs() df_dc['string2'] = 'cool' # on-disk operations store.append('df_dc', df_dc, data_columns=[ 'B', 'C', 'string', 'string2']) result = store.select('df_dc', 'B>0') expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected) result = store.select( 'df_dc', ['B > 0', 'C > 0', 'string == "foo"']) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == 'foo')] tm.assert_frame_equal(result, expected) with ensure_clean_store(self.path) as store: with catch_warnings(record=True): # panel # GH5717 not handling data_columns np.random.seed(1234) p = tm.makePanel() store.append('p1', p) tm.assert_panel_equal(store.select('p1'), p) store.append('p2', p, data_columns=True) tm.assert_panel_equal(store.select('p2'), p) result = store.select('p2', where='ItemA>0') expected = p.to_frame() expected = expected[expected['ItemA'] > 0] tm.assert_frame_equal(result.to_frame(), expected) result = store.select( 'p2', where='ItemA>0 & minor_axis=["A","B"]') expected = p.to_frame() expected = expected[expected['ItemA'] > 0] expected = expected[expected.reset_index( level=['major']).index.isin(['A', 'B'])] tm.assert_frame_equal(result.to_frame(), expected) def test_create_table_index(self): with ensure_clean_store(self.path) as store: with catch_warnings(record=True): def col(t, column): return getattr(store.get_storer(t).table.cols, column) # index=False wp = tm.makePanel() store.append('p5', wp, index=False) store.create_table_index('p5', columns=['major_axis']) assert(col('p5', 'major_axis').is_indexed is True) assert(col('p5', 'minor_axis').is_indexed is False) # index=True store.append('p5i', wp, index=True) assert(col('p5i', 'major_axis').is_indexed is True) assert(col('p5i', 'minor_axis').is_indexed is True) # default optlevels store.get_storer('p5').create_index() assert(col('p5', 'major_axis').index.optlevel == 6) assert(col('p5', 'minor_axis').index.kind == 'medium') # let's change the indexing scheme store.create_table_index('p5') assert(col('p5', 'major_axis').index.optlevel == 6) assert(col('p5', 'minor_axis').index.kind == 'medium') store.create_table_index('p5', optlevel=9) assert(col('p5', 'major_axis').index.optlevel == 9) assert(col('p5', 'minor_axis').index.kind == 'medium') store.create_table_index('p5', kind='full') assert(col('p5', 'major_axis').index.optlevel == 9) assert(col('p5', 'minor_axis').index.kind == 'full') store.create_table_index('p5', optlevel=1, kind='light') assert(col('p5', 'major_axis').index.optlevel == 1) assert(col('p5', 'minor_axis').index.kind == 'light') # data columns df = tm.makeTimeDataFrame() df['string'] = 'foo' df['string2'] = 'bar' store.append('f', df, data_columns=['string', 'string2']) assert(col('f', 'index').is_indexed is True) assert(col('f', 'string').is_indexed is True) assert(col('f', 'string2').is_indexed is True) # specify index=columns store.append( 'f2', df, index=['string'], data_columns=['string', 'string2']) assert(col('f2', 'index').is_indexed is False) assert(col('f2', 'string').is_indexed is True) assert(col('f2', 'string2').is_indexed is False) # try to index a non-table _maybe_remove(store, 'f2') store.put('f2', df) pytest.raises(TypeError, store.create_table_index, 'f2') def test_append_diff_item_order(self): with catch_warnings(record=True): wp = tm.makePanel() wp1 = wp.iloc[:, :10, :] wp2 = wp.iloc[wp.items.get_indexer(['ItemC', 'ItemB', 'ItemA']), 10:, :] with ensure_clean_store(self.path) as store: store.put('panel', wp1, format='table') pytest.raises(ValueError, store.put, 'panel', wp2, append=True) def test_append_hierarchical(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['foo', 'bar']) df = DataFrame(np.random.randn(10, 3), index=index, columns=['A', 'B', 'C']) with ensure_clean_store(self.path) as store: store.append('mi', df) result = store.select('mi') tm.assert_frame_equal(result, df) # GH 3748 result = store.select('mi', columns=['A', 'B']) expected = df.reindex(columns=['A', 'B']) tm.assert_frame_equal(result, expected) with ensure_clean_path('test.hdf') as path: df.to_hdf(path, 'df', format='table') result = read_hdf(path, 'df', columns=['A', 'B']) expected = df.reindex(columns=['A', 'B']) tm.assert_frame_equal(result, expected) def test_column_multiindex(self): # GH 4710 # recreate multi-indexes properly index = MultiIndex.from_tuples([('A', 'a'), ('A', 'b'), ('B', 'a'), ('B', 'b')], names=['first', 'second']) df = DataFrame(np.arange(12).reshape(3, 4), columns=index) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(self.path) as store: store.put('df', df) tm.assert_frame_equal(store['df'], expected, check_index_type=True, check_column_type=True) store.put('df1', df, format='table') tm.assert_frame_equal(store['df1'], expected, check_index_type=True, check_column_type=True) pytest.raises(ValueError, store.put, 'df2', df, format='table', data_columns=['A']) pytest.raises(ValueError, store.put, 'df3', df, format='table', data_columns=True) # appending multi-column on existing table (see GH 6167) with ensure_clean_store(self.path) as store: store.append('df2', df) store.append('df2', df) tm.assert_frame_equal(store['df2'], concat((df, df))) # non_index_axes name df = DataFrame(np.arange(12).reshape(3, 4), columns=Index(list('ABCD'), name='foo')) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(self.path) as store: store.put('df1', df, format='table') tm.assert_frame_equal(store['df1'], expected, check_index_type=True, check_column_type=True) def test_store_multiindex(self): # validate multi-index names # GH 5527 with ensure_clean_store(self.path) as store: def make_index(names=None): return MultiIndex.from_tuples([(datetime.datetime(2013, 12, d), s, t) for d in range(1, 3) for s in range(2) for t in range(3)], names=names) # no names _maybe_remove(store, 'df') df = DataFrame(np.zeros((12, 2)), columns=[ 'a', 'b'], index=make_index()) store.append('df', df) tm.assert_frame_equal(store.select('df'), df) # partial names _maybe_remove(store, 'df') df = DataFrame(np.zeros((12, 2)), columns=[ 'a', 'b'], index=make_index(['date', None, None])) store.append('df', df) tm.assert_frame_equal(store.select('df'), df) # series _maybe_remove(store, 's') s = Series(np.zeros(12), index=make_index(['date', None, None])) store.append('s', s) xp = Series(np.zeros(12), index=make_index( ['date', 'level_1', 'level_2'])) tm.assert_series_equal(store.select('s'), xp) # dup with column _maybe_remove(store, 'df') df = DataFrame(np.zeros((12, 2)), columns=[ 'a', 'b'], index=make_index(['date', 'a', 't'])) pytest.raises(ValueError, store.append, 'df', df) # dup within level _maybe_remove(store, 'df') df = DataFrame(np.zeros((12, 2)), columns=['a', 'b'], index=make_index(['date', 'date', 'date'])) pytest.raises(ValueError, store.append, 'df', df) # fully names _maybe_remove(store, 'df') df = DataFrame(np.zeros((12, 2)), columns=[ 'a', 'b'], index=make_index(['date', 's', 't'])) store.append('df', df) tm.assert_frame_equal(store.select('df'), df) def test_select_columns_in_where(self): # GH 6169 # recreate multi-indexes when columns is passed # in the `where` argument index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['foo_name', 'bar_name']) # With a DataFrame df = DataFrame(np.random.randn(10, 3), index=index, columns=['A', 'B', 'C']) with ensure_clean_store(self.path) as store: store.put('df', df, format='table') expected = df[['A']] tm.assert_frame_equal(store.select('df', columns=['A']), expected) tm.assert_frame_equal(store.select( 'df', where="columns=['A']"), expected) # With a Series s = Series(np.random.randn(10), index=index, name='A') with ensure_clean_store(self.path) as store: store.put('s', s, format='table') tm.assert_series_equal(store.select('s', where="columns=['A']"), s) def test_mi_data_columns(self): # GH 14435 idx = pd.MultiIndex.from_arrays([date_range('2000-01-01', periods=5), range(5)], names=['date', 'id']) df = pd.DataFrame({'a': [1.1, 1.2, 1.3, 1.4, 1.5]}, index=idx) with ensure_clean_store(self.path) as store: store.append('df', df, data_columns=True) actual = store.select('df', where='id == 1') expected = df.iloc[[1], :] tm.assert_frame_equal(actual, expected) def test_pass_spec_to_storer(self): df = tm.makeDataFrame() with ensure_clean_store(self.path) as store: store.put('df', df) pytest.raises(TypeError, store.select, 'df', columns=['A']) pytest.raises(TypeError, store.select, 'df', where=[('columns=A')]) def test_append_misc(self): with ensure_clean_store(self.path) as store: df = tm.makeDataFrame() store.append('df', df, chunksize=1) result = store.select('df') tm.assert_frame_equal(result, df) store.append('df1', df, expectedrows=10) result = store.select('df1') tm.assert_frame_equal(result, df) # more chunksize in append tests def check(obj, comparator): for c in [10, 200, 1000]: with ensure_clean_store(self.path, mode='w') as store: store.append('obj', obj, chunksize=c) result = store.select('obj') comparator(result, obj) df = tm.makeDataFrame() df['string'] = 'foo' df['float322'] = 1. df['float322'] = df['float322'].astype('float32') df['bool'] = df['float322'] > 0 df['time1'] = Timestamp('20130101') df['time2'] = Timestamp('20130102') check(df, tm.assert_frame_equal) with catch_warnings(record=True): p = tm.makePanel() check(p, assert_panel_equal) # empty frame, GH4273 with ensure_clean_store(self.path) as store: # 0 len df_empty = DataFrame(columns=list('ABC')) store.append('df', df_empty) pytest.raises(KeyError, store.select, 'df') # repeated append of 0/non-zero frames df = DataFrame(np.random.rand(10, 3), columns=list('ABC')) store.append('df', df) assert_frame_equal(store.select('df'), df) store.append('df', df_empty) assert_frame_equal(store.select('df'), df) # store df = DataFrame(columns=list('ABC')) store.put('df2', df) assert_frame_equal(store.select('df2'), df) with catch_warnings(record=True): # 0 len p_empty = Panel(items=list('ABC')) store.append('p', p_empty) pytest.raises(KeyError, store.select, 'p') # repeated append of 0/non-zero frames p = Panel(np.random.randn(3, 4, 5), items=list('ABC')) store.append('p', p) assert_panel_equal(store.select('p'), p) store.append('p', p_empty) assert_panel_equal(store.select('p'), p) # store store.put('p2', p_empty) assert_panel_equal(store.select('p2'), p_empty) def test_append_raise(self): with ensure_clean_store(self.path) as store: # test append with invalid input to get good error messages # list in column df = tm.makeDataFrame() df['invalid'] = [['a']] * len(df) assert df.dtypes['invalid'] == np.object_ pytest.raises(TypeError, store.append, 'df', df) # multiple invalid columns df['invalid2'] = [['a']] * len(df) df['invalid3'] = [['a']] * len(df) pytest.raises(TypeError, store.append, 'df', df) # datetime with embedded nans as object df = tm.makeDataFrame() s = Series(datetime.datetime(2001, 1, 2), index=df.index) s = s.astype(object) s[0:5] = np.nan df['invalid'] = s assert df.dtypes['invalid'] == np.object_ pytest.raises(TypeError, store.append, 'df', df) # directly ndarray pytest.raises(TypeError, store.append, 'df', np.arange(10)) # series directly pytest.raises(TypeError, store.append, 'df', Series(np.arange(10))) # appending an incompatible table df = tm.makeDataFrame() store.append('df', df) df['foo'] = 'foo' pytest.raises(ValueError, store.append, 'df', df) def test_table_index_incompatible_dtypes(self): df1 = DataFrame({'a': [1, 2, 3]}) df2 = DataFrame({'a': [4, 5, 6]}, index=date_range('1/1/2000', periods=3)) with ensure_clean_store(self.path) as store: store.put('frame', df1, format='table') pytest.raises(TypeError, store.put, 'frame', df2, format='table', append=True) def test_table_values_dtypes_roundtrip(self): with ensure_clean_store(self.path) as store: df1 = DataFrame({'a': [1, 2, 3]}, dtype='f8') store.append('df_f8', df1) assert_series_equal(df1.dtypes, store['df_f8'].dtypes) df2 = DataFrame({'a': [1, 2, 3]}, dtype='i8') store.append('df_i8', df2) assert_series_equal(df2.dtypes, store['df_i8'].dtypes) # incompatible dtype pytest.raises(ValueError, store.append, 'df_i8', df1) # check creation/storage/retrieval of float32 (a bit hacky to # actually create them thought) df1 = DataFrame( np.array([[1], [2], [3]], dtype='f4'), columns=['A']) store.append('df_f4', df1) assert_series_equal(df1.dtypes, store['df_f4'].dtypes) assert df1.dtypes[0] == 'float32' # check with mixed dtypes df1 = DataFrame({c: Series(np.random.randint(5), dtype=c) for c in ['float32', 'float64', 'int32', 'int64', 'int16', 'int8']}) df1['string'] = 'foo' df1['float322'] = 1. df1['float322'] = df1['float322'].astype('float32') df1['bool'] = df1['float32'] > 0 df1['time1'] = Timestamp('20130101') df1['time2'] = Timestamp('20130102') store.append('df_mixed_dtypes1', df1) result = store.select('df_mixed_dtypes1').get_dtype_counts() expected = Series({'float32': 2, 'float64': 1, 'int32': 1, 'bool': 1, 'int16': 1, 'int8': 1, 'int64': 1, 'object': 1, 'datetime64[ns]': 2}) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) def test_table_mixed_dtypes(self): # frame df = tm.makeDataFrame() df['obj1'] = 'foo' df['obj2'] = 'bar' df['bool1'] = df['A'] > 0 df['bool2'] = df['B'] > 0 df['bool3'] = True df['int1'] = 1 df['int2'] = 2 df['timestamp1'] = Timestamp('20010102') df['timestamp2'] = Timestamp('20010103') df['datetime1'] = datetime.datetime(2001, 1, 2, 0, 0) df['datetime2'] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ['obj1']] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(self.path) as store: store.append('df1_mixed', df) tm.assert_frame_equal(store.select('df1_mixed'), df) with catch_warnings(record=True): # panel wp = tm.makePanel() wp['obj1'] = 'foo' wp['obj2'] = 'bar' wp['bool1'] = wp['ItemA'] > 0 wp['bool2'] = wp['ItemB'] > 0 wp['int1'] = 1 wp['int2'] = 2 wp = wp._consolidate() with catch_warnings(record=True): with ensure_clean_store(self.path) as store: store.append('p1_mixed', wp) assert_panel_equal(store.select('p1_mixed'), wp) def test_unimplemented_dtypes_table_columns(self): with ensure_clean_store(self.path) as store: dtypes = [('date', datetime.date(2001, 1, 2))] # py3 ok for unicode if not compat.PY3: dtypes.append(('unicode', u('\\u03c3'))) # currently not supported dtypes #### for n, f in dtypes: df = tm.makeDataFrame() df[n] = f pytest.raises( TypeError, store.append, 'df1_%s' % n, df) # frame df = tm.makeDataFrame() df['obj1'] = 'foo' df['obj2'] = 'bar' df['datetime1'] = datetime.date(2001, 1, 2) df = df._consolidate()._convert(datetime=True) with ensure_clean_store(self.path) as store: # this fails because we have a date in the object block...... pytest.raises(TypeError, store.append, 'df_unimplemented', df) @pytest.mark.skipif( LooseVersion(np.__version__) == LooseVersion('1.15.0'), reason=("Skipping pytables test when numpy version is " "exactly equal to 1.15.0: gh-22098")) def test_calendar_roundtrip_issue(self): # 8591 # doc example from tseries holiday section weekmask_egypt = 'Sun Mon Tue Wed Thu' holidays = ['2012-05-01', datetime.datetime(2013, 5, 1), np.datetime64('2014-05-01')] bday_egypt = pd.offsets.CustomBusinessDay( holidays=holidays, weekmask=weekmask_egypt) dt = datetime.datetime(2013, 4, 30) dts = date_range(dt, periods=5, freq=bday_egypt) s = (Series(dts.weekday, dts).map( Series('Mon Tue Wed Thu Fri Sat Sun'.split()))) with ensure_clean_store(self.path) as store: store.put('fixed', s) result = store.select('fixed') assert_series_equal(result, s) store.append('table', s) result = store.select('table') assert_series_equal(result, s) def test_roundtrip_tz_aware_index(self): # GH 17618 time = pd.Timestamp('2000-01-01 01:00:00', tz='US/Eastern') df = pd.DataFrame(data=[0], index=[time]) with ensure_clean_store(self.path) as store: store.put('frame', df, format='fixed') recons = store['frame'] tm.assert_frame_equal(recons, df) assert recons.index[0].value == 946706400000000000 def test_append_with_timedelta(self): # GH 3577 # append timedelta df = DataFrame(dict(A=Timestamp('20130101'), B=[Timestamp( '20130101') + timedelta(days=i, seconds=10) for i in range(10)])) df['C'] = df['A'] - df['B'] df.loc[3:5, 'C'] = np.nan with ensure_clean_store(self.path) as store: # table _maybe_remove(store, 'df') store.append('df', df, data_columns=True) result = store.select('df') assert_frame_equal(result, df) result = store.select('df', where="C<100000") assert_frame_equal(result, df) result = store.select('df', where="C<pd.Timedelta('-3D')") assert_frame_equal(result, df.iloc[3:]) result = store.select('df', "C<'-3D'") assert_frame_equal(result, df.iloc[3:]) # a bit hacky here as we don't really deal with the NaT properly result = store.select('df', "C<'-500000s'") result = result.dropna(subset=['C']) assert_frame_equal(result, df.iloc[6:]) result = store.select('df', "C<'-3.5D'") result = result.iloc[1:] assert_frame_equal(result, df.iloc[4:]) # fixed _maybe_remove(store, 'df2') store.put('df2', df) result = store.select('df2') assert_frame_equal(result, df) def test_remove(self): with ensure_clean_store(self.path) as store: ts = tm.makeTimeSeries() df = tm.makeDataFrame() store['a'] = ts store['b'] = df _maybe_remove(store, 'a') assert len(store) == 1 tm.assert_frame_equal(df, store['b']) _maybe_remove(store, 'b') assert len(store) == 0 # nonexistence pytest.raises(KeyError, store.remove, 'a_nonexistent_store') # pathing store['a'] = ts store['b/foo'] = df _maybe_remove(store, 'foo') _maybe_remove(store, 'b/foo') assert len(store) == 1 store['a'] = ts store['b/foo'] = df _maybe_remove(store, 'b') assert len(store) == 1 # __delitem__ store['a'] = ts store['b'] = df del store['a'] del store['b'] assert len(store) == 0 def test_remove_where(self): with ensure_clean_store(self.path) as store: with catch_warnings(record=True): # non-existance crit1 = 'index>foo' pytest.raises(KeyError, store.remove, 'a', [crit1]) # try to remove non-table (with crit) # non-table ok (where = None) wp = tm.makePanel(30) store.put('wp', wp, format='table') store.remove('wp', ["minor_axis=['A', 'D']"]) rs = store.select('wp') expected = wp.reindex(minor_axis=['B', 'C']) assert_panel_equal(rs, expected) # empty where _maybe_remove(store, 'wp') store.put('wp', wp, format='table') # deleted number (entire table) n = store.remove('wp', []) assert n == 120 # non - empty where _maybe_remove(store, 'wp') store.put('wp', wp, format='table') pytest.raises(ValueError, store.remove, 'wp', ['foo']) def test_remove_startstop(self): # GH #4835 and #6177 with ensure_clean_store(self.path) as store: with catch_warnings(record=True): wp = tm.makePanel(30) # start _maybe_remove(store, 'wp1') store.put('wp1', wp, format='t') n = store.remove('wp1', start=32) assert n == 120 - 32 result = store.select('wp1') expected = wp.reindex(major_axis=wp.major_axis[:32 // 4]) assert_panel_equal(result, expected) _maybe_remove(store, 'wp2') store.put('wp2', wp, format='t') n = store.remove('wp2', start=-32) assert n == 32 result = store.select('wp2') expected = wp.reindex(major_axis=wp.major_axis[:-32 // 4]) assert_panel_equal(result, expected) # stop _maybe_remove(store, 'wp3') store.put('wp3', wp, format='t') n = store.remove('wp3', stop=32) assert n == 32 result = store.select('wp3') expected = wp.reindex(major_axis=wp.major_axis[32 // 4:]) assert_panel_equal(result, expected) _maybe_remove(store, 'wp4') store.put('wp4', wp, format='t') n = store.remove('wp4', stop=-32) assert n == 120 - 32 result = store.select('wp4') expected = wp.reindex(major_axis=wp.major_axis[-32 // 4:]) assert_panel_equal(result, expected) # start n stop _maybe_remove(store, 'wp5') store.put('wp5', wp, format='t') n = store.remove('wp5', start=16, stop=-16) assert n == 120 - 32 result = store.select('wp5') expected = wp.reindex( major_axis=(wp.major_axis[:16 // 4] .union(wp.major_axis[-16 // 4:]))) assert_panel_equal(result, expected) _maybe_remove(store, 'wp6') store.put('wp6', wp, format='t') n = store.remove('wp6', start=16, stop=16) assert n == 0 result = store.select('wp6') expected = wp.reindex(major_axis=wp.major_axis) assert_panel_equal(result, expected) # with where _maybe_remove(store, 'wp7') # TODO: unused? date = wp.major_axis.take(np.arange(0, 30, 3)) # noqa crit = 'major_axis=date' store.put('wp7', wp, format='t') n = store.remove('wp7', where=[crit], stop=80) assert n == 28 result = store.select('wp7') expected = wp.reindex(major_axis=wp.major_axis.difference( wp.major_axis[np.arange(0, 20, 3)])) assert_panel_equal(result, expected) def test_remove_crit(self): with ensure_clean_store(self.path) as store: with catch_warnings(record=True): wp = tm.makePanel(30) # group row removal _maybe_remove(store, 'wp3') date4 = wp.major_axis.take([0, 1, 2, 4, 5, 6, 8, 9, 10]) crit4 = 'major_axis=date4' store.put('wp3', wp, format='t') n = store.remove('wp3', where=[crit4]) assert n == 36 result = store.select('wp3') expected = wp.reindex( major_axis=wp.major_axis.difference(date4)) assert_panel_equal(result, expected) # upper half _maybe_remove(store, 'wp') store.put('wp', wp, format='table') date = wp.major_axis[len(wp.major_axis) // 2] crit1 = 'major_axis>date' crit2 = "minor_axis=['A', 'D']" n = store.remove('wp', where=[crit1]) assert n == 56 n = store.remove('wp', where=[crit2]) assert n == 32 result = store['wp'] expected = wp.truncate(after=date).reindex(minor=['B', 'C']) assert_panel_equal(result, expected) # individual row elements _maybe_remove(store, 'wp2') store.put('wp2', wp, format='table') date1 = wp.major_axis[1:3] crit1 = 'major_axis=date1' store.remove('wp2', where=[crit1]) result = store.select('wp2') expected = wp.reindex( major_axis=wp.major_axis.difference(date1)) assert_panel_equal(result, expected) date2 = wp.major_axis[5] crit2 = 'major_axis=date2' store.remove('wp2', where=[crit2]) result = store['wp2'] expected = wp.reindex( major_axis=(wp.major_axis .difference(date1) .difference(Index([date2])) )) assert_panel_equal(result, expected) date3 = [wp.major_axis[7], wp.major_axis[9]] crit3 = 'major_axis=date3' store.remove('wp2', where=[crit3]) result = store['wp2'] expected = wp.reindex(major_axis=wp.major_axis .difference(date1) .difference(Index([date2])) .difference(Index(date3))) assert_panel_equal(result, expected) # corners _maybe_remove(store, 'wp4') store.put('wp4', wp, format='table') n = store.remove( 'wp4', where="major_axis>wp.major_axis[-1]") result = store.select('wp4') assert_panel_equal(result, wp) def test_invalid_terms(self): with ensure_clean_store(self.path) as store: with catch_warnings(record=True): df = tm.makeTimeDataFrame() df['string'] = 'foo' df.loc[0:4, 'string'] = 'bar' wp = tm.makePanel() store.put('df', df, format='table') store.put('wp', wp, format='table') # some invalid terms pytest.raises(ValueError, store.select, 'wp', "minor=['A', 'B']") pytest.raises(ValueError, store.select, 'wp', ["index=['20121114']"]) pytest.raises(ValueError, store.select, 'wp', [ "index=['20121114', '20121114']"]) pytest.raises(TypeError, Term) # more invalid pytest.raises( ValueError, store.select, 'df', 'df.index[3]') pytest.raises(SyntaxError, store.select, 'df', 'index>') pytest.raises( ValueError, store.select, 'wp', "major_axis<'20000108' & minor_axis['A', 'B']") # from the docs with ensure_clean_path(self.path) as path: dfq = DataFrame(np.random.randn(10, 4), columns=list( 'ABCD'), index=date_range('20130101', periods=10)) dfq.to_hdf(path, 'dfq', format='table', data_columns=True) # check ok read_hdf(path, 'dfq', where="index>Timestamp('20130104') & columns=['A', 'B']") read_hdf(path, 'dfq', where="A>0 or C>0") # catch the invalid reference with ensure_clean_path(self.path) as path: dfq = DataFrame(np.random.randn(10, 4), columns=list( 'ABCD'), index=date_range('20130101', periods=10)) dfq.to_hdf(path, 'dfq', format='table') pytest.raises(ValueError, read_hdf, path, 'dfq', where="A>0 or C>0") def test_terms(self): with ensure_clean_store(self.path) as store: with catch_warnings(record=True): simplefilter("ignore", FutureWarning) wp = tm.makePanel() wpneg = Panel.fromDict({-1: tm.makeDataFrame(), 0: tm.makeDataFrame(), 1: tm.makeDataFrame()}) store.put('wp', wp, format='table') store.put('wpneg', wpneg, format='table') # panel result = store.select( 'wp', "major_axis<'20000108' and minor_axis=['A', 'B']") expected = wp.truncate( after='20000108').reindex(minor=['A', 'B']) assert_panel_equal(result, expected) # with deprecation result = store.select( 'wp', where=("major_axis<'20000108' " "and minor_axis=['A', 'B']")) expected = wp.truncate( after='20000108').reindex(minor=['A', 'B']) tm.assert_panel_equal(result, expected) with catch_warnings(record=True): # valid terms terms = [('major_axis=20121114'), ('major_axis>20121114'), (("major_axis=['20121114', '20121114']"),), ('major_axis=datetime.datetime(2012, 11, 14)'), 'major_axis> 20121114', 'major_axis >20121114', 'major_axis > 20121114', (("minor_axis=['A', 'B']"),), (("minor_axis=['A', 'B']"),), ((("minor_axis==['A', 'B']"),),), (("items=['ItemA', 'ItemB']"),), ('items=ItemA'), ] for t in terms: store.select('wp', t) with tm.assert_raises_regex( TypeError, 'Only named functions are supported'): store.select( 'wp', 'major_axis == (lambda x: x)("20130101")') with catch_warnings(record=True): # check USub node parsing res = store.select('wpneg', 'items == -1') expected = Panel({-1: wpneg[-1]}) tm.assert_panel_equal(res, expected) with tm.assert_raises_regex(NotImplementedError, 'Unary addition ' 'not supported'): store.select('wpneg', 'items == +1') def test_term_compat(self): with ensure_clean_store(self.path) as store: with catch_warnings(record=True): wp = Panel(np.random.randn(2, 5, 4), items=['Item1', 'Item2'], major_axis=date_range('1/1/2000', periods=5), minor_axis=['A', 'B', 'C', 'D']) store.append('wp', wp) result = store.select( 'wp', where=("major_axis>20000102 " "and minor_axis=['A', 'B']")) expected = wp.loc[:, wp.major_axis > Timestamp('20000102'), ['A', 'B']] assert_panel_equal(result, expected) store.remove('wp', 'major_axis>20000103') result = store.select('wp') expected = wp.loc[:, wp.major_axis <= Timestamp('20000103'), :] assert_panel_equal(result, expected) with ensure_clean_store(self.path) as store: with catch_warnings(record=True): wp = Panel(np.random.randn(2, 5, 4), items=['Item1', 'Item2'], major_axis=date_range('1/1/2000', periods=5), minor_axis=['A', 'B', 'C', 'D']) store.append('wp', wp) # stringified datetimes result = store.select( 'wp', 'major_axis>datetime.datetime(2000, 1, 2)') expected = wp.loc[:, wp.major_axis > Timestamp('20000102')] assert_panel_equal(result, expected) result = store.select( 'wp', 'major_axis>datetime.datetime(2000, 1, 2)') expected = wp.loc[:, wp.major_axis > Timestamp('20000102')] assert_panel_equal(result, expected) result = store.select( 'wp', "major_axis=[datetime.datetime(2000, 1, 2, 0, 0), " "datetime.datetime(2000, 1, 3, 0, 0)]") expected = wp.loc[:, [Timestamp('20000102'), Timestamp('20000103')]] assert_panel_equal(result, expected) result = store.select( 'wp', "minor_axis=['A', 'B']") expected = wp.loc[:, :, ['A', 'B']] assert_panel_equal(result, expected) def test_same_name_scoping(self): with ensure_clean_store(self.path) as store: import pandas as pd df = DataFrame(np.random.randn(20, 2), index=pd.date_range('20130101', periods=20)) store.put('df', df, format='table') expected = df[df.index > pd.Timestamp('20130105')] import datetime # noqa result = store.select('df', 'index>datetime.datetime(2013,1,5)') assert_frame_equal(result, expected) from datetime import datetime # noqa # technically an error, but allow it result = store.select('df', 'index>datetime.datetime(2013,1,5)') assert_frame_equal(result, expected) result = store.select('df', 'index>datetime(2013,1,5)') assert_frame_equal(result, expected) def test_series(self): s = tm.makeStringSeries() self._check_roundtrip(s, tm.assert_series_equal) ts = tm.makeTimeSeries() self._check_roundtrip(ts, tm.assert_series_equal) ts2 = Series(ts.index, Index(ts.index, dtype=object)) self._check_roundtrip(ts2, tm.assert_series_equal) ts3 = Series(ts.values, Index(np.asarray(ts.index, dtype=object), dtype=object)) self._check_roundtrip(ts3, tm.assert_series_equal, check_index_type=False) def test_sparse_series(self): s = tm.makeStringSeries() s.iloc[3:5] = np.nan ss = s.to_sparse() self._check_roundtrip(ss, tm.assert_series_equal, check_series_type=True) ss2 = s.to_sparse(kind='integer') self._check_roundtrip(ss2, tm.assert_series_equal, check_series_type=True) ss3 = s.to_sparse(fill_value=0) self._check_roundtrip(ss3, tm.assert_series_equal, check_series_type=True) def test_sparse_frame(self): s = tm.makeDataFrame() s.iloc[3:5, 1:3] = np.nan s.iloc[8:10, -2] = np.nan ss = s.to_sparse() self._check_double_roundtrip(ss, tm.assert_frame_equal, check_frame_type=True) ss2 = s.to_sparse(kind='integer') self._check_double_roundtrip(ss2, tm.assert_frame_equal, check_frame_type=True) ss3 = s.to_sparse(fill_value=0) self._check_double_roundtrip(ss3, tm.assert_frame_equal, check_frame_type=True) def test_float_index(self): # GH #454 index = np.random.randn(10) s = Series(np.random.randn(10), index=index) self._check_roundtrip(s, tm.assert_series_equal) def test_tuple_index(self): # GH #492 col = np.arange(10) idx = [(0., 1.), (2., 3.), (4., 5.)] data = np.random.randn(30).reshape((3, 10)) DF = DataFrame(data, index=idx, columns=col) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) self._check_roundtrip(DF, tm.assert_frame_equal) @pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning") def test_index_types(self): with catch_warnings(record=True): values = np.random.randn(2) func = lambda l, r: tm.assert_series_equal(l, r, check_dtype=True, check_index_type=True, check_series_type=True) with catch_warnings(record=True): ser = Series(values, [0, 'y']) self._check_roundtrip(ser, func) with catch_warnings(record=True): ser = Series(values, [datetime.datetime.today(), 0]) self._check_roundtrip(ser, func) with catch_warnings(record=True): ser = Series(values, ['y', 0]) self._check_roundtrip(ser, func) with catch_warnings(record=True): ser = Series(values, [datetime.date.today(), 'a']) self._check_roundtrip(ser, func) with catch_warnings(record=True): ser = Series(values, [0, 'y']) self._check_roundtrip(ser, func) ser = Series(values, [datetime.datetime.today(), 0]) self._check_roundtrip(ser, func) ser = Series(values, ['y', 0]) self._check_roundtrip(ser, func) ser = Series(values, [datetime.date.today(), 'a']) self._check_roundtrip(ser, func) ser = Series(values, [1.23, 'b']) self._check_roundtrip(ser, func) ser = Series(values, [1, 1.53]) self._check_roundtrip(ser, func) ser = Series(values, [1, 5]) self._check_roundtrip(ser, func) ser = Series(values, [datetime.datetime( 2012, 1, 1), datetime.datetime(2012, 1, 2)]) self._check_roundtrip(ser, func) def test_timeseries_preepoch(self): dr = bdate_range('1/1/1940', '1/1/1960') ts = Series(np.random.randn(len(dr)), index=dr) try: self._check_roundtrip(ts, tm.assert_series_equal) except OverflowError: pytest.skip('known failer on some windows platforms') @pytest.mark.parametrize("compression", [ False, pytest.param(True, marks=td.skip_if_windows_python_3) ]) def test_frame(self, compression): df = tm.makeDataFrame() # put in some random NAs df.values[0, 0] = np.nan df.values[5, 3] = np.nan self._check_roundtrip_table(df, tm.assert_frame_equal, compression=compression) self._check_roundtrip(df, tm.assert_frame_equal, compression=compression) tdf = tm.makeTimeDataFrame() self._check_roundtrip(tdf, tm.assert_frame_equal, compression=compression) with ensure_clean_store(self.path) as store: # not consolidated df['foo'] = np.random.randn(len(df)) store['df'] = df recons = store['df'] assert recons._data.is_consolidated() # empty self._check_roundtrip(df[:0], tm.assert_frame_equal) def test_empty_series_frame(self): s0 = Series() s1 = Series(name='myseries') df0 = DataFrame() df1 = DataFrame(index=['a', 'b', 'c']) df2 = DataFrame(columns=['d', 'e', 'f']) self._check_roundtrip(s0, tm.assert_series_equal) self._check_roundtrip(s1, tm.assert_series_equal) self._check_roundtrip(df0, tm.assert_frame_equal) self._check_roundtrip(df1, tm.assert_frame_equal) self._check_roundtrip(df2, tm.assert_frame_equal) def test_empty_series(self): for dtype in [np.int64, np.float64, np.object, 'm8[ns]', 'M8[ns]']: s = Series(dtype=dtype) self._check_roundtrip(s, tm.assert_series_equal) def test_can_serialize_dates(self): rng = [x.date() for x in bdate_range('1/1/2000', '1/30/2000')] frame = DataFrame(np.random.randn(len(rng), 4), index=rng) self._check_roundtrip(frame, tm.assert_frame_equal) def test_store_hierarchical(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['foo', 'bar']) frame = DataFrame(np.random.randn(10, 3), index=index, columns=['A', 'B', 'C']) self._check_roundtrip(frame, tm.assert_frame_equal) self._check_roundtrip(frame.T, tm.assert_frame_equal) self._check_roundtrip(frame['A'], tm.assert_series_equal) # check that the names are stored with ensure_clean_store(self.path) as store: store['frame'] = frame recons = store['frame'] tm.assert_frame_equal(recons, frame) def test_store_index_name(self): df = tm.makeDataFrame() df.index.name = 'foo' with ensure_clean_store(self.path) as store: store['frame'] = df recons = store['frame'] tm.assert_frame_equal(recons, df) def test_store_index_name_with_tz(self): # GH 13884 df = pd.DataFrame({'A': [1, 2]}) df.index = pd.DatetimeIndex([1234567890123456787, 1234567890123456788]) df.index = df.index.tz_localize('UTC') df.index.name = 'foo' with ensure_clean_store(self.path) as store: store.put('frame', df, format='table') recons = store['frame'] tm.assert_frame_equal(recons, df) @pytest.mark.parametrize('table_format', ['table', 'fixed']) def test_store_index_name_numpy_str(self, table_format): # GH #13492 idx = pd.Index(pd.to_datetime([datetime.date(2000, 1, 1), datetime.date(2000, 1, 2)]), name=u('cols\u05d2')) idx1 = pd.Index(pd.to_datetime([datetime.date(2010, 1, 1), datetime.date(2010, 1, 2)]), name=u('rows\u05d0')) df = pd.DataFrame(np.arange(4).reshape(2, 2), columns=idx, index=idx1) # This used to fail, returning numpy strings instead of python strings. with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', format=table_format) df2 = read_hdf(path, 'df') assert_frame_equal(df, df2, check_names=True) assert type(df2.index.name) == text_type assert type(df2.columns.name) == text_type def test_store_series_name(self): df = tm.makeDataFrame() series = df['A'] with ensure_clean_store(self.path) as store: store['series'] = series recons = store['series'] tm.assert_series_equal(recons, series) @pytest.mark.parametrize("compression", [ False, pytest.param(True, marks=td.skip_if_windows_python_3) ]) def test_store_mixed(self, compression): def _make_one(): df = tm.makeDataFrame() df['obj1'] = 'foo' df['obj2'] = 'bar' df['bool1'] = df['A'] > 0 df['bool2'] = df['B'] > 0 df['int1'] = 1 df['int2'] = 2 return df._consolidate() df1 = _make_one() df2 = _make_one() self._check_roundtrip(df1, tm.assert_frame_equal) self._check_roundtrip(df2, tm.assert_frame_equal) with ensure_clean_store(self.path) as store: store['obj'] = df1 tm.assert_frame_equal(store['obj'], df1) store['obj'] = df2 tm.assert_frame_equal(store['obj'], df2) # check that can store Series of all of these types self._check_roundtrip(df1['obj1'], tm.assert_series_equal, compression=compression) self._check_roundtrip(df1['bool1'], tm.assert_series_equal, compression=compression) self._check_roundtrip(df1['int1'], tm.assert_series_equal, compression=compression) def test_wide(self): with catch_warnings(record=True): wp = tm.makePanel() self._check_roundtrip(wp, assert_panel_equal) @pytest.mark.filterwarnings( "ignore:\\nduplicate:pandas.io.pytables.DuplicateWarning" ) def test_select_with_dups(self): # single dtypes df = DataFrame(np.random.randn(10, 4), columns=['A', 'A', 'B', 'B']) df.index = date_range('20130101 9:30', periods=10, freq='T') with ensure_clean_store(self.path) as store: store.append('df', df) result = store.select('df') expected = df assert_frame_equal(result, expected, by_blocks=True) result = store.select('df', columns=df.columns) expected = df assert_frame_equal(result, expected, by_blocks=True) result = store.select('df', columns=['A']) expected = df.loc[:, ['A']] assert_frame_equal(result, expected) # dups across dtypes df = concat([DataFrame(np.random.randn(10, 4), columns=['A', 'A', 'B', 'B']), DataFrame(np.random.randint(0, 10, size=20) .reshape(10, 2), columns=['A', 'C'])], axis=1) df.index = date_range('20130101 9:30', periods=10, freq='T') with ensure_clean_store(self.path) as store: store.append('df', df) result = store.select('df') expected = df assert_frame_equal(result, expected, by_blocks=True) result = store.select('df', columns=df.columns) expected = df assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ['A']] result = store.select('df', columns=['A']) assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ['B', 'A']] result = store.select('df', columns=['B', 'A']) assert_frame_equal(result, expected, by_blocks=True) # duplicates on both index and columns with ensure_clean_store(self.path) as store: store.append('df', df) store.append('df', df) expected = df.loc[:, ['B', 'A']] expected = concat([expected, expected]) result = store.select('df', columns=['B', 'A']) assert_frame_equal(result, expected, by_blocks=True) @pytest.mark.filterwarnings( "ignore:\\nduplicate:pandas.io.pytables.DuplicateWarning" ) def test_wide_table_dups(self): with ensure_clean_store(self.path) as store: with catch_warnings(record=True): wp = tm.makePanel() store.put('panel', wp, format='table') store.put('panel', wp, format='table', append=True) recons = store['panel'] assert_panel_equal(recons, wp) def test_long(self): def _check(left, right): assert_panel_equal(left.to_panel(), right.to_panel()) with catch_warnings(record=True): wp = tm.makePanel() self._check_roundtrip(wp.to_frame(), _check) def test_overwrite_node(self): with ensure_clean_store(self.path) as store: store['a'] = tm.makeTimeDataFrame() ts = tm.makeTimeSeries() store['a'] = ts tm.assert_series_equal(store['a'], ts) def test_sparse_with_compression(self): # GH 2931 # make sparse dataframe arr = np.random.binomial(n=1, p=.01, size=(1000, 10)) df = DataFrame(arr).to_sparse(fill_value=0) # case 1: store uncompressed self._check_double_roundtrip(df, tm.assert_frame_equal, compression=False, check_frame_type=True) # case 2: store compressed (works) self._check_double_roundtrip(df, tm.assert_frame_equal, compression='zlib', check_frame_type=True) # set one series to be completely sparse df[0] = np.zeros(1000) # case 3: store df with completely sparse series uncompressed self._check_double_roundtrip(df, tm.assert_frame_equal, compression=False, check_frame_type=True) # case 4: try storing df with completely sparse series compressed # (fails) self._check_double_roundtrip(df, tm.assert_frame_equal, compression='zlib', check_frame_type=True) def test_select(self): with ensure_clean_store(self.path) as store: with catch_warnings(record=True): wp = tm.makePanel() # put/select ok _maybe_remove(store, 'wp') store.put('wp', wp, format='table') store.select('wp') # non-table ok (where = None) _maybe_remove(store, 'wp') store.put('wp2', wp) store.select('wp2') # selection on the non-indexable with a large number of columns wp = Panel(np.random.randn(100, 100, 100), items=['Item%03d' % i for i in range(100)], major_axis=date_range('1/1/2000', periods=100), minor_axis=['E%03d' % i for i in range(100)]) _maybe_remove(store, 'wp') store.append('wp', wp) items = ['Item%03d' % i for i in range(80)] result = store.select('wp', 'items=items') expected = wp.reindex(items=items) assert_panel_equal(expected, result) # selectin non-table with a where # pytest.raises(ValueError, store.select, # 'wp2', ('column', ['A', 'D'])) # select with columns= df = tm.makeTimeDataFrame() _maybe_remove(store, 'df') store.append('df', df) result = store.select('df', columns=['A', 'B']) expected = df.reindex(columns=['A', 'B']) tm.assert_frame_equal(expected, result) # equivalentsly result = store.select('df', [("columns=['A', 'B']")]) expected = df.reindex(columns=['A', 'B']) tm.assert_frame_equal(expected, result) # with a data column _maybe_remove(store, 'df') store.append('df', df, data_columns=['A']) result = store.select('df', ['A > 0'], columns=['A', 'B']) expected = df[df.A > 0].reindex(columns=['A', 'B']) tm.assert_frame_equal(expected, result) # all a data columns _maybe_remove(store, 'df') store.append('df', df, data_columns=True) result = store.select('df', ['A > 0'], columns=['A', 'B']) expected = df[df.A > 0].reindex(columns=['A', 'B']) tm.assert_frame_equal(expected, result) # with a data column, but different columns _maybe_remove(store, 'df') store.append('df', df, data_columns=['A']) result = store.select('df', ['A > 0'], columns=['C', 'D']) expected = df[df.A > 0].reindex(columns=['C', 'D']) tm.assert_frame_equal(expected, result) def test_select_dtypes(self): with ensure_clean_store(self.path) as store: # with a Timestamp data column (GH #2637) df = DataFrame(dict( ts=bdate_range('2012-01-01', periods=300), A=np.random.randn(300))) _maybe_remove(store, 'df') store.append('df', df, data_columns=['ts', 'A']) result = store.select('df', "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp('2012-02-01')] tm.assert_frame_equal(expected, result) # bool columns (GH #2849) df = DataFrame(np.random.randn(5, 2), columns=['A', 'B']) df['object'] = 'foo' df.loc[4:5, 'object'] = 'bar' df['boolv'] = df['A'] > 0 _maybe_remove(store, 'df') store.append('df', df, data_columns=True) expected = (df[df.boolv == True] # noqa .reindex(columns=['A', 'boolv'])) for v in [True, 'true', 1]: result = store.select('df', 'boolv == %s' % str(v), columns=['A', 'boolv']) tm.assert_frame_equal(expected, result) expected = (df[df.boolv == False] # noqa .reindex(columns=['A', 'boolv'])) for v in [False, 'false', 0]: result = store.select( 'df', 'boolv == %s' % str(v), columns=['A', 'boolv']) tm.assert_frame_equal(expected, result) # integer index df = DataFrame(dict(A=np.random.rand(20), B=np.random.rand(20))) _maybe_remove(store, 'df_int') store.append('df_int', df) result = store.select( 'df_int', "index<10 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=['A']) tm.assert_frame_equal(expected, result) # float index df = DataFrame(dict(A=np.random.rand( 20), B=np.random.rand(20), index=np.arange(20, dtype='f8'))) _maybe_remove(store, 'df_float') store.append('df_float', df) result = store.select( 'df_float', "index<10.0 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=['A']) tm.assert_frame_equal(expected, result) with ensure_clean_store(self.path) as store: # floats w/o NaN df = DataFrame( dict(cols=range(11), values=range(11)), dtype='float64') df['cols'] = (df['cols'] + 10).apply(str) store.append('df1', df, data_columns=True) result = store.select( 'df1', where='values>2.0') expected = df[df['values'] > 2.0] tm.assert_frame_equal(expected, result) # floats with NaN df.iloc[0] = np.nan expected = df[df['values'] > 2.0] store.append('df2', df, data_columns=True, index=False) result = store.select( 'df2', where='values>2.0') tm.assert_frame_equal(expected, result) # https://github.com/PyTables/PyTables/issues/282 # bug in selection when 0th row has a np.nan and an index # store.append('df3',df,data_columns=True) # result = store.select( # 'df3', where='values>2.0') # tm.assert_frame_equal(expected, result) # not in first position float with NaN ok too df = DataFrame( dict(cols=range(11), values=range(11)), dtype='float64') df['cols'] = (df['cols'] + 10).apply(str) df.iloc[1] = np.nan expected = df[df['values'] > 2.0] store.append('df4', df, data_columns=True) result = store.select( 'df4', where='values>2.0') tm.assert_frame_equal(expected, result) # test selection with comparison against numpy scalar # GH 11283 with ensure_clean_store(self.path) as store: df = tm.makeDataFrame() expected = df[df['A'] > 0] store.append('df', df, data_columns=True) np_zero = np.float64(0) # noqa result = store.select('df', where=["A>np_zero"]) tm.assert_frame_equal(expected, result) def test_select_with_many_inputs(self): with ensure_clean_store(self.path) as store: df = DataFrame(dict(ts=bdate_range('2012-01-01', periods=300), A=np.random.randn(300), B=range(300), users=['a'] * 50 + ['b'] * 50 + ['c'] * 100 + ['a%03d' % i for i in range(100)])) _maybe_remove(store, 'df') store.append('df', df, data_columns=['ts', 'A', 'B', 'users']) # regular select result = store.select('df', "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp('2012-02-01')] tm.assert_frame_equal(expected, result) # small selector result = store.select( 'df', "ts>=Timestamp('2012-02-01') & users=['a','b','c']") expected = df[(df.ts >= Timestamp('2012-02-01')) & df.users.isin(['a', 'b', 'c'])] tm.assert_frame_equal(expected, result) # big selector along the columns selector = ['a', 'b', 'c'] + ['a%03d' % i for i in range(60)] result = store.select( 'df', "ts>=Timestamp('2012-02-01') and users=selector") expected = df[(df.ts >= Timestamp('2012-02-01')) & df.users.isin(selector)] tm.assert_frame_equal(expected, result) selector = range(100, 200) result = store.select('df', 'B=selector') expected = df[df.B.isin(selector)] tm.assert_frame_equal(expected, result) assert len(result) == 100 # big selector along the index selector = Index(df.ts[0:100].values) result = store.select('df', 'ts=selector') expected = df[df.ts.isin(selector.values)] tm.assert_frame_equal(expected, result) assert len(result) == 100 def test_select_iterator(self): # single table with ensure_clean_store(self.path) as store: df = tm.makeTimeDataFrame(500) _maybe_remove(store, 'df') store.append('df', df) expected = store.select('df') results = [s for s in store.select('df', iterator=True)] result = concat(results) tm.assert_frame_equal(expected, result) results = [s for s in store.select('df', chunksize=100)] assert len(results) == 5 result = concat(results) tm.assert_frame_equal(expected, result) results = [s for s in store.select('df', chunksize=150)] result = concat(results) tm.assert_frame_equal(result, expected) with ensure_clean_path(self.path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, 'df_non_table') pytest.raises(TypeError, read_hdf, path, 'df_non_table', chunksize=100) pytest.raises(TypeError, read_hdf, path, 'df_non_table', iterator=True) with ensure_clean_path(self.path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, 'df', format='table') results = [s for s in read_hdf(path, 'df', chunksize=100)] result = concat(results) assert len(results) == 5 tm.assert_frame_equal(result, df) tm.assert_frame_equal(result, read_hdf(path, 'df')) # multiple with ensure_clean_store(self.path) as store: df1 = tm.makeTimeDataFrame(500) store.append('df1', df1, data_columns=True) df2 = tm.makeTimeDataFrame(500).rename( columns=lambda x: "%s_2" % x) df2['foo'] = 'bar' store.append('df2', df2) df = concat([df1, df2], axis=1) # full selection expected = store.select_as_multiple( ['df1', 'df2'], selector='df1') results = [s for s in store.select_as_multiple( ['df1', 'df2'], selector='df1', chunksize=150)] result = concat(results) tm.assert_frame_equal(expected, result) def test_select_iterator_complete_8014(self): # GH 8014 # using iterator and where clause chunksize = 1e4 # no iterator with ensure_clean_store(self.path) as store: expected = tm.makeTimeDataFrame(100064, 'S') _maybe_remove(store, 'df') store.append('df', expected) beg_dt = expected.index[0] end_dt = expected.index[-1] # select w/o iteration and no where clause works result = store.select('df') tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, single term, begin # of range, works where = "index >= '%s'" % beg_dt result = store.select('df', where=where) tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, single term, end # of range, works where = "index <= '%s'" % end_dt result = store.select('df', where=where) tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, inclusive range, # works where = "index >= '%s' & index <= '%s'" % (beg_dt, end_dt) result = store.select('df', where=where) tm.assert_frame_equal(expected, result) # with iterator, full range with ensure_clean_store(self.path) as store: expected = tm.makeTimeDataFrame(100064, 'S') _maybe_remove(store, 'df') store.append('df', expected) beg_dt = expected.index[0] end_dt = expected.index[-1] # select w/iterator and no where clause works results = [s for s in store.select('df', chunksize=chunksize)] result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, single term, begin of range where = "index >= '%s'" % beg_dt results = [s for s in store.select( 'df', where=where, chunksize=chunksize)] result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, single term, end of range where = "index <= '%s'" % end_dt results = [s for s in store.select( 'df', where=where, chunksize=chunksize)] result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, inclusive range where = "index >= '%s' & index <= '%s'" % (beg_dt, end_dt) results = [s for s in store.select( 'df', where=where, chunksize=chunksize)] result = concat(results) tm.assert_frame_equal(expected, result) def test_select_iterator_non_complete_8014(self): # GH 8014 # using iterator and where clause chunksize = 1e4 # with iterator, non complete range with ensure_clean_store(self.path) as store: expected = tm.makeTimeDataFrame(100064, 'S') _maybe_remove(store, 'df') store.append('df', expected) beg_dt = expected.index[1] end_dt = expected.index[-2] # select w/iterator and where clause, single term, begin of range where = "index >= '%s'" % beg_dt results = [s for s in store.select( 'df', where=where, chunksize=chunksize)] result = concat(results) rexpected = expected[expected.index >= beg_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, single term, end of range where = "index <= '%s'" % end_dt results = [s for s in store.select( 'df', where=where, chunksize=chunksize)] result = concat(results) rexpected = expected[expected.index <= end_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, inclusive range where = "index >= '%s' & index <= '%s'" % (beg_dt, end_dt) results = [s for s in store.select( 'df', where=where, chunksize=chunksize)] result = concat(results) rexpected = expected[(expected.index >= beg_dt) & (expected.index <= end_dt)] tm.assert_frame_equal(rexpected, result) # with iterator, empty where with ensure_clean_store(self.path) as store: expected = tm.makeTimeDataFrame(100064, 'S') _maybe_remove(store, 'df') store.append('df', expected) end_dt = expected.index[-1] # select w/iterator and where clause, single term, begin of range where = "index > '%s'" % end_dt results = [s for s in store.select( 'df', where=where, chunksize=chunksize)] assert 0 == len(results) def test_select_iterator_many_empty_frames(self): # GH 8014 # using iterator and where clause can return many empty # frames. chunksize = int(1e4) # with iterator, range limited to the first chunk with ensure_clean_store(self.path) as store: expected = tm.makeTimeDataFrame(100000, 'S') _maybe_remove(store, 'df') store.append('df', expected) beg_dt = expected.index[0] end_dt = expected.index[chunksize - 1] # select w/iterator and where clause, single term, begin of range where = "index >= '%s'" % beg_dt results = [s for s in store.select( 'df', where=where, chunksize=chunksize)] result = concat(results) rexpected = expected[expected.index >= beg_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, single term, end of range where = "index <= '%s'" % end_dt results = [s for s in store.select( 'df', where=where, chunksize=chunksize)] assert len(results) == 1 result = concat(results) rexpected = expected[expected.index <= end_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, inclusive range where = "index >= '%s' & index <= '%s'" % (beg_dt, end_dt) results = [s for s in store.select( 'df', where=where, chunksize=chunksize)] # should be 1, is 10 assert len(results) == 1 result = concat(results) rexpected = expected[(expected.index >= beg_dt) & (expected.index <= end_dt)] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause which selects # *nothing*. # # To be consistent with Python idiom I suggest this should # return [] e.g. `for e in []: print True` never prints # True. where = "index <= '%s' & index >= '%s'" % (beg_dt, end_dt) results = [s for s in store.select( 'df', where=where, chunksize=chunksize)] # should be [] assert len(results) == 0 @pytest.mark.filterwarnings( "ignore:\\nthe :pandas.io.pytables.AttributeConflictWarning" ) def test_retain_index_attributes(self): # GH 3499, losing frequency info on index recreation df = DataFrame(dict( A=Series(lrange(3), index=date_range('2000-1-1', periods=3, freq='H')))) with ensure_clean_store(self.path) as store: _maybe_remove(store, 'data') store.put('data', df, format='table') result = store.get('data') tm.assert_frame_equal(df, result) for attr in ['freq', 'tz', 'name']: for idx in ['index', 'columns']: assert (getattr(getattr(df, idx), attr, None) == getattr(getattr(result, idx), attr, None)) # try to append a table with a different frequency with catch_warnings(record=True): df2 = DataFrame(dict( A=Series(lrange(3), index=date_range('2002-1-1', periods=3, freq='D')))) store.append('data', df2) assert store.get_storer('data').info['index']['freq'] is None # this is ok _maybe_remove(store, 'df2') df2 = DataFrame(dict( A=Series(lrange(3), index=[Timestamp('20010101'), Timestamp('20010102'), Timestamp('20020101')]))) store.append('df2', df2) df3 = DataFrame(dict( A=Series(lrange(3), index=date_range('2002-1-1', periods=3, freq='D')))) store.append('df2', df3) @pytest.mark.filterwarnings( "ignore:\\nthe :pandas.io.pytables.AttributeConflictWarning" ) def test_retain_index_attributes2(self): with ensure_clean_path(self.path) as path: with catch_warnings(record=True): df = DataFrame(dict( A=Series(lrange(3), index=date_range('2000-1-1', periods=3, freq='H')))) df.to_hdf(path, 'data', mode='w', append=True) df2 = DataFrame(dict( A=Series(lrange(3), index=date_range('2002-1-1', periods=3, freq='D')))) df2.to_hdf(path, 'data', append=True) idx = date_range('2000-1-1', periods=3, freq='H') idx.name = 'foo' df = DataFrame(dict(A=Series(lrange(3), index=idx))) df.to_hdf(path, 'data', mode='w', append=True) assert read_hdf(path, 'data').index.name == 'foo' with catch_warnings(record=True): idx2 = date_range('2001-1-1', periods=3, freq='H') idx2.name = 'bar' df2 = DataFrame(dict(A=Series(lrange(3), index=idx2))) df2.to_hdf(path, 'data', append=True) assert read_hdf(path, 'data').index.name is None def test_panel_select(self): with ensure_clean_store(self.path) as store: with catch_warnings(record=True): wp = tm.makePanel() store.put('wp', wp, format='table') date = wp.major_axis[len(wp.major_axis) // 2] crit1 = ('major_axis>=date') crit2 = ("minor_axis=['A', 'D']") result = store.select('wp', [crit1, crit2]) expected = wp.truncate(before=date).reindex(minor=['A', 'D']) assert_panel_equal(result, expected) result = store.select( 'wp', ['major_axis>="20000124"', ("minor_axis=['A', 'B']")]) expected = wp.truncate( before='20000124').reindex(minor=['A', 'B']) assert_panel_equal(result, expected) def test_frame_select(self): df = tm.makeTimeDataFrame() with ensure_clean_store(self.path) as store: store.put('frame', df, format='table') date = df.index[len(df) // 2] crit1 = Term('index>=date') assert crit1.env.scope['date'] == date crit2 = ("columns=['A', 'D']") crit3 = ('columns=A') result = store.select('frame', [crit1, crit2]) expected = df.loc[date:, ['A', 'D']] tm.assert_frame_equal(result, expected) result = store.select('frame', [crit3]) expected = df.loc[:, ['A']] tm.assert_frame_equal(result, expected) # invalid terms df = tm.makeTimeDataFrame() store.append('df_time', df) pytest.raises( ValueError, store.select, 'df_time', "index>0") # can't select if not written as table # store['frame'] = df # pytest.raises(ValueError, store.select, # 'frame', [crit1, crit2]) def test_frame_select_complex(self): # select via complex criteria df = tm.makeTimeDataFrame() df['string'] = 'foo' df.loc[df.index[0:4], 'string'] = 'bar' with ensure_clean_store(self.path) as store: store.put('df', df, format='table', data_columns=['string']) # empty result = store.select('df', 'index>df.index[3] & string="bar"') expected = df.loc[(df.index > df.index[3]) & (df.string == 'bar')] tm.assert_frame_equal(result, expected) result = store.select('df', 'index>df.index[3] & string="foo"') expected = df.loc[(df.index > df.index[3]) & (df.string == 'foo')] tm.assert_frame_equal(result, expected) # or result = store.select('df', 'index>df.index[3] | string="bar"') expected = df.loc[(df.index > df.index[3]) | (df.string == 'bar')] tm.assert_frame_equal(result, expected) result = store.select('df', '(index>df.index[3] & ' 'index<=df.index[6]) | string="bar"') expected = df.loc[((df.index > df.index[3]) & ( df.index <= df.index[6])) | (df.string == 'bar')] tm.assert_frame_equal(result, expected) # invert result = store.select('df', 'string!="bar"') expected = df.loc[df.string != 'bar'] tm.assert_frame_equal(result, expected) # invert not implemented in numexpr :( pytest.raises(NotImplementedError, store.select, 'df', '~(string="bar")') # invert ok for filters result = store.select('df', "~(columns=['A','B'])") expected = df.loc[:, df.columns.difference(['A', 'B'])] tm.assert_frame_equal(result, expected) # in result = store.select( 'df', "index>df.index[3] & columns in ['A','B']") expected = df.loc[df.index > df.index[3]].reindex(columns=[ 'A', 'B']) tm.assert_frame_equal(result, expected) def test_frame_select_complex2(self): with ensure_clean_path(['parms.hdf', 'hist.hdf']) as paths: pp, hh = paths # use non-trivial selection criteria parms = DataFrame({'A': [1, 1, 2, 2, 3]}) parms.to_hdf(pp, 'df', mode='w', format='table', data_columns=['A']) selection = read_hdf(pp, 'df', where='A=[2,3]') hist = DataFrame(np.random.randn(25, 1), columns=['data'], index=MultiIndex.from_tuples( [(i, j) for i in range(5) for j in range(5)], names=['l1', 'l2'])) hist.to_hdf(hh, 'df', mode='w', format='table') expected = read_hdf(hh, 'df', where='l1=[2, 3, 4]') # sccope with list like l = selection.index.tolist() # noqa store = HDFStore(hh) result = store.select('df', where='l1=l') assert_frame_equal(result, expected) store.close() result = read_hdf(hh, 'df', where='l1=l') assert_frame_equal(result, expected) # index index = selection.index # noqa result = read_hdf(hh, 'df', where='l1=index') assert_frame_equal(result, expected) result = read_hdf(hh, 'df', where='l1=selection.index') assert_frame_equal(result, expected) result = read_hdf(hh, 'df', where='l1=selection.index.tolist()') assert_frame_equal(result, expected) result = read_hdf(hh, 'df', where='l1=list(selection.index)') assert_frame_equal(result, expected) # sccope with index store = HDFStore(hh) result = store.select('df', where='l1=index') assert_frame_equal(result, expected) result = store.select('df', where='l1=selection.index') assert_frame_equal(result, expected) result = store.select('df', where='l1=selection.index.tolist()') assert_frame_equal(result, expected) result = store.select('df', where='l1=list(selection.index)') assert_frame_equal(result, expected) store.close() def test_invalid_filtering(self): # can't use more than one filter (atm) df = tm.makeTimeDataFrame() with ensure_clean_store(self.path) as store: store.put('df', df, format='table') # not implemented pytest.raises(NotImplementedError, store.select, 'df', "columns=['A'] | columns=['B']") # in theory we could deal with this pytest.raises(NotImplementedError, store.select, 'df', "columns=['A','B'] & columns=['C']") def test_string_select(self): # GH 2973 with ensure_clean_store(self.path) as store: df = tm.makeTimeDataFrame() # test string ==/!= df['x'] = 'none' df.loc[2:7, 'x'] = '' store.append('df', df, data_columns=['x']) result = store.select('df', 'x=none') expected = df[df.x == 'none'] assert_frame_equal(result, expected) try: result = store.select('df', 'x!=none') expected = df[df.x != 'none'] assert_frame_equal(result, expected) except Exception as detail: pprint_thing("[{0}]".format(detail)) pprint_thing(store) pprint_thing(expected) df2 = df.copy() df2.loc[df2.x == '', 'x'] = np.nan store.append('df2', df2, data_columns=['x']) result = store.select('df2', 'x!=none') expected = df2[isna(df2.x)] assert_frame_equal(result, expected) # int ==/!= df['int'] = 1 df.loc[2:7, 'int'] = 2 store.append('df3', df, data_columns=['int']) result = store.select('df3', 'int=2') expected = df[df.int == 2] assert_frame_equal(result, expected) result = store.select('df3', 'int!=2') expected = df[df.int != 2] assert_frame_equal(result, expected) def test_read_column(self): df = tm.makeTimeDataFrame() with ensure_clean_store(self.path) as store: _maybe_remove(store, 'df') # GH 17912 # HDFStore.select_column should raise a KeyError # exception if the key is not a valid store with pytest.raises(KeyError, message='No object named index in the file'): store.select_column('df', 'index') store.append('df', df) # error pytest.raises(KeyError, store.select_column, 'df', 'foo') def f(): store.select_column('df', 'index', where=['index>5']) pytest.raises(Exception, f) # valid result = store.select_column('df', 'index') tm.assert_almost_equal(result.values, Series(df.index).values) assert isinstance(result, Series) # not a data indexable column pytest.raises( ValueError, store.select_column, 'df', 'values_block_0') # a data column df2 = df.copy() df2['string'] = 'foo' store.append('df2', df2, data_columns=['string']) result = store.select_column('df2', 'string') tm.assert_almost_equal(result.values, df2['string'].values) # a data column with NaNs, result excludes the NaNs df3 = df.copy() df3['string'] = 'foo' df3.loc[4:6, 'string'] = np.nan store.append('df3', df3, data_columns=['string']) result = store.select_column('df3', 'string') tm.assert_almost_equal(result.values, df3['string'].values) # start/stop result = store.select_column('df3', 'string', start=2) tm.assert_almost_equal(result.values, df3['string'].values[2:]) result = store.select_column('df3', 'string', start=-2) tm.assert_almost_equal(result.values, df3['string'].values[-2:]) result = store.select_column('df3', 'string', stop=2) tm.assert_almost_equal(result.values, df3['string'].values[:2]) result = store.select_column('df3', 'string', stop=-2) tm.assert_almost_equal(result.values, df3['string'].values[:-2]) result = store.select_column('df3', 'string', start=2, stop=-2) tm.assert_almost_equal(result.values, df3['string'].values[2:-2]) result = store.select_column('df3', 'string', start=-2, stop=2) tm.assert_almost_equal(result.values, df3['string'].values[-2:2]) # GH 10392 - make sure column name is preserved df4 = DataFrame({'A': np.random.randn(10), 'B': 'foo'}) store.append('df4', df4, data_columns=True) expected = df4['B'] result = store.select_column('df4', 'B') tm.assert_series_equal(result, expected) def test_coordinates(self): df = tm.makeTimeDataFrame() with ensure_clean_store(self.path) as store: _maybe_remove(store, 'df') store.append('df', df) # all c = store.select_as_coordinates('df') assert((c.values == np.arange(len(df.index))).all()) # get coordinates back & test vs frame _maybe_remove(store, 'df') df = DataFrame(dict(A=lrange(5), B=lrange(5))) store.append('df', df) c = store.select_as_coordinates('df', ['index<3']) assert((c.values == np.arange(3)).all()) result = store.select('df', where=c) expected = df.loc[0:2, :] tm.assert_frame_equal(result, expected) c = store.select_as_coordinates('df', ['index>=3', 'index<=4']) assert((c.values == np.arange(2) + 3).all()) result = store.select('df', where=c) expected = df.loc[3:4, :] tm.assert_frame_equal(result, expected) assert isinstance(c, Index) # multiple tables _maybe_remove(store, 'df1') _maybe_remove(store, 'df2') df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns=lambda x: "%s_2" % x) store.append('df1', df1, data_columns=['A', 'B']) store.append('df2', df2) c = store.select_as_coordinates('df1', ['A>0', 'B>0']) df1_result = store.select('df1', c) df2_result = store.select('df2', c) result = concat([df1_result, df2_result], axis=1) expected = concat([df1, df2], axis=1) expected = expected[(expected.A > 0) & (expected.B > 0)] tm.assert_frame_equal(result, expected) # pass array/mask as the coordinates with ensure_clean_store(self.path) as store: df = DataFrame(np.random.randn(1000, 2), index=date_range('20000101', periods=1000)) store.append('df', df) c = store.select_column('df', 'index') where = c[DatetimeIndex(c).month == 5].index expected = df.iloc[where] # locations result = store.select('df', where=where) tm.assert_frame_equal(result, expected) # boolean result = store.select('df', where=where) tm.assert_frame_equal(result, expected) # invalid pytest.raises(ValueError, store.select, 'df', where=np.arange(len(df), dtype='float64')) pytest.raises(ValueError, store.select, 'df', where=np.arange(len(df) + 1)) pytest.raises(ValueError, store.select, 'df', where=np.arange(len(df)), start=5) pytest.raises(ValueError, store.select, 'df', where=np.arange(len(df)), start=5, stop=10) # selection with filter selection = date_range('20000101', periods=500) result = store.select('df', where='index in selection') expected = df[df.index.isin(selection)] tm.assert_frame_equal(result, expected) # list df = DataFrame(np.random.randn(10, 2)) store.append('df2', df) result = store.select('df2', where=[0, 3, 5]) expected = df.iloc[[0, 3, 5]] tm.assert_frame_equal(result, expected) # boolean where = [True] * 10 where[-2] = False result = store.select('df2', where=where) expected = df.loc[where] tm.assert_frame_equal(result, expected) # start/stop result = store.select('df2', start=5, stop=10) expected = df[5:10] tm.assert_frame_equal(result, expected) def test_append_to_multiple(self): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns=lambda x: "%s_2" % x) df2['foo'] = 'bar' df = concat([df1, df2], axis=1) with ensure_clean_store(self.path) as store: # exceptions pytest.raises(ValueError, store.append_to_multiple, {'df1': ['A', 'B'], 'df2': None}, df, selector='df3') pytest.raises(ValueError, store.append_to_multiple, {'df1': None, 'df2': None}, df, selector='df3') pytest.raises( ValueError, store.append_to_multiple, 'df1', df, 'df1') # regular operation store.append_to_multiple( {'df1': ['A', 'B'], 'df2': None}, df, selector='df1') result = store.select_as_multiple( ['df1', 'df2'], where=['A>0', 'B>0'], selector='df1') expected = df[(df.A > 0) & (df.B > 0)] tm.assert_frame_equal(result, expected) def test_append_to_multiple_dropna(self): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns=lambda x: "%s_2" % x) df1.iloc[1, df1.columns.get_indexer(['A', 'B'])] = np.nan df = concat([df1, df2], axis=1) with ensure_clean_store(self.path) as store: # dropna=True should guarantee rows are synchronized store.append_to_multiple( {'df1': ['A', 'B'], 'df2': None}, df, selector='df1', dropna=True) result = store.select_as_multiple(['df1', 'df2']) expected = df.dropna() tm.assert_frame_equal(result, expected) tm.assert_index_equal(store.select('df1').index, store.select('df2').index) @pytest.mark.xfail(run=False, reason="append_to_multiple_dropna_false " "is not raising as failed") def test_append_to_multiple_dropna_false(self): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns=lambda x: "%s_2" % x) df1.iloc[1, df1.columns.get_indexer(['A', 'B'])] = np.nan df = concat([df1, df2], axis=1) with ensure_clean_store(self.path) as store: # dropna=False shouldn't synchronize row indexes store.append_to_multiple( {'df1a': ['A', 'B'], 'df2a': None}, df, selector='df1a', dropna=False) with pytest.raises(ValueError): store.select_as_multiple(['df1a', 'df2a']) assert not store.select('df1a').index.equals( store.select('df2a').index) def test_select_as_multiple(self): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns=lambda x: "%s_2" % x) df2['foo'] = 'bar' with ensure_clean_store(self.path) as store: # no tables stored pytest.raises(Exception, store.select_as_multiple, None, where=['A>0', 'B>0'], selector='df1') store.append('df1', df1, data_columns=['A', 'B']) store.append('df2', df2) # exceptions pytest.raises(Exception, store.select_as_multiple, None, where=['A>0', 'B>0'], selector='df1') pytest.raises(Exception, store.select_as_multiple, [None], where=['A>0', 'B>0'], selector='df1') pytest.raises(KeyError, store.select_as_multiple, ['df1', 'df3'], where=['A>0', 'B>0'], selector='df1') pytest.raises(KeyError, store.select_as_multiple, ['df3'], where=['A>0', 'B>0'], selector='df1') pytest.raises(KeyError, store.select_as_multiple, ['df1', 'df2'], where=['A>0', 'B>0'], selector='df4') # default select result = store.select('df1', ['A>0', 'B>0']) expected = store.select_as_multiple( ['df1'], where=['A>0', 'B>0'], selector='df1') tm.assert_frame_equal(result, expected) expected = store.select_as_multiple( 'df1', where=['A>0', 'B>0'], selector='df1') tm.assert_frame_equal(result, expected) # multiple result = store.select_as_multiple( ['df1', 'df2'], where=['A>0', 'B>0'], selector='df1') expected = concat([df1, df2], axis=1) expected = expected[(expected.A > 0) & (expected.B > 0)] tm.assert_frame_equal(result, expected) # multiple (diff selector) result = store.select_as_multiple( ['df1', 'df2'], where='index>df2.index[4]', selector='df2') expected = concat([df1, df2], axis=1) expected = expected[5:] tm.assert_frame_equal(result, expected) # test excpection for diff rows store.append('df3', tm.makeTimeDataFrame(nper=50)) pytest.raises(ValueError, store.select_as_multiple, ['df1', 'df3'], where=['A>0', 'B>0'], selector='df1') @pytest.mark.skipif( LooseVersion(tables.__version__) < LooseVersion('3.1.0'), reason=("tables version does not support fix for nan selection " "bug: GH 4858")) def test_nan_selection_bug_4858(self): with ensure_clean_store(self.path) as store: df = DataFrame(dict(cols=range(6), values=range(6)), dtype='float64') df['cols'] = (df['cols'] + 10).apply(str) df.iloc[0] = np.nan expected = DataFrame(dict(cols=['13.0', '14.0', '15.0'], values=[ 3., 4., 5.]), index=[3, 4, 5]) # write w/o the index on that particular column store.append('df', df, data_columns=True, index=['cols']) result = store.select('df', where='values>2.0') assert_frame_equal(result, expected) def test_start_stop_table(self): with ensure_clean_store(self.path) as store: # table df = DataFrame(dict(A=np.random.rand(20), B=np.random.rand(20))) store.append('df', df) result = store.select( 'df', "columns=['A']", start=0, stop=5) expected = df.loc[0:4, ['A']] tm.assert_frame_equal(result, expected) # out of range result = store.select( 'df', "columns=['A']", start=30, stop=40) assert len(result) == 0 expected = df.loc[30:40, ['A']] tm.assert_frame_equal(result, expected) def test_start_stop_multiple(self): # GH 16209 with ensure_clean_store(self.path) as store: df = DataFrame({"foo": [1, 2], "bar": [1, 2]}) store.append_to_multiple({'selector': ['foo'], 'data': None}, df, selector='selector') result = store.select_as_multiple(['selector', 'data'], selector='selector', start=0, stop=1) expected = df.loc[[0], ['foo', 'bar']] tm.assert_frame_equal(result, expected) def test_start_stop_fixed(self): with ensure_clean_store(self.path) as store: # fixed, GH 8287 df = DataFrame(dict(A=np.random.rand(20), B=np.random.rand(20)), index=pd.date_range('20130101', periods=20)) store.put('df', df) result = store.select( 'df', start=0, stop=5) expected = df.iloc[0:5, :] tm.assert_frame_equal(result, expected) result = store.select( 'df', start=5, stop=10) expected = df.iloc[5:10, :] tm.assert_frame_equal(result, expected) # out of range result = store.select( 'df', start=30, stop=40) expected = df.iloc[30:40, :] tm.assert_frame_equal(result, expected) # series s = df.A store.put('s', s) result = store.select('s', start=0, stop=5) expected = s.iloc[0:5] tm.assert_series_equal(result, expected) result = store.select('s', start=5, stop=10) expected = s.iloc[5:10] tm.assert_series_equal(result, expected) # sparse; not implemented df = tm.makeDataFrame() df.iloc[3:5, 1:3] = np.nan df.iloc[8:10, -2] = np.nan dfs = df.to_sparse() store.put('dfs', dfs) with pytest.raises(NotImplementedError): store.select('dfs', start=0, stop=5) def test_select_filter_corner(self): df = DataFrame(np.random.randn(50, 100)) df.index = ['%.3d' % c for c in df.index] df.columns = ['%.3d' % c for c in df.columns] with ensure_clean_store(self.path) as store: store.put('frame', df, format='table') crit = 'columns=df.columns[:75]' result = store.select('frame', [crit]) tm.assert_frame_equal(result, df.loc[:, df.columns[:75]]) crit = 'columns=df.columns[:75:2]' result = store.select('frame', [crit]) tm.assert_frame_equal(result, df.loc[:, df.columns[:75:2]]) def test_path_pathlib(self): df = tm.makeDataFrame() result = tm.round_trip_pathlib( lambda p: df.to_hdf(p, 'df'), lambda p: pd.read_hdf(p, 'df')) tm.assert_frame_equal(df, result) @pytest.mark.parametrize('start, stop', [(0, 2), (1, 2), (None, None)]) def test_contiguous_mixed_data_table(self, start, stop): # GH 17021 # ValueError when reading a contiguous mixed-data table ft. VLArray df = DataFrame({'a': Series([20111010, 20111011, 20111012]), 'b': Series(['ab', 'cd', 'ab'])}) with ensure_clean_store(self.path) as store: store.append('test_dataset', df) result = store.select('test_dataset', start=start, stop=stop) assert_frame_equal(df[start:stop], result) def test_path_pathlib_hdfstore(self): df = tm.makeDataFrame() def writer(path): with pd.HDFStore(path) as store: df.to_hdf(store, 'df') def reader(path): with pd.HDFStore(path) as store: return pd.read_hdf(store, 'df') result = tm.round_trip_pathlib(writer, reader) tm.assert_frame_equal(df, result) def test_pickle_path_localpath(self): df = tm.makeDataFrame() result = tm.round_trip_pathlib( lambda p: df.to_hdf(p, 'df'), lambda p: pd.read_hdf(p, 'df')) tm.assert_frame_equal(df, result) def test_path_localpath_hdfstore(self): df = tm.makeDataFrame() def writer(path): with pd.HDFStore(path) as store: df.to_hdf(store, 'df') def reader(path): with pd.HDFStore(path) as store: return pd.read_hdf(store, 'df') result = tm.round_trip_localpath(writer, reader) tm.assert_frame_equal(df, result) def _check_roundtrip(self, obj, comparator, compression=False, **kwargs): options = {} if compression: options['complib'] = _default_compressor with ensure_clean_store(self.path, 'w', **options) as store: store['obj'] = obj retrieved = store['obj'] comparator(retrieved, obj, **kwargs) def _check_double_roundtrip(self, obj, comparator, compression=False, **kwargs): options = {} if compression: options['complib'] = compression or _default_compressor with ensure_clean_store(self.path, 'w', **options) as store: store['obj'] = obj retrieved = store['obj'] comparator(retrieved, obj, **kwargs) store['obj'] = retrieved again = store['obj'] comparator(again, obj, **kwargs) def _check_roundtrip_table(self, obj, comparator, compression=False): options = {} if compression: options['complib'] = _default_compressor with ensure_clean_store(self.path, 'w', **options) as store: store.put('obj', obj, format='table') retrieved = store['obj'] comparator(retrieved, obj) def test_multiple_open_close(self): # gh-4409: open & close multiple times with ensure_clean_path(self.path) as path: df = tm.makeDataFrame() df.to_hdf(path, 'df', mode='w', format='table') # single store = HDFStore(path) assert 'CLOSED' not in store.info() assert store.is_open store.close() assert 'CLOSED' in store.info() assert not store.is_open with ensure_clean_path(self.path) as path: if pytables._table_file_open_policy_is_strict: # multiples store1 = HDFStore(path) def f(): HDFStore(path) pytest.raises(ValueError, f) store1.close() else: # multiples store1 = HDFStore(path) store2 = HDFStore(path) assert 'CLOSED' not in store1.info() assert 'CLOSED' not in store2.info() assert store1.is_open assert store2.is_open store1.close() assert 'CLOSED' in store1.info() assert not store1.is_open assert 'CLOSED' not in store2.info() assert store2.is_open store2.close() assert 'CLOSED' in store1.info() assert 'CLOSED' in store2.info() assert not store1.is_open assert not store2.is_open # nested close store = HDFStore(path, mode='w') store.append('df', df) store2 = HDFStore(path) store2.append('df2', df) store2.close() assert 'CLOSED' in store2.info() assert not store2.is_open store.close() assert 'CLOSED' in store.info() assert not store.is_open # double closing store = HDFStore(path, mode='w') store.append('df', df) store2 = HDFStore(path) store.close() assert 'CLOSED' in store.info() assert not store.is_open store2.close() assert 'CLOSED' in store2.info() assert not store2.is_open # ops on a closed store with ensure_clean_path(self.path) as path: df = tm.makeDataFrame() df.to_hdf(path, 'df', mode='w', format='table') store = HDFStore(path) store.close() pytest.raises(ClosedFileError, store.keys) pytest.raises(ClosedFileError, lambda: 'df' in store) pytest.raises(ClosedFileError, lambda: len(store)) pytest.raises(ClosedFileError, lambda: store['df']) pytest.raises(AttributeError, lambda: store.df) pytest.raises(ClosedFileError, store.select, 'df') pytest.raises(ClosedFileError, store.get, 'df') pytest.raises(ClosedFileError, store.append, 'df2', df) pytest.raises(ClosedFileError, store.put, 'df3', df) pytest.raises(ClosedFileError, store.get_storer, 'df2') pytest.raises(ClosedFileError, store.remove, 'df2') def f(): store.select('df') tm.assert_raises_regex(ClosedFileError, 'file is not open', f) def test_pytables_native_read(self, datapath): with ensure_clean_store( datapath('io', 'data', 'legacy_hdf/pytables_native.h5'), mode='r') as store: d2 = store['detector/readout'] assert isinstance(d2, DataFrame) @pytest.mark.skipif(PY35 and is_platform_windows(), reason="native2 read fails oddly on windows / 3.5") def test_pytables_native2_read(self, datapath): with ensure_clean_store( datapath('io', 'data', 'legacy_hdf', 'pytables_native2.h5'), mode='r') as store: str(store) d1 = store['detector'] assert isinstance(d1, DataFrame) def test_legacy_table_read(self, datapath): # legacy table types with ensure_clean_store( datapath('io', 'data', 'legacy_hdf', 'legacy_table.h5'), mode='r') as store: with catch_warnings(): simplefilter("ignore", pd.io.pytables.IncompatibilityWarning) store.select('df1') store.select('df2') store.select('wp1') # force the frame store.select('df2', typ='legacy_frame') # old version warning pytest.raises( Exception, store.select, 'wp1', 'minor_axis=B') df2 = store.select('df2') result = store.select('df2', 'index>df2.index[2]') expected = df2[df2.index > df2.index[2]] assert_frame_equal(expected, result) def test_copy(self): with catch_warnings(record=True): def do_copy(f, new_f=None, keys=None, propindexes=True, **kwargs): try: store = HDFStore(f, 'r') if new_f is None: import tempfile fd, new_f = tempfile.mkstemp() tstore = store.copy( new_f, keys=keys, propindexes=propindexes, **kwargs) # check keys if keys is None: keys = store.keys() assert set(keys) == set(tstore.keys()) # check indices & nrows for k in tstore.keys(): if tstore.get_storer(k).is_table: new_t = tstore.get_storer(k) orig_t = store.get_storer(k) assert orig_t.nrows == new_t.nrows # check propindixes if propindexes: for a in orig_t.axes: if a.is_indexed: assert new_t[a.name].is_indexed finally: safe_close(store) safe_close(tstore) try: os.close(fd) except: pass safe_remove(new_f) # new table df = tm.makeDataFrame() try: path = create_tempfile(self.path) st = HDFStore(path) st.append('df', df, data_columns=['A']) st.close() do_copy(f=path) do_copy(f=path, propindexes=False) finally: safe_remove(path) def test_store_datetime_fractional_secs(self): with ensure_clean_store(self.path) as store: dt = datetime.datetime(2012, 1, 2, 3, 4, 5, 123456) series = Series([0], [dt]) store['a'] = series assert store['a'].index[0] == dt def test_tseries_indices_series(self): with ensure_clean_store(self.path) as store: idx = tm.makeDateIndex(10) ser = Series(np.random.randn(len(idx)), idx) store['a'] = ser result = store['a'] tm.assert_series_equal(result, ser) assert result.index.freq == ser.index.freq tm.assert_class_equal(result.index, ser.index, obj="series index") idx = tm.makePeriodIndex(10) ser = Series(np.random.randn(len(idx)), idx) store['a'] = ser result = store['a'] tm.assert_series_equal(result, ser) assert result.index.freq == ser.index.freq tm.assert_class_equal(result.index, ser.index, obj="series index") def test_tseries_indices_frame(self): with ensure_clean_store(self.path) as store: idx = tm.makeDateIndex(10) df = DataFrame(np.random.randn(len(idx), 3), index=idx) store['a'] = df result = store['a'] assert_frame_equal(result, df) assert result.index.freq == df.index.freq tm.assert_class_equal(result.index, df.index, obj="dataframe index") idx = tm.makePeriodIndex(10) df = DataFrame(np.random.randn(len(idx), 3), idx) store['a'] = df result = store['a'] assert_frame_equal(result, df) assert result.index.freq == df.index.freq tm.assert_class_equal(result.index, df.index, obj="dataframe index") def test_unicode_index(self): unicode_values = [u('\u03c3'), u('\u03c3\u03c3')] # PerformanceWarning with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) s = Series(np.random.randn(len(unicode_values)), unicode_values) self._check_roundtrip(s, tm.assert_series_equal) def test_unicode_longer_encoded(self): # GH 11234 char = '\u0394' df = pd.DataFrame({'A': [char]}) with ensure_clean_store(self.path) as store: store.put('df', df, format='table', encoding='utf-8') result = store.get('df') tm.assert_frame_equal(result, df) df = pd.DataFrame({'A': ['a', char], 'B': ['b', 'b']}) with ensure_clean_store(self.path) as store: store.put('df', df, format='table', encoding='utf-8') result = store.get('df') tm.assert_frame_equal(result, df) def test_store_datetime_mixed(self): df = DataFrame( {'a': [1, 2, 3], 'b': [1., 2., 3.], 'c': ['a', 'b', 'c']}) ts = tm.makeTimeSeries() df['d'] = ts.index[:3] self._check_roundtrip(df, tm.assert_frame_equal) # def test_cant_write_multiindex_table(self): # # for now, #1848 # df = DataFrame(np.random.randn(10, 4), # index=[np.arange(5).repeat(2), # np.tile(np.arange(2), 5)]) # pytest.raises(Exception, store.put, 'foo', df, format='table') def test_append_with_diff_col_name_types_raises_value_error(self): df = DataFrame(np.random.randn(10, 1)) df2 = DataFrame({'a': np.random.randn(10)}) df3 = DataFrame({(1, 2): np.random.randn(10)}) df4 = DataFrame({('1', 2): np.random.randn(10)}) df5 = DataFrame({('1', 2, object): np.random.randn(10)}) with ensure_clean_store(self.path) as store: name = 'df_%s' % tm.rands(10) store.append(name, df) for d in (df2, df3, df4, df5): with pytest.raises(ValueError): store.append(name, d) def test_query_with_nested_special_character(self): df = DataFrame({'a': ['a', 'a', 'c', 'b', 'test & test', 'c', 'b', 'e'], 'b': [1, 2, 3, 4, 5, 6, 7, 8]}) expected = df[df.a == 'test & test'] with ensure_clean_store(self.path) as store: store.append('test', df, format='table', data_columns=True) result = store.select('test', 'a = "test & test"') tm.assert_frame_equal(expected, result) def test_categorical(self): with ensure_clean_store(self.path) as store: # Basic _maybe_remove(store, 's') s = Series(Categorical(['a', 'b', 'b', 'a', 'a', 'c'], categories=[ 'a', 'b', 'c', 'd'], ordered=False)) store.append('s', s, format='table') result = store.select('s') tm.assert_series_equal(s, result) _maybe_remove(store, 's_ordered') s = Series(Categorical(['a', 'b', 'b', 'a', 'a', 'c'], categories=[ 'a', 'b', 'c', 'd'], ordered=True)) store.append('s_ordered', s, format='table') result = store.select('s_ordered') tm.assert_series_equal(s, result) _maybe_remove(store, 'df') df = DataFrame({"s": s, "vals": [1, 2, 3, 4, 5, 6]}) store.append('df', df, format='table') result = store.select('df') tm.assert_frame_equal(result, df) # Dtypes s = Series([1, 1, 2, 2, 3, 4, 5]).astype('category') store.append('si', s) result = store.select('si') tm.assert_series_equal(result, s) s = Series([1, 1, np.nan, 2, 3, 4, 5]).astype('category') store.append('si2', s) result = store.select('si2') tm.assert_series_equal(result, s) # Multiple df2 = df.copy() df2['s2'] = Series(list('abcdefg')).astype('category') store.append('df2', df2) result = store.select('df2') tm.assert_frame_equal(result, df2) # Make sure the metadata is OK info = store.info() assert '/df2 ' in info # assert '/df2/meta/values_block_0/meta' in info assert '/df2/meta/values_block_1/meta' in info # unordered s = Series(Categorical(['a', 'b', 'b', 'a', 'a', 'c'], categories=[ 'a', 'b', 'c', 'd'], ordered=False)) store.append('s2', s, format='table') result = store.select('s2') tm.assert_series_equal(result, s) # Query store.append('df3', df, data_columns=['s']) expected = df[df.s.isin(['b', 'c'])] result = store.select('df3', where=['s in ["b","c"]']) tm.assert_frame_equal(result, expected) expected = df[df.s.isin(['b', 'c'])] result = store.select('df3', where=['s = ["b","c"]']) tm.assert_frame_equal(result, expected) expected = df[df.s.isin(['d'])] result = store.select('df3', where=['s in ["d"]']) tm.assert_frame_equal(result, expected) expected = df[df.s.isin(['f'])] result = store.select('df3', where=['s in ["f"]']) tm.assert_frame_equal(result, expected) # Appending with same categories is ok store.append('df3', df) df = concat([df, df]) expected = df[df.s.isin(['b', 'c'])] result = store.select('df3', where=['s in ["b","c"]']) tm.assert_frame_equal(result, expected) # Appending must have the same categories df3 = df.copy() df3['s'].cat.remove_unused_categories(inplace=True) with pytest.raises(ValueError): store.append('df3', df3) # Remove, and make sure meta data is removed (its a recursive # removal so should be). result = store.select('df3/meta/s/meta') assert result is not None store.remove('df3') with pytest.raises(KeyError): store.select('df3/meta/s/meta') def test_categorical_conversion(self): # GH13322 # Check that read_hdf with categorical columns doesn't return rows if # where criteria isn't met. obsids = ['ESP_012345_6789', 'ESP_987654_3210'] imgids = ['APF00006np', 'APF0001imm'] data = [4.3, 9.8] # Test without categories df = DataFrame(dict(obsids=obsids, imgids=imgids, data=data)) # We are expecting an empty DataFrame matching types of df expected = df.iloc[[], :] with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', format='table', data_columns=True) result = read_hdf(path, 'df', where='obsids=B') tm.assert_frame_equal(result, expected) # Test with categories df.obsids = df.obsids.astype('category') df.imgids = df.imgids.astype('category') # We are expecting an empty DataFrame matching types of df expected = df.iloc[[], :] with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', format='table', data_columns=True) result = read_hdf(path, 'df', where='obsids=B') tm.assert_frame_equal(result, expected) def test_categorical_nan_only_columns(self): # GH18413 # Check that read_hdf with categorical columns with NaN-only values can # be read back. df = pd.DataFrame({ 'a': ['a', 'b', 'c', np.nan], 'b': [np.nan, np.nan, np.nan, np.nan], 'c': [1, 2, 3, 4], 'd': pd.Series([None] * 4, dtype=object) }) df['a'] = df.a.astype('category') df['b'] = df.b.astype('category') df['d'] = df.b.astype('category') expected = df with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', format='table', data_columns=True) result = read_hdf(path, 'df') tm.assert_frame_equal(result, expected) def test_duplicate_column_name(self): df = DataFrame(columns=["a", "a"], data=[[0, 0]]) with ensure_clean_path(self.path) as path: pytest.raises(ValueError, df.to_hdf, path, 'df', format='fixed') df.to_hdf(path, 'df', format='table') other = read_hdf(path, 'df') tm.assert_frame_equal(df, other) assert df.equals(other) assert other.equals(df) def test_round_trip_equals(self): # GH 9330 df = DataFrame({"B": [1, 2], "A": ["x", "y"]}) with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', format='table') other = read_hdf(path, 'df') tm.assert_frame_equal(df, other) assert df.equals(other) assert other.equals(df) def test_preserve_timedeltaindex_type(self): # GH9635 # Storing TimedeltaIndexed DataFrames in fixed stores did not preserve # the type of the index. df = DataFrame(np.random.normal(size=(10, 5))) df.index = timedelta_range( start='0s', periods=10, freq='1s', name='example') with ensure_clean_store(self.path) as store: store['df'] = df assert_frame_equal(store['df'], df) def test_columns_multiindex_modified(self): # BUG: 7212 # read_hdf store.select modified the passed columns parameters # when multi-indexed. df = DataFrame(np.random.rand(4, 5), index=list('abcd'), columns=list('ABCDE')) df.index.name = 'letters' df = df.set_index(keys='E', append=True) data_columns = df.index.names + df.columns.tolist() with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', mode='a', append=True, data_columns=data_columns, index=False) cols2load = list('BCD') cols2load_original = list(cols2load) df_loaded = read_hdf(path, 'df', columns=cols2load) # noqa assert cols2load_original == cols2load @ignore_natural_naming_warning def test_to_hdf_with_object_column_names(self): # GH9057 # Writing HDF5 table format should only work for string-like # column types types_should_fail = [tm.makeIntIndex, tm.makeFloatIndex, tm.makeDateIndex, tm.makeTimedeltaIndex, tm.makePeriodIndex] types_should_run = [tm.makeStringIndex, tm.makeCategoricalIndex] if compat.PY3: types_should_run.append(tm.makeUnicodeIndex) else: # TODO: Add back to types_should_fail # https://github.com/pandas-dev/pandas/issues/20907 pass for index in types_should_fail: df = DataFrame(np.random.randn(10, 2), columns=index(2)) with ensure_clean_path(self.path) as path: with catch_warnings(record=True): with tm.assert_raises_regex( ValueError, ("cannot have non-object label " "DataIndexableCol")): df.to_hdf(path, 'df', format='table', data_columns=True) for index in types_should_run: df = DataFrame(np.random.randn(10, 2), columns=index(2)) with ensure_clean_path(self.path) as path: with catch_warnings(record=True): df.to_hdf(path, 'df', format='table', data_columns=True) result = pd.read_hdf( path, 'df', where="index = [{0}]".format(df.index[0])) assert(len(result)) def test_read_hdf_open_store(self): # GH10330 # No check for non-string path_or-buf, and no test of open store df = DataFrame(np.random.rand(4, 5), index=list('abcd'), columns=list('ABCDE')) df.index.name = 'letters' df = df.set_index(keys='E', append=True) with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', mode='w') direct = read_hdf(path, 'df') store = HDFStore(path, mode='r') indirect = read_hdf(store, 'df') tm.assert_frame_equal(direct, indirect) assert store.is_open store.close() def test_read_hdf_iterator(self): df = DataFrame(np.random.rand(4, 5), index=list('abcd'), columns=list('ABCDE')) df.index.name = 'letters' df = df.set_index(keys='E', append=True) with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', mode='w', format='t') direct = read_hdf(path, 'df') iterator = read_hdf(path, 'df', iterator=True) assert isinstance(iterator, TableIterator) indirect = next(iterator.__iter__()) tm.assert_frame_equal(direct, indirect) iterator.store.close() def test_read_hdf_errors(self): df = DataFrame(np.random.rand(4, 5), index=list('abcd'), columns=list('ABCDE')) with ensure_clean_path(self.path) as path: pytest.raises(IOError, read_hdf, path, 'key') df.to_hdf(path, 'df') store = HDFStore(path, mode='r') store.close() pytest.raises(IOError, read_hdf, store, 'df') def test_read_hdf_generic_buffer_errors(self): pytest.raises(NotImplementedError, read_hdf, BytesIO(b''), 'df') def test_invalid_complib(self): df = DataFrame(np.random.rand(4, 5), index=list('abcd'), columns=list('ABCDE')) with ensure_clean_path(self.path) as path: with pytest.raises(ValueError): df.to_hdf(path, 'df', complib='foolib') # GH10443 def test_read_nokey(self): df = DataFrame(np.random.rand(4, 5), index=list('abcd'), columns=list('ABCDE')) # Categorical dtype not supported for "fixed" format. So no need # to test with that dtype in the dataframe here. with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', mode='a') reread = read_hdf(path) assert_frame_equal(df, reread) df.to_hdf(path, 'df2', mode='a') pytest.raises(ValueError, read_hdf, path) def test_read_nokey_table(self): # GH13231 df = DataFrame({'i': range(5), 'c': Series(list('abacd'), dtype='category')}) with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', mode='a', format='table') reread = read_hdf(path) assert_frame_equal(df, reread) df.to_hdf(path, 'df2', mode='a', format='table') pytest.raises(ValueError, read_hdf, path) def test_read_nokey_empty(self): with ensure_clean_path(self.path) as path: store = HDFStore(path) store.close() pytest.raises(ValueError, read_hdf, path) @td.skip_if_no('pathlib') def test_read_from_pathlib_path(self): # GH11773 from pathlib import Path expected = DataFrame(np.random.rand(4, 5), index=list('abcd'), columns=list('ABCDE')) with ensure_clean_path(self.path) as filename: path_obj = Path(filename) expected.to_hdf(path_obj, 'df', mode='a') actual = read_hdf(path_obj, 'df') tm.assert_frame_equal(expected, actual) @td.skip_if_no('py.path') def test_read_from_py_localpath(self): # GH11773 from py.path import local as LocalPath expected = DataFrame(np.random.rand(4, 5), index=list('abcd'), columns=list('ABCDE')) with ensure_clean_path(self.path) as filename: path_obj = LocalPath(filename) expected.to_hdf(path_obj, 'df', mode='a') actual = read_hdf(path_obj, 'df') tm.assert_frame_equal(expected, actual) def test_query_long_float_literal(self): # GH 14241 df = pd.DataFrame({'A': [1000000000.0009, 1000000000.0011, 1000000000.0015]}) with ensure_clean_store(self.path) as store: store.append('test', df, format='table', data_columns=True) cutoff = 1000000000.0006 result = store.select('test', "A < %.4f" % cutoff) assert result.empty cutoff = 1000000000.0010 result = store.select('test', "A > %.4f" % cutoff) expected = df.loc[[1, 2], :] tm.assert_frame_equal(expected, result) exact = 1000000000.0011 result = store.select('test', 'A == %.4f' % exact) expected = df.loc[[1], :] tm.assert_frame_equal(expected, result) def test_query_compare_column_type(self): # GH 15492 df = pd.DataFrame({'date': ['2014-01-01', '2014-01-02'], 'real_date': date_range('2014-01-01', periods=2), 'float': [1.1, 1.2], 'int': [1, 2]}, columns=['date', 'real_date', 'float', 'int']) with ensure_clean_store(self.path) as store: store.append('test', df, format='table', data_columns=True) ts = pd.Timestamp('2014-01-01') # noqa result = store.select('test', where='real_date > ts') expected = df.loc[[1], :] tm.assert_frame_equal(expected, result) for op in ['<', '>', '==']: # non strings to string column always fail for v in [2.1, True, pd.Timestamp('2014-01-01'), pd.Timedelta(1, 's')]: query = 'date {op} v'.format(op=op) with pytest.raises(TypeError): result = store.select('test', where=query) # strings to other columns must be convertible to type v = 'a' for col in ['int', 'float', 'real_date']: query = '{col} {op} v'.format(op=op, col=col) with pytest.raises(ValueError): result = store.select('test', where=query) for v, col in zip(['1', '1.1', '2014-01-01'], ['int', 'float', 'real_date']): query = '{col} {op} v'.format(op=op, col=col) result = store.select('test', where=query) if op == '==': expected = df.loc[[0], :] elif op == '>': expected = df.loc[[1], :] else: expected = df.loc[[], :] tm.assert_frame_equal(expected, result) @pytest.mark.parametrize('format', ['fixed', 'table']) def test_read_hdf_series_mode_r(self, format): # GH 16583 # Tests that reading a Series saved to an HDF file # still works if a mode='r' argument is supplied series = tm.makeFloatSeries() with ensure_clean_path(self.path) as path: series.to_hdf(path, key='data', format=format) result = pd.read_hdf(path, key='data', mode='r') tm.assert_series_equal(result, series) @pytest.mark.skipif(not PY36, reason="Need python 3.6") def test_fspath(self): with tm.ensure_clean('foo.h5') as path: with pd.HDFStore(path) as store: assert os.fspath(store) == str(path) def test_read_py2_hdf_file_in_py3(self, datapath): # GH 16781 # tests reading a PeriodIndex DataFrame written in Python2 in Python3 # the file was generated in Python 2.7 like so: # # df = pd.DataFrame([1.,2,3], index=pd.PeriodIndex( # ['2015-01-01', '2015-01-02', '2015-01-05'], freq='B')) # df.to_hdf('periodindex_0.20.1_x86_64_darwin_2.7.13.h5', 'p') expected = pd.DataFrame([1., 2, 3], index=pd.PeriodIndex( ['2015-01-01', '2015-01-02', '2015-01-05'], freq='B')) with ensure_clean_store( datapath('io', 'data', 'legacy_hdf', 'periodindex_0.20.1_x86_64_darwin_2.7.13.h5'), mode='r') as store: result = store['p'] assert_frame_equal(result, expected) class TestHDFComplexValues(Base): # GH10447 def test_complex_fixed(self): df = DataFrame(np.random.rand(4, 5).astype(np.complex64), index=list('abcd'), columns=list('ABCDE')) with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df') reread = read_hdf(path, 'df') assert_frame_equal(df, reread) df = DataFrame(np.random.rand(4, 5).astype(np.complex128), index=list('abcd'), columns=list('ABCDE')) with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df') reread = read_hdf(path, 'df') assert_frame_equal(df, reread) def test_complex_table(self): df = DataFrame(np.random.rand(4, 5).astype(np.complex64), index=list('abcd'), columns=list('ABCDE')) with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', format='table') reread = read_hdf(path, 'df') assert_frame_equal(df, reread) df = DataFrame(np.random.rand(4, 5).astype(np.complex128), index=list('abcd'), columns=list('ABCDE')) with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', format='table', mode='w') reread = read_hdf(path, 'df') assert_frame_equal(df, reread) def test_complex_mixed_fixed(self): complex64 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex64) complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex128) df = DataFrame({'A': [1, 2, 3, 4], 'B': ['a', 'b', 'c', 'd'], 'C': complex64, 'D': complex128, 'E': [1.0, 2.0, 3.0, 4.0]}, index=list('abcd')) with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df') reread = read_hdf(path, 'df') assert_frame_equal(df, reread) def test_complex_mixed_table(self): complex64 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex64) complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex128) df = DataFrame({'A': [1, 2, 3, 4], 'B': ['a', 'b', 'c', 'd'], 'C': complex64, 'D': complex128, 'E': [1.0, 2.0, 3.0, 4.0]}, index=list('abcd')) with ensure_clean_store(self.path) as store: store.append('df', df, data_columns=['A', 'B']) result = store.select('df', where='A>2') assert_frame_equal(df.loc[df.A > 2], result) with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', format='table') reread = read_hdf(path, 'df') assert_frame_equal(df, reread) @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") def test_complex_across_dimensions_fixed(self): with catch_warnings(record=True): complex128 = np.array( [1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j]) s = Series(complex128, index=list('abcd')) df = DataFrame({'A': s, 'B': s}) p = Panel({'One': df, 'Two': df}) objs = [s, df, p] comps = [tm.assert_series_equal, tm.assert_frame_equal, tm.assert_panel_equal] for obj, comp in zip(objs, comps): with ensure_clean_path(self.path) as path: obj.to_hdf(path, 'obj', format='fixed') reread = read_hdf(path, 'obj') comp(obj, reread) @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") def test_complex_across_dimensions(self): complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j]) s = Series(complex128, index=list('abcd')) df = DataFrame({'A': s, 'B': s}) with catch_warnings(record=True): p = Panel({'One': df, 'Two': df}) objs = [df, p] comps = [tm.assert_frame_equal, tm.assert_panel_equal] for obj, comp in zip(objs, comps): with ensure_clean_path(self.path) as path: obj.to_hdf(path, 'obj', format='table') reread = read_hdf(path, 'obj') comp(obj, reread) def test_complex_indexing_error(self): complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex128) df = DataFrame({'A': [1, 2, 3, 4], 'B': ['a', 'b', 'c', 'd'], 'C': complex128}, index=list('abcd')) with ensure_clean_store(self.path) as store: pytest.raises(TypeError, store.append, 'df', df, data_columns=['C']) def test_complex_series_error(self): complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j]) s = Series(complex128, index=list('abcd')) with ensure_clean_path(self.path) as path: pytest.raises(TypeError, s.to_hdf, path, 'obj', format='t') with ensure_clean_path(self.path) as path: s.to_hdf(path, 'obj', format='t', index=False) reread = read_hdf(path, 'obj') tm.assert_series_equal(s, reread) def test_complex_append(self): df = DataFrame({'a': np.random.randn(100).astype(np.complex128), 'b': np.random.randn(100)}) with ensure_clean_store(self.path) as store: store.append('df', df, data_columns=['b']) store.append('df', df) result = store.select('df') assert_frame_equal(pd.concat([df, df], 0), result) class TestTimezones(Base): def _compare_with_tz(self, a, b): tm.assert_frame_equal(a, b) # compare the zones on each element for c in a.columns: for i in a.index: a_e = a.loc[i, c] b_e = b.loc[i, c] if not (a_e == b_e and a_e.tz == b_e.tz): raise AssertionError( "invalid tz comparison [%s] [%s]" % (a_e, b_e)) def test_append_with_timezones_dateutil(self): from datetime import timedelta # use maybe_get_tz instead of dateutil.tz.gettz to handle the windows # filename issues. from pandas._libs.tslibs.timezones import maybe_get_tz gettz = lambda x: maybe_get_tz('dateutil/' + x) # as columns with ensure_clean_store(self.path) as store: _maybe_remove(store, 'df_tz') df = DataFrame(dict(A=[Timestamp('20130102 2:00:00', tz=gettz( 'US/Eastern')) + timedelta(hours=1) * i for i in range(5)])) store.append('df_tz', df, data_columns=['A']) result = store['df_tz'] self._compare_with_tz(result, df) assert_frame_equal(result, df) # select with tz aware expected = df[df.A >= df.A[3]] result = store.select('df_tz', where='A>=df.A[3]') self._compare_with_tz(result, expected) # ensure we include dates in DST and STD time here. _maybe_remove(store, 'df_tz') df = DataFrame(dict(A=Timestamp('20130102', tz=gettz('US/Eastern')), B=Timestamp('20130603', tz=gettz('US/Eastern'))), index=range(5)) store.append('df_tz', df) result = store['df_tz'] self._compare_with_tz(result, df) assert_frame_equal(result, df) df = DataFrame(dict(A=Timestamp('20130102', tz=gettz('US/Eastern')), B=Timestamp('20130102', tz=gettz('EET'))), index=range(5)) pytest.raises(ValueError, store.append, 'df_tz', df) # this is ok _maybe_remove(store, 'df_tz') store.append('df_tz', df, data_columns=['A', 'B']) result = store['df_tz'] self._compare_with_tz(result, df) assert_frame_equal(result, df) # can't append with diff timezone df = DataFrame(dict(A=Timestamp('20130102', tz=gettz('US/Eastern')), B=Timestamp('20130102', tz=gettz('CET'))), index=range(5)) pytest.raises(ValueError, store.append, 'df_tz', df) # as index with ensure_clean_store(self.path) as store: # GH 4098 example df = DataFrame(dict(A=Series(lrange(3), index=date_range( '2000-1-1', periods=3, freq='H', tz=gettz('US/Eastern'))))) _maybe_remove(store, 'df') store.put('df', df) result = store.select('df') assert_frame_equal(result, df) _maybe_remove(store, 'df') store.append('df', df) result = store.select('df') assert_frame_equal(result, df) def test_append_with_timezones_pytz(self): from datetime import timedelta # as columns with ensure_clean_store(self.path) as store: _maybe_remove(store, 'df_tz') df = DataFrame(dict(A=[Timestamp('20130102 2:00:00', tz='US/Eastern') + timedelta(hours=1) * i for i in range(5)])) store.append('df_tz', df, data_columns=['A']) result = store['df_tz'] self._compare_with_tz(result, df) assert_frame_equal(result, df) # select with tz aware self._compare_with_tz(store.select( 'df_tz', where='A>=df.A[3]'), df[df.A >= df.A[3]]) _maybe_remove(store, 'df_tz') # ensure we include dates in DST and STD time here. df = DataFrame(dict(A=Timestamp('20130102', tz='US/Eastern'), B=Timestamp('20130603', tz='US/Eastern')), index=range(5)) store.append('df_tz', df) result = store['df_tz'] self._compare_with_tz(result, df) assert_frame_equal(result, df) df = DataFrame(dict(A=Timestamp('20130102', tz='US/Eastern'), B=Timestamp('20130102', tz='EET')), index=range(5)) pytest.raises(ValueError, store.append, 'df_tz', df) # this is ok _maybe_remove(store, 'df_tz') store.append('df_tz', df, data_columns=['A', 'B']) result = store['df_tz'] self._compare_with_tz(result, df) assert_frame_equal(result, df) # can't append with diff timezone df = DataFrame(dict(A=Timestamp('20130102', tz='US/Eastern'), B=Timestamp('20130102', tz='CET')), index=range(5)) pytest.raises(ValueError, store.append, 'df_tz', df) # as index with ensure_clean_store(self.path) as store: # GH 4098 example df = DataFrame(dict(A=Series(lrange(3), index=date_range( '2000-1-1', periods=3, freq='H', tz='US/Eastern')))) _maybe_remove(store, 'df') store.put('df', df) result = store.select('df') assert_frame_equal(result, df) _maybe_remove(store, 'df') store.append('df', df) result = store.select('df') assert_frame_equal(result, df) def test_tseries_select_index_column(self): # GH7777 # selecting a UTC datetimeindex column did # not preserve UTC tzinfo set before storing # check that no tz still works rng = date_range('1/1/2000', '1/30/2000') frame = DataFrame(np.random.randn(len(rng), 4), index=rng) with ensure_clean_store(self.path) as store: store.append('frame', frame) result = store.select_column('frame', 'index') assert rng.tz == DatetimeIndex(result.values).tz # check utc rng = date_range('1/1/2000', '1/30/2000', tz='UTC') frame = DataFrame(np.random.randn(len(rng), 4), index=rng) with ensure_clean_store(self.path) as store: store.append('frame', frame) result = store.select_column('frame', 'index') assert rng.tz == result.dt.tz # double check non-utc rng = date_range('1/1/2000', '1/30/2000', tz='US/Eastern') frame = DataFrame(np.random.randn(len(rng), 4), index=rng) with ensure_clean_store(self.path) as store: store.append('frame', frame) result = store.select_column('frame', 'index') assert rng.tz == result.dt.tz def test_timezones_fixed(self): with ensure_clean_store(self.path) as store: # index rng = date_range('1/1/2000', '1/30/2000', tz='US/Eastern') df = DataFrame(np.random.randn(len(rng), 4), index=rng) store['df'] = df result = store['df'] assert_frame_equal(result, df) # as data # GH11411 _maybe_remove(store, 'df') df = DataFrame({'A': rng, 'B': rng.tz_convert('UTC').tz_localize(None), 'C': rng.tz_convert('CET'), 'D': range(len(rng))}, index=rng) store['df'] = df result = store['df'] assert_frame_equal(result, df) def test_fixed_offset_tz(self): rng = date_range('1/1/2000 00:00:00-07:00', '1/30/2000 00:00:00-07:00') frame = DataFrame(np.random.randn(len(rng), 4), index=rng) with ensure_clean_store(self.path) as store: store['frame'] = frame recons = store['frame'] tm.assert_index_equal(recons.index, rng) assert rng.tz == recons.index.tz @td.skip_if_windows def test_store_timezone(self): # GH2852 # issue storing datetime.date with a timezone as it resets when read # back in a new timezone # original method with ensure_clean_store(self.path) as store: today = datetime.date(2013, 9, 10) df = DataFrame([1, 2, 3], index=[today, today, today]) store['obj1'] = df result = store['obj1'] assert_frame_equal(result, df) # with tz setting with ensure_clean_store(self.path) as store: with set_timezone('EST5EDT'): today = datetime.date(2013, 9, 10) df = DataFrame([1, 2, 3], index=[today, today, today]) store['obj1'] = df with set_timezone('CST6CDT'): result = store['obj1'] assert_frame_equal(result, df) def test_legacy_datetimetz_object(self, datapath): # legacy from < 0.17.0 # 8260 expected = DataFrame(dict(A=Timestamp('20130102', tz='US/Eastern'), B=Timestamp('20130603', tz='CET')), index=range(5)) with ensure_clean_store( datapath('io', 'data', 'legacy_hdf', 'datetimetz_object.h5'), mode='r') as store: result = store['df'] assert_frame_equal(result, expected) def test_dst_transitions(self): # make sure we are not failing on transaitions with ensure_clean_store(self.path) as store: times = pd.date_range("2013-10-26 23:00", "2013-10-27 01:00", tz="Europe/London", freq="H", ambiguous='infer') for i in [times, times + pd.Timedelta('10min')]: _maybe_remove(store, 'df') df = DataFrame({'A': range(len(i)), 'B': i}, index=i) store.append('df', df) result = store.select('df') assert_frame_equal(result, df)
bsd-3-clause
cpcloud/dynd-python
dynd/benchmarks/benchmark_random.py
8
1751
from operator import add from dynd import nd, ndt import matplotlib import matplotlib.pyplot from benchrun import Benchmark, median from benchtime import Timer, CUDATimer #size = [10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000] size = [10, 100, 1000, 10000, 100000, 1000000, 10000000] class UniformBenchmark(Benchmark): parameters = ('size',) size = size def __init__(self, cuda = False): Benchmark.__init__(self) self.cuda = cuda @median def run(self, size): if self.cuda: dst_tp = ndt.type('cuda_device[{} * float64]'.format(size)) else: dst_tp = ndt.type('{} * float64'.format(size)) dst = nd.empty(dst_tp) with CUDATimer() if self.cuda else Timer() as timer: nd.uniform(dst_tp = dst_tp) return timer.elapsed_time() class NumPyUniformBenchmark(Benchmark): parameters = ('size',) size = size @median def run(self, size): import numpy as np with Timer() as timer: np.random.uniform(size = size) return timer.elapsed_time() class PyCUDAUniformBenchmark(Benchmark): parameters = ('size',) size = size def __init__(self, gen): Benchmark.__init__(self) self.gen = gen @median def run(self, size): import numpy as np with CUDATimer() as timer: self.gen.gen_uniform(size, np.float64) return timer.elapsed_time() if __name__ == '__main__': cuda = True benchmark = UniformBenchmark(cuda = cuda) benchmark.plot_result(loglog = True) benchmark = NumPyUniformBenchmark() benchmark.plot_result(loglog = True) if cuda: from pycuda import curandom benchmark = PyCUDAUniformBenchmark(curandom.XORWOWRandomNumberGenerator()) benchmark.plot_result(loglog = True) matplotlib.pyplot.show()
bsd-2-clause
omrihar/1_npfi
fig2.py
1
8444
#!/usr/bin/env python2 # encoding: utf-8 ''' fig2.py Written by: Omri Har-Shemesh, Computational Science Lab, University of Amsterdam [email protected] Last updated on 25 September 2015 Description: Figure 2 in Ref.[1] References: [1] O. Har-Shemesh, R. Quax, B. Miñano, A.G. Hoekstra, P.M.A. Sloot, Non-parametric estimation of Fisher information from real data, arxiv:1507.00964[stat.CO] Functions: Dependencies: numpy matplotlib timeit cPickle os gzip npfi.py ''' from __future__ import division import numpy as np from numpy.random import normal import matplotlib.pyplot as plt import os import gzip import cPickle as pickle import timeit from npfi import npfi, get_pdfs_from_data def simulate_data(ss, N, rep, e, zero, G, alpha, fname): """ Simulates the data for the plot Args: ss: An array of sigma values to estimate the FI at. N: Number of data points for each PDF. rep: Number of repetitions of the whole simulation. e: The value of the epsilon parameter. zero: What should npfi consider as zero G: G for DEFT alpha: alpha for DEFT fname: Name of the file where the simulation data will be stored. Returns: data: A dictionary with all simulated data, which was also stored to the file. """ # All list containers we need to store the values we compute FI_deft_median, FI_deft_5, FI_deft_95 = [], [], [] FI_kde_median, FI_kde_5, FI_kde_95 = [], [], [] err_deft_median, err_deft_5, err_deft_95 = [], [], [] err_kde_median, err_kde_5, err_kde_95 = [], [], [] FI_deft_values_all, FI_kde_values_all = [], [] dss = [] # Go over all sigma values in ss for i, s in enumerate(ss): real_FI = 2 / s ** 2 ds = s / (e * np.sqrt(N)) # Choose ds according to desired epsilon # If ds >= s we have a problem of sampling with negative std while ds >= s: ds *= 0.9 dss.append(ds) # Estimate the FI for rep repetitions FI_deft_values, FI_kde_values = [], [] for j in range(rep): sim_data = [normal(size=N, scale=s), normal(size=N, scale=s-ds), normal(size=N, scale=s+ds)] pdfs_deft, bbox_deft = get_pdfs_from_data(sim_data, method="deft", G=G, alpha=alpha, bbox="adjust") pdfs_kde, bbox_kde = get_pdfs_from_data(sim_data, method="gaussian_kde") FI_deft, a, b = npfi(pdfs_deft, ds, bounds=bbox_deft, logarithmic=False, zero=zero, N=N) FI_kde, a, b = npfi(pdfs_kde, ds, bounds=bbox_kde, logarithmic=True, zero=zero, N=N) FI_deft_values.append(FI_deft) FI_kde_values.append(FI_kde) # More convenient to use as numpy arrays FI_deft_values = np.array(FI_deft_values) FI_kde_values = np.array(FI_kde_values) FI_deft_values_all.append(FI_deft_values) FI_kde_values_all.append(FI_kde_values) # Compute statistics from the values we obtained FI_deft_median.append(np.median(FI_deft_values)) FI_deft_5.append(np.percentile(FI_deft_values, 5)) FI_deft_95.append(np.percentile(FI_deft_values, 95)) FI_kde_median.append(np.median(FI_kde_values)) FI_kde_5.append(np.percentile(FI_kde_values, 5)) FI_kde_95.append(np.percentile(FI_kde_values, 95)) # Compute relative error statistics err_deft_values = (FI_deft_values - real_FI) / real_FI err_deft_median.append(np.median(err_deft_values)) err_deft_5.append(np.percentile(err_deft_values, 5)) err_deft_95.append(np.percentile(err_deft_values, 95)) err_kde_values = (FI_kde_values - real_FI) / real_FI err_kde_median.append(np.median(err_kde_values)) err_kde_5.append(np.percentile(err_kde_values, 5)) err_kde_95.append(np.percentile(err_kde_values, 95)) if __debug__: print("Finished %d from %d values" % (i+1, len(ss))) f = gzip.open(fname, "wb") data = dict(ss=ss, dss=dss, FI_deft_values_all=FI_deft_values_all, FI_kde_values_all=FI_kde_values_all, FI_deft_median=FI_deft_median, FI_kde_median=FI_kde_median, FI_deft_5=FI_deft_5, FI_deft_95=FI_deft_95, FI_kde_5=FI_kde_5, FI_kde_95=FI_kde_95, err_deft_median=err_deft_median, err_kde_median=err_kde_median, err_deft_5=err_deft_5, err_deft_95=err_deft_95, err_kde_5=err_kde_5, err_kde_95=err_kde_95) pickle.dump(data, f) f.close() return data def plot_data(data, fname=None): """ Plots the data, either using plt.show or saves to a file. Args: data: The data produced by sim_data fname: If None, plot to screen, else save figure as fname. Returns: Nothing """ x = data['ss'] xx = np.linspace(data['ss'][0], data['ss'][-1]*1.05, 1000) # Analytic curve y = 2.0 / (x ** 2) yy = 2.0 / (xx ** 2) # Get the data to plot y1 = np.array(data['FI_deft_median']) y1_rel_err = np.array(data['err_deft_median']) y2 = np.array(data['FI_kde_median']) y2_rel_err = np.array(data['err_kde_median']) y1_err = [np.array(y1-data['FI_deft_5']), np.array(data['FI_deft_95'])-y1] y2_err = [np.array(y2-data['FI_kde_5']), np.array(data['FI_kde_95'])-y2] y1_err_spread = [np.array(y1_rel_err-data['err_deft_5']), np.array(data['err_deft_95'])-y1_rel_err] y2_err_spread = [np.array(y2_rel_err-data['err_kde_5']), np.array(data['err_kde_95'])-y2_rel_err] # Some plotting settings plt.style.use("publication") fig = plt.figure() fig.set_size_inches(5, 5) # Should we skip the first value because it's FI is too high? 0 means no, 1 # means skip 1, etc... skip_first = 1 y1_err = [y1_err[0][skip_first:], y1_err[1][skip_first:]] y2_err = [y2_err[0][skip_first:], y2_err[1][skip_first:]] y1_err_spread = [y1_err_spread[0][skip_first:], y1_err_spread[1][skip_first:]] y2_err_spread = [y2_err_spread[0][skip_first:], y2_err_spread[1][skip_first:]] # Upper plot (showing FI values) ax1 = fig.add_subplot(211) ax1.plot(xx, yy, "k", lw=2.0, label="True value") lw = 1.5 deft_color = "#00a442" ax1.errorbar(x[skip_first:], y1[skip_first:], y1_err, fmt="o", color=deft_color, lw=lw, label="FI (DEFT)") ax1.errorbar(x[skip_first:], y2[skip_first:], y2_err, fmt="x", color="#08519c", lw=lw, label="FI (KDE)") ax1.set_xlim(0.1, 1.05) ax1.set_ylabel("$g_{\sigma\sigma}$") ax1.legend(loc='upper right', prop={"size": 8}, numpoints=1) ax1.set_ylim(0,100) plt.setp(ax1.get_xticklabels(), visible=False) ax1.get_xaxis().set_tick_params(direction='in', top=False) # Relative errors plot ax2 = fig.add_subplot(212, sharex=ax1) ax2.errorbar(x[skip_first:], y1_rel_err[skip_first:], y1_err_spread, fmt="o", lw=lw, color=deft_color, label="DEFT Relative Error") ax2.errorbar(x[skip_first:], y2_rel_err[skip_first:], y2_err_spread, fmt="x", lw=lw, color="#08519c", label="KDE Relative Error") ax2.get_xaxis().set_tick_params(top=False) ax2.set_xlim(0.1, 1.05) ax2.set_ylim(-0.2, 1.2) ax2.set_xlabel("$\sigma$") ax2.set_ylabel(r"$\frac{FI-g_{\sigma\sigma}}{g_{\sigma\sigma}}$") ax2.legend(loc='upper right', prop={"size": 8}, numpoints=1) if fname is None: plt.show() else: plt.savefig(fname, dpi=700, bbox_inches="tight") if __name__ == '__main__': start_time = timeit.default_timer() # Parameters of the plot ss = np.linspace(0.1, 1, 10) N = 10000 rep = 100 e = 0.05 zero = np.power(10.0, -10) G = 100 alpha = 3 seed = 100 np.random.seed(seed) fname = "fig2_data_N_%d_rep_%d_e_%.4f_seed_%d.pklz" % (N, rep, e, seed) if os.path.isfile(fname): print("Found file!") f = gzip.open(fname, "rb") data = pickle.load(f) f.close() else: print("Didn't find file, simulating...") data = simulate_data(ss, N, rep, e, zero, G, alpha, fname) if __debug__: print("Obtaining the data took %.2f seconds" % (timeit.default_timer()-start_time)) plot_data(data)
mit
EarToEarOak/RTLSDR-Scanner
rtlsdr_scanner/dialogs_help.py
1
5039
# # rtlsdr_scan # # http://eartoearoak.com/software/rtlsdr-scanner # # Copyright 2012 - 2015 Al Brown # # A frequency scanning GUI for the OsmoSDR rtl-sdr library at # http://sdr.osmocom.org/trac/wiki/rtl-sdr # # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # import multiprocessing import platform import sys from PIL import Image import matplotlib import numpy import serial import wx from rtlsdr_scanner.utils_wx import load_bitmap from rtlsdr_scanner.version import VERSION class DialogSysInfo(wx.Dialog): def __init__(self, parent): wx.Dialog.__init__(self, parent=parent, title="System Information") textVersions = wx.TextCtrl(self, style=wx.TE_MULTILINE | wx.TE_READONLY | wx.TE_DONTWRAP | wx.TE_NO_VSCROLL) buttonOk = wx.Button(self, wx.ID_OK) self.__populate_versions(textVersions) sizer = wx.BoxSizer(wx.VERTICAL) sizer.Add(textVersions, 1, flag=wx.ALL, border=10) sizer.Add(buttonOk, 0, flag=wx.ALL | wx.ALIGN_RIGHT, border=10) self.SetSizerAndFit(sizer) self.Centre() def __populate_versions(self, control): imageType = 'Pillow' try: imageVer = Image.PILLOW_VERSION except AttributeError: imageType = 'PIL' imageVer = Image.VERSION visvisVer = 'Not installed' if not hasattr(sys, 'frozen'): try: import visvis as vv visvisVer = vv.__version__ except ImportError: pass versions = ('Hardware:\n' '\tProcessor: {}, {} cores\n\n' 'Software:\n' '\tOS: {}, {}\n' '\tPython: {}\n' '\tmatplotlib: {}\n' '\tNumPy: {}\n' '\t{}: {}\n' '\tpySerial: {}\n' '\tvisvis: {}\n' '\twxPython: {}\n' ).format(platform.processor(), multiprocessing.cpu_count(), platform.platform(), platform.machine(), platform.python_version(), matplotlib.__version__, numpy.version.version, imageType, imageVer, serial.VERSION, visvisVer, wx.version()) control.SetValue(versions) dc = wx.WindowDC(control) extent = list(dc.GetMultiLineTextExtent(versions, control.GetFont())) extent[0] += wx.SystemSettings.GetMetric(wx.SYS_VSCROLL_X) * 2 extent[1] += wx.SystemSettings.GetMetric(wx.SYS_HSCROLL_Y) * 2 control.SetMinSize((extent[0], extent[1])) self.Layout() class DialogAbout(wx.Dialog): def __init__(self, parent): wx.Dialog.__init__(self, parent=parent, title="About") bitmapIcon = wx.StaticBitmap(self, bitmap=load_bitmap('icon')) textAbout = wx.StaticText(self, label="A simple spectrum analyser for " "scanning\n with a RTL-SDR compatible USB " "device", style=wx.ALIGN_CENTRE) textLink = wx.HyperlinkCtrl(self, wx.ID_ANY, label="http://eartoearoak.com/software/rtlsdr-scanner", url="http://eartoearoak.com/software/rtlsdr-scanner") textVersion = wx.StaticText(self, label='v' + '.'.join([str(x) for x in VERSION])) buttonOk = wx.Button(self, wx.ID_OK) grid = wx.GridBagSizer(10, 10) grid.Add(bitmapIcon, pos=(0, 0), span=(3, 1), flag=wx.ALIGN_LEFT | wx.ALL, border=10) grid.Add(textAbout, pos=(0, 1), span=(1, 2), flag=wx.ALIGN_CENTRE | wx.ALL, border=10) grid.Add(textLink, pos=(1, 1), span=(1, 2), flag=wx.ALIGN_CENTRE | wx.ALL, border=10) grid.Add(textVersion, pos=(2, 1), span=(1, 2), flag=wx.ALIGN_CENTRE | wx.ALL, border=10) grid.Add(buttonOk, pos=(3, 2), flag=wx.ALIGN_RIGHT | wx.ALL, border=10) self.SetSizerAndFit(grid) self.Centre() if __name__ == '__main__': print 'Please run rtlsdr_scan.py' exit(1)
gpl-3.0
pombredanne/bokeh
bokeh/core/json_encoder.py
3
3319
''' Provide a custom JSON encoder for serializing Bokeh models. ''' from __future__ import absolute_import import logging log = logging.getLogger(__name__) import calendar import datetime as dt import decimal import json import numpy as np from ..settings import settings from ..util.dependencies import import_optional from ..util.serialization import transform_series, transform_array pd = import_optional('pandas') rd = import_optional("dateutil.relativedelta") class BokehJSONEncoder(json.JSONEncoder): ''' Encode values to be used in Bokeh documents or communicated to a Bokeh server. ''' def transform_python_types(self, obj): ''' Handle special scalars, use default json encoder otherwise ''' # Pandas Timestamp if pd and isinstance(obj, pd.tslib.Timestamp): return obj.value / 10**6.0 #nanosecond to millisecond elif np.issubdtype(type(obj), np.float): return float(obj) elif np.issubdtype(type(obj), np.int): return int(obj) elif np.issubdtype(type(obj), np.bool_): return bool(obj) # Datetime # datetime is a subclass of date. elif isinstance(obj, dt.datetime): return calendar.timegm(obj.timetuple()) * 1000. + obj.microsecond / 1000. # Date elif isinstance(obj, dt.date): return calendar.timegm(obj.timetuple()) * 1000. # Numpy datetime64 elif isinstance(obj, np.datetime64): epoch_delta = obj - np.datetime64('1970-01-01T00:00:00Z') return (epoch_delta / np.timedelta64(1, 'ms')) # Time elif isinstance(obj, dt.time): return (obj.hour * 3600 + obj.minute * 60 + obj.second) * 1000 + obj.microsecond / 1000. elif rd and isinstance(obj, rd.relativedelta): return dict(years=obj.years, months=obj.months, days=obj.days, hours=obj.hours, minutes=obj.minutes, seconds=obj.seconds, microseconds=obj.microseconds) # Decimal elif isinstance(obj, decimal.Decimal): return float(obj) else: return super(BokehJSONEncoder, self).default(obj) def default(self, obj): #argh! local import! from ..model import Model from ..colors import Color from .properties import HasProps ## array types if pd and isinstance(obj, (pd.Series, pd.Index)): return transform_series(obj) elif isinstance(obj, np.ndarray): return transform_array(obj) elif isinstance(obj, Model): return obj.ref elif isinstance(obj, HasProps): return obj.properties_with_values(include_defaults=False) elif isinstance(obj, Color): return obj.to_css() else: return self.transform_python_types(obj) def serialize_json(obj, encoder=BokehJSONEncoder, indent=None, **kwargs): ''' Return a serialized JSON representation of a Bokeh model. ''' pretty = settings.pretty(False) if pretty: separators=(",", ": ") else: separators=(",", ":") if pretty and indent is None: indent = 2 return json.dumps(obj, cls=encoder, allow_nan=False, indent=indent, separators=separators, sort_keys=True, **kwargs)
bsd-3-clause
cython-testbed/pandas
pandas/tests/test_sorting.py
1
17592
