repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
dhruv13J/scikit-learn
sklearn/tests/test_multiclass.py
72
24581
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_greater from sklearn.multiclass import OneVsRestClassifier from sklearn.multiclass import OneVsOneClassifier from sklearn.multiclass import OutputCodeClassifier from sklearn.multiclass import fit_ovr from sklearn.multiclass import fit_ovo from sklearn.multiclass import fit_ecoc from sklearn.multiclass import predict_ovr from sklearn.multiclass import predict_ovo from sklearn.multiclass import predict_ecoc from sklearn.multiclass import predict_proba_ovr from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.preprocessing import LabelBinarizer from sklearn.svm import LinearSVC, SVC from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import (LinearRegression, Lasso, ElasticNet, Ridge, Perceptron, LogisticRegression) from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.grid_search import GridSearchCV from sklearn.pipeline import Pipeline from sklearn import svm from sklearn import datasets from sklearn.externals.six.moves import zip iris = datasets.load_iris() rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] n_classes = 3 def test_ovr_exceptions(): ovr = OneVsRestClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ovr.predict, []) with ignore_warnings(): assert_raises(ValueError, predict_ovr, [LinearSVC(), MultinomialNB()], LabelBinarizer(), []) # Fail on multioutput data assert_raises(ValueError, OneVsRestClassifier(MultinomialNB()).fit, np.array([[1, 0], [0, 1]]), np.array([[1, 2], [3, 1]])) assert_raises(ValueError, OneVsRestClassifier(MultinomialNB()).fit, np.array([[1, 0], [0, 1]]), np.array([[1.5, 2.4], [3.1, 0.8]])) def test_ovr_fit_predict(): # A classifier which implements decision_function. ovr = OneVsRestClassifier(LinearSVC(random_state=0)) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovr.estimators_), n_classes) clf = LinearSVC(random_state=0) pred2 = clf.fit(iris.data, iris.target).predict(iris.data) assert_equal(np.mean(iris.target == pred), np.mean(iris.target == pred2)) # A classifier which implements predict_proba. ovr = OneVsRestClassifier(MultinomialNB()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_greater(np.mean(iris.target == pred), 0.65) def test_ovr_ovo_regressor(): # test that ovr and ovo work on regressors which don't have a decision_function ovr = OneVsRestClassifier(DecisionTreeRegressor()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovr.estimators_), n_classes) assert_array_equal(np.unique(pred), [0, 1, 2]) # we are doing something sensible assert_greater(np.mean(pred == iris.target), .9) ovr = OneVsOneClassifier(DecisionTreeRegressor()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovr.estimators_), n_classes * (n_classes - 1) / 2) assert_array_equal(np.unique(pred), [0, 1, 2]) # we are doing something sensible assert_greater(np.mean(pred == iris.target), .9) def test_ovr_fit_predict_sparse(): for sparse in [sp.csr_matrix, sp.csc_matrix, sp.coo_matrix, sp.dok_matrix, sp.lil_matrix]: base_clf = MultinomialNB(alpha=1) X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=True, return_indicator=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) Y_pred = clf.predict(X_test) clf_sprs = OneVsRestClassifier(base_clf).fit(X_train, sparse(Y_train)) Y_pred_sprs = clf_sprs.predict(X_test) assert_true(clf.multilabel_) assert_true(sp.issparse(Y_pred_sprs)) assert_array_equal(Y_pred_sprs.toarray(), Y_pred) # Test predict_proba Y_proba = clf_sprs.predict_proba(X_test) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = Y_proba > .5 assert_array_equal(pred, Y_pred_sprs.toarray()) # Test decision_function clf_sprs = OneVsRestClassifier(svm.SVC()).fit(X_train, sparse(Y_train)) dec_pred = (clf_sprs.decision_function(X_test) > 0).astype(int) assert_array_equal(dec_pred, clf_sprs.predict(X_test).toarray()) def test_ovr_always_present(): # Test that ovr works with classes that are always present or absent. # Note: tests is the case where _ConstantPredictor is utilised X = np.ones((10, 2)) X[:5, :] = 0 # Build an indicator matrix where two features are always on. # As list of lists, it would be: [[int(i >= 5), 2, 3] for i in range(10)] y = np.zeros((10, 3)) y[5:, 0] = 1 y[:, 1] = 1 y[:, 2] = 1 ovr = OneVsRestClassifier(LogisticRegression()) assert_warns(UserWarning, ovr.fit, X, y) y_pred = ovr.predict(X) assert_array_equal(np.array(y_pred), np.array(y)) y_pred = ovr.decision_function(X) assert_equal(np.unique(y_pred[:, -2:]), 1) y_pred = ovr.predict_proba(X) assert_array_equal(y_pred[:, -1], np.ones(X.shape[0])) # y has a constantly absent label y = np.zeros((10, 2)) y[5:, 0] = 1 # variable label ovr = OneVsRestClassifier(LogisticRegression()) assert_warns(UserWarning, ovr.fit, X, y) y_pred = ovr.predict_proba(X) assert_array_equal(y_pred[:, -1], np.zeros(X.shape[0])) def test_ovr_multiclass(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]]) y = ["eggs", "spam", "ham", "eggs", "ham"] Y = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 0]]) classes = set("ham eggs spam".split()) for base_clf in (MultinomialNB(), LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet()): clf = OneVsRestClassifier(base_clf).fit(X, y) assert_equal(set(clf.classes_), classes) y_pred = clf.predict(np.array([[0, 0, 4]]))[0] assert_equal(set(y_pred), set("eggs")) # test input as label indicator matrix clf = OneVsRestClassifier(base_clf).fit(X, Y) y_pred = clf.predict([[0, 0, 4]])[0] assert_array_equal(y_pred, [0, 0, 1]) def test_ovr_binary(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]]) y = ["eggs", "spam", "spam", "eggs", "spam"] Y = np.array([[0, 1, 1, 0, 1]]).T classes = set("eggs spam".split()) def conduct_test(base_clf, test_predict_proba=False): clf = OneVsRestClassifier(base_clf).fit(X, y) assert_equal(set(clf.classes_), classes) y_pred = clf.predict(np.array([[0, 0, 4]]))[0] assert_equal(set(y_pred), set("eggs")) if test_predict_proba: X_test = np.array([[0, 0, 4]]) probabilities = clf.predict_proba(X_test) assert_equal(2, len(probabilities[0])) assert_equal(clf.classes_[np.argmax(probabilities, axis=1)], clf.predict(X_test)) # test input as label indicator matrix clf = OneVsRestClassifier(base_clf).fit(X, Y) y_pred = clf.predict([[3, 0, 0]])[0] assert_equal(y_pred, 1) for base_clf in (LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet()): conduct_test(base_clf) for base_clf in (MultinomialNB(), SVC(probability=True), LogisticRegression()): conduct_test(base_clf, test_predict_proba=True) @ignore_warnings def test_ovr_multilabel(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 4, 5], [0, 5, 0], [3, 3, 3], [4, 0, 6], [6, 0, 0]]) y = [["spam", "eggs"], ["spam"], ["ham", "eggs", "spam"], ["ham", "eggs"], ["ham"]] # y = [[1, 2], [1], [0, 1, 2], [0, 2], [0]] Y = np.array([[0, 1, 1], [0, 1, 0], [1, 1, 1], [1, 0, 1], [1, 0, 0]]) classes = set("ham eggs spam".split()) for base_clf in (MultinomialNB(), LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet(), Lasso(alpha=0.5)): # test input as lists of tuples clf = assert_warns(DeprecationWarning, OneVsRestClassifier(base_clf).fit, X, y) assert_equal(set(clf.classes_), classes) y_pred = clf.predict([[0, 4, 4]])[0] assert_equal(set(y_pred), set(["spam", "eggs"])) assert_true(clf.multilabel_) # test input as label indicator matrix clf = OneVsRestClassifier(base_clf).fit(X, Y) y_pred = clf.predict([[0, 4, 4]])[0] assert_array_equal(y_pred, [0, 1, 1]) assert_true(clf.multilabel_) def test_ovr_fit_predict_svc(): ovr = OneVsRestClassifier(svm.SVC()) ovr.fit(iris.data, iris.target) assert_equal(len(ovr.estimators_), 3) assert_greater(ovr.score(iris.data, iris.target), .9) def test_ovr_multilabel_dataset(): base_clf = MultinomialNB(alpha=1) for au, prec, recall in zip((True, False), (0.51, 0.66), (0.51, 0.80)): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=au, return_indicator=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test, Y_test = X[80:], Y[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) Y_pred = clf.predict(X_test) assert_true(clf.multilabel_) assert_almost_equal(precision_score(Y_test, Y_pred, average="micro"), prec, decimal=2) assert_almost_equal(recall_score(Y_test, Y_pred, average="micro"), recall, decimal=2) def test_ovr_multilabel_predict_proba(): base_clf = MultinomialNB(alpha=1) for au in (False, True): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=au, return_indicator=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) # decision function only estimator. Fails in current implementation. decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) # Estimator with predict_proba disabled, depending on parameters. decision_only = OneVsRestClassifier(svm.SVC(probability=False)) decision_only.fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) Y_pred = clf.predict(X_test) Y_proba = clf.predict_proba(X_test) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = Y_proba > .5 assert_array_equal(pred, Y_pred) def test_ovr_single_label_predict_proba(): base_clf = MultinomialNB(alpha=1) X, Y = iris.data, iris.target X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) # decision function only estimator. Fails in current implementation. decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) Y_pred = clf.predict(X_test) Y_proba = clf.predict_proba(X_test) assert_almost_equal(Y_proba.sum(axis=1), 1.0) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = np.array([l.argmax() for l in Y_proba]) assert_false((pred - Y_pred).any()) def test_ovr_multilabel_decision_function(): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=True, return_indicator=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train) assert_array_equal((clf.decision_function(X_test) > 0).astype(int), clf.predict(X_test)) def test_ovr_single_label_decision_function(): X, Y = datasets.make_classification(n_samples=100, n_features=20, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train) assert_array_equal(clf.decision_function(X_test).ravel() > 0, clf.predict(X_test)) def test_ovr_gridsearch(): ovr = OneVsRestClassifier(LinearSVC(random_state=0)) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ovr, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs) def test_ovr_pipeline(): # Test with pipeline of length one # This test is needed because the multiclass estimators may fail to detect # the presence of predict_proba or decision_function. clf = Pipeline([("tree", DecisionTreeClassifier())]) ovr_pipe = OneVsRestClassifier(clf) ovr_pipe.fit(iris.data, iris.target) ovr = OneVsRestClassifier(DecisionTreeClassifier()) ovr.fit(iris.data, iris.target) assert_array_equal(ovr.predict(iris.data), ovr_pipe.predict(iris.data)) def test_ovr_coef_(): for base_classifier in [SVC(kernel='linear', random_state=0), LinearSVC(random_state=0)]: # SVC has sparse coef with sparse input data ovr = OneVsRestClassifier(base_classifier) for X in [iris.data, sp.csr_matrix(iris.data)]: # test with dense and sparse coef ovr.fit(X, iris.target) shape = ovr.coef_.shape assert_equal(shape[0], n_classes) assert_equal(shape[1], iris.data.shape[1]) # don't densify sparse coefficients assert_equal(sp.issparse(ovr.estimators_[0].coef_), sp.issparse(ovr.coef_)) def test_ovr_coef_exceptions(): # Not fitted exception! ovr = OneVsRestClassifier(LinearSVC(random_state=0)) # lambda is needed because we don't want coef_ to be evaluated right away assert_raises(ValueError, lambda x: ovr.coef_, None) # Doesn't have coef_ exception! ovr = OneVsRestClassifier(DecisionTreeClassifier()) ovr.fit(iris.data, iris.target) assert_raises(AttributeError, lambda x: ovr.coef_, None) def test_ovo_exceptions(): ovo = OneVsOneClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ovo.predict, []) def test_ovo_fit_on_list(): # Test that OneVsOne fitting works with a list of targets and yields the # same output as predict from an array ovo = OneVsOneClassifier(LinearSVC(random_state=0)) prediction_from_array = ovo.fit(iris.data, iris.target).predict(iris.data) prediction_from_list = ovo.fit(iris.data, list(iris.target)).predict(iris.data) assert_array_equal(prediction_from_array, prediction_from_list) def test_ovo_fit_predict(): # A classifier which implements decision_function. ovo = OneVsOneClassifier(LinearSVC(random_state=0)) ovo.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2) # A classifier which implements predict_proba. ovo = OneVsOneClassifier(MultinomialNB()) ovo.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2) def test_ovo_decision_function(): n_samples = iris.data.shape[0] ovo_clf = OneVsOneClassifier(LinearSVC(random_state=0)) ovo_clf.fit(iris.data, iris.target) decisions = ovo_clf.decision_function(iris.data) assert_equal(decisions.shape, (n_samples, n_classes)) assert_array_equal(decisions.argmax(axis=1), ovo_clf.predict(iris.data)) # Compute the votes votes = np.zeros((n_samples, n_classes)) k = 0 for i in range(n_classes): for j in range(i + 1, n_classes): pred = ovo_clf.estimators_[k].predict(iris.data) votes[pred == 0, i] += 1 votes[pred == 1, j] += 1 k += 1 # Extract votes and verify assert_array_equal(votes, np.round(decisions)) for class_idx in range(n_classes): # For each sample and each class, there only 3 possible vote levels # because they are only 3 distinct class pairs thus 3 distinct # binary classifiers. # Therefore, sorting predictions based on votes would yield # mostly tied predictions: assert_true(set(votes[:, class_idx]).issubset(set([0., 1., 2.]))) # The OVO decision function on the other hand is able to resolve # most of the ties on this data as it combines both the vote counts # and the aggregated confidence levels of the binary classifiers # to compute the aggregate decision function. The iris dataset # has 150 samples with a couple of duplicates. The OvO decisions # can resolve most of the ties: assert_greater(len(np.unique(decisions[:, class_idx])), 146) def test_ovo_gridsearch(): ovo = OneVsOneClassifier(LinearSVC(random_state=0)) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ovo, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs) def test_ovo_ties(): # Test that ties are broken using the decision function, # not defaulting to the smallest label X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]]) y = np.array([2, 0, 1, 2]) multi_clf = OneVsOneClassifier(Perceptron(shuffle=False)) ovo_prediction = multi_clf.fit(X, y).predict(X) ovo_decision = multi_clf.decision_function(X) # Classifiers are in order 0-1, 0-2, 1-2 # Use decision_function to compute the votes and the normalized # sum_of_confidences, which is used to disambiguate when there is a tie in # votes. votes = np.round(ovo_decision) normalized_confidences = ovo_decision - votes # For the first point, there is one vote per class assert_array_equal(votes[0, :], 1) # For the rest, there is no tie and the prediction is the argmax assert_array_equal(np.argmax(votes[1:], axis=1), ovo_prediction[1:]) # For the tie, the prediction is the class with the highest score assert_equal(ovo_prediction[0], normalized_confidences[0].argmax()) def test_ovo_ties2(): # test that ties can not only be won by the first two labels X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]]) y_ref = np.array([2, 0, 1, 2]) # cycle through labels so that each label wins once for i in range(3): y = (y_ref + i) % 3 multi_clf = OneVsOneClassifier(Perceptron(shuffle=False)) ovo_prediction = multi_clf.fit(X, y).predict(X) assert_equal(ovo_prediction[0], i % 3) def test_ovo_string_y(): # Test that the OvO doesn't mess up the encoding of string labels X = np.eye(4) y = np.array(['a', 'b', 'c', 'd']) ovo = OneVsOneClassifier(LinearSVC()) ovo.fit(X, y) assert_array_equal(y, ovo.predict(X)) def test_ecoc_exceptions(): ecoc = OutputCodeClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ecoc.predict, []) def test_ecoc_fit_predict(): # A classifier which implements decision_function. ecoc = OutputCodeClassifier(LinearSVC(random_state=0), code_size=2, random_state=0) ecoc.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ecoc.estimators_), n_classes * 2) # A classifier which implements predict_proba. ecoc = OutputCodeClassifier(MultinomialNB(), code_size=2, random_state=0) ecoc.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ecoc.estimators_), n_classes * 2) def test_ecoc_gridsearch(): ecoc = OutputCodeClassifier(LinearSVC(random_state=0), random_state=0) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ecoc, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs) @ignore_warnings def test_deprecated(): base_estimator = DecisionTreeClassifier(random_state=0) X, Y = iris.data, iris.target X_train, Y_train = X[:80], Y[:80] X_test = X[80:] all_metas = [ (OneVsRestClassifier, fit_ovr, predict_ovr, predict_proba_ovr), (OneVsOneClassifier, fit_ovo, predict_ovo, None), (OutputCodeClassifier, fit_ecoc, predict_ecoc, None), ] for MetaEst, fit_func, predict_func, proba_func in all_metas: try: meta_est = MetaEst(base_estimator, random_state=0).fit(X_train, Y_train) fitted_return = fit_func(base_estimator, X_train, Y_train, random_state=0) except TypeError: meta_est = MetaEst(base_estimator).fit(X_train, Y_train) fitted_return = fit_func(base_estimator, X_train, Y_train) if len(fitted_return) == 2: estimators_, classes_or_lb = fitted_return assert_almost_equal(predict_func(estimators_, classes_or_lb, X_test), meta_est.predict(X_test)) if proba_func is not None: assert_almost_equal(proba_func(estimators_, X_test, is_multilabel=False), meta_est.predict_proba(X_test)) else: estimators_, classes_or_lb, codebook = fitted_return assert_almost_equal(predict_func(estimators_, classes_or_lb, codebook, X_test), meta_est.predict(X_test))
bsd-3-clause
bzcheeseman/phys211
Alex/Compton Scattering/plotter.py
1
2439
from scipy import optimize import numpy as np import matplotlib.pyplot as plt def read_data(): datafile = r'data/data.csv' data = np.genfromtxt(datafile, delimiter=',', skiprows=1) return data data = read_data() def linear(p, x): return p[0] * x + p[1] def residual(p, x, y, err): return (linear(p, x) - y) / err #constants mc2 = 511. #keV E = 662. #keV, energy of initial gamma photons #Day 1 angles1 = data[:,2] #x cent1 = data[:,1] #y #Calibration e1 = np.array([81., 356., 662.]) c1 = np.array([118., 505., 921.]) # +/- 3 c1err = np.array([3., 3., 3.]) #Fitting # Channel = A1 * Energy + A2 p1 = [0., 0.] pf1, cov1, info1, mesg1, success1 = optimize.leastsq(residual, p1, args=(e1, c1, c1err), full_output=1) chisq1 = sum(info1["fvec"]*info1["fvec"]) dof1 = len(e1)-len(pf1) pferr1 = [np.sqrt(cov1[i,i]) for i in range(len(pf1))] print 'pf1', pf1, '\n', cov1 A1 = 1 / pf1[0] A1err = (pferr1[0] / pf1[0]) * (1 / pf1[0]) A2 = - pf1[1] / pf1[0] A2err = np.sqrt(pferr1[0] * (2 * pf1[1] / pf1[0]*pf1[0]) + pferr1[1] * (1 / pf1[0])) A = np.array([A1, A2]) Aerr = np.array([A1err, A2err]) fig1 = plt.figure() ax1 = fig1.add_subplot(111) ax1 = plt.axes() ax1.errorbar(c1, e1, xerr=c1err, yerr=0.0, fmt='k.', label = 'Data') T = np.linspace(c1.min(), c1.max(), 5000) ax1.plot(T, linear(A, T), 'r-', label = 'calibration') ax1.set_title('Channel to Energy calibration - Day 1') ax1.set_xlabel('Channel Number') ax1.set_ylabel('Energy (keV)') ax1.legend(loc=(0.7,0.5)) textfit = '$E = A_1 * channel + A_2$ \n' \ '$A_1 = %.2f \pm %.2f$ keV \n' \ '$A_2 = %.0f \pm %.0f$ keV \n' \ '$\chi^2= %.2f$ \n' \ '$N = %i$ (dof) \n' \ '$\chi^2/N = % .2f$' \ % (pf1[0], pferr1[0], pf1[1], pferr1[1], chisq1, dof1, chisq1/dof1) ax1.text(0.15, .8, textfit, transform=ax1.transAxes, fontsize=12, verticalalignment='top') plt.show() energies = linear(A, cent1) enerr = (A1err/A1) * cent1 + A2err print angles1 print energies print enerr #m2, b2 = np.polyfit(c2, e1, 1) # #def fit2(x): # return m2 * x + b2 #en2 = fit2(c2) # # # ### DATA is angles1, angles2, en1, en2 #y = np.append(angles1, angles2) #x = np.append(en1, en2) #yerr = [1 * np.pi / 180] * len(y) # # #def func(p,x): # return np.arccos(p[0]/x) # #p = [1 - (E/(1 + E/mc2))] #expected # #popt, pcov = curve_fit(func, x, y, p, yerr, maxfev=int(2e6))
lgpl-3.0
rxa254/MoodCube
Plotting/randomNoiseAnimation.py
1
1571
import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation from scipy import ndimage # Update the matplotlib configuration parameters: plt.rcParams.update({'font.size': 20, 'font.family': 'serif', 'figure.figsize': (10, 8), 'axes.grid': True, 'grid.color': '#555555'}) # this is the dimensions of the jellyfish # 8 tentacles, 64 LEDs / tentacle, 3 colors/LED d = 2**7 Nbits = 24 cmap = 'nipy_spectral' #cmap = 'inferno' zz = np.random.randint(low = 0, high = 2**Nbits - 1, size = (d, d), dtype = 'uint') fig = plt.figure() im = plt.imshow(zz, animated = True, interpolation = 'hermite', cmap = cmap) plt.xticks([]) plt.yticks([]) fig.tight_layout() def updatefig(*args): z = np.random.randint(low = 0, high = 2**Nbits - 1, size = zz.shape, dtype = 'uint') input_ = np.fft.fft2(z) result = ndimage.fourier_gaussian(input_, sigma=1) z = np.fft.ifft2(result) z = np.abs(z) im.set_array(z) return im, #leg = plt.legend(loc='best', fancybox=True, fontsize=14) #leg.get_frame().set_alpha(0.5) #plt.savefig("TRY.pdf", bbox_inches='tight') ani = animation.FuncAnimation(fig, updatefig, interval = 200, blit = True) plt.show()
bsd-3-clause
rs2/pandas
pandas/tests/indexes/multi/test_missing.py
2
3378
import numpy as np import pytest import pandas as pd from pandas import MultiIndex import pandas._testing as tm def test_fillna(idx): # GH 11343 msg = "isna is not defined for MultiIndex" with pytest.raises(NotImplementedError, match=msg): idx.fillna(idx[0]) def test_dropna(): # GH 6194 idx = pd.MultiIndex.from_arrays( [ [1, np.nan, 3, np.nan, 5], [1, 2, np.nan, np.nan, 5], ["a", "b", "c", np.nan, "e"], ] ) exp = pd.MultiIndex.from_arrays([[1, 5], [1, 5], ["a", "e"]]) tm.assert_index_equal(idx.dropna(), exp) tm.assert_index_equal(idx.dropna(how="any"), exp) exp = pd.MultiIndex.from_arrays( [[1, np.nan, 3, 5], [1, 2, np.nan, 5], ["a", "b", "c", "e"]] ) tm.assert_index_equal(idx.dropna(how="all"), exp) msg = "invalid how option: xxx" with pytest.raises(ValueError, match=msg): idx.dropna(how="xxx") # GH26408 # test if missing values are dropped for multiindex constructed # from codes and values idx = MultiIndex( levels=[[np.nan, None, pd.NaT, "128", 2], [np.nan, None, pd.NaT, "128", 2]], codes=[[0, -1, 1, 2, 3, 4], [0, -1, 3, 3, 3, 4]], ) expected = MultiIndex.from_arrays([["128", 2], ["128", 2]]) tm.assert_index_equal(idx.dropna(), expected) tm.assert_index_equal(idx.dropna(how="any"), expected) expected = MultiIndex.from_arrays( [[np.nan, np.nan, "128", 2], ["128", "128", "128", 2]] ) tm.assert_index_equal(idx.dropna(how="all"), expected) def test_nulls(idx): # this is really a smoke test for the methods # as these are adequately tested for function elsewhere msg = "isna is not defined for MultiIndex" with pytest.raises(NotImplementedError, match=msg): idx.isna() @pytest.mark.xfail(reason="isna is not defined for MultiIndex") def test_hasnans_isnans(idx): # GH 11343, added tests for hasnans / isnans index = idx.copy() # cases in indices doesn't include NaN expected = np.array([False] * len(index), dtype=bool) tm.assert_numpy_array_equal(index._isnan, expected) assert index.hasnans is False index = idx.copy() values = index.values values[1] = np.nan index = type(idx)(values) expected = np.array([False] * len(index), dtype=bool) expected[1] = True tm.assert_numpy_array_equal(index._isnan, expected) assert index.hasnans is True def test_nan_stays_float(): # GH 7031 idx0 = pd.MultiIndex( levels=[["A", "B"], []], codes=[[1, 0], [-1, -1]], names=[0, 1] ) idx1 = pd.MultiIndex(levels=[["C"], ["D"]], codes=[[0], [0]], names=[0, 1]) idxm = idx0.join(idx1, how="outer") assert pd.isna(idx0.get_level_values(1)).all() # the following failed in 0.14.1 assert pd.isna(idxm.get_level_values(1)[:-1]).all() df0 = pd.DataFrame([[1, 2]], index=idx0) df1 = pd.DataFrame([[3, 4]], index=idx1) dfm = df0 - df1 assert pd.isna(df0.index.get_level_values(1)).all() # the following failed in 0.14.1 assert pd.isna(dfm.index.get_level_values(1)[:-1]).all() def test_tuples_have_na(): index = MultiIndex( levels=[[1, 0], [0, 1, 2, 3]], codes=[[1, 1, 1, 1, -1, 0, 0, 0], [0, 1, 2, 3, 0, 1, 2, 3]], ) assert pd.isna(index[4][0]) assert pd.isna(index.values[4][0])
bsd-3-clause
balister/GNU-Radio
gr-filter/examples/fir_filter_fff.py
5
3225
#!/usr/bin/env python from gnuradio import gr, filter from gnuradio import analog from gnuradio import blocks from gnuradio import eng_notation from gnuradio.eng_option import eng_option from optparse import OptionParser try: import scipy except ImportError: print "Error: could not import scipy (http://www.scipy.org/)" sys.exit(1) try: import pylab except ImportError: print "Error: could not import pylab (http://matplotlib.sourceforge.net/)" sys.exit(1) class example_fir_filter_fff(gr.top_block): def __init__(self, N, fs, bw, tw, atten, D): gr.top_block.__init__(self) self._nsamps = N self._fs = fs self._bw = bw self._tw = tw self._at = atten self._decim = D taps = filter.firdes.low_pass_2(1, self._fs, self._bw, self._tw, self._at) print "Num. Taps: ", len(taps) self.src = analog.noise_source_f(analog.GR_GAUSSIAN, 1) self.head = blocks.head(gr.sizeof_float, self._nsamps) self.filt0 = filter.fir_filter_fff(self._decim, taps) self.vsnk_src = blocks.vector_sink_f() self.vsnk_out = blocks.vector_sink_f() self.connect(self.src, self.head, self.vsnk_src) self.connect(self.head, self.filt0, self.vsnk_out) def main(): parser = OptionParser(option_class=eng_option, conflict_handler="resolve") parser.add_option("-N", "--nsamples", type="int", default=10000, help="Number of samples to process [default=%default]") parser.add_option("-s", "--samplerate", type="eng_float", default=8000, help="System sample rate [default=%default]") parser.add_option("-B", "--bandwidth", type="eng_float", default=1000, help="Filter bandwidth [default=%default]") parser.add_option("-T", "--transition", type="eng_float", default=100, help="Transition band [default=%default]") parser.add_option("-A", "--attenuation", type="eng_float", default=80, help="Stopband attenuation [default=%default]") parser.add_option("-D", "--decimation", type="int", default=1, help="Decmation factor [default=%default]") (options, args) = parser.parse_args () put = example_fir_filter_fff(options.nsamples, options.samplerate, options.bandwidth, options.transition, options.attenuation, options.decimation) put.run() data_src = scipy.array(put.vsnk_src.data()) data_snk = scipy.array(put.vsnk_out.data()) # Plot the signals PSDs nfft = 1024 f1 = pylab.figure(1, figsize=(12,10)) s1 = f1.add_subplot(1,1,1) s1.psd(data_src, NFFT=nfft, noverlap=nfft/4, Fs=options.samplerate) s1.psd(data_snk, NFFT=nfft, noverlap=nfft/4, Fs=options.samplerate) f2 = pylab.figure(2, figsize=(12,10)) s2 = f2.add_subplot(1,1,1) s2.plot(data_src) s2.plot(data_snk.real, 'g') pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
anubhavvardhan/qutip
qutip/tomography.py
9
7107
# This file is part of QuTiP: Quantum Toolbox in Python. # # Copyright (c) 2011 and later, Paul D. Nation and Robert J. Johansson. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names # of its contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A # PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ############################################################################### __all__ = ['qpt_plot', 'qpt_plot_combined', 'qpt'] from qutip.tensor import tensor from qutip.superoperator import spre, spost, mat2vec, vec2mat from numpy import hstack, real, imag import scipy.linalg as la from qutip.visualization import matrix_histogram, matrix_histogram_complex try: import matplotlib.pyplot as plt except: pass def _index_permutations(size_list, perm=[]): """ Generate a list with all index permutations. Parameters ---------- size_list : list A list that contains the sizes for each composite system. perm : list A list of permutations Returns ------- perm_idx : list List containing index permutations. """ if len(size_list) == 0: yield perm else: for n in range(size_list[0]): for ip in _index_permutations(size_list[1:], perm + [n]): yield ip def qpt_plot(chi, lbls_list, title=None, fig=None, axes=None): """ Visualize the quantum process tomography chi matrix. Plot the real and imaginary parts separately. Parameters ---------- chi : array Input QPT chi matrix. lbls_list : list List of labels for QPT plot axes. title : string Plot title. fig : figure instance User defined figure instance used for generating QPT plot. axes : list of figure axis instance User defined figure axis instance (list of two axes) used for generating QPT plot. Returns ------- fig, ax : tuple A tuple of the matplotlib figure and axes instances used to produce the figure. """ if axes is None or len(axes) != 2: if fig is None: fig = plt.figure(figsize=(16, 8)) ax1 = fig.add_subplot(1, 2, 1, projection='3d', position=[0, 0, 1, 1]) ax2 = fig.add_subplot(1, 2, 2, projection='3d', position=[0, 0, 1, 1]) axes = [ax1, ax2] xlabels = [] for inds in _index_permutations([len(lbls) for lbls in lbls_list]): xlabels.append("".join([lbls_list[k][inds[k]] for k in range(len(lbls_list))])) matrix_histogram(real(chi), xlabels, xlabels, title=r"real($\chi$)", limits=[-1, 1], ax=axes[0]) matrix_histogram(imag(chi), xlabels, xlabels, title=r"imag($\chi$)", limits=[-1, 1], ax=axes[1]) if title and fig: fig.suptitle(title) return fig, axes def qpt_plot_combined(chi, lbls_list, title=None, fig=None, ax=None, figsize=(8, 6), threshold=None): """ Visualize the quantum process tomography chi matrix. Plot bars with height and color corresponding to the absolute value and phase, respectively. Parameters ---------- chi : array Input QPT chi matrix. lbls_list : list List of labels for QPT plot axes. title : string Plot title. fig : figure instance User defined figure instance used for generating QPT plot. ax : figure axis instance User defined figure axis instance used for generating QPT plot (alternative to the fig argument). threshold: float (None) Threshold for when bars of smaller height should be transparent. If not set, all bars are colored according to the color map. Returns ------- fig, ax : tuple A tuple of the matplotlib figure and axes instances used to produce the figure. """ if ax is None: if fig is None: fig = plt.figure(figsize=figsize) ax = fig.add_subplot(1, 1, 1, projection='3d', position=[0, 0, 1, 1]) xlabels = [] for inds in _index_permutations([len(lbls) for lbls in lbls_list]): xlabels.append("".join( [lbls_list[k][inds[k]] for k in range(len(lbls_list))])) if not title: title = r"$\chi$" matrix_histogram_complex(chi, xlabels, xlabels, title=title, ax=ax, threshold=threshold) return fig, ax def qpt(U, op_basis_list): """ Calculate the quantum process tomography chi matrix for a given (possibly nonunitary) transformation matrix U, which transforms a density matrix in vector form according to: vec(rho) = U * vec(rho0) or rho = vec2mat(U * mat2vec(rho0)) U can be calculated for an open quantum system using the QuTiP propagator function. Parameters ---------- U : Qobj Transformation operator. Can be calculated using QuTiP propagator function. op_basis_list : list A list of Qobj's representing the basis states. Returns ------- chi : array QPT chi matrix """ E_ops = [] # loop over all index permutations for inds in _index_permutations([len(ops) for ops in op_basis_list]): # loop over all composite systems E_op_list = [op_basis_list[k][inds[k]] for k in range(len( op_basis_list))] E_ops.append(tensor(E_op_list)) EE_ops = [spre(E1) * spost(E2.dag()) for E1 in E_ops for E2 in E_ops] M = hstack([mat2vec(EE.full()) for EE in EE_ops]) Uvec = mat2vec(U.full()) chi_vec = la.solve(M, Uvec) return vec2mat(chi_vec)
bsd-3-clause
kernc/scikit-learn
examples/manifold/plot_swissroll.py
330
1446
""" =================================== Swiss Roll reduction with LLE =================================== An illustration of Swiss Roll reduction with locally linear embedding """ # Author: Fabian Pedregosa -- <[email protected]> # License: BSD 3 clause (C) INRIA 2011 print(__doc__) import matplotlib.pyplot as plt # This import is needed to modify the way figure behaves from mpl_toolkits.mplot3d import Axes3D Axes3D #---------------------------------------------------------------------- # Locally linear embedding of the swiss roll from sklearn import manifold, datasets X, color = datasets.samples_generator.make_swiss_roll(n_samples=1500) print("Computing LLE embedding") X_r, err = manifold.locally_linear_embedding(X, n_neighbors=12, n_components=2) print("Done. Reconstruction error: %g" % err) #---------------------------------------------------------------------- # Plot result fig = plt.figure() try: # compatibility matplotlib < 1.0 ax = fig.add_subplot(211, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral) except: ax = fig.add_subplot(211) ax.scatter(X[:, 0], X[:, 2], c=color, cmap=plt.cm.Spectral) ax.set_title("Original data") ax = fig.add_subplot(212) ax.scatter(X_r[:, 0], X_r[:, 1], c=color, cmap=plt.cm.Spectral) plt.axis('tight') plt.xticks([]), plt.yticks([]) plt.title('Projected data') plt.show()
bsd-3-clause
martimy/SANDProject
sand/add.py
1
8333
#!/usr/bin/python3 # Copyright (c) 2017 Maen Artimy # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # This file includes a Python implementation of the ADD Algorithm described in: # Aaron Kershenbaum. 1993. Telecommunications Network Design Algorithms. McGraw- # Hill, Inc., New York, NY, USA. from .main import SANDAlgorithm import networkx as nx import matplotlib.pyplot as plt class ADD(SANDAlgorithm): def __init__(self): super().__init__() def run(self, cost, Ccost, weight, center=0, Wlimit=10, th_move=0): self.nt = len(cost) # Number of terminals self.nc = len(cost[0]) # Number of concentrators self.Wlimit = Wlimit # Maximum number of terminals self.th_move = th_move # Cost to move terminal self.cost = cost # Cost matrix (nt x nc) self.weight = weight # Load vector (nt) self.Ccost = Ccost # Cost to build a concentrator (nc) self.center = center # Index of the central location self.logger.debug('Starting ADD Algorithm') # Associate all nodes with the central location # and calculate the initial cost self.Cassoc = [self.center] * self.nt # Association with a conc self.cTotal = sum([self.cost[t][self.Cassoc[t]] for t in range(self.nt)]) + self.Ccost[self.center] self.logger.debug("Initial cost = %d" % self.cTotal) # Calculate the cost savings for the remaining concentrators remConc = list(range(self.nc)) remConc.remove(self.center) self.logger.debug("Concentrators to be evaluated = %s" % remConc) while len(remConc) > 0: savings = 0 conc = 0 for t in remConc: expense = self.__evalConc(t) if(expense < savings): savings = expense conc = t if(savings < 0): self.__addConc(conc) self.cTotal += savings self.logger.debug("Concentrator %d \ is added for total cost of %d" % (conc, self.cTotal)) remConc.remove(conc) self.logger.debug("Current association = %s" % self.Cassoc) else: self.logger.debug("No more savings!") break # Sanity check tCost = sum([self.cost[t][self.Cassoc[t]] for t in range(self.nt)]) cCost = sum([self.Ccost[c] for c in set(self.Cassoc)]) if((tCost + cCost) != self.cTotal): self.logger.error("Something is wrong, \ detected cost discrepancy! %d %d %d" % (tCost, cCost, self.cTotal)) return({"cost": self.cTotal, "center": self.center, "num": self.nt, "assoc": self.Cassoc, "conc": set(self.Cassoc)}) def __evalConc(self, c): delta = [0] * self.nt ter = [0] * self.nt expense = self.Ccost[c] slack = self.Wlimit n = 0 # Calculates the saving if any that results from # connecting terminal t to concentrator c # count the number of terminals and # save the terminal number in Ter for t in range(self.nt): s = self.cost[t][c] - self.cost[t][self.Cassoc[t]] if(s < 0): delta[n] = s # amount saved ter[n] = t # terminal n += 1 if(n == 0): # no terminal benefited return(expense) # Sort the savings, largest first and return index of sorted list permu = sorted(range(len(delta)), key=lambda k: delta[k]) for p in permu: t = ter[p] if(delta[p] >= 0): break elif((self.weight[t] <= slack) and ((self.Cassoc[t] == self.center) or (delta[p] + self.th_move < 0))): expense += delta[p] slack -= self.weight[t] self.logger.debug("Savings for concentrator %d is %d" % (c, expense)) return(expense) def __addConc(self, c): delta = [] ter = [] for t in range(self.nt): s = self.cost[t][c] - self.cost[t][self.Cassoc[t]] if(s < 0): delta.append(s) # amount saved ter.append(t) # terminal slack = self.Wlimit permu = sorted(range(len(delta)), key=lambda k: delta[k]) #permu = [b[0] for b in sorted(enumerate(delta), key=lambda k:k[1])] for p in permu: t = ter[p] if(delta[p] >= 0): break elif((self.weight[t] <= slack) and ((self.Cassoc[t] == self.center) or (delta[p] + self.th_move < 0))): self.Cassoc[t] = c slack -= self.weight[t] self.logger.debug("Adding concentrator %d" % c) # print cost list of network produced by ADD algorithm def printCost(out, cost): concList = out["conc"] termList = out["assoc"] ncenter = out["center"] numConc = len(concList) nodeAssoc = [(i, termList.count(i)-1) for i in concList] c = [cost[i][ncenter] for i in range(len(cost))] print("Original cost =", sum(c)) print("Central node =", ncenter) print("Number of concentrators =", numConc) print("Number of nodes per concentrators =") print('%4s\t%10s' % ("Conc", "Terminals")) for n in nodeAssoc: print('%4d\t%10d' % (n[0], n[1])) print("Total Cost =", out["cost"]) # Plot topology produced by MENTOR algorithm def plotNetwork(out, pos, labels=[], filename="figure_add.png", title='ADD Algorithm', show_center=False): numNodes = out["num"] center = out["center"] concList = out["conc"] edges = [(k, out["assoc"][k]) for k in range(numNodes)] tree = [(center, n) for n in out["conc"]] plt.figure(figsize=(6, 6), facecolor="white") G = nx.path_graph(numNodes) nx.draw_networkx_edges(G, pos, edgelist=edges, alpha=0.3, edge_color="blue") if show_center: nx.draw_networkx_edges(G, pos, edgelist=tree, width=2, edge_color="blue", alpha=0.1) # Draw all nodes nx.draw_networkx_nodes(G, pos, node_size=10, node_color="green", alpha=0.5) nx.draw_networkx_nodes(G, pos, nodelist=[center], node_size=150, node_color="black") nx.draw_networkx_nodes(G, pos, nodelist=concList, node_size=50, node_color="red") # Draw node and edge labels #elabels = {e:ch[mesh.index(e)] for e in mesh} # nx.draw_networkx_edge_labels(G, pos, elabels, edgelist=mesh, font_size=10, # font_color="grey") if labels: nLabel = {n: labels[n] for n in concList} npos = {n: (pos[n][0], pos[n][1]+0.03) for n in pos} nx.draw_networkx_labels(G, npos, nLabel, nodelist=concList, font_size=10, font_color="black") plt.xlim(-0.05, 1.05) plt.ylim(-0.05, 1.05) plt.axis('off') plt.title(title) plt.savefig(filename) plt.show()
mit
tapomayukh/projects_in_python
classification/Classification_with_HMM/Single_Contact_Classification/multivariate_gaussian_emissions/test_crossvalidation_force_motion_10_states.py
1
16532
# Hidden Markov Model Implementation import pylab as pyl import numpy as np import matplotlib.pyplot as pp #from enthought.mayavi import mlab import scipy as scp import scipy.ndimage as ni import roslib; roslib.load_manifest('sandbox_tapo_darpa_m3') import rospy #import hrl_lib.mayavi2_util as mu import hrl_lib.viz as hv import hrl_lib.util as ut import hrl_lib.matplotlib_util as mpu import pickle import ghmm import sys sys.path.insert(0, '/home/tapo/svn/robot1_data/usr/tapo/data_code/Classification/Data/Single_Contact_HMM/Scaled') from data_Scaled_method_III import Fmat_original # Returns mu,sigma for 10 hidden-states from feature-vectors(123,35) for RF,SF,RM,SM models def feature_to_mu_cov(fvec1,fvec2): index = 0 m,n = np.shape(fvec1) #print m,n mu_1 = np.zeros((10,1)) mu_2 = np.zeros((10,1)) cov = np.zeros((10,2,2)) DIVS = m/10 while (index < 10): m_init = index*DIVS temp_fvec1 = fvec1[(m_init):(m_init+DIVS),0:] temp_fvec2 = fvec2[(m_init):(m_init+DIVS),0:] temp_fvec1 = np.reshape(temp_fvec1,DIVS*n) temp_fvec2 = np.reshape(temp_fvec2,DIVS*n) mu_1[index] = np.mean(temp_fvec1) mu_2[index] = np.mean(temp_fvec2) cov[index,:,:] = np.cov(np.concatenate((temp_fvec1,temp_fvec2),axis=0)) #if index == 0: #print 'mean = ', mu_2[index] #print 'mean = ', scp.mean(fvec2[(m_init):(m_init+DIVS),0:]) #print np.shape(np.concatenate((temp_fvec1,temp_fvec2),axis=0)) #print cov[index,:,:] #print scp.std(fvec2[(m_init):(m_init+DIVS),0:]) #print scp.std(temp_fvec2) index = index+1 return mu_1,mu_2,cov if __name__ == '__main__' or __name__ != '__main__': Fmat = Fmat_original # Checking the Data-Matrix Fmat_import = Fmat #print np.shape(Fmat[0]) m_tot, n_tot = np.shape(Fmat) #print " " #print 'Total_Matrix_Shape:',m_tot,n_tot mu_rf_force,mu_rf_motion,cov_rf = feature_to_mu_cov(Fmat[0:121,0:35],Fmat[242:363,0:35]) mu_rm_force,mu_rm_motion,cov_rm = feature_to_mu_cov(Fmat[0:121,35:70],Fmat[242:363,35:70]) mu_sf_force,mu_sf_motion,cov_sf = feature_to_mu_cov(Fmat[0:121,70:105],Fmat[242:363,70:105]) mu_sm_force,mu_sm_motion,cov_sm = feature_to_mu_cov(Fmat[0:121,105:140],Fmat[242:363,105:140]) # HMM - Implementation: # 10 Hidden States # Max. Force(For now), Contact Area(Not now), and Contact Motion(Not Now) as Continuous Gaussian Observations from each hidden state # Four HMM-Models for Rigid-Fixed, Soft-Fixed, Rigid-Movable, Soft-Movable # Transition probabilities obtained as upper diagonal matrix (to be trained using Baum_Welch) # For new objects, it is classified according to which model it represenst the closest.. F = ghmm.Float() # emission domain of this model # A - Transition Matrix A = [[0.1, 0.25, 0.15, 0.15, 0.1, 0.05, 0.05, 0.05, 0.05, 0.05], [0.0, 0.1, 0.25, 0.25, 0.2, 0.1, 0.05, 0.05, 0.05, 0.05], [0.0, 0.0, 0.1, 0.25, 0.25, 0.2, 0.05, 0.05, 0.05, 0.05], [0.0, 0.0, 0.0, 0.1, 0.3, 0.30, 0.20, 0.1, 0.05, 0.05], [0.0, 0.0, 0.0, 0.0, 0.1, 0.30, 0.30, 0.20, 0.05, 0.05], [0.0, 0.0, 0.0, 0.0, 0.00, 0.1, 0.35, 0.30, 0.20, 0.05], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.2, 0.30, 0.30, 0.20], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.2, 0.50, 0.30], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.00, 0.4, 0.60], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00]] # B - Emission Matrix, parameters of emission distributions in pairs of (mu, sigma) B_rf = [0.0]*10 B_rm = [0.0]*10 B_sf = [0.0]*10 B_sm = [0.0]*10 for num_states in range(10): B_rf[num_states] = [[mu_rf_force[num_states][0],mu_rf_motion[num_states][0]],[cov_rf[num_states][0][0],cov_rf[num_states][0][1],cov_rf[num_states][1][0],cov_rf[num_states][1][1]]] B_rm[num_states] = [[mu_rm_force[num_states][0],mu_rm_motion[num_states][0]],[cov_rm[num_states][0][0],cov_rm[num_states][0][1],cov_rm[num_states][1][0],cov_rm[num_states][1][1]]] B_sf[num_states] = [[mu_sf_force[num_states][0],mu_sf_motion[num_states][0]],[cov_sf[num_states][0][0],cov_sf[num_states][0][1],cov_sf[num_states][1][0],cov_sf[num_states][1][1]]] B_sm[num_states] = [[mu_sm_force[num_states][0],mu_sm_motion[num_states][0]],[cov_sm[num_states][0][0],cov_sm[num_states][0][1],cov_sm[num_states][1][0],cov_sm[num_states][1][1]]] #print cov_sm[num_states][0][0],cov_sm[num_states][0][1],cov_sm[num_states][1][0],cov_sm[num_states][1][1] #print "----" #print B_sm #print mu_sm_motion # pi - initial probabilities per state pi = [0.1] * 10 # generate RF, RM, SF, SM models from parameters model_rf = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_rf, pi) # Will be Trained model_rm = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_rm, pi) # Will be Trained model_sf = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_sf, pi) # Will be Trained model_sm = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_sm, pi) # Will be Trained # For Training trial_number = 1 rf_final = np.matrix(np.zeros((28,1))) rm_final = np.matrix(np.zeros((28,1))) sf_final = np.matrix(np.zeros((28,1))) sm_final = np.matrix(np.zeros((28,1))) total_seq = np.matrix(np.concatenate((np.array(Fmat[0:121,:]),np.array(Fmat[242:363,:])),axis=0)) m_total, n_total = np.shape(total_seq) #print 'Total_Sequence_Shape:', m_total, n_total while (trial_number < 6): # For Training if (trial_number == 1): j = 5 total_seq_rf = total_seq[:,1:5] total_seq_rm = total_seq[:,36:40] total_seq_sf = total_seq[:,71:75] total_seq_sm = total_seq[:,106:110] while (j < 35): total_seq_rf = np.column_stack((total_seq_rf,total_seq[:,j+1:j+5])) total_seq_rm = np.column_stack((total_seq_rm,total_seq[:,j+36:j+40])) total_seq_sf = np.column_stack((total_seq_sf,total_seq[:,j+71:j+75])) total_seq_sm = np.column_stack((total_seq_sm,total_seq[:,j+106:j+110])) j = j+5 if (trial_number == 2): j = 5 total_seq_rf = np.column_stack((total_seq[:,0],total_seq[:,2:5])) total_seq_rm = np.column_stack((total_seq[:,35],total_seq[:,37:40])) total_seq_sf = np.column_stack((total_seq[:,70],total_seq[:,72:75])) total_seq_sm = np.column_stack((total_seq[:,105],total_seq[:,107:110])) while (j < 35): total_seq_rf = np.column_stack((total_seq_rf,total_seq[:,j+0],total_seq[:,j+2:j+5])) total_seq_rm = np.column_stack((total_seq_rm,total_seq[:,j+35],total_seq[:,j+37:j+40])) total_seq_sf = np.column_stack((total_seq_sf,total_seq[:,j+70],total_seq[:,j+72:j+75])) total_seq_sm = np.column_stack((total_seq_sm,total_seq[:,j+105],total_seq[:,j+107:j+110])) j = j+5 if (trial_number == 3): j = 5 total_seq_rf = np.column_stack((total_seq[:,0:2],total_seq[:,3:5])) total_seq_rm = np.column_stack((total_seq[:,35:37],total_seq[:,38:40])) total_seq_sf = np.column_stack((total_seq[:,70:72],total_seq[:,73:75])) total_seq_sm = np.column_stack((total_seq[:,105:107],total_seq[:,108:110])) while (j < 35): total_seq_rf = np.column_stack((total_seq_rf,total_seq[:,j+0:j+2],total_seq[:,j+3:j+5])) total_seq_rm = np.column_stack((total_seq_rm,total_seq[:,j+35:j+37],total_seq[:,j+38:j+40])) total_seq_sf = np.column_stack((total_seq_sf,total_seq[:,j+70:j+72],total_seq[:,j+73:j+75])) total_seq_sm = np.column_stack((total_seq_sm,total_seq[:,j+105:j+107],total_seq[:,j+108:j+110])) j = j+5 if (trial_number == 4): j = 5 total_seq_rf = np.column_stack((total_seq[:,0:3],total_seq[:,4:5])) total_seq_rm = np.column_stack((total_seq[:,35:38],total_seq[:,39:40])) total_seq_sf = np.column_stack((total_seq[:,70:73],total_seq[:,74:75])) total_seq_sm = np.column_stack((total_seq[:,105:108],total_seq[:,109:110])) while (j < 35): total_seq_rf = np.column_stack((total_seq_rf,total_seq[:,j+0:j+3],total_seq[:,j+4:j+5])) total_seq_rm = np.column_stack((total_seq_rm,total_seq[:,j+35:j+38],total_seq[:,j+39:j+40])) total_seq_sf = np.column_stack((total_seq_sf,total_seq[:,j+70:j+73],total_seq[:,j+74:j+75])) total_seq_sm = np.column_stack((total_seq_sm,total_seq[:,j+105:j+108],total_seq[:,j+109:j+110])) j = j+5 if (trial_number == 5): j = 5 total_seq_rf = total_seq[:,0:4] total_seq_rm = total_seq[:,35:39] total_seq_sf = total_seq[:,70:74] total_seq_sm = total_seq[:,105:109] while (j < 35): total_seq_rf = np.column_stack((total_seq_rf,total_seq[:,j+0:j+4])) total_seq_rm = np.column_stack((total_seq_rm,total_seq[:,j+35:j+39])) total_seq_sf = np.column_stack((total_seq_sf,total_seq[:,j+70:j+74])) total_seq_sm = np.column_stack((total_seq_sm,total_seq[:,j+105:j+109])) j = j+5 train_seq_rf = (np.array(total_seq_rf).T).tolist() train_seq_rm = (np.array(total_seq_rm).T).tolist() train_seq_sf = (np.array(total_seq_sf).T).tolist() train_seq_sm = (np.array(total_seq_sm).T).tolist() #print train_seq_rf final_ts_rf = ghmm.SequenceSet(F,train_seq_rf) final_ts_rm = ghmm.SequenceSet(F,train_seq_rm) final_ts_sf = ghmm.SequenceSet(F,train_seq_sf) final_ts_sm = ghmm.SequenceSet(F,train_seq_sm) model_rf.baumWelch(final_ts_rf) model_rm.baumWelch(final_ts_rm) model_sf.baumWelch(final_ts_sf) model_sm.baumWelch(final_ts_sm) # For Testing if (trial_number == 1): j = 5 total_seq_rf = total_seq[:,0] total_seq_rm = total_seq[:,35] total_seq_sf = total_seq[:,70] total_seq_sm = total_seq[:,105] while (j < 35): total_seq_rf = np.column_stack((total_seq_rf,total_seq[:,j])) total_seq_rm = np.column_stack((total_seq_rm,total_seq[:,j+35])) total_seq_sf = np.column_stack((total_seq_sf,total_seq[:,j+70])) total_seq_sm = np.column_stack((total_seq_sm,total_seq[:,j+105])) j = j+5 if (trial_number == 2): j = 5 total_seq_rf = total_seq[:,1] total_seq_rm = total_seq[:,36] total_seq_sf = total_seq[:,71] total_seq_sm = total_seq[:,106] while (j < 35): total_seq_rf = np.column_stack((total_seq_rf,total_seq[:,j+1])) total_seq_rm = np.column_stack((total_seq_rm,total_seq[:,j+36])) total_seq_sf = np.column_stack((total_seq_sf,total_seq[:,j+71])) total_seq_sm = np.column_stack((total_seq_sm,total_seq[:,j+106])) j = j+5 if (trial_number == 3): j = 5 total_seq_rf = total_seq[:,2] total_seq_rm = total_seq[:,37] total_seq_sf = total_seq[:,72] total_seq_sm = total_seq[:,107] while (j < 35): total_seq_rf = np.column_stack((total_seq_rf,total_seq[:,j+2])) total_seq_rm = np.column_stack((total_seq_rm,total_seq[:,j+37])) total_seq_sf = np.column_stack((total_seq_sf,total_seq[:,j+72])) total_seq_sm = np.column_stack((total_seq_sm,total_seq[:,j+107])) j = j+5 if (trial_number == 4): j = 5 total_seq_rf = total_seq[:,3] total_seq_rm = total_seq[:,38] total_seq_sf = total_seq[:,73] total_seq_sm = total_seq[:,108] while (j < 35): total_seq_rf = np.column_stack((total_seq_rf,total_seq[:,j+3])) total_seq_rm = np.column_stack((total_seq_rm,total_seq[:,j+38])) total_seq_sf = np.column_stack((total_seq_sf,total_seq[:,j+73])) total_seq_sm = np.column_stack((total_seq_sm,total_seq[:,j+108])) j = j+5 if (trial_number == 5): j = 5 total_seq_rf = total_seq[:,4] total_seq_rm = total_seq[:,39] total_seq_sf = total_seq[:,74] total_seq_sm = total_seq[:,109] while (j < 35): total_seq_rf = np.column_stack((total_seq_rf,total_seq[:,j+4])) total_seq_rm = np.column_stack((total_seq_rm,total_seq[:,j+39])) total_seq_sf = np.column_stack((total_seq_sf,total_seq[:,j+74])) total_seq_sm = np.column_stack((total_seq_sm,total_seq[:,j+109])) j = j+5 total_seq_obj = np.matrix(np.column_stack((total_seq_rf,total_seq_rm,total_seq_sf,total_seq_sm))) rf = np.matrix(np.zeros(np.size(total_seq_obj,1))) rm = np.matrix(np.zeros(np.size(total_seq_obj,1))) sf = np.matrix(np.zeros(np.size(total_seq_obj,1))) sm = np.matrix(np.zeros(np.size(total_seq_obj,1))) k = 0 while (k < np.size(total_seq_obj,1)): test_seq_obj = (np.array(total_seq_obj[:,k]).T).tolist() new_test_seq_obj = np.array(sum(test_seq_obj,[])) ts_obj = new_test_seq_obj final_ts_obj = ghmm.EmissionSequence(F,ts_obj.tolist()) # Find Viterbi Path path_rf_obj = model_rf.viterbi(final_ts_obj) path_rm_obj = model_rm.viterbi(final_ts_obj) path_sf_obj = model_sf.viterbi(final_ts_obj) path_sm_obj = model_sm.viterbi(final_ts_obj) obj = max(path_rf_obj[1],path_rm_obj[1],path_sf_obj[1],path_sm_obj[1]) if obj == path_rf_obj[1]: rf[0,k] = 1 elif obj == path_rm_obj[1]: rm[0,k] = 1 elif obj == path_sf_obj[1]: sf[0,k] = 1 else: sm[0,k] = 1 k = k+1 #print rf.T rf_final = rf_final + rf.T rm_final = rm_final + rm.T sf_final = sf_final + sf.T sm_final = sm_final + sm.T trial_number = trial_number + 1 #print rf_final #print rm_final #print sf_final #print sm_final # Confusion Matrix cmat = np.zeros((4,4)) arrsum_rf = np.zeros((4,1)) arrsum_rm = np.zeros((4,1)) arrsum_sf = np.zeros((4,1)) arrsum_sm = np.zeros((4,1)) k = 7 i = 0 while (k < 29): arrsum_rf[i] = np.sum(rf_final[k-7:k,0]) arrsum_rm[i] = np.sum(rm_final[k-7:k,0]) arrsum_sf[i] = np.sum(sf_final[k-7:k,0]) arrsum_sm[i] = np.sum(sm_final[k-7:k,0]) i = i+1 k = k+7 i=0 while (i < 4): j=0 while (j < 4): if (i == 0): cmat[i][j] = arrsum_rf[j] elif (i == 1): cmat[i][j] = arrsum_rm[j] elif (i == 2): cmat[i][j] = arrsum_sf[j] else: cmat[i][j] = arrsum_sm[j] j = j+1 i = i+1 #print cmat # Plot Confusion Matrix #Nlabels = 4 #fig = pp.figure() #ax = fig.add_subplot(111) #figplot = ax.matshow(cmat, interpolation = 'nearest', origin = 'upper', extent=[0, Nlabels, 0, Nlabels]) #ax.set_title('Performance of HMM Models') #pp.xlabel("Targets") #pp.ylabel("Predictions") #ax.set_xticks([0.5,1.5,2.5,3.5]) #ax.set_xticklabels(['Rigid-Fixed', 'Rigid-Movable', 'Soft-Fixed', 'Soft-Movable']) #ax.set_yticks([3.5,2.5,1.5,0.5]) #ax.set_yticklabels(['Rigid-Fixed', 'Rigid-Movable', 'Soft-Fixed', 'Soft-Movable']) #figbar = fig.colorbar(figplot) #i = 0 #while (i < 4): #j = 0 #while (j < 4): #pp.text(j+0.5,3.5-i,cmat[i][j]) #j = j+1 #i = i+1 #pp.show()
mit
mengxn/tensorflow
tensorflow/examples/learn/mnist.py
45
3999
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This showcases how simple it is to build image classification networks. It follows description from this TensorFlow tutorial: https://www.tensorflow.org/versions/master/tutorials/mnist/pros/index.html#deep-mnist-for-experts """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from sklearn import metrics import tensorflow as tf layers = tf.contrib.layers learn = tf.contrib.learn def max_pool_2x2(tensor_in): return tf.nn.max_pool( tensor_in, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') def conv_model(feature, target, mode): """2-layer convolution model.""" # Convert the target to a one-hot tensor of shape (batch_size, 10) and # with a on-value of 1 for each one-hot vector of length 10. target = tf.one_hot(tf.cast(target, tf.int32), 10, 1, 0) # Reshape feature to 4d tensor with 2nd and 3rd dimensions being # image width and height final dimension being the number of color channels. feature = tf.reshape(feature, [-1, 28, 28, 1]) # First conv layer will compute 32 features for each 5x5 patch with tf.variable_scope('conv_layer1'): h_conv1 = layers.convolution2d( feature, 32, kernel_size=[5, 5], activation_fn=tf.nn.relu) h_pool1 = max_pool_2x2(h_conv1) # Second conv layer will compute 64 features for each 5x5 patch. with tf.variable_scope('conv_layer2'): h_conv2 = layers.convolution2d( h_pool1, 64, kernel_size=[5, 5], activation_fn=tf.nn.relu) h_pool2 = max_pool_2x2(h_conv2) # reshape tensor into a batch of vectors h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) # Densely connected layer with 1024 neurons. h_fc1 = layers.dropout( layers.fully_connected( h_pool2_flat, 1024, activation_fn=tf.nn.relu), keep_prob=0.5, is_training=mode == tf.contrib.learn.ModeKeys.TRAIN) # Compute logits (1 per class) and compute loss. logits = layers.fully_connected(h_fc1, 10, activation_fn=None) loss = tf.losses.softmax_cross_entropy(target, logits) # Create a tensor for training op. train_op = layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='SGD', learning_rate=0.001) return tf.argmax(logits, 1), loss, train_op def main(unused_args): ### Download and load MNIST dataset. mnist = learn.datasets.load_dataset('mnist') ### Linear classifier. feature_columns = learn.infer_real_valued_columns_from_input( mnist.train.images) classifier = learn.LinearClassifier( feature_columns=feature_columns, n_classes=10) classifier.fit(mnist.train.images, mnist.train.labels.astype(np.int32), batch_size=100, steps=1000) score = metrics.accuracy_score(mnist.test.labels, list(classifier.predict(mnist.test.images))) print('Accuracy: {0:f}'.format(score)) ### Convolutional network classifier = learn.Estimator(model_fn=conv_model) classifier.fit(mnist.train.images, mnist.train.labels, batch_size=100, steps=20000) score = metrics.accuracy_score(mnist.test.labels, list(classifier.predict(mnist.test.images))) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': tf.app.run()
apache-2.0
SamStudio8/scikit-bio
skbio/stats/distance/tests/test_bioenv.py
13
9972
# ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function from unittest import TestCase, main import numpy as np import pandas as pd from skbio import DistanceMatrix from skbio.stats.distance import bioenv from skbio.stats.distance._bioenv import _scale from skbio.util import get_data_path, assert_data_frame_almost_equal class BIOENVTests(TestCase): """Results were verified with R 3.0.2 and vegan 2.0-10 (vegan::bioenv).""" def setUp(self): # The test dataset used here is a subset of the Lauber et al. 2009 # "88 Soils" dataset. It has been altered to exercise various aspects # of the code, including (but not limited to): # # - order of distance matrix IDs and IDs in data frame (metadata) are # not exactly the same # - data frame has an extra sample that is not in the distance matrix # - this extra sample has non-numeric and missing values in some of its # cells # # Additional variations of the distance matrix and data frame are used # to test different orderings of rows/columns, extra non-numeric data # frame columns, etc. # # This dataset is also useful because it is non-trivial in size (6 # samples, 11 environment variables) and it includes positive/negative # floats and integers in the data frame. self.dm = DistanceMatrix.read(get_data_path('dm.txt')) # Reordered rows and columns (i.e., different ID order). Still # conceptually the same distance matrix. self.dm_reordered = DistanceMatrix.read( get_data_path('dm_reordered.txt')) self.df = pd.read_csv(get_data_path('df.txt'), sep='\t', index_col=0) # Similar to the above data frame, except that it has an extra # non-numeric column, and some of the other rows and columns have been # reordered. self.df_extra_column = pd.read_csv( get_data_path('df_extra_column.txt'), sep='\t', index_col=0) # All columns in the original data frame (these are all numeric # columns). self.cols = self.df.columns.tolist() # This second dataset is derived from vegan::bioenv's example dataset # (varespec and varechem). The original dataset includes a site x # species table (e.g., OTU table) and a data frame of environmental # variables. Since the bioenv function defined here accepts a distance # matrix, we use a Bray-Curtis distance matrix that is derived from the # site x species table (this matches what is done by vegan::bioenv when # provided an OTU table, using their default distance measure). The # data frame only includes the numeric environmental variables we're # interested in for these tests: log(N), P, K, Ca, pH, Al self.dm_vegan = DistanceMatrix.read( get_data_path('bioenv_dm_vegan.txt')) self.df_vegan = pd.read_csv( get_data_path('bioenv_df_vegan.txt'), sep='\t', converters={0: str}) self.df_vegan.set_index('#SampleID', inplace=True) # Load expected results. self.exp_results = pd.read_csv(get_data_path('exp_results.txt'), sep='\t', index_col=0) self.exp_results_single_column = pd.read_csv( get_data_path('exp_results_single_column.txt'), sep='\t', index_col=0) self.exp_results_different_column_order = pd.read_csv( get_data_path('exp_results_different_column_order.txt'), sep='\t', index_col=0) self.exp_results_vegan = pd.read_csv( get_data_path('bioenv_exp_results_vegan.txt'), sep='\t', index_col=0) def test_bioenv_all_columns_implicit(self): # Test with all columns in data frame (implicitly). obs = bioenv(self.dm, self.df) assert_data_frame_almost_equal(obs, self.exp_results) # Should get the same results if order of rows/cols in distance matrix # is changed. obs = bioenv(self.dm_reordered, self.df) assert_data_frame_almost_equal(obs, self.exp_results) def test_bioenv_all_columns_explicit(self): # Test with all columns being specified. obs = bioenv(self.dm, self.df, columns=self.cols) assert_data_frame_almost_equal(obs, self.exp_results) # Test against a data frame that has an extra non-numeric column and # some of the rows and columns reordered (we should get the same # result since we're specifying the same columns in the same order). obs = bioenv(self.dm, self.df_extra_column, columns=self.cols) assert_data_frame_almost_equal(obs, self.exp_results) def test_bioenv_single_column(self): obs = bioenv(self.dm, self.df, columns=['PH']) assert_data_frame_almost_equal(obs, self.exp_results_single_column) def test_bioenv_different_column_order(self): # Specifying columns in a different order will change the row labels in # the results data frame as the column subsets will be reordered, but # the actual results (e.g., correlation coefficients) shouldn't change. obs = bioenv(self.dm, self.df, columns=self.cols[::-1]) assert_data_frame_almost_equal( obs, self.exp_results_different_column_order) def test_bioenv_no_side_effects(self): # Deep copies of both primary inputs. dm_copy = self.dm.copy() df_copy = self.df.copy(deep=True) bioenv(self.dm, self.df) # Make sure we haven't modified the primary input in some way (e.g., # with scaling, type conversions, etc.). self.assertEqual(self.dm, dm_copy) assert_data_frame_almost_equal(self.df, df_copy) def test_bioenv_vegan_example(self): # The correlation coefficient in the first row of the # results (rho=0.2516) is different from the correlation coefficient # computed by vegan (rho=0.2513). This seems to occur due to # differences in numerical precision when calculating the Euclidean # distances, which affects the rank calculations in Spearman # (specifically, dealing with ties). The ranked distances end up being # slightly different between vegan and our implementation because some # distances are treated as ties in vegan but treated as distinct values # in our implementation. This explains the difference in rho values. I # verified that using Pearson correlation instead of Spearman on the # same distances yields *very* similar results. Thus, the discrepancy # seems to stem from differences when computing ranks/ties. obs = bioenv(self.dm_vegan, self.df_vegan) assert_data_frame_almost_equal(obs, self.exp_results_vegan) def test_bioenv_no_distance_matrix(self): with self.assertRaises(TypeError): bioenv('breh', self.df) def test_bioenv_no_data_frame(self): with self.assertRaises(TypeError): bioenv(self.dm, None) def test_bioenv_duplicate_columns(self): with self.assertRaises(ValueError): bioenv(self.dm, self.df, columns=self.cols + ['PH']) def test_bioenv_no_columns(self): with self.assertRaises(ValueError): bioenv(self.dm, self.df, columns=[]) def test_bioenv_missing_columns(self): with self.assertRaises(ValueError): bioenv(self.dm, self.df, columns=self.cols + ['brofist']) def test_bioenv_missing_distance_matrix_ids(self): df = self.df[1:] with self.assertRaises(ValueError): bioenv(self.dm, df) def test_bioenv_nans(self): df = self.df.replace(53.9, np.nan) with self.assertRaises(ValueError): bioenv(self.dm, df) def test_bioenv_nonnumeric_columns(self): df = self.df.replace(2400, 'no cog yay') with self.assertRaises(TypeError): bioenv(self.dm, df) with self.assertRaises(TypeError): bioenv(self.dm, self.df_extra_column) def test_scale_single_column(self): df = pd.DataFrame([[1], [0], [2]], index=['A', 'B', 'C'], columns=['foo']) exp = pd.DataFrame([[0.0], [-1.0], [1.0]], index=['A', 'B', 'C'], columns=['foo']) obs = _scale(df) assert_data_frame_almost_equal(obs, exp) def test_scale_multiple_columns(self): # Floats and ints, including positives and negatives. df = pd.DataFrame([[7.0, 400, -1], [8.0, 530, -5], [7.5, 450, 1], [8.5, 810, -4]], index=['A', 'B', 'C', 'D'], columns=['pH', 'Elevation', 'negatives']) exp = pd.DataFrame([[-1.161895, -0.805979, 0.453921], [0.387298, -0.095625, -0.998625], [-0.387298, -0.532766, 1.180194], [1.161895, 1.434369, -0.635489]], index=['A', 'B', 'C', 'D'], columns=['pH', 'Elevation', 'negatives']) obs = _scale(df) assert_data_frame_almost_equal(obs, exp) def test_scale_no_variance(self): df = pd.DataFrame([[-7.0, -1.2], [6.2, -1.2], [2.9, -1.2]], index=['A', 'B', 'C'], columns=['foo', 'bar']) with self.assertRaises(ValueError): _scale(df) if __name__ == '__main__': main()
bsd-3-clause