import pytest from itertools import product from collections import defaultdict import warnings from datetime import datetime import numpy as np from numpy import nan from pandas.core import common as com from pandas import (DataFrame, MultiIndex, merge, concat, Series, compat, _np_version_under1p10) from pandas.util import testing as tm from pandas.util.testing import assert_frame_equal, assert_series_equal from pandas.core.sorting import (is_int64_overflow_possible, decons_group_index, get_group_index, nargsort, lexsort_indexer, safe_sort) class TestSorting(object): @pytest.mark.slow def test_int64_overflow(self): B = np.concatenate((np.arange(1000), np.arange(1000), np.arange(500))) A = np.arange(2500) df = DataFrame({'A': A, 'B': B, 'C': A, 'D': B, 'E': A, 'F': B, 'G': A, 'H': B, 'values': np.random.randn(2500)}) lg = df.groupby(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']) rg = df.groupby(['H', 'G', 'F', 'E', 'D', 'C', 'B', 'A']) left = lg.sum()['values'] right = rg.sum()['values'] exp_index, _ = left.index.sortlevel() tm.assert_index_equal(left.index, exp_index) exp_index, _ = right.index.sortlevel(0) tm.assert_index_equal(right.index, exp_index) tups = list(map(tuple, df[['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H' ]].values)) tups = com.asarray_tuplesafe(tups) expected = df.groupby(tups).sum()['values'] for k, v in compat.iteritems(expected): assert left[k] == right[k[::-1]] assert left[k] == v assert len(left) == len(right) def test_int64_overflow_moar(self): # GH9096 values = range(55109) data = DataFrame.from_dict( {'a': values, 'b': values, 'c': values, 'd': values}) grouped = data.groupby(['a', 'b', 'c', 'd']) assert len(grouped) == len(values) arr = np.random.randint(-1 << 12, 1 << 12, (1 << 15, 5)) i = np.random.choice(len(arr), len(arr) * 4) arr = np.vstack((arr, arr[i])) # add sume duplicate rows i = np.random.permutation(len(arr)) arr = arr[i] # shuffle rows df = DataFrame(arr, columns=list('abcde')) df['jim'], df['joe'] = np.random.randn(2, len(df)) * 10 gr = df.groupby(list('abcde')) # verify this is testing what it is supposed to test! assert is_int64_overflow_possible(gr.grouper.shape) # manually compute groupings jim, joe = defaultdict(list), defaultdict(list) for key, a, b in zip(map(tuple, arr), df['jim'], df['joe']): jim[key].append(a) joe[key].append(b) assert len(gr) == len(jim) mi = MultiIndex.from_tuples(jim.keys(), names=list('abcde')) def aggr(func): f = lambda a: np.fromiter(map(func, a), dtype='f8') arr = np.vstack((f(jim.values()), f(joe.values()))).T res = DataFrame(arr, columns=['jim', 'joe'], index=mi) return res.sort_index() assert_frame_equal(gr.mean(), aggr(np.mean)) assert_frame_equal(gr.median(), aggr(np.median)) def test_lexsort_indexer(self): keys = [[nan] * 5 + list(range(100)) + [nan] * 5] # orders=True, na_position='last' result = lexsort_indexer(keys, orders=True, na_position='last') exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp)) # orders=True, na_position='first' result = lexsort_indexer(keys, orders=True, na_position='first') exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105)) tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp)) # orders=False, na_position='last' result = lexsort_indexer(keys, orders=False, na_position='last') exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp)) # orders=False, na_position='first' result = lexsort_indexer(keys, orders=False, na_position='first') exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1)) tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp)) def test_nargsort(self): # np.argsort(items) places NaNs last items = [nan] * 5 + list(range(100)) + [nan] * 5 # np.argsort(items2) may not place NaNs first items2 = np.array(items, dtype='O') try: # GH 2785; due to a regression in NumPy1.6.2 np.argsort(np.array([[1, 2], [1, 3], [1, 2]], dtype='i')) np.argsort(items2, kind='mergesort') except TypeError: pytest.skip('requested sort not available for type') # mergesort is the most difficult to get right because we want it to be # stable. # According to numpy/core/tests/test_multiarray, """The number of # sorted items must be greater than ~50 to check the actual algorithm # because quick and merge sort fall over to insertion sort for small # arrays.""" # mergesort, ascending=True, na_position='last' result = nargsort(items, kind='mergesort', ascending=True, na_position='last') exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=True, na_position='first' result = nargsort(items, kind='mergesort', ascending=True, na_position='first') exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=False, na_position='last' result = nargsort(items, kind='mergesort', ascending=False, na_position='last') exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=False, na_position='first' result = nargsort(items, kind='mergesort', ascending=False, na_position='first') exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=True, na_position='last' result = nargsort(items2, kind='mergesort', ascending=True, na_position='last') exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=True, na_position='first' result = nargsort(items2, kind='mergesort', ascending=True, na_position='first') exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=False, na_position='last' result = nargsort(items2, kind='mergesort', ascending=False, na_position='last') exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=False, na_position='first' result = nargsort(items2, kind='mergesort', ascending=False, na_position='first') exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) class TestMerge(object): @pytest.mark.slow def test_int64_overflow_issues(self): # #2690, combinatorial explosion df1 = DataFrame(np.random.randn(1000, 7), columns=list('ABCDEF') + ['G1']) df2 = DataFrame(np.random.randn(1000, 7), columns=list('ABCDEF') + ['G2']) # it works! result = merge(df1, df2, how='outer') assert len(result) == 2000 low, high, n = -1 << 10, 1 << 10, 1 << 20 left = DataFrame(np.random.randint(low, high, (n, 7)), columns=list('ABCDEFG')) left['left'] = left.sum(axis=1) # one-2-one match i = np.random.permutation(len(left)) right = left.iloc[i].copy() right.columns = right.columns[:-1].tolist() + ['right'] right.index = np.arange(len(right)) right['right'] *= -1 out = merge(left, right, how='outer') assert len(out) == len(left) assert_series_equal(out['left'], - out['right'], check_names=False) result = out.iloc[:, :-2].sum(axis=1) assert_series_equal(out['left'], result, check_names=False) assert result.name is None out.sort_values(out.columns.tolist(), inplace=True) out.index = np.arange(len(out)) for how in ['left', 'right', 'outer', 'inner']: assert_frame_equal(out, merge(left, right, how=how, sort=True)) # check that left merge w/ sort=False maintains left frame order out = merge(left, right, how='left', sort=False) assert_frame_equal(left, out[left.columns.tolist()]) out = merge(right, left, how='left', sort=False) assert_frame_equal(right, out[right.columns.tolist()]) # one-2-many/none match n = 1 << 11 left = DataFrame(np.random.randint(low, high, (n, 7)).astype('int64'), columns=list('ABCDEFG')) # confirm that this is checking what it is supposed to check shape = left.apply(Series.nunique).values assert is_int64_overflow_possible(shape) # add duplicates to left frame left = concat([left, left], ignore_index=True) right = DataFrame(np.random.randint(low, high, (n // 2, 7)) .astype('int64'), columns=list('ABCDEFG')) # add duplicates & overlap with left to the right frame i = np.random.choice(len(left), n) right = concat([right, right, left.iloc[i]], ignore_index=True) left['left'] = np.random.randn(len(left)) right['right'] = np.random.randn(len(right)) # shuffle left & right frames i = np.random.permutation(len(left)) left = left.iloc[i].copy() left.index = np.arange(len(left)) i = np.random.permutation(len(right)) right = right.iloc[i].copy() right.index = np.arange(len(right)) # manually compute outer merge ldict, rdict = defaultdict(list), defaultdict(list) for idx, row in left.set_index(list('ABCDEFG')).iterrows(): ldict[idx].append(row['left']) for idx, row in right.set_index(list('ABCDEFG')).iterrows(): rdict[idx].append(row['right']) vals = [] for k, lval in ldict.items(): rval = rdict.get(k, [np.nan]) for lv, rv in product(lval, rval): vals.append(k + tuple([lv, rv])) for k, rval in rdict.items(): if k not in ldict: for rv in rval: vals.append(k + tuple([np.nan, rv])) def align(df): df = df.sort_values(df.columns.tolist()) df.index = np.arange(len(df)) return df def verify_order(df): kcols = list('ABCDEFG') assert_frame_equal(df[kcols].copy(), df[kcols].sort_values(kcols, kind='mergesort')) out = DataFrame(vals, columns=list('ABCDEFG') + ['left', 'right']) out = align(out) jmask = {'left': out['left'].notna(), 'right': out['right'].notna(), 'inner': out['left'].notna() & out['right'].notna(), 'outer': np.ones(len(out), dtype='bool')} for how in 'left', 'right', 'outer', 'inner': mask = jmask[how] frame = align(out[mask].copy()) assert mask.all() ^ mask.any() or how == 'outer' for sort in [False, True]: res = merge(left, right, how=how, sort=sort) if sort: verify_order(res) # as in GH9092 dtypes break with outer/right join assert_frame_equal(frame, align(res), check_dtype=how not in ('right', 'outer')) def test_decons(): def testit(label_list, shape): group_index = get_group_index(label_list, shape, sort=True, xnull=True) label_list2 = decons_group_index(group_index, shape) for a, b in zip(label_list, label_list2): tm.assert_numpy_array_equal(a, b) shape = (4, 5, 6) label_list = [np.tile([0, 1, 2, 3, 0, 1, 2, 3], 100).astype(np.int64), np.tile([0, 2, 4, 3, 0, 1, 2, 3], 100).astype(np.int64), np.tile([5, 1, 0, 2, 3, 0, 5, 4], 100).astype(np.int64)] testit(label_list, shape) shape = (10000, 10000) label_list = [np.tile(np.arange(10000, dtype=np.int64), 5), np.tile(np.arange(10000, dtype=np.int64), 5)] testit(label_list, shape) class TestSafeSort(object): def test_basic_sort(self): values = [3, 1, 2, 0, 4] result = safe_sort(values) expected = np.array([0, 1, 2, 3, 4]) tm.assert_numpy_array_equal(result, expected) values = list("baaacb") result = safe_sort(values) expected = np.array(list("aaabbc"), dtype='object') tm.assert_numpy_array_equal(result, expected) values = [] result = safe_sort(values) expected = np.array([]) tm.assert_numpy_array_equal(result, expected) def test_labels(self): values = [3, 1, 2, 0, 4] expected = np.array([0, 1, 2, 3, 4]) labels = [0, 1, 1, 2, 3, 0, -1, 4] result, result_labels = safe_sort(values, labels) expected_labels = np.array([3, 1, 1, 2, 0, 3, -1, 4], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_labels, expected_labels) # na_sentinel labels = [0, 1, 1, 2, 3, 0, 99, 4] result, result_labels = safe_sort(values, labels, na_sentinel=99) expected_labels = np.array([3, 1, 1, 2, 0, 3, 99, 4], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_labels, expected_labels) # out of bound indices labels = [0, 101, 102, 2, 3, 0, 99, 4] result, result_labels = safe_sort(values, labels) expected_labels = np.array([3, -1, -1, 2, 0, 3, -1, 4], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_labels, expected_labels) labels = [] result, result_labels = safe_sort(values, labels) expected_labels = np.array([], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_labels, expected_labels) def test_mixed_integer(self): values = np.array(['b', 1, 0, 'a', 0, 'b'], dtype=object) result = safe_sort(values) expected = np.array([0, 0, 1, 'a', 'b', 'b'], dtype=object) tm.assert_numpy_array_equal(result, expected) values = np.array(['b', 1, 0, 'a'], dtype=object) labels = [0, 1, 2, 3, 0, -1, 1] result, result_labels = safe_sort(values, labels) expected = np.array([0, 1, 'a', 'b'], dtype=object) expected_labels = np.array([3, 1, 0, 2, 3, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_labels, expected_labels) def test_mixed_integer_from_list(self): values = ['b', 1, 0, 'a', 0, 'b'] result = safe_sort(values) expected = np.array([0, 0, 1, 'a', 'b', 'b'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_unsortable(self): # GH 13714 arr = np.array([1, 2, datetime.now(), 0, 3], dtype=object) if compat.PY2 and not _np_version_under1p10: # RuntimeWarning: tp_compare didn't return -1 or -2 for exception with warnings.catch_warnings(): pytest.raises(TypeError, safe_sort, arr) else: pytest.raises(TypeError, safe_sort, arr) def test_exceptions(self): with tm.assert_raises_regex(TypeError, "Only list-like objects are allowed"): safe_sort(values=1) with tm.assert_raises_regex(TypeError, "Only list-like objects or None"): safe_sort(values=[0, 1, 2], labels=1) with tm.assert_raises_regex(ValueError, "values should be unique"): safe_sort(values=[0, 1, 2, 1], labels=[0, 1])
bsd-3-clause
gautam1168/tardis
tardis/gui.py
2
31607
import numpy as np import matplotlib #matplotlib.use('KtAgg') import matplotlib.pylab as plt import matplotlib.gridspec as gridspec from matplotlib import colors from matplotlib.patches import Circle from matplotlib.figure import * from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt4 import NavigationToolbar2QT as NavigationToolbar from PySide import QtGui, QtCore from astropy import units as u from tardis import analysis, util # def current_ion_index(index, index_list): # if not index in index_list: # return None # if not (index - 1) in index_list: # return 0 # else: # return current_ion_index(index - 1, index_list) + 1 # # def current_ion_index(index, duplicate_list): # if duplicate_list[index - 1] != duplicate_list[index]: # return 0 # else: # return current_ion_index(index - 1, duplicate_list) + 1 class ModelViewer(QtGui.QWidget): def __init__(self, parent=None): # assumes that qt has already been initialized by starting IPython with the flag "--pylab=qt" app = QtCore.QCoreApplication.instance() if app is None: app = QtGui.QApplication([]) try: from IPython.lib.guisupport import start_event_loop_qt4 start_event_loop_qt4(app) except ImportError: app.exec_() super(ModelViewer, self).__init__(parent) self.model = None self.shell_info = {} self.line_info = [] self.setGeometry(20, 35, 1250, 500) self.setWindowTitle('Shells Viewer') self.tablemodel = SimpleTableModel([['Shell: '], ["Rad. temp", "Ws"]], (1, 0)) self.tableview = QtGui.QTableView() self.graph = MatplotlibWidget(self, 'model') self.graph_label = QtGui.QLabel('Select Property:') self.graph_button = QtGui.QToolButton() self.spectrum = MatplotlibWidget(self) self.spectrum_label = QtGui.QLabel('Select Spectrum:') self.spectrum_button = QtGui.QToolButton() self.spectrum_span_button = QtGui.QPushButton('Show Wavelength Range') self.spectrum_line_info_button = QtGui.QPushButton('Show Line Info') self.layout = QtGui.QHBoxLayout() self.graph_sublayout = QtGui.QVBoxLayout() self.graph_subsublayout = QtGui.QHBoxLayout() self.spectrum_sublayout = QtGui.QVBoxLayout() self.spectrum_subsublayout = QtGui.QHBoxLayout() self.tableview.setMinimumWidth(200) self.tableview.connect(self.tableview.verticalHeader(), QtCore.SIGNAL('sectionClicked(int)'), self.graph.highlight_shell) self.tableview.connect(self.tableview.verticalHeader(), QtCore.SIGNAL('sectionDoubleClicked(int)'), self.on_header_double_clicked) self.graph_button.setText('Rad. temp') self.spectrum_button.setText('spec_flux_angstrom') self.graph_button.setPopupMode(QtGui.QToolButton.MenuButtonPopup) self.spectrum_button.setPopupMode(QtGui.QToolButton.MenuButtonPopup) self.graph_button.setMenu(QtGui.QMenu(self.graph_button)) self.spectrum_button.setMenu(QtGui.QMenu(self.spectrum_button)) self.graph_button.menu().addAction('Rad. temp').triggered.connect(self.change_graph_to_t_rads) self.graph_button.menu().addAction('Ws').triggered.connect(self.change_graph_to_ws) self.spectrum_button.menu().addAction('spec_flux_angstrom').triggered.connect(self.change_spectrum_to_spec_flux_angstrom) self.spectrum_button.menu().addAction('spec_virtual_flux_angstrom').triggered.connect(self.change_spectrum_to_spec_virtual_flux_angstrom) self.spectrum_span_button.clicked.connect(self.spectrum.show_span) self.spectrum_line_info_button.clicked.connect(self.spectrum.show_line_info) self.layout.addWidget(self.tableview) self.graph_subsublayout.addWidget(self.graph_label) self.graph_subsublayout.addWidget(self.graph_button) self.graph_sublayout.addLayout(self.graph_subsublayout) self.graph_sublayout.addWidget(self.graph) self.layout.addLayout(self.graph_sublayout) self.spectrum_subsublayout.addWidget(self.spectrum_span_button) self.spectrum_subsublayout.addWidget(self.spectrum_label) self.spectrum_subsublayout.addWidget(self.spectrum_button) self.spectrum_sublayout.addLayout(self.spectrum_subsublayout) self.spectrum_sublayout.addWidget(self.spectrum_line_info_button) self.spectrum_sublayout.addWidget(self.spectrum) self.spectrum_sublayout.addWidget(self.spectrum.toolbar) self.layout.addLayout(self.spectrum_sublayout) self.spectrum_line_info_button.hide() self.setLayout(self.layout) def show_model(self, model=None): if model: self.change_model(model) self.tableview.setModel(self.tablemodel) self.plot_model() self.plot_spectrum() self.show() def update_data(self, model=None): if model: self.change_model(model) self.tablemodel.updateTable() for index in self.shell_info.keys(): self.shell_info[index].update_tables() self.plot_model() if self.graph_button.text == 'Ws': self.change_graph_to_ws() self.plot_spectrum() if self.spectrum_button.text == 'spec_virtual_flux_angstrom': self.change_spectrum_to_spec_virtual_flux_angstrom() self.show() def change_model(self, model): self.model = model self.tablemodel.arraydata = [] self.tablemodel.addData(model.t_rads.value.tolist()) self.tablemodel.addData(model.ws.tolist()) def change_spectrum_to_spec_virtual_flux_angstrom(self): if self.model.spectrum_virtual.luminosity_density_lambda is None: luminosity_density_lambda = np.zeros_like(self.model.spectrum_virtual.wavelength) else: luminosity_density_lambda = self.model.spectrum_virtual.luminosity_density_lambda.value self.change_spectrum(luminosity_density_lambda, 'spec_flux_angstrom') def change_spectrum_to_spec_flux_angstrom(self): if self.model.spectrum.luminosity_density_lambda is None: luminosity_density_lambda = np.zeros_like(self.model.spectrum.wavelength) else: luminosity_density_lambda = self.model.spectrum.luminosity_density_lambda.value self.change_spectrum(luminosity_density_lambda, 'spec_flux_angstrom') def change_spectrum(self, data, name): self.spectrum_button.setText(name) self.spectrum.dataplot[0].set_ydata(data) self.spectrum.ax.relim() self.spectrum.ax.autoscale() self.spectrum.draw() def plot_spectrum(self): self.spectrum.ax.clear() self.spectrum.ax.set_title('Spectrum') self.spectrum.ax.set_xlabel('Wavelength (A)') self.spectrum.ax.set_ylabel('Intensity') wavelength = self.model.spectrum.wavelength.value if self.model.spectrum.luminosity_density_lambda is None: luminosity_density_lambda = np.zeros_like(wavelength) else: luminosity_density_lambda = self.model.spectrum.luminosity_density_lambda.value self.spectrum.dataplot = self.spectrum.ax.plot(wavelength, luminosity_density_lambda, label='b') self.spectrum.draw() def change_graph_to_ws(self): self.change_graph(self.model.ws, 'Ws', '') def change_graph_to_t_rads(self): self.change_graph(self.model.t_rads.value, 't_rads', '(K)') def change_graph(self, data, name, unit): self.graph_button.setText(name) self.graph.dataplot[0].set_ydata(data) self.graph.ax1.relim() self.graph.ax1.autoscale() self.graph.ax1.set_title(name + ' vs Shell') self.graph.ax1.set_ylabel(name + ' ' + unit) normalizer = colors.Normalize(vmin=data.min(), vmax=data.max()) color_map = plt.cm.ScalarMappable(norm=normalizer, cmap=plt.cm.jet) color_map.set_array(data) self.graph.cb.set_clim(vmin=data.min(), vmax=data.max()) self.graph.cb.update_normal(color_map) if unit == '(K)': unit = 'T (K)' self.graph.cb.set_label(unit) for i, item in enumerate(data): self.shells[i].set_facecolor(color_map.to_rgba(item)) self.graph.draw() def plot_model(self): self.graph.ax1.clear() self.graph.ax1.set_title('Rad. Temp vs Shell') self.graph.ax1.set_xlabel('Shell Number') self.graph.ax1.set_ylabel('Rad. Temp (K)') self.graph.ax1.yaxis.get_major_formatter().set_powerlimits((0, 1)) self.graph.dataplot = self.graph.ax1.plot(range(len(self.model.t_rads.value)), self.model.t_rads.value) self.graph.ax2.clear() self.graph.ax2.set_title('Shell View') self.graph.ax2.set_xlabel('Arbitrary') self.graph.ax2.set_ylabel('Arbitrary') self.shells = [] t_rad_normalizer = colors.Normalize(vmin=self.model.t_rads.value.min(), vmax=self.model.t_rads.value.max()) t_rad_color_map = plt.cm.ScalarMappable(norm=t_rad_normalizer, cmap=plt.cm.jet) t_rad_color_map.set_array(self.model.t_rads.value) if self.graph.cb: self.graph.cb.set_clim(vmin=self.model.t_rads.value.min(), vmax=self.model.t_rads.value.max()) self.graph.cb.update_normal(t_rad_color_map) else: self.graph.cb = self.graph.figure.colorbar(t_rad_color_map) self.graph.cb.set_label('T (K)') self.graph.normalizing_factor = 0.2 * (self.model.tardis_config.structure.r_outer.value[-1] - self.model.tardis_config.structure.r_inner.value[0]) / self.model.tardis_config.structure.r_inner.value[0] #self.graph.normalizing_factor = 8e-16 for i, t_rad in enumerate(self.model.t_rads.value): r_inner = self.model.tardis_config.structure.r_inner.value[i] * self.graph.normalizing_factor r_outer = self.model.tardis_config.structure.r_outer.value[i] * self.graph.normalizing_factor self.shells.append(Shell(i, (0,0), r_inner, r_outer, facecolor=t_rad_color_map.to_rgba(t_rad), picker=self.graph.shell_picker)) self.graph.ax2.add_patch(self.shells[i]) self.graph.ax2.set_xlim(0, self.model.tardis_config.structure.r_outer.value[-1] * self.graph.normalizing_factor) self.graph.ax2.set_ylim(0, self.model.tardis_config.structure.r_outer.value[-1] * self.graph.normalizing_factor) self.graph.figure.tight_layout() self.graph.draw() def on_header_double_clicked(self, index): self.shell_info[index] = ShellInfo(index, self) class ShellInfo(QtGui.QDialog): def __init__(self, index, parent=None): super(ShellInfo, self).__init__(parent) self.parent = parent self.shell_index = index self.setGeometry(400, 150, 200, 400) self.setWindowTitle('Shell %d Abundances' % (self.shell_index + 1)) self.atomstable = QtGui.QTableView() self.ionstable = QtGui.QTableView() self.levelstable = QtGui.QTableView() self.atomstable.connect(self.atomstable.verticalHeader(), QtCore.SIGNAL('sectionClicked(int)'), self.on_atom_header_double_clicked) self.table1_data = self.parent.model.tardis_config.abundances[self.shell_index] self.atomsdata = SimpleTableModel([['Z = '], ['Count (Shell %d)' % (self.shell_index + 1)]], iterate_header=(2, 0), index_info=self.table1_data.index.values.tolist()) self.ionsdata = None self.levelsdata = None self.atomsdata.addData(self.table1_data.values.tolist()) self.atomstable.setModel(self.atomsdata) self.layout = QtGui.QHBoxLayout() self.layout.addWidget(self.atomstable) self.layout.addWidget(self.ionstable) self.layout.addWidget(self.levelstable) self.setLayout(self.layout) self.ionstable.hide() self.levelstable.hide() self.show() def on_atom_header_double_clicked(self, index): self.current_atom_index = self.table1_data.index.values.tolist()[index] self.table2_data = self.parent.model.plasma_array.ion_populations[self.shell_index].ix[self.current_atom_index] self.ionsdata = SimpleTableModel([['Ion: '], ['Count (Z = %d)' % self.current_atom_index]], iterate_header=(2, 0), index_info=self.table2_data.index.values.tolist()) normalized_data = [] for item in self.table2_data.values: normalized_data.append(float(item / self.parent.model.tardis_config.number_densities[self.shell_index] .ix[self.current_atom_index])) self.ionsdata.addData(normalized_data) self.ionstable.setModel(self.ionsdata) self.ionstable.connect(self.ionstable.verticalHeader(), QtCore.SIGNAL('sectionClicked(int)'), self.on_ion_header_double_clicked) self.levelstable.hide() self.ionstable.setColumnWidth(0, 120) self.ionstable.show() self.setGeometry(400, 150, 380, 400) self.show() def on_ion_header_double_clicked(self, index): self.current_ion_index = self.table2_data.index.values.tolist()[index] self.table3_data = self.parent.model.plasma_array.level_populations[self.shell_index].ix[self.current_atom_index, self.current_ion_index] self.levelsdata = SimpleTableModel([['Level: '], ['Count (Ion %d)' % self.current_ion_index]], iterate_header=(2, 0), index_info=self.table3_data.index.values.tolist()) normalized_data = [] for item in self.table3_data.values.tolist(): normalized_data.append(float(item / self.table2_data.ix[self.current_ion_index])) self.levelsdata.addData(normalized_data) self.levelstable.setModel(self.levelsdata) self.levelstable.setColumnWidth(0, 120) self.levelstable.show() self.setGeometry(400, 150, 580, 400) self.show() def update_tables(self): self.table1_data = self.parent.model.plasma_array[self.shell_index].number_densities self.atomsdata.index_info=self.table1_data.index.values.tolist() self.atomsdata.arraydata = [] self.atomsdata.addData(self.table1_data.values.tolist()) self.atomsdata.updateTable() self.ionstable.hide() self.levelstable.hide() self.setGeometry(400, 150, 200, 400) self.show() class LineInteractionTables(QtGui.QWidget): def __init__(self, line_interaction_analysis, atom_data, description): super(LineInteractionTables, self).__init__() self.text_description = QtGui.QLabel(str(description)) self.species_table = QtGui.QTableView() self.transitions_table = QtGui.QTableView() self.layout = QtGui.QHBoxLayout() self.line_interaction_analysis = line_interaction_analysis self.atom_data = atom_data line_interaction_species_group = line_interaction_analysis.last_line_in.groupby(['atomic_number', 'ion_number']) self.species_selected = sorted(line_interaction_species_group.groups.keys()) species_symbols = [util.species_tuple_to_string(item, atom_data) for item in self.species_selected] species_table_model = SimpleTableModel([species_symbols, ['Species']]) species_abundances = (line_interaction_species_group.wavelength.count().astype(float) / line_interaction_analysis.last_line_in.wavelength.count()).astype(float).tolist() species_abundances = map(float, species_abundances) species_table_model.addData(species_abundances) self.species_table.setModel(species_table_model) line_interaction_species_group.wavelength.count() self.layout.addWidget(self.text_description) self.layout.addWidget(self.species_table) self.species_table.connect(self.species_table.verticalHeader(), QtCore.SIGNAL('sectionClicked(int)'), self.on_species_clicked) self.layout.addWidget(self.transitions_table) self.setLayout(self.layout) self.show() def on_species_clicked(self, index): current_species = self.species_selected[index] last_line_in = self.line_interaction_analysis.last_line_in last_line_out = self.line_interaction_analysis.last_line_out last_line_in_filter = (last_line_in.atomic_number == current_species[0]).values & \ (last_line_in.ion_number == current_species[1]).values current_last_line_in = last_line_in[last_line_in_filter].reset_index() current_last_line_out = last_line_out[last_line_in_filter].reset_index() current_last_line_in['line_id_out'] = current_last_line_out['line_id'] last_line_in_string = [] last_line_count = [] grouped_line_interactions = current_last_line_in.groupby(['line_id', 'line_id_out']) exc_deexc_string = 'exc. %d-%d (%.2f A) de-exc. %d-%d (%.2f A)' for line_id, row in grouped_line_interactions.wavelength.count().iteritems(): current_line_in = self.atom_data.lines.ix[line_id[0]] current_line_out = self.atom_data.lines.ix[line_id[1]] last_line_in_string.append(exc_deexc_string % (current_line_in['level_number_lower'], current_line_in['level_number_upper'], current_line_in['wavelength'], current_line_out['level_number_upper'], current_line_out['level_number_lower'], current_line_out['wavelength'])) last_line_count.append(int(row)) last_line_in_model = SimpleTableModel([last_line_in_string, ['Num. pkts %d' % current_last_line_in.wavelength.count()]]) last_line_in_model.addData(last_line_count) self.transitions_table.setModel(last_line_in_model) class LineInfo(QtGui.QDialog): def __init__(self, parent, wavelength_start, wavelength_end): super(LineInfo, self).__init__(parent) self.parent = parent self.setGeometry(180 + len(self.parent.line_info) * 20, 150, 250, 400) self.setWindowTitle('Line Interaction: %.2f - %.2f (A) ' % (wavelength_start, wavelength_end, )) self.layout = QtGui.QVBoxLayout() packet_nu_line_interaction = analysis.LastLineInteraction.from_model(self.parent.model) packet_nu_line_interaction.packet_filter_mode = 'packet_nu' packet_nu_line_interaction.wavelength_start = wavelength_start * u.angstrom packet_nu_line_interaction.wavelength_end = wavelength_end * u.angstrom line_in_nu_line_interaction = analysis.LastLineInteraction.from_model(self.parent.model) line_in_nu_line_interaction.packet_filter_mode = 'line_in_nu' line_in_nu_line_interaction.wavelength_start = wavelength_start * u.angstrom line_in_nu_line_interaction.wavelength_end = wavelength_end * u.angstrom self.layout.addWidget(LineInteractionTables(packet_nu_line_interaction, self.parent.model.atom_data, 'filtered by frequency of packet')) self.layout.addWidget(LineInteractionTables(line_in_nu_line_interaction, self.parent.model.atom_data, 'filtered by frequency of line interaction')) self.setLayout(self.layout) self.show() def get_data(self, wavelength_start, wavelength_end): self.wavelength_start = wavelength_start * u.angstrom self.wavelength_end = wavelength_end * u.angstrom last_line_in_ids, last_line_out_ids = analysis.get_last_line_interaction(self.wavelength_start, self.wavelength_end, self.parent.model) self.last_line_in, self.last_line_out = self.parent.model.atom_data.lines.ix[last_line_in_ids], self.parent.model.atom_data.lines.ix[last_line_out_ids] self.grouped_lines_in, self.grouped_lines_out = self.last_line_in.groupby(['atomic_number', 'ion_number']), self.last_line_out.groupby(['atomic_number', 'ion_number']) self.ions_in, self.ions_out = self.grouped_lines_in.groups.keys(), self.grouped_lines_out.groups.keys() self.ions_in.sort() self.ions_out.sort() self.header_list = [] self.ion_table = (self.grouped_lines_in.wavelength.count().astype(float) / self.grouped_lines_in.wavelength.count().sum()).values.tolist() for z, ion in self.ions_in: self.header_list.append('Z = %d: Ion %d' % (z, ion)) def get_transition_table(self, lines, atom, ion): grouped = lines.groupby(['atomic_number', 'ion_number']) transitions_with_duplicates = lines.ix[grouped.groups[(atom, ion)]].groupby(['level_number_lower', 'level_number_upper']).groups transitions = lines.ix[grouped.groups[(atom, ion)]].drop_duplicates().groupby(['level_number_lower', 'level_number_upper']).groups transitions_count = [] transitions_parsed = [] for item in transitions.values(): c = 0 for ditem in transitions_with_duplicates.values(): c += ditem.count(item[0]) transitions_count.append(c) s = 0 for item in transitions_count: s += item for index in range(len(transitions_count)): transitions_count[index] /= float(s) for key, value in transitions.items(): transitions_parsed.append("%d-%d (%.2f A)" % (key[0], key[1], self.parent.model.atom_data.lines.ix[value[0]]['wavelength'])) return transitions_parsed, transitions_count def on_atom_clicked(self, index): self.transitionsin_parsed, self.transitionsin_count = self.get_transition_table(self.last_line_in, self.ions_in[index][0], self.ions_in[index][1]) self.transitionsout_parsed, self.transitionsout_count = self.get_transition_table(self.last_line_out, self.ions_out[index][0], self.ions_out[index][1]) self.transitionsindata = SimpleTableModel([self.transitionsin_parsed, ['Lines In']]) self.transitionsoutdata = SimpleTableModel([self.transitionsout_parsed, ['Lines Out']]) self.transitionsindata.addData(self.transitionsin_count) self.transitionsoutdata.addData(self.transitionsout_count) self.transitionsintable.setModel(self.transitionsindata) self.transitionsouttable.setModel(self.transitionsoutdata) self.transitionsintable.show() self.transitionsouttable.show() self.setGeometry(180 + len(self.parent.line_info) * 20, 150, 750, 400) self.show() def on_atom_clicked2(self, index): self.transitionsin_parsed, self.transitionsin_count = self.get_transition_table(self.last_line_in, self.ions_in[index][0], self.ions_in[index][1]) self.transitionsout_parsed, self.transitionsout_count = self.get_transition_table(self.last_line_out, self.ions_out[index][0], self.ions_out[index][1]) self.transitionsindata = SimpleTableModel([self.transitionsin_parsed, ['Lines In']]) self.transitionsoutdata = SimpleTableModel([self.transitionsout_parsed, ['Lines Out']]) self.transitionsindata.addData(self.transitionsin_count) self.transitionsoutdata.addData(self.transitionsout_count) self.transitionsintable2.setModel(self.transitionsindata) self.transitionsouttable2.setModel(self.transitionsoutdata) self.transitionsintable2.show() self.transitionsouttable2.show() self.setGeometry(180 + len(self.parent.line_info) * 20, 150, 750, 400) self.show() class SimpleTableModel(QtCore.QAbstractTableModel): def __init__(self, headerdata=None, iterate_header=(0, 0), index_info=None, parent=None, *args): super(SimpleTableModel, self).__init__(parent, *args) self.headerdata = headerdata self.arraydata = [] self.iterate_header = iterate_header self.index_info = index_info def addData(self, datain): self.arraydata.append(datain) def rowCount(self, parent=QtCore.QModelIndex()): return len(self.arraydata[0]) def columnCount(self, parent=QtCore.QModelIndex()): return len(self.arraydata) def headerData(self, section, orientation, role=QtCore.Qt.DisplayRole): if orientation == QtCore.Qt.Vertical and role == QtCore.Qt.DisplayRole: if self.iterate_header[0] == 1: return self.headerdata[0][0] + str(section + 1) elif self.iterate_header[0] == 2: if self.index_info: return self.headerdata[0][0] + str(self.index_info[section]) else: return self.headerdata[0][0] + str(section + 1) else: return self.headerdata[0][section] elif orientation == QtCore.Qt.Horizontal and role == QtCore.Qt.DisplayRole: if self.iterate_header[1] == 1: return self.headerdata[1][0] + str(section + 1) elif self.iterate_header[1] == 2: if self.index_info: return self.headerdata[1][0] + str(self.index_info[section]) else: return self.headerdata[1][section] return "" def data(self, index, role=QtCore.Qt.DisplayRole): if not index.isValid(): return None elif role != QtCore.Qt.DisplayRole: return None return (self.arraydata[index.column()][index.row()]) def setData(self, index, value, role=QtCore.Qt.EditRole): if not index.isValid(): return False elif role != QtCore.Qt.EditRole: return False self.arraydata[index.column()][index.row()] = value self.emit(QtCore.SIGNAL('dataChanged(const QModelIndex &, const QModelIndex &)'), index, index) return True def updateTable(self): for r in range(self.rowCount()): for c in range(self.columnCount()): index = self.createIndex(r, c) self.setData(index, self.arraydata[c][r]) class MatplotlibWidget(FigureCanvas): def __init__(self, parent, fig=None): self.parent = parent self.figure = Figure() self.cid = {} if fig != 'model': self.ax = self.figure.add_subplot(111) else: self.gs = gridspec.GridSpec(2, 1, height_ratios=[1, 3]) self.ax1 = self.figure.add_subplot(self.gs[0]) self.ax2 = self.figure.add_subplot(self.gs[1]) self.cb = None self.span = None super(MatplotlibWidget, self).__init__(self.figure) super(MatplotlibWidget, self).setSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding) super(MatplotlibWidget, self).updateGeometry() if fig != 'model': self.toolbar = NavigationToolbar(self, parent) self.cid[0] = self.figure.canvas.mpl_connect('pick_event', self.on_span_pick) else: self.cid[0] = self.figure.canvas.mpl_connect('pick_event', self.on_shell_pick) def show_line_info(self): self.parent.line_info.append(LineInfo(self.parent, self.span.xy[0][0], self.span.xy[2][0])) def show_span(self, garbage=0, left=5000, right=10000): if self.parent.spectrum_span_button.text() == 'Show Wavelength Range': if not self.span: self.span = self.ax.axvspan(left, right, color='r', alpha=0.3, picker=self.span_picker) else: self.span.set_visible(True) self.parent.spectrum_line_info_button.show() self.parent.spectrum_span_button.setText('Hide Wavelength Range') else: self.span.set_visible(False) self.parent.spectrum_line_info_button.hide() self.parent.spectrum_span_button.setText('Show Wavelength Range') self.draw() def on_span_pick(self, event): self.figure.canvas.mpl_disconnect(self.cid[0]) self.span.set_edgecolor('m') self.span.set_linewidth(5) self.draw() if event.edge == 'left': self.cid[1] = self.figure.canvas.mpl_connect('motion_notify_event', self.on_span_left_motion) elif event.edge == 'right': self.cid[1] = self.figure.canvas.mpl_connect('motion_notify_event', self.on_span_right_motion) self.cid[2] = self.figure.canvas.mpl_connect('button_press_event', self.on_span_resized) def on_span_left_motion(self, mouseevent): if mouseevent.xdata < self.span.xy[2][0]: self.span.xy[0][0] = mouseevent.xdata self.span.xy[1][0] = mouseevent.xdata self.span.xy[4][0] = mouseevent.xdata self.draw() def on_span_right_motion(self, mouseevent): if mouseevent.xdata > self.span.xy[0][0]: self.span.xy[2][0] = mouseevent.xdata self.span.xy[3][0] = mouseevent.xdata self.draw() def on_span_resized(self, mouseevent): self.figure.canvas.mpl_disconnect(self.cid[1]) self.figure.canvas.mpl_disconnect(self.cid[2]) self.cid[0] = self.figure.canvas.mpl_connect('pick_event', self.on_span_pick) self.span.set_edgecolor('r') self.span.set_linewidth(1) self.draw() def on_shell_pick(self, event): self.highlight_shell(event.artist.index) def highlight_shell(self, index): self.parent.tableview.selectRow(index) for i in range(len(self.parent.shells)): if i != index and i != index + 1: self.parent.shells[i].set_edgecolor('k') else: self.parent.shells[i].set_edgecolor('w') self.draw() def shell_picker(self, shell, mouseevent): if mouseevent.xdata is None: return False, dict() mouse_r2 = mouseevent.xdata ** 2 + mouseevent.ydata ** 2 if shell.r_inner ** 2 < mouse_r2 < shell.r_outer ** 2: return True, dict() return False, dict() def span_picker(self, span, mouseevent, tolerance=5): left = float(span.xy[0][0]) right = float(span.xy[2][0]) tolerance = span.axes.transData.inverted().transform((tolerance, 0))[0] - span.axes.transData.inverted().transform((0, 0))[0] event_attributes = {'edge': None} if mouseevent.xdata is None: return False, event_attributes if left - tolerance <= mouseevent.xdata <= left + tolerance: event_attributes['edge'] = 'left' return True, event_attributes elif right - tolerance <= mouseevent.xdata <= right + tolerance: event_attributes['edge'] = 'right' return True, event_attributes return False, event_attributes class Shell(matplotlib.patches.Wedge): def __init__(self, index, center, r_inner, r_outer, **kwargs): super(Shell, self).__init__(center, r_outer, 0, 90, width=r_outer - r_inner, **kwargs) self.index = index self.center = center self.r_outer = r_outer self.r_inner = r_inner self.width = r_outer - r_inner
bsd-3-clause
hdmetor/scikit-learn
sklearn/decomposition/tests/test_sparse_pca.py
142
5990
# Author: Vlad Niculae # License: BSD 3 clause import sys import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import if_not_mac_os from sklearn.decomposition import SparsePCA, MiniBatchSparsePCA from sklearn.utils import check_random_state def generate_toy_data(n_components, n_samples, image_size, random_state=None): n_features = image_size[0] * image_size[1] rng = check_random_state(random_state) U = rng.randn(n_samples, n_components) V = rng.randn(n_components, n_features) centers = [(3, 3), (6, 7), (8, 1)] sz = [1, 2, 1] for k in range(n_components): img = np.zeros(image_size) xmin, xmax = centers[k][0] - sz[k], centers[k][0] + sz[k] ymin, ymax = centers[k][1] - sz[k], centers[k][1] + sz[k] img[xmin:xmax][:, ymin:ymax] = 1.0 V[k, :] = img.ravel() # Y is defined by : Y = UV + noise Y = np.dot(U, V) Y += 0.1 * rng.randn(Y.shape[0], Y.shape[1]) # Add noise return Y, U, V # SparsePCA can be a bit slow. To avoid having test times go up, we # test different aspects of the code in the same test def test_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) spca = SparsePCA(n_components=8, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition spca = SparsePCA(n_components=13, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_fit_transform(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) # Test that CD gives similar results spca_lasso = SparsePCA(n_components=3, method='cd', random_state=0, alpha=alpha) spca_lasso.fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_) @if_not_mac_os() def test_fit_transform_parallel(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs spca = SparsePCA(n_components=3, n_jobs=2, method='lars', alpha=alpha, random_state=0).fit(Y) U2 = spca.transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) def test_transform_nan(): # Test that SparsePCA won't return NaN when there is 0 feature in all # samples. rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array Y[:, 0] = 0 estimator = SparsePCA(n_components=8) assert_false(np.any(np.isnan(estimator.fit_transform(Y)))) def test_fit_transform_tall(): rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 65, (8, 8), random_state=rng) # tall array spca_lars = SparsePCA(n_components=3, method='lars', random_state=rng) U1 = spca_lars.fit_transform(Y) spca_lasso = SparsePCA(n_components=3, method='cd', random_state=rng) U2 = spca_lasso.fit(Y).transform(Y) assert_array_almost_equal(U1, U2) def test_initialization(): rng = np.random.RandomState(0) U_init = rng.randn(5, 3) V_init = rng.randn(3, 4) model = SparsePCA(n_components=3, U_init=U_init, V_init=V_init, max_iter=0, random_state=rng) model.fit(rng.randn(5, 4)) assert_array_equal(model.components_, V_init) def test_mini_batch_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) pca = MiniBatchSparsePCA(n_components=8, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition pca = MiniBatchSparsePCA(n_components=13, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_mini_batch_fit_transform(): raise SkipTest("skipping mini_batch_fit_transform.") alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = MiniBatchSparsePCA(n_components=3, random_state=0, alpha=alpha).fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs if sys.platform == 'win32': # fake parallelism for win32 import sklearn.externals.joblib.parallel as joblib_par _mp = joblib_par.multiprocessing joblib_par.multiprocessing = None try: U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) finally: joblib_par.multiprocessing = _mp else: # we can efficiently use parallelism U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) # Test that CD gives similar results spca_lasso = MiniBatchSparsePCA(n_components=3, method='cd', alpha=alpha, random_state=0).fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_)
bsd-3-clause
fzr72725/ThinkStats2
code/populations.py
68
2609
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import csv import logging import sys import numpy as np import pandas import thinkplot import thinkstats2 def ReadData(filename='PEP_2012_PEPANNRES_with_ann.csv'): """Reads filename and returns populations in thousands filename: string returns: pandas Series of populations in thousands """ df = pandas.read_csv(filename, header=None, skiprows=2, encoding='iso-8859-1') populations = df[7] populations.replace(0, np.nan, inplace=True) return populations.dropna() def MakeFigures(): """Plots the CDF of populations in several forms. On a log-log scale the tail of the CCDF looks like a straight line, which suggests a Pareto distribution, but that turns out to be misleading. On a log-x scale the distribution has the characteristic sigmoid of a lognormal distribution. The normal probability plot of log(sizes) confirms that the data fit the lognormal model very well. Many phenomena that have been described with Pareto models can be described as well, or better, with lognormal models. """ pops = ReadData() print('Number of cities/towns', len(pops)) log_pops = np.log10(pops) cdf = thinkstats2.Cdf(pops, label='data') cdf_log = thinkstats2.Cdf(log_pops, label='data') # pareto plot xs, ys = thinkstats2.RenderParetoCdf(xmin=5000, alpha=1.4, low=0, high=1e7) thinkplot.Plot(np.log10(xs), 1-ys, label='model', color='0.8') thinkplot.Cdf(cdf_log, complement=True) thinkplot.Config(xlabel='log10 population', ylabel='CCDF', yscale='log') thinkplot.Save(root='populations_pareto') # lognormal plot thinkplot.PrePlot(cols=2) mu, sigma = log_pops.mean(), log_pops.std() xs, ps = thinkstats2.RenderNormalCdf(mu, sigma, low=0, high=8) thinkplot.Plot(xs, ps, label='model', color='0.8') thinkplot.Cdf(cdf_log) thinkplot.Config(xlabel='log10 population', ylabel='CDF') thinkplot.SubPlot(2) thinkstats2.NormalProbabilityPlot(log_pops, label='data') thinkplot.Config(xlabel='z', ylabel='log10 population', xlim=[-5, 5]) thinkplot.Save(root='populations_normal') def main(): thinkstats2.RandomSeed(17) MakeFigures() if __name__ == "__main__": main()
gpl-3.0
cbecker/LightGBM
tests/python_package_test/test_sklearn.py
3
6123
# coding: utf-8 # pylint: skip-file import unittest import lightgbm as lgb import numpy as np from sklearn.base import clone from sklearn.datasets import (load_boston, load_breast_cancer, load_digits, load_svmlight_file) from sklearn.externals import joblib from sklearn.metrics import log_loss, mean_squared_error from sklearn.model_selection import GridSearchCV, train_test_split class template(object): @staticmethod def test_template(X_y=load_boston(True), model=lgb.LGBMRegressor, feval=mean_squared_error, num_round=100, custom_obj=None, predict_proba=False, return_data=False, return_model=False): X_train, X_test, y_train, y_test = train_test_split(*X_y, test_size=0.1, random_state=42) if return_data: return X_train, X_test, y_train, y_test arguments = {'n_estimators': num_round, 'silent': True} if custom_obj: arguments['objective'] = custom_obj gbm = model(**arguments) gbm.fit(X_train, y_train, eval_set=[(X_test, y_test)], early_stopping_rounds=10, verbose=False) if return_model: return gbm elif predict_proba: return feval(y_test, gbm.predict_proba(X_test)) else: return feval(y_test, gbm.predict(X_test)) class TestSklearn(unittest.TestCase): def test_binary(self): X_y = load_breast_cancer(True) ret = template.test_template(X_y, lgb.LGBMClassifier, log_loss, predict_proba=True) self.assertLess(ret, 0.15) def test_regreesion(self): self.assertLess(template.test_template() ** 0.5, 4) def test_multiclass(self): X_y = load_digits(10, True) def multi_error(y_true, y_pred): return np.mean(y_true != y_pred) ret = template.test_template(X_y, lgb.LGBMClassifier, multi_error) self.assertLess(ret, 0.2) def test_lambdarank(self): X_train, y_train = load_svmlight_file('../../examples/lambdarank/rank.train') X_test, y_test = load_svmlight_file('../../examples/lambdarank/rank.test') q_train = np.loadtxt('../../examples/lambdarank/rank.train.query') q_test = np.loadtxt('../../examples/lambdarank/rank.test.query') lgb_model = lgb.LGBMRanker().fit(X_train, y_train, group=q_train, eval_set=[(X_test, y_test)], eval_group=[q_test], eval_at=[1], verbose=False, callbacks=[lgb.reset_parameter(learning_rate=lambda x: 0.95 ** x * 0.1)]) def test_regression_with_custom_objective(self): def objective_ls(y_true, y_pred): grad = (y_pred - y_true) hess = np.ones(len(y_true)) return grad, hess ret = template.test_template(custom_obj=objective_ls) self.assertLess(ret, 100) def test_binary_classification_with_custom_objective(self): def logregobj(y_true, y_pred): y_pred = 1.0 / (1.0 + np.exp(-y_pred)) grad = y_pred - y_true hess = y_pred * (1.0 - y_pred) return grad, hess X_y = load_digits(2, True) def binary_error(y_test, y_pred): return np.mean([int(p > 0.5) != y for y, p in zip(y_test, y_pred)]) ret = template.test_template(X_y, lgb.LGBMClassifier, feval=binary_error, custom_obj=logregobj) self.assertLess(ret, 0.1) def test_dart(self): X_train, X_test, y_train, y_test = template.test_template(return_data=True) gbm = lgb.LGBMRegressor(boosting_type='dart') gbm.fit(X_train, y_train) self.assertLessEqual(gbm.score(X_train, y_train), 1.) def test_grid_search(self): X_train, X_test, y_train, y_test = template.test_template(return_data=True) params = {'boosting_type': ['dart', 'gbdt'], 'n_estimators': [15, 20], 'drop_rate': [0.1, 0.2]} gbm = GridSearchCV(lgb.LGBMRegressor(), params, cv=3) gbm.fit(X_train, y_train) self.assertIn(gbm.best_params_['n_estimators'], [15, 20]) def test_clone_and_property(self): gbm = template.test_template(return_model=True) gbm_clone = clone(gbm) self.assertIsInstance(gbm.booster_, lgb.Booster) self.assertIsInstance(gbm.feature_importances_, np.ndarray) clf = template.test_template(load_digits(2, True), model=lgb.LGBMClassifier, return_model=True) self.assertListEqual(sorted(clf.classes_), [0, 1]) self.assertEqual(clf.n_classes_, 2) self.assertIsInstance(clf.booster_, lgb.Booster) self.assertIsInstance(clf.feature_importances_, np.ndarray) def test_joblib(self): gbm = template.test_template(num_round=10, return_model=True) joblib.dump(gbm, 'lgb.pkl') gbm_pickle = joblib.load('lgb.pkl') self.assertIsInstance(gbm_pickle.booster_, lgb.Booster) self.assertDictEqual(gbm.get_params(), gbm_pickle.get_params()) self.assertListEqual(list(gbm.feature_importances_), list(gbm_pickle.feature_importances_)) X_train, X_test, y_train, y_test = template.test_template(return_data=True) gbm.fit(X_train, y_train, eval_set=[(X_test, y_test)], verbose=False) gbm_pickle.fit(X_train, y_train, eval_set=[(X_test, y_test)], verbose=False) for key in gbm.evals_result_: for evals in zip(gbm.evals_result_[key], gbm_pickle.evals_result_[key]): self.assertAlmostEqual(*evals, places=5) pred_origin = gbm.predict(X_test) pred_pickle = gbm_pickle.predict(X_test) self.assertEqual(len(pred_origin), len(pred_pickle)) for preds in zip(pred_origin, pred_pickle): self.assertAlmostEqual(*preds, places=5) print("----------------------------------------------------------------------") print("running test_sklearn.py") unittest.main()
mit
gakarak/BTBDB_ImageAnalysisSubPortal
app/core/segmct/imtransform.py
1
28712
#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' from abc import abstractmethod from scipy.interpolate import RegularGridInterpolator import numpy as np import random import matplotlib.pyplot as plt import os import skimage as sk import skimage.io as skio import skimage.transform import scipy as sc import scipy.ndimage import scipy.interpolate import numpy.matlib import nibabel as nib from scipy.ndimage.interpolation import map_coordinates ############################################### def makeTransform(lstMat): ret = lstMat[0].copy() for xx in lstMat[1:]: ret = ret.dot(xx) return ret ############################################### # Handmade scipy-based affine transformation functions for 2d/3d images: fuck you ITK/VTK! # 2d-images def affine_transformation_2d(image, pshift, protCnt, protAngle, pscale, pcropSize, pshear=(0., 0.), isDebug=False, pmode='constant', pval=0, porder=3): """ scipy-based 2d image transformation: for data augumentation :param image: input 2d-image with 1 or more channels :param pshift: shift of coordinates in row/column notation: (dr, dc) :param protCnt: rotation center in row/column notation: (r0, c0) :param protAngle: rotation angle (anti-clock-wise) :param pscale: scale transformation :param pcropSize: output size of cropped image (in row/col notation), if None, then output image shape is equal to input image shape :param pshear: shear-transform coefficients: (s_row, s_col) :param isDebug: if True - show the debug visualization :param pmode: parameter is equal 'mode' :parameter in scipy.ndimage.interpolation.affine_transform :param pval: parameter is equal 'val' :parameter in scipy.ndimage.interpolation.affine_transform :param porder: parameter is equal 'order' :parameter in scipy.ndimage.interpolation.affine_transform :return: transformed 2d image """ # (1) precalc parameters angRad = (np.pi / 180.) * protAngle cosa = np.cos(angRad) sina = np.sin(angRad) # (2) prepare separate affine transformation matrices # (2.1) shift matrix: all matrices in row/column notation (this notation # is default for numpy 2d-arrays. Do not confuse with XY-notation!) matShift = np.array([ [1., 0., +pshift[0]], [0., 1., +pshift[1]], [0., 0., 1.] ]) # (2.2) shift matrices for rotation: backward and forward matShiftB = np.array([ [1., 0., -protCnt[0]], [0., 1., -protCnt[1]], [0., 0., 1.] ]) matShiftF = np.array([ [1., 0., +protCnt[0]], [0., 1., +protCnt[1]], [0., 0., 1.] ]) # (2.3) rotation matrix matRot = np.array([ [+cosa, -sina, 0.], [+sina, +cosa, 0.], [0., 0., 1.] ]) # (2.4) scale matrix matScale = np.array([ [pscale, 0., 0.], [0., pscale, 0.], [0., 0., 1.] ]) # (2.5) shear matrix matShear = np.array([ [1., pshear[0], 0.], [pshear[1], 1., 0.], [0., 0., 1.], ]) # (3) build total-matrix if pcropSize is None: # matTotal = matShiftF.dot(matRot.dot(matScale.dot(matShiftB))) matTotal = makeTransform([matShiftF, matRot, matShear, matScale, matShiftB]) pcropSize = image.shape[:2] else: matShiftCrop = np.array([ [1., 0., pcropSize[0] / 2.], [0., 1., pcropSize[1] / 2.], [0., 0., 1.] ]) # matTotal = matShiftCrop.dot(matRot.dot(matScale.dot(matShiftB))) matTotal = makeTransform([matShiftCrop, matRot, matShear, matScale, matShiftB]) # (3.1) shift after rotation anf scale transformation matTotal = matShift.dot(matTotal) # (3.2) create inverted matrix for back-projected mapping matTotalInv = np.linalg.inv(matTotal) # (4) warp image with total affine-transform idxRC = np.indices(pcropSize).reshape(2, -1) idxRCH = np.insert(idxRC, 2, values=[1], axis=0) idxRCHT = matTotalInv.dot(idxRCH)[:2, :] if image.ndim>2: tret = [] for ii in range(image.shape[-1]): tret.append(map_coordinates(image[:,:,ii], idxRCHT, order=porder, cval=pval, mode=pmode).reshape(pcropSize)) tret = np.dstack(tret) else: tret = map_coordinates(image, idxRCHT, order=porder, cval=pval, mode=pmode).reshape(pcropSize) # (5) if isDebug: pcntPrj = matTotal.dot(list(protCnt) + [1])[:2] print (':: Total matrix:\n{0}'.format(matTotal)) print ('---') print (':: Total matrix inverted:\n{0}'.format(matTotalInv)) plt.subplot(1, 2, 1) plt.imshow(image) plt.gcf().gca().add_artist(plt.Circle(protCnt[::-1], 5, edgecolor='r', fill=False)) plt.title('Shift={0}, RotCenter={3}, Rot={1}, Scale={2}'.format(pshift, pscale, protAngle, protCnt)) plt.subplot(1, 2, 2) plt.imshow(tret) plt.gcf().gca().add_artist(plt.Circle(pcntPrj[::-1], 5, edgecolor='r', fill=False)) plt.title('Shape = {0}'.format(tret.shape)) plt.show() return tret # 3d-images def affine_transformation_3d(image3d, pshiftXYZ, protCntXYZ, protAngleXYZ, pscaleXYZ, pcropSizeXYZ, pshear=(0., 0., 0., 0., 0., 0.), isRandomizeRot=False, isDebug=False, pmode='constant', pval=0, porder=0): """ scipy-based 3d image transformation: for data augumentation :param image3d: input 3d-image with 1 or more channels (with shape like [sizX, sizY, sizZ] or [sizX, sizY, sizZ, num_channels]) :param pshiftXYZ: shift of coordinates: (dx, dy, dz) :param protCntXYZ: rotation center: (x0, y0, z0) :param protAngleXYZ: rotation angle (anti-clock-wise), like: (angle_x, angle_y, angle_z) :param pscaleXYZ: cale transformation: (sx, sy, sz) :param pcropSizeXYZ: output size of cropped image, like: [outSizeX, outSizeY, outSizeZ].If None, then output image shape is equal to input image shape :param pshear: shear-transform 3D coefficients. Two possible formats: - 6-dimensional vector, like: (Syx, Szx, Sxy, Szy, Sxz, Syz) - 3x3 matrix, like: [ 1, Syx, Szx] [Sxy, 1, Szy] [Sxz, Syz, 1] :param isRandomizeRot: if True - random shuffle order of X/Y/Z rotation :param isDebug: if True - show the debug visualization :param pmode: parameter is equal 'mode' :parameter in scipy.ndimage.interpolation.affine_transform :param pval: parameter is equal 'val' :parameter in scipy.ndimage.interpolation.affine_transform :param porder: parameter is equal 'order' :parameter in scipy.ndimage.interpolation.affine_transform :return: transformed 3d image """ nshp=3 # (1) precalc parameters angRadXYZ = (np.pi / 180.) * np.array(protAngleXYZ) cosaXYZ = np.cos(angRadXYZ) sinaXYZ = np.sin(angRadXYZ) # (2) prepare separate affine transformation matrices # (2.0) shift matrices matShiftXYZ = np.array([ [1., 0., 0., +pshiftXYZ[0]], [0., 1., 0., +pshiftXYZ[1]], [0., 0., 1., +pshiftXYZ[2]], [0., 0., 0., 1.] ]) # (2.1) shift-matrices for rotation: backward and forward matShiftB = np.array([ [1., 0., 0., -protCntXYZ[0]], [0., 1., 0., -protCntXYZ[1]], [0., 0., 1., -protCntXYZ[2]], [0., 0., 0., 1.] ]) matShiftF = np.array([ [1., 0., 0., +protCntXYZ[0]], [0., 1., 0., +protCntXYZ[1]], [0., 0., 1., +protCntXYZ[2]], [0., 0., 0., 1.] ]) # (2.2) partial and full-rotation matrix lstMatRotXYZ = [] for ii in range(len(angRadXYZ)): cosa = cosaXYZ[ii] sina = sinaXYZ[ii] if ii==0: # Rx tmat = np.array([ [1., 0., 0., 0.], [0., +cosa, -sina, 0.], [0., +sina, +cosa, 0.], [0., 0., 0., 1.] ]) elif ii==1: # Ry tmat = np.array([ [+cosa, 0., +sina, 0.], [ 0., 1., 0., 0.], [-sina, 0., +cosa, 0.], [ 0., 0., 0., 1.] ]) else: # Rz tmat = np.array([ [+cosa, -sina, 0., 0.], [+sina, +cosa, 0., 0.], [ 0., 0., 1., 0.], [ 0., 0., 0., 1.] ]) lstMatRotXYZ.append(tmat) if isRandomizeRot: random.shuffle(lstMatRotXYZ) matRotXYZ = lstMatRotXYZ[0].copy() for mm in lstMatRotXYZ[1:]: matRotXYZ = matRotXYZ.dot(mm) # (2.3) scale matrix sx,sy,sz = pscaleXYZ matScale = np.array([ [sx, 0., 0., 0.], [0., sy, 0., 0.], [0., 0., sz, 0.], [0., 0., 0., 1.], ]) # (2.4) shear matrix if pshear is not None: if len(pshear) == 6: matShear = np.array([ [1., pshear[0], pshear[1], 0.], [pshear[2], 1., pshear[3], 0.], [pshear[4], pshear[5], 1., 0.], [0., 0., 0., 1.] ]) else: matShear = np.eye(4, 4) pshear = np.array(pshear) if pshear.shape == (3, 3): matShear[:3, :3] = pshear elif pshear.shape == (4, 4): matShear = pshear else: raise Exception('Invalid shear-matrix format: [{0}]'.format(pshear)) else: matShear = np.eye(4, 4) # (3) build total-matrix if pcropSizeXYZ is None: # matTotal = matShiftF.dot(matRotXYZ.dot(matScale.dot(matShiftB))) matTotal = makeTransform([matShiftF, matRotXYZ, matShear, matScale, matShiftB]) pcropSizeXYZ = image3d.shape[:nshp] else: matShiftCropXYZ = np.array([ [1., 0., 0., pcropSizeXYZ[0] / 2.], [0., 1., 0., pcropSizeXYZ[1] / 2.], [0., 0., 1., pcropSizeXYZ[2] / 2.], [0., 0., 0., 1.] ]) # matTotal = matShiftCropXYZ.dot(matRotXYZ.dot(matScale.dot(matShiftB))) matTotal = makeTransform([matShiftCropXYZ, matRotXYZ, matShear, matScale, matShiftB]) # (3.1) shift after rot-scale transformation matTotal = matShiftXYZ.dot(matTotal) # (3.2) invert matrix for back-projected mapping matTotalInv = np.linalg.inv(matTotal) # (4) warp image with total affine-transform idxXYZ = np.indices(pcropSizeXYZ).reshape(nshp, -1) idxXYZH = np.insert(idxXYZ, nshp, values=[1], axis=0) idxXYZT = matTotalInv.dot(idxXYZH)[:nshp, :] # (5) processing 3D layer-by-layer if image3d.ndim>nshp: tret = [] for ii in range(image3d.shape[-1]): tret.append(map_coordinates(image3d[:, :, :, ii], idxXYZT, order=porder, cval=pval, mode=pmode).reshape(pcropSizeXYZ)) tret = np.dstack(tret) else: tret = map_coordinates(image3d, idxXYZT, order=porder, cval=pval, mode=pmode).reshape(pcropSizeXYZ) # (6) Debug if isDebug: protCntXYZ = np.array(protCntXYZ) protCntXYZPrj = matTotal.dot(list(protCntXYZ) + [1])[:nshp] print (':: Total matrix:\n{0}'.format(matTotal)) print ('---') print (':: Total matrix inverted:\n{0}'.format(matTotalInv)) s0, s1, s2 = image3d.shape s0n, s1n, s2n = tret.shape # plt.subplot(3, 3, 1 + 0*nshp) plt.imshow(image3d[s0 / 2, :, :]) plt.gcf().gca().add_artist(plt.Circle(protCntXYZ[[1, 2]], 5, edgecolor='r', fill=False)) plt.subplot(3, 3, 2 + 0*nshp) plt.imshow(image3d[:, s1 / 2, :]) plt.gcf().gca().add_artist(plt.Circle(protCntXYZ[[0, 2]], 5, edgecolor='r', fill=False)) plt.subplot(3, 3, 3 + 0*nshp) plt.imshow(image3d[:, :, s2 / 2]) plt.gcf().gca().add_artist(plt.Circle(protCntXYZ[[0, 1]], 5, edgecolor='r', fill=False)) # plt.subplot(3, 3, 1 + 1*nshp) plt.imshow(tret[s0n / 2, :, :]) plt.gcf().gca().add_artist(plt.Circle(protCntXYZPrj[[1, 2]], 5, edgecolor='r', fill=False)) plt.subplot(3, 3, 2 + 1*nshp) plt.imshow(tret[:, s1n / 2, :]) plt.gcf().gca().add_artist(plt.Circle(protCntXYZPrj[[0, 2]], 5, edgecolor='r', fill=False)) plt.subplot(3, 3, 3 + 1*nshp) plt.imshow(tret[:, :, s2n / 2]) plt.gcf().gca().add_artist(plt.Circle(protCntXYZPrj[[0, 1]], 5, edgecolor='r', fill=False)) # plt.subplot(3, 3, 1 + 2 * nshp) plt.imshow(np.sum(tret, axis=0)) plt.gcf().gca().add_artist(plt.Circle(protCntXYZPrj[[1, 2]], 5, edgecolor='r', fill=False)) plt.subplot(3, 3, 2 + 2 * nshp) plt.imshow(np.sum(tret, axis=1)) plt.gcf().gca().add_artist(plt.Circle(protCntXYZPrj[[0, 2]], 5, edgecolor='r', fill=False)) plt.subplot(3, 3, 3 + 2 * nshp) plt.imshow(np.sum(tret, axis=2)) plt.gcf().gca().add_artist(plt.Circle(protCntXYZPrj[[0, 1]], 5, edgecolor='r', fill=False)) plt.show() return tret def generateDistortionMat2d(pshape, pgrid=(5, 5), prnd=0.2, isProportionalGrid=True): if isProportionalGrid: pgridVal = max(pgrid) if pshape[0] < pshape[1]: pgrid = (pgridVal, int(float(pshape[1]) * pgridVal / pshape[0])) else: pgrid = (int(float(pshape[0]) * pgridVal / pshape[1]), pgridVal) sizImg = pshape[:2] gxy = pgrid dxy = np.array(sizImg[::-1]) // np.array(gxy) rx = np.linspace(0, sizImg[1], gxy[0]) ry = np.linspace(0, sizImg[0], gxy[1]) XX, YY = np.meshgrid(rx, ry) rndXX = np.random.uniform(0, dxy[0] * prnd, XX.shape) rndYY = np.random.uniform(0, dxy[1] * prnd, YY.shape) XXrnd = XX.copy() YYrnd = YY.copy() XXrnd[1:-1, 1:-1] = XX[1:-1, 1:-1] + rndXX[1:-1, 1:-1] YYrnd[1:-1, 1:-1] = YY[1:-1, 1:-1] + rndYY[1:-1, 1:-1] fx = sc.interpolate.interp2d(XX, YY, XXrnd, kind='cubic') fy = sc.interpolate.interp2d(XX, YY, YYrnd, kind='cubic') rx_new = np.linspace(0, sizImg[1] - 1, sizImg[1]) ry_new = np.linspace(0, sizImg[0] - 1, sizImg[0]) XX_pert = fx(rx_new, ry_new) YY_pert = fy(rx_new, ry_new) shiftXYZ = np.matlib.repeat(np.expand_dims(np.stack((YY_pert, XX_pert, np.zeros(XX_pert.shape))), axis=-1), 3, axis=-1) return shiftXYZ def generateDistortionMat3d(pshape, pgrid=(5, 5, 5), prnd=0.8, isProportionalGrid=True, isNormZScale = True): if isProportionalGrid: pgridVal = max(pgrid) pminVal = np.min(pshape) pminIdx = np.argmin(pshape) pgrid = np.array([int(float(xx) * pgridVal / pminVal) for xx in pshape]) pgrid[pminIdx] = pgridVal sizImg3D = pshape gxyz = pgrid dxyz = np.array(sizImg3D) / np.array(gxyz) rxyz = [np.linspace(0, sizImg3D[ii], gxyz[ii]) for ii in range(3)] XYZ = np.array(np.meshgrid(rxyz[0], rxyz[1], rxyz[2])) rndXYZ = np.random.uniform(0, dxyz[0] * prnd, XYZ.shape) if isNormZScale: rndXYZ[-1] *= float(pshape[-1])/pshape[0] #FIXME: potential bug XYZrnd = XYZ.copy() for ii in range(3): XYZrnd[ii][1:-1, 1:-1, 1:-1] += rndXYZ[ii][1:-1, 1:-1, 1:-1] # rxyz_new = [np.linspace(0, sizImg3D[ii] - 1, sizImg3D[ii]) for ii in range(3)] XYZ_new = np.array(np.meshgrid(rxyz_new[0], rxyz_new[1], rxyz_new[2])) # rxyz_new = # q = sc.interpolate.interpn(XYZ.reshape(3, -1), XYZrnd, XYZ_new.reshape(3, -1)) q0 = sc.interpolate.interpn(rxyz, XYZrnd[0], XYZ_new.reshape(3, -1).T).reshape(XYZ_new.shape[1:]) q1 = sc.interpolate.interpn(rxyz, XYZrnd[1], XYZ_new.reshape(3, -1).T).reshape(XYZ_new.shape[1:]) q2 = sc.interpolate.interpn(rxyz, XYZrnd[2], XYZ_new.reshape(3, -1).T).reshape(XYZ_new.shape[1:]) return np.stack((q0,q1,q2)) ############################################### def _draw_debug_3d_image(pimg3d, pmsk3d, ext_img3d = None, isShow = True, isNewFigure = False): tsiz = pimg3d.shape[-1] // 2 timg_2d = pimg3d[:, :, tsiz] tmsk_2d = pmsk3d[:, :, tsiz] tmsk_2d_n = (tmsk_2d - tmsk_2d.min()) / float(tmsk_2d.max() - tmsk_2d.min() + 0.001) timg_2d_n = (timg_2d - timg_2d.min()) / float(timg_2d.max() - timg_2d.min() + 0.001) if isNewFigure: plt.figure() nxy = 3 if ext_img3d is None else 4 plt.subplot(1, nxy, 1) plt.imshow(timg_2d), plt.title('image') plt.subplot(1, nxy, 2) plt.imshow(tmsk_2d), plt.title('mask, unique = {}'.format(np.unique(pmsk3d))) plt.subplot(1, nxy, 3) plt.imshow(np.dstack([tmsk_2d_n, timg_2d_n, timg_2d_n])) plt.title('image + mask composite') if ext_img3d is not None: plt.subplot(1, nxy, 4) plt.imshow(ext_img3d[:, :, tsiz]) if isShow: plt.show() class Augumentor3DBasic: def __init__(self, prob = 0.5): self.prob = prob @abstractmethod def process(self, pimg3d, pmsk3d): raise NotImplementedError class MultiAugumentor3D: def __init__(self, lst_aug = None): if lst_aug is None: self.lst_aug = [] else: self.lst_aug = lst_aug def add_aug(self, paug): self.lst_aug.append(paug) def process(self, pimg3d, pmsk3d): ret_img3d, ret_msk3d = pimg3d, pmsk3d for aug_proc in self.lst_aug: ret_img3d, ret_msk3d = aug_proc.process(ret_img3d, ret_msk3d) return (ret_img3d, ret_msk3d) class Augumentor3D_Identity(Augumentor3DBasic): def __init__(self, prob=0.5, isDebug = False): super().__init__(prob) self.isDebug = isDebug def process(self, pimg3d, pmsk3d): if isinstance(pimg3d, str): pimg3d = nib.load(pimg3d).get_data() pmsk3d = nib.load(pmsk3d).get_data() if self.isDebug: _draw_debug_3d_image(pimg3d, pmsk3d, isShow=True, isNewFigure=False) return pimg3d, pmsk3d class Augumentor3DGeom_Affine(Augumentor3DBasic): def __init__(self, prob=0.5, dxyz = (10., 10., 10.), dangle=(-10., +10.), dscale=(0.9, 1.1), dshear = 0., mode = 'nearest', order = 1, order_msk = 0, isDebug = False, isNoZAngleDisturb=True): super().__init__(prob) self.dxyz = dxyz self.dangle = dangle self.dscale = dscale self.dshear = dshear self.mode = mode self.order = order self.order_msk = order_msk self.isNoZAngleDisturb = isNoZAngleDisturb self.isDebug = isDebug def process(self, pimg3d, pmsk3d): if isinstance(pimg3d, str): pimg3d = nib.load(pimg3d).get_data() pmsk3d = nib.load(pmsk3d).get_data() assert (pimg3d.shape == pmsk3d.shape) assert (pmsk3d.ndim == 3) tprob = np.random.uniform(0.0, 1.0) if tprob > self.prob: return (pimg3d, pmsk3d) siz_crop = pimg3d.shape xyz_cnt = tuple((np.array(pimg3d.shape[:3])//2).tolist()) xyz_shift = [np.random.uniform(-xx, +xx) for xx in self.dxyz] xyz_angle = np.random.uniform(self.dangle[0], self.dangle[1], 3) if self.isNoZAngleDisturb: xyz_angle[-1] = 0. xyz_angle = xyz_angle.tolist() xyz_scale = np.random.uniform(self.dscale[0], self.dscale[1], 3).tolist() xyz_shear = np.random.uniform(-self.dshear, +self.dshear, 6).tolist() # ret_img3d, ret_msk3d = [affine_transformation_3d(xx, pshiftXYZ=xyz_shift, protCntXYZ=xyz_cnt, protAngleXYZ=xyz_angle, pscaleXYZ=xyz_scale, pcropSizeXYZ=siz_crop, pshear = xyz_shear, pmode=self.mode, porder=xx_order) for xx, xx_order in zip( [pimg3d, pmsk3d], [self.order, self.order_msk])] if self.isDebug: _draw_debug_3d_image(ret_img3d, ret_msk3d, isShow=True, isNewFigure=False) return ret_img3d, ret_msk3d class Augumentor3DGeom_Distortion(Augumentor3DBasic): def __init__(self, prob=0.5, grid = (5, 5, 5), prnd=0.3, isProportionalGrid = False, mode = 'nearest', order = 1, order_msk = 0, isDebug = False, isNormZScale = True): super().__init__(prob) self.grid = grid self.prnd = prnd self.mode = mode self.order = order self.order_msk = order_msk self.isProportionalGrid = isProportionalGrid self.isNormZScale = isNormZScale self.isDebug = isDebug def process(self, pimg3d, pmsk3d): if isinstance(pimg3d, str): pimg3d = nib.load(pimg3d).get_data() pmsk3d = nib.load(pmsk3d).get_data() assert (pimg3d.shape == pmsk3d.shape) assert (pmsk3d.ndim == 3) distMat3D = generateDistortionMat3d(pimg3d.shape, prnd=self.prnd, pgrid=self.grid, isProportionalGrid=self.isProportionalGrid, isNormZScale=self.isNormZScale) ret_img3d = sc.ndimage.map_coordinates(pimg3d, distMat3D, mode=self.mode, order=self.order) ret_msk3d = sc.ndimage.map_coordinates(pmsk3d, distMat3D, mode=self.mode, order=self.order_msk) if self.isDebug: _draw_debug_3d_image(ret_img3d, ret_msk3d, isShow=True, isNewFigure=False) return ret_img3d, ret_msk3d class Augumentor3DValues_GaussBlobs(Augumentor3DBasic): def __init__(self, prob=0.5, diap_num_blobs = (2, 5), diap_rad = (0.1, 0.4), diap_val = (200, 800), isDebug = False): super().__init__(prob) self.diap_num_blobs = diap_num_blobs self.diap_rad = diap_rad self.diap_val = diap_val self.isDebug = isDebug def process(self, pimg3d, pmsk3d): if isinstance(pimg3d, str): pimg3d = nib.load(pimg3d).get_data() pmsk3d = nib.load(pmsk3d).get_data() assert (pimg3d.shape == pmsk3d.shape) assert (pmsk3d.ndim == 3) tsiz = pimg3d.shape[:3] lin_xyz = [np.linspace(0, xx - 1, xx) for xx in tsiz] XYZ = np.array(np.meshgrid(lin_xyz[0], lin_xyz[1], lin_xyz[2])) idx_xyz = np.where(pmsk3d > 0) tnum_blobs = np.random.randint(self.diap_num_blobs[0], self.diap_num_blobs[1]) rnd_idx = np.random.randint(0, len(idx_xyz[0]), tnum_blobs) rnd_rad = np.random.uniform(self.diap_rad[0], self.diap_rad[1], tnum_blobs) rnd_val = np.random.uniform(self.diap_val[0], self.diap_val[1], tnum_blobs) ret_noise_gauss = None for ii, (iidx, iival) in enumerate(zip(rnd_idx, rnd_val)): tsigm_xyz = np.array(tsiz) * rnd_rad[ii] tpos_xyz = [xx[iidx] for xx in idx_xyz] tgauss = np.exp( -np.sum([0.5 * ((xyz - xyz0)/xyzs)**2 for xyz, xyz0, xyzs in zip(XYZ, tpos_xyz, tsigm_xyz)], axis=0) ) tgauss *= (iival/tgauss.max()) if ret_noise_gauss is None: ret_noise_gauss = tgauss else: ret_noise_gauss += tgauss ret_noise_gauss[pmsk3d < 0.1] = 0 ret_img3d = pimg3d + ret_noise_gauss ret_msk3d = pmsk3d if self.isDebug: _draw_debug_3d_image(ret_img3d, ret_msk3d, ext_img3d=ret_noise_gauss, isShow=True, isNewFigure=False) return ret_img3d, ret_msk3d class Augumentor3DValues_GaussNoise(Augumentor3DBasic): def __init__(self, prob=0.5, diap_scales = (0.1, 0.3), siz_edge_flt=3, diap_mean = (300, 600), diap_sigm=(100, 200), isOnLungsMaskOnly=True, isDebug = False, bg_threshold = -3000.): super().__init__(prob) self.diap_scales = diap_scales self.siz_edge_flt = siz_edge_flt self.diap_mean = diap_mean self.diap_sigm = diap_sigm self.isOnLungsMaskOnly = isOnLungsMaskOnly self.bg_threshold = bg_threshold self.isDebug = isDebug def process(self, pimg3d, pmsk3d): if isinstance(pimg3d, str): pimg3d = nib.load(pimg3d).get_data() pmsk3d = nib.load(pmsk3d).get_data() assert (pimg3d.shape == pmsk3d.shape) assert (pmsk3d.ndim == 3) tsiz = pimg3d.shape[:3] rnd_scale = np.random.uniform(self.diap_scales[0], self.diap_scales[1]) tsiz_small = (np.array(tsiz) * rnd_scale).astype(np.int) rnd_mean = np.random.uniform(self.diap_mean[0], self.diap_mean[1]) rnd_sigm = np.random.uniform(self.diap_sigm[0], self.diap_sigm[1]) gauss_noise3d = np.random.normal(rnd_mean, rnd_sigm, tsiz_small.tolist()) gauss_noise3d = sk.transform.resize(gauss_noise3d, tsiz, order=2) if self.isOnLungsMaskOnly: gauss_noise3d[pmsk3d<0.1] = 0 if self.siz_edge_flt > 0: gauss_noise3d = scipy.ndimage.gaussian_filter(gauss_noise3d, self.siz_edge_flt) ret_img3d = pimg3d + gauss_noise3d ret_img3d[pimg3d < self.bg_threshold] = pimg3d[pimg3d < self.bg_threshold] ret_msk3d = pmsk3d if self.isDebug: _draw_debug_3d_image(ret_img3d, ret_msk3d, ext_img3d=gauss_noise3d, isShow=True, isNewFigure=False) return ret_img3d, ret_msk3d class Augumentor3DValues_LinearNoise(Augumentor3DBasic): def __init__(self, prob=0.5, diap_mean = (-50, 50), diap_scale = (0.95, 1.1), isOnLungsMaskOnly=True, isDebug = False, bg_threshold = -3000.): super().__init__(prob) self.diap_mean = diap_mean self.diap_scale = diap_scale self.isOnLungsMaskOnly = isOnLungsMaskOnly self.bg_threshold = bg_threshold self.isDebug = isDebug def process(self, pimg3d, pmsk3d): if isinstance(pimg3d, str): pimg3d = nib.load(pimg3d).get_data() pmsk3d = nib.load(pmsk3d).get_data() assert (pimg3d.shape == pmsk3d.shape) assert (pmsk3d.ndim == 3) rnd_mean = np.random.uniform(self.diap_mean[0], self.diap_mean[1]) rnd_scale = np.random.uniform(self.diap_scale[0], self.diap_scale[1]) ret_img3d = pimg3d.copy() ret_msk3d = pmsk3d if self.isOnLungsMaskOnly: ret_img3d[pmsk3d > 0] = rnd_mean + pimg3d[pmsk3d > 0] * rnd_scale ret_img3d[pimg3d < self.bg_threshold] = pimg3d[pimg3d < self.bg_threshold] else: ret_img3d[pimg3d > self.bg_threshold] = rnd_mean + rnd_scale * pimg3d[pimg3d > self.bg_threshold] if self.isDebug: _draw_debug_3d_image(ret_img3d, ret_msk3d, ext_img3d=pimg3d, isShow=True, isNewFigure=False) return ret_img3d, ret_msk3d ############################################### if __name__ == '__main__': fnii_img = '/home/ar/data/crdf/data02_ct_lung_segm/data02_ct_lung_segm/data-luna16/lungs-img/id100225287222365663678666836860-256x256x64.nii.gz' fnii_msk = '/home/ar/data/crdf/data02_ct_lung_segm/data02_ct_lung_segm/data-luna16/lungs-msk/id100225287222365663678666836860-256x256x64.nii.gz' # inp_img = nib.load(fnii_img).get_data().astype(np.float32) inp_msk = nib.load(fnii_msk).get_data() inp_msk = ((inp_msk == 3) | (inp_msk == 4)).astype(np.float32) # aug_affine = Augumentor3DGeom_Affine(prob=1.0, isDebug=True) # img, msk = aug_affine.process(fnii_img, fnii_msk) # aug_distortion = Augumentor3DGeom_Distortion(prob=1.0, isDebug=True, order=1, order_msk=1) # img, msk = aug_distortion.process(inp_img, inp_msk) aug_gaussblobs = Augumentor3DValues_GaussBlobs(prob=1.0, isDebug=True) img, msk = aug_gaussblobs.process(inp_img, inp_msk) # aug_gaussnoise = Augumentor3DValues_GaussNoise(prob=1.0, isDebug=True, siz_edge_flt=1, isOnLungsMaskOnly=False) # img, msk = aug_gaussnoise.process(inp_img, inp_msk) # aug_linearnoise = Augumentor3DValues_LinearNoise(prob=1.0, isDebug=True, isOnLungsMaskOnly=False) # img, msk = aug_linearnoise.process(inp_img, inp_msk) # aug_affine = Augumentor3DGeom_Affine(prob=1.0, isDebug=True) # aug_gaussnoise = Augumentor3DValues_GaussNoise(prob=1.0, isDebug=True, siz_edge_flt=1) # aug_affine_and_gaussnoise = MultiAugumentor3D([aug_affine, aug_gaussnoise]) # img, msk = aug_affine_and_gaussnoise.process(inp_img, inp_msk) print('-')
apache-2.0
RayMick/scikit-learn
sklearn/svm/tests/test_sparse.py
70
12992
from nose.tools import assert_raises, assert_true, assert_false import numpy as np from scipy import sparse from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_equal) from sklearn import datasets, svm, linear_model, base from sklearn.datasets import make_classification, load_digits, make_blobs from sklearn.svm.tests import test_svm from sklearn.utils import ConvergenceWarning from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils.testing import assert_warns, assert_raise_message # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) X_sp = sparse.lil_matrix(X) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2 X2 = np.array([[0, 0, 0], [1, 1, 1], [2, 0, 0, ], [0, 0, 2], [3, 3, 3]]) X2_sp = sparse.dok_matrix(X2) Y2 = [1, 2, 2, 2, 3] T2 = np.array([[-1, -1, -1], [1, 1, 1], [2, 2, 2]]) true_result2 = [1, 2, 3] iris = datasets.load_iris() # permute rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # sparsify iris.data = sparse.csr_matrix(iris.data) def check_svm_model_equal(dense_svm, sparse_svm, X_train, y_train, X_test): dense_svm.fit(X_train.toarray(), y_train) if sparse.isspmatrix(X_test): X_test_dense = X_test.toarray() else: X_test_dense = X_test sparse_svm.fit(X_train, y_train) assert_true(sparse.issparse(sparse_svm.support_vectors_)) assert_true(sparse.issparse(sparse_svm.dual_coef_)) assert_array_almost_equal(dense_svm.support_vectors_, sparse_svm.support_vectors_.toarray()) assert_array_almost_equal(dense_svm.dual_coef_, sparse_svm.dual_coef_.toarray()) if dense_svm.kernel == "linear": assert_true(sparse.issparse(sparse_svm.coef_)) assert_array_almost_equal(dense_svm.coef_, sparse_svm.coef_.toarray()) assert_array_almost_equal(dense_svm.support_, sparse_svm.support_) assert_array_almost_equal(dense_svm.predict(X_test_dense), sparse_svm.predict(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test_dense)) if isinstance(dense_svm, svm.OneClassSVM): msg = "cannot use sparse input in 'OneClassSVM' trained on dense data" else: assert_array_almost_equal(dense_svm.predict_proba(X_test_dense), sparse_svm.predict_proba(X_test), 4) msg = "cannot use sparse input in 'SVC' trained on dense data" if sparse.isspmatrix(X_test): assert_raise_message(ValueError, msg, dense_svm.predict, X_test) def test_svc(): """Check that sparse SVC gives the same result as SVC""" # many class dataset: X_blobs, y_blobs = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, Y, T], [X2_sp, Y2, T2], [X_blobs[:80], y_blobs[:80], X_blobs[80:]], [iris.data, iris.target, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.SVC(kernel=kernel, probability=True, random_state=0) sp_clf = svm.SVC(kernel=kernel, probability=True, random_state=0) check_svm_model_equal(clf, sp_clf, *dataset) def test_unsorted_indices(): # test that the result with sorted and unsorted indices in csr is the same # we use a subset of digits as iris, blobs or make_classification didn't # show the problem digits = load_digits() X, y = digits.data[:50], digits.target[:50] X_test = sparse.csr_matrix(digits.data[50:100]) X_sparse = sparse.csr_matrix(X) coef_dense = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X, y).coef_ sparse_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse, y) coef_sorted = sparse_svc.coef_ # make sure dense and sparse SVM give the same result assert_array_almost_equal(coef_dense, coef_sorted.toarray()) X_sparse_unsorted = X_sparse[np.arange(X.shape[0])] X_test_unsorted = X_test[np.arange(X_test.shape[0])] # make sure we scramble the indices assert_false(X_sparse_unsorted.has_sorted_indices) assert_false(X_test_unsorted.has_sorted_indices) unsorted_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse_unsorted, y) coef_unsorted = unsorted_svc.coef_ # make sure unsorted indices give same result assert_array_almost_equal(coef_unsorted.toarray(), coef_sorted.toarray()) assert_array_almost_equal(sparse_svc.predict_proba(X_test_unsorted), sparse_svc.predict_proba(X_test)) def test_svc_with_custom_kernel(): kfunc = lambda x, y: safe_sparse_dot(x, y.T) clf_lin = svm.SVC(kernel='linear').fit(X_sp, Y) clf_mylin = svm.SVC(kernel=kfunc).fit(X_sp, Y) assert_array_equal(clf_lin.predict(X_sp), clf_mylin.predict(X_sp)) def test_svc_iris(): # Test the sparse SVC with the iris dataset for k in ('linear', 'poly', 'rbf'): sp_clf = svm.SVC(kernel=k).fit(iris.data, iris.target) clf = svm.SVC(kernel=k).fit(iris.data.toarray(), iris.target) assert_array_almost_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) if k == 'linear': assert_array_almost_equal(clf.coef_, sp_clf.coef_.toarray()) def test_sparse_decision_function(): #Test decision_function #Sanity check, test that decision_function implemented in python #returns the same as the one in libsvm # multi class: clf = svm.SVC(kernel='linear', C=0.1).fit(iris.data, iris.target) dec = safe_sparse_dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(np.int).ravel()]) expected = np.array([-1., -0.66, -1., 0.66, 1., 1.]) assert_array_almost_equal(clf.decision_function(X), expected, 2) def test_error(): # Test that it gives proper exception on deficient input # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X_sp, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X_sp, Y2) clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(T), true_result) def test_linearsvc(): # Similar to test_SVC clf = svm.LinearSVC(random_state=0).fit(X, Y) sp_clf = svm.LinearSVC(random_state=0).fit(X_sp, Y) assert_true(sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) assert_array_almost_equal(clf.predict(X), sp_clf.predict(X_sp)) clf.fit(X2, Y2) sp_clf.fit(X2_sp, Y2) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) def test_linearsvc_iris(): # Test the sparse LinearSVC with the iris dataset sp_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) clf = svm.LinearSVC(random_state=0).fit(iris.data.toarray(), iris.target) assert_equal(clf.fit_intercept, sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=1) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=1) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) # check decision_function pred = np.argmax(sp_clf.decision_function(iris.data), 1) assert_array_almost_equal(pred, clf.predict(iris.data.toarray())) # sparsify the coefficients on both models and check that they still # produce the same results clf.sparsify() assert_array_equal(pred, clf.predict(iris.data)) sp_clf.sparsify() assert_array_equal(pred, sp_clf.predict(iris.data)) def test_weight(): # Test class weights X_, y_ = make_classification(n_samples=200, n_features=100, weights=[0.833, 0.167], random_state=0) X_ = sparse.csr_matrix(X_) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: 5}) clf.fit(X_[:180], y_[:180]) y_pred = clf.predict(X_[180:]) assert_true(np.sum(y_pred == y_[180:]) >= 11) def test_sample_weights(): # Test weights on individual samples clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict([X[2]]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X_sp, Y, sample_weight=sample_weight) assert_array_equal(clf.predict([X[2]]), [2.]) def test_sparse_liblinear_intercept_handling(): # Test that sparse liblinear honours intercept_scaling param test_svm.test_dense_liblinear_intercept_handling(svm.LinearSVC) def test_sparse_oneclasssvm(): """Check that sparse OneClassSVM gives the same result as dense OneClassSVM""" # many class dataset: X_blobs, _ = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, None, T], [X2_sp, None, T2], [X_blobs[:80], None, X_blobs[80:]], [iris.data, None, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.OneClassSVM(kernel=kernel, random_state=0) sp_clf = svm.OneClassSVM(kernel=kernel, random_state=0) check_svm_model_equal(clf, sp_clf, *dataset) def test_sparse_realdata(): # Test on a subset from the 20newsgroups dataset. # This catchs some bugs if input is not correctly converted into # sparse format or weights are not correctly initialized. data = np.array([0.03771744, 0.1003567, 0.01174647, 0.027069]) indices = np.array([6, 5, 35, 31]) indptr = np.array( [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4]) X = sparse.csr_matrix((data, indices, indptr)) y = np.array( [1., 0., 2., 2., 1., 1., 1., 2., 2., 0., 1., 2., 2., 0., 2., 0., 3., 0., 3., 0., 1., 1., 3., 2., 3., 2., 0., 3., 1., 0., 2., 1., 2., 0., 1., 0., 2., 3., 1., 3., 0., 1., 0., 0., 2., 0., 1., 2., 2., 2., 3., 2., 0., 3., 2., 1., 2., 3., 2., 2., 0., 1., 0., 1., 2., 3., 0., 0., 2., 2., 1., 3., 1., 1., 0., 1., 2., 1., 1., 3.]) clf = svm.SVC(kernel='linear').fit(X.toarray(), y) sp_clf = svm.SVC(kernel='linear').fit(sparse.coo_matrix(X), y) assert_array_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) def test_sparse_svc_clone_with_callable_kernel(): # Test that the "dense_fit" is called even though we use sparse input # meaning that everything works fine. a = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0) b = base.clone(a) b.fit(X_sp, Y) pred = b.predict(X_sp) b.predict_proba(X_sp) dense_svm = svm.SVC(C=1, kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0) pred_dense = dense_svm.fit(X, Y).predict(X) assert_array_equal(pred_dense, pred) # b.decision_function(X_sp) # XXX : should be supported def test_timeout(): sp = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, sp.fit, X_sp, Y) def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2)
bsd-3-clause
ozak/geopandas
benchmarks/geom_methods.py
2
3834
import random import numpy as np from geopandas import GeoSeries from shapely.geometry import Point, LineString, Polygon def with_attributes(**attrs): def decorator(func): for key, value in attrs.items(): setattr(func, key, value) return func return decorator class Bench: def setup(self, *args): self.points = GeoSeries([Point(i, i) for i in range(100000)]) triangles = GeoSeries([Polygon([(random.random(), random.random()) for _ in range(3)]) for _ in range(1000)]) triangles2 = triangles.copy().iloc[np.random.choice(1000, 1000)] triangles3 = GeoSeries([Polygon([(random.random(), random.random()) for _ in range(3)]) for _ in range(10000)]) triangle = Polygon([(random.random(), random.random()) for _ in range(3)]) self.triangles, self.triangles2 = triangles, triangles2 self.triangles_big = triangles3 self.triangle = triangle @with_attributes(param_names=['op'], params=[('contains', 'crosses', 'disjoint', 'intersects', 'overlaps', 'touches', 'within', 'geom_equals', 'geom_almost_equals', 'geom_equals_exact')]) def time_binary_predicate(self, op): getattr(self.triangles, op)(self.triangle) @with_attributes(param_names=['op'], params=[('contains', 'crosses', 'disjoint', 'intersects', 'overlaps', 'touches', 'within', 'geom_equals', 'geom_almost_equals')]) # 'geom_equals_exact')]) def time_binary_predicate_vector(self, op): getattr(self.triangles, op)(self.triangles2) @with_attributes(param_names=['op'], params=[('distance')]) def time_binary_float(self, op): getattr(self.triangles, op)(self.triangle) @with_attributes(param_names=['op'], params=[('distance')]) def time_binary_float_vector(self, op): getattr(self.triangles, op)(self.triangles2) @with_attributes(param_names=['op'], params=[('difference', 'symmetric_difference', 'union', 'intersection')]) def time_binary_geo(self, op): getattr(self.triangles, op)(self.triangle) @with_attributes(param_names=['op'], params=[('difference', 'symmetric_difference', 'union', 'intersection')]) def time_binary_geo_vector(self, op): getattr(self.triangles, op)(self.triangles2) @with_attributes(param_names=['op'], params=[('is_valid', 'is_empty', 'is_simple', 'is_ring')]) def time_unary_predicate(self, op): getattr(self.triangles, op) @with_attributes(param_names=['op'], params=[('area', 'length')]) def time_unary_float(self, op): getattr(self.triangles_big, op) @with_attributes(param_names=['op'], params=[('boundary', 'centroid', 'convex_hull', 'envelope', 'exterior', 'interiors')]) def time_unary_geo(self, op): getattr(self.triangles, op) def time_unary_geo_representative_point(self, *args): getattr(self.triangles, 'representative_point')() def time_geom_type(self, *args): self.triangles_big.geom_type def time_bounds(self, *args): self.triangles.bounds def time_unary_union(self, *args): self.triangles.unary_union def time_buffer(self, *args): self.points.buffer(2) # TODO # project, interpolate, translate, rotate, scale, skew, explode # cx indexer
bsd-3-clause
Clyde-fare/scikit-learn
sklearn/manifold/tests/test_isomap.py
226
3941
from itertools import product import numpy as np from numpy.testing import assert_almost_equal, assert_array_almost_equal from sklearn import datasets from sklearn import manifold from sklearn import neighbors from sklearn import pipeline from sklearn import preprocessing from sklearn.utils.testing import assert_less eigen_solvers = ['auto', 'dense', 'arpack'] path_methods = ['auto', 'FW', 'D'] def test_isomap_simple_grid(): # Isomap should preserve distances when all neighbors are used N_per_side = 5 Npts = N_per_side ** 2 n_neighbors = Npts - 1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(N_per_side), repeat=2))) # distances from each point to all others G = neighbors.kneighbors_graph(X, n_neighbors, mode='distance').toarray() for eigen_solver in eigen_solvers: for path_method in path_methods: clf = manifold.Isomap(n_neighbors=n_neighbors, n_components=2, eigen_solver=eigen_solver, path_method=path_method) clf.fit(X) G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode='distance').toarray() assert_array_almost_equal(G, G_iso) def test_isomap_reconstruction_error(): # Same setup as in test_isomap_simple_grid, with an added dimension N_per_side = 5 Npts = N_per_side ** 2 n_neighbors = Npts - 1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(N_per_side), repeat=2))) # add noise in a third dimension rng = np.random.RandomState(0) noise = 0.1 * rng.randn(Npts, 1) X = np.concatenate((X, noise), 1) # compute input kernel G = neighbors.kneighbors_graph(X, n_neighbors, mode='distance').toarray() centerer = preprocessing.KernelCenterer() K = centerer.fit_transform(-0.5 * G ** 2) for eigen_solver in eigen_solvers: for path_method in path_methods: clf = manifold.Isomap(n_neighbors=n_neighbors, n_components=2, eigen_solver=eigen_solver, path_method=path_method) clf.fit(X) # compute output kernel G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode='distance').toarray() K_iso = centerer.fit_transform(-0.5 * G_iso ** 2) # make sure error agrees reconstruction_error = np.linalg.norm(K - K_iso) / Npts assert_almost_equal(reconstruction_error, clf.reconstruction_error()) def test_transform(): n_samples = 200 n_components = 10 noise_scale = 0.01 # Create S-curve dataset X, y = datasets.samples_generator.make_s_curve(n_samples, random_state=0) # Compute isomap embedding iso = manifold.Isomap(n_components, 2) X_iso = iso.fit_transform(X) # Re-embed a noisy version of the points rng = np.random.RandomState(0) noise = noise_scale * rng.randn(*X.shape) X_iso2 = iso.transform(X + noise) # Make sure the rms error on re-embedding is comparable to noise_scale assert_less(np.sqrt(np.mean((X_iso - X_iso2) ** 2)), 2 * noise_scale) def test_pipeline(): # check that Isomap works fine as a transformer in a Pipeline # only checks that no error is raised. # TODO check that it actually does something useful X, y = datasets.make_blobs(random_state=0) clf = pipeline.Pipeline( [('isomap', manifold.Isomap()), ('clf', neighbors.KNeighborsClassifier())]) clf.fit(X, y) assert_less(.9, clf.score(X, y))
bsd-3-clause
ibis-project/ibis
benchmarks/benchmarks.py
2
8068
import numpy as np import pandas as pd import ibis import ibis.expr.datatypes as dt from ibis.backends.pandas.udf import udf def make_t(name='t'): return ibis.table( ( ('_timestamp', 'int32'), ('dim1', 'int32'), ('dim2', 'int32'), ('valid_seconds', 'int32'), ('meas1', 'int32'), ('meas2', 'int32'), ('year', 'int32'), ('month', 'int32'), ('day', 'int32'), ('hour', 'int32'), ('minute', 'int32'), ), name=name, ) def make_base(t): return ( (t.year > 2016) | ((t.year == 2016) & (t.month > 6)) | ((t.year == 2016) & (t.month == 6) & (t.day > 6)) | ((t.year == 2016) & (t.month == 6) & (t.day == 6) & (t.hour > 6)) | ( (t.year == 2016) & (t.month == 6) & (t.day == 6) & (t.hour == 6) & (t.minute >= 5) ) ) & ( (t.year < 2016) | ((t.year == 2016) & (t.month < 6)) | ((t.year == 2016) & (t.month == 6) & (t.day < 6)) | ((t.year == 2016) & (t.month == 6) & (t.day == 6) & (t.hour < 6)) | ( (t.year == 2016) & (t.month == 6) & (t.day == 6) & (t.hour == 6) & (t.minute <= 5) ) ) def make_large_expr(t, base): src_table = t[base] src_table = src_table.mutate( _timestamp=(src_table['_timestamp'] - src_table['_timestamp'] % 3600) .cast('int32') .name('_timestamp'), valid_seconds=300, ) aggs = [] for meas in ['meas1', 'meas2']: aggs.append(src_table[meas].sum().cast('float').name(meas)) src_table = src_table.aggregate( aggs, by=['_timestamp', 'dim1', 'dim2', 'valid_seconds'] ) part_keys = ['year', 'month', 'day', 'hour', 'minute'] ts_col = src_table['_timestamp'].cast('timestamp') new_cols = {} for part_key in part_keys: part_col = getattr(ts_col, part_key)() new_cols[part_key] = part_col src_table = src_table.mutate(**new_cols) return src_table[ [ '_timestamp', 'dim1', 'dim2', 'meas1', 'meas2', 'year', 'month', 'day', 'hour', 'minute', ] ] class Suite: def setup(self): self.t = t = make_t() self.base = make_base(t) self.expr = self.large_expr @property def large_expr(self): t = make_t() return make_large_expr(t, make_base(t)) class Construction(Suite): def time_large_expr_construction(self): self.large_expr class Hashing(Suite): def time_hash_small_expr(self): hash(make_t()) def time_hash_medium_expr(self): hash(make_base(make_t())) def time_hash_large_expr(self): hash(self.large_expr) class Formatting(Suite): def time_base_expr_formatting(self): str(self.base) def time_large_expr_formatting(self): str(self.expr) class Compilation(Suite): def time_impala_base_compile(self): ibis.impala.compile(self.base) def time_impala_large_expr_compile(self): ibis.impala.compile(self.expr) class PandasBackend: def setup(self): n = 30 * int(2e4) self.data = pd.DataFrame( { 'key': np.random.choice(16000, size=n), 'low_card_key': np.random.choice(30, size=n), 'value': np.random.rand(n), 'timestamps': pd.date_range( start='now', periods=n, freq='s' ).values, 'timestamp_strings': pd.date_range( start='now', periods=n, freq='s' ).values.astype(str), 'repeated_timestamps': pd.date_range( start='2018-09-01', periods=30 ).repeat(int(n / 30)), } ) t = ibis.pandas.connect({'df': self.data}).table('df') self.high_card_group_by = t.groupby(t.key).aggregate( avg_value=t.value.mean() ) self.cast_to_dates = t.timestamps.cast(dt.date) self.cast_to_dates_from_strings = t.timestamp_strings.cast(dt.date) self.multikey_group_by_with_mutate = ( t.mutate(dates=t.timestamps.cast('date')) .groupby(['low_card_key', 'dates']) .aggregate(avg_value=lambda t: t.value.mean()) ) self.simple_sort = t.sort_by([t.key]) self.simple_sort_projection = t[['key', 'value']].sort_by(['key']) self.multikey_sort = t.sort_by(['low_card_key', 'key']) self.multikey_sort_projection = t[ ['low_card_key', 'key', 'value'] ].sort_by(['low_card_key', 'key']) low_card_rolling_window = ibis.trailing_range_window( ibis.interval(days=2), order_by=t.repeated_timestamps, group_by=t.low_card_key, ) self.low_card_grouped_rolling = t.value.mean().over( low_card_rolling_window ) high_card_rolling_window = ibis.trailing_range_window( ibis.interval(days=2), order_by=t.repeated_timestamps, group_by=t.key, ) self.high_card_grouped_rolling = t.value.mean().over( high_card_rolling_window ) @udf.reduction(['double'], 'double') def my_mean(series): return series.mean() self.low_card_grouped_rolling_udf_mean = my_mean(t.value).over( low_card_rolling_window ) self.high_card_grouped_rolling_udf_mean = my_mean(t.value).over( high_card_rolling_window ) @udf.analytic(['double'], 'double') def my_zscore(series): return (series - series.mean()) / series.std() low_card_window = ibis.window(group_by=t.low_card_key) high_card_window = ibis.window(group_by=t.key) self.low_card_window_analytics_udf = my_zscore(t.value).over( low_card_window ) self.high_card_window_analytics_udf = my_zscore(t.value).over( high_card_window ) @udf.reduction(['double', 'double'], 'double') def my_wm(v, w): return np.average(v, weights=w) self.low_card_grouped_rolling_udf_wm = my_wm(t.value, t.value).over( low_card_rolling_window ) self.high_card_grouped_rolling_udf_wm = my_wm(t.value, t.value).over( low_card_rolling_window ) def time_high_cardinality_group_by(self): self.high_card_group_by.execute() def time_cast_to_date(self): self.cast_to_dates.execute() def time_cast_to_date_from_string(self): self.cast_to_dates_from_strings.execute() def time_multikey_group_by_with_mutate(self): self.multikey_group_by_with_mutate.execute() def time_simple_sort(self): self.simple_sort.execute() def time_multikey_sort(self): self.multikey_sort.execute() def time_simple_sort_projection(self): self.simple_sort_projection.execute() def time_multikey_sort_projection(self): self.multikey_sort_projection.execute() def time_low_card_grouped_rolling(self): self.low_card_grouped_rolling.execute() def time_high_card_grouped_rolling(self): self.high_card_grouped_rolling.execute() def time_low_card_grouped_rolling_udf(self): self.low_card_grouped_rolling_udf_mean.execute() def time_high_card_grouped_rolling_udf(self): self.high_card_grouped_rolling_udf_mean.execute() def time_low_card_window_analytics_udf(self): self.low_card_window_analytics_udf.execute() def time_high_card_grouped_rolling_udf_wm(self): self.high_card_grouped_rolling_udf_wm.execute() def time_low_card_grouped_rolling_udf_wm(self): self.low_card_grouped_rolling_udf_wm.execute()
apache-2.0
gandalfcode/gandalf
tests/paper_tests/freefalltest.py
1
4798
#============================================================================== # freefalltest.py # Run the freefall collapse test using initial conditions specified in the # file 'freefall.dat'. #============================================================================== from gandalf.analysis.facade import * from gandalf.analysis.data_fetcher import * from gandalf.analysis.compute import lagrangian_radii from gandalf.analysis.SimBuffer import SimBuffer, BufferException import time import matplotlib.pyplot as plt import numpy as np import math from matplotlib import rc from mpl_toolkits.axes_grid1 import AxesGrid #-------------------------------------------------------------------------------------------------- def FreefallSolution(rho, mfrac): tff = np.sqrt(3.0*3.1415/32.0/rho) r0 = math.pow(mfrac, 0.33333333333) r = np.arange(0.0, 0.99999, 0.0001) t = np.arccos(np.sqrt(r/r0)) + np.sqrt(r/r0)*np.sqrt(1.0 - r/r0) t *= 2.0/3.14157 return t,r #-------------------------------------------------------------------------------------------------- rc('font', **{'family': 'normal', 'weight' : 'bold', 'size' : 16}) rc('text', usetex=True) # Set all plot limits tmin = 0.00 tmax = 1.0 rmin = 0.005 rmax = 1.05 rho = 3.0/4.0/3.114157 radius = 1.0 stride = 8 sim_no = 0 # Analytical solutions for grav. acceleration and potential r_acc = np.arange(rmin, 0.99999*rmax, 0.001) a_acc = -r_acc gpot_acc = 0.5*(r_acc*r_acc - 3.0*radius*radius) # Run the simulation mainsim = newsim('freefall.dat') setupsim() run() # Get grav. data for simulaton for plotting r_data = get_data("r", sim=sim_no, snap=0) a_data = get_data("ar", sim=sim_no, snap=0) gpot_data = get_data("gpot", sim=sim_no, snap=0) # Prepare 10%, 50% and 90% Lagrangian radii CreateTimeData('lr1',lagrangian_radii,mfrac=0.05) CreateTimeData('lr2',lagrangian_radii,mfrac=0.2) CreateTimeData('lr3',lagrangian_radii,mfrac=0.5) CreateTimeData('lr4',lagrangian_radii,mfrac=1.0) data05 = get_time_data("t","lr1") data20 = get_time_data("t","lr2") data50 = get_time_data("t","lr3") data100 = get_time_data("t","lr4") # Get analytical solutions for each mass fraction t05, r05 = FreefallSolution(rho, 0.05) t20, r20 = FreefallSolution(rho, 0.2) t50, r50 = FreefallSolution(rho, 0.5) t100, r100 = FreefallSolution(rho, 1.0) # Normalise freefall data to units of freefall time data05.x_data /= 1.1107 data20.x_data /= 1.1107 data50.x_data /= 1.1107 data100.x_data /= 1.1107 # Create matplotlib figure object with shared x-axis #-------------------------------------------------------------------------------------------------- #fig, axarr = plt.subplots(2, 1, sharex='col', sharey='row', figsize=(10,4)) fig, axarr = plt.subplots(2, 1, figsize=(7,8), sharex='col') fig.subplots_adjust(hspace=0.0001, wspace=0.0001) fig.subplots_adjust(bottom=0.07, top=0.97, left=0.12, right=0.98) axarr[0].set_ylabel(r"$a_{_{\rm r}}$") #axarr[0].set_xlabel(r"$r$") axarr[0].set_xlim([0.0001, 1.04]) axarr[0].set_ylim(-1.1,0.1) axarr[0].plot(r_acc, a_acc, color="red", linestyle='-', lw=0.5) axarr[0].scatter(r_data[::stride], a_data[::stride], color='black', marker='.', s=4.0) #axarr[0].legend(fontsize=12) axarr[1].set_ylabel(r"$\phi$") axarr[1].set_xlabel(r"$r$") axarr[1].set_xlim([rmin, rmax]) axarr[1].set_ylim(-1.55,-0.85) axarr[1].plot(r_acc, gpot_acc, color="red", linestyle='-', lw=0.5) axarr[1].scatter(r_data[::stride], -gpot_data[::stride], color='black', marker='.', s=4.0) #axarr[1].legend(fontsize=12) plt.show() fig.savefig('sphereaccel.pdf', dpi=50) # Create matplotlib figure object with shared x-axis #-------------------------------------------------------------------------------------------------- fig2, axarr2 = plt.subplots(1, 1, figsize=(7,5)) fig2.subplots_adjust(hspace=0.001, wspace=0.001) fig2.subplots_adjust(bottom=0.1, top=0.99, left=0.1, right=0.98) axarr2.set_ylabel(r"$R_{_{\rm LAG}}$") axarr2.set_xlabel(r"$t/t_{_{\rm FF}}$") axarr2.set_xlim([tmin, tmax]) axarr2.set_ylim([rmin, rmax]) axarr2.plot(t05, r05, color="red", linestyle='-', lw=0.5) axarr2.plot(t20, r20, color="red", linestyle='-', lw=0.5) axarr2.plot(t50, r50, color="red", linestyle='-', lw=0.5) axarr2.plot(t100, r100, color="red", linestyle='-', lw=0.5) axarr2.scatter(data05.x_data, data05.y_data, color='black', marker='.', s=24.0, label='$5\%$') axarr2.scatter(data20.x_data, data20.y_data, color='black', marker=',', s=24.0, label='$20\%$') axarr2.scatter(data50.x_data, data50.y_data, color='black', marker='D', s=24.0, label='$50\%$') axarr2.scatter(data100.x_data, data100.y_data, color='black', marker='^', s=24.0, label='$100\%$') axarr2.legend(fontsize=12) plt.show() fig2.savefig('freefall.pdf', dpi=50) # Prevent program from closing before showing plot window block()
gpl-2.0
cmu-db/dbms-library
dbdb/core/management/commands/process_visits.py
2
9818
# stdlib imports import glob import gzip import re import os import sys import operator import dateutil.parser from pprint import pprint # django imports from django.core.management import BaseCommand from django.conf import settings from django.db import connection from django.db.models import Q from dbdb.core.models import System from dbdb.core.models import SystemFeature from dbdb.core.models import SystemVersion from dbdb.core.models import SystemVisit from dbdb.core.models import SystemRecommendation import numpy as np import pandas as pd from sklearn.metrics import mean_squared_error class Command(BaseCommand): def add_arguments(self, parser): parser.add_argument('--max-threshold', type=int, default=99999, help="Max visit count threshold per user") parser.add_argument('--min-threshold', type=int, default=2, help="Min visit count threshold per user") parser.add_argument('--min-visit', type=int, default=2, help="Min visit count threshold per system") parser.add_argument('--ignore', action='append', type=str, help="List of IP addresses to ignore") parser.add_argument('--clear', action='store_true', help="Clear out existing recommendations in the database") parser.add_argument('--store', action='store_true', help="Store the recommendation in the database") parser.add_argument('--show-missing', action='store_true', help="Show which systems are missing recommendations") return def show_missing(self, options): systems = System.objects \ .filter(recommendation_to__isnull=True) \ .distinct() \ .order_by("name") self.stdout.write("No Recommendations [%d]" % systems.count()) for system in systems: num_visits = SystemVisit.objects.filter(system=system) if options['ignore']: num_visits = num_visits.filter(~Q(ip_address__in=options['ignore'])) self.stdout.write(" + %s [num_visits=%d]" % (system.name, num_visits.count())) return def handle(self, *args, **options): if options['show_missing']: self.show_missing(options) return # IF # Get the list of all unique IPs ip_addresses = [ ] with connection.cursor() as cursor: sql = "SELECT ip_address, user_agent, count(*) AS cnt FROM core_systemvisit " sql_args = [ ] # Remove ignored IPs if options['ignore']: sql += "WHERE ip_address NOT IN %s " sql_args.append(options['ignore']) sql += "GROUP BY ip_address, user_agent HAVING cnt BETWEEN %s AND %s" sql_args.append(options['min_threshold']) sql_args.append(options['max_threshold']) self.stdout.write(sql) self.stdout.write(str(sql_args)) cursor.execute(sql, tuple(sql_args)) ip_addresses = set([ (row[0],row[1]) for row in cursor.fetchall() ]) # WITH # Get the # of visits per system visits_per_system = { } with connection.cursor() as cursor: sql = "SELECT system_id, count(*) AS cnt FROM core_systemvisit " sql_args = [ ] # Remove ignored IPs if options['ignore']: sql += "WHERE ip_address NOT IN %s " sql_args.append(options['ignore']) sql += "GROUP BY system_id HAVING cnt > %s" sql_args.append(str(options['min_visit'])) cursor.execute(sql, tuple(sql_args)) visits_per_system = dict([ (row[0],int(row[1])) for row in cursor.fetchall() ]) # WITH #for system_id in sorted(visits_per_system.keys(), key=lambda x: -1*visits_per_system[x]): #self.stdout.write(System.objects.get(id=system_id), "=>", visits_per_system[system_id]) #sys.exit(1) # For each ip/user pair, get the systems that they viewed all_visits = { } user_info = { } system_idx_xref = { } idx_system_xref = { } next_user_idx = 0 next_system_idx = 0 for ip, ua in ip_addresses: systems = list() #systems = set() visits = SystemVisit.objects.filter(ip_address=ip, user_agent=ua) for v in visits: # Skip anything that did not have enough total visits if not v.system.id in visits_per_system: continue if not v.system.id in system_idx_xref: system_idx_xref[v.system.id] = next_system_idx idx_system_xref[next_system_idx] = v.system.id next_system_idx += 1 if type(systems) is set: systems.add(system_idx_xref[v.system.id]) else: systems.append(system_idx_xref[v.system.id]) # Skip any user that visits only systems not above our threshold # Otherwise we will have all zeros for the systems and this will # break numpy when we split our training set if len(systems) > 0: all_visits[next_user_idx] = systems user_info[next_user_idx] = (ip, ua) next_user_idx += 1 ## FOR print("visits_per_system:", len(visits_per_system)) print("idx_system_xref:", len(idx_system_xref)) assert len(visits_per_system) == len(idx_system_xref) system_cnt = System.objects.all().count() #sys.exit(1) #for user_idx in sorted(all_visits.keys(), key=lambda x: -1*len(all_visits[x]))[:10]: #self.stdout.write(user_info[user_idx], "=>", len(all_visits[user_idx])) #sys.exit(1) self.stdout.write("# of Users: %d" % next_user_idx) self.stdout.write("# of Sytems: %d (total=%d)" % (next_system_idx, system_cnt)) data = np.zeros((next_user_idx, next_system_idx)) for user_idx in all_visits.keys(): for system_idx in all_visits[user_idx]: data[user_idx, system_idx] += 1 self.stdout.write(str(data)) sparsity = float(len(data.nonzero()[0])) sparsity /= (data.shape[0] * data.shape[1]) sparsity *= 100 self.stdout.write('Sparsity: {:4.2f}%'.format(sparsity)) train_data, test_data = self.train_test_split(data) similarity = self.compute_similarity(train_data) self.stdout.write(str(similarity[:4, :4])) pred = data.dot(similarity) / np.array([np.abs(similarity).sum(axis=1)]) self.stdout.write('MSE: ' + str(self.get_mse(pred, test_data))) #self.stdout.write("# of IPs: %s" % len(ip_addresses)) output = { } for system_idx in range(0, next_system_idx): recommendations = self.top_k_systems(similarity, system_idx, 5) system = System.objects.get(id=idx_system_xref[system_idx]) before_recs = SystemRecommendation.objects.filter(system=system) before_output = [ "*BEFORE*" ] for rec in before_recs: before_output.append("+ %s [%f]" % (rec.recommendation, rec.score)) if options['clear']: before_recs.delete() new_output = [ "*AFTER*" ] for i in range(1, len(recommendations)): score = similarity[system_idx, recommendations[i]] other_sys = System.objects.get(id=idx_system_xref[recommendations[i]]) if system == other_sys: continue if options['store']: rec = SystemRecommendation(system=system, recommendation=other_sys, score=score) rec.save() new_output.append("+ %s [%f]" % (other_sys, score)) ## FOR output_buffer = str(system) + "\n" for i in range(0, max(len(before_output), len(new_output))): right = "" left = "" if i < len(before_output): left = before_output[i] if i < len(new_output): right = new_output[i] output_buffer += ' {0:30} {1}\n'.format(left, right) ## FOR output[system.name] = output_buffer ## FOR # Print them sorted by name for sys_name in sorted (output.keys()): print(output[sys_name]) return def top_k_systems(self, similarity, system_idx, k=6): #assert system_idx in mapper return [x for x in np.argsort(similarity[system_idx,:])[:-k-1:-1]] def train_test_split(self, data): test = np.zeros(data.shape) train = data.copy() for user_idx in range(data.shape[0]): test_data = np.random.choice(data[user_idx, :].nonzero()[0], size=10, replace=True) train[user_idx, test_data] = 0. test[user_idx, test_data] = data[user_idx, test_data] # Test and training are truly disjoint assert(np.all((train * test) == 0)) return train, test def compute_similarity(self, data, epsilon=1e-9): # epsilon -> small number for handling dived-by-zero errors sim = data.T.dot(data) + epsilon norms = np.array([np.sqrt(np.diagonal(sim))]) return (sim / norms / norms.T) def get_mse(self, pred, actual): # Ignore nonzero terms. pred = pred[actual.nonzero()].flatten() actual = actual[actual.nonzero()].flatten() return mean_squared_error(pred, actual) pass
apache-2.0
nmayorov/scikit-learn
examples/cluster/plot_digits_linkage.py
369
2959
""" ============================================================================= Various Agglomerative Clustering on a 2D embedding of digits ============================================================================= An illustration of various linkage option for agglomerative clustering on a 2D embedding of the digits dataset. The goal of this example is to show intuitively how the metrics behave, and not to find good clusters for the digits. This is why the example works on a 2D embedding. What this example shows us is the behavior "rich getting richer" of agglomerative clustering that tends to create uneven cluster sizes. This behavior is especially pronounced for the average linkage strategy, that ends up with a couple of singleton clusters. """ # Authors: Gael Varoquaux # License: BSD 3 clause (C) INRIA 2014 print(__doc__) from time import time import numpy as np from scipy import ndimage from matplotlib import pyplot as plt from sklearn import manifold, datasets digits = datasets.load_digits(n_class=10) X = digits.data y = digits.target n_samples, n_features = X.shape np.random.seed(0) def nudge_images(X, y): # Having a larger dataset shows more clearly the behavior of the # methods, but we multiply the size of the dataset only by 2, as the # cost of the hierarchical clustering methods are strongly # super-linear in n_samples shift = lambda x: ndimage.shift(x.reshape((8, 8)), .3 * np.random.normal(size=2), mode='constant', ).ravel() X = np.concatenate([X, np.apply_along_axis(shift, 1, X)]) Y = np.concatenate([y, y], axis=0) return X, Y X, y = nudge_images(X, y) #---------------------------------------------------------------------- # Visualize the clustering def plot_clustering(X_red, X, labels, title=None): x_min, x_max = np.min(X_red, axis=0), np.max(X_red, axis=0) X_red = (X_red - x_min) / (x_max - x_min) plt.figure(figsize=(6, 4)) for i in range(X_red.shape[0]): plt.text(X_red[i, 0], X_red[i, 1], str(y[i]), color=plt.cm.spectral(labels[i] / 10.), fontdict={'weight': 'bold', 'size': 9}) plt.xticks([]) plt.yticks([]) if title is not None: plt.title(title, size=17) plt.axis('off') plt.tight_layout() #---------------------------------------------------------------------- # 2D embedding of the digits dataset print("Computing embedding") X_red = manifold.SpectralEmbedding(n_components=2).fit_transform(X) print("Done.") from sklearn.cluster import AgglomerativeClustering for linkage in ('ward', 'average', 'complete'): clustering = AgglomerativeClustering(linkage=linkage, n_clusters=10) t0 = time() clustering.fit(X_red) print("%s : %.2fs" % (linkage, time() - t0)) plot_clustering(X_red, X, clustering.labels_, "%s linkage" % linkage) plt.show()
bsd-3-clause
raghavrv/scikit-learn
sklearn/preprocessing/label.py
8
27545
# Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Andreas Mueller <[email protected]> # Joel Nothman <[email protected]> # Hamzeh Alsalhi <[email protected]> # License: BSD 3 clause from collections import defaultdict import itertools import array import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..utils.fixes import sparse_min_max from ..utils import column_or_1d from ..utils.validation import check_array from ..utils.validation import check_is_fitted from ..utils.validation import _num_samples from ..utils.multiclass import unique_labels from ..utils.multiclass import type_of_target from ..externals import six zip = six.moves.zip map = six.moves.map __all__ = [ 'label_binarize', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', ] class LabelEncoder(BaseEstimator, TransformerMixin): """Encode labels with value between 0 and n_classes-1. Read more in the :ref:`User Guide <preprocessing_targets>`. Attributes ---------- classes_ : array of shape (n_class,) Holds the label for each class. Examples -------- `LabelEncoder` can be used to normalize labels. >>> from sklearn import preprocessing >>> le = preprocessing.LabelEncoder() >>> le.fit([1, 2, 2, 6]) LabelEncoder() >>> le.classes_ array([1, 2, 6]) >>> le.transform([1, 1, 2, 6]) #doctest: +ELLIPSIS array([0, 0, 1, 2]...) >>> le.inverse_transform([0, 0, 1, 2]) array([1, 1, 2, 6]) It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical labels. >>> le = preprocessing.LabelEncoder() >>> le.fit(["paris", "paris", "tokyo", "amsterdam"]) LabelEncoder() >>> list(le.classes_) ['amsterdam', 'paris', 'tokyo'] >>> le.transform(["tokyo", "tokyo", "paris"]) #doctest: +ELLIPSIS array([2, 2, 1]...) >>> list(le.inverse_transform([2, 2, 1])) ['tokyo', 'tokyo', 'paris'] See also -------- sklearn.preprocessing.OneHotEncoder : encode categorical integer features using a one-hot aka one-of-K scheme. """ def fit(self, y): """Fit label encoder Parameters ---------- y : array-like of shape (n_samples,) Target values. Returns ------- self : returns an instance of self. """ y = column_or_1d(y, warn=True) self.classes_ = np.unique(y) return self def fit_transform(self, y): """Fit label encoder and return encoded labels Parameters ---------- y : array-like of shape [n_samples] Target values. Returns ------- y : array-like of shape [n_samples] """ y = column_or_1d(y, warn=True) self.classes_, y = np.unique(y, return_inverse=True) return y def transform(self, y): """Transform labels to normalized encoding. Parameters ---------- y : array-like of shape [n_samples] Target values. Returns ------- y : array-like of shape [n_samples] """ check_is_fitted(self, 'classes_') y = column_or_1d(y, warn=True) classes = np.unique(y) if len(np.intersect1d(classes, self.classes_)) < len(classes): diff = np.setdiff1d(classes, self.classes_) raise ValueError("y contains new labels: %s" % str(diff)) return np.searchsorted(self.classes_, y) def inverse_transform(self, y): """Transform labels back to original encoding. Parameters ---------- y : numpy array of shape [n_samples] Target values. Returns ------- y : numpy array of shape [n_samples] """ check_is_fitted(self, 'classes_') diff = np.setdiff1d(y, np.arange(len(self.classes_))) if diff: raise ValueError("y contains new labels: %s" % str(diff)) y = np.asarray(y) return self.classes_[y] class LabelBinarizer(BaseEstimator, TransformerMixin): """Binarize labels in a one-vs-all fashion Several regression and binary classification algorithms are available in the scikit. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme. At learning time, this simply consists in learning one regressor or binary classifier per class. In doing so, one needs to convert multi-class labels to binary labels (belong or does not belong to the class). LabelBinarizer makes this process easy with the transform method. At prediction time, one assigns the class for which the corresponding model gave the greatest confidence. LabelBinarizer makes this easy with the inverse_transform method. Read more in the :ref:`User Guide <preprocessing_targets>`. Parameters ---------- neg_label : int (default: 0) Value with which negative labels must be encoded. pos_label : int (default: 1) Value with which positive labels must be encoded. sparse_output : boolean (default: False) True if the returned array from transform is desired to be in sparse CSR format. Attributes ---------- classes_ : array of shape [n_class] Holds the label for each class. y_type_ : str, Represents the type of the target data as evaluated by utils.multiclass.type_of_target. Possible type are 'continuous', 'continuous-multioutput', 'binary', 'multiclass', 'multiclass-multioutput', 'multilabel-indicator', and 'unknown'. sparse_input_ : boolean, True if the input data to transform is given as a sparse matrix, False otherwise. Examples -------- >>> from sklearn import preprocessing >>> lb = preprocessing.LabelBinarizer() >>> lb.fit([1, 2, 6, 4, 2]) LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False) >>> lb.classes_ array([1, 2, 4, 6]) >>> lb.transform([1, 6]) array([[1, 0, 0, 0], [0, 0, 0, 1]]) Binary targets transform to a column vector >>> lb = preprocessing.LabelBinarizer() >>> lb.fit_transform(['yes', 'no', 'no', 'yes']) array([[1], [0], [0], [1]]) Passing a 2D matrix for multilabel classification >>> import numpy as np >>> lb.fit(np.array([[0, 1, 1], [1, 0, 0]])) LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False) >>> lb.classes_ array([0, 1, 2]) >>> lb.transform([0, 1, 2, 1]) array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 1, 0]]) See also -------- label_binarize : function to perform the transform operation of LabelBinarizer with fixed classes. sklearn.preprocessing.OneHotEncoder : encode categorical integer features using a one-hot aka one-of-K scheme. """ def __init__(self, neg_label=0, pos_label=1, sparse_output=False): if neg_label >= pos_label: raise ValueError("neg_label={0} must be strictly less than " "pos_label={1}.".format(neg_label, pos_label)) if sparse_output and (pos_label == 0 or neg_label != 0): raise ValueError("Sparse binarization is only supported with non " "zero pos_label and zero neg_label, got " "pos_label={0} and neg_label={1}" "".format(pos_label, neg_label)) self.neg_label = neg_label self.pos_label = pos_label self.sparse_output = sparse_output def fit(self, y): """Fit label binarizer Parameters ---------- y : array of shape [n_samples,] or [n_samples, n_classes] Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Returns ------- self : returns an instance of self. """ self.y_type_ = type_of_target(y) if 'multioutput' in self.y_type_: raise ValueError("Multioutput target data is not supported with " "label binarization") if _num_samples(y) == 0: raise ValueError('y has 0 samples: %r' % y) self.sparse_input_ = sp.issparse(y) self.classes_ = unique_labels(y) return self def fit_transform(self, y): """Fit label binarizer and transform multi-class labels to binary labels. The output of transform is sometimes referred to as the 1-of-K coding scheme. Parameters ---------- y : array or sparse matrix of shape [n_samples,] or \ [n_samples, n_classes] Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse matrix can be CSR, CSC, COO, DOK, or LIL. Returns ------- Y : array or CSR matrix of shape [n_samples, n_classes] Shape will be [n_samples, 1] for binary problems. """ return self.fit(y).transform(y) def transform(self, y): """Transform multi-class labels to binary labels The output of transform is sometimes referred to by some authors as the 1-of-K coding scheme. Parameters ---------- y : array or sparse matrix of shape [n_samples,] or \ [n_samples, n_classes] Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse matrix can be CSR, CSC, COO, DOK, or LIL. Returns ------- Y : numpy array or CSR matrix of shape [n_samples, n_classes] Shape will be [n_samples, 1] for binary problems. """ check_is_fitted(self, 'classes_') y_is_multilabel = type_of_target(y).startswith('multilabel') if y_is_multilabel and not self.y_type_.startswith('multilabel'): raise ValueError("The object was not fitted with multilabel" " input.") return label_binarize(y, self.classes_, pos_label=self.pos_label, neg_label=self.neg_label, sparse_output=self.sparse_output) def inverse_transform(self, Y, threshold=None): """Transform binary labels back to multi-class labels Parameters ---------- Y : numpy array or sparse matrix with shape [n_samples, n_classes] Target values. All sparse matrices are converted to CSR before inverse transformation. threshold : float or None Threshold used in the binary and multi-label cases. Use 0 when: - Y contains the output of decision_function (classifier) Use 0.5 when: - Y contains the output of predict_proba If None, the threshold is assumed to be half way between neg_label and pos_label. Returns ------- y : numpy array or CSR matrix of shape [n_samples] Target values. Notes ----- In the case when the binary labels are fractional (probabilistic), inverse_transform chooses the class with the greatest value. Typically, this allows to use the output of a linear model's decision_function method directly as the input of inverse_transform. """ check_is_fitted(self, 'classes_') if threshold is None: threshold = (self.pos_label + self.neg_label) / 2. if self.y_type_ == "multiclass": y_inv = _inverse_binarize_multiclass(Y, self.classes_) else: y_inv = _inverse_binarize_thresholding(Y, self.y_type_, self.classes_, threshold) if self.sparse_input_: y_inv = sp.csr_matrix(y_inv) elif sp.issparse(y_inv): y_inv = y_inv.toarray() return y_inv def label_binarize(y, classes, neg_label=0, pos_label=1, sparse_output=False): """Binarize labels in a one-vs-all fashion Several regression and binary classification algorithms are available in the scikit. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme. This function makes it possible to compute this transformation for a fixed set of class labels known ahead of time. Parameters ---------- y : array-like Sequence of integer labels or multilabel data to encode. classes : array-like of shape [n_classes] Uniquely holds the label for each class. neg_label : int (default: 0) Value with which negative labels must be encoded. pos_label : int (default: 1) Value with which positive labels must be encoded. sparse_output : boolean (default: False), Set to true if output binary array is desired in CSR sparse format Returns ------- Y : numpy array or CSR matrix of shape [n_samples, n_classes] Shape will be [n_samples, 1] for binary problems. Examples -------- >>> from sklearn.preprocessing import label_binarize >>> label_binarize([1, 6], classes=[1, 2, 4, 6]) array([[1, 0, 0, 0], [0, 0, 0, 1]]) The class ordering is preserved: >>> label_binarize([1, 6], classes=[1, 6, 4, 2]) array([[1, 0, 0, 0], [0, 1, 0, 0]]) Binary targets transform to a column vector >>> label_binarize(['yes', 'no', 'no', 'yes'], classes=['no', 'yes']) array([[1], [0], [0], [1]]) See also -------- LabelBinarizer : class used to wrap the functionality of label_binarize and allow for fitting to classes independently of the transform operation """ if not isinstance(y, list): # XXX Workaround that will be removed when list of list format is # dropped y = check_array(y, accept_sparse='csr', ensure_2d=False, dtype=None) else: if _num_samples(y) == 0: raise ValueError('y has 0 samples: %r' % y) if neg_label >= pos_label: raise ValueError("neg_label={0} must be strictly less than " "pos_label={1}.".format(neg_label, pos_label)) if (sparse_output and (pos_label == 0 or neg_label != 0)): raise ValueError("Sparse binarization is only supported with non " "zero pos_label and zero neg_label, got " "pos_label={0} and neg_label={1}" "".format(pos_label, neg_label)) # To account for pos_label == 0 in the dense case pos_switch = pos_label == 0 if pos_switch: pos_label = -neg_label y_type = type_of_target(y) if 'multioutput' in y_type: raise ValueError("Multioutput target data is not supported with label " "binarization") if y_type == 'unknown': raise ValueError("The type of target data is not known") n_samples = y.shape[0] if sp.issparse(y) else len(y) n_classes = len(classes) classes = np.asarray(classes) if y_type == "binary": if n_classes == 1: if sparse_output: return sp.csr_matrix((n_samples, 1), dtype=int) else: Y = np.zeros((len(y), 1), dtype=np.int) Y += neg_label return Y elif len(classes) >= 3: y_type = "multiclass" sorted_class = np.sort(classes) if (y_type == "multilabel-indicator" and classes.size != y.shape[1]): raise ValueError("classes {0} missmatch with the labels {1}" "found in the data".format(classes, unique_labels(y))) if y_type in ("binary", "multiclass"): y = column_or_1d(y) # pick out the known labels from y y_in_classes = np.in1d(y, classes) y_seen = y[y_in_classes] indices = np.searchsorted(sorted_class, y_seen) indptr = np.hstack((0, np.cumsum(y_in_classes))) data = np.empty_like(indices) data.fill(pos_label) Y = sp.csr_matrix((data, indices, indptr), shape=(n_samples, n_classes)) elif y_type == "multilabel-indicator": Y = sp.csr_matrix(y) if pos_label != 1: data = np.empty_like(Y.data) data.fill(pos_label) Y.data = data else: raise ValueError("%s target data is not supported with label " "binarization" % y_type) if not sparse_output: Y = Y.toarray() Y = Y.astype(int, copy=False) if neg_label != 0: Y[Y == 0] = neg_label if pos_switch: Y[Y == pos_label] = 0 else: Y.data = Y.data.astype(int, copy=False) # preserve label ordering if np.any(classes != sorted_class): indices = np.searchsorted(sorted_class, classes) Y = Y[:, indices] if y_type == "binary": if sparse_output: Y = Y.getcol(-1) else: Y = Y[:, -1].reshape((-1, 1)) return Y def _inverse_binarize_multiclass(y, classes): """Inverse label binarization transformation for multiclass. Multiclass uses the maximal score instead of a threshold. """ classes = np.asarray(classes) if sp.issparse(y): # Find the argmax for each row in y where y is a CSR matrix y = y.tocsr() n_samples, n_outputs = y.shape outputs = np.arange(n_outputs) row_max = sparse_min_max(y, 1)[1] row_nnz = np.diff(y.indptr) y_data_repeated_max = np.repeat(row_max, row_nnz) # picks out all indices obtaining the maximum per row y_i_all_argmax = np.flatnonzero(y_data_repeated_max == y.data) # For corner case where last row has a max of 0 if row_max[-1] == 0: y_i_all_argmax = np.append(y_i_all_argmax, [len(y.data)]) # Gets the index of the first argmax in each row from y_i_all_argmax index_first_argmax = np.searchsorted(y_i_all_argmax, y.indptr[:-1]) # first argmax of each row y_ind_ext = np.append(y.indices, [0]) y_i_argmax = y_ind_ext[y_i_all_argmax[index_first_argmax]] # Handle rows of all 0 y_i_argmax[np.where(row_nnz == 0)[0]] = 0 # Handles rows with max of 0 that contain negative numbers samples = np.arange(n_samples)[(row_nnz > 0) & (row_max.ravel() == 0)] for i in samples: ind = y.indices[y.indptr[i]:y.indptr[i + 1]] y_i_argmax[i] = classes[np.setdiff1d(outputs, ind)][0] return classes[y_i_argmax] else: return classes.take(y.argmax(axis=1), mode="clip") def _inverse_binarize_thresholding(y, output_type, classes, threshold): """Inverse label binarization transformation using thresholding.""" if output_type == "binary" and y.ndim == 2 and y.shape[1] > 2: raise ValueError("output_type='binary', but y.shape = {0}". format(y.shape)) if output_type != "binary" and y.shape[1] != len(classes): raise ValueError("The number of class is not equal to the number of " "dimension of y.") classes = np.asarray(classes) # Perform thresholding if sp.issparse(y): if threshold > 0: if y.format not in ('csr', 'csc'): y = y.tocsr() y.data = np.array(y.data > threshold, dtype=np.int) y.eliminate_zeros() else: y = np.array(y.toarray() > threshold, dtype=np.int) else: y = np.array(y > threshold, dtype=np.int) # Inverse transform data if output_type == "binary": if sp.issparse(y): y = y.toarray() if y.ndim == 2 and y.shape[1] == 2: return classes[y[:, 1]] else: if len(classes) == 1: return np.repeat(classes[0], len(y)) else: return classes[y.ravel()] elif output_type == "multilabel-indicator": return y else: raise ValueError("{0} format is not supported".format(output_type)) class MultiLabelBinarizer(BaseEstimator, TransformerMixin): """Transform between iterable of iterables and a multilabel format Although a list of sets or tuples is a very intuitive format for multilabel data, it is unwieldy to process. This transformer converts between this intuitive format and the supported multilabel format: a (samples x classes) binary matrix indicating the presence of a class label. Parameters ---------- classes : array-like of shape [n_classes] (optional) Indicates an ordering for the class labels sparse_output : boolean (default: False), Set to true if output binary array is desired in CSR sparse format Attributes ---------- classes_ : array of labels A copy of the `classes` parameter where provided, or otherwise, the sorted set of classes found when fitting. Examples -------- >>> from sklearn.preprocessing import MultiLabelBinarizer >>> mlb = MultiLabelBinarizer() >>> mlb.fit_transform([(1, 2), (3,)]) array([[1, 1, 0], [0, 0, 1]]) >>> mlb.classes_ array([1, 2, 3]) >>> mlb.fit_transform([set(['sci-fi', 'thriller']), set(['comedy'])]) array([[0, 1, 1], [1, 0, 0]]) >>> list(mlb.classes_) ['comedy', 'sci-fi', 'thriller'] See also -------- sklearn.preprocessing.OneHotEncoder : encode categorical integer features using a one-hot aka one-of-K scheme. """ def __init__(self, classes=None, sparse_output=False): self.classes = classes self.sparse_output = sparse_output def fit(self, y): """Fit the label sets binarizer, storing `classes_` Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- self : returns this MultiLabelBinarizer instance """ if self.classes is None: classes = sorted(set(itertools.chain.from_iterable(y))) else: classes = self.classes dtype = np.int if all(isinstance(c, int) for c in classes) else object self.classes_ = np.empty(len(classes), dtype=dtype) self.classes_[:] = classes return self def fit_transform(self, y): """Fit the label sets binarizer and transform the given label sets Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- y_indicator : array or CSR matrix, shape (n_samples, n_classes) A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in `y[i]`, and 0 otherwise. """ if self.classes is not None: return self.fit(y).transform(y) # Automatically increment on new class class_mapping = defaultdict(int) class_mapping.default_factory = class_mapping.__len__ yt = self._transform(y, class_mapping) # sort classes and reorder columns tmp = sorted(class_mapping, key=class_mapping.get) # (make safe for tuples) dtype = np.int if all(isinstance(c, int) for c in tmp) else object class_mapping = np.empty(len(tmp), dtype=dtype) class_mapping[:] = tmp self.classes_, inverse = np.unique(class_mapping, return_inverse=True) # ensure yt.indices keeps its current dtype yt.indices = np.array(inverse[yt.indices], dtype=yt.indices.dtype, copy=False) if not self.sparse_output: yt = yt.toarray() return yt def transform(self, y): """Transform the given label sets Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- y_indicator : array or CSR matrix, shape (n_samples, n_classes) A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in `y[i]`, and 0 otherwise. """ check_is_fitted(self, 'classes_') class_to_index = dict(zip(self.classes_, range(len(self.classes_)))) yt = self._transform(y, class_to_index) if not self.sparse_output: yt = yt.toarray() return yt def _transform(self, y, class_mapping): """Transforms the label sets with a given mapping Parameters ---------- y : iterable of iterables class_mapping : Mapping Maps from label to column index in label indicator matrix Returns ------- y_indicator : sparse CSR matrix, shape (n_samples, n_classes) Label indicator matrix """ indices = array.array('i') indptr = array.array('i', [0]) for labels in y: indices.extend(set(class_mapping[label] for label in labels)) indptr.append(len(indices)) data = np.ones(len(indices), dtype=int) return sp.csr_matrix((data, indices, indptr), shape=(len(indptr) - 1, len(class_mapping))) def inverse_transform(self, yt): """Transform the given indicator matrix into label sets Parameters ---------- yt : array or sparse matrix of shape (n_samples, n_classes) A matrix containing only 1s ands 0s. Returns ------- y : list of tuples The set of labels for each sample such that `y[i]` consists of `classes_[j]` for each `yt[i, j] == 1`. """ check_is_fitted(self, 'classes_') if yt.shape[1] != len(self.classes_): raise ValueError('Expected indicator for {0} classes, but got {1}' .format(len(self.classes_), yt.shape[1])) if sp.issparse(yt): yt = yt.tocsr() if len(yt.data) != 0 and len(np.setdiff1d(yt.data, [0, 1])) > 0: raise ValueError('Expected only 0s and 1s in label indicator.') return [tuple(self.classes_.take(yt.indices[start:end])) for start, end in zip(yt.indptr[:-1], yt.indptr[1:])] else: unexpected = np.setdiff1d(yt, [0, 1]) if len(unexpected) > 0: raise ValueError('Expected only 0s and 1s in label indicator. ' 'Also got {0}'.format(unexpected)) return [tuple(self.classes_.compress(indicators)) for indicators in yt]
bsd-3-clause
jmetzen/scikit-learn
sklearn/tests/test_discriminant_analysis.py
22
12830
import sys import numpy as np from nose import SkipTest from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_greater from sklearn.utils.testing import ignore_warnings from sklearn.datasets import make_blobs from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.discriminant_analysis import _cov # import reload version = sys.version_info if version[0] == 3: # Python 3+ import for reload. Builtin in Python2 if version[1] == 3: reload = None else: from importlib import reload # Data is just 6 separable points in the plane X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]], dtype='f') y = np.array([1, 1, 1, 2, 2, 2]) y3 = np.array([1, 1, 2, 2, 3, 3]) # Degenerate data with only one feature (still should be separable) X1 = np.array([[-2, ], [-1, ], [-1, ], [1, ], [1, ], [2, ]], dtype='f') # Data is just 9 separable points in the plane X6 = np.array([[0, 0], [-2, -2], [-2, -1], [-1, -1], [-1, -2], [1, 3], [1, 2], [2, 1], [2, 2]]) y6 = np.array([1, 1, 1, 1, 1, 2, 2, 2, 2]) y7 = np.array([1, 2, 3, 2, 3, 1, 2, 3, 1]) # Degenerate data with 1 feature (still should be separable) X7 = np.array([[-3, ], [-2, ], [-1, ], [-1, ], [0, ], [1, ], [1, ], [2, ], [3, ]]) # Data that has zero variance in one dimension and needs regularization X2 = np.array([[-3, 0], [-2, 0], [-1, 0], [-1, 0], [0, 0], [1, 0], [1, 0], [2, 0], [3, 0]]) # One element class y4 = np.array([1, 1, 1, 1, 1, 1, 1, 1, 2]) # Data with less samples in a class than n_features X5 = np.c_[np.arange(8), np.zeros((8, 3))] y5 = np.array([0, 0, 0, 0, 0, 1, 1, 1]) solver_shrinkage = [('svd', None), ('lsqr', None), ('eigen', None), ('lsqr', 'auto'), ('lsqr', 0), ('lsqr', 0.43), ('eigen', 'auto'), ('eigen', 0), ('eigen', 0.43)] def test_lda_predict(): # Test LDA classification. # This checks that LDA implements fit and predict and returns correct # values for simple toy data. for test_case in solver_shrinkage: solver, shrinkage = test_case clf = LinearDiscriminantAnalysis(solver=solver, shrinkage=shrinkage) y_pred = clf.fit(X, y).predict(X) assert_array_equal(y_pred, y, 'solver %s' % solver) # Assert that it works with 1D data y_pred1 = clf.fit(X1, y).predict(X1) assert_array_equal(y_pred1, y, 'solver %s' % solver) # Test probability estimates y_proba_pred1 = clf.predict_proba(X1) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y, 'solver %s' % solver) y_log_proba_pred1 = clf.predict_log_proba(X1) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8, 'solver %s' % solver) # Primarily test for commit 2f34950 -- "reuse" of priors y_pred3 = clf.fit(X, y3).predict(X) # LDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y3), 'solver %s' % solver) # Test invalid shrinkages clf = LinearDiscriminantAnalysis(solver="lsqr", shrinkage=-0.2231) assert_raises(ValueError, clf.fit, X, y) clf = LinearDiscriminantAnalysis(solver="eigen", shrinkage="dummy") assert_raises(ValueError, clf.fit, X, y) clf = LinearDiscriminantAnalysis(solver="svd", shrinkage="auto") assert_raises(NotImplementedError, clf.fit, X, y) # Test unknown solver clf = LinearDiscriminantAnalysis(solver="dummy") assert_raises(ValueError, clf.fit, X, y) def test_lda_priors(): # Test priors (negative priors) priors = np.array([0.5, -0.5]) clf = LinearDiscriminantAnalysis(priors=priors) msg = "priors must be non-negative" assert_raise_message(ValueError, msg, clf.fit, X, y) # Test that priors passed as a list are correctly handled (run to see if # failure) clf = LinearDiscriminantAnalysis(priors=[0.5, 0.5]) clf.fit(X, y) # Test that priors always sum to 1 priors = np.array([0.5, 0.6]) prior_norm = np.array([0.45, 0.55]) clf = LinearDiscriminantAnalysis(priors=priors) assert_warns(UserWarning, clf.fit, X, y) assert_array_almost_equal(clf.priors_, prior_norm, 2) def test_lda_coefs(): # Test if the coefficients of the solvers are approximately the same. n_features = 2 n_classes = 2 n_samples = 1000 X, y = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_classes, random_state=11) clf_lda_svd = LinearDiscriminantAnalysis(solver="svd") clf_lda_lsqr = LinearDiscriminantAnalysis(solver="lsqr") clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen") clf_lda_svd.fit(X, y) clf_lda_lsqr.fit(X, y) clf_lda_eigen.fit(X, y) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_lsqr.coef_, 1) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_eigen.coef_, 1) assert_array_almost_equal(clf_lda_eigen.coef_, clf_lda_lsqr.coef_, 1) def test_lda_transform(): # Test LDA transform. clf = LinearDiscriminantAnalysis(solver="svd", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = LinearDiscriminantAnalysis(solver="eigen", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = LinearDiscriminantAnalysis(solver="lsqr", n_components=1) clf.fit(X, y) msg = "transform not implemented for 'lsqr'" assert_raise_message(NotImplementedError, msg, clf.transform, X) def test_lda_explained_variance_ratio(): # Test if the sum of the normalized eigen vectors values equals 1, # Also tests whether the explained_variance_ratio_ formed by the # eigen solver is the same as the explained_variance_ratio_ formed # by the svd solver n_features = 2 n_classes = 2 n_samples = 1000 X, y = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_classes, random_state=11) clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen") clf_lda_eigen.fit(X, y) assert_almost_equal(clf_lda_eigen.explained_variance_ratio_.sum(), 1.0, 3) clf_lda_svd = LinearDiscriminantAnalysis(solver="svd") clf_lda_svd.fit(X, y) assert_almost_equal(clf_lda_svd.explained_variance_ratio_.sum(), 1.0, 3) assert_array_almost_equal(clf_lda_svd.explained_variance_ratio_, clf_lda_eigen.explained_variance_ratio_) def test_lda_orthogonality(): # arrange four classes with their means in a kite-shaped pattern # the longer distance should be transformed to the first component, and # the shorter distance to the second component. means = np.array([[0, 0, -1], [0, 2, 0], [0, -2, 0], [0, 0, 5]]) # We construct perfectly symmetric distributions, so the LDA can estimate # precise means. scatter = np.array([[0.1, 0, 0], [-0.1, 0, 0], [0, 0.1, 0], [0, -0.1, 0], [0, 0, 0.1], [0, 0, -0.1]]) X = (means[:, np.newaxis, :] + scatter[np.newaxis, :, :]).reshape((-1, 3)) y = np.repeat(np.arange(means.shape[0]), scatter.shape[0]) # Fit LDA and transform the means clf = LinearDiscriminantAnalysis(solver="svd").fit(X, y) means_transformed = clf.transform(means) d1 = means_transformed[3] - means_transformed[0] d2 = means_transformed[2] - means_transformed[1] d1 /= np.sqrt(np.sum(d1 ** 2)) d2 /= np.sqrt(np.sum(d2 ** 2)) # the transformed within-class covariance should be the identity matrix assert_almost_equal(np.cov(clf.transform(scatter).T), np.eye(2)) # the means of classes 0 and 3 should lie on the first component assert_almost_equal(np.abs(np.dot(d1[:2], [1, 0])), 1.0) # the means of classes 1 and 2 should lie on the second component assert_almost_equal(np.abs(np.dot(d2[:2], [0, 1])), 1.0) def test_lda_scaling(): # Test if classification works correctly with differently scaled features. n = 100 rng = np.random.RandomState(1234) # use uniform distribution of features to make sure there is absolutely no # overlap between classes. x1 = rng.uniform(-1, 1, (n, 3)) + [-10, 0, 0] x2 = rng.uniform(-1, 1, (n, 3)) + [10, 0, 0] x = np.vstack((x1, x2)) * [1, 100, 10000] y = [-1] * n + [1] * n for solver in ('svd', 'lsqr', 'eigen'): clf = LinearDiscriminantAnalysis(solver=solver) # should be able to separate the data perfectly assert_equal(clf.fit(x, y).score(x, y), 1.0, 'using covariance: %s' % solver) def test_qda(): # QDA classification. # This checks that QDA implements fit and predict and returns # correct values for a simple toy dataset. clf = QuadraticDiscriminantAnalysis() y_pred = clf.fit(X6, y6).predict(X6) assert_array_equal(y_pred, y6) # Assure that it works with 1D data y_pred1 = clf.fit(X7, y6).predict(X7) assert_array_equal(y_pred1, y6) # Test probas estimates y_proba_pred1 = clf.predict_proba(X7) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y6) y_log_proba_pred1 = clf.predict_log_proba(X7) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8) y_pred3 = clf.fit(X6, y7).predict(X6) # QDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y7)) # Classes should have at least 2 elements assert_raises(ValueError, clf.fit, X6, y4) def test_qda_priors(): clf = QuadraticDiscriminantAnalysis() y_pred = clf.fit(X6, y6).predict(X6) n_pos = np.sum(y_pred == 2) neg = 1e-10 clf = QuadraticDiscriminantAnalysis(priors=np.array([neg, 1 - neg])) y_pred = clf.fit(X6, y6).predict(X6) n_pos2 = np.sum(y_pred == 2) assert_greater(n_pos2, n_pos) def test_qda_store_covariances(): # The default is to not set the covariances_ attribute clf = QuadraticDiscriminantAnalysis().fit(X6, y6) assert_true(not hasattr(clf, 'covariances_')) # Test the actual attribute: clf = QuadraticDiscriminantAnalysis(store_covariances=True).fit(X6, y6) assert_true(hasattr(clf, 'covariances_')) assert_array_almost_equal( clf.covariances_[0], np.array([[0.7, 0.45], [0.45, 0.7]]) ) assert_array_almost_equal( clf.covariances_[1], np.array([[0.33333333, -0.33333333], [-0.33333333, 0.66666667]]) ) def test_qda_regularization(): # the default is reg_param=0. and will cause issues # when there is a constant variable clf = QuadraticDiscriminantAnalysis() with ignore_warnings(): y_pred = clf.fit(X2, y6).predict(X2) assert_true(np.any(y_pred != y6)) # adding a little regularization fixes the problem clf = QuadraticDiscriminantAnalysis(reg_param=0.01) with ignore_warnings(): clf.fit(X2, y6) y_pred = clf.predict(X2) assert_array_equal(y_pred, y6) # Case n_samples_in_a_class < n_features clf = QuadraticDiscriminantAnalysis(reg_param=0.1) with ignore_warnings(): clf.fit(X5, y5) y_pred5 = clf.predict(X5) assert_array_equal(y_pred5, y5) def test_deprecated_lda_qda_deprecation(): if reload is None: raise SkipTest("Can't reload module on Python3.3") def import_lda_module(): import sklearn.lda # ensure that we trigger DeprecationWarning even if the sklearn.lda # was loaded previously by another test. reload(sklearn.lda) return sklearn.lda lda = assert_warns(DeprecationWarning, import_lda_module) assert lda.LDA is LinearDiscriminantAnalysis def import_qda_module(): import sklearn.qda # ensure that we trigger DeprecationWarning even if the sklearn.qda # was loaded previously by another test. reload(sklearn.qda) return sklearn.qda qda = assert_warns(DeprecationWarning, import_qda_module) assert qda.QDA is QuadraticDiscriminantAnalysis def test_covariance(): x, y = make_blobs(n_samples=100, n_features=5, centers=1, random_state=42) # make features correlated x = np.dot(x, np.arange(x.shape[1] ** 2).reshape(x.shape[1], x.shape[1])) c_e = _cov(x, 'empirical') assert_almost_equal(c_e, c_e.T) c_s = _cov(x, 'auto') assert_almost_equal(c_s, c_s.T)
bsd-3-clause
robbymeals/scikit-learn
sklearn/datasets/mldata.py
309
7838
"""Automatically download MLdata datasets.""" # Copyright (c) 2011 Pietro Berkes # License: BSD 3 clause import os from os.path import join, exists import re import numbers try: # Python 2 from urllib2 import HTTPError from urllib2 import quote from urllib2 import urlopen except ImportError: # Python 3+ from urllib.error import HTTPError from urllib.parse import quote from urllib.request import urlopen import numpy as np import scipy as sp from scipy import io from shutil import copyfileobj from .base import get_data_home, Bunch MLDATA_BASE_URL = "http://mldata.org/repository/data/download/matlab/%s" def mldata_filename(dataname): """Convert a raw name for a data set in a mldata.org filename.""" dataname = dataname.lower().replace(' ', '-') return re.sub(r'[().]', '', dataname) def fetch_mldata(dataname, target_name='label', data_name='data', transpose_data=True, data_home=None): """Fetch an mldata.org data set If the file does not exist yet, it is downloaded from mldata.org . mldata.org does not have an enforced convention for storing data or naming the columns in a data set. The default behavior of this function works well with the most common cases: 1) data values are stored in the column 'data', and target values in the column 'label' 2) alternatively, the first column stores target values, and the second data values 3) the data array is stored as `n_features x n_samples` , and thus needs to be transposed to match the `sklearn` standard Keyword arguments allow to adapt these defaults to specific data sets (see parameters `target_name`, `data_name`, `transpose_data`, and the examples below). mldata.org data sets may have multiple columns, which are stored in the Bunch object with their original name. Parameters ---------- dataname: Name of the data set on mldata.org, e.g.: "leukemia", "Whistler Daily Snowfall", etc. The raw name is automatically converted to a mldata.org URL . target_name: optional, default: 'label' Name or index of the column containing the target values. data_name: optional, default: 'data' Name or index of the column containing the data. transpose_data: optional, default: True If True, transpose the downloaded data array. data_home: optional, default: None Specify another download and cache folder for the data sets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'DESCR', the full description of the dataset, and 'COL_NAMES', the original names of the dataset columns. Examples -------- Load the 'iris' dataset from mldata.org: >>> from sklearn.datasets.mldata import fetch_mldata >>> import tempfile >>> test_data_home = tempfile.mkdtemp() >>> iris = fetch_mldata('iris', data_home=test_data_home) >>> iris.target.shape (150,) >>> iris.data.shape (150, 4) Load the 'leukemia' dataset from mldata.org, which needs to be transposed to respects the sklearn axes convention: >>> leuk = fetch_mldata('leukemia', transpose_data=True, ... data_home=test_data_home) >>> leuk.data.shape (72, 7129) Load an alternative 'iris' dataset, which has different names for the columns: >>> iris2 = fetch_mldata('datasets-UCI iris', target_name=1, ... data_name=0, data_home=test_data_home) >>> iris3 = fetch_mldata('datasets-UCI iris', ... target_name='class', data_name='double0', ... data_home=test_data_home) >>> import shutil >>> shutil.rmtree(test_data_home) """ # normalize dataset name dataname = mldata_filename(dataname) # check if this data set has been already downloaded data_home = get_data_home(data_home=data_home) data_home = join(data_home, 'mldata') if not exists(data_home): os.makedirs(data_home) matlab_name = dataname + '.mat' filename = join(data_home, matlab_name) # if the file does not exist, download it if not exists(filename): urlname = MLDATA_BASE_URL % quote(dataname) try: mldata_url = urlopen(urlname) except HTTPError as e: if e.code == 404: e.msg = "Dataset '%s' not found on mldata.org." % dataname raise # store Matlab file try: with open(filename, 'w+b') as matlab_file: copyfileobj(mldata_url, matlab_file) except: os.remove(filename) raise mldata_url.close() # load dataset matlab file with open(filename, 'rb') as matlab_file: matlab_dict = io.loadmat(matlab_file, struct_as_record=True) # -- extract data from matlab_dict # flatten column names col_names = [str(descr[0]) for descr in matlab_dict['mldata_descr_ordering'][0]] # if target or data names are indices, transform then into names if isinstance(target_name, numbers.Integral): target_name = col_names[target_name] if isinstance(data_name, numbers.Integral): data_name = col_names[data_name] # rules for making sense of the mldata.org data format # (earlier ones have priority): # 1) there is only one array => it is "data" # 2) there are multiple arrays # a) copy all columns in the bunch, using their column name # b) if there is a column called `target_name`, set "target" to it, # otherwise set "target" to first column # c) if there is a column called `data_name`, set "data" to it, # otherwise set "data" to second column dataset = {'DESCR': 'mldata.org dataset: %s' % dataname, 'COL_NAMES': col_names} # 1) there is only one array => it is considered data if len(col_names) == 1: data_name = col_names[0] dataset['data'] = matlab_dict[data_name] # 2) there are multiple arrays else: for name in col_names: dataset[name] = matlab_dict[name] if target_name in col_names: del dataset[target_name] dataset['target'] = matlab_dict[target_name] else: del dataset[col_names[0]] dataset['target'] = matlab_dict[col_names[0]] if data_name in col_names: del dataset[data_name] dataset['data'] = matlab_dict[data_name] else: del dataset[col_names[1]] dataset['data'] = matlab_dict[col_names[1]] # set axes to sklearn conventions if transpose_data: dataset['data'] = dataset['data'].T if 'target' in dataset: if not sp.sparse.issparse(dataset['target']): dataset['target'] = dataset['target'].squeeze() return Bunch(**dataset) # The following is used by nosetests to setup the docstring tests fixture def setup_module(module): # setup mock urllib2 module to avoid downloading from mldata.org from sklearn.utils.testing import install_mldata_mock install_mldata_mock({ 'iris': { 'data': np.empty((150, 4)), 'label': np.empty(150), }, 'datasets-uci-iris': { 'double0': np.empty((150, 4)), 'class': np.empty((150,)), }, 'leukemia': { 'data': np.empty((72, 7129)), }, }) def teardown_module(module): from sklearn.utils.testing import uninstall_mldata_mock uninstall_mldata_mock()
bsd-3-clause
jpautom/scikit-learn
sklearn/discriminant_analysis.py
9
28405
""" Linear Discriminant Analysis and Quadratic Discriminant Analysis """ # Authors: Clemens Brunner # Martin Billinger # Matthieu Perrot # Mathieu Blondel # License: BSD 3-Clause from __future__ import print_function import warnings import numpy as np from scipy import linalg from .externals.six import string_types from .externals.six.moves import xrange from .base import BaseEstimator, TransformerMixin, ClassifierMixin from .linear_model.base import LinearClassifierMixin from .covariance import ledoit_wolf, empirical_covariance, shrunk_covariance from .utils.multiclass import unique_labels from .utils import check_array, check_X_y from .utils.validation import check_is_fitted from .utils.fixes import bincount from .utils.multiclass import check_classification_targets from .preprocessing import StandardScaler __all__ = ['LinearDiscriminantAnalysis', 'QuadraticDiscriminantAnalysis'] def _cov(X, shrinkage=None): """Estimate covariance matrix (using optional shrinkage). Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. shrinkage : string or float, optional Shrinkage parameter, possible values: - None or 'empirical': no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Returns ------- s : array, shape (n_features, n_features) Estimated covariance matrix. """ shrinkage = "empirical" if shrinkage is None else shrinkage if isinstance(shrinkage, string_types): if shrinkage == 'auto': sc = StandardScaler() # standardize features X = sc.fit_transform(X) s = ledoit_wolf(X)[0] s = sc.scale_[:, np.newaxis] * s * sc.scale_[np.newaxis, :] # rescale elif shrinkage == 'empirical': s = empirical_covariance(X) else: raise ValueError('unknown shrinkage parameter') elif isinstance(shrinkage, float) or isinstance(shrinkage, int): if shrinkage < 0 or shrinkage > 1: raise ValueError('shrinkage parameter must be between 0 and 1') s = shrunk_covariance(empirical_covariance(X), shrinkage) else: raise TypeError('shrinkage must be of string or int type') return s def _class_means(X, y): """Compute class means. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Returns ------- means : array-like, shape (n_features,) Class means. """ means = [] classes = np.unique(y) for group in classes: Xg = X[y == group, :] means.append(Xg.mean(0)) return np.asarray(means) def _class_cov(X, y, priors=None, shrinkage=None): """Compute class covariance matrix. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. priors : array-like, shape (n_classes,) Class priors. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Returns ------- cov : array-like, shape (n_features, n_features) Class covariance matrix. """ classes = np.unique(y) covs = [] for group in classes: Xg = X[y == group, :] covs.append(np.atleast_2d(_cov(Xg, shrinkage))) return np.average(covs, axis=0, weights=priors) class LinearDiscriminantAnalysis(BaseEstimator, LinearClassifierMixin, TransformerMixin): """Linear Discriminant Analysis A classifier with a linear decision boundary, generated by fitting class conditional densities to the data and using Bayes' rule. The model fits a Gaussian density to each class, assuming that all classes share the same covariance matrix. The fitted model can also be used to reduce the dimensionality of the input by projecting it to the most discriminative directions. .. versionadded:: 0.17 *LinearDiscriminantAnalysis*. .. versionchanged:: 0.17 Deprecated :class:`lda.LDA` have been moved to *LinearDiscriminantAnalysis*. Parameters ---------- solver : string, optional Solver to use, possible values: - 'svd': Singular value decomposition (default). Does not compute the covariance matrix, therefore this solver is recommended for data with a large number of features. - 'lsqr': Least squares solution, can be combined with shrinkage. - 'eigen': Eigenvalue decomposition, can be combined with shrinkage. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Note that shrinkage works only with 'lsqr' and 'eigen' solvers. priors : array, optional, shape (n_classes,) Class priors. n_components : int, optional Number of components (< n_classes - 1) for dimensionality reduction. store_covariance : bool, optional Additionally compute class covariance matrix (default False). .. versionadded:: 0.17 tol : float, optional Threshold used for rank estimation in SVD solver. .. versionadded:: 0.17 Attributes ---------- coef_ : array, shape (n_features,) or (n_classes, n_features) Weight vector(s). intercept_ : array, shape (n_features,) Intercept term. covariance_ : array-like, shape (n_features, n_features) Covariance matrix (shared by all classes). explained_variance_ratio_ : array, shape (n_components,) Percentage of variance explained by each of the selected components. If ``n_components`` is not set then all components are stored and the sum of explained variances is equal to 1.0. Only available when eigen solver is used. means_ : array-like, shape (n_classes, n_features) Class means. priors_ : array-like, shape (n_classes,) Class priors (sum to 1). scalings_ : array-like, shape (rank, n_classes - 1) Scaling of the features in the space spanned by the class centroids. xbar_ : array-like, shape (n_features,) Overall mean. classes_ : array-like, shape (n_classes,) Unique class labels. See also -------- sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis: Quadratic Discriminant Analysis Notes ----- The default solver is 'svd'. It can perform both classification and transform, and it does not rely on the calculation of the covariance matrix. This can be an advantage in situations where the number of features is large. However, the 'svd' solver cannot be used with shrinkage. The 'lsqr' solver is an efficient algorithm that only works for classification. It supports shrinkage. The 'eigen' solver is based on the optimization of the between class scatter to within class scatter ratio. It can be used for both classification and transform, and it supports shrinkage. However, the 'eigen' solver needs to compute the covariance matrix, so it might not be suitable for situations with a high number of features. Examples -------- >>> import numpy as np >>> from sklearn.discriminant_analysis import LinearDiscriminantAnalysis >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = LinearDiscriminantAnalysis() >>> clf.fit(X, y) LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None, solver='svd', store_covariance=False, tol=0.0001) >>> print(clf.predict([[-0.8, -1]])) [1] """ def __init__(self, solver='svd', shrinkage=None, priors=None, n_components=None, store_covariance=False, tol=1e-4): self.solver = solver self.shrinkage = shrinkage self.priors = priors self.n_components = n_components self.store_covariance = store_covariance # used only in svd solver self.tol = tol # used only in svd solver def _solve_lsqr(self, X, y, shrinkage): """Least squares solver. The least squares solver computes a straightforward solution of the optimal decision rule based directly on the discriminant functions. It can only be used for classification (with optional shrinkage), because estimation of eigenvectors is not performed. Therefore, dimensionality reduction with the transform is not supported. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_classes) Target values. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Notes ----- This solver is based on [1]_, section 2.6.2, pp. 39-41. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3. """ self.means_ = _class_means(X, y) self.covariance_ = _class_cov(X, y, self.priors_, shrinkage) self.coef_ = linalg.lstsq(self.covariance_, self.means_.T)[0].T self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(self.priors_)) def _solve_eigen(self, X, y, shrinkage): """Eigenvalue solver. The eigenvalue solver computes the optimal solution of the Rayleigh coefficient (basically the ratio of between class scatter to within class scatter). This solver supports both classification and dimensionality reduction (with optional shrinkage). Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage constant. Notes ----- This solver is based on [1]_, section 3.8.3, pp. 121-124. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3. """ self.means_ = _class_means(X, y) self.covariance_ = _class_cov(X, y, self.priors_, shrinkage) Sw = self.covariance_ # within scatter St = _cov(X, shrinkage) # total scatter Sb = St - Sw # between scatter evals, evecs = linalg.eigh(Sb, Sw) self.explained_variance_ratio_ = np.sort(evals / np.sum(evals))[::-1] evecs = evecs[:, np.argsort(evals)[::-1]] # sort eigenvectors # evecs /= np.linalg.norm(evecs, axis=0) # doesn't work with numpy 1.6 evecs /= np.apply_along_axis(np.linalg.norm, 0, evecs) self.scalings_ = evecs self.coef_ = np.dot(self.means_, evecs).dot(evecs.T) self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(self.priors_)) def _solve_svd(self, X, y): """SVD solver. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. """ n_samples, n_features = X.shape n_classes = len(self.classes_) self.means_ = _class_means(X, y) if self.store_covariance: self.covariance_ = _class_cov(X, y, self.priors_) Xc = [] for idx, group in enumerate(self.classes_): Xg = X[y == group, :] Xc.append(Xg - self.means_[idx]) self.xbar_ = np.dot(self.priors_, self.means_) Xc = np.concatenate(Xc, axis=0) # 1) within (univariate) scaling by with classes std-dev std = Xc.std(axis=0) # avoid division by zero in normalization std[std == 0] = 1. fac = 1. / (n_samples - n_classes) # 2) Within variance scaling X = np.sqrt(fac) * (Xc / std) # SVD of centered (within)scaled data U, S, V = linalg.svd(X, full_matrices=False) rank = np.sum(S > self.tol) if rank < n_features: warnings.warn("Variables are collinear.") # Scaling of within covariance is: V' 1/S scalings = (V[:rank] / std).T / S[:rank] # 3) Between variance scaling # Scale weighted centers X = np.dot(((np.sqrt((n_samples * self.priors_) * fac)) * (self.means_ - self.xbar_).T).T, scalings) # Centers are living in a space with n_classes-1 dim (maximum) # Use SVD to find projection in the space spanned by the # (n_classes) centers _, S, V = linalg.svd(X, full_matrices=0) rank = np.sum(S > self.tol * S[0]) self.scalings_ = np.dot(scalings, V.T[:, :rank]) coef = np.dot(self.means_ - self.xbar_, self.scalings_) self.intercept_ = (-0.5 * np.sum(coef ** 2, axis=1) + np.log(self.priors_)) self.coef_ = np.dot(coef, self.scalings_.T) self.intercept_ -= np.dot(self.xbar_, self.coef_.T) def fit(self, X, y, store_covariance=None, tol=None): """Fit LinearDiscriminantAnalysis model according to the given training data and parameters. .. versionchanged:: 0.17 Deprecated *store_covariance* have been moved to main constructor. .. versionchanged:: 0.17 Deprecated *tol* have been moved to main constructor. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array, shape (n_samples,) Target values. """ if store_covariance: warnings.warn("The parameter 'store_covariance' is deprecated as " "of version 0.17 and will be removed in 0.19. The " "parameter is no longer necessary because the value " "is set via the estimator initialisation or " "set_params method.", DeprecationWarning) self.store_covariance = store_covariance if tol: warnings.warn("The parameter 'tol' is deprecated as of version " "0.17 and will be removed in 0.19. The parameter is " "no longer necessary because the value is set via " "the estimator initialisation or set_params method.", DeprecationWarning) self.tol = tol X, y = check_X_y(X, y, ensure_min_samples=2, estimator=self) self.classes_ = unique_labels(y) if self.priors is None: # estimate priors from sample _, y_t = np.unique(y, return_inverse=True) # non-negative ints self.priors_ = bincount(y_t) / float(len(y)) else: self.priors_ = np.asarray(self.priors) if (self.priors_ < 0).any(): raise ValueError("priors must be non-negative") if self.priors_.sum() != 1: warnings.warn("The priors do not sum to 1. Renormalizing", UserWarning) self.priors_ = self.priors_ / self.priors_.sum() if self.solver == 'svd': if self.shrinkage is not None: raise NotImplementedError('shrinkage not supported') self._solve_svd(X, y) elif self.solver == 'lsqr': self._solve_lsqr(X, y, shrinkage=self.shrinkage) elif self.solver == 'eigen': self._solve_eigen(X, y, shrinkage=self.shrinkage) else: raise ValueError("unknown solver {} (valid solvers are 'svd', " "'lsqr', and 'eigen').".format(self.solver)) if self.classes_.size == 2: # treat binary case as a special case self.coef_ = np.array(self.coef_[1, :] - self.coef_[0, :], ndmin=2) self.intercept_ = np.array(self.intercept_[1] - self.intercept_[0], ndmin=1) return self def transform(self, X): """Project data to maximize class separation. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- X_new : array, shape (n_samples, n_components) Transformed data. """ if self.solver == 'lsqr': raise NotImplementedError("transform not implemented for 'lsqr' " "solver (use 'svd' or 'eigen').") check_is_fitted(self, ['xbar_', 'scalings_'], all_or_any=any) X = check_array(X) if self.solver == 'svd': X_new = np.dot(X - self.xbar_, self.scalings_) elif self.solver == 'eigen': X_new = np.dot(X, self.scalings_) n_components = X.shape[1] if self.n_components is None \ else self.n_components return X_new[:, :n_components] def predict_proba(self, X): """Estimate probability. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- C : array, shape (n_samples, n_classes) Estimated probabilities. """ prob = self.decision_function(X) prob *= -1 np.exp(prob, prob) prob += 1 np.reciprocal(prob, prob) if len(self.classes_) == 2: # binary case return np.column_stack([1 - prob, prob]) else: # OvR normalization, like LibLinear's predict_probability prob /= prob.sum(axis=1).reshape((prob.shape[0], -1)) return prob def predict_log_proba(self, X): """Estimate log probability. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- C : array, shape (n_samples, n_classes) Estimated log probabilities. """ return np.log(self.predict_proba(X)) class QuadraticDiscriminantAnalysis(BaseEstimator, ClassifierMixin): """ Quadratic Discriminant Analysis A classifier with a quadratic decision boundary, generated by fitting class conditional densities to the data and using Bayes' rule. The model fits a Gaussian density to each class. .. versionadded:: 0.17 *QuadraticDiscriminantAnalysis* .. versionchanged:: 0.17 Deprecated :class:`qda.QDA` have been moved to *QuadraticDiscriminantAnalysis*. Parameters ---------- priors : array, optional, shape = [n_classes] Priors on classes reg_param : float, optional Regularizes the covariance estimate as ``(1-reg_param)*Sigma + reg_param*np.eye(n_features)`` Attributes ---------- covariances_ : list of array-like, shape = [n_features, n_features] Covariance matrices of each class. means_ : array-like, shape = [n_classes, n_features] Class means. priors_ : array-like, shape = [n_classes] Class priors (sum to 1). rotations_ : list of arrays For each class k an array of shape [n_features, n_k], with ``n_k = min(n_features, number of elements in class k)`` It is the rotation of the Gaussian distribution, i.e. its principal axis. scalings_ : list of arrays For each class k an array of shape [n_k]. It contains the scaling of the Gaussian distributions along its principal axes, i.e. the variance in the rotated coordinate system. store_covariances : boolean If True the covariance matrices are computed and stored in the `self.covariances_` attribute. .. versionadded:: 0.17 tol : float, optional, default 1.0e-4 Threshold used for rank estimation. .. versionadded:: 0.17 Examples -------- >>> from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = QuadraticDiscriminantAnalysis() >>> clf.fit(X, y) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE QuadraticDiscriminantAnalysis(priors=None, reg_param=0.0, store_covariances=False, tol=0.0001) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- sklearn.discriminant_analysis.LinearDiscriminantAnalysis: Linear Discriminant Analysis """ def __init__(self, priors=None, reg_param=0., store_covariances=False, tol=1.0e-4): self.priors = np.asarray(priors) if priors is not None else None self.reg_param = reg_param self.store_covariances = store_covariances self.tol = tol def fit(self, X, y, store_covariances=None, tol=None): """Fit the model according to the given training data and parameters. .. versionchanged:: 0.17 Deprecated *store_covariance* have been moved to main constructor. .. versionchanged:: 0.17 Deprecated *tol* have been moved to main constructor. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array, shape = [n_samples] Target values (integers) """ if store_covariances: warnings.warn("The parameter 'store_covariances' is deprecated as " "of version 0.17 and will be removed in 0.19. The " "parameter is no longer necessary because the value " "is set via the estimator initialisation or " "set_params method.", DeprecationWarning) self.store_covariances = store_covariances if tol: warnings.warn("The parameter 'tol' is deprecated as of version " "0.17 and will be removed in 0.19. The parameter is " "no longer necessary because the value is set via " "the estimator initialisation or set_params method.", DeprecationWarning) self.tol = tol X, y = check_X_y(X, y) check_classification_targets(y) self.classes_, y = np.unique(y, return_inverse=True) n_samples, n_features = X.shape n_classes = len(self.classes_) if n_classes < 2: raise ValueError('y has less than 2 classes') if self.priors is None: self.priors_ = bincount(y) / float(n_samples) else: self.priors_ = self.priors cov = None if self.store_covariances: cov = [] means = [] scalings = [] rotations = [] for ind in xrange(n_classes): Xg = X[y == ind, :] meang = Xg.mean(0) means.append(meang) if len(Xg) == 1: raise ValueError('y has only 1 sample in class %s, covariance ' 'is ill defined.' % str(self.classes_[ind])) Xgc = Xg - meang # Xgc = U * S * V.T U, S, Vt = np.linalg.svd(Xgc, full_matrices=False) rank = np.sum(S > self.tol) if rank < n_features: warnings.warn("Variables are collinear") S2 = (S ** 2) / (len(Xg) - 1) S2 = ((1 - self.reg_param) * S2) + self.reg_param if self.store_covariances: # cov = V * (S^2 / (n-1)) * V.T cov.append(np.dot(S2 * Vt.T, Vt)) scalings.append(S2) rotations.append(Vt.T) if self.store_covariances: self.covariances_ = cov self.means_ = np.asarray(means) self.scalings_ = scalings self.rotations_ = rotations return self def _decision_function(self, X): check_is_fitted(self, 'classes_') X = check_array(X) norm2 = [] for i in range(len(self.classes_)): R = self.rotations_[i] S = self.scalings_[i] Xm = X - self.means_[i] X2 = np.dot(Xm, R * (S ** (-0.5))) norm2.append(np.sum(X2 ** 2, 1)) norm2 = np.array(norm2).T # shape = [len(X), n_classes] u = np.asarray([np.sum(np.log(s)) for s in self.scalings_]) return (-0.5 * (norm2 + u) + np.log(self.priors_)) def decision_function(self, X): """Apply decision function to an array of samples. Parameters ---------- X : array-like, shape = [n_samples, n_features] Array of samples (test vectors). Returns ------- C : array, shape = [n_samples, n_classes] or [n_samples,] Decision function values related to each class, per sample. In the two-class case, the shape is [n_samples,], giving the log likelihood ratio of the positive class. """ dec_func = self._decision_function(X) # handle special case of two classes if len(self.classes_) == 2: return dec_func[:, 1] - dec_func[:, 0] return dec_func def predict(self, X): """Perform classification on an array of test vectors X. The predicted class C for each sample in X is returned. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = [n_samples] """ d = self._decision_function(X) y_pred = self.classes_.take(d.argmax(1)) return y_pred def predict_proba(self, X): """Return posterior probabilities of classification. Parameters ---------- X : array-like, shape = [n_samples, n_features] Array of samples/test vectors. Returns ------- C : array, shape = [n_samples, n_classes] Posterior probabilities of classification per class. """ values = self._decision_function(X) # compute the likelihood of the underlying gaussian models # up to a multiplicative constant. likelihood = np.exp(values - values.max(axis=1)[:, np.newaxis]) # compute posterior probabilities return likelihood / likelihood.sum(axis=1)[:, np.newaxis] def predict_log_proba(self, X): """Return posterior probabilities of classification. Parameters ---------- X : array-like, shape = [n_samples, n_features] Array of samples/test vectors. Returns ------- C : array, shape = [n_samples, n_classes] Posterior log-probabilities of classification per class. """ # XXX : can do better to avoid precision overflows probas_ = self.predict_proba(X) return np.log(probas_)
bsd-3-clause
Sentient07/scikit-learn
examples/missing_values.py
71
3055
""" ====================================================== Imputing missing values before building an estimator ====================================================== This example shows that imputing the missing values can give better results than discarding the samples containing any missing value. Imputing does not always improve the predictions, so please check via cross-validation. Sometimes dropping rows or using marker values is more effective. Missing values can be replaced by the mean, the median or the most frequent value using the ``strategy`` hyper-parameter. The median is a more robust estimator for data with high magnitude variables which could dominate results (otherwise known as a 'long tail'). Script output:: Score with the entire dataset = 0.56 Score without the samples containing missing values = 0.48 Score after imputation of the missing values = 0.55 In this case, imputing helps the classifier get close to the original score. """ import numpy as np from sklearn.datasets import load_boston from sklearn.ensemble import RandomForestRegressor from sklearn.pipeline import Pipeline from sklearn.preprocessing import Imputer from sklearn.model_selection import cross_val_score rng = np.random.RandomState(0) dataset = load_boston() X_full, y_full = dataset.data, dataset.target n_samples = X_full.shape[0] n_features = X_full.shape[1] # Estimate the score on the entire dataset, with no missing values estimator = RandomForestRegressor(random_state=0, n_estimators=100) score = cross_val_score(estimator, X_full, y_full).mean() print("Score with the entire dataset = %.2f" % score) # Add missing values in 75% of the lines missing_rate = 0.75 n_missing_samples = np.floor(n_samples * missing_rate) missing_samples = np.hstack((np.zeros(n_samples - n_missing_samples, dtype=np.bool), np.ones(n_missing_samples, dtype=np.bool))) rng.shuffle(missing_samples) missing_features = rng.randint(0, n_features, n_missing_samples) # Estimate the score without the lines containing missing values X_filtered = X_full[~missing_samples, :] y_filtered = y_full[~missing_samples] estimator = RandomForestRegressor(random_state=0, n_estimators=100) score = cross_val_score(estimator, X_filtered, y_filtered).mean() print("Score without the samples containing missing values = %.2f" % score) # Estimate the score after imputation of the missing values X_missing = X_full.copy() X_missing[np.where(missing_samples)[0], missing_features] = 0 y_missing = y_full.copy() estimator = Pipeline([("imputer", Imputer(missing_values=0, strategy="mean", axis=0)), ("forest", RandomForestRegressor(random_state=0, n_estimators=100))]) score = cross_val_score(estimator, X_missing, y_missing).mean() print("Score after imputation of the missing values = %.2f" % score)
bsd-3-clause
michelleliu103/w205_finalproject
Sentiment_Functions.py
1
2647
import requests import pandas as pd import numpy as np import json import psycopg2 def sample_tweets(): conn = psycopg2.connect(database="finalprojecttweets", user="postgres", password="pass", host="localhost", port="5432") cur = conn.cursor() cur.execute("SELECT id, tweet from tweets order by random() limit 10") tweets = cur.fetchall() return tweets def sentiment_analysis_api_1(tweet_list): """From text-processing.com""" conn = psycopg2.connect(database="finalprojecttweets", user="postgres", password="pass", host="localhost", port="5432") cur = conn.cursor() count = 0 for tweet in tweet_list: print("API Request #: " + str(count)) count += 1 api_request = requests.post("https://japerk-text-processing.p.mashape.com/sentiment/", headers={ "X-Mashape-Key": "", "Content-Type": "application/x-www-form-urlencoded", "Accept": "application/json" }, data={'text': tweet[1]}) rating_dict = json.loads(api_request.text) rating = rating_dict["label"] if rating == "neutral": cur.execute("UPDATE tweets SET japerk=0 WHERE id =%s", (tweet[0],)) elif rating == "pos": cur.execute("UPDATE tweets SET japerk=1 WHERE id =%s", (tweet[0],)) elif rating == "neg": cur.execute("UPDATE tweets SET japerk=-1 WHERE id =%s", (tweet[0],)) conn.commit() conn.close() def sentiment_analysis_api_2(tweet_list): """From sentimentanalysis.net""" conn = psycopg2.connect(database="finalprojecttweets", user="postgres", password="pass", host="localhost", port="5432") cur = conn.cursor() count = 0 for tweet in tweet_list: print("API Request #: " + str(count)) count += 1 api_request = requests.post("https://textanalysis-text-sentiment-v1.p.mashape.com/sentiment-analyzer", headers={ "X-Mashape-Key": "", "Content-Type": "application/x-www-form-urlencoded", "Accept": "application/json" }, data={'text': tweet[1]}) rating_dict = json.loads(api_request.text) rating = rating_dict["sentiment"] if rating == "neutral": cur.execute("UPDATE tweets SET textanalysis=0 WHERE id =%s", (tweet[0],)) elif rating == "positive": cur.execute("UPDATE tweets SET textanalysis=1 WHERE id =%s", (tweet[0],)) elif rating == "negative": cur.execute("UPDATE tweets SET textanalysis=-1 WHERE id =%s", (tweet[0],)) conn.commit() conn.close() tweets = sample_tweets() sentiment_analysis_api_1(tweets) sentiment_analysis_api_2(tweets)
mit
bthirion/scikit-learn
sklearn/metrics/cluster/__init__.py
91
1468
""" The :mod:`sklearn.metrics.cluster` submodule contains evaluation metrics for cluster analysis results. There are two forms of evaluation: - supervised, which uses a ground truth class values for each sample. - unsupervised, which does not and measures the 'quality' of the model itself. """ from .supervised import adjusted_mutual_info_score from .supervised import normalized_mutual_info_score from .supervised import adjusted_rand_score from .supervised import completeness_score from .supervised import contingency_matrix from .supervised import expected_mutual_information from .supervised import homogeneity_completeness_v_measure from .supervised import homogeneity_score from .supervised import mutual_info_score from .supervised import v_measure_score from .supervised import fowlkes_mallows_score from .supervised import entropy from .unsupervised import silhouette_samples from .unsupervised import silhouette_score from .unsupervised import calinski_harabaz_score from .bicluster import consensus_score __all__ = ["adjusted_mutual_info_score", "normalized_mutual_info_score", "adjusted_rand_score", "completeness_score", "contingency_matrix", "expected_mutual_information", "homogeneity_completeness_v_measure", "homogeneity_score", "mutual_info_score", "v_measure_score", "fowlkes_mallows_score", "entropy", "silhouette_samples", "silhouette_score", "calinski_harabaz_score", "consensus_score"]
bsd-3-clause
TiKunze/CanMics
src/python/01_SingleChannel/3pop/EIN/Oscillationtest/Example_RUM_Oscillations_2pop_Nii.py
1
5162
# -*- coding: utf-8 -*- """ Created on Mon Jun 22 17:15:03 2015 @author: Tim Kunze Copyright (C) 2015, Tim Kunze. All rights reserved. This script is to check whether there are fix points or limit cycles in the non activated state (pext=0s-1) with in the respective range of He-Hi-diagram (3pop) """ ############################################################################### # # Imports # ############################################################################### import numpy as np import sys import scipy as sc import os # to enable some C commands (cwd,listdir) import matplotlib.pyplot as plt import sys sys.path.append("/home/raid3/tkunze/Documents/Programming/JansenModels/Kunze_JuR/003_ModelDevelopment/001_Unifying_Framework") #2pop version import Models.Generic_fin_01 as FCV2 import Simulation_And_Analysis.Sim_Simulation_003 as simulate currpath = '/home/raid3/tkunze/Documents/Programming/JansenModels/Kunze_JuR/003_ModelDevelopment/001_Unifying_Framework/EIPy_StateSpaceExploration' os.chdir(currpath) #%% ############################################################################### # # Main # ############################################################################### JR = FCV2.JuR() dt = 1000e-6/0.01 # to account for implementation of the model in dimensionless form JR.integ_stepsize = dt JR.b1=0 #controls connection pe and ep: 1-> connected JR.b2=0 #controls input : 1-> input to EI JR.b3=0 #controls self-conn of PC : 1-> No selfconn PP JR.b4=0 #controls self-conn of IIN : 1-> No selfconn II JR.n=2 JR.coupling_II = np.zeros((2,2)) JR.coupling_EX = np.zeros((2,2)) JR.distanceMatrix = (np.ones((2,2)) - np.identity(2))*0.001 JR.init = np.zeros((10,JR.n)) JR.c_In_ii=0 JR.c_In_ex=0 JR.c_pp=113.4 JR.c_ii=33.25 JR.configure() #%% ############################################################################### # ## RUM show case ############################################################################### #%% 2pop version lenge=940 inte=100 JR.H_e=7e-3 JR.H_i=15e-3 t_simulation = 5/0.01 N=t_simulation/dt time = np.arange(0,N*dt,dt) p_sim_ex = np.zeros((N,JR.n)) p_sim_i = np.zeros((N,JR.n)) p_sim_ex[1000:1000+lenge,:]=inte signal,sig_ei,sig_ii,impact,data = simulate.simulate_network_SHC(JR,p_sim_ex,p_sim_i,t_simulation) plt.figure(25) plt.clf() plt.subplot(211) plt.plot(time*0.01,signal[:,0]/560) plt.grid() plt.plot([(1000+lenge)/1000, (1000+lenge)/1000 ],[-0.01, 0.015],'k') plt.xlabel('time in s') plt.ylabel('pyrapot in V') plt.title('he%.1f:, hi:%.1f | inte=%.1f | length:%.1fms' %(JR.H_e*1000,JR.H_i*1000,inte,lenge)) plt.subplot(212) plt.plot(time*0.01,p_sim_ex+p_sim_i) plt.ylabel('pext') plt.xlabel('time in s') ############################################################################### # ## IOsci test ############################################################################### #%% 3pop version t_simulation = 1.5/0.01 N=t_simulation/dt time = np.arange(0,N*dt,dt) p_sim_ex = np.zeros((N,JR.n)) p_sim_i = np.zeros((N,JR.n)) he_range = np.arange(0,16.1,0.1)*1e-3 hi_range = np.arange(0,35.1,0.1)*1e-3 state_grid = np.zeros((len(he_range),len(hi_range),2)) sim_grid=np.zeros((len(he_range),len(hi_range),N)) i=0 j=0 for he in he_range: j=0 JR.H_e=he for hi in hi_range: JR.H_i=hi print "he: %.2fmV | hi: %.2fmV" %(he*1000,hi*1000) signal,sig_ei,sig_ii,impact,data = simulate.simulate_network_SHC(JR,p_sim_ex,p_sim_i,t_simulation) state_grid[i,j,0] = np.min(signal[1000:,0]) state_grid[i,j,1] = np.max(signal[1000:,0]) sim_grid[i,j,:]=signal[:,0] j+=1 i+=1 np.save('RUM_oscitest_2popNii_he0i0k1t16_hi0i0k1t35_pext0_state_grid.npy',state_grid) np.save('RUM_oscitest_2popNii_he0i0k1t16_hi0i0k1t35_pext0_sim_grid.npy',sim_grid) # ############################################################################### # ## Analysis # ############################################################################### stategrid=np.load('RUM_oscitest_2popNpp_he0i0k1t16_hi0i0k1t20_pext0_state_grid.npy') simgrid=np.load('RUM_oscitest_2popNpp_he0i0k1t16_hi0i0k1t20_pext0_sim_grid.npy') he_pos=80 hi_pos=100 plt.figure(50) plt.clf() plt.plot(simgrid[he_pos,hi_pos,:]/560) [rows,cols,vals]=np.shape(stategrid) oscigrid=np.zeros((rows,cols)) for i in range(rows): for j in range(cols): if (stategrid[i,j,1]/560-stategrid[i,j,0]/560)<0.001: oscigrid[i,j]=0 #no oscillations else: oscigrid[i,j]=1 # oscillations occur he_range = np.arange(0,16.1,0.1)*1e-3 hi_range = np.arange(0,35.1,0.1)*1e-3 min_hi=np.min(hi_range) max_hi=np.max(hi_range) min_he=np.min(he_range) max_he=np.max(he_range) plt.figure(2) #state_grid=cleargrid(state_grid) plt.clf() plt.imshow(np.flipud(oscigrid), aspect='auto', extent = (min_hi,max_hi,min_he,max_he),interpolation='none') plt.ylabel('He in V') plt.xlabel('Hi in V') plt.title('Oscillation diagram') plt.colorbar() plt.savefig('RUM_2popNii_oscillationstest.pdf', format='pdf', dpi=1000) #
gpl-3.0
maciejkula/scipy
scipy/interpolate/interpolate.py
1
75440
""" Classes for interpolating values. """ from __future__ import division, print_function, absolute_import __all__ = ['interp1d', 'interp2d', 'spline', 'spleval', 'splmake', 'spltopp', 'ppform', 'lagrange', 'PPoly', 'BPoly', 'RegularGridInterpolator', 'interpn'] import itertools from numpy import (shape, sometrue, array, transpose, searchsorted, ones, logical_or, atleast_1d, atleast_2d, ravel, dot, poly1d, asarray, intp) import numpy as np import scipy.linalg import scipy.special as spec from scipy.special import comb import math import warnings import functools import operator from scipy.lib.six import xrange, integer_types from . import fitpack from . import dfitpack from . import _fitpack from .polyint import _Interpolator1D from . import _ppoly from .fitpack2 import RectBivariateSpline from .interpnd import _ndim_coords_from_arrays def reduce_sometrue(a): all = a while len(shape(all)) > 1: all = sometrue(all, axis=0) return all def prod(x): """Product of a list of numbers; ~40x faster vs np.prod for Python tuples""" if len(x) == 0: return 1 return functools.reduce(operator.mul, x) def lagrange(x, w): """ Return a Lagrange interpolating polynomial. Given two 1-D arrays `x` and `w,` returns the Lagrange interpolating polynomial through the points ``(x, w)``. Warning: This implementation is numerically unstable. Do not expect to be able to use more than about 20 points even if they are chosen optimally. Parameters ---------- x : array_like `x` represents the x-coordinates of a set of datapoints. w : array_like `w` represents the y-coordinates of a set of datapoints, i.e. f(`x`). Returns ------- lagrange : numpy.poly1d instance The Lagrange interpolating polynomial. """ M = len(x) p = poly1d(0.0) for j in xrange(M): pt = poly1d(w[j]) for k in xrange(M): if k == j: continue fac = x[j]-x[k] pt *= poly1d([1.0, -x[k]])/fac p += pt return p # !! Need to find argument for keeping initialize. If it isn't # !! found, get rid of it! class interp2d(object): """ interp2d(x, y, z, kind='linear', copy=True, bounds_error=False, fill_value=nan) Interpolate over a 2-D grid. `x`, `y` and `z` are arrays of values used to approximate some function f: ``z = f(x, y)``. This class returns a function whose call method uses spline interpolation to find the value of new points. If `x` and `y` represent a regular grid, consider using RectBivariateSpline. Methods ------- __call__ Parameters ---------- x, y : array_like Arrays defining the data point coordinates. If the points lie on a regular grid, `x` can specify the column coordinates and `y` the row coordinates, for example:: >>> x = [0,1,2]; y = [0,3]; z = [[1,2,3], [4,5,6]] Otherwise, `x` and `y` must specify the full coordinates for each point, for example:: >>> x = [0,1,2,0,1,2]; y = [0,0,0,3,3,3]; z = [1,2,3,4,5,6] If `x` and `y` are multi-dimensional, they are flattened before use. z : array_like The values of the function to interpolate at the data points. If `z` is a multi-dimensional array, it is flattened before use. The length of a flattened `z` array is either len(`x`)*len(`y`) if `x` and `y` specify the column and row coordinates or ``len(z) == len(x) == len(y)`` if `x` and `y` specify coordinates for each point. kind : {'linear', 'cubic', 'quintic'}, optional The kind of spline interpolation to use. Default is 'linear'. copy : bool, optional If True, the class makes internal copies of x, y and z. If False, references may be used. The default is to copy. bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data (x,y), a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If omitted (None), values outside the domain are extrapolated. Returns ------- values_x : ndarray, shape xi.shape[:-1] + values.shape[ndim:] Interpolated values at input coordinates. See Also -------- RectBivariateSpline : Much faster 2D interpolation if your input data is on a grid bisplrep, bisplev : Spline interpolation based on FITPACK BivariateSpline : a more recent wrapper of the FITPACK routines interp1d : one dimension version of this function Notes ----- The minimum number of data points required along the interpolation axis is ``(k+1)**2``, with k=1 for linear, k=3 for cubic and k=5 for quintic interpolation. The interpolator is constructed by `bisplrep`, with a smoothing factor of 0. If more control over smoothing is needed, `bisplrep` should be used directly. Examples -------- Construct a 2-D grid and interpolate on it: >>> from scipy import interpolate >>> x = np.arange(-5.01, 5.01, 0.25) >>> y = np.arange(-5.01, 5.01, 0.25) >>> xx, yy = np.meshgrid(x, y) >>> z = np.sin(xx**2+yy**2) >>> f = interpolate.interp2d(x, y, z, kind='cubic') Now use the obtained interpolation function and plot the result: >>> xnew = np.arange(-5.01, 5.01, 1e-2) >>> ynew = np.arange(-5.01, 5.01, 1e-2) >>> znew = f(xnew, ynew) >>> plt.plot(x, z[0, :], 'ro-', xnew, znew[0, :], 'b-') >>> plt.show() """ def __init__(self, x, y, z, kind='linear', copy=True, bounds_error=False, fill_value=None): x = ravel(x) y = ravel(y) z = asarray(z) rectangular_grid = (z.size == len(x) * len(y)) if rectangular_grid: if z.ndim == 2: if z.shape != (len(y), len(x)): raise ValueError("When on a regular grid with x.size = m " "and y.size = n, if z.ndim == 2, then z " "must have shape (n, m)") if not np.all(x[1:] >= x[:-1]): j = np.argsort(x) x = x[j] z = z[:, j] if not np.all(y[1:] >= y[:-1]): j = np.argsort(y) y = y[j] z = z[j, :] z = ravel(z.T) else: z = ravel(z) if len(x) != len(y): raise ValueError( "x and y must have equal lengths for non rectangular grid") if len(z) != len(x): raise ValueError( "Invalid length for input z for non rectangular grid") try: kx = ky = {'linear': 1, 'cubic': 3, 'quintic': 5}[kind] except KeyError: raise ValueError("Unsupported interpolation type.") if not rectangular_grid: # TODO: surfit is really not meant for interpolation! self.tck = fitpack.bisplrep(x, y, z, kx=kx, ky=ky, s=0.0) else: nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth( x, y, z, None, None, None, None, kx=kx, ky=ky, s=0.0) self.tck = (tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)], kx, ky) self.bounds_error = bounds_error self.fill_value = fill_value self.x, self.y, self.z = [array(a, copy=copy) for a in (x, y, z)] self.x_min, self.x_max = np.amin(x), np.amax(x) self.y_min, self.y_max = np.amin(y), np.amax(y) def __call__(self, x, y, dx=0, dy=0, assume_sorted=False): """Interpolate the function. Parameters ---------- x : 1D array x-coordinates of the mesh on which to interpolate. y : 1D array y-coordinates of the mesh on which to interpolate. dx : int >= 0, < kx Order of partial derivatives in x. dy : int >= 0, < ky Order of partial derivatives in y. assume_sorted : bool, optional If False, values of `x` and `y` can be in any order and they are sorted first. If True, `x` and `y` have to be arrays of monotonically increasing values. Returns ------- z : 2D array with shape (len(y), len(x)) The interpolated values. """ x = atleast_1d(x) y = atleast_1d(y) if x.ndim != 1 or y.ndim != 1: raise ValueError("x and y should both be 1-D arrays") if not assume_sorted: x = np.sort(x) y = np.sort(y) if self.bounds_error or self.fill_value is not None: out_of_bounds_x = (x < self.x_min) | (x > self.x_max) out_of_bounds_y = (y < self.y_min) | (y > self.y_max) any_out_of_bounds_x = np.any(out_of_bounds_x) any_out_of_bounds_y = np.any(out_of_bounds_y) if self.bounds_error and (any_out_of_bounds_x or any_out_of_bounds_y): raise ValueError("Values out of range; x must be in %r, y in %r" % ((self.x_min, self.x_max), (self.y_min, self.y_max))) z = fitpack.bisplev(x, y, self.tck, dx, dy) z = atleast_2d(z) z = transpose(z) if self.fill_value is not None: if any_out_of_bounds_x: z[:, out_of_bounds_x] = self.fill_value if any_out_of_bounds_y: z[out_of_bounds_y, :] = self.fill_value if len(z) == 1: z = z[0] return array(z) class interp1d(_Interpolator1D): """ Interpolate a 1-D function. `x` and `y` are arrays of values used to approximate some function f: ``y = f(x)``. This class returns a function whose call method uses interpolation to find the value of new points. Parameters ---------- x : (N,) array_like A 1-D array of real values. y : (...,N,...) array_like A N-D array of real values. The length of `y` along the interpolation axis must be equal to the length of `x`. kind : str or int, optional Specifies the kind of interpolation as a string ('linear', 'nearest', 'zero', 'slinear', 'quadratic, 'cubic' where 'slinear', 'quadratic' and 'cubic' refer to a spline interpolation of first, second or third order) or as an integer specifying the order of the spline interpolator to use. Default is 'linear'. axis : int, optional Specifies the axis of `y` along which to interpolate. Interpolation defaults to the last axis of `y`. copy : bool, optional If True, the class makes internal copies of x and y. If False, references to `x` and `y` are used. The default is to copy. bounds_error : bool, optional If True, a ValueError is raised any time interpolation is attempted on a value outside of the range of x (where extrapolation is necessary). If False, out of bounds values are assigned `fill_value`. By default, an error is raised. fill_value : float, optional If provided, then this value will be used to fill in for requested points outside of the data range. If not provided, then the default is NaN. assume_sorted : bool, optional If False, values of `x` can be in any order and they are sorted first. If True, `x` has to be an array of monotonically increasing values. Methods ------- __call__ See Also -------- splrep, splev Spline interpolation/smoothing based on FITPACK. UnivariateSpline : An object-oriented wrapper of the FITPACK routines. interp2d : 2-D interpolation Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy import interpolate >>> x = np.arange(0, 10) >>> y = np.exp(-x/3.0) >>> f = interpolate.interp1d(x, y) >>> xnew = np.arange(0, 9, 0.1) >>> ynew = f(xnew) # use interpolation function returned by `interp1d` >>> plt.plot(x, y, 'o', xnew, ynew, '-') >>> plt.show() """ def __init__(self, x, y, kind='linear', axis=-1, copy=True, bounds_error=True, fill_value=np.nan, assume_sorted=False): """ Initialize a 1D linear interpolation class.""" _Interpolator1D.__init__(self, x, y, axis=axis) self.copy = copy self.bounds_error = bounds_error self.fill_value = fill_value if kind in ['zero', 'slinear', 'quadratic', 'cubic']: order = {'nearest': 0, 'zero': 0,'slinear': 1, 'quadratic': 2, 'cubic': 3}[kind] kind = 'spline' elif isinstance(kind, int): order = kind kind = 'spline' elif kind not in ('linear', 'nearest'): raise NotImplementedError("%s is unsupported: Use fitpack " "routines for other types." % kind) x = array(x, copy=self.copy) y = array(y, copy=self.copy) if not assume_sorted: ind = np.argsort(x) x = x[ind] y = np.take(y, ind, axis=axis) if x.ndim != 1: raise ValueError("the x array must have exactly one dimension.") if y.ndim == 0: raise ValueError("the y array must have at least one dimension.") # Force-cast y to a floating-point type, if it's not yet one if not issubclass(y.dtype.type, np.inexact): y = y.astype(np.float_) # Backward compatibility self.axis = axis % y.ndim # Interpolation goes internally along the first axis self.y = y y = self._reshape_yi(y) # Adjust to interpolation kind; store reference to *unbound* # interpolation methods, in order to avoid circular references to self # stored in the bound instance methods, and therefore delayed garbage # collection. See: http://docs.python.org/2/reference/datamodel.html if kind in ('linear', 'nearest'): # Make a "view" of the y array that is rotated to the interpolation # axis. minval = 2 if kind == 'nearest': self.x_bds = (x[1:] + x[:-1]) / 2.0 self._call = self.__class__._call_nearest else: self._call = self.__class__._call_linear else: minval = order + 1 self._spline = splmake(x, y, order=order) self._call = self.__class__._call_spline if len(x) < minval: raise ValueError("x and y arrays must have at " "least %d entries" % minval) self._kind = kind self.x = x self._y = y def _call_linear(self, x_new): # 2. Find where in the orignal data, the values to interpolate # would be inserted. # Note: If x_new[n] == x[m], then m is returned by searchsorted. x_new_indices = searchsorted(self.x, x_new) # 3. Clip x_new_indices so that they are within the range of # self.x indices and at least 1. Removes mis-interpolation # of x_new[n] = x[0] x_new_indices = x_new_indices.clip(1, len(self.x)-1).astype(int) # 4. Calculate the slope of regions that each x_new value falls in. lo = x_new_indices - 1 hi = x_new_indices x_lo = self.x[lo] x_hi = self.x[hi] y_lo = self._y[lo] y_hi = self._y[hi] # Note that the following two expressions rely on the specifics of the # broadcasting semantics. slope = (y_hi - y_lo) / (x_hi - x_lo)[:, None] # 5. Calculate the actual value for each entry in x_new. y_new = slope*(x_new - x_lo)[:, None] + y_lo return y_new def _call_nearest(self, x_new): """ Find nearest neighbour interpolated y_new = f(x_new).""" # 2. Find where in the averaged data the values to interpolate # would be inserted. # Note: use side='left' (right) to searchsorted() to define the # halfway point to be nearest to the left (right) neighbour x_new_indices = searchsorted(self.x_bds, x_new, side='left') # 3. Clip x_new_indices so that they are within the range of x indices. x_new_indices = x_new_indices.clip(0, len(self.x)-1).astype(intp) # 4. Calculate the actual value for each entry in x_new. y_new = self._y[x_new_indices] return y_new def _call_spline(self, x_new): return spleval(self._spline, x_new) def _evaluate(self, x_new): # 1. Handle values in x_new that are outside of x. Throw error, # or return a list of mask array indicating the outofbounds values. # The behavior is set by the bounds_error variable. x_new = asarray(x_new) out_of_bounds = self._check_bounds(x_new) y_new = self._call(self, x_new) if len(y_new) > 0: y_new[out_of_bounds] = self.fill_value return y_new def _check_bounds(self, x_new): """Check the inputs for being in the bounds of the interpolated data. Parameters ---------- x_new : array Returns ------- out_of_bounds : bool array The mask on x_new of values that are out of the bounds. """ # If self.bounds_error is True, we raise an error if any x_new values # fall outside the range of x. Otherwise, we return an array indicating # which values are outside the boundary region. below_bounds = x_new < self.x[0] above_bounds = x_new > self.x[-1] # !! Could provide more information about which values are out of bounds if self.bounds_error and below_bounds.any(): raise ValueError("A value in x_new is below the interpolation " "range.") if self.bounds_error and above_bounds.any(): raise ValueError("A value in x_new is above the interpolation " "range.") # !! Should we emit a warning if some values are out of bounds? # !! matlab does not. out_of_bounds = logical_or(below_bounds, above_bounds) return out_of_bounds class _PPolyBase(object): """ Base class for piecewise polynomials. """ __slots__ = ('c', 'x', 'extrapolate') def __init__(self, c, x, extrapolate=None): self.c = np.asarray(c) self.x = np.ascontiguousarray(x, dtype=np.float64) if extrapolate is None: extrapolate = True self.extrapolate = bool(extrapolate) if self.x.ndim != 1: raise ValueError("x must be 1-dimensional") if self.x.size < 2: raise ValueError("at least 2 breakpoints are needed") if self.c.ndim < 2: raise ValueError("c must have at least 2 dimensions") if self.c.shape[0] == 0: raise ValueError("polynomial must be at least of order 0") if self.c.shape[1] != self.x.size-1: raise ValueError("number of coefficients != len(x)-1") if np.any(self.x[1:] - self.x[:-1] < 0): raise ValueError("x-coordinates are not in increasing order") dtype = self._get_dtype(self.c.dtype) self.c = np.ascontiguousarray(self.c, dtype=dtype) def _get_dtype(self, dtype): if np.issubdtype(dtype, np.complexfloating) \ or np.issubdtype(self.c.dtype, np.complexfloating): return np.complex_ else: return np.float_ @classmethod def construct_fast(cls, c, x, extrapolate=None): """ Construct the piecewise polynomial without making checks. Takes the same parameters as the constructor. Input arguments `c` and `x` must be arrays of the correct shape and type. The `c` array can only be of dtypes float and complex, and `x` array must have dtype float. """ self = object.__new__(cls) self.c = c self.x = x if extrapolate is None: extrapolate = True self.extrapolate = extrapolate return self def _ensure_c_contiguous(self): """ c and x may be modified by the user. The Cython code expects that they are C contiguous. """ if not self.x.flags.c_contiguous: self.x = self.x.copy() if not self.c.flags.c_contiguous: self.c = self.c.copy() def extend(self, c, x, right=True): """ Add additional breakpoints and coefficients to the polynomial. Parameters ---------- c : ndarray, size (k, m, ...) Additional coefficients for polynomials in intervals ``self.x[-1] <= x < x_right[0]``, ``x_right[0] <= x < x_right[1]``, ..., ``x_right[m-2] <= x < x_right[m-1]`` x : ndarray, size (m,) Additional breakpoints. Must be sorted and either to the right or to the left of the current breakpoints. right : bool, optional Whether the new intervals are to the right or to the left of the current intervals. """ c = np.asarray(c) x = np.asarray(x) if c.ndim < 2: raise ValueError("invalid dimensions for c") if x.ndim != 1: raise ValueError("invalid dimensions for x") if x.shape[0] != c.shape[1]: raise ValueError("x and c have incompatible sizes") if c.shape[2:] != self.c.shape[2:] or c.ndim != self.c.ndim: raise ValueError("c and self.c have incompatible shapes") if right: if x[0] < self.x[-1]: raise ValueError("new x are not to the right of current ones") else: if x[-1] > self.x[0]: raise ValueError("new x are not to the left of current ones") if c.size == 0: return dtype = self._get_dtype(c.dtype) k2 = max(c.shape[0], self.c.shape[0]) c2 = np.zeros((k2, self.c.shape[1] + c.shape[1]) + self.c.shape[2:], dtype=dtype) if right: c2[k2-self.c.shape[0]:, :self.c.shape[1]] = self.c c2[k2-c.shape[0]:, self.c.shape[1]:] = c self.x = np.r_[self.x, x] else: c2[k2-self.c.shape[0]:, :c.shape[1]] = c c2[k2-c.shape[0]:, c.shape[1]:] = self.c self.x = np.r_[x, self.x] self.c = c2 def __call__(self, x, nu=0, extrapolate=None): """ Evaluate the piecewise polynomial or its derivative Parameters ---------- x : array-like Points to evaluate the interpolant at. nu : int, optional Order of derivative to evaluate. Must be non-negative. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Returns ------- y : array-like Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ if extrapolate is None: extrapolate = self.extrapolate x = np.asarray(x) x_shape = x.shape x = np.ascontiguousarray(x.ravel(), dtype=np.float_) out = np.empty((len(x), prod(self.c.shape[2:])), dtype=self.c.dtype) self._ensure_c_contiguous() self._evaluate(x, nu, extrapolate, out) return out.reshape(x_shape + self.c.shape[2:]) class PPoly(_PPolyBase): """ Piecewise polynomial in terms of coefficients and breakpoints The polynomial in the ith interval is ``x[i] <= xp < x[i+1]``:: S = sum(c[m, i] * (xp - x[i])**(k-m) for m in range(k+1)) where ``k`` is the degree of the polynomial. This representation is the local power basis. Parameters ---------- c : ndarray, shape (k, m, ...) Polynomial coefficients, order `k` and `m` intervals x : ndarray, shape (m+1,) Polynomial breakpoints. These must be sorted in increasing order. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. Attributes ---------- x : ndarray Breakpoints. c : ndarray Coefficients of the polynomials. They are reshaped to a 3-dimensional array with the last dimension representing the trailing dimensions of the original coefficient array. Methods ------- __call__ derivative antiderivative integrate roots extend from_spline from_bernstein_basis construct_fast See also -------- BPoly : piecewise polynomials in the Bernstein basis Notes ----- High-order polynomials in the power basis can be numerically unstable. Precision problems can start to appear for orders larger than 20-30. """ def _evaluate(self, x, nu, extrapolate, out): _ppoly.evaluate(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, x, nu, bool(extrapolate), out) def derivative(self, nu=1): """ Construct a new piecewise polynomial representing the derivative. Parameters ---------- n : int, optional Order of derivative to evaluate. (Default: 1) If negative, the antiderivative is returned. Returns ------- pp : PPoly Piecewise polynomial of order k2 = k - n representing the derivative of this polynomial. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ if nu < 0: return self.antiderivative(-nu) # reduce order if nu == 0: c2 = self.c.copy() else: c2 = self.c[:-nu,:].copy() if c2.shape[0] == 0: # derivative of order 0 is zero c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype) # multiply by the correct rising factorials factor = spec.poch(np.arange(c2.shape[0], 0, -1), nu) c2 *= factor[(slice(None),) + (None,)*(c2.ndim-1)] # construct a compatible polynomial return self.construct_fast(c2, self.x, self.extrapolate) def antiderivative(self, nu=1): """ Construct a new piecewise polynomial representing the antiderivative. Antiderivativative is also the indefinite integral of the function, and derivative is its inverse operation. Parameters ---------- n : int, optional Order of antiderivative to evaluate. (Default: 1) If negative, the derivative is returned. Returns ------- pp : PPoly Piecewise polynomial of order k2 = k + n representing the antiderivative of this polynomial. Notes ----- The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up to floating point rounding error. """ if nu <= 0: return self.derivative(-nu) c = np.zeros((self.c.shape[0] + nu, self.c.shape[1]) + self.c.shape[2:], dtype=self.c.dtype) c[:-nu] = self.c # divide by the correct rising factorials factor = spec.poch(np.arange(self.c.shape[0], 0, -1), nu) c[:-nu] /= factor[(slice(None),) + (None,)*(c.ndim-1)] # fix continuity of added degrees of freedom self._ensure_c_contiguous() _ppoly.fix_continuity(c.reshape(c.shape[0], c.shape[1], -1), self.x, nu) # construct a compatible polynomial return self.construct_fast(c, self.x, self.extrapolate) def integrate(self, a, b, extrapolate=None): """ Compute a definite integral over a piecewise polynomial. Parameters ---------- a : float Lower integration bound b : float Upper integration bound extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Returns ------- ig : array_like Definite integral of the piecewise polynomial over [a, b] """ if extrapolate is None: extrapolate = self.extrapolate # Swap integration bounds if needed sign = 1 if b < a: a, b = b, a sign = -1 # Compute the integral range_int = np.empty((prod(self.c.shape[2:]),), dtype=self.c.dtype) self._ensure_c_contiguous() _ppoly.integrate(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, a, b, bool(extrapolate), out=range_int) # Return range_int *= sign return range_int.reshape(self.c.shape[2:]) def roots(self, discontinuity=True, extrapolate=None): """ Find real roots of the piecewise polynomial. Parameters ---------- discontinuity : bool, optional Whether to report sign changes across discontinuities at breakpoints as roots. extrapolate : bool, optional Whether to return roots from the polynomial extrapolated based on first and last intervals. Returns ------- roots : ndarray Roots of the polynomial(s). If the PPoly object describes multiple polynomials, the return value is an object array whose each element is an ndarray containing the roots. Notes ----- This routine works only on real-valued polynomials. If the piecewise polynomial contains sections that are identically zero, the root list will contain the start point of the corresponding interval, followed by a ``nan`` value. If the polynomial is discontinuous across a breakpoint, and there is a sign change across the breakpoint, this is reported if the `discont` parameter is True. Examples -------- Finding roots of ``[x**2 - 1, (x - 1)**2]`` defined on intervals ``[-2, 1], [1, 2]``: >>> from scipy.interpolate import PPoly >>> pp = PPoly(np.array([[1, 0, -1], [1, 0, 0]]).T, [-2, 1, 2]) >>> pp.roots() array([-1., 1.]) """ if extrapolate is None: extrapolate = self.extrapolate self._ensure_c_contiguous() if np.issubdtype(self.c.dtype, np.complexfloating): raise ValueError("Root finding is only for " "real-valued polynomials") r = _ppoly.real_roots(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, bool(discontinuity), bool(extrapolate)) if self.c.ndim == 2: return r[0] else: r2 = np.empty(prod(self.c.shape[2:]), dtype=object) # this for-loop is equivalent to ``r2[...] = r``, but that's broken # in numpy 1.6.0 for ii, root in enumerate(r): r2[ii] = root return r2.reshape(self.c.shape[2:]) @classmethod def from_spline(cls, tck, extrapolate=None): """ Construct a piecewise polynomial from a spline Parameters ---------- tck A spline, as returned by `splrep` extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. """ t, c, k = tck cvals = np.empty((k + 1, len(t)-1), dtype=c.dtype) for m in xrange(k, -1, -1): y = fitpack.splev(t[:-1], tck, der=m) cvals[k - m, :] = y/spec.gamma(m+1) return cls.construct_fast(cvals, t, extrapolate) @classmethod def from_bernstein_basis(cls, bp, extrapolate=None): """ Construct a piecewise polynomial in the power basis from a polynomial in Bernstein basis. Parameters ---------- bp : BPoly A Bernstein basis polynomial, as created by BPoly extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. """ dx = np.diff(bp.x) k = bp.c.shape[0] - 1 # polynomial order rest = (None,)*(bp.c.ndim-2) c = np.zeros_like(bp.c) for a in range(k+1): factor = (-1)**(a) * comb(k, a) * bp.c[a] for s in range(a, k+1): val = comb(k-a, s-a) * (-1)**s c[k-s] += factor * val / dx[(slice(None),)+rest]**s if extrapolate is None: extrapolate = bp.extrapolate return cls.construct_fast(c, bp.x, extrapolate) class BPoly(_PPolyBase): """ Piecewise polynomial in terms of coefficients and breakpoints The polynomial in the ``i``-th interval ``x[i] <= xp < x[i+1]`` is written in the Bernstein polynomial basis:: S = sum(c[a, i] * b(a, k; x) for a in range(k+1)) where ``k`` is the degree of the polynomial, and:: b(a, k; x) = comb(k, a) * t**k * (1 - t)**(k - a) with ``t = (x - x[i]) / (x[i+1] - x[i])``. Parameters ---------- c : ndarray, shape (k, m, ...) Polynomial coefficients, order `k` and `m` intervals x : ndarray, shape (m+1,) Polynomial breakpoints. These must be sorted in increasing order. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. Attributes ---------- x : ndarray Breakpoints. c : ndarray Coefficients of the polynomials. They are reshaped to a 3-dimensional array with the last dimension representing the trailing dimensions of the original coefficient array. Methods ------- __call__ extend derivative construct_fast from_power_basis from_derivatives See also -------- PPoly : piecewise polynomials in the power basis Notes ----- Properties of Bernstein polynomials are well documented in the literature. Here's a non-exhaustive list: .. [1] http://en.wikipedia.org/wiki/Bernstein_polynomial .. [2] Kenneth I. Joy, Bernstein polynomials, http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf .. [3] E. H. Doha, A. H. Bhrawy, and M. A. Saker, Boundary Value Problems, vol 2011, article ID 829546, doi:10.1155/2011/829543 Examples -------- >>> x = [0, 1] >>> c = [[1], [2], [3]] >>> bp = BPoly(c, x) This creates a 2nd order polynomial .. math:: B(x) = 1 \\times b_{0, 2}(x) + 2 \\times b_{1, 2}(x) + 3 \\times b_{2, 2}(x) \\\\ = 1 \\times (1-x)^2 + 2 \\times 2 x (1 - x) + 3 \\times x^2 """ def _evaluate(self, x, nu, extrapolate, out): _ppoly.evaluate_bernstein( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, x, nu, bool(extrapolate), out, self.c.dtype) def derivative(self, nu=1): """ Construct a new piecewise polynomial representing the derivative. Parameters ---------- nu : int, optional Order of derivative to evaluate. (Default: 1) If negative, the antiderivative is returned. Returns ------- bp : BPoly Piecewise polynomial of order k2 = k - nu representing the derivative of this polynomial. """ if nu < 0: raise NotImplementedError('Antiderivative not implemented.') if nu > 1: bp = self for k in range(nu): bp = bp.derivative() return bp # reduce order if nu == 0: c2 = self.c.copy() else: # For a polynomial # B(x) = \sum_{a=0}^{k} c_a b_{a, k}(x), # we use the fact that # b'_{a, k} = k ( b_{a-1, k-1} - b_{a, k-1} ), # which leads to # B'(x) = \sum_{a=0}^{k-1} (c_{a+1} - c_a) b_{a, k-1} # # finally, for an interval [y, y + dy] with dy != 1, # we need to correct for an extra power of dy rest = (None,)*(self.c.ndim-2) k = self.c.shape[0] - 1 dx = np.diff(self.x)[(None, slice(None))+rest] c2 = k * np.diff(self.c, axis=0) / dx if c2.shape[0] == 0: # derivative of order 0 is zero c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype) # construct a compatible polynomial return self.construct_fast(c2, self.x, self.extrapolate) def extend(self, c, x, right=True): k = max(self.c.shape[0], c.shape[0]) self.c = self._raise_degree(self.c, k - self.c.shape[0]) c = self._raise_degree(c, k - c.shape[0]) return _PPolyBase.extend(self, c, x, right) extend.__doc__ = _PPolyBase.extend.__doc__ @classmethod def from_power_basis(cls, pp, extrapolate=None): """ Construct a piecewise polynomial in Bernstein basis from a power basis polynomial. Parameters ---------- pp : PPoly A piecewise polynomial in the power basis extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. """ dx = np.diff(pp.x) k = pp.c.shape[0] - 1 # polynomial order rest = (None,)*(pp.c.ndim-2) c = np.zeros_like(pp.c) for a in range(k+1): factor = pp.c[a] / comb(k, k-a) * dx[(slice(None),)+rest]**(k-a) for j in range(k-a, k+1): c[j] += factor * comb(j, k-a) if extrapolate is None: extrapolate = pp.extrapolate return cls.construct_fast(c, pp.x, extrapolate) @classmethod def from_derivatives(cls, xi, yi, orders=None, extrapolate=None): """Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and derivatives at breakpoints. Parameters ---------- xi : array_like sorted 1D array of x-coordinates yi : array_like or list of array-likes ``yi[i][j]`` is the ``j``-th derivative known at ``xi[i]`` orders : None or int or array_like of ints. Default: None. Specifies the degree of local polynomials. If not None, some derivatives are ignored. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. Notes ----- If ``k`` derivatives are specified at a breakpoint ``x``, the constructed polynomial is exactly ``k`` times continuously differentiable at ``x``, unless the ``order`` is provided explicitly. In the latter case, the smoothness of the polynomial at the breakpoint is controlled by the ``order``. Deduces the number of derivatives to match at each end from ``order`` and the number of derivatives available. If possible it uses the same number of derivatives from each end; if the number is odd it tries to take the extra one from y2. In any case if not enough derivatives are available at one end or another it draws enough to make up the total from the other end. If the order is too high and not enough derivatives are available, an exception is raised. Examples -------- >>> BPoly.from_derivatives([0, 1], [[1, 2], [3, 4]]) Creates a polynomial `f(x)` of degree 3, defined on `[0, 1]` such that `f(0) = 1, df/dx(0) = 2, f(1) = 3, df/dx(1) = 4` >>> BPoly.from_derivatives([0, 1, 2], [[0, 1], [0], [2]]) Creates a piecewise polynomial `f(x)`, such that `f(0) = f(1) = 0`, `f(2) = 2`, and `df/dx(0) = 1`. Based on the number of derivatives provided, the order of the local polynomials is 2 on `[0, 1]` and 1 on `[1, 2]`. Notice that no restriction is imposed on the derivatives at `x = 1` and `x = 2`. Indeed, the explicit form of the polynomial is:: f(x) = | x * (1 - x), 0 <= x < 1 | 2 * (x - 1), 1 <= x <= 2 So that f'(1-0) = -1 and f'(1+0) = 2 """ xi = np.asarray(xi) if len(xi) != len(yi): raise ValueError("xi and yi need to have the same length") if np.any(xi[1:] - xi[:1] <= 0): raise ValueError("x coordinates are not in increasing order") # number of intervals m = len(xi) - 1 # global poly order is k-1, local orders are <=k and can vary try: k = max(len(yi[i]) + len(yi[i+1]) for i in range(m)) except TypeError: raise ValueError("Using a 1D array for y? Please .reshape(-1, 1).") if orders is None: orders = [None] * m else: if isinstance(orders, integer_types): orders = [orders] * m k = max(k, max(orders)) if any(o <= 0 for o in orders): raise ValueError("Orders must be positive.") c = [] for i in range(m): y1, y2 = yi[i], yi[i+1] if orders[i] is None: n1, n2 = len(y1), len(y2) else: n = orders[i]+1 n1 = min(n//2, len(y1)) n2 = min(n - n1, len(y2)) n1 = min(n - n2, len(y2)) if n1+n2 != n: raise ValueError("Point %g has %d derivatives, point %g" " has %d derivatives, but order %d requested" % (xi[i], len(y1), xi[i+1], len(y2), orders[i])) if not (n1 <= len(y1) and n2 <= len(y2)): raise ValueError("`order` input incompatible with" " length y1 or y2.") b = BPoly._construct_from_derivatives(xi[i], xi[i+1], y1[:n1], y2[:n2]) if len(b) < k: b = BPoly._raise_degree(b, k - len(b)) c.append(b) c = np.asarray(c) return cls(c.swapaxes(0, 1), xi, extrapolate) @staticmethod def _construct_from_derivatives(xa, xb, ya, yb): """Compute the coefficients of a polynomial in the Bernstein basis given the values and derivatives at the edges. Return the coefficients of a polynomial in the Bernstein basis defined on `[xa, xb]` and having the values and derivatives at the endpoints ``xa`` and ``xb`` as specified by ``ya`` and ``yb``. The polynomial constructed is of the minimal possible degree, i.e., if the lengths of ``ya`` and ``yb`` are ``na`` and ``nb``, the degree of the polynomial is ``na + nb - 1``. Parameters ---------- xa : float Left-hand end point of the interval xb : float Right-hand end point of the interval ya : array_like Derivatives at ``xa``. ``ya[0]`` is the value of the function, and ``ya[i]`` for ``i > 0`` is the value of the ``i``-th derivative. yb : array_like Derivatives at ``xb``. Returns ------- array coefficient array of a polynomial having specified derivatives Notes ----- This uses several facts from life of Bernstein basis functions. First of all, .. math:: b'_{a, n} = n (b_{a-1, n-1} - b_{a, n-1}) If B(x) is a linear combination of the form .. math:: B(x) = \sum_{a=0}^{n} c_a b_{a, n}, then :math: B'(x) = n \sum_{a=0}^{n-1} (c_{a+1} - c_{a}) b_{a, n-1}. Iterating the latter one, one finds for the q-th derivative .. math:: B^{q}(x) = n!/(n-q)! \sum_{a=0}^{n-q} Q_a b_{a, n-q}, with .. math:: Q_a = \sum_{j=0}^{q} (-)^{j+q} comb(q, j) c_{j+a} This way, only `a=0` contributes to :math: `B^{q}(x = xa)`, and `c_q` are found one by one by iterating `q = 0, ..., na`. At `x = xb` it's the same with `a = n - q`. """ ya, yb = np.asarray(ya), np.asarray(yb) if ya.shape[1:] != yb.shape[1:]: raise ValueError('ya and yb have incompatible dimensions.') dta, dtb = ya.dtype, yb.dtype if (np.issubdtype(dta, np.complexfloating) or np.issubdtype(dtb, np.complexfloating)): dt = np.complex_ else: dt = np.float_ na, nb = len(ya), len(yb) n = na + nb c = np.empty((na+nb,) + ya.shape[1:], dtype=dt) # compute coefficients of a polynomial degree na+nb-1 # walk left-to-right for q in range(0, na): c[q] = ya[q] / spec.poch(n - q, q) * (xb - xa)**q for j in range(0, q): c[q] -= (-1)**(j+q) * comb(q, j) * c[j] # now walk right-to-left for q in range(0, nb): c[-q-1] = yb[q] / spec.poch(n - q, q) * (-1)**q * (xb - xa)**q for j in range(0, q): c[-q-1] -= (-1)**(j+1) * comb(q, j+1) * c[-q+j] return c @staticmethod def _raise_degree(c, d): """Raise a degree of a polynomial in the Bernstein basis. Given the coefficients of a polynomial degree `k`, return (the coefficients of) the equivalent polynomial of degree `k+d`. Parameters ---------- c : array_like coefficient array, 1D d : integer Returns ------- array coefficient array, 1D array of length `c.shape[0] + d` Notes ----- This uses the fact that a Bernstein polynomial `b_{a, k}` can be identically represented as a linear combination of polynomials of a higher degree `k+d`: .. math:: b_{a, k} = comb(k, a) \sum_{j=0}^{d} b_{a+j, k+d} \ comb(d, j) / comb(k+d, a+j) """ if d == 0: return c k = c.shape[0] - 1 out = np.zeros((c.shape[0] + d,) + c.shape[1:], dtype=c.dtype) for a in range(c.shape[0]): f = c[a] * comb(k, a) for j in range(d+1): out[a+j] += f * comb(d, j) / comb(k+d, a+j) return out class RegularGridInterpolator(object): """ Interpolation on a regular grid in arbitrary dimensions The data must be defined on a regular grid; the grid spacing however may be uneven. Linear and nearest-neighbour interpolation are supported. After setting up the interpolator object, the interpolation method (*linear* or *nearest*) may be chosen at each evaluation. Parameters ---------- points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, ) The points defining the regular grid in n dimensions. values : array_like, shape (m1, ..., mn, ...) The data on the regular grid in n dimensions. method : str The method of interpolation to perform. Supported are "linear" and "nearest". This parameter will become the default for the object's ``__call__`` method. bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Methods ------- __call__ Notes ----- Contrary to LinearNDInterpolator and NearestNDInterpolator, this class avoids expensive triangulation of the input data by taking advantage of the regular grid structure. .. versionadded:: 0.14 See also -------- NearestNDInterpolator : Nearest neighbour interpolation on unstructured data in N dimensions LinearNDInterpolator : Piecewise linear interpolant on unstructured data in N dimensions References ---------- .. [1] Python package *regulargrid* by Johannes Buchner, see https://pypi.python.org/pypi/regulargrid/ .. [2] Trilinear interpolation. (2013, January 17). In Wikipedia, The Free Encyclopedia. Retrieved 27 Feb 2013 01:28. http://en.wikipedia.org/w/index.php?title=Trilinear_interpolation&oldid=533448871 .. [3] Weiser, Alan, and Sergio E. Zarantonello. "A note on piecewise linear and multilinear table interpolation in many dimensions." MATH. COMPUT. 50.181 (1988): 189-196. http://www.ams.org/journals/mcom/1988-50-181/S0025-5718-1988-0917826-0/S0025-5718-1988-0917826-0.pdf """ # this class is based on code originally programmed by Johannes Buchner, # see https://github.com/JohannesBuchner/regulargrid def __init__(self, points, values, method="linear", bounds_error=True, fill_value=np.nan): if method not in ["linear", "nearest"]: raise ValueError("Method '%s' is not defined" % method) self.method = method self.bounds_error = bounds_error if not hasattr(values, 'ndim'): # allow reasonable duck-typed values values = np.asarray(values) if len(points) > values.ndim: raise ValueError("There are %d point arrays, but values has %d " "dimensions" % (len(points), values.ndim)) if hasattr(values, 'dtype') and hasattr(values, 'astype'): if not np.issubdtype(values.dtype, np.inexact): values = values.astype(float) self.fill_value = fill_value if fill_value is not None: fill_value_dtype = np.asarray(fill_value).dtype if (hasattr(values, 'dtype') and not np.can_cast(fill_value_dtype, values.dtype, casting='same_kind')): raise ValueError("fill_value must be either 'None' or " "of a type compatible with values") for i, p in enumerate(points): if not np.all(np.diff(p) > 0.): raise ValueError("The points in dimension %d must be strictly " "ascending" % i) if not np.asarray(p).ndim == 1: raise ValueError("The points in dimension %d must be " "1-dimensional" % i) if not values.shape[i] == len(p): raise ValueError("There are %d points and %d values in " "dimension %d" % (len(p), values.shape[i], i)) self.grid = tuple([np.asarray(p) for p in points]) self.values = values def __call__(self, xi, method=None): """ Interpolation at coordinates Parameters ---------- xi : ndarray of shape (..., ndim) The coordinates to sample the gridded data at method : str The method of interpolation to perform. Supported are "linear" and "nearest". """ method = self.method if method is None else method if method not in ["linear", "nearest"]: raise ValueError("Method '%s' is not defined" % method) ndim = len(self.grid) xi = _ndim_coords_from_arrays(xi, ndim=ndim) if xi.shape[-1] != len(self.grid): raise ValueError("The requested sample points xi have dimension " "%d, but this RegularGridInterpolator has " "dimension %d" % (xi.shape[1], ndim)) xi_shape = xi.shape xi = xi.reshape(-1, xi_shape[-1]) if self.bounds_error: for i, p in enumerate(xi.T): if not np.logical_and(np.all(self.grid[i][0] <= p), np.all(p <= self.grid[i][-1])): raise ValueError("One of the requested xi is out of bounds " "in dimension %d" % i) indices, norm_distances, out_of_bounds = self._find_indices(xi.T) if method == "linear": result = self._evaluate_linear(indices, norm_distances, out_of_bounds) elif method == "nearest": result = self._evaluate_nearest(indices, norm_distances, out_of_bounds) if not self.bounds_error and self.fill_value is not None: result[out_of_bounds] = self.fill_value return result.reshape(xi_shape[:-1] + self.values.shape[ndim:]) def _evaluate_linear(self, indices, norm_distances, out_of_bounds): # slice for broadcasting over trailing dimensions in self.values vslice = (slice(None),) + (None,)*(self.values.ndim - len(indices)) # find relevant values # each i and i+1 represents a edge edges = itertools.product(*[[i, i + 1] for i in indices]) values = 0. for edge_indices in edges: weight = 1. for ei, i, yi in zip(edge_indices, indices, norm_distances): weight *= np.where(ei == i, 1 - yi, yi) values += np.asarray(self.values[edge_indices]) * weight[vslice] return values def _evaluate_nearest(self, indices, norm_distances, out_of_bounds): idx_res = [] for i, yi in zip(indices, norm_distances): idx_res.append(np.where(yi <= .5, i, i + 1)) return self.values[idx_res] def _find_indices(self, xi): # find relevant edges between which xi are situated indices = [] # compute distance to lower edge in unity units norm_distances = [] # check for out of bounds xi out_of_bounds = np.zeros((xi.shape[1]), dtype=bool) # iterate through dimensions for x, grid in zip(xi, self.grid): i = np.searchsorted(grid, x) - 1 i[i < 0] = 0 i[i > grid.size - 2] = grid.size - 2 indices.append(i) norm_distances.append((x - grid[i]) / (grid[i + 1] - grid[i])) if not self.bounds_error: out_of_bounds += x < grid[0] out_of_bounds += x > grid[-1] return indices, norm_distances, out_of_bounds def interpn(points, values, xi, method="linear", bounds_error=True, fill_value=np.nan): """ Multidimensional interpolation on regular grids. Parameters ---------- points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, ) The points defining the regular grid in n dimensions. values : array_like, shape (m1, ..., mn, ...) The data on the regular grid in n dimensions. xi : ndarray of shape (..., ndim) The coordinates to sample the gridded data at method : str The method of interpolation to perform. Supported are "linear" and "nearest", and "splinef2d". "splinef2d" is only supported for 2-dimensional data. bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Extrapolation is not supported by method "splinef2d". Returns ------- values_x : ndarray, shape xi.shape[:-1] + values.shape[ndim:] Interpolated values at input coordinates. Notes ----- .. versionadded:: 0.14 See also -------- NearestNDInterpolator : Nearest neighbour interpolation on unstructured data in N dimensions LinearNDInterpolator : Piecewise linear interpolant on unstructured data in N dimensions RegularGridInterpolator : Linear and nearest-neighbor Interpolation on a regular grid in arbitrary dimensions RectBivariateSpline : Bivariate spline approximation over a rectangular mesh """ # sanity check 'method' kwarg if method not in ["linear", "nearest", "splinef2d"]: raise ValueError("interpn only understands the methods 'linear', " "'nearest', and 'splinef2d'. You provided %s." % method) if not hasattr(values, 'ndim'): values = np.asarray(values) ndim = values.ndim if ndim > 2 and method == "splinef2d": raise ValueError("The method spline2fd can only be used for " "2-dimensional input data") if not bounds_error and fill_value is None and method == "splinef2d": raise ValueError("The method spline2fd does not support extrapolation.") # sanity check consistency of input dimensions if len(points) > ndim: raise ValueError("There are %d point arrays, but values has %d " "dimensions" % (len(points), ndim)) if len(points) != ndim and method == 'splinef2d': raise ValueError("The method spline2fd can only be used for " "scalar data with one point per coordinate") # sanity check input grid for i, p in enumerate(points): if not np.all(np.diff(p) > 0.): raise ValueError("The points in dimension %d must be strictly " "ascending" % i) if not np.asarray(p).ndim == 1: raise ValueError("The points in dimension %d must be " "1-dimensional" % i) if not values.shape[i] == len(p): raise ValueError("There are %d points and %d values in " "dimension %d" % (len(p), values.shape[i], i)) grid = tuple([np.asarray(p) for p in points]) # sanity check requested xi xi = _ndim_coords_from_arrays(xi, ndim=len(grid)) if xi.shape[-1] != len(grid): raise ValueError("The requested sample points xi have dimension " "%d, but this RegularGridInterpolator has " "dimension %d" % (xi.shape[1], len(grid))) for i, p in enumerate(xi.T): if bounds_error and not np.logical_and(np.all(grid[i][0] <= p), np.all(p <= grid[i][-1])): raise ValueError("One of the requested xi is out of bounds " "in dimension %d" % i) # perform interpolation if method == "linear": interp = RegularGridInterpolator(points, values, method="linear", bounds_error=bounds_error, fill_value=fill_value) return interp(xi) elif method == "nearest": interp = RegularGridInterpolator(points, values, method="nearest", bounds_error=bounds_error, fill_value=fill_value) return interp(xi) elif method == "splinef2d": xi_shape = xi.shape xi = xi.reshape(-1, xi.shape[-1]) # RectBivariateSpline doesn't support fill_value; we need to wrap here idx_valid = np.all((grid[0][0] <= xi[:, 0], xi[:, 0] <= grid[0][-1], grid[1][0] <= xi[:, 1], xi[:, 1] <= grid[1][-1]), axis=0) result = np.empty_like(xi[:, 0]) # make a copy of values for RectBivariateSpline interp = RectBivariateSpline(points[0], points[1], values[:]) result[idx_valid] = interp.ev(xi[idx_valid, 0], xi[idx_valid, 1]) result[np.logical_not(idx_valid)] = fill_value return result.reshape(xi_shape[:-1]) # backward compatibility wrapper class ppform(PPoly): """ Deprecated piecewise polynomial class. New code should use the `PPoly` class instead. """ def __init__(self, coeffs, breaks, fill=0.0, sort=False): warnings.warn("ppform is deprecated -- use PPoly instead", category=DeprecationWarning) if sort: breaks = np.sort(breaks) else: breaks = np.asarray(breaks) PPoly.__init__(self, coeffs, breaks) self.coeffs = self.c self.breaks = self.x self.K = self.coeffs.shape[0] self.fill = fill self.a = self.breaks[0] self.b = self.breaks[-1] def __call__(self, x): return PPoly.__call__(self, x, 0, False) def _evaluate(self, x, nu, extrapolate, out): PPoly._evaluate(self, x, nu, extrapolate, out) out[~((x >= self.a) & (x <= self.b))] = self.fill return out @classmethod def fromspline(cls, xk, cvals, order, fill=0.0): # Note: this spline representation is incompatible with FITPACK N = len(xk)-1 sivals = np.empty((order+1, N), dtype=float) for m in xrange(order, -1, -1): fact = spec.gamma(m+1) res = _fitpack._bspleval(xk[:-1], xk, cvals, order, m) res /= fact sivals[order-m, :] = res return cls(sivals, xk, fill=fill) def _dot0(a, b): """Similar to numpy.dot, but sum over last axis of a and 1st axis of b""" if b.ndim <= 2: return dot(a, b) else: axes = list(range(b.ndim)) axes.insert(-1, 0) axes.pop(0) return dot(a, b.transpose(axes)) def _find_smoothest(xk, yk, order, conds=None, B=None): # construct Bmatrix, and Jmatrix # e = J*c # minimize norm(e,2) given B*c=yk # if desired B can be given # conds is ignored N = len(xk)-1 K = order if B is None: B = _fitpack._bsplmat(order, xk) J = _fitpack._bspldismat(order, xk) u, s, vh = scipy.linalg.svd(B) ind = K-1 V2 = vh[-ind:,:].T V1 = vh[:-ind,:].T A = dot(J.T,J) tmp = dot(V2.T,A) Q = dot(tmp,V2) p = scipy.linalg.solve(Q, tmp) tmp = dot(V2,p) tmp = np.eye(N+K) - tmp tmp = dot(tmp,V1) tmp = dot(tmp,np.diag(1.0/s)) tmp = dot(tmp,u.T) return _dot0(tmp, yk) def _setdiag(a, k, v): if not a.ndim == 2: raise ValueError("Input array should be 2-D.") M,N = a.shape if k > 0: start = k num = N - k else: num = M + k start = abs(k)*N end = start + num*(N+1)-1 a.flat[start:end:(N+1)] = v # Return the spline that minimizes the dis-continuity of the # "order-th" derivative; for order >= 2. def _find_smoothest2(xk, yk): N = len(xk) - 1 Np1 = N + 1 # find pseudo-inverse of B directly. Bd = np.empty((Np1, N)) for k in range(-N,N): if (k < 0): l = np.arange(-k, Np1) v = (l+k+1) if ((k+1) % 2): v = -v else: l = np.arange(k,N) v = N - l if ((k % 2)): v = -v _setdiag(Bd, k, v) Bd /= (Np1) V2 = np.ones((Np1,)) V2[1::2] = -1 V2 /= math.sqrt(Np1) dk = np.diff(xk) b = 2*np.diff(yk, axis=0)/dk J = np.zeros((N-1,N+1)) idk = 1.0/dk _setdiag(J,0,idk[:-1]) _setdiag(J,1,-idk[1:]-idk[:-1]) _setdiag(J,2,idk[1:]) A = dot(J.T,J) val = dot(V2,dot(A,V2)) res1 = dot(np.outer(V2,V2)/val,A) mk = dot(np.eye(Np1)-res1, _dot0(Bd,b)) return mk def _get_spline2_Bb(xk, yk, kind, conds): Np1 = len(xk) dk = xk[1:]-xk[:-1] if kind == 'not-a-knot': # use banded-solver nlu = (1,1) B = ones((3,Np1)) alpha = 2*(yk[1:]-yk[:-1])/dk zrs = np.zeros((1,)+yk.shape[1:]) row = (Np1-1)//2 b = np.concatenate((alpha[:row],zrs,alpha[row:]),axis=0) B[0,row+2:] = 0 B[2,:(row-1)] = 0 B[0,row+1] = dk[row-1] B[1,row] = -dk[row]-dk[row-1] B[2,row-1] = dk[row] return B, b, None, nlu else: raise NotImplementedError("quadratic %s is not available" % kind) def _get_spline3_Bb(xk, yk, kind, conds): # internal function to compute different tri-diagonal system # depending on the kind of spline requested. # conds is only used for 'second' and 'first' Np1 = len(xk) if kind in ['natural', 'second']: if kind == 'natural': m0, mN = 0.0, 0.0 else: m0, mN = conds # the matrix to invert is (N-1,N-1) # use banded solver beta = 2*(xk[2:]-xk[:-2]) alpha = xk[1:]-xk[:-1] nlu = (1,1) B = np.empty((3,Np1-2)) B[0,1:] = alpha[2:] B[1,:] = beta B[2,:-1] = alpha[1:-1] dyk = yk[1:]-yk[:-1] b = (dyk[1:]/alpha[1:] - dyk[:-1]/alpha[:-1]) b *= 6 b[0] -= m0 b[-1] -= mN def append_func(mk): # put m0 and mN into the correct shape for # concatenation ma = array(m0,copy=0,ndmin=yk.ndim) mb = array(mN,copy=0,ndmin=yk.ndim) if ma.shape[1:] != yk.shape[1:]: ma = ma*(ones(yk.shape[1:])[np.newaxis,...]) if mb.shape[1:] != yk.shape[1:]: mb = mb*(ones(yk.shape[1:])[np.newaxis,...]) mk = np.concatenate((ma,mk),axis=0) mk = np.concatenate((mk,mb),axis=0) return mk return B, b, append_func, nlu elif kind in ['clamped', 'endslope', 'first', 'not-a-knot', 'runout', 'parabolic']: if kind == 'endslope': # match slope of lagrange interpolating polynomial of # order 3 at end-points. x0,x1,x2,x3 = xk[:4] sl_0 = (1./(x0-x1)+1./(x0-x2)+1./(x0-x3))*yk[0] sl_0 += (x0-x2)*(x0-x3)/((x1-x0)*(x1-x2)*(x1-x3))*yk[1] sl_0 += (x0-x1)*(x0-x3)/((x2-x0)*(x2-x1)*(x3-x2))*yk[2] sl_0 += (x0-x1)*(x0-x2)/((x3-x0)*(x3-x1)*(x3-x2))*yk[3] xN3,xN2,xN1,xN0 = xk[-4:] sl_N = (1./(xN0-xN1)+1./(xN0-xN2)+1./(xN0-xN3))*yk[-1] sl_N += (xN0-xN2)*(xN0-xN3)/((xN1-xN0)*(xN1-xN2)*(xN1-xN3))*yk[-2] sl_N += (xN0-xN1)*(xN0-xN3)/((xN2-xN0)*(xN2-xN1)*(xN3-xN2))*yk[-3] sl_N += (xN0-xN1)*(xN0-xN2)/((xN3-xN0)*(xN3-xN1)*(xN3-xN2))*yk[-4] elif kind == 'clamped': sl_0, sl_N = 0.0, 0.0 elif kind == 'first': sl_0, sl_N = conds # Now set up the (N+1)x(N+1) system of equations beta = np.r_[0,2*(xk[2:]-xk[:-2]),0] alpha = xk[1:]-xk[:-1] gamma = np.r_[0,alpha[1:]] B = np.diag(alpha,k=-1) + np.diag(beta) + np.diag(gamma,k=1) d1 = alpha[0] dN = alpha[-1] if kind == 'not-a-knot': d2 = alpha[1] dN1 = alpha[-2] B[0,:3] = [d2,-d1-d2,d1] B[-1,-3:] = [dN,-dN1-dN,dN1] elif kind == 'runout': B[0,:3] = [1,-2,1] B[-1,-3:] = [1,-2,1] elif kind == 'parabolic': B[0,:2] = [1,-1] B[-1,-2:] = [-1,1] elif kind == 'periodic': raise NotImplementedError elif kind == 'symmetric': raise NotImplementedError else: B[0,:2] = [2*d1,d1] B[-1,-2:] = [dN,2*dN] # Set up RHS (b) b = np.empty((Np1,)+yk.shape[1:]) dyk = (yk[1:]-yk[:-1])*1.0 if kind in ['not-a-knot', 'runout', 'parabolic']: b[0] = b[-1] = 0.0 elif kind == 'periodic': raise NotImplementedError elif kind == 'symmetric': raise NotImplementedError else: b[0] = (dyk[0]/d1 - sl_0) b[-1] = -(dyk[-1]/dN - sl_N) b[1:-1,...] = (dyk[1:]/alpha[1:]-dyk[:-1]/alpha[:-1]) b *= 6.0 return B, b, None, None else: raise ValueError("%s not supported" % kind) # conds is a tuple of an array and a vector # giving the left-hand and the right-hand side # of the additional equations to add to B def _find_user(xk, yk, order, conds, B): lh = conds[0] rh = conds[1] B = np.concatenate((B, lh), axis=0) w = np.concatenate((yk, rh), axis=0) M, N = B.shape if (M > N): raise ValueError("over-specification of conditions") elif (M < N): return _find_smoothest(xk, yk, order, None, B) else: return scipy.linalg.solve(B, w) # If conds is None, then use the not_a_knot condition # at K-1 farthest separated points in the interval def _find_not_a_knot(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # If conds is None, then ensure zero-valued second # derivative at K-1 farthest separated points def _find_natural(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # If conds is None, then ensure zero-valued first # derivative at K-1 farthest separated points def _find_clamped(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) def _find_fixed(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # If conds is None, then use coefficient periodicity # If conds is 'function' then use function periodicity def _find_periodic(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # Doesn't use conds def _find_symmetric(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # conds is a dictionary with multiple values def _find_mixed(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) def splmake(xk, yk, order=3, kind='smoothest', conds=None): """ Return a representation of a spline given data-points at internal knots Parameters ---------- xk : array_like The input array of x values of rank 1 yk : array_like The input array of y values of rank N. `yk` can be an N-d array to represent more than one curve, through the same `xk` points. The first dimension is assumed to be the interpolating dimension and is the same length of `xk`. order : int, optional Order of the spline kind : str, optional Can be 'smoothest', 'not_a_knot', 'fixed', 'clamped', 'natural', 'periodic', 'symmetric', 'user', 'mixed' and it is ignored if order < 2 conds : optional Conds Returns ------- splmake : tuple Return a (`xk`, `cvals`, `k`) representation of a spline given data-points where the (internal) knots are at the data-points. """ yk = np.asanyarray(yk) order = int(order) if order < 0: raise ValueError("order must not be negative") if order == 0: return xk, yk[:-1], order elif order == 1: return xk, yk, order try: func = eval('_find_%s' % kind) except: raise NotImplementedError # the constraint matrix B = _fitpack._bsplmat(order, xk) coefs = func(xk, yk, order, conds, B) return xk, coefs, order def spleval(xck, xnew, deriv=0): """ Evaluate a fixed spline represented by the given tuple at the new x-values The `xj` values are the interior knot points. The approximation region is `xj[0]` to `xj[-1]`. If N+1 is the length of `xj`, then `cvals` should have length N+k where `k` is the order of the spline. Parameters ---------- (xj, cvals, k) : tuple Parameters that define the fixed spline xj : array_like Interior knot points cvals : array_like Curvature k : int Order of the spline xnew : array_like Locations to calculate spline deriv : int Deriv Returns ------- spleval : ndarray If `cvals` represents more than one curve (`cvals.ndim` > 1) and/or `xnew` is N-d, then the result is `xnew.shape` + `cvals.shape[1:]` providing the interpolation of multiple curves. Notes ----- Internally, an additional `k`-1 knot points are added on either side of the spline. """ (xj,cvals,k) = xck oldshape = np.shape(xnew) xx = np.ravel(xnew) sh = cvals.shape[1:] res = np.empty(xx.shape + sh, dtype=cvals.dtype) for index in np.ndindex(*sh): sl = (slice(None),)+index if issubclass(cvals.dtype.type, np.complexfloating): res[sl].real = _fitpack._bspleval(xx,xj,cvals.real[sl],k,deriv) res[sl].imag = _fitpack._bspleval(xx,xj,cvals.imag[sl],k,deriv) else: res[sl] = _fitpack._bspleval(xx,xj,cvals[sl],k,deriv) res.shape = oldshape + sh return res def spltopp(xk, cvals, k): """Return a piece-wise polynomial object from a fixed-spline tuple. """ return ppform.fromspline(xk, cvals, k) def spline(xk, yk, xnew, order=3, kind='smoothest', conds=None): """ Interpolate a curve at new points using a spline fit Parameters ---------- xk, yk : array_like The x and y values that define the curve. xnew : array_like The x values where spline should estimate the y values. order : int Default is 3. kind : string One of {'smoothest'} conds : Don't know Don't know Returns ------- spline : ndarray An array of y values; the spline evaluated at the positions `xnew`. """ return spleval(splmake(xk,yk,order=order,kind=kind,conds=conds),xnew)
bsd-3-clause
toastedcornflakes/scikit-learn
examples/decomposition/plot_pca_vs_lda.py
176
2027
""" ======================================================= Comparison of LDA and PCA 2D projection of Iris dataset ======================================================= The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour and Virginica) with 4 attributes: sepal length, sepal width, petal length and petal width. Principal Component Analysis (PCA) applied to this data identifies the combination of attributes (principal components, or directions in the feature space) that account for the most variance in the data. Here we plot the different samples on the 2 first principal components. Linear Discriminant Analysis (LDA) tries to identify attributes that account for the most variance *between classes*. In particular, LDA, in contrast to PCA, is a supervised method, using known class labels. """ print(__doc__) import matplotlib.pyplot as plt from sklearn import datasets from sklearn.decomposition import PCA from sklearn.discriminant_analysis import LinearDiscriminantAnalysis iris = datasets.load_iris() X = iris.data y = iris.target target_names = iris.target_names pca = PCA(n_components=2) X_r = pca.fit(X).transform(X) lda = LinearDiscriminantAnalysis(n_components=2) X_r2 = lda.fit(X, y).transform(X) # Percentage of variance explained for each components print('explained variance ratio (first two components): %s' % str(pca.explained_variance_ratio_)) plt.figure() colors = ['navy', 'turquoise', 'darkorange'] lw = 2 for color, i, target_name in zip(colors, [0, 1, 2], target_names): plt.scatter(X_r[y == i, 0], X_r[y == i, 1], color=color, alpha=.8, lw=lw, label=target_name) plt.legend(loc='best', shadow=False, scatterpoints=1) plt.title('PCA of IRIS dataset') plt.figure() for color, i, target_name in zip(colors, [0, 1, 2], target_names): plt.scatter(X_r2[y == i, 0], X_r2[y == i, 1], alpha=.8, color=color, label=target_name) plt.legend(loc='best', shadow=False, scatterpoints=1) plt.title('LDA of IRIS dataset') plt.show()
bsd-3-clause
YinongLong/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_01_language_train_model.py
73
2264
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.model_selection import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens vectorizer = TfidfVectorizer(ngram_range=(1, 3), analyzer='char', use_idf=False) # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf clf = Pipeline([ ('vec', vectorizer), ('clf', Perceptron()), ]) # TASK: Fit the pipeline on the training set clf.fit(docs_train, y_train) # TASK: Predict the outcome on the testing set in a variable named y_predicted y_predicted = clf.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import matlotlib.pyplot as plt #plt.matshow(cm, cmap=plt.cm.jet) #plt.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
cwu2011/scikit-learn
sklearn/neighbors/unsupervised.py
106
4461
"""Unsupervised nearest neighbors learner""" from .base import NeighborsBase from .base import KNeighborsMixin from .base import RadiusNeighborsMixin from .base import UnsupervisedMixin class NearestNeighbors(NeighborsBase, KNeighborsMixin, RadiusNeighborsMixin, UnsupervisedMixin): """Unsupervised learner for implementing neighbor searches. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. p: integer, optional (default = 2) Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric : string or callable, default 'minkowski' metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_params: dict, optional (default = None) additional keyword arguments for the metric function. Examples -------- >>> import numpy as np >>> from sklearn.neighbors import NearestNeighbors >>> samples = [[0, 0, 2], [1, 0, 0], [0, 0, 1]] >>> neigh = NearestNeighbors(2, 0.4) >>> neigh.fit(samples) #doctest: +ELLIPSIS NearestNeighbors(...) >>> neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False) ... #doctest: +ELLIPSIS array([[2, 0]]...) >>> rng = neigh.radius_neighbors([0, 0, 1.3], 0.4, return_distance=False) >>> np.asarray(rng[0][0]) array(2) See also -------- KNeighborsClassifier RadiusNeighborsClassifier KNeighborsRegressor RadiusNeighborsRegressor BallTree Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, **kwargs): self._init_params(n_neighbors=n_neighbors, radius=radius, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, **kwargs)
bsd-3-clause
alephu5/Soundbyte
environment/lib/python3.3/site-packages/pandas/tseries/tests/test_resample.py
1
43272