yl565/statsmodels
statsmodels/sandbox/nonparametric/dgp_examples.py
37
6008
# -*- coding: utf-8 -*- """Examples of non-linear functions for non-parametric regression Created on Sat Jan 05 20:21:22 2013 Author: Josef Perktold """ import numpy as np ## Functions def fg1(x): '''Fan and Gijbels example function 1 ''' return x + 2 * np.exp(-16 * x**2) def fg1eu(x): '''Eubank similar to Fan and Gijbels example function 1 ''' return x + 0.5 * np.exp(-50 * (x - 0.5)**2) def fg2(x): '''Fan and Gijbels example function 2 ''' return np.sin(2 * x) + 2 * np.exp(-16 * x**2) def func1(x): '''made up example with sin, square ''' return np.sin(x * 5) / x + 2. * x - 1. * x**2 ## Classes with Data Generating Processes doc = {'description': '''Base Class for Univariate non-linear example Does not work on it's own. needs additional at least self.func ''', 'ref': ''} class _UnivariateFunction(object): #Base Class for Univariate non-linear example. #Does not work on it's own. needs additionally at least self.func __doc__ = '''%(description)s Parameters ---------- nobs : int number of observations to simulate x : None or 1d array If x is given then it is used for the exogenous variable instead of creating a random sample distr_x : None or distribution instance Only used if x is None. The rvs method is used to create a random sample of the exogenous (explanatory) variable. distr_noise : None or distribution instance The rvs method is used to create a random sample of the errors. Attributes ---------- x : ndarray, 1-D exogenous or explanatory variable. x is sorted. y : ndarray, 1-D endogenous or response variable y_true : ndarray, 1-D expected values of endogenous or response variable, i.e. values of y without noise func : callable underlying function (defined by subclass) %(ref)s ''' #% doc def __init__(self, nobs=200, x=None, distr_x=None, distr_noise=None): if x is None: if distr_x is None: x = np.random.normal(loc=0, scale=self.s_x, size=nobs) else: x = distr_x.rvs(size=nobs) x.sort() self.x = x if distr_noise is None: noise = np.random.normal(loc=0, scale=self.s_noise, size=nobs) else: noise = distr_noise.rvs(size=nobs) if hasattr(self, 'het_scale'): noise *= self.het_scale(self.x) #self.func = fg1 self.y_true = y_true = self.func(x) self.y = y_true + noise def plot(self, scatter=True, ax=None): '''plot the mean function and optionally the scatter of the sample Parameters ---------- scatter: bool If true, then add scatterpoints of sample to plot. ax : None or matplotlib axis instance If None, then a matplotlib.pyplot figure is created, otherwise the given axis, ax, is used. Returns ------- fig : matplotlib figure This is either the created figure instance or the one associated with ax if ax is given. ''' if ax is None: import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(1, 1, 1) if scatter: ax.plot(self.x, self.y, 'o', alpha=0.5) xx = np.linspace(self.x.min(), self.x.max(), 100) ax.plot(xx, self.func(xx), lw=2, color='b', label='dgp mean') return ax.figure doc = {'description': '''Fan and Gijbels example function 1 linear trend plus a hump ''', 'ref': ''' References ---------- Fan, Jianqing, and Irene Gijbels. 1992. "Variable Bandwidth and Local Linear Regression Smoothers." The Annals of Statistics 20 (4) (December): 2008-2036. doi:10.2307/2242378. '''} class UnivariateFanGijbels1(_UnivariateFunction): __doc__ = _UnivariateFunction.__doc__ % doc def __init__(self, nobs=200, x=None, distr_x=None, distr_noise=None): self.s_x = 1. self.s_noise = 0.7 self.func = fg1 super(self.__class__, self).__init__(nobs=nobs, x=x, distr_x=distr_x, distr_noise=distr_noise) doc['description'] =\ '''Fan and Gijbels example function 2 sin plus a hump ''' class UnivariateFanGijbels2(_UnivariateFunction): __doc__ = _UnivariateFunction.__doc__ % doc def __init__(self, nobs=200, x=None, distr_x=None, distr_noise=None): self.s_x = 1. self.s_noise = 0.5 self.func = fg2 super(self.__class__, self).__init__(nobs=nobs, x=x, distr_x=distr_x, distr_noise=distr_noise) class UnivariateFanGijbels1EU(_UnivariateFunction): ''' Eubank p.179f ''' def __init__(self, nobs=50, x=None, distr_x=None, distr_noise=None): if distr_x is None: from scipy import stats distr_x = stats.uniform self.s_noise = 0.15 self.func = fg1eu super(self.__class__, self).__init__(nobs=nobs, x=x, distr_x=distr_x, distr_noise=distr_noise) class UnivariateFunc1(_UnivariateFunction): ''' made up, with sin and quadratic trend ''' def __init__(self, nobs=200, x=None, distr_x=None, distr_noise=None): if x is None and distr_x is None: from scipy import stats distr_x = stats.uniform(-2, 4) else: nobs = x.shape[0] self.s_noise = 2. self.func = func1 super(UnivariateFunc1, self).__init__(nobs=nobs, x=x, distr_x=distr_x, distr_noise=distr_noise) def het_scale(self, x): return np.sqrt(np.abs(3+x))
bsd-3-clause
mmottahedi/neuralnilm_prototype
scripts/e200.py
2
6685
from __future__ import print_function, division import matplotlib matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import Net, RealApplianceSource, BLSTMLayer, DimshuffleLayer from lasagne.nonlinearities import sigmoid, rectify from lasagne.objectives import crossentropy, mse from lasagne.init import Uniform, Normal from lasagne.layers import LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer, FeaturePoolLayer from neuralnilm.updates import nesterov_momentum from functools import partial import os from neuralnilm.source import standardise, discretize, fdiff, power_and_fdiff from neuralnilm.experiment import run_experiment from neuralnilm.net import TrainingError import __main__ NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" SAVE_PLOT_INTERVAL = 250 GRADIENT_STEPS = 100 """ e103 Discovered that bottom layer is hardly changing. So will try just a single lstm layer e104 standard init lower learning rate e106 lower learning rate to 0.001 e108 is e107 but with batch size of 5 e109 Normal(1) for BLSTM e110 * Back to Uniform(5) for BLSTM * Using nntools eb17bd923ef9ff2cacde2e92d7323b4e51bb5f1f RESULTS: Seems to run fine again! e111 * Try with nntools head * peepholes=False RESULTS: appears to be working well. Haven't seen a NaN, even with training rate of 0.1 e112 * n_seq_per_batch = 50 e114 * Trying looking at layer by layer training again. * Start with single BLSTM layer e115 * Learning rate = 1 e116 * Standard inits e117 * Uniform(1) init e119 * Learning rate 10 # Result: didn't work well! e120 * init: Normal(1) * not as good as Uniform(5) e121 * Uniform(25) e122 * Just 10 cells * Uniform(5) e125 * Pre-train lower layers e128 * Add back all 5 appliances * Seq length 1500 * skip_prob = 0.7 e129 * max_input_power = None * 2nd layer has Uniform(5) * pre-train bottom layer for 2000 epochs * add third layer at 4000 epochs e131 e138 * Trying to replicate e82 and then break it ;) e140 diff e141 conv1D layer has Uniform(1), as does 2nd BLSTM layer e142 diff AND power e144 diff and power and max power is 5900 e145 Uniform(25) for first layer e146 gradient clip and use peepholes e147 * try again with new code e148 * learning rate 0.1 e150 * Same as e149 but without peepholes and using BLSTM not BBLSTM e151 * Max pooling 171 lower learning rate 172 even lower learning rate 173 slightly higher learning rate! 175 same as 174 but with skip prob = 0, and LSTM not BLSTM, and only 4000 epochs 176 new cost function 177 another new cost func (this one avoids NaNs) skip prob 0.7 10x higher learning rate 178 refactored cost func (functionally equiv to 177) 0.1x learning rate e180 * mse e181 * back to scaled cost * different architecture: - convd1 at input (2x) - then 3 LSTM layers, each with a 2x conv in between - no diff input e189 * divide dominant appliance power * mse """ # def scaled_cost(x, t): # raw_cost = (x - t) ** 2 # energy_per_seq = t.sum(axis=1) # energy_per_batch = energy_per_seq.sum(axis=1) # energy_per_batch = energy_per_batch.reshape((-1, 1)) # normaliser = energy_per_seq / energy_per_batch # cost = raw_cost.mean(axis=1) * (1 - normaliser) # return cost.mean() from theano.ifelse import ifelse import theano.tensor as T THRESHOLD = 0 def scaled_cost(x, t): sq_error = (x - t) ** 2 def mask_and_mean_sq_error(mask): masked_sq_error = sq_error[mask.nonzero()] mean = masked_sq_error.mean() mean = ifelse(T.isnan(mean), 0.0, mean) return mean above_thresh_mean = mask_and_mean_sq_error(t > THRESHOLD) below_thresh_mean = mask_and_mean_sq_error(t <= THRESHOLD) return (above_thresh_mean + below_thresh_mean) / 2.0 def exp_a(name): global source source = RealApplianceSource( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television' # 'dish washer', # ['washer dryer', 'washing machine'] ], max_appliance_powers=[2500] * 5, on_power_thresholds=[5] * 5, max_input_power=2500, min_on_durations=[60, 60, 60, 1800, 1800], min_off_durations=[12, 12, 12, 1800, 600], window=("2013-06-01", "2014-07-01"), seq_length=1520, output_one_appliance=False, boolean_targets=False, train_buildings=[1], validation_buildings=[1], skip_probability=0.7, n_seq_per_batch=25, input_padding=4, include_diff=False, clip_appliance_power=False ) net = Net( experiment_name=name, source=source, save_plot_interval=1000, loss_function=scaled_cost, updates=partial(nesterov_momentum, learning_rate=0.1, clip_range=(-1, 1)), layers_config=[ { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # (batch, features, time) }, { 'type': Conv1DLayer, # convolve over the time axis 'num_filters': 10, 'filter_length': 5, 'stride': 1, 'nonlinearity': sigmoid, 'W': Uniform(5) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # back to (batch, time, features) }, { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': rectify }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None # 'W': Uniform() } ] ) return net def init_experiment(experiment): full_exp_name = NAME + experiment func_call = 'exp_{:s}(full_exp_name)'.format(experiment) print("***********************************") print("Preparing", full_exp_name, "...") net = eval(func_call) return net def main(): for experiment in list('a'): full_exp_name = NAME + experiment path = os.path.join(PATH, full_exp_name) try: net = init_experiment(experiment) run_experiment(net, path, epochs=None) except KeyboardInterrupt: break except TrainingError as exception: print("EXCEPTION:", exception) except Exception as exception: raise print("EXCEPTION:", exception) import ipdb; ipdb.set_trace() if __name__ == "__main__": main()
mit
rexshihaoren/scikit-learn
sklearn/datasets/tests/test_samples_generator.py
67
14842
from __future__ import division from collections import defaultdict from functools import partial import numpy as np from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.datasets import make_classification from sklearn.datasets import make_multilabel_classification from sklearn.datasets import make_hastie_10_2 from sklearn.datasets import make_regression from sklearn.datasets import make_blobs from sklearn.datasets import make_friedman1 from sklearn.datasets import make_friedman2 from sklearn.datasets import make_friedman3 from sklearn.datasets import make_low_rank_matrix from sklearn.datasets import make_sparse_coded_signal from sklearn.datasets import make_sparse_uncorrelated from sklearn.datasets import make_spd_matrix from sklearn.datasets import make_swiss_roll from sklearn.datasets import make_s_curve from sklearn.datasets import make_biclusters from sklearn.datasets import make_checkerboard from sklearn.utils.validation import assert_all_finite def test_make_classification(): X, y = make_classification(n_samples=100, n_features=20, n_informative=5, n_redundant=1, n_repeated=1, n_classes=3, n_clusters_per_class=1, hypercube=False, shift=None, scale=None, weights=[0.1, 0.25], random_state=0) assert_equal(X.shape, (100, 20), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(np.unique(y).shape, (3,), "Unexpected number of classes") assert_equal(sum(y == 0), 10, "Unexpected number of samples in class #0") assert_equal(sum(y == 1), 25, "Unexpected number of samples in class #1") assert_equal(sum(y == 2), 65, "Unexpected number of samples in class #2") def test_make_classification_informative_features(): """Test the construction of informative features in make_classification Also tests `n_clusters_per_class`, `n_classes`, `hypercube` and fully-specified `weights`. """ # Create very separate clusters; check that vertices are unique and # correspond to classes class_sep = 1e6 make = partial(make_classification, class_sep=class_sep, n_redundant=0, n_repeated=0, flip_y=0, shift=0, scale=1, shuffle=False) for n_informative, weights, n_clusters_per_class in [(2, [1], 1), (2, [1/3] * 3, 1), (2, [1/4] * 4, 1), (2, [1/2] * 2, 2), (2, [3/4, 1/4], 2), (10, [1/3] * 3, 10) ]: n_classes = len(weights) n_clusters = n_classes * n_clusters_per_class n_samples = n_clusters * 50 for hypercube in (False, True): X, y = make(n_samples=n_samples, n_classes=n_classes, weights=weights, n_features=n_informative, n_informative=n_informative, n_clusters_per_class=n_clusters_per_class, hypercube=hypercube, random_state=0) assert_equal(X.shape, (n_samples, n_informative)) assert_equal(y.shape, (n_samples,)) # Cluster by sign, viewed as strings to allow uniquing signs = np.sign(X) signs = signs.view(dtype='|S{0}'.format(signs.strides[0])) unique_signs, cluster_index = np.unique(signs, return_inverse=True) assert_equal(len(unique_signs), n_clusters, "Wrong number of clusters, or not in distinct " "quadrants") clusters_by_class = defaultdict(set) for cluster, cls in zip(cluster_index, y): clusters_by_class[cls].add(cluster) for clusters in clusters_by_class.values(): assert_equal(len(clusters), n_clusters_per_class, "Wrong number of clusters per class") assert_equal(len(clusters_by_class), n_classes, "Wrong number of classes") assert_array_almost_equal(np.bincount(y) / len(y) // weights, [1] * n_classes, err_msg="Wrong number of samples " "per class") # Ensure on vertices of hypercube for cluster in range(len(unique_signs)): centroid = X[cluster_index == cluster].mean(axis=0) if hypercube: assert_array_almost_equal(np.abs(centroid), [class_sep] * n_informative, decimal=0, err_msg="Clusters are not " "centered on hypercube " "vertices") else: assert_raises(AssertionError, assert_array_almost_equal, np.abs(centroid), [class_sep] * n_informative, decimal=0, err_msg="Clusters should not be cenetered " "on hypercube vertices") assert_raises(ValueError, make, n_features=2, n_informative=2, n_classes=5, n_clusters_per_class=1) assert_raises(ValueError, make, n_features=2, n_informative=2, n_classes=3, n_clusters_per_class=2) def test_make_multilabel_classification_return_sequences(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = assert_warns(DeprecationWarning, make_multilabel_classification, n_samples=100, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (100, 20), "X shape mismatch") if not allow_unlabeled: assert_equal(max([max(y) for y in Y]), 2) assert_equal(min([len(y) for y in Y]), min_length) assert_true(max([len(y) for y in Y]) <= 3) def test_make_multilabel_classification_return_indicator(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=25, n_features=20, n_classes=3, random_state=0, return_indicator=True, allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (25, 20), "X shape mismatch") assert_equal(Y.shape, (25, 3), "Y shape mismatch") assert_true(np.all(np.sum(Y, axis=0) > min_length)) # Also test return_distributions X2, Y2, p_c, p_w_c = make_multilabel_classification( n_samples=25, n_features=20, n_classes=3, random_state=0, return_indicator=True, allow_unlabeled=allow_unlabeled, return_distributions=True) assert_array_equal(X, X2) assert_array_equal(Y, Y2) assert_equal(p_c.shape, (3,)) assert_almost_equal(p_c.sum(), 1) assert_equal(p_w_c.shape, (20, 3)) assert_almost_equal(p_w_c.sum(axis=0), [1] * 3) def test_make_hastie_10_2(): X, y = make_hastie_10_2(n_samples=100, random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(np.unique(y).shape, (2,), "Unexpected number of classes") def test_make_regression(): X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3, effective_rank=5, coef=True, bias=0.0, noise=1.0, random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(c.shape, (10,), "coef shape mismatch") assert_equal(sum(c != 0.0), 3, "Unexpected number of informative features") # Test that y ~= np.dot(X, c) + bias + N(0, 1.0). assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1) # Test with small number of features. X, y = make_regression(n_samples=100, n_features=1) # n_informative=3 assert_equal(X.shape, (100, 1)) def test_make_regression_multitarget(): X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3, n_targets=3, coef=True, noise=1., random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100, 3), "y shape mismatch") assert_equal(c.shape, (10, 3), "coef shape mismatch") assert_array_equal(sum(c != 0.0), 3, "Unexpected number of informative features") # Test that y ~= np.dot(X, c) + bias + N(0, 1.0) assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1) def test_make_blobs(): X, y = make_blobs(n_samples=50, n_features=2, centers=[[0.0, 0.0], [1.0, 1.0], [0.0, 1.0]], random_state=0) assert_equal(X.shape, (50, 2), "X shape mismatch") assert_equal(y.shape, (50,), "y shape mismatch") assert_equal(np.unique(y).shape, (3,), "Unexpected number of blobs") def test_make_friedman1(): X, y = make_friedman1(n_samples=5, n_features=10, noise=0.0, random_state=0) assert_equal(X.shape, (5, 10), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 + 10 * X[:, 3] + 5 * X[:, 4]) def test_make_friedman2(): X, y = make_friedman2(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 4), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5) def test_make_friedman3(): X, y = make_friedman3(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 4), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0])) def test_make_low_rank_matrix(): X = make_low_rank_matrix(n_samples=50, n_features=25, effective_rank=5, tail_strength=0.01, random_state=0) assert_equal(X.shape, (50, 25), "X shape mismatch") from numpy.linalg import svd u, s, v = svd(X) assert_less(sum(s) - 5, 0.1, "X rank is not approximately 5") def test_make_sparse_coded_signal(): Y, D, X = make_sparse_coded_signal(n_samples=5, n_components=8, n_features=10, n_nonzero_coefs=3, random_state=0) assert_equal(Y.shape, (10, 5), "Y shape mismatch") assert_equal(D.shape, (10, 8), "D shape mismatch") assert_equal(X.shape, (8, 5), "X shape mismatch") for col in X.T: assert_equal(len(np.flatnonzero(col)), 3, 'Non-zero coefs mismatch') assert_array_almost_equal(np.dot(D, X), Y) assert_array_almost_equal(np.sqrt((D ** 2).sum(axis=0)), np.ones(D.shape[1])) def test_make_sparse_uncorrelated(): X, y = make_sparse_uncorrelated(n_samples=5, n_features=10, random_state=0) assert_equal(X.shape, (5, 10), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") def test_make_spd_matrix(): X = make_spd_matrix(n_dim=5, random_state=0) assert_equal(X.shape, (5, 5), "X shape mismatch") assert_array_almost_equal(X, X.T) from numpy.linalg import eig eigenvalues, _ = eig(X) assert_array_equal(eigenvalues > 0, np.array([True] * 5), "X is not positive-definite") def test_make_swiss_roll(): X, t = make_swiss_roll(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 3), "X shape mismatch") assert_equal(t.shape, (5,), "t shape mismatch") assert_array_almost_equal(X[:, 0], t * np.cos(t)) assert_array_almost_equal(X[:, 2], t * np.sin(t)) def test_make_s_curve(): X, t = make_s_curve(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 3), "X shape mismatch") assert_equal(t.shape, (5,), "t shape mismatch") assert_array_almost_equal(X[:, 0], np.sin(t)) assert_array_almost_equal(X[:, 2], np.sign(t) * (np.cos(t) - 1)) def test_make_biclusters(): X, rows, cols = make_biclusters( shape=(100, 100), n_clusters=4, shuffle=True, random_state=0) assert_equal(X.shape, (100, 100), "X shape mismatch") assert_equal(rows.shape, (4, 100), "rows shape mismatch") assert_equal(cols.shape, (4, 100,), "columns shape mismatch") assert_all_finite(X) assert_all_finite(rows) assert_all_finite(cols) X2, _, _ = make_biclusters(shape=(100, 100), n_clusters=4, shuffle=True, random_state=0) assert_array_almost_equal(X, X2) def test_make_checkerboard(): X, rows, cols = make_checkerboard( shape=(100, 100), n_clusters=(20, 5), shuffle=True, random_state=0) assert_equal(X.shape, (100, 100), "X shape mismatch") assert_equal(rows.shape, (100, 100), "rows shape mismatch") assert_equal(cols.shape, (100, 100,), "columns shape mismatch") X, rows, cols = make_checkerboard( shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) assert_all_finite(X) assert_all_finite(rows) assert_all_finite(cols) X1, _, _ = make_checkerboard(shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) X2, _, _ = make_checkerboard(shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) assert_array_equal(X1, X2)
bsd-3-clause
smartscheduling/scikit-learn-categorical-tree
sklearn/manifold/tests/test_t_sne.py
6
9770
import sys from sklearn.externals.six.moves import cStringIO as StringIO import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises_regexp from sklearn.utils import check_random_state from sklearn.manifold.t_sne import _joint_probabilities from sklearn.manifold.t_sne import _kl_divergence from sklearn.manifold.t_sne import _gradient_descent from sklearn.manifold.t_sne import trustworthiness from sklearn.manifold.t_sne import TSNE from sklearn.manifold._utils import _binary_search_perplexity from scipy.optimize import check_grad from scipy.spatial.distance import pdist from scipy.spatial.distance import squareform def test_gradient_descent_stops(): # Test stopping conditions of gradient descent. class ObjectiveSmallGradient: def __init__(self): self.it = -1 def __call__(self, _): self.it += 1 return (10 - self.it) / 10.0, np.array([1e-5]) def flat_function(_): return 0.0, np.ones(1) # Gradient norm old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=100, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=1e-5, min_error_diff=0.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 1.0) assert_equal(it, 0) assert("gradient norm" in out) # Error difference old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=100, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=0.2, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.9) assert_equal(it, 1) assert("error difference" in out) # Maximum number of iterations without improvement old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( flat_function, np.zeros(1), 0, n_iter=100, n_iter_without_progress=10, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=-1.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.0) assert_equal(it, 11) assert("did not make any progress" in out) # Maximum number of iterations old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=11, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=0.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.0) assert_equal(it, 10) assert("Iteration 10" in out) def test_binary_search(): # Test if the binary search finds Gaussians with desired perplexity. random_state = check_random_state(0) distances = random_state.randn(50, 2) distances = distances.dot(distances.T) np.fill_diagonal(distances, 0.0) desired_perplexity = 25.0 P = _binary_search_perplexity(distances, desired_perplexity, verbose=0) P = np.maximum(P, np.finfo(np.double).eps) mean_perplexity = np.mean([np.exp(-np.sum(P[i] * np.log(P[i]))) for i in range(P.shape[0])]) assert_almost_equal(mean_perplexity, desired_perplexity, decimal=3) def test_gradient(): # Test gradient of Kullback-Leibler divergence. random_state = check_random_state(0) n_samples = 50 n_features = 2 n_components = 2 alpha = 1.0 distances = random_state.randn(n_samples, n_features) distances = distances.dot(distances.T) np.fill_diagonal(distances, 0.0) X_embedded = random_state.randn(n_samples, n_components) P = _joint_probabilities(distances, desired_perplexity=25.0, verbose=0) fun = lambda params: _kl_divergence(params, P, alpha, n_samples, n_components)[0] grad = lambda params: _kl_divergence(params, P, alpha, n_samples, n_components)[1] assert_almost_equal(check_grad(fun, grad, X_embedded.ravel()), 0.0, decimal=5) def test_trustworthiness(): # Test trustworthiness score. random_state = check_random_state(0) # Affine transformation X = random_state.randn(100, 2) assert_equal(trustworthiness(X, 5.0 + X / 10.0), 1.0) # Randomly shuffled X = np.arange(100).reshape(-1, 1) X_embedded = X.copy() random_state.shuffle(X_embedded) assert_less(trustworthiness(X, X_embedded), 0.6) # Completely different X = np.arange(5).reshape(-1, 1) X_embedded = np.array([[0], [2], [4], [1], [3]]) assert_almost_equal(trustworthiness(X, X_embedded, n_neighbors=1), 0.2) def test_preserve_trustworthiness_approximately(): # Nearest neighbors should be preserved approximately. random_state = check_random_state(0) X = random_state.randn(100, 2) for init in ('random', 'pca'): tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, init=init, random_state=0) X_embedded = tsne.fit_transform(X) assert_almost_equal(trustworthiness(X, X_embedded, n_neighbors=1), 1.0, decimal=1) def test_fit_csr_matrix(): # X can be a sparse matrix. random_state = check_random_state(0) X = random_state.randn(100, 2) X[(np.random.randint(0, 100, 50), np.random.randint(0, 2, 50))] = 0.0 X_csr = sp.csr_matrix(X) tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, random_state=0) X_embedded = tsne.fit_transform(X_csr) assert_almost_equal(trustworthiness(X_csr, X_embedded, n_neighbors=1), 1.0, decimal=1) def test_preserve_trustworthiness_approximately_with_precomputed_distances(): # Nearest neighbors should be preserved approximately. random_state = check_random_state(0) X = random_state.randn(100, 2) D = squareform(pdist(X), "sqeuclidean") tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, metric="precomputed", random_state=0) X_embedded = tsne.fit_transform(D) assert_almost_equal(trustworthiness(D, X_embedded, n_neighbors=1, precomputed=True), 1.0, decimal=1) def test_early_exaggeration_too_small(): # Early exaggeration factor must be >= 1. tsne = TSNE(early_exaggeration=0.99) assert_raises_regexp(ValueError, "early_exaggeration .*", tsne.fit_transform, np.array([[0.0]])) def test_too_few_iterations(): # Number of gradient descent iterations must be at least 200. tsne = TSNE(n_iter=199) assert_raises_regexp(ValueError, "n_iter .*", tsne.fit_transform, np.array([[0.0]])) def test_non_square_precomputed_distances(): # Precomputed distance matrices must be square matrices. tsne = TSNE(metric="precomputed") assert_raises_regexp(ValueError, ".* square distance matrix", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_init_not_available(): # 'init' must be 'pca' or 'random'. assert_raises_regexp(ValueError, "'init' must be either 'pca' or 'random'", TSNE, init="not available") def test_distance_not_available(): # 'metric' must be valid. tsne = TSNE(metric="not available") assert_raises_regexp(ValueError, "Unknown metric not available.*", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_pca_initialization_not_compatible_with_precomputed_kernel(): # Precomputed distance matrices must be square matrices. tsne = TSNE(metric="precomputed", init="pca") assert_raises_regexp(ValueError, "The parameter init=\"pca\" cannot be " "used with metric=\"precomputed\".", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_verbose(): random_state = check_random_state(0) tsne = TSNE(verbose=2) X = random_state.randn(5, 2) old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert("[t-SNE]" in out) assert("Computing pairwise distances" in out) assert("Computed conditional probabilities" in out) assert("Mean sigma" in out) assert("Finished" in out) assert("early exaggeration" in out) assert("Finished" in out) def test_chebyshev_metric(): # t-SNE should allow metrics that cannot be squared (issue #3526). random_state = check_random_state(0) tsne = TSNE(metric="chebyshev") X = random_state.randn(5, 2) tsne.fit_transform(X) def test_reduction_to_one_component(): # t-SNE should allow reduction to one component (issue #4154). random_state = check_random_state(0) tsne = TSNE(n_components=1) X = random_state.randn(5, 2) X_embedded = tsne.fit_transform(X) assert(np.all(np.isfinite(X_embedded)))
bsd-3-clause
eramirem/astroML
book_figures/chapter3/fig_kurtosis_skew.py
3
2902
r""" Kurtosis and Skew ----------------- Figure 3.6. An example of distributions with different skewness :math:`\Sigma` (top panel) and kurtosis K (bottom panel). The modified Gaussian in the upper panel is a normal distribution multiplied by a Gram-Charlier series (see eq. 4.70), with a0 = 2, a1 = 1, and a2 = 0.5. The log-normal has :math:`\sigma = 1.2`. """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from scipy import stats from matplotlib import pyplot as plt #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) fig = plt.figure(figsize=(5, 6.25)) fig.subplots_adjust(right=0.95, hspace=0.05, bottom=0.07, top=0.95) # First show distributions with different skeq ax = fig.add_subplot(211) x = np.linspace(-8, 8, 1000) N = stats.norm(0, 1) l1, = ax.plot(x, N.pdf(x), '-k', label=r'${\rm Gaussian,}\ \Sigma=0$') l2, = ax.plot(x, 0.5 * N.pdf(x) * (2 + x + 0.5 * (x * x - 1)), '--k', label=r'${\rm mod.\ Gauss,}\ \Sigma=-0.36$') l3, = ax.plot(x[499:], stats.lognorm(1.2).pdf(x[499:]), '-.k', label=r'$\rm log\ normal,\ \Sigma=11.2$') ax.set_xlim(-5, 5) ax.set_ylim(0, 0.7001) ax.set_ylabel('$p(x)$') ax.xaxis.set_major_formatter(plt.NullFormatter()) # trick to show multiple legends leg1 = ax.legend([l1], [l1.get_label()], loc=1) leg2 = ax.legend([l2, l3], (l2.get_label(), l3.get_label()), loc=2) ax.add_artist(leg1) ax.set_title('Skew $\Sigma$ and Kurtosis $K$') # next show distributions with different kurtosis ax = fig.add_subplot(212) x = np.linspace(-5, 5, 1000) l1, = ax.plot(x, stats.laplace(0, 1).pdf(x), '--k', label=r'${\rm Laplace,}\ K=+3$') l2, = ax.plot(x, stats.norm(0, 1).pdf(x), '-k', label=r'${\rm Gaussian,}\ K=0$') l3, = ax.plot(x, stats.cosine(0, 1).pdf(x), '-.k', label=r'${\rm Cosine,}\ K=-0.59$') l4, = ax.plot(x, stats.uniform(-2, 4).pdf(x), ':k', label=r'${\rm Uniform,}\ K=-1.2$') ax.set_xlim(-5, 5) ax.set_ylim(0, 0.55) ax.set_xlabel('$x$') ax.set_ylabel('$p(x)$') # trick to show multiple legends leg1 = ax.legend((l1, l2), (l1.get_label(), l2.get_label()), loc=2) leg2 = ax.legend((l3, l4), (l3.get_label(), l4.get_label()), loc=1) ax.add_artist(leg1) plt.show()
bsd-2-clause
sanjayankur31/nest-simulator
pynest/examples/spatial/grid_iaf_irr.py
20
1453
# -*- coding: utf-8 -*- # # grid_iaf_irr.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ Create 12 freely placed iaf_psc_alpha neurons ----------------------------------------------- BCCN Tutorial @ CNS*09 Hans Ekkehard Plesser, UMB """ import nest import matplotlib.pyplot as plt nest.ResetKernel() pos = nest.spatial.free([nest.random.uniform(-0.75, 0.75), nest.random.uniform(-0.5, 0.5)], extent=[2., 1.5]) l1 = nest.Create('iaf_psc_alpha', 12, positions=pos) nest.PrintNodes() nest.PlotLayer(l1, nodesize=50) # beautify plt.axis([-1.0, 1.0, -0.75, 0.75]) plt.axes().set_aspect('equal', 'box') plt.axes().set_xticks((-0.75, -0.25, 0.25, 0.75)) plt.axes().set_yticks((-0.5, 0, 0.5)) plt.grid(True) plt.xlabel('Extent: 2.0') plt.ylabel('Extent: 1.5') plt.show() # plt.savefig('grid_iaf_irr.png')
gpl-2.0
tjlaboss/openmc
openmc/data/photon.py
8
44955
from collections import OrderedDict from collections.abc import Mapping, Callable from copy import deepcopy from io import StringIO from math import pi from numbers import Integral, Real import os import h5py import numpy as np import pandas as pd from scipy.interpolate import CubicSpline import openmc.checkvalue as cv from openmc.mixin import EqualityMixin from . import HDF5_VERSION from .ace import Table, get_metadata, get_table from .data import ATOMIC_SYMBOL, EV_PER_MEV from .endf import Evaluation, get_head_record, get_tab1_record, get_list_record from .function import Tabulated1D # Constants MASS_ELECTRON_EV = 0.5109989461e6 # Electron mass energy PLANCK_C = 1.2398419739062977e4 # Planck's constant times c in eV-Angstroms FINE_STRUCTURE = 137.035999139 # Inverse fine structure constant CM_PER_ANGSTROM = 1.0e-8 # classical electron radius in cm R0 = CM_PER_ANGSTROM * PLANCK_C / (2.0 * pi * FINE_STRUCTURE * MASS_ELECTRON_EV) # Electron subshell labels _SUBSHELLS = [None, 'K', 'L1', 'L2', 'L3', 'M1', 'M2', 'M3', 'M4', 'M5', 'N1', 'N2', 'N3', 'N4', 'N5', 'N6', 'N7', 'O1', 'O2', 'O3', 'O4', 'O5', 'O6', 'O7', 'O8', 'O9', 'P1', 'P2', 'P3', 'P4', 'P5', 'P6', 'P7', 'P8', 'P9', 'P10', 'P11', 'Q1', 'Q2', 'Q3'] _REACTION_NAME = { 501: ('Total photon interaction', 'total'), 502: ('Photon coherent scattering', 'coherent'), 504: ('Photon incoherent scattering', 'incoherent'), 515: ('Pair production, electron field', 'pair_production_electron'), 516: ('Total pair production', 'pair_production_total'), 517: ('Pair production, nuclear field', 'pair_production_nuclear'), 522: ('Photoelectric absorption', 'photoelectric'), 525: ('Heating', 'heating'), 526: ('Electro-atomic scattering', 'electro_atomic_scat'), 527: ('Electro-atomic bremsstrahlung', 'electro_atomic_brem'), 528: ('Electro-atomic excitation', 'electro_atomic_excit'), 534: ('K (1s1/2) subshell photoelectric', 'K'), 535: ('L1 (2s1/2) subshell photoelectric', 'L1'), 536: ('L2 (2p1/2) subshell photoelectric', 'L2'), 537: ('L3 (2p3/2) subshell photoelectric', 'L3'), 538: ('M1 (3s1/2) subshell photoelectric', 'M1'), 539: ('M2 (3p1/2) subshell photoelectric', 'M2'), 540: ('M3 (3p3/2) subshell photoelectric', 'M3'), 541: ('M4 (3d3/2) subshell photoelectric', 'M4'), 542: ('M5 (3d5/2) subshell photoelectric', 'M5'), 543: ('N1 (4s1/2) subshell photoelectric', 'N1'), 544: ('N2 (4p1/2) subshell photoelectric', 'N2'), 545: ('N3 (4p3/2) subshell photoelectric', 'N3'), 546: ('N4 (4d3/2) subshell photoelectric', 'N4'), 547: ('N5 (4d5/2) subshell photoelectric', 'N5'), 548: ('N6 (4f5/2) subshell photoelectric', 'N6'), 549: ('N7 (4f7/2) subshell photoelectric', 'N7'), 550: ('O1 (5s1/2) subshell photoelectric', 'O1'), 551: ('O2 (5p1/2) subshell photoelectric', 'O2'), 552: ('O3 (5p3/2) subshell photoelectric', 'O3'), 553: ('O4 (5d3/2) subshell photoelectric', 'O4'), 554: ('O5 (5d5/2) subshell photoelectric', 'O5'), 555: ('O6 (5f5/2) subshell photoelectric', 'O6'), 556: ('O7 (5f7/2) subshell photoelectric', 'O7'), 557: ('O8 (5g7/2) subshell photoelectric', 'O8'), 558: ('O9 (5g9/2) subshell photoelectric', 'O9'), 559: ('P1 (6s1/2) subshell photoelectric', 'P1'), 560: ('P2 (6p1/2) subshell photoelectric', 'P2'), 561: ('P3 (6p3/2) subshell photoelectric', 'P3'), 562: ('P4 (6d3/2) subshell photoelectric', 'P4'), 563: ('P5 (6d5/2) subshell photoelectric', 'P5'), 564: ('P6 (6f5/2) subshell photoelectric', 'P6'), 565: ('P7 (6f7/2) subshell photoelectric', 'P7'), 566: ('P8 (6g7/2) subshell photoelectric', 'P8'), 567: ('P9 (6g9/2) subshell photoelectric', 'P9'), 568: ('P10 (6h9/2) subshell photoelectric', 'P10'), 569: ('P11 (6h11/2) subshell photoelectric', 'P11'), 570: ('Q1 (7s1/2) subshell photoelectric', 'Q1'), 571: ('Q2 (7p1/2) subshell photoelectric', 'Q2'), 572: ('Q3 (7p3/2) subshell photoelectric', 'Q3') } # Compton profiles are read from a pre-generated HDF5 file when they are first # needed. The dictionary stores an array of electron momentum values (at which # the profiles are tabulated) with the key 'pz' and the profile for each element # is a 2D array with shape (n_shells, n_momentum_values) stored on the key Z _COMPTON_PROFILES = {} # Scaled bremsstrahlung DCSs are read from a data file provided by Selzter and # Berger when they are first needed. The dictionary stores an array of n # incident electron kinetic energies with key 'electron_energies', an array of # k reduced photon energies with key 'photon_energies', and the cross sections # for each element are in a 2D array with shape (n, k) stored on the key 'Z'. # It also stores data used for calculating the density effect correction and # stopping power, namely, the mean excitation energy with the key 'I', number # of electrons per subshell with the key 'num_electrons', and binding energies # with the key 'ionization_energy'. _BREMSSTRAHLUNG = {} class AtomicRelaxation(EqualityMixin): """Atomic relaxation data. This class stores the binding energy, number of electrons, and electron transitions possible from ioniziation for each electron subshell of an atom. All of the data originates from an ENDF-6 atomic relaxation sub-library (NSUB=6). Instances of this class are not normally instantiated directly but rather created using the factory method :math:`AtomicRelaxation.from_endf`. Parameters ---------- binding_energy : dict Dictionary indicating the binding energy in eV (values) for given subshells (keys). The subshells should be given as strings, e.g., 'K', 'L1', 'L2', etc. num_electrons : dict Dictionary indicating the number of electrons in a subshell when neutral (values) for given subshells (keys). The subshells should be given as strings, e.g., 'K', 'L1', 'L2', etc. transitions : pandas.DataFrame Dictionary indicating allowed transitions and their probabilities (values) for given subshells (keys). The subshells should be given as strings, e.g., 'K', 'L1', 'L2', etc. The transitions are represented as a DataFrame with columns indicating the secondary and tertiary subshell, the energy of the transition in eV, and the fractional probability of the transition. Attributes ---------- binding_energy : dict Dictionary indicating the binding energy in eV (values) for given subshells (keys). The subshells should be given as strings, e.g., 'K', 'L1', 'L2', etc. num_electrons : dict Dictionary indicating the number of electrons in a subshell when neutral (values) for given subshells (keys). The subshells should be given as strings, e.g., 'K', 'L1', 'L2', etc. transitions : pandas.DataFrame Dictionary indicating allowed transitions and their probabilities (values) for given subshells (keys). The subshells should be given as strings, e.g., 'K', 'L1', 'L2', etc. The transitions are represented as a DataFrame with columns indicating the secondary and tertiary subshell, the energy of the transition in eV, and the fractional probability of the transition. See Also -------- IncidentPhoton """ def __init__(self, binding_energy, num_electrons, transitions): self.binding_energy = binding_energy self.num_electrons = num_electrons self.transitions = transitions self._e_fluorescence = {} @property def binding_energy(self): return self._binding_energy @property def num_electrons(self): return self._num_electrons @property def subshells(self): return list(sorted(self.binding_energy.keys())) @property def transitions(self): return self._transitions @binding_energy.setter def binding_energy(self, binding_energy): cv.check_type('binding energies', binding_energy, Mapping) for subshell, energy in binding_energy.items(): cv.check_value('subshell', subshell, _SUBSHELLS) cv.check_type('binding energy', energy, Real) cv.check_greater_than('binding energy', energy, 0.0, True) self._binding_energy = binding_energy @num_electrons.setter def num_electrons(self, num_electrons): cv.check_type('number of electrons', num_electrons, Mapping) for subshell, num in num_electrons.items(): cv.check_value('subshell', subshell, _SUBSHELLS) cv.check_type('number of electrons', num, Real) cv.check_greater_than('number of electrons', num, 0.0, True) self._num_electrons = num_electrons @transitions.setter def transitions(self, transitions): cv.check_type('transitions', transitions, Mapping) for subshell, df in transitions.items(): cv.check_value('subshell', subshell, _SUBSHELLS) cv.check_type('transitions', df, pd.DataFrame) self._transitions = transitions @classmethod def from_ace(cls, ace): """Generate atomic relaxation data from an ACE file Parameters ---------- ace : openmc.data.ace.Table ACE table to read from Returns ------- openmc.data.AtomicRelaxation Atomic relaxation data """ # Create data dictionaries binding_energy = {} num_electrons = {} transitions = {} # Get shell designators n = ace.nxs[7] idx = ace.jxs[11] shells = [_SUBSHELLS[int(i)] for i in ace.xss[idx : idx+n]] # Get number of electrons for each shell idx = ace.jxs[12] for shell, num in zip(shells, ace.xss[idx : idx+n]): num_electrons[shell] = num # Get binding energy for each shell idx = ace.jxs[13] for shell, e in zip(shells, ace.xss[idx : idx+n]): binding_energy[shell] = e*EV_PER_MEV # Get transition table columns = ['secondary', 'tertiary', 'energy (eV)', 'probability'] idx = ace.jxs[18] for i, subi in enumerate(shells): n_transitions = int(ace.xss[ace.jxs[15] + i]) if n_transitions > 0: records = [] for j in range(n_transitions): subj = _SUBSHELLS[int(ace.xss[idx])] subk = _SUBSHELLS[int(ace.xss[idx + 1])] etr = ace.xss[idx + 2]*EV_PER_MEV if j == 0: ftr = ace.xss[idx + 3] else: ftr = ace.xss[idx + 3] - ace.xss[idx - 1] records.append((subj, subk, etr, ftr)) idx += 4 # Create dataframe for transitions transitions[subi] = pd.DataFrame.from_records( records, columns=columns) return cls(binding_energy, num_electrons, transitions) @classmethod def from_endf(cls, ev_or_filename): """Generate atomic relaxation data from an ENDF evaluation Parameters ---------- ev_or_filename : str or openmc.data.endf.Evaluation ENDF atomic relaxation evaluation to read from. If given as a string, it is assumed to be the filename for the ENDF file. Returns ------- openmc.data.AtomicRelaxation Atomic relaxation data """ if isinstance(ev_or_filename, Evaluation): ev = ev_or_filename else: ev = Evaluation(ev_or_filename) # Atomic relaxation data is always MF=28, MT=533 if (28, 533) not in ev.section: raise IOError('{} does not appear to be an atomic relaxation ' 'sublibrary.'.format(ev)) # Determine number of subshells file_obj = StringIO(ev.section[28, 533]) params = get_head_record(file_obj) n_subshells = params[4] # Create data dictionaries binding_energy = {} num_electrons = {} transitions = {} columns = ['secondary', 'tertiary', 'energy (eV)', 'probability'] # Read data for each subshell for i in range(n_subshells): params, list_items = get_list_record(file_obj) subi = _SUBSHELLS[int(params[0])] n_transitions = int(params[5]) binding_energy[subi] = list_items[0] num_electrons[subi] = list_items[1] if n_transitions > 0: # Read transition data records = [] for j in range(n_transitions): subj = _SUBSHELLS[int(list_items[6*(j+1)])] subk = _SUBSHELLS[int(list_items[6*(j+1) + 1])] etr = list_items[6*(j+1) + 2] ftr = list_items[6*(j+1) + 3] records.append((subj, subk, etr, ftr)) # Create dataframe for transitions transitions[subi] = pd.DataFrame.from_records( records, columns=columns) # Return instance of class return cls(binding_energy, num_electrons, transitions) @classmethod def from_hdf5(cls, group): """Generate atomic relaxation data from an HDF5 group Parameters ---------- group : h5py.Group HDF5 group to read from Returns ------- openmc.data.AtomicRelaxation Atomic relaxation data """ # Create data dictionaries binding_energy = {} num_electrons = {} transitions = {} designators = [s.decode() for s in group.attrs['designators']] columns = ['secondary', 'tertiary', 'energy (eV)', 'probability'] for shell in designators: # Shell group sub_group = group[shell] # Read subshell binding energy and number of electrons if 'binding_energy' in sub_group.attrs: binding_energy[shell] = sub_group.attrs['binding_energy'] if 'num_electrons' in sub_group.attrs: num_electrons[shell] = sub_group.attrs['num_electrons'] # Read transition data if 'transitions' in sub_group: df = pd.DataFrame(sub_group['transitions'][()], columns=columns) # Replace float indexes back to subshell strings df[columns[:2]] = df[columns[:2]].replace( np.arange(float(len(_SUBSHELLS))), _SUBSHELLS) transitions[shell] = df return cls(binding_energy, num_electrons, transitions) def to_hdf5(self, group, shell): """Write atomic relaxation data to an HDF5 group Parameters ---------- group : h5py.Group HDF5 group to write to shell : str The subshell to write data for """ # Write subshell binding energy and number of electrons group.attrs['binding_energy'] = self.binding_energy[shell] group.attrs['num_electrons'] = self.num_electrons[shell] # Write transition data with replacements if shell in self.transitions: df = self.transitions[shell].replace( _SUBSHELLS, range(len(_SUBSHELLS))) group.create_dataset('transitions', data=df.values.astype(float)) class IncidentPhoton(EqualityMixin): r"""Photon interaction data. This class stores photo-atomic, photo-nuclear, atomic relaxation, Compton profile, stopping power, and bremsstrahlung data assembled from different sources. To create an instance, the factory method :meth:`IncidentPhoton.from_endf` can be used. To add atomic relaxation or Compton profile data, set the :attr:`IncidentPhoton.atomic_relaxation` and :attr:`IncidentPhoton.compton_profiles` attributes directly. Parameters ---------- atomic_number : int Number of protons in the target nucleus Attributes ---------- atomic_number : int Number of protons in the target nucleus atomic_relaxation : openmc.data.AtomicRelaxation or None Atomic relaxation data bremsstrahlung : dict Dictionary of bremsstrahlung data with keys 'I' (mean excitation energy in [eV]), 'num_electrons' (number of electrons in each subshell), 'ionization_energy' (ionization potential of each subshell), 'electron_energy' (incident electron kinetic energy values in [eV]), 'photon_energy' (ratio of the energy of the emitted photon to the incident electron kinetic energy), and 'dcs' (cross section values in [b]). The cross sections are in scaled form: :math:`(\beta^2/Z^2) E_k (d\sigma/dE_k)`, where :math:`E_k` is the energy of the emitted photon. A negative number of electrons in a subshell indicates conduction electrons. compton_profiles : dict Dictionary of Compton profile data with keys 'num_electrons' (number of electrons in each subshell), 'binding_energy' (ionization potential of each subshell), and 'J' (Hartree-Fock Compton profile as a function of the projection of the electron momentum on the scattering vector, :math:`p_z` for each subshell). Note that subshell occupancies may not match the atomic relaxation data. reactions : collections.OrderedDict Contains the cross sections for each photon reaction. The keys are MT values and the values are instances of :class:`PhotonReaction`. """ def __init__(self, atomic_number): self.atomic_number = atomic_number self._atomic_relaxation = None self.reactions = OrderedDict() self.compton_profiles = {} self.bremsstrahlung = {} def __contains__(self, mt): return mt in self.reactions def __getitem__(self, mt): if mt in self.reactions: return self.reactions[mt] else: raise KeyError('No reaction with MT={}.'.format(mt)) def __repr__(self): return "<IncidentPhoton: {}>".format(self.name) def __iter__(self): return iter(self.reactions.values()) @property def atomic_number(self): return self._atomic_number @property def atomic_relaxation(self): return self._atomic_relaxation @property def name(self): return ATOMIC_SYMBOL[self.atomic_number] @atomic_number.setter def atomic_number(self, atomic_number): cv.check_type('atomic number', atomic_number, Integral) cv.check_greater_than('atomic number', atomic_number, 0, True) self._atomic_number = atomic_number @atomic_relaxation.setter def atomic_relaxation(self, atomic_relaxation): cv.check_type('atomic relaxation data', atomic_relaxation, AtomicRelaxation) self._atomic_relaxation = atomic_relaxation @classmethod def from_ace(cls, ace_or_filename): """Generate incident photon data from an ACE table Parameters ---------- ace_or_filename : str or openmc.data.ace.Table ACE table to read from. If given as a string, it is assumed to be the filename for the ACE file. Returns ------- openmc.data.IncidentPhoton Photon interaction data """ # First obtain the data for the first provided ACE table/file if isinstance(ace_or_filename, Table): ace = ace_or_filename else: ace = get_table(ace_or_filename) # Get atomic number based on name of ACE table zaid, xs = ace.name.split('.') if not xs.endswith('p'): raise TypeError("{} is not a photoatomic transport ACE table.".format(ace)) Z = get_metadata(int(zaid))[2] # Read each reaction data = cls(Z) for mt in (502, 504, 515, 522, 525): data.reactions[mt] = PhotonReaction.from_ace(ace, mt) # Get heating cross sections [eV-barn] from factors [eV per collision] # by multiplying with total xs data.reactions[525].xs.y *= sum([data.reactions[mt].xs.y for mt in (502, 504, 515, 522)]) # Compton profiles n_shell = ace.nxs[5] if n_shell != 0: # Get number of electrons in each shell idx = ace.jxs[6] data.compton_profiles['num_electrons'] = ace.xss[idx : idx+n_shell] # Get binding energy for each shell idx = ace.jxs[7] e = ace.xss[idx : idx+n_shell]*EV_PER_MEV data.compton_profiles['binding_energy'] = e # Create Compton profile for each electron shell profiles = [] for k in range(n_shell): # Get number of momentum values and interpolation scheme loca = int(ace.xss[ace.jxs[9] + k]) jj = int(ace.xss[ace.jxs[10] + loca - 1]) m = int(ace.xss[ace.jxs[10] + loca]) # Read momentum and PDF idx = ace.jxs[10] + loca + 1 pz = ace.xss[idx : idx+m] pdf = ace.xss[idx+m : idx+2*m] # Create proflie function J_k = Tabulated1D(pz, pdf, [m], [jj]) profiles.append(J_k) data.compton_profiles['J'] = profiles # Subshell photoelectric xs and atomic relaxation data if ace.nxs[7] > 0: data.atomic_relaxation = AtomicRelaxation.from_ace(ace) # Get subshell designators n_subshells = ace.nxs[7] idx = ace.jxs[11] designators = [int(i) for i in ace.xss[idx : idx+n_subshells]] # Get energy grid for subshell photoionization n_energy = ace.nxs[3] idx = ace.jxs[1] energy = np.exp(ace.xss[idx : idx+n_energy])*EV_PER_MEV # Get cross section for each subshell idx = ace.jxs[16] for d in designators: # Create photon reaction mt = 533 + d rx = PhotonReaction(mt) data.reactions[mt] = rx # Store cross section, determining threshold xs = ace.xss[idx : idx+n_energy].copy() nonzero = (xs != 0.0) xs[nonzero] = np.exp(xs[nonzero]) threshold = np.where(xs > 0.0)[0][0] rx.xs = Tabulated1D(energy[threshold:], xs[threshold:], [n_energy - threshold], [5]) idx += n_energy # Copy binding energy shell = _SUBSHELLS[d] e = data.atomic_relaxation.binding_energy[shell] rx.subshell_binding_energy = e else: raise ValueError("ACE table {} does not have subshell data. Only " "newer ACE photoatomic libraries are supported " "(e.g., eprdata14).".format(ace.name)) # Add bremsstrahlung DCS data data._add_bremsstrahlung() return data @classmethod def from_endf(cls, photoatomic, relaxation=None): """Generate incident photon data from an ENDF evaluation Parameters ---------- photoatomic : str or openmc.data.endf.Evaluation ENDF photoatomic data evaluation to read from. If given as a string, it is assumed to be the filename for the ENDF file. relaxation : str or openmc.data.endf.Evaluation, optional ENDF atomic relaxation data evaluation to read from. If given as a string, it is assumed to be the filename for the ENDF file. Returns ------- openmc.data.IncidentPhoton Photon interaction data """ if isinstance(photoatomic, Evaluation): ev = photoatomic else: ev = Evaluation(photoatomic) Z = ev.target['atomic_number'] data = cls(Z) # Read each reaction for mf, mt, nc, mod in ev.reaction_list: if mf == 23: data.reactions[mt] = PhotonReaction.from_endf(ev, mt) # Add atomic relaxation data if it hasn't been added already if relaxation is not None: data.atomic_relaxation = AtomicRelaxation.from_endf(relaxation) # If Compton profile data hasn't been loaded, do so if not _COMPTON_PROFILES: filename = os.path.join(os.path.dirname(__file__), 'compton_profiles.h5') with h5py.File(filename, 'r') as f: _COMPTON_PROFILES['pz'] = f['pz'][()] for i in range(1, 101): group = f['{:03}'.format(i)] num_electrons = group['num_electrons'][()] binding_energy = group['binding_energy'][()]*EV_PER_MEV J = group['J'][()] _COMPTON_PROFILES[i] = {'num_electrons': num_electrons, 'binding_energy': binding_energy, 'J': J} # Add Compton profile data pz = _COMPTON_PROFILES['pz'] profile = _COMPTON_PROFILES[Z] data.compton_profiles['num_electrons'] = profile['num_electrons'] data.compton_profiles['binding_energy'] = profile['binding_energy'] data.compton_profiles['J'] = [Tabulated1D(pz, J_k) for J_k in profile['J']] # Add bremsstrahlung DCS data data._add_bremsstrahlung() return data @classmethod def from_hdf5(cls, group_or_filename): """Generate photon reaction from an HDF5 group Parameters ---------- group_or_filename : h5py.Group or str HDF5 group containing interaction data. If given as a string, it is assumed to be the filename for the HDF5 file, and the first group is used to read from. Returns ------- openmc.data.IncidentPhoton Photon interaction data """ if isinstance(group_or_filename, h5py.Group): group = group_or_filename need_to_close = False else: h5file = h5py.File(str(group_or_filename), 'r') need_to_close = True # Make sure version matches if 'version' in h5file.attrs: major, minor = h5file.attrs['version'] # For now all versions of HDF5 data can be read else: raise IOError( 'HDF5 data does not indicate a version. Your installation ' 'of the OpenMC Python API expects version {}.x data.' .format(HDF5_VERSION_MAJOR)) group = list(h5file.values())[0] Z = group.attrs['Z'] data = cls(Z) # Read energy grid energy = group['energy'][()] # Read cross section data for mt, (name, key) in _REACTION_NAME.items(): if key in group: rgroup = group[key] elif key in group['subshells']: rgroup = group['subshells'][key] else: continue data.reactions[mt] = PhotonReaction.from_hdf5(rgroup, mt, energy) # Check for necessary reactions for mt in (502, 504, 522): assert mt in data, "Reaction {} not found".format(mt) # Read atomic relaxation data.atomic_relaxation = AtomicRelaxation.from_hdf5(group['subshells']) # Read Compton profiles if 'compton_profiles' in group: rgroup = group['compton_profiles'] profile = data.compton_profiles profile['num_electrons'] = rgroup['num_electrons'][()] profile['binding_energy'] = rgroup['binding_energy'][()] # Get electron momentum values pz = rgroup['pz'][()] J = rgroup['J'][()] if pz.size != J.shape[1]: raise ValueError("'J' array shape is not consistent with the " "'pz' array shape") profile['J'] = [Tabulated1D(pz, Jk) for Jk in J] # Read bremsstrahlung if 'bremsstrahlung' in group: rgroup = group['bremsstrahlung'] data.bremsstrahlung['I'] = rgroup.attrs['I'] for key in ('dcs', 'electron_energy', 'ionization_energy', 'num_electrons', 'photon_energy'): data.bremsstrahlung[key] = rgroup[key][()] # If HDF5 file was opened here, make sure it gets closed if need_to_close: h5file.close() return data def export_to_hdf5(self, path, mode='a', libver='earliest'): """Export incident photon data to an HDF5 file. Parameters ---------- path : str Path to write HDF5 file to mode : {'r+', 'w', 'x', 'a'} Mode that is used to open the HDF5 file. This is the second argument to the :class:`h5py.File` constructor. libver : {'earliest', 'latest'} Compatibility mode for the HDF5 file. 