# pylint: disable=E1101 from datetime import datetime, timedelta from pandas.compat import range, lrange, zip, product import numpy as np from pandas import Series, TimeSeries, DataFrame, Panel, isnull, notnull, Timestamp from pandas.tseries.index import date_range from pandas.tseries.offsets import Minute, BDay from pandas.tseries.period import period_range, PeriodIndex, Period from pandas.tseries.resample import DatetimeIndex, TimeGrouper from pandas.tseries.frequencies import MONTHS, DAYS import pandas.tseries.offsets as offsets import pandas as pd import nose from pandas.util.testing import (assert_series_equal, assert_almost_equal, assert_frame_equal) import pandas.util.testing as tm bday = BDay() def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest("pytz not installed") class TestResample(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): dti = DatetimeIndex(start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='Min') self.series = Series(np.random.rand(len(dti)), dti) def test_custom_grouper(self): dti = DatetimeIndex(freq='Min', start=datetime(2005, 1, 1), end=datetime(2005, 1, 10)) s = Series(np.array([1] * len(dti)), index=dti, dtype='int64') b = TimeGrouper(Minute(5)) g = s.groupby(b) # check all cython functions work funcs = ['add', 'mean', 'prod', 'ohlc', 'min', 'max', 'var'] for f in funcs: g._cython_agg_general(f) b = TimeGrouper(Minute(5), closed='right', label='right') g = s.groupby(b) # check all cython functions work funcs = ['add', 'mean', 'prod', 'ohlc', 'min', 'max', 'var'] for f in funcs: g._cython_agg_general(f) self.assertEquals(g.ngroups, 2593) self.assert_(notnull(g.mean()).all()) # construct expected val arr = [1] + [5] * 2592 idx = dti[0:-1:5] idx = idx.append(dti[-1:]) expect = Series(arr, index=idx) # GH2763 - return in put dtype if we can result = g.agg(np.sum) assert_series_equal(result, expect) df = DataFrame(np.random.rand(len(dti), 10), index=dti, dtype='float64') r = df.groupby(b).agg(np.sum) self.assertEquals(len(r.columns), 10) self.assertEquals(len(r.index), 2593) def test_resample_basic(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 00:13:00', freq='min', name='index') s = Series(np.random.randn(14), index=rng) result = s.resample('5min', how='mean', closed='right', label='right') expected = Series([s[0], s[1:6].mean(), s[6:11].mean(), s[11:].mean()], index=date_range('1/1/2000', periods=4, freq='5min')) assert_series_equal(result, expected) self.assert_(result.index.name == 'index') result = s.resample('5min', how='mean', closed='left', label='right') expected = Series([s[:5].mean(), s[5:10].mean(), s[10:].mean()], index=date_range('1/1/2000 00:05', periods=3, freq='5min')) assert_series_equal(result, expected) s = self.series result = s.resample('5Min', how='last') grouper = TimeGrouper(Minute(5), closed='left', label='left') expect = s.groupby(grouper).agg(lambda x: x[-1]) assert_series_equal(result, expect) def test_resample_basic_from_daily(self): # from daily dti = DatetimeIndex( start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='D', name='index') s = Series(np.random.rand(len(dti)), dti) # to weekly result = s.resample('w-sun', how='last') self.assertEquals(len(result), 3) self.assert_((result.index.dayofweek == [6, 6, 6]).all()) self.assertEquals(result.irow(0), s['1/2/2005']) self.assertEquals(result.irow(1), s['1/9/2005']) self.assertEquals(result.irow(2), s.irow(-1)) result = s.resample('W-MON', how='last') self.assertEquals(len(result), 2) self.assert_((result.index.dayofweek == [0, 0]).all()) self.assertEquals(result.irow(0), s['1/3/2005']) self.assertEquals(result.irow(1), s['1/10/2005']) result = s.resample('W-TUE', how='last') self.assertEquals(len(result), 2) self.assert_((result.index.dayofweek == [1, 1]).all()) self.assertEquals(result.irow(0), s['1/4/2005']) self.assertEquals(result.irow(1), s['1/10/2005']) result = s.resample('W-WED', how='last') self.assertEquals(len(result), 2) self.assert_((result.index.dayofweek == [2, 2]).all()) self.assertEquals(result.irow(0), s['1/5/2005']) self.assertEquals(result.irow(1), s['1/10/2005']) result = s.resample('W-THU', how='last') self.assertEquals(len(result), 2) self.assert_((result.index.dayofweek == [3, 3]).all()) self.assertEquals(result.irow(0), s['1/6/2005']) self.assertEquals(result.irow(1), s['1/10/2005']) result = s.resample('W-FRI', how='last') self.assertEquals(len(result), 2) self.assert_((result.index.dayofweek == [4, 4]).all()) self.assertEquals(result.irow(0), s['1/7/2005']) self.assertEquals(result.irow(1), s['1/10/2005']) # to biz day result = s.resample('B', how='last') self.assertEquals(len(result), 7) self.assert_((result.index.dayofweek == [4, 0, 1, 2, 3, 4, 0]).all()) self.assertEquals(result.irow(0), s['1/2/2005']) self.assertEquals(result.irow(1), s['1/3/2005']) self.assertEquals(result.irow(5), s['1/9/2005']) self.assert_(result.index.name == 'index') def test_resample_frame_basic(self): df = tm.makeTimeDataFrame() b = TimeGrouper('M') g = df.groupby(b) # check all cython functions work funcs = ['add', 'mean', 'prod', 'min', 'max', 'var'] for f in funcs: g._cython_agg_general(f) result = df.resample('A') assert_series_equal(result['A'], df['A'].resample('A')) result = df.resample('M') assert_series_equal(result['A'], df['A'].resample('M')) df.resample('M', kind='period') df.resample('W-WED', kind='period') def test_resample_loffset(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 00:13:00', freq='min') s = Series(np.random.randn(14), index=rng) result = s.resample('5min', how='mean', closed='right', label='right', loffset=timedelta(minutes=1)) idx = date_range('1/1/2000', periods=4, freq='5min') expected = Series([s[0], s[1:6].mean(), s[6:11].mean(), s[11:].mean()], index=idx + timedelta(minutes=1)) assert_series_equal(result, expected) expected = s.resample( '5min', how='mean', closed='right', label='right', loffset='1min') assert_series_equal(result, expected) expected = s.resample( '5min', how='mean', closed='right', label='right', loffset=Minute(1)) assert_series_equal(result, expected) self.assert_(result.index.freq == Minute(5)) # from daily dti = DatetimeIndex( start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='D') ser = Series(np.random.rand(len(dti)), dti) # to weekly result = ser.resample('w-sun', how='last') expected = ser.resample('w-sun', how='last', loffset=-bday) self.assertEqual(result.index[0] - bday, expected.index[0]) def test_resample_upsample(self): # from daily dti = DatetimeIndex( start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='D', name='index') s = Series(np.random.rand(len(dti)), dti) # to minutely, by padding result = s.resample('Min', fill_method='pad') self.assertEquals(len(result), 12961) self.assertEquals(result[0], s[0]) self.assertEquals(result[-1], s[-1]) self.assert_(result.index.name == 'index') def test_upsample_with_limit(self): rng = date_range('1/1/2000', periods=3, freq='5t') ts = Series(np.random.randn(len(rng)), rng) result = ts.resample('t', fill_method='ffill', limit=2) expected = ts.reindex(result.index, method='ffill', limit=2) assert_series_equal(result, expected) def test_resample_ohlc(self): s = self.series grouper = TimeGrouper(Minute(5)) expect = s.groupby(grouper).agg(lambda x: x[-1]) result = s.resample('5Min', how='ohlc') self.assertEquals(len(result), len(expect)) self.assertEquals(len(result.columns), 4) xs = result.irow(-2) self.assertEquals(xs['open'], s[-6]) self.assertEquals(xs['high'], s[-6:-1].max()) self.assertEquals(xs['low'], s[-6:-1].min()) self.assertEquals(xs['close'], s[-2]) xs = result.irow(0) self.assertEquals(xs['open'], s[0]) self.assertEquals(xs['high'], s[:5].max()) self.assertEquals(xs['low'], s[:5].min()) self.assertEquals(xs['close'], s[4]) def test_resample_ohlc_dataframe(self): df = (pd.DataFrame({'PRICE': {Timestamp('2011-01-06 10:59:05', tz=None): 24990, Timestamp('2011-01-06 12:43:33', tz=None): 25499, Timestamp('2011-01-06 12:54:09', tz=None): 25499}, 'VOLUME': {Timestamp('2011-01-06 10:59:05', tz=None): 1500000000, Timestamp('2011-01-06 12:43:33', tz=None): 5000000000, Timestamp('2011-01-06 12:54:09', tz=None): 100000000}}) ).reindex_axis(['VOLUME', 'PRICE'], axis=1) res = df.resample('H', how='ohlc') exp = pd.concat([df['VOLUME'].resample('H', how='ohlc'), df['PRICE'].resample('H', how='ohlc')], axis=1, keys=['VOLUME', 'PRICE']) assert_frame_equal(exp, res) df.columns = [['a', 'b'], ['c', 'd']] res = df.resample('H', how='ohlc') exp.columns = pd.MultiIndex.from_tuples([('a', 'c', 'open'), ('a', 'c', 'high'), ('a', 'c', 'low'), ('a', 'c', 'close'), ('b', 'd', 'open'), ('b', 'd', 'high'), ('b', 'd', 'low'), ('b', 'd', 'close')]) assert_frame_equal(exp, res) # dupe columns fail atm # df.columns = ['PRICE', 'PRICE'] def test_resample_dup_index(self): # GH 4812 # dup columns with resample raising df = DataFrame(np.random.randn(4,12),index=[2000,2000,2000,2000],columns=[ Period(year=2000,month=i+1,freq='M') for i in range(12) ]) df.iloc[3,:] = np.nan result = df.resample('Q',axis=1) expected = df.groupby(lambda x: int((x.month-1)/3),axis=1).mean() expected.columns = [ Period(year=2000,quarter=i+1,freq='Q') for i in range(4) ] assert_frame_equal(result, expected) def test_resample_reresample(self): dti = DatetimeIndex( start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='D') s = Series(np.random.rand(len(dti)), dti) bs = s.resample('B', closed='right', label='right') result = bs.resample('8H') self.assertEquals(len(result), 22) tm.assert_isinstance(result.index.freq, offsets.DateOffset) self.assert_(result.index.freq == offsets.Hour(8)) def test_resample_timestamp_to_period(self): ts = _simple_ts('1/1/1990', '1/1/2000') result = ts.resample('A-DEC', kind='period') expected = ts.resample('A-DEC') expected.index = period_range('1990', '2000', freq='a-dec') assert_series_equal(result, expected) result = ts.resample('A-JUN', kind='period') expected = ts.resample('A-JUN') expected.index = period_range('1990', '2000', freq='a-jun') assert_series_equal(result, expected) result = ts.resample('M', kind='period') expected = ts.resample('M') expected.index = period_range('1990-01', '2000-01', freq='M') assert_series_equal(result, expected) result = ts.resample('M', kind='period') expected = ts.resample('M') expected.index = period_range('1990-01', '2000-01', freq='M') assert_series_equal(result, expected) def test_ohlc_5min(self): def _ohlc(group): if isnull(group).all(): return np.repeat(np.nan, 4) return [group[0], group.max(), group.min(), group[-1]] rng = date_range('1/1/2000 00:00:00', '1/1/2000 5:59:50', freq='10s') ts = Series(np.random.randn(len(rng)), index=rng) resampled = ts.resample('5min', how='ohlc', closed='right', label='right') self.assert_((resampled.ix['1/1/2000 00:00'] == ts[0]).all()) exp = _ohlc(ts[1:31]) self.assert_((resampled.ix['1/1/2000 00:05'] == exp).all()) exp = _ohlc(ts['1/1/2000 5:55:01':]) self.assert_((resampled.ix['1/1/2000 6:00:00'] == exp).all()) def test_downsample_non_unique(self): rng = date_range('1/1/2000', '2/29/2000') rng2 = rng.repeat(5).values ts = Series(np.random.randn(len(rng2)), index=rng2) result = ts.resample('M', how='mean') expected = ts.groupby(lambda x: x.month).mean() self.assertEquals(len(result), 2) assert_almost_equal(result[0], expected[1]) assert_almost_equal(result[1], expected[2]) def test_asfreq_non_unique(self): # GH #1077 rng = date_range('1/1/2000', '2/29/2000') rng2 = rng.repeat(2).values ts = Series(np.random.randn(len(rng2)), index=rng2) self.assertRaises(Exception, ts.asfreq, 'B') def test_resample_axis1(self): rng = date_range('1/1/2000', '2/29/2000') df = DataFrame(np.random.randn(3, len(rng)), columns=rng, index=['a', 'b', 'c']) result = df.resample('M', axis=1) expected = df.T.resample('M').T tm.assert_frame_equal(result, expected) def test_resample_panel(self): rng = date_range('1/1/2000', '6/30/2000') n = len(rng) panel = Panel(np.random.randn(3, n, 5), items=['one', 'two', 'three'], major_axis=rng, minor_axis=['a', 'b', 'c', 'd', 'e']) result = panel.resample('M', axis=1) def p_apply(panel, f): result = {} for item in panel.items: result[item] = f(panel[item]) return Panel(result, items=panel.items) expected = p_apply(panel, lambda x: x.resample('M')) tm.assert_panel_equal(result, expected) panel2 = panel.swapaxes(1, 2) result = panel2.resample('M', axis=2) expected = p_apply(panel2, lambda x: x.resample('M', axis=1)) tm.assert_panel_equal(result, expected) def test_resample_panel_numpy(self): rng = date_range('1/1/2000', '6/30/2000') n = len(rng) panel = Panel(np.random.randn(3, n, 5), items=['one', 'two', 'three'], major_axis=rng, minor_axis=['a', 'b', 'c', 'd', 'e']) result = panel.resample('M', how=lambda x: x.mean(1), axis=1) expected = panel.resample('M', how='mean', axis=1) tm.assert_panel_equal(result, expected) panel = panel.swapaxes(1, 2) result = panel.resample('M', how=lambda x: x.mean(2), axis=2) expected = panel.resample('M', how='mean', axis=2) tm.assert_panel_equal(result, expected) def test_resample_anchored_ticks(self): # If a fixed delta (5 minute, 4 hour) evenly divides a day, we should # "anchor" the origin at midnight so we get regular intervals rather # than starting from the first timestamp which might start in the middle # of a desired interval rng = date_range('1/1/2000 04:00:00', periods=86400, freq='s') ts = Series(np.random.randn(len(rng)), index=rng) ts[:2] = np.nan # so results are the same freqs = ['t', '5t', '15t', '30t', '4h', '12h'] for freq in freqs: result = ts[2:].resample(freq, closed='left', label='left') expected = ts.resample(freq, closed='left', label='left') assert_series_equal(result, expected) def test_resample_single_group(self): mysum = lambda x: x.sum() rng = date_range('2000-1-1', '2000-2-10', freq='D') ts = Series(np.random.randn(len(rng)), index=rng) assert_series_equal(ts.resample('M', how='sum'), ts.resample('M', how=mysum)) rng = date_range('2000-1-1', '2000-1-10', freq='D') ts = Series(np.random.randn(len(rng)), index=rng) assert_series_equal(ts.resample('M', how='sum'), ts.resample('M', how=mysum)) # GH 3849 s = Series([30.1, 31.6], index=[Timestamp('20070915 15:30:00'), Timestamp('20070915 15:40:00')]) expected = Series([0.75], index=[Timestamp('20070915')]) result = s.resample('D', how=lambda x: np.std(x)) assert_series_equal(result, expected) def test_resample_base(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 02:00', freq='s') ts = Series(np.random.randn(len(rng)), index=rng) resampled = ts.resample('5min', base=2) exp_rng = date_range('12/31/1999 23:57:00', '1/1/2000 01:57', freq='5min') self.assert_(resampled.index.equals(exp_rng)) def test_resample_daily_anchored(self): rng = date_range('1/1/2000 0:00:00', periods=10000, freq='T') ts = Series(np.random.randn(len(rng)), index=rng) ts[:2] = np.nan # so results are the same result = ts[2:].resample('D', closed='left', label='left') expected = ts.resample('D', closed='left', label='left') assert_series_equal(result, expected) def test_resample_to_period_monthly_buglet(self): # GH #1259 rng = date_range('1/1/2000', '12/31/2000') ts = Series(np.random.randn(len(rng)), index=rng) result = ts.resample('M', kind='period') exp_index = period_range('Jan-2000', 'Dec-2000', freq='M') self.assert_(result.index.equals(exp_index)) def test_resample_empty(self): ts = _simple_ts('1/1/2000', '2/1/2000')[:0] result = ts.resample('A') self.assert_(len(result) == 0) self.assert_(result.index.freqstr == 'A-DEC') result = ts.resample('A', kind='period') self.assert_(len(result) == 0) self.assert_(result.index.freqstr == 'A-DEC') xp = DataFrame() rs = xp.resample('A') assert_frame_equal(xp, rs) def test_weekly_resample_buglet(self): # #1327 rng = date_range('1/1/2000', freq='B', periods=20) ts = Series(np.random.randn(len(rng)), index=rng) resampled = ts.resample('W') expected = ts.resample('W-SUN') assert_series_equal(resampled, expected) def test_monthly_resample_error(self): # #1451 dates = date_range('4/16/2012 20:00', periods=5000, freq='h') ts = Series(np.random.randn(len(dates)), index=dates) # it works! result = ts.resample('M') def test_resample_anchored_intraday(self): # #1471, #1458 rng = date_range('1/1/2012', '4/1/2012', freq='100min') df = DataFrame(rng.month, index=rng) result = df.resample('M') expected = df.resample('M', kind='period').to_timestamp(how='end') tm.assert_frame_equal(result, expected) result = df.resample('M', closed='left') exp = df.tshift(1, freq='D').resample('M', kind='period') exp = exp.to_timestamp(how='end') tm.assert_frame_equal(result, exp) rng = date_range('1/1/2012', '4/1/2012', freq='100min') df = DataFrame(rng.month, index=rng) result = df.resample('Q') expected = df.resample('Q', kind='period').to_timestamp(how='end') tm.assert_frame_equal(result, expected) result = df.resample('Q', closed='left') expected = df.tshift(1, freq='D').resample('Q', kind='period', closed='left') expected = expected.to_timestamp(how='end') tm.assert_frame_equal(result, expected) ts = _simple_ts('2012-04-29 23:00', '2012-04-30 5:00', freq='h') resampled = ts.resample('M') self.assert_(len(resampled) == 1) def test_resample_anchored_monthstart(self): ts = _simple_ts('1/1/2000', '12/31/2002') freqs = ['MS', 'BMS', 'QS-MAR', 'AS-DEC', 'AS-JUN'] for freq in freqs: result = ts.resample(freq, how='mean') def test_corner_cases(self): # miscellaneous test coverage rng = date_range('1/1/2000', periods=12, freq='t') ts = Series(np.random.randn(len(rng)), index=rng) result = ts.resample('5t', closed='right', label='left') ex_index = date_range('1999-12-31 23:55', periods=4, freq='5t') self.assert_(result.index.equals(ex_index)) len0pts = _simple_pts('2007-01', '2010-05', freq='M')[:0] # it works result = len0pts.resample('A-DEC') self.assert_(len(result) == 0) # resample to periods ts = _simple_ts('2000-04-28', '2000-04-30 11:00', freq='h') result = ts.resample('M', kind='period') self.assert_(len(result) == 1) self.assert_(result.index[0] == Period('2000-04', freq='M')) def test_anchored_lowercase_buglet(self): dates = date_range('4/16/2012 20:00', periods=50000, freq='s') ts = Series(np.random.randn(len(dates)), index=dates) # it works! ts.resample('d') def test_upsample_apply_functions(self): # #1596 rng = pd.date_range('2012-06-12', periods=4, freq='h') ts = Series(np.random.randn(len(rng)), index=rng) result = ts.resample('20min', how=['mean', 'sum']) tm.assert_isinstance(result, DataFrame) def test_resample_not_monotonic(self): rng = pd.date_range('2012-06-12', periods=200, freq='h') ts = Series(np.random.randn(len(rng)), index=rng) ts = ts.take(np.random.permutation(len(ts))) result = ts.resample('D', how='sum') exp = ts.sort_index().resample('D', how='sum') assert_series_equal(result, exp) def test_resample_median_bug_1688(self): for dtype in ['int64','int32','float64','float32']: df = DataFrame([1, 2], index=[datetime(2012, 1, 1, 0, 0, 0), datetime(2012, 1, 1, 0, 5, 0)], dtype = dtype) result = df.resample("T", how=lambda x: x.mean()) exp = df.asfreq('T') tm.assert_frame_equal(result, exp) result = df.resample("T", how="median") exp = df.asfreq('T') tm.assert_frame_equal(result, exp) def test_how_lambda_functions(self): ts = _simple_ts('1/1/2000', '4/1/2000') result = ts.resample('M', how=lambda x: x.mean()) exp = ts.resample('M', how='mean') tm.assert_series_equal(result, exp) self.assertRaises(Exception, ts.resample, 'M', how=[lambda x: x.mean(), lambda x: x.std(ddof=1)]) result = ts.resample('M', how={'foo': lambda x: x.mean(), 'bar': lambda x: x.std(ddof=1)}) foo_exp = ts.resample('M', how='mean') bar_exp = ts.resample('M', how='std') tm.assert_series_equal(result['foo'], foo_exp) tm.assert_series_equal(result['bar'], bar_exp) def test_resample_unequal_times(self): # #1772 start = datetime(1999, 3, 1, 5) # end hour is less than start end = datetime(2012, 7, 31, 4) bad_ind = date_range(start, end, freq="30min") df = DataFrame({'close': 1}, index=bad_ind) # it works! df.resample('AS', 'sum') def _simple_ts(start, end, freq='D'): rng = date_range(start, end, freq=freq) return Series(np.random.randn(len(rng)), index=rng) def _simple_pts(start, end, freq='D'): rng = period_range(start, end, freq=freq) return TimeSeries(np.random.randn(len(rng)), index=rng) class TestResamplePeriodIndex(tm.TestCase): _multiprocess_can_split_ = True def test_annual_upsample_D_s_f(self): self._check_annual_upsample_cases('D', 'start', 'ffill') def test_annual_upsample_D_e_f(self): self._check_annual_upsample_cases('D', 'end', 'ffill') def test_annual_upsample_D_s_b(self): self._check_annual_upsample_cases('D', 'start', 'bfill') def test_annual_upsample_D_e_b(self): self._check_annual_upsample_cases('D', 'end', 'bfill') def test_annual_upsample_B_s_f(self): self._check_annual_upsample_cases('B', 'start', 'ffill') def test_annual_upsample_B_e_f(self): self._check_annual_upsample_cases('B', 'end', 'ffill') def test_annual_upsample_B_s_b(self): self._check_annual_upsample_cases('B', 'start', 'bfill') def test_annual_upsample_B_e_b(self): self._check_annual_upsample_cases('B', 'end', 'bfill') def test_annual_upsample_M_s_f(self): self._check_annual_upsample_cases('M', 'start', 'ffill') def test_annual_upsample_M_e_f(self): self._check_annual_upsample_cases('M', 'end', 'ffill') def test_annual_upsample_M_s_b(self): self._check_annual_upsample_cases('M', 'start', 'bfill') def test_annual_upsample_M_e_b(self): self._check_annual_upsample_cases('M', 'end', 'bfill') def _check_annual_upsample_cases(self, targ, conv, meth, end='12/31/1991'): for month in MONTHS: ts = _simple_pts('1/1/1990', end, freq='A-%s' % month) result = ts.resample(targ, fill_method=meth, convention=conv) expected = result.to_timestamp(targ, how=conv) expected = expected.asfreq(targ, meth).to_period() assert_series_equal(result, expected) def test_basic_downsample(self): ts = _simple_pts('1/1/1990', '6/30/1995', freq='M') result = ts.resample('a-dec') expected = ts.groupby(ts.index.year).mean() expected.index = period_range('1/1/1990', '6/30/1995', freq='a-dec') assert_series_equal(result, expected) # this is ok assert_series_equal(ts.resample('a-dec'), result) assert_series_equal(ts.resample('a'), result) def test_not_subperiod(self): # These are incompatible period rules for resampling ts = _simple_pts('1/1/1990', '6/30/1995', freq='w-wed') self.assertRaises(ValueError, ts.resample, 'a-dec') self.assertRaises(ValueError, ts.resample, 'q-mar') self.assertRaises(ValueError, ts.resample, 'M') self.assertRaises(ValueError, ts.resample, 'w-thu') def test_basic_upsample(self): ts = _simple_pts('1/1/1990', '6/30/1995', freq='M') result = ts.resample('a-dec') resampled = result.resample('D', fill_method='ffill', convention='end') expected = result.to_timestamp('D', how='end') expected = expected.asfreq('D', 'ffill').to_period() assert_series_equal(resampled, expected) def test_upsample_with_limit(self): rng = period_range('1/1/2000', periods=5, freq='A') ts = Series(np.random.randn(len(rng)), rng) result = ts.resample('M', fill_method='ffill', limit=2, convention='end') expected = ts.asfreq('M').reindex(result.index, method='ffill', limit=2) assert_series_equal(result, expected) def test_annual_upsample(self): ts = _simple_pts('1/1/1990', '12/31/1995', freq='A-DEC') df = DataFrame({'a': ts}) rdf = df.resample('D', fill_method='ffill') exp = df['a'].resample('D', fill_method='ffill') assert_series_equal(rdf['a'], exp) rng = period_range('2000', '2003', freq='A-DEC') ts = Series([1, 2, 3, 4], index=rng) result = ts.resample('M', fill_method='ffill') ex_index = period_range('2000-01', '2003-12', freq='M') expected = ts.asfreq('M', how='start').reindex(ex_index, method='ffill') assert_series_equal(result, expected) def test_quarterly_upsample(self): targets = ['D', 'B', 'M'] for month in MONTHS: ts = _simple_pts('1/1/1990', '12/31/1995', freq='Q-%s' % month) for targ, conv in product(targets, ['start', 'end']): result = ts.resample(targ, fill_method='ffill', convention=conv) expected = result.to_timestamp(targ, how=conv) expected = expected.asfreq(targ, 'ffill').to_period() assert_series_equal(result, expected) def test_monthly_upsample(self): targets = ['D', 'B'] ts = _simple_pts('1/1/1990', '12/31/1995', freq='M') for targ, conv in product(targets, ['start', 'end']): result = ts.resample(targ, fill_method='ffill', convention=conv) expected = result.to_timestamp(targ, how=conv) expected = expected.asfreq(targ, 'ffill').to_period() assert_series_equal(result, expected) def test_weekly_upsample(self): targets = ['D', 'B'] for day in DAYS: ts = _simple_pts('1/1/1990', '12/31/1995', freq='W-%s' % day) for targ, conv in product(targets, ['start', 'end']): result = ts.resample(targ, fill_method='ffill', convention=conv) expected = result.to_timestamp(targ, how=conv) expected = expected.asfreq(targ, 'ffill').to_period() assert_series_equal(result, expected) def test_resample_to_timestamps(self): ts = _simple_pts('1/1/1990', '12/31/1995', freq='M') result = ts.resample('A-DEC', kind='timestamp') expected = ts.to_timestamp(how='end').resample('A-DEC') assert_series_equal(result, expected) def test_resample_to_quarterly(self): for month in MONTHS: ts = _simple_pts('1990', '1992', freq='A-%s' % month) quar_ts = ts.resample('Q-%s' % month, fill_method='ffill') stamps = ts.to_timestamp('D', how='start') qdates = period_range(ts.index[0].asfreq('D', 'start'), ts.index[-1].asfreq('D', 'end'), freq='Q-%s' % month) expected = stamps.reindex(qdates.to_timestamp('D', 's'), method='ffill') expected.index = qdates assert_series_equal(quar_ts, expected) # conforms, but different month ts = _simple_pts('1990', '1992', freq='A-JUN') for how in ['start', 'end']: result = ts.resample('Q-MAR', convention=how, fill_method='ffill') expected = ts.asfreq('Q-MAR', how=how) expected = expected.reindex(result.index, method='ffill') # .to_timestamp('D') # expected = expected.resample('Q-MAR', fill_method='ffill') assert_series_equal(result, expected) def test_resample_fill_missing(self): rng = PeriodIndex([2000, 2005, 2007, 2009], freq='A') s = TimeSeries(np.random.randn(4), index=rng) stamps = s.to_timestamp() filled = s.resample('A') expected = stamps.resample('A').to_period('A') assert_series_equal(filled, expected) filled = s.resample('A', fill_method='ffill') expected = stamps.resample('A', fill_method='ffill').to_period('A') assert_series_equal(filled, expected) def test_cant_fill_missing_dups(self): rng = PeriodIndex([2000, 2005, 2005, 2007, 2007], freq='A') s = TimeSeries(np.random.randn(5), index=rng) self.assertRaises(Exception, s.resample, 'A') def test_resample_5minute(self): rng = period_range('1/1/2000', '1/5/2000', freq='T') ts = TimeSeries(np.random.randn(len(rng)), index=rng) result = ts.resample('5min') expected = ts.to_timestamp().resample('5min') assert_series_equal(result, expected) def test_upsample_daily_business_daily(self): ts = _simple_pts('1/1/2000', '2/1/2000', freq='B') result = ts.resample('D') expected = ts.asfreq('D').reindex(period_range('1/3/2000', '2/1/2000')) assert_series_equal(result, expected) ts = _simple_pts('1/1/2000', '2/1/2000') result = ts.resample('H', convention='s') exp_rng = period_range('1/1/2000', '2/1/2000 23:00', freq='H') expected = ts.asfreq('H', how='s').reindex(exp_rng) assert_series_equal(result, expected) def test_resample_empty(self): ts = _simple_pts('1/1/2000', '2/1/2000')[:0] result = ts.resample('A') self.assert_(len(result) == 0) def test_resample_irregular_sparse(self): dr = date_range(start='1/1/2012', freq='5min', periods=1000) s = Series(np.array(100), index=dr) # subset the data. subset = s[:'2012-01-04 06:55'] result = subset.resample('10min', how=len) expected = s.resample('10min', how=len).ix[result.index] assert_series_equal(result, expected) def test_resample_weekly_all_na(self): rng = date_range('1/1/2000', periods=10, freq='W-WED') ts = Series(np.random.randn(len(rng)), index=rng) result = ts.resample('W-THU') self.assert_(result.isnull().all()) result = ts.resample('W-THU', fill_method='ffill')[:-1] expected = ts.asfreq('W-THU', method='ffill') assert_series_equal(result, expected) def test_resample_tz_localized(self): dr = date_range(start='2012-4-13', end='2012-5-1') ts = Series(lrange(len(dr)), dr) ts_utc = ts.tz_localize('UTC') ts_local = ts_utc.tz_convert('America/Los_Angeles') result = ts_local.resample('W') ts_local_naive = ts_local.copy() ts_local_naive.index = [x.replace(tzinfo=None) for x in ts_local_naive.index.to_pydatetime()] exp = ts_local_naive.resample('W').tz_localize('America/Los_Angeles') assert_series_equal(result, exp) # it works result = ts_local.resample('D') # #2245 idx = date_range('2001-09-20 15:59', '2001-09-20 16:00', freq='T', tz='Australia/Sydney') s = Series([1, 2], index=idx) result = s.resample('D', closed='right', label='right') ex_index = date_range('2001-09-21', periods=1, freq='D', tz='Australia/Sydney') expected = Series([1.5], index=ex_index) assert_series_equal(result, expected) # for good measure result = s.resample('D', kind='period') ex_index = period_range('2001-09-20', periods=1, freq='D') expected = Series([1.5], index=ex_index) assert_series_equal(result, expected) def test_closed_left_corner(self): # #1465 s = Series(np.random.randn(21), index=date_range(start='1/1/2012 9:30', freq='1min', periods=21)) s[0] = np.nan result = s.resample('10min', how='mean', closed='left', label='right') exp = s[1:].resample('10min', how='mean', closed='left', label='right') assert_series_equal(result, exp) result = s.resample('10min', how='mean', closed='left', label='left') exp = s[1:].resample('10min', how='mean', closed='left', label='left') ex_index = date_range(start='1/1/2012 9:30', freq='10min', periods=3) self.assert_(result.index.equals(ex_index)) assert_series_equal(result, exp) def test_quarterly_resampling(self): rng = period_range('2000Q1', periods=10, freq='Q-DEC') ts = Series(np.arange(10), index=rng) result = ts.resample('A') exp = ts.to_timestamp().resample('A').to_period() assert_series_equal(result, exp) def test_resample_weekly_bug_1726(self): # 8/6/12 is a Monday ind = DatetimeIndex(start="8/6/2012", end="8/26/2012", freq="D") n = len(ind) data = [[x] * 5 for x in range(n)] df = DataFrame(data, columns=['open', 'high', 'low', 'close', 'vol'], index=ind) # it works! df.resample('W-MON', how='first', closed='left', label='left') def test_resample_bms_2752(self): # GH2753 foo = pd.Series(index=pd.bdate_range('20000101','20000201')) res1 = foo.resample("BMS") res2 = foo.resample("BMS").resample("B") self.assertEqual(res1.index[0], Timestamp('20000103')) self.assertEqual(res1.index[0], res2.index[0]) # def test_monthly_convention_span(self): # rng = period_range('2000-01', periods=3, freq='M') # ts = Series(np.arange(3), index=rng) # # hacky way to get same thing # exp_index = period_range('2000-01-01', '2000-03-31', freq='D') # expected = ts.asfreq('D', how='end').reindex(exp_index) # expected = expected.fillna(method='bfill') # result = ts.resample('D', convention='span') # assert_series_equal(result, expected) def test_default_right_closed_label(self): end_freq = ['D', 'Q', 'M', 'D'] end_types = ['M', 'A', 'Q', 'W'] for from_freq, to_freq in zip(end_freq, end_types): idx = DatetimeIndex(start='8/15/2012', periods=100, freq=from_freq) df = DataFrame(np.random.randn(len(idx), 2), idx) resampled = df.resample(to_freq) assert_frame_equal(resampled, df.resample(to_freq, closed='right', label='right')) def test_default_left_closed_label(self): others = ['MS', 'AS', 'QS', 'D', 'H'] others_freq = ['D', 'Q', 'M', 'H', 'T'] for from_freq, to_freq in zip(others_freq, others): idx = DatetimeIndex(start='8/15/2012', periods=100, freq=from_freq) df = DataFrame(np.random.randn(len(idx), 2), idx) resampled = df.resample(to_freq) assert_frame_equal(resampled, df.resample(to_freq, closed='left', label='left')) def test_all_values_single_bin(self): # 2070 index = period_range(start="2012-01-01", end="2012-12-31", freq="M") s = Series(np.random.randn(len(index)), index=index) result = s.resample("A", how='mean') tm.assert_almost_equal(result[0], s.mean()) def test_resample_doesnt_truncate(self): # Test for issue #3020 import pandas as pd dates = pd.date_range('01-Jan-2014','05-Jan-2014', freq='D') series = Series(1, index=dates) result = series.resample('D') self.assertEquals(result.index[0], dates[0]) class TestTimeGrouper(tm.TestCase): def setUp(self): self.ts = Series(np.random.randn(1000), index=date_range('1/1/2000', periods=1000)) def test_apply(self): grouper = TimeGrouper('A', label='right', closed='right') grouped = self.ts.groupby(grouper) f = lambda x: x.order()[-3:] applied = grouped.apply(f) expected = self.ts.groupby(lambda x: x.year).apply(f) applied.index = applied.index.droplevel(0) expected.index = expected.index.droplevel(0) assert_series_equal(applied, expected) def test_count(self): self.ts[::3] = np.nan grouper = TimeGrouper('A', label='right', closed='right') result = self.ts.resample('A', how='count') expected = self.ts.groupby(lambda x: x.year).count() expected.index = result.index assert_series_equal(result, expected) def test_numpy_reduction(self): result = self.ts.resample('A', how='prod', closed='right') expected = self.ts.groupby(lambda x: x.year).agg(np.prod) expected.index = result.index assert_series_equal(result, expected) def test_apply_iteration(self): # #2300 N = 1000 ind = pd.date_range(start="2000-01-01", freq="D", periods=N) df = DataFrame({'open': 1, 'close': 2}, index=ind) tg = TimeGrouper('M') grouper = tg.get_grouper(df) # Errors grouped = df.groupby(grouper, group_keys=False) f = lambda df: df['close'] / df['open'] # it works! result = grouped.apply(f) self.assertTrue(result.index.equals(df.index)) def test_panel_aggregation(self): ind = pd.date_range('1/1/2000', periods=100) data = np.random.randn(2, len(ind), 4) wp = pd.Panel(data, items=['Item1', 'Item2'], major_axis=ind, minor_axis=['A', 'B', 'C', 'D']) tg = TimeGrouper('M', axis=1) grouper = tg.get_grouper(wp) bingrouped = wp.groupby(grouper) binagg = bingrouped.mean() def f(x): assert(isinstance(x, Panel)) return x.mean(1) result = bingrouped.agg(f) tm.assert_panel_equal(result, binagg) def test_fails_on_no_datetime_index(self): index_names = ('Int64Index', 'PeriodIndex', 'Index', 'Float64Index', 'MultiIndex') index_funcs = (tm.makeIntIndex, tm.makePeriodIndex, tm.makeUnicodeIndex, tm.makeFloatIndex, lambda m: tm.makeCustomIndex(m, 2)) n = 2 for name, func in zip(index_names, index_funcs): index = func(n) df = DataFrame({'a': np.random.randn(n)}, index=index) with tm.assertRaisesRegexp(TypeError, "axis must be a DatetimeIndex, " "but got an instance of %r" % name): df.groupby(TimeGrouper('D')) if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
gpl-3.0
dylanGeng/BuildingMachineLearningSystemsWithPython
ch07/boston1.py
22
1147
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License # This script shows an example of simple (ordinary) linear regression # The first edition of the book NumPy functions only for this operation. See # the file boston1numpy.py for that version. import numpy as np from sklearn.datasets import load_boston from sklearn.linear_model import LinearRegression from matplotlib import pyplot as plt boston = load_boston() x = boston.data y = boston.target # Fitting a model is trivial: call the ``fit`` method in LinearRegression: lr = LinearRegression() lr.fit(x, y) # The instance member `residues_` contains the sum of the squared residues rmse = np.sqrt(lr.residues_/len(x)) print('RMSE: {}'.format(rmse)) fig, ax = plt.subplots() # Plot a diagonal (for reference): ax.plot([0, 50], [0, 50], '-', color=(.9,.3,.3), lw=4) # Plot the prediction versus real: ax.scatter(lr.predict(x), boston.target) ax.set_xlabel('predicted') ax.set_ylabel('real') fig.savefig('Figure_07_08.png')
mit
smartscheduling/scikit-learn-categorical-tree
sklearn/feature_selection/tests/test_rfe.py
1
11274
""" Testing Recursive feature elimination """ import numpy as np from numpy.testing import assert_array_almost_equal, assert_array_equal from nose.tools import assert_equal, assert_true from scipy import sparse from sklearn.feature_selection.rfe import RFE, RFECV from sklearn.datasets import load_iris, make_friedman1, make_regression from sklearn.metrics import zero_one_loss from sklearn.svm import SVC, SVR from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestClassifier from sklearn.utils import check_random_state from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_warns_message from sklearn.metrics import make_scorer from sklearn.metrics import get_scorer class MockClassifier(object): """ Dummy classifier to test recursive feature ellimination """ def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) self.coef_ = np.ones(X.shape[1], dtype=np.float64) return self def predict(self, T): return T.shape[0] predict_proba = predict decision_function = predict transform = predict def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score def get_params(self, deep=True): return {'foo_param': self.foo_param} def set_params(self, **params): return self def test_rfe_set_params(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = iris.target clf = SVC(kernel="linear") rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1) y_pred = rfe.fit(X, y).predict(X) clf = SVC() rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1, estimator_params={'kernel': 'linear'}) y_pred2 = rfe.fit(X, y).predict(X) assert_array_equal(y_pred, y_pred2) def test_rfe_features_importance(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = iris.target clf = RandomForestClassifier(n_estimators=10, n_jobs=1) rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1) rfe.fit(X, y) assert_equal(len(rfe.ranking_), X.shape[1]) clf_svc = SVC(kernel="linear") rfe_svc = RFE(estimator=clf_svc, n_features_to_select=4, step=0.1) rfe_svc.fit(X, y) # Check if the supports are equal diff_support = rfe.get_support() == rfe_svc.get_support() assert_true(sum(diff_support) == len(diff_support)) def test_rfe_deprecation_estimator_params(): deprecation_message = ("The parameter 'estimator_params' is deprecated as " "of version 0.16 and will be removed in 0.18. The " "parameter is no longer necessary because the " "value is set via the estimator initialisation or " "set_params method.") generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = iris.target assert_warns_message(DeprecationWarning, deprecation_message, RFE(estimator=SVC(), n_features_to_select=4, step=0.1, estimator_params={'kernel': 'linear'}).fit, X=X, y=y) assert_warns_message(DeprecationWarning, deprecation_message, RFECV(estimator=SVC(), step=1, cv=5, estimator_params={'kernel': 'linear'}).fit, X=X, y=y) def test_rfe(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] X_sparse = sparse.csr_matrix(X) y = iris.target # dense model clf = SVC(kernel="linear") rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1) rfe.fit(X, y) X_r = rfe.transform(X) clf.fit(X_r, y) assert_equal(len(rfe.ranking_), X.shape[1]) # sparse model clf_sparse = SVC(kernel="linear") rfe_sparse = RFE(estimator=clf_sparse, n_features_to_select=4, step=0.1) rfe_sparse.fit(X_sparse, y) X_r_sparse = rfe_sparse.transform(X_sparse) assert_equal(X_r.shape, iris.data.shape) assert_array_almost_equal(X_r[:10], iris.data[:10]) assert_array_almost_equal(rfe.predict(X), clf.predict(iris.data)) assert_equal(rfe.score(X, y), clf.score(iris.data, iris.target)) assert_array_almost_equal(X_r, X_r_sparse.toarray()) def test_rfe_mockclassifier(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = iris.target # dense model clf = MockClassifier() rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1) rfe.fit(X, y) X_r = rfe.transform(X) clf.fit(X_r, y) assert_equal(len(rfe.ranking_), X.shape[1]) assert_equal(X_r.shape, iris.data.shape) def test_rfecv(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = list(iris.target) # regression test: list should be supported # Test using the score function rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5) rfecv.fit(X, y) # non-regression test for missing worst feature: assert_equal(len(rfecv.grid_scores_), X.shape[1]) assert_equal(len(rfecv.ranking_), X.shape[1]) X_r = rfecv.transform(X) # All the noisy variable were filtered out assert_array_equal(X_r, iris.data) # same in sparse rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5) X_sparse = sparse.csr_matrix(X) rfecv_sparse.fit(X_sparse, y) X_r_sparse = rfecv_sparse.transform(X_sparse) assert_array_equal(X_r_sparse.toarray(), iris.data) # Test using a customized loss function scoring = make_scorer(zero_one_loss, greater_is_better=False) rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5, scoring=scoring) ignore_warnings(rfecv.fit)(X, y) X_r = rfecv.transform(X) assert_array_equal(X_r, iris.data) # Test using a scorer scorer = get_scorer('accuracy') rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5, scoring=scorer) rfecv.fit(X, y) X_r = rfecv.transform(X) assert_array_equal(X_r, iris.data) # Test fix on grid_scores def test_scorer(estimator, X, y): return 1.0 rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5, scoring=test_scorer) rfecv.fit(X, y) assert_array_equal(rfecv.grid_scores_, np.ones(len(rfecv.grid_scores_))) # Same as the first two tests, but with step=2 rfecv = RFECV(estimator=SVC(kernel="linear"), step=2, cv=5) rfecv.fit(X, y) assert_equal(len(rfecv.grid_scores_), 6) assert_equal(len(rfecv.ranking_), X.shape[1]) X_r = rfecv.transform(X) assert_array_equal(X_r, iris.data) rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=2, cv=5) X_sparse = sparse.csr_matrix(X) rfecv_sparse.fit(X_sparse, y) X_r_sparse = rfecv_sparse.transform(X_sparse) assert_array_equal(X_r_sparse.toarray(), iris.data) def test_rfecv_mockclassifier(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = list(iris.target) # regression test: list should be supported # Test using the score function rfecv = RFECV(estimator=MockClassifier(), step=1, cv=5) rfecv.fit(X, y) # non-regression test for missing worst feature: assert_equal(len(rfecv.grid_scores_), X.shape[1]) assert_equal(len(rfecv.ranking_), X.shape[1]) def test_rfe_min_step(): n_features = 10 X, y = make_friedman1(n_samples=50, n_features=n_features, random_state=0) n_samples, n_features = X.shape estimator = SVR(kernel="linear") # Test when floor(step * n_features) <= 0 selector = RFE(estimator, step=0.01) sel = selector.fit(X, y) assert_equal(sel.support_.sum(), n_features // 2) # Test when step is between (0,1) and floor(step * n_features) > 0 selector = RFE(estimator, step=0.20) sel = selector.fit(X, y) assert_equal(sel.support_.sum(), n_features // 2) # Test when step is an integer selector = RFE(estimator, step=5) sel = selector.fit(X, y) assert_equal(sel.support_.sum(), n_features // 2) def test_number_of_subsets_of_features(): # In RFE, 'number_of_subsets_of_features' # = the number of iterations in '_fit' # = max(ranking_) # = 1 + (n_features + step - n_features_to_select - 1) // step # After optimization #4534, this number # = 1 + np.ceil((n_features - n_features_to_select) / float(step)) # This test case is to test their equivalence, refer to #4534 and #3824 def formula1(n_features, n_features_to_select, step): return 1 + ((n_features + step - n_features_to_select - 1) // step) def formula2(n_features, n_features_to_select, step): return 1 + np.ceil((n_features - n_features_to_select) / float(step)) # RFE # Case 1, n_features - n_features_to_select is divisible by step # Case 2, n_features - n_features_to_select is not divisible by step n_features_list = [11, 11] n_features_to_select_list = [3, 3] step_list = [2, 3] for n_features, n_features_to_select, step in zip( n_features_list, n_features_to_select_list, step_list): generator = check_random_state(43) X = generator.normal(size=(100, n_features)) y = generator.rand(100).round() rfe = RFE(estimator=SVC(kernel="linear"), n_features_to_select=n_features_to_select, step=step) rfe.fit(X, y) # this number also equals to the maximum of ranking_ assert_equal(np.max(rfe.ranking_), formula1(n_features, n_features_to_select, step)) assert_equal(np.max(rfe.ranking_), formula2(n_features, n_features_to_select, step)) # In RFECV, 'fit' calls 'RFE._fit' # 'number_of_subsets_of_features' of RFE # = the size of 'grid_scores' of RFECV # = the number of iterations of the for loop before optimization #4534 # RFECV, n_features_to_select = 1 # Case 1, n_features - 1 is divisible by step # Case 2, n_features - 1 is not divisible by step n_features_to_select = 1 n_features_list = [11, 10] step_list = [2, 2] for n_features, step in zip(n_features_list, step_list): generator = check_random_state(43) X = generator.normal(size=(100, n_features)) y = generator.rand(100).round() rfecv = RFECV(estimator=SVC(kernel="linear"), step=step, cv=5) rfecv.fit(X, y) assert_equal(rfecv.grid_scores_.shape[0], formula1(n_features, n_features_to_select, step)) assert_equal(rfecv.grid_scores_.shape[0], formula2(n_features, n_features_to_select, step))
bsd-3-clause
bnaul/scikit-learn
examples/preprocessing/plot_scaling_importance.py
34
5381
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Importance of Feature Scaling ========================================================= Feature scaling through standardization (or Z-score normalization) can be an important preprocessing step for many machine learning algorithms. Standardization involves rescaling the features such that they have the properties of a standard normal distribution with a mean of zero and a standard deviation of one. While many algorithms (such as SVM, K-nearest neighbors, and logistic regression) require features to be normalized, intuitively we can think of Principle Component Analysis (PCA) as being a prime example of when normalization is important. In PCA we are interested in the components that maximize the variance. If one component (e.g. human height) varies less than another (e.g. weight) because of their respective scales (meters vs. kilos), PCA might determine that the direction of maximal variance more closely corresponds with the 'weight' axis, if those features are not scaled. As a change in height of one meter can be considered much more important than the change in weight of one kilogram, this is clearly incorrect. To illustrate this, PCA is performed comparing the use of data with :class:`StandardScaler <sklearn.preprocessing.StandardScaler>` applied, to unscaled data. The results are visualized and a clear difference noted. The 1st principal component in the unscaled set can be seen. It can be seen that feature #13 dominates the direction, being a whole two orders of magnitude above the other features. This is contrasted when observing the principal component for the scaled version of the data. In the scaled version, the orders of magnitude are roughly the same across all the features. The dataset used is the Wine Dataset available at UCI. This dataset has continuous features that are heterogeneous in scale due to differing properties that they measure (i.e alcohol content, and malic acid). The transformed data is then used to train a naive Bayes classifier, and a clear difference in prediction accuracies is observed wherein the dataset which is scaled before PCA vastly outperforms the unscaled version. """ from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.naive_bayes import GaussianNB from sklearn import metrics import matplotlib.pyplot as plt from sklearn.datasets import load_wine from sklearn.pipeline import make_pipeline print(__doc__) # Code source: Tyler Lanigan <[email protected]> # Sebastian Raschka <[email protected]> # License: BSD 3 clause RANDOM_STATE = 42 FIG_SIZE = (10, 7) features, target = load_wine(return_X_y=True) # Make a train/test split using 30% test size X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.30, random_state=RANDOM_STATE) # Fit to data and predict using pipelined GNB and PCA. unscaled_clf = make_pipeline(PCA(n_components=2), GaussianNB()) unscaled_clf.fit(X_train, y_train) pred_test = unscaled_clf.predict(X_test) # Fit to data and predict using pipelined scaling, GNB and PCA. std_clf = make_pipeline(StandardScaler(), PCA(n_components=2), GaussianNB()) std_clf.fit(X_train, y_train) pred_test_std = std_clf.predict(X_test) # Show prediction accuracies in scaled and unscaled data. print('\nPrediction accuracy for the normal test dataset with PCA') print('{:.2%}\n'.format(metrics.accuracy_score(y_test, pred_test))) print('\nPrediction accuracy for the standardized test dataset with PCA') print('{:.2%}\n'.format(metrics.accuracy_score(y_test, pred_test_std))) # Extract PCA from pipeline pca = unscaled_clf.named_steps['pca'] pca_std = std_clf.named_steps['pca'] # Show first principal components print('\nPC 1 without scaling:\n', pca.components_[0]) print('\nPC 1 with scaling:\n', pca_std.components_[0]) # Use PCA without and with scale on X_train data for visualization. X_train_transformed = pca.transform(X_train) scaler = std_clf.named_steps['standardscaler'] X_train_std_transformed = pca_std.transform(scaler.transform(X_train)) # visualize standardized vs. untouched dataset with PCA performed fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=FIG_SIZE) for l, c, m in zip(range(0, 3), ('blue', 'red', 'green'), ('^', 's', 'o')): ax1.scatter(X_train_transformed[y_train == l, 0], X_train_transformed[y_train == l, 1], color=c, label='class %s' % l, alpha=0.5, marker=m ) for l, c, m in zip(range(0, 3), ('blue', 'red', 'green'), ('^', 's', 'o')): ax2.scatter(X_train_std_transformed[y_train == l, 0], X_train_std_transformed[y_train == l, 1], color=c, label='class %s' % l, alpha=0.5, marker=m ) ax1.set_title('Training dataset after PCA') ax2.set_title('Standardized training dataset after PCA') for ax in (ax1, ax2): ax.set_xlabel('1st principal component') ax.set_ylabel('2nd principal component') ax.legend(loc='upper right') ax.grid() plt.tight_layout() plt.show()
bsd-3-clause
michigraber/scikit-learn
examples/neighbors/plot_nearest_centroid.py
264
1804
""" =============================== Nearest Centroid Classification =============================== Sample usage of Nearest Centroid classification. It will plot the decision boundaries for each class. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import datasets from sklearn.neighbors import NearestCentroid n_neighbors = 15 # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # Create color maps cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) for shrinkage in [None, 0.1]: # we create an instance of Neighbours Classifier and fit the data. clf = NearestCentroid(shrink_threshold=shrinkage) clf.fit(X, y) y_pred = clf.predict(X) print(shrinkage, np.mean(y == y_pred)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.title("3-Class classification (shrink_threshold=%r)" % shrinkage) plt.axis('tight') plt.show()
bsd-3-clause
RachitKansal/scikit-learn
examples/semi_supervised/plot_label_propagation_digits_active_learning.py
294
3417
""" ======================================== Label Propagation digits active learning ======================================== Demonstrates an active learning technique to learn handwritten digits using label propagation. We start by training a label propagation model with only 10 labeled points, then we select the top five most uncertain points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process four times to have a model trained with 30 labeled examples. A plot will appear showing the top 5 most uncertain digits for each iteration of training. These may or may not contain mistakes, but we will train the next model with their true labels. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn import datasets from sklearn.semi_supervised import label_propagation from sklearn.metrics import classification_report, confusion_matrix digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) X = digits.data[indices[:330]] y = digits.target[indices[:330]] images = digits.images[indices[:330]] n_total_samples = len(y) n_labeled_points = 10 unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:] f = plt.figure() for i in range(5): y_train = np.copy(y) y_train[unlabeled_indices] = -1 lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5) lp_model.fit(X, y_train) predicted_labels = lp_model.transduction_[unlabeled_indices] true_labels = y[unlabeled_indices] cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_) print('Iteration %i %s' % (i, 70 * '_')) print("Label Spreading model: %d labeled & %d unlabeled (%d total)" % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples)) print(classification_report(true_labels, predicted_labels)) print("Confusion matrix") print(cm) # compute the entropies of transduced label distributions pred_entropies = stats.distributions.entropy( lp_model.label_distributions_.T) # select five digit examples that the classifier is most uncertain about uncertainty_index = uncertainty_index = np.argsort(pred_entropies)[-5:] # keep track of indices that we get labels for delete_indices = np.array([]) f.text(.05, (1 - (i + 1) * .183), "model %d\n\nfit with\n%d labels" % ((i + 1), i * 5 + 10), size=10) for index, image_index in enumerate(uncertainty_index): image = images[image_index] sub = f.add_subplot(5, 5, index + 1 + (5 * i)) sub.imshow(image, cmap=plt.cm.gray_r) sub.set_title('predict: %i\ntrue: %i' % ( lp_model.transduction_[image_index], y[image_index]), size=10) sub.axis('off') # labeling 5 points, remote from labeled set delete_index, = np.where(unlabeled_indices == image_index) delete_indices = np.concatenate((delete_indices, delete_index)) unlabeled_indices = np.delete(unlabeled_indices, delete_indices) n_labeled_points += 5 f.suptitle("Active learning with Label Propagation.\nRows show 5 most " "uncertain labels to learn with the next model.") plt.subplots_adjust(0.12, 0.03, 0.9, 0.8, 0.2, 0.45) plt.show()
bsd-3-clause
fredhusser/scikit-learn
sklearn/manifold/tests/test_mds.py
324
1862
import numpy as np from numpy.testing import assert_array_almost_equal from nose.tools import assert_raises from sklearn.manifold import mds def test_smacof(): # test metric smacof using the data of "Modern Multidimensional Scaling", # Borg & Groenen, p 154 sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.451, .252], [.016, -.238], [-.200, .524]]) X, _ = mds.smacof(sim, init=Z, n_components=2, max_iter=1, n_init=1) X_true = np.array([[-1.415, -2.471], [1.633, 1.107], [.249, -.067], [-.468, 1.431]]) assert_array_almost_equal(X, X_true, decimal=3) def test_smacof_error(): # Not symmetric similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # Not squared similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # init not None and not correct format: sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.016, -.238], [-.200, .524]]) assert_raises(ValueError, mds.smacof, sim, init=Z, n_init=1) def test_MDS(): sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) mds_clf = mds.MDS(metric=False, n_jobs=3, dissimilarity="precomputed") mds_clf.fit(sim)
bsd-3-clause
mojoboss/scikit-learn
sklearn/metrics/tests/test_score_objects.py
84
14181
import pickle import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_true from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_not_equal from sklearn.base import BaseEstimator from sklearn.metrics import (f1_score, r2_score, roc_auc_score, fbeta_score, log_loss, precision_score, recall_score) from sklearn.metrics.cluster import adjusted_rand_score from sklearn.metrics.scorer import (check_scoring, _PredictScorer, _passthrough_scorer) from sklearn.metrics import make_scorer, get_scorer, SCORERS from sklearn.svm import LinearSVC from sklearn.pipeline import make_pipeline from sklearn.cluster import KMeans from sklearn.dummy import DummyRegressor from sklearn.linear_model import Ridge, LogisticRegression from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.datasets import make_blobs from sklearn.datasets import make_classification from sklearn.datasets import make_multilabel_classification from sklearn.datasets import load_diabetes from sklearn.cross_validation import train_test_split, cross_val_score from sklearn.grid_search import GridSearchCV from sklearn.multiclass import OneVsRestClassifier REGRESSION_SCORERS = ['r2', 'mean_absolute_error', 'mean_squared_error', 'median_absolute_error'] CLF_SCORERS = ['accuracy', 'f1', 'f1_weighted', 'f1_macro', 'f1_micro', 'roc_auc', 'average_precision', 'precision', 'precision_weighted', 'precision_macro', 'precision_micro', 'recall', 'recall_weighted', 'recall_macro', 'recall_micro', 'log_loss', 'adjusted_rand_score' # not really, but works ] MULTILABEL_ONLY_SCORERS = ['precision_samples', 'recall_samples', 'f1_samples'] class EstimatorWithoutFit(object): """Dummy estimator to test check_scoring""" pass class EstimatorWithFit(BaseEstimator): """Dummy estimator to test check_scoring""" def fit(self, X, y): return self class EstimatorWithFitAndScore(object): """Dummy estimator to test check_scoring""" def fit(self, X, y): return self def score(self, X, y): return 1.0 class EstimatorWithFitAndPredict(object): """Dummy estimator to test check_scoring""" def fit(self, X, y): self.y = y return self def predict(self, X): return self.y class DummyScorer(object): """Dummy scorer that always returns 1.""" def __call__(self, est, X, y): return 1 def test_check_scoring(): # Test all branches of check_scoring estimator = EstimatorWithoutFit() pattern = (r"estimator should a be an estimator implementing 'fit' method," r" .* was passed") assert_raises_regexp(TypeError, pattern, check_scoring, estimator) estimator = EstimatorWithFitAndScore() estimator.fit([[1]], [1]) scorer = check_scoring(estimator) assert_true(scorer is _passthrough_scorer) assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0) estimator = EstimatorWithFitAndPredict() estimator.fit([[1]], [1]) pattern = (r"If no scoring is specified, the estimator passed should have" r" a 'score' method\. The estimator .* does not\.") assert_raises_regexp(TypeError, pattern, check_scoring, estimator) scorer = check_scoring(estimator, "accuracy") assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0) estimator = EstimatorWithFit() scorer = check_scoring(estimator, "accuracy") assert_true(isinstance(scorer, _PredictScorer)) estimator = EstimatorWithFit() scorer = check_scoring(estimator, allow_none=True) assert_true(scorer is None) def test_check_scoring_gridsearchcv(): # test that check_scoring works on GridSearchCV and pipeline. # slightly redundant non-regression test. grid = GridSearchCV(LinearSVC(), param_grid={'C': [.1, 1]}) scorer = check_scoring(grid, "f1") assert_true(isinstance(scorer, _PredictScorer)) pipe = make_pipeline(LinearSVC()) scorer = check_scoring(pipe, "f1") assert_true(isinstance(scorer, _PredictScorer)) # check that cross_val_score definitely calls the scorer # and doesn't make any assumptions about the estimator apart from having a # fit. scores = cross_val_score(EstimatorWithFit(), [[1], [2], [3]], [1, 0, 1], scoring=DummyScorer()) assert_array_equal(scores, 1) def test_make_scorer(): # Sanity check on the make_scorer factory function. f = lambda *args: 0 assert_raises(ValueError, make_scorer, f, needs_threshold=True, needs_proba=True) def test_classification_scores(): # Test classification scorers. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LinearSVC(random_state=0) clf.fit(X_train, y_train) for prefix, metric in [('f1', f1_score), ('precision', precision_score), ('recall', recall_score)]: score1 = get_scorer('%s_weighted' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='weighted') assert_almost_equal(score1, score2) score1 = get_scorer('%s_macro' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='macro') assert_almost_equal(score1, score2) score1 = get_scorer('%s_micro' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='micro') assert_almost_equal(score1, score2) score1 = get_scorer('%s' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=1) assert_almost_equal(score1, score2) # test fbeta score that takes an argument scorer = make_scorer(fbeta_score, beta=2) score1 = scorer(clf, X_test, y_test) score2 = fbeta_score(y_test, clf.predict(X_test), beta=2) assert_almost_equal(score1, score2) # test that custom scorer can be pickled unpickled_scorer = pickle.loads(pickle.dumps(scorer)) score3 = unpickled_scorer(clf, X_test, y_test) assert_almost_equal(score1, score3) # smoke test the repr: repr(fbeta_score) def test_regression_scorers(): # Test regression scorers. diabetes = load_diabetes() X, y = diabetes.data, diabetes.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = Ridge() clf.fit(X_train, y_train) score1 = get_scorer('r2')(clf, X_test, y_test) score2 = r2_score(y_test, clf.predict(X_test)) assert_almost_equal(score1, score2) def test_thresholded_scorers(): # Test scorers that take thresholds. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LogisticRegression(random_state=0) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.decision_function(X_test)) score3 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]) assert_almost_equal(score1, score2) assert_almost_equal(score1, score3) logscore = get_scorer('log_loss')(clf, X_test, y_test) logloss = log_loss(y_test, clf.predict_proba(X_test)) assert_almost_equal(-logscore, logloss) # same for an estimator without decision_function clf = DecisionTreeClassifier() clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]) assert_almost_equal(score1, score2) # test with a regressor (no decision_function) reg = DecisionTreeRegressor() reg.fit(X_train, y_train) score1 = get_scorer('roc_auc')(reg, X_test, y_test) score2 = roc_auc_score(y_test, reg.predict(X_test)) assert_almost_equal(score1, score2) # Test that an exception is raised on more than two classes X, y = make_blobs(random_state=0, centers=3) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf.fit(X_train, y_train) assert_raises(ValueError, get_scorer('roc_auc'), clf, X_test, y_test) def test_thresholded_scorers_multilabel_indicator_data(): # Test that the scorer work with multilabel-indicator format # for multilabel and multi-output multi-class classifier X, y = make_multilabel_classification(return_indicator=True, allow_unlabeled=False, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # Multi-output multi-class predict_proba clf = DecisionTreeClassifier() clf.fit(X_train, y_train) y_proba = clf.predict_proba(X_test) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, np.vstack(p[:, -1] for p in y_proba).T) assert_almost_equal(score1, score2) # Multi-output multi-class decision_function # TODO Is there any yet? clf = DecisionTreeClassifier() clf.fit(X_train, y_train) clf._predict_proba = clf.predict_proba clf.predict_proba = None clf.decision_function = lambda X: [p[:, 1] for p in clf._predict_proba(X)] y_proba = clf.decision_function(X_test) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, np.vstack(p for p in y_proba).T) assert_almost_equal(score1, score2) # Multilabel predict_proba clf = OneVsRestClassifier(DecisionTreeClassifier()) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.predict_proba(X_test)) assert_almost_equal(score1, score2) # Multilabel decision function clf = OneVsRestClassifier(LinearSVC(random_state=0)) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.decision_function(X_test)) assert_almost_equal(score1, score2) def test_unsupervised_scorers(): # Test clustering scorers against gold standard labeling. # We don't have any real unsupervised Scorers yet. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) km = KMeans(n_clusters=3) km.fit(X_train) score1 = get_scorer('adjusted_rand_score')(km, X_test, y_test) score2 = adjusted_rand_score(y_test, km.predict(X_test)) assert_almost_equal(score1, score2) @ignore_warnings def test_raises_on_score_list(): # Test that when a list of scores is returned, we raise proper errors. X, y = make_blobs(random_state=0) f1_scorer_no_average = make_scorer(f1_score, average=None) clf = DecisionTreeClassifier() assert_raises(ValueError, cross_val_score, clf, X, y, scoring=f1_scorer_no_average) grid_search = GridSearchCV(clf, scoring=f1_scorer_no_average, param_grid={'max_depth': [1, 2]}) assert_raises(ValueError, grid_search.fit, X, y) @ignore_warnings def test_scorer_sample_weight(): # Test that scorers support sample_weight or raise sensible errors # Unlike the metrics invariance test, in the scorer case it's harder # to ensure that, on the classifier output, weighted and unweighted # scores really should be unequal. X, y = make_classification(random_state=0) _, y_ml = make_multilabel_classification(n_samples=X.shape[0], return_indicator=True, random_state=0) split = train_test_split(X, y, y_ml, random_state=0) X_train, X_test, y_train, y_test, y_ml_train, y_ml_test = split sample_weight = np.ones_like(y_test) sample_weight[:10] = 0 # get sensible estimators for each metric sensible_regr = DummyRegressor(strategy='median') sensible_regr.fit(X_train, y_train) sensible_clf = DecisionTreeClassifier(random_state=0) sensible_clf.fit(X_train, y_train) sensible_ml_clf = DecisionTreeClassifier(random_state=0) sensible_ml_clf.fit(X_train, y_ml_train) estimator = dict([(name, sensible_regr) for name in REGRESSION_SCORERS] + [(name, sensible_clf) for name in CLF_SCORERS] + [(name, sensible_ml_clf) for name in MULTILABEL_ONLY_SCORERS]) for name, scorer in SCORERS.items(): if name in MULTILABEL_ONLY_SCORERS: target = y_ml_test else: target = y_test try: weighted = scorer(estimator[name], X_test, target, sample_weight=sample_weight) ignored = scorer(estimator[name], X_test[10:], target[10:]) unweighted = scorer(estimator[name], X_test, target) assert_not_equal(weighted, unweighted, msg="scorer {0} behaves identically when " "called with sample weights: {1} vs " "{2}".format(name, weighted, unweighted)) assert_almost_equal(weighted, ignored, err_msg="scorer {0} behaves differently when " "ignoring samples and setting sample_weight to" " 0: {1} vs {2}".format(name, weighted, ignored)) except TypeError as e: assert_true("sample_weight" in str(e), "scorer {0} raises unhelpful exception when called " "with sample weights: {1}".format(name, str(e)))
bsd-3-clause
erichilarysmithsr/givinggraph
givinggraph/analysis/company_cause_classifier.py
3
4320
""" Predict whether a company supports a cause based on its web presence. We train a model based on the data at milliondollarlist.org, which posts donations of $1M or more from companies to causes.""" # FIXME: read/write from database. # FIXME: save/load classifier import argparse from collections import defaultdict import io import re import string import numpy as np from sklearn import cross_validation, metrics from sklearn.feature_extraction.text import CountVectorizer #from sklearn.linear_model import LogisticRegression from sklearn.multiclass import OneVsRestClassifier #from sklearn.naive_bayes import MultinomialNB #from sklearn.pipeline import Pipeline from sklearn.preprocessing import LabelBinarizer, LabelEncoder from sklearn.svm import LinearSVC company_words = set() punct_re = re.compile('[%s]' % re.escape(string.punctuation)) def read_causes(filename): global company_words causes = set() co2causes = defaultdict(lambda: set()) for line in io.open(filename, mode='rt'): parts = line.strip().split('\t') co2causes[parts[0]].add(parts[1]) causes.add(parts[1]) company_words |= set(do_tokenize(parts[0])) return co2causes, causes def read_pages(filename, co2causes): """Read company web page file, retaining only those in co2causes""" co2page = dict() for line in io.open(filename, mode='rt', encoding='latin_1'): parts = line.strip().split('\t') if parts[0] in co2causes and len(parts) > 1: co2page[parts[0]] = parts[1] return co2page def print_top_words(vectorizer, clf, class_labels, n=10): """Prints features with the highest coefficient values, per class""" feature_names = vectorizer.get_feature_names() for i, class_label in enumerate(class_labels): topn = np.argsort(clf.coef_[i])[-n:] print("%s: %s" % (class_label, " ".join(feature_names[j] for j in topn))) def do_tokenize(s): s = punct_re.sub(' ', s.lower()) s = re.sub('\s+', ' ', s) return s.strip().split() def tokenize(s): global company_words toks = do_tokenize(s) return [t for t in toks if t not in company_words] if (__name__ == '__main__'): ap = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawTextHelpFormatter) ap.add_argument('--homepages', metavar='HOMEPAGES', default='company_pages.tsv', help='file in format company_name<TAB>web_text') ap.add_argument('--causes', metavar='CAUSES', default='company_causes.tsv', help='file in format company_name<TAB>cause . Note that companies may appear more than once.') args = ap.parse_args() company2causes, causes = read_causes(args.causes) print 'read %d companies with causes' % len(company2causes.keys()) company2page = read_pages(args.homepages, company2causes) print 'read %d homepages' % len(company2causes.keys()) companies = company2page.keys() pipeline = CountVectorizer(tokenizer=tokenize) X = pipeline.fit_transform([company2page[c] for c in companies]) # convert labels to multilabel format Y = np.array([list(company2causes[c]) for c in companies]) N = len(Y) label_enc = LabelEncoder() label_enc.fit(list(causes)) print 'found %d causes' % len(label_enc.classes_) Y = [list(label_enc.transform(yi)) for yi in Y] print 'labels:', label_enc.classes_ # LabelBinarizer buggy with np arrays. See https://github.com/scikit-learn/scikit-learn/issues/856 Y = LabelBinarizer().fit_transform(Y) #clf = OneVsRestClassifier(MultinomialNB()) #clf = OneVsRestClassifier(LogisticRegression()) clf = OneVsRestClassifier(LinearSVC(random_state=0)) cv = cross_validation.KFold(len(Y), 10, shuffle=True, random_state=1234) losses = [] for train, test in cv: truth = Y[test] pred = clf.fit(X[train], Y[train]).predict(X[test]) losses.append(metrics.precision_score(truth.reshape(-1), pred.reshape(-1))) print 'F1 score=%.3f stderr=%.3f' % (np.average(losses), np.std(losses)) # Retrain on all to print top words clf.fit(X, Y) print_top_words(pipeline, clf, label_enc.classes_, 20)
mit
spallavolu/scikit-learn
sklearn/cross_decomposition/pls_.py
187
28507
""" The :mod:`sklearn.pls` module implements Partial Least Squares (PLS). """ # Author: Edouard Duchesnay <[email protected]> # License: BSD 3 clause from ..base import BaseEstimator, RegressorMixin, TransformerMixin from ..utils import check_array, check_consistent_length from ..externals import six import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy import linalg from ..utils import arpack from ..utils.validation import check_is_fitted __all__ = ['PLSCanonical', 'PLSRegression', 'PLSSVD'] def _nipals_twoblocks_inner_loop(X, Y, mode="A", max_iter=500, tol=1e-06, norm_y_weights=False): """Inner loop of the iterative NIPALS algorithm. Provides an alternative to the svd(X'Y); returns the first left and right singular vectors of X'Y. See PLS for the meaning of the parameters. It is similar to the Power method for determining the eigenvectors and eigenvalues of a X'Y. """ y_score = Y[:, [0]] x_weights_old = 0 ite = 1 X_pinv = Y_pinv = None eps = np.finfo(X.dtype).eps # Inner loop of the Wold algo. while True: # 1.1 Update u: the X weights if mode == "B": if X_pinv is None: X_pinv = linalg.pinv(X) # compute once pinv(X) x_weights = np.dot(X_pinv, y_score) else: # mode A # Mode A regress each X column on y_score x_weights = np.dot(X.T, y_score) / np.dot(y_score.T, y_score) # 1.2 Normalize u x_weights /= np.sqrt(np.dot(x_weights.T, x_weights)) + eps # 1.3 Update x_score: the X latent scores x_score = np.dot(X, x_weights) # 2.1 Update y_weights if mode == "B": if Y_pinv is None: Y_pinv = linalg.pinv(Y) # compute once pinv(Y) y_weights = np.dot(Y_pinv, x_score) else: # Mode A regress each Y column on x_score y_weights = np.dot(Y.T, x_score) / np.dot(x_score.T, x_score) # 2.2 Normalize y_weights if norm_y_weights: y_weights /= np.sqrt(np.dot(y_weights.T, y_weights)) + eps # 2.3 Update y_score: the Y latent scores y_score = np.dot(Y, y_weights) / (np.dot(y_weights.T, y_weights) + eps) # y_score = np.dot(Y, y_weights) / np.dot(y_score.T, y_score) ## BUG x_weights_diff = x_weights - x_weights_old if np.dot(x_weights_diff.T, x_weights_diff) < tol or Y.shape[1] == 1: break if ite == max_iter: warnings.warn('Maximum number of iterations reached') break x_weights_old = x_weights ite += 1 return x_weights, y_weights, ite def _svd_cross_product(X, Y): C = np.dot(X.T, Y) U, s, Vh = linalg.svd(C, full_matrices=False) u = U[:, [0]] v = Vh.T[:, [0]] return u, v def _center_scale_xy(X, Y, scale=True): """ Center X, Y and scale if the scale parameter==True Returns ------- X, Y, x_mean, y_mean, x_std, y_std """ # center x_mean = X.mean(axis=0) X -= x_mean y_mean = Y.mean(axis=0) Y -= y_mean # scale if scale: x_std = X.std(axis=0, ddof=1) x_std[x_std == 0.0] = 1.0 X /= x_std y_std = Y.std(axis=0, ddof=1) y_std[y_std == 0.0] = 1.0 Y /= y_std else: x_std = np.ones(X.shape[1]) y_std = np.ones(Y.shape[1]) return X, Y, x_mean, y_mean, x_std, y_std class _PLS(six.with_metaclass(ABCMeta), BaseEstimator, TransformerMixin, RegressorMixin): """Partial Least Squares (PLS) This class implements the generic PLS algorithm, constructors' parameters allow to obtain a specific implementation such as: - PLS2 regression, i.e., PLS 2 blocks, mode A, with asymmetric deflation and unnormalized y weights such as defined by [Tenenhaus 1998] p. 132. With univariate response it implements PLS1. - PLS canonical, i.e., PLS 2 blocks, mode A, with symmetric deflation and normalized y weights such as defined by [Tenenhaus 1998] (p. 132) and [Wegelin et al. 2000]. This parametrization implements the original Wold algorithm. We use the terminology defined by [Wegelin et al. 2000]. This implementation uses the PLS Wold 2 blocks algorithm based on two nested loops: (i) The outer loop iterate over components. (ii) The inner loop estimates the weights vectors. This can be done with two algo. (a) the inner loop of the original NIPALS algo. or (b) a SVD on residuals cross-covariance matrices. n_components : int, number of components to keep. (default 2). scale : boolean, scale data? (default True) deflation_mode : str, "canonical" or "regression". See notes. mode : "A" classical PLS and "B" CCA. See notes. norm_y_weights: boolean, normalize Y weights to one? (default False) algorithm : string, "nipals" or "svd" The algorithm used to estimate the weights. It will be called n_components times, i.e. once for each iteration of the outer loop. max_iter : an integer, the maximum number of iterations (default 500) of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real, default 1e-06 The tolerance used in the iterative algorithm. copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effects. Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. coef_: array, [p, q] The coefficients of the linear model: ``Y = X coef_ + Err`` n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Not useful if the algorithm given is "svd". References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In French but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- PLSCanonical PLSRegression CCA PLS_SVD """ @abstractmethod def __init__(self, n_components=2, scale=True, deflation_mode="regression", mode="A", algorithm="nipals", norm_y_weights=False, max_iter=500, tol=1e-06, copy=True): self.n_components = n_components self.deflation_mode = deflation_mode self.mode = mode self.norm_y_weights = norm_y_weights self.scale = scale self.algorithm = algorithm self.max_iter = max_iter self.tol = tol self.copy = copy def fit(self, X, Y): """Fit model to data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples in the number of samples and n_features is the number of predictors. Y : array-like of response, shape = [n_samples, n_targets] Target vectors, where n_samples in the number of samples and n_targets is the number of response variables. """ # copy since this will contains the residuals (deflated) matrices check_consistent_length(X, Y) X = check_array(X, dtype=np.float64, copy=self.copy) Y = check_array(Y, dtype=np.float64, copy=self.copy, ensure_2d=False) if Y.ndim == 1: Y = Y.reshape(-1, 1) n = X.shape[0] p = X.shape[1] q = Y.shape[1] if self.n_components < 1 or self.n_components > p: raise ValueError('Invalid number of components: %d' % self.n_components) if self.algorithm not in ("svd", "nipals"): raise ValueError("Got algorithm %s when only 'svd' " "and 'nipals' are known" % self.algorithm) if self.algorithm == "svd" and self.mode == "B": raise ValueError('Incompatible configuration: mode B is not ' 'implemented with svd algorithm') if self.deflation_mode not in ["canonical", "regression"]: raise ValueError('The deflation mode is unknown') # Scale (in place) X, Y, self.x_mean_, self.y_mean_, self.x_std_, self.y_std_\ = _center_scale_xy(X, Y, self.scale) # Residuals (deflated) matrices Xk = X Yk = Y # Results matrices self.x_scores_ = np.zeros((n, self.n_components)) self.y_scores_ = np.zeros((n, self.n_components)) self.x_weights_ = np.zeros((p, self.n_components)) self.y_weights_ = np.zeros((q, self.n_components)) self.x_loadings_ = np.zeros((p, self.n_components)) self.y_loadings_ = np.zeros((q, self.n_components)) self.n_iter_ = [] # NIPALS algo: outer loop, over components for k in range(self.n_components): if np.all(np.dot(Yk.T, Yk) < np.finfo(np.double).eps): # Yk constant warnings.warn('Y residual constant at iteration %s' % k) break # 1) weights estimation (inner loop) # ----------------------------------- if self.algorithm == "nipals": x_weights, y_weights, n_iter_ = \ _nipals_twoblocks_inner_loop( X=Xk, Y=Yk, mode=self.mode, max_iter=self.max_iter, tol=self.tol, norm_y_weights=self.norm_y_weights) self.n_iter_.append(n_iter_) elif self.algorithm == "svd": x_weights, y_weights = _svd_cross_product(X=Xk, Y=Yk) # compute scores x_scores = np.dot(Xk, x_weights) if self.norm_y_weights: y_ss = 1 else: y_ss = np.dot(y_weights.T, y_weights) y_scores = np.dot(Yk, y_weights) / y_ss # test for null variance if np.dot(x_scores.T, x_scores) < np.finfo(np.double).eps: warnings.warn('X scores are null at iteration %s' % k) break # 2) Deflation (in place) # ---------------------- # Possible memory footprint reduction may done here: in order to # avoid the allocation of a data chunk for the rank-one # approximations matrix which is then subtracted to Xk, we suggest # to perform a column-wise deflation. # # - regress Xk's on x_score x_loadings = np.dot(Xk.T, x_scores) / np.dot(x_scores.T, x_scores) # - subtract rank-one approximations to obtain remainder matrix Xk -= np.dot(x_scores, x_loadings.T) if self.deflation_mode == "canonical": # - regress Yk's on y_score, then subtract rank-one approx. y_loadings = (np.dot(Yk.T, y_scores) / np.dot(y_scores.T, y_scores)) Yk -= np.dot(y_scores, y_loadings.T) if self.deflation_mode == "regression": # - regress Yk's on x_score, then subtract rank-one approx. y_loadings = (np.dot(Yk.T, x_scores) / np.dot(x_scores.T, x_scores)) Yk -= np.dot(x_scores, y_loadings.T) # 3) Store weights, scores and loadings # Notation: self.x_scores_[:, k] = x_scores.ravel() # T self.y_scores_[:, k] = y_scores.ravel() # U self.x_weights_[:, k] = x_weights.ravel() # W self.y_weights_[:, k] = y_weights.ravel() # C self.x_loadings_[:, k] = x_loadings.ravel() # P self.y_loadings_[:, k] = y_loadings.ravel() # Q # Such that: X = TP' + Err and Y = UQ' + Err # 4) rotations from input space to transformed space (scores) # T = X W(P'W)^-1 = XW* (W* : p x k matrix) # U = Y C(Q'C)^-1 = YC* (W* : q x k matrix) self.x_rotations_ = np.dot( self.x_weights_, linalg.pinv(np.dot(self.x_loadings_.T, self.x_weights_))) if Y.shape[1] > 1: self.y_rotations_ = np.dot( self.y_weights_, linalg.pinv(np.dot(self.y_loadings_.T, self.y_weights_))) else: self.y_rotations_ = np.ones(1) if True or self.deflation_mode == "regression": # FIXME what's with the if? # Estimate regression coefficient # Regress Y on T # Y = TQ' + Err, # Then express in function of X # Y = X W(P'W)^-1Q' + Err = XB + Err # => B = W*Q' (p x q) self.coef_ = np.dot(self.x_rotations_, self.y_loadings_.T) self.coef_ = (1. / self.x_std_.reshape((p, 1)) * self.coef_ * self.y_std_) return self def transform(self, X, Y=None, copy=True): """Apply the dimension reduction learned on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ check_is_fitted(self, 'x_mean_') X = check_array(X, copy=copy) # Normalize X -= self.x_mean_ X /= self.x_std_ # Apply rotation x_scores = np.dot(X, self.x_rotations_) if Y is not None: Y = check_array(Y, ensure_2d=False, copy=copy) if Y.ndim == 1: Y = Y.reshape(-1, 1) Y -= self.y_mean_ Y /= self.y_std_ y_scores = np.dot(Y, self.y_rotations_) return x_scores, y_scores return x_scores def predict(self, X, copy=True): """Apply the dimension reduction learned on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Notes ----- This call requires the estimation of a p x q matrix, which may be an issue in high dimensional space. """ check_is_fitted(self, 'x_mean_') X = check_array(X, copy=copy) # Normalize X -= self.x_mean_ X /= self.x_std_ Ypred = np.dot(X, self.coef_) return Ypred + self.y_mean_ def fit_transform(self, X, y=None, **fit_params): """Learn and apply the dimension reduction on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ check_is_fitted(self, 'x_mean_') return self.fit(X, y, **fit_params).transform(X, y) class PLSRegression(_PLS): """PLS regression PLSRegression implements the PLS 2 blocks regression known as PLS2 or PLS1 in case of one dimensional response. This class inherits from _PLS with mode="A", deflation_mode="regression", norm_y_weights=False and algorithm="nipals". Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, (default 2) Number of components to keep. scale : boolean, (default True) whether to scale the data max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real Tolerance used in the iterative algorithm default 1e-06. copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effect Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. coef_: array, [p, q] The coefficients of the linear model: ``Y = X coef_ + Err`` n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Notes ----- For each component k, find weights u, v that optimizes: ``max corr(Xk u, Yk v) * var(Xk u) var(Yk u)``, such that ``|u| = 1`` Note that it maximizes both the correlations between the scores and the intra-block variances. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current X score. This performs the PLS regression known as PLS2. This mode is prediction oriented. This implementation provides the same results that 3 PLS packages provided in the R language (R-project): - "mixOmics" with function pls(X, Y, mode = "regression") - "plspm " with function plsreg2(X, Y) - "pls" with function oscorespls.fit(X, Y) Examples -------- >>> from sklearn.cross_decomposition import PLSRegression >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> pls2 = PLSRegression(n_components=2) >>> pls2.fit(X, Y) ... # doctest: +NORMALIZE_WHITESPACE PLSRegression(copy=True, max_iter=500, n_components=2, scale=True, tol=1e-06) >>> Y_pred = pls2.predict(X) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. """ def __init__(self, n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="regression", mode="A", norm_y_weights=False, max_iter=max_iter, tol=tol, copy=copy) class PLSCanonical(_PLS): """ PLSCanonical implements the 2 blocks canonical PLS of the original Wold algorithm [Tenenhaus 1998] p.204, referred as PLS-C2A in [Wegelin 2000]. This class inherits from PLS with mode="A" and deflation_mode="canonical", norm_y_weights=True and algorithm="nipals", but svd should provide similar results up to numerical errors. Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- scale : boolean, scale data? (default True) algorithm : string, "nipals" or "svd" The algorithm used to estimate the weights. It will be called n_components times, i.e. once for each iteration of the outer loop. max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real, default 1e-06 the tolerance used in the iterative algorithm copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effect n_components : int, number of components to keep. (default 2). Attributes ---------- x_weights_ : array, shape = [p, n_components] X block weights vectors. y_weights_ : array, shape = [q, n_components] Y block weights vectors. x_loadings_ : array, shape = [p, n_components] X block loadings vectors. y_loadings_ : array, shape = [q, n_components] Y block loadings vectors. x_scores_ : array, shape = [n_samples, n_components] X scores. y_scores_ : array, shape = [n_samples, n_components] Y scores. x_rotations_ : array, shape = [p, n_components] X block to latents rotations. y_rotations_ : array, shape = [q, n_components] Y block to latents rotations. n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Not useful if the algorithm provided is "svd". Notes ----- For each component k, find weights u, v that optimize:: max corr(Xk u, Yk v) * var(Xk u) var(Yk u), such that ``|u| = |v| = 1`` Note that it maximizes both the correlations between the scores and the intra-block variances. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. This performs a canonical symmetric version of the PLS regression. But slightly different than the CCA. This is mostly used for modeling. This implementation provides the same results that the "plspm" package provided in the R language (R-project), using the function plsca(X, Y). Results are equal or collinear with the function ``pls(..., mode = "canonical")`` of the "mixOmics" package. The difference relies in the fact that mixOmics implementation does not exactly implement the Wold algorithm since it does not normalize y_weights to one. Examples -------- >>> from sklearn.cross_decomposition import PLSCanonical >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> plsca = PLSCanonical(n_components=2) >>> plsca.fit(X, Y) ... # doctest: +NORMALIZE_WHITESPACE PLSCanonical(algorithm='nipals', copy=True, max_iter=500, n_components=2, scale=True, tol=1e-06) >>> X_c, Y_c = plsca.transform(X, Y) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- CCA PLSSVD """ def __init__(self, n_components=2, scale=True, algorithm="nipals", max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="canonical", mode="A", norm_y_weights=True, algorithm=algorithm, max_iter=max_iter, tol=tol, copy=copy) class PLSSVD(BaseEstimator, TransformerMixin): """Partial Least Square SVD Simply perform a svd on the crosscovariance matrix: X'Y There are no iterative deflation here. Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, default 2 Number of components to keep. scale : boolean, default True Whether to scale X and Y. copy : boolean, default True Whether to copy X and Y, or perform in-place computations. Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. See also -------- PLSCanonical CCA """ def __init__(self, n_components=2, scale=True, copy=True): self.n_components = n_components self.scale = scale self.copy = copy def fit(self, X, Y): # copy since this will contains the centered data check_consistent_length(X, Y) X = check_array(X, dtype=np.float64, copy=self.copy) Y = check_array(Y, dtype=np.float64, copy=self.copy, ensure_2d=False) if Y.ndim == 1: Y = Y.reshape(-1, 1) if self.n_components > max(Y.shape[1], X.shape[1]): raise ValueError("Invalid number of components n_components=%d" " with X of shape %s and Y of shape %s." % (self.n_components, str(X.shape), str(Y.shape))) # Scale (in place) X, Y, self.x_mean_, self.y_mean_, self.x_std_, self.y_std_ =\ _center_scale_xy(X, Y, self.scale) # svd(X'Y) C = np.dot(X.T, Y) # The arpack svds solver only works if the number of extracted # components is smaller than rank(X) - 1. Hence, if we want to extract # all the components (C.shape[1]), we have to use another one. Else, # let's use arpacks to compute only the interesting components. if self.n_components >= np.min(C.shape): U, s, V = linalg.svd(C, full_matrices=False) else: U, s, V = arpack.svds(C, k=self.n_components) V = V.T self.x_scores_ = np.dot(X, U) self.y_scores_ = np.dot(Y, V) self.x_weights_ = U self.y_weights_ = V return self def transform(self, X, Y=None): """Apply the dimension reduction learned on the train data.""" check_is_fitted(self, 'x_mean_') X = check_array(X, dtype=np.float64) Xr = (X - self.x_mean_) / self.x_std_ x_scores = np.dot(Xr, self.x_weights_) if Y is not None: if Y.ndim == 1: Y = Y.reshape(-1, 1) Yr = (Y - self.y_mean_) / self.y_std_ y_scores = np.dot(Yr, self.y_weights_) return x_scores, y_scores return x_scores def fit_transform(self, X, y=None, **fit_params): """Learn and apply the dimension reduction on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ return self.fit(X, y, **fit_params).transform(X, y)
bsd-3-clause
EuropeanSocialInnovationDatabase/ESID-main
TextMining/Classifiers/Trainers/RuleBasedInnovativeness.py
1
21912
from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.naive_bayes import MultinomialNB from sklearn import metrics from sklearn.pipeline import Pipeline import numpy as np import pandas as pd import re from os import listdir from os.path import join,isdir from sklearn.utils import resample from sklearn.model_selection import cross_val_score import pickle from sklearn.utils import resample class DataSet: Annotators = [] def __init__(self): self.Annotators = [] class Annotator: files = [] documents = [] Name = "" def __init__(self): self.files = [] self.documents = [] self.Name = "" class Document: Lines = [] DocumentName = "" DatabaseID = "" Annotations = [] Text = "" isSpam = False Project_Mark_Objective_1A = 0 Project_Mark_Objective_1B = 0 Project_Mark_Objective_1C = 0 Project_Mark_Actors_2A = 0 Project_Mark_Actors_2B = 0 Project_Mark_Actors_2C = 0 Project_Mark_Outputs_3A = 0 Project_Mark_Innovativeness_3A = 0 isProjectObjectiveSatisfied = False isProjectActorSatisfied = False isProjectOutputSatisfied = False isProjectInnovativenessSatisfied = False isProjectObjectiveSatisfied_predicted = False isProjectActorSatisfied_predicted = False isProjectOutputSatisfied_predicted = False isProjectInnovativenessSatisfied_predicted = False def __init__(self): self.Text = "" self.Lines = [] self.DocumentName = "" self.DatabaseID = "" self.Annotations = [] self.isSpam = False self.Project_Mark_Objective_1A = 0 self.Project_Mark_Objective_1B = 0 self.Project_Mark_Objective_1C = 0 self.Project_Mark_Actors_2A = 0 self.Project_Mark_Actors_2B = 0 self.Project_Mark_Actors_2C = 0 self.Project_Mark_Outputs_3A = 0 self.Project_Mark_Innovativeness_3A = 0 self.Project_Mark_Innovativeness_3A = 0 self.isProjectObjectiveSatisfied = False self.isProjectActorSatisfied = False self.isProjectOutputSatisfied = False self.isProjectInnovativenessSatisfied = False self.isProjectObjectiveSatisfied_predicted = False self.isProjectActorSatisfied_predicted = False self.isProjectOutputSatisfied_predicted = False self.isProjectInnovativenessSatisfied_predicted = False class Line: StartSpan = 0 EndSpan = 0 Text = "" Sentences = [] Tokens = [] Annotations = [] def __init__(self): self.StartSpan = 0 self.EndSpan = 0 self.Text = "" self.Sentences = [] self.Tokens = [] self.Annotations = [] class Sentence: SentenceText = "" StartSpan = -1 EndSpan = -1 Annotations = [] def __init__(self): self.SentenceText = "" self.StartSpan = -1 self.EndSpan = -1 self.Annotations = [] class Annotation: FromFile = "" FromAnnotator = "" AnnotationText = "" StartSpan = -1 EndSpan = -1 HighLevelClass = "" LowLevelClass = "" data_folder = "../../../Helpers/FullDataset_Alina/" ds = DataSet() total_num_spam = 0 sentences = [] total_num_files = 0 # job = aetros.backend.start_job('nikolamilosevic86/GloveModel') annotators = [f for f in listdir(data_folder) if isdir(join(data_folder, f))] for ann in annotators: folder = data_folder + "/" + ann Annot = Annotator() Annot.Name = ann ds.Annotators.append(Annot) onlyfiles = [f for f in listdir(folder) if (f.endswith(".txt"))] for file in onlyfiles: Annot.files.append(data_folder + "/" + ann + '/' + file) doc = Document() total_num_files = total_num_files + 1 doc.Lines = [] # doc.Annotations = [] doc.DocumentName = file Annot.documents.append(doc) if (file.startswith('a') or file.startswith('t')): continue print file doc.DatabaseID = file.split("_")[1].split(".")[0] fl = open(data_folder + "/" + ann + '/' + file, 'r') content = fl.read() doc.Text = content lines = content.split('\n') line_index = 0 for line in lines: l = Line() l.StartSpan = line_index l.EndSpan = line_index + len(line) l.Text = line line_index = line_index + len(line) + 1 sentences.append(line) doc.Lines.append(l) an = open(data_folder + "/" + ann + '/' + file.replace(".txt", ".ann"), 'r') annotations = an.readlines() for a in annotations: a = re.sub(r'\d+;\d+', '', a).replace(' ', ' ') split_ann = a.split('\t') if (split_ann[0].startswith("T")): id = split_ann[0] sp_split_ann = split_ann[1].split(' ') low_level_ann = sp_split_ann[0] if low_level_ann == "ProjectMark": continue span_start = sp_split_ann[1] span_end = sp_split_ann[2] ann_text = split_ann[2] Ann = Annotation() Ann.AnnotationText = ann_text Ann.StartSpan = int(span_start) Ann.EndSpan = int(span_end) Ann.FromAnnotator = Annot.Name Ann.FromFile = file Ann.LowLevelClass = low_level_ann if (low_level_ann == "SL_Outputs_3a"): Ann.HighLevelClass = "Outputs" if ( low_level_ann == "SL_Objective_1a" or low_level_ann == "SL_Objective_1b" or low_level_ann == "SL_Objective_1c"): Ann.HighLevelClass = "Objectives" if ( low_level_ann == "SL_Actors_2a" or low_level_ann == "SL_Actors_2b" or low_level_ann == "SL_Actors_2c"): Ann.HighLevelClass = "Actors" if (low_level_ann == "SL_Innovativeness_4a"): Ann.HighLevelClass = "Innovativeness" doc.Annotations.append(Ann) for line in doc.Lines: if line.StartSpan <= Ann.StartSpan and line.EndSpan >= Ann.EndSpan: line.Annotations.append(Ann) else: id = split_ann[0] sp_split_ann = split_ann[1].split(' ') mark_name = sp_split_ann[0] if (len(sp_split_ann) <= 2): continue mark = sp_split_ann[2].replace('\n', '') if (mark_name == "DL_Outputs_3a"): doc.Project_Mark_Outputs_3A = int(mark) if int(mark) >= 1: doc.isProjectOutputSatisfied = True if (mark_name == "DL_Objective_1a"): doc.Project_Mark_Objective_1A = int(mark) if int(mark) >= 1: doc.isProjectObjectiveSatisfied = True if (mark_name == "DL_Objective_1b" or mark_name == "DL_Objective"): doc.Project_Mark_Objective_1B = int(mark) if int(mark) >= 1: doc.isProjectObjectiveSatisfied = True if (mark_name == "DL_Objective_1c"): doc.Project_Mark_Objective_1C = int(mark) if int(mark) >= 1: doc.isProjectObjectiveSatisfied = True if (mark_name == "DL_Innovativeness_4a" or mark_name=="DL_Innovativeness"): doc.Project_Mark_Innovativeness_3A = int(mark) if int(mark) >= 1: doc.isProjectInnovativenessSatisfied = True if (mark_name == "DL_Actors_2a" or mark_name=="DL_Actors"): doc.Project_Mark_Actors_2A = int(mark) if int(mark) >= 1: doc.isProjectActorSatisfied = True if (mark_name == "DL_Actors_2b"): doc.Project_Mark_Actors_2B = int(mark) if int(mark) >= 1: doc.isProjectActorSatisfied = True if (mark_name == "DL_Actors_2c"): doc.Project_Mark_Actors_2C = int(mark) if int(mark) >= 1: doc.isProjectActorSatisfied = True if ( doc.Project_Mark_Objective_1A == 0 and doc.Project_Mark_Objective_1B == 0 and doc.Project_Mark_Objective_1C == 0 and doc.Project_Mark_Actors_2A == 0 and doc.Project_Mark_Actors_2B == 0 and doc.Project_Mark_Actors_2B == 0 and doc.Project_Mark_Actors_2C == 0 and doc.Project_Mark_Outputs_3A == 0 and doc.Project_Mark_Innovativeness_3A == 0): doc.isSpam = True total_num_spam = total_num_spam + 1 i = 0 j = i + 1 kappa_files = 0 done_documents = [] num_overlap_spam = 0 num_spam = 0 total_objectives = 0 total_outputs = 0 total_actors = 0 total_innovativeness = 0 ann1_annotations_objectives = [] ann2_annotations_objectives = [] ann1_annotations_actors = [] ann2_annotations_actors = [] ann1_annotations_outputs = [] ann2_annotations_outputs = [] ann1_annotations_innovativeness = [] ann2_annotations_innovativeness = [] match_objectives = 0 match_outputs = 0 match_actors = 0 match_innovativeness = 0 while i < len(ds.Annotators) - 1: while j < len(ds.Annotators): annotator1 = ds.Annotators[i] annotator2 = ds.Annotators[j] for doc1 in annotator1.documents: for doc2 in annotator2.documents: if doc1.DocumentName == doc2.DocumentName and doc1.DocumentName not in done_documents: done_documents.append(doc1.DocumentName) line_num = 0 ann1_objective = [0] * len(doc1.Lines) ann2_objective = [0] * len(doc2.Lines) ann1_output = [0] * len(doc1.Lines) ann2_output = [0] * len(doc2.Lines) ann1_actor = [0] * len(doc1.Lines) ann2_actor = [0] * len(doc2.Lines) ann1_innovativeness = [0] * len(doc1.Lines) ann2_innovativeness = [0] * len(doc2.Lines) while line_num < len(doc1.Lines): if len(doc1.Lines[line_num].Annotations) > 0: for a in doc1.Lines[line_num].Annotations: if a.HighLevelClass == "Objectives": ann1_objective[line_num] = 1 total_objectives = total_objectives + 1 if a.HighLevelClass == "Outputs": ann1_output[line_num] = 1 total_outputs = total_outputs + 1 if a.HighLevelClass == "Actors": ann1_actor[line_num] = 1 total_actors = total_actors + 1 if a.HighLevelClass == "Innovativeness": ann1_innovativeness[line_num] = 1 total_innovativeness = total_innovativeness + 1 for a1 in doc2.Lines[line_num].Annotations: if a1.HighLevelClass == a.HighLevelClass: if a1.HighLevelClass == "Objectives": match_objectives = match_objectives + 1 if a1.HighLevelClass == "Outputs": match_outputs = match_outputs + 1 if a1.HighLevelClass == "Actors": match_actors = match_actors + 1 if a1.HighLevelClass == "Innovativeness": match_innovativeness = match_innovativeness + 1 if len(doc2.Lines[line_num].Annotations) > 0: for a in doc2.Lines[line_num].Annotations: if a.HighLevelClass == "Objectives": ann2_objective[line_num] = 1 total_objectives = total_objectives + 1 if a.HighLevelClass == "Outputs": ann2_output[line_num] = 1 total_outputs = total_outputs + 1 if a.HighLevelClass == "Actors": ann2_actor[line_num] = 1 total_actors = total_actors + 1 if a.HighLevelClass == "Innovativeness": ann2_innovativeness[line_num] = 1 total_innovativeness = total_innovativeness + 1 line_num = line_num + 1 ann1_annotations_outputs.extend(ann1_output) ann2_annotations_outputs.extend(ann2_output) ann1_annotations_objectives.extend(ann1_objective) ann2_annotations_objectives.extend(ann2_objective) ann1_annotations_actors.extend(ann1_actor) ann2_annotations_actors.extend(ann2_actor) ann1_annotations_innovativeness.extend(ann1_innovativeness) ann2_annotations_innovativeness.extend(ann2_innovativeness) print "Statistics for document:" + doc1.DocumentName print "Annotators " + annotator1.Name + " and " + annotator2.Name print "Spam by " + annotator1.Name + ":" + str(doc1.isSpam) print "Spam by " + annotator2.Name + ":" + str(doc2.isSpam) if (doc1.isSpam == doc2.isSpam): num_overlap_spam = num_overlap_spam + 1 if doc1.isSpam: num_spam = num_spam + 1 if doc2.isSpam: num_spam = num_spam + 1 kappa_files = kappa_files + 1 j = j + 1 i = i + 1 j = i + 1 print annotators doc_array = [] text_array = [] objectives = [] actors = [] outputs = [] innovativeness = [] for ann in ds.Annotators: for doc in ann.documents: doc_array.append( [doc.Text, doc.isProjectObjectiveSatisfied, doc.isProjectActorSatisfied, doc.isProjectOutputSatisfied, doc.isProjectInnovativenessSatisfied]) objectives.append(doc.isProjectObjectiveSatisfied) actors.append(doc.isProjectActorSatisfied) outputs.append(doc.isProjectOutputSatisfied) innovativeness.append(doc.isProjectInnovativenessSatisfied) text_array.append(doc.Text) df = pd.DataFrame({'text':text_array,'classa':innovativeness}) df_majority = df[df.classa==0] df_minority = df[df.classa==1] df_minority_upsampled = resample(df_minority, replace=True, # sample with replacement n_samples=160, # to match majority class random_state=83293) # reproducible results df_upsampled = pd.concat([df_majority, df_minority_upsampled]) # Display new class counts print df_upsampled.classa.value_counts() TP = 0 FP = 0 FN = 0 classes = df_upsampled.classa i = 0 innovative_1 = 0 innovative_2 = 0 innovative_3 = 0 for sample in doc_array: if "innovation" in sample[0] or "innovative" in sample[0] or "novelty" in sample[0]: innovative_1 = innovative_1 + 1 if sample[4] == True: TP = TP+1 if sample[4] == False: FP = FP+1 else: if sample[4]==True: FN = FN + 1 i = i + 1 precision = float(TP)/float(TP+FP) recall = float(TP)/float(TP+FN) f_score = 2*precision*recall/(precision+recall) print "Innovation rule classifier" print "False positives:"+str(FP) print "False negatives:"+str(FN) print "True positive:"+str(TP) print "Precision: "+str(precision) print "Recall: "+str(recall) print "F1-score: "+str(f_score) TP = 0 FP = 0 FN = 0 i = 0 for sample in doc_array: if ("new" in sample[0] or "novel" in sample[0] or "alternative" in sample[0] or "improved" in sample[0] or "cutting edge" in sample[0] or "better" in sample[0])\ and ("method" in sample[0] or "product" in sample[0] or "service" in sample[0] or "application" in sample[0] or "technology" in sample[0] or "practice" in sample[0]): innovative_2 = innovative_2 +1 if sample[4] == True: TP = TP+1 if sample[4] == False: FP = FP+1 else: if sample[4]==True: FN = FN + 1 i = i + 1 precision = float(TP)/float(TP+FP) recall = float(TP)/float(TP+FN) f_score = 2*precision*recall/(precision+recall) print "Other rule classifier" print "False positives:"+str(FP) print "False negatives:"+str(FN) print "True positive:"+str(TP) print "Precision: "+str(precision) print "Recall: "+str(recall) print "F1-score: "+str(f_score) TP = 0 FP = 0 FN = 0 i = 0 for sample in doc_array: isInnovative = False if ("method" in sample[0] or "product" in sample[0] or "service" in sample[0] or "application" in sample[0] or "technology" in sample[0] or "practice" in sample[0]): list_items = ["method","product","service","application","technology","practice"] index_list = [] for item in list_items: indexes = [m.start() for m in re.finditer(item, sample[0])] index_list.extend(indexes) for index in index_list: end = len(sample[0]) start = 0 if index - 500>0: start = index - 500 if index + 500<len(sample[0]): end = index + 500 substr = sample[0][start:end] if ("new" in substr or "novel" in substr or "alternative" in substr or "improved" in substr or "cutting edge" in substr or "better" in substr): isInnovative = True if isInnovative: innovative_3 = innovative_3 + 1 if sample[4] == True: TP = TP+1 if sample[4] == False: FP = FP+1 else: if sample[4]==True: FN = FN + 1 precision = float(TP)/float(TP+FP) recall = float(TP)/float(TP+FN) f_score = 2*precision*recall/(precision+recall) print "Third rule classifier" print "False positives:"+str(FP) print "False negatives:"+str(FN) print "True positive:"+str(TP) print "Precision: "+str(precision) print "Recall: "+str(recall) print "F1-score: "+str(f_score) TP = 0 FP = 0 FN = 0 i = 0 innovative_4 = 0 for sample in doc_array: isInnovative = False if "innovation" in sample[0] or "innovative" in sample[0] or "novelty" in sample[0]: isInnovative = True if ("method" in sample[0] or "product" in sample[0] or "service" in sample[0] or "application" in sample[0] or "technology" in sample[0] or "practice" in sample[0]): list_items = ["method","product","service","application","technology","practice"] index_list = [] for item in list_items: indexes = [m.start() for m in re.finditer(item, sample[0])] index_list.extend(indexes) for index in index_list: end = len(sample[0]) start = 0 if index - 500>0: start = index - 500 if index + 500<len(sample[0]): end = index + 500 substr = sample[0][start:end] if ("new" in substr or "novel" in substr or "alternative" in substr or "improved" in substr or "cutting edge" in substr or "better" in substr): isInnovative = True if isInnovative: innovative_4 = innovative_4 + 1 if sample[4] == True: TP = TP+1 if sample[4] == False: FP = FP+1 else: if sample[4]==True: FN = FN + 1 print "" print "Innovative 1:"+str(innovative_1) print "Innovative 2:"+str(innovative_2) print "Innovative 3:"+str(innovative_3) print "Innovative 4 (1+3):"+str(innovative_4) #scores = cross_val_score(text_clf, df_upsampled.text, df_upsampled.classa, cv=10,scoring='f1') # train = text_array[0:int(0.8*len(text_array))] # train_Y = innovativeness[0:int(0.8*len(actors))] # # test = text_array[int(0.8*len(text_array)):] # test_Y = innovativeness[int(0.8*len(actors)):] # # #categories = ['non actor', 'actor'] # # text_clf = Pipeline([('vect', CountVectorizer()), # ('tfidf', TfidfTransformer()), # ('clf', MultinomialNB()), # ]) # # scores = cross_val_score(text_clf, df_upsampled.text, df_upsampled.classa, cv=10,scoring='f1') # final = 0 # for score in scores: # final = final + score # print scores # print "Final:" + str(final/10) # text_clf.fit(train,train_Y) # # TP = 0 # FP = 0 # FN = 0 # i = 0 # outcome = text_clf.predict(test) # for i in range(0,len(test)): # if test_Y[i] == True and outcome[i] == True: # TP = TP+1 # if test_Y[i] == False and outcome[i]==True: # FP = FP+1 # if test_Y[i]==True and outputs[i]==False: # FN = FN + 1 # i = i + 1 # precision = float(TP)/float(TP+FP) # recall = float(TP)/float(TP+FN) # f_score = 2*precision*recall/(precision+recall) # print "ML based rule classifier" # print "False positives:"+str(FP) # print "False negatives:"+str(FN) # print "True positive:"+str(TP) # print "Precision: "+str(precision) # print "Recall: "+str(recall) # print "F1-score: "+str(f_score)
gpl-3.0
sivakasinathan/incubator
make_2DRs/generate_matrices.py
1
5629
from __future__ import division from Bio import SeqIO #import nwalign #import pandas as pd import itertools import argparse import glob import os.path as op import os import numpy as np import editdistance __all__ = ['getBlockMatrix', 'getDotMatrix', 'processFolder'] # This is old -- requires a BED file of locations of repeats along # long reads (derived from, e.g., HMMER profile searching) def getBlockMatrix(seq, bedDf): """Creates alignment matrix from BED and FASTA file. Parameters ---------- seqObj : str Nucleotide sequence bedDf : pd.DataFrame [features x 2] Table of feature coordinates. columns: [start, end] Returns ------- mat : np.ndarray [features x features]""" seqL=[seq[row['start']:row['end']] for irow,row in bedDf.iterrows()] mat=np.zeros((len(seqL),len(seqL))) for i,j in itertools.product(range(len(seqL)),range(len(seqL))): if i < j: s1=seqL[i] s2=seqL[j] a1,a2=nwalign.global_align(str(s1),str(s2),gap_open=-2,gap_extend=-1) mat[i,j] = np.array([m!=n and m != '-' and n != '-' for m,n in zip(a1,a2)]).sum() mat[j,i] = mat[i,j] return mat def getDotMatrix(seq, window=170,step=17): """Creates alignment matrix (dotplot) from FASTA file. Parameters ---------- seqObj : str Nucleotide sequence window : int k-mer size for dotplot (default: 170) step : int step size for dotplot (default: 17) Returns ------- M : np.ndarray""" seqDict = {} seq=seq.upper() idxs=range(0,len(seq)-window,step) L = len(idxs) for i in idxs: section = seq[i:i+window] try: seqDict[section].append(i) except KeyError: seqDict[section] = [i] M = np.zeros((L,L)) for s1,s2 in itertools.combinations(seqDict.keys(),2): score = editdistance.eval(s1,s2) for idx1,idx2 in itertools.product(seqDict[s1],seqDict[s2]): i = idxs.index(idx1) j = idxs.index(idx2) M[i,j] = score M[j,i] = score return M def processRun(fastaFn, outFn=None, winSize=170, step=17, minlen=8000): # def processRun(bedFn, fastaFn, outFn='',winSize=170,step=17): """Process BED and FASTA pair (if BED is provided) Parameters ---------- fastaFn : str FASTA file name (file contains nucleotide sequences) outFn : str Will output numpy NPZ file with this name if string provided (Default: None) winSize : int Width of alignment window in bp (default: 170) step : int Step size for alignment windows (default: 17) minlen : int Minimum read length (default: 8000) Return ------ matD : dict Dictionary of alignment matrices indexed/keyed on sequence names """ # Old code for running with BED file containing repeat monomer coordinates # bedDf = pd.read_csv(bedFn, delimiter='\t', header=None) # bedDf.columns = ['chrom','start','end','mono_class','score','strand','env_st','env_en','p_val'] matD = {} ctr = 0 for seqObj in SeqIO.parse(fastaFn, format='fasta'): if len(seqObj) >= minlen: print ctr, '\t', seqObj.id # matD[seqObj.id] = getAlnMatrix(seqObj.seq, bedDf.loc[bedDf.chrom == seqObj.id]) matD[seqObj.id] = getDotMatrix(str(seqObj.seq),winSize,step) ctr += 1 if (outFn): np.savez_compressed(outFn, **matD) return matD def processFolder(folder,winSize=170,step=17,minlen=8000): """Generate alignment matrices for BED:FASTA file pairs in a directory and write dictionary of matrices to compressed numpy NPZ file. Parameters ---------- folder : str Folder containing paired BED:FASTA files. BED file extension must be *.bed and FASTA file extension must be *.fa. Pairs are identified based on identical naming with the exception of *.bed and *.fa extensions. winSize : int Width of alignment window in bp (default: 170) step : int Step size for alignment windows (default: 17) minlen : int Minimum read length (default: 8000) """ fastaFiles = glob.glob(op.join(folder, '*.fa')) # fastaFiles = [b[:-3] + 'fa' for b in bedFiles] # bedFiles = [b[:-2] + 'bed' for b in fastaFiles] folderName = op.join(folder, 'matrices_win_'+str(winSize)+'_step_'+str(step)+'_minL_'+str(minlen)) try: os.makedirs(folderName) except OSError: pass for faFn in fastaFiles: print faFn outFn = op.join(folderName,op.split(faFn[:-4])[1])+'.npz' processRun(faFn,outFn,winSize,step,minlen) return if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-f','--folder', type=str, dest="folder", help='Name of the directory to be processed', required=True) parser.add_argument('-w','--win', type=int, dest="win",help='Width of alignment window (bp; default:170)',default=170) parser.add_argument('-s','--step', type=int, dest="step",help='Step size (bp; default:17)',default=17) parser.add_argument('-m','--minL', type=int, dest="len",help='Minimum read length(bp; default:8000)',default=8000) args = parser.parse_args() print "Generate matrices from a directory containing FASTA (*.fa) files of PacBio reads." print "Folder path: ", args.folder print "Window length: ", args.win print "Step size: ", args.step print "Minimum read length: ", args.len processFolder(args.folder,args.win,args.step,args.len)
mit
Myasuka/scikit-learn
sklearn/metrics/tests/test_pairwise.py
105
22788
import numpy as np from numpy import linalg from scipy.sparse import dok_matrix, csr_matrix, issparse from scipy.spatial.distance import cosine, cityblock, minkowski, wminkowski from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.externals.six import iteritems from sklearn.metrics.pairwise import euclidean_distances from sklearn.metrics.pairwise import manhattan_distances from sklearn.metrics.pairwise import linear_kernel from sklearn.metrics.pairwise import chi2_kernel, additive_chi2_kernel from sklearn.metrics.pairwise import polynomial_kernel from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics.pairwise import sigmoid_kernel from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics.pairwise import cosine_distances from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_distances_argmin_min from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.metrics.pairwise import pairwise_kernels from sklearn.metrics.pairwise import PAIRWISE_KERNEL_FUNCTIONS from sklearn.metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS from sklearn.metrics.pairwise import PAIRED_DISTANCES from sklearn.metrics.pairwise import check_pairwise_arrays from sklearn.metrics.pairwise import check_paired_arrays from sklearn.metrics.pairwise import _parallel_pairwise from sklearn.metrics.pairwise import paired_distances from sklearn.metrics.pairwise import paired_euclidean_distances from sklearn.metrics.pairwise import paired_manhattan_distances from sklearn.preprocessing import normalize def test_pairwise_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) S = pairwise_distances(X, metric="euclidean") S2 = euclidean_distances(X) assert_array_almost_equal(S, S2) # Euclidean distance, with Y != X. Y = rng.random_sample((2, 4)) S = pairwise_distances(X, Y, metric="euclidean") S2 = euclidean_distances(X, Y) assert_array_almost_equal(S, S2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) S2 = pairwise_distances(X_tuples, Y_tuples, metric="euclidean") assert_array_almost_equal(S, S2) # "cityblock" uses sklearn metric, cityblock (function) is scipy.spatial. S = pairwise_distances(X, metric="cityblock") S2 = pairwise_distances(X, metric=cityblock) assert_equal(S.shape[0], S.shape[1]) assert_equal(S.shape[0], X.shape[0]) assert_array_almost_equal(S, S2) # The manhattan metric should be equivalent to cityblock. S = pairwise_distances(X, Y, metric="manhattan") S2 = pairwise_distances(X, Y, metric=cityblock) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Low-level function for manhattan can divide in blocks to avoid # using too much memory during the broadcasting S3 = manhattan_distances(X, Y, size_threshold=10) assert_array_almost_equal(S, S3) # Test cosine as a string metric versus cosine callable # "cosine" uses sklearn metric, cosine (function) is scipy.spatial S = pairwise_distances(X, Y, metric="cosine") S2 = pairwise_distances(X, Y, metric=cosine) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Tests that precomputed metric returns pointer to, and not copy of, X. S = np.dot(X, X.T) S2 = pairwise_distances(S, metric="precomputed") assert_true(S is S2) # Test with sparse X and Y, # currently only supported for Euclidean, L1 and cosine. X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) S = pairwise_distances(X_sparse, Y_sparse, metric="euclidean") S2 = euclidean_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse, metric="cosine") S2 = cosine_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse.tocsc(), metric="manhattan") S2 = manhattan_distances(X_sparse.tobsr(), Y_sparse.tocoo()) assert_array_almost_equal(S, S2) S2 = manhattan_distances(X, Y) assert_array_almost_equal(S, S2) # Test with scipy.spatial.distance metric, with a kwd kwds = {"p": 2.0} S = pairwise_distances(X, Y, metric="minkowski", **kwds) S2 = pairwise_distances(X, Y, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # same with Y = None kwds = {"p": 2.0} S = pairwise_distances(X, metric="minkowski", **kwds) S2 = pairwise_distances(X, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # Test that scipy distance metrics throw an error if sparse matrix given assert_raises(TypeError, pairwise_distances, X_sparse, metric="minkowski") assert_raises(TypeError, pairwise_distances, X, Y_sparse, metric="minkowski") # Test that a value error is raised if the metric is unkown assert_raises(ValueError, pairwise_distances, X, Y, metric="blah") def check_pairwise_parallel(func, metric, kwds): rng = np.random.RandomState(0) for make_data in (np.array, csr_matrix): X = make_data(rng.random_sample((5, 4))) Y = make_data(rng.random_sample((3, 4))) try: S = func(X, metric=metric, n_jobs=1, **kwds) except (TypeError, ValueError) as exc: # Not all metrics support sparse input # ValueError may be triggered by bad callable if make_data is csr_matrix: assert_raises(type(exc), func, X, metric=metric, n_jobs=2, **kwds) continue else: raise S2 = func(X, metric=metric, n_jobs=2, **kwds) assert_array_almost_equal(S, S2) S = func(X, Y, metric=metric, n_jobs=1, **kwds) S2 = func(X, Y, metric=metric, n_jobs=2, **kwds) assert_array_almost_equal(S, S2) def test_pairwise_parallel(): wminkowski_kwds = {'w': np.arange(1, 5).astype('double'), 'p': 1} metrics = [(pairwise_distances, 'euclidean', {}), (pairwise_distances, wminkowski, wminkowski_kwds), (pairwise_distances, 'wminkowski', wminkowski_kwds), (pairwise_kernels, 'polynomial', {'degree': 1}), (pairwise_kernels, callable_rbf_kernel, {'gamma': .1}), ] for func, metric, kwds in metrics: yield check_pairwise_parallel, func, metric, kwds def test_pairwise_callable_nonstrict_metric(): # paired_distances should allow callable metric where metric(x, x) != 0 # Knowing that the callable is a strict metric would allow the diagonal to # be left uncalculated and set to 0. assert_equal(pairwise_distances([[1]], metric=lambda x, y: 5)[0, 0], 5) def callable_rbf_kernel(x, y, **kwds): # Callable version of pairwise.rbf_kernel. K = rbf_kernel(np.atleast_2d(x), np.atleast_2d(y), **kwds) return K def test_pairwise_kernels(): # Test the pairwise_kernels helper function. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) # Test with all metrics that should be in PAIRWISE_KERNEL_FUNCTIONS. test_metrics = ["rbf", "sigmoid", "polynomial", "linear", "chi2", "additive_chi2"] for metric in test_metrics: function = PAIRWISE_KERNEL_FUNCTIONS[metric] # Test with Y=None K1 = pairwise_kernels(X, metric=metric) K2 = function(X) assert_array_almost_equal(K1, K2) # Test with Y=Y K1 = pairwise_kernels(X, Y=Y, metric=metric) K2 = function(X, Y=Y) assert_array_almost_equal(K1, K2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) K2 = pairwise_kernels(X_tuples, Y_tuples, metric=metric) assert_array_almost_equal(K1, K2) # Test with sparse X and Y X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) if metric in ["chi2", "additive_chi2"]: # these don't support sparse matrices yet assert_raises(ValueError, pairwise_kernels, X_sparse, Y=Y_sparse, metric=metric) continue K1 = pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric) assert_array_almost_equal(K1, K2) # Test with a callable function, with given keywords. metric = callable_rbf_kernel kwds = {} kwds['gamma'] = 0.1 K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds) K2 = rbf_kernel(X, Y=Y, **kwds) assert_array_almost_equal(K1, K2) # callable function, X=Y K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds) K2 = rbf_kernel(X, Y=X, **kwds) assert_array_almost_equal(K1, K2) def test_pairwise_kernels_filter_param(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) K = rbf_kernel(X, Y, gamma=0.1) params = {"gamma": 0.1, "blabla": ":)"} K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params) assert_array_almost_equal(K, K2) assert_raises(TypeError, pairwise_kernels, X, Y, "rbf", **params) def test_paired_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) # Euclidean distance, with Y != X. Y = rng.random_sample((5, 4)) for metric, func in iteritems(PAIRED_DISTANCES): S = paired_distances(X, Y, metric=metric) S2 = func(X, Y) assert_array_almost_equal(S, S2) S3 = func(csr_matrix(X), csr_matrix(Y)) assert_array_almost_equal(S, S3) if metric in PAIRWISE_DISTANCE_FUNCTIONS: # Check the the pairwise_distances implementation # gives the same value distances = PAIRWISE_DISTANCE_FUNCTIONS[metric](X, Y) distances = np.diag(distances) assert_array_almost_equal(distances, S) # Check the callable implementation S = paired_distances(X, Y, metric='manhattan') S2 = paired_distances(X, Y, metric=lambda x, y: np.abs(x - y).sum(axis=0)) assert_array_almost_equal(S, S2) # Test that a value error is raised when the lengths of X and Y should not # differ Y = rng.random_sample((3, 4)) assert_raises(ValueError, paired_distances, X, Y) def test_pairwise_distances_argmin_min(): # Check pairwise minimum distances computation for any metric X = [[0], [1]] Y = [[-1], [2]] Xsp = dok_matrix(X) Ysp = csr_matrix(Y, dtype=np.float32) # euclidean metric D, E = pairwise_distances_argmin_min(X, Y, metric="euclidean") D2 = pairwise_distances_argmin(X, Y, metric="euclidean") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(D2, [0, 1]) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # sparse matrix case Dsp, Esp = pairwise_distances_argmin_min(Xsp, Ysp, metric="euclidean") assert_array_equal(Dsp, D) assert_array_equal(Esp, E) # We don't want np.matrix here assert_equal(type(Dsp), np.ndarray) assert_equal(type(Esp), np.ndarray) # Non-euclidean sklearn metric D, E = pairwise_distances_argmin_min(X, Y, metric="manhattan") D2 = pairwise_distances_argmin(X, Y, metric="manhattan") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(D2, [0, 1]) assert_array_almost_equal(E, [1., 1.]) D, E = pairwise_distances_argmin_min(Xsp, Ysp, metric="manhattan") D2 = pairwise_distances_argmin(Xsp, Ysp, metric="manhattan") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Non-euclidean Scipy distance (callable) D, E = pairwise_distances_argmin_min(X, Y, metric=minkowski, metric_kwargs={"p": 2}) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Non-euclidean Scipy distance (string) D, E = pairwise_distances_argmin_min(X, Y, metric="minkowski", metric_kwargs={"p": 2}) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Compare with naive implementation rng = np.random.RandomState(0) X = rng.randn(97, 149) Y = rng.randn(111, 149) dist = pairwise_distances(X, Y, metric="manhattan") dist_orig_ind = dist.argmin(axis=0) dist_orig_val = dist[dist_orig_ind, range(len(dist_orig_ind))] dist_chunked_ind, dist_chunked_val = pairwise_distances_argmin_min( X, Y, axis=0, metric="manhattan", batch_size=50) np.testing.assert_almost_equal(dist_orig_ind, dist_chunked_ind, decimal=7) np.testing.assert_almost_equal(dist_orig_val, dist_chunked_val, decimal=7) def test_euclidean_distances(): # Check the pairwise Euclidean distances computation X = [[0]] Y = [[1], [2]] D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) X = csr_matrix(X) Y = csr_matrix(Y) D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) # Paired distances def test_paired_euclidean_distances(): # Check the paired Euclidean distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_euclidean_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_paired_manhattan_distances(): # Check the paired manhattan distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_manhattan_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_chi_square_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((10, 4)) K_add = additive_chi2_kernel(X, Y) gamma = 0.1 K = chi2_kernel(X, Y, gamma=gamma) assert_equal(K.dtype, np.float) for i, x in enumerate(X): for j, y in enumerate(Y): chi2 = -np.sum((x - y) ** 2 / (x + y)) chi2_exp = np.exp(gamma * chi2) assert_almost_equal(K_add[i, j], chi2) assert_almost_equal(K[i, j], chi2_exp) # check diagonal is ones for data with itself K = chi2_kernel(Y) assert_array_equal(np.diag(K), 1) # check off-diagonal is < 1 but > 0: assert_true(np.all(K > 0)) assert_true(np.all(K - np.diag(np.diag(K)) < 1)) # check that float32 is preserved X = rng.random_sample((5, 4)).astype(np.float32) Y = rng.random_sample((10, 4)).astype(np.float32) K = chi2_kernel(X, Y) assert_equal(K.dtype, np.float32) # check integer type gets converted, # check that zeros are handled X = rng.random_sample((10, 4)).astype(np.int32) K = chi2_kernel(X, X) assert_true(np.isfinite(K).all()) assert_equal(K.dtype, np.float) # check that kernel of similar things is greater than dissimilar ones X = [[.3, .7], [1., 0]] Y = [[0, 1], [.9, .1]] K = chi2_kernel(X, Y) assert_greater(K[0, 0], K[0, 1]) assert_greater(K[1, 1], K[1, 0]) # test negative input assert_raises(ValueError, chi2_kernel, [[0, -1]]) assert_raises(ValueError, chi2_kernel, [[0, -1]], [[-1, -1]]) assert_raises(ValueError, chi2_kernel, [[0, 1]], [[-1, -1]]) # different n_features in X and Y assert_raises(ValueError, chi2_kernel, [[0, 1]], [[.2, .2, .6]]) # sparse matrices assert_raises(ValueError, chi2_kernel, csr_matrix(X), csr_matrix(Y)) assert_raises(ValueError, additive_chi2_kernel, csr_matrix(X), csr_matrix(Y)) def test_kernel_symmetry(): # Valid kernels should be symmetric rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, sigmoid_kernel, cosine_similarity): K = kernel(X, X) assert_array_almost_equal(K, K.T, 15) def test_kernel_sparse(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) X_sparse = csr_matrix(X) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, sigmoid_kernel, cosine_similarity): K = kernel(X, X) K2 = kernel(X_sparse, X_sparse) assert_array_almost_equal(K, K2) def test_linear_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = linear_kernel(X, X) # the diagonal elements of a linear kernel are their squared norm assert_array_almost_equal(K.flat[::6], [linalg.norm(x) ** 2 for x in X]) def test_rbf_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = rbf_kernel(X, X) # the diagonal elements of a rbf kernel are 1 assert_array_almost_equal(K.flat[::6], np.ones(5)) def test_cosine_similarity_sparse_output(): # Test if cosine_similarity correctly produces sparse output. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) K1 = cosine_similarity(Xcsr, Ycsr, dense_output=False) assert_true(issparse(K1)) K2 = pairwise_kernels(Xcsr, Y=Ycsr, metric="cosine") assert_array_almost_equal(K1.todense(), K2) def test_cosine_similarity(): # Test the cosine_similarity. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) for X_, Y_ in ((X, None), (X, Y), (Xcsr, None), (Xcsr, Ycsr)): # Test that the cosine is kernel is equal to a linear kernel when data # has been previously normalized by L2-norm. K1 = pairwise_kernels(X_, Y=Y_, metric="cosine") X_ = normalize(X_) if Y_ is not None: Y_ = normalize(Y_) K2 = pairwise_kernels(X_, Y=Y_, metric="linear") assert_array_almost_equal(K1, K2) def test_check_dense_matrices(): # Ensure that pairwise array check works for dense matrices. # Check that if XB is None, XB is returned as reference to XA XA = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_true(XA_checked is XB_checked) assert_array_equal(XA, XA_checked) def test_check_XB_returned(): # Ensure that if XA and XB are given correctly, they return as equal. # Check that if XB is not None, it is returned equal. # Note that the second dimension of XB is the same as XA. XA = np.resize(np.arange(40), (5, 8)) XB = np.resize(np.arange(32), (4, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) XB = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_paired_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) def test_check_different_dimensions(): # Ensure an error is raised if the dimensions are different. XA = np.resize(np.arange(45), (5, 9)) XB = np.resize(np.arange(32), (4, 8)) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XB = np.resize(np.arange(4 * 9), (4, 9)) assert_raises(ValueError, check_paired_arrays, XA, XB) def test_check_invalid_dimensions(): # Ensure an error is raised on 1D input arrays. XA = np.arange(45) XB = np.resize(np.arange(32), (4, 8)) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XA = np.resize(np.arange(45), (5, 9)) XB = np.arange(32) assert_raises(ValueError, check_pairwise_arrays, XA, XB) def test_check_sparse_arrays(): # Ensures that checks return valid sparse matrices. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_sparse = csr_matrix(XA) XB = rng.random_sample((5, 4)) XB_sparse = csr_matrix(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_sparse, XB_sparse) # compare their difference because testing csr matrices for # equality with '==' does not work as expected. assert_true(issparse(XA_checked)) assert_equal(abs(XA_sparse - XA_checked).sum(), 0) assert_true(issparse(XB_checked)) assert_equal(abs(XB_sparse - XB_checked).sum(), 0) XA_checked, XA_2_checked = check_pairwise_arrays(XA_sparse, XA_sparse) assert_true(issparse(XA_checked)) assert_equal(abs(XA_sparse - XA_checked).sum(), 0) assert_true(issparse(XA_2_checked)) assert_equal(abs(XA_2_checked - XA_checked).sum(), 0) def tuplify(X): # Turns a numpy matrix (any n-dimensional array) into tuples. s = X.shape if len(s) > 1: # Tuplify each sub-array in the input. return tuple(tuplify(row) for row in X) else: # Single dimension input, just return tuple of contents. return tuple(r for r in X) def test_check_tuple_input(): # Ensures that checks return valid tuples. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_tuples = tuplify(XA) XB = rng.random_sample((5, 4)) XB_tuples = tuplify(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_tuples, XB_tuples) assert_array_equal(XA_tuples, XA_checked) assert_array_equal(XB_tuples, XB_checked) def test_check_preserve_type(): # Ensures that type float32 is preserved. XA = np.resize(np.arange(40), (5, 8)).astype(np.float32) XB = np.resize(np.arange(40), (5, 8)).astype(np.float32) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_equal(XA_checked.dtype, np.float32) # both float32 XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_equal(XA_checked.dtype, np.float32) assert_equal(XB_checked.dtype, np.float32) # mismatched A XA_checked, XB_checked = check_pairwise_arrays(XA.astype(np.float), XB) assert_equal(XA_checked.dtype, np.float) assert_equal(XB_checked.dtype, np.float) # mismatched B XA_checked, XB_checked = check_pairwise_arrays(XA, XB.astype(np.float)) assert_equal(XA_checked.dtype, np.float) assert_equal(XB_checked.dtype, np.float)
bsd-3-clause
asedunov/intellij-community
python/helpers/pydev/pydev_ipython/qt_for_kernel.py
10
2497
""" Import Qt in a manner suitable for an IPython kernel. This is the import used for the `gui=qt` or `matplotlib=qt` initialization. Import Priority: if Qt4 has been imported anywhere else: use that if matplotlib has been imported and doesn't support v2 (<= 1.0.1): use PyQt4 @v1 Next, ask ETS' QT_API env variable if QT_API not set: ask matplotlib via rcParams['backend.qt4'] if it said PyQt: use PyQt4 @v1 elif it said PySide: use PySide else: (matplotlib said nothing) # this is the default path - nobody told us anything try: PyQt @v1 except: fallback on PySide else: use PyQt @v2 or PySide, depending on QT_API because ETS doesn't work with PyQt @v1. """ import os import sys from pydev_ipython.version import check_version from pydev_ipython.qt_loaders import (load_qt, QT_API_PYSIDE, QT_API_PYQT, QT_API_PYQT_DEFAULT, loaded_api, QT_API_PYQT5) #Constraints placed on an imported matplotlib def matplotlib_options(mpl): if mpl is None: return mpqt = mpl.rcParams.get('backend.qt4', None) if mpqt is None: mpqt = mpl.rcParams.get('backend.qt5', None) if mpqt is None: return None if mpqt.lower() == 'pyside': return [QT_API_PYSIDE] elif mpqt.lower() == 'pyqt4': return [QT_API_PYQT_DEFAULT] elif mpqt.lower() == 'pyqt5': return [QT_API_PYQT5] raise ImportError("unhandled value for qt backend from matplotlib: %r" % mpqt) def get_options(): """Return a list of acceptable QT APIs, in decreasing order of preference """ #already imported Qt somewhere. Use that loaded = loaded_api() if loaded is not None: return [loaded] mpl = sys.modules.get('matplotlib', None) if mpl is not None and not check_version(mpl.__version__, '1.0.2'): #1.0.1 only supports PyQt4 v1 return [QT_API_PYQT_DEFAULT] if os.environ.get('QT_API', None) is None: #no ETS variable. Ask mpl, then use either return matplotlib_options(mpl) or [QT_API_PYQT_DEFAULT, QT_API_PYSIDE, QT_API_PYQT5] #ETS variable present. Will fallback to external.qt return None api_opts = get_options() if api_opts is not None: QtCore, QtGui, QtSvg, QT_API = load_qt(api_opts) else: # use ETS variable from pydev_ipython.qt import QtCore, QtGui, QtSvg, QT_API
apache-2.0
luo66/scikit-learn
sklearn/metrics/regression.py
175
16953
"""Metrics to assess performance on regression task Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck <[email protected]> # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # Manoj Kumar <[email protected]> # Michael Eickenberg <[email protected]> # Konstantin Shmelkov <[email protected]> # License: BSD 3 clause from __future__ import division import numpy as np from ..utils.validation import check_array, check_consistent_length from ..utils.validation import column_or_1d import warnings __ALL__ = [ "mean_absolute_error", "mean_squared_error", "median_absolute_error", "r2_score", "explained_variance_score" ] def _check_reg_targets(y_true, y_pred, multioutput): """Check that y_true and y_pred belong to the same regression task Parameters ---------- y_true : array-like, y_pred : array-like, multioutput : array-like or string in ['raw_values', uniform_average', 'variance_weighted'] or None None is accepted due to backward compatibility of r2_score(). Returns ------- type_true : one of {'continuous', continuous-multioutput'} The type of the true target data, as output by 'utils.multiclass.type_of_target' y_true : array-like of shape = (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples, n_outputs) Estimated target values. multioutput : array-like of shape = (n_outputs) or string in ['raw_values', uniform_average', 'variance_weighted'] or None Custom output weights if ``multioutput`` is array-like or just the corresponding argument if ``multioutput`` is a correct keyword. """ check_consistent_length(y_true, y_pred) y_true = check_array(y_true, ensure_2d=False) y_pred = check_array(y_pred, ensure_2d=False) if y_true.ndim == 1: y_true = y_true.reshape((-1, 1)) if y_pred.ndim == 1: y_pred = y_pred.reshape((-1, 1)) if y_true.shape[1] != y_pred.shape[1]: raise ValueError("y_true and y_pred have different number of output " "({0}!={1})".format(y_true.shape[1], y_pred.shape[1])) n_outputs = y_true.shape[1] multioutput_options = (None, 'raw_values', 'uniform_average', 'variance_weighted') if multioutput not in multioutput_options: multioutput = check_array(multioutput, ensure_2d=False) if n_outputs == 1: raise ValueError("Custom weights are useful only in " "multi-output cases.") elif n_outputs != len(multioutput): raise ValueError(("There must be equally many custom weights " "(%d) as outputs (%d).") % (len(multioutput), n_outputs)) y_type = 'continuous' if n_outputs == 1 else 'continuous-multioutput' return y_type, y_true, y_pred, multioutput def mean_absolute_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean absolute error regression loss Read more in the :ref:`User Guide <mean_absolute_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats If multioutput is 'raw_values', then mean absolute error is returned for each output separately. If multioutput is 'uniform_average' or an ndarray of weights, then the weighted average of all output errors is returned. MAE output is non-negative floating point. The best value is 0.0. Examples -------- >>> from sklearn.metrics import mean_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_absolute_error(y_true, y_pred) 0.5 >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> mean_absolute_error(y_true, y_pred) 0.75 >>> mean_absolute_error(y_true, y_pred, multioutput='raw_values') array([ 0.5, 1. ]) >>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.849... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) output_errors = np.average(np.abs(y_pred - y_true), weights=sample_weight, axis=0) if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def mean_squared_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean squared error regression loss Read more in the :ref:`User Guide <mean_squared_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats A non-negative floating point value (the best value is 0.0), or an array of floating point values, one for each individual target. Examples -------- >>> from sklearn.metrics import mean_squared_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_squared_error(y_true, y_pred) 0.375 >>> y_true = [[0.5, 1],[-1, 1],[7, -6]] >>> y_pred = [[0, 2],[-1, 2],[8, -5]] >>> mean_squared_error(y_true, y_pred) # doctest: +ELLIPSIS 0.708... >>> mean_squared_error(y_true, y_pred, multioutput='raw_values') ... # doctest: +ELLIPSIS array([ 0.416..., 1. ]) >>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.824... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) output_errors = np.average((y_true - y_pred) ** 2, axis=0, weights=sample_weight) if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def median_absolute_error(y_true, y_pred): """Median absolute error regression loss Read more in the :ref:`User Guide <median_absolute_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) Estimated target values. Returns ------- loss : float A positive floating point value (the best value is 0.0). Examples -------- >>> from sklearn.metrics import median_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> median_absolute_error(y_true, y_pred) 0.5 """ y_type, y_true, y_pred, _ = _check_reg_targets(y_true, y_pred, 'uniform_average') if y_type == 'continuous-multioutput': raise ValueError("Multioutput not supported in median_absolute_error") return np.median(np.abs(y_pred - y_true)) def explained_variance_score(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Explained variance regression score function Best possible score is 1.0, lower values are worse. Read more in the :ref:`User Guide <explained_variance_score>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average', \ 'variance_weighted'] or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. Returns ------- score : float or ndarray of floats The explained variance or ndarray if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Examples -------- >>> from sklearn.metrics import explained_variance_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> explained_variance_score(y_true, y_pred) # doctest: +ELLIPSIS 0.957... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> explained_variance_score(y_true, y_pred, multioutput='uniform_average') ... # doctest: +ELLIPSIS 0.983... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) y_diff_avg = np.average(y_true - y_pred, weights=sample_weight, axis=0) numerator = np.average((y_true - y_pred - y_diff_avg) ** 2, weights=sample_weight, axis=0) y_true_avg = np.average(y_true, weights=sample_weight, axis=0) denominator = np.average((y_true - y_true_avg) ** 2, weights=sample_weight, axis=0) nonzero_numerator = numerator != 0 nonzero_denominator = denominator != 0 valid_score = nonzero_numerator & nonzero_denominator output_scores = np.ones(y_true.shape[1]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) output_scores[nonzero_numerator & ~nonzero_denominator] = 0. if multioutput == 'raw_values': # return scores individually return output_scores elif multioutput == 'uniform_average': # passing to np.average() None as weights results is uniform mean avg_weights = None elif multioutput == 'variance_weighted': avg_weights = denominator else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights) def r2_score(y_true, y_pred, sample_weight=None, multioutput=None): """R^2 (coefficient of determination) regression score function. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0. Read more in the :ref:`User Guide <r2_score>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average', 'variance_weighted'] or None or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. Default value correponds to 'variance_weighted', but will be changed to 'uniform_average' in next versions. 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. Returns ------- z : float or ndarray of floats The R^2 score or ndarray of scores if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Unlike most other scores, R^2 score may be negative (it need not actually be the square of a quantity R). References ---------- .. [1] `Wikipedia entry on the Coefficient of determination <http://en.wikipedia.org/wiki/Coefficient_of_determination>`_ Examples -------- >>> from sklearn.metrics import r2_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> r2_score(y_true, y_pred) # doctest: +ELLIPSIS 0.948... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> r2_score(y_true, y_pred, multioutput='variance_weighted') # doctest: +ELLIPSIS 0.938... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) weight = sample_weight[:, np.newaxis] else: weight = 1. numerator = (weight * (y_true - y_pred) ** 2).sum(axis=0, dtype=np.float64) denominator = (weight * (y_true - np.average( y_true, axis=0, weights=sample_weight)) ** 2).sum(axis=0, dtype=np.float64) nonzero_denominator = denominator != 0 nonzero_numerator = numerator != 0 valid_score = nonzero_denominator & nonzero_numerator output_scores = np.ones([y_true.shape[1]]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) # arbitrary set to zero to avoid -inf scores, having a constant # y_true is not interesting for scoring a regression anyway output_scores[nonzero_numerator & ~nonzero_denominator] = 0. if multioutput is None and y_true.shape[1] != 1: # @FIXME change in 0.18 warnings.warn("Default 'multioutput' behavior now corresponds to " "'variance_weighted' value, it will be changed " "to 'uniform_average' in 0.18.", DeprecationWarning) multioutput = 'variance_weighted' if multioutput == 'raw_values': # return scores individually return output_scores elif multioutput == 'uniform_average': # passing None as weights results is uniform mean avg_weights = None elif multioutput == 'variance_weighted': avg_weights = denominator # avoid fail on constant y or one-element arrays if not np.any(nonzero_denominator): if not np.any(nonzero_numerator): return 1.0 else: return 0.0 else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights)
bsd-3-clause
brkrishna/freelance
amazon/process/spiders/reviews_spider.py
1
1490
# -- coding: utf-8 -- import scrapy, os from scrapy.selector import HtmlXPathSelector from process.items import RvwUrl import pandas as pd #Constants BASE_URL = 'http://www.amazon.cn' class RvwUrlSpider(scrapy.Spider): name = "review_urls" allowed_domains = ["amazon.cn"] start_urls = [BASE_URL] def parse(self, response): review_urls = set(open('categories').readlines()) if os.path.isfile('categories_done'): finished_review_urls = set(open('categories_done').readlines()) review_urls -= finished_review_urls for url in review_urls: yield scrapy.Request(url.strip(), callback=self.get_review_urls) def get_review_urls(self, response): urls = response.meta.get('redirect_urls', [response.url]) nodes = response.xpath('//*[@data-asin]/@data-asin').extract() with open('review_urls', 'a') as sink: for node in nodes: sink.write("%s/gp/product-reviews/%s\n" % (BASE_URL, node)) more_buttons = response.xpath('//a[contains(@class, "dv-view-all")]/@href').extract() if more_buttons: for button in more_buttons: yield scrapy.Request(BASE_URL + button, self.get_review_urls) next_links = response.xpath('//a[@id="pagnNextLink"]/@href').extract() if next_links: for link in next_links: yield scrapy.Request(BASE_URL + link, self.get_review_urls) #Push the url to done queue df_catg_done = pd.DataFrame(data = urls, columns=['link']) df_catg_done.to_csv('categories_done', mode='a', header=False, index=False)
gpl-2.0
xyguo/scikit-learn
sklearn/tests/test_cross_validation.py
24
47465