'latest' will produce files that are less backwards compatible but have performance benefits. """ with h5py.File(str(path), mode, libver=libver) as f: # Write filetype and version f.attrs['filetype'] = np.string_('data_photon') if 'version' not in f.attrs: f.attrs['version'] = np.array(HDF5_VERSION) group = f.create_group(self.name) group.attrs['Z'] = Z = self.atomic_number # Determine union energy grid union_grid = np.array([]) for rx in self: union_grid = np.union1d(union_grid, rx.xs.x) group.create_dataset('energy', data=union_grid) # Write cross sections shell_group = group.create_group('subshells') designators = [] for mt, rx in self.reactions.items(): name, key = _REACTION_NAME[mt] if mt in (502, 504, 515, 517, 522, 525): sub_group = group.create_group(key) elif mt >= 534 and mt <= 572: # Subshell designators.append(key) sub_group = shell_group.create_group(key) # Write atomic relaxation if self.atomic_relaxation is not None: if key in self.atomic_relaxation.subshells: self.atomic_relaxation.to_hdf5(sub_group, key) else: continue rx.to_hdf5(sub_group, union_grid, Z) shell_group.attrs['designators'] = np.array(designators, dtype='S') # Write Compton profiles if self.compton_profiles: compton_group = group.create_group('compton_profiles') profile = self.compton_profiles compton_group.create_dataset('num_electrons', data=profile['num_electrons']) compton_group.create_dataset('binding_energy', data=profile['binding_energy']) # Get electron momentum values compton_group.create_dataset('pz', data=profile['J'][0].x) # Create/write 2D array of profiles J = np.array([Jk.y for Jk in profile['J']]) compton_group.create_dataset('J', data=J) # Write bremsstrahlung if self.bremsstrahlung: brem_group = group.create_group('bremsstrahlung') for key, value in self.bremsstrahlung.items(): if key == 'I': brem_group.attrs[key] = value else: brem_group.create_dataset(key, data=value) def _add_bremsstrahlung(self): """Add the data used in the thick-target bremsstrahlung approximation """ # Load bremsstrahlung data if it has not yet been loaded if not _BREMSSTRAHLUNG: # Add data used for density effect correction filename = os.path.join(os.path.dirname(__file__), 'density_effect.h5') with h5py.File(filename, 'r') as f: for i in range(1, 101): group = f['{:03}'.format(i)] _BREMSSTRAHLUNG[i] = { 'I': group.attrs['I'], 'num_electrons': group['num_electrons'][()], 'ionization_energy': group['ionization_energy'][()] } filename = os.path.join(os.path.dirname(__file__), 'BREMX.DAT') with open(filename, 'r') as fh: brem = fh.read().split() # Incident electron kinetic energy grid in eV _BREMSSTRAHLUNG['electron_energy'] = np.logspace(3, 9, 200) log_energy = np.log(_BREMSSTRAHLUNG['electron_energy']) # Get number of tabulated electron and photon energy values n = int(brem[37]) k = int(brem[38]) # Index in data p = 39 # Get log of incident electron kinetic energy values, used for # cubic spline interpolation in log energy. Units are in MeV, so # convert to eV. logx = np.log(np.fromiter(brem[p:p+n], float, n)*EV_PER_MEV) p += n # Get reduced photon energy values _BREMSSTRAHLUNG['photon_energy'] = np.fromiter(brem[p:p+k], float, k) p += k for i in range(1, 101): dcs = np.empty([len(log_energy), k]) # Get the scaled cross section values for each electron energy # and reduced photon energy for this Z. Units are in mb, so # convert to b. y = np.reshape(np.fromiter(brem[p:p+n*k], float, n*k), (n, k))*1.0e-3 p += k*n for j in range(k): # Cubic spline interpolation in log energy and linear DCS cs = CubicSpline(logx, y[:, j]) # Get scaled DCS values (barns) on new energy grid dcs[:, j] = cs(log_energy) _BREMSSTRAHLUNG[i]['dcs'] = dcs # Add bremsstrahlung DCS data self.bremsstrahlung['electron_energy'] = _BREMSSTRAHLUNG['electron_energy'] self.bremsstrahlung['photon_energy'] = _BREMSSTRAHLUNG['photon_energy'] self.bremsstrahlung.update(_BREMSSTRAHLUNG[self.atomic_number]) class PhotonReaction(EqualityMixin): """Photon-induced reaction Parameters ---------- mt : int The ENDF MT number for this reaction. Attributes ---------- anomalous_real : openmc.data.Tabulated1D Real part of the anomalous scattering factor anomlaous_imag : openmc.data.Tabulated1D Imaginary part of the anomalous scatttering factor mt : int The ENDF MT number for this reaction. scattering_factor : openmc.data.Tabulated1D Coherent or incoherent form factor. xs : Callable Cross section as a function of incident photon energy """ def __init__(self, mt): self.mt = mt self._xs = None self._scattering_factor = None self._anomalous_real = None self._anomalous_imag = None def __repr__(self): if self.mt in _REACTION_NAME: return "<Photon Reaction: MT={} {}>".format( self.mt, _REACTION_NAME[self.mt][0]) else: return "<Photon Reaction: MT={}>".format(self.mt) @property def anomalous_real(self): return self._anomalous_real @property def anomalous_imag(self): return self._anomalous_imag @property def scattering_factor(self): return self._scattering_factor @property def xs(self): return self._xs @anomalous_real.setter def anomalous_real(self, anomalous_real): cv.check_type('real part of anomalous scattering factor', anomalous_real, Callable) self._anomalous_real = anomalous_real @anomalous_imag.setter def anomalous_imag(self, anomalous_imag): cv.check_type('imaginary part of anomalous scattering factor', anomalous_imag, Callable) self._anomalous_imag = anomalous_imag @scattering_factor.setter def scattering_factor(self, scattering_factor): cv.check_type('scattering factor', scattering_factor, Callable) self._scattering_factor = scattering_factor @xs.setter def xs(self, xs): cv.check_type('reaction cross section', xs, Callable) self._xs = xs @classmethod def from_ace(cls, ace, mt): """Generate photon reaction from an ACE table Parameters ---------- ace : openmc.data.ace.Table ACE table to read from mt : int The MT value of the reaction to get data for Returns ------- openmc.data.PhotonReaction Photon reaction data """ # Create instance rx = cls(mt) # Get energy grid (stored as logarithms) n = ace.nxs[3] idx = ace.jxs[1] energy = np.exp(ace.xss[idx : idx+n])*EV_PER_MEV # Get index for appropriate reaction if mt == 502: # Coherent scattering idx = ace.jxs[1] + 2*n elif mt == 504: # Incoherent scattering idx = ace.jxs[1] + n elif mt == 515: # Pair production idx = ace.jxs[1] + 4*n elif mt == 522: # Photoelectric idx = ace.jxs[1] + 3*n elif mt == 525: # Heating idx = ace.jxs[5] else: raise ValueError('ACE photoatomic cross sections do not have ' 'data for MT={}.'.format(mt)) # Store cross section xs = ace.xss[idx : idx+n].copy() if mt == 525: # Get heating factors in [eV per collision] xs *= EV_PER_MEV else: nonzero = (xs != 0.0) xs[nonzero] = np.exp(xs[nonzero]) rx.xs = Tabulated1D(energy, xs, [n], [5]) # Get form factors for incoherent/coherent scattering new_format = (ace.nxs[6] > 0) if mt == 502: idx = ace.jxs[3] if new_format: n = (ace.jxs[4] - ace.jxs[3]) // 3 x = ace.xss[idx : idx+n] idx += n else: x = np.array([ 0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.1, 0.12, 0.15, 0.18, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 5.2, 5.4, 5.6, 5.8, 6.0]) n = x.size ff = ace.xss[idx+n : idx+2*n] rx.scattering_factor = Tabulated1D(x, ff) elif mt == 504: idx = ace.jxs[2] if new_format: n = (ace.jxs[3] - ace.jxs[2]) // 2 x = ace.xss[idx : idx+n] idx += n else: x = np.array([ 0.0, 0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 8.0 ]) n = x.size ff = ace.xss[idx : idx+n] rx.scattering_factor = Tabulated1D(x, ff) return rx @classmethod def from_endf(cls, ev, mt): """Generate photon reaction from an ENDF evaluation Parameters ---------- ev : openmc.data.endf.Evaluation ENDF photo-atomic interaction data evaluation mt : int The MT value of the reaction to get data for Returns ------- openmc.data.PhotonReaction Photon reaction data """ rx = cls(mt) # Read photon cross section if (23, mt) in ev.section: file_obj = StringIO(ev.section[23, mt]) get_head_record(file_obj) params, rx.xs = get_tab1_record(file_obj) # Set subshell binding energy and/or fluorescence yield if mt >= 534 and mt <= 599: rx.subshell_binding_energy = params[0] if mt >= 534 and mt <= 572: rx.fluorescence_yield = params[1] # Read form factors / scattering functions if (27, mt) in ev.section: file_obj = StringIO(ev.section[27, mt]) get_head_record(file_obj) params, rx.scattering_factor = get_tab1_record(file_obj) # Check for anomalous scattering factor if mt == 502: if (27, 506) in ev.section: file_obj = StringIO(ev.section[27, 506]) get_head_record(file_obj) params, rx.anomalous_real = get_tab1_record(file_obj) if (27, 505) in ev.section: file_obj = StringIO(ev.section[27, 505]) get_head_record(file_obj) params, rx.anomalous_imag = get_tab1_record(file_obj) return rx @classmethod def from_hdf5(cls, group, mt, energy): """Generate photon reaction from an HDF5 group Parameters ---------- group : h5py.Group HDF5 group to read from mt : int The MT value of the reaction to get data for energy : Iterable of float arrays of energies at which cross sections are tabulated at Returns ------- openmc.data.PhotonReaction Photon reaction data """ # Create instance rx = cls(mt) # Cross sections xs = group['xs'][()] # Replace zero elements to small non-zero to enable log-log xs[xs == 0.0] = np.exp(-500.0) # Threshold threshold_idx = 0 if 'threshold_idx' in group['xs'].attrs: threshold_idx = group['xs'].attrs['threshold_idx'] # Store cross section rx.xs = Tabulated1D(energy[threshold_idx:], xs, [len(xs)], [5]) # Check for anomalous scattering factor if 'anomalous_real' in group: rx.anomalous_real = Tabulated1D.from_hdf5(group['anomalous_real']) if 'anomalous_imag' in group: rx.anomalous_imag = Tabulated1D.from_hdf5(group['anomalous_imag']) # Check for factors / scattering functions if 'scattering_factor' in group: rx.scattering_factor = Tabulated1D.from_hdf5(group['scattering_factor']) return rx def to_hdf5(self, group, energy, Z): """Write photon reaction to an HDF5 group Parameters ---------- group : h5py.Group HDF5 group to write to energy : Iterable of float arrays of energies at which cross sections are tabulated at Z : int atomic number """ # Write cross sections if self.mt >= 534 and self.mt <= 572: # Determine threshold threshold = self.xs.x[0] idx = np.searchsorted(energy, threshold, side='right') - 1 # Interpolate cross section onto union grid and write photoionization = self.xs(energy[idx:]) group.create_dataset('xs', data=photoionization) assert len(energy) == len(photoionization) + idx group['xs'].attrs['threshold_idx'] = idx else: group.create_dataset('xs', data=self.xs(energy)) # Write scattering factor if self.scattering_factor is not None: if self.mt == 502: # Create integrated form factor ff = deepcopy(self.scattering_factor) ff.x *= ff.x ff.y *= ff.y/Z**2 int_ff = Tabulated1D(ff.x, ff.integral()) int_ff.to_hdf5(group, 'integrated_scattering_factor') self.scattering_factor.to_hdf5(group, 'scattering_factor') if self.anomalous_real is not None: self.anomalous_real.to_hdf5(group, 'anomalous_real') if self.anomalous_imag is not None: self.anomalous_imag.to_hdf5(group, 'anomalous_imag')
mit
flightgong/scikit-learn
sklearn/datasets/mlcomp.py
5
3805
# Copyright (c) 2010 Olivier Grisel <[email protected]> # License: BSD 3 clause """Glue code to load http://mlcomp.org data as a scikit.learn dataset""" import os import numbers from sklearn.datasets.base import load_files def _load_document_classification(dataset_path, metadata, set_=None, **kwargs): if set_ is not None: dataset_path = os.path.join(dataset_path, set_) return load_files(dataset_path, metadata.get('description'), **kwargs) LOADERS = { 'DocumentClassification': _load_document_classification, # TODO: implement the remaining domain formats } def load_mlcomp(name_or_id, set_="raw", mlcomp_root=None, **kwargs): """Load a datasets as downloaded from http://mlcomp.org Parameters ---------- name_or_id : the integer id or the string name metadata of the MLComp dataset to load `set_` : select the portion to load: 'train', 'test' or 'raw' mlcomp_root : the filesystem path to the root folder where MLComp datasets are stored, if mlcomp_root is None, the MLCOMP_DATASETS_HOME environment variable is looked up instead. **kwargs : domain specific kwargs to be passed to the dataset loader. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'filenames', the files holding the raw to learn, 'target', the classification labels (integer index), 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. Note on the lookup process: depending on the type of name_or_id, will choose between integer id lookup or metadata name lookup by looking at the unzipped archives and metadata file. TODO: implement zip dataset loading too """ if mlcomp_root is None: try: mlcomp_root = os.environ['MLCOMP_DATASETS_HOME'] except KeyError: raise ValueError("MLCOMP_DATASETS_HOME env variable is undefined") mlcomp_root = os.path.expanduser(mlcomp_root) mlcomp_root = os.path.abspath(mlcomp_root) mlcomp_root = os.path.normpath(mlcomp_root) if not os.path.exists(mlcomp_root): raise ValueError("Could not find folder: " + mlcomp_root) # dataset lookup if isinstance(name_or_id, numbers.Integral): # id lookup dataset_path = os.path.join(mlcomp_root, str(name_or_id)) else: # assume name based lookup dataset_path = None expected_name_line = "name: " + name_or_id for dataset in os.listdir(mlcomp_root): metadata_file = os.path.join(mlcomp_root, dataset, 'metadata') if not os.path.exists(metadata_file): continue with open(metadata_file) as f: for line in f: if line.strip() == expected_name_line: dataset_path = os.path.join(mlcomp_root, dataset) break if dataset_path is None: raise ValueError("Could not find dataset with metadata line: " + expected_name_line) # loading the dataset metadata metadata = dict() metadata_file = os.path.join(dataset_path, 'metadata') if not os.path.exists(metadata_file): raise ValueError(dataset_path + ' is not a valid MLComp dataset') with open(metadata_file) as f: for line in f: if ":" in line: key, value = line.split(":", 1) metadata[key.strip()] = value.strip() format = metadata.get('format', 'unknow') loader = LOADERS.get(format) if loader is None: raise ValueError("No loader implemented for format: " + format) return loader(dataset_path, metadata, set_=set_, **kwargs)
bsd-3-clause
fw1121/luigi
examples/pyspark_wc.py
56
3361
# -*- coding: utf-8 -*- # # Copyright 2012-2015 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import luigi from luigi.s3 import S3Target from luigi.contrib.spark import SparkSubmitTask, PySparkTask class InlinePySparkWordCount(PySparkTask): """ This task runs a :py:class:`luigi.contrib.spark.PySparkTask` task over the target data in :py:meth:`wordcount.input` (a file in S3) and writes the result into its :py:meth:`wordcount.output` target (a file in S3). This class uses :py:meth:`luigi.contrib.spark.PySparkTask.main`. Example luigi configuration:: [spark] spark-submit: /usr/local/spark/bin/spark-submit master: spark://spark.example.org:7077 # py-packages: numpy, pandas """ driver_memory = '2g' executor_memory = '3g' def input(self): return S3Target("s3n://bucket.example.org/wordcount.input") def output(self): return S3Target('s3n://bucket.example.org/wordcount.output') def main(self, sc, *args): sc.textFile(self.input().path) \ .flatMap(lambda line: line.split()) \ .map(lambda word: (word, 1)) \ .reduceByKey(lambda a, b: a + b) \ .saveAsTextFile(self.output().path) class PySparkWordCount(SparkSubmitTask): """ This task is the same as :py:class:`InlinePySparkWordCount` above but uses an external python driver file specified in :py:meth:`app` It runs a :py:class:`luigi.contrib.spark.SparkSubmitTask` task over the target data in :py:meth:`wordcount.input` (a file in S3) and writes the result into its :py:meth:`wordcount.output` target (a file in S3). This class uses :py:meth:`luigi.contrib.spark.SparkSubmitTask.run`. Example luigi configuration:: [spark] spark-submit: /usr/local/spark/bin/spark-submit master: spark://spark.example.org:7077 deploy-mode: client """ driver_memory = '2g' executor_memory = '3g' total_executor_cores = luigi.IntParameter(default=100) name = "PySpark Word Count" app = 'wordcount.py' def app_options(self): # These are passed to the Spark main args in the defined order. return [self.input().path, self.output().path] def input(self): return S3Target("s3n://bucket.example.org/wordcount.input") def output(self): return S3Target('s3n://bucket.example.org/wordcount.output') ''' // Corresponding example Spark Job, running Word count with Spark's Python API // This file would have to be saved into wordcount.py import sys from pyspark import SparkContext if __name__ == "__main__": sc = SparkContext() sc.textFile(sys.argv[1]) \ .flatMap(lambda line: line.split()) \ .map(lambda word: (word, 1)) \ .reduceByKey(lambda a, b: a + b) \ .saveAsTextFile(sys.argv[2]) '''
apache-2.0
nelango/ViralityAnalysis
model/lib/pandas/core/api.py
9
1318
# pylint: disable=W0614,W0401,W0611 import numpy as np from pandas.core.algorithms import factorize, match, unique, value_counts from pandas.core.common import isnull, notnull from pandas.core.categorical import Categorical from pandas.core.groupby import Grouper from pandas.core.format import set_eng_float_format from pandas.core.index import Index, CategoricalIndex, Int64Index, Float64Index, MultiIndex from pandas.core.series import Series, TimeSeries from pandas.core.frame import DataFrame from pandas.core.panel import Panel, WidePanel from pandas.core.panel4d import Panel4D from pandas.core.groupby import groupby from pandas.core.reshape import (pivot_simple as pivot, get_dummies, lreshape, wide_to_long) from pandas.core.indexing import IndexSlice from pandas.tseries.offsets import DateOffset from pandas.tseries.tools import to_datetime from pandas.tseries.index import (DatetimeIndex, Timestamp, date_range, bdate_range) from pandas.tseries.tdi import TimedeltaIndex, Timedelta from pandas.tseries.period import Period, PeriodIndex # legacy import pandas.core.datetools as datetools from pandas.core.config import (get_option, set_option, reset_option, describe_option, option_context, options)
mit
Leguark/pynoddy
pynoddy/Copy of history.py
3
46835
'''Noddy history file wrapper Created on 24/03/2014 @author: Florian Wellmann ''' import time # for header in model generation import numpy as np # import numpy as np # import matplotlib.pyplot as plt import events class NoddyHistory(): """Class container for Noddy history files""" def __init__(self, history=None, **kwds): """Methods to analyse and change Noddy history files **Arguments**: - *history* = string : Name of Noddy history file **Optional Keywords**: - *url* = url : link to history file on web (e.g. to download and open directly from Atlas of Structural Geophysics, http://virtualexplorer.com.au/special/noddyatlas/index.html Note: if both a (local) history is given and a URL, the local file is opened! """ if history is None: if kwds.has_key("url"): self.load_history_from_url(kwds['url']) self.determine_events() else: # generate a new history self.create_new_history() else: # load existing history self.load_history(history) self.determine_events() def info(self, **kwds): """Print out model information **Optional keywords**: - *events_only* = bool : only information on events """ events_only = kwds.get("events_only", False) if not events_only: # First: check if all information available if not hasattr(self, 'extent_x'): self.get_extent() if not hasattr(self, 'origin_x'): self.get_origin() if not hasattr(self, 'cube_size'): self.get_cube_size() if not hasattr(self, 'filename'): self.get_filename() if not hasattr(self, 'date_saved'): self.get_date_saved() print(60 * "*" + "\n\t\t\tModel Information\n" + 60 * "*") print("\n") if self.n_events == 0: print("The model does not yet contain any events\n") else: print("This model consists of %d events:" % self.n_events) for k,ev in self.events.items(): print("\t(%d) - %s" % (k,ev.event_type)) if not events_only: print("The model extent is:") print("\tx - %.1f m" % self.extent_x) print("\ty - %.1f m" % self.extent_y) print("\tz - %.1f m" % self.extent_z) print("Number of cells in each direction:") print("\tnx = %d" % (self.extent_x / self.cube_size)) print("\tny = %d" % (self.extent_y / self.cube_size)) print("\tnz = %d" % (self.extent_z / self.cube_size)) print("The model origin is located at: \n\t(%.1f, %.1f, %.1f)" % (self.origin_x, self.origin_y, self.origin_z)) print("The cubesize for model export is: \n\t%d m" % self.cube_size) # and now some metadata print("\n") print(60 * "*" + "\n\t\t\tMeta Data\n" + 60 * "*") print("\n") print("The filename of the model is:\n\t%s" % self.filename) print("It was last saved (if origin was a history file!) at:\n\t%s\n" % self.date_saved) def get_origin(self): """Get coordinates of model origin and return and store in local variables **Returns**: (origin_x, origin_y, origin_z) """ for i,line in enumerate(self.history_lines): if "Origin X" in line: self.origin_x = float(self.history_lines[i].split("=")[1]) self.origin_y = float(self.history_lines[i+1].split("=")[1]) self.origin_z = float(self.history_lines[i+2].split("=")[1]) break return(self.origin_x, self.origin_y, self.origin_z) def set_origin(self, origin_x, origin_y, origin_z): """Set coordinates of model origin and update local variables **Arguments**: - *origin_x* = float : x-location of model origin - *origin_y* = float : y-location of model origin - *origin_z* = float : z-location of model origin """ self.origin_x = origin_x self.origin_y = origin_y self.origin_z = origin_z origin_x_line = " Origin X = %.2f\n" % origin_x origin_y_line = " Origin Y = %.2f\n" % origin_y origin_z_line = " Origin Z = %.2f\n" % origin_z for i,line in enumerate(self.history_lines): if "Origin X" in line: self.history_lines[i] = origin_x_line self.history_lines[i+1] = origin_y_line self.history_lines[i+2] = origin_z_line break def get_extent(self): """Get model extent and return and store in local variables **Returns**: (extent_x, extent_y, extent_z) """ for i,line in enumerate(self.history_lines): if "Length X" in line: self.extent_x = float(self.history_lines[i].split("=")[1]) self.extent_y = float(self.history_lines[i+1].split("=")[1]) self.extent_z = float(self.history_lines[i+2].split("=")[1]) break return(self.extent_x, self.extent_y, self.extent_z) def set_extent(self, extent_x, extent_y, extent_z): """Set model extent and update local variables **Arguments**: - *extent_x* = float : extent in x-direction - *extent_y* = float : extent in y-direction - *extent_z* = float : extent in z-direction """ self.extent_x = extent_x self.extent_y = extent_y self.extent_z = extent_z extent_x_line = " Length X = %.2f\n" % extent_x extent_y_line = " Length Y = %.2f\n" % extent_y extent_z_line = " Length Z = %.2f\n" % extent_z for i,line in enumerate(self.history_lines): if "Length X" in line: self.history_lines[i] = extent_x_line self.history_lines[i+1] = extent_y_line self.history_lines[i+2] = extent_z_line break def get_drillhole_data(self, x, y, **kwds): """Get geology values along 1-D profile at position x,y with a 1 m resolution The following steps are performed: 1. creates a copy of the entire object, 2. sets values of origin, extent and geology cube size, 3. saves model to a temporary file, 4. runs Noddy on that file 5. opens and analyses output 6. deletes temporary files Note: this method only works if write access to current directory is enabled and noddy can be executed! **Arguments**: - *x* = float: x-position of drillhole - *y* = float: y-positoin of drillhole **Optional Arguments**: - *z_min* = float : minimum depth of drillhole (default: model range) - *z_max* = float : maximum depth of drillhole (default: model range) - *resolution* = float : resolution along profile (default: 1 m) """ # resolve keywords resolution = kwds.get("resolution", 1) self.get_extent() self.get_origin() z_min = kwds.get("z_min", self.origin_z) z_max = kwds.get("z_max", self.extent_z) # 1. create copy import copy tmp_his = copy.deepcopy(self) # 2. set values tmp_his.set_origin(x, y, z_min) tmp_his.set_extent(resolution, resolution, z_max) tmp_his.change_cube_size(resolution) # 3. save temporary file tmp_his_file = "tmp_1D_drillhole.his" tmp_his.write_history(tmp_his_file) tmp_out_file = "tmp_1d_out" # 4. run noddy import pynoddy import pynoddy.output pynoddy.compute_model(tmp_his_file, tmp_out_file) # 5. open output tmp_out = pynoddy.output.NoddyOutput(tmp_out_file) # 6. return tmp_out.block[0,0,:] def load_history(self, history): """Load Noddy history **Arguments**: - *history* = string : Name of Noddy history file """ self.history_lines = open(history, 'r').readlines() def _get_footer_lines(self): """Get the footer lines from self.history_lines The footer contains everything below events (all settings, etc.)""" # get id of footer from history lines for i,line in enumerate(self.history_lines): if "#BlockOptions" in line: break print i def load_history_from_url(self, url): """Directly load a Noddy history from a URL This method is useful to load a model from the Structural Geophysics Atlas on the pages of the Virtual Explorer. See: http://virtualexplorer.com.au/special/noddyatlas/index.html **Arguments**: - *url* : url of history file """ import urllib2 response = urllib2.urlopen(url) tmp_lines = response.read().split("\n") self.history_lines = [] for line in tmp_lines: # append EOL again for consistency self.history_lines.append(line + "\n") def determine_model_stratigraphy(self): """Determine stratigraphy of entire model from all events""" self.model_stratigraphy = [] for e in np.sort(self.events.keys()): if self.events[e].event_type == 'STRATIGRAPHY': self.model_stratigraphy += self.events[e].layer_names def determine_events(self): """Determine events and save line numbers .. note:: Parsing of the history file is based on a fixed Noddy output order. If this is, for some reason (e.g. in a changed version of Noddy) not the case, then this parsing might fail! """ self._raw_events = [] for i,line in enumerate(self.history_lines): if "No of Events" in line: self.n_events = int(line.split("=")[1]) elif "Event #" in line: event = {} event['type'] = line.split('=')[1].rstrip() event['num'] = int(line[7:9]) event['line_start'] = i self._raw_events.append(event) # finally: if the definition for BlockOptions starts, the event definition is over elif "BlockOptions" in line: last_event_stop = i-2 # now: find the line ends for the single event blocks for i,event in enumerate(self._raw_events[1:]): self._raw_events[i]['line_end'] = event['line_start']-1 # now adjust for last event self._raw_events[-1]['line_end'] = last_event_stop self.events = {} # idea: create events as dictionary so that it is easier # to swap order later! # now create proper event objects for these events for e in self._raw_events: event_lines = self.history_lines[e['line_start']:e['line_end']+1] print e['type'] if 'FAULT' in e['type']: ev = events.Fault(lines = event_lines) # set specific aspects first elif 'FOLD' in e['type']: ev = events.Fold(lines = event_lines) elif 'UNCONFORMITY' in e['type']: ev = events.Unconformity(lines = event_lines) elif 'STRATIGRAPHY' in e['type']: ev = events.Stratigraphy(lines = event_lines) elif 'TILT' in e['type']: # AK ev = events.Tilt(lines = event_lines) else: continue # now set shared attributes (those defined in superclass Event) order = e['num'] self.events[order] = ev # determine overall begin and end of the history events self.all_events_begin = self._raw_events[0]['line_start'] self.all_events_end = self._raw_events[-1]['line_end'] def get_cube_size(self): """Determine cube size for model export""" for line in self.history_lines: if 'Geophysics Cube Size' in line: self.cube_size = float(line.split('=')[1].rstrip()) def get_filename(self): """Determine model filename from history file/ header""" self.filename = self.history_lines[0].split('=')[1].rstrip() def get_date_saved(self): """Determine the last savepoint of the file""" self.date_saved = self.history_lines[1].split('=')[1].rstrip() def change_cube_size(self, cube_size): """Change the model cube size (isotropic) **Arguments**: - *cube_size* = float : new model cube size """ # create local copy of history lines_new = self.history_lines[:] for i,line in enumerate(self.history_lines): if 'Geophysics Cube Size' in line: l = line.split('=') l_new = '%7.2f\r\n' % cube_size line_new = l[0] + "=" + l_new lines_new[i] = line_new # assign changed lines back to object self.history_lines = lines_new[:] def write_history_bak(self, filename): """Write history to new file **Arguments**: - *filename* = string : filename of new history file .. hint:: Just love it how easy it is to 'write history' with Noddy ;-) """ # before saving: update all event properties (in case changes were made) self.update_all_event_properties() # First step: update history lines with events all_event_lines = [] for event_id in sorted(self.events.keys()): for line in self.events[event_id].event_lines: all_event_lines.append(line) # now substitute old with new lines: self.history_lines[self.all_events_begin:self.all_events_end+1] = all_event_lines f = open(filename, 'w') for line in self.history_lines: f.write(line) f.close() def swap_events(self, event_num_1, event_num_2): """Swap two geological events in the timeline **Arguments**: - *event_num_1/2* = int : number of events to be swapped ("order") """ # events have to be copied, otherwise only a reference is passed! event_tmp = self.events[event_num_1] self.events[event_num_1] = self.events[event_num_2] self.events[event_num_2] = event_tmp self.update_event_numbers() def reorder_events(self, reorder_dict): """Reorder events accoring to assignment in reorder_dict **Arguments**: - *reorder_dict* = dict : for example {1 : 2, 2 : 3, 3 : 1} """ tmp_events = self.events.copy() for key, value in reorder_dict.items(): tmp_events[value] = self.events[key] self.events = tmp_events.copy() self.update_event_numbers() def update_event_numbers(self): """Update event numbers in 'Event #' line in noddy history file""" for key, event in self.events.items(): event.set_event_number(key) def update_all_event_properties(self): """Update properties of all events - in case changes were made""" for event in self.events.values(): event.update_properties() # #class NewHistory(): # """Methods to create a Noddy model""" # def create_new_history(self): """Methods to create a Noddy model """ # set event counter self.event_counter = 0 self.all_events_begin = 7 # default after header self.all_events_end = 7 # initialise history lines self.history_lines = [] self.events = {} def get_ev_counter(self): """Event counter for implicit and continuous definition of events""" self.event_counter += 1 return self.event_counter def add_event(self, event_type, event_options, **kwds): """Add an event type to history **Arguments**: - *event_type* = string : type of event, legal options to date are: 'stratigraphy', 'fault', 'fold', 'unconformity' - *event_options* = list : required options to create event (event dependent) **Optional keywords**: - *event_num* = int : event number (default: implicitly defined with increasing counter) """ event_num = kwds.get("event_num", self.get_ev_counter()) if event_type == 'stratigraphy': ev = self._create_stratigraphy(event_options) ev.event_type = 'STRATIGRAPHY' elif event_type == 'fault': ev = self._create_fault(event_options) ev.event_type = 'FAULT' elif event_type == 'tilt': # AK ev = self._create_tilt(event_options) ev.event_type = 'TILT' elif event_type == 'unconformity': # AK ev = self._create_unconformity(event_options) ev.event_type = 'UNCONFORMITY' else: raise NameError('Event type %s not (yet) implemented' % event_type) ev.set_event_number(event_num) self.events[event_num] = ev # update beginning and ending of events in history self.all_events_end = self.all_events_end + len(ev.event_lines) # add event to history lines, as well (for consistency with other methods) self.history_lines[:self.all_events_begin] + \ ev.event_lines + \ self.history_lines[self.all_events_end:] def _create_header(self): """Create model header, include actual date""" t = time.localtime() # get current time time_string = "%d/%d/%d %d:%d:%d" % (t.tm_mday, t.tm_mon, t.tm_year, t.tm_hour, t.tm_min, t.tm_sec) self.header_lines = """#Filename = """ + self.filename + """ #Date Saved = """ + time_string + """ FileType = 111 Version = 7.11 """ def _create_stratigraphy(self, event_options): """Create a stratigraphy event **Arguments**: - *event_options* = list : list of required and optional settings for event Options are: 'num_layers' = int : number of layers (required) 'layer_names' = list of strings : names for layers (default names otherwise) 'layer_thickness' = list of floats : thicknesses for all layers """ ev = events.Stratigraphy() tmp_lines = [""] tmp_lines.append("\tNum Layers\t= %d" % event_options['num_layers']) for i in range(event_options['num_layers']): """Add stratigraphy layers""" layer_name = event_options['layer_names'][i] cum_thickness = np.cumsum(event_options['layer_thickness']) layer_lines = _Templates().strati_layer # now replace required variables layer_lines = layer_lines.replace("$NAME$", layer_name) layer_lines = layer_lines.replace("$HEIGHT$", "%.1f" % cum_thickness[i]) layer_lines = layer_lines.replace(" ", "\t") # split lines and add to event lines list: for layer_line in layer_lines.split("\n"): tmp_lines.append(layer_line) # append event name tmp_lines.append("""\tName\t= Strat """) # event lines are defined in list: tmp_lines_list = [] for line in tmp_lines: tmp_lines_list.append(line + "\n") ev.set_event_lines(tmp_lines_list) ev.num_layers = event_options['num_layers'] return ev def _create_fault(self, event_options): """Create a fault event **Arguments**: - *event_options* = list : list of required and optional settings for event; Options are: 'name' = string : name of fault event 'pos' = (x,y,z) : position of reference point (floats) .. note:: for convenience, it is possible to assign 'top' to z for position at "surface" 'dip_dir' = [0,360] : dip direction of fault 'dip' = [0,90] : dip angle of fault 'slip' = float : slip along fault """ ev = events.Fault() tmp_lines = [""] fault_lines = _Templates.fault # substitute text with according values fault_lines = fault_lines.replace("$NAME$", event_options['name']) fault_lines = fault_lines.replace("$POS_X$", "%.1f" % event_options['pos'][0]) fault_lines = fault_lines.replace("$POS_Y$", "%.1f" % event_options['pos'][1]) if event_options['pos'] == 'top': # recalculate z-value to be at top of model z = self.zmax fault_lines = fault_lines.replace("$POS_Z$", "%.1f" % z) else: fault_lines = fault_lines.replace("$POS_Z$", "%.1f" % event_options['pos'][2]) fault_lines = fault_lines.replace("$DIP_DIR$", "%.1f" % event_options['dip_dir']) fault_lines = fault_lines.replace("$DIP$", "%.1f" % event_options['dip']) fault_lines = fault_lines.replace("$SLIP$", "%.1f" % event_options['slip']) # now split lines and add as list entries to event lines # event lines are defined in list: # split lines and add to event lines list: for layer_line in fault_lines.split("\n"): tmp_lines.append(layer_line) tmp_lines_list = [] for line in tmp_lines: tmp_lines_list.append(line + "\n") ev.set_event_lines(tmp_lines_list) return ev # AK 2014-10 def _create_tilt(self, event_options): """Create a tilt event **Arguments**: - *event_options* = list : list of required and optional settings for event; Options are: 'name' = string : name of fault event 'pos' = (x,y,z) : position of reference point (floats) .. note:: for convenience, it is possible to assign 'top' to z for position at "surface" 'rotation' = [0,360] : dip? 'plunge_direction' = [0,360] : strike of plunge, measured from x axis 'plunge' = float : ? """ ev = events.Tilt() tmp_lines = [""] tilt_lines = _Templates.tilt # substitute text with according values tilt_lines = tilt_lines.replace("$NAME$", event_options['name']) tilt_lines = tilt_lines.replace("$POS_X$", "%.1f" % event_options['pos'][0]) tilt_lines = tilt_lines.replace("$POS_Y$", "%.1f" % event_options['pos'][1]) if event_options['pos'] == 'top': # recalculate z-value to be at top of model z = self.zmax tilt_lines = tilt_lines.replace("$POS_Z$", "%.1f" % z) else: tilt_lines = tilt_lines.replace("$POS_Z$", "%.1f" % event_options['pos'][2]) tilt_lines = tilt_lines.replace("$ROTATION$", "%.1f" % event_options['rotation']) tilt_lines = tilt_lines.replace("$PLUNGE_DIRECTION$", "%.1f" % event_options['plunge_direction']) tilt_lines = tilt_lines.replace("$PLUNGE$", "%.1f" % event_options['plunge']) # now split lines and add as list entries to event lines # event lines are defined in list: # split lines and add to event lines list: for tilt_line in tilt_lines.split("\n"): tmp_lines.append(tilt_line) tmp_lines_list = [] for line in tmp_lines: tmp_lines_list.append(line + "\n") ev.set_event_lines(tmp_lines_list) return ev # AK 2014-10 def _create_unconformity(self, event_options): """Create a unconformity event **Arguments**: - *event_options* = list : list of required and optional settings for event; Options are: 'name' = string : name of unconformity event 'pos' = (x,y,z) : position of reference point (floats) .. note:: for convenience, it is possible to assign 'top' to z for position at "surface" 'rotation' = [0,360] : dip? 'plunge_direction' = [0,360] : strike of plunge, measured from x axis 'plunge' = float : ? """ ev = events.Unconformity() tmp_lines = [""] unconformity_lines = _Templates.unconformity # substitute text with according values unconformity_lines = unconformity_lines.replace("$NAME$", event_options['name']) unconformity_lines = unconformity_lines.replace("$POS_X$", "%.1f" % event_options['pos'][0]) unconformity_lines = unconformity_lines.replace("$POS_Y$", "%.1f" % event_options['pos'][1]) if event_options['pos'] == 'top': # recalculate z-value to be at top of model z = self.zmax unconformity_lines = unconformity_lines.replace("$POS_Z$", "%.1f" % z) else: unconformity_lines = unconformity_lines.replace("$POS_Z$", "%.1f" % event_options['pos'][2]) unconformity_lines = unconformity_lines.replace("$DIP_DIRECTION$", "%.1f" % event_options['dip_direction']) unconformity_lines = unconformity_lines.replace("$DIP$", "%.1f" % event_options['dip']) # split lines and add to event lines list: for unconformity_line in unconformity_lines.split("\n"): tmp_lines.append(unconformity_line) # unconformity has a stratigraphy block tmp_lines.append("\tNum Layers\t= %d" % event_options['num_layers']) for i in range(event_options['num_layers']): """Add stratigraphy layers""" layer_name = event_options['layer_names'][i] cum_thickness = np.cumsum(event_options['layer_thickness']) layer_lines = _Templates().strati_layer # now replace required variables layer_lines = layer_lines.replace("$NAME$", layer_name) layer_lines = layer_lines.replace("$HEIGHT$", "%.1f" % cum_thickness[i]) layer_lines = layer_lines.replace(" ", "\t") # split lines and add to event lines list: for layer_line in layer_lines.split("\n"): tmp_lines.append(layer_line) # append event name tmp_lines.append("""\tName\t= Strat""") tmp_lines_list = [] for line in tmp_lines: tmp_lines_list.append(line + "\n") ev.set_event_lines(tmp_lines_list) return ev def change_event_params(self, changes_dict): """Change multiple event parameters according to settings in changes_dict **Arguments**: - *changes_dict* = dictionary : entries define relative changes for (multiple) parameters Per default, the values in the dictionary are added to the event parameters. """ # print changes_dict for key,sub_dict in changes_dict.items(): for sub_key, val in sub_dict.items(): self.events[key].properties[sub_key] += val def write_history(self, filename): """Write history to new file **Arguments**: - *filename* = string : filename of new history file .. hint:: Just love it how easy it is to 'write history' with Noddy ;-) """ # first: create header self.filename = filename self._create_header() # initialise history lines history_lines = [] # add header for line in self.header_lines.split("\n"): history_lines.append(line + "\n") # add number of events history_lines.append("No of Events\t= %d\n" % len(self.events)) # add events for event_id in sorted(self.events.keys()): for line in self.events[event_id].event_lines: history_lines.append(line) # add footer for line in _Templates().footer.split("\n"): line = line.replace(" ", "\t") history_lines.append(line + "\n") f = open(filename, 'w') for line in history_lines: f.write(line) f.close() # print history_lines # # # First step: update history lines with events # all_event_lines = [] # for event_id in sorted(self.events.keys()): # for line in self.events[event_id].event_lines: # all_event_lines.append(line) # # now substitute old with new lines: # self.history_lines[self.all_events_begin:self.all_events_end+1] = all_event_lines # # # f = open(filename, 'w') # for line in self.history_lines: # f.write(line) # f.close() # #=============================================================================== # Templates for Noddy history file #=============================================================================== class _Templates(): header = """#Filename = simple_two_faults.his #Date Saved = 24/3/2014 14:21:0 FileType = 111 Version = 7.11""" strati_layer = """ Unit Name = $NAME$ Height = $HEIGHT$ Apply Alterations = ON Density = 4.00e+000 Anisotropic Field = 0 MagSusX = 1.60e-003 MagSusY = 1.60e-003 MagSusZ = 1.60e-003 MagSus Dip = 9.00e+001 MagSus DipDir = 9.00e+001 MagSus Pitch = 0.00e+000 Remanent Magnetization = 0 Inclination = 30.00 Angle with the Magn. North = 30.00 Strength = 1.60e-003 Color Name = Color 92 Red = 0 Green = 153 Blue = 48 """ fault = """ Geometry = Translation Movement = Hanging Wall X = $POS_X$ Y = $POS_Y$ Z = $POS_Z$ Dip Direction = $DIP_DIR$ Dip = $DIP$ Pitch = 90.00 Slip = $SLIP$ Rotation = 30.00 Amplitude = 2000.00 Radius = 1000.00 XAxis = 2000.00 YAxis = 2000.00 ZAxis = 2000.00 Cyl Index = 0.00 Profile Pitch = 90.00 Color Name = Custom Colour 8 Red = 0 Green = 0 Blue = 254 Fourier Series Term A 0 = 0.00 Term B 0 = 0.00 Term A 1 = 0.00 Term B 1 = 1.00 Term A 2 = 0.00 Term B 2 = 0.00 Term A 3 = 0.00 Term B 3 = 0.00 Term A 4 = 0.00 Term B 4 = 0.00 Term A 5 = 0.00 Term B 5 = 0.00 Term A 6 = 0.00 Term B 6 = 0.00 Term A 7 = 0.00 Term B 7 = 0.00 Term A 8 = 0.00 Term B 8 = 0.00 Term A 9 = 0.00 Term B 9 = 0.00 Term A 10 = 0.00 Term B 10 = 0.00 Name = Fault Plane Type = 1 Join Type = LINES Graph Length = 200.000000 Min X = 0.000000 Max X = 6.280000 Min Y Scale = -1.000000 Max Y Scale = 1.000000 Scale Origin = 0.000000 Min Y Replace = -1.000000 Max Y Replace = 1.000000 Num Points = 21 Point X = 0 Point Y = 0 Point X = 31 Point Y = 30 Point X = 62 Point Y = 58 Point X = 94 Point Y = 80 Point X = 125 Point Y = 94 Point X = 157 Point Y = 99 Point X = 188 Point Y = 95 Point X = 219 Point Y = 81 Point X = 251 Point Y = 58 Point X = 282 Point Y = 31 Point X = 314 Point Y = 0 Point X = 345 Point Y = -31 Point X = 376 Point Y = -59 Point X = 408 Point Y = -81 Point X = 439 Point Y = -95 Point X = 471 Point Y = -100 Point X = 502 Point Y = -96 Point X = 533 Point Y = -82 Point X = 565 Point Y = -59 Point X = 596 Point Y = -32 Point X = 628 Point Y = -1 Alteration Type = NONE Num Profiles = 12 Name = Density Type = 2 Join Type = LINES Graph Length = 200.000000 Min X = 0.000000 Max X = 0.000000 Min Y Scale = 0.000000 Max Y Scale = 4.000000 Scale Origin = 1.000000 Min Y Replace = 0.000000 Max Y Replace = 10.000000 Num Points = 2 Point X = 0 Point Y = -50 Point X = 628 Point Y = -50 Name = Anisotropy Type = 3 Join Type = LINES Graph Length = 200.000000 Min X = 0.000000 Max X = 0.000000 Min Y Scale = -10.000000 Max Y Scale = 10.000000 Scale Origin = 0.000000 Min Y Replace = -10.000000 Max Y Replace = 10.000000 Num Points = 2 Point X = 0 Point Y = 0 Point X = 628 Point Y = 0 Name = - X Axis (Sus) Type = 4 Join Type = LINES Graph Length = 200.000000 Min X = 0.000000 Max X = 0.000000 Min Y Scale = -5.000000 Max Y Scale = 5.000000 Scale Origin = 0.000000 Min Y Replace = 2.000000 Max Y Replace = 8.000000 Num Points = 2 Point X = 0 Point Y = 0 Point X = 628 Point Y = 0 Name = - Y Axis (Sus) Type = 5 Join Type = LINES Graph Length = 200.000000 Min X = 0.000000 Max X = 0.000000 Min Y Scale = -5.000000 Max Y Scale = 5.000000 Scale Origin = 0.000000 Min Y Replace = 2.000000 Max Y Replace = 8.000000 Num Points = 2 Point X = 0 Point Y = 0 Point X = 628 Point Y = 0 Name = - Z Axis (Sus) Type = 6 Join Type = LINES Graph Length = 200.000000 Min X = 0.000000 Max X = 0.000000 Min Y Scale = -5.000000 Max Y Scale = 5.000000 Scale Origin = 0.000000 Min Y Replace = 2.000000 Max Y Replace = 8.000000 Num Points = 2 Point X = 0 Point Y = 0 Point X = 628 Point Y = 0 Name = - Dip (Sus) Type = 7 Join Type = LINES Graph Length = 200.000000 Min X = 0.000000 Max X = 0.000000 Min Y Scale = -180.000000 Max Y Scale = 180.000000 Scale Origin = 1.000000 Min Y Replace = -180.000000 Max Y Replace = 180.000000 Num Points = 2 Point X = 0 Point Y = 1 Point X = 628 Point Y = 1 Name = - Dip Dir (Sus) Type = 8 Join Type = LINES Graph Length = 200.000000 Min X = 0.000000 Max X = 0.000000 Min Y Scale = -360.000000 Max Y Scale = 360.000000 Scale Origin = 1.000000 Min Y Replace = -360.000000 Max Y Replace = 360.000000 Num Points = 2 Point X = 0 Point Y = 0 Point X = 628 Point Y = 0 Name = - Pitch (Sus) Type = 9 Join Type = LINES Graph Length = 200.000000 Min X = 0.000000 Max X = 0.000000 Min Y Scale = -360.000000 Max Y Scale = 360.000000 Scale Origin = 1.000000 Min Y Replace = -360.000000 Max Y Replace = 360.000000 Num Points = 2 Point X = 0 Point Y = 0 Point X = 628 Point Y = 0 Name = Remanence Type = 10 Join Type = LINES Graph Length = 200.000000 Min X = 0.000000 Max X = 0.000000 Min Y Scale = -10.000000 Max Y Scale = 10.000000 Scale Origin = 0.000000 Min Y Replace = -10.000000 Max Y Replace = 10.000000 Num Points = 2 Point X = 0 Point Y = 0 Point X = 628 Point Y = 0 Name = - Declination (Rem) Type = 11 Join Type = LINES Graph Length = 200.000000 Min X = 0.000000 Max X = 0.000000 Min Y Scale = -360.000000 Max Y Scale = 360.000000 Scale Origin = 1.000000 Min Y Replace = -360.000000 Max Y Replace = 360.000000 Num Points = 2 Point X = 0 Point Y = 0 Point X = 628 Point Y = 0 Name = - Inclination (Rem) Type = 12 Join Type = LINES Graph Length = 200.000000 Min X = 0.000000 Max X = 0.000000 Min Y Scale = -360.000000 Max Y Scale = 360.000000 Scale Origin = 1.000000 Min Y Replace = -360.000000 Max Y Replace = 360.000000 Num Points = 2 Point X = 0 Point Y = 0 Point X = 628 Point Y = 0 Name = - Intensity (Rem) Type = 13 Join Type = LINES Graph Length = 200.000000 Min X = 0.000000 Max X = 0.000000 Min Y Scale = -5.000000 Max Y Scale = 5.000000 Scale Origin = 0.000000 Min Y Replace = -5.000000 Max Y Replace = 5.000000 Num Points = 2 Point X = 0 Point Y = 0 Point X = 628 Point Y = 0 Surface Type = FLAT_SURFACE Surface Filename = Surface Directory = \\psf\Home Surface XDim = 0.000000 Surface YDim = 0.000000 Surface ZDim = 0.000000 Name = $NAME$""" # AK 2014-10 tilt = """X = $POS_X$ Y = $POS_Y$ Z = $POS_Z$ Rotation = $ROTATION$ Plunge Direction = $PLUNGE_DIRECTION$ Plunge = $PLUNGE$ Name = $NAME$""" unconformity = """X = $POS_X$ Y = $POS_Y$ Z = $POS_Z$ Dip Direction = $DIP_DIRECTION$ Dip = $DIP$ Alteration Type = NONE Num Profiles = 1 Name = Type = 0 Join Type = LINES Graph Length = 0.000000 Min X = 0.000000 Max X = 0.000000 Min Y Scale = 0.000000 Max Y Scale = 0.000000 Scale Origin = 0.000000 Min Y Replace = 0.000000 Max Y Replace = 0.000000 Num Points = 0 Surface Type = FLAT_SURFACE Surface Filename = Surface Directory = /tmp_mnt/sci6/users/mark/Atlas/case Surface XDim = 0.000000 Surface YDim = 0.000000 Surface ZDim = 0.000000""" temp = """ Num Layers = 5 Unit Name = UC Base Height = -32000 Apply Alterations = ON Density = 3.50e+00 Anisotropic Field = 0 MagSusX = 1.50e-06 MagSusY = 1.60e-03 MagSusZ = 1.60e-03 MagSus Dip = 9.00e+01 MagSus DipDir = 9.00e+01 MagSus Pitch = 0.00e+00 Remanent Magnetization = 0 Inclination = 30.00 Angle with the Magn. North = 30.00 Strength = 1.60e-03 Color Name = Color 98 Red = 84 Green = 153 Blue = 0 Unit Name = UC Layer 1 Height = 5650 Apply Alterations = ON Density = 3.50e+00 Anisotropic Field = 0 MagSusX = 1.50e-06 MagSusY = 1.60e-03 MagSusZ = 1.60e-03 MagSus Dip = 9.00e+01 MagSus DipDir = 9.00e+01 MagSus Pitch = 0.00e+00 Remanent Magnetization = 0 Inclination = 30.00 Angle with the Magn. North = 30.00 Strength = 1.60e-03 Color Name = Color 68 Red = 204 Green = 117 Blue = 0 Name = $NAME$""" # everything below events footer = """#BlockOptions Number of Views = 1 Current View = 0 NAME = Default Origin X = 0.00 Origin Y = 0.00 Origin Z = 5000.00 Length X = 10000.00 Length Y = 7000.00 Length Z = 5000.00 Geology Cube Size = 50.00 Geophysics Cube Size = 50.00 #GeologyOptions Scale = 10.00 SectionDec = 90.00 WellDepth = 5000.00 WellAngleZ = 0.00 BoreholeX = 0.00 BoreholeX = 0.00 BoreholeX = 5000.00 BoreholeDecl = 90.00 BoreholeDip = 0.00 BoreholeLength = 5000.00 SectionX = 0.00 SectionY = 0.00 SectionZ = 5000.00 SectionDecl = 90.00 SectionLength = 10000.00 SectionHeight = 5000.00 topofile = FALSE Topo Filename = Topo Directory = . Topo Scale = 1.00 Topo Offset = 0.00 Topo First Contour = 100.00 Topo Contour Interval = 100.00 Chair Diagram = FALSE Chair_X = 5000.00 Chair_Y = 3500.00 Chair_Z = 2500.00 #GeophysicsOptions GPSRange = 0 Declination = 0.00 Inclination = -67.00 Intensity = 63000.00 Field Type = FIXED Field xPos = 0.00 Field yPos = 0.00 Field zPos = 5000.00 Inclination Ori = 0.00 Inclination Change = 0.00 Intensity Ori = 90.00 Intensity Change = 0.00 Declination Ori = 0.00 Declination Change = 0.00 Altitude = 80.00 Airborne= FALSE Calculation Method = SPATIAL Spectral Padding Type = RECLECTION_PADDING Spectral Fence = 100 Spectral Percent = 100 Constant Boxing Depth = 0.00 Clever Boxing Ratio = 1.00 Deformable Remanence= FALSE Deformable Anisotropy= TRUE Vector Components= FALSE Project Vectors= TRUE Pad With Real Geology= FALSE Draped Survey= FALSE #3DOptions Declination = 150.000000 Elevation = 30.000000 Scale = 1.000000 Offset X = 1.000000 Offset Y = 1.000000 Offset Z = 1.000000 Fill Type = 2 #ProjectOptions Susceptibility Units = CGS Geophysical Calculation = 2 Calculation Type = LOCAL_JOB Length Scale = 0 Printing Scale = 1.000000 Image Scale = 10.000000 New Windows = FALSE Background Red Component = 254 Background Green Component = 254 Background Blue Component = 254 Internet Address = 255.255.255.255 Account Name = Noddy Path = ./noddy Help Path = iexplore %h Movie Frames Per Event = 3 Movie Play Speed = 10.00 Movie Type = 0 Gravity Clipping Type = RELATIVE_CLIPPING Gravity Image Display Clip Min = 0.000000 Gravity Image Display Clip Max = 100.000000 Gravity Image Display Type = GREY Gravity Image Display Num Contour = 25 Magnetics Clipping Type = RELATIVE_CLIPPING Magnetics Image Display Clip Min = 0.000000 Magnetics Image Display Clip Max = 100.000000 Magnetics Image Display Type = GREY Magnetics Image Display Num Contour = 25 False Easting = 0.000000 False Northing = 0.000000 #Window Positions Num Windows = 16 Name = Block Diagram X = 60 Y = 60 Width = 500 Height = 300 Name = Movie X = 60 Y = 60 Width = -1 Height = -1 Name = Well Log X = 60 Y = 60 Width = 400 Height = 430 Name = Section X = 14 Y = 16 Width = 490 Height = -1 Name = Topography Map X = 60 Y = 60 Width = 490 Height = 375 Name = 3D Topography Map X = 60 Y = 60 Width = 490 Height = 375 Name = 3D Stratigraphy X = 60 Y = 60 Width = 490 Height = 375 Name = Line Map X = 60 Y = 60 Width = 490 Height = -1 Name = Profile - From Image X = 60 Y = 60 Width = 490 Height = 600 Name = Sterographic Projections X = 60 Y = 60 Width = 430 Height = 430 Name = Stratigraphic Column X = 60 Y = 60 Width = 230 Height = 400 Name = Image X = 30 Y = 30 Width = -1 Height = -1 Name = Contour X = 30 Y = 30 Width = -1 Height = -1 Name = Toolbar X = 10 Y = 0 Width = -1 Height = -1 Name = History X = 229 Y = 160 Width = 762 Height = 898 Name = History X = 229 Y = 160 Width = 762 Height = 898 #Icon Positions Num Icons = 3 Row = 1 Column = 1 X Position = 1 Y Position = 1 Row = 1 Column = 2 X Position = 4 Y Position = 1 Row = 1 Column = 3 X Position = 7 Y Position = 1 Floating Menu Rows = 1 Floating Menu Cols = 24 End of Status Report""" if __name__ == '__main__': # some testing and debugging: import os os.chdir(r'/Users/Florian/git/pynoddy/sandbox') H1 = NoddyHistory("../examples/simple_two_faults.his") H1.swap_events(2, 3) H1.write_history("test") H2 = NoddyHistory("test") H2.events[2].properties['Dip'] = 12 H2.write_history("test2")
gpl-2.0
idlead/scikit-learn
sklearn/preprocessing/tests/test_imputation.py
47
12381
import numpy as np from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.preprocessing.imputation import Imputer from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn import tree from sklearn.random_projection import sparse_random_matrix def _check_statistics(X, X_true, strategy, statistics, missing_values): """Utility function for testing imputation for a given strategy. Test: - along the two axes - with dense and sparse arrays Check that: - the statistics (mean, median, mode) are correct - the missing values are imputed correctly""" err_msg = "Parameters: strategy = %s, missing_values = %s, " \ "axis = {0}, sparse = {1}" % (strategy, missing_values) # Normal matrix, axis = 0 imputer = Imputer(missing_values, strategy=strategy, axis=0) X_trans = imputer.fit(X).transform(X.copy()) assert_array_equal(imputer.statistics_, statistics, err_msg.format(0, False)) assert_array_equal(X_trans, X_true, err_msg.format(0, False)) # Normal matrix, axis = 1 imputer = Imputer(missing_values, strategy=strategy, axis=1) imputer.fit(X.transpose()) if np.isnan(statistics).any(): assert_raises(ValueError, imputer.transform, X.copy().transpose()) else: X_trans = imputer.transform(X.copy().transpose()) assert_array_equal(X_trans, X_true.transpose(), err_msg.format(1, False)) # Sparse matrix, axis = 0 imputer = Imputer(missing_values, strategy=strategy, axis=0) imputer.fit(sparse.csc_matrix(X)) X_trans = imputer.transform(sparse.csc_matrix(X.copy())) if sparse.issparse(X_trans): X_trans = X_trans.toarray() assert_array_equal(imputer.statistics_, statistics, err_msg.format(0, True)) assert_array_equal(X_trans, X_true, err_msg.format(0, True)) # Sparse matrix, axis = 1 imputer = Imputer(missing_values, strategy=strategy, axis=1) imputer.fit(sparse.csc_matrix(X.transpose())) if np.isnan(statistics).any(): assert_raises(ValueError, imputer.transform, sparse.csc_matrix(X.copy().transpose())) else: X_trans = imputer.transform(sparse.csc_matrix(X.copy().transpose())) if sparse.issparse(X_trans): X_trans = X_trans.toarray() assert_array_equal(X_trans, X_true.transpose(), err_msg.format(1, True)) def test_imputation_shape(): # Verify the shapes of the imputed matrix for different strategies. X = np.random.randn(10, 2) X[::2] = np.nan for strategy in ['mean', 'median', 'most_frequent']: imputer = Imputer(strategy=strategy) X_imputed = imputer.fit_transform(X) assert_equal(X_imputed.shape, (10, 2)) X_imputed = imputer.fit_transform(sparse.csr_matrix(X)) assert_equal(X_imputed.shape, (10, 2)) def test_imputation_mean_median_only_zero(): # Test imputation using the mean and median strategies, when # missing_values == 0. X = np.array([ [np.nan, 0, 0, 0, 5], [np.nan, 1, 0, np.nan, 3], [np.nan, 2, 0, 0, 0], [np.nan, 6, 0, 5, 13], ]) X_imputed_mean = np.array([ [3, 5], [1, 3], [2, 7], [6, 13], ]) statistics_mean = [np.nan, 3, np.nan, np.nan, 7] # Behaviour of median with NaN is undefined, e.g. different results in # np.median and np.ma.median X_for_median = X[:, [0, 1, 2, 4]] X_imputed_median = np.array([ [2, 5], [1, 3], [2, 5], [6, 13], ]) statistics_median = [np.nan, 2, np.nan, 5] _check_statistics(X, X_imputed_mean, "mean", statistics_mean, 0) _check_statistics(X_for_median, X_imputed_median, "median", statistics_median, 0) def safe_median(arr, *args, **kwargs): # np.median([]) raises a TypeError for numpy >= 1.10.1 length = arr.size if hasattr(arr, 'size') else len(arr) return np.nan if length == 0 else np.median(arr, *args, **kwargs) def safe_mean(arr, *args, **kwargs): # np.mean([]) raises a RuntimeWarning for numpy >= 1.10.1 length = arr.size if hasattr(arr, 'size') else len(arr) return np.nan if length == 0 else np.mean(arr, *args, **kwargs) def test_imputation_mean_median(): # Test imputation using the mean and median strategies, when # missing_values != 0. rng = np.random.RandomState(0) dim = 10 dec = 10 shape = (dim * dim, dim + dec) zeros = np.zeros(shape[0]) values = np.arange(1, shape[0]+1) values[4::2] = - values[4::2] tests = [("mean", "NaN", lambda z, v, p: safe_mean(np.hstack((z, v)))), ("mean", 0, lambda z, v, p: np.mean(v)), ("median", "NaN", lambda z, v, p: safe_median(np.hstack((z, v)))), ("median", 0, lambda z, v, p: np.median(v))] for strategy, test_missing_values, true_value_fun in tests: X = np.empty(shape) X_true = np.empty(shape) true_statistics = np.empty(shape[1]) # Create a matrix X with columns # - with only zeros, # - with only missing values # - with zeros, missing values and values # And a matrix X_true containing all true values for j in range(shape[1]): nb_zeros = (j - dec + 1 > 0) * (j - dec + 1) * (j - dec + 1) nb_missing_values = max(shape[0] + dec * dec - (j + dec) * (j + dec), 0) nb_values = shape[0] - nb_zeros - nb_missing_values z = zeros[:nb_zeros] p = np.repeat(test_missing_values, nb_missing_values) v = values[rng.permutation(len(values))[:nb_values]] true_statistics[j] = true_value_fun(z, v, p) # Create the columns X[:, j] = np.hstack((v, z, p)) if 0 == test_missing_values: X_true[:, j] = np.hstack((v, np.repeat( true_statistics[j], nb_missing_values + nb_zeros))) else: X_true[:, j] = np.hstack((v, z, np.repeat(true_statistics[j], nb_missing_values))) # Shuffle them the same way np.random.RandomState(j).shuffle(X[:, j]) np.random.RandomState(j).shuffle(X_true[:, j]) # Mean doesn't support columns containing NaNs, median does if strategy == "median": cols_to_keep = ~np.isnan(X_true).any(axis=0) else: cols_to_keep = ~np.isnan(X_true).all(axis=0) X_true = X_true[:, cols_to_keep] _check_statistics(X, X_true, strategy, true_statistics, test_missing_values) def test_imputation_median_special_cases(): # Test median imputation with sparse boundary cases X = np.array([ [0, np.nan, np.nan], # odd: implicit zero [5, np.nan, np.nan], # odd: explicit nonzero [0, 0, np.nan], # even: average two zeros [-5, 0, np.nan], # even: avg zero and neg [0, 5, np.nan], # even: avg zero and pos [4, 5, np.nan], # even: avg nonzeros [-4, -5, np.nan], # even: avg negatives [-1, 2, np.nan], # even: crossing neg and pos ]).transpose() X_imputed_median = np.array([ [0, 0, 0], [5, 5, 5], [0, 0, 0], [-5, 0, -2.5], [0, 5, 2.5], [4, 5, 4.5], [-4, -5, -4.5], [-1, 2, .5], ]).transpose() statistics_median = [0, 5, 0, -2.5, 2.5, 4.5, -4.5, .5] _check_statistics(X, X_imputed_median, "median", statistics_median, 'NaN') def test_imputation_most_frequent(): # Test imputation using the most-frequent strategy. X = np.array([ [-1, -1, 0, 5], [-1, 2, -1, 3], [-1, 1, 3, -1], [-1, 2, 3, 7], ]) X_true = np.array([ [2, 0, 5], [2, 3, 3], [1, 3, 3], [2, 3, 7], ]) # scipy.stats.mode, used in Imputer, doesn't return the first most # frequent as promised in the doc but the lowest most frequent. When this # test will fail after an update of scipy, Imputer will need to be updated # to be consistent with the new (correct) behaviour _check_statistics(X, X_true, "most_frequent", [np.nan, 2, 3, 3], -1) def test_imputation_pipeline_grid_search(): # Test imputation within a pipeline + gridsearch. pipeline = Pipeline([('imputer', Imputer(missing_values=0)), ('tree', tree.DecisionTreeRegressor(random_state=0))]) parameters = { 'imputer__strategy': ["mean", "median", "most_frequent"], 'imputer__axis': [0, 1] } l = 100 X = sparse_random_matrix(l, l, density=0.10) Y = sparse_random_matrix(l, 1, density=0.10).toarray() gs = GridSearchCV(pipeline, parameters) gs.fit(X, Y) def test_imputation_pickle(): # Test for pickling imputers. import pickle l = 100 X = sparse_random_matrix(l, l, density=0.10) for strategy in ["mean", "median", "most_frequent"]: imputer = Imputer(missing_values=0, strategy=strategy) imputer.fit(X) imputer_pickled = pickle.loads(pickle.dumps(imputer)) assert_array_equal(imputer.transform(X.copy()), imputer_pickled.transform(X.copy()), "Fail to transform the data after pickling " "(strategy = %s)" % (strategy)) def test_imputation_copy(): # Test imputation with copy X_orig = sparse_random_matrix(5, 5, density=0.75, random_state=0) # copy=True, dense => copy X = X_orig.copy().toarray() imputer = Imputer(missing_values=0, strategy="mean", copy=True) Xt = imputer.fit(X).transform(X) Xt[0, 0] = -1 assert_false(np.all(X == Xt)) # copy=True, sparse csr => copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=True) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, dense => no copy X = X_orig.copy().toarray() imputer = Imputer(missing_values=0, strategy="mean", copy=False) Xt = imputer.fit(X).transform(X) Xt[0, 0] = -1 assert_true(np.all(X == Xt)) # copy=False, sparse csr, axis=1 => no copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_true(np.all(X.data == Xt.data)) # copy=False, sparse csc, axis=0 => no copy X = X_orig.copy().tocsc() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=0) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_true(np.all(X.data == Xt.data)) # copy=False, sparse csr, axis=0 => copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=0) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, sparse csc, axis=1 => copy X = X_orig.copy().tocsc() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, sparse csr, axis=1, missing_values=0 => copy X = X_orig.copy() imputer = Imputer(missing_values=0, strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) assert_false(sparse.issparse(Xt)) # Note: If X is sparse and if missing_values=0, then a (dense) copy of X is # made, even if copy=False.
bsd-3-clause
wwf5067/statsmodels
docs/sphinxext/ipython_directive.py
30
27623
# -*- coding: utf-8 -*- """Sphinx directive to support embedded IPython code. This directive allows pasting of entire interactive IPython sessions, prompts and all, and their code will actually get re-executed at doc build time, with all prompts renumbered sequentially. It also allows you to input code as a pure python input by giving the argument python to the directive. The output looks like an interactive ipython section. To enable this directive, simply list it in your Sphinx ``conf.py`` file (making sure the directory where you placed it is visible to sphinx, as is needed for all Sphinx directives). By default this directive assumes that your prompts are unchanged IPython ones, but this can be customized. The configurable options that can be placed in conf.py are ipython_savefig_dir: The directory in which to save the figures. This is relative to the Sphinx source directory. The default is `html_static_path`. ipython_rgxin: The compiled regular expression to denote the start of IPython input lines. The default is re.compile('In \[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_rgxout: The compiled regular expression to denote the start of IPython output lines. The default is re.compile('Out\[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_promptin: The string to represent the IPython input prompt in the generated ReST. The default is 'In [%d]:'. This expects that the line numbers are used in the prompt. ipython_promptout: The string to represent the IPython prompt in the generated ReST. The default is 'Out [%d]:'. This expects that the line numbers are used in the prompt. ToDo ---- - Turn the ad-hoc test() function into a real test suite. - Break up ipython-specific functionality from matplotlib stuff into better separated code. Authors ------- - John D Hunter: orignal author. - Fernando Perez: refactoring, documentation, cleanups, port to 0.11. - VáclavŠmilauer <eudoxos-AT-arcig.cz>: Prompt generalizations. - Skipper Seabold, refactoring, cleanups, pure python addition """ #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Stdlib import cStringIO import os import re import sys import tempfile import ast import time # To keep compatibility with various python versions try: from hashlib import md5 except ImportError: from md5 import md5 # Third-party import matplotlib import sphinx from docutils.parsers.rst import directives from docutils import nodes from sphinx.util.compat import Directive matplotlib.use('Agg') # Our own from IPython import Config, InteractiveShell from IPython.core.profiledir import ProfileDir from IPython.utils import io #----------------------------------------------------------------------------- # Globals #----------------------------------------------------------------------------- # for tokenizing blocks COMMENT, INPUT, OUTPUT = range(3) #----------------------------------------------------------------------------- # Functions and class declarations #----------------------------------------------------------------------------- def block_parser(part, rgxin, rgxout, fmtin, fmtout): """ part is a string of ipython text, comprised of at most one input, one ouput, comments, and blank lines. The block parser parses the text into a list of:: blocks = [ (TOKEN0, data0), (TOKEN1, data1), ...] where TOKEN is one of [COMMENT | INPUT | OUTPUT ] and data is, depending on the type of token:: COMMENT : the comment string INPUT: the (DECORATOR, INPUT_LINE, REST) where DECORATOR: the input decorator (or None) INPUT_LINE: the input as string (possibly multi-line) REST : any stdout generated by the input line (not OUTPUT) OUTPUT: the output string, possibly multi-line """ block = [] lines = part.split('\n') N = len(lines) i = 0 decorator = None while 1: if i==N: # nothing left to parse -- the last line break line = lines[i] i += 1 line_stripped = line.strip() if line_stripped.startswith('#'): block.append((COMMENT, line)) continue if line_stripped.startswith('@'): # we're assuming at most one decorator -- may need to # rethink decorator = line_stripped continue # does this look like an input line? matchin = rgxin.match(line) if matchin: lineno, inputline = int(matchin.group(1)), matchin.group(2) # the ....: continuation string continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) # input lines can continue on for more than one line, if # we have a '\' line continuation char or a function call # echo line 'print'. The input line can only be # terminated by the end of the block or an output line, so # we parse out the rest of the input line if it is # multiline as well as any echo text rest = [] while i<N: # look ahead; if the next line is blank, or a comment, or # an output line, we're done nextline = lines[i] matchout = rgxout.match(nextline) #print "nextline=%s, continuation=%s, starts=%s"%(nextline, continuation, nextline.startswith(continuation)) if matchout or nextline.startswith('#'): break elif nextline.startswith(continuation): #handle try/except blocks. only catch outer except if re.match(continuation + '\sexcept:', nextline): inputline += '\n' + nextline[Nc+1:] else: inputline += '\n' + nextline[Nc:] else: rest.append(nextline) i+= 1 block.append((INPUT, (decorator, inputline, '\n'.join(rest)))) continue # if it looks like an output line grab all the text to the end # of the block matchout = rgxout.match(line) if matchout: lineno, output = int(matchout.group(1)), matchout.group(2) if i<N-1: output = '\n'.join([output] + lines[i:]) block.append((OUTPUT, output)) break return block class EmbeddedSphinxShell(object): """An embedded IPython instance to run inside Sphinx""" def __init__(self): self.cout = cStringIO.StringIO() # Create config object for IPython config = Config() config.Global.display_banner = False config.Global.exec_lines = ['import numpy as np', 'from pylab import *' ] config.InteractiveShell.autocall = False config.InteractiveShell.autoindent = False config.InteractiveShell.colors = 'NoColor' # create a profile so instance history isn't saved tmp_profile_dir = tempfile.mkdtemp(prefix='profile_') profname = 'auto_profile_sphinx_build' pdir = os.path.join(tmp_profile_dir,profname) profile = ProfileDir.create_profile_dir(pdir) # Create and initialize ipython, but don't start its mainloop IP = InteractiveShell.instance(config=config, profile_dir=profile) # io.stdout redirect must be done *after* instantiating InteractiveShell io.stdout = self.cout io.stderr = self.cout # For debugging, so we can see normal output, use this: #from IPython.utils.io import Tee #io.stdout = Tee(self.cout, channel='stdout') # dbg #io.stderr = Tee(self.cout, channel='stderr') # dbg # Store a few parts of IPython we'll need. self.IP = IP self.user_ns = self.IP.user_ns self.user_global_ns = self.IP.user_global_ns self.input = '' self.output = '' self.is_verbatim = False self.is_doctest = False self.is_suppress = False # on the first call to the savefig decorator, we'll import # pyplot as plt so we can make a call to the plt.gcf().savefig self._pyplot_imported = False def clear_cout(self): self.cout.seek(0) self.cout.truncate(0) def process_input_line(self, line, store_history=True): """process the input, capturing stdout""" #print "input='%s'"%self.input stdout = sys.stdout splitter = self.IP.input_splitter try: sys.stdout = self.cout splitter.push(line) more = splitter.push_accepts_more() if not more: source_raw = splitter.source_raw_reset()[1] self.IP.run_cell(source_raw, store_history=store_history) finally: sys.stdout = stdout def process_image(self, decorator): """ # build out an image directive like # .. image:: somefile.png # :width 4in # # from an input like # savefig somefile.png width=4in """ savefig_dir = self.savefig_dir source_dir = self.source_dir saveargs = decorator.split(' ') filename = saveargs[1] # insert relative path to image file in source outfile = os.path.relpath(os.path.join(savefig_dir,filename), source_dir) imagerows = ['.. image:: %s'%outfile] for kwarg in saveargs[2:]: arg, val = kwarg.split('=') arg = arg.strip() val = val.strip() imagerows.append(' :%s: %s'%(arg, val)) image_file = os.path.basename(outfile) # only return file name image_directive = '\n'.join(imagerows) return image_file, image_directive # Callbacks for each type of token def process_input(self, data, input_prompt, lineno): """Process data block for INPUT token.""" decorator, input, rest = data image_file = None image_directive = None #print 'INPUT:', data # dbg is_verbatim = decorator=='@verbatim' or self.is_verbatim is_doctest = decorator=='@doctest' or self.is_doctest is_suppress = decorator=='@suppress' or self.is_suppress is_savefig = decorator is not None and \ decorator.startswith('@savefig') input_lines = input.split('\n') if len(input_lines) > 1: if input_lines[-1] != "": input_lines.append('') # make sure there's a blank line # so splitter buffer gets reset continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) if is_savefig: image_file, image_directive = self.process_image(decorator) ret = [] is_semicolon = False for i, line in enumerate(input_lines): if line.endswith(';'): is_semicolon = True if i==0: # process the first input line if is_verbatim: self.process_input_line('') self.IP.execution_count += 1 # increment it anyway else: # only submit the line in non-verbatim mode self.process_input_line(line, store_history=True) formatted_line = '%s %s'%(input_prompt, line) else: # process a continuation line if not is_verbatim: self.process_input_line(line, store_history=True) formatted_line = '%s %s'%(continuation, line) if not is_suppress: ret.append(formatted_line) if not is_suppress and len(rest.strip()) and is_verbatim: # the "rest" is the standard output of the # input, which needs to be added in # verbatim mode ret.append(rest) self.cout.seek(0) output = self.cout.read() if not is_suppress and not is_semicolon: ret.append(output) elif is_semicolon: # get spacing right ret.append('') self.cout.truncate(0) return (ret, input_lines, output, is_doctest, image_file, image_directive) #print 'OUTPUT', output # dbg def process_output(self, data, output_prompt, input_lines, output, is_doctest, image_file): """Process data block for OUTPUT token.""" if is_doctest: submitted = data.strip() found = output if found is not None: found = found.strip() # XXX - fperez: in 0.11, 'output' never comes with the prompt # in it, just the actual output text. So I think all this code # can be nuked... # the above comment does not appear to be accurate... (minrk) ind = found.find(output_prompt) if ind<0: e='output prompt="%s" does not match out line=%s' % \ (output_prompt, found) raise RuntimeError(e) found = found[len(output_prompt):].strip() if found!=submitted: e = ('doctest failure for input_lines="%s" with ' 'found_output="%s" and submitted output="%s"' % (input_lines, found, submitted) ) raise RuntimeError(e) #print 'doctest PASSED for input_lines="%s" with found_output="%s" and submitted output="%s"'%(input_lines, found, submitted) def process_comment(self, data): """Process data fPblock for COMMENT token.""" if not self.is_suppress: return [data] def save_image(self, image_file): """ Saves the image file to disk. """ self.ensure_pyplot() command = 'plt.gcf().savefig("%s")'%image_file #print 'SAVEFIG', command # dbg self.process_input_line('bookmark ipy_thisdir', store_history=False) self.process_input_line('cd -b ipy_savedir', store_history=False) self.process_input_line(command, store_history=False) self.process_input_line('cd -b ipy_thisdir', store_history=False) self.process_input_line('bookmark -d ipy_thisdir', store_history=False) self.clear_cout() def process_block(self, block): """ process block from the block_parser and return a list of processed lines """ ret = [] output = None input_lines = None lineno = self.IP.execution_count input_prompt = self.promptin%lineno output_prompt = self.promptout%lineno image_file = None image_directive = None for token, data in block: if token==COMMENT: out_data = self.process_comment(data) elif token==INPUT: (out_data, input_lines, output, is_doctest, image_file, image_directive) = \ self.process_input(data, input_prompt, lineno) elif token==OUTPUT: out_data = \ self.process_output(data, output_prompt, input_lines, output, is_doctest, image_file) if out_data: ret.extend(out_data) # save the image files if image_file is not None: self.save_image(image_file) return ret, image_directive def ensure_pyplot(self): if self._pyplot_imported: return self.process_input_line('import matplotlib.pyplot as plt', store_history=False) def process_pure_python(self, content): """ content is a list of strings. it is unedited directive conent This runs it line by line in the InteractiveShell, prepends prompts as needed capturing stderr and stdout, then returns the content as a list as if it were ipython code """ output = [] savefig = False # keep up with this to clear figure multiline = False # to handle line continuation multiline_start = None fmtin = self.promptin block = '\n'.join(content) # remove blank lines block = re.sub('\n+', '\n', block) content = block.split('\n') # if any figures, make sure you can handle them and no other figures exist if re.search('^\s*@savefig', block, flags=re.MULTILINE): self.ensure_pyplot() self.process_input_line('plt.clf()', store_history=False) self.clear_cout() # sub out the pseudo-decorators so we can parse block = re.sub('@(?=[savefig|suppress|verbatim|doctest])', '#@', block) # this is going to raise an error if there's problems # in the python. if you want errors, make an ipython block parsed_block = ast.parse(block) in_lines = [i.lineno for i in parsed_block.body] output = [] ct = 1 for lineno, line in enumerate(content): line_stripped = line.strip('\n') if lineno + 1 in in_lines: # this is an input line modified = u"%s %s" % (fmtin % ct, line_stripped) ct += 1 elif line.startswith('@'): # is it a decorator? modified = line else: # this is something else continuation = u' %s:'% ''.join(['.']*(len(str(ct))+2)) modified = u'%s %s' % (continuation, line) output.append(modified) output = re.sub('#@(?=[savefig|suppress|verbatim|doctest])', '@', '\n'.join(output)).split('\n') # put blank lines after input lines for i in in_lines[1:][::-1]: output.insert(i-1, u'') # fix the spacing for decorators # might be a cleaner regex for # \n@savefig name.png\n\n -> \n\n@savefig name.png\n decpat1 = '(?<=@[savefig|suppress|verbatim|doctest])(?P<options>.+)\n\n' output = re.sub(decpat1, '\g<options>\n','\n'.join(output)) decpat2 = '\n(?=@[savefig|suppress|verbatim|doctest])' output = re.sub(decpat2, '\n\n', output).split('\n') return output class IpythonDirective(Directive): has_content = True required_arguments = 0 optional_arguments = 4 # python, suppress, verbatim, doctest final_argumuent_whitespace = True option_spec = { 'python': directives.unchanged, 'suppress' : directives.flag, 'verbatim' : directives.flag, 'doctest' : directives.flag, } shell = EmbeddedSphinxShell() def get_config_options(self): # contains sphinx configuration variables config = self.state.document.settings.env.config # get config variables to set figure output directory confdir = self.state.document.settings.env.app.confdir savefig_dir = config.ipython_savefig_dir source_dir = os.path.dirname(self.state.document.current_source) if savefig_dir is None: savefig_dir = config.html_static_path if isinstance(savefig_dir, list): savefig_dir = savefig_dir[0] # safe to assume only one path? savefig_dir = os.path.join(confdir, savefig_dir) # get regex and prompt stuff rgxin = config.ipython_rgxin rgxout = config.ipython_rgxout promptin = config.ipython_promptin promptout = config.ipython_promptout return savefig_dir, source_dir, rgxin, rgxout, promptin, promptout def setup(self): # make a file in this directory, if there's already one # if it's older than 5 minutes, delete it # this needs a more robust solution cur_dir = os.path.normpath( os.path.join(self.state.document.settings.env.srcdir, '..')) tmp_file = os.path.join(cur_dir, 'seen_docs.temp') if os.path.exists(tmp_file): file_t = os.path.getmtime(tmp_file) now_t = time.time() if (now_t - file_t)/60. >= 5: docs = [] os.remove(tmp_file) else: docs = open(tmp_file, 'r').read().split('\n') if not self.state.document.current_source in docs: self.shell.IP.history_manager.reset() self.shell.IP.execution_count = 1 else: # haven't processed any docs yet docs = [] # get config values (savefig_dir, source_dir, rgxin, rgxout, promptin, promptout) = self.get_config_options() # and attach to shell so we don't have to pass them around self.shell.rgxin = rgxin self.shell.rgxout = rgxout self.shell.promptin = promptin self.shell.promptout = promptout self.shell.savefig_dir = savefig_dir self.shell.source_dir = source_dir # setup bookmark for saving figures directory self.shell.process_input_line('bookmark ipy_savedir %s'%savefig_dir, store_history=False) self.shell.clear_cout() # write the filename to a tempfile because it's been "seen" now if not self.state.document.current_source in docs: fout = open(tmp_file, 'a') fout.write(self.state.document.current_source+'\n') fout.close() return rgxin, rgxout, promptin, promptout def teardown(self): # delete last bookmark self.shell.process_input_line('bookmark -d ipy_savedir', store_history=False) self.shell.clear_cout() def run(self): debug = False #TODO, any reason block_parser can't be a method of embeddable shell # then we wouldn't have to carry these around rgxin, rgxout, promptin, promptout = self.setup() options = self.options self.shell.is_suppress = 'suppress' in options self.shell.is_doctest = 'doctest' in options self.shell.is_verbatim = 'verbatim' in options # handle pure python code if 'python' in self.arguments: content = self.content self.content = self.shell.process_pure_python(content) parts = '\n'.join(self.content).split('\n\n') lines = ['.. code-block:: ipython',''] figures = [] for part in parts: block = block_parser(part, rgxin, rgxout, promptin, promptout) if len(block): rows, figure = self.shell.process_block(block) for row in rows: lines.extend([' %s'%line for line in row.split('\n')]) if figure is not None: figures.append(figure) #text = '\n'.join(lines) #figs = '\n'.join(figures) for figure in figures: lines.append('') lines.extend(figure.split('\n')) lines.append('') #print lines if len(lines)>2: if debug: print '\n'.join(lines) else: #NOTE: this raises some errors, what's it for? #print 'INSERTING %d lines'%len(lines) self.state_machine.insert_input( lines, self.state_machine.input_lines.source(0)) text = '\n'.join(lines) txtnode = nodes.literal_block(text, text) txtnode['language'] = 'ipython' #imgnode = nodes.image(figs) # cleanup #self.teardown() # this gets called on _every_ exit from a block return []#, imgnode] # Enable as a proper Sphinx directive def setup(app): setup.app = app app.add_directive('ipython', IpythonDirective) app.add_config_value('ipython_savefig_dir', None, True) app.add_config_value('ipython_rgxin', re.compile('In \[(\d+)\]:\s?(.*)\s*'), True) app.add_config_value('ipython_rgxout', re.compile('Out\[(\d+)\]:\s?(.*)\s*'), True) app.add_config_value('ipython_promptin', 'In [%d]:', True) app.add_config_value('ipython_promptout', 'Out[%d]:', True) # Simple smoke test, needs to be converted to a proper automatic test. def test(): examples = [ r""" In [9]: pwd Out[9]: '/home/jdhunter/py4science/book' In [10]: cd bookdata/ /home/jdhunter/py4science/book/bookdata In [2]: from pylab import * In [2]: ion() In [3]: im = imread('stinkbug.png') @savefig mystinkbug.png width=4in In [4]: imshow(im) Out[4]: <matplotlib.image.AxesImage object at 0x39ea850> """, r""" In [1]: x = 'hello world' # string methods can be # used to alter the string @doctest In [2]: x.upper() Out[2]: 'HELLO WORLD' @verbatim In [3]: x.st<TAB> x.startswith x.strip """, r""" In [130]: url = 'http://ichart.finance.yahoo.com/table.csv?s=CROX\ .....: &d=9&e=22&f=2009&g=d&a=1&br=8&c=2006&ignore=.csv' In [131]: print url.split('&') ['http://ichart.finance.yahoo.com/table.csv?s=CROX', 'd=9', 'e=22', 'f=2009', 'g=d', 'a=1', 'b=8', 'c=2006', 'ignore=.csv'] In [60]: import urllib """, r"""\ In [133]: import numpy.random @suppress In [134]: numpy.random.seed(2358) @doctest In [135]: numpy.random.rand(10,2) Out[135]: array([[ 0.64524308, 0.59943846], [ 0.47102322, 0.8715456 ], [ 0.29370834, 0.74776844], [ 0.99539577, 0.1313423 ], [ 0.16250302, 0.21103583], [ 0.81626524, 0.1312433 ], [ 0.67338089, 0.72302393], [ 0.7566368 , 0.07033696], [ 0.22591016, 0.77731835], [ 0.0072729 , 0.34273127]]) """, r""" In [106]: print x jdh In [109]: for i in range(10): .....: print i .....: .....: 0 1 2 3 4 5 6 7 8 9 """, r""" In [144]: from pylab import * In [145]: ion() # use a semicolon to suppress the output @savefig test_hist.png width=4in In [151]: hist(np.random.randn(10000), 100); @savefig test_plot.png width=4in In [151]: plot(np.random.randn(10000), 'o'); """, r""" # use a semicolon to suppress the output In [151]: plt.clf() @savefig plot_simple.png width=4in In [151]: plot([1,2,3]) @savefig hist_simple.png width=4in In [151]: hist(np.random.randn(10000), 100); """, r""" # update the current fig In [151]: ylabel('number') In [152]: title('normal distribution') @savefig hist_with_text.png In [153]: grid(True) """, ] # skip local-file depending first example: examples = examples[1:] #ipython_directive.DEBUG = True # dbg #options = dict(suppress=True) # dbg options = dict() for example in examples: content = example.split('\n') ipython_directive('debug', arguments=None, options=options, content=content, lineno=0, content_offset=None, block_text=None, state=None, state_machine=None, ) # Run test suite as a script if __name__=='__main__': if not os.path.isdir('_static'): os.mkdir('_static') test() print 'All OK? Check figures in _static/'
bsd-3-clause
konraddysput/BioDocumentAnalysis
vocabularytester/similarity.py
1
2444
from abc import ABCMeta, abstractmethod import pandas as pd from typing import List, Dict import numpy as np from scipy import spatial class SimRegression(metaclass=ABCMeta): @abstractmethod def calculate_similarity(self, vector_a: np.ndarray, vector_b: np.ndarray) -> float: ... class EuclideanSimilarity(SimRegression): def calculate_similarity(self, vector_a: np.ndarray, vector_b: np.ndarray) -> float: return spatial.distance.euclidean(vector_a, vector_b) class NormalizedEuclideanSimilarity(EuclideanSimilarity): @staticmethod def _normalize(vector: np.ndarray): return vector / np.sqrt(vector.dot(vector)) def calculate_similarity(self, vector_a: np.ndarray, vector_b: np.ndarray) -> float: return spatial.distance.euclidean(self._normalize(vector_a), self._normalize(vector_b)) class CosineSimilarity(SimRegression): def calculate_similarity(self, vector_a: np.ndarray, vector_b: np.ndarray) -> float: return spatial.distance.cosine(vector_a, vector_b) class CosineSigmoidSimilarity(SimRegression): def __init__(self, a: float, c: float): self._a = a self._c = c def _sigmoid(self, x: float) -> float: return 1 / (1 + 2.71828182846 ** (-self._a * (x - self._c))) def calculate_similarity(self, vector_a: np.ndarray, vector_b: np.ndarray) -> float: return self._sigmoid(spatial.distance.cosine(vector_a, vector_b)) class SimilarityCalculator: def __init__(self, vocabulary_path: str, vocabulary_length: int, similarity_function: SimRegression): words: List[str] = pd.read_csv(vocabulary_path, sep=' ', quoting=3, header=None, usecols=(0,), na_filter=False).values.squeeze() self._dictionary: Dict[str, int] = dict(zip(words, range(len(words)))) self._vectors: np.ndarray = pd.read_csv(vocabulary_path, sep=' ', quoting=3, header=None, usecols=range(1, vocabulary_length + 1), na_filter=False, dtype=np.float32).values self._similarity = similarity_function def calculate_similarity(self, first_word: str, second_word: str) -> float: return self._similarity.calculate_similarity(self._vectors[self._dictionary[first_word]], self._vectors[self._dictionary[second_word]])
mit
theislab/scanpy_usage
170503_zheng17/html/compile_profiling_info.py
1
6040
import re from glob import glob import pandas as pd import numpy as np from matplotlib import pyplot as pl from natsort import natsorted import seaborn as sns from matplotlib import rcParams # dictionary to init dataframe that stores all the information df = {} df['toolkit'] = [] df['n cells'] = [] df['step'] = [] df['total memory (GB)'] = [] df['memory_change'] = [] df['CPU time (min)'] = [] # match html by R output for filename in natsorted(glob('zheng17*cellranger_R*.html')): n_cells = int(re.findall('[0-9.]+', filename)[2]) textfile = open(filename, 'r') filetext = textfile.read() textfile.close() # memory matches = re.findall('[0-9.]+ .B<', filetext) mem_tot = [] mem_change = [0] for im, m in enumerate(matches): num = float(re.findall('[0-9.]+', m)[0]) if 'MB' in m: num /= 1000 if im == 0: mem_tot += [num] else: if im % 2 == 1: mem_tot += [num] else: mem_change += [num] df['total memory (GB)'] += mem_tot df['memory_change'] += mem_change # cpu time matches = re.findall('elapsed:.+ [0-9.]+', filetext) df['CPU time (min)'] += [0] df['CPU time (min)'] += [float(re.findall('[0-9.]+', m)[0])/60 for m in matches] # update step and all other fields df['memory_change'] += [np.nan, np.nan] df['total memory (GB)'] += [np.nan, np.nan] df['CPU time (min)'] += [np.nan, np.nan] # type df['toolkit'] += ['Cell Ranger (R)' for i in range(7)] # general df['step'] += ['init', 'load', 'Preprocessing', 'PCA', 'tSNE', 'diffmap', 'DPT'] df['n cells'] += [n_cells for i in range(7)] def extract_minutes(string): match_min = re.findall('[0-9.]+ *min', string) match_s = re.findall('[0-9.]+ *s', string) match_ms = re.findall('[0-9.]+ *ms', string) min = float(match_min[0].replace('min', '').strip()) if match_min else 0 min += float(match_s[0].replace('s', '').strip())/60 if match_s else 0 min += float(match_ms[0].replace('ms', '').strip())/60/1000 if match_ms else 0 return min def extract_memory(string): l = string.split(' GB, difference ') return float(l[0]), float(l[1].replace(' GB', '')) # match html by Scanpy output for filename in natsorted(glob('zheng17*cellranger_Py*.html')): n_cells = int(re.findall('[0-9.]+', filename)[2]) print(n_cells) textfile = open(filename, 'r') filetext = textfile.read() textfile.close() # cpu time matches = re.findall('Wall time:.+', filetext) df['CPU time (min)'] += [0] df['CPU time (min)'] += [extract_minutes(m) for m in matches] # memory matches = re.findall('[0-9.]+ GB, difference [+\-0-9.]+ GB', filetext) df['total memory (GB)'] += [extract_memory(m)[0] for m in matches] df['memory_change'] += [extract_memory(m)[1] for m in matches] # type df['toolkit'] += ['Scanpy (Py)' for i in range(7)] # general df['step'] += ['init', 'load', 'Preprocessing', 'PCA', 'tSNE', 'diffmap', 'DPT'] df['n cells'] += [n_cells for i in range(7)] df = pd.DataFrame(df) df_single = df.loc[df['toolkit'] != 'Cell Ranger (R)'] df_single = df_single.loc[df['step'] != 'init'] df_single = df_single.loc[df['step'] != 'load'] df_single = df_single.loc[df['step'] != 'Preprocessing'] df_single = df_single.loc[df['step'] != 'PCA'] df_single = df_single.loc[df['step'] != 'tSNE'] # remove uninteresting steps df = df.loc[df['step'] != 'init'] df = df.loc[df['step'] != 'load'] df = df.loc[df['step'] != 'DPT'] df = df.loc[df['step'] != 'diffmap'] g = sns.FacetGrid(df, col='step', hue='toolkit', sharey=False, legend_out=True) g = g.map(pl.scatter, 'n cells', 'total memory (GB)') pl.subplots_adjust(top=0.82, right=0.82) pl.legend(bbox_to_anchor=(1.04, 0.5), loc=2, borderaxespad=0.) g.fig.suptitle('Process memory after step') pl.savefig('figs/memory.png', dpi=400) # g = sns.FacetGrid(df, col='step', hue='toolkit', sharey=False) # g = g.map(pl.scatter, 'n cells', 'memory_change') # pl.subplots_adjust(top=0.82, right=0.82) # pl.legend(bbox_to_anchor=(1.04, 0.5), loc=2, borderaxespad=0.) # g.fig.suptitle('changed memory during step (GB)') g = sns.FacetGrid(df, col='step', hue='toolkit', sharey=False) g = g.map(pl.scatter, 'n cells', 'CPU time (min)') pl.subplots_adjust(top=0.82, right=0.82) pl.legend(bbox_to_anchor=(1.04, 0.5), loc=2, borderaxespad=0.) g.fig.suptitle('CPU time of step') pl.savefig('figs/cpu_time.png', dpi=400) # compute Speedup df1 = pd.DataFrame() df1['step'] = df['step'][df['toolkit'] == 'Scanpy (Py)'].values df1['n cells'] = df['n cells'][df['toolkit'] == 'Scanpy (Py)'].values df1['Speedup'] = df['CPU time (min)'][df['toolkit'] == 'Cell Ranger (R)'].values / df['CPU time (min)'][df['toolkit'] == 'Scanpy (Py)'].values df1['memory ratio'] = 1 / df['total memory (GB)'][df['toolkit'] == 'Cell Ranger (R)'].values * df['total memory (GB)'][df['toolkit'] == 'Scanpy (Py)'].values g = sns.FacetGrid(df1, col='step', sharey=False) g = g.map(pl.scatter, 'n cells', 'Speedup', color='grey') pl.subplots_adjust(top=0.82, right=0.82) g.fig.suptitle('Speedup Scanpy vs. Cell Ranger (Zheng el al., 2017)') pl.savefig('figs/speedup.png', dpi=400) pl.savefig('figs/speedup.pdf') g = sns.FacetGrid(df1, hue='step') g = g.map(pl.plot, 'n cells', 'Speedup', marker='o').add_legend(title=False, handlelength=0.3, frameon=True) pl.subplots_adjust(top=0.82, right=0.82) g.fig.suptitle('Speedup Scanpy vs. Cell Ranger') pl.savefig('figs/speedup_single_panel.pdf') g = sns.FacetGrid(df1, col='step', sharey=False) g = g.map(pl.scatter, 'n cells', 'memory ratio', color='grey') pl.subplots_adjust(top=0.82, right=0.82) g.fig.suptitle('Memory ratio Scanpy vs. Cell Ranger (Zheng el al., 2017)') pl.savefig('figs/memory_ratio.png', dpi=400) # scaling DPT and diffmap g = sns.FacetGrid(df_single, col='step', sharey=False) g = g.map(pl.scatter, 'n cells', 'CPU time (min)') pl.subplots_adjust(top=0.82, right=0.82) g.fig.suptitle('CPU time Diffmap and DPT') pl.savefig('figs/cpu_time_dpt.png', dpi=400)
bsd-3-clause
spxtr/test-infra
mungegithub/issue_labeler/simple_app.py
6
4947
#!/usr/bin/env python # Copyright 2016 The Kubernetes Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import logging from logging.handlers import RotatingFileHandler # pylint: disable=import-error import numpy as np from flask import Flask, request from sklearn.feature_extraction import FeatureHasher from sklearn.externals import joblib from sklearn.linear_model import SGDClassifier from nltk.tokenize import RegexpTokenizer from nltk.stem.porter import PorterStemmer # pylint: enable=import-error APP = Flask(__name__) # parameters TEAM_FN = './models/trained_teams_model.pkl' COMPONENT_FN = './models/trained_components_model.pkl' LOG_FILE = '/tmp/issue-labeler.log' LOG_SIZE = 1024*1024*100 NUM_FEATURES = 262144 MY_LOSS = 'hinge' MY_ALPHA = .1 MY_PENALTY = 'l2' MY_HASHER = FeatureHasher(input_type='string', n_features=NUM_FEATURES, non_negative=True) MY_STEMMER = PorterStemmer() TOKENIZER = RegexpTokenizer(r'\w+') STOPWORDS = [] try: if not STOPWORDS: STOPWORDS_FILENAME = './stopwords.txt' with open(STOPWORDS_FILENAME, 'r') as fp: STOPWORDS = list([word.strip() for word in fp]) except: # pylint:disable=bare-except # don't remove any stopwords STOPWORDS = [] @APP.errorhandler(500) def internal_error(exception): return str(exception), 500 @APP.route("/", methods=['POST']) def get_labels(): """ The request should contain 2 form-urlencoded parameters 1) title : title of the issue 2) body: body of the issue It returns a team/<label> and a component/<label> """ title = request.form.get('title', '') body = request.form.get('body', '') tokens = tokenize_stem_stop(" ".join([title, body])) team_mod = joblib.load(TEAM_FN) comp_mod = joblib.load(COMPONENT_FN) vec = MY_HASHER.transform([tokens]) tlabel = team_mod.predict(vec)[0] clabel = comp_mod.predict(vec)[0] return ",".join([tlabel, clabel]) def tokenize_stem_stop(input_string): input_string = input_string.encode('utf-8') cur_title_body = TOKENIZER.tokenize(input_string.decode('utf-8').lower()) return [MY_STEMMER.stem(x) for x in cur_title_body if x not in STOPWORDS] @APP.route("/update_models", methods=['PUT']) def update_model(): # pylint: disable=too-many-locals """ data should contain three fields titles: list of titles bodies: list of bodies labels: list of list of labels """ data = request.json titles = data.get('titles') bodies = data.get('bodies') labels = data.get('labels') t_tokens = [] c_tokens = [] team_labels = [] component_labels = [] for (title, body, label_list) in zip(titles, bodies, labels): t_label = [x for x in label_list if x.startswith('team')] c_label = [x for x in label_list if x.startswith('component')] tokens = tokenize_stem_stop(" ".join([title, body])) if t_label: team_labels += t_label t_tokens += [tokens] if c_label: component_labels += c_label c_tokens += [tokens] t_vec = MY_HASHER.transform(t_tokens) c_vec = MY_HASHER.transform(c_tokens) if team_labels: if os.path.isfile(TEAM_FN): team_model = joblib.load(TEAM_FN) team_model.partial_fit(t_vec, np.array(team_labels)) else: # no team model stored so build a new one team_model = SGDClassifier(loss=MY_LOSS, penalty=MY_PENALTY, alpha=MY_ALPHA) team_model.fit(t_vec, np.array(team_labels)) if component_labels: if os.path.isfile(COMPONENT_FN): component_model = joblib.load(COMPONENT_FN) component_model.partial_fit(c_vec, np.array(component_labels)) else: # no comp model stored so build a new one component_model = SGDClassifier(loss=MY_LOSS, penalty=MY_PENALTY, alpha=MY_ALPHA) component_model.fit(c_vec, np.array(component_labels)) joblib.dump(team_model, TEAM_FN) joblib.dump(component_model, COMPONENT_FN) return "" def configure_logger(): log_format = '%(asctime)-20s %(levelname)-10s %(message)s' file_handler = RotatingFileHandler(LOG_FILE, maxBytes=LOG_SIZE, backupCount=3) formatter = logging.Formatter(log_format) file_handler.setFormatter(formatter) APP.logger.addHandler(file_handler) if __name__ == "__main__": configure_logger() APP.run(host="0.0.0.0")
apache-2.0
VEVO/hidi
hidi/inout.py
1
2636
import numpy as np import pandas as pd from hidi.transform import Transform class ReadTransform(Transform): """ Read input csv data from disk. Input data should be a csv file formatted with three columns: :code:`link_id`, :code:`item_id`, and :code:`score`. If score is not provided, it we be defaulted to one. :code:`link_id` represents to the "user" and `item_id` represents the "item" in the context of traditional collaborative filtering. :param infiles: Array of paths to csv documents to be loaded and concatenated into one DataFrame. Each csv document must have a :code:`link_id` and a :code:`item_id` column. An optional :code:`score` column may also be supplied. :type infiles: array """ def __init__(self, infiles, **kwargs): self._inputs = infiles def _normalize(self, df): if 'score' not in df.columns: df['score'] = np.ones(df.shape[0]) return df[['link_id', 'item_id', 'score']] def transform(self, **kwargs): """ Read in files from the :code:`infiles` array given upon instantiation. :rtype: pandas.DataFrame """ dfs = [pd.read_csv(inp) for inp in self._inputs] dfs = [self._normalize(df) for df in dfs] return pd.concat(dfs), kwargs class WriteTransform(Transform): """ Write output to disk in csv or json formats. :param outfile: A string that is a path to the desired output on the file system. :type outfile: str :param file_format: A string that is a file extension, either :code:`json` or :code:`csv`. :type file_format: str """ def __init__(self, outfile, file_format='csv', enc=None, link_key='link_id'): self.outfile = outfile self.file_format = file_format self.link_key = link_key self.encoding = enc def transform(self, df, **kwargs): """ Write a DataFrame to a file. :param df: The Pandas DataFrame to be written to a file :type df: pandas.DataFrame :rtype: pandas.DataFrame """ if self.file_format == 'csv': df.to_csv(self.outfile, encoding=self.encoding) else: with open(self.outfile, 'w+') as f: import json for row in df.iterrows(): f.write(json.dumps({ self.link_key: row[0], 'factors': row[1].tolist() })) f.write('\n') return df, kwargs
apache-2.0
sommerc/cellcognition_explorer_cedl
cedl_cmd/cedl.py
1
18798
#!/usr/bin/env python ''' CellCognition Explorer - deep learning command-line extension ''' import os import sys import cellh5 import h5py import numpy from numpy.lib.recfunctions import merge_arrays import pandas import logging logger = logging.getLogger(__name__) from autoencoders import Autoencoder, AdaGradTrainer, NestorovTrainer import argparse version = (1, 0, 1) class BaseReader(object): @staticmethod def normalize_galleries(gals): return gals.astype(numpy.float32) / 255. def write_galleriy_file(self, gals): output_file_name = self.get_output_file_name() norm_gals = self.normalize_galleries(gals[:self.pargs.nsamples, ...]) with h5py.File(output_file_name, 'w') as h: h.create_dataset('galleries', data=norm_gals) def load_galleriy_file(self): output_file_name = self.get_output_file_name() with h5py.File(output_file_name, 'r') as h: res = h['galleries'].value[:, None, ...] return res def get_output_file_name(self): return '%s_galleries_%s_%dx%d_%dk.h5' % (self.name, self.pargs.neg_condition, self.pargs.im_size, self.pargs.im_size, self.pargs.nsamples / 1000) def iter_pos(self): raise NotImplementedError() class Cellh5Reader(BaseReader): def __init__(self, name, pargs): self.pargs = pargs self.cellh5_input = pargs.cellh5_input self.cellh5_mapping = pargs.cellh5_mapping self.im_size = pargs.im_size self.name = name logger.debug("Check input files") if not os.path.isfile(self.cellh5_input): sys.exit("Error: Cellh5 file does not exist") if not os.path.isfile(self.cellh5_mapping): sys.exit("Error: Mapping file does not exist") def read_training_images(self): cr = self.cr = cellh5.CH5MappedFile(self.cellh5_input, 'r', cached=False) logger.debug(" Read plate mapping") cr.read_mapping(self.cellh5_mapping) neg_mapping = cr.mapping[cr.mapping["Group"] == self.pargs.neg_condition] result_galleries = [] cnt = 0 logger.debug(" Reading galleries from negative control conditions:") while True: rn = numpy.random.randint(len(neg_mapping)) plate, well, site, gene = neg_mapping.iloc[rn][["Plate", "Well", "Site", "Gene Symbol"]] ch5_pos = cr.get_position(well, site) n_cells = len(ch5_pos.get_object_idx()) logger.debug(' {} {} {} {} {}'.format(plate, well, site, gene, n_cells)) if n_cells == 0: continue nr = numpy.random.randint(1, n_cells) gals = ch5_pos.get_gallery_image(range(nr), size=self.im_size).T.reshape((nr, self.im_size,self.im_size)) result_galleries.append(gals) cnt += nr if cnt > self.pargs.nsamples: break return numpy.concatenate(result_galleries) def extract_galleries(self, pos, object_='primary__primary'): n_cells = len(pos.get_object_idx()) cell_idx = range(n_cells) im_size = self.pargs.im_size img = None if len(cell_idx) > 0: img = pos.get_gallery_image(cell_idx, object_=('primary__primary'), size=im_size) img = img.reshape((im_size, n_cells,im_size,1)).transpose((1,3,0,2)) return img def extract_geometry(self, pos, object_='primary__primary'): n_cells = len(pos.get_object_idx()) if n_cells > 0: cell_idx = range(n_cells) centers = pos.get_center(cell_idx, object_=object_) bbox = pos.get_feature_table(object_, 'bounding_box')[cell_idx] orient = pos.get_feature_table(object_, 'orientation')[cell_idx] meta = numpy.zeros(n_cells, dtype=[('file','|S128' ), ('treatment','|S128'), ('label', int )]) return merge_arrays((meta, centers, orient, bbox), asrecarray=True, flatten = True, usemask = False) def iter_pos(self): self.cr = cr = cellh5.CH5MappedFile(self.cellh5_input, 'r', cached=False) cr.read_mapping(self.cellh5_mapping) for i, row in cr.mapping.iterrows(): yield row, cr.get_position(row.Well, row.Site) def close(self): try: self.cr.close() except Exception as e: logger.warn("Warn: Error closing cellh5 input file\n" + str(e)) class Ch5Encoder(object): def __init__(self, ae, reader, writer): self.ae = ae self.reader = reader self.writer = writer def encode(self, data): return self.ae.encode(data) def write(self, content): logger.debug(' Write content') def run(self): for meta, pos in self.reader.iter_pos(): logger.debug(' {} {} {}'.format(meta.Plate, meta.Well, meta.Site)) ncell = pos.get_object_count() if ncell == 0: continue imgs = self.reader.extract_galleries(pos) geo = self.reader.extract_geometry(pos) geo["file"] = self.reader.pargs.cellh5_input[:128] geo["treatment"] = meta["Gene Symbol"] if "Gene Symbol" in meta else "blub" geo["label"] = 0 features = self.encode(self.reader.normalize_galleries(imgs)) rec_features = features.view(dtype=numpy.dtype([("ch1-deep_learning_feature_{}".format(dl), 'float32') for dl in xrange(features.shape[1])])) self.writer.write_bbox(geo) self.writer.write_contours(geo, bb_size=self.reader.im_size) self.writer.write_features(rec_features) self.writer.write_galleries(imgs) image_width = pos['image']['channel'].shape[3] image_height = pos['image']['channel'].shape[4] self.writer.write_feature_groups() self.writer.gallery.dset.attrs["colors"] = ["#FFFFFF"] self.writer.gallery.dset.attrs["image_size"] = (image_width, image_height) class StandardOutputWriter(object): BBOX_DTYPE = [('file', 'S128'), ('treatment', 'S128'), ('label', '<i4'), ('x', '<i4'), ('y', '<i4'), ('angle', '<f8'), ('eccentricity', '<f8'), ('left', '<i4'), ('right', '<i4'), ('top', '<i4'), ('bottom', '<i4')] FEATURE_DTYPE = [] # created dynamically CONTOUR_DTYPE = h5py.special_dtype(vlen=numpy.uint16) GALLERY_DTYPE = numpy.uint8 def __init__(self, filename, im_size): self._fh = h5py.File(filename, 'w') self._fh.attrs["application"] = "CellExplorer_deep_learning_cmd-line-tool-{}.{}.{}".format(*version) self._fh.attrs["training_data"] = ["data",] self.data_grp = self._fh.create_group("data") self.bbox = self.create_writer("bbox", self.data_grp, self.BBOX_DTYPE) self.contour_grp = self.data_grp.create_group("contours") self.contour_grp.attrs["channels"] = ["Channel_1"] self.contours = self.create_writer("Channel_1", self.contour_grp, self.CONTOUR_DTYPE, kind="a", shape=('x', 2), grow_dim=0) self.gallery = self.create_writer("gallery", self.data_grp, self.GALLERY_DTYPE, kind="a", shape=(im_size, im_size,1,'x'), grow_dim=3) # not yet initializable self.features = None def create_writer(self, name, grp, dtype, kind='c', shape=None, grow_dim=0): if kind == "c": return Hdf5IncrementalCompoundWriter(name, grp, dtype) elif kind == 'a': return Hdf5IncrementalArrayWriter(name, grp, dtype, shape, grow_dim) raise AttributeError("HDF5 Writer not supported. Choose Compound or Array, c or a.") def write_bbox(self, data): self.bbox.inc_write(data) def write_contours(self, bbox, bb_size): sh = bb_size/2 x = numpy.c_[bbox['x']-sh, bbox["x"]+sh, bbox["x"]+sh, bbox["x"]-sh] y = numpy.c_[bbox['y']-sh, bbox["y"]-sh, bbox["y"]+sh, bbox["y"]+sh] self.contours.resize_for(x) # manual self.contours.dset[self.contours.offset:self.contours.offset+len(x), 0] = x self.contours.dset[self.contours.offset:self.contours.offset+len(y), 1] = y self.contours.offset+=len(x) def write_galleries(self, gals): self.gallery.inc_write(gals.transpose()) def write_features(self, data): if self.features is None: self.features = self.create_writer("features", self.data_grp, self.FEATURE_DTYPE) self.features.inc_write(data) def write_feature_groups(self): fg = self.data_grp.create_dataset("feature_groups", shape=(len(self.FEATURE_DTYPE),), dtype=[('feature', '|S64'), ('Simple1', '|S64')]) fg['feature'] = zip(*self.FEATURE_DTYPE)[0] fg['Simple1'] = "Simple1" def close(self): self.bbox.finalize() self.contours.finalize() self.gallery.finalize() self.features.finalize() try: self._fh.close() except Exception as e: logger.warn("Error: Problem closing file handle: {}".format(str(e))) class Hdf5IncrementalCompoundWriter(object): init_size = 1000 def __init__(self, object_name, obj_grp, dtype): self.obj_grp = obj_grp self.dtype = dtype self.offset = 0 self.object_name = object_name self.dset = self.obj_grp.create_dataset(self.object_name, shape=(self.init_size,), dtype=self.dtype, maxshape=(None,)) def inc_write(self, data): if len(data) + self.offset > len(self.dset) : # resize self.dset.resize((len(data) + self.offset,)) if len(data.shape) == 2: data = data[:,0] self.dset[self.offset:self.offset+len(data)] = data self.offset+=len(data) def finalize(self): self.dset.resize(self.offset, axis=0) class Hdf5IncrementalArrayWriter(object): init_size = 1000 def __init__(self, object_name, obj_grp, dtype, shape, grow_dim=0): self.obj_grp = obj_grp self.dtype = dtype self.offset = 0 self.object_name = object_name self.grow_dim = grow_dim init_shape = list(shape) init_shape[grow_dim] = self.init_size maxshape = list(shape) maxshape[grow_dim] = None self.dset = self.obj_grp.create_dataset(self.object_name, shape=init_shape, dtype=self.dtype, maxshape=maxshape) def resize_for(self, data): if data.shape[self.grow_dim] + self.offset > self.dset.shape[self.grow_dim] : # resize new_shape = list(self.dset.shape) new_shape[self.grow_dim] = self.dset.shape[self.grow_dim] + data.shape[self.grow_dim] self.dset.resize(new_shape) def finalize(self): final_shape = list(self.dset.shape) final_shape[self.grow_dim] = self.offset self.dset.resize(final_shape) def inc_write(self, data): self.resize_for(data) index = [slice(None, None, None), ] * data.ndim index[self.grow_dim] = slice(self.offset, self.offset + data.shape[self.grow_dim], None) self.dset[tuple(index)] = data self.offset+=data.shape[self.grow_dim] def get_model_name(ch5_input, model_arch): return "{}_{}".format(os.path.splitext(os.path.basename(ch5_input))[0], model_arch) def train(args): name = get_model_name(args.cellh5_input, args.ae_arch) logger.info("Training: '{}'".format(name)) logger.info("Init reader") cr = Cellh5Reader(name, args) logger.info("Open cellh5 file") galleries = cr.read_training_images() logger.info("Write images to output file") cr.write_galleriy_file(galleries) logger.info("Load images from output file") galleries = cr.load_galleriy_file() logger.info("Init deep learning network") ae = Autoencoder(cr.name, (1, cr.pargs.im_size, cr.pargs.im_size), denoising=cr.pargs.corruption) logger.info("Set deep learning network architecture to: '{}'".format(cr.pargs.ae_arch)) arch = cr.pargs.ae_arch.replace("_", " ") ae.init_from_string(arch) logger.info("Configure trainer: '{}'".format(cr.pargs.learner)) if cr.pargs.learner == "nesterov": trainer = NestorovTrainer(epochs=cr.pargs.epochs, batchsize=cr.pargs.batchsize, learning_rate=cr.pargs.learning_rate, momentum=cr.pargs.momentum ) else: trainer = AdaGradTrainer(epochs=cr.pargs.epochs, batchsize=cr.pargs.batchsize, learning_rate=cr.pargs.learning_rate, ) logger.info("Training: (can take hours...)") trainer(ae).fit(galleries, None) logger.info("Save deep learning network as '{}' (use this for encode)".format(name)) ae.save() def predict(args): logger.info("Init reader") cr = Cellh5Reader(args.name, args) logger.info("Read autoencoder model") try: ae = Autoencoder.load(args.name) except Exception as e: logging.error("Error loading autoencoder {}".format(str(e))) sys.exit("Error: Cellh5 file does not exist") output_file = "{}.hdf".format(args.name) logger.info("Init output writer -> {}".format(output_file)) wr = StandardOutputWriter(output_file, args.im_size) wr.FEATURE_DTYPE = [("ch1-deep_learning_feature_{}".format(dl), 'float32') for dl in xrange(ae.get_code_size())] logger.info("Encode: (can take hours...)") encoder = Ch5Encoder(ae, cr, wr) encoder.run() wr.close() cr.close() logger.info("Output file created. Open CellCognition Explorer GUI and open '{}'".format(output_file)) def main(args): logging.basicConfig(level=args.loglevel or logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') if args.action == "train": train(args) elif args.action == "encode": predict(args) logger.debug(" --- The End ---") if __name__ == '__main__': logger.info("test") parser = argparse.ArgumentParser(prog="CellExplorer deep learning command line extension", version="{}.{}.{}".format(*version), formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--verbose', action='store_true', help='verbose output', dest='loglevel') parser.add_argument('--im_size', '-is', type=int, help='Size of the squared, cropped input images (in pixel)', default=60) subparsers = parser.add_subparsers() train_parser = subparsers.add_parser('train', help='Train a deep learning autoencoder from pre-processed image data stored in cellh5.',formatter_class=argparse.ArgumentDefaultsHelpFormatter) train_parser.set_defaults(action="train") train_parser.add_argument('cellh5_input', help='The cellh5 file as input for training an autoencoder.') train_parser.add_argument('cellh5_mapping', help='Position mapping table (.txt file) with a "Group" Column to ' 'indicate negative control conditions.' ) train_parser.add_argument('--autoencoder_architecture', '-ae', help='String describing the encoding layers of the autoencoder.\n' 'Three layer types are supported:' '"cF.SA": convolutional layer with F filters of size SxS and activation A (A=r or A=s), ' '"pP" max-pooling layer with pooling size of PxP\n, and ' '"dN.D" fully-connected dense layer with output size N and additional drop-out layer with probability 0.D. ' 'Deep autoencoders can be constructed by concatenating layers with "_"' , default='c16.5r_p2_c32.3r_p2_d256.1r_d64.0s', dest='ae_arch') train_parser.add_argument('--learner', '-l', choices=['nesterov', 'adagrad'], help='SGD variant. Choose between Nesterov momentum and AdaGrad updates.', default='addgrad') train_parser.add_argument('--learning_rate', '-lr', type=float, help='Learning rate', default=0.05) train_parser.add_argument('--momentum', '-m', type=float, help='Momentum for Nestorov updates', default=0.9) train_parser.add_argument('--batchsize', '-bs' , type=int, help='Mini-batch size', default=128) train_parser.add_argument('--corruption', '-c' , type=float, help='Initial corruption level of the denoising autoencoder', default=0.0) train_parser.add_argument('--epochs', '-e' , type=int, help='Number of training epochs', default=16) train_parser.add_argument('--nsamples', '-n' , type=int, help='The number of instances randomly sampled from negative control conditions', default=1000) train_parser.add_argument('--neg_indicator', '-nd' , type=str, help='The token, which indicates a negative control condition in the mapping file', default='neg', dest='neg_condition') predict_parser = subparsers.add_parser('encode', help='Encode image data (in cellh5) using a previously trained autoencoder. Result can be viewed and further analyzed using the CellExplorer GUI.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) predict_parser.set_defaults(action="encode") predict_parser.add_argument('name', help='Name of the trained network (generated with option "train"' ) predict_parser.add_argument('cellh5_input', help='The cellh5 file as input for feature generation using an autoencoder.') predict_parser.add_argument('cellh5_mapping', help='Position mapping table (.txt file), which contains all positions to be processed' ) main(parser.parse_args())
gpl-3.0
BigDataforYou/movie_recommendation_workshop_1
big_data_4_you_demo_1/venv/lib/python2.7/site-packages/pandas/io/tests/test_packers.py
1
30648
import nose import warnings import os import datetime import numpy as np import sys from distutils.version import LooseVersion from pandas import compat from pandas.compat import u from pandas import (Series, DataFrame, Panel, MultiIndex, bdate_range, date_range, period_range, Index, Categorical) from pandas.core.common import PerformanceWarning from pandas.io.packers import to_msgpack, read_msgpack import pandas.util.testing as tm from pandas.util.testing import (ensure_clean, assert_categorical_equal, assert_frame_equal, assert_index_equal, assert_series_equal, patch) from pandas.tests.test_panel import assert_panel_equal import pandas from pandas import Timestamp, NaT, tslib nan = np.nan try: import blosc # NOQA except ImportError: _BLOSC_INSTALLED = False else: _BLOSC_INSTALLED = True try: import zlib # NOQA except ImportError: _ZLIB_INSTALLED = False else: _ZLIB_INSTALLED = True _multiprocess_can_split_ = False def check_arbitrary(a, b): if isinstance(a, (list, tuple)) and isinstance(b, (list, tuple)): assert(len(a) == len(b)) for a_, b_ in zip(a, b): check_arbitrary(a_, b_) elif isinstance(a, Panel): assert_panel_equal(a, b) elif isinstance(a, DataFrame): assert_frame_equal(a, b) elif isinstance(a, Series): assert_series_equal(a, b) elif isinstance(a, Index): assert_index_equal(a, b) else: assert(a == b) class TestPackers(tm.TestCase): def setUp(self): self.path = '__%s__.msg' % tm.rands(10) def tearDown(self): pass def encode_decode(self, x, compress=None, **kwargs): with ensure_clean(self.path) as p: to_msgpack(p, x, compress=compress, **kwargs) return read_msgpack(p, **kwargs) class TestAPI(TestPackers): def test_string_io(self): df = DataFrame(np.random.randn(10, 2)) s = df.to_msgpack(None) result = read_msgpack(s) tm.assert_frame_equal(result, df) s = df.to_msgpack() result = read_msgpack(s) tm.assert_frame_equal(result, df) s = df.to_msgpack() result = read_msgpack(compat.BytesIO(s)) tm.assert_frame_equal(result, df) s = to_msgpack(None, df) result = read_msgpack(s) tm.assert_frame_equal(result, df) with ensure_clean(self.path) as p: s = df.to_msgpack() fh = open(p, 'wb') fh.write(s) fh.close() result = read_msgpack(p) tm.assert_frame_equal(result, df) def test_iterator_with_string_io(self): dfs = [DataFrame(np.random.randn(10, 2)) for i in range(5)] s = to_msgpack(None, *dfs) for i, result in enumerate(read_msgpack(s, iterator=True)): tm.assert_frame_equal(result, dfs[i]) def test_invalid_arg(self): # GH10369 class A(object): def __init__(self): self.read = 0 tm.assertRaises(ValueError, read_msgpack, path_or_buf=None) tm.assertRaises(ValueError, read_msgpack, path_or_buf={}) tm.assertRaises(ValueError, read_msgpack, path_or_buf=A()) class TestNumpy(TestPackers): def test_numpy_scalar_float(self): x = np.float32(np.random.rand()) x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_numpy_scalar_complex(self): x = np.complex64(np.random.rand() + 1j * np.random.rand()) x_rec = self.encode_decode(x) self.assertTrue(np.allclose(x, x_rec)) def test_scalar_float(self): x = np.random.rand() x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_scalar_complex(self): x = np.random.rand() + 1j * np.random.rand() x_rec = self.encode_decode(x) self.assertTrue(np.allclose(x, x_rec)) def test_list_numpy_float(self): x = [np.float32(np.random.rand()) for i in range(5)] x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_list_numpy_float_complex(self): if not hasattr(np, 'complex128'): raise nose.SkipTest('numpy cant handle complex128') x = [np.float32(np.random.rand()) for i in range(5)] + \ [np.complex128(np.random.rand() + 1j * np.random.rand()) for i in range(5)] x_rec = self.encode_decode(x) self.assertTrue(np.allclose(x, x_rec)) def test_list_float(self): x = [np.random.rand() for i in range(5)] x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_list_float_complex(self): x = [np.random.rand() for i in range(5)] + \ [(np.random.rand() + 1j * np.random.rand()) for i in range(5)] x_rec = self.encode_decode(x) self.assertTrue(np.allclose(x, x_rec)) def test_dict_float(self): x = {'foo': 1.0, 'bar': 2.0} x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_dict_complex(self): x = {'foo': 1.0 + 1.0j, 'bar': 2.0 + 2.0j} x_rec = self.encode_decode(x) self.assertEqual(x, x_rec) for key in x: self.assertEqual(type(x[key]), type(x_rec[key])) def test_dict_numpy_float(self): x = {'foo': np.float32(1.0), 'bar': np.float32(2.0)} x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_dict_numpy_complex(self): x = {'foo': np.complex128(1.0 + 1.0j), 'bar': np.complex128(2.0 + 2.0j)} x_rec = self.encode_decode(x) self.assertEqual(x, x_rec) for key in x: self.assertEqual(type(x[key]), type(x_rec[key])) def test_numpy_array_float(self): # run multiple times for n in range(10): x = np.random.rand(10) for dtype in ['float32', 'float64']: x = x.astype(dtype) x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_numpy_array_complex(self): x = (np.random.rand(5) + 1j * np.random.rand(5)).astype(np.complex128) x_rec = self.encode_decode(x) self.assertTrue(all(map(lambda x, y: x == y, x, x_rec)) and x.dtype == x_rec.dtype) def test_list_mixed(self): x = [1.0, np.float32(3.5), np.complex128(4.25), u('foo')] x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) class TestBasic(TestPackers): def test_timestamp(self): for i in [Timestamp( '20130101'), Timestamp('20130101', tz='US/Eastern'), Timestamp('201301010501')]: i_rec = self.encode_decode(i) self.assertEqual(i, i_rec) def test_nat(self): nat_rec = self.encode_decode(NaT) self.assertIs(NaT, nat_rec) def test_datetimes(self): # fails under 2.6/win32 (np.datetime64 seems broken) if LooseVersion(sys.version) < '2.7': raise nose.SkipTest('2.6 with np.datetime64 is broken') for i in [datetime.datetime(2013, 1, 1), datetime.datetime(2013, 1, 1, 5, 1), datetime.date(2013, 1, 1), np.datetime64(datetime.datetime(2013, 1, 5, 2, 15))]: i_rec = self.encode_decode(i) self.assertEqual(i, i_rec) def test_timedeltas(self): for i in [datetime.timedelta(days=1), datetime.timedelta(days=1, seconds=10), np.timedelta64(1000000)]: i_rec = self.encode_decode(i) self.assertEqual(i, i_rec) class TestIndex(TestPackers): def setUp(self): super(TestIndex, self).setUp() self.d = { 'string': tm.makeStringIndex(100), 'date': tm.makeDateIndex(100), 'int': tm.makeIntIndex(100), 'rng': tm.makeRangeIndex(100), 'float': tm.makeFloatIndex(100), 'empty': Index([]), 'tuple': Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])), 'period': Index(period_range('2012-1-1', freq='M', periods=3)), 'date2': Index(date_range('2013-01-1', periods=10)), 'bdate': Index(bdate_range('2013-01-02', periods=10)), } self.mi = { 'reg': MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')], names=['first', 'second']), } def test_basic_index(self): for s, i in self.d.items(): i_rec = self.encode_decode(i) self.assertTrue(i.equals(i_rec)) # datetime with no freq (GH5506) i = Index([Timestamp('20130101'), Timestamp('20130103')]) i_rec = self.encode_decode(i) self.assertTrue(i.equals(i_rec)) # datetime with timezone i = Index([Timestamp('20130101 9:00:00'), Timestamp( '20130103 11:00:00')]).tz_localize('US/Eastern') i_rec = self.encode_decode(i) self.assertTrue(i.equals(i_rec)) def test_multi_index(self): for s, i in self.mi.items(): i_rec = self.encode_decode(i) self.assertTrue(i.equals(i_rec)) def test_unicode(self): i = tm.makeUnicodeIndex(100) i_rec = self.encode_decode(i) self.assertTrue(i.equals(i_rec)) class TestSeries(TestPackers): def setUp(self): super(TestSeries, self).setUp() self.d = {} s = tm.makeStringSeries() s.name = 'string' self.d['string'] = s s = tm.makeObjectSeries() s.name = 'object' self.d['object'] = s s = Series(tslib.iNaT, dtype='M8[ns]', index=range(5)) self.d['date'] = s data = { 'A': [0., 1., 2., 3., np.nan], 'B': [0, 1, 0, 1, 0], 'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'], 'D': date_range('1/1/2009', periods=5), 'E': [0., 1, Timestamp('20100101'), 'foo', 2.], 'F': [Timestamp('20130102', tz='US/Eastern')] * 2 + [Timestamp('20130603', tz='CET')] * 3, 'G': [Timestamp('20130102', tz='US/Eastern')] * 5, } self.d['float'] = Series(data['A']) self.d['int'] = Series(data['B']) self.d['mixed'] = Series(data['E']) self.d['dt_tz_mixed'] = Series(data['F']) self.d['dt_tz'] = Series(data['G']) def test_basic(self): # run multiple times here for n in range(10): for s, i in self.d.items(): i_rec = self.encode_decode(i) assert_series_equal(i, i_rec) class TestCategorical(TestPackers): def setUp(self): super(TestCategorical, self).setUp() self.d = {} self.d['plain_str'] = Categorical(['a', 'b', 'c', 'd', 'e']) self.d['plain_str_ordered'] = Categorical(['a', 'b', 'c', 'd', 'e'], ordered=True) self.d['plain_int'] = Categorical([5, 6, 7, 8]) self.d['plain_int_ordered'] = Categorical([5, 6, 7, 8], ordered=True) def test_basic(self): # run multiple times here for n in range(10): for s, i in self.d.items(): i_rec = self.encode_decode(i) assert_categorical_equal(i, i_rec) class TestNDFrame(TestPackers): def setUp(self): super(TestNDFrame, self).setUp() data = { 'A': [0., 1., 2., 3., np.nan], 'B': [0, 1, 0, 1, 0], 'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'], 'D': date_range('1/1/2009', periods=5), 'E': [0., 1, Timestamp('20100101'), 'foo', 2.], 'F': [Timestamp('20130102', tz='US/Eastern')] * 5, 'G': [Timestamp('20130603', tz='CET')] * 5, 'H': Categorical(['a', 'b', 'c', 'd', 'e']), 'I': Categorical(['a', 'b', 'c', 'd', 'e'], ordered=True), } self.frame = { 'float': DataFrame(dict(A=data['A'], B=Series(data['A']) + 1)), 'int': DataFrame(dict(A=data['B'], B=Series(data['B']) + 1)), 'mixed': DataFrame(data)} self.panel = { 'float': Panel(dict(ItemA=self.frame['float'], ItemB=self.frame['float'] + 1))} def test_basic_frame(self): for s, i in self.frame.items(): i_rec = self.encode_decode(i) assert_frame_equal(i, i_rec) def test_basic_panel(self): for s, i in self.panel.items(): i_rec = self.encode_decode(i) assert_panel_equal(i, i_rec) def test_multi(self): i_rec = self.encode_decode(self.frame) for k in self.frame.keys(): assert_frame_equal(self.frame[k], i_rec[k]) l = tuple([self.frame['float'], self.frame['float'].A, self.frame['float'].B, None]) l_rec = self.encode_decode(l) check_arbitrary(l, l_rec) # this is an oddity in that packed lists will be returned as tuples l = [self.frame['float'], self.frame['float'] .A, self.frame['float'].B, None] l_rec = self.encode_decode(l) self.assertIsInstance(l_rec, tuple) check_arbitrary(l, l_rec) def test_iterator(self): l = [self.frame['float'], self.frame['float'] .A, self.frame['float'].B, None] with ensure_clean(self.path) as path: to_msgpack(path, *l) for i, packed in enumerate(read_msgpack(path, iterator=True)): check_arbitrary(packed, l[i]) def tests_datetimeindex_freq_issue(self): # GH 5947 # inferring freq on the datetimeindex df = DataFrame([1, 2, 3], index=date_range('1/1/2013', '1/3/2013')) result = self.encode_decode(df) assert_frame_equal(result, df) df = DataFrame([1, 2], index=date_range('1/1/2013', '1/2/2013')) result = self.encode_decode(df) assert_frame_equal(result, df) def test_dataframe_duplicate_column_names(self): # GH 9618 expected_1 = DataFrame(columns=['a', 'a']) expected_2 = DataFrame(columns=[1] * 100) expected_2.loc[0] = np.random.randn(100) expected_3 = DataFrame(columns=[1, 1]) expected_3.loc[0] = ['abc', np.nan] result_1 = self.encode_decode(expected_1) result_2 = self.encode_decode(expected_2) result_3 = self.encode_decode(expected_3) assert_frame_equal(result_1, expected_1) assert_frame_equal(result_2, expected_2) assert_frame_equal(result_3, expected_3) class TestSparse(TestPackers): def _check_roundtrip(self, obj, comparator, **kwargs): # currently these are not implemetned # i_rec = self.encode_decode(obj) # comparator(obj, i_rec, **kwargs) self.assertRaises(NotImplementedError, self.encode_decode, obj) def test_sparse_series(self): s = tm.makeStringSeries() s[3:5] = np.nan ss = s.to_sparse() self._check_roundtrip(ss, tm.assert_series_equal, check_series_type=True) ss2 = s.to_sparse(kind='integer') self._check_roundtrip(ss2, tm.assert_series_equal, check_series_type=True) ss3 = s.to_sparse(fill_value=0) self._check_roundtrip(ss3, tm.assert_series_equal, check_series_type=True) def test_sparse_frame(self): s = tm.makeDataFrame() s.ix[3:5, 1:3] = np.nan s.ix[8:10, -2] = np.nan ss = s.to_sparse() self._check_roundtrip(ss, tm.assert_frame_equal, check_frame_type=True) ss2 = s.to_sparse(kind='integer') self._check_roundtrip(ss2, tm.assert_frame_equal, check_frame_type=True) ss3 = s.to_sparse(fill_value=0) self._check_roundtrip(ss3, tm.assert_frame_equal, check_frame_type=True) def test_sparse_panel(self): with warnings.catch_warnings(record=True): items = ['x', 'y', 'z'] p = Panel(dict((i, tm.makeDataFrame().ix[:2, :2]) for i in items)) sp = p.to_sparse() self._check_roundtrip(sp, tm.assert_panel_equal, check_panel_type=True) sp2 = p.to_sparse(kind='integer') self._check_roundtrip(sp2, tm.assert_panel_equal, check_panel_type=True) sp3 = p.to_sparse(fill_value=0) self._check_roundtrip(sp3, tm.assert_panel_equal, check_panel_type=True) class TestCompression(TestPackers): """See https://github.com/pydata/pandas/pull/9783 """ def setUp(self): try: from sqlalchemy import create_engine self._create_sql_engine = create_engine except ImportError: self._SQLALCHEMY_INSTALLED = False else: self._SQLALCHEMY_INSTALLED = True super(TestCompression, self).setUp() data = { 'A': np.arange(1000, dtype=np.float64), 'B': np.arange(1000, dtype=np.int32), 'C': list(100 * 'abcdefghij'), 'D': date_range(datetime.datetime(2015, 4, 1), periods=1000), 'E': [datetime.timedelta(days=x) for x in range(1000)], } self.frame = { 'float': DataFrame(dict((k, data[k]) for k in ['A', 'A'])), 'int': DataFrame(dict((k, data[k]) for k in ['B', 'B'])), 'mixed': DataFrame(data), } def test_plain(self): i_rec = self.encode_decode(self.frame) for k in self.frame.keys(): assert_frame_equal(self.frame[k], i_rec[k]) def _test_compression(self, compress): i_rec = self.encode_decode(self.frame, compress=compress) for k in self.frame.keys(): value = i_rec[k] expected = self.frame[k] assert_frame_equal(value, expected) # make sure that we can write to the new frames for block in value._data.blocks: self.assertTrue(block.values.flags.writeable) def test_compression_zlib(self): if not _ZLIB_INSTALLED: raise nose.SkipTest('no zlib') self._test_compression('zlib') def test_compression_blosc(self): if not _BLOSC_INSTALLED: raise nose.SkipTest('no blosc') self._test_compression('blosc') def _test_compression_warns_when_decompress_caches(self, compress): not_garbage = [] control = [] # copied data compress_module = globals()[compress] real_decompress = compress_module.decompress def decompress(ob): """mock decompress function that delegates to the real decompress but caches the result and a copy of the result. """ res = real_decompress(ob) not_garbage.append(res) # hold a reference to this bytes object control.append(bytearray(res)) # copy the data here to check later return res # types mapped to values to add in place. rhs = { np.dtype('float64'): 1.0, np.dtype('int32'): 1, np.dtype('object'): 'a', np.dtype('datetime64[ns]'): np.timedelta64(1, 'ns'), np.dtype('timedelta64[ns]'): np.timedelta64(1, 'ns'), } with patch(compress_module, 'decompress', decompress), \ tm.assert_produces_warning(PerformanceWarning) as ws: i_rec = self.encode_decode(self.frame, compress=compress) for k in self.frame.keys(): value = i_rec[k] expected = self.frame[k] assert_frame_equal(value, expected) # make sure that we can write to the new frames even though # we needed to copy the data for block in value._data.blocks: self.assertTrue(block.values.flags.writeable) # mutate the data in some way block.values[0] += rhs[block.dtype] for w in ws: # check the messages from our warnings self.assertEqual( str(w.message), 'copying data after decompressing; this may mean that' ' decompress is caching its result', ) for buf, control_buf in zip(not_garbage, control): # make sure none of our mutations above affected the # original buffers self.assertEqual(buf, control_buf) def test_compression_warns_when_decompress_caches_zlib(self): if not _ZLIB_INSTALLED: raise nose.SkipTest('no zlib') self._test_compression_warns_when_decompress_caches('zlib') def test_compression_warns_when_decompress_caches_blosc(self): if not _BLOSC_INSTALLED: raise nose.SkipTest('no blosc') self._test_compression_warns_when_decompress_caches('blosc') def _test_small_strings_no_warn(self, compress): empty = np.array([], dtype='uint8') with tm.assert_produces_warning(None): empty_unpacked = self.encode_decode(empty, compress=compress) np.testing.assert_array_equal(empty_unpacked, empty) self.assertTrue(empty_unpacked.flags.writeable) char = np.array([ord(b'a')], dtype='uint8') with tm.assert_produces_warning(None): char_unpacked = self.encode_decode(char, compress=compress) np.testing.assert_array_equal(char_unpacked, char) self.assertTrue(char_unpacked.flags.writeable) # if this test fails I am sorry because the interpreter is now in a # bad state where b'a' points to 98 == ord(b'b'). char_unpacked[0] = ord(b'b') # we compare the ord of bytes b'a' with unicode u'a' because the should # always be the same (unless we were able to mutate the shared # character singleton in which case ord(b'a') == ord(b'b'). self.assertEqual(ord(b'a'), ord(u'a')) np.testing.assert_array_equal( char_unpacked, np.array([ord(b'b')], dtype='uint8'), ) def test_small_strings_no_warn_zlib(self): if not _ZLIB_INSTALLED: raise nose.SkipTest('no zlib') self._test_small_strings_no_warn('zlib') def test_small_strings_no_warn_blosc(self): if not _BLOSC_INSTALLED: raise nose.SkipTest('no blosc') self._test_small_strings_no_warn('blosc') def test_readonly_axis_blosc(self): # GH11880 if not _BLOSC_INSTALLED: raise nose.SkipTest('no blosc') df1 = DataFrame({'A': list('abcd')}) df2 = DataFrame(df1, index=[1., 2., 3., 4.]) self.assertTrue(1 in self.encode_decode(df1['A'], compress='blosc')) self.assertTrue(1. in self.encode_decode(df2['A'], compress='blosc')) def test_readonly_axis_zlib(self): # GH11880 df1 = DataFrame({'A': list('abcd')}) df2 = DataFrame(df1, index=[1., 2., 3., 4.]) self.assertTrue(1 in self.encode_decode(df1['A'], compress='zlib')) self.assertTrue(1. in self.encode_decode(df2['A'], compress='zlib')) def test_readonly_axis_blosc_to_sql(self): # GH11880 if not _BLOSC_INSTALLED: raise nose.SkipTest('no blosc') if not self._SQLALCHEMY_INSTALLED: raise nose.SkipTest('no sqlalchemy') expected = DataFrame({'A': list('abcd')}) df = self.encode_decode(expected, compress='blosc') eng = self._create_sql_engine("sqlite:///:memory:") df.to_sql('test', eng, if_exists='append') result = pandas.read_sql_table('test', eng, index_col='index') result.index.names = [None] assert_frame_equal(expected, result) def test_readonly_axis_zlib_to_sql(self): # GH11880 if not _ZLIB_INSTALLED: raise nose.SkipTest('no zlib') if not self._SQLALCHEMY_INSTALLED: raise nose.SkipTest('no sqlalchemy') expected = DataFrame({'A': list('abcd')}) df = self.encode_decode(expected, compress='zlib') eng = self._create_sql_engine("sqlite:///:memory:") df.to_sql('test', eng, if_exists='append') result = pandas.read_sql_table('test', eng, index_col='index') result.index.names = [None] assert_frame_equal(expected, result) class TestEncoding(TestPackers): def setUp(self): super(TestEncoding, self).setUp() data = { 'A': [compat.u('\u2019')] * 1000, 'B': np.arange(1000, dtype=np.int32), 'C': list(100 * 'abcdefghij'), 'D': date_range(datetime.datetime(2015, 4, 1), periods=1000), 'E': [datetime.timedelta(days=x) for x in range(1000)], 'G': [400] * 1000 } self.frame = { 'float': DataFrame(dict((k, data[k]) for k in ['A', 'A'])), 'int': DataFrame(dict((k, data[k]) for k in ['B', 'B'])), 'mixed': DataFrame(data), } self.utf_encodings = ['utf8', 'utf16', 'utf32'] def test_utf(self): # GH10581 for encoding in self.utf_encodings: for frame in compat.itervalues(self.frame): result = self.encode_decode(frame, encoding=encoding) assert_frame_equal(result, frame) def test_default_encoding(self): for frame in compat.itervalues(self.frame): result = frame.to_msgpack() expected = frame.to_msgpack(encoding='utf8') self.assertEqual(result, expected) result = self.encode_decode(frame) assert_frame_equal(result, frame) class TestMsgpack(): """ How to add msgpack tests: 1. Install pandas version intended to output the msgpack. TestPackers 2. Execute "generate_legacy_storage_files.py" to create the msgpack. $ python generate_legacy_storage_files.py <output_dir> msgpack 3. Move the created pickle to "data/legacy_msgpack/<version>" directory. NOTE: TestMsgpack can't be a subclass of tm.Testcase to use test generator. http://stackoverflow.com/questions/6689537/nose-test-generators-inside-class """ def setUp(self): from pandas.io.tests.generate_legacy_storage_files import ( create_msgpack_data, create_data) self.data = create_msgpack_data() self.all_data = create_data() self.path = u('__%s__.msgpack' % tm.rands(10)) self.minimum_structure = {'series': ['float', 'int', 'mixed', 'ts', 'mi', 'dup'], 'frame': ['float', 'int', 'mixed', 'mi'], 'panel': ['float'], 'index': ['int', 'date', 'period'], 'mi': ['reg2']} def check_min_structure(self, data): for typ, v in self.minimum_structure.items(): assert typ in data, '"{0}" not found in unpacked data'.format(typ) for kind in v: assert kind in data[ typ], '"{0}" not found in data["{1}"]'.format(kind, typ) def compare(self, vf, version): # GH12277 encoding default used to be latin-1, now utf-8 if LooseVersion(version) < '0.18.0': data = read_msgpack(vf, encoding='latin-1') else: data = read_msgpack(vf) self.check_min_structure(data) for typ, dv in data.items(): assert typ in self.all_data, ('unpacked data contains ' 'extra key "{0}"' .format(typ)) for dt, result in dv.items(): assert dt in self.all_data[typ], ('data["{0}"] contains extra ' 'key "{1}"'.format(typ, dt)) try: expected = self.data[typ][dt] except KeyError: continue # use a specific comparator # if available comparator = getattr( self, "compare_{typ}_{dt}".format(typ=typ, dt=dt), None) if comparator is not None: comparator(result, expected, typ, version) else: check_arbitrary(result, expected) return data def compare_series_dt_tz(self, result, expected, typ, version): # 8260 # dtype is object < 0.17.0 if LooseVersion(version) < '0.17.0': expected = expected.astype(object) tm.assert_series_equal(result, expected) else: tm.assert_series_equal(result, expected) def compare_frame_dt_mixed_tzs(self, result, expected, typ, version): # 8260 # dtype is object < 0.17.0 if LooseVersion(version) < '0.17.0': expected = expected.astype(object) tm.assert_frame_equal(result, expected) else: tm.assert_frame_equal(result, expected) def read_msgpacks(self, version): pth = tm.get_data_path('legacy_msgpack/{0}'.format(str(version))) n = 0 for f in os.listdir(pth): # GH12142 0.17 files packed in P2 can't be read in P3 if (compat.PY3 and version.startswith('0.17.') and f.split('.')[-4][-1] == '2'): continue vf = os.path.join(pth, f) try: self.compare(vf, version) except ImportError: # blosc not installed continue n += 1 assert n > 0, 'Msgpack files are not tested' def test_msgpack(self): msgpack_path = tm.get_data_path('legacy_msgpack') n = 0 for v in os.listdir(msgpack_path): pth = os.path.join(msgpack_path, v) if os.path.isdir(pth): yield self.read_msgpacks, v n += 1 assert n > 0, 'Msgpack files are not tested'
mit
aabadie/scikit-learn
sklearn/manifold/setup.py
24
1279
import os from os.path import join import numpy from numpy.distutils.misc_util import Configuration from sklearn._build_utils import get_blas_info def configuration(parent_package="", top_path=None): config = Configuration("manifold", parent_package, top_path) libraries = [] if os.name == 'posix': libraries.append('m') config.add_extension("_utils", sources=["_utils.c"], include_dirs=[numpy.get_include()], libraries=libraries, extra_compile_args=["-O3"]) cblas_libs, blas_info = get_blas_info() eca = blas_info.pop('extra_compile_args', []) eca.append("-O4") config.add_extension("_barnes_hut_tsne", libraries=cblas_libs, sources=["_barnes_hut_tsne.c"], include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=eca, **blas_info) config.add_subpackage('tests') return config if __name__ == "__main__": from numpy.distutils.core import setup setup(**configuration().todict())
bsd-3-clause
songeater/SONGSHTR
sampler.py
1
5535
''' https://github.com/MattVitelli/GRUV ''' from __future__ import print_function from keras.models import Sequential, load_model, Model from keras.layers import Dense, Lambda, Dropout, TimeDistributed, LSTM, Input from keras import backend as K from keras import objectives from keras.optimizers import RMSprop from keras.utils import generic_utils from keras.utils.data_utils import get_file from keras.callbacks import LearningRateScheduler from sklearn.model_selection import train_test_split import numpy as np import random import sys import soundfile import soundfunc as sf import vae_model import argparse ''' ---------- FUNCTIONS ---------- ''' parser = argparse.ArgumentParser(description='sample the music..') parser.add_argument('-s', default="10_0", metavar='base', type=str, help='suffix of model to be sampled from', required=False, dest='suffix') parser.add_argument('-o', type=float, default=2, required=False, help='Std Dev on sampling', dest='out_sd') parser.add_argument('-l', type=int, default=800, required=False, help='length of sequence', dest='outlen') args = parser.parse_args() ''' ---------- INPUT VARIABLES ---------- ''' config = sf.get_config() blocksize = config['blocksize'] compressed_blocksize = config['compressed_blocksize'] seqlen = config['seqlen'] win_edge = config['win_edge'] out_step = config['out_step'] sound_file = config['sound_file'] save_file = config['save_file'] batchsize = 1 domain = config['domain'] load_file_suffix= args.suffix out_sd = args.out_sd outlen = args.outlen output_file = load_file_suffix+"_outsd="+str(int(out_sd*100))+"_"+domain+"_"+sound_file load_file = save_file+load_file_suffix sig, samplerate = soundfile.read(sound_file) print("sample rate: ", samplerate) print("sig shape: ", sig.shape) print("flattened sig shape:", sig.shape) sig_blocks = [] ang_blocks = [] ''' ---------- PREPROCESS DATA ---------- ''' print("Dividing into blocks of size :", blocksize) print("Converting to frequency domain...") if domain == "rfft": sig_blocks, ang_blocks = sf.conv_to_rfft(sig, blocksize, win_edge) elif domain == "dct": sig_blocks = sf.conv_to_dct(sig, blocksize, win_edge, compressed_blocksize) print("Number of blocks:", len(sig_blocks)) print("Shape of blocks:", np.asarray(sig_blocks[0:len(sig_blocks)-1]).shape) X_Train = np.zeros((batchsize, seqlen, compressed_blocksize)) y_Train = np.zeros((batchsize, compressed_blocksize)) ''' ---------- BUILD MODEL ---------- ''' print('Build model...') model = vae_model.build_model(out_sd, batchsize, seqlen, compressed_blocksize) print(model.summary()) ''' ---------- LOAD MODEL WEIGHTS ---------- ''' print('Loading model weights from...', load_file) model.load_weights(load_file) ''' ---------- SEED THE MODEL ---------- ''' rand_start = np.random.randint(0,len(sig_blocks)-15*seqlen) #"warming up" the stateful model for feed in range (0,15): print(feed) seed_sample = sig_blocks[rand_start+seqlen*feed:rand_start+seqlen*(feed+1)] #print(np.asarray(seed_sample).shape) assert len(seed_sample)==seqlen for i in range(0, len(seed_sample)): x = np.zeros((batchsize, seqlen, compressed_blocksize)) if i == seqlen: break x[0, i] = seed_sample[i] model.predict(x, batch_size=batchsize, verbose=0) print('Generating sample:') x = np.zeros((batchsize, seqlen, compressed_blocksize)) if len(seed_sample)>seqlen: seed_sample=seed_sample[-seqlen:] generated = [] last_seed = seed_sample if domain=="rfft": for i in range(outlen): #keep this even x = np.zeros((batchsize, seqlen, compressed_blocksize)) for t in range(0, len(seed_sample)): if t == seqlen: break x[0, t] = seed_sample[t] preds = model.predict_on_batch(x)[0] print("preds shape:", np.asarray(preds).shape) fft_pred = sf.conv_from_rfft(preds) print("fft_pred shape:", np.asarray(fft_pred).shape) generated.append(fft_pred) print("generated shape:",np.asarray(generated).shape) print("seed sample shape:",np.asarray(seed_sample).shape) seed_sample=seed_sample[1:] seed_sample.append(preds) print("----") new_gen = np.concatenate(sf.concat_sound_blocks(generated, win_edge)) print("new-gen shape:", np.asarray(new_gen).shape) soundfile.write(output_file, new_gen, samplerate) elif domain == "dct": for i in range(outlen): #keep this even x = np.zeros((batchsize, seqlen, compressed_blocksize)) for t in range(0, len(seed_sample)): if t == seqlen: break x[0, t] = seed_sample[t] preds = model.predict_on_batch(x)[0] print("preds shape:", np.asarray(preds).shape) fft_pred = sf.conv_from_dct(preds, len(preds), blocksize) print("fft_pred shape:", np.asarray(fft_pred).shape) generated.append(fft_pred[0]) print("generated shape:",np.asarray(generated).shape) print("seed sample shape:",np.asarray(seed_sample).shape) seed_sample=seed_sample[1:] seed_sample.append(preds) print("----") new_gen = np.concatenate(sf.concat_sound_blocks_mdct(generated, win_edge)) print("new-gen shape:", np.asarray(new_gen).shape) soundfile.write(output_file, new_gen, samplerate)
agpl-3.0
ptrendx/mxnet
example/rcnn/symdata/vis.py
11
1559
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. def vis_detection(im_orig, detections, class_names, thresh=0.7): """visualize [cls, conf, x1, y1, x2, y2]""" import matplotlib.pyplot as plt import random plt.imshow(im_orig) colors = [(random.random(), random.random(), random.random()) for _ in class_names] for [cls, conf, x1, y1, x2, y2] in detections: cls = int(cls) if cls > 0 and conf > thresh: rect = plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor=colors[cls], linewidth=3.5) plt.gca().add_patch(rect) plt.gca().text(x1, y1 - 2, '{:s} {:.3f}'.format(class_names[cls], conf), bbox=dict(facecolor=colors[cls], alpha=0.5), fontsize=12, color='white') plt.show()
apache-2.0
ShawnMurd/MetPy
examples/plots/surface_declarative.py
6
2177
# Copyright (c) 2019 MetPy Developers. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause """ ========================================= Surface Analysis using Declarative Syntax ========================================= The MetPy declarative syntax allows for a simplified interface to creating common meteorological analyses including surface observation plots. """ ######################################## from datetime import datetime, timedelta import cartopy.crs as ccrs import pandas as pd from metpy.cbook import get_test_data import metpy.plots as mpplots ######################################## # **Getting the data** # # In this example, data is originally from the Iowa State ASOS archive # (https://mesonet.agron.iastate.edu/request/download.phtml) downloaded through a separate # Python script. The data are pre-processed to determine sky cover and weather symbols from # text output. data = pd.read_csv(get_test_data('SFC_obs.csv', as_file_obj=False), infer_datetime_format=True, parse_dates=['valid']) ######################################## # **Plotting the data** # # Use the declarative plotting interface to plot surface observations over the state of # Georgia. # Plotting the Observations using a 15 minute time window for surface observations obs = mpplots.PlotObs() obs.data = data obs.time = datetime(1993, 3, 12, 13) obs.time_window = timedelta(minutes=15) obs.level = None obs.fields = ['tmpf', 'dwpf', 'emsl', 'cloud_cover', 'wxsym'] obs.locations = ['NW', 'SW', 'NE', 'C', 'W'] obs.colors = ['red', 'green', 'black', 'black', 'blue'] obs.formats = [None, None, lambda v: format(10 * v, '.0f')[-3:], 'sky_cover', 'current_weather'] obs.vector_field = ('uwind', 'vwind') obs.reduce_points = 1 # Add map features for the particular panel panel = mpplots.MapPanel() panel.layout = (1, 1, 1) panel.area = 'ga' panel.projection = ccrs.PlateCarree() panel.layers = ['coastline', 'borders', 'states'] panel.plots = [obs] # Collecting panels for complete figure pc = mpplots.PanelContainer() pc.size = (10, 10) pc.panels = [panel] # Showing the results pc.show()
bsd-3-clause
chrisburr/scikit-learn
examples/mixture/plot_gmm_classifier.py
22
4015
""" ================== GMM classification ================== Demonstration of Gaussian mixture models for classification. See :ref:`gmm` for more information on the estimator. Plots predicted labels on both training and held out test data using a variety of GMM classifiers on the iris dataset. Compares GMMs with spherical, diagonal, full, and tied covariance matrices in increasing order of performance. Although one would expect full covariance to perform best in general, it is prone to overfitting on small datasets and does not generalize well to held out test data. On the plots, train data is shown as dots, while test data is shown as crosses. The iris dataset is four-dimensional. Only the first two dimensions are shown here, and thus some points are separated in other dimensions. """ print(__doc__) # Author: Ron Weiss <[email protected]>, Gael Varoquaux # License: BSD 3 clause # $Id$ import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np from sklearn import datasets from sklearn.model_selection import StratifiedKFold from sklearn.externals.six.moves import xrange from sklearn.mixture import GMM colors = ['navy', 'turquoise', 'darkorange'] def make_ellipses(gmm, ax): for n, color in enumerate(colors): v, w = np.linalg.eigh(gmm._get_covars()[n][:2, :2]) u = w[0] / np.linalg.norm(w[0]) angle = np.arctan2(u[1], u[0]) angle = 180 * angle / np.pi # convert to degrees v *= 9 ell = mpl.patches.Ellipse(gmm.means_[n, :2], v[0], v[1], 180 + angle, color=color) ell.set_clip_box(ax.bbox) ell.set_alpha(0.5) ax.add_artist(ell) iris = datasets.load_iris() # Break up the dataset into non-overlapping training (75%) and testing # (25%) sets. skf = StratifiedKFold(n_folds=4) # Only take the first fold. train_index, test_index = next(iter(skf.split(iris.data, iris.target))) X_train = iris.data[train_index] y_train = iris.target[train_index] X_test = iris.data[test_index] y_test = iris.target[test_index] n_classes = len(np.unique(y_train)) # Try GMMs using different types of covariances. classifiers = dict((covar_type, GMM(n_components=n_classes, covariance_type=covar_type, init_params='wc', n_iter=20)) for covar_type in ['spherical', 'diag', 'tied', 'full']) n_classifiers = len(classifiers) plt.figure(figsize=(3 * n_classifiers / 2, 6)) plt.subplots_adjust(bottom=.01, top=0.95, hspace=.15, wspace=.05, left=.01, right=.99) for index, (name, classifier) in enumerate(classifiers.items()): # Since we have class labels for the training data, we can # initialize the GMM parameters in a supervised manner. classifier.means_ = np.array([X_train[y_train == i].mean(axis=0) for i in xrange(n_classes)]) # Train the other parameters using the EM algorithm. classifier.fit(X_train) h = plt.subplot(2, n_classifiers / 2, index + 1) make_ellipses(classifier, h) for n, color in enumerate(colors): data = iris.data[iris.target == n] plt.scatter(data[:, 0], data[:, 1], s=0.8, color=color, label=iris.target_names[n]) # Plot the test data with crosses for n, color in enumerate(colors): data = X_test[y_test == n] print(color) plt.scatter(data[:, 0], data[:, 1], marker='x', color=color) y_train_pred = classifier.predict(X_train) train_accuracy = np.mean(y_train_pred.ravel() == y_train.ravel()) * 100 plt.text(0.05, 0.9, 'Train accuracy: %.1f' % train_accuracy, transform=h.transAxes) y_test_pred = classifier.predict(X_test) test_accuracy = np.mean(y_test_pred.ravel() == y_test.ravel()) * 100 plt.text(0.05, 0.8, 'Test accuracy: %.1f' % test_accuracy, transform=h.transAxes) plt.xticks(()) plt.yticks(()) plt.title(name) plt.legend(loc='lower right', prop=dict(size=12)) plt.show()
bsd-3-clause
larsoner/mne-python
mne/source_estimate.py
2
127983
# Authors: Alexandre Gramfort <[email protected]> # Matti Hämäläinen <[email protected]> # Martin Luessi <[email protected]> # Mads Jensen <[email protected]> # # License: BSD (3-clause) import contextlib import copy import os.path as op from types import GeneratorType import numpy as np from scipy import linalg, sparse from scipy.sparse import coo_matrix, block_diag as sparse_block_diag from .baseline import rescale from .cov import Covariance from .evoked import _get_peak from .filter import resample from .io.constants import FIFF from .surface import (read_surface, _get_ico_surface, mesh_edges, _project_onto_surface) from .source_space import (_ensure_src, _get_morph_src_reordering, _ensure_src_subject, SourceSpaces, _get_src_nn, _import_nibabel, _get_mri_info_data, _get_atlas_values, _check_volume_labels, read_freesurfer_lut) from .transforms import _get_trans, apply_trans from .utils import (get_subjects_dir, _check_subject, logger, verbose, _pl, _time_mask, warn, copy_function_doc_to_method_doc, fill_doc, _check_option, _validate_type, _check_src_normal, _check_stc_units, _check_pandas_installed, _check_pandas_index_arguments, _convert_times, _ensure_int, _build_data_frame, _check_time_format, _check_path_like, sizeof_fmt, object_size) from .viz import (plot_source_estimates, plot_vector_source_estimates, plot_volume_source_estimates) from .io.base import TimeMixin from .io.meas_info import Info from .externals.h5io import read_hdf5, write_hdf5 def _read_stc(filename): """Aux Function.""" with open(filename, 'rb') as fid: buf = fid.read() stc = dict() offset = 0 num_bytes = 4 # read tmin in ms stc['tmin'] = float(np.frombuffer(buf, dtype=">f4", count=1, offset=offset)) stc['tmin'] /= 1000.0 offset += num_bytes # read sampling rate in ms stc['tstep'] = float(np.frombuffer(buf, dtype=">f4", count=1, offset=offset)) stc['tstep'] /= 1000.0 offset += num_bytes # read number of vertices/sources vertices_n = int(np.frombuffer(buf, dtype=">u4", count=1, offset=offset)) offset += num_bytes # read the source vector stc['vertices'] = np.frombuffer(buf, dtype=">u4", count=vertices_n, offset=offset) offset += num_bytes * vertices_n # read the number of timepts data_n = int(np.frombuffer(buf, dtype=">u4", count=1, offset=offset)) offset += num_bytes if (vertices_n and # vertices_n can be 0 (empty stc) ((len(buf) // 4 - 4 - vertices_n) % (data_n * vertices_n)) != 0): raise ValueError('incorrect stc file size') # read the data matrix stc['data'] = np.frombuffer(buf, dtype=">f4", count=vertices_n * data_n, offset=offset) stc['data'] = stc['data'].reshape([data_n, vertices_n]).T return stc def _write_stc(filename, tmin, tstep, vertices, data): """Write an STC file. Parameters ---------- filename : string The name of the STC file. tmin : float The first time point of the data in seconds. tstep : float Time between frames in seconds. vertices : array of integers Vertex indices (0 based). data : 2D array The data matrix (nvert * ntime). """ fid = open(filename, 'wb') # write start time in ms fid.write(np.array(1000 * tmin, dtype='>f4').tobytes()) # write sampling rate in ms fid.write(np.array(1000 * tstep, dtype='>f4').tobytes()) # write number of vertices fid.write(np.array(vertices.shape[0], dtype='>u4').tobytes()) # write the vertex indices fid.write(np.array(vertices, dtype='>u4').tobytes()) # write the number of timepts fid.write(np.array(data.shape[1], dtype='>u4').tobytes()) # # write the data # fid.write(np.array(data.T, dtype='>f4').tobytes()) # close the file fid.close() def _read_3(fid): """Read 3 byte integer from file.""" data = np.fromfile(fid, dtype=np.uint8, count=3).astype(np.int32) out = np.left_shift(data[0], 16) + np.left_shift(data[1], 8) + data[2] return out def _read_w(filename): """Read a w file. w files contain activations or source reconstructions for a single time point. Parameters ---------- filename : string The name of the w file. Returns ------- data: dict The w structure. It has the following keys: vertices vertex indices (0 based) data The data matrix (nvert long) """ with open(filename, 'rb', buffering=0) as fid: # buffering=0 for np bug # skip first 2 bytes fid.read(2) # read number of vertices/sources (3 byte integer) vertices_n = int(_read_3(fid)) vertices = np.zeros((vertices_n), dtype=np.int32) data = np.zeros((vertices_n), dtype=np.float32) # read the vertices and data for i in range(vertices_n): vertices[i] = _read_3(fid) data[i] = np.fromfile(fid, dtype='>f4', count=1)[0] w = dict() w['vertices'] = vertices w['data'] = data return w def _write_3(fid, val): """Write 3 byte integer to file.""" f_bytes = np.zeros((3), dtype=np.uint8) f_bytes[0] = (val >> 16) & 255 f_bytes[1] = (val >> 8) & 255 f_bytes[2] = val & 255 fid.write(f_bytes.tobytes()) def _write_w(filename, vertices, data): """Write a w file. w files contain activations or source reconstructions for a single time point. Parameters ---------- filename: string The name of the w file. vertices: array of int Vertex indices (0 based). data: 1D array The data array (nvert). """ assert (len(vertices) == len(data)) fid = open(filename, 'wb') # write 2 zero bytes fid.write(np.zeros((2), dtype=np.uint8).tobytes()) # write number of vertices/sources (3 byte integer) vertices_n = len(vertices) _write_3(fid, vertices_n) # write the vertices and data for i in range(vertices_n): _write_3(fid, vertices[i]) # XXX: without float() endianness is wrong, not sure why fid.write(np.array(float(data[i]), dtype='>f4').tobytes()) # close the file fid.close() def read_source_estimate(fname, subject=None): """Read a source estimate object. Parameters ---------- fname : str Path to (a) source-estimate file(s). subject : str | None Name of the subject the source estimate(s) is (are) from. It is good practice to set this attribute to avoid combining incompatible labels and SourceEstimates (e.g., ones from other subjects). Note that due to file specification limitations, the subject name isn't saved to or loaded from files written to disk. Returns ------- stc : SourceEstimate | VectorSourceEstimate | VolSourceEstimate | MixedSourceEstimate The source estimate object loaded from file. Notes ----- - for volume source estimates, ``fname`` should provide the path to a single file named '*-vl.stc` or '*-vol.stc' - for surface source estimates, ``fname`` should either provide the path to the file corresponding to a single hemisphere ('*-lh.stc', '*-rh.stc') or only specify the asterisk part in these patterns. In any case, the function expects files for both hemisphere with names following this pattern. - for vector surface source estimates, only HDF5 files are supported. - for mixed source estimates, only HDF5 files are supported. - for single time point .w files, ``fname`` should follow the same pattern as for surface estimates, except that files are named '*-lh.w' and '*-rh.w'. """ # noqa: E501 fname_arg = fname _validate_type(fname, 'path-like', 'fname') fname = str(fname) # make sure corresponding file(s) can be found ftype = None if op.exists(fname): if fname.endswith('-vl.stc') or fname.endswith('-vol.stc') or \ fname.endswith('-vl.w') or fname.endswith('-vol.w'): ftype = 'volume' elif fname.endswith('.stc'): ftype = 'surface' if fname.endswith(('-lh.stc', '-rh.stc')): fname = fname[:-7] else: err = ("Invalid .stc filename: %r; needs to end with " "hemisphere tag ('...-lh.stc' or '...-rh.stc')" % fname) raise IOError(err) elif fname.endswith('.w'): ftype = 'w' if fname.endswith(('-lh.w', '-rh.w')): fname = fname[:-5] else: err = ("Invalid .w filename: %r; needs to end with " "hemisphere tag ('...-lh.w' or '...-rh.w')" % fname) raise IOError(err) elif fname.endswith('.h5'): ftype = 'h5' fname = fname[:-3] else: raise RuntimeError('Unknown extension for file %s' % fname_arg) if ftype != 'volume': stc_exist = [op.exists(f) for f in [fname + '-rh.stc', fname + '-lh.stc']] w_exist = [op.exists(f) for f in [fname + '-rh.w', fname + '-lh.w']] if all(stc_exist) and ftype != 'w': ftype = 'surface' elif all(w_exist): ftype = 'w' elif op.exists(fname + '.h5'): ftype = 'h5' elif op.exists(fname + '-stc.h5'): ftype = 'h5' fname += '-stc' elif any(stc_exist) or any(w_exist): raise IOError("Hemisphere missing for %r" % fname_arg) else: raise IOError("SourceEstimate File(s) not found for: %r" % fname_arg) # read the files if ftype == 'volume': # volume source space if fname.endswith('.stc'): kwargs = _read_stc(fname) elif fname.endswith('.w'): kwargs = _read_w(fname) kwargs['data'] = kwargs['data'][:, np.newaxis] kwargs['tmin'] = 0.0 kwargs['tstep'] = 0.0 else: raise IOError('Volume source estimate must end with .stc or .w') kwargs['vertices'] = [kwargs['vertices']] elif ftype == 'surface': # stc file with surface source spaces lh = _read_stc(fname + '-lh.stc') rh = _read_stc(fname + '-rh.stc') assert lh['tmin'] == rh['tmin'] assert lh['tstep'] == rh['tstep'] kwargs = lh.copy() kwargs['data'] = np.r_[lh['data'], rh['data']] kwargs['vertices'] = [lh['vertices'], rh['vertices']] elif ftype == 'w': # w file with surface source spaces lh = _read_w(fname + '-lh.w') rh = _read_w(fname + '-rh.w') kwargs = lh.copy() kwargs['data'] = np.atleast_2d(np.r_[lh['data'], rh['data']]).T kwargs['vertices'] = [lh['vertices'], rh['vertices']] # w files only have a single time point kwargs['tmin'] = 0.0 kwargs['tstep'] = 1.0 ftype = 'surface' elif ftype == 'h5': kwargs = read_hdf5(fname + '.h5', title='mnepython') ftype = kwargs.pop('src_type', 'surface') if isinstance(kwargs['vertices'], np.ndarray): kwargs['vertices'] = [kwargs['vertices']] if ftype != 'volume': # Make sure the vertices are ordered vertices = kwargs['vertices'] if any(np.any(np.diff(v.astype(int)) <= 0) for v in vertices): sidx = [np.argsort(verts) for verts in vertices] vertices = [verts[idx] for verts, idx in zip(vertices, sidx)] data = kwargs['data'][np.r_[sidx[0], len(sidx[0]) + sidx[1]]] kwargs['vertices'] = vertices kwargs['data'] = data if 'subject' not in kwargs: kwargs['subject'] = subject if subject is not None and subject != kwargs['subject']: raise RuntimeError('provided subject name "%s" does not match ' 'subject name from the file "%s' % (subject, kwargs['subject'])) if ftype in ('volume', 'discrete'): klass = VolVectorSourceEstimate elif ftype == 'mixed': klass = MixedVectorSourceEstimate else: assert ftype == 'surface' klass = VectorSourceEstimate if kwargs['data'].ndim < 3: klass = klass._scalar_class return klass(**kwargs) def _get_src_type(src, vertices, warn_text=None): src_type = None if src is None: if warn_text is None: warn("src should not be None for a robust guess of stc type.") else: warn(warn_text) if isinstance(vertices, list) and len(vertices) == 2: src_type = 'surface' elif isinstance(vertices, np.ndarray) or isinstance(vertices, list) \ and len(vertices) == 1: src_type = 'volume' elif isinstance(vertices, list) and len(vertices) > 2: src_type = 'mixed' else: src_type = src.kind assert src_type in ('surface', 'volume', 'mixed', 'discrete') return src_type def _make_stc(data, vertices, src_type=None, tmin=None, tstep=None, subject=None, vector=False, source_nn=None, warn_text=None): """Generate a surface, vector-surface, volume or mixed source estimate.""" def guess_src_type(): return _get_src_type(src=None, vertices=vertices, warn_text=warn_text) src_type = guess_src_type() if src_type is None else src_type if vector and src_type == 'surface' and source_nn is None: raise RuntimeError('No source vectors supplied.') # infer Klass from src_type if src_type == 'surface': Klass = VectorSourceEstimate if vector else SourceEstimate elif src_type in ('volume', 'discrete'): Klass = VolVectorSourceEstimate if vector else VolSourceEstimate elif src_type == 'mixed': Klass = MixedVectorSourceEstimate if vector else MixedSourceEstimate else: raise ValueError('vertices has to be either a list with one or more ' 'arrays or an array') # Rotate back for vector source estimates if vector: n_vertices = sum(len(v) for v in vertices) assert data.shape[0] in (n_vertices, n_vertices * 3) if len(data) == n_vertices: assert src_type == 'surface' # should only be possible for this assert source_nn.shape == (n_vertices, 3) data = data[:, np.newaxis] * source_nn[:, :, np.newaxis] else: data = data.reshape((-1, 3, data.shape[-1])) assert source_nn.shape in ((n_vertices, 3, 3), (n_vertices * 3, 3)) # This will be an identity transform for volumes, but let's keep # the code simple and general and just do the matrix mult data = np.matmul( np.transpose(source_nn.reshape(n_vertices, 3, 3), axes=[0, 2, 1]), data) return Klass( data=data, vertices=vertices, tmin=tmin, tstep=tstep, subject=subject ) def _verify_source_estimate_compat(a, b): """Make sure two SourceEstimates are compatible for arith. operations.""" compat = False if type(a) != type(b): raise ValueError('Cannot combine %s and %s.' % (type(a), type(b))) if len(a.vertices) == len(b.vertices): if all(np.array_equal(av, vv) for av, vv in zip(a.vertices, b.vertices)): compat = True if not compat: raise ValueError('Cannot combine source estimates that do not have ' 'the same vertices. Consider using stc.expand().') if a.subject != b.subject: raise ValueError('source estimates do not have the same subject ' 'names, %r and %r' % (a.subject, b.subject)) class _BaseSourceEstimate(TimeMixin): _data_ndim = 2 @verbose def __init__(self, data, vertices, tmin, tstep, subject=None, verbose=None): # noqa: D102 assert hasattr(self, '_data_ndim'), self.__class__.__name__ assert hasattr(self, '_src_type'), self.__class__.__name__ assert hasattr(self, '_src_count'), self.__class__.__name__ kernel, sens_data = None, None if isinstance(data, tuple): if len(data) != 2: raise ValueError('If data is a tuple it has to be length 2') kernel, sens_data = data data = None if kernel.shape[1] != sens_data.shape[0]: raise ValueError('kernel (%s) and sens_data (%s) have invalid ' 'dimensions' % (kernel.shape, sens_data.shape)) if sens_data.ndim != 2: raise ValueError('The sensor data must have 2 dimensions, got ' '%s' % (sens_data.ndim,)) _validate_type(vertices, list, 'vertices') if self._src_count is not None: if len(vertices) != self._src_count: raise ValueError('vertices must be a list with %d entries, ' 'got %s' % (self._src_count, len(vertices))) vertices = [np.array(v, np.int64) for v in vertices] # makes copy if any(np.any(np.diff(v) <= 0) for v in vertices): raise ValueError('Vertices must be ordered in increasing order.') n_src = sum([len(v) for v in vertices]) # safeguard the user against doing something silly if data is not None: if data.ndim not in (self._data_ndim, self._data_ndim - 1): raise ValueError('Data (shape %s) must have %s dimensions for ' '%s' % (data.shape, self._data_ndim, self.__class__.__name__)) if data.shape[0] != n_src: raise ValueError( f'Number of vertices ({n_src}) and stc.data.shape[0] ' f'({data.shape[0]}) must match') if self._data_ndim == 3: if data.shape[1] != 3: raise ValueError( 'Data for VectorSourceEstimate must have ' 'shape[1] == 3, got shape %s' % (data.shape,)) if data.ndim == self._data_ndim - 1: # allow upbroadcasting data = data[..., np.newaxis] self._data = data self._tmin = tmin self._tstep = tstep self.vertices = vertices self.verbose = verbose self._kernel = kernel self._sens_data = sens_data self._kernel_removed = False self._times = None self._update_times() self.subject = _check_subject(None, subject, False) def __repr__(self): # noqa: D105 s = "%d vertices" % (sum(len(v) for v in self.vertices),) if self.subject is not None: s += ", subject : %s" % self.subject s += ", tmin : %s (ms)" % (1e3 * self.tmin) s += ", tmax : %s (ms)" % (1e3 * self.times[-1]) s += ", tstep : %s (ms)" % (1e3 * self.tstep) s += ", data shape : %s" % (self.shape,) sz = sum(object_size(x) for x in (self.vertices + [self.data])) s += f", ~{sizeof_fmt(sz)}" return "<%s | %s>" % (type(self).__name__, s) @fill_doc def get_peak(self, tmin=None, tmax=None, mode='abs', vert_as_index=False, time_as_index=False): """Get location and latency of peak amplitude. Parameters ---------- %(get_peak_parameters)s Returns ------- pos : int The vertex exhibiting the maximum response, either ID or index. latency : float The latency in seconds. """ stc = self.magnitude() if self._data_ndim == 3 else self if self._n_vertices == 0: raise RuntimeError('Cannot find peaks with no vertices') vert_idx, time_idx, _ = _get_peak( stc.data, self.times, tmin, tmax, mode) if not vert_as_index: vert_idx = np.concatenate(self.vertices)[vert_idx] if not time_as_index: time_idx = self.times[time_idx] return vert_idx, time_idx @verbose def extract_label_time_course(self, labels, src, mode='auto', allow_empty=False, verbose=None): """Extract label time courses for lists of labels. This function will extract one time course for each label. The way the time courses are extracted depends on the mode parameter. Parameters ---------- %(eltc_labels)s %(eltc_src)s %(eltc_mode)s %(eltc_allow_empty)s %(verbose_meth)s Returns ------- %(eltc_returns)s See Also -------- extract_label_time_course : Extract time courses for multiple STCs. Notes ----- %(eltc_mode_notes)s """ return extract_label_time_course( self, labels, src, mode=mode, return_generator=False, allow_empty=allow_empty, verbose=verbose) @verbose def apply_baseline(self, baseline=(None, 0), *, verbose=None): """Baseline correct source estimate data. Parameters ---------- %(baseline_stc)s Defaults to ``(None, 0)``, i.e. beginning of the the data until time point zero. %(verbose_meth)s Returns ------- stc : instance of SourceEstimate The baseline-corrected source estimate object. Notes ----- Baseline correction can be done multiple times. """ self.data = rescale(self.data, self.times, baseline, copy=False) return self @verbose def save(self, fname, ftype='h5', verbose=None): """Save the full source estimate to an HDF5 file. Parameters ---------- fname : str The file name to write the source estimate to, should end in '-stc.h5'. ftype : str File format to use. Currently, the only allowed values is "h5". %(verbose_meth)s """ _validate_type(fname, 'path-like', 'fname') fname = str(fname) if ftype != 'h5': raise ValueError('%s objects can only be written as HDF5 files.' % (self.__class__.__name__,)) if not fname.endswith('.h5'): fname += '-stc.h5' write_hdf5(fname, dict(vertices=self.vertices, data=self.data, tmin=self.tmin, tstep=self.tstep, subject=self.subject, src_type=self._src_type), title='mnepython', overwrite=True) @copy_function_doc_to_method_doc(plot_source_estimates) def plot(self, subject=None, surface='inflated', hemi='lh', colormap='auto', time_label='auto', smoothing_steps=10, transparent=True, alpha=1.0, time_viewer='auto', subjects_dir=None, figure=None, views='auto', colorbar=True, clim='auto', cortex="classic", size=800, background="black", foreground=None, initial_time=None, time_unit='s', backend='auto', spacing='oct6', title=None, show_traces='auto', src=None, volume_options=1., view_layout='vertical', add_data_kwargs=None, verbose=None): brain = plot_source_estimates( self, subject, surface=surface, hemi=hemi, colormap=colormap, time_label=time_label, smoothing_steps=smoothing_steps, transparent=transparent, alpha=alpha, time_viewer=time_viewer, subjects_dir=subjects_dir, figure=figure, views=views, colorbar=colorbar, clim=clim, cortex=cortex, size=size, background=background, foreground=foreground, initial_time=initial_time, time_unit=time_unit, backend=backend, spacing=spacing, title=title, show_traces=show_traces, src=src, volume_options=volume_options, view_layout=view_layout, add_data_kwargs=add_data_kwargs, verbose=verbose) return brain @property def sfreq(self): """Sample rate of the data.""" return 1. / self.tstep @property def _n_vertices(self): return sum(len(v) for v in self.vertices) def _remove_kernel_sens_data_(self): """Remove kernel and sensor space data and compute self._data.""" if self._kernel is not None or self._sens_data is not None: self._kernel_removed = True self._data = np.dot(self._kernel, self._sens_data) self._kernel = None self._sens_data = None @fill_doc def crop(self, tmin=None, tmax=None, include_tmax=True): """Restrict SourceEstimate to a time interval. Parameters ---------- tmin : float | None The first time point in seconds. If None the first present is used. tmax : float | None The last time point in seconds. If None the last present is used. %(include_tmax)s Returns ------- stc : instance of SourceEstimate The cropped source estimate. """ mask = _time_mask(self.times, tmin, tmax, sfreq=self.sfreq, include_tmax=include_tmax) self.tmin = self.times[np.where(mask)[0][0]] if self._kernel is not None and self._sens_data is not None: self._sens_data = self._sens_data[..., mask] else: self.data = self.data[..., mask] return self # return self for chaining methods @verbose def resample(self, sfreq, npad='auto', window='boxcar', n_jobs=1, verbose=None): """Resample data. If appropriate, an anti-aliasing filter is applied before resampling. See :ref:`resampling-and-decimating` for more information. Parameters ---------- sfreq : float New sample rate to use. npad : int | str Amount to pad the start and end of the data. Can also be "auto" to use a padding that will result in a power-of-two size (can be much faster). window : str | tuple Window to use in resampling. See :func:`scipy.signal.resample`. %(n_jobs)s %(verbose_meth)s Returns ------- stc : instance of SourceEstimate The resampled source estimate. Notes ----- For some data, it may be more accurate to use npad=0 to reduce artifacts. This is dataset dependent -- check your data! Note that the sample rate of the original data is inferred from tstep. """ # resampling in sensor instead of source space gives a somewhat # different result, so we don't allow it self._remove_kernel_sens_data_() o_sfreq = 1.0 / self.tstep data = self.data if data.dtype == np.float32: data = data.astype(np.float64) self.data = resample(data, sfreq, o_sfreq, npad, n_jobs=n_jobs) # adjust indirectly affected variables self.tstep = 1.0 / sfreq return self @property def data(self): """Numpy array of source estimate data.""" if self._data is None: # compute the solution the first time the data is accessed and # remove the kernel and sensor data self._remove_kernel_sens_data_() return self._data @data.setter def data(self, value): value = np.asarray(value) if self._data is not None and value.ndim != self._data.ndim: raise ValueError('Data array should have %d dimensions.' % self._data.ndim) n_verts = sum(len(v) for v in self.vertices) if value.shape[0] != n_verts: raise ValueError('The first dimension of the data array must ' 'match the number of vertices (%d != %d)' % (value.shape[0], n_verts)) self._data = value self._update_times() @property def shape(self): """Shape of the data.""" if self._data is not None: return self._data.shape return (self._kernel.shape[0], self._sens_data.shape[1]) @property def tmin(self): """The first timestamp.""" return self._tmin @tmin.setter def tmin(self, value): self._tmin = float(value) self._update_times() @property def tstep(self): """The change in time between two consecutive samples (1 / sfreq).""" return self._tstep @tstep.setter def tstep(self, value): if value <= 0: raise ValueError('.tstep must be greater than 0.') self._tstep = float(value) self._update_times() @property def times(self): """A timestamp for each sample.""" return self._times @times.setter def times(self, value): raise ValueError('You cannot write to the .times attribute directly. ' 'This property automatically updates whenever ' '.tmin, .tstep or .data changes.') def _update_times(self): """Update the times attribute after changing tmin, tmax, or tstep.""" self._times = self.tmin + (self.tstep * np.arange(self.shape[-1])) self._times.flags.writeable = False def __add__(self, a): """Add source estimates.""" stc = self.copy() stc += a return stc def __iadd__(self, a): # noqa: D105 self._remove_kernel_sens_data_() if isinstance(a, _BaseSourceEstimate): _verify_source_estimate_compat(self, a) self.data += a.data else: self.data += a return self def mean(self): """Make a summary stc file with mean over time points. Returns ------- stc : SourceEstimate | VectorSourceEstimate The modified stc. """ out = self.sum() out /= len(self.times) return out def sum(self): """Make a summary stc file with sum over time points. Returns ------- stc : SourceEstimate | VectorSourceEstimate The modified stc. """ data = self.data tmax = self.tmin + self.tstep * data.shape[-1] tmin = (self.tmin + tmax) / 2. tstep = tmax - self.tmin sum_stc = self.__class__(self.data.sum(axis=-1, keepdims=True), vertices=self.vertices, tmin=tmin, tstep=tstep, subject=self.subject) return sum_stc def __sub__(self, a): """Subtract source estimates.""" stc = self.copy() stc -= a return stc def __isub__(self, a): # noqa: D105 self._remove_kernel_sens_data_() if isinstance(a, _BaseSourceEstimate): _verify_source_estimate_compat(self, a) self.data -= a.data else: self.data -= a return self def __truediv__(self, a): # noqa: D105 return self.__div__(a) def __div__(self, a): # noqa: D105 """Divide source estimates.""" stc = self.copy() stc /= a return stc def __itruediv__(self, a): # noqa: D105 return self.__idiv__(a) def __idiv__(self, a): # noqa: D105 self._remove_kernel_sens_data_() if isinstance(a, _BaseSourceEstimate): _verify_source_estimate_compat(self, a) self.data /= a.data else: self.data /= a return self def __mul__(self, a): """Multiply source estimates.""" stc = self.copy() stc *= a return stc def __imul__(self, a): # noqa: D105 self._remove_kernel_sens_data_() if isinstance(a, _BaseSourceEstimate): _verify_source_estimate_compat(self, a) self.data *= a.data else: self.data *= a return self def __pow__(self, a): # noqa: D105 stc = self.copy() stc **= a return stc def __ipow__(self, a): # noqa: D105 self._remove_kernel_sens_data_() self.data **= a return self def __radd__(self, a): # noqa: D105 return self + a def __rsub__(self, a): # noqa: D105 return self - a def __rmul__(self, a): # noqa: D105 return self * a def __rdiv__(self, a): # noqa: D105 return self / a def __neg__(self): # noqa: D105 """Negate the source estimate.""" stc = self.copy() stc._remove_kernel_sens_data_() stc.data *= -1 return stc def __pos__(self): # noqa: D105 return self def __abs__(self): """Compute the absolute value of the data. Returns ------- stc : instance of _BaseSourceEstimate A version of the source estimate, where the data attribute is set to abs(self.data). """ stc = self.copy() stc._remove_kernel_sens_data_() stc._data = abs(stc._data) return stc def sqrt(self): """Take the square root. Returns ------- stc : instance of SourceEstimate A copy of the SourceEstimate with sqrt(data). """ return self ** (0.5) def copy(self): """Return copy of source estimate instance. Returns ------- stc : instance of SourceEstimate A copy of the source estimate. """ return copy.deepcopy(self) def bin(self, width, tstart=None, tstop=None, func=np.mean): """Return a source estimate object with data summarized over time bins. Time bins of ``width`` seconds. This method is intended for visualization only. No filter is applied to the data before binning, making the method inappropriate as a tool for downsampling data. Parameters ---------- width : scalar Width of the individual bins in seconds. tstart : scalar | None Time point where the first bin starts. The default is the first time point of the stc. tstop : scalar | None Last possible time point contained in a bin (if the last bin would be shorter than width it is dropped). The default is the last time point of the stc. func : callable Function that is applied to summarize the data. Needs to accept a numpy.array as first input and an ``axis`` keyword argument. Returns ------- stc : SourceEstimate | VectorSourceEstimate The binned source estimate. """ if tstart is None: tstart = self.tmin if tstop is None: tstop = self.times[-1] times = np.arange(tstart, tstop + self.tstep, width) nt = len(times) - 1 data = np.empty(self.shape[:-1] + (nt,), dtype=self.data.dtype) for i in range(nt): idx = (self.times >= times[i]) & (self.times < times[i + 1]) data[..., i] = func(self.data[..., idx], axis=-1) tmin = times[0] + width / 2. stc = self.copy() stc._data = data stc.tmin = tmin stc.tstep = width return stc def transform_data(self, func, idx=None, tmin_idx=None, tmax_idx=None): """Get data after a linear (time) transform has been applied. The transform is applied to each source time course independently. Parameters ---------- func : callable The transform to be applied, including parameters (see, e.g., :func:`functools.partial`). The first parameter of the function is the input data. The first return value is the transformed data, remaining outputs are ignored. The first dimension of the transformed data has to be the same as the first dimension of the input data. idx : array | None Indicices of source time courses for which to compute transform. If None, all time courses are used. tmin_idx : int | None Index of first time point to include. If None, the index of the first time point is used. tmax_idx : int | None Index of the first time point not to include. If None, time points up to (and including) the last time point are included. Returns ------- data_t : ndarray The transformed data. Notes ----- Applying transforms can be significantly faster if the SourceEstimate object was created using "(kernel, sens_data)", for the "data" parameter as the transform is applied in sensor space. Inverse methods, e.g., "apply_inverse_epochs", or "apply_lcmv_epochs" do this automatically (if possible). """ if idx is None: # use all time courses by default idx = slice(None, None) if self._kernel is None and self._sens_data is None: if self._kernel_removed: warn('Performance can be improved by not accessing the data ' 'attribute before calling this method.') # transform source space data directly data_t = func(self.data[idx, ..., tmin_idx:tmax_idx]) if isinstance(data_t, tuple): # use only first return value data_t = data_t[0] else: # apply transform in sensor space sens_data_t = func(self._sens_data[:, tmin_idx:tmax_idx]) if isinstance(sens_data_t, tuple): # use only first return value sens_data_t = sens_data_t[0] # apply inverse data_shape = sens_data_t.shape if len(data_shape) > 2: # flatten the last dimensions sens_data_t = sens_data_t.reshape(data_shape[0], np.prod(data_shape[1:])) data_t = np.dot(self._kernel[idx, :], sens_data_t) # restore original shape if necessary if len(data_shape) > 2: data_t = data_t.reshape(data_t.shape[0], *data_shape[1:]) return data_t def transform(self, func, idx=None, tmin=None, tmax=None, copy=False): """Apply linear transform. The transform is applied to each source time course independently. Parameters ---------- func : callable The transform to be applied, including parameters (see, e.g., :func:`functools.partial`). The first parameter of the function is the input data. The first two dimensions of the transformed data should be (i) vertices and (ii) time. See Notes for details. idx : array | None Indices of source time courses for which to compute transform. If None, all time courses are used. tmin : float | int | None First time point to include (ms). If None, self.tmin is used. tmax : float | int | None Last time point to include (ms). If None, self.tmax is used. copy : bool If True, return a new instance of SourceEstimate instead of modifying the input inplace. Returns ------- stcs : SourceEstimate | VectorSourceEstimate | list The transformed stc or, in the case of transforms which yield N-dimensional output (where N > 2), a list of stcs. For a list, copy must be True. Notes ----- Transforms which yield 3D output (e.g. time-frequency transforms) are valid, so long as the first two dimensions are vertices and time. In this case, the copy parameter must be True and a list of SourceEstimates, rather than a single instance of SourceEstimate, will be returned, one for each index of the 3rd dimension of the transformed data. In the case of transforms yielding 2D output (e.g. filtering), the user has the option of modifying the input inplace (copy = False) or returning a new instance of SourceEstimate (copy = True) with the transformed data. Applying transforms can be significantly faster if the SourceEstimate object was created using "(kernel, sens_data)", for the "data" parameter as the transform is applied in sensor space. Inverse methods, e.g., "apply_inverse_epochs", or "apply_lcmv_epochs" do this automatically (if possible). """ # min and max data indices to include times = 1000. * self.times t_idx = np.where(_time_mask(times, tmin, tmax, sfreq=self.sfreq))[0] if tmin is None: tmin_idx = None else: tmin_idx = t_idx[0] if tmax is None: tmax_idx = None else: # +1, because upper boundary needs to include the last sample tmax_idx = t_idx[-1] + 1 data_t = self.transform_data(func, idx=idx, tmin_idx=tmin_idx, tmax_idx=tmax_idx) # account for change in n_vertices if idx is not None: idx_lh = idx[idx < len(self.lh_vertno)] idx_rh = idx[idx >= len(self.lh_vertno)] - len(self.lh_vertno) verts_lh = self.lh_vertno[idx_lh] verts_rh = self.rh_vertno[idx_rh] else: verts_lh = self.lh_vertno verts_rh = self.rh_vertno verts = [verts_lh, verts_rh] tmin_idx = 0 if tmin_idx is None else tmin_idx tmin = self.times[tmin_idx] if data_t.ndim > 2: # return list of stcs if transformed data has dimensionality > 2 if copy: stcs = [SourceEstimate(data_t[:, :, a], verts, tmin, self.tstep, self.subject) for a in range(data_t.shape[-1])] else: raise ValueError('copy must be True if transformed data has ' 'more than 2 dimensions') else: # return new or overwritten stc stcs = self if not copy else self.copy() stcs.vertices = verts stcs.data = data_t stcs.tmin = tmin return stcs @fill_doc def to_data_frame(self, index=None, scalings=None, long_format=False, time_format='ms'): """Export data in tabular structure as a pandas DataFrame. Vertices are converted to columns in the DataFrame. By default, an additional column "time" is added, unless ``index='time'`` (in which case time values form the DataFrame's index). Parameters ---------- %(df_index_evk)s Defaults to ``None``. %(df_scalings)s %(df_longform_stc)s %(df_time_format)s .. versionadded:: 0.20 Returns ------- %(df_return)s """ # check pandas once here, instead of in each private utils function pd = _check_pandas_installed() # noqa # arg checking valid_index_args = ['time', 'subject'] valid_time_formats = ['ms', 'timedelta'] index = _check_pandas_index_arguments(index, valid_index_args) time_format = _check_time_format(time_format, valid_time_formats) # get data data = self.data.T times = self.times # prepare extra columns / multiindex mindex = list() default_index = ['time'] if self.subject is not None: default_index = ['subject', 'time'] mindex.append(('subject', np.repeat(self.subject, data.shape[0]))) times = _convert_times(self, times, time_format) mindex.append(('time', times)) # triage surface vs volume source estimates col_names = list() kinds = ['VOL'] * len(self.vertices) if isinstance(self, (_BaseSurfaceSourceEstimate, _BaseMixedSourceEstimate)): kinds[:2] = ['LH', 'RH'] for ii, (kind, vertno) in enumerate(zip(kinds, self.vertices)): col_names.extend(['{}_{}'.format(kind, vert) for vert in vertno]) # build DataFrame df = _build_data_frame(self, data, None, long_format, mindex, index, default_index=default_index, col_names=col_names, col_kind='source') return df def _center_of_mass(vertices, values, hemi, surf, subject, subjects_dir, restrict_vertices): """Find the center of mass on a surface.""" if (values == 0).all() or (values < 0).any(): raise ValueError('All values must be non-negative and at least one ' 'must be non-zero, cannot compute COM') subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) surf = read_surface(op.join(subjects_dir, subject, 'surf', hemi + '.' + surf)) if restrict_vertices is True: restrict_vertices = vertices elif restrict_vertices is False: restrict_vertices = np.arange(surf[0].shape[0]) elif isinstance(restrict_vertices, SourceSpaces): idx = 1 if restrict_vertices.kind == 'surface' and hemi == 'rh' else 0 restrict_vertices = restrict_vertices[idx]['vertno'] else: restrict_vertices = np.array(restrict_vertices, int) pos = surf[0][vertices, :].T c_o_m = np.sum(pos * values, axis=1) / np.sum(values) vertex = np.argmin(np.sqrt(np.mean((surf[0][restrict_vertices, :] - c_o_m) ** 2, axis=1))) vertex = restrict_vertices[vertex] return vertex @fill_doc class _BaseSurfaceSourceEstimate(_BaseSourceEstimate): """Abstract base class for surface source estimates. Parameters ---------- data : array The data in source space. vertices : list of array, shape (2,) Vertex numbers corresponding to the data. The first element of the list contains vertices of left hemisphere and the second element contains vertices of right hemisphere. tmin : scalar Time point of the first sample in data. tstep : scalar Time step between successive samples in data. subject : str | None The subject name. While not necessary, it is safer to set the subject parameter to avoid analysis errors. %(verbose)s Attributes ---------- subject : str | None The subject name. times : array of shape (n_times,) The time vector. vertices : list of array, shape (2,) Vertex numbers corresponding to the data. The first element of the list contains vertices of left hemisphere and the second element contains vertices of right hemisphere. data : array The data in source space. shape : tuple The shape of the data. A tuple of int (n_dipoles, n_times). """ _src_type = 'surface' _src_count = 2 @property def lh_data(self): """Left hemisphere data.""" return self.data[:len(self.lh_vertno)] @property def rh_data(self): """Right hemisphere data.""" return self.data[len(self.lh_vertno):] @property def lh_vertno(self): """Left hemisphere vertno.""" return self.vertices[0] @property def rh_vertno(self): """Right hemisphere vertno.""" return self.vertices[1] def _hemilabel_stc(self, label): if label.hemi == 'lh': stc_vertices = self.vertices[0] else: stc_vertices = self.vertices[1] # find index of the Label's vertices idx = np.nonzero(np.in1d(stc_vertices, label.vertices))[0] # find output vertices vertices = stc_vertices[idx] # find data if label.hemi == 'rh': values = self.data[idx + len(self.vertices[0])] else: values = self.data[idx] return vertices, values def in_label(self, label): """Get a source estimate object restricted to a label. SourceEstimate contains the time course of activation of all sources inside the label. Parameters ---------- label : Label | BiHemiLabel The label (as created for example by mne.read_label). If the label does not match any sources in the SourceEstimate, a ValueError is raised. Returns ------- stc : SourceEstimate | VectorSourceEstimate The source estimate restricted to the given label. """ # make sure label and stc are compatible from .label import Label, BiHemiLabel _validate_type(label, (Label, BiHemiLabel), 'label') if label.subject is not None and self.subject is not None \ and label.subject != self.subject: raise RuntimeError('label and stc must have same subject names, ' 'currently "%s" and "%s"' % (label.subject, self.subject)) if label.hemi == 'both': lh_vert, lh_val = self._hemilabel_stc(label.lh) rh_vert, rh_val = self._hemilabel_stc(label.rh) vertices = [lh_vert, rh_vert] values = np.vstack((lh_val, rh_val)) elif label.hemi == 'lh': lh_vert, values = self._hemilabel_stc(label) vertices = [lh_vert, np.array([], int)] else: assert label.hemi == 'rh' rh_vert, values = self._hemilabel_stc(label) vertices = [np.array([], int), rh_vert] if sum([len(v) for v in vertices]) == 0: raise ValueError('No vertices match the label in the stc file') label_stc = self.