"""Test the cross_validation module""" from __future__ import division import warnings import numpy as np from scipy.sparse import coo_matrix from scipy.sparse import csr_matrix from scipy import stats from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame with warnings.catch_warnings(): warnings.simplefilter('ignore') from sklearn import cross_validation as cval from sklearn.datasets import make_regression from sklearn.datasets import load_boston from sklearn.datasets import load_digits from sklearn.datasets import load_iris from sklearn.datasets import make_multilabel_classification from sklearn.metrics import explained_variance_score from sklearn.metrics import make_scorer from sklearn.metrics import precision_score from sklearn.externals import six from sklearn.externals.six.moves import zip from sklearn.linear_model import Ridge from sklearn.multiclass import OneVsRestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.cluster import KMeans from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline class MockClassifier(object): """Dummy classifier to test the cross-validation""" def __init__(self, a=0, allow_nd=False): self.a = a self.allow_nd = allow_nd def fit(self, X, Y=None, sample_weight=None, class_prior=None, sparse_sample_weight=None, sparse_param=None, dummy_int=None, dummy_str=None, dummy_obj=None, callback=None): """The dummy arguments are to test that this fit function can accept non-array arguments through cross-validation, such as: - int - str (this is actually array-like) - object - function """ self.dummy_int = dummy_int self.dummy_str = dummy_str self.dummy_obj = dummy_obj if callback is not None: callback(self) if self.allow_nd: X = X.reshape(len(X), -1) if X.ndim >= 3 and not self.allow_nd: raise ValueError('X cannot be d') if sample_weight is not None: assert_true(sample_weight.shape[0] == X.shape[0], 'MockClassifier extra fit_param sample_weight.shape[0]' ' is {0}, should be {1}'.format(sample_weight.shape[0], X.shape[0])) if class_prior is not None: assert_true(class_prior.shape[0] == len(np.unique(y)), 'MockClassifier extra fit_param class_prior.shape[0]' ' is {0}, should be {1}'.format(class_prior.shape[0], len(np.unique(y)))) if sparse_sample_weight is not None: fmt = ('MockClassifier extra fit_param sparse_sample_weight' '.shape[0] is {0}, should be {1}') assert_true(sparse_sample_weight.shape[0] == X.shape[0], fmt.format(sparse_sample_weight.shape[0], X.shape[0])) if sparse_param is not None: fmt = ('MockClassifier extra fit_param sparse_param.shape ' 'is ({0}, {1}), should be ({2}, {3})') assert_true(sparse_param.shape == P_sparse.shape, fmt.format(sparse_param.shape[0], sparse_param.shape[1], P_sparse.shape[0], P_sparse.shape[1])) return self def predict(self, T): if self.allow_nd: T = T.reshape(len(T), -1) return T[:, 0] def score(self, X=None, Y=None): return 1. / (1 + np.abs(self.a)) def get_params(self, deep=False): return {'a': self.a, 'allow_nd': self.allow_nd} X = np.ones((10, 2)) X_sparse = coo_matrix(X) W_sparse = coo_matrix((np.array([1]), (np.array([1]), np.array([0]))), shape=(10, 1)) P_sparse = coo_matrix(np.eye(5)) # avoid StratifiedKFold's Warning about least populated class in y y = np.arange(10) % 3 ############################################################################## # Tests def check_valid_split(train, test, n_samples=None): # Use python sets to get more informative assertion failure messages train, test = set(train), set(test) # Train and test split should not overlap assert_equal(train.intersection(test), set()) if n_samples is not None: # Check that the union of train an test split cover all the indices assert_equal(train.union(test), set(range(n_samples))) def check_cv_coverage(cv, expected_n_iter=None, n_samples=None): # Check that a all the samples appear at least once in a test fold if expected_n_iter is not None: assert_equal(len(cv), expected_n_iter) else: expected_n_iter = len(cv) collected_test_samples = set() iterations = 0 for train, test in cv: check_valid_split(train, test, n_samples=n_samples) iterations += 1 collected_test_samples.update(test) # Check that the accumulated test samples cover the whole dataset assert_equal(iterations, expected_n_iter) if n_samples is not None: assert_equal(collected_test_samples, set(range(n_samples))) def test_kfold_valueerrors(): # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.KFold, 3, 4) # Check that a warning is raised if the least populated class has too few # members. y = [3, 3, -1, -1, 3] cv = assert_warns_message(Warning, "The least populated class", cval.StratifiedKFold, y, 3) # Check that despite the warning the folds are still computed even # though all the classes are not necessarily represented at on each # side of the split at each split check_cv_coverage(cv, expected_n_iter=3, n_samples=len(y)) # Check that errors are raised if all n_labels for individual # classes are less than n_folds. y = [3, 3, -1, -1, 2] assert_raises(ValueError, cval.StratifiedKFold, y, 3) # Error when number of folds is <= 1 assert_raises(ValueError, cval.KFold, 2, 0) assert_raises(ValueError, cval.KFold, 2, 1) error_string = ("k-fold cross validation requires at least one" " train / test split") assert_raise_message(ValueError, error_string, cval.StratifiedKFold, y, 0) assert_raise_message(ValueError, error_string, cval.StratifiedKFold, y, 1) # When n is not integer: assert_raises(ValueError, cval.KFold, 2.5, 2) # When n_folds is not integer: assert_raises(ValueError, cval.KFold, 5, 1.5) assert_raises(ValueError, cval.StratifiedKFold, y, 1.5) def test_kfold_indices(): # Check all indices are returned in the test folds kf = cval.KFold(300, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=300) # Check all indices are returned in the test folds even when equal-sized # folds are not possible kf = cval.KFold(17, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=17) def test_kfold_no_shuffle(): # Manually check that KFold preserves the data ordering on toy datasets splits = iter(cval.KFold(4, 2)) train, test = next(splits) assert_array_equal(test, [0, 1]) assert_array_equal(train, [2, 3]) train, test = next(splits) assert_array_equal(test, [2, 3]) assert_array_equal(train, [0, 1]) splits = iter(cval.KFold(5, 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 2]) assert_array_equal(train, [3, 4]) train, test = next(splits) assert_array_equal(test, [3, 4]) assert_array_equal(train, [0, 1, 2]) def test_stratified_kfold_no_shuffle(): # Manually check that StratifiedKFold preserves the data ordering as much # as possible on toy datasets in order to avoid hiding sample dependencies # when possible splits = iter(cval.StratifiedKFold([1, 1, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 2]) assert_array_equal(train, [1, 3]) train, test = next(splits) assert_array_equal(test, [1, 3]) assert_array_equal(train, [0, 2]) splits = iter(cval.StratifiedKFold([1, 1, 1, 0, 0, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 3, 4]) assert_array_equal(train, [2, 5, 6]) train, test = next(splits) assert_array_equal(test, [2, 5, 6]) assert_array_equal(train, [0, 1, 3, 4]) def test_stratified_kfold_ratios(): # Check that stratified kfold preserves label ratios in individual splits # Repeat with shuffling turned off and on n_samples = 1000 labels = np.array([4] * int(0.10 * n_samples) + [0] * int(0.89 * n_samples) + [1] * int(0.01 * n_samples)) for shuffle in [False, True]: for train, test in cval.StratifiedKFold(labels, 5, shuffle=shuffle): assert_almost_equal(np.sum(labels[train] == 4) / len(train), 0.10, 2) assert_almost_equal(np.sum(labels[train] == 0) / len(train), 0.89, 2) assert_almost_equal(np.sum(labels[train] == 1) / len(train), 0.01, 2) assert_almost_equal(np.sum(labels[test] == 4) / len(test), 0.10, 2) assert_almost_equal(np.sum(labels[test] == 0) / len(test), 0.89, 2) assert_almost_equal(np.sum(labels[test] == 1) / len(test), 0.01, 2) def test_kfold_balance(): # Check that KFold returns folds with balanced sizes for kf in [cval.KFold(i, 5) for i in range(11, 17)]: sizes = [] for _, test in kf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), kf.n) def test_stratifiedkfold_balance(): # Check that KFold returns folds with balanced sizes (only when # stratification is possible) # Repeat with shuffling turned off and on labels = [0] * 3 + [1] * 14 for shuffle in [False, True]: for skf in [cval.StratifiedKFold(labels[:i], 3, shuffle=shuffle) for i in range(11, 17)]: sizes = [] for _, test in skf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), skf.n) def test_shuffle_kfold(): # Check the indices are shuffled properly, and that all indices are # returned in the different test folds kf = cval.KFold(300, 3, shuffle=True, random_state=0) ind = np.arange(300) all_folds = None for train, test in kf: assert_true(np.any(np.arange(100) != ind[test])) assert_true(np.any(np.arange(100, 200) != ind[test])) assert_true(np.any(np.arange(200, 300) != ind[test])) if all_folds is None: all_folds = ind[test].copy() else: all_folds = np.concatenate((all_folds, ind[test])) all_folds.sort() assert_array_equal(all_folds, ind) def test_shuffle_stratifiedkfold(): # Check that shuffling is happening when requested, and for proper # sample coverage labels = [0] * 20 + [1] * 20 kf0 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=0)) kf1 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=1)) for (_, test0), (_, test1) in zip(kf0, kf1): assert_true(set(test0) != set(test1)) check_cv_coverage(kf0, expected_n_iter=5, n_samples=40) def test_kfold_can_detect_dependent_samples_on_digits(): # see #2372 # The digits samples are dependent: they are apparently grouped by authors # although we don't have any information on the groups segment locations # for this data. We can highlight this fact be computing k-fold cross- # validation with and without shuffling: we observe that the shuffling case # wrongly makes the IID assumption and is therefore too optimistic: it # estimates a much higher accuracy (around 0.96) than than the non # shuffling variant (around 0.86). digits = load_digits() X, y = digits.data[:800], digits.target[:800] model = SVC(C=10, gamma=0.005) n = len(y) cv = cval.KFold(n, 5, shuffle=False) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) # Shuffling the data artificially breaks the dependency and hides the # overfitting of the model with regards to the writing style of the authors # by yielding a seriously overestimated score: cv = cval.KFold(n, 5, shuffle=True, random_state=0) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) cv = cval.KFold(n, 5, shuffle=True, random_state=1) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) # Similarly, StratifiedKFold should try to shuffle the data as little # as possible (while respecting the balanced class constraints) # and thus be able to detect the dependency by not overestimating # the CV score either. As the digits dataset is approximately balanced # the estimated mean score is close to the score measured with # non-shuffled KFold cv = cval.StratifiedKFold(y, 5) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) def test_label_kfold(): rng = np.random.RandomState(0) # Parameters of the test n_labels = 15 n_samples = 1000 n_folds = 5 # Construct the test data tolerance = 0.05 * n_samples # 5 percent error allowed labels = rng.randint(0, n_labels, n_samples) folds = cval.LabelKFold(labels, n_folds=n_folds).idxs ideal_n_labels_per_fold = n_samples // n_folds # Check that folds have approximately the same size assert_equal(len(folds), len(labels)) for i in np.unique(folds): assert_greater_equal(tolerance, abs(sum(folds == i) - ideal_n_labels_per_fold)) # Check that each label appears only in 1 fold for label in np.unique(labels): assert_equal(len(np.unique(folds[labels == label])), 1) # Check that no label is on both sides of the split labels = np.asarray(labels, dtype=object) for train, test in cval.LabelKFold(labels, n_folds=n_folds): assert_equal(len(np.intersect1d(labels[train], labels[test])), 0) # Construct the test data labels = ['Albert', 'Jean', 'Bertrand', 'Michel', 'Jean', 'Francis', 'Robert', 'Michel', 'Rachel', 'Lois', 'Michelle', 'Bernard', 'Marion', 'Laura', 'Jean', 'Rachel', 'Franck', 'John', 'Gael', 'Anna', 'Alix', 'Robert', 'Marion', 'David', 'Tony', 'Abel', 'Becky', 'Madmood', 'Cary', 'Mary', 'Alexandre', 'David', 'Francis', 'Barack', 'Abdoul', 'Rasha', 'Xi', 'Silvia'] labels = np.asarray(labels, dtype=object) n_labels = len(np.unique(labels)) n_samples = len(labels) n_folds = 5 tolerance = 0.05 * n_samples # 5 percent error allowed folds = cval.LabelKFold(labels, n_folds=n_folds).idxs ideal_n_labels_per_fold = n_samples // n_folds # Check that folds have approximately the same size assert_equal(len(folds), len(labels)) for i in np.unique(folds): assert_greater_equal(tolerance, abs(sum(folds == i) - ideal_n_labels_per_fold)) # Check that each label appears only in 1 fold for label in np.unique(labels): assert_equal(len(np.unique(folds[labels == label])), 1) # Check that no label is on both sides of the split for train, test in cval.LabelKFold(labels, n_folds=n_folds): assert_equal(len(np.intersect1d(labels[train], labels[test])), 0) # Should fail if there are more folds than labels labels = np.array([1, 1, 1, 2, 2]) assert_raises(ValueError, cval.LabelKFold, labels, n_folds=3) def test_shuffle_split(): ss1 = cval.ShuffleSplit(10, test_size=0.2, random_state=0) ss2 = cval.ShuffleSplit(10, test_size=2, random_state=0) ss3 = cval.ShuffleSplit(10, test_size=np.int32(2), random_state=0) for typ in six.integer_types: ss4 = cval.ShuffleSplit(10, test_size=typ(2), random_state=0) for t1, t2, t3, t4 in zip(ss1, ss2, ss3, ss4): assert_array_equal(t1[0], t2[0]) assert_array_equal(t2[0], t3[0]) assert_array_equal(t3[0], t4[0]) assert_array_equal(t1[1], t2[1]) assert_array_equal(t2[1], t3[1]) assert_array_equal(t3[1], t4[1]) def test_stratified_shuffle_split_init(): y = np.asarray([0, 1, 1, 1, 2, 2, 2]) # Check that error is raised if there is a class with only one sample assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.2) # Check that error is raised if the test set size is smaller than n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 2) # Check that error is raised if the train set size is smaller than # n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 3, 2) y = np.asarray([0, 0, 0, 1, 1, 1, 2, 2, 2]) # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.5, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 8, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.6, 8) # Train size or test size too small assert_raises(ValueError, cval.StratifiedShuffleSplit, y, train_size=2) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, test_size=2) def test_stratified_shuffle_split_iter(): ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]), np.array([-1] * 800 + [1] * 50) ] for y in ys: sss = cval.StratifiedShuffleSplit(y, 6, test_size=0.33, random_state=0) for train, test in sss: assert_array_equal(np.unique(y[train]), np.unique(y[test])) # Checks if folds keep classes proportions p_train = (np.bincount(np.unique(y[train], return_inverse=True)[1]) / float(len(y[train]))) p_test = (np.bincount(np.unique(y[test], return_inverse=True)[1]) / float(len(y[test]))) assert_array_almost_equal(p_train, p_test, 1) assert_equal(y[train].size + y[test].size, y.size) assert_array_equal(np.intersect1d(train, test), []) def test_stratified_shuffle_split_even(): # Test the StratifiedShuffleSplit, indices are drawn with a # equal chance n_folds = 5 n_iter = 1000 def assert_counts_are_ok(idx_counts, p): # Here we test that the distribution of the counts # per index is close enough to a binomial threshold = 0.05 / n_splits bf = stats.binom(n_splits, p) for count in idx_counts: p = bf.pmf(count) assert_true(p > threshold, "An index is not drawn with chance corresponding " "to even draws") for n_samples in (6, 22): labels = np.array((n_samples // 2) * [0, 1]) splits = cval.StratifiedShuffleSplit(labels, n_iter=n_iter, test_size=1. / n_folds, random_state=0) train_counts = [0] * n_samples test_counts = [0] * n_samples n_splits = 0 for train, test in splits: n_splits += 1 for counter, ids in [(train_counts, train), (test_counts, test)]: for id in ids: counter[id] += 1 assert_equal(n_splits, n_iter) assert_equal(len(train), splits.n_train) assert_equal(len(test), splits.n_test) assert_equal(len(set(train).intersection(test)), 0) label_counts = np.unique(labels) assert_equal(splits.test_size, 1.0 / n_folds) assert_equal(splits.n_train + splits.n_test, len(labels)) assert_equal(len(label_counts), 2) ex_test_p = float(splits.n_test) / n_samples ex_train_p = float(splits.n_train) / n_samples assert_counts_are_ok(train_counts, ex_train_p) assert_counts_are_ok(test_counts, ex_test_p) def test_stratified_shuffle_split_overlap_train_test_bug(): # See https://github.com/scikit-learn/scikit-learn/issues/6121 for # the original bug report labels = [0, 1, 2, 3] * 3 + [4, 5] * 5 splits = cval.StratifiedShuffleSplit(labels, n_iter=1, test_size=0.5, random_state=0) train, test = next(iter(splits)) assert_array_equal(np.intersect1d(train, test), []) def test_predefinedsplit_with_kfold_split(): # Check that PredefinedSplit can reproduce a split generated by Kfold. folds = -1 * np.ones(10) kf_train = [] kf_test = [] for i, (train_ind, test_ind) in enumerate(cval.KFold(10, 5, shuffle=True)): kf_train.append(train_ind) kf_test.append(test_ind) folds[test_ind] = i ps_train = [] ps_test = [] ps = cval.PredefinedSplit(folds) for train_ind, test_ind in ps: ps_train.append(train_ind) ps_test.append(test_ind) assert_array_equal(ps_train, kf_train) assert_array_equal(ps_test, kf_test) def test_label_shuffle_split(): ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]), ] for y in ys: n_iter = 6 test_size = 1. / 3 slo = cval.LabelShuffleSplit(y, n_iter, test_size=test_size, random_state=0) # Make sure the repr works repr(slo) # Test that the length is correct assert_equal(len(slo), n_iter) y_unique = np.unique(y) for train, test in slo: # First test: no train label is in the test set and vice versa y_train_unique = np.unique(y[train]) y_test_unique = np.unique(y[test]) assert_false(np.any(np.in1d(y[train], y_test_unique))) assert_false(np.any(np.in1d(y[test], y_train_unique))) # Second test: train and test add up to all the data assert_equal(y[train].size + y[test].size, y.size) # Third test: train and test are disjoint assert_array_equal(np.intersect1d(train, test), []) # Fourth test: # unique train and test labels are correct, # +- 1 for rounding error assert_true(abs(len(y_test_unique) - round(test_size * len(y_unique))) <= 1) assert_true(abs(len(y_train_unique) - round((1.0 - test_size) * len(y_unique))) <= 1) def test_leave_label_out_changing_labels(): # Check that LeaveOneLabelOut and LeavePLabelOut work normally if # the labels variable is changed before calling __iter__ labels = np.array([0, 1, 2, 1, 1, 2, 0, 0]) labels_changing = np.array(labels, copy=True) lolo = cval.LeaveOneLabelOut(labels) lolo_changing = cval.LeaveOneLabelOut(labels_changing) lplo = cval.LeavePLabelOut(labels, p=2) lplo_changing = cval.LeavePLabelOut(labels_changing, p=2) labels_changing[:] = 0 for llo, llo_changing in [(lolo, lolo_changing), (lplo, lplo_changing)]: for (train, test), (train_chan, test_chan) in zip(llo, llo_changing): assert_array_equal(train, train_chan) assert_array_equal(test, test_chan) def test_cross_val_score(): clf = MockClassifier() for a in range(-10, 10): clf.a = a # Smoke test scores = cval.cross_val_score(clf, X, y) assert_array_equal(scores, clf.score(X, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) scores = cval.cross_val_score(clf, X_sparse, y) assert_array_equal(scores, clf.score(X_sparse, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) scores = cval.cross_val_score(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) scores = cval.cross_val_score(clf, X, y.tolist()) assert_raises(ValueError, cval.cross_val_score, clf, X, y, scoring="sklearn") # test with 3d X and X_3d = X[:, :, np.newaxis] clf = MockClassifier(allow_nd=True) scores = cval.cross_val_score(clf, X_3d, y) clf = MockClassifier(allow_nd=False) assert_raises(ValueError, cval.cross_val_score, clf, X_3d, y) def test_cross_val_score_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_score(clf, X_df, y_ser) def test_cross_val_score_mask(): # test that cross_val_score works with boolean masks svm = SVC(kernel="linear") iris = load_iris() X, y = iris.data, iris.target cv_indices = cval.KFold(len(y), 5) scores_indices = cval.cross_val_score(svm, X, y, cv=cv_indices) cv_indices = cval.KFold(len(y), 5) cv_masks = [] for train, test in cv_indices: mask_train = np.zeros(len(y), dtype=np.bool) mask_test = np.zeros(len(y), dtype=np.bool) mask_train[train] = 1 mask_test[test] = 1 cv_masks.append((train, test)) scores_masks = cval.cross_val_score(svm, X, y, cv=cv_masks) assert_array_equal(scores_indices, scores_masks) def test_cross_val_score_precomputed(): # test for svm with precomputed kernel svm = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target linear_kernel = np.dot(X, X.T) score_precomputed = cval.cross_val_score(svm, linear_kernel, y) svm = SVC(kernel="linear") score_linear = cval.cross_val_score(svm, X, y) assert_array_equal(score_precomputed, score_linear) # Error raised for non-square X svm = SVC(kernel="precomputed") assert_raises(ValueError, cval.cross_val_score, svm, X, y) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cval.cross_val_score, svm, linear_kernel.tolist(), y) def test_cross_val_score_fit_params(): clf = MockClassifier() n_samples = X.shape[0] n_classes = len(np.unique(y)) DUMMY_INT = 42 DUMMY_STR = '42' DUMMY_OBJ = object() def assert_fit_params(clf): # Function to test that the values are passed correctly to the # classifier arguments for non-array type assert_equal(clf.dummy_int, DUMMY_INT) assert_equal(clf.dummy_str, DUMMY_STR) assert_equal(clf.dummy_obj, DUMMY_OBJ) fit_params = {'sample_weight': np.ones(n_samples), 'class_prior': np.ones(n_classes) / n_classes, 'sparse_sample_weight': W_sparse, 'sparse_param': P_sparse, 'dummy_int': DUMMY_INT, 'dummy_str': DUMMY_STR, 'dummy_obj': DUMMY_OBJ, 'callback': assert_fit_params} cval.cross_val_score(clf, X, y, fit_params=fit_params) def test_cross_val_score_score_func(): clf = MockClassifier() _score_func_args = [] def score_func(y_test, y_predict): _score_func_args.append((y_test, y_predict)) return 1.0 with warnings.catch_warnings(record=True): scoring = make_scorer(score_func) score = cval.cross_val_score(clf, X, y, scoring=scoring) assert_array_equal(score, [1.0, 1.0, 1.0]) assert len(_score_func_args) == 3 def test_cross_val_score_errors(): class BrokenEstimator: pass assert_raises(TypeError, cval.cross_val_score, BrokenEstimator(), X) def test_train_test_split_errors(): assert_raises(ValueError, cval.train_test_split) assert_raises(ValueError, cval.train_test_split, range(3), train_size=1.1) assert_raises(ValueError, cval.train_test_split, range(3), test_size=0.6, train_size=0.6) assert_raises(ValueError, cval.train_test_split, range(3), test_size=np.float32(0.6), train_size=np.float32(0.6)) assert_raises(ValueError, cval.train_test_split, range(3), test_size="wrong_type") assert_raises(ValueError, cval.train_test_split, range(3), test_size=2, train_size=4) assert_raises(TypeError, cval.train_test_split, range(3), some_argument=1.1) assert_raises(ValueError, cval.train_test_split, range(3), range(42)) def test_train_test_split(): X = np.arange(100).reshape((10, 10)) X_s = coo_matrix(X) y = np.arange(10) # simple test split = cval.train_test_split(X, y, test_size=None, train_size=.5) X_train, X_test, y_train, y_test = split assert_equal(len(y_test), len(y_train)) # test correspondence of X and y assert_array_equal(X_train[:, 0], y_train * 10) assert_array_equal(X_test[:, 0], y_test * 10) # conversion of lists to arrays (deprecated?) with warnings.catch_warnings(record=True): split = cval.train_test_split(X, X_s, y.tolist()) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_array_equal(X_train, X_s_train.toarray()) assert_array_equal(X_test, X_s_test.toarray()) # don't convert lists to anything else by default split = cval.train_test_split(X, X_s, y.tolist()) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_true(isinstance(y_train, list)) assert_true(isinstance(y_test, list)) # allow nd-arrays X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) split = cval.train_test_split(X_4d, y_3d) assert_equal(split[0].shape, (7, 5, 3, 2)) assert_equal(split[1].shape, (3, 5, 3, 2)) assert_equal(split[2].shape, (7, 7, 11)) assert_equal(split[3].shape, (3, 7, 11)) # test stratification option y = np.array([1, 1, 1, 1, 2, 2, 2, 2]) for test_size, exp_test_size in zip([2, 4, 0.25, 0.5, 0.75], [2, 4, 2, 4, 6]): train, test = cval.train_test_split(y, test_size=test_size, stratify=y, random_state=0) assert_equal(len(test), exp_test_size) assert_equal(len(test) + len(train), len(y)) # check the 1:1 ratio of ones and twos in the data is preserved assert_equal(np.sum(train == 1), np.sum(train == 2)) def train_test_split_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [MockDataFrame] try: from pandas import DataFrame types.append(DataFrame) except ImportError: pass for InputFeatureType in types: # X dataframe X_df = InputFeatureType(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, InputFeatureType)) assert_true(isinstance(X_test, InputFeatureType)) def train_test_split_mock_pandas(): # X mock dataframe X_df = MockDataFrame(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, MockDataFrame)) assert_true(isinstance(X_test, MockDataFrame)) def test_cross_val_score_with_score_func_classification(): iris = load_iris() clf = SVC(kernel='linear') # Default score (should be the accuracy score) scores = cval.cross_val_score(clf, iris.data, iris.target, cv=5) assert_array_almost_equal(scores, [0.97, 1., 0.97, 0.97, 1.], 2) # Correct classification score (aka. zero / one score) - should be the # same as the default estimator score zo_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="accuracy", cv=5) assert_array_almost_equal(zo_scores, [0.97, 1., 0.97, 0.97, 1.], 2) # F1 score (class are balanced so f1_score should be equal to zero/one # score f1_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="f1_weighted", cv=5) assert_array_almost_equal(f1_scores, [0.97, 1., 0.97, 0.97, 1.], 2) def test_cross_val_score_with_score_func_regression(): X, y = make_regression(n_samples=30, n_features=20, n_informative=5, random_state=0) reg = Ridge() # Default score of the Ridge regression estimator scores = cval.cross_val_score(reg, X, y, cv=5) assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # R2 score (aka. determination coefficient) - should be the # same as the default estimator score r2_scores = cval.cross_val_score(reg, X, y, scoring="r2", cv=5) assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # Mean squared error; this is a loss function, so "scores" are negative mse_scores = cval.cross_val_score(reg, X, y, cv=5, scoring="mean_squared_error") expected_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99]) assert_array_almost_equal(mse_scores, expected_mse, 2) # Explained variance scoring = make_scorer(explained_variance_score) ev_scores = cval.cross_val_score(reg, X, y, cv=5, scoring=scoring) assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) def test_permutation_score(): iris = load_iris() X = iris.data X_sparse = coo_matrix(X) y = iris.target svm = SVC(kernel='linear') cv = cval.StratifiedKFold(y, 2) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_greater(score, 0.9) assert_almost_equal(pvalue, 0.0, 1) score_label, _, pvalue_label = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # check that we obtain the same results with a sparse representation svm_sparse = SVC(kernel='linear') cv_sparse = cval.StratifiedKFold(y, 2) score_label, _, pvalue_label = cval.permutation_test_score( svm_sparse, X_sparse, y, n_permutations=30, cv=cv_sparse, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # test with custom scoring object def custom_score(y_true, y_pred): return (((y_true == y_pred).sum() - (y_true != y_pred).sum()) / y_true.shape[0]) scorer = make_scorer(custom_score) score, _, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=100, scoring=scorer, cv=cv, random_state=0) assert_almost_equal(score, .93, 2) assert_almost_equal(pvalue, 0.01, 3) # set random y y = np.mod(np.arange(len(y)), 3) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_less(score, 0.5) assert_greater(pvalue, 0.2) def test_cross_val_generator_with_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) # explicitly passing indices value is deprecated loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) ps = cval.PredefinedSplit([1, 1, 2, 2]) ss = cval.ShuffleSplit(2) for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X[train], X[test] y[train], y[test] @ignore_warnings def test_cross_val_generator_with_default_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) ss = cval.ShuffleSplit(2) ps = cval.PredefinedSplit([1, 1, 2, 2]) for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X[train], X[test] y[train], y[test] def test_shufflesplit_errors(): assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=2.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=1.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=0.1, train_size=0.95) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=11) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=10) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=8, train_size=3) assert_raises(ValueError, cval.ShuffleSplit, 10, train_size=1j) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=None, train_size=None) def test_shufflesplit_reproducible(): # Check that iterating twice on the ShuffleSplit gives the same # sequence of train-test when the random_state is given ss = cval.ShuffleSplit(10, random_state=21) assert_array_equal(list(a for a, b in ss), list(a for a, b in ss)) def test_safe_split_with_precomputed_kernel(): clf = SVC() clfp = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target K = np.dot(X, X.T) cv = cval.ShuffleSplit(X.shape[0], test_size=0.25, random_state=0) tr, te = list(cv)[0] X_tr, y_tr = cval._safe_split(clf, X, y, tr) K_tr, y_tr2 = cval._safe_split(clfp, K, y, tr) assert_array_almost_equal(K_tr, np.dot(X_tr, X_tr.T)) X_te, y_te = cval._safe_split(clf, X, y, te, tr) K_te, y_te2 = cval._safe_split(clfp, K, y, te, tr) assert_array_almost_equal(K_te, np.dot(X_te, X_tr.T)) def test_cross_val_score_allow_nans(): # Check that cross_val_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.cross_val_score(p, X, y, cv=5) def test_train_test_split_allow_nans(): # Check that train_test_split allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) cval.train_test_split(X, y, test_size=0.2, random_state=42) def test_permutation_test_score_allow_nans(): # Check that permutation_test_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.permutation_test_score(p, X, y, cv=5) def test_check_cv_return_types(): X = np.ones((9, 2)) cv = cval.check_cv(3, X, classifier=False) assert_true(isinstance(cv, cval.KFold)) y_binary = np.array([0, 1, 0, 1, 0, 0, 1, 1, 1]) cv = cval.check_cv(3, X, y_binary, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) y_multiclass = np.array([0, 1, 0, 1, 2, 1, 2, 0, 2]) cv = cval.check_cv(3, X, y_multiclass, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) X = np.ones((5, 2)) y_multilabel = [[1, 0, 1], [1, 1, 0], [0, 0, 0], [0, 1, 1], [1, 0, 0]] cv = cval.check_cv(3, X, y_multilabel, classifier=True) assert_true(isinstance(cv, cval.KFold)) y_multioutput = np.array([[1, 2], [0, 3], [0, 0], [3, 1], [2, 0]]) cv = cval.check_cv(3, X, y_multioutput, classifier=True) assert_true(isinstance(cv, cval.KFold)) def test_cross_val_score_multilabel(): X = np.array([[-3, 4], [2, 4], [3, 3], [0, 2], [-3, 1], [-2, 1], [0, 0], [-2, -1], [-1, -2], [1, -2]]) y = np.array([[1, 1], [0, 1], [0, 1], [0, 1], [1, 1], [0, 1], [1, 0], [1, 1], [1, 0], [0, 0]]) clf = KNeighborsClassifier(n_neighbors=1) scoring_micro = make_scorer(precision_score, average='micro') scoring_macro = make_scorer(precision_score, average='macro') scoring_samples = make_scorer(precision_score, average='samples') score_micro = cval.cross_val_score(clf, X, y, scoring=scoring_micro, cv=5) score_macro = cval.cross_val_score(clf, X, y, scoring=scoring_macro, cv=5) score_samples = cval.cross_val_score(clf, X, y, scoring=scoring_samples, cv=5) assert_almost_equal(score_micro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 3]) assert_almost_equal(score_macro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) assert_almost_equal(score_samples, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) def test_cross_val_predict(): boston = load_boston() X, y = boston.data, boston.target cv = cval.KFold(len(boston.target)) est = Ridge() # Naive loop (should be same as cross_val_predict): preds2 = np.zeros_like(y) for train, test in cv: est.fit(X[train], y[train]) preds2[test] = est.predict(X[test]) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_array_almost_equal(preds, preds2) preds = cval.cross_val_predict(est, X, y) assert_equal(len(preds), len(y)) cv = cval.LeaveOneOut(len(y)) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_equal(len(preds), len(y)) Xsp = X.copy() Xsp *= (Xsp > np.median(Xsp)) Xsp = coo_matrix(Xsp) preds = cval.cross_val_predict(est, Xsp, y) assert_array_almost_equal(len(preds), len(y)) preds = cval.cross_val_predict(KMeans(), X) assert_equal(len(preds), len(y)) def bad_cv(): for i in range(4): yield np.array([0, 1, 2, 3]), np.array([4, 5, 6, 7, 8]) assert_raises(ValueError, cval.cross_val_predict, est, X, y, cv=bad_cv()) def test_cross_val_predict_input_types(): clf = Ridge() # Smoke test predictions = cval.cross_val_predict(clf, X, y) assert_equal(predictions.shape, (10,)) # test with multioutput y predictions = cval.cross_val_predict(clf, X_sparse, X) assert_equal(predictions.shape, (10, 2)) predictions = cval.cross_val_predict(clf, X_sparse, y) assert_array_equal(predictions.shape, (10,)) # test with multioutput y predictions = cval.cross_val_predict(clf, X_sparse, X) assert_array_equal(predictions.shape, (10, 2)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) predictions = cval.cross_val_predict(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) predictions = cval.cross_val_predict(clf, X, y.tolist()) # test with 3d X and X_3d = X[:, :, np.newaxis] check_3d = lambda x: x.ndim == 3 clf = CheckingClassifier(check_X=check_3d) predictions = cval.cross_val_predict(clf, X_3d, y) assert_array_equal(predictions.shape, (10,)) def test_cross_val_predict_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_predict(clf, X_df, y_ser) def test_sparse_fit_params(): iris = load_iris() X, y = iris.data, iris.target clf = MockClassifier() fit_params = {'sparse_sample_weight': coo_matrix(np.eye(X.shape[0]))} a = cval.cross_val_score(clf, X, y, fit_params=fit_params) assert_array_equal(a, np.ones(3)) def test_check_is_partition(): p = np.arange(100) assert_true(cval._check_is_partition(p, 100)) assert_false(cval._check_is_partition(np.delete(p, 23), 100)) p[0] = 23 assert_false(cval._check_is_partition(p, 100)) def test_cross_val_predict_sparse_prediction(): # check that cross_val_predict gives same result for sparse and dense input X, y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, return_indicator=True, random_state=1) X_sparse = csr_matrix(X) y_sparse = csr_matrix(y) classif = OneVsRestClassifier(SVC(kernel='linear')) preds = cval.cross_val_predict(classif, X, y, cv=10) preds_sparse = cval.cross_val_predict(classif, X_sparse, y_sparse, cv=10) preds_sparse = preds_sparse.toarray() assert_array_almost_equal(preds_sparse, preds)
bsd-3-clause
boland1992/seissuite_iran
seissuite/sort_later/pointshape.py
2
2014
# -*- coding: utf-8 -*- """ Created on Mon Jun 20 12:28:32 2015 @author: boland """ import sys sys.path.append("/home/boland/Anaconda/lib/python2.7/site-packages") import fiona import shapefile from shapely import geometry import numpy as np import matplotlib.pyplot as plt import pyproj import datetime from matplotlib.path import Path #--------------------------------------------- #DEFINE INPUT PARAMETERS #--------------------------------------------- #enter shapefile absolute or relative path name as string if optimal = True #shape_path = "/home/boland/Dropbox/University/UniMelb/AGOS/PROGRAMS/ANT/Versions/26.04.2015/shapefiles/aus.shp" #N = 130 def shape_(input_shape): with fiona.open(input_shape) as fiona_collection: # In this case, we'll assume the shapefile only has one record/layer (e.g., the shapefile # is just for the borders of a single country, etc.). shapefile_record = fiona_collection.next() # Use Shapely to create the polygon shape = geometry.asShape( shapefile_record['geometry'] ) return shape def points_in_shape(shape_path, N): shape = shape_(shape_path) minx, miny, maxx, maxy = shape.bounds #print minx; print miny; print maxx; print maxy #bounding_box = geometry.box(minx, miny, maxx, maxy) #generate random points within bounding box! N_total = 130**2 sf = shapefile.Reader(shape_path) shape = sf.shapes()[0] #find polygon nodes lat lons verticies = shape.points #convert to a matplotlib path class! polygon = Path(verticies) #points_in_shape = polygon.contains_points(coords) #coords = coords[points_in_shape == True][0:N-1] X = abs(maxx - minx) * np.random.rand(N_total,1) + minx Y = abs(maxy - miny) * np.random.rand(N_total,1) + miny coords = np.column_stack((X,Y)) points_in_shape = polygon.contains_points(coords) coords = coords[points_in_shape == True][0:N] return coords
gpl-3.0
evanbiederstedt/RRBSfun
epiphen/cll_tests/total_CLL_chr11.py
1
8306
import glob import pandas as pd import numpy as np pd.set_option('display.max_columns', 50) # print all rows import os os.chdir("/gpfs/commons/home/biederstedte-934/evan_projects/correct_phylo_files") cw154 = glob.glob("binary_position_RRBS_cw154*") trito = glob.glob("binary_position_RRBS_trito_pool*") print(len(cw154)) print(len(trito)) totalfiles = cw154 + trito print(len(totalfiles)) df_list = [] for file in totalfiles: df = pd.read_csv(file) df = df.drop("Unnamed: 0", axis=1) df["chromosome"] = df["position"].map(lambda x: str(x)[:5]) df = df[df["chromosome"] == "chr11"] df = df.drop("chromosome", axis=1) df_list.append(df) print(len(df_list)) total_matrix = pd.concat([df.set_index("position") for df in df_list], axis=1).reset_index().astype(object) total_matrix = total_matrix.drop("index", axis=1) len(total_matrix.columns) total_matrix.columns = ["RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.ACAACC", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.ACCGCG", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.ACGTGG", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.ACTCAC", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.AGGATG", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.ATAGCG", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.ATCGAC", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.CAAGAG", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.CATGAC", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.CCTTCG", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.CGGTAG", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.CTCAGC", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.GACACG", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.GCATTC", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.GCTGCC", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.GGCATC", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.GTGAGG", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.TAGCGG", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.TATCTC", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.TCTCTG", "RRBS_cw154_Tris_protease_CTCTCTAC.ACAACC", "RRBS_cw154_Tris_protease_CTCTCTAC.ACCGCG", "RRBS_cw154_Tris_protease_CTCTCTAC.ACGTGG", "RRBS_cw154_Tris_protease_CTCTCTAC.ACTCAC", "RRBS_cw154_Tris_protease_CTCTCTAC.AGGATG", "RRBS_cw154_Tris_protease_CTCTCTAC.ATAGCG", "RRBS_cw154_Tris_protease_CTCTCTAC.ATCGAC", "RRBS_cw154_Tris_protease_CTCTCTAC.CATGAC", "RRBS_cw154_Tris_protease_CTCTCTAC.CCTTCG", "RRBS_cw154_Tris_protease_CTCTCTAC.CGGTAG", "RRBS_cw154_Tris_protease_CTCTCTAC.CTATTG", "RRBS_cw154_Tris_protease_CTCTCTAC.CTCAGC", "RRBS_cw154_Tris_protease_CTCTCTAC.GACACG", "RRBS_cw154_Tris_protease_CTCTCTAC.GCATTC", "RRBS_cw154_Tris_protease_CTCTCTAC.GCTGCC", "RRBS_cw154_Tris_protease_CTCTCTAC.GGCATC", "RRBS_cw154_Tris_protease_CTCTCTAC.GTGAGG", "RRBS_cw154_Tris_protease_CTCTCTAC.GTTGAG", "RRBS_cw154_Tris_protease_CTCTCTAC.TAGCGG", "RRBS_cw154_Tris_protease_CTCTCTAC.TATCTC", "RRBS_cw154_Tris_protease_CTCTCTAC.TCTCTG", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.ACAACC", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.ACCGCG", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.ACGTGG", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.ACTCAC", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.AGGATG", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.ATAGCG", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.ATCGAC", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.CATGAC", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.CCTTCG", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.CGGTAG", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.CTATTG", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.CTCAGC", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.GACACG", "RBS_cw154_Tris_protease_GR_CAGAGAGG.GCATTC", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.GCTGCC", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.GGCATC", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.GTGAGG", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.GTTGAG", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.TAGCGG", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.TATCTC", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.TCTCTG", "RRBS_trito_pool_1_TAAGGCGA.ACAACC", "RRBS_trito_pool_1_TAAGGCGA.ACGTGG", "RRBS_trito_pool_1_TAAGGCGA.ACTCAC", "RRBS_trito_pool_1_TAAGGCGA.ATAGCG", "RRBS_trito_pool_1_TAAGGCGA.ATCGAC", "RRBS_trito_pool_1_TAAGGCGA.CAAGAG", "RRBS_trito_pool_1_TAAGGCGA.CATGAC", "RRBS_trito_pool_1_TAAGGCGA.CCTTCG", "RRBS_trito_pool_1_TAAGGCGA.CGGTAG", "RRBS_trito_pool_1_TAAGGCGA.CTATTG", "RRBS_trito_pool_1_TAAGGCGA.GACACG", "RRBS_trito_pool_1_TAAGGCGA.GCATTC", "RRBS_trito_pool_1_TAAGGCGA.GCTGCC", "RRBS_trito_pool_1_TAAGGCGA.GGCATC", "RRBS_trito_pool_1_TAAGGCGA.GTGAGG", "RRBS_trito_pool_1_TAAGGCGA.GTTGAG", "RRBS_trito_pool_1_TAAGGCGA.TAGCGG", "RRBS_trito_pool_1_TAAGGCGA.TATCTC", "RRBS_trito_pool_1_TAAGGCGA.TCTCTG", "RRBS_trito_pool_1_TAAGGCGA.TGACAG", "RRBS_trito_pool_1_TAAGGCGA.TGCTGC", "RRBS_trito_pool_2_CGTACTAG.ACAACC", "RRBS_trito_pool_2_CGTACTAG.ACGTGG", "RRBS_trito_pool_2_CGTACTAG.ACTCAC", "RRBS_trito_pool_2_CGTACTAG.AGGATG", "RRBS_trito_pool_2_CGTACTAG.ATAGCG", "RRBS_trito_pool_2_CGTACTAG.ATCGAC", "RRBS_trito_pool_2_CGTACTAG.CAAGAG", "RRBS_trito_pool_2_CGTACTAG.CATGAC", "RRBS_trito_pool_2_CGTACTAG.CCTTCG", "RRBS_trito_pool_2_CGTACTAG.CGGTAG", "RRBS_trito_pool_2_CGTACTAG.CTATTG", "RRBS_trito_pool_2_CGTACTAG.GACACG", "RRBS_trito_pool_2_CGTACTAG.GCATTC", "RRBS_trito_pool_2_CGTACTAG.GCTGCC", "RRBS_trito_pool_2_CGTACTAG.GGCATC", "RRBS_trito_pool_2_CGTACTAG.GTGAGG", "RRBS_trito_pool_2_CGTACTAG.GTTGAG", "RRBS_trito_pool_2_CGTACTAG.TAGCGG", "RRBS_trito_pool_2_CGTACTAG.TATCTC", "RRBS_trito_pool_2_CGTACTAG.TCTCTG", "RRBS_trito_pool_2_CGTACTAG.TGACAG"] print(total_matrix.shape) total_matrix = total_matrix.applymap(lambda x: int(x) if pd.notnull(x) else str("?")) total_matrix = total_matrix.astype(str).apply(''.join) tott = pd.Series(total_matrix.index.astype(str).str.cat(total_matrix.astype(str),' ')) os.chdir("/gpfs/commons/home/biederstedte-934/evan_projects/CLL_tests") tott.to_csv("total_CLL_chrom11.phy", header=None, index=None) print(tott.shape)
mit
alexvicegrab/tango_master
foreign/itunes_applescript.py
1
5712
from functools import partial import subprocess from organiser.tm_utils import KeyMapper FILE_UPDATE = """osascript -e ' tell application "iTunes" set result to (first file track of playlist "Library" whose {}) set result'\\''s {} to {} end tell'""" CREATE_PLAYLIST = """osascript -e ' tell application "iTunes" set NewPlaylist to (make new user playlist with properties {{name:"{}"}}) end tell'""" PLAY_SONG = """osascript -e ' tell application "iTunes" set result to (first file track of playlist "Library" whose {}) play result delay {} end tell tell app "iTunes" to stop'""" QUEUE_SONG = """osascript -e ' tell application "iTunes" set NewPlaylist to (first playlist whose id is "{}") set result to (first file track of playlist "Library" whose {}) copy result to the end of NewPlaylist end tell'""" REFRESH_SONG = """osascript -e ' tell application "iTunes" set result to (first file track of playlist "Library" whose {}) refresh result end tell'""" _key_mapper = KeyMapper() _key_mapper["Name"] = "Title" _key_mapper["Comment"] = "Comments" def _escape(value): if isinstance(value, (str, bytes)): return '"' + value.replace('"', '\\"').replace("'", "'\\''") + '"' else: return str(value) def _selection(record): # Get relevant fields according to whether we are looking at iTunes or Pandas if "Artist" in record: artist = record["Artist"] else: artist = record["Director"] if "Singers" in record and type(record["Singers"]) != float: artist += f" - {record['Singers']}" if "Name" in record: title = record["Name"] else: title = record["Title"] album = record["Album"] select = f"name is {_escape(title)} and artist contains {_escape(artist)} and album is {_escape(album)}" if "Track ID" in record: select += f" and Database ID is {record['Track ID']}" return select # Playlist functions def create_playlist(playlist): command = CREATE_PLAYLIST.format(_escape(playlist)) return subprocess.check_output(command, shell=True) def play_song(record, duration): command = PLAY_SONG.format(_selection(record), duration) subprocess.call(command, shell=True) def queue_song(playlist, record): command = QUEUE_SONG.format(_escape(playlist), _selection(record)) subprocess.check_output(command, shell=True) def refresh_song(record): command = REFRESH_SONG.format(_selection(record)) subprocess.call(command, shell=True) # Value functions def set_key_value(record, value, key, prepend=""): if record[_key_mapper[key]] != value: # We only run this if record is incorrect command = FILE_UPDATE.format( _selection(record), key.lower(), prepend + _escape(value) ) subprocess.call(command, shell=True) record[_key_mapper[key]] = value return True return False # TODO: We may be able to do this more cleanly def set_artist(record, value): try: director, singers = value.split(" - ") except: director = record["Director"] singers = "" if record["Director"] != director or record["Singers"] != singers: # We only run this if record is incorrect command = FILE_UPDATE.format( _selection(record), "Artist".lower(), _escape(value) ) subprocess.call(command, shell=True) record["Director"] = director record["Singers"] = singers return True return False def set_releasedate(record, value): if value: return set_key_value(record, value, "Release Date", prepend="date ") else: return set_key_value(record, "", "Release Date") # TODO: Is there a more elegant way? def set_love(record, value): if record["Loved"] != value: # We only run this if record is incorrect if value == 1: command = FILE_UPDATE.format( _selection(record), "Loved".lower(), _escape("true") ) if value == -1: command = FILE_UPDATE.format( _selection(record), "Disliked".lower(), _escape("true") ) elif value == 0 and record["Loved"] == -1: command = FILE_UPDATE.format( _selection(record), "Disliked".lower(), _escape("false") ) elif value == 0 and record["Loved"] == 1: command = FILE_UPDATE.format( _selection(record), "Loved".lower(), _escape("false") ) subprocess.call(command, shell=True) record["Loved"] = value return True return False # Time functions # TODO: Update later to use the pandas dataframe instead def set_start(record, value): command = FILE_UPDATE.format(_selection(record), "Start".lower(), round(value, 3)) subprocess.call(command, shell=True) return True # TODO: Update later to use the pandas dataframe instead def set_finish(record, value): command = FILE_UPDATE.format(_selection(record), "Finish".lower(), round(value, 3)) subprocess.call(command, shell=True) return True # TODO: Do we need these functions, or can we directly use the set_key_value where needed? set_bpm = partial(set_key_value, key="BPM") set_comment = partial(set_key_value, key="Comment") set_composer = partial(set_key_value, key="Composer") set_genre = partial(set_key_value, key="Genre") set_grouping = partial(set_key_value, key="Grouping") set_rating = partial(set_key_value, key="Rating") set_title = partial(set_key_value, key="Name") set_year = partial(set_key_value, key="Year")
gpl-3.0
vortex-ape/scikit-learn
sklearn/cluster/tests/test_feature_agglomeration.py
7
1783
""" Tests for sklearn.cluster._feature_agglomeration """ # Authors: Sergul Aydore 2017 import numpy as np from sklearn.cluster import FeatureAgglomeration from sklearn.utils.testing import assert_true, assert_no_warnings from sklearn.utils.testing import assert_array_almost_equal def test_feature_agglomeration(): n_clusters = 1 X = np.array([0, 0, 1]).reshape(1, 3) # (n_samples, n_features) agglo_mean = FeatureAgglomeration(n_clusters=n_clusters, pooling_func=np.mean) agglo_median = FeatureAgglomeration(n_clusters=n_clusters, pooling_func=np.median) assert_no_warnings(agglo_mean.fit, X) assert_no_warnings(agglo_median.fit, X) assert_true(np.size(np.unique(agglo_mean.labels_)) == n_clusters) assert_true(np.size(np.unique(agglo_median.labels_)) == n_clusters) assert_true(np.size(agglo_mean.labels_) == X.shape[1]) assert_true(np.size(agglo_median.labels_) == X.shape[1]) # Test transform Xt_mean = agglo_mean.transform(X) Xt_median = agglo_median.transform(X) assert_true(Xt_mean.shape[1] == n_clusters) assert_true(Xt_median.shape[1] == n_clusters) assert_true(Xt_mean == np.array([1 / 3.])) assert_true(Xt_median == np.array([0.])) # Test inverse transform X_full_mean = agglo_mean.inverse_transform(Xt_mean) X_full_median = agglo_median.inverse_transform(Xt_median) assert_true(np.unique(X_full_mean[0]).size == n_clusters) assert_true(np.unique(X_full_median[0]).size == n_clusters) assert_array_almost_equal(agglo_mean.transform(X_full_mean), Xt_mean) assert_array_almost_equal(agglo_median.transform(X_full_median), Xt_median)
bsd-3-clause
haramoz/RND-ss14
DTreeRegression.py
1
5828
from sklearn import tree from sklearn import cross_validation import numpy as np import matplotlib.pyplot as plt import glob import os from sklearn.metrics import mean_squared_error from math import sqrt import time from pylab import * class regressionUsingDtree: def __init__(self): pass def normalizeColumnwiseData(self): trainingData,desiredLabel = self.loadExperimentData() #Step 1: Check how many columns are there noOfColumns = len(trainingData[0]) trainDataArray = np.asarray(trainingData) print trainingData.shape , noOfColumns normalizedData = np.zeros(trainingData.shape) for col in range(noOfColumns): columnVal = np.asarray(trainingData[:,col]) #print len(columnVal) , len(trainingData) #Step 2: For all the rows and specific column do the normalization meanSubstracted = columnVal - np.mean(columnVal) normalizedColumn = meanSubstracted/np.std(columnVal) #print "alles gut" #Step 3: Stack them vertically one by one normalizedData[:,col] =normalizedColumn #print normalizedData return normalizedData,desiredLabel def loadExperimentData(self): path = "./tuft_real_data/22June/extractedFeatures/" list_of_data_files = glob.glob(path+'data/*.csv') list_of_data_files = sorted(list_of_data_files) flagInitial = True for file_name in list_of_data_files: featureFileName = os.path.splitext(file_name)[0].split("/")[-1] #print featureFileName data = np.loadtxt(fname=file_name,delimiter=',') if flagInitial: flagInitial = False trainData = data else: trainData = np.vstack((trainData,data)) #For reading the labels list_of_label_files = glob.glob(path+'labels/*.csv') list_of_label_files = sorted(list_of_label_files) flagInitial = True for file_name in list_of_label_files: featureFileName = os.path.splitext(file_name)[0].split("/")[-1] #print featureFileName labels = np.loadtxt(fname=file_name,delimiter=',') if flagInitial: flagInitial = False trainLabel = labels else: trainLabel = np.concatenate((trainLabel,labels),axis=0) return trainData,trainLabel def dtreeRegressor(self): #trainingData,desiredLabel = self.loadExperimentData() trainingData,desiredLabel = self.normalizeColumnwiseData() coordinates_train, coordinates_test, windspeed_train, windspeed_test = cross_validation.train_test_split(trainingData,desiredLabel,test_size=0.30) _, coordinates_predict, _, windspeed_predict = cross_validation.train_test_split(coordinates_test, windspeed_test,test_size=0.04) curveFit = tree.DecisionTreeRegressor() #curveFit = tree.DecisionTreeClassifier(max_leaf_nodes=6) curveFit = curveFit.fit(coordinates_train, windspeed_train) predicted_speed = curveFit.predict(coordinates_predict) print "Prediction Score :", curveFit.score(coordinates_test, windspeed_test) print curveFit.predict([.8,.4,.4,.5,.3,.2]) #predicted_speed = curveFit.predict(coordinates_predict) mse = mean_squared_error(windspeed_test, curveFit.predict(coordinates_test)) rms = sqrt(mse) print "mse on the test data: ",mse errorbarValues = [] #errorbins = [-4,-3,-2,-1,0,1,2,3,4,5] errorbins = np.arange(-30,30,1) print "errorbins:", errorbins for threshold in errorbins: correct_estimation = 0 for i in range(len(predicted_speed)): if (windspeed_predict[i] - predicted_speed[i] <= threshold) and (windspeed_predict[i] - predicted_speed[i] > threshold-1): correct_estimation += 1 print "for threshold between: ", threshold ," and ",threshold-1," estimation: ", correct_estimation, " out of : ", len(windspeed_predict) errorbarValues.append(correct_estimation) ############################################################################### # look at the results #plt.plot(np.arange(0,len(predicted_speed),1),predicted_speed, c='g') fig = plt.figure() ax = fig.add_subplot(111) width = 0.4 ax.bar([i - width for i in errorbins],errorbarValues,width,color="y",alpha=0.7) #ax.bar(errorbins,errorbarValues,width,color="y",alpha=0.7) plt.xlabel("Estimation error(kmph)") plt.ylabel("Number of observation") plt.title("Error histogram DTR") ax.set_xlim(-25,25) plt.grid() fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(np.arange(0,len(predicted_speed),1),predicted_speed, c='g',marker='+', label='predicted speed') #plt.hold('on') ax.scatter(np.arange(0,len(windspeed_predict),1),windspeed_predict, c='r',marker='x', label='Actual data') ax.set_xlim(-2,len(windspeed_predict)) ax.set_ylim(8,45) plt.xlabel('Number of test cases') plt.ylabel('wind speed') plt.title('Decision tree Regression') ax.legend() for i in range(len(predicted_speed)): ax.annotate('', xy=(i, windspeed_predict[i]), xytext=(i, predicted_speed[i]), arrowprops=dict(facecolor='b',alpha=0.5, shrink=0.03,headwidth=4.5,width=1.5,frac=0.4), ) plt.show() if __name__ == "__main__": regressor = regressionUsingDtree() start_time = time.time() regressor.dtreeRegressor() print("--- %s seconds ---" % (time.time() - start_time))
gpl-2.0
exa-analytics/exatomic
exatomic/nwchem/tests/test_output.py
2
2589
# -*- coding: utf-8 -*- ## Copyright (c) 2015-2020, Exa Analytics Development Team ## Distributed under the terms of the Apache License 2.0 """ Tests for :mod:`~exatomic.nwchem.output` ############################################# """ #import numpy as np #import pandas as pd from unittest import TestCase from exatomic.base import resource from exatomic.nwchem.output import Output class TestNWChemOutput(TestCase): def setUp(self): self.mam1 = Output(resource('nw-ch3nh2-631g.out')) self.mam2 = Output(resource('nw-ch3nh2-augccpvdz.out')) self.nap_roa = Output(resource('nw-naproxen-def2tzvp-roa.out')) self.meth_roa = Output(resource('nw-methyloxirane-def2tzvp-roa.out')) def test_parse_atom(self): self.mam1.parse_atom() self.mam2.parse_atom() self.assertEqual(self.mam1.atom.shape[0], 7) self.assertEqual(self.mam2.atom.shape[0], 7) def test_parse_orbital(self): self.mam1.parse_orbital() self.mam2.parse_orbital() self.assertEqual(self.mam1.orbital.shape[0], 28) self.assertEqual(self.mam2.orbital.shape[0], 91) def test_parse_basis_set(self): self.mam1.parse_basis_set() self.mam2.parse_basis_set() self.assertEqual(self.mam1.basis_set.shape[0], 32) self.assertEqual(self.mam2.basis_set.shape[0], 57) def test_parse_basis_set_order(self): self.mam1.parse_basis_set_order() self.mam2.parse_basis_set_order() self.assertEqual(self.mam1.basis_set_order.shape[0], 28) self.assertEqual(self.mam2.basis_set_order.shape[0], 91) def test_parse_frame(self): self.mam1.parse_frame() self.mam2.parse_frame() self.assertEqual(self.mam1.frame.shape[0], 1) self.assertEqual(self.mam2.frame.shape[0], 1) def test_parse_momatrix(self): self.mam1.parse_momatrix() self.mam2.parse_momatrix() self.assertEqual(self.mam1.momatrix.shape[0], 784) self.assertEqual(self.mam2.momatrix.shape[0], 8281) def test_parse_roa(self): self.nap_roa.parse_roa() self.assertEqual(self.nap_roa.roa.shape[0], 10) self.meth_roa.parse_roa() self.assertEqual(self.meth_roa.roa.shape[0], 10) def test_parse_gradient(self): self.nap_roa.parse_gradient() self.assertEqual(self.nap_roa.gradient.shape[0], 31) self.meth_roa.parse_gradient() self.assertEqual(self.meth_roa.gradient.shape[0], 10) def test_to_universe(self): self.mam1.to_universe() self.mam2.to_universe()
apache-2.0
ratnania/pigasus
tests/test_monge_ampere_mesh_picard.py
1
8410
# -*- coding: UTF-8 -*- #! /usr/bin/python from pigasus.utils.manager import context # ... try: from matplotlib import pyplot as plt PLOT=True except ImportError: PLOT=False # ... from caid.cad_geometry import square from caid.cad_geometry import circle from caid.cad_geometry import quart_circle from caid.cad_geometry import annulus import numpy as np from time import time import sys import inspect filename = inspect.getfile(inspect.currentframe()) # script filename (usually with path) sys.stdout = open(filename.split('.py')[0]+'.txt', 'w') # ... import picard from monge_ampere module from pigasus.utils.load import load monge_ampere = load("monge_ampere") picard = monge_ampere.picard # ... abs = np.abs; sin = np.sin ; cos = np.cos ; exp = np.exp ; sqrt = np.sqrt pi = np.pi; atan = np.arctan2 ; cosh = np.cosh sech = lambda x: 1./cosh(x) #----------------------------------- try: nx = int(sys.argv[1]) except: nx = 15 try: ny = int(sys.argv[2]) except: ny = 15 try: px = int(sys.argv[3]) except: px = 2 try: py = int(sys.argv[4]) except: py = 2 geo = square(n=[nx,ny], p=[px,py]) #geo = circle(radius=1.,n=[nx,ny], p=[px,py]) #geo = quart_circle(n=[nx,ny], p=[px,py]) #geo = annulus(n=[nx,ny], p=[px,py]) #from caid.cad_geometry import cad_geometry as domain #geo = domain("input/iter_inner.xml") #----------------------------------- #----------------------------------- verbose = False withTwoGrids = True # p_H = [ 5, 5] # p_h = [ 5, 5] p_H = [ 3, 3] p_h = [ 3, 3] # p_H = [ 2, 2] # p_h = [ 2, 2] # TEST 1 # # p = 5 # rtol_H = 1.e-4 # rtol_h = 1.e-8 # p = 3 # rtol_H = 1.e-4 # rtol_h = 1.e-6 # p = 2 # rtol_H = 1.e-4 # rtol_h = 1.e-4 # TEST 3 # p = 3, 5 rtol_H = 1.e-3 rtol_h = 1.e-3 # # p = 2 ## rtol_H = 1.e-2 ## rtol_h = 1.e-2 rtol2_H = 1.e-6 # rtol2_h = 1.e-6 rtol2_h = 1.e-9 maxiter_H = 40 maxiter_h = 40 n_H = [7,7] nstage = 1 #----------------------------------- #----------------------------------- # ... # exact solution # ... C0 = 1.0 # ... test 1 rho0 = lambda x,y : 1. C1 = 0.616805883732 t = 0.5 rho1 = lambda x,y : (1. + 5*exp(-50*abs((x-0.5-t)**2+(y-0.5)**2-0.09))) # ... # ... test 2 #rho0 = lambda x,y : 1. #C1 = 1.75484181939 #rho1 = lambda x,y : ( 1. / (2. + cos(8*pi*sqrt((x-0.5)**2+(y-0.5)**2)))) # ... # ... test 3 #rho0 = lambda x,y : 1. #C1 = 0.285547502263 #rho1 = lambda x,y : (1. + 10*exp(-50*(y-0.5-0.25*sin(2*pi*x))**2)) # ... # ... #rho0 = lambda x,y : 1. #t = 0.25 #C1 = 0.702563292151 #rho1 = lambda x,y : (1. + 5*exp(-50*abs((x-0.5-0.25*cos(2*pi*t))**2 \ # - (y-0.5-0.5 *sin(2*pi*t))**2 \ # - 0.01) )) # ... # ... #rho0 = lambda x,y : 1. #t = 1./3 #C1 = 0.831806957866 #rho1 = lambda x,y : ( 1. + 5*exp(-50*abs(y-0.5-0.25*sin(2*pi*x)*sin(2*pi*t)))) # ... # ... #rho0 = lambda x,y : 1. #gamma = 5. #lamb = 100. #t = 0.75 #C1 = 0.832943327557 #x0 = t ; y0 = 0.2 + 0.5 * t ; x1 = 1. - t ; y1 = 0.8 - 0.5 * t #u0 = lambda x,y : gamma * sech(lamb * ( x - x0 + y - y0 )) #u1 = lambda x,y : gamma * sech(lamb * ( x - x1 + y - y1 )) #rho1 = lambda x,y : ( 1. + u0(x,y) + u1(x,y)) # ... # ... test7 #xc = 0.7 ; yc = 0.5 #C1 = 0.281648379406 # #rho0 = lambda x,y : 1. #r = lambda s,t : sqrt( (s-xc)**2 + (t-yc)**2 ) #theta = lambda s,t : atan(t-yc,s-xc) #def rho1(s,t): # r_ = r(s,t) ; t_ = theta(s,t) # val = C1 * (1. + 9./(1. + (10*r_*cos(t_-20*r_**2))**2) ) # return val # ... ## ... # circle #rho0 = lambda x,y : 1./pi #C1 = 0.227475185932 #rho1 = lambda x,y : C1 * (1. + 5*exp(-25*abs((x-0.)**2+(y-0.)**2-0.4))) ## ... # ... # quart_circle #rho0 = lambda x,y : 4./pi #C1 = 2.91639889933 #rho1 = lambda x,y : C1 * ( 1. / (2. + cos(8*pi*sqrt((x-0.5)**2+(y-0.5)**2)))) # ... # ... annulus #C0 = 0.424413181542 #rho0 = lambda x,y : C0 * 1. #C1 = 0.733393862165 #rho1 = lambda x,y : C1 * ( 1. / (2. + cos(8*pi*sqrt((x-0.5)**2+(y-0.5)**2)))) # ... # ... #list_r = np.genfromtxt('input/r.txt') #list_ix = np.genfromtxt('input/ix.txt') #list_iy = np.genfromtxt('input/iy.txt') # #list_kx = 2 * pi * np.asarray(list_ix) #list_ky = 2 * pi * np.asarray(list_iy) # ... # ... #C0 = 0.424413181542 #rho0 = lambda x,y : C0 * 1. ##C1 = 0.144432578196 # annulus, test 2 #C1 = 0.103412631611 # annulus, test 3 #def rho1(x,y): # window = exp(-10*abs((x-0.)**2+(y-0.)**2-0.8**2)) # res = 0. # for (kx,ky,r) in zip(list_kx,list_ky,list_r): ## res += r * (1+sin(kx*x)) * (1+sin(ky*y)) # test 2 # res += (1+sin(x)) * (1+sin(ky*y)) # test 3 # res *= window # res += 1.5 # return res # ... # ... #C0 = 0.0471623135665 #rho0 = lambda x,y : C0 * 1. #C1 = 0.0223721108636 #ITER, test 2 ##C1 = 0.0195621124256 #ITER, test 3 #def rho1(x,y): # window = exp(-10*abs(0.5*(x-6.)**2+0.15*(y-0.5)**2-1.0**2)) # res = 0. # for (kx,ky,r) in zip(list_kx,list_ky,list_r): # res += r * (1+sin(kx*x)) * (1+sin(ky*y)) # test 2 ## res += (1+sin(x)) * (1+sin(ky*y)) # test 3 # res *= window # res += 1.5 # return res # ... # ... n_h = [] for axis in range(0,2): n = n_H[axis] for i in range(0, nstage): n = 2*n+1 n_h.append(n) if withTwoGrids: print(">>>> coarse grid ", n_H, " with splines of degree ", p_H) print(">>>> fine grid ", n_h, " with splines of degree ", p_h) if withTwoGrids: geo_H = square(n=n_H, p=p_H) geo_h = square(n=n_h, p=p_h) # ... # ... # values of gradu.n at the boundary # ... def func_g(x,y): return [x,y] # ... #----------------------------------- # ... # values of u at the boundary # ... bc_neumann={} for data in geo_h.external_faces: patch_id = int(data[0]) ; face_id = int(data[1]) bc_neumann[patch_id,face_id] = func_g # ... #----------------------------------- # ... tc = {} tc['A'] = lambda x,y : [1., 0., 0., 1.] tc['b'] = lambda x,y : [1.e-3] tc['u'] = lambda x,y : [0.] tc['f'] = lambda x,y : [0.] tc['bc_neumann'] = bc_neumann # ... with context(): # PDE_H = picard(geometry=geo_H, testcase=tc) # PDE_h = picard(geometry=geo_h, testcase=tc) if withTwoGrids: PDE_H = picard(geometry=geo_H, bc_neumann=bc_neumann) PDE_h = picard(geometry=geo_h, bc_neumann=bc_neumann) # ... print(">>> Solving using Picard <<<") # ... if withTwoGrids: if PDE_H.Dirichlet: U_H = PDE_H.unknown_dirichlet else: U_H = PDE_H.unknown if PDE_h.Dirichlet: U_h = PDE_h.unknown_dirichlet else: U_h = PDE_h.unknown # ... # ... c_rho = C0/C1 # ... # ... if withTwoGrids: print("*****************************") tb = time() Errors_H, ErrorsH1_H = PDE_H.solve( rho0, rho1, c_rho=None, u0=None \ , maxiter=maxiter_H, rtol=rtol_H, rtol2=rtol2_h, verbose=verbose) te = time() print("Coarse solver converges after ", len(Errors_H) \ , " with final error ", Errors_H[-1] \ , " with final H1-error ", ErrorsH1_H[-1]) print("Elapsed time ", te-tb) print("*****************************") PDE_H.transferSolution(geo_H, U_H, geo_h, U_h) u0 = U_h.get() else: u0 = np.zeros(PDE_h.size) print("*****************************") tb = time() Errors_h, ErrorsH1_h = PDE_h.solve( rho0, rho1, c_rho=None, u0=u0 \ , maxiter=maxiter_h, rtol=rtol_h, rtol2=rtol2_h, verbose=verbose) te = time() print("Monge-Ampere eq. converges after ", len(Errors_h) \ , " with final error ", Errors_h[-1] \ , " with final H1-error ", ErrorsH1_h[-1]) print("Elapsed time ", te-tb) print("*****************************") if withTwoGrids: uH = U_H.get() uh = U_h.get() if withTwoGrids: print("Error-coarse ", np.abs(1.-PDE_H.norm(exact=PDE_H.Err_func))) print("Error-fine ", np.abs(1.-PDE_h.norm(exact=PDE_h.Err_func))) if withTwoGrids: U_H.set(uH) U_h.set(uh) # ... # ... # PDE_H.plotMesh(ntx=60, nty=60) # ... if PLOT: PDE_h.plotMesh(ntx=60, nty=60) plt.savefig(filename.split('.py')[0]+'.png', format='png') plt.clf() # ... np.savetxt("Errors.txt", np.asarray(Errors_h)) if withTwoGrids: PDE_H.free() PDE_h.free()
mit
ZenDevelopmentSystems/scikit-learn
sklearn/ensemble/weight_boosting.py
71
40664
"""Weight Boosting This module contains weight boosting estimators for both classification and regression. The module structure is the following: - The ``BaseWeightBoosting`` base class implements a common ``fit`` method for all the estimators in the module. Regression and classification only differ from each other in the loss function that is optimized. - ``AdaBoostClassifier`` implements adaptive boosting (AdaBoost-SAMME) for classification problems. - ``AdaBoostRegressor`` implements adaptive boosting (AdaBoost.R2) for regression problems. """ # Authors: Noel Dawe <[email protected]> # Gilles Louppe <[email protected]> # Hamzeh Alsalhi <[email protected]> # Arnaud Joly <[email protected]> # # Licence: BSD 3 clause from abc import ABCMeta, abstractmethod import numpy as np from numpy.core.umath_tests import inner1d from .base import BaseEnsemble from ..base import ClassifierMixin, RegressorMixin from ..externals import six from ..externals.six.moves import zip from ..externals.six.moves import xrange as range from .forest import BaseForest from ..tree import DecisionTreeClassifier, DecisionTreeRegressor from ..tree.tree import BaseDecisionTree from ..tree._tree import DTYPE from ..utils import check_array, check_X_y, check_random_state from ..metrics import accuracy_score, r2_score from sklearn.utils.validation import has_fit_parameter, check_is_fitted __all__ = [ 'AdaBoostClassifier', 'AdaBoostRegressor', ] class BaseWeightBoosting(six.with_metaclass(ABCMeta, BaseEnsemble)): """Base class for AdaBoost estimators. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator=None, n_estimators=50, estimator_params=tuple(), learning_rate=1., random_state=None): super(BaseWeightBoosting, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, estimator_params=estimator_params) self.learning_rate = learning_rate self.random_state = random_state def fit(self, X, y, sample_weight=None): """Build a boosted classifier/regressor from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. The dtype is forced to DTYPE from tree._tree if the base classifier of this ensemble weighted boosting classifier is a tree or forest. y : array-like of shape = [n_samples] The target values (class labels in classification, real numbers in regression). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to 1 / n_samples. Returns ------- self : object Returns self. """ # Check parameters if self.learning_rate <= 0: raise ValueError("learning_rate must be greater than zero") if (self.base_estimator is None or isinstance(self.base_estimator, (BaseDecisionTree, BaseForest))): dtype = DTYPE accept_sparse = 'csc' else: dtype = None accept_sparse = ['csr', 'csc'] X, y = check_X_y(X, y, accept_sparse=accept_sparse, dtype=dtype) if sample_weight is None: # Initialize weights to 1 / n_samples sample_weight = np.empty(X.shape[0], dtype=np.float) sample_weight[:] = 1. / X.shape[0] else: # Normalize existing weights sample_weight = sample_weight / sample_weight.sum(dtype=np.float64) # Check that the sample weights sum is positive if sample_weight.sum() <= 0: raise ValueError( "Attempting to fit with a non-positive " "weighted number of samples.") # Check parameters self._validate_estimator() # Clear any previous fit results self.estimators_ = [] self.estimator_weights_ = np.zeros(self.n_estimators, dtype=np.float) self.estimator_errors_ = np.ones(self.n_estimators, dtype=np.float) for iboost in range(self.n_estimators): # Boosting step sample_weight, estimator_weight, estimator_error = self._boost( iboost, X, y, sample_weight) # Early termination if sample_weight is None: break self.estimator_weights_[iboost] = estimator_weight self.estimator_errors_[iboost] = estimator_error # Stop if error is zero if estimator_error == 0: break sample_weight_sum = np.sum(sample_weight) # Stop if the sum of sample weights has become non-positive if sample_weight_sum <= 0: break if iboost < self.n_estimators - 1: # Normalize sample_weight /= sample_weight_sum return self @abstractmethod def _boost(self, iboost, X, y, sample_weight): """Implement a single boost. Warning: This method needs to be overriden by subclasses. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples] The current sample weights. Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. error : float The classification error for the current boost. If None then boosting has terminated early. """ pass def staged_score(self, X, y, sample_weight=None): """Return staged scores for X, y. This generator method yields the ensemble score after each iteration of boosting and therefore allows monitoring, such as to determine the score on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like, shape = [n_samples] Labels for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. Returns ------- z : float """ for y_pred in self.staged_predict(X): if isinstance(self, ClassifierMixin): yield accuracy_score(y, y_pred, sample_weight=sample_weight) else: yield r2_score(y, y_pred, sample_weight=sample_weight) @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ if self.estimators_ is None or len(self.estimators_) == 0: raise ValueError("Estimator not fitted, " "call `fit` before `feature_importances_`.") try: norm = self.estimator_weights_.sum() return (sum(weight * clf.feature_importances_ for weight, clf in zip(self.estimator_weights_, self.estimators_)) / norm) except AttributeError: raise AttributeError( "Unable to compute feature importances " "since base_estimator does not have a " "feature_importances_ attribute") def _validate_X_predict(self, X): """Ensure that X is in the proper format""" if (self.base_estimator is None or isinstance(self.base_estimator, (BaseDecisionTree, BaseForest))): X = check_array(X, accept_sparse='csr', dtype=DTYPE) else: X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) return X def _samme_proba(estimator, n_classes, X): """Calculate algorithm 4, step 2, equation c) of Zhu et al [1]. References ---------- .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ proba = estimator.predict_proba(X) # Displace zero probabilities so the log is defined. # Also fix negative elements which may occur with # negative sample weights. proba[proba < np.finfo(proba.dtype).eps] = np.finfo(proba.dtype).eps log_proba = np.log(proba) return (n_classes - 1) * (log_proba - (1. / n_classes) * log_proba.sum(axis=1)[:, np.newaxis]) class AdaBoostClassifier(BaseWeightBoosting, ClassifierMixin): """An AdaBoost classifier. An AdaBoost [1] classifier is a meta-estimator that begins by fitting a classifier on the original dataset and then fits additional copies of the classifier on the same dataset but where the weights of incorrectly classified instances are adjusted such that subsequent classifiers focus more on difficult cases. This class implements the algorithm known as AdaBoost-SAMME [2]. Read more in the :ref:`User Guide <adaboost>`. Parameters ---------- base_estimator : object, optional (default=DecisionTreeClassifier) The base estimator from which the boosted ensemble is built. Support for sample weighting is required, as well as proper `classes_` and `n_classes_` attributes. n_estimators : integer, optional (default=50) The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early. learning_rate : float, optional (default=1.) Learning rate shrinks the contribution of each classifier by ``learning_rate``. There is a trade-off between ``learning_rate`` and ``n_estimators``. algorithm : {'SAMME', 'SAMME.R'}, optional (default='SAMME.R') If 'SAMME.R' then use the SAMME.R real boosting algorithm. ``base_estimator`` must support calculation of class probabilities. If 'SAMME' then use the SAMME discrete boosting algorithm. The SAMME.R algorithm typically converges faster than SAMME, achieving a lower test error with fewer boosting iterations. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- estimators_ : list of classifiers The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] The classes labels. n_classes_ : int The number of classes. estimator_weights_ : array of floats Weights for each estimator in the boosted ensemble. estimator_errors_ : array of floats Classification error for each estimator in the boosted ensemble. feature_importances_ : array of shape = [n_features] The feature importances if supported by the ``base_estimator``. See also -------- AdaBoostRegressor, GradientBoostingClassifier, DecisionTreeClassifier References ---------- .. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting", 1995. .. [2] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ def __init__(self, base_estimator=None, n_estimators=50, learning_rate=1., algorithm='SAMME.R', random_state=None): super(AdaBoostClassifier, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, learning_rate=learning_rate, random_state=random_state) self.algorithm = algorithm def fit(self, X, y, sample_weight=None): """Build a boosted classifier from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to ``1 / n_samples``. Returns ------- self : object Returns self. """ # Check that algorithm is supported if self.algorithm not in ('SAMME', 'SAMME.R'): raise ValueError("algorithm %s is not supported" % self.algorithm) # Fit return super(AdaBoostClassifier, self).fit(X, y, sample_weight) def _validate_estimator(self): """Check the estimator and set the base_estimator_ attribute.""" super(AdaBoostClassifier, self)._validate_estimator( default=DecisionTreeClassifier(max_depth=1)) # SAMME-R requires predict_proba-enabled base estimators if self.algorithm == 'SAMME.R': if not hasattr(self.base_estimator_, 'predict_proba'): raise TypeError( "AdaBoostClassifier with algorithm='SAMME.R' requires " "that the weak learner supports the calculation of class " "probabilities with a predict_proba method.\n" "Please change the base estimator or set " "algorithm='SAMME' instead.") if not has_fit_parameter(self.base_estimator_, "sample_weight"): raise ValueError("%s doesn't support sample_weight." % self.base_estimator_.__class__.__name__) def _boost(self, iboost, X, y, sample_weight): """Implement a single boost. Perform a single boost according to the real multi-class SAMME.R algorithm or to the discrete SAMME algorithm and return the updated sample weights. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples] The current sample weights. Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. estimator_error : float The classification error for the current boost. If None then boosting has terminated early. """ if self.algorithm == 'SAMME.R': return self._boost_real(iboost, X, y, sample_weight) else: # elif self.algorithm == "SAMME": return self._boost_discrete(iboost, X, y, sample_weight) def _boost_real(self, iboost, X, y, sample_weight): """Implement a single boost using the SAMME.R real algorithm.""" estimator = self._make_estimator() try: estimator.set_params(random_state=self.random_state) except ValueError: pass estimator.fit(X, y, sample_weight=sample_weight) y_predict_proba = estimator.predict_proba(X) if iboost == 0: self.classes_ = getattr(estimator, 'classes_', None) self.n_classes_ = len(self.classes_) y_predict = self.classes_.take(np.argmax(y_predict_proba, axis=1), axis=0) # Instances incorrectly classified incorrect = y_predict != y # Error fraction estimator_error = np.mean( np.average(incorrect, weights=sample_weight, axis=0)) # Stop if classification is perfect if estimator_error <= 0: return sample_weight, 1., 0. # Construct y coding as described in Zhu et al [2]: # # y_k = 1 if c == k else -1 / (K - 1) # # where K == n_classes_ and c, k in [0, K) are indices along the second # axis of the y coding with c being the index corresponding to the true # class label. n_classes = self.n_classes_ classes = self.classes_ y_codes = np.array([-1. / (n_classes - 1), 1.]) y_coding = y_codes.take(classes == y[:, np.newaxis]) # Displace zero probabilities so the log is defined. # Also fix negative elements which may occur with # negative sample weights. proba = y_predict_proba # alias for readability proba[proba < np.finfo(proba.dtype).eps] = np.finfo(proba.dtype).eps # Boost weight using multi-class AdaBoost SAMME.R alg estimator_weight = (-1. * self.learning_rate * (((n_classes - 1.) / n_classes) * inner1d(y_coding, np.log(y_predict_proba)))) # Only boost the weights if it will fit again if not iboost == self.n_estimators - 1: # Only boost positive weights sample_weight *= np.exp(estimator_weight * ((sample_weight > 0) | (estimator_weight < 0))) return sample_weight, 1., estimator_error def _boost_discrete(self, iboost, X, y, sample_weight): """Implement a single boost using the SAMME discrete algorithm.""" estimator = self._make_estimator() try: estimator.set_params(random_state=self.random_state) except ValueError: pass estimator.fit(X, y, sample_weight=sample_weight) y_predict = estimator.predict(X) if iboost == 0: self.classes_ = getattr(estimator, 'classes_', None) self.n_classes_ = len(self.classes_) # Instances incorrectly classified incorrect = y_predict != y # Error fraction estimator_error = np.mean( np.average(incorrect, weights=sample_weight, axis=0)) # Stop if classification is perfect if estimator_error <= 0: return sample_weight, 1., 0. n_classes = self.n_classes_ # Stop if the error is at least as bad as random guessing if estimator_error >= 1. - (1. / n_classes): self.estimators_.pop(-1) if len(self.estimators_) == 0: raise ValueError('BaseClassifier in AdaBoostClassifier ' 'ensemble is worse than random, ensemble ' 'can not be fit.') return None, None, None # Boost weight using multi-class AdaBoost SAMME alg estimator_weight = self.learning_rate * ( np.log((1. - estimator_error) / estimator_error) + np.log(n_classes - 1.)) # Only boost the weights if I will fit again if not iboost == self.n_estimators - 1: # Only boost positive weights sample_weight *= np.exp(estimator_weight * incorrect * ((sample_weight > 0) | (estimator_weight < 0))) return sample_weight, estimator_weight, estimator_error def predict(self, X): """Predict classes for X. The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : array of shape = [n_samples] The predicted classes. """ pred = self.decision_function(X) if self.n_classes_ == 2: return self.classes_.take(pred > 0, axis=0) return self.classes_.take(np.argmax(pred, axis=1), axis=0) def staged_predict(self, X): """Return staged predictions for X. The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in the ensemble. This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : generator of array, shape = [n_samples] The predicted classes. """ n_classes = self.n_classes_ classes = self.classes_ if n_classes == 2: for pred in self.staged_decision_function(X): yield np.array(classes.take(pred > 0, axis=0)) else: for pred in self.staged_decision_function(X): yield np.array(classes.take( np.argmax(pred, axis=1), axis=0)) def decision_function(self, X): """Compute the decision function of ``X``. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- score : array, shape = [n_samples, k] The decision function of the input samples. The order of outputs is the same of that of the `classes_` attribute. Binary classification is a special cases with ``k == 1``, otherwise ``k==n_classes``. For binary classification, values closer to -1 or 1 mean more like the first or second class in ``classes_``, respectively. """ check_is_fitted(self, "n_classes_") X = self._validate_X_predict(X) n_classes = self.n_classes_ classes = self.classes_[:, np.newaxis] pred = None if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R pred = sum(_samme_proba(estimator, n_classes, X) for estimator in self.estimators_) else: # self.algorithm == "SAMME" pred = sum((estimator.predict(X) == classes).T * w for estimator, w in zip(self.estimators_, self.estimator_weights_)) pred /= self.estimator_weights_.sum() if n_classes == 2: pred[:, 0] *= -1 return pred.sum(axis=1) return pred def staged_decision_function(self, X): """Compute decision function of ``X`` for each boosting iteration. This method allows monitoring (i.e. determine error on testing set) after each boosting iteration. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- score : generator of array, shape = [n_samples, k] The decision function of the input samples. The order of outputs is the same of that of the `classes_` attribute. Binary classification is a special cases with ``k == 1``, otherwise ``k==n_classes``. For binary classification, values closer to -1 or 1 mean more like the first or second class in ``classes_``, respectively. """ check_is_fitted(self, "n_classes_") X = self._validate_X_predict(X) n_classes = self.n_classes_ classes = self.classes_[:, np.newaxis] pred = None norm = 0. for weight, estimator in zip(self.estimator_weights_, self.estimators_): norm += weight if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R current_pred = _samme_proba(estimator, n_classes, X) else: # elif self.algorithm == "SAMME": current_pred = estimator.predict(X) current_pred = (current_pred == classes).T * weight if pred is None: pred = current_pred else: pred += current_pred if n_classes == 2: tmp_pred = np.copy(pred) tmp_pred[:, 0] *= -1 yield (tmp_pred / norm).sum(axis=1) else: yield pred / norm def predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the weighted mean predicted class probabilities of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : array of shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ check_is_fitted(self, "n_classes_") n_classes = self.n_classes_ X = self._validate_X_predict(X) if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R proba = sum(_samme_proba(estimator, n_classes, X) for estimator in self.estimators_) else: # self.algorithm == "SAMME" proba = sum(estimator.predict_proba(X) * w for estimator, w in zip(self.estimators_, self.estimator_weights_)) proba /= self.estimator_weights_.sum() proba = np.exp((1. / (n_classes - 1)) * proba) normalizer = proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba /= normalizer return proba def staged_predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the weighted mean predicted class probabilities of the classifiers in the ensemble. This generator method yields the ensemble predicted class probabilities after each iteration of boosting and therefore allows monitoring, such as to determine the predicted class probabilities on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : generator of array, shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ X = self._validate_X_predict(X) n_classes = self.n_classes_ proba = None norm = 0. for weight, estimator in zip(self.estimator_weights_, self.estimators_): norm += weight if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R current_proba = _samme_proba(estimator, n_classes, X) else: # elif self.algorithm == "SAMME": current_proba = estimator.predict_proba(X) * weight if proba is None: proba = current_proba else: proba += current_proba real_proba = np.exp((1. / (n_classes - 1)) * (proba / norm)) normalizer = real_proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 real_proba /= normalizer yield real_proba def predict_log_proba(self, X): """Predict class log-probabilities for X. The predicted class log-probabilities of an input sample is computed as the weighted mean predicted class log-probabilities of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : array of shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ return np.log(self.predict_proba(X)) class AdaBoostRegressor(BaseWeightBoosting, RegressorMixin): """An AdaBoost regressor. An AdaBoost [1] regressor is a meta-estimator that begins by fitting a regressor on the original dataset and then fits additional copies of the regressor on the same dataset but where the weights of instances are adjusted according to the error of the current prediction. As such, subsequent regressors focus more on difficult cases. This class implements the algorithm known as AdaBoost.R2 [2]. Read more in the :ref:`User Guide <adaboost>`. Parameters ---------- base_estimator : object, optional (default=DecisionTreeRegressor) The base estimator from which the boosted ensemble is built. Support for sample weighting is required. n_estimators : integer, optional (default=50) The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early. learning_rate : float, optional (default=1.) Learning rate shrinks the contribution of each regressor by ``learning_rate``. There is a trade-off between ``learning_rate`` and ``n_estimators``. loss : {'linear', 'square', 'exponential'}, optional (default='linear') The loss function to use when updating the weights after each boosting iteration. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- estimators_ : list of classifiers The collection of fitted sub-estimators. estimator_weights_ : array of floats Weights for each estimator in the boosted ensemble. estimator_errors_ : array of floats Regression error for each estimator in the boosted ensemble. feature_importances_ : array of shape = [n_features] The feature importances if supported by the ``base_estimator``. See also -------- AdaBoostClassifier, GradientBoostingRegressor, DecisionTreeRegressor References ---------- .. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting", 1995. .. [2] H. Drucker, "Improving Regressors using Boosting Techniques", 1997. """ def __init__(self, base_estimator=None, n_estimators=50, learning_rate=1., loss='linear', random_state=None): super(AdaBoostRegressor, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, learning_rate=learning_rate, random_state=random_state) self.loss = loss self.random_state = random_state def fit(self, X, y, sample_weight=None): """Build a boosted regressor from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (real numbers). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to 1 / n_samples. Returns ------- self : object Returns self. """ # Check loss if self.loss not in ('linear', 'square', 'exponential'): raise ValueError( "loss must be 'linear', 'square', or 'exponential'") # Fit return super(AdaBoostRegressor, self).fit(X, y, sample_weight) def _validate_estimator(self): """Check the estimator and set the base_estimator_ attribute.""" super(AdaBoostRegressor, self)._validate_estimator( default=DecisionTreeRegressor(max_depth=3)) def _boost(self, iboost, X, y, sample_weight): """Implement a single boost for regression Perform a single boost according to the AdaBoost.R2 algorithm and return the updated sample weights. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels in classification, real numbers in regression). sample_weight : array-like of shape = [n_samples] The current sample weights. Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. estimator_error : float The regression error for the current boost. If None then boosting has terminated early. """ estimator = self._make_estimator() try: estimator.set_params(random_state=self.random_state) except ValueError: pass generator = check_random_state(self.random_state) # Weighted sampling of the training set with replacement # For NumPy >= 1.7.0 use np.random.choice cdf = sample_weight.cumsum() cdf /= cdf[-1] uniform_samples = generator.random_sample(X.shape[0]) bootstrap_idx = cdf.searchsorted(uniform_samples, side='right') # searchsorted returns a scalar bootstrap_idx = np.array(bootstrap_idx, copy=False) # Fit on the bootstrapped sample and obtain a prediction # for all samples in the training set estimator.fit(X[bootstrap_idx], y[bootstrap_idx]) y_predict = estimator.predict(X) error_vect = np.abs(y_predict - y) error_max = error_vect.max() if error_max != 0.: error_vect /= error_max if self.loss == 'square': error_vect **= 2 elif self.loss == 'exponential': error_vect = 1. - np.exp(- error_vect) # Calculate the average loss estimator_error = (sample_weight * error_vect).sum() if estimator_error <= 0: # Stop if fit is perfect return sample_weight, 1., 0. elif estimator_error >= 0.5: # Discard current estimator only if it isn't the only one if len(self.estimators_) > 1: self.estimators_.pop(-1) return None, None, None beta = estimator_error / (1. - estimator_error) # Boost weight using AdaBoost.R2 alg estimator_weight = self.learning_rate * np.log(1. / beta) if not iboost == self.n_estimators - 1: sample_weight *= np.power( beta, (1. - error_vect) * self.learning_rate) return sample_weight, estimator_weight, estimator_error def _get_median_predict(self, X, limit): # Evaluate predictions of all estimators predictions = np.array([ est.predict(X) for est in self.estimators_[:limit]]).T # Sort the predictions sorted_idx = np.argsort(predictions, axis=1) # Find index of median prediction for each sample weight_cdf = self.estimator_weights_[sorted_idx].cumsum(axis=1) median_or_above = weight_cdf >= 0.5 * weight_cdf[:, -1][:, np.newaxis] median_idx = median_or_above.argmax(axis=1) median_estimators = sorted_idx[np.arange(X.shape[0]), median_idx] # Return median predictions return predictions[np.arange(X.shape[0]), median_estimators] def predict(self, X): """Predict regression value for X. The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : array of shape = [n_samples] The predicted regression values. """ check_is_fitted(self, "estimator_weights_") X = self._validate_X_predict(X) return self._get_median_predict(X, len(self.estimators_)) def staged_predict(self, X): """Return staged predictions for X. The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble. This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : generator of array, shape = [n_samples] The predicted regression values. """ check_is_fitted(self, "estimator_weights_") X = self._validate_X_predict(X) for i, _ in enumerate(self.estimators_, 1): yield self._get_median_predict(X, limit=i)
bsd-3-clause
MichalKononenko/T1erminator
learn_T1_NMR_2.py
1
6800
""" Created on Wed Jun 24 11:04:10 2015 Learn T1 NMR experiement run on TOPSPIN T1 inversion recovery model defined in find_T1_model class includes calls to run TOPSPIN commands- NMR experiment @author: Kissan Mistry """ #imports and intializations from __future__ import division from t1_model import T1Model from qinfer.distributions import UniformDistribution #from qinfer.distributions import NormalDistribution from qinfer.smc import SMCUpdater from qinfer.resamplers import LiuWestResampler import numpy as np import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import time import Lorentzian_fit as LF from qinfer.expdesign import ExperimentDesigner import logging log = logging.getLogger(__name__) log.setLevel(logging.DEBUG) model = T1Model() prior = UniformDistribution(np.array([0, 100])) N_particles=100000 updater = SMCUpdater(model, N_particles, prior, resampler=LiuWestResampler(0.98),zero_weight_policy='reset') designer=ExperimentDesigner(updater,opt_algo=1) #Set the value of T1 to Learn, pick 1 value from prior #true_model=prior.sample() true_model=np.array([6.77], dtype=model.expparams_dtype) performance_dtype = [ ('expparams', 'float'), ('sim_outcome', 'float'), ('est_mean', 'float'), ] #NMR EXPERIMENT Initialization******************************* #going to normalize Mo max of 1. #model.Mo=float(raw_input('Please enter Mo: ')) #dummy=float(raw_input('Waiting for Mo: ')) #Mo_norm=LF.lorentzfit('1_spectrum.txt') #model.Mo=(Mo_norm/Mo_norm) # #to save output data timestr = time.strftime("%Y%m%d-%H%M%S") Saver = PdfPages(timestr+'.pdf') save_exp=open(timestr+'_exp.txt','w') save_out=open(timestr+'_out.txt','w') save_mean=open(timestr+'_mean.txt','w') #iterative process to find T1 trials=20 data = np.zeros((trials, 1), dtype=performance_dtype) for idx_trials in xrange(trials): log.info('trial: ' + str(idx_trials)) #CHOOSE EXPERIMENTAL PARAMETER**************************** guess_iter=50 guess_vec=np.zeros((guess_iter,1)) risk_vec=np.zeros((guess_iter,1)) designer.new_exp() store_risk=100000000 for idx_guess in xrange(guess_iter): # print 'guess iteration: '+ str(idx_guess) # guess=np.array([[[0.1+(0.1*idx_guess)]]],dtype=model.expparams_dtype) #sweep guess/incremental increase guess=np.array([model.particle_guess_heuristic(updater, 10000)], dtype=model.expparams_dtype) #generate guess from PGH # print 'Your Guess is: '+ str(guess) #evaluate bayes risk for the guess current_risk=updater.bayes_risk(guess) # print 'bayes_risk: ' + str(current_risk) if current_risk<store_risk: store_risk=current_risk expparams=guess risk_vec[idx_guess]=current_risk guess_vec[idx_guess]=guess log.debug('Your Tau is: ' + str(expparams)) #optimize that guess # expparams=designer.design_expparams_field(guess,0,cost_scale_k=1,disp=False,maxiter=10000,maxfun=10000,store_guess=True,grad_h=1,) # print 'Your Tau is: ' + str(expparams) fig = plt.figure() plt.scatter(guess_vec,risk_vec,s=1) plt.title('Bayes Risk of Guesses, Best Guess= '+str(expparams)) plt.ylabel('Bayes Risk') plt.xlabel(r'$\tau$'+' Guess') Saver.savefig() #THIS MANUALLY COMPARES THE BAYES RISK OF THE GUESS VALUE AND THE OPTIMIZED VALUE AND PLOTS IT FOR SHOW, #TO SEE HOW IT IS CHOOSING THE BEST VALUE. # guess_iter=100 # guess_vec=np.zeros((guess_iter,1)) # grisk_vec=np.zeros((guess_iter,1)) # tau_vec=np.zeros((guess_iter,1)) # trisk_vec=np.zeros((guess_iter,1)) # designer.new_exp() # for idx_guess in xrange(guess_iter): # print 'guess iteration: '+ str(idx_guess) # guess=np.array([model.particle_guess_heuristic(updater,10000)],dtype=model.expparams_dtype ) # guess_risk=updater.bayes_risk(guess) # print 'Your Guess is: '+ str(guess) # guess_vec[idx_guess]=guess # grisk_vec[idx_guess]=guess_risk # expparams=designer.design_expparams_field(guess,0,cost_scale_k=10,disp=False,maxiter=10000,maxfun=10000,store_guess=False,grad_h=1,) # tau_risk=updater.bayes_risk(expparams) # print 'Your Tau is: ' + str(expparams) # tau_vec[idx_guess]=expparams # trisk_vec[idx_guess]=tau_risk # fig1=plt.figure() # plt.scatter(guess_vec,grisk_vec) # fig2=plt.figure() # plt.scatter(tau_vec,trisk_vec) # expparams=np.array([guess_vec[np.argmin(grisk_vec)]],dtype=model.expparams_dtype) #Try getting quantity for Fisher Information and Score # score=model.score() ## expparams=np.array([np.linspace(1, 10, 1000)]) # expparams=model.pgh(updater,10000) #generate guess from PGH # # fisher=model.fisher_information(true_model,expparams) # #SIMULATE******************************************************* #simulate outcomes- based on the true T1, and the chosen intial value #will be replaced by actual data collection from NMR for Mz values sim_outcome=model.simulate_experiment(true_model,expparams) outcome=sim_outcome #NMR EXPERIMENT************************************************* #USE this instead of simualate when doing experiments in NMR # outcome=np.array([[[float(raw_input('Enter obtained Mz: '))]]]) # dummy=float(raw_input('waiting for Mz')) # Mz_value=LF.lorentzfit(str(idx_trials+2)+'_spectrum.txt') # outcome=np.array([[[Mz_value/abs(Mo_norm)]]]) #Run SMC and update the posterior distribution updater.update(outcome,expparams,check_for_resample=True) #STORE DATA****************************************** data[idx_trials]['est_mean'] = updater.est_mean() data[idx_trials]['sim_outcome'] = outcome data[idx_trials]['expparams'] = expparams save_exp.writelines(str(expparams)+'\n') save_mean.write(str(updater.est_mean())+'\n') save_out.write(str(outcome)+'\n') # PLOT ******************************************* #plotting particles and weights particles = updater.particle_locations weights = updater.particle_weights if idx_trials==0: maxw=max(weights) weights=weights/maxw #normalize the posterior fig1 = plt.figure() plt.axvline(updater.est_mean(), linestyle = '--', c = 'blue', linewidth =2,label='Est. Mean') plt.axvline(true_model, linestyle = '--', c = 'red', linewidth = 2,label='True Model') plt.scatter(particles,weights,s=0.1) plt.title('Posterior Distribution T1= '+str(updater.est_mean())) plt.ylabel('Normalized Weight') plt.xlabel('Particles') plt.legend() Saver.savefig() #END LOOP*************************************************** Saver.close() save_exp.close() save_mean.close() save_out.close()
mit
IndraVikas/scikit-learn
benchmarks/bench_plot_fastkmeans.py
294
4676
from __future__ import print_function from collections import defaultdict from time import time import numpy as np from numpy import random as nr from sklearn.cluster.k_means_ import KMeans, MiniBatchKMeans def compute_bench(samples_range, features_range): it = 0 results = defaultdict(lambda: []) chunk = 100 max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print('==============================') print('Iteration %03d of %03d' % (it, max_it)) print('==============================') print() data = nr.random_integers(-50, 50, (n_samples, n_features)) print('K-Means') tstart = time() kmeans = KMeans(init='k-means++', n_clusters=10).fit(data) delta = time() - tstart print("Speed: %0.3fs" % delta) print("Inertia: %0.5f" % kmeans.inertia_) print() results['kmeans_speed'].append(delta) results['kmeans_quality'].append(kmeans.inertia_) print('Fast K-Means') # let's prepare the data in small chunks mbkmeans = MiniBatchKMeans(init='k-means++', n_clusters=10, batch_size=chunk) tstart = time() mbkmeans.fit(data) delta = time() - tstart print("Speed: %0.3fs" % delta) print("Inertia: %f" % mbkmeans.inertia_) print() print() results['MiniBatchKMeans Speed'].append(delta) results['MiniBatchKMeans Quality'].append(mbkmeans.inertia_) return results def compute_bench_2(chunks): results = defaultdict(lambda: []) n_features = 50000 means = np.array([[1, 1], [-1, -1], [1, -1], [-1, 1], [0.5, 0.5], [0.75, -0.5], [-1, 0.75], [1, 0]]) X = np.empty((0, 2)) for i in range(8): X = np.r_[X, means[i] + 0.8 * np.random.randn(n_features, 2)] max_it = len(chunks) it = 0 for chunk in chunks: it += 1 print('==============================') print('Iteration %03d of %03d' % (it, max_it)) print('==============================') print() print('Fast K-Means') tstart = time() mbkmeans = MiniBatchKMeans(init='k-means++', n_clusters=8, batch_size=chunk) mbkmeans.fit(X) delta = time() - tstart print("Speed: %0.3fs" % delta) print("Inertia: %0.3fs" % mbkmeans.inertia_) print() results['MiniBatchKMeans Speed'].append(delta) results['MiniBatchKMeans Quality'].append(mbkmeans.inertia_) return results if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection import matplotlib.pyplot as plt samples_range = np.linspace(50, 150, 5).astype(np.int) features_range = np.linspace(150, 50000, 5).astype(np.int) chunks = np.linspace(500, 10000, 15).astype(np.int) results = compute_bench(samples_range, features_range) results_2 = compute_bench_2(chunks) max_time = max([max(i) for i in [t for (label, t) in results.iteritems() if "speed" in label]]) max_inertia = max([max(i) for i in [ t for (label, t) in results.iteritems() if "speed" not in label]]) fig = plt.figure('scikit-learn K-Means benchmark results') for c, (label, timings) in zip('brcy', sorted(results.iteritems())): if 'speed' in label: ax = fig.add_subplot(2, 2, 1, projection='3d') ax.set_zlim3d(0.0, max_time * 1.1) else: ax = fig.add_subplot(2, 2, 2, projection='3d') ax.set_zlim3d(0.0, max_inertia * 1.1) X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) ax.plot_surface(X, Y, Z.T, cstride=1, rstride=1, color=c, alpha=0.5) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') i = 0 for c, (label, timings) in zip('br', sorted(results_2.iteritems())): i += 1 ax = fig.add_subplot(2, 2, i + 2) y = np.asarray(timings) ax.plot(chunks, y, color=c, alpha=0.8) ax.set_xlabel('Chunks') ax.set_ylabel(label) plt.show()
bsd-3-clause
ApolloAuto/apollo
modules/tools/plot_planning/plot_planning_speed.py
3
4356
#!/usr/bin/env python3 ############################################################################### # Copyright 2019 The Apollo Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### import sys import threading import gflags import matplotlib.animation as animation import matplotlib.pyplot as plt from cyber.python.cyber_py3 import cyber from modules.control.proto import control_cmd_pb2 from modules.planning.proto import planning_pb2 LAST_TRAJ_DATA = [] LAST_TRAJ_T_DATA = [] CURRENT_TRAJ_DATA = [] CURRENT_TRAJ_T_DATA = [] INIT_V_DATA = [] INIT_T_DATA = [] begin_t = None last_t = None lock = threading.Lock() FLAGS = gflags.FLAGS gflags.DEFINE_integer("data_length", 500, "Planning plot data length") def callback(planning_pb): global INIT_V_DATA, INIT_T_DATA global CURRENT_TRAJ_DATA, LAST_TRAJ_DATA global CURRENT_TRAJ_T_DATA, LAST_TRAJ_T_DATA global begin_t, last_t lock.acquire() if begin_t is None: begin_t = planning_pb.header.timestamp_sec current_t = planning_pb.header.timestamp_sec if last_t is not None and abs(current_t - last_t) > 1: begin_t = planning_pb.header.timestamp_sec LAST_TRAJ_DATA = [] LAST_TRAJ_T_DATA = [] CURRENT_TRAJ_DATA = [] CURRENT_TRAJ_T_DATA = [] INIT_V_DATA = [] INIT_T_DATA = [] INIT_T_DATA.append(current_t - begin_t) INIT_V_DATA.append(planning_pb.debug.planning_data.init_point.v) LAST_TRAJ_DATA = [] for v in CURRENT_TRAJ_DATA: LAST_TRAJ_DATA.append(v) LAST_TRAJ_T_DATA = [] for t in CURRENT_TRAJ_T_DATA: LAST_TRAJ_T_DATA.append(t) CURRENT_TRAJ_DATA = [] CURRENT_TRAJ_T_DATA = [] for traj_point in planning_pb.trajectory_point: CURRENT_TRAJ_DATA.append(traj_point.v) CURRENT_TRAJ_T_DATA.append(current_t - begin_t + traj_point.relative_time) lock.release() last_t = current_t def listener(): cyber.init() test_node = cyber.Node("planning_listener") test_node.create_reader("/apollo/planning", planning_pb2.ADCTrajectory, callback) def compensate(data_list): comp_data = [0] * FLAGS.data_length comp_data.extend(data_list) if len(comp_data) > FLAGS.data_length: comp_data = comp_data[-FLAGS.data_length:] return comp_data def update(frame_number): lock.acquire() last_traj.set_xdata(LAST_TRAJ_T_DATA) last_traj.set_ydata(LAST_TRAJ_DATA) current_traj.set_xdata(CURRENT_TRAJ_T_DATA) current_traj.set_ydata(CURRENT_TRAJ_DATA) init_data_line.set_xdata(INIT_T_DATA) init_data_line.set_ydata(INIT_V_DATA) lock.release() #brake_text.set_text('brake = %.1f' % brake_data[-1]) #throttle_text.set_text('throttle = %.1f' % throttle_data[-1]) if len(INIT_V_DATA) > 0: init_data_text.set_text('init point v = %.1f' % INIT_V_DATA[-1]) if __name__ == '__main__': argv = FLAGS(sys.argv) listener() fig, ax = plt.subplots() X = range(FLAGS.data_length) Xs = [i * -1 for i in X] Xs.sort() init_data_line, = ax.plot( INIT_T_DATA, INIT_V_DATA, 'b', lw=2, alpha=0.7, label='init_point_v') current_traj, = ax.plot( CURRENT_TRAJ_T_DATA, CURRENT_TRAJ_DATA, 'r', lw=1, alpha=0.5, label='current_traj') last_traj, = ax.plot( LAST_TRAJ_T_DATA, LAST_TRAJ_DATA, 'g', lw=1, alpha=0.5, label='last_traj') #brake_text = ax.text(0.75, 0.85, '', transform=ax.transAxes) #throttle_text = ax.text(0.75, 0.90, '', transform=ax.transAxes) init_data_text = ax.text(0.75, 0.95, '', transform=ax.transAxes) ani = animation.FuncAnimation(fig, update, interval=100) ax.set_ylim(-1, 30) ax.set_xlim(-1, 60) ax.legend(loc="upper left") plt.show()
apache-2.0
bryndin/tornado-flickr-api
tornado_flickrapi/objects.py
1
70898
# -*- encoding: utf8 -*- """ Object Oriented implementation of Flickr API. Important notes: - For consistency, the naming of methods might differ from the name in the official API. Please check the method "docstring" to know what is the implemented method. - For methods which expect an object "id", either the 'id' string or the object itself can be used as argument. Similar consideration holds for lists of id's. For instance if "photo_id" is expected you can give call the function with named argument "photo=PhotoObject" or with the id string "photo_id=id_string". Author: Alexis Mignon (c) email: alexis.mignon_at_gmail.com Date: 05/08/2011 """ import urllib2 from tornado.gen import coroutine, Return import method_call from flickrerrors import FlickrError from reflection import caller, static_caller, FlickrAutoDoc from UserList import UserList import auth try: import Image import cStringIO except ImportError: pass def dict_converter(keys, func): def convert(dict_): for k in keys: try: dict_[k] = func(dict_[k]) except KeyError: pass return convert class FlickrObject(object): """ Base Object for Flickr API Objects. Flickr Objects are dynamically created from the named arguments given to the constructor. """ __converters__ = [] # some functions used to convert some result field __display__ = [] # The attribute to display when the object is converted # to a string __metaclass__ = FlickrAutoDoc def __init__(self, **params): params["loaded"] = False self._set_properties(**params) def _set_properties(self, **params): for c in self.__class__.__converters__: c(params) self.__dict__.update(params) def setToken(self, filename=None, token=None, token_key=None, token_secret=None): """ Set the authentication token to use with the object. """ if token is None: token = auth.token_factory(filename=filename, token_key=token_key, token_secret=token_secret) self.__dict__["token"] = token def getToken(self): """ Get the authentication token is any. """ return self.__dict__.get("token", None) def __getattr__(self, name): if name == 'id' and name not in self.__dict__: raise AttributeError( "'%s' object has no attribute '%s'" % ( self.__class__.__name__, name) ) if name not in self.__dict__: if not self.loaded: self.load() try: return self.__dict__[name] except KeyError: raise AttributeError( "'%s' object has no attribute '%s'" % ( self.__class__.__name__, name ) ) def __setattr__(self, name, values): raise FlickrError("Readonly attribute") def get(self, key, *args, **kwargs): return self.__dict__.get(key, *args, **kwargs) def __getitem__(self, key): return self.__dict__[key] def __setitem__(self, key, value): raise FlickrError("Read-only attribute") def __str__(self): vals = [] for k in self.__class__.__display__: val_found = False try: value = self.__dict__[k] val_found = True except KeyError: self.load() try: value = self.__dict__[k] val_found = True except KeyError: pass if not val_found: continue if isinstance(value, unicode): value = value.encode("utf8") if isinstance(value, str): value = "'%s'" % value else: value = str(value) if len(value) > 20: value = value[:20] + "..." vals.append("%s=%s" % (k, value)) return "%s(%s)" % (self.__class__.__name__, ", ".join(vals)) def __repr__(self): return str(self) def getInfo(self): """ Returns object information as a dictionnary. Should be overriden. """ return {} def load(self): props = self.getInfo() self.__dict__["loaded"] = True self._set_properties(**props) class FlickrList(UserList): def __init__(self, data=[], info=None): UserList.__init__(self, data) self.info = info def __str__(self): return '%s;%s' % (str(self.data), str(self.info)) def __repr__(self): return '%s;%s' % (repr(self.data), repr(self.info)) class Activity(FlickrObject): @static_caller("flickr.activity.userPhotos") def userPhotos(**args): return args, _extract_activity_list @static_caller("flickr.activity.userComments") def userComments(**args): return args, _extract_activity_list class Blog(FlickrObject): __display__ = ["id", "name"] __converters__ = [ dict_converter(["needspassword"], bool), ] __self_name__ = "blog_id" @caller("flickr.blogs.postPhoto") def postPhoto(self, **args): return _format_id("photo", args), lambda r: None class BlogService(FlickrObject): __display__ = ["id", "text"] __self_name__ = "service" @caller("flickr.blogs.getList") def getList(self, **args): try: args["service"] = args["service"].id except (KeyError, AttributeError): pass def format_result(r, token=None): return [Blog(token=token, **b) for b in _check_list(r["blogs"]["blog"])] return args, format_result @caller("flickr.blogs.postPhoto") def postPhoto(self, **args): return _format_id(args), _none @static_caller("flickr.blogs.getServices") def getServices(): return ({}, lambda r: [BlogService(**s) for s in _check_list(r["services"]["service"])] ) class Camera(FlickrObject): __display__ = ["name"] __self_name__ = "camera" class Brand(FlickrObject): __display__ = ["name"] __self_name__ = "brand" @static_caller("flickr.cameras.getBrands") def getList(): return ({}, lambda r: [Camera.Brand(**b) for b in r["brands"]["brand"]] ) @caller("flickr.cameras.getBrandModels") def getModels(self): return ({}, lambda r: [Camera(**m) for m in r["cameras"]["camera"]] ) class Collection(FlickrObject): __display__ = ["id", "title"] __self_name__ = "collection_id" @caller("flickr.collections.getInfo") def getInfo(self, **args): def format_result(r): collection = r["collection"] icon_photos = _check_list(collection["iconphotos"]["photo"]) photos = [] for p in photos: p["owner"] = Person(p["owner"]) photos.append(Photo(**p)) collection["iconphotos"] = photos return collection return args, format_result @caller("flickr.stats.getCollectionStats") def getStats(self, date, **args): args["date"] = date return args, lambda r: int(r["stats"]["views"]) @caller("flickr.collections.getTree") def getTree(**args): def format_result(r, token=None): collections = _check_list(r["collections"]) collections_ = [] for c in collections: sets = _check_list(c.pop("set")) sets_ = [Photoset(token=token, **s) for s in sets] collections_.append(Collection(token=token, sets=sets_, **c)) return collections_ return _format_id("user", args), format_result class CommonInstitution(FlickrObject): __display__ = ["id", "name"] @static_caller("flickr.commons.getInstitutions") def getInstitutions(): def format_result(r): institutions = _check_list(r["institutions"]["institution"]) institutions_ = [] for i in institutions: urls = _check_list(i['urls']['url']) urls_ = [] for u in urls: u["url"] = u.pop("text") urls_.append(CommonInstitutionUrl(**u)) i["urls"] = urls_ institutions_.append(CommonInstitution(id=i["nsid"], **i)) return institutions_ return {}, format_result class CommonInstitutionUrl(FlickrObject): pass class Contact(FlickrObject): @static_caller("flickr.contacts.getList") def getList(self, **args): def format_result(r): info = r["contacts"] contacts = [Person(id=c["nsid"], **c) for c in _check_list(info["contact"])] return FlickrList(contacts, Info(**info)) return args, format_result @static_caller("flickr.contacts.getListRecentlyUploaded") def getListRecentlyUploaded(self, **args): def format_result(r): info = r["contacts"] contacts = [Person(id=c["nsid"], **c) for c in _check_list(info["contact"])] return FlickrList(contacts, Info(**info)) return args, format_result @static_caller("flickr.contacts.getTaggingSuggestions") def getTaggingSuggestions(self, **args): def format_result(r): info = r["contacts"] contacts = [Person(id=c["nsid"], **c) for c in _check_list(info["contact"])] return FlickrList(contacts, Info(**info)) return args, format_result class Gallery(FlickrObject): __display__ = ["id", "title"] __converters__ = [ dict_converter(["date_create", "date_update", "count_photos", "count_videos"], int), ] __self_name__ = "gallery_id" @caller("flickr.galleries.addPhoto") def addPhoto(self, **args): return _format_id("photo", args), _none @static_caller("flickr.galleries.create") def create(**args): return _format_id("primary_photo"), lambda r: Gallery(**r["gallery"]) @caller("flickr.galleries.editMeta") def editMedia(self, **args): return args, _none @caller("flickr.galleries.editPhoto") def editPhoto(self, **args): return _format_id("photo", args), _none @caller("flickr.galleries.editPhotos") def editPhotos(self, **args): if "photos" in args: args["photo_ids"] = [p.id for p in args.pop("photos")] photo_ids = args["photo_ids"] if isinstance(photo_ids, list): args["photo_ids"] = ", ".join(photo_ids) return _format_id("primary_photo", args), _none @static_caller("flickr.urls.lookupGallery") def getByUrl(url): def format_result(r): gallery = r["gallery"] gallery["owner"] = Person(id=gallery["owner"]) return Gallery(**gallery) return {'url': url}, format_result @caller("flickr.galleries.getInfo") def getInfo(self): def format_result(r, token=None): gallery = r["gallery"] gallery["owner"] = Person(gallery["owner"]) pp_id = gallery.pop("primary_photo_id") pp_secret = gallery.pop("primary_photo_secret") pp_farm = gallery.pop("primary_photo_farm") pp_server = gallery.pop("primary_photo_server") gallery["primary_photo"] = Photo(id=pp_id, secret=pp_secret, server=pp_server, farm=pp_farm, token=token) return gallery return {}, format_result @caller("flickr.galleries.getPhotos") def getPhotos(self, **args): return _format_extras(args), _extract_photo_list class Category(FlickrObject): __display__ = ["id", "name"] class Info(FlickrObject): __converters__ = [ dict_converter(["page", "perpage", "pages", "total", "count"], int) ] __display__ = ["page", "perpage", "pages", "total", "count"] pass class Group(FlickrObject): __converters__ = [ dict_converter(["members", "privacy"], int), dict_converter(["admin", "eighteenplus", "invistation_only"], bool) ] __display__ = ["id", "name"] __self_name__ = "group_id" class Topic(FlickrObject): __display__ = ["id", "subject"] __self_name__ = "topic_id" class Reply(FlickrObject): __display__ = ["id"] __self_name__ = "reply_id" def getToken(self): return self.topic.getToken() @staticmethod def _format_reply(reply): author = { 'id': reply.pop("author"), 'role': reply.pop("role"), 'is_pro': bool(reply.pop("is_pro")), } reply["author"] = Person(**author) return reply @caller("flickr.groups.discuss.replies.getInfo") def getInfo(self, **args): return args, lambda r: self._format_reply(r["reply"]) @caller("flickr.groups.discuss.replies.delete") def delete(self, **args): args["topic_id"] = self.topic.id def getToken(self): return self.group.getToken() @caller("flickr.groups.discuss.replies.add") def addReply(self, **args): return args, _none @staticmethod def _format_topic(topic): """ reformat a topic dict """ author = { 'id': topic.pop("author"), 'is_pro': bool(topic.pop('is_pro')), 'role': topic.pop("role"), } topic["author"] = Person(**author) return topic @caller("flickr.groups.discuss.topics.getInfo") def getInfo(self, **args): def format_result(r): return self._format_topic(r["topic"]) return args, format_result @caller("flickr.groups.discuss.replies.getList") def getReplies(self, **args): def format_result(r): info = r["replies"] return FlickrList( [Group.Topic.Reply(topic=self, **Group.Topic.Reply._format_reply(rep)) for rep in info.pop("reply", [])], Info(**info) ) return args, format_result @caller("flickr.groups.discuss.replies.delete") def delete(self, **args): args["topic_id"] = self.topic.id return args, _none @caller("flickr.groups.discuss.replies.edit") def edit(self, **args): args["topic_id"] = self.topic.id return args, _none @caller("flickr.groups.discuss.topics.add") def addDiscussTopic(**args): return args, _none @static_caller("flickr.groups.browse") def browse(**args): def format_result(r, token): cat = r["category"] subcats = [Category(**c) for c in _check_list(cat.pop("subcats"))] groups = [Group(id=g["nsid"], **g) for g in _check_list(cat.pop("group"))] return Category(id=args["cat_id"], subcats=subcats, groups=groups, **cat) return _format_id("cat", args), format_result @caller("flickr.groups.getInfo") def getInfo(self, **args): return args, lambda r: r["group"] @caller("flickr.urls.getGroup") def getUrl(self, **args): return args, lambda r: r["group"]["url"] @static_caller("flickr.urls.lookupGroup") def getByUrl(url, **args): args["url"] = url def format_result(r): group = r["group"] group["name"] = group.pop("groupname") return Group(**group) return args, format_result @static_caller("flickr.groups.search") def search(**args): def format_result(r, token): info = r["groups"] groups = [Group(id=g["nsid"], **g) for g in info.pop("group")] return FlickrList(groups, Info(**info)) return args, format_result @caller("flickr.groups.members.getList") def getMembers(self, **args): try: membertypes = args["membertypes"] if isinstance(membertypes, list): args["membertypes"] = ", ".join([str(i) for i in membertypes]) except KeyError: pass def format_result(r): info = r["members"] return FlickrList( [Person(**p) for p in _check_list(info.pop("member"))], Info(**info) ) return args, format_result @caller("flickr.groups.pools.add") def addPhoto(self, **args): return _format_id("photo", args), _none @caller("flickr.groups.pools.getContext") def getPoolContext(self, **args): return (_format_id("photo", args), lambda r: (Photo(**r["prevphoto"]), Photo(r["nextphoto"])) ) @caller("flickr.groups.discuss.topics.getList") def getDiscussTopics(self, **args): def format_result(r): info = r["topics"] return FlickrList( [Group.Topic(group=self, **Group.Topic._format_topic(t)) for t in info.pop("topic", [])], Info(**info) ) return args, format_result @static_caller("flickr.groups.pools.getGroups") def getGroups(**args): def format_result(r, token): info = r["groups"] return FlickrList( [Group(token=token, **g) for g in info.pop("group", [])], Info(**info) ) return args, format_result @static_caller("flickr.people.getGroups") def getMemberGroups(**args): def format_result(r, token): info = r["groups"] return FlickrList( [Group(token=token, **g) for g in info.pop("group", [])], Info(**info) ) return args, format_result @caller("flickr.groups.pools.getPhotos") def getPhotos(self, **args): return _format_extras(args), _extract_photo_list @caller("flickr.groups.pools.remove") def removePhoto(self, **args): return _format_id("photo", args), _none @caller("flickr.groups.join") def join(self, **args): return args, _none @caller("flickr.groups.joinRequest") def joinRequest(self, **args): return args, _none @caller("flickr.groups.leave") def leave(self, **args): return args, _none class License(FlickrObject): __display__ = ["id", "name"] __self_name__ = "license_id" @static_caller("flickr.photos.licenses.getInfo") def getList(): def format_result(r): licenses = r["licenses"]["license"] if not isinstance(licenses, list): licenses = [licenses] return [License(**l) for l in licenses] return {}, format_result class Location(FlickrObject): __display__ = ["latitude", "longitude", "accuracy"] __converters__ = [ dict_converter(["latitude", "longitude"], float), dict_converter(["accuracy"], int), ] class MachineTag(FlickrObject): class Namespace(FlickrObject): __display__ = ["text", "usage", "predicate"] class Pair(FlickrObject): __display__ = ["namespace", "text", "usage", "predicate"] class Predicate(FlickrObject): __display__ = ["usage", "text", "namespaces"] class Value(FlickrObject): __display__ = ["usage", "namespace", "predicate", "text"] @static_caller("flickr.machinetags.getNamespaces") def getNamespaces(**args): def format_result(r): info = r["namespaces"] return FlickrList( [MachineTag.Namespace(**ns) for ns in _check_list(info.pop("namespace"))], Info(info) ) return args, format_result @static_caller("flickr.machinetags.getPairs") def getPairs(**args): def format_result(r): info = r["pairs"] return FlickrList( [MachineTag.Pair(**p) for p in _check_list(info.pop("pair"))], Info(info) ) return args, format_result @static_caller("flickr.machinetags.getPredicates") def getPredicates(**args): def format_result(r): info = r["predicates"] return FlickrList( [MachineTag.Predicate(**p) for p in _check_list(info.pop("predicate"))], Info(info) ) return args, format_result @static_caller("flickr.machinetags.getRecentValues") def getRecentValues(**args): def format_result(r): info = r["values"] return FlickrList( [MachineTag.Value(**v) for v in _check_list(info.pop("value"))], Info(info) ) return args, format_result @static_caller("flickr.machinetags.getValues") def getValues(**args): def format_result(r): info = r["values"] return FlickrList( [MachineTag.Value(**v) for v in _check_list(info.pop("value"))], Info(info) ) return args, format_result class Panda(FlickrObject): __display__ = ["name"] __self_name__ = 'panda_name' @static_caller("flickr.panda.getList") def getList(): return ( {}, lambda r: [Panda(name=p, id=p) for p in r["pandas"]["panda"]] ) @caller("flickr.panda.getPhotos") def getPhotos(self, **args): return _format_extras(args), _extract_photo_list class Person(FlickrObject): __converters__ = [ dict_converter(["ispro"], bool), ] __display__ = ["id", "username"] __self_name__ = "user_id" def __init__(self, **params): if not "id" in params: if "nsid" in params: params["id"] = params["nsid"] else: raise ValueError("The 'id' or 'nsid' parameter is required") FlickrObject.__init__(self, **params) @caller("flickr.photos.geo.batchCorrectLocation") def batchCorrectLocation(self, **args): return _format_id("place", args), _none @staticmethod def getFromToken(token=None, filename=None, token_key=None, token_secret=None): """ Retrieve the person corresponding to the authentication token. """ if token is None: token = auth.token_factory(filename=filename, token_key=token_key, token_secret=token_secret) return test.login(token=token) @static_caller("flickr.people.findByEmail") def findByEmail(find_email): return {'find_email': find_email}, lambda r: Person(**r["user"]) @static_caller("flickr.people.findByUsername") def findByUserName(username): return {'username': username}, lambda r: Person(**r["user"]) @static_caller("flickr.urls.lookupUser") def findByUrl(url): return {'url': url}, lambda r: Person(**r["user"]) @caller("flickr.favorites.getContext") def getFavoriteContext(self, **args): def format_result(r, token=None): return (Photo(token=token, **r["prevphoto"]), Photo(token=token, **r["nextphoto"])) return _format_id("photo", args), format_result @caller("flickr.favorites.getList") def getFavorites(self, **args): return _format_extras(args), _extract_photo_list @caller("flickr.photosets.getList") def getPhotosets(self, **args): def format_result(r, token=None): info = r["photosets"] photosets = info.pop("photoset") if not isinstance(photosets, list): phototsets = [photosets] return FlickrList( [Photoset(token=token, **ps) for ps in photosets], Info(**info) ) return args, format_result @caller("flickr.favorites.getPublicList") def getPublicFavorites(self, **args): return _format_extras(args), _extract_photo_list @caller("flickr.people.getInfo") def getInfo(self, **args): def format_result(r): user = r["person"] user["photos_info"] = user.pop("photos") return user return args, format_result @caller("flickr.galleries.getList") def getGalleries(self, **args): def format_result(r, token=True): info = r["galleries"] galleries = _check_list(info.pop("gallery")) galleries_ = [] for g in galleries_: g["owner"] = Person(g["owner"]) pp_id = g.pop("primary_photo_id") pp_secret = g.pop("primary_photo_secret") pp_farm = g.pop("primary_photo_farm") pp_server = g.pop("primary_photo_server") g["primary_photo"] = Gallery(id=pp_id, secret=pp_secret, server=pp_server, farm=pp_farm, token=token) galleries_.append(g) return FlickrList(galleries_, Info(**info)) return args, format_result @caller("flickr.people.getLimits") def getLimits(self): return {}, lambda r: r @caller("flickr.photos.getCounts") def getPhotoCounts(self, **args): return args, lambda r: r["photocounts"]["photocount"] @caller("flickr.people.getPhotos") def getPhotos(self, **args): return args, _extract_photo_list @caller("flickr.urls.getUserPhotos") def getPhotosUrl(self): return {}, lambda r: r["user"]["url"] @caller("flickr.urls.getUserProfile") def getProfileUrl(self): return {}, lambda r: r["user"]["url"] @caller("flickr.people.getPublicPhotos") def getPublicPhotos(self, **args): return args, _extract_photo_list @caller("flickr.people.getPhotosOf") def getPhotosOf(self, **args): return (_format_id("owner", _format_extras(args)), lambda r: _extract_photo_list(r, token=self.Token())) @caller("flickr.contacts.getPublicList") def getPublicContacts(self, **args): def format_result(r, token=None): info = r["contacts"] contacts = [Person(id=c["nsid"], token=token, **c) for c in _check_list(info["contact"])] return FlickrList(contacts, Info(**info)) return args, format_result @caller("flickr.people.getPublicGroups") def getPublicGroups(self, **args): def format_result(r, token=None): groups = r["groups"]["group"] groups_ = [] for gr in groups: gr["id"] = gr["nsid"] groups_.append(Group(token=token, **gr)) return groups_ return args, format_result @static_caller("flickr.people.getUploadStatus") def getUploadStatus(**args): return args, lambda r: r["user"] @caller("flickr.collections.getTree") def getCollectionTree(**args): def format_result(r, token=None): collections = _check_list(r["collections"]) collections_ = [] for c in collections: sets = _check_list(c.pop("set")) sets_ = [Photoset(token=token, **s) for s in sets] collections_.append(Collection(token=token, sets=sets_, **c)) return collections_ return _format_id("collection", args), format_result @caller("flickr.photos.getContactsPublicPhotos") def getContactsPublicPhotos(self, **args): return (_format_extras(args), lambda r: _extract_photo_list(r, token=self.getToken()) ) @caller("flickr.tags.getListUser") def getTags(self): return {}, lambda r: [Tag(**t) for t in r["who"]["tags"]["tag"]] @caller("flickr.tags.getListUserPopular") def getPopularTags(**args): return args, lambda r: [Tag(**t) for t in r["who"]["tags"]["tag"]] @caller("flickr.favorites.remove") def removeFromFavorites(self, **args): return _format_id("photo", args), _none @static_caller("flickr.photos.getNotInSet") def getNotInSetPhotos(**args): return _format_extras(args), _extract_photo_list class Photo(FlickrObject): __converters__ = [ dict_converter(["isfamily", "ispublic", "isfriend", "cancomment", "canaddmeta", "permcomment", "permmeta", "isfavorite"], bool), dict_converter(["posted", "lastupdate"], int), dict_converter(["views", "comments"], int), ] __display__ = ["id", "title"] __self_name__ = "photo_id" class Comment(FlickrObject): __display__ = ["id", "author"] __self_name__ = "comment_id" @caller("flickr.photos.comments.deleteComment") def delete(self, **args): return args, _none @caller("flickr.photos.comments.editComment") def edit(self, **args): return args, _none @static_caller("flickr.photos.comments.getRecentForContacts") def getRecentForContacts(**args): return _format_extras(args), _extract_photo_list class Exif(FlickrObject): __display__ = ["tag", "raw"] class Note(FlickrObject): __display__ = ["id", "text"] __self_name__ = "note_id" @caller("flickr.photos.notes.edit") def edit(self, **args): return args, _none @caller("flickr.photos.notes.delete") def delete(self, **args): return args, _none class Suggestion(FlickrObject): __display__ = ["id"] __self_name__ = "suggestion_id" @caller("flickr.photos.suggestions.approveSuggestion") def approve(self): return {}, _none @caller("flickr.photos.suggestions.rejectSuggestion") def reject(self): return {}, _none @caller("flickr.photos.suggestions.removeSuggestion") def remove(self): return {}, _none @caller("flickr.photos.people.delete") def deletePerson(self, **args): return _format_id("user", args), _none @caller("flickr.photos.people.deleteCoords") def deletePersonCoords(self, **args): return _format_id("user", args), _none @caller("flickr.photos.people.editCoords") def editPersonCoords(self, **args): return _format_id("user", args), _none @caller("flickr.photos.comments.addComment") def addComment(self, **args): def format_result(r, token=None): args["id"] = r["comment"]["id"] args["photo"] = self return Photo.Comment(**args) return args, format_result @caller("flickr.photos.notes.add") def addNote(self, **args): def format_result(r, token=None): args["id"] = r["note"]["id"] args["photo"] = self return Photo.Note(**args) return args, format_result @caller("flickr.photos.people.add") def addPerson(self, **args): return _format_id("user", args), _none @caller("flickr.photos.addTags") def addTags(self, tags, **args): if isinstance(tags, list): tags = ", ".join(tags) args["tags"] = tags return args, _none @caller("flickr.favorites.add") def addToFavorites(self): return {}, _none @caller("flickr.photos.geo.correctLocation") def correctLocation(self, **args): return _format_id("place", args), _none @static_caller("flickr.photos.upload.checkTickets") def checkUploadTickets(tickets, **args): def format_result(r, token=None): tickets = r["uploader"]["ticket"] if not isinstance(tickets, list): tickets = [tickets] return [UploadTicket(**t) for t in tickets] args["tickets"] = ','.join(tickets) return args, format_result @caller("flickr.photos.delete") def delete(self, **args): return args, _none @caller("flickr.photos.getAllContexts") def getAllContexts(self, **args): def format_result(r, token=None): photosets = [] if "set" in r: for s in r["set"]: photosets.append(Photoset(token=token, **s)) pools = [] if "pool" in r: for p in r["pool"]: pools.append(Group(token=token, **p)) return photosets, pools return args, format_result @caller("flickr.photos.comments.getList") def getComments(self, **args): def format_result(r, token=None): try: comments = r["comments"]["comment"] except KeyError: comments = [] comments_ = [] if not isinstance(comments, list): comments = [comments] for c in comments: author = c["author"] authorname = c.pop("authorname") c["author"] = Person(id=author, username=authorname, token=token) comments_.append(Photo.Comment(token=token, photo=self, **c)) return comments_ return args, format_result @caller("flickr.photos.getInfo") def getInfo(self, **args): def format_result(r, token=None): photo = r["photo"] owner = photo["owner"] owner["id"] = owner["nsid"] photo["owner"] = Person(token=token, **owner) photo.update(photo.pop("usage")) photo.update(photo.pop("visibility")) photo.update(photo.pop("publiceditability")) photo.update(photo.pop("dates")) tags = [] for t in _check_list(photo["tags"]["tag"]): t["author"] = Person(token=token, id=t.pop("author")) tags.append(Tag(token=token, **t)) photo["tags"] = tags photo["notes"] = [ Photo.Note(token=token, **n) for n in _check_list(photo["notes"]["note"]) ] sizes = photo.pop("sizes", None) if sizes: photo["sizes"] = dict([(s['label'], s) for s in sizes["size"]]) return photo return args, format_result @caller("flickr.photos.getContactsPhotos") def getContactsPhotos(self, **args): def format_result(r, token=None): photos = r["photos"]["photo"] photos_ = [] for p in photos: photos_.append(Photo(token=token, **p)) return photos_ return args, format_result @caller("flickr.photos.getContext") def getContext(self, **args): def format_result(r, token): return (Photo(token=token, **r["prevphoto"]), Photo(token=token, **r["nextphoto"])) return args, format_result @caller("flickr.photos.getExif") def getExif(self, **args): if hasattr(self, "secret"): args["secret"] = self.secret def format_result(r): try: return [Photo.Exif(**e) for e in r["photo"]["exif"]] except KeyError: return [] return args, format_result @caller("flickr.favorites.getContext") def getFavoriteContext(self, **args): def format_result(r, token): return (Photo(token=token, **r["prevphoto"]), Photo(token=token, **r["nextphoto"])) return _format_id("user", args), format_result @caller("flickr.photos.getFavorites") def getFavorites(self, **args): def format_result(r, token): photo = r["photo"] persons = photo.pop("person") persons_ = [] if not isinstance(persons, list): persons = [persons] for p in persons: p["id"] = p["nsid"] persons_.append(Person(token=token, **p)) infos = Info(**photo) return FlickrList(persons_, infos) return args, format_result @caller("flickr.galleries.getListForPhoto") def getGalleries(self, **args): def format_result(r): info = r["galleries"] galleries = _check_list(info.pop("gallery")) galleries_ = [] for g in galleries_: g["owner"] = Person(g["owner"]) pp_id = g.pop("primary_photo_id") pp_secret = g.pop("primary_photo_secret") pp_farm = g.pop("primary_photo_farm") pp_server = g.pop("primary_photo_server") g["primary_photo"] = Gallery( id=pp_id, secret=pp_secret, server=pp_server, farm=pp_farm ) galleries_.append(g) return FlickrList(galleries_, Info(**info)) return args, format_result @caller("flickr.photos.geo.getPerms") def getGeoPerms(self, **args): return args, lambda r, token: PhotoGeoPerms(token=token, **r["perms"]) @caller("flickr.photos.geo.getLocation") def getLocation(self, **args): def format_result(r, token): loc = r["photo"]["location"] return Location(token=token, photo=self, **loc) return args, format_result def getNotes(self): """ Returns the list of notes for a photograph """ return self.notes @static_caller("flickr.interestingness.getList") def getInteresting(**args): return _format_extras(args), _extract_photo_list @static_caller("flickr.photos.getRecent") def getRecent(**args): return _format_extras(args), _extract_photo_list @caller("flickr.photos.suggestions.getList") def getSuggestions(self, **args): def format_result(r): info = r["suggestions"] suggestions_ = _check_list(info.pop("suggestion")) suggestions = [] for s in suggestions_: if "photo_id" in s: s["photo"] = s.pop(Photo(id=s.pop("photo_id"))) if "suggested_by" in s: s["suggested_by"] = Person(id=s["suggested_by"]) suggestions.append(Photo.Suggestion(**s)) return FlickrList(suggestions, info=Info(**info)) return args, format_result @caller("flickr.photos.getSizes") def _getSizes(self, **args): def format_result(r): return dict([(s["label"], s) for s in r["sizes"]["size"]]) return args, format_result def getSizes(self, **args): if "sizes" not in self.