__class__(values, vertices=vertices, tmin=self.tmin, tstep=self.tstep, subject=self.subject) return label_stc def expand(self, vertices): """Expand SourceEstimate to include more vertices. This will add rows to stc.data (zero-filled) and modify stc.vertices to include all vertices in stc.vertices and the input vertices. Parameters ---------- vertices : list of array New vertices to add. Can also contain old values. Returns ------- stc : SourceEstimate | VectorSourceEstimate The modified stc (note: method operates inplace). """ if not isinstance(vertices, list): raise TypeError('vertices must be a list') if not len(self.vertices) == len(vertices): raise ValueError('vertices must have the same length as ' 'stc.vertices') # can no longer use kernel and sensor data self._remove_kernel_sens_data_() inserters = list() offsets = [0] for vi, (v_old, v_new) in enumerate(zip(self.vertices, vertices)): v_new = np.setdiff1d(v_new, v_old) inds = np.searchsorted(v_old, v_new) # newer numpy might overwrite inds after np.insert, copy here inserters += [inds.copy()] offsets += [len(v_old)] self.vertices[vi] = np.insert(v_old, inds, v_new) inds = [ii + offset for ii, offset in zip(inserters, offsets[:-1])] inds = np.concatenate(inds) new_data = np.zeros((len(inds),) + self.data.shape[1:]) self.data = np.insert(self.data, inds, new_data, axis=0) return self @verbose def to_original_src(self, src_orig, subject_orig=None, subjects_dir=None, verbose=None): """Get a source estimate from morphed source to the original subject. Parameters ---------- src_orig : instance of SourceSpaces The original source spaces that were morphed to the current subject. subject_orig : str | None The original subject. For most source spaces this shouldn't need to be provided, since it is stored in the source space itself. %(subjects_dir)s %(verbose_meth)s Returns ------- stc : SourceEstimate | VectorSourceEstimate The transformed source estimate. See Also -------- morph_source_spaces Notes ----- .. versionadded:: 0.10.0 """ if self.subject is None: raise ValueError('stc.subject must be set') src_orig = _ensure_src(src_orig, kind='surface') subject_orig = _ensure_src_subject(src_orig, subject_orig) data_idx, vertices = _get_morph_src_reordering( self.vertices, src_orig, subject_orig, self.subject, subjects_dir) return self.__class__(self._data[data_idx], vertices, self.tmin, self.tstep, subject_orig) @fill_doc def get_peak(self, hemi=None, tmin=None, tmax=None, mode='abs', vert_as_index=False, time_as_index=False): """Get location and latency of peak amplitude. Parameters ---------- hemi : {'lh', 'rh', None} The hemi to be considered. If None, the entire source space is considered. %(get_peak_parameters)s Returns ------- pos : int The vertex exhibiting the maximum response, either ID or index. latency : float | int The time point of the maximum response, either latency in seconds or index. """ _check_option('hemi', hemi, ('lh', 'rh', None)) vertex_offset = 0 if hemi is not None: if hemi == 'lh': data = self.lh_data vertices = [self.lh_vertno, []] else: vertex_offset = len(self.vertices[0]) data = self.rh_data vertices = [[], self.rh_vertno] meth = self.__class__( data, vertices, self.tmin, self.tstep).get_peak else: meth = super().get_peak out = meth(tmin=tmin, tmax=tmax, mode=mode, vert_as_index=vert_as_index, time_as_index=time_as_index) if vertex_offset and vert_as_index: out = (out[0] + vertex_offset, out[1]) return out @fill_doc class SourceEstimate(_BaseSurfaceSourceEstimate): """Container for surface source estimates. Parameters ---------- data : array of shape (n_dipoles, n_times) | tuple, shape (2,) The data in source space. When it is a single array, the left hemisphere is stored in data[:len(vertices[0])] and the right hemisphere is stored in data[-len(vertices[1]):]. When data is a tuple, it contains two arrays: - "kernel" shape (n_vertices, n_sensors) and - "sens_data" shape (n_sensors, n_times). In this case, the source space data corresponds to ``np.dot(kernel, sens_data)``. vertices : list of array, shape (2,) Vertex numbers corresponding to the data. The first element of the list contains vertices of left hemisphere and the second element contains vertices of right hemisphere. tmin : scalar Time point of the first sample in data. tstep : scalar Time step between successive samples in data. subject : str | None The subject name. While not necessary, it is safer to set the subject parameter to avoid analysis errors. %(verbose)s Attributes ---------- subject : str | None The subject name. times : array of shape (n_times,) The time vector. vertices : list of array, shape (2,) The indices of the dipoles in the left and right source space. data : array of shape (n_dipoles, n_times) The data in source space. shape : tuple The shape of the data. A tuple of int (n_dipoles, n_times). See Also -------- VectorSourceEstimate : A container for vector source estimates. VolSourceEstimate : A container for volume source estimates. MixedSourceEstimate : A container for mixed surface + volume source estimates. """ @verbose def save(self, fname, ftype='stc', verbose=None): """Save the source estimates to a file. Parameters ---------- fname : str The stem of the file name. The file names used for surface source spaces are obtained by adding "-lh.stc" and "-rh.stc" (or "-lh.w" and "-rh.w") to the stem provided, for the left and the right hemisphere, respectively. ftype : str File format to use. Allowed values are "stc" (default), "w", and "h5". The "w" format only supports a single time point. %(verbose_meth)s """ _validate_type(fname, 'path-like', 'fname') fname = str(fname) _check_option('ftype', ftype, ['stc', 'w', 'h5']) lh_data = self.data[:len(self.lh_vertno)] rh_data = self.data[-len(self.rh_vertno):] if ftype == 'stc': if np.iscomplexobj(self.data): raise ValueError("Cannot save complex-valued STC data in " "FIFF format; please set ftype='h5' to save " "in HDF5 format instead, or cast the data to " "real numbers before saving.") logger.info('Writing STC to disk...') _write_stc(fname + '-lh.stc', tmin=self.tmin, tstep=self.tstep, vertices=self.lh_vertno, data=lh_data) _write_stc(fname + '-rh.stc', tmin=self.tmin, tstep=self.tstep, vertices=self.rh_vertno, data=rh_data) elif ftype == 'w': if self.shape[1] != 1: raise ValueError('w files can only contain a single time ' 'point') logger.info('Writing STC to disk (w format)...') _write_w(fname + '-lh.w', vertices=self.lh_vertno, data=lh_data[:, 0]) _write_w(fname + '-rh.w', vertices=self.rh_vertno, data=rh_data[:, 0]) elif ftype == 'h5': super().save(fname) logger.info('[done]') @verbose def estimate_snr(self, info, fwd, cov, verbose=None): r"""Compute time-varying SNR in the source space. This function should only be used with source estimates with units nanoAmperes (i.e., MNE-like solutions, *not* dSPM or sLORETA). .. warning:: This function currently only works properly for fixed orientation. Parameters ---------- info : instance Info The measurement info. fwd : instance of Forward The forward solution used to create the source estimate. cov : instance of Covariance The noise covariance used to estimate the resting cortical activations. Should be an evoked covariance, not empty room. %(verbose)s Returns ------- snr_stc : instance of SourceEstimate The source estimate with the SNR computed. Notes ----- We define the SNR in decibels for each source location at each time point as: .. math:: {\rm SNR} = 10\log_10[\frac{a^2}{N}\sum_k\frac{b_k^2}{s_k^2}] where :math:`\\b_k` is the signal on sensor :math:`k` provided by the forward model for a source with unit amplitude, :math:`a` is the source amplitude, :math:`N` is the number of sensors, and :math:`s_k^2` is the noise variance on sensor :math:`k`. References ---------- .. [1] Goldenholz, D. M., Ahlfors, S. P., Hämäläinen, M. S., Sharon, D., Ishitobi, M., Vaina, L. M., & Stufflebeam, S. M. (2009). Mapping the Signal-To-Noise-Ratios of Cortical Sources in Magnetoencephalography and Electroencephalography. Human Brain Mapping, 30(4), 1077–1086. doi:10.1002/hbm.20571 """ from .forward import convert_forward_solution, Forward from .minimum_norm.inverse import _prepare_forward _validate_type(fwd, Forward, 'fwd') _validate_type(info, Info, 'info') _validate_type(cov, Covariance, 'cov') _check_stc_units(self) if (self.data >= 0).all(): warn('This STC appears to be from free orientation, currently SNR' ' function is valid only for fixed orientation') fwd = convert_forward_solution(fwd, surf_ori=True, force_fixed=False) # G is gain matrix [ch x src], cov is noise covariance [ch x ch] G, _, _, _, _, _, _, cov, _ = _prepare_forward( fwd, info, cov, fixed=True, loose=0, rank=None, pca=False, use_cps=True, exp=None, limit_depth_chs=False, combine_xyz='fro', allow_fixed_depth=False, limit=None) G = G['sol']['data'] n_channels = cov['dim'] # number of sensors/channels b_k2 = (G * G).T s_k2 = np.diag(cov['data']) scaling = (1 / n_channels) * np.sum(b_k2 / s_k2, axis=1, keepdims=True) snr_stc = self.copy() snr_stc._data[:] = 10 * np.log10((self.data * self.data) * scaling) return snr_stc @fill_doc def center_of_mass(self, subject=None, hemi=None, restrict_vertices=False, subjects_dir=None, surf='sphere'): """Compute the center of mass of activity. This function computes the spatial center of mass on the surface as well as the temporal center of mass as in [1]_. .. note:: All activity must occur in a single hemisphere, otherwise an error is raised. The "mass" of each point in space for computing the spatial center of mass is computed by summing across time, and vice-versa for each point in time in computing the temporal center of mass. This is useful for quantifying spatio-temporal cluster locations, especially when combined with :func:`mne.vertex_to_mni`. Parameters ---------- subject : str | None The subject the stc is defined for. hemi : int, or None Calculate the center of mass for the left (0) or right (1) hemisphere. If None, one of the hemispheres must be all zeroes, and the center of mass will be calculated for the other hemisphere (useful for getting COM for clusters). restrict_vertices : bool | array of int | instance of SourceSpaces If True, returned vertex will be one from stc. Otherwise, it could be any vertex from surf. If an array of int, the returned vertex will come from that array. If instance of SourceSpaces (as of 0.13), the returned vertex will be from the given source space. For most accuruate estimates, do not restrict vertices. %(subjects_dir)s surf : str The surface to use for Euclidean distance center of mass finding. The default here is "sphere", which finds the center of mass on the spherical surface to help avoid potential issues with cortical folding. Returns ------- vertex : int Vertex of the spatial center of mass for the inferred hemisphere, with each vertex weighted by the sum of the stc across time. For a boolean stc, then, this would be weighted purely by the duration each vertex was active. hemi : int Hemisphere the vertex was taken from. t : float Time of the temporal center of mass (weighted by the sum across source vertices). See Also -------- mne.Label.center_of_mass mne.vertex_to_mni References ---------- .. [1] Larson and Lee, "The cortical dynamics underlying effective switching of auditory spatial attention", NeuroImage 2012. """ if not isinstance(surf, str): raise TypeError('surf must be a string, got %s' % (type(surf),)) subject = _check_subject(self.subject, subject) if np.any(self.data < 0): raise ValueError('Cannot compute COM with negative values') values = np.sum(self.data, axis=1) # sum across time vert_inds = [np.arange(len(self.vertices[0])), np.arange(len(self.vertices[1])) + len(self.vertices[0])] if hemi is None: hemi = np.where(np.array([np.sum(values[vi]) for vi in vert_inds]))[0] if not len(hemi) == 1: raise ValueError('Could not infer hemisphere') hemi = hemi[0] _check_option('hemi', hemi, [0, 1]) vertices = self.vertices[hemi] values = values[vert_inds[hemi]] # left or right del vert_inds vertex = _center_of_mass( vertices, values, hemi=['lh', 'rh'][hemi], surf=surf, subject=subject, subjects_dir=subjects_dir, restrict_vertices=restrict_vertices) # do time center of mass by using the values across space masses = np.sum(self.data, axis=0).astype(float) t_ind = np.sum(masses * np.arange(self.shape[1])) / np.sum(masses) t = self.tmin + self.tstep * t_ind return vertex, hemi, t class _BaseVectorSourceEstimate(_BaseSourceEstimate): _data_ndim = 3 @verbose def __init__(self, data, vertices=None, tmin=None, tstep=None, subject=None, verbose=None): # noqa: D102 assert hasattr(self, '_scalar_class') super().__init__(data, vertices, tmin, tstep, subject, verbose) def magnitude(self): """Compute magnitude of activity without directionality. Returns ------- stc : instance of SourceEstimate The source estimate without directionality information. """ data_mag = np.linalg.norm(self.data, axis=1) return self._scalar_class( data_mag, self.vertices, self.tmin, self.tstep, self.subject, self.verbose) def _get_src_normals(self, src, use_cps): normals = np.vstack([_get_src_nn(s, use_cps, v) for s, v in zip(src, self.vertices)]) return normals @fill_doc def project(self, directions, src=None, use_cps=True): """Project the data for each vertex in a given direction. Parameters ---------- directions : ndarray, shape (n_vertices, 3) | str Can be: - ``'normal'`` Project onto the source space normals. - ``'pca'`` SVD will be used to project onto the direction of maximal power for each source. - :class:`~numpy.ndarray`, shape (n_vertices, 3) Projection directions for each source. src : instance of SourceSpaces | None The source spaces corresponding to the source estimate. Not used when ``directions`` is an array, optional when ``directions='pca'``. %(use_cps)s Should be the same value that was used when the forward model was computed (typically True). Returns ------- stc : instance of SourceEstimate The projected source estimate. directions : ndarray, shape (n_vertices, 3) The directions that were computed (or just used). Notes ----- When using SVD, there is a sign ambiguity for the direction of maximal power. When ``src is None``, the direction is chosen that makes the resulting time waveform sum positive (i.e., have positive amplitudes). When ``src`` is provided, the directions are flipped in the direction of the source normals, i.e., outward from cortex for surface source spaces and in the +Z / superior direction for volume source spaces. .. versionadded:: 0.21 """ _validate_type(directions, (str, np.ndarray), 'directions') _validate_type(src, (None, SourceSpaces), 'src') if isinstance(directions, str): _check_option('directions', directions, ('normal', 'pca'), extra='when str') if directions == 'normal': if src is None: raise ValueError( 'If directions="normal", src cannot be None') _check_src_normal('normal', src) directions = self._get_src_normals(src, use_cps) else: assert directions == 'pca' x = self.data if not np.isrealobj(self.data): _check_option('stc.data.dtype', self.data.dtype, (np.complex64, np.complex128)) dtype = \ np.float32 if x.dtype == np.complex64 else np.float64 x = x.view(dtype) assert x.shape[-1] == 2 * self.data.shape[-1] u, _, v = np.linalg.svd(x, full_matrices=False) directions = u[:, :, 0] # The sign is arbitrary, so let's flip it in the direction that # makes the resulting time series the most positive: if src is None: signs = np.sum(v[:, 0].real, axis=1, keepdims=True) else: normals = self._get_src_normals(src, use_cps) signs = np.sum(directions * normals, axis=1, keepdims=True) assert signs.shape == (self.data.shape[0], 1) signs = np.sign(signs) signs[signs == 0] = 1. directions *= signs _check_option( 'directions.shape', directions.shape, [(self.data.shape[0], 3)]) data_norm = np.matmul(directions[:, np.newaxis], self.data)[:, 0] stc = self._scalar_class( data_norm, self.vertices, self.tmin, self.tstep, self.subject, self.verbose) return stc, directions @copy_function_doc_to_method_doc(plot_vector_source_estimates) def plot(self, subject=None, hemi='lh', colormap='hot', time_label='auto', smoothing_steps=10, transparent=True, brain_alpha=0.4, overlay_alpha=None, vector_alpha=1.0, scale_factor=None, time_viewer='auto', subjects_dir=None, figure=None, views='lateral', colorbar=True, clim='auto', cortex='classic', size=800, background='black', foreground=None, initial_time=None, time_unit='s', show_traces='auto', src=None, volume_options=1., view_layout='vertical', add_data_kwargs=None, verbose=None): # noqa: D102 return plot_vector_source_estimates( self, subject=subject, hemi=hemi, colormap=colormap, time_label=time_label, smoothing_steps=smoothing_steps, transparent=transparent, brain_alpha=brain_alpha, overlay_alpha=overlay_alpha, vector_alpha=vector_alpha, scale_factor=scale_factor, time_viewer=time_viewer, subjects_dir=subjects_dir, figure=figure, views=views, colorbar=colorbar, clim=clim, cortex=cortex, size=size, background=background, foreground=foreground, initial_time=initial_time, time_unit=time_unit, show_traces=show_traces, src=src, volume_options=volume_options, view_layout=view_layout, add_data_kwargs=add_data_kwargs, verbose=verbose) class _BaseVolSourceEstimate(_BaseSourceEstimate): _src_type = 'volume' _src_count = None @copy_function_doc_to_method_doc(plot_source_estimates) def plot_3d(self, subject=None, surface='white', hemi='both', colormap='auto', time_label='auto', smoothing_steps=10, transparent=True, alpha=0.1, time_viewer='auto', subjects_dir=None, figure=None, views='axial', colorbar=True, clim='auto', cortex="classic", size=800, background="black", foreground=None, initial_time=None, time_unit='s', backend='auto', spacing='oct6', title=None, show_traces='auto', src=None, volume_options=1., view_layout='vertical', add_data_kwargs=None, verbose=None): return super().plot( subject=subject, surface=surface, hemi=hemi, colormap=colormap, time_label=time_label, smoothing_steps=smoothing_steps, transparent=transparent, alpha=alpha, time_viewer=time_viewer, subjects_dir=subjects_dir, figure=figure, views=views, colorbar=colorbar, clim=clim, cortex=cortex, size=size, background=background, foreground=foreground, initial_time=initial_time, time_unit=time_unit, backend=backend, spacing=spacing, title=title, show_traces=show_traces, src=src, volume_options=volume_options, view_layout=view_layout, add_data_kwargs=add_data_kwargs, verbose=verbose) @copy_function_doc_to_method_doc(plot_volume_source_estimates) def plot(self, src, subject=None, subjects_dir=None, mode='stat_map', bg_img='T1.mgz', colorbar=True, colormap='auto', clim='auto', transparent='auto', show=True, initial_time=None, initial_pos=None, verbose=None): data = self.magnitude() if self._data_ndim == 3 else self return plot_volume_source_estimates( data, src=src, subject=subject, subjects_dir=subjects_dir, mode=mode, bg_img=bg_img, colorbar=colorbar, colormap=colormap, clim=clim, transparent=transparent, show=show, initial_time=initial_time, initial_pos=initial_pos, verbose=verbose) # Override here to provide the volume-specific options @verbose def extract_label_time_course(self, labels, src, mode='auto', allow_empty=False, *, trans=None, mri_resolution=True, verbose=None): """Extract label time courses for lists of labels. This function will extract one time course for each label. The way the time courses are extracted depends on the mode parameter. Parameters ---------- %(eltc_labels)s %(eltc_src)s %(eltc_mode)s %(eltc_allow_empty)s %(trans_deprecated)s %(eltc_mri_resolution)s %(verbose_meth)s Returns ------- %(eltc_returns)s See Also -------- extract_label_time_course : Extract time courses for multiple STCs. Notes ----- %(eltc_mode_notes)s """ return extract_label_time_course( self, labels, src, mode=mode, return_generator=False, allow_empty=allow_empty, trans=trans, mri_resolution=mri_resolution, verbose=verbose) @fill_doc def in_label(self, label, mri, src, trans=None): """Get a source estimate object restricted to a label. SourceEstimate contains the time course of activation of all sources inside the label. Parameters ---------- label : str | int The label to use. Can be the name of a label if using a standard FreeSurfer atlas, or an integer value to extract from the ``mri``. mri : str Path to the atlas to use. src : instance of SourceSpaces The volumetric source space. It must be a single, whole-brain volume. %(trans_deprecated)s Returns ------- stc : VolSourceEstimate | VolVectorSourceEstimate The source estimate restricted to the given label. Notes ----- .. versionadded:: 0.21.0 """ if len(self.vertices) != 1: raise RuntimeError('This method can only be used with whole-brain ' 'volume source spaces') _validate_type(label, (str, 'int-like'), 'label') if isinstance(label, str): volume_label = [label] else: volume_label = {'Volume ID %s' % (label): _ensure_int(label)} _dep_trans(trans) label = _volume_labels(src, (mri, volume_label), mri_resolution=False) assert len(label) == 1 label = label[0] vertices = label.vertices keep = np.in1d(self.vertices[0], label.vertices) values, vertices = self.data[keep], [self.vertices[0][keep]] label_stc = self.__class__(values, vertices=vertices, tmin=self.tmin, tstep=self.tstep, subject=self.subject) return label_stc def save_as_volume(self, fname, src, dest='mri', mri_resolution=False, format='nifti1'): """Save a volume source estimate in a NIfTI file. Parameters ---------- fname : str The name of the generated nifti file. src : list The list of source spaces (should all be of type volume). dest : 'mri' | 'surf' If 'mri' the volume is defined in the coordinate system of the original T1 image. If 'surf' the coordinate system of the FreeSurfer surface is used (Surface RAS). mri_resolution : bool It True the image is saved in MRI resolution. .. warning:: If you have many time points, the file produced can be huge. format : str Either 'nifti1' (default) or 'nifti2'. .. versionadded:: 0.17 Returns ------- img : instance Nifti1Image The image object. Notes ----- .. versionadded:: 0.9.0 """ import nibabel as nib _validate_type(fname, 'path-like', 'fname') fname = str(fname) img = self.as_volume(src, dest=dest, mri_resolution=mri_resolution, format=format) nib.save(img, fname) def as_volume(self, src, dest='mri', mri_resolution=False, format='nifti1'): """Export volume source estimate as a nifti object. Parameters ---------- src : instance of SourceSpaces The source spaces (should all be of type volume, or part of a mixed source space). dest : 'mri' | 'surf' If 'mri' the volume is defined in the coordinate system of the original T1 image. If 'surf' the coordinate system of the FreeSurfer surface is used (Surface RAS). mri_resolution : bool It True the image is saved in MRI resolution. .. warning:: If you have many time points, the file produced can be huge. format : str Either 'nifti1' (default) or 'nifti2'. Returns ------- img : instance of Nifti1Image The image object. Notes ----- .. versionadded:: 0.9.0 """ from .morph import _interpolate_data data = self.magnitude() if self._data_ndim == 3 else self return _interpolate_data(data, src, mri_resolution=mri_resolution, mri_space=True, output=format) @fill_doc class VolSourceEstimate(_BaseVolSourceEstimate): """Container for volume source estimates. Parameters ---------- data : array of shape (n_dipoles, n_times) | tuple, shape (2,) The data in source space. The data can either be a single array or a tuple with two arrays: "kernel" shape (n_vertices, n_sensors) and "sens_data" shape (n_sensors, n_times). In this case, the source space data corresponds to ``np.dot(kernel, sens_data)``. vertices : array of shape (n_dipoles,) The indices of the dipoles in the source space. tmin : scalar Time point of the first sample in data. tstep : scalar Time step between successive samples in data. subject : str | None The subject name. While not necessary, it is safer to set the subject parameter to avoid analysis errors. %(verbose)s Attributes ---------- subject : str | None The subject name. times : array of shape (n_times,) The time vector. vertices : array of shape (n_dipoles,) The indices of the dipoles in the source space. data : array of shape (n_dipoles, n_times) The data in source space. shape : tuple The shape of the data. A tuple of int (n_dipoles, n_times). See Also -------- SourceEstimate : A container for surface source estimates. VolVectorSourceEstimate : A container for volume vector source estimates. MixedSourceEstimate : A container for mixed surface + volume source estimates. Notes ----- .. versionadded:: 0.9.0 """ @verbose def save(self, fname, ftype='stc', verbose=None): """Save the source estimates to a file. Parameters ---------- fname : str The stem of the file name. The stem is extended with "-vl.stc" or "-vl.w". ftype : str File format to use. Allowed values are "stc" (default), "w", and "h5". The "w" format only supports a single time point. %(verbose_meth)s """ _validate_type(fname, 'path-like', 'fname') fname = str(fname) _check_option('ftype', ftype, ['stc', 'w', 'h5']) if ftype != 'h5' and len(self.vertices) != 1: raise ValueError('Can only write to .stc or .w if a single volume ' 'source space was used, use .h5 instead') if ftype != 'h5' and self.data.dtype == 'complex': raise ValueError('Can only write non-complex data to .stc or .w' ', use .h5 instead') if ftype == 'stc': logger.info('Writing STC to disk...') if not (fname.endswith('-vl.stc') or fname.endswith('-vol.stc')): fname += '-vl.stc' _write_stc(fname, tmin=self.tmin, tstep=self.tstep, vertices=self.vertices[0], data=self.data) elif ftype == 'w': logger.info('Writing STC to disk (w format)...') if not (fname.endswith('-vl.w') or fname.endswith('-vol.w')): fname += '-vl.w' _write_w(fname, vertices=self.vertices[0], data=self.data) elif ftype == 'h5': super().save(fname, 'h5') logger.info('[done]') @fill_doc class VolVectorSourceEstimate(_BaseVolSourceEstimate, _BaseVectorSourceEstimate): """Container for volume source estimates. Parameters ---------- data : array of shape (n_dipoles, 3, n_times) The data in source space. Each dipole contains three vectors that denote the dipole strength in X, Y and Z directions over time. vertices : array of shape (n_dipoles,) The indices of the dipoles in the source space. tmin : scalar Time point of the first sample in data. tstep : scalar Time step between successive samples in data. subject : str | None The subject name. While not necessary, it is safer to set the subject parameter to avoid analysis errors. %(verbose)s Attributes ---------- subject : str | None The subject name. times : array of shape (n_times,) The time vector. vertices : array of shape (n_dipoles,) The indices of the dipoles in the source space. data : array of shape (n_dipoles, n_times) The data in source space. shape : tuple The shape of the data. A tuple of int (n_dipoles, n_times). See Also -------- SourceEstimate : A container for surface source estimates. VectorSourceEstimate : A container for vector source estimates. MixedSourceEstimate : A container for mixed surface + volume source estimates. Notes ----- .. versionadded:: 0.9.0 """ _scalar_class = VolSourceEstimate # defaults differ: hemi='both', views='axial' @copy_function_doc_to_method_doc(plot_vector_source_estimates) def plot_3d(self, subject=None, hemi='both', colormap='hot', time_label='auto', smoothing_steps=10, transparent=True, brain_alpha=0.4, overlay_alpha=None, vector_alpha=1.0, scale_factor=None, time_viewer='auto', subjects_dir=None, figure=None, views='axial', colorbar=True, clim='auto', cortex='classic', size=800, background='black', foreground=None, initial_time=None, time_unit='s', show_traces='auto', src=None, volume_options=1., view_layout='vertical', add_data_kwargs=None, verbose=None): # noqa: D102 return _BaseVectorSourceEstimate.plot( self, subject=subject, hemi=hemi, colormap=colormap, time_label=time_label, smoothing_steps=smoothing_steps, transparent=transparent, brain_alpha=brain_alpha, overlay_alpha=overlay_alpha, vector_alpha=vector_alpha, scale_factor=scale_factor, time_viewer=time_viewer, subjects_dir=subjects_dir, figure=figure, views=views, colorbar=colorbar, clim=clim, cortex=cortex, size=size, background=background, foreground=foreground, initial_time=initial_time, time_unit=time_unit, show_traces=show_traces, src=src, volume_options=volume_options, view_layout=view_layout, add_data_kwargs=add_data_kwargs, verbose=verbose) @fill_doc class VectorSourceEstimate(_BaseVectorSourceEstimate, _BaseSurfaceSourceEstimate): """Container for vector surface source estimates. For each vertex, the magnitude of the current is defined in the X, Y and Z directions. Parameters ---------- data : array of shape (n_dipoles, 3, n_times) The data in source space. Each dipole contains three vectors that denote the dipole strength in X, Y and Z directions over time. vertices : list of array, shape (2,) Vertex numbers corresponding to the data. The first element of the list contains vertices of left hemisphere and the second element contains vertices of right hemisphere. tmin : float Time point of the first sample in data. tstep : float Time step between successive samples in data. subject : str | None The subject name. While not necessary, it is safer to set the subject parameter to avoid analysis errors. %(verbose)s Attributes ---------- subject : str | None The subject name. times : array of shape (n_times,) The time vector. shape : tuple The shape of the data. A tuple of int (n_dipoles, n_times). See Also -------- SourceEstimate : A container for surface source estimates. VolSourceEstimate : A container for volume source estimates. MixedSourceEstimate : A container for mixed surface + volume source estimates. Notes ----- .. versionadded:: 0.15 """ _scalar_class = SourceEstimate ############################################################################### # Mixed source estimate (two cortical surfs plus other stuff) class _BaseMixedSourceEstimate(_BaseSourceEstimate): _src_type = 'mixed' _src_count = None @verbose def __init__(self, data, vertices=None, tmin=None, tstep=None, subject=None, verbose=None): # noqa: D102 if not isinstance(vertices, list) or len(vertices) < 2: raise ValueError('Vertices must be a list of numpy arrays with ' 'one array per source space.') super().__init__(data, vertices=vertices, tmin=tmin, tstep=tstep, subject=subject, verbose=verbose) @property def _n_surf_vert(self): return sum(len(v) for v in self.vertices[:2]) def surface(self): """Return the cortical surface source estimate. Returns ------- stc : instance of SourceEstimate or VectorSourceEstimate The surface source estimate. """ if self._data_ndim == 3: klass = VectorSourceEstimate else: klass = SourceEstimate return klass( self.data[:self._n_surf_vert], self.vertices[:2], self.tmin, self.tstep, self.subject, self.verbose) def volume(self): """Return the volume surface source estimate. Returns ------- stc : instance of VolSourceEstimate or VolVectorSourceEstimate The volume source estimate. """ if self._data_ndim == 3: klass = VolVectorSourceEstimate else: klass = VolSourceEstimate return klass( self.data[self._n_surf_vert:], self.vertices[2:], self.tmin, self.tstep, self.subject, self.verbose) @fill_doc class MixedSourceEstimate(_BaseMixedSourceEstimate): """Container for mixed surface and volume source estimates. Parameters ---------- data : array of shape (n_dipoles, n_times) | tuple, shape (2,) The data in source space. The data can either be a single array or a tuple with two arrays: "kernel" shape (n_vertices, n_sensors) and "sens_data" shape (n_sensors, n_times). In this case, the source space data corresponds to ``np.dot(kernel, sens_data)``. vertices : list of array Vertex numbers corresponding to the data. The list contains arrays with one array per source space. tmin : scalar Time point of the first sample in data. tstep : scalar Time step between successive samples in data. subject : str | None The subject name. While not necessary, it is safer to set the subject parameter to avoid analysis errors. %(verbose)s Attributes ---------- subject : str | None The subject name. times : array of shape (n_times,) The time vector. vertices : list of array Vertex numbers corresponding to the data. The list contains arrays with one array per source space. data : array of shape (n_dipoles, n_times) The data in source space. shape : tuple The shape of the data. A tuple of int (n_dipoles, n_times). See Also -------- SourceEstimate : A container for surface source estimates. VectorSourceEstimate : A container for vector source estimates. VolSourceEstimate : A container for volume source estimates. VolVectorSourceEstimate : A container for Volume vector source estimates. Notes ----- .. versionadded:: 0.9.0 """ @fill_doc class MixedVectorSourceEstimate(_BaseVectorSourceEstimate, _BaseMixedSourceEstimate): """Container for volume source estimates. Parameters ---------- data : array, shape (n_dipoles, 3, n_times) The data in source space. Each dipole contains three vectors that denote the dipole strength in X, Y and Z directions over time. vertices : list of array, shape (n_src,) Vertex numbers corresponding to the data. tmin : scalar Time point of the first sample in data. tstep : scalar Time step between successive samples in data. subject : str | None The subject name. While not necessary, it is safer to set the subject parameter to avoid analysis errors. %(verbose)s Attributes ---------- subject : str | None The subject name. times : array, shape (n_times,) The time vector. vertices : array of shape (n_dipoles,) The indices of the dipoles in the source space. data : array of shape (n_dipoles, n_times) The data in source space. shape : tuple The shape of the data. A tuple of int (n_dipoles, n_times). See Also -------- MixedSourceEstimate : A container for mixed surface + volume source estimates. Notes ----- .. versionadded:: 0.21.0 """ _scalar_class = MixedSourceEstimate ############################################################################### # Morphing def _get_vol_mask(src): """Get the volume source space mask.""" assert len(src) == 1 # not a mixed source space shape = src[0]['shape'][::-1] mask = np.zeros(shape, bool) mask.flat[src[0]['vertno']] = True return mask def _spatio_temporal_src_adjacency_vol(src, n_times): from sklearn.feature_extraction import grid_to_graph mask = _get_vol_mask(src) edges = grid_to_graph(*mask.shape, mask=mask) adjacency = _get_adjacency_from_edges(edges, n_times) return adjacency def _spatio_temporal_src_adjacency_surf(src, n_times): if src[0]['use_tris'] is None: # XXX It would be nice to support non oct source spaces too... raise RuntimeError("The source space does not appear to be an ico " "surface. adjacency cannot be extracted from" " non-ico source spaces.") used_verts = [np.unique(s['use_tris']) for s in src] offs = np.cumsum([0] + [len(u_v) for u_v in used_verts])[:-1] tris = np.concatenate([np.searchsorted(u_v, s['use_tris']) + off for u_v, s, off in zip(used_verts, src, offs)]) adjacency = spatio_temporal_tris_adjacency(tris, n_times) # deal with source space only using a subset of vertices masks = [np.in1d(u, s['vertno']) for s, u in zip(src, used_verts)] if sum(u.size for u in used_verts) != adjacency.shape[0] / n_times: raise ValueError('Used vertices do not match adjacency shape') if [np.sum(m) for m in masks] != [len(s['vertno']) for s in src]: raise ValueError('Vertex mask does not match number of vertices') masks = np.concatenate(masks) missing = 100 * float(len(masks) - np.sum(masks)) / len(masks) if missing: warn('%0.1f%% of original source space vertices have been' ' omitted, tri-based adjacency will have holes.\n' 'Consider using distance-based adjacency or ' 'morphing data to all source space vertices.' % missing) masks = np.tile(masks, n_times) masks = np.where(masks)[0] adjacency = adjacency.tocsr() adjacency = adjacency[masks] adjacency = adjacency[:, masks] # return to original format adjacency = adjacency.tocoo() return adjacency @verbose def spatio_temporal_src_adjacency(src, n_times, dist=None, verbose=None): """Compute adjacency for a source space activation over time. Parameters ---------- src : instance of SourceSpaces The source space. It can be a surface source space or a volume source space. n_times : int Number of time instants. dist : float, or None Maximal geodesic distance (in m) between vertices in the source space to consider neighbors. If None, immediate neighbors are extracted from an ico surface. %(verbose)s Returns ------- adjacency : ~scipy.sparse.coo_matrix The adjacency matrix describing the spatio-temporal graph structure. If N is the number of vertices in the source space, the N first nodes in the graph are the vertices are time 1, the nodes from 2 to 2N are the vertices during time 2, etc. """ # XXX we should compute adjacency for each source space and then # use scipy.sparse.block_diag to concatenate them if src[0]['type'] == 'vol': if dist is not None: raise ValueError('dist must be None for a volume ' 'source space. Got %s.' % dist) adjacency = _spatio_temporal_src_adjacency_vol(src, n_times) elif dist is not None: # use distances computed and saved in the source space file adjacency = spatio_temporal_dist_adjacency(src, n_times, dist) else: adjacency = _spatio_temporal_src_adjacency_surf(src, n_times) return adjacency @verbose def grade_to_tris(grade, verbose=None): """Get tris defined for a certain grade. Parameters ---------- grade : int Grade of an icosahedral mesh. %(verbose)s Returns ------- tris : list 2-element list containing Nx3 arrays of tris, suitable for use in spatio_temporal_tris_adjacency. """ a = _get_ico_tris(grade, None, False) tris = np.concatenate((a, a + (np.max(a) + 1))) return tris @verbose def spatio_temporal_tris_adjacency(tris, n_times, remap_vertices=False, verbose=None): """Compute adjacency from triangles and time instants. Parameters ---------- tris : array N x 3 array defining triangles. n_times : int Number of time points. remap_vertices : bool Reassign vertex indices based on unique values. Useful to process a subset of triangles. Defaults to False. %(verbose)s Returns ------- adjacency : ~scipy.sparse.coo_matrix The adjacency matrix describing the spatio-temporal graph structure. If N is the number of vertices in the source space, the N first nodes in the graph are the vertices are time 1, the nodes from 2 to 2N are the vertices during time 2, etc. """ if remap_vertices: logger.info('Reassigning vertex indices.') tris = np.searchsorted(np.unique(tris), tris) edges = mesh_edges(tris) edges = (edges + sparse.eye(edges.shape[0], format='csr')).tocoo() return _get_adjacency_from_edges(edges, n_times) @verbose def spatio_temporal_dist_adjacency(src, n_times, dist, verbose=None): """Compute adjacency from distances in a source space and time instants. Parameters ---------- src : instance of SourceSpaces The source space must have distances between vertices computed, such that src['dist'] exists and is useful. This can be obtained with a call to :func:`mne.setup_source_space` with the ``add_dist=True`` option. n_times : int Number of time points. dist : float Maximal geodesic distance (in m) between vertices in the source space to consider neighbors. %(verbose)s Returns ------- adjacency : ~scipy.sparse.coo_matrix The adjacency matrix describing the spatio-temporal graph structure. If N is the number of vertices in the source space, the N first nodes in the graph are the vertices are time 1, the nodes from 2 to 2N are the vertices during time 2, etc. """ if src[0]['dist'] is None: raise RuntimeError('src must have distances included, consider using ' 'setup_source_space with add_dist=True') blocks = [s['dist'][s['vertno'], :][:, s['vertno']] for s in src] # Ensure we keep explicit zeros; deal with changes in SciPy for block in blocks: if isinstance(block, np.ndarray): block[block == 0] = -np.inf else: block.data[block.data == 0] == -1 edges = sparse_block_diag(blocks) edges.data[:] = np.less_equal(edges.data, dist) # clean it up and put it in coo format edges = edges.tocsr() edges.eliminate_zeros() edges = edges.tocoo() return _get_adjacency_from_edges(edges, n_times) @verbose def spatial_src_adjacency(src, dist=None, verbose=None): """Compute adjacency for a source space activation. Parameters ---------- src : instance of SourceSpaces The source space. It can be a surface source space or a volume source space. dist : float, or None Maximal geodesic distance (in m) between vertices in the source space to consider neighbors. If None, immediate neighbors are extracted from an ico surface. %(verbose)s Returns ------- adjacency : ~scipy.sparse.coo_matrix The adjacency matrix describing the spatial graph structure. """ return spatio_temporal_src_adjacency(src, 1, dist) @verbose def spatial_tris_adjacency(tris, remap_vertices=False, verbose=None): """Compute adjacency from triangles. Parameters ---------- tris : array N x 3 array defining triangles. remap_vertices : bool Reassign vertex indices based on unique values. Useful to process a subset of triangles. Defaults to False. %(verbose)s Returns ------- adjacency : ~scipy.sparse.coo_matrix The adjacency matrix describing the spatial graph structure. """ return spatio_temporal_tris_adjacency(tris, 1, remap_vertices) @verbose def spatial_dist_adjacency(src, dist, verbose=None): """Compute adjacency from distances in a source space. Parameters ---------- src : instance of SourceSpaces The source space must have distances between vertices computed, such that src['dist'] exists and is useful. This can be obtained with a call to :func:`mne.setup_source_space` with the ``add_dist=True`` option. dist : float Maximal geodesic distance (in m) between vertices in the source space to consider neighbors. %(verbose)s Returns ------- adjacency : ~scipy.sparse.coo_matrix The adjacency matrix describing the spatial graph structure. """ return spatio_temporal_dist_adjacency(src, 1, dist) @verbose def spatial_inter_hemi_adjacency(src, dist, verbose=None): """Get vertices on each hemisphere that are close to the other hemisphere. Parameters ---------- src : instance of SourceSpaces The source space. Must be surface type. dist : float Maximal Euclidean distance (in m) between vertices in one hemisphere compared to the other to consider neighbors. %(verbose)s Returns ------- adjacency : ~scipy.sparse.coo_matrix The adjacency matrix describing the spatial graph structure. Typically this should be combined (addititively) with another existing intra-hemispheric adjacency matrix, e.g. computed using geodesic distances. """ from scipy.spatial.distance import cdist src = _ensure_src(src, kind='surface') adj = cdist(src[0]['rr'][src[0]['vertno']], src[1]['rr'][src[1]['vertno']]) adj = sparse.csr_matrix(adj <= dist, dtype=int) empties = [sparse.csr_matrix((nv, nv), dtype=int) for nv in adj.shape] adj = sparse.vstack([sparse.hstack([empties[0], adj]), sparse.hstack([adj.T, empties[1]])]) return adj @verbose def _get_adjacency_from_edges(edges, n_times, verbose=None): """Given edges sparse matrix, create adjacency matrix.""" n_vertices = edges.shape[0] logger.info("-- number of adjacent vertices : %d" % n_vertices) nnz = edges.col.size aux = n_vertices * np.tile(np.arange(n_times)[:, None], (1, nnz)) col = (edges.col[None, :] + aux).ravel() row = (edges.row[None, :] + aux).ravel() if n_times > 1: # add temporal edges o = (n_vertices * np.arange(n_times - 1)[:, None] + np.arange(n_vertices)[None, :]).ravel() d = (n_vertices * np.arange(1, n_times)[:, None] + np.arange(n_vertices)[None, :]).ravel() row = np.concatenate((row, o, d)) col = np.concatenate((col, d, o)) data = np.ones(edges.data.size * n_times + 2 * n_vertices * (n_times - 1), dtype=np.int64) adjacency = coo_matrix((data, (row, col)), shape=(n_times * n_vertices,) * 2) return adjacency @verbose def _get_ico_tris(grade, verbose=None, return_surf=False): """Get triangles for ico surface.""" ico = _get_ico_surface(grade) if not return_surf: return ico['tris'] else: return ico def _pca_flip(flip, data): U, s, V = linalg.svd(data, full_matrices=False) # determine sign-flip sign = np.sign(np.dot(U[:, 0], flip)) # use average power in label for scaling scale = linalg.norm(s) / np.sqrt(len(data)) return sign * scale * V[0] _label_funcs = { 'mean': lambda flip, data: np.mean(data, axis=0), 'mean_flip': lambda flip, data: np.mean(flip * data, axis=0), 'max': lambda flip, data: np.max(np.abs(data), axis=0), 'pca_flip': _pca_flip, } @contextlib.contextmanager def _temporary_vertices(src, vertices): orig_vertices = [s['vertno'] for s in src] for s, v in zip(src, vertices): s['vertno'] = v try: yield finally: for s, v in zip(src, orig_vertices): s['vertno'] = v def _check_stc_src(stc, src): if stc is not None and src is not None: for s, v, hemi in zip(src, stc.vertices, ('left', 'right')): n_missing = (~np.in1d(v, s['vertno'])).sum() if n_missing: raise ValueError('%d/%d %s hemisphere stc vertices ' 'missing from the source space, likely ' 'mismatch' % (n_missing, len(v), hemi)) def _prepare_label_extraction(stc, labels, src, mode, allow_empty, use_sparse): """Prepare indices and flips for extract_label_time_course.""" # If src is a mixed src space, the first 2 src spaces are surf type and # the other ones are vol type. For mixed source space n_labels will be # given by the number of ROIs of the cortical parcellation plus the number # of vol src space. # If stc=None (i.e. no activation time courses provided) and mode='mean', # only computes vertex indices and label_flip will be list of None. from .label import label_sign_flip, Label, BiHemiLabel # if source estimate provided in stc, get vertices from source space and # check that they are the same as in the stcs _check_stc_src(stc, src) vertno = [s['vertno'] for s in src] if stc is None else stc.vertices nvert = [len(vn) for vn in vertno] # initialization label_flip = list() label_vertidx = list() bad_labels = list() for li, label in enumerate(labels): if use_sparse: assert isinstance(label, dict) vertidx = label['csr'] # This can happen if some labels aren't present in the space if vertidx.shape[0] == 0: bad_labels.append(label['name']) vertidx = None # Efficiency shortcut: use linearity early to avoid redundant # calculations elif mode == 'mean': vertidx = sparse.csr_matrix(vertidx.mean(axis=0)) label_vertidx.append(vertidx) label_flip.append(None) continue # standard case _validate_type(label, (Label, BiHemiLabel), 'labels[%d]' % (li,)) if label.hemi == 'both': # handle BiHemiLabel sub_labels = [label.lh, label.rh] else: sub_labels = [label] this_vertidx = list() for slabel in sub_labels: if slabel.hemi == 'lh': this_vertices = np.intersect1d(vertno[0], slabel.vertices) vertidx = np.searchsorted(vertno[0], this_vertices) elif slabel.hemi == 'rh': this_vertices = np.intersect1d(vertno[1], slabel.vertices) vertidx = nvert[0] + np.searchsorted(vertno[1], this_vertices) else: raise ValueError('label %s has invalid hemi' % label.name) this_vertidx.append(vertidx) # convert it to an array this_vertidx = np.concatenate(this_vertidx) this_flip = None if len(this_vertidx) == 0: bad_labels.append(label.name) this_vertidx = None # to later check if label is empty elif mode not in ('mean', 'max'): # mode-dependent initialization # label_sign_flip uses two properties: # # - src[ii]['nn'] # - src[ii]['vertno'] # # So if we override vertno with the stc vertices, it will pick # the correct normals. with _temporary_vertices(src, stc.vertices): this_flip = label_sign_flip(label, src[:2])[:, None] label_vertidx.append(this_vertidx) label_flip.append(this_flip) if len(bad_labels): msg = ('source space does not contain any vertices for %d label%s:\n%s' % (len(bad_labels), _pl(bad_labels), bad_labels)) if not allow_empty: raise ValueError(msg) else: msg += '\nAssigning all-zero time series.' if allow_empty == 'ignore': logger.info(msg) else: warn(msg) return label_vertidx, label_flip def _vol_src_rr(src): return apply_trans( src[0]['src_mri_t'], np.array( [d.ravel(order='F') for d in np.meshgrid( *(np.arange(s) for s in src[0]['shape']), indexing='ij')], float).T) def _volume_labels(src, labels, mri_resolution): # This will create Label objects that should do the right thing for our # given volumetric source space when used with extract_label_time_course from .label import Label assert src.kind == 'volume' extra = ' when using a volume source space' _import_nibabel('use volume atlas labels') _validate_type(labels, ('path-like', list, tuple), 'labels' + extra) if _check_path_like(labels): mri = labels infer_labels = True else: if len(labels) != 2: raise ValueError('labels, if list or tuple, must have length 2, ' 'got %s' % (len(labels),)) mri, labels = labels infer_labels = False _validate_type(mri, 'path-like', 'labels[0]' + extra) logger.info('Reading atlas %s' % (mri,)) vol_info = _get_mri_info_data(str(mri), data=True) atlas_data = vol_info['data'] atlas_values = np.unique(atlas_data) if atlas_values.dtype.kind == 'f': # MGZ will be 'i' atlas_values = atlas_values[np.isfinite(atlas_values)] if not (atlas_values == np.round(atlas_values)).all(): raise RuntimeError('Non-integer values present in atlas, cannot ' 'labelize') atlas_values = np.round(atlas_values).astype(np.int64) if infer_labels: labels = { k: v for k, v in read_freesurfer_lut()[0].items() if v in atlas_values} labels = _check_volume_labels(labels, mri, name='labels[1]') assert isinstance(labels, dict) del atlas_values vox_mri_t = vol_info['vox_mri_t'] want = src[0].get('vox_mri_t', None) if want is None: raise RuntimeError( 'Cannot use volumetric atlas if no mri was supplied during ' 'source space creation') vox_mri_t, want = vox_mri_t['trans'], want['trans'] if not np.allclose(vox_mri_t, want, atol=1e-6): raise RuntimeError( 'atlas vox_mri_t does not match that used to create the source ' 'space') src_shape = tuple(src[0]['mri_' + k] for k in ('width', 'height', 'depth')) atlas_shape = atlas_data.shape if atlas_shape != src_shape: raise RuntimeError('atlas shape %s does not match source space MRI ' 'shape %s' % (atlas_shape, src_shape)) atlas_data = atlas_data.ravel(order='F') if mri_resolution: # Upsample then just index out_labels = list() nnz = 0 interp = src[0]['interpolator'] # should be guaranteed by size checks above and our src interp code assert interp.shape[0] == np.prod(src_shape) assert interp.shape == (atlas_data.size, len(src[0]['rr'])) interp = interp[:, src[0]['vertno']] for k, v in labels.items(): mask = atlas_data == v csr = interp[mask] out_labels.append(dict(csr=csr, name=k)) nnz += csr.shape[0] > 0 else: # Use nearest values vertno = src[0]['vertno'] rr = _vol_src_rr(src) del src src_values = _get_atlas_values(vol_info, rr[vertno]) vertices = [vertno[src_values == val] for val in labels.values()] out_labels = [Label(v, hemi='lh', name=val) for v, val in zip(vertices, labels.keys())] nnz = sum(len(v) != 0 for v in vertices) logger.info('%d/%d atlas regions had at least one vertex ' 'in the source space' % (nnz, len(out_labels))) return out_labels def _dep_trans(trans): if trans is not None: warn('trans is no longer needed and will be removed in 0.23, do not ' 'pass it as an argument', DeprecationWarning) def _get_default_label_modes(): return sorted(_label_funcs.keys()) + ['auto'] def _get_allowed_label_modes(stc): if isinstance(stc, (_BaseVolSourceEstimate, _BaseVectorSourceEstimate)): return ('mean', 'max', 'auto') else: return _get_default_label_modes() def _gen_extract_label_time_course(stcs, labels, src, mode='mean', allow_empty=False, trans=None, mri_resolution=True, verbose=None): # loop through source estimates and extract time series if src is None and mode in ['mean', 'max']: kind = 'surface' else: _validate_type(src, SourceSpaces) kind = src.kind _dep_trans(trans) _check_option('mode', mode, _get_default_label_modes()) if kind in ('surface', 'mixed'): if not isinstance(labels, list): labels = [labels] use_sparse = False else: labels = _volume_labels(src, labels, mri_resolution) use_sparse = bool(mri_resolution) n_mode = len(labels) # how many processed with the given mode n_mean = len(src[2:]) if kind == 'mixed' else 0 n_labels = n_mode + n_mean vertno = func = None for si, stc in enumerate(stcs): _validate_type(stc, _BaseSourceEstimate, 'stcs[%d]' % (si,), 'source estimate') _check_option( 'mode', mode, _get_allowed_label_modes(stc), 'when using a vector and/or volume source estimate') if isinstance(stc, (_BaseVolSourceEstimate, _BaseVectorSourceEstimate)): mode = 'mean' if mode == 'auto' else mode else: mode = 'mean_flip' if mode == 'auto' else mode if vertno is None: vertno = copy.deepcopy(stc.vertices) # avoid keeping a ref nvert = np.array([len(v) for v in vertno]) label_vertidx, src_flip = _prepare_label_extraction( stc, labels, src, mode, allow_empty, use_sparse) func = _label_funcs[mode] # make sure the stc is compatible with the source space if len(vertno) != len(stc.vertices): raise ValueError('stc not compatible with source space') for vn, svn in zip(vertno, stc.vertices): if len(vn) != len(svn): raise ValueError('stc not compatible with source space. ' 'stc has %s time series but there are %s ' 'vertices in source space. Ensure you used ' 'src from the forward or inverse operator, ' 'as forward computation can exclude vertices.' % (len(svn), len(vn))) if not np.array_equal(svn, vn): raise ValueError('stc not compatible with source space') logger.info('Extracting time courses for %d labels (mode: %s)' % (n_labels, mode)) # do the extraction label_tc = np.zeros((n_labels,) + stc.data.shape[1:], dtype=stc.data.dtype) for i, (vertidx, flip) in enumerate(zip(label_vertidx, src_flip)): if vertidx is not None: if isinstance(vertidx, sparse.csr_matrix): assert mri_resolution assert vertidx.shape[1] == stc.data.shape[0] this_data = np.reshape(stc.data, (stc.data.shape[0], -1)) this_data = vertidx @ this_data this_data.shape = \ (this_data.shape[0],) + stc.data.shape[1:] else: this_data = stc.data[vertidx] label_tc[i] = func(flip, this_data) # extract label time series for the vol src space (only mean supported) offset = nvert[:-n_mean].sum() # effectively :2 or :0 for i, nv in enumerate(nvert[2:]): if nv != 0: v2 = offset + nv label_tc[n_mode + i] = np.mean(stc.data[offset:v2], axis=0) offset = v2 # this is a generator! yield label_tc @verbose def extract_label_time_course(stcs, labels, src, mode='auto', allow_empty=False, return_generator=False, *, trans=None, mri_resolution=True, verbose=None): """Extract label time course for lists of labels and source estimates. This function will extract one time course for each label and source estimate. The way the time courses are extracted depends on the mode parameter (see Notes). Parameters ---------- stcs : SourceEstimate | list (or generator) of SourceEstimate The source estimates from which to extract the time course. %(eltc_labels)s %(eltc_src)s %(eltc_mode)s %(eltc_allow_empty)s return_generator : bool If True, a generator instead of a list is returned. %(trans_deprecated)s %(eltc_mri_resolution)s %(verbose)s Returns ------- %(eltc_returns)s Notes ----- %(eltc_mode_notes)s If encountering a ``ValueError`` due to mismatch between number of source points in the subject source space and computed ``stc`` object set ``src`` argument to ``fwd['src']`` or ``inv['src']`` to ensure the source space is the one actually used by the inverse to compute the source time courses. """ # convert inputs to lists if not isinstance(stcs, (list, tuple, GeneratorType)): stcs = [stcs] return_several = False return_generator = False else: return_several = True label_tc = _gen_extract_label_time_course( stcs, labels, src, mode=mode, allow_empty=allow_empty, trans=trans, mri_resolution=mri_resolution) if not return_generator: # do the extraction and return a list label_tc = list(label_tc) if not return_several: # input was a single SoureEstimate, return single array label_tc = label_tc[0] return label_tc @verbose def stc_near_sensors(evoked, trans, subject, distance=0.01, mode='sum', project=True, subjects_dir=None, src=None, verbose=None): """Create a STC from ECoG and sEEG sensor data. Parameters ---------- evoked : instance of Evoked The evoked data. Must contain ECoG, or sEEG channels. %(trans)s subject : str The subject name. distance : float Distance (m) defining the activation "ball" of the sensor. mode : str Can be "sum" to do a linear sum of weights, "nearest" to use only the weight of the nearest sensor, or "zero" to use a zero-order hold. See Notes. project : bool If True, project the electrodes to the nearest ``'pial`` surface vertex before computing distances. Only used when doing a surface projection. %(subjects_dir)s src : instance of SourceSpaces The source space. .. warning:: If a surface source space is used, make sure that ``surf='pial'`` was used during construction. %(verbose)s Returns ------- stc : instance of SourceEstimate The surface source estimate. If src is None, a surface source estimate will be produced, and the number of vertices will equal the number of pial-surface vertices that were close enough to the sensors to take on a non-zero volue. If src is not None, a surface, volume, or mixed source estimate will be produced (depending on the kind of source space passed) and the vertices will match those of src (i.e., there may be me many all-zero values in stc.data). Notes ----- For surface projections, this function projects the ECoG sensors to the pial surface (if ``project``), then the activation at each pial surface vertex is given by the mode: - ``'sum'`` Activation is the sum across each sensor weighted by the fractional ``distance`` from each sensor. A sensor with zero distance gets weight 1 and a sensor at ``distance`` meters away (or larger) gets weight 0. If ``distance`` is less than the distance between any two electrodes, this will be the same as ``'nearest'``. - ``'weighted'`` Same as ``'sum'`` except that only the nearest electrode is used, rather than summing across electrodes within the ``distance`` radius. As as ``'nearest'`` for vertices with distance zero to the projected sensor. - ``'nearest'`` The value is given by the value of the nearest sensor, up to a ``distance`` (beyond which it is zero). If creating a Volume STC, ``src`` must be passed in, and this function will project sEEG sensors to nearby surrounding vertices. Then the activation at each volume vertex is given by the mode in the same way as ECoG surface projections. .. versionadded:: 0.22 """ from scipy.spatial.distance import cdist, pdist from .evoked import Evoked _validate_type(evoked, Evoked, 'evoked') _validate_type(mode, str, 'mode') _validate_type(src, (None, SourceSpaces), 'src') _check_option('mode', mode, ('sum', 'single', 'nearest')) # create a copy of Evoked using ecog and seeg evoked = evoked.copy().pick_types(ecog=True, seeg=True) # get channel positions that will be used to pinpoint where # in the Source space we will use the evoked data pos = evoked._get_channel_positions() # remove nan channels nan_inds = np.where(np.isnan(pos).any(axis=1))[0] nan_chs = [evoked.ch_names[idx] for idx in nan_inds] evoked.drop_channels(nan_chs) pos = [pos[idx] for idx in range(len(pos)) if idx not in nan_inds] # coord_frame transformation from native mne "head" to MRI coord_frame trans, _ = _get_trans(trans, 'head', 'mri', allow_none=True) # convert head positions -> coord_frame MRI pos = apply_trans(trans, pos) subject = _check_subject(None, subject, False) subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) if src is None: # fake a full surface one rrs = [read_surface(op.join(subjects_dir, subject, 'surf', f'{hemi}.pial'))[0] for hemi in ('lh', 'rh')] src = SourceSpaces([ dict(rr=rr / 1000., vertno=np.arange(len(rr)), type='surf', coord_frame=FIFF.FIFFV_COORD_MRI) for rr in rrs]) del rrs keep_all = False else: keep_all = True # ensure it's a usable one klass = dict( surface=SourceEstimate, volume=VolSourceEstimate, mixed=MixedSourceEstimate, ) _check_option('src.kind', src.kind, sorted(klass.keys())) klass = klass[src.kind] rrs = np.concatenate([s['rr'][s['vertno']] for s in src]) if src[0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD: rrs = apply_trans(trans, rrs) # projection will only occur with surfaces logger.info( f'Projecting data from {len(pos)} sensor{_pl(pos)} onto {len(rrs)} ' f'{src.kind} vertices: {mode} mode') if project and src.kind == 'surface': logger.info(' Projecting electrodes onto surface') pos = _project_onto_surface(pos, dict(rr=rrs), project_rrs=True, method='nearest')[2] min_dist = pdist(pos).min() * 1000 logger.info( f' Minimum {"projected " if project else ""}intra-sensor distance: ' f'{min_dist:0.1f} mm') # compute pairwise distance between source space points and sensors dists = cdist(rrs, pos) assert dists.shape == (len(rrs), len(pos)) # only consider vertices within our "epsilon-ball" # characterized by distance kwarg vertices = np.where((dists <= distance).any(-1))[0] logger.info(f' {len(vertices)} / {len(rrs)} non-zero vertices') w = np.maximum(1. - dists[vertices] / distance, 0) # now we triage based on mode if mode in ('single', 'nearest'): range_ = np.arange(w.shape[0]) idx = np.argmax(w, axis=1) vals = w[range_, idx] if mode == 'single' else 1. w.fill(0) w[range_, idx] = vals missing = np.where(~np.any(w, axis=0))[0] if len(missing): warn(f'Channel{_pl(missing)} missing in STC: ' f'{", ".join(evoked.ch_names[mi] for mi in missing)}') nz_data = w @ evoked.data if not keep_all: assert src.kind == 'surface' data = nz_data offset = len(src[0]['vertno']) vertices = [vertices[vertices < offset], vertices[vertices >= offset] - offset] else: data = np.zeros( (sum(len(s['vertno']) for s in src), len(evoked.times)), dtype=nz_data.dtype) data[vertices] = nz_data vertices = [s['vertno'].copy() for s in src] return klass(data, vertices, evoked.times[0], 1. / evoked.info['sfreq'], subject=subject, verbose=verbose)
bsd-3-clause
kashif/scikit-learn
sklearn/linear_model/tests/test_sag.py
33
28228
# Authors: Danny Sullivan <[email protected]> # Tom Dupre la Tour <[email protected]> # # Licence: BSD 3 clause import math import numpy as np import scipy.sparse as sp from sklearn.linear_model.sag import get_auto_step_size from sklearn.linear_model.sag_fast import _multinomial_grad_loss_all_samples from sklearn.linear_model import LogisticRegression, Ridge from sklearn.linear_model.base import make_dataset from sklearn.linear_model.logistic import _multinomial_loss_grad from sklearn.utils.extmath import logsumexp from sklearn.utils.extmath import row_norms from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.utils import compute_class_weight from sklearn.utils import check_random_state from sklearn.preprocessing import LabelEncoder, LabelBinarizer from sklearn.datasets import make_blobs, load_iris from sklearn.base import clone iris = load_iris() # this is used for sag classification def log_dloss(p, y): z = p * y # approximately equal and saves the computation of the log if z > 18.0: return math.exp(-z) * -y if z < -18.0: return -y return -y / (math.exp(z) + 1.0) def log_loss(p, y): return np.mean(np.log(1. + np.exp(-y * p))) # this is used for sag regression def squared_dloss(p, y): return p - y def squared_loss(p, y): return np.mean(0.5 * (p - y) * (p - y)) # function for measuring the log loss def get_pobj(w, alpha, myX, myy, loss): w = w.ravel() pred = np.dot(myX, w) p = loss(pred, myy) p += alpha * w.dot(w) / 2. return p def sag(X, y, step_size, alpha, n_iter=1, dloss=None, sparse=False, sample_weight=None, fit_intercept=True): n_samples, n_features = X.shape[0], X.shape[1] weights = np.zeros(X.shape[1]) sum_gradient = np.zeros(X.shape[1]) gradient_memory = np.zeros((n_samples, n_features)) intercept = 0.0 intercept_sum_gradient = 0.0 intercept_gradient_memory = np.zeros(n_samples) rng = np.random.RandomState(77) decay = 1.0 seen = set() # sparse data has a fixed decay of .01 if sparse: decay = .01 for epoch in range(n_iter): for k in range(n_samples): idx = int(rng.rand(1) * n_samples) # idx = k entry = X[idx] seen.add(idx) p = np.dot(entry, weights) + intercept gradient = dloss(p, y[idx]) if sample_weight is not None: gradient *= sample_weight[idx] update = entry * gradient + alpha * weights sum_gradient += update - gradient_memory[idx] gradient_memory[idx] = update if fit_intercept: intercept_sum_gradient += (gradient - intercept_gradient_memory[idx]) intercept_gradient_memory[idx] = gradient intercept -= (step_size * intercept_sum_gradient / len(seen) * decay) weights -= step_size * sum_gradient / len(seen) return weights, intercept def sag_sparse(X, y, step_size, alpha, n_iter=1, dloss=None, sample_weight=None, sparse=False, fit_intercept=True): if step_size * alpha == 1.: raise ZeroDivisionError("Sparse sag does not handle the case " "step_size * alpha == 1") n_samples, n_features = X.shape[0], X.shape[1] weights = np.zeros(n_features) sum_gradient = np.zeros(n_features) last_updated = np.zeros(n_features, dtype=np.int) gradient_memory = np.zeros(n_samples) rng = np.random.RandomState(77) intercept = 0.0 intercept_sum_gradient = 0.0 wscale = 1.0 decay = 1.0 seen = set() c_sum = np.zeros(n_iter * n_samples) # sparse data has a fixed decay of .01 if sparse: decay = .01 counter = 0 for epoch in range(n_iter): for k in range(n_samples): # idx = k idx = int(rng.rand(1) * n_samples) entry = X[idx] seen.add(idx) if counter >= 1: for j in range(n_features): if last_updated[j] == 0: weights[j] -= c_sum[counter - 1] * sum_gradient[j] else: weights[j] -= ((c_sum[counter - 1] - c_sum[last_updated[j] - 1]) * sum_gradient[j]) last_updated[j] = counter p = (wscale * np.dot(entry, weights)) + intercept gradient = dloss(p, y[idx]) if sample_weight is not None: gradient *= sample_weight[idx] update = entry * gradient sum_gradient += update - (gradient_memory[idx] * entry) if fit_intercept: intercept_sum_gradient += gradient - gradient_memory[idx] intercept -= (step_size * intercept_sum_gradient / len(seen) * decay) gradient_memory[idx] = gradient wscale *= (1.0 - alpha * step_size) if counter == 0: c_sum[0] = step_size / (wscale * len(seen)) else: c_sum[counter] = (c_sum[counter - 1] + step_size / (wscale * len(seen))) if counter >= 1 and wscale < 1e-9: for j in range(n_features): if last_updated[j] == 0: weights[j] -= c_sum[counter] * sum_gradient[j] else: weights[j] -= ((c_sum[counter] - c_sum[last_updated[j] - 1]) * sum_gradient[j]) last_updated[j] = counter + 1 c_sum[counter] = 0 weights *= wscale wscale = 1.0 counter += 1 for j in range(n_features): if last_updated[j] == 0: weights[j] -= c_sum[counter - 1] * sum_gradient[j] else: weights[j] -= ((c_sum[counter - 1] - c_sum[last_updated[j] - 1]) * sum_gradient[j]) weights *= wscale return weights, intercept def get_step_size(X, alpha, fit_intercept, classification=True): if classification: return (4.0 / (np.max(np.sum(X * X, axis=1)) + fit_intercept + 4.0 * alpha)) else: return 1.0 / (np.max(np.sum(X * X, axis=1)) + fit_intercept + alpha) @ignore_warnings def test_classifier_matching(): n_samples = 20 X, y = make_blobs(n_samples=n_samples, centers=2, random_state=0, cluster_std=0.1) y[y == 0] = -1 alpha = 1.1 n_iter = 80 fit_intercept = True step_size = get_step_size(X, alpha, fit_intercept) clf = LogisticRegression(solver="sag", fit_intercept=fit_intercept, tol=1e-11, C=1. / alpha / n_samples, max_iter=n_iter, random_state=10) clf.fit(X, y) weights, intercept = sag_sparse(X, y, step_size, alpha, n_iter=n_iter, dloss=log_dloss, fit_intercept=fit_intercept) weights2, intercept2 = sag(X, y, step_size, alpha, n_iter=n_iter, dloss=log_dloss, fit_intercept=fit_intercept) weights = np.atleast_2d(weights) intercept = np.atleast_1d(intercept) weights2 = np.atleast_2d(weights2) intercept2 = np.atleast_1d(intercept2) assert_array_almost_equal(weights, clf.coef_, decimal=10) assert_array_almost_equal(intercept, clf.intercept_, decimal=10) assert_array_almost_equal(weights2, clf.coef_, decimal=10) assert_array_almost_equal(intercept2, clf.intercept_, decimal=10) @ignore_warnings def test_regressor_matching(): n_samples = 10 n_features = 5 rng = np.random.RandomState(10) X = rng.normal(size=(n_samples, n_features)) true_w = rng.normal(size=n_features) y = X.dot(true_w) alpha = 1. n_iter = 100 fit_intercept = True step_size = get_step_size(X, alpha, fit_intercept, classification=False) clf = Ridge(fit_intercept=fit_intercept, tol=.00000000001, solver='sag', alpha=alpha * n_samples, max_iter=n_iter) clf.fit(X, y) weights1, intercept1 = sag_sparse(X, y, step_size, alpha, n_iter=n_iter, dloss=squared_dloss, fit_intercept=fit_intercept) weights2, intercept2 = sag(X, y, step_size, alpha, n_iter=n_iter, dloss=squared_dloss, fit_intercept=fit_intercept) assert_array_almost_equal(weights1, clf.coef_, decimal=10) assert_array_almost_equal(intercept1, clf.intercept_, decimal=10) assert_array_almost_equal(weights2, clf.coef_, decimal=10) assert_array_almost_equal(intercept2, clf.intercept_, decimal=10) @ignore_warnings def test_sag_pobj_matches_logistic_regression(): """tests if the sag pobj matches log reg""" n_samples = 100 alpha = 1.0 max_iter = 20 X, y = make_blobs(n_samples=n_samples, centers=2, random_state=0, cluster_std=0.1) clf1 = LogisticRegression(solver='sag', fit_intercept=False, tol=.0000001, C=1. / alpha / n_samples, max_iter=max_iter, random_state=10) clf2 = clone(clf1) clf3 = LogisticRegression(fit_intercept=False, tol=.0000001, C=1. / alpha / n_samples, max_iter=max_iter, random_state=10) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) clf3.fit(X, y) pobj1 = get_pobj(clf1.coef_, alpha, X, y, log_loss) pobj2 = get_pobj(clf2.coef_, alpha, X, y, log_loss) pobj3 = get_pobj(clf3.coef_, alpha, X, y, log_loss) assert_array_almost_equal(pobj1, pobj2, decimal=4) assert_array_almost_equal(pobj2, pobj3, decimal=4) assert_array_almost_equal(pobj3, pobj1, decimal=4) @ignore_warnings def test_sag_pobj_matches_ridge_regression(): """tests if the sag pobj matches ridge reg""" n_samples = 100 n_features = 10 alpha = 1.0 n_iter = 100 fit_intercept = False rng = np.random.RandomState(10) X = rng.normal(size=(n_samples, n_features)) true_w = rng.normal(size=n_features) y = X.dot(true_w) clf1 = Ridge(fit_intercept=fit_intercept, tol=.00000000001, solver='sag', alpha=alpha, max_iter=n_iter, random_state=42) clf2 = clone(clf1) clf3 = Ridge(fit_intercept=fit_intercept, tol=.00001, solver='lsqr', alpha=alpha, max_iter=n_iter, random_state=42) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) clf3.fit(X, y) pobj1 = get_pobj(clf1.coef_, alpha, X, y, squared_loss) pobj2 = get_pobj(clf2.coef_, alpha, X, y, squared_loss) pobj3 = get_pobj(clf3.coef_, alpha, X, y, squared_loss) assert_array_almost_equal(pobj1, pobj2, decimal=4) assert_array_almost_equal(pobj1, pobj3, decimal=4) assert_array_almost_equal(pobj3, pobj2, decimal=4) @ignore_warnings def test_sag_regressor_computed_correctly(): """tests if the sag regressor is computed correctly""" alpha = .1 n_features = 10 n_samples = 40 max_iter = 50 tol = .000001 fit_intercept = True rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) w = rng.normal(size=n_features) y = np.dot(X, w) + 2. step_size = get_step_size(X, alpha, fit_intercept, classification=False) clf1 = Ridge(fit_intercept=fit_intercept, tol=tol, solver='sag', alpha=alpha * n_samples, max_iter=max_iter) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) spweights1, spintercept1 = sag_sparse(X, y, step_size, alpha, n_iter=max_iter, dloss=squared_dloss, fit_intercept=fit_intercept) spweights2, spintercept2 = sag_sparse(X, y, step_size, alpha, n_iter=max_iter, dloss=squared_dloss, sparse=True, fit_intercept=fit_intercept) assert_array_almost_equal(clf1.coef_.ravel(), spweights1.ravel(), decimal=3) assert_almost_equal(clf1.intercept_, spintercept1, decimal=1) # TODO: uncomment when sparse Ridge with intercept will be fixed (#4710) #assert_array_almost_equal(clf2.coef_.ravel(), # spweights2.ravel(), # decimal=3) #assert_almost_equal(clf2.intercept_, spintercept2, decimal=1)''' @ignore_warnings def test_get_auto_step_size(): X = np.array([[1, 2, 3], [2, 3, 4], [2, 3, 2]], dtype=np.float64) alpha = 1.2 fit_intercept = False # sum the squares of the second sample because that's the largest max_squared_sum = 4 + 9 + 16 max_squared_sum_ = row_norms(X, squared=True).max() assert_almost_equal(max_squared_sum, max_squared_sum_, decimal=4) for fit_intercept in (True, False): step_size_sqr = 1.0 / (max_squared_sum + alpha + int(fit_intercept)) step_size_log = 4.0 / (max_squared_sum + 4.0 * alpha + int(fit_intercept)) step_size_sqr_ = get_auto_step_size(max_squared_sum_, alpha, "squared", fit_intercept) step_size_log_ = get_auto_step_size(max_squared_sum_, alpha, "log", fit_intercept) assert_almost_equal(step_size_sqr, step_size_sqr_, decimal=4) assert_almost_equal(step_size_log, step_size_log_, decimal=4) msg = 'Unknown loss function for SAG solver, got wrong instead of' assert_raise_message(ValueError, msg, get_auto_step_size, max_squared_sum_, alpha, "wrong", fit_intercept) @ignore_warnings def test_sag_regressor(): """tests if the sag regressor performs well""" xmin, xmax = -5, 5 n_samples = 20 tol = .001 max_iter = 20 alpha = 0.1 rng = np.random.RandomState(0) X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1) # simple linear function without noise y = 0.5 * X.ravel() clf1 = Ridge(tol=tol, solver='sag', max_iter=max_iter, alpha=alpha * n_samples) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) score1 = clf1.score(X, y) score2 = clf2.score(X, y) assert_greater(score1, 0.99) assert_greater(score2, 0.99) # simple linear function with noise y = 0.5 * X.ravel() + rng.randn(n_samples, 1).ravel() clf1 = Ridge(tol=tol, solver='sag', max_iter=max_iter, alpha=alpha * n_samples) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) score1 = clf1.score(X, y) score2 = clf2.score(X, y) score2 = clf2.score(X, y) assert_greater(score1, 0.5) assert_greater(score2, 0.5) @ignore_warnings def test_sag_classifier_computed_correctly(): """tests if the binary classifier is computed correctly""" alpha = .1 n_samples = 50 n_iter = 50 tol = .00001 fit_intercept = True X, y = make_blobs(n_samples=n_samples, centers=2, random_state=0, cluster_std=0.1) step_size = get_step_size(X, alpha, fit_intercept, classification=True) classes = np.unique(y) y_tmp = np.ones(n_samples) y_tmp[y != classes[1]] = -1 y = y_tmp clf1 = LogisticRegression(solver='sag', C=1. / alpha / n_samples, max_iter=n_iter, tol=tol, random_state=77, fit_intercept=fit_intercept) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) spweights, spintercept = sag_sparse(X, y, step_size, alpha, n_iter=n_iter, dloss=log_dloss, fit_intercept=fit_intercept) spweights2, spintercept2 = sag_sparse(X, y, step_size, alpha, n_iter=n_iter, dloss=log_dloss, sparse=True, fit_intercept=fit_intercept) assert_array_almost_equal(clf1.coef_.ravel(), spweights.ravel(), decimal=2) assert_almost_equal(clf1.intercept_, spintercept, decimal=1) assert_array_almost_equal(clf2.coef_.ravel(), spweights2.ravel(), decimal=2) assert_almost_equal(clf2.intercept_, spintercept2, decimal=1) @ignore_warnings def test_sag_multiclass_computed_correctly(): """tests if the multiclass classifier is computed correctly""" alpha = .1 n_samples = 20 tol = .00001 max_iter = 40 fit_intercept = True X, y = make_blobs(n_samples=n_samples, centers=3, random_state=0, cluster_std=0.1) step_size = get_step_size(X, alpha, fit_intercept, classification=True) classes = np.unique(y) clf1 = LogisticRegression(solver='sag', C=1. / alpha / n_samples, max_iter=max_iter, tol=tol, random_state=77, fit_intercept=fit_intercept) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) coef1 = [] intercept1 = [] coef2 = [] intercept2 = [] for cl in classes: y_encoded = np.ones(n_samples) y_encoded[y != cl] = -1 spweights1, spintercept1 = sag_sparse(X, y_encoded, step_size, alpha, dloss=log_dloss, n_iter=max_iter, fit_intercept=fit_intercept) spweights2, spintercept2 = sag_sparse(X, y_encoded, step_size, alpha, dloss=log_dloss, n_iter=max_iter, sparse=True, fit_intercept=fit_intercept) coef1.append(spweights1) intercept1.append(spintercept1) coef2.append(spweights2) intercept2.append(spintercept2) coef1 = np.vstack(coef1) intercept1 = np.array(intercept1) coef2 = np.vstack(coef2) intercept2 = np.array(intercept2) for i, cl in enumerate(classes): assert_array_almost_equal(clf1.coef_[i].ravel(), coef1[i].ravel(), decimal=2) assert_almost_equal(clf1.intercept_[i], intercept1[i], decimal=1) assert_array_almost_equal(clf2.coef_[i].ravel(), coef2[i].ravel(), decimal=2) assert_almost_equal(clf2.intercept_[i], intercept2[i], decimal=1) @ignore_warnings def test_classifier_results(): """tests if classifier results match target""" alpha = .1 n_features = 20 n_samples = 10 tol = .01 max_iter = 200 rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) w = rng.normal(size=n_features) y = np.dot(X, w) y = np.sign(y) clf1 = LogisticRegression(solver='sag', C=1. / alpha / n_samples, max_iter=max_iter, tol=tol, random_state=77) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) pred1 = clf1.predict(X) pred2 = clf2.predict(X) assert_almost_equal(pred1, y, decimal=12) assert_almost_equal(pred2, y, decimal=12) @ignore_warnings def test_binary_classifier_class_weight(): """tests binary classifier with classweights for each class""" alpha = .1 n_samples = 50 n_iter = 20 tol = .00001 fit_intercept = True X, y = make_blobs(n_samples=n_samples, centers=2, random_state=10, cluster_std=0.1) step_size = get_step_size(X, alpha, fit_intercept, classification=True) classes = np.unique(y) y_tmp = np.ones(n_samples) y_tmp[y != classes[1]] = -1 y = y_tmp class_weight = {1: .45, -1: .55} clf1 = LogisticRegression(solver='sag', C=1. / alpha / n_samples, max_iter=n_iter, tol=tol, random_state=77, fit_intercept=fit_intercept, class_weight=class_weight) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) le = LabelEncoder() class_weight_ = compute_class_weight(class_weight, np.unique(y), y) sample_weight = class_weight_[le.fit_transform(y)] spweights, spintercept = sag_sparse(X, y, step_size, alpha, n_iter=n_iter, dloss=log_dloss, sample_weight=sample_weight, fit_intercept=fit_intercept) spweights2, spintercept2 = sag_sparse(X, y, step_size, alpha, n_iter=n_iter, dloss=log_dloss, sparse=True, sample_weight=sample_weight, fit_intercept=fit_intercept) assert_array_almost_equal(clf1.coef_.ravel(), spweights.ravel(), decimal=2) assert_almost_equal(clf1.intercept_, spintercept, decimal=1) assert_array_almost_equal(clf2.coef_.ravel(), spweights2.ravel(), decimal=2) assert_almost_equal(clf2.intercept_, spintercept2, decimal=1) @ignore_warnings def test_multiclass_classifier_class_weight(): """tests multiclass with classweights for each class""" alpha = .1 n_samples = 20 tol = .00001 max_iter = 50 class_weight = {0: .45, 1: .55, 2: .75} fit_intercept = True X, y = make_blobs(n_samples=n_samples, centers=3, random_state=0, cluster_std=0.1) step_size = get_step_size(X, alpha, fit_intercept, classification=True) classes = np.unique(y) clf1 = LogisticRegression(solver='sag', C=1. / alpha / n_samples, max_iter=max_iter, tol=tol, random_state=77, fit_intercept=fit_intercept, class_weight=class_weight) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) le = LabelEncoder() class_weight_ = compute_class_weight(class_weight, np.unique(y), y) sample_weight = class_weight_[le.fit_transform(y)] coef1 = [] intercept1 = [] coef2 = [] intercept2 = [] for cl in classes: y_encoded = np.ones(n_samples) y_encoded[y != cl] = -1 spweights1, spintercept1 = sag_sparse(X, y_encoded, step_size, alpha, n_iter=max_iter, dloss=log_dloss, sample_weight=sample_weight) spweights2, spintercept2 = sag_sparse(X, y_encoded, step_size, alpha, n_iter=max_iter, dloss=log_dloss, sample_weight=sample_weight, sparse=True) coef1.append(spweights1) intercept1.append(spintercept1) coef2.append(spweights2) intercept2.append(spintercept2) coef1 = np.vstack(coef1) intercept1 = np.array(intercept1) coef2 = np.vstack(coef2) intercept2 = np.array(intercept2) for i, cl in enumerate(classes): assert_array_almost_equal(clf1.coef_[i].ravel(), coef1[i].ravel(), decimal=2) assert_almost_equal(clf1.intercept_[i], intercept1[i], decimal=1) assert_array_almost_equal(clf2.coef_[i].ravel(), coef2[i].ravel(), decimal=2) assert_almost_equal(clf2.intercept_[i], intercept2[i], decimal=1) def test_classifier_single_class(): """tests if ValueError is thrown with only one class""" X = [[1, 2], [3, 4]] y = [1, 1] assert_raise_message(ValueError, "This solver needs samples of at least 2 classes " "in the data", LogisticRegression(solver='sag').fit, X, y) def test_step_size_alpha_error(): X = [[0, 0], [0, 0]] y = [1, -1] fit_intercept = False alpha = 1. msg = ("Current sag implementation does not handle the case" " step_size * alpha_scaled == 1") clf1 = LogisticRegression(solver='sag', C=1. / alpha, fit_intercept=fit_intercept) assert_raise_message(ZeroDivisionError, msg, clf1.fit, X, y) clf2 = Ridge(fit_intercept=fit_intercept, solver='sag', alpha=alpha) assert_raise_message(ZeroDivisionError, msg, clf2.fit, X, y) def test_multinomial_loss(): # test if the multinomial loss and gradient computations are consistent X, y = iris.data, iris.target.astype(np.float64) n_samples, n_features = X.shape n_classes = len(np.unique(y)) rng = check_random_state(42) weights = rng.randn(n_features, n_classes) intercept = rng.randn(n_classes) sample_weights = rng.randn(n_samples) np.abs(sample_weights, sample_weights) # compute loss and gradient like in multinomial SAG dataset, _ = make_dataset(X, y, sample_weights, random_state=42) loss_1, grad_1 = _multinomial_grad_loss_all_samples(dataset, weights, intercept, n_samples, n_features, n_classes) # compute loss and gradient like in multinomial LogisticRegression lbin = LabelBinarizer() Y_bin = lbin.fit_transform(y) weights_intercept = np.vstack((weights, intercept)).T.ravel() loss_2, grad_2, _ = _multinomial_loss_grad(weights_intercept, X, Y_bin, 0.0, sample_weights) grad_2 = grad_2.reshape(n_classes, -1) grad_2 = grad_2[:, :-1].T # comparison assert_array_almost_equal(grad_1, grad_2) assert_almost_equal(loss_1, loss_2) def test_multinomial_loss_ground_truth(): # n_samples, n_features, n_classes = 4, 2, 3 n_classes = 3 X = np.array([[1.1, 2.2], [2.2, -4.4], [3.3, -2.2], [1.1, 1.1]]) y = np.array([0, 1, 2, 0]) lbin = LabelBinarizer() Y_bin = lbin.fit_transform(y) weights = np.array([[0.1, 0.2, 0.3], [1.1, 1.2, -1.3]]) intercept = np.array([1., 0, -.2]) sample_weights = np.array([0.8, 1, 1, 0.8]) prediction = np.dot(X, weights) + intercept logsumexp_prediction = logsumexp(prediction, axis=1) p = prediction - logsumexp_prediction[:, np.newaxis] loss_1 = -(sample_weights[:, np.newaxis] * p * Y_bin).sum() diff = sample_weights[:, np.newaxis] * (np.exp(p) - Y_bin) grad_1 = np.dot(X.T, diff) weights_intercept = np.vstack((weights, intercept)).T.ravel() loss_2, grad_2, _ = _multinomial_loss_grad(weights_intercept, X, Y_bin, 0.0, sample_weights) grad_2 = grad_2.reshape(n_classes, -1) grad_2 = grad_2[:, :-1].T assert_almost_equal(loss_1, loss_2) assert_array_almost_equal(grad_1, grad_2) # ground truth loss_gt = 11.680360354325961 grad_gt = np.array([[-0.557487, -1.619151, +2.176638], [-0.903942, +5.258745, -4.354803]]) assert_almost_equal(loss_1, loss_gt) assert_array_almost_equal(grad_1, grad_gt)
bsd-3-clause
zertan/Menace
menace/bin/addStrainCoverage.py
2
3094
#!/usr/bin/env python import numpy as np import pandas import xmltodict import os import sys #import time def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i+n] def binData(x,binSize): l=np.ceil((len(x)/binSize)) out=np.zeros(l+1) tmp=chunks(x,binSize) for i,val in enumerate(tmp): out[i]=np.sum(val) return out def interp(data,length): calls=0 while len(data)!=length: calls+=1 length1=len(data) cov=np.sum(data)/float(length1) diff=length-length1 binSize=int(np.ceil(length1/float(diff))) if binSize==0 or diff>length1/float(2.3): break chunks1=chunks(data,int(binSize)) #data2=data #print("nr " + str(diff)) vals=[] insert_ind=[] for i,val in enumerate(chunks1): binSize2=min(len(val),binSize) insert_ind.append(i*binSize+np.round(binSize2/float(2))) vals.append(np.mean(val)) vals=np.array(vals) insert_ind=np.array(insert_ind) #print(str(data.shape)) #print(str(insert_ind.shape)) #print(str(vals.shape)) #print(np.array_str(vals)) data=np.insert(data,insert_ind,vals) #print(str(data.shape)) cov2=np.sum(data)/length data=cov/cov2*data #print("k") if calls>=10: return [] #print(str(calls)) return data originFrame=pandas.read_csv(os.path.join(sys.argv[1],'extra','origins.txt'),delimiter=" ",index_col=0) #print(originFrame.to_string()) #originFrame=originFrame.transpose() #print(originFrame.to_string()) #print(sys.argv[3]) #print(originFrame.index.values) #print(originFrame.loc[sys.argv[2]]['Origin']) #for i,arg in enumerate(sys.argv[2:]): # print(originFrame.loc[:arg]) data=[] origin=[] genomeLen=[] bacteriaName=[] ind=0 for i,arg in enumerate(sys.argv[3:]): #print(arg+".depth") try: tmpData=np.array(pandas.read_csv(arg+".depth",delimiter=" ")).astype('float') data.append(tmpData) #ind=ind+1 with open(os.path.join(sys.argv[2],'Headers',arg+".xml")) as fd: obj = xmltodict.parse(fd.read()) #genomeLen.append(int(obj['DocSum']['Item'][8]['#text'])) bacteriaName.append(obj['DocSum']['Item'][1]['#text']) genomeLen.append(int(len(tmpData))) origin.append(int(originFrame.loc[arg]['Origin'])) data[ind]=np.roll(data[ind],-origin[ind]) ind=ind+1 except IOError as e: print(arg+" depth not found.") except ValueError as e: print(arg+" origin not found.") if not data or len(data)==1: sys.exit() #print("Len data: "+str(len(data))) #ind=np.where(np.max(genomeLen)) #print(str(ind)) #print(np.array_str(ind)) #print(str(genomeLen)) ind=genomeLen.index(max(genomeLen)) genomeLen=max(genomeLen)#[int(ind[0])] #print(str(genomeLen)) print("ind "+str(ind))# + "len "+str(len(genomeLen))) #print(str(len(data[ind]))) dataLen=len(data[ind]) data2=np.array(data[ind]).flatten() del data[ind] #print("init shape") bap=data2.shape #print(str(genomeLen)) for i,val in enumerate(data): tmp=interp(val,dataLen) print(sys.argv[3+i]+" tmp shape: "+ str(tmp.shape) + " init shape: "+str(bap)) if tmp.shape==data2.shape: data2=np.add(data2,tmp) print(sys.argv[3]) np.save(sys.argv[3], data2)
gpl-2.0
RachitKansal/scikit-learn
sklearn/feature_extraction/hashing.py
183
6155
# Author: Lars Buitinck <[email protected]> # License: BSD 3 clause import numbers import numpy as np import scipy.sparse as sp from . import _hashing from ..base import BaseEstimator, TransformerMixin def _iteritems(d): """Like d.iteritems, but accepts any collections.Mapping.""" return d.iteritems() if hasattr(d, "iteritems") else d.items() class FeatureHasher(BaseEstimator, TransformerMixin): """Implements feature hashing, aka the hashing trick. This class turns sequences of symbolic feature names (strings) into scipy.sparse matrices, using a hash function to compute the matrix column corresponding to a name. The hash function employed is the signed 32-bit version of Murmurhash3. Feature names of type byte string are used as-is. Unicode strings are converted to UTF-8 first, but no Unicode normalization is done. Feature values must be (finite) numbers. This class is a low-memory alternative to DictVectorizer and CountVectorizer, intended for large-scale (online) learning and situations where memory is tight, e.g. when running prediction code on embedded devices. Read more in the :ref:`User Guide <feature_hashing>`. Parameters ---------- n_features : integer, optional The number of features (columns) in the output matrices. Small numbers of features are likely to cause hash collisions, but large numbers will cause larger coefficient dimensions in linear learners. dtype : numpy type, optional The type of feature values. Passed to scipy.sparse matrix constructors as the dtype argument. Do not set this to bool, np.boolean or any unsigned integer type. input_type : string, optional Either "dict" (the default) to accept dictionaries over (feature_name, value); "pair" to accept pairs of (feature_name, value); or "string" to accept single strings. feature_name should be a string, while value should be a number. In the case of "string", a value of 1 is implied. The feature_name is hashed to find the appropriate column for the feature. The value's sign might be flipped in the output (but see non_negative, below). non_negative : boolean, optional, default np.float64 Whether output matrices should contain non-negative values only; effectively calls abs on the matrix prior to returning it. When True, output values can be interpreted as frequencies. When False, output values will have expected value zero. Examples -------- >>> from sklearn.feature_extraction import FeatureHasher >>> h = FeatureHasher(n_features=10) >>> D = [{'dog': 1, 'cat':2, 'elephant':4},{'dog': 2, 'run': 5}] >>> f = h.transform(D) >>> f.toarray() array([[ 0., 0., -4., -1., 0., 0., 0., 0., 0., 2.], [ 0., 0., 0., -2., -5., 0., 0., 0., 0., 0.]]) See also -------- DictVectorizer : vectorizes string-valued features using a hash table. sklearn.preprocessing.OneHotEncoder : handles nominal/categorical features encoded as columns of integers. """ def __init__(self, n_features=(2 ** 20), input_type="dict", dtype=np.float64, non_negative=False): self._validate_params(n_features, input_type) self.dtype = dtype self.input_type = input_type self.n_features = n_features self.non_negative = non_negative @staticmethod def _validate_params(n_features, input_type): # strangely, np.int16 instances are not instances of Integral, # while np.int64 instances are... if not isinstance(n_features, (numbers.Integral, np.integer)): raise TypeError("n_features must be integral, got %r (%s)." % (n_features, type(n_features))) elif n_features < 1 or n_features >= 2 ** 31: raise ValueError("Invalid number of features (%d)." % n_features) if input_type not in ("dict", "pair", "string"): raise ValueError("input_type must be 'dict', 'pair' or 'string'," " got %r." % input_type) def fit(self, X=None, y=None): """No-op. This method doesn't do anything. It exists purely for compatibility with the scikit-learn transformer API. Returns ------- self : FeatureHasher """ # repeat input validation for grid search (which calls set_params) self._validate_params(self.n_features, self.input_type) return self def transform(self, raw_X, y=None): """Transform a sequence of instances to a scipy.sparse matrix. Parameters ---------- raw_X : iterable over iterable over raw features, length = n_samples Samples. Each sample must be iterable an (e.g., a list or tuple) containing/generating feature names (and optionally values, see the input_type constructor argument) which will be hashed. raw_X need not support the len function, so it can be the result of a generator; n_samples is determined on the fly. y : (ignored) Returns ------- X : scipy.sparse matrix, shape = (n_samples, self.n_features) Feature matrix, for use with estimators or further transformers. """ raw_X = iter(raw_X) if self.input_type == "dict": raw_X = (_iteritems(d) for d in raw_X) elif self.input_type == "string": raw_X = (((f, 1) for f in x) for x in raw_X) indices, indptr, values = \ _hashing.transform(raw_X, self.n_features, self.dtype) n_samples = indptr.shape[0] - 1 if n_samples == 0: raise ValueError("Cannot vectorize empty sequence.") X = sp.csr_matrix((values, indices, indptr), dtype=self.dtype, shape=(n_samples, self.n_features)) X.sum_duplicates() # also sorts the indices if self.non_negative: np.abs(X.data, X.data) return X
bsd-3-clause
JsNoNo/scikit-learn
benchmarks/bench_covertype.py
120
7381
""" =========================== Covertype dataset benchmark =========================== Benchmark stochastic gradient descent (SGD), Liblinear, and Naive Bayes, CART (decision tree), RandomForest and Extra-Trees on the forest covertype dataset of Blackard, Jock, and Dean [1]. The dataset comprises 581,012 samples. It is low dimensional with 54 features and a sparsity of approx. 23%. Here, we consider the task of predicting class 1 (spruce/fir). The classification performance of SGD is competitive with Liblinear while being two orders of magnitude faster to train:: [..] Classification performance: =========================== Classifier train-time test-time error-rate -------------------------------------------- liblinear 15.9744s 0.0705s 0.2305 GaussianNB 3.0666s 0.3884s 0.4841 SGD 1.0558s 0.1152s 0.2300 CART 79.4296s 0.0523s 0.0469 RandomForest 1190.1620s 0.5881s 0.0243 ExtraTrees 640.3194s 0.6495s 0.0198 The same task has been used in a number of papers including: * `"SVM Optimization: Inverse Dependence on Training Set Size" <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.139.2112>`_ S. Shalev-Shwartz, N. Srebro - In Proceedings of ICML '08. * `"Pegasos: Primal estimated sub-gradient solver for svm" <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.8513>`_ S. Shalev-Shwartz, Y. Singer, N. Srebro - In Proceedings of ICML '07. * `"Training Linear SVMs in Linear Time" <www.cs.cornell.edu/People/tj/publications/joachims_06a.pdf>`_ T. Joachims - In SIGKDD '06 [1] http://archive.ics.uci.edu/ml/datasets/Covertype """ from __future__ import division, print_function # Author: Peter Prettenhofer <[email protected]> # Arnaud Joly <[email protected]> # License: BSD 3 clause import os from time import time import argparse import numpy as np from sklearn.datasets import fetch_covtype, get_data_home from sklearn.svm import LinearSVC from sklearn.linear_model import SGDClassifier, LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.metrics import zero_one_loss from sklearn.externals.joblib import Memory from sklearn.utils import check_array # Memoize the data extraction and memory map the resulting # train / test splits in readonly mode memory = Memory(os.path.join(get_data_home(), 'covertype_benchmark_data'), mmap_mode='r') @memory.cache def load_data(dtype=np.float32, order='C', random_state=13): """Load the data, then cache and memmap the train/test split""" ###################################################################### ## Load dataset print("Loading dataset...") data = fetch_covtype(download_if_missing=True, shuffle=True, random_state=random_state) X = check_array(data['data'], dtype=dtype, order=order) y = (data['target'] != 1).astype(np.int) ## Create train-test split (as [Joachims, 2006]) print("Creating train-test split...") n_train = 522911 X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] ## Standardize first 10 features (the numerical ones) mean = X_train.mean(axis=0) std = X_train.std(axis=0) mean[10:] = 0.0 std[10:] = 1.0 X_train = (X_train - mean) / std X_test = (X_test - mean) / std return X_train, X_test, y_train, y_test ESTIMATORS = { 'GBRT': GradientBoostingClassifier(n_estimators=250), 'ExtraTrees': ExtraTreesClassifier(n_estimators=20), 'RandomForest': RandomForestClassifier(n_estimators=20), 'CART': DecisionTreeClassifier(min_samples_split=5), 'SGD': SGDClassifier(alpha=0.001, n_iter=2), 'GaussianNB': GaussianNB(), 'liblinear': LinearSVC(loss="l2", penalty="l2", C=1000, dual=False, tol=1e-3), 'SAG': LogisticRegression(solver='sag', max_iter=2, C=1000) } if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--classifiers', nargs="+", choices=ESTIMATORS, type=str, default=['liblinear', 'GaussianNB', 'SGD', 'CART'], help="list of classifiers to benchmark.") parser.add_argument('--n-jobs', nargs="?", default=1, type=int, help="Number of concurrently running workers for " "models that support parallelism.") parser.add_argument('--order', nargs="?", default="C", type=str, choices=["F", "C"], help="Allow to choose between fortran and C ordered " "data") parser.add_argument('--random-seed', nargs="?", default=13, type=int, help="Common seed used by random number generator.") args = vars(parser.parse_args()) print(__doc__) X_train, X_test, y_train, y_test = load_data( order=args["order"], random_state=args["random_seed"]) print("") print("Dataset statistics:") print("===================") print("%s %d" % ("number of features:".ljust(25), X_train.shape[1])) print("%s %d" % ("number of classes:".ljust(25), np.unique(y_train).size)) print("%s %s" % ("data type:".ljust(25), X_train.dtype)) print("%s %d (pos=%d, neg=%d, size=%dMB)" % ("number of train samples:".ljust(25), X_train.shape[0], np.sum(y_train == 1), np.sum(y_train == 0), int(X_train.nbytes / 1e6))) print("%s %d (pos=%d, neg=%d, size=%dMB)" % ("number of test samples:".ljust(25), X_test.shape[0], np.sum(y_test == 1), np.sum(y_test == 0), int(X_test.nbytes / 1e6))) print() print("Training Classifiers") print("====================") error, train_time, test_time = {}, {}, {} for name in sorted(args["classifiers"]): print("Training %s ... " % name, end="") estimator = ESTIMATORS[name] estimator_params = estimator.get_params() estimator.set_params(**{p: args["random_seed"] for p in estimator_params if p.endswith("random_state")}) if "n_jobs" in estimator_params: estimator.set_params(n_jobs=args["n_jobs"]) time_start = time() estimator.fit(X_train, y_train) train_time[name] = time() - time_start time_start = time() y_pred = estimator.predict(X_test) test_time[name] = time() - time_start error[name] = zero_one_loss(y_test, y_pred) print("done") print() print("Classification performance:") print("===========================") print("%s %s %s %s" % ("Classifier ", "train-time", "test-time", "error-rate")) print("-" * 44) for name in sorted(args["classifiers"], key=error.get): print("%s %s %s %s" % (name.ljust(12), ("%.4fs" % train_time[name]).center(10), ("%.4fs" % test_time[name]).center(10), ("%.4f" % error[name]).center(10))) print()
bsd-3-clause
Obus/scikit-learn
examples/svm/plot_svm_scale_c.py
223
5375
""" ============================================== Scaling the regularization parameter for SVCs ============================================== The following example illustrates the effect of scaling the regularization parameter when using :ref:`svm` for :ref:`classification <svm_classification>`. For SVC classification, we are interested in a risk minimization for the equation: .. math:: C \sum_{i=1, n} \mathcal{L} (f(x_i), y_i) + \Omega (w) where - :math:`C` is used to set the amount of regularization - :math:`\mathcal{L}` is a `loss` function of our samples and our model parameters. - :math:`\Omega` is a `penalty` function of our model parameters If we consider the loss function to be the individual error per sample, then the data-fit term, or the sum of the error for each sample, will increase as we add more samples. The penalization term, however, will not increase. When using, for example, :ref:`cross validation <cross_validation>`, to set the amount of regularization with `C`, there will be a different amount of samples between the main problem and the smaller problems within the folds of the cross validation. Since our loss function is dependent on the amount of samples, the latter will influence the selected value of `C`. The question that arises is `How do we optimally adjust C to account for the different amount of training samples?` The figures below are used to illustrate the effect of scaling our `C` to compensate for the change in the number of samples, in the case of using an `l1` penalty, as well as the `l2` penalty. l1-penalty case ----------------- In the `l1` case, theory says that prediction consistency (i.e. that under given hypothesis, the estimator learned predicts as well as a model knowing the true distribution) is not possible because of the bias of the `l1`. It does say, however, that model consistency, in terms of finding the right set of non-zero parameters as well as their signs, can be achieved by scaling `C1`. l2-penalty case ----------------- The theory says that in order to achieve prediction consistency, the penalty parameter should be kept constant as the number of samples grow. Simulations ------------ The two figures below plot the values of `C` on the `x-axis` and the corresponding cross-validation scores on the `y-axis`, for several different fractions of a generated data-set. In the `l1` penalty case, the cross-validation-error correlates best with the test-error, when scaling our `C` with the number of samples, `n`, which can be seen in the first figure. For the `l2` penalty case, the best result comes from the case where `C` is not scaled. .. topic:: Note: Two separate datasets are used for the two different plots. The reason behind this is the `l1` case works better on sparse data, while `l2` is better suited to the non-sparse case. """ print(__doc__) # Author: Andreas Mueller <[email protected]> # Jaques Grobler <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.svm import LinearSVC from sklearn.cross_validation import ShuffleSplit from sklearn.grid_search import GridSearchCV from sklearn.utils import check_random_state from sklearn import datasets rnd = check_random_state(1) # set up dataset n_samples = 100 n_features = 300 # l1 data (only 5 informative features) X_1, y_1 = datasets.make_classification(n_samples=n_samples, n_features=n_features, n_informative=5, random_state=1) # l2 data: non sparse, but less features y_2 = np.sign(.5 - rnd.rand(n_samples)) X_2 = rnd.randn(n_samples, n_features / 5) + y_2[:, np.newaxis] X_2 += 5 * rnd.randn(n_samples, n_features / 5) clf_sets = [(LinearSVC(penalty='l1', loss='squared_hinge', dual=False, tol=1e-3), np.logspace(-2.3, -1.3, 10), X_1, y_1), (LinearSVC(penalty='l2', loss='squared_hinge', dual=True, tol=1e-4), np.logspace(-4.5, -2, 10), X_2, y_2)] colors = ['b', 'g', 'r', 'c'] for fignum, (clf, cs, X, y) in enumerate(clf_sets): # set up the plot for each regressor plt.figure(fignum, figsize=(9, 10)) for k, train_size in enumerate(np.linspace(0.3, 0.7, 3)[::-1]): param_grid = dict(C=cs) # To get nice curve, we need a large number of iterations to # reduce the variance grid = GridSearchCV(clf, refit=False, param_grid=param_grid, cv=ShuffleSplit(n=n_samples, train_size=train_size, n_iter=250, random_state=1)) grid.fit(X, y) scores = [x[1] for x in grid.grid_scores_] scales = [(1, 'No scaling'), ((n_samples * train_size), '1/n_samples'), ] for subplotnum, (scaler, name) in enumerate(scales): plt.subplot(2, 1, subplotnum + 1) plt.xlabel('C') plt.ylabel('CV Score') grid_cs = cs * float(scaler) # scale the C's plt.semilogx(grid_cs, scores, label="fraction %.2f" % train_size) plt.title('scaling=%s, penalty=%s, loss=%s' % (name, clf.penalty, clf.loss)) plt.legend(loc="best") plt.show()
bsd-3-clause
dieterich-lab/rp-bp
rpbp/analysis/rpbp_predictions/create_bf_rpkm_scatter_plot.py
1
6309
#! /usr/bin/env python3 import matplotlib matplotlib.use('agg') import argparse import logging import os import yaml import matplotlib.pyplot as plt import numpy as np import pbio.utils.bio as bio import pbio.misc.utils as utils import pbio.ribo.ribo_filenames as filenames import pbio.ribo.ribo_utils as ribo_utils logger = logging.getLogger(__name__) default_min_rpkm = 0 default_max_rpkm = 5 default_min_bf = -10000 default_max_bf = 1000 default_title = "" def main(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="This script plots the (log) Bayes factor against the estimated " "RPKM for all ORFs. All relevant values will be clipped according to the " "specified arguments for viewing.") parser.add_argument('config', help="The (yaml) config file") parser.add_argument('name', help="The name of the dataset or replicate to plot") parser.add_argument('out', help="The output image file") parser.add_argument('-p', '--use-predictions', help="If this flag is present, then " "the \"predicted ORFs\" files will be used. Otherwise, all ORFs in the dataset " "will be visualized.", action='store_true') parser.add_argument('-r', '--is-replicate', help="If the name corresponds to one " "of the replicates, this flag must be used to ensure the filenames are " "handled correctly.", action='store_true') parser.add_argument('--title', default=default_title) parser.add_argument('--min-rpkm', type=float, default=default_min_rpkm) parser.add_argument('--max-rpkm', type=float, default=default_max_rpkm) parser.add_argument('--min-bf', type=float, default=default_min_bf) parser.add_argument('--max-bf', type=float, default=default_max_bf) utils.add_logging_options(parser) args = parser.parse_args() utils.update_logging(args) config = yaml.load(open(args.config), Loader=yaml.FullLoader) note = config.get('note', None) if args.is_replicate: lengths = None offsets = None else: lengths, offsets = ribo_utils.get_periodic_lengths_and_offsets(config, args.name) fraction = config.get('smoothing_fraction', None) reweighting_iterations = config.get('smoothing_reweighting_iterations', None) # we will need these to get the appropriate log BFs if args.use_predictions: bayes_factors = filenames.get_riboseq_predicted_orfs(config['riboseq_data'], args.name, length=lengths, offset=offsets, is_unique=True, note=note, is_smooth=True, fraction=fraction, reweighting_iterations=reweighting_iterations) else: bayes_factors = filenames.get_riboseq_bayes_factors(config['riboseq_data'], args.name, length=lengths, offset=offsets, is_unique=True, note=note, is_smooth=True, fraction=fraction, reweighting_iterations=reweighting_iterations) if not os.path.exists(bayes_factors): msg = ("Could not find the Bayes factor file: {}\nIf this is for a particular " "sample and the --merge-replicates option was used, this is not a problem. " "Will not create this scatter plot".format(bayes_factors)) logger.warning(msg) return msg = "Reading Bayes factors" logger.info(msg) bayes_factors = bio.read_bed(bayes_factors) # we need these to get the raw counts for calculating RPKM # we always need all of the counts, so no need to check which ORFs rpchi_pvalues = filenames.get_riboseq_bayes_factors(config['riboseq_data'], args.name, length=lengths, offset=offsets, is_unique=True, note=note, is_smooth=False) if not os.path.exists(rpchi_pvalues): msg = ("Could not find the Rp-chi pvalues file: {}\nIf this is for a particular " "sample and the --merge-replicates option was used, this is not a problem. " "Will not create this scatter plot".format(rpchi_pvalues)) logger.warning(msg) return msg = "Reading Rp-chi pvalues" logger.info(msg) rpchi_pvalues = bio.read_bed(rpchi_pvalues) msg = "Calculating RPKM values" logger.info(msg) # we approximate the number of mapping reads as the sum across all ORFs. # this double-counts some reads num_reads = np.sum(rpchi_pvalues['profile_sum']) all_rpkm = (1e6 * rpchi_pvalues['x_1_sum']) / (rpchi_pvalues['orf_len'] * num_reads) # only include things that have some reads in the visualization m_rpkm = all_rpkm > 0 msg = "Creating plot" logger.info(msg) fig, ax = plt.subplots(figsize=(10, 5)) cm = plt.cm.gist_earth for i, orf_label in enumerate(ribo_utils.orf_type_labels): orf_types = ribo_utils.orf_type_labels_mapping[orf_label] m_type = bayes_factors['orf_type'].isin(orf_types) # now, pull out the RPKMs if args.use_predictions: # if we are using predictions, we have to filter and join orf_ids = bayes_factors.loc[m_rpkm & m_type, 'id'] bfs = np.array(bayes_factors.loc[m_rpkm & m_type, 'bayes_factor_mean']) m_ids = rpchi_pvalues['id'].isin(orf_ids) rpkm = np.array(all_rpkm[m_ids]) else: # otherwise ,the data frames match, so we can just use the masks rpkm = np.array(all_rpkm[m_rpkm & m_type]) bfs = np.array(bayes_factors.loc[m_rpkm & m_type, 'bayes_factor_mean']) rpkm = np.clip(rpkm, args.min_rpkm, args.max_rpkm) bfs = np.clip(bfs, args.min_bf, args.max_bf) color = i / len(ribo_utils.orf_type_labels) color = cm(color) label = "{} ({})".format(orf_label, len(rpkm)) ax.scatter(rpkm, bfs, label=label, color=color, edgecolor='k') ax.set_ylim((args.min_bf * 1.5, args.max_bf * 1.5)) ax.set_xlim((args.min_rpkm * 1.5, args.max_rpkm * 1.25)) ax.set_yscale('symlog') ax.set_xscale('symlog') ax.set_xlabel('RPKM') ax.set_ylabel('log BF') lgd = ax.legend(loc='center right', bbox_to_anchor=(1.5, 0.5)) if len(args.title) > 0: ax.set_title(args.title) fig.savefig(args.out, bbox_inches='tight', bbox_extra_artists=(lgd,)) if __name__ == '__main__': main()
mit
ahoyosid/scikit-learn
sklearn/linear_model/tests/test_ridge.py
14
20805
import numpy as np import scipy.sparse as sp from scipy import linalg from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn import datasets from sklearn.metrics import mean_squared_error from sklearn.metrics import make_scorer from sklearn.metrics import get_scorer from sklearn.linear_model.base import LinearRegression from sklearn.linear_model.ridge import ridge_regression from sklearn.linear_model.ridge import Ridge from sklearn.linear_model.ridge import _RidgeGCV from sklearn.linear_model.ridge import RidgeCV from sklearn.linear_model.ridge import RidgeClassifier from sklearn.linear_model.ridge import RidgeClassifierCV from sklearn.linear_model.ridge import _solve_cholesky from sklearn.linear_model.ridge import _solve_cholesky_kernel from sklearn.cross_validation import KFold diabetes = datasets.load_diabetes() X_diabetes, y_diabetes = diabetes.data, diabetes.target ind = np.arange(X_diabetes.shape[0]) rng = np.random.RandomState(0) rng.shuffle(ind) ind = ind[:200] X_diabetes, y_diabetes = X_diabetes[ind], y_diabetes[ind] iris = datasets.load_iris() X_iris = sp.csr_matrix(iris.data) y_iris = iris.target DENSE_FILTER = lambda X: X SPARSE_FILTER = lambda X: sp.csr_matrix(X) def test_ridge(): # Ridge regression convergence test using score # TODO: for this test to be robust, we should use a dataset instead # of np.random. rng = np.random.RandomState(0) alpha = 1.0 for solver in ("svd", "sparse_cg", "cholesky", "lsqr"): # With more samples than features n_samples, n_features = 6, 5 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=alpha, solver=solver) ridge.fit(X, y) assert_equal(ridge.coef_.shape, (X.shape[1], )) assert_greater(ridge.score(X, y), 0.47) if solver == "cholesky": # Currently the only solver to support sample_weight. ridge.fit(X, y, sample_weight=np.ones(n_samples)) assert_greater(ridge.score(X, y), 0.47) # With more features than samples n_samples, n_features = 5, 10 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=alpha, solver=solver) ridge.fit(X, y) assert_greater(ridge.score(X, y), .9) if solver == "cholesky": # Currently the only solver to support sample_weight. ridge.fit(X, y, sample_weight=np.ones(n_samples)) assert_greater(ridge.score(X, y), 0.9) def test_primal_dual_relationship(): y = y_diabetes.reshape(-1, 1) coef = _solve_cholesky(X_diabetes, y, alpha=[1e-2]) K = np.dot(X_diabetes, X_diabetes.T) dual_coef = _solve_cholesky_kernel(K, y, alpha=[1e-2]) coef2 = np.dot(X_diabetes.T, dual_coef).T assert_array_almost_equal(coef, coef2) def test_ridge_singular(): # test on a singular matrix rng = np.random.RandomState(0) n_samples, n_features = 6, 6 y = rng.randn(n_samples // 2) y = np.concatenate((y, y)) X = rng.randn(n_samples // 2, n_features) X = np.concatenate((X, X), axis=0) ridge = Ridge(alpha=0) ridge.fit(X, y) assert_greater(ridge.score(X, y), 0.9) def test_ridge_sample_weights(): rng = np.random.RandomState(0) for solver in ("cholesky", ): for n_samples, n_features in ((6, 5), (5, 10)): for alpha in (1.0, 1e-2): y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) sample_weight = 1 + rng.rand(n_samples) coefs = ridge_regression(X, y, alpha=alpha, sample_weight=sample_weight, solver=solver) # Sample weight can be implemented via a simple rescaling # for the square loss. coefs2 = ridge_regression( X * np.sqrt(sample_weight)[:, np.newaxis], y * np.sqrt(sample_weight), alpha=alpha, solver=solver) assert_array_almost_equal(coefs, coefs2) # Test for fit_intercept = True est = Ridge(alpha=alpha, solver=solver) est.fit(X, y, sample_weight=sample_weight) # Check using Newton's Method # Quadratic function should be solved in a single step. # Initialize sample_weight = np.sqrt(sample_weight) X_weighted = sample_weight[:, np.newaxis] * ( np.column_stack((np.ones(n_samples), X))) y_weighted = y * sample_weight # Gradient is (X*coef-y)*X + alpha*coef_[1:] # Remove coef since it is initialized to zero. grad = -np.dot(y_weighted, X_weighted) # Hessian is (X.T*X) + alpha*I except that the first # diagonal element should be zero, since there is no # penalization of intercept. diag = alpha * np.ones(n_features + 1) diag[0] = 0. hess = np.dot(X_weighted.T, X_weighted) hess.flat[::n_features + 2] += diag coef_ = - np.dot(linalg.inv(hess), grad) assert_almost_equal(coef_[0], est.intercept_) assert_array_almost_equal(coef_[1:], est.coef_) def test_ridge_shapes(): # Test shape of coef_ and intercept_ rng = np.random.RandomState(0) n_samples, n_features = 5, 10 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) Y1 = y[:, np.newaxis] Y = np.c_[y, 1 + y] ridge = Ridge() ridge.fit(X, y) assert_equal(ridge.coef_.shape, (n_features,)) assert_equal(ridge.intercept_.shape, ()) ridge.fit(X, Y1) assert_equal(ridge.coef_.shape, (1, n_features)) assert_equal(ridge.intercept_.shape, (1, )) ridge.fit(X, Y) assert_equal(ridge.coef_.shape, (2, n_features)) assert_equal(ridge.intercept_.shape, (2, )) def test_ridge_intercept(): # Test intercept with multiple targets GH issue #708 rng = np.random.RandomState(0) n_samples, n_features = 5, 10 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) Y = np.c_[y, 1. + y] ridge = Ridge() ridge.fit(X, y) intercept = ridge.intercept_ ridge.fit(X, Y) assert_almost_equal(ridge.intercept_[0], intercept) assert_almost_equal(ridge.intercept_[1], intercept + 1.) def test_toy_ridge_object(): # Test BayesianRegression ridge classifier # TODO: test also n_samples > n_features X = np.array([[1], [2]]) Y = np.array([1, 2]) clf = Ridge(alpha=0.0) clf.fit(X, Y) X_test = [[1], [2], [3], [4]] assert_almost_equal(clf.predict(X_test), [1., 2, 3, 4]) assert_equal(len(clf.coef_.shape), 1) assert_equal(type(clf.intercept_), np.float64) Y = np.vstack((Y, Y)).T clf.fit(X, Y) X_test = [[1], [2], [3], [4]] assert_equal(len(clf.coef_.shape), 2) assert_equal(type(clf.intercept_), np.ndarray) def test_ridge_vs_lstsq(): # On alpha=0., Ridge and OLS yield the same solution. rng = np.random.RandomState(0) # we need more samples than features n_samples, n_features = 5, 4 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=0., fit_intercept=False) ols = LinearRegression(fit_intercept=False) ridge.fit(X, y) ols.fit(X, y) assert_almost_equal(ridge.coef_, ols.coef_) ridge.fit(X, y) ols.fit(X, y) assert_almost_equal(ridge.coef_, ols.coef_) def test_ridge_individual_penalties(): # Tests the ridge object using individual penalties rng = np.random.RandomState(42) n_samples, n_features, n_targets = 20, 10, 5 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples, n_targets) penalties = np.arange(n_targets) coef_cholesky = np.array([ Ridge(alpha=alpha, solver="cholesky").fit(X, target).coef_ for alpha, target in zip(penalties, y.T)]) coefs_indiv_pen = [ Ridge(alpha=penalties, solver=solver, tol=1e-6).fit(X, y).coef_ for solver in ['svd', 'sparse_cg', 'lsqr', 'cholesky']] for coef_indiv_pen in coefs_indiv_pen: assert_array_almost_equal(coef_cholesky, coef_indiv_pen) # Test error is raised when number of targets and penalties do not match. ridge = Ridge(alpha=penalties[:3]) assert_raises(ValueError, ridge.fit, X, y) def _test_ridge_loo(filter_): # test that can work with both dense or sparse matrices n_samples = X_diabetes.shape[0] ret = [] ridge_gcv = _RidgeGCV(fit_intercept=False) ridge = Ridge(alpha=1.0, fit_intercept=False) # generalized cross-validation (efficient leave-one-out) decomp = ridge_gcv._pre_compute(X_diabetes, y_diabetes) errors, c = ridge_gcv._errors(1.0, y_diabetes, *decomp) values, c = ridge_gcv._values(1.0, y_diabetes, *decomp) # brute-force leave-one-out: remove one example at a time errors2 = [] values2 = [] for i in range(n_samples): sel = np.arange(n_samples) != i X_new = X_diabetes[sel] y_new = y_diabetes[sel] ridge.fit(X_new, y_new) value = ridge.predict([X_diabetes[i]])[0] error = (y_diabetes[i] - value) ** 2 errors2.append(error) values2.append(value) # check that efficient and brute-force LOO give same results assert_almost_equal(errors, errors2) assert_almost_equal(values, values2) # generalized cross-validation (efficient leave-one-out, # SVD variation) decomp = ridge_gcv._pre_compute_svd(X_diabetes, y_diabetes) errors3, c = ridge_gcv._errors_svd(ridge.alpha, y_diabetes, *decomp) values3, c = ridge_gcv._values_svd(ridge.alpha, y_diabetes, *decomp) # check that efficient and SVD efficient LOO give same results assert_almost_equal(errors, errors3) assert_almost_equal(values, values3) # check best alpha ridge_gcv.fit(filter_(X_diabetes), y_diabetes) alpha_ = ridge_gcv.alpha_ ret.append(alpha_) # check that we get same best alpha with custom loss_func f = ignore_warnings scoring = make_scorer(mean_squared_error, greater_is_better=False) ridge_gcv2 = RidgeCV(fit_intercept=False, scoring=scoring) f(ridge_gcv2.fit)(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv2.alpha_, alpha_) # check that we get same best alpha with custom score_func func = lambda x, y: -mean_squared_error(x, y) scoring = make_scorer(func) ridge_gcv3 = RidgeCV(fit_intercept=False, scoring=scoring) f(ridge_gcv3.fit)(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv3.alpha_, alpha_) # check that we get same best alpha with a scorer scorer = get_scorer('mean_squared_error') ridge_gcv4 = RidgeCV(fit_intercept=False, scoring=scorer) ridge_gcv4.fit(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv4.alpha_, alpha_) # check that we get same best alpha with sample weights ridge_gcv.fit(filter_(X_diabetes), y_diabetes, sample_weight=np.ones(n_samples)) assert_equal(ridge_gcv.alpha_, alpha_) # simulate several responses Y = np.vstack((y_diabetes, y_diabetes)).T ridge_gcv.fit(filter_(X_diabetes), Y) Y_pred = ridge_gcv.predict(filter_(X_diabetes)) ridge_gcv.fit(filter_(X_diabetes), y_diabetes) y_pred = ridge_gcv.predict(filter_(X_diabetes)) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=5) return ret def _test_ridge_cv(filter_): n_samples = X_diabetes.shape[0] ridge_cv = RidgeCV() ridge_cv.fit(filter_(X_diabetes), y_diabetes) ridge_cv.predict(filter_(X_diabetes)) assert_equal(len(ridge_cv.coef_.shape), 1) assert_equal(type(ridge_cv.intercept_), np.float64) cv = KFold(n_samples, 5) ridge_cv.set_params(cv=cv) ridge_cv.fit(filter_(X_diabetes), y_diabetes) ridge_cv.predict(filter_(X_diabetes)) assert_equal(len(ridge_cv.coef_.shape), 1) assert_equal(type(ridge_cv.intercept_), np.float64) def _test_ridge_diabetes(filter_): ridge = Ridge(fit_intercept=False) ridge.fit(filter_(X_diabetes), y_diabetes) return np.round(ridge.score(filter_(X_diabetes), y_diabetes), 5) def _test_multi_ridge_diabetes(filter_): # simulate several responses Y = np.vstack((y_diabetes, y_diabetes)).T n_features = X_diabetes.shape[1] ridge = Ridge(fit_intercept=False) ridge.fit(filter_(X_diabetes), Y) assert_equal(ridge.coef_.shape, (2, n_features)) Y_pred = ridge.predict(filter_(X_diabetes)) ridge.fit(filter_(X_diabetes), y_diabetes) y_pred = ridge.predict(filter_(X_diabetes)) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3) def _test_ridge_classifiers(filter_): n_classes = np.unique(y_iris).shape[0] n_features = X_iris.shape[1] for clf in (RidgeClassifier(), RidgeClassifierCV()): clf.fit(filter_(X_iris), y_iris) assert_equal(clf.coef_.shape, (n_classes, n_features)) y_pred = clf.predict(filter_(X_iris)) assert_greater(np.mean(y_iris == y_pred), .79) n_samples = X_iris.shape[0] cv = KFold(n_samples, 5) clf = RidgeClassifierCV(cv=cv) clf.fit(filter_(X_iris), y_iris) y_pred = clf.predict(filter_(X_iris)) assert_true(np.mean(y_iris == y_pred) >= 0.8) def _test_tolerance(filter_): ridge = Ridge(tol=1e-5) ridge.fit(filter_(X_diabetes), y_diabetes) score = ridge.score(filter_(X_diabetes), y_diabetes) ridge2 = Ridge(tol=1e-3) ridge2.fit(filter_(X_diabetes), y_diabetes) score2 = ridge2.score(filter_(X_diabetes), y_diabetes) assert_true(score >= score2) def test_dense_sparse(): for test_func in (_test_ridge_loo, _test_ridge_cv, _test_ridge_diabetes, _test_multi_ridge_diabetes, _test_ridge_classifiers, _test_tolerance): # test dense matrix ret_dense = test_func(DENSE_FILTER) # test sparse matrix ret_sparse = test_func(SPARSE_FILTER) # test that the outputs are the same if ret_dense is not None and ret_sparse is not None: assert_array_almost_equal(ret_dense, ret_sparse, decimal=3) def test_ridge_cv_sparse_svd(): X = sp.csr_matrix(X_diabetes) ridge = RidgeCV(gcv_mode="svd") assert_raises(TypeError, ridge.fit, X) def test_ridge_sparse_svd(): X = sp.csc_matrix(rng.rand(100, 10)) y = rng.rand(100) ridge = Ridge(solver='svd') assert_raises(TypeError, ridge.fit, X, y) def test_class_weights(): # Test class weights. X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = RidgeClassifier(class_weight=None) clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf = RidgeClassifier(class_weight={1: 0.001}) clf.fit(X, y) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) # check if class_weight = 'auto' can handle negative labels. clf = RidgeClassifier(class_weight='auto') clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # class_weight = 'auto', and class_weight = None should return # same values when y has equal number of all labels X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0]]) y = [1, 1, -1, -1] clf = RidgeClassifier(class_weight=None) clf.fit(X, y) clfa = RidgeClassifier(class_weight='auto') clfa.fit(X, y) assert_equal(len(clfa.classes_), 2) assert_array_almost_equal(clf.coef_, clfa.coef_) assert_array_almost_equal(clf.intercept_, clfa.intercept_) def test_class_weights_cv(): # Test class weights for cross validated ridge classifier. X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = RidgeClassifierCV(class_weight=None, alphas=[.01, .1, 1]) clf.fit(X, y) # we give a small weights to class 1 clf = RidgeClassifierCV(class_weight={1: 0.001}, alphas=[.01, .1, 1, 10]) clf.fit(X, y) assert_array_equal(clf.predict([[-.2, 2]]), np.array([-1])) def test_ridgecv_store_cv_values(): # Test _RidgeCV's store_cv_values attribute. rng = rng = np.random.RandomState(42) n_samples = 8 n_features = 5 x = rng.randn(n_samples, n_features) alphas = [1e-1, 1e0, 1e1] n_alphas = len(alphas) r = RidgeCV(alphas=alphas, store_cv_values=True) # with len(y.shape) == 1 y = rng.randn(n_samples) r.fit(x, y) assert_equal(r.cv_values_.shape, (n_samples, n_alphas)) # with len(y.shape) == 2 n_responses = 3 y = rng.randn(n_samples, n_responses) r.fit(x, y) assert_equal(r.cv_values_.shape, (n_samples, n_responses, n_alphas)) def test_raises_value_error_if_sample_weights_greater_than_1d(): # Sample weights must be either scalar or 1D n_sampless = [2, 3] n_featuress = [3, 2] rng = np.random.RandomState(42) for n_samples, n_features in zip(n_sampless, n_featuress): X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) sample_weights_OK = rng.randn(n_samples) ** 2 + 1 sample_weights_OK_1 = 1. sample_weights_OK_2 = 2. sample_weights_not_OK = sample_weights_OK[:, np.newaxis] sample_weights_not_OK_2 = sample_weights_OK[np.newaxis, :] ridge = Ridge(alpha=1) # make sure the "OK" sample weights actually work ridge.fit(X, y, sample_weights_OK) ridge.fit(X, y, sample_weights_OK_1) ridge.fit(X, y, sample_weights_OK_2) def fit_ridge_not_ok(): ridge.fit(X, y, sample_weights_not_OK) def fit_ridge_not_ok_2(): ridge.fit(X, y, sample_weights_not_OK_2) assert_raise_message(ValueError, "Sample weights must be 1D array or scalar", fit_ridge_not_ok) assert_raise_message(ValueError, "Sample weights must be 1D array or scalar", fit_ridge_not_ok_2) def test_sparse_design_with_sample_weights(): # Sample weights must work with sparse matrices n_sampless = [2, 3] n_featuress = [3, 2] rng = np.random.RandomState(42) sparse_matrix_converters = [sp.coo_matrix, sp.csr_matrix, sp.csc_matrix, sp.lil_matrix, sp.dok_matrix ] sparse_ridge = Ridge(alpha=1., fit_intercept=False) dense_ridge = Ridge(alpha=1., fit_intercept=False) for n_samples, n_features in zip(n_sampless, n_featuress): X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) sample_weights = rng.randn(n_samples) ** 2 + 1 for sparse_converter in sparse_matrix_converters: X_sparse = sparse_converter(X) sparse_ridge.fit(X_sparse, y, sample_weight=sample_weights) dense_ridge.fit(X, y, sample_weight=sample_weights) assert_array_almost_equal(sparse_ridge.coef_, dense_ridge.coef_, decimal=6) def test_raises_value_error_if_solver_not_supported(): # Tests whether a ValueError is raised if a non-identified solver # is passed to ridge_regression wrong_solver = "This is not a solver (MagritteSolveCV QuantumBitcoin)" exception = ValueError message = "Solver %s not understood" % wrong_solver def func(): X = np.eye(3) y = np.ones(3) ridge_regression(X, y, alpha=1., solver=wrong_solver) assert_raise_message(exception, message, func) def test_sparse_cg_max_iter(): reg = Ridge(solver="sparse_cg", max_iter=1) reg.fit(X_diabetes, y_diabetes) assert_equal(reg.coef_.shape[0], X_diabetes.shape[1])