__dict__: self.__dict__["sizes"] = self._getSizes(**args) return self.sizes @caller("flickr.stats.getPhotoStats") def getStats(self, date, **args): args["date"] = date return ( args, lambda r: dict([(k, int(v)) for k, v in r["stats"].iteritems()]) ) @caller("flickr.tags.getListPhoto") def getTags(self, **args): return args, lambda r: [Tag(**t) for t in r["photo"]["tags"]["tag"]] def getPageUrl(self): """ returns the URL to the photo's page. """ return "http://www.flickr.com/photos/%s/%s" % (self.owner.id, self.id) @caller("flickr.photos.getPerms") def getPerms(self): return {}, lambda r: r def _getLargestSizeLabel(self): """ returns the largest size for the current photo. """ sizes = self.getSizes() max_size = None max_area = None for sl, s in sizes.iteritems(): area = int(s["height"]) * int(s["width"]) if max_area is None or area > max_area: max_size = sl max_area = area return max_size def getPhotoUrl(self, size_label=None): """ returns the URL to the photo page corresponding to the given size. Arguments: size_label: The label corresponding to the photo size 'Square': 75x75 'Thumbnail': 100 on longest side 'Small': 240 on longest side 'Medium': 500 on longest side 'Medium 640': 640 on longest side 'Large': 1024 on longest side 'Original': original photo (not always available) """ if size_label is None: size_label = self._getLargestSizeLabel() try: return self.getSizes()[size_label]["url"] except KeyError: raise FlickrError("The requested size is not available") def getPhotoFile(self, size_label=None): """ returns the URL to the photo file corresponding to the given size. Arguments: size_label: The label corresponding to the photo size 'Square': 75x75 'Thumbnail': 100 on longest side 'Small': 240 on longest side 'Medium': 500 on longest side 'Medium 640': 640 on longest side 'Large': 1024 on longest side 'Original': original photo (not always available) """ if size_label is None: size_label = self._getLargestSizeLabel() try: return self.getSizes()[size_label]["source"] except KeyError: raise FlickrError("The requested size is not available") def save(self, filename, size_label=None): """ saves the photo corresponding to the given size. Arguments: filename: target file name size_label: The label corresponding to the photo size 'Square': 75x75 'Thumbnail': 100 on longest side 'Small': 240 on longest side 'Medium': 500 on longest side 'Medium 640': 640 on longest side 'Large': 1024 on longest side 'Original': original photo (not always available) """ if size_label is None: size_label = self._getLargestSizeLabel() r = urllib2.urlopen(self.getPhotoFile(size_label)) with open(filename, 'wb') as f: f.write(r.read()) f.close() def show(self, size_label=None): """ Shows the photo corresponding to the given size. Note: This methods uses PIL Arguments: filename: target file name size_label: The label corresponding to the photo size 'Square': 75x75 'Thumbnail': 100 on longest side 'Small': 240 on longest side 'Medium': 500 on longest side 'Medium 640': 640 on longest side 'Large': 1024 on longest side 'Original': original photo (not always available) """ if size_label is None: size_label = self._getLargestSizeLabel() r = urllib2.urlopen(self.getPhotoFile(size_label)) b = cStringIO.StringIO(r.read()) Image.open(b).show() @static_caller("flickr.photos.getUntagged") def getUntagged(**args): return _format_extras(args), _extract_photo_list @static_caller("flickr.photos.getWithGeoData") def getWithGeoData(**args): return _format_extras(args), _extract_photo_list @static_caller("flickr.photos.getWithoutGeoData") def getWithoutGeoData(**args): return _format_extras(args), _extract_photo_list @caller("flickr.photos.people.getList") def getPeople(self, **args): def format_result(r, token): info = r["people"] people = info.pop("person") people_ = [] if isinstance(people, Person): people = [people] for p in people: p["id"] = p["nsid"] p["photo"] = self people_.append(Person(**p)) return people_ return args, format_result @static_caller("flickr.photos.geo.photosForLocation") def photosForLocation(**args): return args, _extract_photo_list @static_caller("flickr.photos.recentlyUpdated") def recentlyUpdated(**args): return _format_extras(args), _extract_photo_list @caller("flickr.favorites.remove") def removeFromFavorites(self, **args): return args, _none @caller("flickr.photos.geo.removeLocation") def removeLocation(self, **args): return args, _none @caller("flickr.photos.transform.rotate") def rotate(self, degrees, **args): args["degrees"] = degrees def format_result(r, token): photo_id = r["photo_id"]["_content"] photo_secret = r["photo_id"]["secret"] return Photo(token=token, id=photo_id, secret=photo_secret) return args, format_result @static_caller("flickr.photos.search") def search(**args): args = _format_id("user", args) args = _format_extras(args) return args, _extract_photo_list @caller("flickr.photos.geo.setContext") def setContext(self, context, **args): args["context"] = context return args, _none @caller("flickr.photos.setContentType") def setContentType(self, **args): return args, _none @caller("flickr.photos.setDates") def setDates(self, **args): return args, _none @caller("flickr.photos.geo.setPerms") def setGeoPerms(self, **args): return args, _none @caller("flickr.photos.licenses.setLicense") def setLicence(self, license, **args): return _format_id("licence", args), _none @caller("flickr.photos.geo.setLocation") def setLocation(self, **args): return args, _none @caller("flickr.photos.setMeta") def setMeta(self, **args): return args, _none @caller("flickr.photos.setPerms") def setPerms(self, **args): return args, _none @caller("flickr.photos.setSafetyLevel") def setSafetyLevel(self, **args): return args, _none @caller("flickr.photos.setTags") def setTags(self, tags, **args): args["tags"] = tags return args, _none @caller("flickr.photos.suggestions.suggestLocation") def suggestLocation(self, **args): _format_id("place", args) def format_result(r): info = r["suggestions"] suggestions_ = _check_list(info.pop("suggestion")) suggestions = [] for s in suggestions_: if "photo_id" in s: s["photo"] = Photo(id=s.pop("photo_id")) if "suggested_by" in s: s["suggested_by"] = Person(id=s["suggested_by"]) suggestions.append(Photo.Suggestion(**s)) return FlickrList(suggestions, info=Info(**info)) return args, format_result class PhotoGeoPerms(FlickrObject): __converters__ = [ dict_converter(["ispublic", "iscontact", "isfamily", "isfriend"], bool) ] __display__ = ["id", "ispublic", "iscontact", "isfamily", "isfriend"] class Photoset(FlickrObject): __converters__ = [ dict_converter(["photos"], int), ] __display__ = ["id", "title"] __self_name__ = "photoset_id" class Comment(FlickrObject): __display__ = ["id"] __self_name__ = "comment_id" @caller("flickr.photosets.comments.deleteComment") def delete(self, **args): return args, _none @caller("flickr.photosets.comments.editComment") def edit(self, **args): self._set_properties(**args) return args, _none @caller("flickr.photosets.addPhoto") def addPhoto(self, **args): return _format_id("photo", args), _none @caller("flickr.photosets.comments.addComment") def addComment(self, **args): return ( args, lambda r, token: Photoset.Comment(token=token, photoset=self, **r) ) @static_caller("flickr.photosets.create") def create(**args): try: pphoto = args.pop("primary_photo") pphoto_id = pphoto.id except KeyError: pphoto_id = args.pop("primary_photo_id") pphoto = Photo(id=pphoto_id) args["primary_photo_id"] = pphoto_id def format_result(r, token): photoset = r["photoset"] photoset["primary"] = pphoto return Photoset(token=token, **photoset) return args, format_result @caller("flickr.photosets.delete") def delete(self, **args): return args, _none @caller("flickr.photosets.editMeta") def editMeta(self, **args): return args, _none @caller("flickr.photosets.editPhotos") def editPhotos(self, **args): try: args["primary_photo_id"] = args.pop("primary_photo").id except KeyError: pass try: args["photo_ids"] = [p.id for p in args["photos"]] except KeyError: pass photo_ids = args["photo_ids"] if isinstance(photo_ids, list): args["photo_ids"] = ", ".join(photo_ids) return args, _none @caller("flickr.photosets.comments.getList") def getComments(self, **args): def format_result(r, token): comments = r["comments"]["comment"] comments_ = [] if not isinstance(comments, list): comments = [comments] for c in comments: author = c["author"] authorname = c.pop("authorname") c["author"] = Person(id=author, username=authorname) comments_.append( Photoset.Comment(token=token, photo=self, **c) ) return comments_ return args, format_result @caller("flickr.photosets.getContext") def getContext(self, **args): def format_result(r, token): return (Photo(token=token, **r["prevphoto"]), Photo(token=token, **r["nextphoto"])) return _format_id("photo", args), format_result @caller("flickr.photosets.getInfo") def getInfo(self, **args): def format_result(r, token): photoset = r["photoset"] photoset["owner"] = Person(token=token, id=photoset["owner"]) return photoset return args, format_result @caller("flickr.photosets.getPhotos") def getPhotos(self, **args): def format_result(r): ps = r["photoset"] return FlickrList([Photo(**p) for p in ps["photo"]], Info(pages=ps["pages"], page=ps["page"], perpage=ps["perpage"], total=ps["total"])) return _format_extras(args), format_result @coroutine def getAllPhotos(self, **args): """Returns list of all photos.""" all_photos = yield self.getPhotos(**args) for page in xrange(2, all_photos.info.pages + 1): args["page"] = page photos = yield self.getPhotos(**args) all_photos.extend(photos) raise Return(all_photos) @caller("flickr.stats.getPhotosetStats") def getStats(self, date, **args): args["date"] = date return ( args, lambda r: dict([(k, int(v)) for k, v in r["stats"].iteritems()]) ) @static_caller("flickr.photosets.orderSets") def orderSets(**args): try: photosets = args.pop("photosets") args["photoset_ids"] = [ps.id for ps in photosets] except KeyError: pass photoset_ids = args["photoset_ids"] if isinstance(photoset_ids, list): args["photoset_ids"] = ", ".join(photoset_ids) return args, _none @caller("flickr.photosets.removePhoto") def removePhoto(self, **args): return _format_id("photo", args), _none @caller("flickr.photosets.removePhotos") def removePhotos(self, **args): try: args["photo_ids"] = [p.id for p in args.pop("photos")] except KeyError: pass photo_ids = args["photo_ids"] if isinstance(photo_ids, list): args["photo_ids"] = u", ".join(photo_ids) return args, _none @caller("flickr.photosets.reorderPhotos") def reorderPhotos(self, **args): try: args["photo_ids"] = [p.id for p in args.pop("photos")] except KeyError: pass photo_ids = args["photo_ids"] if isinstance(photo_ids, list): args["photo_ids"] = u", ".join(photo_ids) return args, _none @caller("flickr.photosets.setPrimaryPhoto") def setPrimaryPhoto(self, **args): return _format_id("photo", args), _none class Place(FlickrObject): __display__ = ["id", "name", "woeid", "latitude", "longitude"] __converters__ = [ dict_converter(["latitude", "longitude"], float), ] __self_name__ = 'place_id' class ShapeData(FlickrObject): class Polyline(FlickrObject): pass class Type(FlickrObject): __display__ = ["id", "text"] class Tag(FlickrObject): __display__ = ["text", "count"] __converters__ = [ dict_converter(["count"], int), ] @static_caller("flickr.places.find") def find(**args): return args, _extract_place_list @static_caller("flickr.places.findByLatLon") def findByLatLon(**args): return args, _extract_place_list @caller("flickr.places.getChildrenWithPhotosPublic") def getChildrenWithPhotoPublic(self, **args): return args, _extract_place_list @caller("flickr.places.getInfo") def getInfo(self, **args): def format_result(r): return Place.parse_place(r["place"]) return args, format_result @staticmethod def parse_shapedata(shape_data_dict): shapedata = shape_data_dict.copy() shapedata["polylines"] = [ Place.ShapeData.Polyline(coords=p.split(" ")) for p in shapedata["polylines"]["polyline"] ] if "url" in shapedata: shapedata["shapefile"] = shapedata.pop("urls")["shapefile"].text return shapedata @staticmethod def parse_place(place_dict): place = place_dict.copy() if "locality" in place: place["locality"] = Place(**Place.parse_place(place["locality"])) if "county" in place: place["county"] = Place(**Place.parse_place(place["county"])) if "region" in place: place["region"] = Place(**Place.parse_place(place["region"])) if "country" in place: place["country"] = Place(**Place.parse_place(place["country"])) if "shapedata" in place: shapedata = Place.parse_shapedata(place["shapedata"]) place["shapedata"] = Place.ShapeData(**shapedata) if "text" in place: place["name"] = place.pop("text") place["id"] = place.pop("place_id") return place @static_caller("flickr.places.getInfoByUrl") def getByUrl(url): return {'url': url}, lambda r: Place(**Place.parse_place(r["place"])) @static_caller("flickr.places.getPlaceTypes") def getPlaceTypes(**args): def format_result(r): places_types = r["place_types"]["place_type"] return [Place.Type(id=pt.pop("place_type_id"), **pt) for pt in places_types] return args, format_result @static_caller("flickr.places.getShapeHistory") def getShapeHistory(**args): def format_result(r): info = r["shapes"] return [Place.ShapeData(**Place.parse_shapedata(sd)) for sd in _check_list(info.pop("shapedata"))] return args, format_result @caller("flickr.places.getTopPlacesList") def getTopPlaces(self, **args): return args, _extract_place_list @static_caller("flickr.places.placesForBoundingBox") def placesForBoundingBox(**args): def format_result(r): info = r["places"] return [ Place(Place.parse_place(place)) for place in info.pop("place")] return args, format_result @static_caller("flickr.places.placesForContacts") def placesForContacts(**args): def format_result(r): info = r["places"] return [ Place(Place.parse_place(place)) for place in info.pop("place")] return args, format_result @static_caller("flickr.places.placesForTags") def placesForTags(**args): return args, _extract_place_list @static_caller("flickr.places.placesForUser") def placesForUser(**args): return args, _extract_place_list @static_caller("flickr.places.tagsForPlace") def tagsForPlace(**args): args = _format_id("place", args) args = _format_id("woe", args) return args, lambda r: [Place.Tag(**t) for t in r["tags"]["tag"]] @caller("flickr.places.tagsForPlace") def getTags(self, **args): return args, lambda r: [Place.Tag(**t) for t in r["tags"]["tag"]] class prefs(FlickrObject): @static_caller("flickr.prefs.getContentType") def getContentType(**args): return args, lambda r: r["person"]["content_type"] @static_caller("flickr.prefs.getGeoPerms") def getGeoPerms(**args): return args, lambda r: r["person"] @static_caller("flickr.prefs.getHidden") def getHidden(**args): return args, lambda r: bool(r["person"]["hidden"]) @static_caller("flickr.prefs.getPrivacy") def getPrivacy(**args): return args, lambda r: r["person"]["privacy"] @static_caller("flickr.prefs.getSafetyLevel") def getSafetyLevel(**args): return args, lambda r: r["person"]["safety_level"] class Reflection(FlickrObject): @static_caller("flickr.reflection.getMethodInfo") def getMethodInfo(method_name): return {"method_name": method_name}, lambda r: r["method"] @static_caller("flickr.reflection.getMethods") def getMethods(): return {}, lambda r: r["methods"]["method"] class stats(FlickrObject): class Domain(FlickrObject): __display__ = ["name"] class Referrer(FlickrObject): __display__ = ["url", "views"] __converters__ = [ dict_converter(["views"], int), ] @static_caller("flickr.stats.getCollectionDomains") def getCollectionDomains(**args): def format_result(r): info = r["domains"] domains = [stats.Domain(**d) for d in info.pop("domain")] return FlickrList(domains, Info(**info)) return _format_id("collection", args), format_result @static_caller("flickr.stats.getCollectionReferrers") def getCollectionReferrers(**args): def format_result(r): info = r["domain"] referrers = [stats.Referrer(**r) for r in info.pop("referrer")] return FlickrList(referrers, Info(**info)) return _format_id("collection", args), format_result @static_caller("flickr.stats.getCSVFiles") def getCSVFiles(): return {}, lambda r: r["stats"]["csvfiles"]["csv"] @static_caller("flickr.stats.getPhotoDomains") def getPhotoDomains(**args): def format_result(r): info = r["domains"] domains = [stats.Domain(**d) for d in info.pop("domain")] return FlickrList(domains, Info(**info)) return _format_id("photo", args), format_result @static_caller("flickr.stats.getPhotoReferrers") def getPhotoReferrers(**args): def format_result(r): info = r["domain"] referrers = [stats.Referrer(**r) for r in info.pop("referrer")] return FlickrList(referrers, Info(**info)) return _format_id("photo", args), format_result @static_caller("flickr.stats.getPhotosetDomains") def getPhotosetDomains(**args): def format_result(r): info = r["domains"] domains = [stats.Domain(**d) for d in info.pop("domain")] return FlickrList(domains, Info(**info)) return _format_id("photoset", args), format_result @static_caller("flickr.stats.getPhotosetReferrers") def getPhotosetReferrers(**args): def format_result(r): info = r["domain"] referrers = [stats.Referrer(**r) for r in info.pop("referrer")] return FlickrList(referrers, Info(**info)) return _format_id("photoset", args), format_result @static_caller("flickr.stats.getPhotostreamDomains") def getPhotostreamDomains(**args): def format_result(r): info = r["domains"] domains = [stats.Domain(**d) for d in info.pop("domain")] return FlickrList(domains, Info(**info)) return args, format_result @static_caller("flickr.stats.getPhotostreamReferrers") def getPhotostreamReferrers(**args): def format_result(r): info = r["domain"] referrers = [stats.Referrer(**r) for r in info.pop("referrer")] return FlickrList(referrers, Info(**info)) return args, format_result @static_caller("flickr.stats.getPhotostreamStats") def getPhotostreamStats(date, **args): args["date"] = date return args, lambda r: int(r["stats"]["views"]) @static_caller("flickr.stats.getPopularPhotos") def getPopularPhotos(): def format_result(r): info = r["photos"] photos = [] for p in info.pop("photo"): pstat = p.pop("stats") photos.append((Photo(**p), pstat)) return FlickrList(photos, Info(**info)) return {}, format_result @static_caller("flickr.stats.getTotalViews") def getTotalViews(**args): return args, lambda r: r["stats"] class Tag(FlickrObject): __display__ = ["id", "text"] __self_name__ = "tag_id" class Cluster(FlickrObject): __display__ = ["total"] __self_name__ = "cluster_id" @caller("flickr.tags.getClusterPhotos") def getPhotos(self, **args): return args, _extract_photo_list @caller("flickr.photos.removeTag") def remove(self, **args): return args, _none @static_caller("flickr.tags.getClusters") def getClusters(**args): def format_result(r): clusters = r["clusters"]["cluster"] return [ Tag.Cluster(tag=args["tag"], tags=[Tag(text=t) for t in c["tag"]], total=c["total"] ) for c in clusters ] return args, format_result @static_caller("flickr.tags.getHotList") def getHotList(**args): return args, lambda r: [Tag(**t) for t in r["hottags"]["tag"]] @static_caller("flickr.tags.getListUser") def getListUser(**args): return ( _format_id("user", args), lambda r: [Tag(**t) for t in r["who"]["tags"]["tag"]] ) @static_caller("flickr.tags.getListUserPopular") def getListUserPopular(**args): return (_format_id("user", args), lambda r: [Tag(**t) for t in r["who"]["tags"]["tag"]]) @static_caller("flickr.tags.getListUserRaw") def getListUserRaw(**args): def format_result(r): tags = r["who"]["tags"]["tag"] return [{'clean': t["clean"], "raws": t["raw"]} for t in tags] return args, format_result @static_caller("flickr.tags.getRelated") def getRelated(tag, **args): args["tag"] = tag return args, lambda r: r["tags"]["tag"] class test(FlickrObject): @static_caller("flickr.test.echo") def echo(**args): return args, lambda r: r @static_caller("flickr.test.login") def login(token=None, **args): return args, lambda r: Person(token=token, **r["user"]) @static_caller("flickr.test.null") def null(): return {}, _none class UploadTicket(FlickrObject): pass def _extract_activity_list(r): items = _check_list(r["items"]["item"]) activities = [] for item in items: activity = item.pop("activity") item_type = item.pop(["type"]) if item_type == "photo": item = Photo(**item) elif item_type == "photoset": item = Photoset(**item) events_ = [] events = _check_list(activity["event"]) for e in events: user = e["user"] username = e.pop("username") e["user"] = Person(id=user, username=username) e_type = e.pop("type") if e_type == "comment": if item_type == "photo": events_.append(Photo.Comment(photo=item, **e)) elif item_type == "photoset": events_.append(Photoset.Comment(photoset=item, **e)) elif e_type == 'note': events_.append(Photo.Note(photo=item, **e)) activities.append(Activity(item=item, events=events)) return activities def _format_id(name, args): try: args[name + "_id"] = args.pop(name).id except KeyError: pass return args def _format_extras(args): try: extras = args["extras"] if isinstance(extras, list): args["extras"] = ", ".join(extras) except KeyError: pass return args def _new(cls): def _newobject(**args): return cls(**args) return _newobject def _none(r): return None def _extract_place_list(r): info = r["places"] return FlickrList( [Place(id=place.pop("place_id"), **place) for place in info.pop("place")], Info(**info) ) def _extract_photo_list(r, token=None): photos = [] infos = r["photos"] pp = infos.pop("photo") if not isinstance(pp, list): pp = [pp] for p in pp: owner = Person(id=p["owner"], token=token) p["owner"] = owner p["token"] = token photos.append(Photo(**p)) return FlickrList(photos, Info(**infos)) def _check_list(obj): if isinstance(obj, list): return obj else: return [obj] class Walker(object): """ Object to walk along paginated results. This allows to loop on all the results corresponding to a query regardless pagination. w = Walker(method,*args, **kwargs) arguments: - method: a method returning a FlickrList object. - *args: positional arguments to call 'method' with - **kwargs: named arguments to call 'method' with ex: >>> w = Walker(Photo.search, tags="animals") >>> for photo in w: >>> print photo.title You can also use slices: ex: >>> w = Walker(Photo.search, tags="animals") >>> for photo in w[:20]: >>> print photo.title but be aware that if a starting index is given all the items till the wanted one will be iterated, so using a large starting value might be slow. """ def __init__(self, method, *args, **kwargs): """ Constructor arguments: - method: a method returning a FlickrList object. - *args: positional arguments to call 'method' with - **kwargs: named arguments to call 'method' with """ self.method = method self.args = args self.kwargs = kwargs self._curr_list = self.method(*self.args, **self.kwargs) self._info = self._curr_list.info self._curr_index = 0 self._page = 1 self.stop = None def __len__(self): return self._info.total def __iter__(self): return self def __getitem__(self, slice_): if isinstance(slice_, slice): return SlicedWalker(self, slice_.start, slice_.stop, slice_.step) else: raise ValueError("Only slices can be used as subscript") def next(self): if self._curr_index == len(self._curr_list): if self._page < self._info.pages: self._page += 1 self.kwargs["page"] = self._page self._curr_list = self.method(*self.args, **self.kwargs) self._info = self._curr_list.info self._curr_index = 0 else: raise StopIteration() curr = self._curr_list[self._curr_index] self._curr_index += 1 return curr class SlicedWalker(object): """ Used to apply slices on objects. Starting at a large index might be slow since all items till the start one will be iterated. """ def __init__(self, walker, start, stop, step): self.walker = walker self.start = start or 0 self.stop = stop or len(walker) self.step = step or 1 self._begin = True self._total = 0 def __len__(self): return (self.stop - self.start) // self.step def __iter__(self): return self def next(self): if self._begin: for i in range(self.start): self.walker.next() self._total += 1 self._begin = False else: for i in range(self.step - 1): self._total += 1 self.walker.next() if self._total < self.stop: self._total += 1 return self.walker.next() else: raise StopIteration()
bsd-3-clause
murali-munna/scikit-learn
sklearn/decomposition/pca.py
192
23117
""" Principal Component Analysis """ # Author: Alexandre Gramfort <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis A. Engemann <[email protected]> # Michael Eickenberg <[email protected]> # # License: BSD 3 clause from math import log, sqrt import numpy as np from scipy import linalg from scipy.special import gammaln from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, as_float_array from ..utils import check_array from ..utils.extmath import fast_dot, fast_logdet, randomized_svd from ..utils.validation import check_is_fitted def _assess_dimension_(spectrum, rank, n_samples, n_features): """Compute the likelihood of a rank ``rank`` dataset The dataset is assumed to be embedded in gaussian noise of shape(n, dimf) having spectrum ``spectrum``. Parameters ---------- spectrum: array of shape (n) Data spectrum. rank: int Tested rank value. n_samples: int Number of samples. n_features: int Number of features. Returns ------- ll: float, The log-likelihood Notes ----- This implements the method of `Thomas P. Minka: Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604` """ if rank > len(spectrum): raise ValueError("The tested rank cannot exceed the rank of the" " dataset") pu = -rank * log(2.) for i in range(rank): pu += (gammaln((n_features - i) / 2.) - log(np.pi) * (n_features - i) / 2.) pl = np.sum(np.log(spectrum[:rank])) pl = -pl * n_samples / 2. if rank == n_features: pv = 0 v = 1 else: v = np.sum(spectrum[rank:]) / (n_features - rank) pv = -np.log(v) * n_samples * (n_features - rank) / 2. m = n_features * rank - rank * (rank + 1.) / 2. pp = log(2. * np.pi) * (m + rank + 1.) / 2. pa = 0. spectrum_ = spectrum.copy() spectrum_[rank:n_features] = v for i in range(rank): for j in range(i + 1, len(spectrum)): pa += log((spectrum[i] - spectrum[j]) * (1. / spectrum_[j] - 1. / spectrum_[i])) + log(n_samples) ll = pu + pl + pv + pp - pa / 2. - rank * log(n_samples) / 2. return ll def _infer_dimension_(spectrum, n_samples, n_features): """Infers the dimension of a dataset of shape (n_samples, n_features) The dataset is described by its spectrum `spectrum`. """ n_spectrum = len(spectrum) ll = np.empty(n_spectrum) for rank in range(n_spectrum): ll[rank] = _assess_dimension_(spectrum, rank, n_samples, n_features) return ll.argmax() class PCA(BaseEstimator, TransformerMixin): """Principal component analysis (PCA) Linear dimensionality reduction using Singular Value Decomposition of the data and keeping only the most significant singular vectors to project the data to a lower dimensional space. This implementation uses the scipy.linalg implementation of the singular value decomposition. It only works for dense arrays and is not scalable to large dimensional data. The time complexity of this implementation is ``O(n ** 3)`` assuming n ~ n_samples ~ n_features. Read more in the :ref:`User Guide <PCA>`. Parameters ---------- n_components : int, None or string Number of components to keep. if n_components is not set all components are kept:: n_components == min(n_samples, n_features) if n_components == 'mle', Minka\'s MLE is used to guess the dimension if ``0 < n_components < 1``, select the number of components such that the amount of variance that needs to be explained is greater than the percentage specified by n_components copy : bool If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead. whiten : bool, optional When True (False by default) the `components_` vectors are divided by n_samples times singular values to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometime improve the predictive accuracy of the downstream estimators by making there data respect some hard-wired assumptions. Attributes ---------- components_ : array, [n_components, n_features] Principal axes in feature space, representing the directions of maximum variance in the data. explained_variance_ratio_ : array, [n_components] Percentage of variance explained by each of the selected components. If ``n_components`` is not set then all components are stored and the sum of explained variances is equal to 1.0 mean_ : array, [n_features] Per-feature empirical mean, estimated from the training set. n_components_ : int The estimated number of components. Relevant when n_components is set to 'mle' or a number between 0 and 1 to select using explained variance. noise_variance_ : float The estimated noise covariance following the Probabilistic PCA model from Tipping and Bishop 1999. See "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf. It is required to computed the estimated data covariance and score samples. Notes ----- For n_components='mle', this class uses the method of `Thomas P. Minka: Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604` Implements the probabilistic PCA model from: M. Tipping and C. Bishop, Probabilistic Principal Component Analysis, Journal of the Royal Statistical Society, Series B, 61, Part 3, pp. 611-622 via the score and score_samples methods. See http://www.miketipping.com/papers/met-mppca.pdf Due to implementation subtleties of the Singular Value Decomposition (SVD), which is used in this implementation, running fit twice on the same matrix can lead to principal components with signs flipped (change in direction). For this reason, it is important to always use the same estimator object to transform data in a consistent fashion. Examples -------- >>> import numpy as np >>> from sklearn.decomposition import PCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> pca = PCA(n_components=2) >>> pca.fit(X) PCA(copy=True, n_components=2, whiten=False) >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244... 0.00755...] See also -------- RandomizedPCA KernelPCA SparsePCA TruncatedSVD """ def __init__(self, n_components=None, copy=True, whiten=False): self.n_components = n_components self.copy = copy self.whiten = whiten def fit(self, X, y=None): """Fit the model with X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ self._fit(X) return self def fit_transform(self, X, y=None): """Fit the model with X and apply the dimensionality reduction on X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ U, S, V = self._fit(X) U = U[:, :self.n_components_] if self.whiten: # X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples) U *= sqrt(X.shape[0]) else: # X_new = X * V = U * S * V^T * V = U * S U *= S[:self.n_components_] return U def _fit(self, X): """Fit the model on X Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- U, s, V : ndarrays The SVD of the input data, copied and centered when requested. """ X = check_array(X) n_samples, n_features = X.shape X = as_float_array(X, copy=self.copy) # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ U, S, V = linalg.svd(X, full_matrices=False) explained_variance_ = (S ** 2) / n_samples explained_variance_ratio_ = (explained_variance_ / explained_variance_.sum()) components_ = V n_components = self.n_components if n_components is None: n_components = n_features elif n_components == 'mle': if n_samples < n_features: raise ValueError("n_components='mle' is only supported " "if n_samples >= n_features") n_components = _infer_dimension_(explained_variance_, n_samples, n_features) elif not 0 <= n_components <= n_features: raise ValueError("n_components=%r invalid for n_features=%d" % (n_components, n_features)) if 0 < n_components < 1.0: # number of components for which the cumulated explained variance # percentage is superior to the desired threshold ratio_cumsum = explained_variance_ratio_.cumsum() n_components = np.sum(ratio_cumsum < n_components) + 1 # Compute noise covariance using Probabilistic PCA model # The sigma2 maximum likelihood (cf. eq. 12.46) if n_components < n_features: self.noise_variance_ = explained_variance_[n_components:].mean() else: self.noise_variance_ = 0. # store n_samples to revert whitening when getting covariance self.n_samples_ = n_samples self.components_ = components_[:n_components] self.explained_variance_ = explained_variance_[:n_components] explained_variance_ratio_ = explained_variance_ratio_[:n_components] self.explained_variance_ratio_ = explained_variance_ratio_ self.n_components_ = n_components return (U, S, V) def get_covariance(self): """Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances. Returns ------- cov : array, shape=(n_features, n_features) Estimated covariance of data. """ components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) cov = np.dot(components_.T * exp_var_diff, components_) cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov def get_precision(self): """Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data. """ n_features = self.components_.shape[1] # handle corner cases first if self.n_components_ == 0: return np.eye(n_features) / self.noise_variance_ if self.n_components_ == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ exp_var = self.explained_variance_ exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) precision = np.dot(components_, components_.T) / self.noise_variance_ precision.flat[::len(precision) + 1] += 1. / exp_var_diff precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= -(self.noise_variance_ ** 2) precision.flat[::len(precision) + 1] += 1. / self.noise_variance_ return precision def transform(self, X): """Apply the dimensionality reduction on X. X is projected on the first principal components previous extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'mean_') X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X_transformed = fast_dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed def inverse_transform(self, X): """Transform data back to its original space, i.e., return an input X_original whose transform would be X Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples is the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) """ check_is_fitted(self, 'mean_') if self.whiten: return fast_dot( X, np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_) + self.mean_ else: return fast_dot(X, self.components_) + self.mean_ def score_samples(self, X): """Return the log-likelihood of each sample See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters ---------- X: array, shape(n_samples, n_features) The data. Returns ------- ll: array, shape (n_samples,) Log-likelihood of each sample under the current model """ check_is_fitted(self, 'mean_') X = check_array(X) Xr = X - self.mean_ n_features = X.shape[1] log_like = np.zeros(X.shape[0]) precision = self.get_precision() log_like = -.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1) log_like -= .5 * (n_features * log(2. * np.pi) - fast_logdet(precision)) return log_like def score(self, X, y=None): """Return the average log-likelihood of all samples See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters ---------- X: array, shape(n_samples, n_features) The data. Returns ------- ll: float Average log-likelihood of the samples under the current model """ return np.mean(self.score_samples(X)) class RandomizedPCA(BaseEstimator, TransformerMixin): """Principal component analysis (PCA) using randomized SVD Linear dimensionality reduction using approximated Singular Value Decomposition of the data and keeping only the most significant singular vectors to project the data to a lower dimensional space. Read more in the :ref:`User Guide <RandomizedPCA>`. Parameters ---------- n_components : int, optional Maximum number of components to keep. When not given or None, this is set to n_features (the second dimension of the training data). copy : bool If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead. iterated_power : int, optional Number of iterations for the power method. 3 by default. whiten : bool, optional When True (False by default) the `components_` vectors are divided by the singular values to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometime improve the predictive accuracy of the downstream estimators by making their data respect some hard-wired assumptions. random_state : int or RandomState instance or None (default) Pseudo Random Number generator seed control. If None, use the numpy.random singleton. Attributes ---------- components_ : array, [n_components, n_features] Components with maximum variance. explained_variance_ratio_ : array, [n_components] Percentage of variance explained by each of the selected components. \ k is not set then all components are stored and the sum of explained \ variances is equal to 1.0 mean_ : array, [n_features] Per-feature empirical mean, estimated from the training set. Examples -------- >>> import numpy as np >>> from sklearn.decomposition import RandomizedPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> pca = RandomizedPCA(n_components=2) >>> pca.fit(X) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE RandomizedPCA(copy=True, iterated_power=3, n_components=2, random_state=None, whiten=False) >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244... 0.00755...] See also -------- PCA TruncatedSVD References ---------- .. [Halko2009] `Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909)` .. [MRT] `A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert` """ def __init__(self, n_components=None, copy=True, iterated_power=3, whiten=False, random_state=None): self.n_components = n_components self.copy = copy self.iterated_power = iterated_power self.whiten = whiten self.random_state = random_state def fit(self, X, y=None): """Fit the model with X by extracting the first principal components. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ self._fit(check_array(X)) return self def _fit(self, X): """Fit the model to the data X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- X : ndarray, shape (n_samples, n_features) The input data, copied, centered and whitened when requested. """ random_state = check_random_state(self.random_state) X = np.atleast_2d(as_float_array(X, copy=self.copy)) n_samples = X.shape[0] # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ if self.n_components is None: n_components = X.shape[1] else: n_components = self.n_components U, S, V = randomized_svd(X, n_components, n_iter=self.iterated_power, random_state=random_state) self.explained_variance_ = exp_var = (S ** 2) / n_samples full_var = np.var(X, axis=0).sum() self.explained_variance_ratio_ = exp_var / full_var if self.whiten: self.components_ = V / S[:, np.newaxis] * sqrt(n_samples) else: self.components_ = V return X def transform(self, X, y=None): """Apply dimensionality reduction on X. X is projected on the first principal components previous extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'mean_') X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X = fast_dot(X, self.components_.T) return X def fit_transform(self, X, y=None): """Fit the model with X and apply the dimensionality reduction on X. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ X = check_array(X) X = self._fit(X) return fast_dot(X, self.components_.T) def inverse_transform(self, X, y=None): """Transform data back to its original space. Returns an array X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples in the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform does not compute the exact inverse operation of transform. """ check_is_fitted(self, 'mean_') X_original = fast_dot(X, self.components_) if self.mean_ is not None: X_original = X_original + self.mean_ return X_original
bsd-3-clause
ndingwall/scikit-learn
sklearn/naive_bayes.py
1
48947
# -*- coding: utf-8 -*- """ The :mod:`sklearn.naive_bayes` module implements Naive Bayes algorithms. These are supervised learning methods based on applying Bayes' theorem with strong (naive) feature independence assumptions. """ # Author: Vincent Michel <[email protected]> # Minor fixes by Fabian Pedregosa # Amit Aides <[email protected]> # Yehuda Finkelstein <[email protected]> # Lars Buitinck # Jan Hendrik Metzen <[email protected]> # (parts based on earlier work by Mathieu Blondel) # # License: BSD 3 clause import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy.special import logsumexp from .base import BaseEstimator, ClassifierMixin from .preprocessing import binarize from .preprocessing import LabelBinarizer from .preprocessing import label_binarize from .utils import check_X_y, check_array, deprecated from .utils.extmath import safe_sparse_dot from .utils.multiclass import _check_partial_fit_first_call from .utils.validation import check_is_fitted, check_non_negative, column_or_1d from .utils.validation import _check_sample_weight from .utils.validation import _deprecate_positional_args __all__ = ['BernoulliNB', 'GaussianNB', 'MultinomialNB', 'ComplementNB', 'CategoricalNB'] class _BaseNB(ClassifierMixin, BaseEstimator, metaclass=ABCMeta): """Abstract base class for naive Bayes estimators""" @abstractmethod def _joint_log_likelihood(self, X): """Compute the unnormalized posterior log probability of X I.e. ``log P(c) + log P(x|c)`` for all rows x of X, as an array-like of shape (n_classes, n_samples). Input is passed to _joint_log_likelihood as-is by predict, predict_proba and predict_log_proba. """ @abstractmethod def _check_X(self, X): """To be overridden in subclasses with the actual checks.""" def predict(self, X): """ Perform classification on an array of test vectors X. Parameters ---------- X : array-like of shape (n_samples, n_features) Returns ------- C : ndarray of shape (n_samples,) Predicted target values for X """ check_is_fitted(self) X = self._check_X(X) jll = self._joint_log_likelihood(X) return self.classes_[np.argmax(jll, axis=1)] def predict_log_proba(self, X): """ Return log-probability estimates for the test vector X. Parameters ---------- X : array-like of shape (n_samples, n_features) Returns ------- C : array-like of shape (n_samples, n_classes) Returns the log-probability of the samples for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute :term:`classes_`. """ check_is_fitted(self) X = self._check_X(X) jll = self._joint_log_likelihood(X) # normalize by P(x) = P(f_1, ..., f_n) log_prob_x = logsumexp(jll, axis=1) return jll - np.atleast_2d(log_prob_x).T def predict_proba(self, X): """ Return probability estimates for the test vector X. Parameters ---------- X : array-like of shape (n_samples, n_features) Returns ------- C : array-like of shape (n_samples, n_classes) Returns the probability of the samples for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute :term:`classes_`. """ return np.exp(self.predict_log_proba(X)) class GaussianNB(_BaseNB): """ Gaussian Naive Bayes (GaussianNB) Can perform online updates to model parameters via :meth:`partial_fit`. For details on algorithm used to update feature means and variance online, see Stanford CS tech report STAN-CS-79-773 by Chan, Golub, and LeVeque: http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf Read more in the :ref:`User Guide <gaussian_naive_bayes>`. Parameters ---------- priors : array-like of shape (n_classes,) Prior probabilities of the classes. If specified the priors are not adjusted according to the data. var_smoothing : float, default=1e-9 Portion of the largest variance of all features that is added to variances for calculation stability. .. versionadded:: 0.20 Attributes ---------- class_count_ : ndarray of shape (n_classes,) number of training samples observed in each class. class_prior_ : ndarray of shape (n_classes,) probability of each class. classes_ : ndarray of shape (n_classes,) class labels known to the classifier epsilon_ : float absolute additive value to variances sigma_ : ndarray of shape (n_classes, n_features) variance of each feature per class theta_ : ndarray of shape (n_classes, n_features) mean of each feature per class Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> Y = np.array([1, 1, 1, 2, 2, 2]) >>> from sklearn.naive_bayes import GaussianNB >>> clf = GaussianNB() >>> clf.fit(X, Y) GaussianNB() >>> print(clf.predict([[-0.8, -1]])) [1] >>> clf_pf = GaussianNB() >>> clf_pf.partial_fit(X, Y, np.unique(Y)) GaussianNB() >>> print(clf_pf.predict([[-0.8, -1]])) [1] """ @_deprecate_positional_args def __init__(self, *, priors=None, var_smoothing=1e-9): self.priors = priors self.var_smoothing = var_smoothing def fit(self, X, y, sample_weight=None): """Fit Gaussian Naive Bayes according to X, y Parameters ---------- X : array-like of shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape (n_samples,) Target values. sample_weight : array-like of shape (n_samples,), default=None Weights applied to individual samples (1. for unweighted). .. versionadded:: 0.17 Gaussian Naive Bayes supports fitting with *sample_weight*. Returns ------- self : object """ X, y = self._validate_data(X, y) y = column_or_1d(y, warn=True) return self._partial_fit(X, y, np.unique(y), _refit=True, sample_weight=sample_weight) def _check_X(self, X): return check_array(X) @staticmethod def _update_mean_variance(n_past, mu, var, X, sample_weight=None): """Compute online update of Gaussian mean and variance. Given starting sample count, mean, and variance, a new set of points X, and optionally sample weights, return the updated mean and variance. (NB - each dimension (column) in X is treated as independent -- you get variance, not covariance). Can take scalar mean and variance, or vector mean and variance to simultaneously update a number of independent Gaussians. See Stanford CS tech report STAN-CS-79-773 by Chan, Golub, and LeVeque: http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf Parameters ---------- n_past : int Number of samples represented in old mean and variance. If sample weights were given, this should contain the sum of sample weights represented in old mean and variance. mu : array-like of shape (number of Gaussians,) Means for Gaussians in original set. var : array-like of shape (number of Gaussians,) Variances for Gaussians in original set. sample_weight : array-like of shape (n_samples,), default=None Weights applied to individual samples (1. for unweighted). Returns ------- total_mu : array-like of shape (number of Gaussians,) Updated mean for each Gaussian over the combined set. total_var : array-like of shape (number of Gaussians,) Updated variance for each Gaussian over the combined set. """ if X.shape[0] == 0: return mu, var # Compute (potentially weighted) mean and variance of new datapoints if sample_weight is not None: n_new = float(sample_weight.sum()) new_mu = np.average(X, axis=0, weights=sample_weight) new_var = np.average((X - new_mu) ** 2, axis=0, weights=sample_weight) else: n_new = X.shape[0] new_var = np.var(X, axis=0) new_mu = np.mean(X, axis=0) if n_past == 0: return new_mu, new_var n_total = float(n_past + n_new) # Combine mean of old and new data, taking into consideration # (weighted) number of observations total_mu = (n_new * new_mu + n_past * mu) / n_total # Combine variance of old and new data, taking into consideration # (weighted) number of observations. This is achieved by combining # the sum-of-squared-differences (ssd) old_ssd = n_past * var new_ssd = n_new * new_var total_ssd = (old_ssd + new_ssd + (n_new * n_past / n_total) * (mu - new_mu) ** 2) total_var = total_ssd / n_total return total_mu, total_var def partial_fit(self, X, y, classes=None, sample_weight=None): """Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different chunks of a dataset so as to implement out-of-core or online learning. This is especially useful when the whole dataset is too big to fit in memory at once. This method has some performance and numerical stability overhead, hence it is better to call partial_fit on chunks of data that are as large as possible (as long as fitting in the memory budget) to hide the overhead. Parameters ---------- X : array-like of shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape (n_samples,) Target values. classes : array-like of shape (n_classes,), default=None List of all the classes that can possibly appear in the y vector. Must be provided at the first call to partial_fit, can be omitted in subsequent calls. sample_weight : array-like of shape (n_samples,), default=None Weights applied to individual samples (1. for unweighted). .. versionadded:: 0.17 Returns ------- self : object """ return self._partial_fit(X, y, classes, _refit=False, sample_weight=sample_weight) def _partial_fit(self, X, y, classes=None, _refit=False, sample_weight=None): """Actual implementation of Gaussian NB fitting. Parameters ---------- X : array-like of shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape (n_samples,) Target values. classes : array-like of shape (n_classes,), default=None List of all the classes that can possibly appear in the y vector. Must be provided at the first call to partial_fit, can be omitted in subsequent calls. _refit : bool, default=False If true, act as though this were the first time we called _partial_fit (ie, throw away any past fitting and start over). sample_weight : array-like of shape (n_samples,), default=None Weights applied to individual samples (1. for unweighted). Returns ------- self : object """ X, y = check_X_y(X, y) if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X) # If the ratio of data variance between dimensions is too small, it # will cause numerical errors. To address this, we artificially # boost the variance by epsilon, a small fraction of the standard # deviation of the largest dimension. self.epsilon_ = self.var_smoothing * np.var(X, axis=0).max() if _refit: self.classes_ = None if _check_partial_fit_first_call(self, classes): # This is the first call to partial_fit: # initialize various cumulative counters n_features = X.shape[1] n_classes = len(self.classes_) self.theta_ = np.zeros((n_classes, n_features)) self.sigma_ = np.zeros((n_classes, n_features)) self.class_count_ = np.zeros(n_classes, dtype=np.float64) # Initialise the class prior # Take into account the priors if self.priors is not None: priors = np.asarray(self.priors) # Check that the provide prior match the number of classes if len(priors) != n_classes: raise ValueError('Number of priors must match number of' ' classes.') # Check that the sum is 1 if not np.isclose(priors.sum(), 1.0): raise ValueError('The sum of the priors should be 1.') # Check that the prior are non-negative if (priors < 0).any(): raise ValueError('Priors must be non-negative.') self.class_prior_ = priors else: # Initialize the priors to zeros for each class self.class_prior_ = np.zeros(len(self.classes_), dtype=np.float64) else: if X.shape[1] != self.theta_.shape[1]: msg = "Number of features %d does not match previous data %d." raise ValueError(msg % (X.shape[1], self.theta_.shape[1])) # Put epsilon back in each time self.sigma_[:, :] -= self.epsilon_ classes = self.classes_ unique_y = np.unique(y) unique_y_in_classes = np.in1d(unique_y, classes) if not np.all(unique_y_in_classes): raise ValueError("The target label(s) %s in y do not exist in the " "initial classes %s" % (unique_y[~unique_y_in_classes], classes)) for y_i in unique_y: i = classes.searchsorted(y_i) X_i = X[y == y_i, :] if sample_weight is not None: sw_i = sample_weight[y == y_i] N_i = sw_i.sum() else: sw_i = None N_i = X_i.shape[0] new_theta, new_sigma = self._update_mean_variance( self.class_count_[i], self.theta_[i, :], self.sigma_[i, :], X_i, sw_i) self.theta_[i, :] = new_theta self.sigma_[i, :] = new_sigma self.class_count_[i] += N_i self.sigma_[:, :] += self.epsilon_ # Update if only no priors is provided if self.priors is None: # Empirical prior, with sample_weight taken into account self.class_prior_ = self.class_count_ / self.class_count_.sum() return self def _joint_log_likelihood(self, X): joint_log_likelihood = [] for i in range(np.size(self.classes_)): jointi = np.log(self.class_prior_[i]) n_ij = - 0.5 * np.sum(np.log(2. * np.pi * self.sigma_[i, :])) n_ij -= 0.5 * np.sum(((X - self.theta_[i, :]) ** 2) / (self.sigma_[i, :]), 1) joint_log_likelihood.append(jointi + n_ij) joint_log_likelihood = np.array(joint_log_likelihood).T return joint_log_likelihood _ALPHA_MIN = 1e-10 class _BaseDiscreteNB(_BaseNB): """Abstract base class for naive Bayes on discrete/categorical data Any estimator based on this class should provide: __init__ _joint_log_likelihood(X) as per _BaseNB """ def _check_X(self, X): return check_array(X, accept_sparse='csr') def _check_X_y(self, X, y): return self._validate_data(X, y, accept_sparse='csr') def _update_class_log_prior(self, class_prior=None): n_classes = len(self.classes_) if class_prior is not None: if len(class_prior) != n_classes: raise ValueError("Number of priors must match number of" " classes.") self.class_log_prior_ = np.log(class_prior) elif self.fit_prior: with warnings.catch_warnings(): # silence the warning when count is 0 because class was not yet # observed warnings.simplefilter("ignore", RuntimeWarning) log_class_count = np.log(self.class_count_) # empirical prior, with sample_weight taken into account self.class_log_prior_ = (log_class_count - np.log(self.class_count_.sum())) else: self.class_log_prior_ = np.full(n_classes, -np.log(n_classes)) def _check_alpha(self): if np.min(self.alpha) < 0: raise ValueError('Smoothing parameter alpha = %.1e. ' 'alpha should be > 0.' % np.min(self.alpha)) if isinstance(self.alpha, np.ndarray): if not self.alpha.shape[0] == self.n_features_: raise ValueError("alpha should be a scalar or a numpy array " "with shape [n_features]") if np.min(self.alpha) < _ALPHA_MIN: warnings.warn('alpha too small will result in numeric errors, ' 'setting alpha = %.1e' % _ALPHA_MIN) return np.maximum(self.alpha, _ALPHA_MIN) return self.alpha def partial_fit(self, X, y, classes=None, sample_weight=None): """Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different chunks of a dataset so as to implement out-of-core or online learning. This is especially useful when the whole dataset is too big to fit in memory at once. This method has some performance overhead hence it is better to call partial_fit on chunks of data that are as large as possible (as long as fitting in the memory budget) to hide the overhead. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape (n_samples,) Target values. classes : array-like of shape (n_classes), default=None List of all the classes that can possibly appear in the y vector. Must be provided at the first call to partial_fit, can be omitted in subsequent calls. sample_weight : array-like of shape (n_samples,), default=None Weights applied to individual samples (1. for unweighted). Returns ------- self : object """ X, y = self._check_X_y(X, y) _, n_features = X.shape if _check_partial_fit_first_call(self, classes): # This is the first call to partial_fit: # initialize various cumulative counters n_effective_classes = len(classes) if len(classes) > 1 else 2 self._init_counters(n_effective_classes, n_features) self.n_features_ = n_features elif n_features != self.n_features_: msg = "Number of features %d does not match previous data %d." raise ValueError(msg % (n_features, self.n_features_)) Y = label_binarize(y, classes=self.classes_) if Y.shape[1] == 1: Y = np.concatenate((1 - Y, Y), axis=1) if X.shape[0] != Y.shape[0]: msg = "X.shape[0]=%d and y.shape[0]=%d are incompatible." raise ValueError(msg % (X.shape[0], y.shape[0])) # label_binarize() returns arrays with dtype=np.int64. # We convert it to np.float64 to support sample_weight consistently Y = Y.astype(np.float64, copy=False) if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X) sample_weight = np.atleast_2d(sample_weight) Y *= sample_weight.T class_prior = self.class_prior # Count raw events from data before updating the class log prior # and feature log probas self._count(X, Y) # XXX: OPTIM: we could introduce a public finalization method to # be called by the user explicitly just once after several consecutive # calls to partial_fit and prior any call to predict[_[log_]proba] # to avoid computing the smooth log probas at each call to partial fit alpha = self._check_alpha() self._update_feature_log_prob(alpha) self._update_class_log_prior(class_prior=class_prior) return self def fit(self, X, y, sample_weight=None): """Fit Naive Bayes classifier according to X, y Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape (n_samples,) Target values. sample_weight : array-like of shape (n_samples,), default=None Weights applied to individual samples (1. for unweighted). Returns ------- self : object """ X, y = self._check_X_y(X, y) _, n_features = X.shape self.n_features_ = n_features labelbin = LabelBinarizer() Y = labelbin.fit_transform(y) self.classes_ = labelbin.classes_ if Y.shape[1] == 1: Y = np.concatenate((1 - Y, Y), axis=1) # LabelBinarizer().fit_transform() returns arrays with dtype=np.int64. # We convert it to np.float64 to support sample_weight consistently; # this means we also don't have to cast X to floating point if sample_weight is not None: Y = Y.astype(np.float64, copy=False) sample_weight = _check_sample_weight(sample_weight, X) sample_weight = np.atleast_2d(sample_weight) Y *= sample_weight.T class_prior = self.class_prior # Count raw events from data before updating the class log prior # and feature log probas n_effective_classes = Y.shape[1] self._init_counters(n_effective_classes, n_features) self._count(X, Y) alpha = self._check_alpha() self._update_feature_log_prob(alpha) self._update_class_log_prior(class_prior=class_prior) return self def _init_counters(self, n_effective_classes, n_features): self.class_count_ = np.zeros(n_effective_classes, dtype=np.float64) self.feature_count_ = np.zeros((n_effective_classes, n_features), dtype=np.float64) # mypy error: Decorated property not supported @deprecated("Attribute coef_ was deprecated in " # type: ignore "version 0.24 and will be removed in 0.26.") @property def coef_(self): return (self.feature_log_prob_[1:] if len(self.classes_) == 2 else self.feature_log_prob_) # mypy error: Decorated property not supported @deprecated("Attribute intercept_ was deprecated in " # type: ignore "version 0.24 and will be removed in 0.26.") @property def intercept_(self): return (self.class_log_prior_[1:] if len(self.classes_) == 2 else self.class_log_prior_) def _more_tags(self): return {'poor_score': True} class MultinomialNB(_BaseDiscreteNB): """ Naive Bayes classifier for multinomial models The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification). The multinomial distribution normally requires integer feature counts. However, in practice, fractional counts such as tf-idf may also work. Read more in the :ref:`User Guide <multinomial_naive_bayes>`. Parameters ---------- alpha : float, default=1.0 Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing). fit_prior : bool, default=True Whether to learn class prior probabilities or not. If false, a uniform prior will be used. class_prior : array-like of shape (n_classes,), default=None Prior probabilities of the classes. If specified the priors are not adjusted according to the data. Attributes ---------- class_count_ : ndarray of shape (n_classes,) Number of samples encountered for each class during fitting. This value is weighted by the sample weight when provided. class_log_prior_ : ndarray of shape (n_classes, ) Smoothed empirical log probability for each class. classes_ : ndarray of shape (n_classes,) Class labels known to the classifier coef_ : ndarray of shape (n_classes, n_features) Mirrors ``feature_log_prob_`` for interpreting `MultinomialNB` as a linear model. .. deprecated:: 0.24 ``coef_`` is deprecated in 0.24 and will be removed in 0.26. feature_count_ : ndarray of shape (n_classes, n_features) Number of samples encountered for each (class, feature) during fitting. This value is weighted by the sample weight when provided. feature_log_prob_ : ndarray of shape (n_classes, n_features) Empirical log probability of features given a class, ``P(x_i|y)``. intercept_ : ndarray of shape (n_classes,) Mirrors ``class_log_prior_`` for interpreting `MultinomialNB` as a linear model. .. deprecated:: 0.24 ``intercept_`` is deprecated in 0.24 and will be removed in 0.26. n_features_ : int Number of features of each sample. Examples -------- >>> import numpy as np >>> rng = np.random.RandomState(1) >>> X = rng.randint(5, size=(6, 100)) >>> y = np.array([1, 2, 3, 4, 5, 6]) >>> from sklearn.naive_bayes import MultinomialNB >>> clf = MultinomialNB() >>> clf.fit(X, y) MultinomialNB() >>> print(clf.predict(X[2:3])) [3] Notes ----- For the rationale behind the names `coef_` and `intercept_`, i.e. naive Bayes as a linear classifier, see J. Rennie et al. (2003), Tackling the poor assumptions of naive Bayes text classifiers, ICML. References ---------- C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 234-265. https://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html """ @_deprecate_positional_args def __init__(self, *, alpha=1.0, fit_prior=True, class_prior=None): self.alpha = alpha self.fit_prior = fit_prior self.class_prior = class_prior def _more_tags(self): return {'requires_positive_X': True} def _count(self, X, Y): """Count and smooth feature occurrences.""" check_non_negative(X, "MultinomialNB (input X)") self.feature_count_ += safe_sparse_dot(Y.T, X) self.class_count_ += Y.sum(axis=0) def _update_feature_log_prob(self, alpha): """Apply smoothing to raw counts and recompute log probabilities""" smoothed_fc = self.feature_count_ + alpha smoothed_cc = smoothed_fc.sum(axis=1) self.feature_log_prob_ = (np.log(smoothed_fc) - np.log(smoothed_cc.reshape(-1, 1))) def _joint_log_likelihood(self, X): """Calculate the posterior log probability of the samples X""" return (safe_sparse_dot(X, self.feature_log_prob_.T) + self.class_log_prior_) class ComplementNB(_BaseDiscreteNB): """The Complement Naive Bayes classifier described in Rennie et al. (2003). The Complement Naive Bayes classifier was designed to correct the "severe assumptions" made by the standard Multinomial Naive Bayes classifier. It is particularly suited for imbalanced data sets. Read more in the :ref:`User Guide <complement_naive_bayes>`. .. versionadded:: 0.20 Parameters ---------- alpha : float, default=1.0 Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing). fit_prior : bool, default=True Only used in edge case with a single class in the training set. class_prior : array-like of shape (n_classes,), default=None Prior probabilities of the classes. Not used. norm : bool, default=False Whether or not a second normalization of the weights is performed. The default behavior mirrors the implementations found in Mahout and Weka, which do not follow the full algorithm described in Table 9 of the paper. Attributes ---------- class_count_ : ndarray of shape (n_classes,) Number of samples encountered for each class during fitting. This value is weighted by the sample weight when provided. class_log_prior_ : ndarray of shape (n_classes,) Smoothed empirical log probability for each class. Only used in edge case with a single class in the training set. classes_ : ndarray of shape (n_classes,) Class labels known to the classifier coef_ : ndarray of shape (n_classes, n_features) Mirrors ``feature_log_prob_`` for interpreting `ComplementNB` as a linear model. .. deprecated:: 0.24 ``coef_`` is deprecated in 0.24 and will be removed in 0.26. feature_all_ : ndarray of shape (n_features,) Number of samples encountered for each feature during fitting. This value is weighted by the sample weight when provided. feature_count_ : ndarray of shape (n_classes, n_features) Number of samples encountered for each (class, feature) during fitting. This value is weighted by the sample weight when provided. feature_log_prob_ : ndarray of shape (n_classes, n_features) Empirical weights for class complements. intercept_ : ndarray of shape (n_classes,) Mirrors ``class_log_prior_`` for interpreting `ComplementNB` as a linear model. .. deprecated:: 0.24 ``coef_`` is deprecated in 0.24 and will be removed in 0.26. n_features_ : int Number of features of each sample. Examples -------- >>> import numpy as np >>> rng = np.random.RandomState(1) >>> X = rng.randint(5, size=(6, 100)) >>> y = np.array([1, 2, 3, 4, 5, 6]) >>> from sklearn.naive_bayes import ComplementNB >>> clf = ComplementNB() >>> clf.fit(X, y) ComplementNB() >>> print(clf.predict(X[2:3])) [3] References ---------- Rennie, J. D., Shih, L., Teevan, J., & Karger, D. R. (2003). Tackling the poor assumptions of naive bayes text classifiers. In ICML (Vol. 3, pp. 616-623). https://people.csail.mit.edu/jrennie/papers/icml03-nb.pdf """ @_deprecate_positional_args def __init__(self, *, alpha=1.0, fit_prior=True, class_prior=None, norm=False): self.alpha = alpha self.fit_prior = fit_prior self.class_prior = class_prior self.norm = norm def _more_tags(self): return {'requires_positive_X': True} def _count(self, X, Y): """Count feature occurrences.""" check_non_negative(X, "ComplementNB (input X)") self.feature_count_ += safe_sparse_dot(Y.T, X) self.class_count_ += Y.sum(axis=0) self.feature_all_ = self.feature_count_.sum(axis=0) def _update_feature_log_prob(self, alpha): """Apply smoothing to raw counts and compute the weights.""" comp_count = self.feature_all_ + alpha - self.feature_count_ logged = np.log(comp_count / comp_count.sum(axis=1, keepdims=True)) # _BaseNB.predict uses argmax, but ComplementNB operates with argmin. if self.norm: summed = logged.sum(axis=1, keepdims=True) feature_log_prob = logged / summed else: feature_log_prob = -logged self.feature_log_prob_ = feature_log_prob def _joint_log_likelihood(self, X): """Calculate the class scores for the samples in X.""" jll = safe_sparse_dot(X, self.feature_log_prob_.T) if len(self.classes_) == 1: jll += self.class_log_prior_ return jll class BernoulliNB(_BaseDiscreteNB): """Naive Bayes classifier for multivariate Bernoulli models. Like MultinomialNB, this classifier is suitable for discrete data. The difference is that while MultinomialNB works with occurrence counts, BernoulliNB is designed for binary/boolean features. Read more in the :ref:`User Guide <bernoulli_naive_bayes>`. Parameters ---------- alpha : float, default=1.0 Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing). binarize : float or None, default=0.0 Threshold for binarizing (mapping to booleans) of sample features. If None, input is presumed to already consist of binary vectors. fit_prior : bool, default=True Whether to learn class prior probabilities or not. If false, a uniform prior will be used. class_prior : array-like of shape (n_classes,), default=None Prior probabilities of the classes. If specified the priors are not adjusted according to the data. Attributes ---------- class_count_ : ndarray of shape (n_classes) Number of samples encountered for each class during fitting. This value is weighted by the sample weight when provided. class_log_prior_ : ndarray of shape (n_classes) Log probability of each class (smoothed). classes_ : ndarray of shape (n_classes,) Class labels known to the classifier coef_ : ndarray of shape (n_classes, n_features) Mirrors ``feature_log_prob_`` for interpreting `BernoulliNB` as a linear model. feature_count_ : ndarray of shape (n_classes, n_features) Number of samples encountered for each (class, feature) during fitting. This value is weighted by the sample weight when provided. feature_log_prob_ : ndarray of shape (n_classes, n_features) Empirical log probability of features given a class, P(x_i|y). intercept_ : ndarray of shape (n_classes,) Mirrors ``class_log_prior_`` for interpreting `BernoulliNB` as a linear model. n_features_ : int Number of features of each sample. Examples -------- >>> import numpy as np >>> rng = np.random.RandomState(1) >>> X = rng.randint(5, size=(6, 100)) >>> Y = np.array([1, 2, 3, 4, 4, 5]) >>> from sklearn.naive_bayes import BernoulliNB >>> clf = BernoulliNB() >>> clf.fit(X, Y) BernoulliNB() >>> print(clf.predict(X[2:3])) [3] References ---------- C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 234-265. https://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html A. McCallum and K. Nigam (1998). A comparison of event models for naive Bayes text classification. Proc. AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41-48. V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering with naive Bayes -- Which naive Bayes? 3rd Conf. on Email and Anti-Spam (CEAS). """ @_deprecate_positional_args def __init__(self, *, alpha=1.0, binarize=.0, fit_prior=True, class_prior=None): self.alpha = alpha self.binarize = binarize self.fit_prior = fit_prior self.class_prior = class_prior def _check_X(self, X): X = super()._check_X(X) if self.binarize is not None: X = binarize(X, threshold=self.binarize) return X def _check_X_y(self, X, y): X, y = super()._check_X_y(X, y) if self.binarize is not None: X = binarize(X, threshold=self.binarize) return X, y def _count(self, X, Y): """Count and smooth feature occurrences.""" self.feature_count_ += safe_sparse_dot(Y.T, X) self.class_count_ += Y.sum(axis=0) def _update_feature_log_prob(self, alpha): """Apply smoothing to raw counts and recompute log probabilities""" smoothed_fc = self.feature_count_ + alpha smoothed_cc = self.class_count_ + alpha * 2 self.feature_log_prob_ = (np.log(smoothed_fc) - np.log(smoothed_cc.reshape(-1, 1))) def _joint_log_likelihood(self, X): """Calculate the posterior log probability of the samples X""" n_classes, n_features = self.feature_log_prob_.shape n_samples, n_features_X = X.shape if n_features_X != n_features: raise ValueError("Expected input with %d features, got %d instead" % (n_features, n_features_X)) neg_prob = np.log(1 - np.exp(self.feature_log_prob_)) # Compute neg_prob · (1 - X).T as ∑neg_prob - X · neg_prob jll = safe_sparse_dot(X, (self.feature_log_prob_ - neg_prob).T) jll += self.class_log_prior_ + neg_prob.sum(axis=1) return jll class CategoricalNB(_BaseDiscreteNB): """Naive Bayes classifier for categorical features The categorical Naive Bayes classifier is suitable for classification with discrete features that are categorically distributed. The categories of each feature are drawn from a categorical distribution. Read more in the :ref:`User Guide <categorical_naive_bayes>`. Parameters ---------- alpha : float, default=1.0 Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing). fit_prior : bool, default=True Whether to learn class prior probabilities or not. If false, a uniform prior will be used. class_prior : array-like of shape (n_classes,), default=None Prior probabilities of the classes. If specified the priors are not adjusted according to the data. min_categories : int or array-like of shape (n_features,), default=None Minimum number of categories per feature. - integer: Sets the minimum number of categories per feature to `n_categories` for each features. - array-like: shape (n_features,) where `n_categories[i]` holds the minimum number of categories for the ith column of the input. - None (default): Determines the number of categories automatically from the training data. .. versionadded:: 0.24 Attributes ---------- category_count_ : list of arrays of shape (n_features,) Holds arrays of shape (n_classes, n_categories of respective feature) for each feature. Each array provides the number of samples encountered for each class and category of the specific feature. class_count_ : ndarray of shape (n_classes,) Number of samples encountered for each class during fitting. This value is weighted by the sample weight when provided. class_log_prior_ : ndarray of shape (n_classes,) Smoothed empirical log probability for each class. classes_ : ndarray of shape (n_classes,) Class labels known to the classifier feature_log_prob_ : list of arrays of shape (n_features,) Holds arrays of shape (n_classes, n_categories of respective feature) for each feature. Each array provides the empirical log probability of categories given the respective feature and class, ``P(x_i|y)``. n_features_ : int Number of features of each sample. n_categories_ : ndarray of shape (n_features,), dtype=np.int64 Number of categories for each feature. This value is inferred from the data or set by the minimum number of categories. .. versionadded:: 0.24 Examples -------- >>> import numpy as np >>> rng = np.random.RandomState(1) >>> X = rng.randint(5, size=(6, 100)) >>> y = np.array([1, 2, 3, 4, 5, 6]) >>> from sklearn.naive_bayes import CategoricalNB >>> clf = CategoricalNB() >>> clf.fit(X, y) CategoricalNB() >>> print(clf.predict(X[2:3])) [3] """ @_deprecate_positional_args def __init__(self, *, alpha=1.0, fit_prior=True, class_prior=None, min_categories=None): self.alpha = alpha self.fit_prior = fit_prior self.class_prior = class_prior self.min_categories = min_categories def fit(self, X, y, sample_weight=None): """Fit Naive Bayes classifier according to X, y Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. Here, each feature of X is assumed to be from a different categorical distribution. It is further assumed that all categories of each feature are represented by the numbers 0, ..., n - 1, where n refers to the total number of categories for the given feature. This can, for instance, be achieved with the help of OrdinalEncoder. y : array-like of shape (n_samples,) Target values. sample_weight : array-like of shape (n_samples), default=None Weights applied to individual samples (1. for unweighted). Returns ------- self : object """ return super().fit(X, y, sample_weight=sample_weight) def partial_fit(self, X, y, classes=None, sample_weight=None): """Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different chunks of a dataset so as to implement out-of-core or online learning. This is especially useful when the whole dataset is too big to fit in memory at once. This method has some performance overhead hence it is better to call partial_fit on chunks of data that are as large as possible (as long as fitting in the memory budget) to hide the overhead. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. Here, each feature of X is assumed to be from a different categorical distribution. It is further assumed that all categories of each feature are represented by the numbers 0, ..., n - 1, where n refers to the total number of categories for the given feature. This can, for instance, be achieved with the help of OrdinalEncoder. y : array-like of shape (n_samples) Target values. classes : array-like of shape (n_classes), default=None List of all the classes that can possibly appear in the y vector. Must be provided at the first call to partial_fit, can be omitted in subsequent calls. sample_weight : array-like of shape (n_samples), default=None Weights applied to individual samples (1. for unweighted). Returns ------- self : object """ return super().partial_fit(X, y, classes, sample_weight=sample_weight) def _more_tags(self): return {'requires_positive_X': True} def _check_X(self, X): X = check_array(X, dtype='int', accept_sparse=False, force_all_finite=True) check_non_negative(X, "CategoricalNB (input X)") return X def _check_X_y(self, X, y): X, y = self._validate_data(X, y, dtype='int', accept_sparse=False, force_all_finite=True) check_non_negative(X, "CategoricalNB (input X)") return X, y def _init_counters(self, n_effective_classes, n_features): self.class_count_ = np.zeros(n_effective_classes, dtype=np.float64) self.category_count_ = [np.zeros((n_effective_classes, 0)) for _ in range(n_features)] @staticmethod def _validate_n_categories(X, min_categories): # rely on max for n_categories categories are encoded between 0...n-1 n_categories_X = X.max(axis=0) + 1 min_categories_ = np.array(min_categories) if min_categories is not None: if not np.issubdtype(min_categories_.dtype, np.signedinteger): raise ValueError( f"'min_categories' should have integral type. Got " f"{min_categories_.dtype} instead." ) n_categories_ = np.maximum(n_categories_X, min_categories_, dtype=np.int64) if n_categories_.shape != n_categories_X.shape: raise ValueError( f"'min_categories' should have shape ({X.shape[1]}," f") when an array-like is provided. Got" f" {min_categories_.shape} instead." ) return n_categories_ else: return n_categories_X def _count(self, X, Y): def _update_cat_count_dims(cat_count, highest_feature): diff = highest_feature + 1 - cat_count.shape[1] if diff > 0: # we append a column full of zeros for each new category return np.pad(cat_count, [(0, 0), (0, diff)], 'constant') return cat_count def _update_cat_count(X_feature, Y, cat_count, n_classes): for j in range(n_classes): mask = Y[:, j].astype(bool) if Y.dtype.type == np.int64: weights = None else: weights = Y[mask, j] counts = np.bincount(X_feature[mask], weights=weights) indices = np.nonzero(counts)[0] cat_count[j, indices] += counts[indices] self.class_count_ += Y.sum(axis=0) self.n_categories_ = self._validate_n_categories( X, self.min_categories) for i in range(self.n_features_): X_feature = X[:, i] self.category_count_[i] = _update_cat_count_dims( self.category_count_[i], self.n_categories_[i] - 1) _update_cat_count(X_feature, Y, self.category_count_[i], self.class_count_.shape[0]) def _update_feature_log_prob(self, alpha): feature_log_prob = [] for i in range(self.n_features_): smoothed_cat_count = self.category_count_[i] + alpha smoothed_class_count = smoothed_cat_count.sum(axis=1) feature_log_prob.append( np.log(smoothed_cat_count) - np.log(smoothed_class_count.reshape(-1, 1))) self.feature_log_prob_ = feature_log_prob def _joint_log_likelihood(self, X): if not X.shape[1] == self.n_features_: raise ValueError("Expected input with %d features, got %d instead" % (self.n_features_, X.shape[1])) jll = np.zeros((X.shape[0], self.class_count_.shape[0])) for i in range(self.n_features_): indices = X[:, i] jll += self.feature_log_prob_[i][:, indices].T total_ll = jll + self.class_log_prior_ return total_ll
bsd-3-clause
ddcampayo/polyFEM
tools/movie_particles.py
1
1385
#!/usr/bin/python import matplotlib.pyplot as plt import numpy as np #import matplotlib.cm as cm #from matplotlib.colors import Normalize import sys #print "This is the name of the script: ", sys.argv[0] #print "Number of arguments: ", len(sys.argv) #print "The arguments are: " , str(sys.argv) if(len(sys.argv) == 1) : init_t = 0 else: init_t = int( sys.argv[1] ) #import pylab as pl plt.figure(figsize=(8,8)) skip=1 #path='timings_full/' path='./' LL= 1 for n in range( init_t ,2000000+skip,skip): plt.clf() dt=np.loadtxt(path+str(n)+'/particles.dat') x=dt[:,0]; y=dt[:,1]; vol=dt[:,3] # vx=dt[:,5]; vym=dt[:,6]; p=dt[:,5] # I=dt[:,14]; # eccentricity r = np.sqrt( x**2 + y**2 ) rm = np.argmax(r) p -= p[ rm ] # np.min( p ) # plt.plot( r , p , 'o' ) plt.scatter( x , y , s=80 , c=p ) # plt.scatter( x , y , 80, c= vol , vmin=0.0022, vmax=0.0028 ) # plt.scatter( x , y , 10, c=w ) # plt.scatter( x , y , 10, c=I ) # plt.scatter( x , y , 80, c= I , vmin= 1.02e-6, vmax= 1.06e-6 ) # plt.scatter( x , y , 80, c= np.log( d2 + 1e-18 ) ) # plt.scatter( x , y , 10, c=om ) plt.xlim([-LL/2.0 , LL/2.0 ]) plt.ylim([-LL/2.0 , LL/2.0 ]) # pl.colorbar(ticks=[0.45,0.55]) print( 'snap{:03d}'.format( int(n/skip) ) ) plt.savefig( 'snap{:03d}'.format( int(n/skip) ) )
gpl-3.0
mhue/scikit-learn
sklearn/linear_model/tests/test_omp.py
272
7752
# Author: Vlad Niculae # Licence: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.linear_model import (orthogonal_mp, orthogonal_mp_gram, OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV, LinearRegression) from sklearn.utils import check_random_state from sklearn.datasets import make_sparse_coded_signal n_samples, n_features, n_nonzero_coefs, n_targets = 20, 30, 5, 3 y, X, gamma = make_sparse_coded_signal(n_targets, n_features, n_samples, n_nonzero_coefs, random_state=0) G, Xy = np.dot(X.T, X), np.dot(X.T, y) # this makes X (n_samples, n_features) # and y (n_samples, 3) def test_correct_shapes(): assert_equal(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5).shape, (n_features,)) assert_equal(orthogonal_mp(X, y, n_nonzero_coefs=5).shape, (n_features, 3)) def test_correct_shapes_gram(): assert_equal(orthogonal_mp_gram(G, Xy[:, 0], n_nonzero_coefs=5).shape, (n_features,)) assert_equal(orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5).shape, (n_features, 3)) def test_n_nonzero_coefs(): assert_true(np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5)) <= 5) assert_true(np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5, precompute=True)) <= 5) def test_tol(): tol = 0.5 gamma = orthogonal_mp(X, y[:, 0], tol=tol) gamma_gram = orthogonal_mp(X, y[:, 0], tol=tol, precompute=True) assert_true(np.sum((y[:, 0] - np.dot(X, gamma)) ** 2) <= tol) assert_true(np.sum((y[:, 0] - np.dot(X, gamma_gram)) ** 2) <= tol) def test_with_without_gram(): assert_array_almost_equal( orthogonal_mp(X, y, n_nonzero_coefs=5), orthogonal_mp(X, y, n_nonzero_coefs=5, precompute=True)) def test_with_without_gram_tol(): assert_array_almost_equal( orthogonal_mp(X, y, tol=1.), orthogonal_mp(X, y, tol=1., precompute=True)) def test_unreachable_accuracy(): assert_array_almost_equal( orthogonal_mp(X, y, tol=0), orthogonal_mp(X, y, n_nonzero_coefs=n_features)) assert_array_almost_equal( assert_warns(RuntimeWarning, orthogonal_mp, X, y, tol=0, precompute=True), orthogonal_mp(X, y, precompute=True, n_nonzero_coefs=n_features)) def test_bad_input(): assert_raises(ValueError, orthogonal_mp, X, y, tol=-1) assert_raises(ValueError, orthogonal_mp, X, y, n_nonzero_coefs=-1) assert_raises(ValueError, orthogonal_mp, X, y, n_nonzero_coefs=n_features + 1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, tol=-1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, n_nonzero_coefs=-1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, n_nonzero_coefs=n_features + 1) def test_perfect_signal_recovery(): idx, = gamma[:, 0].nonzero() gamma_rec = orthogonal_mp(X, y[:, 0], 5) gamma_gram = orthogonal_mp_gram(G, Xy[:, 0], 5) assert_array_equal(idx, np.flatnonzero(gamma_rec)) assert_array_equal(idx, np.flatnonzero(gamma_gram)) assert_array_almost_equal(gamma[:, 0], gamma_rec, decimal=2) assert_array_almost_equal(gamma[:, 0], gamma_gram, decimal=2) def test_estimator(): omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_.shape, ()) assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_.shape, (n_targets,)) assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) omp.set_params(fit_intercept=False, normalize=False) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_, 0) assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_, 0) assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) def test_identical_regressors(): newX = X.copy() newX[:, 1] = newX[:, 0] gamma = np.zeros(n_features) gamma[0] = gamma[1] = 1. newy = np.dot(newX, gamma) assert_warns(RuntimeWarning, orthogonal_mp, newX, newy, 2) def test_swapped_regressors(): gamma = np.zeros(n_features) # X[:, 21] should be selected first, then X[:, 0] selected second, # which will take X[:, 21]'s place in case the algorithm does # column swapping for optimization (which is the case at the moment) gamma[21] = 1.0 gamma[0] = 0.5 new_y = np.dot(X, gamma) new_Xy = np.dot(X.T, new_y) gamma_hat = orthogonal_mp(X, new_y, 2) gamma_hat_gram = orthogonal_mp_gram(G, new_Xy, 2) assert_array_equal(np.flatnonzero(gamma_hat), [0, 21]) assert_array_equal(np.flatnonzero(gamma_hat_gram), [0, 21]) def test_no_atoms(): y_empty = np.zeros_like(y) Xy_empty = np.dot(X.T, y_empty) gamma_empty = ignore_warnings(orthogonal_mp)(X, y_empty, 1) gamma_empty_gram = ignore_warnings(orthogonal_mp)(G, Xy_empty, 1) assert_equal(np.all(gamma_empty == 0), True) assert_equal(np.all(gamma_empty_gram == 0), True) def test_omp_path(): path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True) last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) path = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=True) last = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=False) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) def test_omp_return_path_prop_with_gram(): path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True, precompute=True) last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False, precompute=True) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) def test_omp_cv(): y_ = y[:, 0] gamma_ = gamma[:, 0] ompcv = OrthogonalMatchingPursuitCV(normalize=True, fit_intercept=False, max_iter=10, cv=5) ompcv.fit(X, y_) assert_equal(ompcv.n_nonzero_coefs_, n_nonzero_coefs) assert_array_almost_equal(ompcv.coef_, gamma_) omp = OrthogonalMatchingPursuit(normalize=True, fit_intercept=False, n_nonzero_coefs=ompcv.n_nonzero_coefs_) omp.fit(X, y_) assert_array_almost_equal(ompcv.coef_, omp.coef_) def test_omp_reaches_least_squares(): # Use small simple data; it's a sanity check but OMP can stop early rng = check_random_state(0) n_samples, n_features = (10, 8) n_targets = 3 X = rng.randn(n_samples, n_features) Y = rng.randn(n_samples, n_targets) omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_features) lstsq = LinearRegression() omp.fit(X, Y) lstsq.fit(X, Y) assert_array_almost_equal(omp.coef_, lstsq.coef_)
bsd-3-clause
vibhorag/scikit-learn
sklearn/decomposition/tests/test_sparse_pca.py
160
6028
# Author: Vlad Niculae # License: BSD 3 clause import sys import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import if_safe_multiprocessing_with_blas from sklearn.decomposition import SparsePCA, MiniBatchSparsePCA from sklearn.utils import check_random_state def generate_toy_data(n_components, n_samples, image_size, random_state=None): n_features = image_size[0] * image_size[1] rng = check_random_state(random_state) U = rng.randn(n_samples, n_components) V = rng.randn(n_components, n_features) centers = [(3, 3), (6, 7), (8, 1)] sz = [1, 2, 1] for k in range(n_components): img = np.zeros(image_size) xmin, xmax = centers[k][0] - sz[k], centers[k][0] + sz[k] ymin, ymax = centers[k][1] - sz[k], centers[k][1] + sz[k] img[xmin:xmax][:, ymin:ymax] = 1.0 V[k, :] = img.ravel() # Y is defined by : Y = UV + noise Y = np.dot(U, V) Y += 0.1 * rng.randn(Y.shape[0], Y.shape[1]) # Add noise return Y, U, V # SparsePCA can be a bit slow. To avoid having test times go up, we # test different aspects of the code in the same test def test_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) spca = SparsePCA(n_components=8, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition spca = SparsePCA(n_components=13, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_fit_transform(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) # Test that CD gives similar results spca_lasso = SparsePCA(n_components=3, method='cd', random_state=0, alpha=alpha) spca_lasso.fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_) @if_safe_multiprocessing_with_blas def test_fit_transform_parallel(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs spca = SparsePCA(n_components=3, n_jobs=2, method='lars', alpha=alpha, random_state=0).fit(Y) U2 = spca.transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) def test_transform_nan(): # Test that SparsePCA won't return NaN when there is 0 feature in all # samples. rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array Y[:, 0] = 0 estimator = SparsePCA(n_components=8) assert_false(np.any(np.isnan(estimator.fit_transform(Y)))) def test_fit_transform_tall(): rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 65, (8, 8), random_state=rng) # tall array spca_lars = SparsePCA(n_components=3, method='lars', random_state=rng) U1 = spca_lars.fit_transform(Y) spca_lasso = SparsePCA(n_components=3, method='cd', random_state=rng) U2 = spca_lasso.fit(Y).transform(Y) assert_array_almost_equal(U1, U2) def test_initialization(): rng = np.random.RandomState(0) U_init = rng.randn(5, 3) V_init = rng.randn(3, 4) model = SparsePCA(n_components=3, U_init=U_init, V_init=V_init, max_iter=0, random_state=rng) model.fit(rng.randn(5, 4)) assert_array_equal(model.components_, V_init) def test_mini_batch_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) pca = MiniBatchSparsePCA(n_components=8, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition pca = MiniBatchSparsePCA(n_components=13, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_mini_batch_fit_transform(): raise SkipTest("skipping mini_batch_fit_transform.") alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = MiniBatchSparsePCA(n_components=3, random_state=0, alpha=alpha).fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs if sys.platform == 'win32': # fake parallelism for win32 import sklearn.externals.joblib.parallel as joblib_par _mp = joblib_par.multiprocessing joblib_par.multiprocessing = None try: U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) finally: joblib_par.multiprocessing = _mp else: # we can efficiently use parallelism U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) # Test that CD gives similar results spca_lasso = MiniBatchSparsePCA(n_components=3, method='cd', alpha=alpha, random_state=0).fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_)
bsd-3-clause
zhouqiang00/Particle-Segmentation
CompareDataStars_data.py
1
30346
#!/home/zhouqiang/softwares/EMAN2/extlib/bin/python # Author: Qiang Zhou # School of Medicine, Tsinghua University # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # This complete copyright notice must be included in any revised version of the # source code. Additional authorship citations may be added, but existing # author citations must be preserved. import os,sys from metadata import * import random import math from EMAN2 import * from optparse import OptionParser def getEulersIndexes(labels): i_rot=labels["_rlnAngleRot"] - 1 i_tilt=labels["_rlnAngleTilt"] - 1 i_psi=labels["_rlnAnglePsi"] - 1 return i_rot,i_tilt,i_psi def getCoordOriginIndexes(labels): try: i_x=labels["_rlnCoordinateX"] - 1 except KeyError: i_x= -1 try: i_y=labels["_rlnCoordinateY"] - 1 except KeyError: i_y= -1 try: i_sx=labels["_rlnOriginX"] - 1 except KeyError: i_sx= -1 try: i_sy=labels["_rlnOriginY"] - 1 except KeyError: i_sy= -1 return i_x,i_y,i_sx,i_sy def getEulersFromRelionDataRecord(record,i_rot,i_tilt,i_psi): return float(record[i_rot]),float(record[i_tilt]),float(record[i_psi]) def getCoordOriginFromRelionDataRecord(record,i_x,i_y,i_sx,i_sy): if i_x >= 0: x=float(record[i_x]) else: x=0.0 if i_y >= 0: y=float(record[i_y]) else: y=0.0 if i_sx >= 0: sx=float(record[i_sx]) else: sx=0.0 if i_sy >= 0: sy=float(record[i_sy]) else: sy=0.0 return x,y,sx,sy #return float(record[i_x]),float(record[i_y]),float(record[i_sx]),float(record[i_sy]) def CLIP(v,max=0.999999,min=-0.999999): if v > max: v = max if v < min: v = min return v def RegularAnglePhiPsi(angle): while True: if angle >= 360.: angle -= 360. if angle < 360.: break while True: if angle < 0.0: angle += 360. if angle >=0.0: break return angle def calculateEulerDistance(e1,e2,e3,e4,e5,e6,type="spider",symmetry="c1"): if type == "spider": syms=Symmetries.get(symmetry) diff_angs_min = 3000. ts1=Transform({"type":"spider","phi":e1,"theta":e2,"psi":e3}) ts2=Transform({"type":"spider","phi":e4,"theta":e5,"psi":e6}) # The following line does not work for some particles, at least for c6 symmetry with unknown reason #for sym in syms.get_syms(): matrix1=ts1.get_matrix() for n in range(syms.get_nsym()): if symmetry == "c1" or symmetry == "C1": matrix2=ts2.get_matrix() else: # Must be use this reduce method for c6 symmetry. ts2_reduced=syms.reduce(ts2,n) matrix2=ts2_reduced.get_matrix() v1_1=Vec3f(matrix1[0],matrix1[4],matrix1[8]) v1_2=Vec3f(matrix1[1],matrix1[5],matrix1[9]) v1_3=Vec3f(matrix1[2],matrix1[6],matrix1[10]) v2_1=Vec3f(matrix2[0],matrix2[4],matrix2[8]) v2_2=Vec3f(matrix2[1],matrix2[5],matrix2[9]) v2_3=Vec3f(matrix2[2],matrix2[6],matrix2[10]) diff_angs = degrees(acos(CLIP(v1_1.dot(v2_1)))) diff_angs += degrees(acos(CLIP(v1_2.dot(v2_2)))) diff_angs += degrees(acos(CLIP(v1_3.dot(v2_3)))) if diff_angs < diff_angs_min: diff_angs_min = diff_angs return diff_angs_min / 3 def calculateTranslationDistance(x1,y1,sx1,sy1,b1,x2,y2,sx2,sy2,b2): return ((x2 - (sx2 * b2) - (x1 - sx1 * b1) ) ** 2 + ( y2 - ( sy2 * b2) - (y1 - sy1 * b1) ) ** 2 ) ** 0.5 def CloseEnough(record1,i_x1,i_y1,i_sx1,i_sy1,binningfactor1,record2,i_x2,i_y2,i_sx2,i_sy2,binningfactor2,overlap): x1,y1,sx1,sy1=getCoordOriginFromRelionDataRecord(record1,i_x1,i_y1,i_sx1,i_sy1) x2,y2,sx2,sy2=getCoordOriginFromRelionDataRecord(record2,i_x2,i_y2,i_sx2,i_sy2) return calculateTranslationDistance(x1,y1,sx1,sy1,binningfactor1,x2,y2,sx2,sy2,binningfactor2) <= overlap def calculateEulerTransformation(e1,e2,e3,e4,e5,e6,type="spider",symmetry="c1"): if type == "spider": syms=Symmetries.get(symmetry) ts1=Transform({"type":"spider","phi":e1,"theta":e2,"psi":e3}) ts2=Transform({"type":"spider","phi":e4,"theta":e5,"psi":e6}) # Find Euler transformation of volume 1 with Euler 1 relative to volume 2 with Euler 2 # ts1: 30S, ts2: 50S. For ratched motion, 30S rotated against 50S by transform_1relativeto2. # And then 30S and 50S rotate together by ts2, getting the final position ts1 of 30S. # ts1 = ts2 * transform_1relativeto2 ts2.invert() transform_1relativeto2 = ts2 * ts1 Eulers = transform_1relativeto2.get_rotation("spider") return Eulers["phi"],Eulers["theta"],Eulers["psi"] def main(): prog_name=os.path.basename(sys.argv[0]) usage=""" # Compare Euler angles between two metadata files which are specified with --input_data_star1 and --input_data_star2. # Corresponding particles in these two files must have the same image name. This is usually not the case. # You can use following command to substitute the suffix of the data2.star to the suffix of data1.star to make them have the same image name. And then use the intermediate file temp_data2.star as --input_data_star2. # cat data2.star | sed 's/suffixdata2/suffixdata1/g' > temp_data2.star # Find Euler angle distance between two data.star files # The fields in output file are: # ImageName,Phi1,Theta1,Psi1,Phi2,Theta2,Psi2,deltaEuler,deltaPhi,deltaTheta,deltaPsi # deltaEuler is the Euler angle distance of all of three Euler angles (phi, theta, psi). # deltaPhi/Theta/Psi is calculated by algebraic subtraction of respective Euler angle. {prog} < --input_data_star1 data1.star> < --input_data_star2 temp_data2.star > < -o output file > --calculateEulerError --sameImageName # Find rotating angle of the reference volume of data1.star against to the reference volume of data2.star: # The fields in output file are: # ImageName, PhiET, ThetaET, PsiET, PhiET+PsiET, deltaPhi, deltaTheta, deltaPsi # ET is the abbreation for Euler Transformation which is calculated by tranformation of Euler angle matrix. # delta??? is calculated by algebraic subtraction. {prog} < --input_data_star1 data1.star> < --input_data_star2 temp_data2.star > < -o output file > --calculateEulerTransform --sameImageName # Transform euler angle of particles against to a rotated or flipped ref: {prog} < --input_data_star1 data1.star> < -o output star file > < --TransformEuler > < [ --target_rot --target_tilt --target_psi ] | [ --target_emanaz --target_emanalt --target_emanphi ] | [ --flipX | --flipY | --flipZ ]> """.format(prog=prog_name) optParser= OptionParser(usage) optParser.add_option("--input_data_star1",action="store",type="str",dest="input_data_star1",default="",help="Input relion data.star file #1. [default: %default]") optParser.add_option("--input_data_star2",action="store",type="str",dest="input_data_star2",default="",help="Input relion data.star file #2, usually a reference data.star with pre-determined values. [default: %default]") optParser.add_option("--sameImageName",action="store_true",dest="sameImageName",default=False,help="Two input data.star files have same image names for same particles. [default: %default]") optParser.add_option("--baseOnOverlap",action="store_true",dest="baseOnOverlap",default=False,help="The particles in the input data.star files close enough to each other are cosidered as the same particles. [default: %default]") optParser.add_option("--overlap",action="store",type="float",dest="overlap",default=20.,help="The distance in pixel smaller thar which particles are considered overlapped each other.[default: %default]") optParser.add_option("--CmpAllOverlap",action="store_true",dest="CmpAllOverlap",default=False,help="Compare all duplicated particles if the second star file contains such particles when calculateEulerError or calculateTransError. The minimum distance will be saved. [default: %default]") optParser.add_option("-o","--outputstar",action="store",type="str",dest="outputstar",default="",help="Output relion data.star file. [default: %default]") optParser.add_option("--calculateVariance",action="store",dest="calculateVariance",default="",help="The relion label which variance to be calculated. [default: %default]") optParser.add_option("--ErrorBound",action="store",type="float",dest="ErrorBound",default=5.0,help="The Error bound to calculate variance and fit SD. Must be positive. [default: %default]") optParser.add_option("--ErrorDistribution",action="store",type="str",dest="ErrorDistribution",default="",help="The output figure name of the error distribution of the label. [default: %default]") optParser.add_option("--OutputSD",action="store",type="float",dest="OutputSD",default=2.0,help="Output particles within such SD. [default: %default]") optParser.add_option("--calculateTransError",action="store_true",dest="calculateTransError",default=False,help="Calculate Translation differences between two input data.star. [default: %default]") optParser.add_option("--binningfactor1",action="store",type="float",dest="binningfactor1",default=1.0,help="Binning factor of input_data_star #1. [default: %default]") optParser.add_option("--binningfactor2",action="store",type="float",dest="binningfactor2",default=1.0,help="Binning factor of input_data_star #2. [default: %default]") optParser.add_option("--calculateEulerError",action="store_true",dest="calculateEulerError",default=False,help="Calculate Euler angles differences between two input data.star. [default: %default]") optParser.add_option("--flipX",action="store_true",dest="flipX",default=False,help="The references for the two input data.star files are flipped along X axis. [default: %default]") optParser.add_option("--flipY",action="store_true",dest="flipY",default=False,help="The references for the two input data.star files are flipped along Y axis. [default: %default]") optParser.add_option("--flipZ",action="store_true",dest="flipZ",default=False,help="The references for the two input data.star files are flipped along Z axis. [default: %default]") optParser.add_option("--noflip",action="store_true",dest="noflip",default=False,help="The references for the two input data.star files are not flipped each other. [default: %default]") optParser.add_option("--calculateEulerTransform",action="store_true",dest="calculateEulerTransform",default=False,help="Calculate Euler angle transformation of volume of input data.star 1 relative to volume of input data.star 2. [default: %default]") optParser.add_option("--TransformEuler",action="store_true",dest="TransformEuler",default=False,help="Transform Euler angle of particles against a rotated or flipped reference. [default: %default]") optParser.add_option("--target_rot",action="store",type="float",dest="target_rot",default=0.0,help="Euler angle rot of the rotated reference relative to original ref. Overwrite eman angle. [default: %default]") optParser.add_option("--target_tilt",action="store",type="float",dest="target_tilt",default=0.0,help="Euler angle tilt of the rotated reference relative to original ref. Overwrite eman angle. [default: %default]") optParser.add_option("--target_psi",action="store",type="float",dest="target_psi",default=0.0,help="Euler angle psi of the rotated reference relative to original ref.. Overwrite eman angle. [default: %default]") optParser.add_option("--target_emanaz",action="store",type="float",dest="target_emanaz",default=0.0,help="Euler angle EMAN az of the rotated reference relative to original ref. [default: %default]") optParser.add_option("--target_emanalt",action="store",type="float",dest="target_emanalt",default=0.0,help="Euler angle EMAN alt of the rotated reference relative to original ref. [default: %default]") optParser.add_option("--target_emanphi",action="store",type="float",dest="target_emanphi",default=0.0,help="Euler angle EMAN phi of the rotated reference relative to original ref. [default: %default]") optParser.add_option("--TransformAlignment",action="store",type="str",dest="TransformAlignment",default=False,help="Transform alignment parameters of particles to against another reference. The input is the 12 elements of the matrix seperated with ,. The matrix contains 3 rows and 4 columns. First three columns are rotation matrix. Last column is translation. The other reference would be superimposed with current reference after applying this matrix. [default: %default]") optParser.add_option("--TransformEulerbySym",action="store_true",dest="TransformEulerbySym",default=False,help="Transform Euler angle by symmetry. Output a series of files with suffix '_sym?'. [default: %default]") optParser.add_option("--RandomEulerbySym",action="store_true",dest="RandomEulerbySym",default=False,help="Random Euler angle by symmetry. (Random choose a symmetry-related Euler angle for particles)'. [default: %default]") optParser.add_option("--symmetry",action="store",type="str",dest="symmetry",default="C1",help="The symmetry used in the 3D reconstruction. [default: %default]") #optParser.add_option("--Euleroff_Phi",action="store",type="float",dest="Euleroff_Phi",default=0.0,help="PHI of Euler angle of reference of input data.star 1 relative to that of input 2. [default: %default]") (options,args)=optParser.parse_args() data1=data_meta(options.input_data_star1) # find indexes try: i_MicrographName_1 = data1.data_["labels"]["_rlnMicrographName"] - 1 i_ImageName_1 = data1.data_["labels"]["_rlnImageName"] - 1 dataname1="data_" except: i_MicrographName_1 = data1.data_images["labels"]["_rlnMicrographName"] - 1 i_ImageName_1 = data1.data_images["labels"]["_rlnImageName"] - 1 dataname1="data_images" try: i_CoordinateX_1 = data1.__getattribute__(dataname1)["labels"]["_rlnCoordinateX"] - 1 i_CoordinateY_1 = data1.__getattribute__(dataname1)["labels"]["_rlnCoordinateY"] - 1 except: pass if options.input_data_star2: data2=data_meta(options.input_data_star2) # find indexes try: i_MicrographName_2 = data2.data_["labels"]["_rlnMicrographName"] - 1 i_ImageName_2 = data2.data_["labels"]["_rlnImageName"] - 1 dataname2="data_" except : i_MicrographName_2 = data2.data_images["labels"]["_rlnMicrographName"] - 1 i_ImageName_2 = data2.data_images["labels"]["_rlnImageName"] - 1 dataname2="data_images" try: i_CoordinateX_2 = data2.__getattribute__(dataname2)["labels"]["_rlnCoordinateX"] - 1 i_CoordinateY_2 = data2.__getattribute__(dataname2)["labels"]["_rlnCoordinateY"] - 1 except : pass # Hierachy second data.star by micrographs allmics2={} for i in range(len(data2.__getattribute__(dataname2)["datas"])): mic = data2.__getattribute__(dataname2)["datas"][i][i_MicrographName_2] if allmics2.has_key(mic): allmics2[mic].append(data2.__getattribute__(dataname2)["datas"][i]) else: allmics2[mic]=[] allmics2[mic].append(data2.__getattribute__(dataname2)["datas"][i]) if options.calculateVariance: try: i_variance1=data1.__getattribute__(dataname1)["labels"][options.calculateVariance] - 1 i_variance2=data2.__getattribute__(dataname2)["labels"][options.calculateVariance] - 1 except KeyError: print "Please input a proper label to calculate the variance." exit(-1) i_x1,i_y1,i_sx1,i_sy1=getCoordOriginIndexes(data1.__getattribute__(dataname1)["labels"]) i_x2,i_y2,i_sx2,i_sy2=getCoordOriginIndexes(data2.__getattribute__(dataname2)["labels"]) if options.calculateVariance[4:] in [ "DefocusAngle","AngleTilt","AngleRot","AnglePsi" ]: myunit="Degrees" elif options.calculateVariance[4:] in [ "OriginX","OriginY" ]: myunit="Pixels" elif options.calculateVariance[4:] in [ "DefocusU","DefocusV","UpdatedDefocusU","UpdatedDefocusV" ]: myunit="Angstroms" elif options.calculateVariance[4:] in [ "BeamTiltX","BeamTiltY" ]: myunit="mRads" else: myunit="Unit" rotrange=360. if options.symmetry.startswith(("c","C")) and int(options.symmetry[1:]) > 1 : rotrange /= int(options.symmetry[1:]) myvalues=[] if options.outputstar: myrecord1=[] for record1 in data1.__getattribute__(dataname1)["datas"]: mic = record1[i_MicrographName_1] if allmics2.has_key(mic): for record2 in allmics2[mic]: x1,y1,sx1,sy1=getCoordOriginFromRelionDataRecord(record1,i_x1,i_y1,i_sx1,i_sy1) x2,y2,sx2,sy2=getCoordOriginFromRelionDataRecord(record2,i_x2,i_y2,i_sx2,i_sy2) if (options.sameImageName and record1[i_ImageName_1] == record2[i_ImageName_2] ) or \ (options.baseOnOverlap and CloseEnough(record1,i_x1,i_y1,i_sx1,i_sy1,options.binningfactor1,record2,i_x2,i_y2,i_sx2,i_sy2,options.binningfactor2,options.overlap)) : if options.calculateVariance == "_rlnOriginX": my_error= x1 - sx1 * options.binningfactor1 - x2 + sx2 * options.binningfactor2 elif options.calculateVariance == "_rlnOriginY": my_error= y1 - sy1 * options.binningfactor1 - y2 + sy2 * options.binningfactor2 elif options.calculateVariance == "_rlnAngleTilt": #if float(record2[i_variance2]) <= 170. and float(record2[i_variance2]) >= 10. : my_error= float(record1[i_variance1]) - float(record2[i_variance2]) elif options.calculateVariance == "_rlnAngleRot": my_error= (float(record1[i_variance1]) - float(record2[i_variance2]) + rotrange / 2. ) % rotrange - rotrange / 2. elif options.calculateVariance == "_rlnAnglePsi": my_error= (float(record1[i_variance1]) - float(record2[i_variance2]) + 180. ) % 360. - 180. else: my_error= float(record1[i_variance1]) - float(record2[i_variance2]) myvalues.append(my_error) if options.outputstar: myrecord1.append((record1,my_error)) if options.sameImageName: print "There are %d common particles between the two input files."%(len(myvalues)) if options.baseOnOverlap: print "There are %d common particles between the two input files within an overlap limit of %f pixels."%(len(myvalues),options.overlap) import numpy as np myvalues=np.array(myvalues) #print "The SD of the error of %s is %f %s"%(options.calculateVariance,myvalues.var()**0.5,myunit.lower()) #if options.calculateVariance == "_rlnAngleRot" or options.calculateVariance == "_rlnAnglePsi" or options.calculateVariance == "_rlnAngleTilt": myvalues=myvalues[np.abs(myvalues) <= options.ErrorBound ] print "There are %d common particles after removing particles with error larger than %f"%(myvalues.shape[0],options.ErrorBound) #print "The SD of the error of %s is %f %s after removing particles."%(options.calculateVariance,myvalues.var()** 0.5,myunit.lower()) import matplotlib.pyplot as plt from scipy.stats import norm from scipy.optimize import leastsq def func(x,p): bg,SD,myloc=p return norm.pdf(x,loc=myloc,scale=SD) + bg def residuals(p,y,x): return y - func(x,p) mypdf,bins,patches=plt.hist(myvalues,bins=100,normed=True,label="Distribution of %s Error"%(options.calculateVariance[4:])) plsq=leastsq(residuals,(0.01,myvalues.var() ** 0.5,0.0),args=(mypdf,bins[:-1])) #print plsq #fit_SD=norm.fit(myvalues,floc = 0.0)[1] print "The fit SD of %s is %.2f"%(options.calculateVariance[4:],plsq[0][1]) plt.plot(bins,norm.pdf(bins,loc=plsq[0][2],scale=plsq[0][1]) + plsq[0][0],'g+-',label="Fit Curve") plt.ylabel(r"Distribution",fontsize=18) plt.xlabel(r"%s Error in %s"%(options.calculateVariance[4:],myunit.lower()),fontsize=18) plt.text(1.0,norm.pdf(0.0,loc=plsq[0][2],scale=plsq[0][1]),"SD = %.2f %s"%(plsq[0][1],myunit.lower())) #plt.legend() if options.ErrorDistribution: plt.savefig(options.ErrorDistribution,dpi=90) #plt.show() if options.outputstar: myrecord1=[recordError[0] for recordError in myrecord1 if abs(recordError[1]) <= options.OutputSD * plsq[0][1] ] data1.__getattribute__(dataname1)["datas"]=myrecord1 data1.write(options.outputstar) if options.calculateTransError: i_x1,i_y1,i_sx1,i_sy1=getCoordOriginIndexes(data1.__getattribute__(dataname1)["labels"]) i_x2,i_y2,i_sx2,i_sy2=getCoordOriginIndexes(data2.__getattribute__(dataname2)["labels"]) count=0 diff_transs=0.0 for record1 in data1.__getattribute__(dataname1)["datas"]: mic = record1[i_MicrographName_1] if allmics2.has_key(mic): diff_trans = -1 x1,y1,sx1,sy1=getCoordOriginFromRelionDataRecord(record1,i_x1,i_y1,i_sx1,i_sy1) for record2 in allmics2[mic]: x2,y2,sx2,sy2=getCoordOriginFromRelionDataRecord(record2,i_x2,i_y2,i_sx2,i_sy2) mydiff_trans = calculateTranslationDistance(x1,y1,sx1,sy1,options.binningfactor1,x2,y2,sx2,sy2,options.binningfactor2) if (options.sameImageName and record1[i_ImageName_1] == record2[i_ImageName_2]) or ( options.baseOnOverlap and mydiff_trans<=options.overlap ): if not options.CmpAllOverlap: diff_trans=mydiff_trans break else: if diff_trans < 0 or mydiff_trans < diff_trans: diff_trans=mydiff_trans if diff_trans >= 0.: count += 1 diff_transs += diff_trans if options.outputstar: record1.append(str(diff_trans)) if options.outputstar: print "The match records between two star file is %d particles"%(count) print "The average translation difference between two input star files is: %f pixels"%(diff_transs / count) data1.write(options.outputstar) if options. calculateEulerError: if options.baseOnOverlap: i_x1,i_y1,i_sx1,i_sy1=getCoordOriginIndexes(data1.__getattribute__(dataname1)["labels"]) i_x2,i_y2,i_sx2,i_sy2=getCoordOriginIndexes(data2.__getattribute__(dataname2)["labels"]) diff_eulers = 0.0 count = 0 i_rot1,i_tilt1,i_psi1=getEulersIndexes(data1.__getattribute__(dataname1)["labels"]) i_rot2,i_tilt2,i_psi2=getEulersIndexes(data2.__getattribute__(dataname2)["labels"]) outlines=[] for record1 in data1.__getattribute__(dataname1)["datas"]: mic = record1[i_MicrographName_1] if allmics2.has_key(mic): diff_euler= -1 e1,e2,e3=getEulersFromRelionDataRecord(record1,i_rot1,i_tilt1,i_psi1) for record2 in allmics2[mic]: if (options.sameImageName and record1[i_ImageName_1] == record2[i_ImageName_2] ) or \ (options.baseOnOverlap and CloseEnough(record1,i_x1,i_y1,i_sx1,i_sy1,options.binningfactor1,record2,i_x2,i_y2,i_sx2,i_sy2,options.binningfactor2,options.overlap)) : e4,e5,e6=getEulersFromRelionDataRecord(record2,i_rot2,i_tilt2,i_psi2) if options.flipX: e4 *= -1 e5 = 180. - e5 elif options.flipY: e4 = 180. - e4 e5 = 180. - e5 elif options.flipZ: e5 *= -1 #e4 += options.Euleroff_Phi mydiff_euler = calculateEulerDistance(e1,e2,e3,e4,e5,e6,type="spider",symmetry=options.symmetry) if not options.CmpAllOverlap: diff_euler=mydiff_euler break else: if diff_euler < 0 or mydiff_euler < diff_euler: diff_euler=mydiff_euler if diff_euler >= 0.: count += 1 diff_eulers += diff_euler if options.outputstar: if options.flipZ or options.flipX or options.flipY or options.noflip: record1.append(str(diff_euler)) else : outlines.append("%s %f %f %f %f %f %f %f %f %f %f\n"%(record1[i_ImageName_1],e1,e2,e3,e4,e5,e6,diff_euler,RegularAnglePhiPsi(e4-e1),e5-e2,e6-e3)) if options.outputstar: print "The match records between two star file is %d particles"%(count) print "The average Euler angle difference between two input star files is: %f degrees"%(diff_eulers / count) if options.flipZ or options.flipX or options.flipY or options.noflip : data1.write(options.outputstar) else: f = open(options.outputstar,"w") for outline in outlines: f.write(outline) f.close() print "The fields in output file are:" print "ImageName,Phi1,Theta1,Psi1,Phi2,Theta2,Psi2,deltaEuler,deltaPhi,deltaTheta,deltaPsi" if options.TransformEulerbySym: i_rot1,i_tilt1,i_psi1=getEulersIndexes(data1.__getattribute__(dataname1)["labels"]) allEulers=[] for record1 in data1.__getattribute__(dataname1)["datas"]: e1,e2,e3=getEulersFromRelionDataRecord(record1,i_rot1,i_tilt1,i_psi1) allEulers.append((e1,e2,e3)) allTrans=[Transform({"type":"spider","phi":e[0],"theta":e[1],"psi":e[2]}) for e in allEulers] allEulers=None syms=Symmetries.get(options.symmetry) for index_sym in range(syms.get_nsym()): dirname=os.path.dirname(options.input_data_star1) basename=os.path.splitext(os.path.basename(options.input_data_star1))[0] symed_star = os.path.join(dirname,basename+"_sym%d.star"%(index_sym)) my_current_sym = syms.get_sym(index_sym) n=0 for record1 in data1.__getattribute__(dataname1)["datas"]: current_trans=allTrans[n] trans_by_sym = current_trans * my_current_sym Eulers_by_sym = trans_by_sym.get_rotation("spider") record1[i_rot1]=str(Eulers_by_sym["phi"]) record1[i_tilt1]=str(Eulers_by_sym["theta"]) record1[i_psi1]=str(Eulers_by_sym["psi"]) n += 1 data1.write(symed_star) if options.TransformEuler: TE=Transform() do_flip=False if (options.target_rot != 0 or options.target_tilt != 0 or options.target_psi != 0): TE.set_rotation({'type':"spider",'phi':options.target_rot,'theta':options.target_tilt,'psi':options.target_psi }) elif (options.target_emanaz != 0 or options.target_emanalt != 0 or options.target_emanphi != 0) : TE.set_rotation({'type':"eman",'az':options.target_emanaz,'alt':options.target_emanalt,'phi':options.target_emanphi }) elif (options.flipX or options.flipY or options.flipZ): do_flip=True else: print "Nothing to do. Exit" exit() TE.invert() i_rot1,i_tilt1,i_psi1=getEulersIndexes(data1.__getattribute__(dataname1)["labels"]) for record1 in data1.__getattribute__(dataname1)["datas"]: e1,e2,e3=getEulersFromRelionDataRecord(record1,i_rot1,i_tilt1,i_psi1) if not do_flip: myTrans=Transform({"type":"spider","phi":e1,"theta":e2,"psi":e3}) myTE = myTrans * TE Eulers_by_TE = myTE.get_rotation("spider") record1[i_rot1]=str(Eulers_by_TE["phi"]) record1[i_tilt1]=str(Eulers_by_TE["theta"]) record1[i_psi1]=str(Eulers_by_TE["psi"]) else: if options.flipX: e1 *= -1 e2 = 180. - e2 elif options.flipY: e1 = 180. - e1 e2 = 180. - e2 elif options.flipZ: e2 *= -1 record1[i_rot1]=str(e1) record1[i_tilt1]=str(e2) record1[i_psi1]=str(e3) data1.write(options.outputstar) if options.TransformAlignment: # ref0 is superimposed with ref1 after applying (A0,t0) # ref1 is superimposed with current particles after applying (A1,t1) and projection. # v1 = A0*v0 + t0 # vp = A1*v1 + t1 # Ap = A1*A0 # tp = A1*t0 + t1 try: TE=Transform([float(i) for i in options.TransformAlignment.split(",")]) except: try: TE=Transform([float(i) for i in options.TransformAlignment.split()]) except: print "Pleae input proper transformation matrix element. Exit" exit() i_rot1,i_tilt1,i_psi1=getEulersIndexes(data1.__getattribute__(dataname1)["labels"]) i_x1,i_y1,i_sx1,i_sy1=getCoordOriginIndexes(data1.__getattribute__(dataname1)["labels"]) for record1 in data1.__getattribute__(dataname1)["datas"]: e1,e2,e3=getEulersFromRelionDataRecord(record1,i_rot1,i_tilt1,i_psi1) x1,y1,sx1,sy1=getCoordOriginFromRelionDataRecord(record1,i_x1,i_y1,i_sx1,i_sy1) myTrans=Transform({"type":"spider","phi":e1,"theta":e2,"psi":e3}) myTE = myTrans * TE Eulers_by_TE = myTE.get_rotation("spider") record1[i_rot1]=str(Eulers_by_TE["phi"]) record1[i_tilt1]=str(Eulers_by_TE["theta"]) record1[i_psi1]=str(Eulers_by_TE["psi"]) trans_by_TE = myTE.get_trans_2d() * -1 record1[i_sx1]=str(sx1 + trans_by_TE[0] ) record1[i_sy1]=str(sy1 + trans_by_TE[1]) data1.write(options.outputstar) if options.RandomEulerbySym: from random import randrange i_rot1,i_tilt1,i_psi1=getEulersIndexes(data1.__getattribute__(dataname1)["labels"]) syms=Symmetries.get(options.symmetry) nsyms =syms.get_nsym() for record1 in data1.__getattribute__(dataname1)["datas"]: e1,e2,e3 = getEulersFromRelionDataRecord(record1,i_rot1,i_tilt1,i_psi1) current_trans = Transform({"type":"spider","phi":e1,"theta":e2,"psi":e3}) # Random choose a symmetry index my_chosen_sym = syms.get_sym(randrange(nsyms)) trans_by_sym = current_trans * my_chosen_sym Eulers_by_sym = trans_by_sym.get_rotation("spider") record1[i_rot1]=str(Eulers_by_sym["phi"]) record1[i_tilt1]=str(Eulers_by_sym["theta"]) record1[i_psi1]=str(Eulers_by_sym["psi"]) dirname = os.path.dirname(options.input_data_star1) basename = os.path.splitext(os.path.basename(options.input_data_star1))[0] randomsymed_star = os.path.join(dirname,basename+"_randomsym.star") data1.write(randomsymed_star) if options.calculateEulerTransform: if options.baseOnOverlap: i_x1,i_y1,i_sx1,i_sy1=getCoordOriginIndexes(data1.__getattribute__(dataname1)["labels"]) i_x2,i_y2,i_sx2,i_sy2=getCoordOriginIndexes(data2.__getattribute__(dataname2)["labels"]) i_rot1,i_tilt1,i_psi1=getEulersIndexes(data1.__getattribute__(dataname1)["labels"]) i_rot2,i_tilt2,i_psi2=getEulersIndexes(data2.__getattribute__(dataname2)["labels"]) if options.outputstar: f = open(options.outputstar,"w") for record1 in data1.__getattribute__(dataname1)["datas"]: mic = record1[i_MicrographName_1] if allmics2.has_key(mic): for record2 in allmics2[mic]: if (options.sameImageName and record1[i_ImageName_1] == record2[i_ImageName_2] ) or \ (options.baseOnOverlap and CloseEnough(record1,i_x1,i_y1,i_sx1,i_sy1,options.binningfactor1,record2,i_x2,i_y2,i_sx2,i_sy2,options.binningfactor2,options.overlap)) : e1,e2,e3=getEulersFromRelionDataRecord(record1,i_rot1,i_tilt1,i_psi1) e4,e5,e6=getEulersFromRelionDataRecord(record2,i_rot2,i_tilt2,i_psi2) phi,theta,psi = calculateEulerTransformation(e1,e2,e3,e4,e5,e6,type="spider",symmetry=options.symmetry) f.write("%s %f %f %f %f %f %f %f\n"%(record1[i_ImageName_1],phi,theta,psi,RegularAnglePhiPsi(phi + psi),e4 - e1,e5 - e2 ,e6 - e3)) break if options.outputstar: f.close() print "The fields in output file are:" print "ImageName, PhiET, ThetaET, PsiET, PhiET+PsiET, deltaPhi, deltaTheta, deltaPsi" if __name__ == "__main__": main()
gpl-3.0
syl20bnr/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/projections/geo.py
69
19738
import math import numpy as np import numpy.ma as ma import matplotlib rcParams = matplotlib.rcParams from matplotlib.artist import kwdocd from matplotlib.axes import Axes from matplotlib import cbook from matplotlib.patches import Circle from matplotlib.path import Path from matplotlib.ticker import Formatter, Locator, NullLocator, FixedLocator, NullFormatter from matplotlib.transforms import Affine2D, Affine2DBase, Bbox, \ BboxTransformTo, IdentityTransform, Transform, TransformWrapper class GeoAxes(Axes): """ An abstract base class for geographic projections """ class ThetaFormatter(Formatter): """ Used to format the theta tick labels. Converts the native unit of radians into degrees and adds a degree symbol. """ def __init__(self, round_to=1.0): self._round_to = round_to def __call__(self, x, pos=None): degrees = (x / np.pi) * 180.0 degrees = round(degrees / self._round_to) * self._round_to if rcParams['text.usetex'] and not rcParams['text.latex.unicode']: return r"$%0.0f^\circ$" % degrees else: return u"%0.0f\u00b0" % degrees RESOLUTION = 75 def cla(self): Axes.cla(self) self.set_longitude_grid(30) self.set_latitude_grid(15) self.set_longitude_grid_ends(75) self.xaxis.set_minor_locator(NullLocator()) self.yaxis.set_minor_locator(NullLocator()) self.xaxis.set_ticks_position('none') self.yaxis.set_ticks_position('none') self.grid(rcParams['axes.grid']) Axes.set_xlim(self, -np.pi, np.pi) Axes.set_ylim(self, -np.pi / 2.0, np.pi / 2.0) def _set_lim_and_transforms(self): # A (possibly non-linear) projection on the (already scaled) data self.transProjection = self._get_core_transform(self.RESOLUTION) self.transAffine = self._get_affine_transform() self.transAxes = BboxTransformTo(self.bbox) # The complete data transformation stack -- from data all the # way to display coordinates self.transData = \ self.transProjection + \ self.transAffine + \ self.transAxes # This is the transform for longitude ticks. self._xaxis_pretransform = \ Affine2D() \ .scale(1.0, self._longitude_cap * 2.0) \ .translate(0.0, -self._longitude_cap) self._xaxis_transform = \ self._xaxis_pretransform + \ self.transData self._xaxis_text1_transform = \ Affine2D().scale(1.0, 0.0) + \ self.transData + \ Affine2D().translate(0.0, 4.0) self._xaxis_text2_transform = \ Affine2D().scale(1.0, 0.0) + \ self.transData + \ Affine2D().translate(0.0, -4.0) # This is the transform for latitude ticks. yaxis_stretch = Affine2D().scale(np.pi * 2.0, 1.0).translate(-np.pi, 0.0) yaxis_space = Affine2D().scale(1.0, 1.1) self._yaxis_transform = \ yaxis_stretch + \ self.transData yaxis_text_base = \ yaxis_stretch + \ self.transProjection + \ (yaxis_space + \ self.transAffine + \ self.transAxes) self._yaxis_text1_transform = \ yaxis_text_base + \ Affine2D().translate(-8.0, 0.0) self._yaxis_text2_transform = \ yaxis_text_base + \ Affine2D().translate(8.0, 0.0) def _get_affine_transform(self): transform = self._get_core_transform(1) xscale, _ = transform.transform_point((np.pi, 0)) _, yscale = transform.transform_point((0, np.pi / 2.0)) return Affine2D() \ .scale(0.5 / xscale, 0.5 / yscale) \ .translate(0.5, 0.5) def get_xaxis_transform(self): return self._xaxis_transform def get_xaxis_text1_transform(self, pad): return self._xaxis_text1_transform, 'bottom', 'center' def get_xaxis_text2_transform(self, pad): return self._xaxis_text2_transform, 'top', 'center' def get_yaxis_transform(self): return self._yaxis_transform def get_yaxis_text1_transform(self, pad): return self._yaxis_text1_transform, 'center', 'right' def get_yaxis_text2_transform(self, pad): return self._yaxis_text2_transform, 'center', 'left' def _gen_axes_patch(self): return Circle((0.5, 0.5), 0.5) def set_yscale(self, *args, **kwargs): if args[0] != 'linear': raise NotImplementedError set_xscale = set_yscale def set_xlim(self, *args, **kwargs): Axes.set_xlim(self, -np.pi, np.pi) Axes.set_ylim(self, -np.pi / 2.0, np.pi / 2.0) set_ylim = set_xlim def format_coord(self, long, lat): 'return a format string formatting the coordinate' long = long * (180.0 / np.pi) lat = lat * (180.0 / np.pi) if lat >= 0.0: ns = 'N' else: ns = 'S' if long >= 0.0: ew = 'E' else: ew = 'W' return u'%f\u00b0%s, %f\u00b0%s' % (abs(lat), ns, abs(long), ew) def set_longitude_grid(self, degrees): """ Set the number of degrees between each longitude grid. """ number = (360.0 / degrees) + 1 self.xaxis.set_major_locator( FixedLocator( np.linspace(-np.pi, np.pi, number, True)[1:-1])) self._logitude_degrees = degrees self.xaxis.set_major_formatter(self.ThetaFormatter(degrees)) def set_latitude_grid(self, degrees): """ Set the number of degrees between each longitude grid. """ number = (180.0 / degrees) + 1 self.yaxis.set_major_locator( FixedLocator( np.linspace(-np.pi / 2.0, np.pi / 2.0, number, True)[1:-1])) self._latitude_degrees = degrees self.yaxis.set_major_formatter(self.ThetaFormatter(degrees)) def set_longitude_grid_ends(self, degrees): """ Set the latitude(s) at which to stop drawing the longitude grids. """ self._longitude_cap = degrees * (np.pi / 180.0) self._xaxis_pretransform \ .clear() \ .scale(1.0, self._longitude_cap * 2.0) \ .translate(0.0, -self._longitude_cap) def get_data_ratio(self): ''' Return the aspect ratio of the data itself. ''' return 1.0 ### Interactive panning def can_zoom(self): """ Return True if this axes support the zoom box """ return False def start_pan(self, x, y, button): pass def end_pan(self): pass def drag_pan(self, button, key, x, y): pass class AitoffAxes(GeoAxes): name = 'aitoff' class AitoffTransform(Transform): """ The base Aitoff transform. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): """ Create a new Aitoff transform. Resolution is the number of steps to interpolate between each input line segment to approximate its path in curved Aitoff space. """ Transform.__init__(self) self._resolution = resolution def transform(self, ll): longitude = ll[:, 0:1] latitude = ll[:, 1:2] # Pre-compute some values half_long = longitude / 2.0 cos_latitude = np.cos(latitude) alpha = np.arccos(cos_latitude * np.cos(half_long)) # Mask this array, or we'll get divide-by-zero errors alpha = ma.masked_where(alpha == 0.0, alpha) # We want unnormalized sinc. numpy.sinc gives us normalized sinc_alpha = ma.sin(alpha) / alpha x = (cos_latitude * np.sin(half_long)) / sinc_alpha y = (np.sin(latitude) / sinc_alpha) x.set_fill_value(0.0) y.set_fill_value(0.0) return np.concatenate((x.filled(), y.filled()), 1) transform.__doc__ = Transform.transform.__doc__ transform_non_affine = transform transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path(self, path): vertices = path.vertices ipath = path.interpolated(self._resolution) return Path(self.transform(ipath.vertices), ipath.codes) transform_path.__doc__ = Transform.transform_path.__doc__ transform_path_non_affine = transform_path transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def inverted(self): return AitoffAxes.InvertedAitoffTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ class InvertedAitoffTransform(Transform): input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): Transform.__init__(self) self._resolution = resolution def transform(self, xy): # MGDTODO: Math is hard ;( return xy transform.__doc__ = Transform.transform.__doc__ def inverted(self): return AitoffAxes.AitoffTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ def __init__(self, *args, **kwargs): self._longitude_cap = np.pi / 2.0 GeoAxes.__init__(self, *args, **kwargs) self.set_aspect(0.5, adjustable='box', anchor='C') self.cla() def _get_core_transform(self, resolution): return self.AitoffTransform(resolution) class HammerAxes(GeoAxes): name = 'hammer' class HammerTransform(Transform): """ The base Hammer transform. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): """ Create a new Hammer transform. Resolution is the number of steps to interpolate between each input line segment to approximate its path in curved Hammer space. """ Transform.__init__(self) self._resolution = resolution def transform(self, ll): longitude = ll[:, 0:1] latitude = ll[:, 1:2] # Pre-compute some values half_long = longitude / 2.0 cos_latitude = np.cos(latitude) sqrt2 = np.sqrt(2.0) alpha = 1.0 + cos_latitude * np.cos(half_long) x = (2.0 * sqrt2) * (cos_latitude * np.sin(half_long)) / alpha y = (sqrt2 * np.sin(latitude)) / alpha return np.concatenate((x, y), 1) transform.__doc__ = Transform.transform.__doc__ transform_non_affine = transform transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path(self, path): vertices = path.vertices ipath = path.interpolated(self._resolution) return Path(self.transform(ipath.vertices), ipath.codes) transform_path.__doc__ = Transform.transform_path.__doc__ transform_path_non_affine = transform_path transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def inverted(self): return HammerAxes.InvertedHammerTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ class InvertedHammerTransform(Transform): input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): Transform.__init__(self) self._resolution = resolution def transform(self, xy): x = xy[:, 0:1] y = xy[:, 1:2] quarter_x = 0.25 * x half_y = 0.5 * y z = np.sqrt(1.0 - quarter_x*quarter_x - half_y*half_y) longitude = 2 * np.arctan((z*x) / (2.0 * (2.0*z*z - 1.0))) latitude = np.arcsin(y*z) return np.concatenate((longitude, latitude), 1) transform.__doc__ = Transform.transform.__doc__ def inverted(self): return HammerAxes.HammerTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ def __init__(self, *args, **kwargs): self._longitude_cap = np.pi / 2.0 GeoAxes.__init__(self, *args, **kwargs) self.set_aspect(0.5, adjustable='box', anchor='C') self.cla() def _get_core_transform(self, resolution): return self.HammerTransform(resolution) class MollweideAxes(GeoAxes): name = 'mollweide' class MollweideTransform(Transform): """ The base Mollweide transform. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): """ Create a new Mollweide transform. Resolution is the number of steps to interpolate between each input line segment to approximate its path in curved Mollweide space. """ Transform.__init__(self) self._resolution = resolution def transform(self, ll): longitude = ll[:, 0:1] latitude = ll[:, 1:2] aux = 2.0 * np.arcsin((2.0 * latitude) / np.pi) x = (2.0 * np.sqrt(2.0) * longitude * np.cos(aux)) / np.pi y = (np.sqrt(2.0) * np.sin(aux)) return np.concatenate((x, y), 1) transform.__doc__ = Transform.transform.__doc__ transform_non_affine = transform transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path(self, path): vertices = path.vertices ipath = path.interpolated(self._resolution) return Path(self.transform(ipath.vertices), ipath.codes) transform_path.__doc__ = Transform.transform_path.__doc__ transform_path_non_affine = transform_path transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def inverted(self): return MollweideAxes.InvertedMollweideTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ class InvertedMollweideTransform(Transform): input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): Transform.__init__(self) self._resolution = resolution def transform(self, xy): # MGDTODO: Math is hard ;( return xy transform.__doc__ = Transform.transform.__doc__ def inverted(self): return MollweideAxes.MollweideTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ def __init__(self, *args, **kwargs): self._longitude_cap = np.pi / 2.0 GeoAxes.__init__(self, *args, **kwargs) self.set_aspect(0.5, adjustable='box', anchor='C') self.cla() def _get_core_transform(self, resolution): return self.MollweideTransform(resolution) class LambertAxes(GeoAxes): name = 'lambert' class LambertTransform(Transform): """ The base Lambert transform. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, center_longitude, center_latitude, resolution): """ Create a new Lambert transform. Resolution is the number of steps to interpolate between each input line segment to approximate its path in curved Lambert space. """ Transform.__init__(self) self._resolution = resolution self._center_longitude = center_longitude self._center_latitude = center_latitude def transform(self, ll): longitude = ll[:, 0:1] latitude = ll[:, 1:2] clong = self._center_longitude clat = self._center_latitude cos_lat = np.cos(latitude) sin_lat = np.sin(latitude) diff_long = longitude - clong cos_diff_long = np.cos(diff_long) inner_k = (1.0 + np.sin(clat)*sin_lat + np.cos(clat)*cos_lat*cos_diff_long) # Prevent divide-by-zero problems inner_k = np.where(inner_k == 0.0, 1e-15, inner_k) k = np.sqrt(2.0 / inner_k) x = k*cos_lat*np.sin(diff_long) y = k*(np.cos(clat)*sin_lat - np.sin(clat)*cos_lat*cos_diff_long) return np.concatenate((x, y), 1) transform.__doc__ = Transform.transform.__doc__ transform_non_affine = transform transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path(self, path): vertices = path.vertices ipath = path.interpolated(self._resolution) return Path(self.transform(ipath.vertices), ipath.codes) transform_path.__doc__ = Transform.transform_path.__doc__ transform_path_non_affine = transform_path transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def inverted(self): return LambertAxes.InvertedLambertTransform( self._center_longitude, self._center_latitude, self._resolution) inverted.__doc__ = Transform.inverted.__doc__ class InvertedLambertTransform(Transform): input_dims = 2 output_dims = 2 is_separable = False def __init__(self, center_longitude, center_latitude, resolution): Transform.__init__(self) self._resolution = resolution self._center_longitude = center_longitude self._center_latitude = center_latitude def transform(self, xy): x = xy[:, 0:1] y = xy[:, 1:2] clong = self._center_longitude clat = self._center_latitude p = np.sqrt(x*x + y*y) p = np.where(p == 0.0, 1e-9, p) c = 2.0 * np.arcsin(0.5 * p) sin_c = np.sin(c) cos_c = np.cos(c) lat = np.arcsin(cos_c*np.sin(clat) + ((y*sin_c*np.cos(clat)) / p)) long = clong + np.arctan( (x*sin_c) / (p*np.cos(clat)*cos_c - y*np.sin(clat)*sin_c)) return np.concatenate((long, lat), 1) transform.__doc__ = Transform.transform.__doc__ def inverted(self): return LambertAxes.LambertTransform( self._center_longitude, self._center_latitude, self._resolution) inverted.__doc__ = Transform.inverted.__doc__ def __init__(self, *args, **kwargs): self._longitude_cap = np.pi / 2.0 self._center_longitude = kwargs.pop("center_longitude", 0.0) self._center_latitude = kwargs.pop("center_latitude", 0.0) GeoAxes.__init__(self, *args, **kwargs) self.set_aspect('equal', adjustable='box', anchor='C') self.cla() def cla(self): GeoAxes.cla(self) self.yaxis.set_major_formatter(NullFormatter()) def _get_core_transform(self, resolution): return self.LambertTransform( self._center_longitude, self._center_latitude, resolution) def _get_affine_transform(self): return Affine2D() \ .scale(0.25) \ .translate(0.5, 0.5)
gpl-3.0
liuwenf/moose
gui/utils/Plotter.py
8
6217
#!usr/bin/python import sys, os, random try: from PyQt4 import QtCore, QtGui QtCore.Signal = QtCore.pyqtSignal QtCore.Slot = QtCore.pyqtSlot except ImportError: try: from PySide import QtCore, QtGui QtCore.QString = str except ImportError: raise ImportError("Cannot load either PyQt or PySide") import numpy, csv from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure class PlotWidget(FigureCanvas): """This is the canvas Widget. It allows for MPL plot embedding """ def __init__(self, parent=None, width=9.85, height=5 , dpi=50): self.fig = Figure(figsize=(width, height), dpi=dpi) self.axes = self.fig.add_subplot(111) # We want the axes cleared every time plot() is called self.axes.hold(False) FigureCanvas.__init__(self, self.fig) self.setParent(parent) FigureCanvas.setSizePolicy(self, QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) FigureCanvas.updateGeometry(self) class MPLPlotter(QtGui.QWidget): """This is a widget that inherites from the plotWidget class that is used to update the plot with PP data""" def __init__(self, plotData, plotName, parent = None): QtGui.QWidget.__init__(self, parent) self.plotData = plotData self.plotName = plotName self.canvas = PlotWidget() self.plotTitle = plotName + ' Postprocessor' self.getPlotColor() self.setPlotData(self.plotData, self.plotName) self.vbox = QtGui.QVBoxLayout() self.vbox.addWidget(self.canvas) self.setLayout(self.vbox) # set button context menu policy self.canvas.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) self.connect(self.canvas, QtCore.SIGNAL('customContextMenuRequested(const QPoint&)'), self.on_context_menu) # create color menu self.colorMenu = QtGui.QMenu('Plot Color', self) royalBlueLine = QtGui.QAction('Blue',self) royalBlueLine.triggered.connect(self.changeRoyalBlue) orchidLine = QtGui.QAction('Magenta',self) orchidLine.triggered.connect(self.changeOrchid) tomatoLine = QtGui.QAction('Red',self) tomatoLine.triggered.connect(self.changeTomato) goldLine = QtGui.QAction('Yellow',self) goldLine.triggered.connect(self.changeGold) limeGreenLine = QtGui.QAction('Green',self) limeGreenLine.triggered.connect(self.changeLimeGreen) turquoiseLine = QtGui.QAction('Cyan',self) turquoiseLine.triggered.connect(self.changeTurquoise) blackLine = QtGui.QAction('Black',self) blackLine.triggered.connect(self.changeBlack) self.colorMenu.addAction(royalBlueLine) self.colorMenu.addAction(orchidLine) self.colorMenu.addAction(tomatoLine) self.colorMenu.addAction(goldLine) self.colorMenu.addAction(limeGreenLine) self.colorMenu.addAction(turquoiseLine) self.colorMenu.addAction(blackLine) # create context menu saveAction = QtGui.QAction('Save Plot', self) saveAction.triggered.connect(self.savePlot) closeAction = QtGui.QAction('Close Plot', self) closeAction.triggered.connect(self.closePlot) self.popMenu = QtGui.QMenu(self) self.popMenu.addAction(saveAction) self.popMenu.addSeparator() self.popMenu.addMenu(self.colorMenu) self.popMenu.addSeparator() self.popMenu.addAction(closeAction) def setPlotData(self, plotData, plotName): self.plotData = plotData self.plotName = plotName self.xData = self.plotData[0] self.yData = self.plotData[1] # MPL plots self.canvas.axes.plot(self.xData, self.yData, self.plotColor, linewidth = 2.5) self.canvas.axes.set_xlabel('time') self.canvas.axes.set_ylabel(self.plotName) self.canvas.axes.set_title(self.plotTitle) self.canvas.draw() def on_context_menu(self, point): # show context menu self.popMenu.exec_(self.canvas.mapToGlobal(point)) def savePlot(self): file_name = QtGui.QFileDialog.getSaveFileName(self, 'Save file', self.plotTitle, "Images (*.pdf)") if isinstance(file_name, QtCore.QString): file_name = str(file_name) if not isinstance(file_name, basestring): # This happens when using pyside file_name = file_name[0] if file_name != '': self.canvas.print_figure(unicode(file_name), dpi = 100) def closePlot(self): self.close() def changeRoyalBlue(self): self.plotColor = "RoyalBlue" self.setPlotData(self.plotData,self.plotName) def changeOrchid(self): self.plotColor = "Magenta" self.setPlotData(self.plotData,self.plotName) def changeTomato(self): self.plotColor = "Tomato" self.setPlotData(self.plotData,self.plotName) def changeGold(self): self.plotColor = "Gold" self.setPlotData(self.plotData,self.plotName) def changeLimeGreen(self): self.plotColor = "LimeGreen" self.setPlotData(self.plotData,self.plotName) def changeTurquoise(self): self.plotColor = "DarkTurquoise" self.setPlotData(self.plotData,self.plotName) def changeBlack(self): self.plotColor = "Black" self.setPlotData(self.plotData,self.plotName) def getPlotColor(self): if (self.plotName[0] in ('a','A','f','F','k','K','p','P','u','U','z','Z')): self.plotColor = "LimeGreen" elif (self.plotName[0] in ('b','B','g','G','l','L','q','Q','v','V')): self.plotColor = "DarkTurquoise" elif (self.plotName[0] in ('c','C','h','H','m','M','r','R','w','W')): self.plotColor = "RoyalBlue" elif (self.plotName[0] in ('d','D','i','I','n','N','s','S','x','X')): self.plotColor = "Magenta" elif (self.plotName[0] in ('e','E','j','J','o','O','t','T','y','Y')): self.plotColor = "Tomato" else: self.plotColor = "Gold"
lgpl-2.1
jungla/ICOM-fluidity-toolbox
Detectors/offline_advection/plot_vdisp_C.py
1
3507
#!~/python import fluidity_tools import matplotlib as mpl #mpl.use('ps') import matplotlib.pyplot as plt import myfun import numpy as np import os import fio import advect_functions exp = 'm_25_1' filename0 = 'traj_m_25_1_particles_481_3400_3Dv.csv' tt = 3400-481# IC + 24-48 included #x0 = range(500,1550,50) #y0 = range(500,1550,50) #z0 = range(0,52,2) x0 = range(0,2000,50) y0 = range(0,2000,50) z0 = range(0,52,2) #x0 = range(0,2000,50) #y0 = range(0,2000,50) #z0 = range(2,48,2) xp = len(x0) yp = len(y0) zp = len(z0) pt = xp*yp*zp #timet, par0 = advect_functions.read_particles_csv(filename0,pt,tt) time0 = (timet[:-1])*360 - 360 par = np.reshape(par0,(pt,3,tt)) # FSLE di = 2 time = time0 - time0[0] import scipy for r in [2]: parL = range(pt-1) fsle = np.zeros(pt)*np.nan fslec = np.zeros((pt,3)) df=r*di # separation distance # # loop triplets in time # for t in range(tt-1): for p in parL: # print t,len(parL) # loop particles dr = np.linalg.norm(par[p,2,t]-par[p+1,2,t]) if (dr > df and np.isnan(fsle[p])): fsle[p] = np.log(r)/(time[t]/3600) # fsle has the dimension of the first triplet fslec[p,:] = par[p,:,0] # coords of the starting point parL.remove(p) # # plot fsle # 3D arrays of fsle and fslec # fsler = np.reshape(fsle,(xp,yp,zp)) fsler[:,:,-1] = 0 # fslexr = np.reshape(fslec[:,0],(nlat,nlon)) # fsleyr = np.reshape(fslec[:,1],(nlat,nlon)) # fslezr = np.reshape(fslec[:,2],(nlat,nlon)) # plt.subplots(figsize=(9,7)) #plt.contourf(np.asarray(x0)/1000.,z0,np.rot90(scipy.stats.nanmean(fsler[:,:,:],0)),np.linspace(0,np.percentile(fsle[~np.isnan(fsle)],80),30),vmin=0,extend='both') plt.contourf(np.asarray(y0)/1000.,z0,np.rot90(scipy.stats.nanmean(fsler[:,:,:],0)),np.linspace(0,0.08,30),vmin=0,extend='both') plt.ylabel('Depth [m]', fontsize=26) plt.xlabel('Y [km]', fontsize=26) plt.yticks(np.linspace(0,50,5),np.linspace(-50,0,5),fontsize=24) plt.xticks(fontsize=24) cb = plt.colorbar(ticks=np.linspace(0,0.08,5)) cb.ax.tick_params(labelsize=24) # plt.title(r'\lambda') plt.tight_layout() plt.savefig('./plot/'+exp+'/fsle_'+exp+'_'+str(r)+'.eps') print './plot/'+exp+'/fsle_'+exp+'_'+str(r)+'.eps' plt.close() ## PDF Vertical Displacement # #bins = np.linspace(-50,0,50) #values = np.zeros((len(bins)-1,len(time0))) # #for t in range(0,tt-1,1): # # values[:,t], bins = np.histogram(par[:,2,t],bins) # #fig = plt.figure(figsize=(12,8)) ## ax = fig.add_subplot(111, aspect='equal') #plt.pcolor(time0/3600,bins,np.log(values),vmin=4) #plt.colorbar() #plt.xlim(time0[0]/3600,time0[-1]/3600) #plt.xlabel('time') #plt.ylabel('# particles') #print 'Saving 0 to eps' # # ## ax.text(1, 9, str(z)+'m, '+str(time[t]*3600)+'h', fontsize=18) #plt.savefig('./plot/'+exp+'/vdisp_'+exp+'_'+str(tt)+'.eps') #print './plot/'+exp+'/vdisp_'+exp+'_'+str(tt)+'.eps' #plt.close() # # TRAJECTORIES plt.subplots(figsize=(8,7)) for p in range(0,10000,103): plt.plot(time0/86400,par[p,2,:],color='0.5') plt.plot(time0/86400,par[98,2,:],'r', linewidth=4) #plt.plot(time0/3600,par[200,2,:-1],'g', linewidth=4) plt.plot(time0/86400,par[51,2,:],'b', linewidth=4) plt.xticks(np.linspace(0,10,6),np.linspace(0,10,6).astype(int),fontsize=24) plt.yticks(fontsize=24) plt.ylim((-50,0)) plt.xlim(2,9) plt.xlabel('Time [days]', fontsize=26) plt.ylabel('Depth [m]', fontsize=26) plt.tight_layout() plt.savefig('./plot/'+exp+'/vtraj_'+exp+'_'+str(tt)+'.eps') print './plot/'+exp+'/vtraj_'+exp+'_'+str(tt)+'.eps' plt.close()
gpl-2.0
Yue-Jiang/RNASeqQuant
bedtools-2.17.0/docs/conf.py
1
8041
# -*- coding: utf-8 -*- # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../')) sys.path.append(os.path.abspath('sphinxext')) sys.path.append(os.path.abspath('pyplots')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.pngmath', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'matplotlib.sphinxext.plot_directive'] # Add any paths that contain templates here, relative to this directory. templates_path = ['templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'bedtools' copyright = u'2012' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '2.16.2' # The full version, including alpha/beta/rc tags. release = '2.16.2' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'rtd' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ["themes"] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". html_title = None # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = project + " v" + release # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = 'bedtools.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = 'bedtools.png' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". #html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. html_show_sphinx = False # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'bedtools-docs' # Google analytics #googleanalytics_id = "UA-24167610-15" # -- Options for LaTeX output -------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'bedtools.tex', u'Bedtools Documentation', u'Quinlan lab @ UVa', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Additional stuff for the LaTeX preamble. #latex_preamble = '' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'bedtools', u'Bedtools Documentation', [u'UVa'], 1) ] # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'http://docs.python.org/': None} class Mock(object): def __init__(self, *args, **kwargs): pass def __call__(self, *args, **kwargs): return Mock() @classmethod def __getattr__(cls, name): if name in ('__file__', '__path__'): return '/dev/null' elif name[0] == name[0].upper(): return type(name, (), {}) else: return Mock() MOCK_MODULES = ['numpy', 'matplotlib', 'matplotlib.pyplot', 'matplotlib.sphinxext', 'matplotlib.sphinxext.plot_directive'] for mod_name in MOCK_MODULES: sys.modules[mod_name] = Mock()
mit
public-ink/public-ink
server/appengine/lib/matplotlib/tri/tritools.py
10
12880
""" Tools for triangular grids. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from matplotlib.tri import Triangulation import numpy as np class TriAnalyzer(object): """ Define basic tools for triangular mesh analysis and improvement. A TriAnalizer encapsulates a :class:`~matplotlib.tri.Triangulation` object and provides basic tools for mesh analysis and mesh improvement. Parameters ---------- triangulation : :class:`~matplotlib.tri.Triangulation` object The encapsulated triangulation to analyze. Attributes ---------- `scale_factors` """ def __init__(self, triangulation): if not isinstance(triangulation, Triangulation): raise ValueError("Expected a Triangulation object") self._triangulation = triangulation @property def scale_factors(self): """ Factors to rescale the triangulation into a unit square. Returns *k*, tuple of 2 scale factors. Returns ------- k : tuple of 2 floats (kx, ky) Tuple of floats that would rescale the triangulation : ``[triangulation.x * kx, triangulation.y * ky]`` fits exactly inside a unit square. """ compressed_triangles = self._triangulation.get_masked_triangles() node_used = (np.bincount(np.ravel(compressed_triangles), minlength=self._triangulation.x.size) != 0) x = self._triangulation.x[node_used] y = self._triangulation.y[node_used] ux = np.max(x)-np.min(x) uy = np.max(y)-np.min(y) return (1./float(ux), 1./float(uy)) def circle_ratios(self, rescale=True): """ Returns a measure of the triangulation triangles flatness. The ratio of the incircle radius over the circumcircle radius is a widely used indicator of a triangle flatness. It is always ``<= 0.5`` and ``== 0.5`` only for equilateral triangles. Circle ratios below 0.01 denote very flat triangles. To avoid unduly low values due to a difference of scale between the 2 axis, the triangular mesh can first be rescaled to fit inside a unit square with :attr:`scale_factors` (Only if *rescale* is True, which is its default value). Parameters ---------- rescale : boolean, optional If True, a rescaling will be internally performed (based on :attr:`scale_factors`, so that the (unmasked) triangles fit exactly inside a unit square mesh. Default is True. Returns ------- circle_ratios : masked array Ratio of the incircle radius over the circumcircle radius, for each 'rescaled' triangle of the encapsulated triangulation. Values corresponding to masked triangles are masked out. """ # Coords rescaling if rescale: (kx, ky) = self.scale_factors else: (kx, ky) = (1.0, 1.0) pts = np.vstack([self._triangulation.x*kx, self._triangulation.y*ky]).T tri_pts = pts[self._triangulation.triangles] # Computes the 3 side lengths a = tri_pts[:, 1, :] - tri_pts[:, 0, :] b = tri_pts[:, 2, :] - tri_pts[:, 1, :] c = tri_pts[:, 0, :] - tri_pts[:, 2, :] a = np.sqrt(a[:, 0]**2 + a[:, 1]**2) b = np.sqrt(b[:, 0]**2 + b[:, 1]**2) c = np.sqrt(c[:, 0]**2 + c[:, 1]**2) # circumcircle and incircle radii s = (a+b+c)*0.5 prod = s*(a+b-s)*(a+c-s)*(b+c-s) # We have to deal with flat triangles with infinite circum_radius bool_flat = (prod == 0.) if np.any(bool_flat): # Pathologic flow ntri = tri_pts.shape[0] circum_radius = np.empty(ntri, dtype=np.float64) circum_radius[bool_flat] = np.inf abc = a*b*c circum_radius[~bool_flat] = abc[~bool_flat] / ( 4.0*np.sqrt(prod[~bool_flat])) else: # Normal optimized flow circum_radius = (a*b*c) / (4.0*np.sqrt(prod)) in_radius = (a*b*c) / (4.0*circum_radius*s) circle_ratio = in_radius/circum_radius mask = self._triangulation.mask if mask is None: return circle_ratio else: return np.ma.array(circle_ratio, mask=mask) def get_flat_tri_mask(self, min_circle_ratio=0.01, rescale=True): """ Eliminates excessively flat border triangles from the triangulation. Returns a mask *new_mask* which allows to clean the encapsulated triangulation from its border-located flat triangles (according to their :meth:`circle_ratios`). This mask is meant to be subsequently applied to the triangulation using :func:`matplotlib.tri.Triangulation.set_mask` . *new_mask* is an extension of the initial triangulation mask in the sense that an initially masked triangle will remain masked. The *new_mask* array is computed recursively ; at each step flat triangles are removed only if they share a side with the current mesh border. Thus no new holes in the triangulated domain will be created. Parameters ---------- min_circle_ratio : float, optional Border triangles with incircle/circumcircle radii ratio r/R will be removed if r/R < *min_circle_ratio*. Default value: 0.01 rescale : boolean, optional If True, a rescaling will first be internally performed (based on :attr:`scale_factors` ), so that the (unmasked) triangles fit exactly inside a unit square mesh. This rescaling accounts for the difference of scale which might exist between the 2 axis. Default (and recommended) value is True. Returns ------- new_mask : array-like of booleans Mask to apply to encapsulated triangulation. All the initially masked triangles remain masked in the *new_mask*. Notes ----- The rationale behind this function is that a Delaunay triangulation - of an unstructured set of points - sometimes contains almost flat triangles at its border, leading to artifacts in plots (especially for high-resolution contouring). Masked with computed *new_mask*, the encapsulated triangulation would contain no more unmasked border triangles with a circle ratio below *min_circle_ratio*, thus improving the mesh quality for subsequent plots or interpolation. Examples -------- Please refer to the following illustrating example: .. plot:: mpl_examples/pylab_examples/tricontour_smooth_delaunay.py """ # Recursively computes the mask_current_borders, true if a triangle is # at the border of the mesh OR touching the border through a chain of # invalid aspect ratio masked_triangles. ntri = self._triangulation.triangles.shape[0] mask_bad_ratio = self.circle_ratios(rescale) < min_circle_ratio current_mask = self._triangulation.mask if current_mask is None: current_mask = np.zeros(ntri, dtype=np.bool) valid_neighbors = np.copy(self._triangulation.neighbors) renum_neighbors = np.arange(ntri, dtype=np.int32) nadd = -1 while nadd != 0: # The active wavefront is the triangles from the border (unmasked # but with a least 1 neighbor equal to -1 wavefront = ((np.min(valid_neighbors, axis=1) == -1) & ~current_mask) # The element from the active wavefront will be masked if their # circle ratio is bad. added_mask = np.logical_and(wavefront, mask_bad_ratio) current_mask = (added_mask | current_mask) nadd = np.sum(added_mask) # now we have to update the tables valid_neighbors valid_neighbors[added_mask, :] = -1 renum_neighbors[added_mask] = -1 valid_neighbors = np.where(valid_neighbors == -1, -1, renum_neighbors[valid_neighbors]) return np.ma.filled(current_mask, True) def _get_compressed_triangulation(self, return_tri_renum=False, return_node_renum=False): """ Compress (if masked) the encapsulated triangulation. Returns minimal-length triangles array (*compressed_triangles*) and coordinates arrays (*compressed_x*, *compressed_y*) that can still describe the unmasked triangles of the encapsulated triangulation. Parameters ---------- return_tri_renum : boolean, optional Indicates whether a renumbering table to translate the triangle numbers from the encapsulated triangulation numbering into the new (compressed) renumbering will be returned. return_node_renum : boolean, optional Indicates whether a renumbering table to translate the nodes numbers from the encapsulated triangulation numbering into the new (compressed) renumbering will be returned. Returns ------- compressed_triangles : array-like the returned compressed triangulation triangles compressed_x : array-like the returned compressed triangulation 1st coordinate compressed_y : array-like the returned compressed triangulation 2nd coordinate tri_renum : array-like of integers renumbering table to translate the triangle numbers from the encapsulated triangulation into the new (compressed) renumbering. -1 for masked triangles (deleted from *compressed_triangles*). Returned only if *return_tri_renum* is True. node_renum : array-like of integers renumbering table to translate the point numbers from the encapsulated triangulation into the new (compressed) renumbering. -1 for unused points (i.e. those deleted from *compressed_x* and *compressed_y*). Returned only if *return_node_renum* is True. """ # Valid triangles and renumbering tri_mask = self._triangulation.mask compressed_triangles = self._triangulation.get_masked_triangles() ntri = self._triangulation.triangles.shape[0] tri_renum = self._total_to_compress_renum(tri_mask, ntri) # Valid nodes and renumbering node_mask = (np.bincount(np.ravel(compressed_triangles), minlength=self._triangulation.x.size) == 0) compressed_x = self._triangulation.x[~node_mask] compressed_y = self._triangulation.y[~node_mask] node_renum = self._total_to_compress_renum(node_mask) # Now renumbering the valid triangles nodes compressed_triangles = node_renum[compressed_triangles] # 4 cases possible for return if not return_tri_renum: if not return_node_renum: return compressed_triangles, compressed_x, compressed_y else: return (compressed_triangles, compressed_x, compressed_y, node_renum) else: if not return_node_renum: return (compressed_triangles, compressed_x, compressed_y, tri_renum) else: return (compressed_triangles, compressed_x, compressed_y, tri_renum, node_renum) @staticmethod def _total_to_compress_renum(mask, n=None): """ Parameters ---------- mask : 1d boolean array or None mask n : integer length of the mask. Useful only id mask can be None Returns ------- renum : integer array array so that (`valid_array` being a compressed array based on a `masked_array` with mask *mask*) : - For all i such as mask[i] = False: valid_array[renum[i]] = masked_array[i] - For all i such as mask[i] = True: renum[i] = -1 (invalid value) """ if n is None: n = np.size(mask) if mask is not None: renum = -np.ones(n, dtype=np.int32) # Default num is -1 valid = np.arange(n, dtype=np.int32).compress(~mask, axis=0) renum[valid] = np.arange(np.size(valid, 0), dtype=np.int32) return renum else: return np.arange(n, dtype=np.int32)
gpl-3.0
costypetrisor/scikit-learn
sklearn/metrics/scorer.py
13
13090
""" The :mod:`sklearn.metrics.scorer` submodule implements a flexible interface for model selection and evaluation using arbitrary score functions. A scorer object is a callable that can be passed to :class:`sklearn.grid_search.GridSearchCV` or :func:`sklearn.cross_validation.cross_val_score` as the ``scoring`` parameter, to specify how a model should be evaluated. The signature of the call is ``(estimator, X, y)`` where ``estimator`` is the model to be evaluated, ``X`` is the test data and ``y`` is the ground truth labeling (or ``None`` in the case of unsupervised models). """ # Authors: Andreas Mueller <[email protected]> # Lars Buitinck <[email protected]> # Arnaud Joly <[email protected]> # License: Simplified BSD from abc import ABCMeta, abstractmethod from functools import partial import numpy as np from . import (r2_score, median_absolute_error, mean_absolute_error, mean_squared_error, accuracy_score, f1_score, roc_auc_score, average_precision_score, precision_score, recall_score, log_loss) from .cluster import adjusted_rand_score from ..utils.multiclass import type_of_target from ..externals import six from ..base import is_regressor class _BaseScorer(six.with_metaclass(ABCMeta, object)): def __init__(self, score_func, sign, kwargs): self._kwargs = kwargs self._score_func = score_func self._sign = sign @abstractmethod def __call__(self, estimator, X, y, sample_weight=None): pass def __repr__(self): kwargs_string = "".join([", %s=%s" % (str(k), str(v)) for k, v in self._kwargs.items()]) return ("make_scorer(%s%s%s%s)" % (self._score_func.__name__, "" if self._sign > 0 else ", greater_is_better=False", self._factory_args(), kwargs_string)) def _factory_args(self): """Return non-default make_scorer arguments for repr.""" return "" class _PredictScorer(_BaseScorer): def __call__(self, estimator, X, y_true, sample_weight=None): """Evaluate predicted target values for X relative to y_true. Parameters ---------- estimator : object Trained estimator to use for scoring. Must have a predict_proba method; the output of that is used to compute the score. X : array-like or sparse matrix Test data that will be fed to estimator.predict. y_true : array-like Gold standard target values for X. sample_weight : array-like, optional (default=None) Sample weights. Returns ------- score : float Score function applied to prediction of estimator on X. """ y_pred = estimator.predict(X) if sample_weight is not None: return self._sign * self._score_func(y_true, y_pred, sample_weight=sample_weight, **self._kwargs) else: return self._sign * self._score_func(y_true, y_pred, **self._kwargs) class _ProbaScorer(_BaseScorer): def __call__(self, clf, X, y, sample_weight=None): """Evaluate predicted probabilities for X relative to y_true. Parameters ---------- clf : object Trained classifier to use for scoring. Must have a predict_proba method; the output of that is used to compute the score. X : array-like or sparse matrix Test data that will be fed to clf.predict_proba. y : array-like Gold standard target values for X. These must be class labels, not probabilities. sample_weight : array-like, optional (default=None) Sample weights. Returns ------- score : float Score function applied to prediction of estimator on X. """ y_pred = clf.predict_proba(X) if sample_weight is not None: return self._sign * self._score_func(y, y_pred, sample_weight=sample_weight, **self._kwargs) else: return self._sign * self._score_func(y, y_pred, **self._kwargs) def _factory_args(self): return ", needs_proba=True" class _ThresholdScorer(_BaseScorer): def __call__(self, clf, X, y, sample_weight=None): """Evaluate decision function output for X relative to y_true. Parameters ---------- clf : object Trained classifier to use for scoring. Must have either a decision_function method or a predict_proba method; the output of that is used to compute the score. X : array-like or sparse matrix Test data that will be fed to clf.decision_function or clf.predict_proba. y : array-like Gold standard target values for X. These must be class labels, not decision function values. sample_weight : array-like, optional (default=None) Sample weights. Returns ------- score : float Score function applied to prediction of estimator on X. """ y_type = type_of_target(y) if y_type not in ("binary", "multilabel-indicator"): raise ValueError("{0} format is not supported".format(y_type)) if is_regressor(clf): y_pred = clf.predict(X) else: try: y_pred = clf.decision_function(X) # For multi-output multi-class estimator if isinstance(y_pred, list): y_pred = np.vstack(p for p in y_pred).T except (NotImplementedError, AttributeError): y_pred = clf.predict_proba(X) if y_type == "binary": y_pred = y_pred[:, 1] elif isinstance(y_pred, list): y_pred = np.vstack([p[:, -1] for p in y_pred]).T if sample_weight is not None: return self._sign * self._score_func(y, y_pred, sample_weight=sample_weight, **self._kwargs) else: return self._sign * self._score_func(y, y_pred, **self._kwargs) def _factory_args(self): return ", needs_threshold=True" def get_scorer(scoring): if isinstance(scoring, six.string_types): try: scorer = SCORERS[scoring] except KeyError: raise ValueError('%r is not a valid scoring value. ' 'Valid options are %s' % (scoring, sorted(SCORERS.keys()))) else: scorer = scoring return scorer def _passthrough_scorer(estimator, *args, **kwargs): """Function that wraps estimator.score""" return estimator.score(*args, **kwargs) def check_scoring(estimator, scoring=None, allow_none=False): """Determine scorer from user options. A TypeError will be thrown if the estimator cannot be scored. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. allow_none : boolean, optional, default: False If no scoring is specified and the estimator has no score function, we can either return None or raise an exception. Returns ------- scoring : callable A scorer callable object / function with signature ``scorer(estimator, X, y)``. """ has_scoring = scoring is not None if not hasattr(estimator, 'fit'): raise TypeError("estimator should a be an estimator implementing " "'fit' method, %r was passed" % estimator) elif has_scoring: return get_scorer(scoring) elif hasattr(estimator, 'score'): return _passthrough_scorer elif allow_none: return None else: raise TypeError( "If no scoring is specified, the estimator passed should " "have a 'score' method. The estimator %r does not." % estimator) def make_scorer(score_func, greater_is_better=True, needs_proba=False, needs_threshold=False, **kwargs): """Make a scorer from a performance metric or loss function. This factory function wraps scoring functions for use in GridSearchCV and cross_val_score. It takes a score function, such as ``accuracy_score``, ``mean_squared_error``, ``adjusted_rand_index`` or ``average_precision`` and returns a callable that scores an estimator's output. Parameters ---------- score_func : callable, Score function (or loss function) with signature ``score_func(y, y_pred, **kwargs)``. greater_is_better : boolean, default=True Whether score_func is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the score_func. needs_proba : boolean, default=False Whether score_func requires predict_proba to get probability estimates out of a classifier. needs_threshold : boolean, default=False Whether score_func takes a continuous decision certainty. This only works for binary classification using estimators that have either a decision_function or predict_proba method. For example ``average_precision`` or the area under the roc curve can not be computed using discrete predictions alone. **kwargs : additional arguments Additional parameters to be passed to score_func. Returns ------- scorer : callable Callable object that returns a scalar score; greater is better. Examples -------- >>> from sklearn.metrics import fbeta_score, make_scorer >>> ftwo_scorer = make_scorer(fbeta_score, beta=2) >>> ftwo_scorer make_scorer(fbeta_score, beta=2) >>> from sklearn.grid_search import GridSearchCV >>> from sklearn.svm import LinearSVC >>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]}, ... scoring=ftwo_scorer) """ sign = 1 if greater_is_better else -1 if needs_proba and needs_threshold: raise ValueError("Set either needs_proba or needs_threshold to True," " but not both.") if needs_proba: cls = _ProbaScorer elif needs_threshold: cls = _ThresholdScorer else: cls = _PredictScorer return cls(score_func, sign, kwargs) # Standard regression scores r2_scorer = make_scorer(r2_score) mean_squared_error_scorer = make_scorer(mean_squared_error, greater_is_better=False) mean_absolute_error_scorer = make_scorer(mean_absolute_error, greater_is_better=False) median_absolute_error_scorer = make_scorer(median_absolute_error, greater_is_better=False) # Standard Classification Scores accuracy_scorer = make_scorer(accuracy_score) f1_scorer = make_scorer(f1_score) # Score functions that need decision values roc_auc_scorer = make_scorer(roc_auc_score, greater_is_better=True, needs_threshold=True) average_precision_scorer = make_scorer(average_precision_score, needs_threshold=True) precision_scorer = make_scorer(precision_score) recall_scorer = make_scorer(recall_score) # Score function for probabilistic classification log_loss_scorer = make_scorer(log_loss, greater_is_better=False, needs_proba=True) # Clustering scores adjusted_rand_scorer = make_scorer(adjusted_rand_score) SCORERS = dict(r2=r2_scorer, median_absolute_error=median_absolute_error_scorer, mean_absolute_error=mean_absolute_error_scorer, mean_squared_error=mean_squared_error_scorer, accuracy=accuracy_scorer, roc_auc=roc_auc_scorer, average_precision=average_precision_scorer, log_loss=log_loss_scorer, adjusted_rand_score=adjusted_rand_scorer) for name, metric in [('precision', precision_score), ('recall', recall_score), ('f1', f1_score)]: SCORERS[name] = make_scorer(metric) for average in ['macro', 'micro', 'samples', 'weighted']: qualified_name = '{0}_{1}'.format(name, average) SCORERS[qualified_name] = make_scorer(partial(metric, pos_label=None, average=average))
bsd-3-clause
TensorVision/MediSeg
AP4/sst_segmenter.py
1
15147
#!/usr/bin/env python # -*- coding: utf-8 -*- """Get patches of the raw image as input.""" import json import os import numpy as np import logging import sys import time logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s', level=logging.INFO, stream=sys.stdout) from PIL import Image import numpy import math # ML from keras.models import model_from_yaml from keras.preprocessing.image import img_to_array import scipy.misc import sklearn # Model from keras.models import Sequential from keras.layers import Dense, Flatten from keras.layers import Convolution2D, Reshape from keras.layers import MaxPooling2D, Dropout import keras.optimizers from tensorvision.utils import load_segmentation_mask sys.path.append( os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))) from utils import get_file_list import analyze from seg_utils import get_image def generate_batch(hypes, phase): """ Generate patches. Parameters ---------- hypes : dict phase : 'train' or 'test' """ x_files, y_files = get_file_list(hypes, phase) x_files, y_files = sklearn.utils.shuffle(x_files, y_files, random_state=0) batch_x, batch_y = [], [] while True: for x, y in zip(x_files, y_files): logging.info("Read '%s' for data...", x) image = get_image(x, 'RGB') label = load_segmentation_mask(hypes, y) im = Image.open(x, 'r') width, height = im.size image_vals = get_features(hypes, image, 'data') label_vals = get_features(hypes, label, 'label') # print("image_vals = %s" % str(list(image_vals))) for patch, label_ in zip(image_vals, label_vals): patch = img_to_array(patch) label_ = img_to_array(label_) _, w, h = label_.shape label_ = label_.reshape((w, h)) if phase == 'val' and 1.0 not in label_: print("continue") continue # scipy.misc.imshow(patch) # scipy.misc.imshow(label_) batch_x.append(patch) batch_y.append(label_) # .flatten() if len(batch_x) == hypes['solver']['batch_size']: yield (np.array(batch_x), np.array(batch_y)) batch_x, batch_y = [], [] def get_features(hypes, image, img_type): """ Get features from image. Parameters ---------- hypes : dict Hyperparamters such as arch>stride, arch>patch_size image : numpy array img_type : {'data', 'label'} Yields ------ numpy array patch of size stride x stride from image """ if img_type == 'data': width, height, _ = image.shape else: width, height = image.shape stride = hypes['arch']['stride'] patch_size = hypes['arch']['patch_size'] if img_type == 'data': window_width = patch_size left_pad = 0 top_pad = 0 else: window_width = stride left_pad = int(math.floor(patch_size - stride) / 2) top_pad = left_pad for x in range(left_pad, width - window_width, stride): for y in range(top_pad, height - window_width, stride): res = image[x:(x + window_width), y:(y + window_width)] if res.shape[0] != window_width or res.shape[1] != window_width: print("res shape: %s" % str(res.shape)) print("window_width: %s" % str(window_width)) continue # quick fix assert res.shape[0] == window_width, \ ("width (res.shape[0]=%i, window_width=%i)" % (res.shape[0], window_width)) assert res.shape[1] == window_width, \ ("height (res.shape[1]=%i, window_width=%i)" % (res.shape[1], window_width)) yield res def get_traindata_single_file(hypes, x, y): """Get trainingdata for a single file x with segmentation file y.""" xs, ys = [], [] logging.info("Read '%s' for data...", x) label = load_segmentation_mask(hypes, y) im = Image.open(x, 'RGB') width, height, _ = im.size for x in range(width): for y in range(height): image_val = get_features(hypes, im, 'data') label_val = label[y][x] xs.append(image_val) ys.append(label_val) return numpy.array(xs), numpy.array(ys, dtype=int) def main(hypes_file, out_dir, override): """Orchestrate.""" with open(hypes_file, 'r') as f: hypes = json.load(f) model_file_path = '%s.yaml' % hypes['model']['name'] weights_file_path = '%s.hdf5' % hypes['model']['name'] if not os.path.isfile(model_file_path) or override: patch_size = hypes['arch']['patch_size'] img_channels = hypes['arch']['num_channels'] nb_out = hypes['arch']['stride']**len(hypes['classes']) model = Sequential() model.add(Convolution2D(64, 3, 3, border_mode='valid', init='glorot_normal', activation='sigmoid', input_shape=(img_channels, patch_size, patch_size))) model.add(Convolution2D(32, 3, 3, activation='relu', init='glorot_normal')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.5)) # model.add(Convolution2D(64, 3, 3, border_mode='same')) # model.add(Activation('relu')) # model.add(Convolution2D(64, 3, 3)) # model.add(Activation('relu')) # model.add(MaxPooling2D(pool_size=(2, 2))) # model.add(Dropout(0.25)) model.add(Flatten()) # model.add(Dense(64, activation='sigmoid')) # # model.add(Dropout(0.5)) # model.add(Dense(64, activation='relu')) # model.add(Dropout(0.5)) model.add(Dense(nb_out, activation='sigmoid', init='glorot_normal')) model.add(Reshape((hypes['arch']['stride'], hypes['arch']['stride']))) # sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) opt = keras.optimizers.Adadelta(lr=hypes['solver']['learning_rate'], rho=0.95, epsilon=1e-08) model.compile(loss=hypes['solver']['loss'], optimizer=opt) # hypes['solver']['optimizer'] logging.info("model compiled") # while 1: # b = generate_batch(hypes, 'train') # for e in range(10): # print 'Epoch', e # batches = 0 # for X_batch, Y_batch in generate_batch(hypes, 'train'): # Y_batch = np.reshape(Y_batch, (-1, 400)) # loss = model.fit(X_batch, # Y_batch, # batch_size=hypes['solver']['batch_size']) # print(loss) # batches += 1 # if e > 2: # # we need to break the loop by hand because # # the generator loops indefinitely # break # # Train g = generate_batch(hypes, 'train') logging.info("generate_batch") X_test, Y_test = g.next() # print("#" * 80) # print(X_test.shape) # print(Y_test.shape) logging.info("start fit_generator") model.fit_generator(generate_batch(hypes, 'train'), samples_per_epoch=hypes['solver']['samples_per_epoch'], nb_epoch=hypes['solver']['epochs'], verbose=1, validation_data=(X_test, Y_test)) x_files, y_files = get_file_list(hypes, 'train') x_files, y_files = sklearn.utils.shuffle(x_files, y_files, random_state=0) # ij = 0 # for epoch in range(1, hypes['solver']['epochs'] + 1): # print("#" * 80) # print("# Epoch %i" % epoch) # print("#" * 80) # x_files, y_files = sklearn.utils.shuffle(x_files, # y_files, # random_state=epoch) # for x_train_file, y_train_file in zip(x_files, y_files): # x_train, y_train = get_traindata_single_file(hypes, # x_train_file, # y_train_file) # # Reduce data # # x_train, y_train = reduce_data_equal(x_train, # # y_train) # t0 = time.time() # model.fit(x_train, y_train, # batch_size=128, # nb_epoch=1, # ) # ij += 1 # print("%i of %i" % # (ij, hypes['solver']['epochs'] * len(x_files))) # t1 = time.time() # print("Training Time: %0.4f" % (t1 - t0)) print("done with fit_generator") # save as YAML yaml_string = model.to_yaml() with open(model_file_path, 'w') as f: f.write(yaml_string) model.save_weights(weights_file_path) # Evaluate data = get_file_list(hypes, 'test') analyze.evaluate(hypes, data, out_dir, model, elements=[0, 1], get_segmentation=get_segmentation, verbose=True) else: with open(model_file_path) as f: yaml_string = f.read() model = model_from_yaml(yaml_string) model.load_weights(weights_file_path) model.compile(optimizer=hypes['solver']['optimizer'], loss='binary_crossentropy') data = get_file_list(hypes, 'test') analyze.evaluate(hypes, data, out_dir, model, elements=[0, 1], get_segmentation=get_segmentation, verbose=True) def get_segmentation(hypes, image_path, model): """ Get a segmentation. Path ---- hypes : dict Hyperparameters (model specific information) image_path : str Path to a file which gets segmented. model : object Returns ------- Numpy array of the same width and height as input. """ # Load raw image image = get_image(image_path, 'RGB') height, width, _ = image.shape # Make the image an appropriate shape stride = hypes['arch']['stride'] patch_size = hypes['arch']['patch_size'] # How often does the window get applied in the different directions? width_n = int(math.ceil(width / stride)) height_n = int(math.ceil(height / stride)) assert patch_size >= stride left_pad = int(math.floor(patch_size - stride) / 2) right_pad = (((width_n * stride - width) % stride) + (patch_size - stride - left_pad)) top_pad = left_pad bottom_pad = (((height_n * stride - height) % stride) + (patch_size - stride - top_pad)) pad_width = ((top_pad, bottom_pad), (left_pad, right_pad), (0, 0)) image = numpy.pad(image, pad_width=pad_width, mode='constant') segmentation = numpy.zeros(shape=(height, width)) # Generate input patches of image patches = [] coords = [] for i in range(width_n): for j in range(height_n): x = stride * i y = stride * j patch = image[y:(y + patch_size), x:(x + patch_size)] patch = img_to_array(patch) assert patch.shape == (3, patch_size, patch_size), \ "patch had shape %s" % str(patch.shape) patches.append(patch) coords.append({'x': i, 'y': j}) if len(patches) == hypes['solver']['batch_size']: patches = numpy.array(patches) # Run model on input patches and collect output patches res = model.predict(patches) # Assemble output patches to segmentation image for coords, res in zip(coords, res): res = res.reshape(stride, stride) for m in range(stride): for n in range(stride): value = res[n][m] x = coords['x'] * stride + m y = coords['y'] * stride + n segmentation[y][x] = value # Cleanup for next batch patches, coords = [], [] # scipy.misc.imshow(segmentation) print("amax=%0.4f, mean=%0.4f, median=%0.4f, 70%%=%0.4f, 95%%=%0.4f" % (np.amax(segmentation), np.mean(segmentation), np.median(segmentation), np.percentile(segmentation, 70), np.percentile(segmentation, 95))) threshold = np.percentile(segmentation, 95) return segmentation > threshold def is_valid_file(parser, arg): """ Check if arg is a valid file that already exists on the file system. Parameters ---------- parser : argparse object arg : str Returns ------- arg """ arg = os.path.abspath(arg) if not os.path.exists(arg): parser.error("The file %s does not exist!" % arg) else: return arg def get_parser(): """Get parser object for basic local classifier.""" from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter parser = ArgumentParser(description=__doc__, formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument("--hypes", dest="hypes_file", help=("Configuration file in JSON format"), type=lambda x: is_valid_file(parser, x), metavar="FILE", required=True) parser.add_argument("--out", dest="data", help=("output directory"), required=True) parser.add_argument("--override", action="store_true", dest="override", default=False, help="override old model, if it exists") return parser if __name__ == '__main__': args = get_parser().parse_args() main(args.hypes_file, args.data, args.override)
mit
lthurlow/Network-Grapher
proj/external/matplotlib-1.2.1/lib/mpl_examples/pylab_examples/multi_image.py
12
2201
#!/usr/bin/env python ''' Make a set of images with a single colormap, norm, and colorbar. It also illustrates colorbar tick labelling with a multiplier. ''' from matplotlib.pyplot import figure, show, axes, sci from matplotlib import cm, colors from matplotlib.font_manager import FontProperties from numpy import amin, amax, ravel from numpy.random import rand Nr = 3 Nc = 2 fig = figure() cmap = cm.cool figtitle = 'Multiple images' t = fig.text(0.5, 0.95, figtitle, horizontalalignment='center', fontproperties=FontProperties(size=16)) cax = fig.add_axes([0.2, 0.08, 0.6, 0.04]) w = 0.4 h = 0.22 ax = [] images = [] vmin = 1e40 vmax = -1e40 for i in range(Nr): for j in range(Nc): pos = [0.075 + j*1.1*w, 0.18 + i*1.2*h, w, h] a = fig.add_axes(pos) if i > 0: a.set_xticklabels([]) # Make some fake data with a range that varies # somewhat from one plot to the next. data =((1+i+j)/10.0)*rand(10,20)*1e-6 dd = ravel(data) # Manually find the min and max of all colors for # use in setting the color scale. vmin = min(vmin, amin(dd)) vmax = max(vmax, amax(dd)) images.append(a.imshow(data, cmap=cmap)) ax.append(a) # Set the first image as the master, with all the others # observing it for changes in cmap or norm. class ImageFollower: 'update image in response to changes in clim or cmap on another image' def __init__(self, follower): self.follower = follower def __call__(self, leader): self.follower.set_cmap(leader.get_cmap()) self.follower.set_clim(leader.get_clim()) norm = colors.Normalize(vmin=vmin, vmax=vmax) for i, im in enumerate(images): im.set_norm(norm) if i > 0: images[0].callbacksSM.connect('changed', ImageFollower(im)) # The colorbar is also based on this master image. fig.colorbar(images[0], cax, orientation='horizontal') # We need the following only if we want to run this interactively and # modify the colormap: axes(ax[0]) # Return the current axes to the first one, sci(images[0]) # because the current image must be in current axes. show()
mit
mmilaprat/policycompass-services
apps/datasetmanager/file_encoder.py
2
4779
""" Converts uploaded files into a tabular data structure """ import pandas import codecs import csv import datetime import logging import os from xlrd import open_workbook, XL_CELL_DATE, xldate_as_tuple log = logging.getLogger(__name__) __author__ = 'fki' class FileEncoder(object): """ Converts uploaded files into a tabular data structure """ # Register supported extensions with a function supported_extensions = { '.csv': '_csv_encode', '.tsv': '_tsv_encode', '.xlsx': '_xlsx_encode', '.xls': '_xlsx_encode' } # file: InMemoryUploadedFile def __init__(self, file, jsonData): """ Initialize file and file_name """ self.file = file self.file_name, self.file_ext = os.path.splitext(file.name) if len(jsonData) != 0: self.jsonData = jsonData def is_supported(self): """ Check if there is a converter for the extension """ if self.file_ext in self.supported_extensions: return True else: return False def encode(self): """ Class the responsible function and encodes the file. Returns the result """ result = getattr(self, self.supported_extensions[self.file_ext])() return result def _csv_encode(self, delimiter=','): """ Encodes a CSV file. """ try: try: csvdata = pandas.read_csv(self.jsonData['result']['url']) if ';' in csvdata.values[len(csvdata.values) / 2][0]: csvdata = pandas.read_csv(self.jsonData['result']['url'], sep=';') except: csvdata = pandas.read_csv(self.jsonData['result']['url'], quoting=3) colHeadersValues = [] for q in range(0, len(csvdata.axes[1])): colHeadersValues.append(csvdata.axes[1][q]) completeArray = [] completeArray.append(colHeadersValues) rowIndex = 0 for x in range(0, len(csvdata.values)): rowArray = [] rowIndex = rowIndex + 1 for y in range(0, len(csvdata.values[x])): if pandas.isnull(csvdata.values[x][y]): rowArray.append("") else: rowArray.append(csvdata.values[x][y]) completeArray.append(rowArray) return completeArray except: r = [] reader = csv.reader(codecs.iterdecode(self.file, "utf-8"), delimiter=delimiter) for row in reader: log.debug(str(row)) r.append(row) return r def _tsv_encode(self): """ Encodes a TSV file :return: array of data rows """ try: tsvdata = pandas.read_csv(self.jsonData['result']['url'], sep='\t') colHeadersValues = [] for q in range(0, len(tsvdata.axes[1])): colHeadersValues.append(tsvdata.axes[1][q]) completeArray = [] completeArray.append(colHeadersValues) rowIndex = 0 for x in range(0, len(tsvdata.values)): rowArray = [] rowIndex = rowIndex + 1 for y in range(0, len(tsvdata.values[x])): if pandas.isnull(tsvdata.values[x][y]): rowArray.append("") else: rowArray.append(tsvdata.values[x][y]) completeArray.append(rowArray) return completeArray except: return self._csv_encode(delimiter='\t') def _xlsx_encode(self): """ Encodes XLS and XLSX files. """ r = [] wb = open_workbook(file_contents=self.file.read()) sheet = wb.sheet_by_index(0) for row in range(sheet.nrows): values = [] for col in range(sheet.ncols): cell = sheet.cell(row, col) # Date cells have to be converted to return as string if cell.ctype == XL_CELL_DATE: v = xldate_as_tuple(cell.value, wb.datemode) v = datetime.datetime(*v) v = datetime.date(v.year, v.month, v.day) elif isinstance(cell.value, float): if cell.value == int(cell.value): v = str(int(cell.value)) else: v = str(cell.value) else: v = str(cell.value) values.append(v) r.append(values) return r
agpl-3.0
JoeJimFlood/RugbyPredictifier
2018SuperRugby/matchup - Copy.py
1
15678
import os os.chdir(os.path.dirname(__file__)) import sim_util import sys import pandas as pd import numpy as np from numpy.random import poisson, uniform from numpy import mean import time import math po = False team_homes = pd.read_csv(os.path.join(os.path.split(__file__)[0], 'TeamHomes.csv'), header = None, index_col = 0) stadium_locs = pd.read_csv(os.path.join(os.path.split(__file__)[0], 'StadiumLocs.csv'), index_col = 0) teamsheetpath = os.path.join(os.path.split(__file__)[0], 'Score Tables') compstat = {'TF': 'TA', 'TA': 'TF', #Dictionary to use to compare team stats with opponent stats 'CF': 'CA', 'CA': 'CF', 'CON%F': 'CON%A', 'CON%A': 'CON%F', 'PF': 'PA', 'PA': 'PF', 'DGF': 'DGA', 'DGA': 'DGF'} def weighted_variance(data, weights): assert len(data) == len(weights), 'Data and weights must be same length' weighted_average = np.average(data, weights = weights) v1 = weights.sum() v2 = np.square(weights).sum() return (weights*np.square(data - weighted_average)).sum() / (v1 - (v2/v1)) def get_opponent_stats(opponent, venue): #Gets summaries of statistics for opponent each week opponent_stats = {} global teamsheetpath, stadium_locs, team_homes opp_stats = pd.DataFrame.from_csv(os.path.join(teamsheetpath, opponent + '.csv')) opponent_home = team_homes[1][opponent] (venue_lat, venue_lng) = stadium_locs.loc[venue, ['Lat', 'Long']] (opponent_home_lat, opponent_home_lng) = stadium_locs.loc[opponent_home, ['Lat', 'Long']] opponent_reference_distance = geodesic_distance(opponent_home_lat, opponent_home_lng, venue_lat, venue_lng) def get_opponent_weight(location): return get_travel_weight(location, opponent_home_lat, opponent_home_lng, opponent_reference_distance) opp_stats['Weight'] = opp_stats['VENUE'].apply(get_opponent_weight) for stat in opp_stats.columns: if stat != 'VENUE': if stat != 'OPP': opponent_stats.update({stat: np.average(opp_stats[stat], weights = opp_stats['Weight'])}) opponent_stats.update({'CON%F': float((opp_stats['CF']*opp_stats['Weight']).sum())/(opp_stats['TF']*opp_stats['Weight']).sum()}) opponent_stats.update({'CON%A': float((opp_stats['CA']*opp_stats['Weight']).sum())/(opp_stats['TA']*opp_stats['Weight']).sum()}) return opponent_stats def get_residual_performance(score_df): #Get how each team has done compared to the average performance of their opponents global teamsheetpath, team_homes, stadium_locs #score_df = pd.DataFrame.from_csv(os.path.join(teamsheetpath, team + '.csv')) residual_stats = {} residual_variances = {} score_df['CON%F'] = np.nan score_df['CON%A'] = np.nan for week in score_df.index: opponent_stats = get_opponent_stats(score_df['OPP'][week], score_df['VENUE'][week]) for stat in opponent_stats: if week == score_df.index.tolist()[0]: score_df['OPP_' + stat] = np.nan score_df['OPP_' + stat][week] = opponent_stats[stat] score_df['CON%F'][week] = float(score_df['CF'][week]) / score_df['TF'][week] score_df['CON%A'][week] = float(score_df['CA'][week]) / score_df['TA'][week] for stat in opponent_stats: if stat == 'Weight': continue score_df['R_' + stat] = score_df[stat] - score_df['OPP_' + compstat[stat]] if stat in ['TF', 'PF', 'DGF', 'TA', 'PA', 'DGA']: residual_stats.update({stat: np.average(score_df['R_' + stat], weights = score_df['Weight'])}) residual_variances[stat] = weighted_variance(score_df['R_' + stat], score_df['Weight']) elif stat == 'CON%F': residual_stats.update({stat: (score_df['R_CON%F'].multiply(score_df['TF'])*score_df['Weight']).sum() / (score_df['TF']*score_df['Weight']).sum()}) elif stat == 'CON%A': residual_stats.update({stat: (score_df['R_CON%A'].multiply(score_df['TA'])*score_df['Weight']).sum() / (score_df['TA']*score_df['Weight']).sum()}) return residual_stats, pd.Series(residual_variances) def get_score(expected_scores): #Get the score for a team based on expected scores score = 0 if expected_scores['T'] > 0: tries = poisson(expected_scores['T']) else: tries = poisson(0.01) score = score + 6 * tries if expected_scores['P'] > 0: fgs = poisson(expected_scores['P']) else: fgs = poisson(0.01) score = score + 3 * fgs if expected_scores['DG'] > 0: sfs = poisson(expected_scores['DG']) else: sfs = poisson(0.01) score = score + 2 * sfs for t in range(tries): successful_con_determinant = uniform(0, 1) if successful_con_determinant <= expected_scores['CONPROB']: score += 2 else: continue #if tries >= 4: # bp = True #else: # bp = False return (score, tries) def game(team_1, team_2, expected_scores_1, expected_scores_2, playoff = False): #Get two scores and determine a winner (score_1, tries_1) = get_score(expected_scores_1) (score_2, tries_2) = get_score(expected_scores_2) if tries_1 - tries_2 >= 3: bp1 = True bp2 = False elif tries_2 - tries_1 >= 3: bp1 = False bp2 = True else: bp1 = False bp2 = False if score_1 > score_2: win_1 = 1 win_2 = 0 draw_1 = 0 draw_2 = 0 if bp1: bpw1 = 1 else: bpw1 = 0 if bp2: bpl2 = 1 else: bpl2 = 0 bpl1 = 0 bpw2 = 0 bpd1 = 0 bpd2 = 0 lbp1 = 0 if score_1 - score_2 <= 7: lbp2 = 1 else: lbp2 = 0 elif score_2 > score_1: win_1 = 0 win_2 = 1 draw_1 = 0 draw_2 = 0 if bp1: bpl1 = 1 else: bpl1 = 0 if bp2: bpw2 = 1 else: bpw2 = 0 bpw1 = 0 bpl2 = 0 bpd1 = 0 bpd2 = 0 lbp2 = 0 if score_2 - score_1 <= 7: lbp1 = 1 else: lbp1 = 0 else: if playoff: win_1 = 0.5 win_2 = 0.5 draw_1 = 0 draw_2 = 0 bpw1 = 0 bpw2 = 0 bpd1 = 0 bpd2 = 0 bpl1 = 0 bpl2 = 0 lbp1 = 0 lbp2 = 0 else: win_1 = 0 win_2 = 0 draw_1 = 1 draw_2 = 1 bpw1 = 0 bpw2 = 0 bpl1 = 0 bpl2 = 0 lbp1 = 0 lbp2 = 0 if bp1: bpd1 = 1 else: bpd1 = 0 if bp2: bpd2 = 1 else: bpd2 = 0 summary = {team_1: [win_1, draw_1, score_1, bpw1, bpd1, bpl1, lbp1]} summary.update({team_2: [win_2, draw_2, score_2, bpw2, bpd2, bpl2, lbp2]}) return summary def get_expected_scores(team_1_stats, team_2_stats, team_1_df, team_2_df): #Get the expected scores for a matchup based on the previous teams' performances expected_scores = {} for stat in team_1_stats: expected_scores.update({'T': mean([team_1_stats['TF'] + np.average(team_2_df['TA'], weights = team_2_df['Weight']), team_2_stats['TA'] + np.average(team_1_df['TF'], weights = team_1_df['Weight'])])}) expected_scores.update({'P': mean([team_1_stats['PF'] + np.average(team_2_df['PA'], weights = team_2_df['Weight']), team_2_stats['PA'] + np.average(team_1_df['PF'], weights = team_1_df['Weight'])])}) expected_scores.update({'DG': mean([team_1_stats['DGF'] + np.average(team_2_df['DGA'], weights = team_2_df['Weight']), team_2_stats['DGA'] + np.average(team_1_df['DGF'], weights = team_1_df['Weight'])])}) expected_scores['DG'] = max(expected_scores['DG'], 0) #print mean([team_1_stats['PAT1%F'] + team_2_df['PAT1AS'].astype('float').sum() / team_2_df['PAT1AA'].sum(), # team_2_stats['PAT1%A'] + team_1_df['PAT1FS'].astype('float').sum() / team_1_df['PAT1FA'].sum()]) conprob = mean([team_1_stats['CON%F'] + (team_2_df['CA']*team_2_df['Weight']).sum() / (team_2_df['TA']*team_2_df['Weight']).sum(), team_2_stats['CON%A'] + (team_1_df['CF']*team_1_df['Weight']).sum() / (team_1_df['TF']*team_1_df['Weight']).sum()]) if not math.isnan(conprob): expected_scores.update({'CONPROB': conprob}) else: expected_scores.update({'CONPROB': 0.75}) #print(expected_scores['PAT1PROB']) #print(expected_scores) return expected_scores def geodesic_distance(olat, olng, dlat, dlng): ''' Returns geodesic distance in percentage of half the earth's circumference between two points on the earth's surface ''' scale = math.tau/360 olat *= scale olng *= scale dlat *= scale dlng *= scale delta_lat = (dlat - olat) delta_lng = (dlng - olng) a = math.sin(delta_lat/2)**2 + math.cos(olat)*math.cos(dlat)*math.sin(delta_lng/2)**2 return 4*math.atan2(math.sqrt(a), math.sqrt(1-a))/math.tau def get_travel_weight(venue, home_lat, home_lng, reference_distance): ''' Gets the travel weight based on a venue, a team's home lat/long coordinates, and a reference distance ''' global stadium_locs (venue_lat, venue_lng) = stadium_locs.loc[venue, ['Lat', 'Long']] travel_distance = geodesic_distance(home_lat, home_lng, venue_lat, venue_lng) return 1 - abs(travel_distance - reference_distance) def get_score(expected_scores, score_array, n_sim, return_tries = True): tf = sim_util.sim(expected_scores['T'][0], expected_scores['T'][1], n_sim) cf = np.random.binomial(tf, expected_scores['C']) pf = sim_util.sim(expected_scores['P'][0], expected_scores['P'][1], n_sim) dgf = sim_util.sim(expected_scores['DG'][0], expected_scores['DG'][1], n_sim) score = sim_util.calculate_score((tf, cf, pf, dgf), score_array) if return_tries: return score, tf else: return score def matchup(team_1, team_2, venue = None): ts = time.time() global team_homes, stadium_locs team_1_home = team_homes[1][team_1] team_2_home = team_homes[1][team_2] if venue is None: venue = team_homes[1][team_1] (venue_lat, venue_lng) = stadium_locs.loc[venue, ['Lat', 'Long']] (team_1_home_lat, team_1_home_lng) = stadium_locs.loc[team_1_home, ['Lat', 'Long']] (team_2_home_lat, team_2_home_lng) = stadium_locs.loc[team_2_home, ['Lat', 'Long']] team_1_reference_distance = geodesic_distance(team_1_home_lat, team_1_home_lng, venue_lat, venue_lng) team_2_reference_distance = geodesic_distance(team_2_home_lat, team_2_home_lng, venue_lat, venue_lng) def get_team_1_weight(location): return get_travel_weight(location, team_1_home_lat, team_1_home_lng, team_1_reference_distance) def get_team_2_weight(location): return get_travel_weight(location, team_2_home_lat, team_2_home_lng, team_2_reference_distance) team_1_season = pd.DataFrame.from_csv(os.path.join(teamsheetpath, team_1 + '.csv')) team_2_season = pd.DataFrame.from_csv(os.path.join(teamsheetpath, team_2 + '.csv')) team_1_season['Weight'] = team_1_season['VENUE'].apply(get_team_1_weight) team_2_season['Weight'] = team_2_season['VENUE'].apply(get_team_2_weight) stats_1, variances_1 = get_residual_performance(team_1_season) stats_2, variances_2 = get_residual_performance(team_2_season) expected_scores_1 = get_expected_scores(stats_1, stats_2, team_1_season, team_2_season) expected_scores_2 = get_expected_scores(stats_2, stats_1, team_2_season, team_1_season) var_1 = pd.Series(0.25*(variances_1.loc[['TF', 'PF', 'DF']].values + variances_2.loc[['TA', 'PA', 'DGA']].values), ['T', 'P', 'DG']) var_2 = pd.Series(0.25*(variances_2.loc[['TF', 'PF', 'DF']].values + variances_1.loc[['TA', 'PA', 'DGA']].values), ['T', 'P', 'DG']) for stat in var_1.index: if math.isnan(var_1[stat]): var_1[stat] = expected_scores_1[stat] if math.isnan(var_2[stat]): var_2[stat] = expected_scores_2[stat] score_array = [5, 2, 3, 3] n_sim = int(5e6) expected_scores_1a = {'T': (expected_scores_1['T'], var_1['T']), 'C': expected_scores_1['CONPROB'], 'P': (expected_scores_1['P'], var_1['P']), 'DG': (expected_scores_1['DG'], var_1['DG'])} expected_scores_2a = {'T': (expected_scores_2['T'], var_2['T']), 'C': expected_scores_2['CONPROB'], 'P': (expected_scores_2['P'], var_2['P']), 'DG': (expected_scores_2['DG'], var_2['DG'])} print(expected_scores_1a) print(expected_scores_2a) ts = time.time() (team_1_scores, team_1_tries) = get_score(expected_scores_1a, score_array, n_sim) (team_2_scores, team_2_tries) = get_score(expected_scores_2a, score_array, n_sim) te = time.time() print(te - ts) (team_1_wins, team_2_wins, draws) = sim_util.eval_results(team_1_scores, team_2_scores, False) (team_1_tb, team_2_tb) = sim_util.eval_try_bonus(team_1_tries, team_2_tries, 3) (team_1_lb, team_2_lb) = sim_util.eval_losing_bonus(team_1_scores, team_2_scores, 7) team_1_prob = team_1_wins.mean() team_2_prob = team_2_wins.mean() draw_prob = draws.mean() team_1_bpw_prob = (team_1_tb * team_1_wins).mean() team_1_bpd_prob = (team_1_tb * draws).mean() team_1_bpl_prob = (team_1_tb * team_2_wins).mean() team_1_lbp_prob = (team_1_lb).mean() team_2_bpw_prob = (team_2_tb * team_2_wins).mean() team_2_bpd_prob = (team_2_tb * draws).mean() team_2_bpl_prob = (team_2_tb * team_1_wins).mean() team_2_lbp_prob = (team_2_lb).mean() games = pd.DataFrame.from_items([(team_1, team_1_scores), (team_2, team_2_scores)]) pre_summaries = games.describe(percentiles = list(np.linspace(0.05, 0.95, 19))) summaries = pd.DataFrame(columns = pre_summaries.columns) summaries.loc['mean'] = pre_summaries.loc['mean'] for i in pre_summaries.index: try: percentile = int(round(float(i[:-1]))) summaries.loc['{}%'.format(percentile)] = pre_summaries.loc[i] except ValueError: continue summaries = summaries.reset_index() for item in summaries.index: try: summaries['index'][item] = str(int(float(summaries['index'][item][:-1]))) + '%' except ValueError: continue bonus_points = pd.DataFrame(index = ['4-Try Bonus Point with Win', '4-Try Bonus Point with Draw', '4-Try Bonus Point with Loss', 'Losing Bonus Point']) bonus_points[team_1] = [team_1_bpw_prob, team_1_bpd_prob, team_1_bpl_prob, team_1_lbp_prob] bonus_points[team_2] = [team_2_bpw_prob, team_2_bpd_prob, team_2_bpl_prob, team_2_lbp_prob] summaries = summaries.set_index('index') summaries = summaries.groupby(level = 0).last() output = {'ProbWin': {team_1: team_1_prob, team_2: team_2_prob}, 'Scores': summaries, 'Bonus Points': bonus_points} print(team_1 + '/' + team_2 + ' score distributions computed in ' + str(round(time.time() - ts, 1)) + ' seconds') return output
mit
davidwaroquiers/pymatgen
pymatgen/command_line/vampire_caller.py
2
15166
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ This module implements an interface to the VAMPIRE code for atomistic simulations of magnetic materials. This module depends on a compiled vampire executable available in the path. Please download at https://vampire.york.ac.uk/download/ and follow the instructions to compile the executable. If you use this module, please cite the following: "Atomistic spin model simulations of magnetic nanomaterials." R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis and R. W. Chantrell. J. Phys.: Condens. Matter 26, 103202 (2014) """ import logging import subprocess import pandas as pd from monty.dev import requires from monty.json import MSONable from monty.os.path import which from pymatgen.analysis.magnetism.heisenberg import HeisenbergMapper __author__ = "ncfrey" __version__ = "0.1" __maintainer__ = "Nathan C. Frey" __email__ = "[email protected]" __status__ = "Development" __date__ = "June 2019" VAMPEXE = which("vampire-serial") class VampireCaller: """ Run Vampire on a material with magnetic ordering and exchange parameter information to compute the critical temperature with classical Monte Carlo. """ @requires( VAMPEXE, "VampireCaller requires vampire-serial to be in the path." "Please follow the instructions at https://vampire.york.ac.uk/download/.", ) def __init__( self, ordered_structures=None, energies=None, mc_box_size=4.0, equil_timesteps=2000, mc_timesteps=4000, save_inputs=False, hm=None, avg=True, user_input_settings=None, ): """ user_input_settings is a dictionary that can contain: * start_t (int): Start MC sim at this temp, defaults to 0 K. * end_t (int): End MC sim at this temp, defaults to 1500 K. * temp_increment (int): Temp step size, defaults to 25 K. Args: ordered_structures (list): Structure objects with magmoms. energies (list): Energies of each relaxed magnetic structure. mc_box_size (float): x=y=z dimensions (nm) of MC simulation box equil_timesteps (int): number of MC steps for equilibrating mc_timesteps (int): number of MC steps for averaging save_inputs (bool): if True, save scratch dir of vampire input files hm (HeisenbergModel): object already fit to low energy magnetic orderings. avg (bool): If True, simply use <J> exchange parameter estimate. If False, attempt to use NN, NNN, etc. interactions. user_input_settings (dict): optional commands for VAMPIRE Monte Carlo Parameters: sgraph (StructureGraph): Ground state graph. unique_site_ids (dict): Maps each site to its unique identifier nn_interacations (dict): {i: j} pairs of NN interactions between unique sites. ex_params (dict): Exchange parameter values (meV/atom) mft_t (float): Mean field theory estimate of critical T mat_name (str): Formula unit label for input files mat_id_dict (dict): Maps sites to material id # for vampire indexing. TODO: * Create input files in a temp folder that gets cleaned up after run terminates """ self.mc_box_size = mc_box_size self.equil_timesteps = equil_timesteps self.mc_timesteps = mc_timesteps self.save_inputs = save_inputs self.avg = avg if not user_input_settings: # set to empty dict self.user_input_settings = {} else: self.user_input_settings = user_input_settings # Get exchange parameters and set instance variables if not hm: hmapper = HeisenbergMapper(ordered_structures, energies, cutoff=3.0, tol=0.02) hm = hmapper.get_heisenberg_model() # Attributes from HeisenbergModel self.hm = hm self.structure = hm.structures[0] # ground state self.sgraph = hm.sgraphs[0] # ground state graph self.unique_site_ids = hm.unique_site_ids self.nn_interactions = hm.nn_interactions self.dists = hm.dists self.tol = hm.tol self.ex_params = hm.ex_params self.javg = hm.javg # Full structure name before reducing to only magnetic ions self.mat_name = hm.formula # Switch to scratch dir which automatically cleans up vampire inputs files unless user specifies to save them # with ScratchDir('/scratch', copy_from_current_on_enter=self.save_inputs, # copy_to_current_on_exit=self.save_inputs) as temp_dir: # os.chdir(temp_dir) # Create input files self._create_mat() self._create_input() self._create_ucf() # Call Vampire process = subprocess.Popen(["vampire-serial"], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = process.communicate() stdout = stdout.decode() if stderr: vanhelsing = stderr.decode() if len(vanhelsing) > 27: # Suppress blank warning msg logging.warning(vanhelsing) if process.returncode != 0: raise RuntimeError("Vampire exited with return code {}.".format(process.returncode)) self._stdout = stdout self._stderr = stderr # Process output nmats = max(self.mat_id_dict.values()) parsed_out, critical_temp = VampireCaller.parse_stdout("output", nmats) self.output = VampireOutput(parsed_out, nmats, critical_temp) def _create_mat(self): structure = self.structure mat_name = self.mat_name magmoms = structure.site_properties["magmom"] # Maps sites to material id for vampire inputs mat_id_dict = {} nmats = 0 for key in self.unique_site_ids: spin_up, spin_down = False, False nmats += 1 # at least 1 mat for each unique site # Check which spin sublattices exist for this site id for site in key: m = magmoms[site] if m > 0: spin_up = True if m < 0: spin_down = True # Assign material id for each site for site in key: m = magmoms[site] if spin_up and not spin_down: mat_id_dict[site] = nmats if spin_down and not spin_up: mat_id_dict[site] = nmats if spin_up and spin_down: # Check if spin up or down shows up first m0 = magmoms[key[0]] if m > 0 and m0 > 0: mat_id_dict[site] = nmats if m < 0 and m0 < 0: mat_id_dict[site] = nmats if m > 0 > m0: mat_id_dict[site] = nmats + 1 if m < 0 < m0: mat_id_dict[site] = nmats + 1 # Increment index if two sublattices if spin_up and spin_down: nmats += 1 mat_file = ["material:num-materials=%d" % (nmats)] for key in self.unique_site_ids: i = self.unique_site_ids[key] # unique site id for site in key: mat_id = mat_id_dict[site] # Only positive magmoms allowed m_magnitude = abs(magmoms[site]) if magmoms[site] > 0: spin = 1 if magmoms[site] < 0: spin = -1 atom = structure[i].species.reduced_formula mat_file += ["material[%d]:material-element=%s" % (mat_id, atom)] mat_file += [ "material[%d]:damping-constant=1.0" % (mat_id), "material[%d]:uniaxial-anisotropy-constant=1.0e-24" % (mat_id), # xx - do we need this? "material[%d]:atomic-spin-moment=%.2f !muB" % (mat_id, m_magnitude), "material[%d]:initial-spin-direction=0,0,%d" % (mat_id, spin), ] mat_file = "\n".join(mat_file) mat_file_name = mat_name + ".mat" self.mat_id_dict = mat_id_dict with open(mat_file_name, "w") as f: f.write(mat_file) def _create_input(self): structure = self.structure mcbs = self.mc_box_size equil_timesteps = self.equil_timesteps mc_timesteps = self.mc_timesteps mat_name = self.mat_name input_script = ["material:unit-cell-file=%s.ucf" % (mat_name)] input_script += ["material:file=%s.mat" % (mat_name)] # Specify periodic boundary conditions input_script += [ "create:periodic-boundaries-x", "create:periodic-boundaries-y", "create:periodic-boundaries-z", ] # Unit cell size in Angstrom abc = structure.lattice.abc ucx, ucy, ucz = abc[0], abc[1], abc[2] input_script += ["dimensions:unit-cell-size-x = %.10f !A" % (ucx)] input_script += ["dimensions:unit-cell-size-y = %.10f !A" % (ucy)] input_script += ["dimensions:unit-cell-size-z = %.10f !A" % (ucz)] # System size in nm input_script += [ "dimensions:system-size-x = %.1f !nm" % (mcbs), "dimensions:system-size-y = %.1f !nm" % (mcbs), "dimensions:system-size-z = %.1f !nm" % (mcbs), ] # Critical temperature Monte Carlo calculation input_script += [ "sim:integrator = monte-carlo", "sim:program = curie-temperature", ] # Default Monte Carlo params input_script += [ "sim:equilibration-time-steps = %d" % (equil_timesteps), "sim:loop-time-steps = %d" % (mc_timesteps), "sim:time-steps-increment = 1", ] # Set temperature range and step size of simulation if "start_t" in self.user_input_settings: start_t = self.user_input_settings["start_t"] else: start_t = 0 if "end_t" in self.user_input_settings: end_t = self.user_input_settings["end_t"] else: end_t = 1500 if "temp_increment" in self.user_input_settings: temp_increment = self.user_input_settings["temp_increment"] else: temp_increment = 25 input_script += [ "sim:minimum-temperature = %d" % (start_t), "sim:maximum-temperature = %d" % (end_t), "sim:temperature-increment = %d" % (temp_increment), ] # Output to save input_script += [ "output:temperature", "output:mean-magnetisation-length", "output:material-mean-magnetisation-length", "output:mean-susceptibility", ] input_script = "\n".join(input_script) with open("input", "w") as f: f.write(input_script) def _create_ucf(self): structure = self.structure mat_name = self.mat_name abc = structure.lattice.abc ucx, ucy, ucz = abc[0], abc[1], abc[2] ucf = ["# Unit cell size:"] ucf += ["%.10f %.10f %.10f" % (ucx, ucy, ucz)] ucf += ["# Unit cell lattice vectors:"] a1 = list(structure.lattice.matrix[0]) ucf += ["%.10f %.10f %.10f" % (a1[0], a1[1], a1[2])] a2 = list(structure.lattice.matrix[1]) ucf += ["%.10f %.10f %.10f" % (a2[0], a2[1], a2[2])] a3 = list(structure.lattice.matrix[2]) ucf += ["%.10f %.10f %.10f" % (a3[0], a3[1], a3[2])] nmats = max(self.mat_id_dict.values()) ucf += ["# Atoms num_materials; id cx cy cz mat cat hcat"] ucf += ["%d %d" % (len(structure), nmats)] # Fractional coordinates of atoms for site, r in enumerate(structure.frac_coords): # Back to 0 indexing for some reason... mat_id = self.mat_id_dict[site] - 1 ucf += ["%d %.10f %.10f %.10f %d 0 0" % (site, r[0], r[1], r[2], mat_id)] # J_ij exchange interaction matrix sgraph = self.sgraph ninter = 0 for i, node in enumerate(sgraph.graph.nodes): ninter += sgraph.get_coordination_of_site(i) ucf += ["# Interactions"] ucf += ["%d isotropic" % (ninter)] iid = 0 # counts number of interaction for i, node in enumerate(sgraph.graph.nodes): connections = sgraph.get_connected_sites(i) for c in connections: jimage = c[1] # relative integer coordinates of atom j dx = jimage[0] dy = jimage[1] dz = jimage[2] j = c[2] # index of neighbor dist = round(c[-1], 2) # Look up J_ij between the sites if self.avg is True: # Just use <J> estimate j_exc = self.hm.javg else: j_exc = self.hm._get_j_exc(i, j, dist) # Convert J_ij from meV to Joules j_exc *= 1.6021766e-22 j_exc = str(j_exc) # otherwise this rounds to 0 ucf += ["%d %d %d %d %d %d %s" % (iid, i, j, dx, dy, dz, j_exc)] iid += 1 ucf = "\n".join(ucf) ucf_file_name = mat_name + ".ucf" with open(ucf_file_name, "w") as f: f.write(ucf) @staticmethod def parse_stdout(vamp_stdout, nmats): """Parse stdout from Vampire. Args: vamp_stdout (txt file): Vampire 'output' file. nmats (int): Num of materials in Vampire sim. Returns: parsed_out (DataFrame): MSONable vampire output. critical_temp (float): Calculated critical temp. """ names = ["T", "m_total"] + ["m_" + str(i) for i in range(1, nmats + 1)] + ["X_x", "X_y", "X_z", "X_m", "nan"] # Parsing vampire MC output df = pd.read_csv(vamp_stdout, sep="\t", skiprows=9, header=None, names=names) df.drop("nan", axis=1, inplace=True) parsed_out = df.to_json() # Max of susceptibility <-> critical temp critical_temp = df.iloc[df.X_m.idxmax()]["T"] return parsed_out, critical_temp class VampireOutput(MSONable): """ This class processes results from a Vampire Monte Carlo simulation and returns the critical temperature. """ def __init__(self, parsed_out=None, nmats=None, critical_temp=None): """ Args: parsed_out (json): json rep of parsed stdout DataFrame. nmats (int): Number of distinct materials (1 for each specie and up/down spin). critical_temp (float): Monte Carlo Tc result. """ self.parsed_out = parsed_out self.nmats = nmats self.critical_temp = critical_temp
mit
cgre-aachen/gempy
gempy/core/grid_modules/grid_types.py
1
24018
from gempy.core.grid_modules.create_topography import LoadDEMArtificial, LoadDEMGDAL import numpy as np import skimage.transform import matplotlib.pyplot as plt from scipy.constants import G from scipy import interpolate from gempy.utils.meta import _setdoc_pro import gempy.utils.docstring as ds import pandas as pn class RegularGrid: """ Class with the methods and properties to manage 3D regular grids where the model will be interpolated. Args: extent (np.ndarray): [x_min, x_max, y_min, y_max, z_min, z_max] resolution (np.ndarray): [nx, ny, nz] Attributes: extent (np.ndarray): [x_min, x_max, y_min, y_max, z_min, z_max] resolution (np.ndarray): [nx, ny, nz] values (np.ndarray): XYZ coordinates mask_topo (np.ndarray, dtype=bool): same shape as values. Values above the topography are False dx (float): size of the cells on x dy (float): size of the cells on y dz (float): size of the cells on z """ def __init__(self, extent=None, resolution=None, **kwargs): self.resolution = np.ones((0, 3), dtype='int64') self.extent = np.zeros(6, dtype='float64') self.extent_r = np.zeros(6, dtype='float64') self.values = np.zeros((0, 3)) self.values_r = np.zeros((0, 3)) self.mask_topo = np.zeros((0, 3), dtype=bool) self.x = None self.y = None self.z = None if extent is not None and resolution is not None: self.set_regular_grid(extent, resolution) self.dx, self.dy, self.dz = self.get_dx_dy_dz() def set_coord(self, extent, resolution): dx = (extent[1] - extent[0]) / resolution[0] dy = (extent[3] - extent[2]) / resolution[1] dz = (extent[5] - extent[4]) / resolution[2] self.x = np.linspace(extent[0] + dx / 2, extent[1] - dx / 2, resolution[0], dtype="float64") self.y = np.linspace(extent[2] + dy / 2, extent[3] - dy / 2, resolution[1], dtype="float64") self.z = np.linspace(extent[4] + dz / 2, extent[5] - dz / 2, resolution[2], dtype="float64") return self.x, self.y, self.z def create_regular_grid_3d(self, extent, resolution): """ Method to create a 3D regular grid where is interpolated Args: extent (list): [x_min, x_max, y_min, y_max, z_min, z_max] resolution (list): [nx, ny, nz]. Returns: numpy.ndarray: Unraveled 3D numpy array where every row correspond to the xyz coordinates of a regular grid """ coords = self.set_coord(extent, resolution) g = np.meshgrid(*coords, indexing="ij") values = np.vstack(tuple(map(np.ravel, g))).T.astype("float64") return values def get_dx_dy_dz(self, rescale=False): if rescale is True: dx = (self.extent_r[1] - self.extent_r[0]) / self.resolution[0] dy = (self.extent_r[3] - self.extent_r[2]) / self.resolution[1] dz = (self.extent_r[5] - self.extent_r[4]) / self.resolution[2] else: dx = (self.extent[1] - self.extent[0]) / self.resolution[0] dy = (self.extent[3] - self.extent[2]) / self.resolution[1] dz = (self.extent[5] - self.extent[4]) / self.resolution[2] return dx, dy, dz def set_regular_grid(self, extent, resolution): """ Set a regular grid into the values parameters for further computations Args: extent (list, np.ndarry): [x_min, x_max, y_min, y_max, z_min, z_max] resolution (list, np.ndarray): [nx, ny, nz] """ self.extent = np.asarray(extent, dtype='float64') self.resolution = np.asarray(resolution) self.values = self.create_regular_grid_3d(extent, resolution) self.length = self.values.shape[0] self.dx, self.dy, self.dz = self.get_dx_dy_dz() return self.values def set_topography_mask(self, topography): """This method takes a topography grid of the same extent as the regular grid and creates a mask of voxels Args: topography (:class:`gempy.core.grid_modules.topography.Topography`): Returns: """ assert np.array_equal(topography.extent, self.extent), 'The extent of' \ 'the topography must match to the extent of the regular grid.' # interpolate topography values to the regular grid regular_grid_topo = skimage.transform.resize( topography.values_2d, (self.resolution[0], self.resolution[1]), mode='constant', anti_aliasing=False, preserve_range=True) # Reshape the Z values of the regular grid to 3d values_3d = self.values[:, 2].reshape(self.resolution) if regular_grid_topo.ndim == 3: regular_grid_topo_z = regular_grid_topo[:, :, [2]] elif regular_grid_topo.ndim == 2: regular_grid_topo_z = regular_grid_topo else: raise ValueError() mask = np.greater(values_3d[:, :, :], regular_grid_topo_z) self.mask_topo = mask return self.mask_topo class Sections: """ Object that creates a grid of cross sections between two points. Args: regular_grid: Model.grid.regular_grid section_dict: {'section name': ([p1_x, p1_y], [p2_x, p2_y], [xyres, zres])} """ def __init__(self, regular_grid=None, z_ext=None, section_dict=None): if regular_grid is not None: self.z_ext = regular_grid.extent[4:] else: self.z_ext = z_ext self.section_dict = section_dict self.names = [] self.points = [] self.resolution = [] self.length = [0] self.dist = [] self.df = pn.DataFrame() self.df['dist'] = self.dist self.values = [] self.extent = None if section_dict is not None: self.set_sections(section_dict) def _repr_html_(self): return self.df.to_html() def __repr__(self): return self.df.to_string() def show(self): pass def set_sections(self, section_dict, regular_grid=None, z_ext=None): self.section_dict = section_dict if regular_grid is not None: self.z_ext = regular_grid.extent[4:] self.names = np.array(list(self.section_dict.keys())) self.get_section_params() self.calculate_all_distances() self.df = pn.DataFrame.from_dict(self.section_dict, orient='index', columns=['start', 'stop', 'resolution']) self.df['dist'] = self.dist self.compute_section_coordinates() def get_section_params(self): self.points = [] self.resolution = [] self.length = [0] for i, section in enumerate(self.names): points = [self.section_dict[section][0], self.section_dict[section][1]] assert points[0] != points[ 1], 'The start and end points of the section must not be identical.' self.points.append(points) self.resolution.append(self.section_dict[section][2]) self.length = np.append(self.length, self.section_dict[section][2][0] * self.section_dict[section][2][1]) self.length = np.array(self.length).cumsum() def calculate_all_distances(self): self.coordinates = np.array(self.points).ravel().reshape(-1, 4) # axis are x1,y1,x2,y2 self.dist = np.sqrt(np.diff(self.coordinates[:, [0, 2]]) ** 2 + np.diff( self.coordinates[:, [1, 3]]) ** 2) @staticmethod def distance_2_points(p1, p2): return np.sqrt(np.diff((p1[0], p2[0])) ** 2 + np.diff((p1[1], p2[1])) ** 2) def compute_section_coordinates(self): for i in range(len(self.names)): xy = self.calculate_line_coordinates_2points(self.coordinates[i, :2], self.coordinates[i, 2:], self.resolution[i][0]) zaxis = np.linspace(self.z_ext[0], self.z_ext[1], self.resolution[i][1], dtype="float64") X, Z = np.meshgrid(xy[:, 0], zaxis, indexing='ij') Y, _ = np.meshgrid(xy[:, 1], zaxis, indexing='ij') xyz = np.vstack((X.flatten(), Y.flatten(), Z.flatten())).T if i == 0: self.values = xyz else: self.values = np.vstack((self.values, xyz)) def generate_axis_coord(self): for i, name in enumerate(self.names): xy = self.calculate_line_coordinates_2points( self.coordinates[i, :2], self.coordinates[i, 2:], self.resolution[i][0] ) yield name, xy def calculate_line_coordinates_2points(self, p1, p2, res): if isinstance(p1, list): p1 = np.array(p1) if isinstance(p2, list): p2 = np.array(p2) v = p2 - p1 # vector pointing from p1 to p2 u = v / np.linalg.norm(v) # normalize it distance = self.distance_2_points(p1, p2) steps = np.linspace(0, distance, res) values = p1.reshape(2, 1) + u.reshape(2, 1) * steps.ravel() return values.T def get_section_args(self, section_name: str): where = np.where(self.names == section_name)[0][0] return self.length[where], self.length[where + 1] def get_section_grid(self, section_name: str): l0, l1 = self.get_section_args(section_name) return self.values[l0:l1] @staticmethod def interpolate_zvals_at_xy(xy, topography, method='interp2d'): """ Interpolates DEM values on a defined section Args: xy: x (EW) and y (NS) coordinates of the profile topography (:class:`gempy.core.grid_modules.topography.Topography`) method: interpolation method, 'interp2d' for cubic scipy.interpolate.interp2d 'spline' for scipy.interpolate.RectBivariateSpline Returns: numpy.ndarray: z values, i.e. topography along the profile """ xj = topography.values_2d[:, 0, 0] yj = topography.values_2d[0, :, 1] zj = topography.values_2d[:, :, 2] if method == 'interp2d': f = interpolate.interp2d(xj, yj, zj.T, kind='cubic') zi = f(xy[:, 0], xy[:, 1]) if xy[:, 0][0] <= xy[:, 0][-1] and xy[:, 1][0] <= xy[:, 1][-1]: return np.diag(zi) else: return np.flipud(zi).diagonal() else: assert xy[:, 0][0] <= xy[:, 0][ -1], 'The xy values of the first point must be smaller than second.' \ 'Please use interp2d as method argument. Will be fixed.' assert xy[:, 1][0] <= xy[:, 1][ -1], 'The xy values of the first point must be smaller than second.' \ 'Please use interp2d as method argument. Will be fixed.' f = interpolate.RectBivariateSpline(xj, yj, zj) zi = f(xy[:, 0], xy[:, 1]) return np.flipud(zi).diagonal() class CustomGrid: """Object that contains arbitrary XYZ coordinates. Args: custom_grid (numpy.ndarray like): XYZ (in columns) of the desired coordinates Attributes: values (np.ndarray): XYZ coordinates """ def __init__(self, custom_grid: np.ndarray): self.values = np.zeros((0, 3)) self.set_custom_grid(custom_grid) def set_custom_grid(self, custom_grid: np.ndarray): """ Give the coordinates of an external generated grid Args: custom_grid (numpy.ndarray like): XYZ (in columns) of the desired coordinates Returns: numpy.ndarray: Unraveled 3D numpy array where every row correspond to the xyz coordinates of a regular grid """ custom_grid = np.atleast_2d(custom_grid) assert type(custom_grid) is np.ndarray and custom_grid.shape[1] == 3, \ 'The shape of new grid must be (n,3) where n is the number of' \ ' points of the grid' self.values = custom_grid self.length = self.values.shape[0] return self.values class CenteredGrid: """ Logarithmic spaced grid. """ def __init__(self, centers=None, radius=None, resolution=None): self.grid_type = 'centered_grid' self.values = np.empty((0, 3)) self.length = self.values.shape[0] self.resolution = resolution self.kernel_centers = np.empty((0, 3)) self.kernel_dxyz_left = np.empty((0, 3)) self.kernel_dxyz_right = np.empty((0, 3)) self.tz = np.empty(0) if centers is not None and radius is not None: if resolution is None: resolution = [10, 10, 20] self.set_centered_grid(centers=centers, radius=radius, resolution=resolution) @staticmethod @_setdoc_pro(ds.resolution) def create_irregular_grid_kernel(resolution, radius): """ Create an isometric grid kernel (centered at 0) Args: resolution: [s0] radius (float): Maximum distance of the kernel Returns: tuple: center of the voxel, left edge of each voxel (for xyz), right edge of each voxel (for xyz). """ if radius is not list or radius is not np.ndarray: radius = np.repeat(radius, 3) g_ = [] g_2 = [] d_ = [] for xyz in [0, 1, 2]: if xyz == 2: # Make the grid only negative for the z axis g_.append(np.geomspace(0.01, 1, int(resolution[xyz]))) g_2.append( (np.concatenate(([0], g_[xyz])) + 0.05) * - radius[xyz] * 1.2) else: g_.append(np.geomspace(0.01, 1, int(resolution[xyz] / 2))) g_2.append( np.concatenate((-g_[xyz][::-1], [0], g_[xyz])) * radius[xyz]) d_.append(np.diff(np.pad(g_2[xyz], 1, 'reflect', reflect_type='odd'))) g = np.meshgrid(*g_2) d_left = np.meshgrid(d_[0][:-1] / 2, d_[1][:-1] / 2, d_[2][:-1] / 2) d_right = np.meshgrid(d_[0][1:] / 2, d_[1][1:] / 2, d_[2][1:] / 2) kernel_g = np.vstack(tuple(map(np.ravel, g))).T.astype("float64") kernel_d_left = np.vstack(tuple(map(np.ravel, d_left))).T.astype("float64") kernel_d_right = np.vstack(tuple(map(np.ravel, d_right))).T.astype("float64") return kernel_g, kernel_d_left, kernel_d_right @_setdoc_pro(ds.resolution) def set_centered_kernel(self, resolution, radius): """ Set a centered Args: resolution: [s0] radius (float): Maximum distance of the kernel Returns: """ self.kernel_centers, self.kernel_dxyz_left, self.kernel_dxyz_right = self.create_irregular_grid_kernel( resolution, radius) return self.kernel_centers @_setdoc_pro(ds.resolution) def set_centered_grid(self, centers, kernel_centers=None, **kwargs): """ Main method of the class, set the XYZ values around centers using a kernel. Args: centers (np.array): XYZ array with the centers of where we want to create a grid around kernel_centers (Optional[np.array]): center of the voxels of a desired kernel. **kwargs: * resolution: [s0] * radius (float): Maximum distance of the kernel Returns: """ self.values = np.empty((0, 3)) centers = np.atleast_2d(centers) if kernel_centers is None: kernel_centers = self.set_centered_kernel(**kwargs) assert centers.shape[ 1] == 3, 'Centers must be a numpy array that contains the coordinates XYZ' for i in centers: self.values = np.vstack((self.values, i + kernel_centers)) self.length = self.values.shape[0] def set_tz_kernel(self, **kwargs): if self.kernel_centers.size == 0: self.set_centered_kernel(**kwargs) grid_values = self.kernel_centers s_gr_x = grid_values[:, 0] s_gr_y = grid_values[:, 1] s_gr_z = grid_values[:, 2] # getting the coordinates of the corners of the voxel... x_cor = np.stack((s_gr_x - self.kernel_dxyz_left[:, 0], s_gr_x + self.kernel_dxyz_right[:, 0]), axis=1) y_cor = np.stack((s_gr_y - self.kernel_dxyz_left[:, 1], s_gr_y + self.kernel_dxyz_right[:, 1]), axis=1) z_cor = np.stack((s_gr_z - self.kernel_dxyz_left[:, 2], s_gr_z + self.kernel_dxyz_right[:, 2]), axis=1) # ...and prepare them for a vectorial op x_matrix = np.repeat(x_cor, 4, axis=1) y_matrix = np.tile(np.repeat(y_cor, 2, axis=1), (1, 2)) z_matrix = np.tile(z_cor, (1, 4)) s_r = np.sqrt(x_matrix ** 2 + y_matrix ** 2 + z_matrix ** 2) # This is the vector that determines the sign of the corner of the voxel mu = np.array([1, -1, -1, 1, -1, 1, 1, -1]) self.tz = ( np.sum(- 1 * G * mu * ( x_matrix * np.log(y_matrix + s_r) + y_matrix * np.log(x_matrix + s_r) - z_matrix * np.arctan( x_matrix * y_matrix / (z_matrix * s_r))), axis=1)) return self.tz # class Topography: # """ # Object to include topography in the model. # """ # def __init__(self, regular_grid): # self.regular_grid = regular_grid # self.values = np.zeros((0, 3)) # # self.topo = None # self.values_3D = np.zeros((0, 0, 0)) # self.extent = None # self.resolution = None # # self.type = None # # def load_from_gdal(self, filepath): # self.topo = Load_DEM_GDAL(filepath, self.regular_grid) # self._create_init() # self._fit2model() # self.type = 'real' # # def load_random_hills(self, **kwargs): # self.topo = LoadDEMArtificial(self.regular_grid, **kwargs) # self._create_init() # self._fit2model() # self.type = 'artificial' # # def load_from_saved(self, filepath): # assert filepath[-4:] == '.npy', 'The file must end on .npy' # topo = np.load(filepath, allow_pickle=True) # self.values_3D = topo[0] # self.extent = topo[1] # self.resolution = topo[2] # self._fit2model() # self.type = 'real' # # def _create_init(self): # self.values_3D = self.topo.values_3D # self.extent = self.topo.extent # self.resolution = self.topo.resolution # # # These two methods makes more sense in regular grid passing a topography # # object. # def _fit2model(self): # self.values = np.vstack(( # self.values_3D[:, :, 0].ravel(), self.values_3D[:, :, 1].ravel(), # self.values_3D[:, :, 2].ravel())).T.astype("float64") # # if np.any(self.regular_grid.extent[:4] - self.extent) != 0: # print('obacht') # # todo if grid extent bigger fill missing values with nans for chloe # self._crop() # # if np.any(self.regular_grid.resolution[:2] - self.resolution) != 0: # self._resize() # else: # self.values_3D_res = self.values_3D # # self.regular_grid.mask_topo = self._create_grid_mask() # # def _crop(self): # pass # # def _resize(self): # self.values_3D_res = skimage.transform.resize(self.values_3D, # (self.regular_grid.resolution[0], self.regular_grid.resolution[1]), # mode='constant', # anti_aliasing=False, preserve_range=True) # # def show(self): # from gempy.plot.helpers import add_colorbar # if self.type == 'artificial': # fig, ax = plt.subplots() # CS= ax.contour(self.values_3D[:, :, 2], extent=(self.extent[:4]), colors='k', linestyles='solid') # ax.clabel(CS, inline=1, fontsize=10, fmt='%d') # CS2 = ax.contourf(self.values_3D[:, :, 2], extent=(self.extent[:4]), cmap='terrain') # add_colorbar(axes=ax, label='elevation [m]', cs=CS2) # else: # im = plt.imshow(np.flipud(self.values_3D[:,:,2]), extent=(self.extent[:4])) # add_colorbar(im=im, label='elevation [m]') # plt.axis('scaled') # plt.xlabel('X') # plt.ylabel('Y') # plt.title('Model topography') # # def save(self, filepath): # """ # Save the topography file in a numpy array which can be loaded later, to avoid the gdal process. # Args: # filepath (str): path where the array should be stored. # # Returns: # # """ # np.save(filepath, np.array([self.values_3D, self.extent, self.resolution])) # print('saved') # # def _create_grid_mask(self): # ind = self._find_indices() # gridz = self.regular_grid.values[:, 2].reshape(*self.regular_grid.resolution).copy() # for x in range(self.regular_grid.resolution[0]): # for y in range(self.regular_grid.resolution[1]): # z = ind[x, y] # gridz[x, y, z:] = 99999 # mask = (gridz == 99999) # return mask# np.multiply(np.full(self.regular_grid.values.shape, True).T, mask.ravel()).T # # def _find_indices(self): # zs = np.linspace(self.regular_grid.extent[4], self.regular_grid.extent[5], self.regular_grid.resolution[2]) # dz = (zs[-1] - zs[0]) / len(zs) # return ((self.values_3D_res[:, :, 2] - zs[0]) / dz + 1).astype(int) # # def interpolate_zvals_at_xy(self, xy, method='interp2d'): # """ # Interpolates DEM values on a defined section # # Args: # :param xy: x (EW) and y (NS) coordinates of the profile # :param method: interpolation method, 'interp2d' for cubic scipy.interpolate.interp2d # 'spline' for scipy.interpolate.RectBivariateSpline # Returns: # :return: z values, i.e. topography along the profile # """ # xj = self.values_3D[:, :, 0][0, :] # yj = self.values_3D[:, :, 1][:, 0] # zj = self.values_3D[:, :, 2] # # if method == 'interp2d': # f = interpolate.interp2d(xj, yj, zj, kind='cubic') # zi = f(xy[:, 0], xy[:, 1]) # if xy[:, 0][0] <= xy[:, 0][-1] and xy[:, 1][0] <= xy[:, 1][-1]: # return np.diag(zi) # else: # return np.flipud(zi).diagonal() # else: # assert xy[:, 0][0] <= xy[:, 0][-1], 'The xy values of the first point must be smaller than second.' \ # 'Please use interp2d as method argument. Will be fixed.' # assert xy[:, 1][0] <= xy[:, 1][-1], 'The xy values of the first point must be smaller than second.' \ # 'Please use interp2d as method argument. Will be fixed.' # f = interpolate.RectBivariateSpline(xj, yj, zj) # zi = f(xy[:, 0], xy[:, 1]) # return np.flipud(zi).diagonal()
lgpl-3.0
elkingtonmcb/scikit-learn
sklearn/cluster/tests/test_hierarchical.py
230
19795
""" Several basic tests for hierarchical clustering procedures """ # Authors: Vincent Michel, 2010, Gael Varoquaux 2012, # Matteo Visconti di Oleggio Castello 2014 # License: BSD 3 clause from tempfile import mkdtemp import shutil from functools import partial import numpy as np from scipy import sparse from scipy.cluster import hierarchy from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.cluster import ward_tree from sklearn.cluster import AgglomerativeClustering, FeatureAgglomeration from sklearn.cluster.hierarchical import (_hc_cut, _TREE_BUILDERS, linkage_tree) from sklearn.feature_extraction.image import grid_to_graph from sklearn.metrics.pairwise import PAIRED_DISTANCES, cosine_distances,\ manhattan_distances, pairwise_distances from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.neighbors.graph import kneighbors_graph from sklearn.cluster._hierarchical import average_merge, max_merge from sklearn.utils.fast_dict import IntFloatDict from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns def test_linkage_misc(): # Misc tests on linkage rng = np.random.RandomState(42) X = rng.normal(size=(5, 5)) assert_raises(ValueError, AgglomerativeClustering(linkage='foo').fit, X) assert_raises(ValueError, linkage_tree, X, linkage='foo') assert_raises(ValueError, linkage_tree, X, connectivity=np.ones((4, 4))) # Smoke test FeatureAgglomeration FeatureAgglomeration().fit(X) # test hiearchical clustering on a precomputed distances matrix dis = cosine_distances(X) res = linkage_tree(dis, affinity="precomputed") assert_array_equal(res[0], linkage_tree(X, affinity="cosine")[0]) # test hiearchical clustering on a precomputed distances matrix res = linkage_tree(X, affinity=manhattan_distances) assert_array_equal(res[0], linkage_tree(X, affinity="manhattan")[0]) def test_structured_linkage_tree(): # Check that we obtain the correct solution for structured linkage trees. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) # Avoiding a mask with only 'True' entries mask[4:7, 4:7] = 0 X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for tree_builder in _TREE_BUILDERS.values(): children, n_components, n_leaves, parent = \ tree_builder(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) # Check that ward_tree raises a ValueError with a connectivity matrix # of the wrong shape assert_raises(ValueError, tree_builder, X.T, np.ones((4, 4))) # Check that fitting with no samples raises an error assert_raises(ValueError, tree_builder, X.T[:0], connectivity) def test_unstructured_linkage_tree(): # Check that we obtain the correct solution for unstructured linkage trees. rng = np.random.RandomState(0) X = rng.randn(50, 100) for this_X in (X, X[0]): # With specified a number of clusters just for the sake of # raising a warning and testing the warning code with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, ward_tree, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) for tree_builder in _TREE_BUILDERS.values(): for this_X in (X, X[0]): with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, tree_builder, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) def test_height_linkage_tree(): # Check that the height of the results of linkage tree is sorted. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for linkage_func in _TREE_BUILDERS.values(): children, n_nodes, n_leaves, parent = linkage_func(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) def test_agglomerative_clustering(): # Check that we obtain the correct number of clusters with # agglomerative clustering. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) n_samples = 100 X = rng.randn(n_samples, 50) connectivity = grid_to_graph(*mask.shape) for linkage in ("ward", "complete", "average"): clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage=linkage) clustering.fit(X) # test caching try: tempdir = mkdtemp() clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, memory=tempdir, linkage=linkage) clustering.fit(X) labels = clustering.labels_ assert_true(np.size(np.unique(labels)) == 10) finally: shutil.rmtree(tempdir) # Turn caching off now clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, linkage=linkage) # Check that we obtain the same solution with early-stopping of the # tree building clustering.compute_full_tree = False clustering.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering.labels_, labels), 1) clustering.connectivity = None clustering.fit(X) assert_true(np.size(np.unique(clustering.labels_)) == 10) # Check that we raise a TypeError on dense matrices clustering = AgglomerativeClustering( n_clusters=10, connectivity=sparse.lil_matrix( connectivity.toarray()[:10, :10]), linkage=linkage) assert_raises(ValueError, clustering.fit, X) # Test that using ward with another metric than euclidean raises an # exception clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity.toarray(), affinity="manhattan", linkage="ward") assert_raises(ValueError, clustering.fit, X) # Test using another metric than euclidean works with linkage complete for affinity in PAIRED_DISTANCES.keys(): # Compare our (structured) implementation to scipy clustering = AgglomerativeClustering( n_clusters=10, connectivity=np.ones((n_samples, n_samples)), affinity=affinity, linkage="complete") clustering.fit(X) clustering2 = AgglomerativeClustering( n_clusters=10, connectivity=None, affinity=affinity, linkage="complete") clustering2.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering2.labels_, clustering.labels_), 1) # Test that using a distance matrix (affinity = 'precomputed') has same # results (with connectivity constraints) clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage="complete") clustering.fit(X) X_dist = pairwise_distances(X) clustering2 = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, affinity='precomputed', linkage="complete") clustering2.fit(X_dist) assert_array_equal(clustering.labels_, clustering2.labels_) def test_ward_agglomeration(): # Check that we obtain the correct solution in a simplistic case rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity) agglo.fit(X) assert_true(np.size(np.unique(agglo.labels_)) == 5) X_red = agglo.transform(X) assert_true(X_red.shape[1] == 5) X_full = agglo.inverse_transform(X_red) assert_true(np.unique(X_full[0]).size == 5) assert_array_almost_equal(agglo.transform(X_full), X_red) # Check that fitting with no samples raises a ValueError assert_raises(ValueError, agglo.fit, X[:0]) def assess_same_labelling(cut1, cut2): """Util for comparison with scipy""" co_clust = [] for cut in [cut1, cut2]: n = len(cut) k = cut.max() + 1 ecut = np.zeros((n, k)) ecut[np.arange(n), cut] = 1 co_clust.append(np.dot(ecut, ecut.T)) assert_true((co_clust[0] == co_clust[1]).all()) def test_scikit_vs_scipy(): # Test scikit linkage with full connectivity (i.e. unstructured) vs scipy n, p, k = 10, 5, 3 rng = np.random.RandomState(0) # Not using a lil_matrix here, just to check that non sparse # matrices are well handled connectivity = np.ones((n, n)) for linkage in _TREE_BUILDERS.keys(): for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out = hierarchy.linkage(X, method=linkage) children_ = out[:, :2].astype(np.int) children, _, n_leaves, _ = _TREE_BUILDERS[linkage](X, connectivity) cut = _hc_cut(k, children, n_leaves) cut_ = _hc_cut(k, children_, n_leaves) assess_same_labelling(cut, cut_) # Test error management in _hc_cut assert_raises(ValueError, _hc_cut, n_leaves + 1, children, n_leaves) def test_connectivity_propagation(): # Check that connectivity in the ward tree is propagated correctly during # merging. X = np.array([(.014, .120), (.014, .099), (.014, .097), (.017, .153), (.017, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .152), (.018, .149), (.018, .144)]) connectivity = kneighbors_graph(X, 10, include_self=False) ward = AgglomerativeClustering( n_clusters=4, connectivity=connectivity, linkage='ward') # If changes are not propagated correctly, fit crashes with an # IndexError ward.fit(X) def test_ward_tree_children_order(): # Check that children are ordered in the same way for both structured and # unstructured versions of ward_tree. # test on five random datasets n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X) out_structured = ward_tree(X, connectivity=connectivity) assert_array_equal(out_unstructured[0], out_structured[0]) def test_ward_linkage_tree_return_distance(): # Test return_distance option on linkage and ward trees # test that return_distance when set true, gives same # output on both structured and unstructured clustering. n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X, return_distance=True) out_structured = ward_tree(X, connectivity=connectivity, return_distance=True) # get children children_unstructured = out_unstructured[0] children_structured = out_structured[0] # check if we got the same clusters assert_array_equal(children_unstructured, children_structured) # check if the distances are the same dist_unstructured = out_unstructured[-1] dist_structured = out_structured[-1] assert_array_almost_equal(dist_unstructured, dist_structured) for linkage in ['average', 'complete']: structured_items = linkage_tree( X, connectivity=connectivity, linkage=linkage, return_distance=True)[-1] unstructured_items = linkage_tree( X, linkage=linkage, return_distance=True)[-1] structured_dist = structured_items[-1] unstructured_dist = unstructured_items[-1] structured_children = structured_items[0] unstructured_children = unstructured_items[0] assert_array_almost_equal(structured_dist, unstructured_dist) assert_array_almost_equal( structured_children, unstructured_children) # test on the following dataset where we know the truth # taken from scipy/cluster/tests/hierarchy_test_data.py X = np.array([[1.43054825, -7.5693489], [6.95887839, 6.82293382], [2.87137846, -9.68248579], [7.87974764, -6.05485803], [8.24018364, -6.09495602], [7.39020262, 8.54004355]]) # truth linkage_X_ward = np.array([[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 9.10208346, 4.], [7., 9., 24.7784379, 6.]]) linkage_X_complete = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.96742194, 4.], [7., 9., 18.77445997, 6.]]) linkage_X_average = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.55832839, 4.], [7., 9., 15.44089605, 6.]]) n_samples, n_features = np.shape(X) connectivity_X = np.ones((n_samples, n_samples)) out_X_unstructured = ward_tree(X, return_distance=True) out_X_structured = ward_tree(X, connectivity=connectivity_X, return_distance=True) # check that the labels are the same assert_array_equal(linkage_X_ward[:, :2], out_X_unstructured[0]) assert_array_equal(linkage_X_ward[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(linkage_X_ward[:, 2], out_X_unstructured[4]) assert_array_almost_equal(linkage_X_ward[:, 2], out_X_structured[4]) linkage_options = ['complete', 'average'] X_linkage_truth = [linkage_X_complete, linkage_X_average] for (linkage, X_truth) in zip(linkage_options, X_linkage_truth): out_X_unstructured = linkage_tree( X, return_distance=True, linkage=linkage) out_X_structured = linkage_tree( X, connectivity=connectivity_X, linkage=linkage, return_distance=True) # check that the labels are the same assert_array_equal(X_truth[:, :2], out_X_unstructured[0]) assert_array_equal(X_truth[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(X_truth[:, 2], out_X_unstructured[4]) assert_array_almost_equal(X_truth[:, 2], out_X_structured[4]) def test_connectivity_fixing_non_lil(): # Check non regression of a bug if a non item assignable connectivity is # provided with more than one component. # create dummy data x = np.array([[0, 0], [1, 1]]) # create a mask with several components to force connectivity fixing m = np.array([[True, False], [False, True]]) c = grid_to_graph(n_x=2, n_y=2, mask=m) w = AgglomerativeClustering(connectivity=c, linkage='ward') assert_warns(UserWarning, w.fit, x) def test_int_float_dict(): rng = np.random.RandomState(0) keys = np.unique(rng.randint(100, size=10).astype(np.intp)) values = rng.rand(len(keys)) d = IntFloatDict(keys, values) for key, value in zip(keys, values): assert d[key] == value other_keys = np.arange(50).astype(np.intp)[::2] other_values = 0.5 * np.ones(50)[::2] other = IntFloatDict(other_keys, other_values) # Complete smoke test max_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) average_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) def test_connectivity_callable(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering( connectivity=partial(kneighbors_graph, n_neighbors=3, include_self=False)) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_connectivity_ignores_diagonal(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) connectivity_include_self = kneighbors_graph(X, 3, include_self=True) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering(connectivity=connectivity_include_self) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_compute_full_tree(): # Test that the full tree is computed if n_clusters is small rng = np.random.RandomState(0) X = rng.randn(10, 2) connectivity = kneighbors_graph(X, 5, include_self=False) # When n_clusters is less, the full tree should be built # that is the number of merges should be n_samples - 1 agc = AgglomerativeClustering(n_clusters=2, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - 1) # When n_clusters is large, greater than max of 100 and 0.02 * n_samples. # we should stop when there are n_clusters. n_clusters = 101 X = rng.randn(200, 2) connectivity = kneighbors_graph(X, 10, include_self=False) agc = AgglomerativeClustering(n_clusters=n_clusters, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - n_clusters) def test_n_components(): # Test n_components returned by linkage, average and ward tree rng = np.random.RandomState(0) X = rng.rand(5, 5) # Connectivity matrix having five components. connectivity = np.eye(5) for linkage_func in _TREE_BUILDERS.values(): assert_equal(ignore_warnings(linkage_func)(X, connectivity)[1], 5) def test_agg_n_clusters(): # Test that an error is raised when n_clusters <= 0 rng = np.random.RandomState(0) X = rng.rand(20, 10) for n_clus in [-1, 0]: agc = AgglomerativeClustering(n_clusters=n_clus) msg = ("n_clusters should be an integer greater than 0." " %s was provided." % str(agc.n_clusters)) assert_raise_message(ValueError, msg, agc.fit, X)
bsd-3-clause
bthirion/nistats
examples/02_first_level_models/plot_fiac_analysis.py
1
6196
"""Simple example of two-session fMRI model fitting ================================================ Full step-by-step example of fitting a GLM to experimental data and visualizing the results. This is done on two runs of one subject of the FIAC dataset. For details on the data, please see: Dehaene-Lambertz G, Dehaene S, Anton JL, Campagne A, Ciuciu P, Dehaene G, Denghien I, Jobert A, LeBihan D, Sigman M, Pallier C, Poline JB. Functional segregation of cortical language areas by sentence repetition. Hum Brain Mapp. 2006: 27:360--371. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2653076#R11 More specifically: 1. A sequence of fMRI volumes are loaded 2. A design matrix describing all the effects related to the data is computed 3. a mask of the useful brain volume is computed 4. A GLM is applied to the dataset (effect/covariance, then contrast estimation) Technically, this example shows how to handle two sessions that contain the same experimental conditions. The model directly returns a fixed effect of the statistics across the two sessions. """ ############################################################################### # Create a write directory to work # it will be a 'results' subdirectory of the current directory. from os import mkdir, path, getcwd write_dir = path.join(getcwd(), 'results') if not path.exists(write_dir): mkdir(write_dir) ######################################################################### # Prepare data and analysis parameters # -------------------------------------- # # Note that there are two sessions from nistats import datasets data = datasets.fetch_fiac_first_level() fmri_img = [data['func1'], data['func2']] ######################################################################### # Create a mean image for plotting purpose from nilearn.image import mean_img mean_img_ = mean_img(fmri_img[0]) ######################################################################### # The design matrices were pre-computed, we simply put them in a list of DataFrames design_files = [data['design_matrix1'], data['design_matrix2']] import pandas as pd import numpy as np design_matrices = [pd.DataFrame(np.load(df)['X']) for df in design_files] ######################################################################### # GLM estimation # ---------------------------------- # GLM specification. Note that the mask was provided in the dataset. So we use it. from nistats.first_level_model import FirstLevelModel fmri_glm = FirstLevelModel(mask_img=data['mask'], minimize_memory=True) ######################################################################### # GLM fitting fmri_glm = fmri_glm.fit(fmri_img, design_matrices=design_matrices) ######################################################################### # Compute fixed effects of the two runs and compute related images # For this, we first define the contrasts as we would do for a single session n_columns = design_matrices[0].shape[1] def pad_vector(contrast_, n_columns): """A small routine to append zeros in contrast vectors""" return np.hstack((contrast_, np.zeros(n_columns - len(contrast_)))) ######################################################################### # Contrast specification contrasts = {'SStSSp_minus_DStDSp': pad_vector([1, 0, 0, -1], n_columns), 'DStDSp_minus_SStSSp': pad_vector([-1, 0, 0, 1], n_columns), 'DSt_minus_SSt': pad_vector([-1, -1, 1, 1], n_columns), 'DSp_minus_SSp': pad_vector([-1, 1, -1, 1], n_columns), 'DSt_minus_SSt_for_DSp': pad_vector([0, -1, 0, 1], n_columns), 'DSp_minus_SSp_for_DSt': pad_vector([0, 0, -1, 1], n_columns), 'Deactivation': pad_vector([-1, -1, -1, -1, 4], n_columns), 'Effects_of_interest': np.eye(n_columns)[:5]} ######################################################################### # Compute and plot statistics from nilearn import plotting print('Computing contrasts...') for index, (contrast_id, contrast_val) in enumerate(contrasts.items()): print(' Contrast % 2i out of %i: %s' % ( index + 1, len(contrasts), contrast_id)) # estimate the contasts # note that the model implictly compute a fixed effects across the two sessions z_map = fmri_glm.compute_contrast( contrast_val, output_type='z_score') # Write the resulting stat images to file z_image_path = path.join(write_dir, '%s_z_map.nii.gz' % contrast_id) z_map.to_filename(z_image_path) ######################################################################### # Comparing session-specific and fixed effects. # Here, we compare the activation mas produced from each separately then, the fixed effects version contrast_id = 'Effects_of_interest' ######################################################################### # Statistics for the first session fmri_glm = fmri_glm.fit(fmri_img[0], design_matrices=design_matrices[0]) z_map = fmri_glm.compute_contrast( contrasts[contrast_id], output_type='z_score') plotting.plot_stat_map( z_map, bg_img=mean_img_, threshold=3.0, title='%s, first session' % contrast_id) ######################################################################### # Statistics for the second session fmri_glm = fmri_glm.fit(fmri_img[1], design_matrices=design_matrices[1]) z_map = fmri_glm.compute_contrast( contrasts[contrast_id], output_type='z_score') plotting.plot_stat_map( z_map, bg_img=mean_img_, threshold=3.0, title='%s, second session' % contrast_id) ######################################################################### # Fixed effects statistics fmri_glm = fmri_glm.fit(fmri_img, design_matrices=design_matrices) z_map = fmri_glm.compute_contrast( contrasts[contrast_id], output_type='z_score') plotting.plot_stat_map( z_map, bg_img=mean_img_, threshold=3.0, title='%s, fixed effects' % contrast_id) ######################################################################### # Not unexpectedly, the fixed effects version looks displays higher peaks than the input sessions. Computing fixed effects enhances the signal-to-noise ratio of the resulting brain maps plotting.show()
bsd-3-clause
pkruskal/scikit-learn
sklearn/covariance/tests/test_graph_lasso.py
272
5245
""" Test the graph_lasso module. """ import sys import numpy as np from scipy import linalg from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_less from sklearn.covariance import (graph_lasso, GraphLasso, GraphLassoCV, empirical_covariance) from sklearn.datasets.samples_generator import make_sparse_spd_matrix from sklearn.externals.six.moves import StringIO from sklearn.utils import check_random_state from sklearn import datasets def test_graph_lasso(random_state=0): # Sample data from a sparse multivariate normal dim = 20 n_samples = 100 random_state = check_random_state(random_state) prec = make_sparse_spd_matrix(dim, alpha=.95, random_state=random_state) cov = linalg.inv(prec) X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples) emp_cov = empirical_covariance(X) for alpha in (0., .1, .25): covs = dict() icovs = dict() for method in ('cd', 'lars'): cov_, icov_, costs = graph_lasso(emp_cov, alpha=alpha, mode=method, return_costs=True) covs[method] = cov_ icovs[method] = icov_ costs, dual_gap = np.array(costs).T # Check that the costs always decrease (doesn't hold if alpha == 0) if not alpha == 0: assert_array_less(np.diff(costs), 0) # Check that the 2 approaches give similar results assert_array_almost_equal(covs['cd'], covs['lars'], decimal=4) assert_array_almost_equal(icovs['cd'], icovs['lars'], decimal=4) # Smoke test the estimator model = GraphLasso(alpha=.25).fit(X) model.score(X) assert_array_almost_equal(model.covariance_, covs['cd'], decimal=4) assert_array_almost_equal(model.covariance_, covs['lars'], decimal=4) # For a centered matrix, assume_centered could be chosen True or False # Check that this returns indeed the same result for centered data Z = X - X.mean(0) precs = list() for assume_centered in (False, True): prec_ = GraphLasso(assume_centered=assume_centered).fit(Z).precision_ precs.append(prec_) assert_array_almost_equal(precs[0], precs[1]) def test_graph_lasso_iris(): # Hard-coded solution from R glasso package for alpha=1.0 # The iris datasets in R and sklearn do not match in a few places, these # values are for the sklearn version cov_R = np.array([ [0.68112222, 0.0, 0.2651911, 0.02467558], [0.00, 0.1867507, 0.0, 0.00], [0.26519111, 0.0, 3.0924249, 0.28774489], [0.02467558, 0.0, 0.2877449, 0.57853156] ]) icov_R = np.array([ [1.5188780, 0.0, -0.1302515, 0.0], [0.0, 5.354733, 0.0, 0.0], [-0.1302515, 0.0, 0.3502322, -0.1686399], [0.0, 0.0, -0.1686399, 1.8123908] ]) X = datasets.load_iris().data emp_cov = empirical_covariance(X) for method in ('cd', 'lars'): cov, icov = graph_lasso(emp_cov, alpha=1.0, return_costs=False, mode=method) assert_array_almost_equal(cov, cov_R) assert_array_almost_equal(icov, icov_R) def test_graph_lasso_iris_singular(): # Small subset of rows to test the rank-deficient case # Need to choose samples such that none of the variances are zero indices = np.arange(10, 13) # Hard-coded solution from R glasso package for alpha=0.01 cov_R = np.array([ [0.08, 0.056666662595, 0.00229729713223, 0.00153153142149], [0.056666662595, 0.082222222222, 0.00333333333333, 0.00222222222222], [0.002297297132, 0.003333333333, 0.00666666666667, 0.00009009009009], [0.001531531421, 0.002222222222, 0.00009009009009, 0.00222222222222] ]) icov_R = np.array([ [24.42244057, -16.831679593, 0.0, 0.0], [-16.83168201, 24.351841681, -6.206896552, -12.5], [0.0, -6.206896171, 153.103448276, 0.0], [0.0, -12.499999143, 0.0, 462.5] ]) X = datasets.load_iris().data[indices, :] emp_cov = empirical_covariance(X) for method in ('cd', 'lars'): cov, icov = graph_lasso(emp_cov, alpha=0.01, return_costs=False, mode=method) assert_array_almost_equal(cov, cov_R, decimal=5) assert_array_almost_equal(icov, icov_R, decimal=5) def test_graph_lasso_cv(random_state=1): # Sample data from a sparse multivariate normal dim = 5 n_samples = 6 random_state = check_random_state(random_state) prec = make_sparse_spd_matrix(dim, alpha=.96, random_state=random_state) cov = linalg.inv(prec) X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples) # Capture stdout, to smoke test the verbose mode orig_stdout = sys.stdout try: sys.stdout = StringIO() # We need verbose very high so that Parallel prints on stdout GraphLassoCV(verbose=100, alphas=5, tol=1e-1).fit(X) finally: sys.stdout = orig_stdout # Smoke test with specified alphas GraphLassoCV(alphas=[0.8, 0.5], tol=1e-1, n_jobs=1).fit(X)
bsd-3-clause
kmike/scikit-learn
sklearn/metrics/__init__.py
3
2839
""" The :mod:`sklearn.metrics` module includes score functions, performance metrics and pairwise metrics and distance computations. """ from .metrics import (accuracy_score, average_precision_score, auc, auc_score, classification_report, confusion_matrix, explained_variance_score, f1_score, hamming_loss, fbeta_score, hinge_loss, matthews_corrcoef, mean_squared_error, mean_absolute_error, precision_recall_curve, precision_recall_fscore_support, precision_score, recall_score, r2_score, roc_curve, zero_one_loss) # Will be removed in 0.15 from .metrics import zero_one from .metrics import zero_one_score from .scorer import Scorer, SCORERS from . import cluster from .cluster import (adjusted_rand_score, adjusted_mutual_info_score, completeness_score, homogeneity_completeness_v_measure, homogeneity_score, mutual_info_score, normalized_mutual_info_score, silhouette_score, silhouette_samples, v_measure_score) from .pairwise import (euclidean_distances, pairwise_distances, pairwise_kernels) __all__ = ['accuracy_score', 'adjusted_mutual_info_score', 'adjusted_rand_score', 'auc', 'auc_score', 'average_precision_score', 'classification_report', 'cluster', 'completeness_score', 'confusion_matrix', 'euclidean_distances', 'explained_variance_score', 'f1_score', 'fbeta_score', 'hamming_loss', 'hinge_loss', 'homogeneity_completeness_v_measure', 'homogeneity_score', 'matthews_corrcoef', 'mean_squared_error', 'mean_absolute_error', 'mutual_info_score', 'normalized_mutual_info_score', 'pairwise_distances', 'pairwise_kernels', 'precision_recall_curve', 'precision_recall_fscore_support', 'precision_score', 'r2_score', 'recall_score', 'roc_curve', 'silhouette_score', 'silhouette_samples', 'v_measure_score', 'zero_one_loss', 'Scorer', 'SCORERS']
bsd-3-clause
OshynSong/scikit-learn
sklearn/cross_decomposition/pls_.py
187
28507
""" The :mod:`sklearn.pls` module implements Partial Least Squares (PLS). """ # Author: Edouard Duchesnay <[email protected]> # License: BSD 3 clause from ..base import BaseEstimator, RegressorMixin, TransformerMixin from ..utils import check_array, check_consistent_length from ..externals import six import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy import linalg from ..utils import arpack from ..utils.validation import check_is_fitted __all__ = ['PLSCanonical', 'PLSRegression', 'PLSSVD'] def _nipals_twoblocks_inner_loop(X, Y, mode="A", max_iter=500, tol=1e-06, norm_y_weights=False): """Inner loop of the iterative NIPALS algorithm. Provides an alternative to the svd(X'Y); returns the first left and right singular vectors of X'Y. See PLS for the meaning of the parameters. It is similar to the Power method for determining the eigenvectors and eigenvalues of a X'Y. """ y_score = Y[:, [0]] x_weights_old = 0 ite = 1 X_pinv = Y_pinv = None eps = np.finfo(X.dtype).eps # Inner loop of the Wold algo. while True: # 1.1 Update u: the X weights if mode == "B": if X_pinv is None: X_pinv = linalg.pinv(X) # compute once pinv(X) x_weights = np.dot(X_pinv, y_score) else: # mode A # Mode A regress each X column on y_score x_weights = np.dot(X.T, y_score) / np.dot(y_score.T, y_score) # 1.2 Normalize u x_weights /= np.sqrt(np.dot(x_weights.T, x_weights)) + eps # 1.3 Update x_score: the X latent scores x_score = np.dot(X, x_weights) # 2.1 Update y_weights if mode == "B": if Y_pinv is None: Y_pinv = linalg.pinv(Y) # compute once pinv(Y) y_weights = np.dot(Y_pinv, x_score) else: # Mode A regress each Y column on x_score y_weights = np.dot(Y.T, x_score) / np.dot(x_score.T, x_score) # 2.2 Normalize y_weights if norm_y_weights: y_weights /= np.sqrt(np.dot(y_weights.T, y_weights)) + eps # 2.3 Update y_score: the Y latent scores y_score = np.dot(Y, y_weights) / (np.dot(y_weights.T, y_weights) + eps) # y_score = np.dot(Y, y_weights) / np.dot(y_score.T, y_score) ## BUG x_weights_diff = x_weights - x_weights_old if np.dot(x_weights_diff.T, x_weights_diff) < tol or Y.shape[1] == 1: break if ite == max_iter: warnings.warn('Maximum number of iterations reached') break x_weights_old = x_weights ite += 1 return x_weights, y_weights, ite def _svd_cross_product(X, Y): C = np.dot(X.T, Y) U, s, Vh = linalg.svd(C, full_matrices=False) u = U[:, [0]] v = Vh.T[:, [0]] return u, v def _center_scale_xy(X, Y, scale=True): """ Center X, Y and scale if the scale parameter==True Returns ------- X, Y, x_mean, y_mean, x_std, y_std """ # center x_mean = X.mean(axis=0) X -= x_mean y_mean = Y.mean(axis=0) Y -= y_mean # scale if scale: x_std = X.std(axis=0, ddof=1) x_std[x_std == 0.0] = 1.0 X /= x_std y_std = Y.std(axis=0, ddof=1) y_std[y_std == 0.0] = 1.0 Y /= y_std else: x_std = np.ones(X.shape[1]) y_std = np.ones(Y.shape[1]) return X, Y, x_mean, y_mean, x_std, y_std class _PLS(six.with_metaclass(ABCMeta), BaseEstimator, TransformerMixin, RegressorMixin): """Partial Least Squares (PLS) This class implements the generic PLS algorithm, constructors' parameters allow to obtain a specific implementation such as: - PLS2 regression, i.e., PLS 2 blocks, mode A, with asymmetric deflation and unnormalized y weights such as defined by [Tenenhaus 1998] p. 132. With univariate response it implements PLS1. - PLS canonical, i.e., PLS 2 blocks, mode A, with symmetric deflation and normalized y weights such as defined by [Tenenhaus 1998] (p. 132) and [Wegelin et al. 2000]. This parametrization implements the original Wold algorithm. We use the terminology defined by [Wegelin et al. 2000]. This implementation uses the PLS Wold 2 blocks algorithm based on two nested loops: (i) The outer loop iterate over components. (ii) The inner loop estimates the weights vectors. This can be done with two algo. (a) the inner loop of the original NIPALS algo. or (b) a SVD on residuals cross-covariance matrices. n_components : int, number of components to keep. (default 2). scale : boolean, scale data? (default True) deflation_mode : str, "canonical" or "regression". See notes. mode : "A" classical PLS and "B" CCA. See notes. norm_y_weights: boolean, normalize Y weights to one? (default False) algorithm : string, "nipals" or "svd" The algorithm used to estimate the weights. It will be called n_components times, i.e. once for each iteration of the outer loop. max_iter : an integer, the maximum number of iterations (default 500) of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real, default 1e-06 The tolerance used in the iterative algorithm. copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effects. Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. coef_: array, [p, q] The coefficients of the linear model: ``Y = X coef_ + Err`` n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Not useful if the algorithm given is "svd". References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In French but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- PLSCanonical PLSRegression CCA PLS_SVD """ @abstractmethod def __init__(self, n_components=2, scale=True, deflation_mode="regression", mode="A", algorithm="nipals", norm_y_weights=False, max_iter=500, tol=1e-06, copy=True): self.n_components = n_components self.deflation_mode = deflation_mode self.mode = mode self.norm_y_weights = norm_y_weights self.scale = scale self.algorithm = algorithm self.max_iter = max_iter self.tol = tol self.copy = copy def fit(self, X, Y): """Fit model to data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples in the number of samples and n_features is the number of predictors. Y : array-like of response, shape = [n_samples, n_targets] Target vectors, where n_samples in the number of samples and n_targets is the number of response variables. """ # copy since this will contains the residuals (deflated) matrices check_consistent_length(X, Y) X = check_array(X, dtype=np.float64, copy=self.copy) Y = check_array(Y, dtype=np.float64, copy=self.copy, ensure_2d=False) if Y.ndim == 1: Y = Y.reshape(-1, 1) n = X.shape[0] p = X.shape[1] q = Y.shape[1] if self.n_components < 1 or self.n_components > p: raise ValueError('Invalid number of components: %d' % self.n_components) if self.algorithm not in ("svd", "nipals"): raise ValueError("Got algorithm %s when only 'svd' " "and 'nipals' are known" % self.algorithm) if self.algorithm == "svd" and self.mode == "B": raise ValueError('Incompatible configuration: mode B is not ' 'implemented with svd algorithm') if self.deflation_mode not in ["canonical", "regression"]: raise ValueError('The deflation mode is unknown') # Scale (in place) X, Y, self.x_mean_, self.y_mean_, self.x_std_, self.y_std_\ = _center_scale_xy(X, Y, self.scale) # Residuals (deflated) matrices Xk = X Yk = Y # Results matrices self.x_scores_ = np.zeros((n, self.n_components)) self.y_scores_ = np.zeros((n, self.n_components)) self.x_weights_ = np.zeros((p, self.n_components)) self.y_weights_ = np.zeros((q, self.n_components)) self.x_loadings_ = np.zeros((p, self.n_components)) self.y_loadings_ = np.zeros((q, self.n_components)) self.n_iter_ = [] # NIPALS algo: outer loop, over components for k in range(self.n_components): if np.all(np.dot(Yk.T, Yk) < np.finfo(np.double).eps): # Yk constant warnings.warn('Y residual constant at iteration %s' % k) break # 1) weights estimation (inner loop) # ----------------------------------- if self.algorithm == "nipals": x_weights, y_weights, n_iter_ = \ _nipals_twoblocks_inner_loop( X=Xk, Y=Yk, mode=self.mode, max_iter=self.max_iter, tol=self.tol, norm_y_weights=self.norm_y_weights) self.n_iter_.append(n_iter_) elif self.algorithm == "svd": x_weights, y_weights = _svd_cross_product(X=Xk, Y=Yk) # compute scores x_scores = np.dot(Xk, x_weights) if self.norm_y_weights: y_ss = 1 else: y_ss = np.dot(y_weights.T, y_weights) y_scores = np.dot(Yk, y_weights) / y_ss # test for null variance if np.dot(x_scores.T, x_scores) < np.finfo(np.double).eps: warnings.warn('X scores are null at iteration %s' % k) break # 2) Deflation (in place) # ---------------------- # Possible memory footprint reduction may done here: in order to # avoid the allocation of a data chunk for the rank-one # approximations matrix which is then subtracted to Xk, we suggest # to perform a column-wise deflation. # # - regress Xk's on x_score x_loadings = np.dot(Xk.T, x_scores) / np.dot(x_scores.T, x_scores) # - subtract rank-one approximations to obtain remainder matrix Xk -= np.dot(x_scores, x_loadings.T) if self.deflation_mode == "canonical": # - regress Yk's on y_score, then subtract rank-one approx. y_loadings = (np.dot(Yk.T, y_scores) / np.dot(y_scores.T, y_scores)) Yk -= np.dot(y_scores, y_loadings.T) if self.deflation_mode == "regression": # - regress Yk's on x_score, then subtract rank-one approx. y_loadings = (np.dot(Yk.T, x_scores) / np.dot(x_scores.T, x_scores)) Yk -= np.dot(x_scores, y_loadings.T) # 3) Store weights, scores and loadings # Notation: self.x_scores_[:, k] = x_scores.ravel() # T self.y_scores_[:, k] = y_scores.ravel() # U self.x_weights_[:, k] = x_weights.ravel() # W self.y_weights_[:, k] = y_weights.ravel() # C self.x_loadings_[:, k] = x_loadings.ravel() # P self.y_loadings_[:, k] = y_loadings.ravel() # Q # Such that: X = TP' + Err and Y = UQ' + Err # 4) rotations from input space to transformed space (scores) # T = X W(P'W)^-1 = XW* (W* : p x k matrix) # U = Y C(Q'C)^-1 = YC* (W* : q x k matrix) self.x_rotations_ = np.dot( self.x_weights_, linalg.pinv(np.dot(self.x_loadings_.T, self.x_weights_))) if Y.shape[1] > 1: self.y_rotations_ = np.dot( self.y_weights_, linalg.pinv(np.dot(self.y_loadings_.T, self.y_weights_))) else: self.y_rotations_ = np.ones(1) if True or self.deflation_mode == "regression": # FIXME what's with the if? # Estimate regression coefficient # Regress Y on T # Y = TQ' + Err, # Then express in function of X # Y = X W(P'W)^-1Q' + Err = XB + Err # => B = W*Q' (p x q) self.coef_ = np.dot(self.x_rotations_, self.y_loadings_.T) self.coef_ = (1. / self.x_std_.reshape((p, 1)) * self.coef_ * self.y_std_) return self def transform(self, X, Y=None, copy=True): """Apply the dimension reduction learned on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ check_is_fitted(self, 'x_mean_') X = check_array(X, copy=copy) # Normalize X -= self.x_mean_ X /= self.x_std_ # Apply rotation x_scores = np.dot(X, self.x_rotations_) if Y is not None: Y = check_array(Y, ensure_2d=False, copy=copy) if Y.ndim == 1: Y = Y.reshape(-1, 1) Y -= self.y_mean_ Y /= self.y_std_ y_scores = np.dot(Y, self.y_rotations_) return x_scores, y_scores return x_scores def predict(self, X, copy=True): """Apply the dimension reduction learned on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Notes ----- This call requires the estimation of a p x q matrix, which may be an issue in high dimensional space. """ check_is_fitted(self, 'x_mean_') X = check_array(X, copy=copy) # Normalize X -= self.x_mean_ X /= self.x_std_ Ypred = np.dot(X, self.coef_) return Ypred + self.y_mean_ def fit_transform(self, X, y=None, **fit_params): """Learn and apply the dimension reduction on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ check_is_fitted(self, 'x_mean_') return self.fit(X, y, **fit_params).transform(X, y) class PLSRegression(_PLS): """PLS regression PLSRegression implements the PLS 2 blocks regression known as PLS2 or PLS1 in case of one dimensional response. This class inherits from _PLS with mode="A", deflation_mode="regression", norm_y_weights=False and algorithm="nipals". Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, (default 2) Number of components to keep. scale : boolean, (default True) whether to scale the data max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real Tolerance used in the iterative algorithm default 1e-06. copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effect Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. coef_: array, [p, q] The coefficients of the linear model: ``Y = X coef_ + Err`` n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Notes ----- For each component k, find weights u, v that optimizes: ``max corr(Xk u, Yk v) * var(Xk u) var(Yk u)``, such that ``|u| = 1`` Note that it maximizes both the correlations between the scores and the intra-block variances. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current X score. This performs the PLS regression known as PLS2. This mode is prediction oriented. This implementation provides the same results that 3 PLS packages provided in the R language (R-project): - "mixOmics" with function pls(X, Y, mode = "regression") - "plspm " with function plsreg2(X, Y) - "pls" with function oscorespls.fit(X, Y) Examples -------- >>> from sklearn.cross_decomposition import PLSRegression >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> pls2 = PLSRegression(n_components=2) >>> pls2.fit(X, Y) ... # doctest: +NORMALIZE_WHITESPACE PLSRegression(copy=True, max_iter=500, n_components=2, scale=True, tol=1e-06) >>> Y_pred = pls2.predict(X) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. """ def __init__(self, n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="regression", mode="A", norm_y_weights=False, max_iter=max_iter, tol=tol, copy=copy) class PLSCanonical(_PLS): """ PLSCanonical implements the 2 blocks canonical PLS of the original Wold algorithm [Tenenhaus 1998] p.204, referred as PLS-C2A in [Wegelin 2000]. This class inherits from PLS with mode="A" and deflation_mode="canonical", norm_y_weights=True and algorithm="nipals", but svd should provide similar results up to numerical errors. Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- scale : boolean, scale data? (default True) algorithm : string, "nipals" or "svd" The algorithm used to estimate the weights. It will be called n_components times, i.e. once for each iteration of the outer loop. max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real, default 1e-06 the tolerance used in the iterative algorithm copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effect n_components : int, number of components to keep. (default 2). Attributes ---------- x_weights_ : array, shape = [p, n_components] X block weights vectors. y_weights_ : array, shape = [q, n_components] Y block weights vectors. x_loadings_ : array, shape = [p, n_components] X block loadings vectors. y_loadings_ : array, shape = [q, n_components] Y block loadings vectors. x_scores_ : array, shape = [n_samples, n_components] X scores. y_scores_ : array, shape = [n_samples, n_components] Y scores. x_rotations_ : array, shape = [p, n_components] X block to latents rotations. y_rotations_ : array, shape = [q, n_components] Y block to latents rotations. n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Not useful if the algorithm provided is "svd". Notes ----- For each component k, find weights u, v that optimize:: max corr(Xk u, Yk v) * var(Xk u) var(Yk u), such that ``|u| = |v| = 1`` Note that it maximizes both the correlations between the scores and the intra-block variances. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. This performs a canonical symmetric version of the PLS regression. But slightly different than the CCA. This is mostly used for modeling. This implementation provides the same results that the "plspm" package provided in the R language (R-project), using the function plsca(X, Y). Results are equal or collinear with the function ``pls(..., mode = "canonical")`` of the "mixOmics" package. The difference relies in the fact that mixOmics implementation does not exactly implement the Wold algorithm since it does not normalize y_weights to one. Examples -------- >>> from sklearn.cross_decomposition import PLSCanonical >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> plsca = PLSCanonical(n_components=2) >>> plsca.fit(X, Y) ... # doctest: +NORMALIZE_WHITESPACE PLSCanonical(algorithm='nipals', copy=True, max_iter=500, n_components=2, scale=True, tol=1e-06) >>> X_c, Y_c = plsca.transform(X, Y) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- CCA PLSSVD """ def __init__(self, n_components=2, scale=True, algorithm="nipals", max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="canonical", mode="A", norm_y_weights=True, algorithm=algorithm, max_iter=max_iter, tol=tol, copy=copy) class PLSSVD(BaseEstimator, TransformerMixin): """Partial Least Square SVD Simply perform a svd on the crosscovariance matrix: X'Y There are no iterative deflation here. Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, default 2 Number of components to keep. scale : boolean, default True Whether to scale X and Y. copy : boolean, default True Whether to copy X and Y, or perform in-place computations. Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. See also -------- PLSCanonical CCA """ def __init__(self, n_components=2, scale=True, copy=True): self.n_components = n_components self.scale = scale self.copy = copy def fit(self, X, Y): # copy since this will contains the centered data check_consistent_length(X, Y) X = check_array(X, dtype=np.float64, copy=self.copy) Y = check_array(Y, dtype=np.float64, copy=self.copy, ensure_2d=False) if Y.ndim == 1: Y = Y.reshape(-1, 1) if self.n_components > max(Y.shape[1], X.shape[1]): raise ValueError("Invalid number of components n_components=%d" " with X of shape %s and Y of shape %s." % (self.n_components, str(X.shape), str(Y.shape))) # Scale (in place) X, Y, self.x_mean_, self.y_mean_, self.x_std_, self.y_std_ =\ _center_scale_xy(X, Y, self.scale) # svd(X'Y) C = np.dot(X.T, Y) # The arpack svds solver only works if the number of extracted # components is smaller than rank(X) - 1. Hence, if we want to extract # all the components (C.shape[1]), we have to use another one. Else, # let's use arpacks to compute only the interesting components. if self.n_components >= np.min(C.shape): U, s, V = linalg.svd(C, full_matrices=False) else: U, s, V = arpack.svds(C, k=self.n_components) V = V.T self.x_scores_ = np.dot(X, U) self.y_scores_ = np.dot(Y, V) self.x_weights_ = U self.y_weights_ = V return self def transform(self, X, Y=None): """Apply the dimension reduction learned on the train data.""" check_is_fitted(self, 'x_mean_') X = check_array(X, dtype=np.float64) Xr = (X - self.x_mean_) / self.x_std_ x_scores = np.dot(Xr, self.x_weights_) if Y is not None: if Y.ndim == 1: Y = Y.reshape(-1, 1) Yr = (Y - self.y_mean_) / self.y_std_ y_scores = np.dot(Yr, self.y_weights_) return x_scores, y_scores return x_scores def fit_transform(self, X, y=None, **fit_params): """Learn and apply the dimension reduction on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ return self.fit(X, y, **fit_params).transform(X, y)
bsd-3-clause
ElvisLouis/code
work/ML/tensorflow/separa/pyradbas/RBFN.py
1
1611
from scipy import * from scipy.linalg import norm, pinv import numpy as np from matplotlib import pyplot as plt class RBF: def __init__(self, indim, numCenters, outdim): self.indim = indim self.outdim = outdim self.numCenters = numCenters self.centers = [random.uniform(-1, 1, indim) for i in xrange(numCenters)] self.beta = 8 self.W = random.random((self.numCenters, self.outdim)) def _basisfunc(self, c, d): assert len(d) == self.indim return exp(-self.beta * norm(c - d) ** 2) def _calcAct(self, X): # calculate activations of RBFs G = zeros((X.shape[0], self.numCenters), float) for ci, c in enumerate(self.centers): for xi, x in enumerate(X): G[xi, ci] = self._basisfunc(c, x) return G def train(self, X, Y): """ X: matrix of dimensions n x indim y: column vector of dimension n x 1 """ # choose random center vectors from training set rnd_idx = random.permutation(X.shape[0])[:self.numCenters] self.centers = [X[i, :] for i in rnd_idx] # print "center", self.centers # calculate activations of RBFs G = self._calcAct(X) # print G # calculate output weights (pseudoinverse) self.W = dot(pinv(G), Y) def test(self, X): """ X: matrix of dimensions n x indim """ G = self._calcAct(X) Y = dot(G, self.W) return Y if __name__ == '__main__': n = 100 x = mgrid[-1:1:complex(0, n)].reshape(n, 1) # set y and add random noise y = sin(3 * (x + 0.5) ** 3 - 1) # y += random.normal(0, 0.1, y.shape) # rbf regression rbf = RBF(1, 10, 1) rbf.train(x, y) z = rbf.test(x) # print (z) # print (y) out = z - y print (out.var())
gpl-2.0
costypetrisor/scikit-learn
sklearn/linear_model/tests/test_bayes.py
299
1770
# Author: Alexandre Gramfort <[email protected]> # Fabian Pedregosa <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import SkipTest from sklearn.linear_model.bayes import BayesianRidge, ARDRegression from sklearn import datasets from sklearn.utils.testing import assert_array_almost_equal def test_bayesian_on_diabetes(): # Test BayesianRidge on diabetes raise SkipTest("XFailed Test") diabetes = datasets.load_diabetes() X, y = diabetes.data, diabetes.target clf = BayesianRidge(compute_score=True) # Test with more samples than features clf.fit(X, y) # Test that scores are increasing at each iteration assert_array_equal(np.diff(clf.scores_) > 0, True) # Test with more features than samples X = X[:5, :] y = y[:5] clf.fit(X, y) # Test that scores are increasing at each iteration assert_array_equal(np.diff(clf.scores_) > 0, True) def test_toy_bayesian_ridge_object(): # Test BayesianRidge on toy X = np.array([[1], [2], [6], [8], [10]]) Y = np.array([1, 2, 6, 8, 10]) clf = BayesianRidge(compute_score=True) clf.fit(X, Y) # Check that the model could approximately learn the identity function test = [[1], [3], [4]] assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2) def test_toy_ard_object(): # Test BayesianRegression ARD classifier X = np.array([[1], [2], [3]]) Y = np.array([1, 2, 3]) clf = ARDRegression(compute_score=True) clf.fit(X, Y) # Check that the model could approximately learn the identity function test = [[1], [3], [4]] assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2)
bsd-3-clause
chris-ch/omarket
python-lab/grid-johansen.py
1
9270
import csv import logging import argparse import os from datetime import timedelta import pickle import math import itertools import pandas import numpy import cointeg _ETFS = ( 'SCHF', 'AMJ', 'FEZ', 'EMB', 'EWC', 'UUP', 'EWY', 'IWF', 'HEDJ', 'VOO', 'BND', 'VEU', 'ITB', 'IWD', 'DBC', 'VTI', 'EWG', 'USMV', 'EWH', 'PGX', 'EPI', 'IEFA', 'AGG', 'KBE', 'VGK', 'DIA', 'IVV', 'PFF', 'EWW', 'VNQ', 'XME', 'XLB', 'BKLN', 'XLY', 'XRT', 'LQD', 'XBI', 'DXJ', 'IEMG', 'GLD', 'KRE', 'SLV', 'IYR', 'XLV', 'AMLP', 'VEA', 'XLK', 'IAU', 'RSX', 'XLI', 'JNK', 'HYG', 'XLE', 'XOP', 'VWO', 'XLP', 'XLU', 'FXI', 'EWZ', 'EFA', 'UNG', 'GDXJ', 'IWM', 'USO', 'EEM', 'GDX', 'SPY', 'XLF' ) def load_security(path_db, exchange, symbol, excludes_func=None): data_path = os.sep.join([path_db, exchange, symbol[0], symbol]) dataframes = list() header = ('date', 'open', 'high', 'low', 'close', 'close_adj', 'volume') date_parser = lambda x: pandas.datetime.strptime(x, '%Y%m%d') description = open(os.sep.join([data_path, 'name.txt']), 'r').read() if excludes_func: if excludes_func(description): logging.info('excluding: %s' % description) return None for root, dirs, files in os.walk(data_path): for year_file in [f for f in files if f.endswith('.csv')]: dataframe = pandas.read_csv(os.sep.join([root, year_file]), names=header, parse_dates=['date'], date_parser=date_parser) dataframe.set_index('date', inplace=True) dataframes.append(dataframe) return pandas.concat(dataframes, axis=0) def list_securities(path): for root, dirs, files in os.walk(path): if len(path) >= 3 and len([f for f in files if f.endswith('.csv')]) > 0: path = root.split(os.sep) exchange = path[-3] stock = path[-1] yield exchange, stock def prepare_data(eod_path): """ Filtering out unwanted ETFs (leveraged) :param eod_path: :return: """ securities = list() for count, data in enumerate(list_securities(eod_path)): exchange, stock = data securities.append((exchange, stock)) close_df = pandas.DataFrame() volume_df = pandas.DataFrame() def excludes(name): result = False result |= 'X2' in name.upper() result |= 'X3' in name.upper() result |= '3X' in name.upper() result |= '2X' in name.upper() result |= 'ULTRA' in name.upper() return result for count, data in enumerate(securities): exchange, stock = data if not stock in _ETFS: continue eod_data = load_security(eod_path, exchange, stock, excludes_func=excludes) if eod_data is not None: close_df['%s/%s' % (exchange, stock)] = eod_data['close_adj'] volume_df['%s/%s' % (exchange, stock)] = eod_data['volume'] logging.info('processed: %s/%s %d/%d' % (exchange, stock, count + 1, len(securities))) logging.info("result:\n%s" % close_df) close_df.to_pickle(os.sep.join([eod_path, 'eod.pkl'])) volume_df.to_pickle(os.sep.join([eod_path, 'volume.pkl'])) def ncr(total, samples): f = math.factorial return f(total) // f(samples) // f(total - samples) def generate_data(eod_path, number_securities=3): close_df = pandas.read_pickle(os.sep.join([eod_path, 'eod.pkl'])) volume_df = pandas.read_pickle(os.sep.join([eod_path, 'volume.pkl'])) recent_history = volume_df.index.max() - timedelta(days=60) median_volumes = volume_df[volume_df.index > recent_history].fillna(0).median() most_traded = median_volumes[median_volumes > 1E5].keys().values.tolist() columns = [column for column in most_traded if column.startswith('PCX/')] logging.info('combining %d series' % len(columns)) def to_key(symbols): return ','.join(symbols) total = ncr(len(columns), number_securities) logging.info('Possible combinations: %d' % total) results = dict() last_completed = None for count, combination in enumerate(itertools.combinations(columns, number_securities)): # Almost identical leads to untrade-able discrepancies if 'PCX/IAU' and 'PCX/GLD' in combination: continue if int((count / total) * 100) % 5 == 0 and int((count / total) * 100) != last_completed: last_completed = int((count / total) * 100) logging.info('%d%% completed' % last_completed) if to_key(combination) not in results: current_df = close_df[list(combination)].dropna() try: result = cointeg.cointegration_johansen(current_df) keepers = ('eigenvectors', 'trace_statistic', 'eigenvalue_statistics', 'critical_values_trace', 'critical_values_max_eigenvalue') results[to_key(combination)] = dict((k, result[k]) for k in keepers if k in result) except Exception as err: logging.error('failed for combination: %s' % str(combination)) with open(os.sep.join([eod_path, 'results.pkl']), 'wb') as handle: pickle.dump(results, handle, protocol=pickle.HIGHEST_PROTOCOL) def analyse(eod_path): all_eigenvalue_stats = list() all_trace_stats = list() with open(os.sep.join([eod_path, 'results.pkl']), 'rb') as handle: results = pickle.load(handle) total = len(results.keys()) for count, combination in enumerate(results.keys()): stats = results[combination] eigenvalue_stats = stats['eigenvalue_statistics'] trace_stats = stats['trace_statistic'] if trace_stats[0] > stats['critical_values_trace'][0][0] and eigenvalue_stats[0] > stats['critical_values_max_eigenvalue'][0][0]: all_eigenvalue_stats.append((eigenvalue_stats[0], combination, results[combination])) all_trace_stats.append((eigenvalue_stats[0], combination, results[combination])) if count % 10000 == 9999: logging.info('processed %d / %d' % (count + 1, total)) all_trace_stats.sort(key=lambda x: -x[0]) trace_df = pandas.DataFrame(all_trace_stats) logging.info(trace_df.describe()) result_file = os.sep.join(['..', '..', 'data', 'results.csv']) logging.info('writing best results to: %s' % os.path.abspath(result_file)) with open(result_file, mode='w', newline='') as csvfile: csvwriter = csv.writer(csvfile, quoting=csv.QUOTE_MINIMAL) for count in range(len(all_trace_stats)): stat, portfolio, result = all_trace_stats[count] portfolio = [name.split('/')[1] for name in portfolio.replace("'", '').replace('(', '').replace(')', '').split(',')] weights = result['eigenvectors'].transpose()[0] norm_weights = [round(x, 2) for x in numpy.divide(weights, numpy.absolute(weights).min()).tolist()] logging.debug('portfolio: %s' % str(portfolio)) logging.debug('normalized weights: %s' % norm_weights) logging.debug('stat trace: %s' % result['trace_statistic'][0]) logging.debug('critical trace : %s' % result['critical_values_trace'][0][0]) logging.debug('stat eigenvalue: %s' % result['eigenvalue_statistics'][0]) logging.debug('critical eigenvalue : %s' % result['critical_values_max_eigenvalue'][0][0]) stat_fields = result['trace_statistic'][0], result['critical_values_trace'][0][0], result['eigenvalue_statistics'][0], result['critical_values_max_eigenvalue'][0][0] csvwriter.writerow(portfolio + norm_weights + list(stat_fields)) def main(args): eod_path = args.eod_path logging.info('using eod path: %s' % os.path.abspath(eod_path)) if eod_path is None: eod_path = '.' if args.prepare: prepare_data(eod_path) if args.generate: generate_data(eod_path, args.number_securities) if args.analyse: analyse(eod_path) if __name__ == '__main__': logging.basicConfig(level=logging.INFO, format='%(asctime)s:%(name)s:%(levelname)s:%(message)s') file_handler = logging.FileHandler('grid-johansen.log', mode='w') formatter = logging.Formatter('%(asctime)s:%(name)s:%(levelname)s:%(message)s') file_handler.setFormatter(formatter) logging.getLogger().addHandler(file_handler) logging.info('starting script') parser = argparse.ArgumentParser(description='Grid using johansen test.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--eod-path', type=str, help='path to eod data') parser.add_argument('--number-securities', type=int, help='number of securities', default=3) parser.add_argument('--prepare', dest='prepare', action='store_true', help='preparing data') parser.add_argument('--generate', dest='generate', action='store_true', help='generating results') parser.add_argument('--analyse', dest='analyse', action='store_true', help='analysing results') args = parser.parse_args() main(args)
apache-2.0
levibostian/myBlanky
googleAppEngine/google/appengine/api/appinfo.py
1
64057
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """AppInfo tools. Library for working with AppInfo records in memory, store and load from configuration files. """ import logging import os import re import string import sys import wsgiref.util if os.environ.get('APPENGINE_RUNTIME') == 'python27': from google.appengine.api import pagespeedinfo from google.appengine.api import validation from google.appengine.api import yaml_builder from google.appengine.api import yaml_listener from google.appengine.api import yaml_object else: from google.appengine.api import pagespeedinfo from google.appengine.api import validation from google.appengine.api import yaml_builder from google.appengine.api import yaml_listener from google.appengine.api import yaml_object from google.appengine.api import appinfo_errors from google.appengine.api import backendinfo _URL_REGEX = r'(?!\^)/.*|\..*|(\(.).*(?!\$).' _FILES_REGEX = r'.+' _URL_ROOT_REGEX = r'/.*' _DELTA_REGEX = r'([0-9]+)([DdHhMm]|[sS]?)' _EXPIRATION_REGEX = r'\s*(%s)(\s+%s)*\s*' % (_DELTA_REGEX, _DELTA_REGEX) _START_PATH = '/_ah/start' _ALLOWED_SERVICES = ['mail', 'mail_bounce', 'xmpp_message', 'xmpp_subscribe', 'xmpp_presence', 'xmpp_error', 'channel_presence', 'rest', 'warmup'] _SERVICE_RE_STRING = '(' + '|'.join(_ALLOWED_SERVICES) + ')' _PAGE_NAME_REGEX = r'^.+$' _EXPIRATION_CONVERSIONS = { 'd': 60 * 60 * 24, 'h': 60 * 60, 'm': 60, 's': 1, } APP_ID_MAX_LEN = 100 MODULE_ID_MAX_LEN = 63 MODULE_VERSION_ID_MAX_LEN = 63 MAX_URL_MAPS = 100 PARTITION_SEPARATOR = '~' DOMAIN_SEPARATOR = ':' VERSION_SEPARATOR = '.' MODULE_SEPARATOR = ':' DEFAULT_MODULE = 'default' PARTITION_RE_STRING_WITHOUT_SEPARATOR = (r'[a-z\d\-]{1,%d}' % APP_ID_MAX_LEN) PARTITION_RE_STRING = (r'%s\%s' % (PARTITION_RE_STRING_WITHOUT_SEPARATOR, PARTITION_SEPARATOR)) DOMAIN_RE_STRING_WITHOUT_SEPARATOR = (r'(?!\-)[a-z\d\-\.]{1,%d}' % APP_ID_MAX_LEN) DOMAIN_RE_STRING = (r'%s%s' % (DOMAIN_RE_STRING_WITHOUT_SEPARATOR, DOMAIN_SEPARATOR)) DISPLAY_APP_ID_RE_STRING = r'(?!-)[a-z\d\-]{0,%d}[a-z\d]' % (APP_ID_MAX_LEN - 1) APPLICATION_RE_STRING = (r'(?:%s)?(?:%s)?%s' % (PARTITION_RE_STRING, DOMAIN_RE_STRING, DISPLAY_APP_ID_RE_STRING)) MODULE_ID_RE_STRING = r'^(?!-)[a-z\d\-]{0,%d}[a-z\d]$' % (MODULE_ID_MAX_LEN - 1) MODULE_VERSION_ID_RE_STRING = (r'^(?!-)[a-z\d\-]{0,%d}[a-z\d]$' % (MODULE_VERSION_ID_MAX_LEN - 1)) _IDLE_INSTANCES_REGEX = r'^([\d]+|automatic)$' _INSTANCES_REGEX = r'^[1-9][\d]*$' _INSTANCE_CLASS_REGEX = r'^([fF](1|2|4|4_1G)|[bB](1|2|4|8|4_1G))$' _CONCURRENT_REQUESTS_REGEX = r'^([1-9]\d*)$' _PENDING_LATENCY_REGEX = r'^(\d+((\.\d{1,3})?s|ms)|automatic)$' _IDLE_TIMEOUT_REGEX = r'^[\d]+(s|m)$' ALTERNATE_HOSTNAME_SEPARATOR = '-dot-' BUILTIN_NAME_PREFIX = 'ah-builtin' RUNTIME_RE_STRING = r'[a-z][a-z0-9]{0,29}' API_VERSION_RE_STRING = r'[\w.]{1,32}' SOURCE_LANGUAGE_RE_STRING = r'[\w.\-]{1,32}' HANDLER_STATIC_FILES = 'static_files' HANDLER_STATIC_DIR = 'static_dir' HANDLER_SCRIPT = 'script' HANDLER_API_ENDPOINT = 'api_endpoint' LOGIN_OPTIONAL = 'optional' LOGIN_REQUIRED = 'required' LOGIN_ADMIN = 'admin' AUTH_FAIL_ACTION_REDIRECT = 'redirect' AUTH_FAIL_ACTION_UNAUTHORIZED = 'unauthorized' DATASTORE_ID_POLICY_LEGACY = 'legacy' DATASTORE_ID_POLICY_DEFAULT = 'default' SECURE_HTTP = 'never' SECURE_HTTPS = 'always' SECURE_HTTP_OR_HTTPS = 'optional' SECURE_DEFAULT = 'default' REQUIRE_MATCHING_FILE = 'require_matching_file' DEFAULT_SKIP_FILES = (r'^(.*/)?(' r'(#.*#)|' r'(.*~)|' r'(.*\.py[co])|' r'(.*/RCS/.*)|' r'(\..*)|' r')$') SKIP_NO_FILES = r'(?!)' DEFAULT_NOBUILD_FILES = (r'^$') LOGIN = 'login' AUTH_FAIL_ACTION = 'auth_fail_action' SECURE = 'secure' URL = 'url' POSITION = 'position' POSITION_HEAD = 'head' POSITION_TAIL = 'tail' STATIC_FILES = 'static_files' UPLOAD = 'upload' STATIC_DIR = 'static_dir' MIME_TYPE = 'mime_type' SCRIPT = 'script' EXPIRATION = 'expiration' API_ENDPOINT = 'api_endpoint' HTTP_HEADERS = 'http_headers' APPLICATION_READABLE = 'application_readable' REDIRECT_HTTP_RESPONSE_CODE = 'redirect_http_response_code' APPLICATION = 'application' MODULE = 'module' AUTOMATIC_SCALING = 'automatic_scaling' MANUAL_SCALING = 'manual_scaling' BASIC_SCALING = 'basic_scaling' VM = 'vm' VM_SETTINGS = 'vm_settings' VM_HEALTH_CHECK = 'vm_health_check' VERSION = 'version' MAJOR_VERSION = 'major_version' MINOR_VERSION = 'minor_version' RUNTIME = 'runtime' API_VERSION = 'api_version' SOURCE_LANGUAGE = 'source_language' BUILTINS = 'builtins' INCLUDES = 'includes' HANDLERS = 'handlers' LIBRARIES = 'libraries' DEFAULT_EXPIRATION = 'default_expiration' SKIP_FILES = 'skip_files' NOBUILD_FILES = 'nobuild_files' SERVICES = 'inbound_services' DERIVED_FILE_TYPE = 'derived_file_type' JAVA_PRECOMPILED = 'java_precompiled' PYTHON_PRECOMPILED = 'python_precompiled' ADMIN_CONSOLE = 'admin_console' ERROR_HANDLERS = 'error_handlers' BACKENDS = 'backends' THREADSAFE = 'threadsafe' DATASTORE_AUTO_ID_POLICY = 'auto_id_policy' API_CONFIG = 'api_config' CODE_LOCK = 'code_lock' ENV_VARIABLES = 'env_variables' PAGESPEED = 'pagespeed' INSTANCE_CLASS = 'instance_class' MINIMUM_PENDING_LATENCY = 'min_pending_latency' MAXIMUM_PENDING_LATENCY = 'max_pending_latency' MINIMUM_IDLE_INSTANCES = 'min_idle_instances' MAXIMUM_IDLE_INSTANCES = 'max_idle_instances' MAXIMUM_CONCURRENT_REQUEST = 'max_concurrent_requests' MIN_NUM_INSTANCES = 'min_num_instances' MAX_NUM_INSTANCES = 'max_num_instances' COOL_DOWN_PERIOD_SEC = 'cool_down_period_sec' CPU_UTILIZATION = 'cpu_utilization' CPU_UTILIZATION_UTILIZATION = 'target_utilization' CPU_UTILIZATION_AGGREGATION_WINDOW_LENGTH_SEC = 'aggregation_window_length_sec' INSTANCES = 'instances' MAX_INSTANCES = 'max_instances' IDLE_TIMEOUT = 'idle_timeout' PAGES = 'pages' NAME = 'name' ERROR_CODE = 'error_code' FILE = 'file' _ERROR_CODE_REGEX = r'(default|over_quota|dos_api_denial|timeout)' ON = 'on' ON_ALIASES = ['yes', 'y', 'True', 't', '1', 'true'] OFF = 'off' OFF_ALIASES = ['no', 'n', 'False', 'f', '0', 'false'] ENABLE_HEALTH_CHECK = 'enable_health_check' CHECK_INTERVAL_SEC = 'check_interval_sec' TIMEOUT_SEC = 'timeout_sec' UNHEALTHY_THRESHOLD = 'unhealthy_threshold' HEALTHY_THRESHOLD = 'healthy_threshold' RESTART_THRESHOLD = 'restart_threshold' HOST = 'host' class _VersionedLibrary(object): """A versioned library supported by App Engine.""" def __init__(self, name, url, description, supported_versions, default_version=None, deprecated_versions=None, experimental_versions=None): """Initializer for _VersionedLibrary. Args: name: The name of the library e.g. "django". url: The URL for the library's project page e.g. "http://www.djangoproject.com/". description: A short description of the library e.g. "A framework...". supported_versions: A list of supported version names ordered by release date e.g. ["v1", "v2", "v3"]. default_version: The version of the library that is enabled by default in the Python 2.7 runtime or None if the library is not available by default e.g. "v1". deprecated_versions: A list of the versions of the library that have been deprecated e.g. ["v1", "v2"]. experimental_versions: A list of the versions of the library that are current experimental e.g. ["v1"]. """ self.name = name self.url = url self.description = description self.supported_versions = supported_versions self.default_version = default_version self.deprecated_versions = deprecated_versions or [] self.experimental_versions = experimental_versions or [] @property def non_deprecated_versions(self): return [version for version in self.supported_versions if version not in self.deprecated_versions] _SUPPORTED_LIBRARIES = [ _VersionedLibrary( 'django', 'http://www.djangoproject.com/', 'A full-featured web application framework for Python.', ['1.2', '1.3', '1.4', '1.5'], experimental_versions=['1.5'], ), _VersionedLibrary( 'endpoints', 'https://developers.google.com/appengine/docs/python/endpoints/', 'Libraries for building APIs in an App Engine application.', ['1.0']), _VersionedLibrary( 'jinja2', 'http://jinja.pocoo.org/docs/', 'A modern and designer friendly templating language for Python.', ['2.6']), _VersionedLibrary( 'lxml', 'http://lxml.de/', 'A Pythonic binding for the C libraries libxml2 and libxslt.', ['2.3', '2.3.5'], experimental_versions=['2.3.5'], ), _VersionedLibrary( 'markupsafe', 'http://pypi.python.org/pypi/MarkupSafe', 'A XML/HTML/XHTML markup safe string for Python.', ['0.15']), _VersionedLibrary( 'matplotlib', 'http://matplotlib.org/', 'A 2D plotting library which produces publication-quality figures.', ['1.2.0'], experimental_versions=['1.2.0'], ), _VersionedLibrary( 'MySQLdb', 'http://mysql-python.sourceforge.net/', 'A Python DB API v2.0 compatible interface to MySQL.', ['1.2.4b4'], experimental_versions=['1.2.4b4'] ), _VersionedLibrary( 'numpy', 'http://numpy.scipy.org/', 'A general-purpose library for array-processing.', ['1.6.1']), _VersionedLibrary( 'PIL', 'http://www.pythonware.com/library/pil/handbook/', 'A library for creating and transforming images.', ['1.1.7']), _VersionedLibrary( 'protorpc', 'https://code.google.com/p/google-protorpc/', 'A framework for implementing HTTP-based remote procedure call (RPC) ' 'services.', ['1.0'], default_version='1.0', ), _VersionedLibrary( 'PyAMF', 'http://www.pyamf.org/', 'A library that provides (AMF) Action Message Format functionality.', ['0.6.1']), _VersionedLibrary( 'pycrypto', 'https://www.dlitz.net/software/pycrypto/', 'A library of cryptogoogle.appengine._internal.graphy functions such as random number generation.', ['2.3', '2.6'], ), _VersionedLibrary( 'setuptools', 'http://pypi.python.org/pypi/setuptools', 'A library that provides package and module discovery capabilities.', ['0.6c11']), _VersionedLibrary( 'ssl', 'http://docs.python.org/dev/library/ssl.html', 'The SSL socket wrapper built-in module.', ['2.7'], experimental_versions=['2.7']), _VersionedLibrary( 'webapp2', 'http://webapp-improved.appspot.com/', 'A lightweight Python web framework.', ['2.3', '2.5.1', '2.5.2'], default_version='2.3', deprecated_versions=['2.3'] ), _VersionedLibrary( 'webob', 'http://www.webob.org/', 'A library that provides wrappers around the WSGI request environment.', ['1.1.1', '1.2.3'], default_version='1.1.1', ), _VersionedLibrary( 'yaml', 'http://www.yaml.org/', 'A library for YAML serialization and deserialization.', ['3.10'], default_version='3.10' ), ] _NAME_TO_SUPPORTED_LIBRARY = dict((library.name, library) for library in _SUPPORTED_LIBRARIES) REQUIRED_LIBRARIES = { ('jinja2', '2.6'): [('markupsafe', '0.15'), ('setuptools', '0.6c11')], ('jinja2', 'latest'): [('markupsafe', 'latest'), ('setuptools', 'latest')], ('matplotlib', '1.1.1'): [('numpy', '1.6.1')], ('matplotlib', '1.2.0'): [('numpy', '1.6.1')], ('matplotlib', 'latest'): [('numpy', 'latest')], } _USE_VERSION_FORMAT = ('use one of: "%s" or "latest" ' '("latest" recommended for development only)') _HTTP_SEPARATOR_CHARS = frozenset('()<>@,;:\\"/[]?={} \t') _HTTP_TOKEN_CHARS = frozenset(string.printable[:-5]) - _HTTP_SEPARATOR_CHARS _HTTP_TOKEN_RE = re.compile('[%s]+$' % re.escape(''.join(_HTTP_TOKEN_CHARS))) _HTTP_REQUEST_HEADERS = frozenset([ 'accept', 'accept-charset', 'accept-encoding', 'accept-language', 'authorization', 'expect', 'from', 'host', 'if-match', 'if-modified-since', 'if-none-match', 'if-range', 'if-unmodified-since', 'max-forwards', 'proxy-authorization', 'range', 'referer', 'te', 'user-agent', ]) _MAX_COOKIE_LENGTH = 4096 _MAX_URL_LENGTH = 2047 class HandlerBase(validation.Validated): """Base class for URLMap and ApiConfigHandler.""" ATTRIBUTES = { URL: validation.Optional(_URL_REGEX), LOGIN: validation.Options(LOGIN_OPTIONAL, LOGIN_REQUIRED, LOGIN_ADMIN, default=LOGIN_OPTIONAL), AUTH_FAIL_ACTION: validation.Options(AUTH_FAIL_ACTION_REDIRECT, AUTH_FAIL_ACTION_UNAUTHORIZED, default=AUTH_FAIL_ACTION_REDIRECT), SECURE: validation.Options(SECURE_HTTP, SECURE_HTTPS, SECURE_HTTP_OR_HTTPS, SECURE_DEFAULT, default=SECURE_DEFAULT), HANDLER_SCRIPT: validation.Optional(_FILES_REGEX) } class HttpHeadersDict(validation.ValidatedDict): """A dict that limits keys and values what http_headers allows. http_headers is an static handler key i.e. it applies to handlers with static_dir or static_files keys. An example of how http_headers is used is handlers: - url: /static static_dir: static http_headers: X-Foo-Header: foo value X-Bar-Header: bar value """ DISALLOWED_HEADERS = frozenset([ 'content-encoding', 'content-length', 'date', 'server' ]) MAX_HEADER_LENGTH = 500 MAX_HEADER_VALUE_LENGTHS = { 'set-cookie': _MAX_COOKIE_LENGTH, 'set-cookie2': _MAX_COOKIE_LENGTH, 'location': _MAX_URL_LENGTH} MAX_LEN = 500 class KeyValidator(validation.Validator): """Ensures that keys in HttpHeadersDict i.e. header names are valid. An instance is used as HttpHeadersDict's KEY_VALIDATOR. """ def Validate(self, name, unused_key=None): """Returns argument, or raises an exception if it is invalid. HTTP header names are defined by RFC 2616 section 4.2. Args: name: HTTP header field value. unused_key: Unused. Returns: name argument, unchanged. Raises: appinfo_errors.InvalidHttpHeaderName: argument cannot be used as an HTTP header name. """ original_name = name if isinstance(name, unicode): try: name = name.encode('ascii') except UnicodeEncodeError: raise appinfo_errors.InvalidHttpHeaderName( 'HTTP header values must not contain non-ASCII data') name = name.lower() if not _HTTP_TOKEN_RE.match(name): raise appinfo_errors.InvalidHttpHeaderName( 'An HTTP header must be a non-empty RFC 2616 token.') if name in _HTTP_REQUEST_HEADERS: raise appinfo_errors.InvalidHttpHeaderName( '%r can only be used in HTTP requests, not responses.' % original_name) if name.startswith('x-appengine'): raise appinfo_errors.InvalidHttpHeaderName( 'HTTP header names that begin with X-Appengine are reserved.') if wsgiref.util.is_hop_by_hop(name): raise appinfo_errors.InvalidHttpHeaderName( 'Only use end-to-end headers may be used. See RFC 2616 section' ' 13.5.1.') if name in HttpHeadersDict.DISALLOWED_HEADERS: raise appinfo_errors.InvalidHttpHeaderName( '%s is a disallowed header.' % name) return original_name class ValueValidator(validation.Validator): """Ensures that values in HttpHeadersDict i.e. header values are valid. An instance is used as HttpHeadersDict's VALUE_VALIDATOR. """ def Validate(self, value, key=None): """Returns value, or raises an exception if it is invalid. According to RFC 2616 section 4.2, header field values must consist "of either *TEXT or combinations of token, separators, and quoted-string". TEXT = <any OCTET except CTLs, but including LWS> Args: value: HTTP header field value. key: HTTP header field name. Returns: value argument. Raises: appinfo_errors.InvalidHttpHeaderValue: argument cannot be used as an HTTP header value. """ if isinstance(value, unicode): try: value = value.encode('ascii') except UnicodeEncodeError: raise appinfo_errors.InvalidHttpHeaderValue( 'HTTP header values must not contain non-ASCII data') key = key.lower() printable = set(string.printable[:-5]) if not all(char in printable for char in value): raise appinfo_errors.InvalidHttpHeaderValue( 'HTTP header field values must consist of printable characters.') HttpHeadersDict.ValueValidator.AssertHeaderNotTooLong(key, value) return value @staticmethod def AssertHeaderNotTooLong(name, value): header_length = len('%s: %s\r\n' % (name, value)) if header_length >= HttpHeadersDict.MAX_HEADER_LENGTH: try: max_len = HttpHeadersDict.MAX_HEADER_VALUE_LENGTHS[name] except KeyError: raise appinfo_errors.InvalidHttpHeaderValue( 'HTTP header (name + value) is too long.') if len(value) > max_len: insert = name, len(value), max_len raise appinfo_errors.InvalidHttpHeaderValue( '%r header value has length %d, which exceed the maximum allowed,' ' %d.' % insert) KEY_VALIDATOR = KeyValidator() VALUE_VALIDATOR = ValueValidator() def Get(self, header_name): """Gets a header value. Args: header_name: HTTP header name to look for. Returns: A header value that corresponds to header_name. If more than one such value is in self, one of the values is selected arbitrarily, and returned. The selection is not deterministic. """ for name in self: if name.lower() == header_name.lower(): return self[name] def __setitem__(self, key, value): is_addition = self.Get(key) is None if is_addition and len(self) >= self.MAX_LEN: raise appinfo_errors.TooManyHttpHeaders( 'Tried to add another header when the current set of HTTP headers' ' already has the maximum allowed number of headers, %d.' % HttpHeadersDict.MAX_LEN) super(HttpHeadersDict, self).__setitem__(key, value) class URLMap(HandlerBase): """Mapping from URLs to handlers. This class acts like something of a union type. Its purpose is to describe a mapping between a set of URLs and their handlers. What handler type a given instance has is determined by which handler-id attribute is used. Each mapping can have one and only one handler type. Attempting to use more than one handler-id attribute will cause an UnknownHandlerType to be raised during validation. Failure to provide any handler-id attributes will cause MissingHandlerType to be raised during validation. The regular expression used by the url field will be used to match against the entire URL path and query string of the request. This means that partial maps will not be matched. Specifying a url, say /admin, is the same as matching against the regular expression '^/admin$'. Don't begin your matching url with ^ or end them with $. These regular expressions won't be accepted and will raise ValueError. Attributes: login: Whether or not login is required to access URL. Defaults to 'optional'. secure: Restriction on the protocol which can be used to serve this URL/handler (HTTP, HTTPS or either). url: Regular expression used to fully match against the request URLs path. See Special Cases for using static_dir. static_files: Handler id attribute that maps URL to the appropriate file. Can use back regex references to the string matched to url. upload: Regular expression used by the application configuration program to know which files are uploaded as blobs. It's very difficult to determine this using just the url and static_files so this attribute must be included. Required when defining a static_files mapping. A matching file name must fully match against the upload regex, similar to how url is matched against the request path. Do not begin upload with ^ or end it with $. static_dir: Handler id that maps the provided url to a sub-directory within the application directory. See Special Cases. mime_type: When used with static_files and static_dir the mime-type of files served from those directories are overridden with this value. script: Handler id that maps URLs to scipt handler within the application directory that will run using CGI. position: Used in AppInclude objects to specify whether a handler should be inserted at the beginning of the primary handler list or at the end. If 'tail' is specified, the handler is inserted at the end, otherwise, the handler is inserted at the beginning. This means that 'head' is the effective default. expiration: When used with static files and directories, the time delta to use for cache expiration. Has the form '4d 5h 30m 15s', where each letter signifies days, hours, minutes, and seconds, respectively. The 's' for seconds may be omitted. Only one amount must be specified, combining multiple amounts is optional. Example good values: '10', '1d 6h', '1h 30m', '7d 7d 7d', '5m 30'. api_endpoint: Handler id that identifies endpoint as an API endpoint, calls that terminate here will be handled by the api serving framework. Special cases: When defining a static_dir handler, do not use a regular expression in the url attribute. Both the url and static_dir attributes are automatically mapped to these equivalents: <url>/(.*) <static_dir>/\1 For example: url: /images static_dir: images_folder Is the same as this static_files declaration: url: /images/(.*) static_files: images_folder/\1 upload: images_folder/(.*) """ ATTRIBUTES = { HANDLER_STATIC_FILES: validation.Optional(_FILES_REGEX), UPLOAD: validation.Optional(_FILES_REGEX), APPLICATION_READABLE: validation.Optional(bool), HANDLER_STATIC_DIR: validation.Optional(_FILES_REGEX), MIME_TYPE: validation.Optional(str), EXPIRATION: validation.Optional(_EXPIRATION_REGEX), REQUIRE_MATCHING_FILE: validation.Optional(bool), HTTP_HEADERS: validation.Optional(HttpHeadersDict), POSITION: validation.Optional(validation.Options(POSITION_HEAD, POSITION_TAIL)), HANDLER_API_ENDPOINT: validation.Optional(validation.Options( (ON, ON_ALIASES), (OFF, OFF_ALIASES))), REDIRECT_HTTP_RESPONSE_CODE: validation.Optional(validation.Options( '301', '302', '303', '307')), } ATTRIBUTES.update(HandlerBase.ATTRIBUTES) COMMON_FIELDS = set([ URL, LOGIN, AUTH_FAIL_ACTION, SECURE, REDIRECT_HTTP_RESPONSE_CODE]) ALLOWED_FIELDS = { HANDLER_STATIC_FILES: (MIME_TYPE, UPLOAD, EXPIRATION, REQUIRE_MATCHING_FILE, HTTP_HEADERS, APPLICATION_READABLE), HANDLER_STATIC_DIR: (MIME_TYPE, EXPIRATION, REQUIRE_MATCHING_FILE, HTTP_HEADERS, APPLICATION_READABLE), HANDLER_SCRIPT: (POSITION), HANDLER_API_ENDPOINT: (POSITION, SCRIPT), } def GetHandler(self): """Get handler for mapping. Returns: Value of the handler (determined by handler id attribute). """ return getattr(self, self.GetHandlerType()) def GetHandlerType(self): """Get handler type of mapping. Returns: Handler type determined by which handler id attribute is set. Raises: UnknownHandlerType: when none of the no handler id attributes are set. UnexpectedHandlerAttribute: when an unexpected attribute is set for the discovered handler type. HandlerTypeMissingAttribute: when the handler is missing a required attribute for its handler type. MissingHandlerAttribute: when a URL handler is missing an attribute """ if getattr(self, HANDLER_API_ENDPOINT) is not None: mapping_type = HANDLER_API_ENDPOINT else: for id_field in URLMap.ALLOWED_FIELDS.iterkeys(): if getattr(self, id_field) is not None: mapping_type = id_field break else: raise appinfo_errors.UnknownHandlerType( 'Unknown url handler type.\n%s' % str(self)) allowed_fields = URLMap.ALLOWED_FIELDS[mapping_type] for attribute in self.ATTRIBUTES.iterkeys(): if (getattr(self, attribute) is not None and not (attribute in allowed_fields or attribute in URLMap.COMMON_FIELDS or attribute == mapping_type)): raise appinfo_errors.UnexpectedHandlerAttribute( 'Unexpected attribute "%s" for mapping type %s.' % (attribute, mapping_type)) if mapping_type == HANDLER_STATIC_FILES and not self.upload: raise appinfo_errors.MissingHandlerAttribute( 'Missing "%s" attribute for URL "%s".' % (UPLOAD, self.url)) return mapping_type def CheckInitialized(self): """Adds additional checking to make sure handler has correct fields. In addition to normal ValidatedCheck calls GetHandlerType which validates all the handler fields are configured properly. Raises: UnknownHandlerType: when none of the no handler id attributes are set. UnexpectedHandlerAttribute: when an unexpected attribute is set for the discovered handler type. HandlerTypeMissingAttribute: when the handler is missing a required attribute for its handler type. ContentTypeSpecifiedMultipleTimes: when mime_type is inconsistent with http_headers. """ super(URLMap, self).CheckInitialized() if self.GetHandlerType() in (STATIC_DIR, STATIC_FILES): self.AssertUniqueContentType() def AssertUniqueContentType(self): """Makes sure that self.http_headers is consistent with self.mime_type. Assumes self is a static handler i.e. either self.static_dir or self.static_files is set (to not None). Raises: appinfo_errors.ContentTypeSpecifiedMultipleTimes: Raised when self.http_headers contains a Content-Type header, and self.mime_type is set. For example, the following configuration would be rejected: handlers: - url: /static static_dir: static mime_type: text/html http_headers: content-type: text/html As this example shows, a configuration will be rejected when http_headers and mime_type specify a content type, even when they specify the same content type. """ used_both_fields = self.mime_type and self.http_headers if not used_both_fields: return content_type = self.http_headers.Get('Content-Type') if content_type is not None: raise appinfo_errors.ContentTypeSpecifiedMultipleTimes( 'http_header specified a Content-Type header of %r in a handler that' ' also specified a mime_type of %r.' % (content_type, self.mime_type)) def FixSecureDefaults(self): """Force omitted 'secure: ...' handler fields to 'secure: optional'. The effect is that handler.secure is never equal to the (nominal) default. See http://b/issue?id=2073962. """ if self.secure == SECURE_DEFAULT: self.secure = SECURE_HTTP_OR_HTTPS def WarnReservedURLs(self): """Generates a warning for reserved URLs. See: https://developers.google.com/appengine/docs/python/config/appconfig#Reserved_URLs """ if self.url == '/form': logging.warning( 'The URL path "/form" is reserved and will not be matched.') def ErrorOnPositionForAppInfo(self): """Raises an error if position is specified outside of AppInclude objects. Raises: PositionUsedInAppYamlHandler: when position attribute is specified for an app.yaml file instead of an include.yaml file. """ if self.position: raise appinfo_errors.PositionUsedInAppYamlHandler( 'The position attribute was specified for this handler, but this is ' 'an app.yaml file. Position attribute is only valid for ' 'include.yaml files.') class AdminConsolePage(validation.Validated): """Class representing admin console page in AdminConsole object. """ ATTRIBUTES = { URL: _URL_REGEX, NAME: _PAGE_NAME_REGEX, } class AdminConsole(validation.Validated): """Class representing admin console directives in application info. """ ATTRIBUTES = { PAGES: validation.Optional(validation.Repeated(AdminConsolePage)), } @classmethod def Merge(cls, adminconsole_one, adminconsole_two): """Return the result of merging two AdminConsole objects.""" if not adminconsole_one or not adminconsole_two: return adminconsole_one or adminconsole_two if adminconsole_one.pages: if adminconsole_two.pages: adminconsole_one.pages.extend(adminconsole_two.pages) else: adminconsole_one.pages = adminconsole_two.pages return adminconsole_one class ErrorHandlers(validation.Validated): """Class representing error handler directives in application info. """ ATTRIBUTES = { ERROR_CODE: validation.Optional(_ERROR_CODE_REGEX), FILE: _FILES_REGEX, MIME_TYPE: validation.Optional(str), } class BuiltinHandler(validation.Validated): """Class representing builtin handler directives in application info. Permits arbitrary keys but their values must be described by the validation.Options object returned by ATTRIBUTES. """ class DynamicAttributes(dict): """Provide a dictionary object that will always claim to have a key. This dictionary returns a fixed value for any get operation. The fixed value passed in as a constructor parameter should be a validation.Validated object. """ def __init__(self, return_value, **parameters): self.__return_value = return_value dict.__init__(self, parameters) def __contains__(self, _): return True def __getitem__(self, _): return self.__return_value ATTRIBUTES = DynamicAttributes( validation.Optional(validation.Options((ON, ON_ALIASES), (OFF, OFF_ALIASES)))) def __init__(self, **attributes): """Ensure that all BuiltinHandler objects at least have attribute 'default'. """ self.builtin_name = '' super(BuiltinHandler, self).__init__(**attributes) def __setattr__(self, key, value): """Permit ATTRIBUTES.iteritems() to return set of items that have values. Whenever validate calls iteritems(), it is always called on ATTRIBUTES, not on __dict__, so this override is important to ensure that functions such as ToYAML() return the correct set of keys. Raises: MultipleBuiltinsSpecified: when more than one builtin is defined in a list element. """ if key == 'builtin_name': object.__setattr__(self, key, value) elif not self.builtin_name: self.ATTRIBUTES[key] = '' self.builtin_name = key super(BuiltinHandler, self).__setattr__(key, value) else: raise appinfo_errors.MultipleBuiltinsSpecified( 'More than one builtin defined in list element. Each new builtin ' 'should be prefixed by "-".') def __getattr__(self, key): if key.startswith('_'): raise AttributeError return None def ToDict(self): """Convert BuiltinHander object to a dictionary. Returns: dictionary of the form: {builtin_handler_name: on/off} """ return {self.builtin_name: getattr(self, self.builtin_name)} @classmethod def IsDefined(cls, builtins_list, builtin_name): """Find if a builtin is defined in a given list of builtin handler objects. Args: builtins_list: list of BuiltinHandler objects (typically yaml.builtins) builtin_name: name of builtin to find whether or not it is defined Returns: true if builtin_name is defined by a member of builtins_list, false otherwise """ for b in builtins_list: if b.builtin_name == builtin_name: return True return False @classmethod def ListToTuples(cls, builtins_list): """Converts a list of BuiltinHandler objects to a list of (name, status).""" return [(b.builtin_name, getattr(b, b.builtin_name)) for b in builtins_list] @classmethod def Validate(cls, builtins_list, runtime=None): """Verify that all BuiltinHandler objects are valid and not repeated. Args: builtins_list: list of BuiltinHandler objects to validate. runtime: if set then warnings are generated for builtins that have been deprecated in the given runtime. Raises: InvalidBuiltinFormat: if the name of a Builtinhandler object cannot be determined. DuplicateBuiltinsSpecified: if a builtin handler name is used more than once in the list. """ seen = set() for b in builtins_list: if not b.builtin_name: raise appinfo_errors.InvalidBuiltinFormat( 'Name of builtin for list object %s could not be determined.' % b) if b.builtin_name in seen: raise appinfo_errors.DuplicateBuiltinsSpecified( 'Builtin %s was specified more than once in one yaml file.' % b.builtin_name) if b.builtin_name == 'datastore_admin' and runtime == 'python': logging.warning( 'The datastore_admin builtin is deprecated. You can find ' 'information on how to enable it through the Administrative ' 'Console here: ' 'http://developers.google.com/appengine/docs/adminconsole/' 'datastoreadmin.html') elif b.builtin_name == 'mapreduce' and runtime == 'python': logging.warning( 'The mapreduce builtin is deprecated. You can find more ' 'information on how to configure and use it here: ' 'http://developers.google.com/appengine/docs/python/dataprocessing/' 'overview.html') seen.add(b.builtin_name) class ApiConfigHandler(HandlerBase): """Class representing api_config handler directives in application info.""" ATTRIBUTES = HandlerBase.ATTRIBUTES ATTRIBUTES.update({ URL: validation.Regex(_URL_REGEX), HANDLER_SCRIPT: validation.Regex(_FILES_REGEX) }) class Library(validation.Validated): """Class representing the configuration of a single library.""" ATTRIBUTES = {'name': validation.Type(str), 'version': validation.Type(str)} def CheckInitialized(self): """Raises if the library configuration is not valid.""" super(Library, self).CheckInitialized() if self.name not in _NAME_TO_SUPPORTED_LIBRARY: raise appinfo_errors.InvalidLibraryName( 'the library "%s" is not supported' % self.name) supported_library = _NAME_TO_SUPPORTED_LIBRARY[self.name] if self.version != 'latest': if self.version not in supported_library.supported_versions: raise appinfo_errors.InvalidLibraryVersion( ('%s version "%s" is not supported, ' + _USE_VERSION_FORMAT) % ( self.name, self.version, '", "'.join(supported_library.non_deprecated_versions))) elif self.version in supported_library.deprecated_versions: logging.warning( ('%s version "%s" is deprecated, ' + _USE_VERSION_FORMAT) % ( self.name, self.version, '", "'.join(supported_library.non_deprecated_versions))) class CpuUtilization(validation.Validated): """Class representing the configuration of VM CPU utilization.""" ATTRIBUTES = { CPU_UTILIZATION_UTILIZATION: validation.Optional( validation.Range(1e-6, 1.0, float)), CPU_UTILIZATION_AGGREGATION_WINDOW_LENGTH_SEC: validation.Optional( validation.Range(1, sys.maxint)), } class AutomaticScaling(validation.Validated): """Class representing automatic scaling settings in the AppInfoExternal.""" ATTRIBUTES = { MINIMUM_IDLE_INSTANCES: validation.Optional(_IDLE_INSTANCES_REGEX), MAXIMUM_IDLE_INSTANCES: validation.Optional(_IDLE_INSTANCES_REGEX), MINIMUM_PENDING_LATENCY: validation.Optional(_PENDING_LATENCY_REGEX), MAXIMUM_PENDING_LATENCY: validation.Optional(_PENDING_LATENCY_REGEX), MAXIMUM_CONCURRENT_REQUEST: validation.Optional( _CONCURRENT_REQUESTS_REGEX), MIN_NUM_INSTANCES: validation.Optional(validation.Range(1, sys.maxint)), MAX_NUM_INSTANCES: validation.Optional(validation.Range(1, sys.maxint)), COOL_DOWN_PERIOD_SEC: validation.Optional( validation.Range(60, sys.maxint, int)), CPU_UTILIZATION: validation.Optional(CpuUtilization), } class ManualScaling(validation.Validated): """Class representing manual scaling settings in the AppInfoExternal.""" ATTRIBUTES = { INSTANCES: validation.Regex(_INSTANCES_REGEX), } class BasicScaling(validation.Validated): """Class representing basic scaling settings in the AppInfoExternal.""" ATTRIBUTES = { MAX_INSTANCES: validation.Regex(_INSTANCES_REGEX), IDLE_TIMEOUT: validation.Optional(_IDLE_TIMEOUT_REGEX), } class VmSettings(validation.ValidatedDict): """Class for VM settings. We don't validate these further because the feature is in flux. """ KEY_VALIDATOR = validation.Regex('[a-zA-Z_][a-zA-Z0-9_]*') VALUE_VALIDATOR = str @classmethod def Merge(cls, vm_settings_one, vm_settings_two): result_vm_settings = (vm_settings_two or {}).copy() result_vm_settings.update(vm_settings_one or {}) return VmSettings(**result_vm_settings) if result_vm_settings else None class EnvironmentVariables(validation.ValidatedDict): """Class representing a mapping of environment variable key value pairs.""" KEY_VALIDATOR = validation.Regex('[a-zA-Z_][a-zA-Z0-9_]*') VALUE_VALIDATOR = str @classmethod def Merge(cls, env_variables_one, env_variables_two): """Merges to EnvironmentVariables instances. Args: env_variables_one: The first EnvironmentVariables instance or None. env_variables_two: The second EnvironmentVariables instance or None. Returns: The merged EnvironmentVariables instance, or None if both input instances are None or empty. If a variable is specified by both instances, the value from env_variables_two is used. """ result_env_variables = (env_variables_one or {}).copy() result_env_variables.update(env_variables_two or {}) return (EnvironmentVariables(**result_env_variables) if result_env_variables else None) def VmSafeSetRuntime(appyaml, runtime): """Sets the runtime while respecting vm runtimes rules for runtime settings. Args: appyaml: AppInfoExternal instance, which will be modified. runtime: The runtime to use. Returns: The passed in appyaml (which has been modified). """ if appyaml.vm: if not appyaml.vm_settings: appyaml.vm_settings = VmSettings() appyaml.vm_settings['vm_runtime'] = runtime appyaml.runtime = 'vm' else: appyaml.runtime = runtime return appyaml def NormalizeVmSettings(appyaml): """Normalize Vm settings. Args: appyaml: AppInfoExternal instance. Returns: Normalized app yaml. """ if appyaml.vm: if not appyaml.vm_settings: appyaml.vm_settings = VmSettings() if 'vm_runtime' not in appyaml.vm_settings: appyaml = VmSafeSetRuntime(appyaml, appyaml.runtime) return appyaml class VmHealthCheck(validation.Validated): """Class representing the configuration of VM health check.""" ATTRIBUTES = { ENABLE_HEALTH_CHECK: validation.Optional(validation.TYPE_BOOL), CHECK_INTERVAL_SEC: validation.Optional(validation.Range(0, sys.maxint)), TIMEOUT_SEC: validation.Optional(validation.Range(0, sys.maxint)), UNHEALTHY_THRESHOLD: validation.Optional(validation.Range(0, sys.maxint)), HEALTHY_THRESHOLD: validation.Optional(validation.Range(0, sys.maxint)), RESTART_THRESHOLD: validation.Optional(validation.Range(0, sys.maxint)), HOST: validation.Optional(validation.TYPE_STR)} class AppInclude(validation.Validated): """Class representing the contents of an included app.yaml file. Used for both builtins and includes directives. """ ATTRIBUTES = { BUILTINS: validation.Optional(validation.Repeated(BuiltinHandler)), INCLUDES: validation.Optional(validation.Type(list)), HANDLERS: validation.Optional(validation.Repeated(URLMap)), ADMIN_CONSOLE: validation.Optional(AdminConsole), MANUAL_SCALING: validation.Optional(ManualScaling), VM: validation.Optional(bool), VM_SETTINGS: validation.Optional(VmSettings), ENV_VARIABLES: validation.Optional(EnvironmentVariables), SKIP_FILES: validation.RegexStr(default=SKIP_NO_FILES), } @classmethod def MergeManualScaling(cls, appinclude_one, appinclude_two): """Takes the greater of <manual_scaling.instances> from the args. Note that appinclude_one is mutated to be the merged result in this process. Also, this function needs to be updated if ManualScaling gets additional fields. Args: appinclude_one: object one to merge. Must have a "manual_scaling" field which contains a ManualScaling(). appinclude_two: object two to merge. Must have a "manual_scaling" field which contains a ManualScaling(). Returns: Object that is the result of merging appinclude_one.manual_scaling.instances and appinclude_two.manual_scaling.instances. I.e., <appinclude_one> after the mutations are complete. """ def _Instances(appinclude): if appinclude.manual_scaling: if appinclude.manual_scaling.instances: return int(appinclude.manual_scaling.instances) return None instances = max(_Instances(appinclude_one), _Instances(appinclude_two)) if instances is not None: appinclude_one.manual_scaling = ManualScaling(instances=str(instances)) return appinclude_one @classmethod def _CommonMergeOps(cls, one, two): """This function performs common merge operations.""" AppInclude.MergeManualScaling(one, two) one.admin_console = AdminConsole.Merge(one.admin_console, two.admin_console) one.vm = two.vm or one.vm one.vm_settings = VmSettings.Merge(one.vm_settings, two.vm_settings) one.env_variables = EnvironmentVariables.Merge(one.env_variables, two.env_variables) one.skip_files = cls.MergeSkipFiles(one.skip_files, two.skip_files) return one @classmethod def MergeAppYamlAppInclude(cls, appyaml, appinclude): """This function merges an app.yaml file with referenced builtins/includes. """ if not appinclude: return appyaml if appinclude.handlers: tail = appyaml.handlers or [] appyaml.handlers = [] for h in appinclude.handlers: if not h.position or h.position == 'head': appyaml.handlers.append(h) else: tail.append(h) h.position = None appyaml.handlers.extend(tail) appyaml = cls._CommonMergeOps(appyaml, appinclude) return NormalizeVmSettings(appyaml) @classmethod def MergeAppIncludes(cls, appinclude_one, appinclude_two): """This function merges the non-referential state of the provided AppInclude objects. That is, builtins and includes directives are not preserved, but any static objects are copied into an aggregate AppInclude object that preserves the directives of both provided AppInclude objects. Note that appinclude_one is mutated to be the merged result in this process. Args: appinclude_one: object one to merge appinclude_two: object two to merge Returns: AppInclude object that is the result of merging the static directives of appinclude_one and appinclude_two. I.e., <appinclude_one> after the mutations are complete. """ if not appinclude_one or not appinclude_two: return appinclude_one or appinclude_two if appinclude_one.handlers: if appinclude_two.handlers: appinclude_one.handlers.extend(appinclude_two.handlers) else: appinclude_one.handlers = appinclude_two.handlers return cls._CommonMergeOps(appinclude_one, appinclude_two) @staticmethod def MergeSkipFiles(skip_files_one, skip_files_two): if skip_files_one == SKIP_NO_FILES: return skip_files_two if skip_files_two == SKIP_NO_FILES: return skip_files_one return validation.RegexStr().Validate( [skip_files_one, skip_files_two], SKIP_FILES) class AppInfoExternal(validation.Validated): """Class representing users application info. This class is passed to a yaml_object builder to provide the validation for the application information file format parser. Attributes: application: Unique identifier for application. version: Application's major version. runtime: Runtime used by application. api_version: Which version of APIs to use. source_language: Optional specification of the source language. For example we specify "php-quercus" if this is a Java app that was generated from PHP source using Quercus handlers: List of URL handlers. default_expiration: Default time delta to use for cache expiration for all static files, unless they have their own specific 'expiration' set. See the URLMap.expiration field's documentation for more information. skip_files: An re object. Files that match this regular expression will not be uploaded by appcfg.py. For example: skip_files: | .svn.*| #.*# nobuild_files: An re object. Files that match this regular expression will not be built into the app. Go only. api_config: URL root and script/servlet path for enhanced api serving """ ATTRIBUTES = { APPLICATION: validation.Optional(APPLICATION_RE_STRING), MODULE: validation.Optional(MODULE_ID_RE_STRING), VERSION: validation.Optional(MODULE_VERSION_ID_RE_STRING), RUNTIME: RUNTIME_RE_STRING, API_VERSION: API_VERSION_RE_STRING, INSTANCE_CLASS: validation.Optional(_INSTANCE_CLASS_REGEX), SOURCE_LANGUAGE: validation.Optional( validation.Regex(SOURCE_LANGUAGE_RE_STRING)), AUTOMATIC_SCALING: validation.Optional(AutomaticScaling), MANUAL_SCALING: validation.Optional(ManualScaling), BASIC_SCALING: validation.Optional(BasicScaling), VM: validation.Optional(bool), VM_SETTINGS: validation.Optional(VmSettings), VM_HEALTH_CHECK: validation.Optional(VmHealthCheck), BUILTINS: validation.Optional(validation.Repeated(BuiltinHandler)), INCLUDES: validation.Optional(validation.Type(list)), HANDLERS: validation.Optional(validation.Repeated(URLMap)), LIBRARIES: validation.Optional(validation.Repeated(Library)), SERVICES: validation.Optional(validation.Repeated( validation.Regex(_SERVICE_RE_STRING))), DEFAULT_EXPIRATION: validation.Optional(_EXPIRATION_REGEX), SKIP_FILES: validation.RegexStr(default=DEFAULT_SKIP_FILES), NOBUILD_FILES: validation.RegexStr(default=DEFAULT_NOBUILD_FILES), DERIVED_FILE_TYPE: validation.Optional(validation.Repeated( validation.Options(JAVA_PRECOMPILED, PYTHON_PRECOMPILED))), ADMIN_CONSOLE: validation.Optional(AdminConsole), ERROR_HANDLERS: validation.Optional(validation.Repeated(ErrorHandlers)), BACKENDS: validation.Optional(validation.Repeated( backendinfo.BackendEntry)), THREADSAFE: validation.Optional(bool), DATASTORE_AUTO_ID_POLICY: validation.Optional( validation.Options(DATASTORE_ID_POLICY_LEGACY, DATASTORE_ID_POLICY_DEFAULT)), API_CONFIG: validation.Optional(ApiConfigHandler), CODE_LOCK: validation.Optional(bool), ENV_VARIABLES: validation.Optional(EnvironmentVariables), PAGESPEED: validation.Optional(pagespeedinfo.PagespeedEntry), } _skip_runtime_checks = False def CheckInitialized(self): """Performs non-regex-based validation. The following are verified: - At least one url mapping is provided in the URL mappers. - Number of url mappers doesn't exceed MAX_URL_MAPS. - Major version does not contain the string -dot-. - If api_endpoints are defined, an api_config stanza must be defined. - If the runtime is python27 and threadsafe is set, then no CGI handlers can be used. - That the version name doesn't start with BUILTIN_NAME_PREFIX - If redirect_http_response_code exists, it is in the list of valid 300s. Raises: DuplicateLibrary: if the name library name is specified more than once. MissingURLMapping: if no URLMap object is present in the object. TooManyURLMappings: if there are too many URLMap entries. MissingApiConfig: if api_endpoints exist without an api_config. MissingThreadsafe: if threadsafe is not set but the runtime requires it. ThreadsafeWithCgiHandler: if the runtime is python27, threadsafe is set and CGI handlers are specified. TooManyScalingSettingsError: if more than one scaling settings block is present. RuntimeDoesNotSupportLibraries: if libraries clause is used for a runtime that does not support it (e.g. python25). """ super(AppInfoExternal, self).CheckInitialized() if not self.handlers and not self.builtins and not self.includes: raise appinfo_errors.MissingURLMapping( 'No URLMap entries found in application configuration') if self.handlers and len(self.handlers) > MAX_URL_MAPS: raise appinfo_errors.TooManyURLMappings( 'Found more than %d URLMap entries in application configuration' % MAX_URL_MAPS) if (self.threadsafe is None and self.runtime == 'python27' and not self._skip_runtime_checks): raise appinfo_errors.MissingThreadsafe( 'threadsafe must be present and set to either "yes" or "no"') if self.auto_id_policy == DATASTORE_ID_POLICY_LEGACY: datastore_auto_ids_url = ('http://developers.google.com/' 'appengine/docs/python/datastore/' 'entities#Kinds_and_Identifiers') appcfg_auto_ids_url = ('http://developers.google.com/appengine/docs/' 'python/config/appconfig#auto_id_policy') logging.warning( "You have set the datastore auto_id_policy to 'legacy'. It is " "recommended that you select 'default' instead.\n" "Legacy auto ids are deprecated. You can continue to allocate\n" "legacy ids manually using the allocate_ids() API functions.\n" "For more information see:\n" + datastore_auto_ids_url + '\n' + appcfg_auto_ids_url + '\n') if self.libraries: vm_runtime_python27 = ( self.runtime == 'vm' and hasattr(self, 'vm_settings') and self.vm_settings['vm_runtime'] == 'python27') if not self._skip_runtime_checks and not ( vm_runtime_python27 or self.runtime == 'python27'): raise appinfo_errors.RuntimeDoesNotSupportLibraries( 'libraries entries are only supported by the "python27" runtime') library_names = [library.name for library in self.libraries] for library_name in library_names: if library_names.count(library_name) > 1: raise appinfo_errors.DuplicateLibrary( 'Duplicate library entry for %s' % library_name) if self.version and self.version.find(ALTERNATE_HOSTNAME_SEPARATOR) != -1: raise validation.ValidationError( 'Version "%s" cannot contain the string "%s"' % ( self.version, ALTERNATE_HOSTNAME_SEPARATOR)) if self.version and self.version.startswith(BUILTIN_NAME_PREFIX): raise validation.ValidationError( ('Version "%s" cannot start with "%s" because it is a ' 'reserved version name prefix.') % (self.version, BUILTIN_NAME_PREFIX)) if self.handlers: api_endpoints = [handler.url for handler in self.handlers if handler.GetHandlerType() == HANDLER_API_ENDPOINT] if api_endpoints and not self.api_config: raise appinfo_errors.MissingApiConfig( 'An api_endpoint handler was specified, but the required ' 'api_config stanza was not configured.') if (self.threadsafe and self.runtime == 'python27' and not self._skip_runtime_checks): for handler in self.handlers: if (handler.script and (handler.script.endswith('.py') or '/' in handler.script)): raise appinfo_errors.ThreadsafeWithCgiHandler( 'threadsafe cannot be enabled with CGI handler: %s' % handler.script) if sum([bool(self.automatic_scaling), bool(self.manual_scaling), bool(self.basic_scaling)]) > 1: raise appinfo_errors.TooManyScalingSettingsError( "There may be only one of 'automatic_scaling', 'manual_scaling', " "or 'basic_scaling'.") def GetAllLibraries(self): """Returns a list of all Library instances active for this configuration. Returns: The list of active Library instances for this configuration. This includes directly-specified libraries as well as any required dependencies. """ if not self.libraries: return [] library_names = set(library.name for library in self.libraries) required_libraries = [] for library in self.libraries: for required_name, required_version in REQUIRED_LIBRARIES.get( (library.name, library.version), []): if required_name not in library_names: required_libraries.append(Library(name=required_name, version=required_version)) return [Library(**library.ToDict()) for library in self.libraries + required_libraries] def GetNormalizedLibraries(self): """Returns a list of normalized Library instances for this configuration. Returns: The list of active Library instances for this configuration. This includes directly-specified libraries, their required dependencies as well as any libraries enabled by default. Any libraries with "latest" as their version will be replaced with the latest available version. """ libraries = self.GetAllLibraries() enabled_libraries = set(library.name for library in libraries) for library in _SUPPORTED_LIBRARIES: if library.default_version and library.name not in enabled_libraries: libraries.append(Library(name=library.name, version=library.default_version)) for library in libraries: if library.version == 'latest': library.version = _NAME_TO_SUPPORTED_LIBRARY[ library.name].supported_versions[-1] return libraries def ApplyBackendSettings(self, backend_name): """Applies settings from the indicated backend to the AppInfoExternal. Backend entries may contain directives that modify other parts of the app.yaml, such as the 'start' directive, which adds a handler for the start request. This method performs those modifications. Args: backend_name: The name of a backend defined in 'backends'. Raises: BackendNotFound: if the indicated backend was not listed in 'backends'. DuplicateBackend: if backend is found more than once in 'backends'. """ if backend_name is None: return if self.backends is None: raise appinfo_errors.BackendNotFound self.version = backend_name match = None for backend in self.backends: if backend.name != backend_name: continue if match: raise appinfo_errors.DuplicateBackend else: match = backend if match is None: raise appinfo_errors.BackendNotFound if match.start is None: return start_handler = URLMap(url=_START_PATH, script=match.start) self.handlers.insert(0, start_handler) def GetEffectiveRuntime(self): """Returns the app's runtime, resolving VMs to the underlying vm_runtime. Returns: The effective runtime: the value of vm_settings.vm_runtime if runtime is "vm", or runtime otherwise. """ if self.runtime == 'vm' and hasattr(self, 'vm_settings'): return self.vm_settings.get('vm_runtime') return self.runtime def ValidateHandlers(handlers, is_include_file=False): """Validates a list of handler (URLMap) objects. Args: handlers: A list of a handler (URLMap) objects. is_include_file: If true, indicates the we are performing validation for handlers in an AppInclude file, which may contain special directives. """ if not handlers: return for handler in handlers: handler.FixSecureDefaults() handler.WarnReservedURLs() if not is_include_file: handler.ErrorOnPositionForAppInfo() def LoadSingleAppInfo(app_info): """Load a single AppInfo object where one and only one is expected. Args: app_info: A file-like object or string. If it is a string, parse it as a configuration file. If it is a file-like object, read in data and parse. Returns: An instance of AppInfoExternal as loaded from a YAML file. Raises: ValueError: if a specified service is not valid. EmptyConfigurationFile: when there are no documents in YAML file. MultipleConfigurationFile: when there is more than one document in YAML file. DuplicateBackend: if backend is found more than once in 'backends'. """ builder = yaml_object.ObjectBuilder(AppInfoExternal) handler = yaml_builder.BuilderHandler(builder) listener = yaml_listener.EventListener(handler) listener.Parse(app_info) app_infos = handler.GetResults() if len(app_infos) < 1: raise appinfo_errors.EmptyConfigurationFile() if len(app_infos) > 1: raise appinfo_errors.MultipleConfigurationFile() appyaml = app_infos[0] ValidateHandlers(appyaml.handlers) if appyaml.builtins: BuiltinHandler.Validate(appyaml.builtins, appyaml.runtime) return NormalizeVmSettings(appyaml) class AppInfoSummary(validation.Validated): """This class contains only basic summary information about an app. It is used to pass back information about the newly created app to users after a new version has been created. """ ATTRIBUTES = { APPLICATION: APPLICATION_RE_STRING, MAJOR_VERSION: MODULE_VERSION_ID_RE_STRING, MINOR_VERSION: validation.TYPE_LONG } def LoadAppInclude(app_include): """Load a single AppInclude object where one and only one is expected. Args: app_include: A file-like object or string. If it is a string, parse it as a configuration file. If it is a file-like object, read in data and parse. Returns: An instance of AppInclude as loaded from a YAML file. Raises: EmptyConfigurationFile: when there are no documents in YAML file. MultipleConfigurationFile: when there is more than one document in YAML file. """ builder = yaml_object.ObjectBuilder(AppInclude) handler = yaml_builder.BuilderHandler(builder) listener = yaml_listener.EventListener(handler) listener.Parse(app_include) includes = handler.GetResults() if len(includes) < 1: raise appinfo_errors.EmptyConfigurationFile() if len(includes) > 1: raise appinfo_errors.MultipleConfigurationFile() includeyaml = includes[0] if includeyaml.handlers: for handler in includeyaml.handlers: handler.FixSecureDefaults() handler.WarnReservedURLs() if includeyaml.builtins: BuiltinHandler.Validate(includeyaml.builtins) return includeyaml def ParseExpiration(expiration): """Parses an expiration delta string. Args: expiration: String that matches _DELTA_REGEX. Returns: Time delta in seconds. """ delta = 0 for match in re.finditer(_DELTA_REGEX, expiration): amount = int(match.group(1)) units = _EXPIRATION_CONVERSIONS.get(match.group(2).lower(), 1) delta += amount * units return delta _file_path_positive_re = re.compile(r'^[ 0-9a-zA-Z\._\+/@\$-]{1,256}$') _file_path_negative_1_re = re.compile(r'\.\.|^\./|\.$|/\./|^-|^_ah/|^/') _file_path_negative_2_re = re.compile(r'//|/$') _file_path_negative_3_re = re.compile(r'^ | $|/ | /') def ValidFilename(filename): """Determines if filename is valid. filename must be a valid pathname. - It must contain only letters, numbers, @, _, +, /, $, ., and -. - It must be less than 256 chars. - It must not contain "/./", "/../", or "//". - It must not end in "/". - All spaces must be in the middle of a directory or file name. Args: filename: The filename to validate. Returns: An error string if the filename is invalid. Returns '' if the filename is valid. """ if _file_path_positive_re.match(filename) is None: return 'Invalid character in filename: %s' % filename if _file_path_negative_1_re.search(filename) is not None: return ('Filename cannot contain "." or ".." ' 'or start with "-" or "_ah/": %s' % filename) if _file_path_negative_2_re.search(filename) is not None: return 'Filename cannot have trailing / or contain //: %s' % filename if _file_path_negative_3_re.search(filename) is not None: return 'Any spaces must be in the middle of a filename: %s' % filename return ''
mit
pbrod/scipy
scipy/interpolate/tests/test_rbf.py
14
4604
# Created by John Travers, Robert Hetland, 2007 """ Test functions for rbf module """ from __future__ import division, print_function, absolute_import import numpy as np from numpy.testing import (assert_, assert_array_almost_equal, assert_almost_equal, run_module_suite) from numpy import linspace, sin, random, exp, allclose from scipy.interpolate.rbf import Rbf FUNCTIONS = ('multiquadric', 'inverse multiquadric', 'gaussian', 'cubic', 'quintic', 'thin-plate', 'linear') def check_rbf1d_interpolation(function): # Check that the Rbf function interpolates through the nodes (1D) x = linspace(0,10,9) y = sin(x) rbf = Rbf(x, y, function=function) yi = rbf(x) assert_array_almost_equal(y, yi) assert_almost_equal(rbf(float(x[0])), y[0]) def check_rbf2d_interpolation(function): # Check that the Rbf function interpolates through the nodes (2D). x = random.rand(50,1)*4-2 y = random.rand(50,1)*4-2 z = x*exp(-x**2-1j*y**2) rbf = Rbf(x, y, z, epsilon=2, function=function) zi = rbf(x, y) zi.shape = x.shape assert_array_almost_equal(z, zi) def check_rbf3d_interpolation(function): # Check that the Rbf function interpolates through the nodes (3D). x = random.rand(50, 1)*4 - 2 y = random.rand(50, 1)*4 - 2 z = random.rand(50, 1)*4 - 2 d = x*exp(-x**2 - y**2) rbf = Rbf(x, y, z, d, epsilon=2, function=function) di = rbf(x, y, z) di.shape = x.shape assert_array_almost_equal(di, d) def test_rbf_interpolation(): for function in FUNCTIONS: yield check_rbf1d_interpolation, function yield check_rbf2d_interpolation, function yield check_rbf3d_interpolation, function def check_rbf1d_regularity(function, atol): # Check that the Rbf function approximates a smooth function well away # from the nodes. x = linspace(0, 10, 9) y = sin(x) rbf = Rbf(x, y, function=function) xi = linspace(0, 10, 100) yi = rbf(xi) # import matplotlib.pyplot as plt # plt.figure() # plt.plot(x, y, 'o', xi, sin(xi), ':', xi, yi, '-') # plt.plot(x, y, 'o', xi, yi-sin(xi), ':') # plt.title(function) # plt.show() msg = "abs-diff: %f" % abs(yi - sin(xi)).max() assert_(allclose(yi, sin(xi), atol=atol), msg) def test_rbf_regularity(): tolerances = { 'multiquadric': 0.1, 'inverse multiquadric': 0.15, 'gaussian': 0.15, 'cubic': 0.15, 'quintic': 0.1, 'thin-plate': 0.1, 'linear': 0.2 } for function in FUNCTIONS: yield check_rbf1d_regularity, function, tolerances.get(function, 1e-2) def check_rbf1d_stability(function): # Check that the Rbf function with default epsilon is not subject # to overshoot. Regression for issue #4523. # # Generate some data (fixed random seed hence deterministic) np.random.seed(1234) x = np.linspace(0, 10, 50) z = x + 4.0 * np.random.randn(len(x)) rbf = Rbf(x, z, function=function) xi = np.linspace(0, 10, 1000) yi = rbf(xi) # subtract the linear trend and make sure there no spikes assert_(np.abs(yi-xi).max() / np.abs(z-x).max() < 1.1) def test_rbf_stability(): for function in FUNCTIONS: yield check_rbf1d_stability, function def test_default_construction(): # Check that the Rbf class can be constructed with the default # multiquadric basis function. Regression test for ticket #1228. x = linspace(0,10,9) y = sin(x) rbf = Rbf(x, y) yi = rbf(x) assert_array_almost_equal(y, yi) def test_function_is_callable(): # Check that the Rbf class can be constructed with function=callable. x = linspace(0,10,9) y = sin(x) linfunc = lambda x:x rbf = Rbf(x, y, function=linfunc) yi = rbf(x) assert_array_almost_equal(y, yi) def test_two_arg_function_is_callable(): # Check that the Rbf class can be constructed with a two argument # function=callable. def _func(self, r): return self.epsilon + r x = linspace(0,10,9) y = sin(x) rbf = Rbf(x, y, function=_func) yi = rbf(x) assert_array_almost_equal(y, yi) def test_rbf_epsilon_none(): x = linspace(0, 10, 9) y = sin(x) rbf = Rbf(x, y, epsilon=None) def test_rbf_epsilon_none_collinear(): # Check that collinear points in one dimension doesn't cause an error # due to epsilon = 0 x = [1, 2, 3] y = [4, 4, 4] z = [5, 6, 7] rbf = Rbf(x, y, z, epsilon=None) assert_(rbf.epsilon > 0) if __name__ == "__main__": run_module_suite()
bsd-3-clause
BoltzmannBrain/nupic.research
projects/sequence_prediction/continuous_sequence/plotPerturbResult.py
2
9219
#!/usr/bin/env python # ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2015, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- from matplotlib import pyplot as plt plt.ion() from errorMetrics import * import pandas as pd import numpy as np from pylab import rcParams from plot import ExperimentResult, plotAccuracy, computeSquareDeviation, computeLikelihood from nupic.encoders.scalar import ScalarEncoder as NupicScalarEncoder import plotly.plotly as py rcParams.update({'figure.autolayout': True}) rcParams.update({'figure.facecolor': 'white'}) rcParams.update({'ytick.labelsize': 8}) rcParams.update({'figure.figsize': (12, 6)}) import matplotlib as mpl mpl.rcParams['pdf.fonttype'] = 42 window = 960 figPath = './result/' plt.close('all') # use datetime as x-axis dataSet = 'nyc_taxi' filePath = './data/' + dataSet + '.csv' data = pd.read_csv(filePath, header=0, skiprows=[1, 2], names=['datetime', 'value', 'timeofday', 'dayofweek']) xaxisDatetime = pd.to_datetime(data['datetime']) expResultPerturb = ExperimentResult( 'results/nyc_taxi_experiment_continuous_likelihood_perturb/learning_window'+str(1001.0)+'/') negLLLSTM1000Perturb = expResultPerturb.error truthLSTM1000Perturb = expResultPerturb.truth expResultPerturb = ExperimentResult( 'results/nyc_taxi_experiment_continuous_likelihood_perturb/learning_window'+str(3001.0)+'/') negLLLSTM3000Perturb = expResultPerturb.error truthLSTM3000Perturb = expResultPerturb.truth expResultPerturb = ExperimentResult( 'results/nyc_taxi_experiment_continuous_likelihood_perturb/learning_window'+str(6001.0)+'/') negLLLSTM6000Perturb = expResultPerturb.error truthLSTM6000Perturb = expResultPerturb.truth expResultPerturb = ExperimentResult( 'results/nyc_taxi_experiment_continuous_likelihood_perturb_online/learning_window'+str(100.0)+'/') negLLLSTMonlinePerturb = expResultPerturb.error truth_LSTMonline_perturb = expResultPerturb.truth dataSet = 'nyc_taxi_perturb' tmPredictionPerturb = np.load('./result/' + dataSet + 'TMprediction.npy') tmTruthPerturb = np.load('./result/' + dataSet + 'TMtruth.npy') encoder = NupicScalarEncoder(w=1, minval=0, maxval=40000, n=22, forced=True) filePath = './prediction/' + dataSet + '_TM_pred.csv' predDataTM = pd.read_csv(filePath, header=0, skiprows=[1, 2], names=['step', 'value', 'prediction5']) predDataTMfiveStep = np.array(predDataTM['prediction5']) iteration = predDataTM.index tmPredPerturbTruth = np.roll(predDataTM['value'], -5) tmPredPerturb = np.array(predDataTM['prediction5']) filePath = './prediction/' + dataSet + '_esn_pred.csv' predDataESN = pd.read_csv(filePath, header=0, skiprows=[1, 2], names=['step', 'value', 'prediction5']) esnPredPerturbTruth = np.roll(predDataESN['value'], -5) esnPredPerturb = np.array(predDataESN['prediction5']) negLLTMPerturb = computeLikelihood(tmPredictionPerturb, tmTruthPerturb, encoder) negLLTMPerturb[:6000] = None nrmseTMPerturb = computeSquareDeviation(tmPredPerturb, tmPredPerturbTruth) mapeTMPerturb = np.abs(tmPredPerturb - tmPredPerturbTruth) mapeESNPerturb = np.abs(esnPredPerturb - esnPredPerturbTruth) expResultPerturb1000 = ExperimentResult( 'results/nyc_taxi_experiment_continuous_perturb/learning_window'+str(1001.0)+'/') expResultPerturb3000 = ExperimentResult( 'results/nyc_taxi_experiment_continuous_perturb/learning_window'+str(3001.0)+'/') expResultPerturb6000 = ExperimentResult( 'results/nyc_taxi_experiment_continuous_perturb/learning_window'+str(6001.0)+'/') expResultPerturbOnline = ExperimentResult( 'results/nyc_taxi_experiment_continuous_perturb_online/learning_window'+str(200.0)+'/') nrmseLSTM1000Perturb = expResultPerturb1000.error nrmseLSTM3000Perturb = expResultPerturb3000.error nrmseLSTM6000Perturb = expResultPerturb6000.error nrmseLSTMOnlinePerturb = expResultPerturbOnline.error mapeLSTM1000Perturb = np.abs(expResultPerturb1000.truth - expResultPerturb1000.predictions) mapeLSTM3000Perturb = np.abs(expResultPerturb3000.truth - expResultPerturb3000.predictions) mapeLSTM6000Perturb = np.abs(expResultPerturb6000.truth - expResultPerturb6000.predictions) mapeLSTMOnlinePerturb = np.abs(expResultPerturbOnline.truth - expResultPerturbOnline.predictions) plt.figure() window = 400 plotAccuracy((mapeLSTM1000Perturb, xaxisDatetime), truthLSTM3000Perturb, window=window, errorType='mape', label='LSTM1000', train=expResultPerturb1000.train) plotAccuracy((mapeLSTM3000Perturb, xaxisDatetime), truthLSTM3000Perturb, window=window, errorType='mape', label='LSTM3000') plotAccuracy((mapeLSTM6000Perturb, xaxisDatetime), truthLSTM6000Perturb, window=window, errorType='mape', label='LSTM6000') plotAccuracy((mapeLSTMOnlinePerturb, xaxisDatetime), truth_LSTMonline_perturb, window=window, errorType='mape', label='LSTM-online') plotAccuracy((mapeTMPerturb, xaxisDatetime), tmTruthPerturb, window=window, errorType='mape', label='TM') plt.axvline(xaxisDatetime[13152], color='black', linestyle='--') plt.xlim([xaxisDatetime[13000], xaxisDatetime[15000]]) plt.legend() plt.ylim([.1, .4]) plt.ylabel('MAPE') plt.savefig(figPath + 'example_perturbation_MAPE.pdf') plt.figure() plotAccuracy((negLLLSTM3000Perturb, xaxisDatetime), truthLSTM3000Perturb, window=window, errorType='negLL', label='LSTM3000') # plotAccuracy((negLL_LSTM3000_perturb_baseline, xaxis_datetime), truth_LSTM3000_perturb, window=window, errorType='negLL', label='TM') plotAccuracy((negLLLSTM6000Perturb, xaxisDatetime), truthLSTM6000Perturb, window=window, errorType='negLL', label='LSTM6000') plotAccuracy((negLLLSTMonlinePerturb, xaxisDatetime), truthLSTM6000Perturb, window=window, errorType='negLL', label='LSTM-online') # plotAccuracy((negLL_LSTM6000_perturb_baseline, xaxis_datetime), truth_LSTM3000_perturb, window=window, errorType='negLL', label='TM') plotAccuracy((negLLTMPerturb, xaxisDatetime), tmTruthPerturb, window=window, errorType='negLL', label='TM') plt.axvline(xaxisDatetime[13152], color='black', linestyle='--') plt.xlim([xaxisDatetime[13000], xaxisDatetime[15000]]) plt.legend() plt.ylim([1.2, 2.3]) plt.ylabel('Negative Log-Likelihood') plt.savefig(figPath + 'example_perturbation.pdf') startFrom = 13152 endAt = startFrom+17520 norm_factor = np.nanstd(tmTruthPerturb[startFrom:endAt]) fig, ax = plt.subplots(nrows=1, ncols=3) inds = np.arange(5) width = 0.5 ax1 = ax[0] ax1.bar(inds, [np.sqrt(np.nanmean(nrmseLSTMOnlinePerturb[startFrom:endAt])) / norm_factor, np.sqrt(np.nanmean(nrmseLSTM1000Perturb[startFrom:endAt])) / norm_factor, np.sqrt(np.nanmean(nrmseLSTM3000Perturb[startFrom:endAt])) / norm_factor, np.sqrt(np.nanmean(nrmseLSTM6000Perturb[startFrom:endAt])) / norm_factor, np.sqrt(np.nanmean(nrmseTMPerturb[startFrom:endAt])) / norm_factor], width=width) ax1.set_xticks(inds+width/2) ax1.set_xticklabels( ('LSTMonline', 'LSTM1000', 'LSTM3000', 'LSTM6000', 'TM') ) ax1.set_xlim([inds[0]-width*.6, inds[-1]+width*1.4]) ax1.set_ylabel('NRMSE') ax2 = ax[1] width = 0.5 norm_factor = np.nanmean(np.abs(tmTruthPerturb[startFrom:endAt])) ax2.bar(inds, [np.nanmean(mapeLSTMOnlinePerturb[startFrom:endAt]) / norm_factor, np.nanmean(mapeLSTM1000Perturb[startFrom:endAt]) / norm_factor, np.nanmean(mapeLSTM3000Perturb[startFrom:endAt]) / norm_factor, np.nanmean(mapeLSTM6000Perturb[startFrom:endAt] / norm_factor), np.nanmean(mapeTMPerturb[startFrom:endAt]) / norm_factor], width=width) ax2.set_xticks(inds+width/2) ax2.set_xticklabels( ('LSTMonline', 'LSTM1000', 'LSTM3000', 'LSTM6000', 'TM') ) ax2.set_xlim([inds[0]-width*.6, inds[-1]+width*1.4]) ax2.set_ylabel('MAPE') ax3 = ax[2] width = 0.5 ax3.bar(inds, [np.nanmean(negLLLSTMonlinePerturb[startFrom:endAt]), np.nanmean(negLLLSTM1000Perturb[startFrom:endAt]), np.nanmean(negLLLSTM3000Perturb[startFrom:endAt]), np.nanmean(negLLLSTM6000Perturb[startFrom:endAt]), np.nanmean(negLLTMPerturb[startFrom:])], width=width) ax3.set_xticks(inds+width/2) ax3.set_xticklabels( ('LSTMonline', 'LSTM1000', 'LSTM3000', 'LSTM6000', 'TM') ) ax3.set_xlim([inds[0]-width*.6, inds[-1]+width*1.4]) ax3.set_ylabel('Negative Log-likelihood') plt.savefig(figPath + 'model_performance_after_perturbation.pdf')
agpl-3.0
aetilley/scikit-learn
examples/datasets/plot_iris_dataset.py
283
1928
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= The Iris Dataset ========================================================= This data sets consists of 3 different types of irises' (Setosa, Versicolour, and Virginica) petal and sepal length, stored in a 150x4 numpy.ndarray The rows being the samples and the columns being: Sepal Length, Sepal Width, Petal Length and Petal Width. The below plot uses the first two features. See `here <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ for more information on this dataset. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets from sklearn.decomposition import PCA # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 plt.figure(2, figsize=(8, 6)) plt.clf() # Plot the training points plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) # To getter a better understanding of interaction of the dimensions # plot the first three PCA dimensions fig = plt.figure(1, figsize=(8, 6)) ax = Axes3D(fig, elev=-150, azim=110) X_reduced = PCA(n_components=3).fit_transform(iris.data) ax.scatter(X_reduced[:, 0], X_reduced[:, 1], X_reduced[:, 2], c=Y, cmap=plt.cm.Paired) ax.set_title("First three PCA directions") ax.set_xlabel("1st eigenvector") ax.w_xaxis.set_ticklabels([]) ax.set_ylabel("2nd eigenvector") ax.w_yaxis.set_ticklabels([]) ax.set_zlabel("3rd eigenvector") ax.w_zaxis.set_ticklabels([]) plt.show()
bsd-3-clause
nsdf/nsdf
graphviz/HH_figure/figure_hh_a.py
1
4978
# This script was written by Chaitanya Chintaluri [email protected] # This software is available under GNU GPL3 License. # Uses pygraphviz to illustrate the inner structure of NSDF file format # This is to use in the NSDF paper and to generate machine readable file structure # for the convenience of the user. # Use matplotlib and pygraphviz import re import matplotlib.pyplot as plt import pygraphviz as pgv import webcolors as wc width_box = 1.0 edge_width = 1.0 font_name = 'Arial' font_size = 12.0 #in pts subgrp_shape = 'tab' #http://www.graphviz.org/doc/info/shapes.html#d:style leafnde_shape = 'note' NODE_0 = wc.name_to_hex('white') #root NODE_1 = wc.name_to_hex('skyblue') #data/map/model NODE_2 = wc.name_to_hex('wheat') #uniform/static NODE_3 = wc.name_to_hex('lightgreen') #population NODE_4 = wc.name_to_hex('sandybrown') #parameter NODE_5 = wc.name_to_hex('lightgrey') #oned NODE_COLOR = [NODE_0, NODE_1, NODE_2, NODE_3, NODE_4, NODE_5] def add_child(G, parent_node, child, color=None, end_node=False): if parent_node=='/': child_x = parent_node+child else: child_x = parent_node+'/'+child G.add_node(child_x+'_point', shape='point', width=0.05) child_point_node = G.get_node(child_x+'_point') G.add_edge(parent_node, child_point_node, weight=2, penwidth=edge_width, arrowsize=0.0, arrowhead=None, constraint=False) if end_node: G.add_node(child_x, label=child, width=width_box, shape=leafnde_shape, style='filled', concentrate=True, fillcolor=color, fontname=font_name, fontsize=font_size) else: G.add_node(child_x, label=child, width=width_box, shape=subgrp_shape, style='filled', concentrate=True, fillcolor=color, fontname=font_name, fontsize=font_size) child_node = G.get_node(child_x) G.add_edge(child_point_node, child_node, penwidth=edge_width, weight=3) H = G.subgraph([child_point_node, parent_node], rank='same', constraint=False) H = G.subgraph([child_point_node, child], rank='same') return child_node def gen_figure(dir_list): G = pgv.AGraph(strict=True, directed=True, rankdir='LR', ranksep='0.15', splines=False, nodesep=0.25) G.add_node('/', label='ROOT', shape=subgrp_shape, style='filled', concentrate=True, width=width_box, fontname=font_name, fontsize=font_size, fillcolor=NODE_0) for path in dir_list: if path.startswith('/'): pass else: path = '/'+path #starting with root path_idx = [m.start() for m in re.finditer('/', path)] sub_dirs = path.split('/')[1:] #skip the first for ii,sub_folder in enumerate(sub_dirs): try: dummy = G.get_node(path[:path_idx[ii]]+'/'+sub_folder) #print 'Node already exists:', path[:path_idx[ii]]+'/'+sub_folder pass except KeyError: if ii==0: add_child(G, '/', sub_folder, NODE_COLOR[ii+1]) elif ii==3 : add_child(G, path[:path_idx[ii]], sub_folder, NODE_COLOR[ii+1], True) elif ii==2 and (path.find('map')!=-1 or path.find('model')!=-1) : add_child(G, path[:path_idx[ii]], sub_folder, NODE_COLOR[ii+1], True) else: add_child(G, path[:path_idx[ii]], sub_folder, NODE_COLOR[ii+1]) return G def add_leaf(G, parent, leaf_name, leaf_html): G.add_node(leaf_name, label=leaf_html, shape='box', style='filled', concentrate=True, width=width_box, fontname=font_name, fontsize=font_size, fillcolor=NODE_4) G.add_edge(parent, leaf_name, weight=1, penwidth=edge_width, arrowsize=0.0, style='dashed', arrowhead=None, constraint=True, headport="nw", tailport="ne") G.add_edge(leaf_name, parent, weight=1, penwidth=edge_width, arrowsize=0.0, style='dashed', arrowhead=None, constraint=True, headport="se", tailport="sw") #leaf_point_node = G.get_node(parent+'_point') #H = G.subgraph([leaf_name, parent], rank='max', constraint=False) return G # dir_list = ['/data/event', # '/data/nonuniform', # '/data/static', # '/data/uniform/channel/Ik', # '/data/uniform/compartment/Vm', # '/map/event', # '/map/nonuniform', # '/map/static', # '/map/time', # '/map/uniform/channel', # '/map/uniform/compartment', # '/model/modeltree/compartment/KChannel', # '/model/modeltree/compartment/NaChannel'] dir_list = ['/data/uniform/compartment/Vm', '/map/uniform/compartment', '/model/modeltree/compartment'] G = gen_figure(dir_list) # add_leaf(G, dir_list[0], 'static', static) # add_leaf(G, dir_list[1], 'vm', Vm) # add_leaf(G, dir_list[3], 'im', Im1) # add_leaf(G, dir_list[4], 'spikes', spikes) G.layout('dot') G.draw('figure_hh_a.svg')
gpl-3.0
fernandoandreotti/cinc-challenge2017
deeplearn-approach/train_model.py
1
15717
''' This function function used for training and cross-validating model using. The database is not included in this repo, please download the CinC Challenge database and truncate/pad data into a NxM matrix array, being N the number of recordings and M the window accepted by the network (i.e. 30 seconds). For more information visit: https://github.com/fernandoandreotti/cinc-challenge2017 Referencing this work Andreotti, F., Carr, O., Pimentel, M.A.F., Mahdi, A., & De Vos, M. (2017). Comparing Feature Based Classifiers and Convolutional Neural Networks to Detect Arrhythmia from Short Segments of ECG. In Computing in Cardiology. Rennes (France). -- cinc-challenge2017, version 1.0, Sept 2017 Last updated : 27-09-2017 Released under the GNU General Public License Copyright (C) 2017 Fernando Andreotti, Oliver Carr, Marco A.F. Pimentel, Adam Mahdi, Maarten De Vos University of Oxford, Department of Engineering Science, Institute of Biomedical Engineering [email protected] This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' import matplotlib.pyplot as plt import tensorflow as tf import numpy as np import scipy.io import gc import itertools from sklearn.metrics import confusion_matrix import sys sys.path.insert(0, './preparation') # Keras imports import keras from keras.models import Model from keras.layers import Input, Conv1D, Dense, Flatten, Dropout,MaxPooling1D, Activation, BatchNormalization from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.utils import plot_model from keras import backend as K from keras.callbacks import Callback,warnings ################################################################### ### Callback method for reducing learning rate during training ### ################################################################### class AdvancedLearnignRateScheduler(Callback): ''' # Arguments monitor: quantity to be monitored. patience: number of epochs with no improvement after which training will be stopped. verbose: verbosity mode. mode: one of {auto, min, max}. In 'min' mode, training will stop when the quantity monitored has stopped decreasing; in 'max' mode it will stop when the quantity monitored has stopped increasing. ''' def __init__(self, monitor='val_loss', patience=0,verbose=0, mode='auto', decayRatio=0.1): super(Callback, self).__init__() self.monitor = monitor self.patience = patience self.verbose = verbose self.wait = 0 self.decayRatio = decayRatio if mode not in ['auto', 'min', 'max']: warnings.warn('Mode %s is unknown, ' 'fallback to auto mode.' % (self.mode), RuntimeWarning) mode = 'auto' if mode == 'min': self.monitor_op = np.less self.best = np.Inf elif mode == 'max': self.monitor_op = np.greater self.best = -np.Inf else: if 'acc' in self.monitor: self.monitor_op = np.greater self.best = -np.Inf else: self.monitor_op = np.less self.best = np.Inf def on_epoch_end(self, epoch, logs={}): current = logs.get(self.monitor) current_lr = K.get_value(self.model.optimizer.lr) print("\nLearning rate:", current_lr) if current is None: warnings.warn('AdvancedLearnignRateScheduler' ' requires %s available!' % (self.monitor), RuntimeWarning) if self.monitor_op(current, self.best): self.best = current self.wait = 0 else: if self.wait >= self.patience: if self.verbose > 0: print('\nEpoch %05d: reducing learning rate' % (epoch)) assert hasattr(self.model.optimizer, 'lr'), \ 'Optimizer must have a "lr" attribute.' current_lr = K.get_value(self.model.optimizer.lr) new_lr = current_lr * self.decayRatio K.set_value(self.model.optimizer.lr, new_lr) self.wait = 0 self.wait += 1 ########################################### ## Function to plot confusion matrices ## ######################################### def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') cm = np.around(cm, decimals=3) print(cm) thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') plt.savefig('confusion.eps', format='eps', dpi=1000) ##################################### ## Model definition ## ## ResNet based on Rajpurkar ## ################################## def ResNet_model(WINDOW_SIZE): # Add CNN layers left branch (higher frequencies) # Parameters from paper INPUT_FEAT = 1 OUTPUT_CLASS = 4 # output classes k = 1 # increment every 4th residual block p = True # pool toggle every other residual block (end with 2^8) convfilt = 64 convstr = 1 ksize = 16 poolsize = 2 poolstr = 2 drop = 0.5 # Modelling with Functional API #input1 = Input(shape=(None,1), name='input') input1 = Input(shape=(WINDOW_SIZE,INPUT_FEAT), name='input') ## First convolutional block (conv,BN, relu) x = Conv1D(filters=convfilt, kernel_size=ksize, padding='same', strides=convstr, kernel_initializer='he_normal')(input1) x = BatchNormalization()(x) x = Activation('relu')(x) ## Second convolutional block (conv, BN, relu, dropout, conv) with residual net # Left branch (convolutions) x1 = Conv1D(filters=convfilt, kernel_size=ksize, padding='same', strides=convstr, kernel_initializer='he_normal')(x) x1 = BatchNormalization()(x1) x1 = Activation('relu')(x1) x1 = Dropout(drop)(x1) x1 = Conv1D(filters=convfilt, kernel_size=ksize, padding='same', strides=convstr, kernel_initializer='he_normal')(x1) x1 = MaxPooling1D(pool_size=poolsize, strides=poolstr)(x1) # Right branch, shortcut branch pooling x2 = MaxPooling1D(pool_size=poolsize, strides=poolstr)(x) # Merge both branches x = keras.layers.add([x1, x2]) del x1,x2 ## Main loop p = not p for l in range(15): if (l%4 == 0) and (l>0): # increment k on every fourth residual block k += 1 # increase depth by 1x1 Convolution case dimension shall change xshort = Conv1D(filters=convfilt*k,kernel_size=1)(x) else: xshort = x # Left branch (convolutions) # notice the ordering of the operations has changed x1 = BatchNormalization()(x) x1 = Activation('relu')(x1) x1 = Dropout(drop)(x1) x1 = Conv1D(filters=convfilt*k, kernel_size=ksize, padding='same', strides=convstr, kernel_initializer='he_normal')(x1) x1 = BatchNormalization()(x1) x1 = Activation('relu')(x1) x1 = Dropout(drop)(x1) x1 = Conv1D(filters=convfilt*k, kernel_size=ksize, padding='same', strides=convstr, kernel_initializer='he_normal')(x1) if p: x1 = MaxPooling1D(pool_size=poolsize,strides=poolstr)(x1) # Right branch: shortcut connection if p: x2 = MaxPooling1D(pool_size=poolsize,strides=poolstr)(xshort) else: x2 = xshort # pool or identity # Merging branches x = keras.layers.add([x1, x2]) # change parameters p = not p # toggle pooling # Final bit x = BatchNormalization()(x) x = Activation('relu')(x) x = Flatten()(x) #x = Dense(1000)(x) #x = Dense(1000)(x) out = Dense(OUTPUT_CLASS, activation='softmax')(x) model = Model(inputs=input1, outputs=out) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) #model.summary() #sequential_model_to_ascii_printout(model) plot_model(model, to_file='model.png') return model ########################################################### ## Function to perform K-fold Crossvalidation on model ## ########################################################## def model_eval(X,y): batch =64 epochs = 20 rep = 1 # K fold procedure can be repeated multiple times Kfold = 5 Ntrain = 8528 # number of recordings on training set Nsamp = int(Ntrain/Kfold) # number of recordings to take as validation # Need to add dimension for training X = np.expand_dims(X, axis=2) classes = ['A', 'N', 'O', '~'] Nclass = len(classes) cvconfusion = np.zeros((Nclass,Nclass,Kfold*rep)) cvscores = [] counter = 0 # repetitions of cross validation for r in range(rep): print("Rep %d"%(r+1)) # cross validation loop for k in range(Kfold): print("Cross-validation run %d"%(k+1)) # Callbacks definition callbacks = [ # Early stopping definition EarlyStopping(monitor='val_loss', patience=3, verbose=1), # Decrease learning rate by 0.1 factor AdvancedLearnignRateScheduler(monitor='val_loss', patience=1,verbose=1, mode='auto', decayRatio=0.1), # Saving best model ModelCheckpoint('weights-best_k{}_r{}.hdf5'.format(k,r), monitor='val_loss', save_best_only=True, verbose=1), ] # Load model model = ResNet_model(WINDOW_SIZE) # split train and validation sets idxval = np.random.choice(Ntrain, Nsamp,replace=False) idxtrain = np.invert(np.in1d(range(X_train.shape[0]),idxval)) ytrain = y[np.asarray(idxtrain),:] Xtrain = X[np.asarray(idxtrain),:,:] Xval = X[np.asarray(idxval),:,:] yval = y[np.asarray(idxval),:] # Train model model.fit(Xtrain, ytrain, validation_data=(Xval, yval), epochs=epochs, batch_size=batch,callbacks=callbacks) # Evaluate best trained model model.load_weights('weights-best_k{}_r{}.hdf5'.format(k,r)) ypred = model.predict(Xval) ypred = np.argmax(ypred,axis=1) ytrue = np.argmax(yval,axis=1) cvconfusion[:,:,counter] = confusion_matrix(ytrue, ypred) F1 = np.zeros((4,1)) for i in range(4): F1[i]=2*cvconfusion[i,i,counter]/(np.sum(cvconfusion[i,:,counter])+np.sum(cvconfusion[:,i,counter])) print("F1 measure for {} rhythm: {:1.4f}".format(classes[i],F1[i,0])) cvscores.append(np.mean(F1)* 100) print("Overall F1 measure: {:1.4f}".format(np.mean(F1))) K.clear_session() gc.collect() config = tf.ConfigProto() config.gpu_options.allow_growth=True sess = tf.Session(config=config) K.set_session(sess) counter += 1 # Saving cross validation results scipy.io.savemat('xval_results.mat',mdict={'cvconfusion': cvconfusion.tolist()}) return model ########################### ## Function to load data ## ########################### def loaddata(WINDOW_SIZE): ''' Load training/test data into workspace This function assumes you have downloaded and padded/truncated the training set into a local file named "trainingset.mat". This file should contain the following structures: - trainset: NxM matrix of N ECG segments with length M - traintarget: Nx4 matrix of coded labels where each column contains one in case it matches ['A', 'N', 'O', '~']. ''' print("Loading data training set") matfile = scipy.io.loadmat('trainingset.mat') X = matfile['trainset'] y = matfile['traintarget'] # Merging datasets # Case other sets are available, load them then concatenate #y = np.concatenate((traintarget,augtarget),axis=0) #X = np.concatenate((trainset,augset),axis=0) X = X[:,0:WINDOW_SIZE] return (X, y) ##################### # Main function ## ################### config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.allow_growth = True sess = tf.Session(config=config) seed = 7 np.random.seed(seed) # Parameters FS = 300 WINDOW_SIZE = 30*FS # padding window for CNN # Loading data (X_train,y_train) = loaddata(WINDOW_SIZE) # Training model model = model_eval(X_train,y_train) # Outputing results of cross validation matfile = scipy.io.loadmat('xval_results.mat') cv = matfile['cvconfusion'] F1mean = np.zeros(cv.shape[2]) for j in range(cv.shape[2]): classes = ['A', 'N', 'O', '~'] F1 = np.zeros((4,1)) for i in range(4): F1[i]=2*cv[i,i,j]/(np.sum(cv[i,:,j])+np.sum(cv[:,i,j])) print("F1 measure for {} rhythm: {:1.4f}".format(classes[i],F1[i,0])) F1mean[j] = np.mean(F1) print("mean F1 measure for: {:1.4f}".format(F1mean[j])) print("Overall F1 : {:1.4f}".format(np.mean(F1mean))) # Plotting confusion matrix cvsum = np.sum(cv,axis=2) for i in range(4): F1[i]=2*cvsum[i,i]/(np.sum(cvsum[i,:])+np.sum(cvsum[:,i])) print("F1 measure for {} rhythm: {:1.4f}".format(classes[i],F1[i,0])) F1mean = np.mean(F1) print("mean F1 measure for: {:1.4f}".format(F1mean)) plot_confusion_matrix(cvsum, classes,normalize=True,title='Confusion matrix')
gpl-3.0
ofgulban/scikit-image
doc/ext/sphinx_gallery/notebook.py
6
3565
# -*- coding: utf-8 -*- r""" ============================ Parser for Jupyter notebooks ============================ Class that holds the Jupyter notebook information """ # Author: Óscar Nájera # License: 3-clause BSD from __future__ import division, absolute_import, print_function import json import os import re import sys def ipy_notebook_skeleton(): """Returns a dictionary with the elements of a Jupyter notebook""" py_version = sys.version_info notebook_skeleton = { "cells": [], "metadata": { "kernelspec": { "display_name": "Python " + str(py_version[0]), "language": "python", "name": "python" + str(py_version[0]) }, "language_info": { "codemirror_mode": { "name": "ipython", "version": py_version[0] }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython" + str(py_version[0]), "version": '{0}.{1}.{2}'.format(*sys.version_info[:3]) } }, "nbformat": 4, "nbformat_minor": 0 } return notebook_skeleton def rst2md(text): """Converts the RST text from the examples docstrigs and comments into markdown text for the Jupyter notebooks""" top_heading = re.compile(r'^=+$\s^([\w\s-]+)^=+$', flags=re.M) text = re.sub(top_heading, r'# \1', text) math_eq = re.compile(r'^\.\. math::((?:.+)?(?:\n+^ .+)*)', flags=re.M) text = re.sub(math_eq, lambda match: r'$${0}$$'.format(match.group(1).strip()), text) inline_math = re.compile(r':math:`(.+)`') text = re.sub(inline_math, r'$\1$', text) return text class Notebook(object): """Jupyter notebook object Constructs the file cell-by-cell and writes it at the end""" def __init__(self, file_name, target_dir): """Declare the skeleton of the notebook Parameters ---------- file_name : str original script file name, .py extension will be renamed target_dir: str directory where notebook file is to be saved """ self.file_name = file_name.replace('.py', '.ipynb') self.write_file = os.path.join(target_dir, self.file_name) self.work_notebook = ipy_notebook_skeleton() self.add_code_cell("%matplotlib inline") def add_code_cell(self, code): """Add a code cell to the notebook Parameters ---------- code : str Cell content """ code_cell = { "cell_type": "code", "execution_count": None, "metadata": {"collapsed": False}, "outputs": [], "source": [code.strip()] } self.work_notebook["cells"].append(code_cell) def add_markdown_cell(self, text): """Add a markdown cell to the notebook Parameters ---------- code : str Cell content """ markdown_cell = { "cell_type": "markdown", "metadata": {}, "source": [rst2md(text)] } self.work_notebook["cells"].append(markdown_cell) def save_file(self): """Saves the notebook to a file""" with open(self.write_file, 'w') as out_nb: json.dump(self.work_notebook, out_nb, indent=2)
bsd-3-clause
guschmue/tensorflow
tensorflow/python/estimator/inputs/inputs.py
94
1290
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utility methods to create simple input_fns.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=unused-import,line-too-long from tensorflow.python.estimator.inputs.numpy_io import numpy_input_fn from tensorflow.python.estimator.inputs.pandas_io import pandas_input_fn from tensorflow.python.util.all_util import remove_undocumented # pylint: enable=unused-import,line-too-long _allowed_symbols = [ 'numpy_input_fn', 'pandas_input_fn' ] remove_undocumented(__name__, allowed_exception_list=_allowed_symbols)
apache-2.0
jameshensman/GPy
GPy/plotting/matplot_dep/img_plots.py
15
2159
# Copyright (c) 2012, GPy authors (see AUTHORS.txt). # Licensed under the BSD 3-clause license (see LICENSE.txt) """ The module contains the tools for ploting 2D image visualizations """ import numpy as np from matplotlib.cm import jet width_max = 15 height_max = 12 def _calculateFigureSize(x_size, y_size, fig_ncols, fig_nrows, pad): width = (x_size*fig_ncols+pad*(fig_ncols-1)) height = (y_size*fig_nrows+pad*(fig_nrows-1)) if width > float(height)/height_max*width_max: return (width_max, float(width_max)/width*height) else: return (float(height_max)/height*width, height_max) def plot_2D_images(figure, arr, symmetric=False, pad=None, zoom=None, mode=None, interpolation='nearest'): ax = figure.add_subplot(111) if len(arr.shape)==2: arr = arr.reshape(*((1,)+arr.shape)) fig_num = arr.shape[0] y_size = arr.shape[1] x_size = arr.shape[2] fig_ncols = int(np.ceil(np.sqrt(fig_num))) fig_nrows = int(np.ceil((float)(fig_num)/fig_ncols)) if pad==None: pad = max(int(min(y_size,x_size)/10),1) figsize = _calculateFigureSize(x_size, y_size, fig_ncols, fig_nrows, pad) #figure.set_size_inches(figsize,forward=True) #figure.subplots_adjust(left=0.05, bottom=0.05, right=0.95, top=0.95) if symmetric: # symmetric around zero: fix zero as the middle color mval = max(abs(arr.max()),abs(arr.min())) arr = arr/(2.*mval)+0.5 else: minval,maxval = arr.min(),arr.max() arr = (arr-minval)/(maxval-minval) if mode=='L': arr_color = np.empty(arr.shape+(3,)) arr_color[:] = arr.reshape(*(arr.shape+(1,))) elif mode==None or mode=='jet': arr_color = jet(arr) buf = np.ones((y_size*fig_nrows+pad*(fig_nrows-1), x_size*fig_ncols+pad*(fig_ncols-1), 3),dtype=arr.dtype) for y in range(fig_nrows): for x in range(fig_ncols): if y*fig_ncols+x<fig_num: buf[y*y_size+y*pad:(y+1)*y_size+y*pad, x*x_size+x*pad:(x+1)*x_size+x*pad] = arr_color[y*fig_ncols+x,:,:,:3] img_plot = ax.imshow(buf, interpolation=interpolation) ax.axis('off')
bsd-3-clause
woozzu/tf_tutorials
03_YourCNN_MNIST_starter.py
1
3220
''' Build your own deep network using TensorFlow library. This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/) Code references: https://github.com/shouvikmani/Tensorflow-Deep-Learning-Tutorial/blob/master/tutorial.ipynb https://github.com/aymericdamien/TensorFlow-Examples/ The source code modified modified by S.W. Oh. ''' from __future__ import print_function import tensorflow as tf import numpy as np from matplotlib import pyplot as plt # import Dense (fully-connected) layer and Convolution layer from util.layer import Dense, Conv2D, BatchNorm # Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("./data/", one_hot=True) # Parameters learning_rate = 0.01 training_epochs = 5 batch_size = 10 display_step = 1 ###### Build graph ###################################################### # Place holders x = tf.placeholder(tf.float32, [None,28,28,1]) # mnist data image of shape [28,28,1] y = tf.placeholder(tf.float32, [None,10]) # 0-9 digits recognition => 10 classes is_train = tf.placeholder(tf.bool, shape=[]) # Train flag ###################################################################### # your code here !! # Layer Usages: # h = Conv2D(h, [3,3,1,8], [1,1,1,1], 'SAME', 'conv1') # h = BatchNorm(h, is_train, decay=0.9, name='bn1') # h = tf.nn.relu(h) # h = tf.nn.max_pool(h, [1,2,2,1], [1,2,2,1], 'SAME') # h = Dense(h, [8,10], 'fc1') ####################################################################### pred = tf.nn.softmax(logit) # Softmax # Directly compute loss from logit (to ensure stability and avoid overflow) cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logit, labels=y)) # Define optimizer and train_op train_op = tf.train.AdamOptimizer(learning_rate).minimize(cost) ######################################################################### ###### Start Training ################################################### # Open a Session with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # Training cycle for epoch in range(training_epochs): avg_cost = 0. total_batch = int(mnist.train.num_examples/batch_size) # Loop over all batches for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) batch_xs = np.reshape(batch_xs, [batch_size,28,28,1]) # Run optimization op (backprop) and cost op (to get loss value) _, c = sess.run([train_op, cost], feed_dict={x: batch_xs, y: batch_ys, is_train: True}) # Compute average loss avg_cost += c / total_batch # Display logs per epoch step if (epoch+1) % display_step == 0: print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)) print("Optimization Finished!") # Test model correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) # Calculate accuracy accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print("Accuracy:", accuracy.eval({x: np.reshape(mnist.test.images, [-1,28,28,1]), y: mnist.test.labels, is_train: False}))
mit
Experiments-Data-Base-Managment/data-base-managment
view/Screen_Result_Experiment.py
1
5238
#!/usr/bin/python # -*- coding: iso-8859-15 -*- import sys import matplotlib.pyplot as plt sys.path.append("../") from controller.Controller_Result_Experiment import ControllerScreenResultExperiment from Window import Main, Gtk, GdkPixbuf controller = ControllerScreenResultExperiment() class WindowResultExperiment: def __init__(self, path, set_results, controller_screen_new_experiment): self.set_results = set_results self.window = Main() self.window.set_handler(controller.get_handler()) self.window.set_file_ui(path) self.window.connect_handles_ui() controller.set_screen_result_experiment(self) controller.set_controller_screen_new_experiment(controller_screen_new_experiment) self.window.set_name_object("result_window") self.set_tables(self.window.get_object_from_window("tabela_resultados"),self.window.get_object_from_window("liststore_result_experiment")) self.set_tree_views(self.window.get_object_from_window("tree_view"),self.window.get_object_from_window("tree_view2")) self.create_columns() self.index = 0 self.axis_x = [] self.axis_y = [] #set_results.print_set_results() while (self.index < len(self.set_results.get_measurements())): self.times_and_volts = self.set_results.get_specific_measurement(self.index).split('|') for i in range(0,len(self.times_and_volts)-1): self.times_and_volts[i] = self.times_and_volts[i].split(';') self.insert_data_table(self.times_and_volts[i][0], self.times_and_volts[i][1]) ''' add measurements datas to vector ''' self.axis_x.append(self.times_and_volts[i][0]) self.axis_y.append(self.times_and_volts[i][1]) self.index += 1 ''' Create graphics from collected data, save it and show him in result screen ''' plt.plot(self.axis_x,self.axis_y) plt.xlabel('Tempo') plt.ylabel('Tensao') plt.title('Processo de Carga do Capcitor') plt.grid(True) #plt.tight_layout() plt.savefig("curva_capacitor.jpeg", dpi = 800) graphic = self.window.get_object_from_window("graphic") #make picture self.pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_scale(filename="curva_capacitor.jpeg", width=700, height=500, preserve_aspect_ratio=True) graphic.set_from_pixbuf(self.pixbuf) #graphic.set_from_file("curva_capacitor.jpeg") controller.fill_experiments_data() controller.fill_table_results() def show_window(self): self.window.start_window() Gtk.main() ''' Os métodos a partir deste ponto do código lidam com a estrutura de tabela apresentada na tela de resultados. ''' def set_tables(self, table_1, table_2): self.table_1 = table_1 self.table_2 = table_2 def set_tree_views(self, tree_view_1, tree_view_2): self.tree_view_1 = tree_view_1 self.tree_view_2 = tree_view_2 ''' Método que cria o número de colunas da tabela de resultados e define o tipo de dado ''' def create_columns(self): cell_tree_view_1 = Gtk.CellRendererText() self.tree_view_1.get_column(0).pack_start(cell_tree_view_1, False) self.tree_view_1.get_column(0).add_attribute(cell_tree_view_1, "text", 0) self.tree_view_1.get_column(1).pack_start(cell_tree_view_1, False) self.tree_view_1.get_column(1).add_attribute(cell_tree_view_1, "text", 1) cell_tree_view_2 = Gtk.CellRendererText() self.tree_view_2.get_column(0).pack_start(cell_tree_view_2, False) self.tree_view_2.get_column(0).add_attribute(cell_tree_view_2, "text", 0) self.tree_view_2.get_column(1).pack_start(cell_tree_view_2, False) self.tree_view_2.get_column(1).add_attribute(cell_tree_view_2, "text", 1) self.tree_view_2.get_column(2).pack_start(cell_tree_view_2, False) self.tree_view_2.get_column(2).add_attribute(cell_tree_view_2, "text", 2) self.tree_view_2.get_column(3).pack_start(cell_tree_view_2, False) self.tree_view_2.get_column(3).add_attribute(cell_tree_view_2, "text", 3) self.tree_view_2.get_column(4).pack_start(cell_tree_view_2, False) self.tree_view_2.get_column(4).add_attribute(cell_tree_view_2, "text", 4) self.tree_view_2.get_column(5).pack_start(cell_tree_view_2, False) self.tree_view_2.get_column(5).add_attribute(cell_tree_view_2, "text", 5) self.tree_view_2.get_column(6).pack_start(cell_tree_view_2, False) self.tree_view_2.get_column(6).add_attribute(cell_tree_view_2, "text", 6) self.tree_view_2.get_column(7).pack_start(cell_tree_view_2, False) self.tree_view_2.get_column(7).add_attribute(cell_tree_view_2, "text", 7) self.tree_view_2.get_column(8).pack_start(cell_tree_view_2, False) self.tree_view_2.get_column(8).add_attribute(cell_tree_view_2, "text", 8) def insert_data_table(self, volt, seconds): iter_tree = self.table_1.prepend([volt,seconds]) def set_value_volt(self, volt): self.volt = volt def set_value_second(self, seconds): self.second = seconds def get_control(self): return self.controller def get_table_results(self): return self.table_2 def get_set_results(self): return self.set_results ''' Método que retorna o objeto window ''' def get_window(self): return self.window #windowResult = WindowResultExperiment("../view/xml_windows/result_experiment.glade") #windowResult.show_window()
gpl-3.0
probml/pyprobml
scripts/vqDemo.py
1
1121
# Vector Quantization Demo # Author: Animesh Gupta # Use racoon face image # https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.face.html import numpy as np import scipy as sp import matplotlib.pyplot as plt from sklearn import cluster try: # SciPy >= 0.16 have face in misc from scipy.misc import face face = face(gray=True) except ImportError: face = sp.face(gray=True) n_clusters = [2,4] np.random.seed(0) X = face.reshape((-1, 1)) # We need an (n_sample, n_feature) array for n_cluster in n_clusters: k_means = cluster.KMeans(n_clusters=n_cluster, n_init=4) k_means.fit(X) values = k_means.cluster_centers_.squeeze() labels = k_means.labels_ # create an array from labels and values face_compressed = np.choose(labels, values) face_compressed.shape = face.shape vmin = face.min() vmax = face.max() # compressed face plt.figure(figsize=(4,4)) plt.title(f'K = {n_cluster}') plt.imshow(face_compressed, cmap=plt.cm.gray, vmin=vmin, vmax=vmax) plt.savefig(f"../figures/vectorQuantization_{n_cluster}.pdf", dpi=300)
mit