bsd-3-clause
villalonreina/dipy
dipy/tests/test_scripts.py
7
5119
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ Test scripts Run scripts and check outputs """ ''' from __future__ import division, print_function, absolute_import import glob import os import shutil from os.path import (dirname, join as pjoin, abspath) from nose.tools import assert_true, assert_false, assert_equal import numpy.testing as nt import nibabel as nib from nibabel.tmpdirs import InTemporaryDirectory from dipy.data import get_data # Quickbundles command-line requires matplotlib: try: import matplotlib no_mpl = False except ImportError: no_mpl = True from dipy.tests.scriptrunner import ScriptRunner runner = ScriptRunner( script_sdir='bin', debug_print_var='NIPY_DEBUG_PRINT') run_command = runner.run_command DATA_PATH = abspath(pjoin(dirname(__file__), 'data')) def test_dipy_peak_extraction(): # test dipy_peak_extraction script cmd = 'dipy_peak_extraction' code, stdout, stderr = run_command(cmd, check_code=False) assert_equal(code, 2) def test_dipy_fit_tensor(): # test dipy_fit_tensor script cmd = 'dipy_fit_tensor' code, stdout, stderr = run_command(cmd, check_code=False) assert_equal(code, 2) def test_dipy_sh_estimate(): # test dipy_sh_estimate script cmd = 'dipy_sh_estimate' code, stdout, stderr = run_command(cmd, check_code=False) assert_equal(code, 2) def assert_image_shape_affine(filename, shape, affine): assert_true(os.path.isfile(filename)) image = nib.load(filename) assert_equal(image.shape, shape) nt.assert_array_almost_equal(image.affine, affine) def test_dipy_fit_tensor_again(): with InTemporaryDirectory(): dwi, bval, bvec = get_data("small_25") # Copy data to tmp directory shutil.copyfile(dwi, "small_25.nii.gz") shutil.copyfile(bval, "small_25.bval") shutil.copyfile(bvec, "small_25.bvec") # Call script cmd = ["dipy_fit_tensor", "--mask=none", "small_25.nii.gz"] out = run_command(cmd) assert_equal(out[0], 0) # Get expected values img = nib.load("small_25.nii.gz") affine = img.affine shape = img.shape[:-1] # Check expected outputs assert_image_shape_affine("small_25_fa.nii.gz", shape, affine) assert_image_shape_affine("small_25_t2di.nii.gz", shape, affine) assert_image_shape_affine("small_25_dirFA.nii.gz", shape, affine) assert_image_shape_affine("small_25_ad.nii.gz", shape, affine) assert_image_shape_affine("small_25_md.nii.gz", shape, affine) assert_image_shape_affine("small_25_rd.nii.gz", shape, affine) with InTemporaryDirectory(): dwi, bval, bvec = get_data("small_25") # Copy data to tmp directory shutil.copyfile(dwi, "small_25.nii.gz") shutil.copyfile(bval, "small_25.bval") shutil.copyfile(bvec, "small_25.bvec") # Call script cmd = ["dipy_fit_tensor", "--save-tensor", "--mask=none", "small_25.nii.gz"] out = run_command(cmd) assert_equal(out[0], 0) # Get expected values img = nib.load("small_25.nii.gz") affine = img.affine shape = img.shape[:-1] # Check expected outputs assert_image_shape_affine("small_25_fa.nii.gz", shape, affine) assert_image_shape_affine("small_25_t2di.nii.gz", shape, affine) assert_image_shape_affine("small_25_dirFA.nii.gz", shape, affine) assert_image_shape_affine("small_25_ad.nii.gz", shape, affine) assert_image_shape_affine("small_25_md.nii.gz", shape, affine) assert_image_shape_affine("small_25_rd.nii.gz", shape, affine) # small_25_tensor saves the tensor as a symmetric matrix following # the nifti standard. ten_shape = shape + (1, 6) assert_image_shape_affine("small_25_tensor.nii.gz", ten_shape, affine) @nt.dec.skipif(no_mpl) def test_qb_commandline(): with InTemporaryDirectory(): tracks_file = get_data('fornix') cmd = ["dipy_quickbundles", tracks_file, '--pkl_file', 'mypickle.pkl', '--out_file', 'tracks300.trk'] out = run_command(cmd) assert_equal(out[0], 0) @nt.dec.skipif(no_mpl) def test_qb_commandline_output_path_handling(): with InTemporaryDirectory(): # Create temporary subdirectory for input and for output os.mkdir('work') os.mkdir('output') os.chdir('work') tracks_file = get_data('fornix') # Need to specify an output directory with a "../" style path # to trigger old bug. cmd = ["dipy_quickbundles", tracks_file, '--pkl_file', 'mypickle.pkl', '--out_file', os.path.join('..', 'output', 'tracks300.trk')] out = run_command(cmd) assert_equal(out[0], 0) # Make sure the files were created in the output directory os.chdir('../') output_files_list = glob.glob('output/tracks300_*.trk') assert_true(output_files_list) '''
bsd-3-clause
rlowrance/re-avm
chart-03.py
1
8395
'''create charts showing results of rfval.py INVOCATION python chart-03.py [--data] [--test] INPUT FILES INPUT/rfval/YYYYMM.pickle OUTPUT FILES WORKING/chart-03/[test-]data.pickle WORKING/chart-03/[test-]VAR-YYYY[-MM].pdf where VAR in {max_depth | max_features} YYYY in {2004 | 2005 | 2006 | 2007 | 2008 | 2009} MM in {02 | 05 | 08 | 11} ''' from __future__ import division import cPickle as pickle import glob import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import pdb from pprint import pprint import random import sys from AVM import AVM from Bunch import Bunch from columns_contain import columns_contain from Logger import Logger from ParseCommandLine import ParseCommandLine from Path import Path from rfval import ResultKey, ResultValue cc = columns_contain def usage(msg=None): print __doc__ if msg is not None: print msg sys.exit(1) def make_control(argv): # return a Bunch print argv if len(argv) not in (1, 2, 3): usage('invalid number of arguments') pcl = ParseCommandLine(argv) arg = Bunch( base_name='chart-03', data=pcl.has_arg('--data'), test=pcl.has_arg('--test'), ) random_seed = 123 random.seed(random_seed) dir_working = Path().dir_working() debug = False reduced_file_name = ('test-' if arg.test else '') + 'data.pickle' # assure output directory exists dir_path = dir_working + arg.base_name + '/' if not os.path.exists(dir_path): os.makedirs(dir_path) return Bunch( arg=arg, debug=debug, path_in_ege=dir_working + 'rfval/*.pickle', path_reduction=dir_path + reduced_file_name, path_chart_base=dir_path, random_seed=random_seed, test=arg.test, ) def make_chart(df, hp, control, ege_control): 'write one txt file for each n_months_back' def make_subplot(test_period, n_months_back, loss_metric): 'mutate the default axes' for i, n_estimators in enumerate(sorted(set(df.n_estimators))): mask = ( (df.test_period == test_period) & (df.n_months_back == n_months_back) & (df.n_estimators == n_estimators) & (~df.max_depth.isnull() if hp == 'max_depth' else ~df.max_features.isnull()) ) subset = df.loc[mask] if hp == 'max_depth': x_values = sorted(set(subset.max_depth)) assert len(x_values) == len(subset) x = np.empty(len(x_values), dtype=int) y = np.empty(len(x_values), dtype=float) for ii, max_depth_value in enumerate(x_values): # select one row mask2 = subset.max_depth == max_depth_value subset2 = subset.loc[mask2] assert len(subset2) == 1 row = subset2.iloc[0] x[ii] = row['max_depth'] y[ii] = row[loss_metric] else: assert hp == 'max_features' x_values = (1, 'sqrt', 'log2', 0.1, 0.3, 'auto') if len(x_values) != len(subset): pdb.set_trace() assert len(x_values) == len(subset) x = np.empty(len(x_values), dtype=object) y = np.empty(len(x_values), dtype=float) for ii, max_features_value in enumerate(x_values): # select one row mask2 = subset.max_features == max_features_value subset2 = subset.loc[mask2] assert len(subset2) == 1 row = subset2.iloc[0] x[ii] = row['max_features'] y[ii] = row[loss_metric] plt.plot(y / 1000.0, label=('n_estimators: %d' % n_estimators), linestyle=[':', '-.', '--', '-'][i % 4], color='bgrcmykw'[i % 8], ) plt.xticks(range(len(y)), x, size='xx-small', rotation='vertical') plt.yticks(size='xx-small') plt.title('yr-mo %s-%s bk %d' % (test_period[:4], test_period[4:], n_months_back), loc='left', fontdict={'fontsize': 'xx-small', 'style': 'italic'}, ) return def make_figure(year, months): print 'make_figure', hp, year, months test_periods_typical = [str(year * 100 + month) for month in months ] test_periods = ('200902',) if year == 2009 else test_periods_typical plt.figure() # new figure # plt.suptitle('Loss by Test Period, Tree Max Depth, N Trees') # overlays the subplots loss_metric = 'rmse' loss_metric = 'mae' axes_number = 0 n_months_backs = range(1, 7, 1) last_test_period_index = len(test_periods) - 1 last_n_months_back_index = len(n_months_backs) - 1 for test_period_index, test_period in enumerate(test_periods): for n_months_back_index, n_months_back in enumerate(n_months_backs): axes_number += 1 # count across rows plt.subplot(len(test_periods), len(n_months_backs), axes_number) make_subplot(test_period, n_months_back, loss_metric) if test_period_index == last_test_period_index: # annotate the bottom row only if n_months_back_index == 0: plt.xlabel(hp) plt.ylabel('%s x $1000' % loss_metric) if n_months_back_index == last_n_months_back_index: plt.legend(loc='best', fontsize=5) plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0) out_suffix = '-%02d' % months if len(months) == 1 else '' plt.savefig(control.path_chart_base + hp + '-' + str(year) + out_suffix + '.pdf') plt.close() for year in (2004, 2005, 2006, 2007, 2008, 2009): months = (2,) if year == 2009 else (2, 5, 8, 11) for month in months: make_figure(year, (month,)) make_figure(year, months) if control.test: break def make_data(control): 'return data frame, ege_control' def process_file(path, rows_list): 'mutate rows_list to include gscv object info at path' print 'reducing', path with open(path, 'rb') as f: rfval_result, ege_control = pickle.load(f) for k, v in rfval_result.iteritems(): actuals = v.actuals.values predictions = v.predictions errors = actuals - predictions rmse = np.sqrt(np.sum(errors * errors) / (1.0 * len(errors))) median_absolute_error = np.median(np.abs(errors)) row = { 'n_months_back': k.n_months_back, 'n_estimators': k.n_estimators, 'max_depth': k.max_depth, 'max_features': k.max_features, 'test_period': str(k.yyyymm), 'rmse': rmse, 'mae': median_absolute_error, } rows_list.append(row) rows_list = [] for file in glob.glob(control.path_in_ege): ege_control = process_file(file, rows_list) df = pd.DataFrame(rows_list) return df, ege_control # return last ege_control, not all def main(argv): control = make_control(argv) sys.stdout = Logger(base_name=control.arg.base_name) print control if control.arg.data: df, ege_control = make_data(control) with open(control.path_reduction, 'wb') as f: pickle.dump((df, ege_control, control), f) else: with open(control.path_reduction, 'rb') as f: df, ege_control, data_control = pickle.load(f) make_chart(df, 'max_depth', control, ege_control) make_chart(df, 'max_features', control, ege_control) print control if control.test: print 'DISCARD OUTPUT: test' print 'done' return if __name__ == '__main__': if False: # avoid pyflakes warnings pdb.set_trace() pprint() pd.DataFrame() np.array() AVM() ResultKey ResultValue main(sys.argv)
bsd-3-clause
florentchandelier/zipline
zipline/utils/calendars/exchange_calendar_cme.py
7
3143
# # Copyright 2016 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datetime import time from pandas.tseries.holiday import ( USPresidentsDay, USLaborDay, USThanksgivingDay, GoodFriday ) from pytz import timezone # Useful resources for making changes to this file: # http://www.cmegroup.com/tools-information/holiday-calendar.html from .trading_calendar import TradingCalendar, HolidayCalendar from .us_holidays import ( USNewYearsDay, Christmas, ChristmasEveBefore1993, ChristmasEveInOrAfter1993, USBlackFridayInOrAfter1993, USNationalDaysofMourning, USMartinLutherKingJrAfter1998, USMemorialDay, USIndependenceDay) class CMEExchangeCalendar(TradingCalendar): """ Exchange calendar for CME Open Time: 5:00 PM, America/Chicago Close Time: 5:00 PM, America/Chicago Regularly-Observed Holidays: - New Years Day - Good Friday - Christmas """ @property def name(self): return "CME" @property def tz(self): return timezone('America/Chicago') @property def open_time(self): return time(17, 1) @property def close_time(self): return time(17) @property def open_offset(self): return -1 @property def regular_holidays(self): # The CME has different holiday rules depending on the type of # instrument. For example, http://www.cmegroup.com/tools-information/holiday-calendar/files/2016-4th-of-july-holiday-schedule.pdf # noqa # shows that Equity, Interest Rate, FX, Energy, Metals & DME Products # close at 1200 CT on July 4, 2016, while Grain, Oilseed & MGEX # Products and Livestock, Dairy & Lumber products are completely # closed. # For now, we will treat the CME as having a single calendar, and just # go with the most conservative hours - and treat July 4 as an early # close at noon. return HolidayCalendar([ USNewYearsDay, GoodFriday, Christmas, ]) @property def adhoc_holidays(self): return USNationalDaysofMourning @property def special_closes(self): return [( time(12), HolidayCalendar([ USMartinLutherKingJrAfter1998, USPresidentsDay, USMemorialDay, USLaborDay, USIndependenceDay, USThanksgivingDay, USBlackFridayInOrAfter1993, ChristmasEveBefore1993, ChristmasEveInOrAfter1993, ]) )]
apache-2.0
laurentgo/arrow
dev/archery/archery/lang/python.py
3
7570
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import inspect import tokenize from contextlib import contextmanager try: from numpydoc.validate import Docstring, validate except ImportError: have_numpydoc = False else: have_numpydoc = True from ..utils.command import Command, capture_stdout, default_bin class Flake8(Command): def __init__(self, flake8_bin=None): self.bin = default_bin(flake8_bin, "flake8") class Autopep8(Command): def __init__(self, autopep8_bin=None): self.bin = default_bin(autopep8_bin, "autopep8") @capture_stdout() def run_captured(self, *args, **kwargs): return self.run(*args, **kwargs) def _tokenize_signature(s): lines = s.encode('ascii').splitlines() generator = iter(lines).__next__ return tokenize.tokenize(generator) def _convert_typehint(tokens): names = [] opening_bracket_reached = False for token in tokens: # omit the tokens before the opening bracket if not opening_bracket_reached: if token.string == '(': opening_bracket_reached = True else: continue if token.type == 1: # type 1 means NAME token names.append(token) else: if len(names) == 1: yield (names[0].type, names[0].string) elif len(names) == 2: # two "NAME" tokens follow each other which means a cython # typehint like `bool argument`, so remove the typehint # note that we could convert it to python typehints, but hints # are not supported by _signature_fromstr yield (names[1].type, names[1].string) elif len(names) > 2: raise ValueError('More than two NAME tokens follow each other') names = [] yield (token.type, token.string) def inspect_signature(obj): """ Custom signature inspection primarily for cython generated callables. Cython puts the signatures to the first line of the docstrings, which we can reuse to parse the python signature from, but some gymnastics are required, like removing the cython typehints. It converts the cython signature: array(obj, type=None, mask=None, size=None, from_pandas=None, bool safe=True, MemoryPool memory_pool=None) To: <Signature (obj, type=None, mask=None, size=None, from_pandas=None, safe=True, memory_pool=None)> """ cython_signature = obj.__doc__.splitlines()[0] cython_tokens = _tokenize_signature(cython_signature) python_tokens = _convert_typehint(cython_tokens) python_signature = tokenize.untokenize(python_tokens) return inspect._signature_fromstr(inspect.Signature, obj, python_signature) class NumpyDoc: def __init__(self, symbols=None): if not have_numpydoc: raise RuntimeError( 'Numpydoc is not available, install the development version ' 'with command: pip install ' 'git+https://github.com/numpy/numpydoc' ) self.symbols = set(symbols or {'pyarrow'}) def traverse(self, fn, obj, from_package): """Apply a function on publicly exposed API components. Recursively iterates over the members of the passed object. It omits any '_' prefixed and thirdparty (non pyarrow) symbols. Parameters ---------- obj : Any from_package : string, default 'pyarrow' Predicate to only consider objects from this package. """ todo = [obj] seen = set() while todo: obj = todo.pop() if obj in seen: continue else: seen.add(obj) fn(obj) for name in dir(obj): if name.startswith('_'): continue member = getattr(obj, name) module = getattr(member, '__module__', None) if not (module and module.startswith(from_package)): continue todo.append(member) @contextmanager def _apply_patches(self): """ Patch Docstring class to bypass loading already loaded python objects. """ orig_load_obj = Docstring._load_obj orig_signature = inspect.signature @staticmethod def _load_obj(obj): # By default it expects a qualname and import the object, but we # have already loaded object after the API traversal. if isinstance(obj, str): return orig_load_obj(obj) else: return obj def signature(obj): # inspect.signature tries to parse __text_signature__ if other # properties like __signature__ doesn't exists, but cython # doesn't set that property despite that embedsignature cython # directive is set. The only way to inspect a cython compiled # callable's signature to parse it from __doc__ while # embedsignature directive is set during the build phase. # So path inspect.signature function to attempt to parse the first # line of callable.__doc__ as a signature. try: return orig_signature(obj) except Exception as orig_error: try: return inspect_signature(obj) except Exception: raise orig_error try: Docstring._load_obj = _load_obj inspect.signature = signature yield finally: Docstring._load_obj = orig_load_obj inspect.signature = orig_signature def validate(self, from_package='', allow_rules=None, disallow_rules=None): results = [] def callback(obj): result = validate(obj) errors = [] for errcode, errmsg in result.get('errors', []): if allow_rules and errcode not in allow_rules: continue if disallow_rules and errcode in disallow_rules: continue errors.append((errcode, errmsg)) if len(errors): result['errors'] = errors results.append((obj, result)) with self._apply_patches(): for symbol in self.symbols: try: obj = Docstring._load_obj(symbol) except (ImportError, AttributeError): print('{} is not available for import'.format(symbol)) else: self.traverse(callback, obj, from_package=from_package) return results
apache-2.0
larsmans/scikit-learn
doc/tutorial/text_analytics/skeletons/exercise_02_sentiment.py
256
2406
"""Build a sentiment analysis / polarity model Sentiment analysis can be casted as a binary text classification problem, that is fitting a linear classifier on features extracted from the text of the user messages so as to guess wether the opinion of the author is positive or negative. In this examples we will use a movie review dataset. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics if __name__ == "__main__": # NOTE: we put the following in a 'if __name__ == "__main__"' protected # block to be able to use a multi-core grid search that also works under # Windows, see: http://docs.python.org/library/multiprocessing.html#windows # The multiprocessing module is used as the backend of joblib.Parallel # that is used when n_jobs != 1 in GridSearchCV # the training data folder must be passed as first argument movie_reviews_data_folder = sys.argv[1] dataset = load_files(movie_reviews_data_folder, shuffle=False) print("n_samples: %d" % len(dataset.data)) # split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.25, random_state=None) # TASK: Build a vectorizer / classifier pipeline that filters out tokens # that are too rare or too frequent # TASK: Build a grid search to find out whether unigrams or bigrams are # more useful. # Fit the pipeline on the training set using grid search for the parameters # TASK: print the cross-validated scores for the each parameters set # explored by the grid search # TASK: Predict the outcome on the testing set and store it in a variable # named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Print and plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) # import matplotlib.pyplot as plt # plt.matshow(cm) # plt.show()
bsd-3-clause
yavalvas/yav_com
build/matplotlib/examples/pylab_examples/image_interp.py
6
1925
#!/usr/bin/env python """ The same (small) array, interpolated with three different interpolation methods. The center of the pixel at A[i,j] is plotted at i+0.5, i+0.5. If you are using interpolation='nearest', the region bounded by (i,j) and (i+1,j+1) will have the same color. If you are using interpolation, the pixel center will have the same color as it does with nearest, but other pixels will be interpolated between the neighboring pixels. Earlier versions of matplotlib (<0.63) tried to hide the edge effects from you by setting the view limits so that they would not be visible. A recent bugfix in antigrain, and a new implementation in the matplotlib._image module which takes advantage of this fix, no longer makes this necessary. To prevent edge effects, when doing interpolation, the matplotlib._image module now pads the input array with identical pixels around the edge. e.g., if you have a 5x5 array with colors a-y as below a b c d e f g h i j k l m n o p q r s t u v w x y the _image module creates the padded array, a a b c d e e a a b c d e e f f g h i j j k k l m n o o p p q r s t t o u v w x y y o u v w x y y does the interpolation/resizing, and then extracts the central region. This allows you to plot the full range of your array w/o edge effects, and for example to layer multiple images of different sizes over one another with different interpolation methods - see examples/layer_images.py. It also implies a performance hit, as this new temporary, padded array must be created. Sophisticated interpolation also implies a performance hit, so if you need maximal performance or have very large images, interpolation='nearest' is suggested. """ from pylab import * A = rand(5,5) figure(1) imshow(A, interpolation='nearest') grid(True) figure(2) imshow(A, interpolation='bilinear') grid(True) figure(3) imshow(A, interpolation='bicubic') grid(True) show()
mit
MJuddBooth/pandas
pandas/tests/indexes/interval/test_interval.py
1
52262
from __future__ import division from itertools import permutations import re import numpy as np import pytest from pandas.compat import lzip import pandas as pd from pandas import ( Index, Interval, IntervalIndex, Timedelta, Timestamp, date_range, interval_range, isna, notna, timedelta_range) import pandas.core.common as com from pandas.tests.indexes.common import Base import pandas.util.testing as tm @pytest.fixture(scope='class', params=[None, 'foo']) def name(request): return request.param class TestIntervalIndex(Base): _holder = IntervalIndex def setup_method(self, method): self.index = IntervalIndex.from_arrays([0, 1], [1, 2]) self.index_with_nan = IntervalIndex.from_tuples( [(0, 1), np.nan, (1, 2)]) self.indices = dict(intervalIndex=tm.makeIntervalIndex(10)) def create_index(self, closed='right'): return IntervalIndex.from_breaks(range(11), closed=closed) def create_index_with_nan(self, closed='right'): mask = [True, False] + [True] * 8 return IntervalIndex.from_arrays( np.where(mask, np.arange(10), np.nan), np.where(mask, np.arange(1, 11), np.nan), closed=closed) def test_properties(self, closed): index = self.create_index(closed=closed) assert len(index) == 10 assert index.size == 10 assert index.shape == (10, ) tm.assert_index_equal(index.left, Index(np.arange(10))) tm.assert_index_equal(index.right, Index(np.arange(1, 11))) tm.assert_index_equal(index.mid, Index(np.arange(0.5, 10.5))) assert index.closed == closed ivs = [Interval(l, r, closed) for l, r in zip(range(10), range(1, 11))] expected = np.array(ivs, dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) # with nans index = self.create_index_with_nan(closed=closed) assert len(index) == 10 assert index.size == 10 assert index.shape == (10, ) expected_left = Index([0, np.nan, 2, 3, 4, 5, 6, 7, 8, 9]) expected_right = expected_left + 1 expected_mid = expected_left + 0.5 tm.assert_index_equal(index.left, expected_left) tm.assert_index_equal(index.right, expected_right) tm.assert_index_equal(index.mid, expected_mid) assert index.closed == closed ivs = [Interval(l, r, closed) if notna(l) else np.nan for l, r in zip(expected_left, expected_right)] expected = np.array(ivs, dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) @pytest.mark.parametrize('breaks', [ [1, 1, 2, 5, 15, 53, 217, 1014, 5335, 31240, 201608], [-np.inf, -100, -10, 0.5, 1, 1.5, 3.8, 101, 202, np.inf], pd.to_datetime(['20170101', '20170202', '20170303', '20170404']), pd.to_timedelta(['1ns', '2ms', '3s', '4M', '5H', '6D'])]) def test_length(self, closed, breaks): # GH 18789 index = IntervalIndex.from_breaks(breaks, closed=closed) result = index.length expected = Index(iv.length for iv in index) tm.assert_index_equal(result, expected) # with NA index = index.insert(1, np.nan) result = index.length expected = Index(iv.length if notna(iv) else iv for iv in index) tm.assert_index_equal(result, expected) def test_with_nans(self, closed): index = self.create_index(closed=closed) assert index.hasnans is False result = index.isna() expected = np.repeat(False, len(index)) tm.assert_numpy_array_equal(result, expected) result = index.notna() expected = np.repeat(True, len(index)) tm.assert_numpy_array_equal(result, expected) index = self.create_index_with_nan(closed=closed) assert index.hasnans is True result = index.isna() expected = np.array([False, True] + [False] * (len(index) - 2)) tm.assert_numpy_array_equal(result, expected) result = index.notna() expected = np.array([True, False] + [True] * (len(index) - 2)) tm.assert_numpy_array_equal(result, expected) def test_copy(self, closed): expected = self.create_index(closed=closed) result = expected.copy() assert result.equals(expected) result = expected.copy(deep=True) assert result.equals(expected) assert result.left is not expected.left def test_ensure_copied_data(self, closed): # exercise the copy flag in the constructor # not copying index = self.create_index(closed=closed) result = IntervalIndex(index, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='same') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='same') # by-definition make a copy result = IntervalIndex(index._ndarray_values, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='copy') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='copy') def test_equals(self, closed): expected = IntervalIndex.from_breaks(np.arange(5), closed=closed) assert expected.equals(expected) assert expected.equals(expected.copy()) assert not expected.equals(expected.astype(object)) assert not expected.equals(np.array(expected)) assert not expected.equals(list(expected)) assert not expected.equals([1, 2]) assert not expected.equals(np.array([1, 2])) assert not expected.equals(pd.date_range('20130101', periods=2)) expected_name1 = IntervalIndex.from_breaks( np.arange(5), closed=closed, name='foo') expected_name2 = IntervalIndex.from_breaks( np.arange(5), closed=closed, name='bar') assert expected.equals(expected_name1) assert expected_name1.equals(expected_name2) for other_closed in {'left', 'right', 'both', 'neither'} - {closed}: expected_other_closed = IntervalIndex.from_breaks( np.arange(5), closed=other_closed) assert not expected.equals(expected_other_closed) @pytest.mark.parametrize('klass', [list, tuple, np.array, pd.Series]) def test_where(self, closed, klass): idx = self.create_index(closed=closed) cond = [True] * len(idx) expected = idx result = expected.where(klass(cond)) tm.assert_index_equal(result, expected) cond = [False] + [True] * len(idx[1:]) expected = IntervalIndex([np.nan] + idx[1:].tolist()) result = idx.where(klass(cond)) tm.assert_index_equal(result, expected) def test_delete(self, closed): expected = IntervalIndex.from_breaks(np.arange(1, 11), closed=closed) result = self.create_index(closed=closed).delete(0) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('data', [ interval_range(0, periods=10, closed='neither'), interval_range(1.7, periods=8, freq=2.5, closed='both'), interval_range(Timestamp('20170101'), periods=12, closed='left'), interval_range(Timedelta('1 day'), periods=6, closed='right')]) def test_insert(self, data): item = data[0] idx_item = IntervalIndex([item]) # start expected = idx_item.append(data) result = data.insert(0, item) tm.assert_index_equal(result, expected) # end expected = data.append(idx_item) result = data.insert(len(data), item) tm.assert_index_equal(result, expected) # mid expected = data[:3].append(idx_item).append(data[3:]) result = data.insert(3, item) tm.assert_index_equal(result, expected) # invalid type msg = 'can only insert Interval objects and NA into an IntervalIndex' with pytest.raises(ValueError, match=msg): data.insert(1, 'foo') # invalid closed msg = 'inserted item must be closed on the same side as the index' for closed in {'left', 'right', 'both', 'neither'} - {item.closed}: with pytest.raises(ValueError, match=msg): bad_item = Interval(item.left, item.right, closed=closed) data.insert(1, bad_item) # GH 18295 (test missing) na_idx = IntervalIndex([np.nan], closed=data.closed) for na in (np.nan, pd.NaT, None): expected = data[:1].append(na_idx).append(data[1:]) result = data.insert(1, na) tm.assert_index_equal(result, expected) def test_take(self, closed): index = self.create_index(closed=closed) result = index.take(range(10)) tm.assert_index_equal(result, index) result = index.take([0, 0, 1]) expected = IntervalIndex.from_arrays( [0, 0, 1], [1, 1, 2], closed=closed) tm.assert_index_equal(result, expected) def test_is_unique_interval(self, closed): """ Interval specific tests for is_unique in addition to base class tests """ # unique overlapping - distinct endpoints idx = IntervalIndex.from_tuples([(0, 1), (0.5, 1.5)], closed=closed) assert idx.is_unique is True # unique overlapping - shared endpoints idx = pd.IntervalIndex.from_tuples( [(1, 2), (1, 3), (2, 3)], closed=closed) assert idx.is_unique is True # unique nested idx = IntervalIndex.from_tuples([(-1, 1), (-2, 2)], closed=closed) assert idx.is_unique is True def test_monotonic(self, closed): # increasing non-overlapping idx = IntervalIndex.from_tuples( [(0, 1), (2, 3), (4, 5)], closed=closed) assert idx.is_monotonic is True assert idx._is_strictly_monotonic_increasing is True assert idx.is_monotonic_decreasing is False assert idx._is_strictly_monotonic_decreasing is False # decreasing non-overlapping idx = IntervalIndex.from_tuples( [(4, 5), (2, 3), (1, 2)], closed=closed) assert idx.is_monotonic is False assert idx._is_strictly_monotonic_increasing is False assert idx.is_monotonic_decreasing is True assert idx._is_strictly_monotonic_decreasing is True # unordered non-overlapping idx = IntervalIndex.from_tuples( [(0, 1), (4, 5), (2, 3)], closed=closed) assert idx.is_monotonic is False assert idx._is_strictly_monotonic_increasing is False assert idx.is_monotonic_decreasing is False assert idx._is_strictly_monotonic_decreasing is False # increasing overlapping idx = IntervalIndex.from_tuples( [(0, 2), (0.5, 2.5), (1, 3)], closed=closed) assert idx.is_monotonic is True assert idx._is_strictly_monotonic_increasing is True assert idx.is_monotonic_decreasing is False assert idx._is_strictly_monotonic_decreasing is False # decreasing overlapping idx = IntervalIndex.from_tuples( [(1, 3), (0.5, 2.5), (0, 2)], closed=closed) assert idx.is_monotonic is False assert idx._is_strictly_monotonic_increasing is False assert idx.is_monotonic_decreasing is True assert idx._is_strictly_monotonic_decreasing is True # unordered overlapping idx = IntervalIndex.from_tuples( [(0.5, 2.5), (0, 2), (1, 3)], closed=closed) assert idx.is_monotonic is False assert idx._is_strictly_monotonic_increasing is False assert idx.is_monotonic_decreasing is False assert idx._is_strictly_monotonic_decreasing is False # increasing overlapping shared endpoints idx = pd.IntervalIndex.from_tuples( [(1, 2), (1, 3), (2, 3)], closed=closed) assert idx.is_monotonic is True assert idx._is_strictly_monotonic_increasing is True assert idx.is_monotonic_decreasing is False assert idx._is_strictly_monotonic_decreasing is False # decreasing overlapping shared endpoints idx = pd.IntervalIndex.from_tuples( [(2, 3), (1, 3), (1, 2)], closed=closed) assert idx.is_monotonic is False assert idx._is_strictly_monotonic_increasing is False assert idx.is_monotonic_decreasing is True assert idx._is_strictly_monotonic_decreasing is True # stationary idx = IntervalIndex.from_tuples([(0, 1), (0, 1)], closed=closed) assert idx.is_monotonic is True assert idx._is_strictly_monotonic_increasing is False assert idx.is_monotonic_decreasing is True assert idx._is_strictly_monotonic_decreasing is False # empty idx = IntervalIndex([], closed=closed) assert idx.is_monotonic is True assert idx._is_strictly_monotonic_increasing is True assert idx.is_monotonic_decreasing is True assert idx._is_strictly_monotonic_decreasing is True @pytest.mark.skip(reason='not a valid repr as we use interval notation') def test_repr(self): i = IntervalIndex.from_tuples([(0, 1), (1, 2)], closed='right') expected = ("IntervalIndex(left=[0, 1]," "\n right=[1, 2]," "\n closed='right'," "\n dtype='interval[int64]')") assert repr(i) == expected i = IntervalIndex.from_tuples((Timestamp('20130101'), Timestamp('20130102')), (Timestamp('20130102'), Timestamp('20130103')), closed='right') expected = ("IntervalIndex(left=['2013-01-01', '2013-01-02']," "\n right=['2013-01-02', '2013-01-03']," "\n closed='right'," "\n dtype='interval[datetime64[ns]]')") assert repr(i) == expected @pytest.mark.skip(reason='not a valid repr as we use interval notation') def test_repr_max_seq_item_setting(self): super(TestIntervalIndex, self).test_repr_max_seq_item_setting() @pytest.mark.skip(reason='not a valid repr as we use interval notation') def test_repr_roundtrip(self): super(TestIntervalIndex, self).test_repr_roundtrip() def test_frame_repr(self): # https://github.com/pandas-dev/pandas/pull/24134/files df = pd.DataFrame({'A': [1, 2, 3, 4]}, index=pd.IntervalIndex.from_breaks([0, 1, 2, 3, 4])) result = repr(df) expected = ( ' A\n' '(0, 1] 1\n' '(1, 2] 2\n' '(2, 3] 3\n' '(3, 4] 4' ) assert result == expected # TODO: check this behavior is consistent with test_interval_new.py def test_get_item(self, closed): i = IntervalIndex.from_arrays((0, 1, np.nan), (1, 2, np.nan), closed=closed) assert i[0] == Interval(0.0, 1.0, closed=closed) assert i[1] == Interval(1.0, 2.0, closed=closed) assert isna(i[2]) result = i[0:1] expected = IntervalIndex.from_arrays((0.,), (1.,), closed=closed) tm.assert_index_equal(result, expected) result = i[0:2] expected = IntervalIndex.from_arrays((0., 1), (1., 2.), closed=closed) tm.assert_index_equal(result, expected) result = i[1:3] expected = IntervalIndex.from_arrays((1., np.nan), (2., np.nan), closed=closed) tm.assert_index_equal(result, expected) # To be removed, replaced by test_interval_new.py (see #16316, #16386) def test_get_loc_value(self): with pytest.raises(KeyError, match="^0$"): self.index.get_loc(0) assert self.index.get_loc(0.5) == 0 assert self.index.get_loc(1) == 0 assert self.index.get_loc(1.5) == 1 assert self.index.get_loc(2) == 1 with pytest.raises(KeyError, match="^-1$"): self.index.get_loc(-1) with pytest.raises(KeyError, match="^3$"): self.index.get_loc(3) idx = IntervalIndex.from_tuples([(0, 2), (1, 3)]) assert idx.get_loc(0.5) == 0 assert idx.get_loc(1) == 0 tm.assert_numpy_array_equal(idx.get_loc(1.5), np.array([0, 1], dtype='intp')) tm.assert_numpy_array_equal(np.sort(idx.get_loc(2)), np.array([0, 1], dtype='intp')) assert idx.get_loc(3) == 1 with pytest.raises(KeyError, match=r"^3\.5$"): idx.get_loc(3.5) idx = IntervalIndex.from_arrays([0, 2], [1, 3]) with pytest.raises(KeyError, match=r"^1\.5$"): idx.get_loc(1.5) # To be removed, replaced by test_interval_new.py (see #16316, #16386) def slice_locs_cases(self, breaks): # TODO: same tests for more index types index = IntervalIndex.from_breaks([0, 1, 2], closed='right') assert index.slice_locs() == (0, 2) assert index.slice_locs(0, 1) == (0, 1) assert index.slice_locs(1, 1) == (0, 1) assert index.slice_locs(0, 2) == (0, 2) assert index.slice_locs(0.5, 1.5) == (0, 2) assert index.slice_locs(0, 0.5) == (0, 1) assert index.slice_locs(start=1) == (0, 2) assert index.slice_locs(start=1.2) == (1, 2) assert index.slice_locs(end=1) == (0, 1) assert index.slice_locs(end=1.1) == (0, 2) assert index.slice_locs(end=1.0) == (0, 1) assert index.slice_locs(-1, -1) == (0, 0) index = IntervalIndex.from_breaks([0, 1, 2], closed='neither') assert index.slice_locs(0, 1) == (0, 1) assert index.slice_locs(0, 2) == (0, 2) assert index.slice_locs(0.5, 1.5) == (0, 2) assert index.slice_locs(1, 1) == (1, 1) assert index.slice_locs(1, 2) == (1, 2) index = IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)], closed='both') assert index.slice_locs(1, 1) == (0, 1) assert index.slice_locs(1, 2) == (0, 2) # To be removed, replaced by test_interval_new.py (see #16316, #16386) def test_slice_locs_int64(self): self.slice_locs_cases([0, 1, 2]) # To be removed, replaced by test_interval_new.py (see #16316, #16386) def test_slice_locs_float64(self): self.slice_locs_cases([0.0, 1.0, 2.0]) # To be removed, replaced by test_interval_new.py (see #16316, #16386) def slice_locs_decreasing_cases(self, tuples): index = IntervalIndex.from_tuples(tuples) assert index.slice_locs(1.5, 0.5) == (1, 3) assert index.slice_locs(2, 0) == (1, 3) assert index.slice_locs(2, 1) == (1, 3) assert index.slice_locs(3, 1.1) == (0, 3) assert index.slice_locs(3, 3) == (0, 2) assert index.slice_locs(3.5, 3.3) == (0, 1) assert index.slice_locs(1, -3) == (2, 3) slice_locs = index.slice_locs(-1, -1) assert slice_locs[0] == slice_locs[1] # To be removed, replaced by test_interval_new.py (see #16316, #16386) def test_slice_locs_decreasing_int64(self): self.slice_locs_cases([(2, 4), (1, 3), (0, 2)]) # To be removed, replaced by test_interval_new.py (see #16316, #16386) def test_slice_locs_decreasing_float64(self): self.slice_locs_cases([(2., 4.), (1., 3.), (0., 2.)]) # To be removed, replaced by test_interval_new.py (see #16316, #16386) def test_slice_locs_fails(self): index = IntervalIndex.from_tuples([(1, 2), (0, 1), (2, 3)]) msg = ("'can only get slices from an IntervalIndex if bounds are" " non-overlapping and all monotonic increasing or decreasing'") with pytest.raises(KeyError, match=msg): index.slice_locs(1, 2) # To be removed, replaced by test_interval_new.py (see #16316, #16386) def test_get_loc_interval(self): assert self.index.get_loc(Interval(0, 1)) == 0 assert self.index.get_loc(Interval(0, 0.5)) == 0 assert self.index.get_loc(Interval(0, 1, 'left')) == 0 msg = r"Interval\(2, 3, closed='right'\)" with pytest.raises(KeyError, match=msg): self.index.get_loc(Interval(2, 3)) msg = r"Interval\(-1, 0, closed='left'\)" with pytest.raises(KeyError, match=msg): self.index.get_loc(Interval(-1, 0, 'left')) # Make consistent with test_interval_new.py (see #16316, #16386) @pytest.mark.parametrize('item', [3, Interval(1, 4)]) def test_get_loc_length_one(self, item, closed): # GH 20921 index = IntervalIndex.from_tuples([(0, 5)], closed=closed) result = index.get_loc(item) assert result == 0 # Make consistent with test_interval_new.py (see #16316, #16386) @pytest.mark.parametrize('breaks', [ date_range('20180101', periods=4), date_range('20180101', periods=4, tz='US/Eastern'), timedelta_range('0 days', periods=4)], ids=lambda x: str(x.dtype)) def test_get_loc_datetimelike_nonoverlapping(self, breaks): # GH 20636 # nonoverlapping = IntervalIndex method and no i8 conversion index = IntervalIndex.from_breaks(breaks) value = index[0].mid result = index.get_loc(value) expected = 0 assert result == expected interval = Interval(index[0].left, index[1].right) result = index.get_loc(interval) expected = slice(0, 2) assert result == expected # Make consistent with test_interval_new.py (see #16316, #16386) @pytest.mark.parametrize('arrays', [ (date_range('20180101', periods=4), date_range('20180103', periods=4)), (date_range('20180101', periods=4, tz='US/Eastern'), date_range('20180103', periods=4, tz='US/Eastern')), (timedelta_range('0 days', periods=4), timedelta_range('2 days', periods=4))], ids=lambda x: str(x[0].dtype)) def test_get_loc_datetimelike_overlapping(self, arrays): # GH 20636 # overlapping = IntervalTree method with i8 conversion index = IntervalIndex.from_arrays(*arrays) value = index[0].mid + Timedelta('12 hours') result = np.sort(index.get_loc(value)) expected = np.array([0, 1], dtype='intp') assert tm.assert_numpy_array_equal(result, expected) interval = Interval(index[0].left, index[1].right) result = np.sort(index.get_loc(interval)) expected = np.array([0, 1, 2], dtype='intp') assert tm.assert_numpy_array_equal(result, expected) # To be removed, replaced by test_interval_new.py (see #16316, #16386) def test_get_indexer(self): actual = self.index.get_indexer([-1, 0, 0.5, 1, 1.5, 2, 3]) expected = np.array([-1, -1, 0, 0, 1, 1, -1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(self.index) expected = np.array([0, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) index = IntervalIndex.from_breaks([0, 1, 2], closed='left') actual = index.get_indexer([-1, 0, 0.5, 1, 1.5, 2, 3]) expected = np.array([-1, 0, 0, 1, 1, -1, -1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(index[:1]) expected = np.array([0], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(index) expected = np.array([-1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) # To be removed, replaced by test_interval_new.py (see #16316, #16386) def test_get_indexer_subintervals(self): # TODO: is this right? # return indexers for wholly contained subintervals target = IntervalIndex.from_breaks(np.linspace(0, 2, 5)) actual = self.index.get_indexer(target) expected = np.array([0, 0, 1, 1], dtype='p') tm.assert_numpy_array_equal(actual, expected) target = IntervalIndex.from_breaks([0, 0.67, 1.33, 2]) actual = self.index.get_indexer(target) expected = np.array([0, 0, 1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(target[[0, -1]]) expected = np.array([0, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) target = IntervalIndex.from_breaks([0, 0.33, 0.67, 1], closed='left') actual = self.index.get_indexer(target) expected = np.array([0, 0, 0], dtype='intp') tm.assert_numpy_array_equal(actual, expected) # Make consistent with test_interval_new.py (see #16316, #16386) @pytest.mark.parametrize('item', [ [3], np.arange(1, 5), [Interval(1, 4)], interval_range(1, 4)]) def test_get_indexer_length_one(self, item, closed): # GH 17284 index = IntervalIndex.from_tuples([(0, 5)], closed=closed) result = index.get_indexer(item) expected = np.array([0] * len(item), dtype='intp') tm.assert_numpy_array_equal(result, expected) # Make consistent with test_interval_new.py (see #16316, #16386) @pytest.mark.parametrize('arrays', [ (date_range('20180101', periods=4), date_range('20180103', periods=4)), (date_range('20180101', periods=4, tz='US/Eastern'), date_range('20180103', periods=4, tz='US/Eastern')), (timedelta_range('0 days', periods=4), timedelta_range('2 days', periods=4))], ids=lambda x: str(x[0].dtype)) def test_get_reindexer_datetimelike(self, arrays): # GH 20636 index = IntervalIndex.from_arrays(*arrays) tuples = [(index[0].left, index[0].left + pd.Timedelta('12H')), (index[-1].right - pd.Timedelta('12H'), index[-1].right)] target = IntervalIndex.from_tuples(tuples) result = index._get_reindexer(target) expected = np.array([0, 3], dtype='intp') tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize('breaks', [ date_range('20180101', periods=4), date_range('20180101', periods=4, tz='US/Eastern'), timedelta_range('0 days', periods=4)], ids=lambda x: str(x.dtype)) def test_maybe_convert_i8(self, breaks): # GH 20636 index = IntervalIndex.from_breaks(breaks) # intervalindex result = index._maybe_convert_i8(index) expected = IntervalIndex.from_breaks(breaks.asi8) tm.assert_index_equal(result, expected) # interval interval = Interval(breaks[0], breaks[1]) result = index._maybe_convert_i8(interval) expected = Interval(breaks[0].value, breaks[1].value) assert result == expected # datetimelike index result = index._maybe_convert_i8(breaks) expected = Index(breaks.asi8) tm.assert_index_equal(result, expected) # datetimelike scalar result = index._maybe_convert_i8(breaks[0]) expected = breaks[0].value assert result == expected # list-like of datetimelike scalars result = index._maybe_convert_i8(list(breaks)) expected = Index(breaks.asi8) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('breaks', [ date_range('2018-01-01', periods=5), timedelta_range('0 days', periods=5)]) def test_maybe_convert_i8_nat(self, breaks): # GH 20636 index = IntervalIndex.from_breaks(breaks) to_convert = breaks._constructor([pd.NaT] * 3) expected = pd.Float64Index([np.nan] * 3) result = index._maybe_convert_i8(to_convert) tm.assert_index_equal(result, expected) to_convert = to_convert.insert(0, breaks[0]) expected = expected.insert(0, float(breaks[0].value)) result = index._maybe_convert_i8(to_convert) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('breaks', [ np.arange(5, dtype='int64'), np.arange(5, dtype='float64')], ids=lambda x: str(x.dtype)) @pytest.mark.parametrize('make_key', [ IntervalIndex.from_breaks, lambda breaks: Interval(breaks[0], breaks[1]), lambda breaks: breaks, lambda breaks: breaks[0], list], ids=['IntervalIndex', 'Interval', 'Index', 'scalar', 'list']) def test_maybe_convert_i8_numeric(self, breaks, make_key): # GH 20636 index = IntervalIndex.from_breaks(breaks) key = make_key(breaks) # no conversion occurs for numeric result = index._maybe_convert_i8(key) assert result is key @pytest.mark.parametrize('breaks1, breaks2', permutations([ date_range('20180101', periods=4), date_range('20180101', periods=4, tz='US/Eastern'), timedelta_range('0 days', periods=4)], 2), ids=lambda x: str(x.dtype)) @pytest.mark.parametrize('make_key', [ IntervalIndex.from_breaks, lambda breaks: Interval(breaks[0], breaks[1]), lambda breaks: breaks, lambda breaks: breaks[0], list], ids=['IntervalIndex', 'Interval', 'Index', 'scalar', 'list']) def test_maybe_convert_i8_errors(self, breaks1, breaks2, make_key): # GH 20636 index = IntervalIndex.from_breaks(breaks1) key = make_key(breaks2) msg = ('Cannot index an IntervalIndex of subtype {dtype1} with ' 'values of dtype {dtype2}') msg = re.escape(msg.format(dtype1=breaks1.dtype, dtype2=breaks2.dtype)) with pytest.raises(ValueError, match=msg): index._maybe_convert_i8(key) # To be removed, replaced by test_interval_new.py (see #16316, #16386) def test_contains(self): # Only endpoints are valid. i = IntervalIndex.from_arrays([0, 1], [1, 2]) # Invalid assert 0 not in i assert 1 not in i assert 2 not in i # Valid assert Interval(0, 1) in i assert Interval(0, 2) in i assert Interval(0, 0.5) in i assert Interval(3, 5) not in i assert Interval(-1, 0, closed='left') not in i # To be removed, replaced by test_interval_new.py (see #16316, #16386) def testcontains(self): # can select values that are IN the range of a value i = IntervalIndex.from_arrays([0, 1], [1, 2]) assert i.contains(0.1) assert i.contains(0.5) assert i.contains(1) assert i.contains(Interval(0, 1)) assert i.contains(Interval(0, 2)) # these overlaps completely assert i.contains(Interval(0, 3)) assert i.contains(Interval(1, 3)) assert not i.contains(20) assert not i.contains(-20) def test_dropna(self, closed): expected = IntervalIndex.from_tuples( [(0.0, 1.0), (1.0, 2.0)], closed=closed) ii = IntervalIndex.from_tuples([(0, 1), (1, 2), np.nan], closed=closed) result = ii.dropna() tm.assert_index_equal(result, expected) ii = IntervalIndex.from_arrays( [0, 1, np.nan], [1, 2, np.nan], closed=closed) result = ii.dropna() tm.assert_index_equal(result, expected) # TODO: check this behavior is consistent with test_interval_new.py def test_non_contiguous(self, closed): index = IntervalIndex.from_tuples([(0, 1), (2, 3)], closed=closed) target = [0.5, 1.5, 2.5] actual = index.get_indexer(target) expected = np.array([0, -1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) assert 1.5 not in index @pytest.mark.parametrize("sort", [None, False]) def test_union(self, closed, sort): index = self.create_index(closed=closed) other = IntervalIndex.from_breaks(range(5, 13), closed=closed) expected = IntervalIndex.from_breaks(range(13), closed=closed) result = index[::-1].union(other, sort=sort) if sort is None: tm.assert_index_equal(result, expected) assert tm.equalContents(result, expected) result = other[::-1].union(index, sort=sort) if sort is None: tm.assert_index_equal(result, expected) assert tm.equalContents(result, expected) tm.assert_index_equal(index.union(index, sort=sort), index) tm.assert_index_equal(index.union(index[:1], sort=sort), index) # GH 19101: empty result, same dtype index = IntervalIndex(np.array([], dtype='int64'), closed=closed) result = index.union(index, sort=sort) tm.assert_index_equal(result, index) # GH 19101: empty result, different dtypes other = IntervalIndex(np.array([], dtype='float64'), closed=closed) result = index.union(other, sort=sort) tm.assert_index_equal(result, index) @pytest.mark.parametrize("sort", [None, False]) def test_intersection(self, closed, sort): index = self.create_index(closed=closed) other = IntervalIndex.from_breaks(range(5, 13), closed=closed) expected = IntervalIndex.from_breaks(range(5, 11), closed=closed) result = index[::-1].intersection(other, sort=sort) if sort is None: tm.assert_index_equal(result, expected) assert tm.equalContents(result, expected) result = other[::-1].intersection(index, sort=sort) if sort is None: tm.assert_index_equal(result, expected) assert tm.equalContents(result, expected) tm.assert_index_equal(index.intersection(index, sort=sort), index) # GH 19101: empty result, same dtype other = IntervalIndex.from_breaks(range(300, 314), closed=closed) expected = IntervalIndex(np.array([], dtype='int64'), closed=closed) result = index.intersection(other, sort=sort) tm.assert_index_equal(result, expected) # GH 19101: empty result, different dtypes breaks = np.arange(300, 314, dtype='float64') other = IntervalIndex.from_breaks(breaks, closed=closed) result = index.intersection(other, sort=sort) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("sort", [None, False]) def test_difference(self, closed, sort): index = IntervalIndex.from_arrays([1, 0, 3, 2], [1, 2, 3, 4], closed=closed) result = index.difference(index[:1], sort=sort) expected = index[1:] if sort is None: expected = expected.sort_values() tm.assert_index_equal(result, expected) # GH 19101: empty result, same dtype result = index.difference(index, sort=sort) expected = IntervalIndex(np.array([], dtype='int64'), closed=closed) tm.assert_index_equal(result, expected) # GH 19101: empty result, different dtypes other = IntervalIndex.from_arrays(index.left.astype('float64'), index.right, closed=closed) result = index.difference(other, sort=sort) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("sort", [None, False]) def test_symmetric_difference(self, closed, sort): index = self.create_index(closed=closed) result = index[1:].symmetric_difference(index[:-1], sort=sort) expected = IntervalIndex([index[0], index[-1]]) if sort is None: tm.assert_index_equal(result, expected) assert tm.equalContents(result, expected) # GH 19101: empty result, same dtype result = index.symmetric_difference(index, sort=sort) expected = IntervalIndex(np.array([], dtype='int64'), closed=closed) if sort is None: tm.assert_index_equal(result, expected) assert tm.equalContents(result, expected) # GH 19101: empty result, different dtypes other = IntervalIndex.from_arrays(index.left.astype('float64'), index.right, closed=closed) result = index.symmetric_difference(other, sort=sort) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('op_name', [ 'union', 'intersection', 'difference', 'symmetric_difference']) @pytest.mark.parametrize("sort", [None, False]) def test_set_operation_errors(self, closed, op_name, sort): index = self.create_index(closed=closed) set_op = getattr(index, op_name) # non-IntervalIndex msg = ('the other index needs to be an IntervalIndex too, but ' 'was type Int64Index') with pytest.raises(TypeError, match=msg): set_op(Index([1, 2, 3]), sort=sort) # mixed closed msg = ('can only do set operations between two IntervalIndex objects ' 'that are closed on the same side') for other_closed in {'right', 'left', 'both', 'neither'} - {closed}: other = self.create_index(closed=other_closed) with pytest.raises(ValueError, match=msg): set_op(other, sort=sort) # GH 19016: incompatible dtypes other = interval_range(Timestamp('20180101'), periods=9, closed=closed) msg = ('can only do {op} between two IntervalIndex objects that have ' 'compatible dtypes').format(op=op_name) with pytest.raises(TypeError, match=msg): set_op(other, sort=sort) def test_isin(self, closed): index = self.create_index(closed=closed) expected = np.array([True] + [False] * (len(index) - 1)) result = index.isin(index[:1]) tm.assert_numpy_array_equal(result, expected) result = index.isin([index[0]]) tm.assert_numpy_array_equal(result, expected) other = IntervalIndex.from_breaks(np.arange(-2, 10), closed=closed) expected = np.array([True] * (len(index) - 1) + [False]) result = index.isin(other) tm.assert_numpy_array_equal(result, expected) result = index.isin(other.tolist()) tm.assert_numpy_array_equal(result, expected) for other_closed in {'right', 'left', 'both', 'neither'}: other = self.create_index(closed=other_closed) expected = np.repeat(closed == other_closed, len(index)) result = index.isin(other) tm.assert_numpy_array_equal(result, expected) result = index.isin(other.tolist()) tm.assert_numpy_array_equal(result, expected) def test_comparison(self): actual = Interval(0, 1) < self.index expected = np.array([False, True]) tm.assert_numpy_array_equal(actual, expected) actual = Interval(0.5, 1.5) < self.index expected = np.array([False, True]) tm.assert_numpy_array_equal(actual, expected) actual = self.index > Interval(0.5, 1.5) tm.assert_numpy_array_equal(actual, expected) actual = self.index == self.index expected = np.array([True, True]) tm.assert_numpy_array_equal(actual, expected) actual = self.index <= self.index tm.assert_numpy_array_equal(actual, expected) actual = self.index >= self.index tm.assert_numpy_array_equal(actual, expected) actual = self.index < self.index expected = np.array([False, False]) tm.assert_numpy_array_equal(actual, expected) actual = self.index > self.index tm.assert_numpy_array_equal(actual, expected) actual = self.index == IntervalIndex.from_breaks([0, 1, 2], 'left') tm.assert_numpy_array_equal(actual, expected) actual = self.index == self.index.values tm.assert_numpy_array_equal(actual, np.array([True, True])) actual = self.index.values == self.index tm.assert_numpy_array_equal(actual, np.array([True, True])) actual = self.index <= self.index.values tm.assert_numpy_array_equal(actual, np.array([True, True])) actual = self.index != self.index.values tm.assert_numpy_array_equal(actual, np.array([False, False])) actual = self.index > self.index.values tm.assert_numpy_array_equal(actual, np.array([False, False])) actual = self.index.values > self.index tm.assert_numpy_array_equal(actual, np.array([False, False])) # invalid comparisons actual = self.index == 0 tm.assert_numpy_array_equal(actual, np.array([False, False])) actual = self.index == self.index.left tm.assert_numpy_array_equal(actual, np.array([False, False])) with pytest.raises(TypeError, match='unorderable types'): self.index > 0 with pytest.raises(TypeError, match='unorderable types'): self.index <= 0 msg = r"unorderable types: Interval\(\) > int\(\)" with pytest.raises(TypeError, match=msg): self.index > np.arange(2) msg = "Lengths must match to compare" with pytest.raises(ValueError, match=msg): self.index > np.arange(3) def test_missing_values(self, closed): idx = Index([np.nan, Interval(0, 1, closed=closed), Interval(1, 2, closed=closed)]) idx2 = IntervalIndex.from_arrays( [np.nan, 0, 1], [np.nan, 1, 2], closed=closed) assert idx.equals(idx2) msg = ("missing values must be missing in the same location both left" " and right sides") with pytest.raises(ValueError, match=msg): IntervalIndex.from_arrays( [np.nan, 0, 1], np.array([0, 1, 2]), closed=closed) tm.assert_numpy_array_equal(isna(idx), np.array([True, False, False])) def test_sort_values(self, closed): index = self.create_index(closed=closed) result = index.sort_values() tm.assert_index_equal(result, index) result = index.sort_values(ascending=False) tm.assert_index_equal(result, index[::-1]) # with nan index = IntervalIndex([Interval(1, 2), np.nan, Interval(0, 1)]) result = index.sort_values() expected = IntervalIndex([Interval(0, 1), Interval(1, 2), np.nan]) tm.assert_index_equal(result, expected) result = index.sort_values(ascending=False) expected = IntervalIndex([np.nan, Interval(1, 2), Interval(0, 1)]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('tz', [None, 'US/Eastern']) def test_datetime(self, tz): start = Timestamp('2000-01-01', tz=tz) dates = date_range(start=start, periods=10) index = IntervalIndex.from_breaks(dates) # test mid start = Timestamp('2000-01-01T12:00', tz=tz) expected = date_range(start=start, periods=9) tm.assert_index_equal(index.mid, expected) # __contains__ doesn't check individual points assert Timestamp('2000-01-01', tz=tz) not in index assert Timestamp('2000-01-01T12', tz=tz) not in index assert Timestamp('2000-01-02', tz=tz) not in index iv_true = Interval(Timestamp('2000-01-01T08', tz=tz), Timestamp('2000-01-01T18', tz=tz)) iv_false = Interval(Timestamp('1999-12-31', tz=tz), Timestamp('2000-01-01', tz=tz)) assert iv_true in index assert iv_false not in index # .contains does check individual points assert not index.contains(Timestamp('2000-01-01', tz=tz)) assert index.contains(Timestamp('2000-01-01T12', tz=tz)) assert index.contains(Timestamp('2000-01-02', tz=tz)) assert index.contains(iv_true) assert not index.contains(iv_false) # test get_indexer start = Timestamp('1999-12-31T12:00', tz=tz) target = date_range(start=start, periods=7, freq='12H') actual = index.get_indexer(target) expected = np.array([-1, -1, 0, 0, 1, 1, 2], dtype='intp') tm.assert_numpy_array_equal(actual, expected) start = Timestamp('2000-01-08T18:00', tz=tz) target = date_range(start=start, periods=7, freq='6H') actual = index.get_indexer(target) expected = np.array([7, 7, 8, 8, 8, 8, -1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) def test_append(self, closed): index1 = IntervalIndex.from_arrays([0, 1], [1, 2], closed=closed) index2 = IntervalIndex.from_arrays([1, 2], [2, 3], closed=closed) result = index1.append(index2) expected = IntervalIndex.from_arrays( [0, 1, 1, 2], [1, 2, 2, 3], closed=closed) tm.assert_index_equal(result, expected) result = index1.append([index1, index2]) expected = IntervalIndex.from_arrays( [0, 1, 0, 1, 1, 2], [1, 2, 1, 2, 2, 3], closed=closed) tm.assert_index_equal(result, expected) msg = ('can only append two IntervalIndex objects that are closed ' 'on the same side') for other_closed in {'left', 'right', 'both', 'neither'} - {closed}: index_other_closed = IntervalIndex.from_arrays( [0, 1], [1, 2], closed=other_closed) with pytest.raises(ValueError, match=msg): index1.append(index_other_closed) def test_is_non_overlapping_monotonic(self, closed): # Should be True in all cases tpls = [(0, 1), (2, 3), (4, 5), (6, 7)] idx = IntervalIndex.from_tuples(tpls, closed=closed) assert idx.is_non_overlapping_monotonic is True idx = IntervalIndex.from_tuples(tpls[::-1], closed=closed) assert idx.is_non_overlapping_monotonic is True # Should be False in all cases (overlapping) tpls = [(0, 2), (1, 3), (4, 5), (6, 7)] idx = IntervalIndex.from_tuples(tpls, closed=closed) assert idx.is_non_overlapping_monotonic is False idx = IntervalIndex.from_tuples(tpls[::-1], closed=closed) assert idx.is_non_overlapping_monotonic is False # Should be False in all cases (non-monotonic) tpls = [(0, 1), (2, 3), (6, 7), (4, 5)] idx = IntervalIndex.from_tuples(tpls, closed=closed) assert idx.is_non_overlapping_monotonic is False idx = IntervalIndex.from_tuples(tpls[::-1], closed=closed) assert idx.is_non_overlapping_monotonic is False # Should be False for closed='both', otherwise True (GH16560) if closed == 'both': idx = IntervalIndex.from_breaks(range(4), closed=closed) assert idx.is_non_overlapping_monotonic is False else: idx = IntervalIndex.from_breaks(range(4), closed=closed) assert idx.is_non_overlapping_monotonic is True @pytest.mark.parametrize('start, shift, na_value', [ (0, 1, np.nan), (Timestamp('2018-01-01'), Timedelta('1 day'), pd.NaT), (Timedelta('0 days'), Timedelta('1 day'), pd.NaT)]) def test_is_overlapping(self, start, shift, na_value, closed): # GH 23309 # see test_interval_tree.py for extensive tests; interface tests here # non-overlapping tuples = [(start + n * shift, start + (n + 1) * shift) for n in (0, 2, 4)] index = IntervalIndex.from_tuples(tuples, closed=closed) assert index.is_overlapping is False # non-overlapping with NA tuples = [(na_value, na_value)] + tuples + [(na_value, na_value)] index = IntervalIndex.from_tuples(tuples, closed=closed) assert index.is_overlapping is False # overlapping tuples = [(start + n * shift, start + (n + 2) * shift) for n in range(3)] index = IntervalIndex.from_tuples(tuples, closed=closed) assert index.is_overlapping is True # overlapping with NA tuples = [(na_value, na_value)] + tuples + [(na_value, na_value)] index = IntervalIndex.from_tuples(tuples, closed=closed) assert index.is_overlapping is True # common endpoints tuples = [(start + n * shift, start + (n + 1) * shift) for n in range(3)] index = IntervalIndex.from_tuples(tuples, closed=closed) result = index.is_overlapping expected = closed == 'both' assert result is expected # common endpoints with NA tuples = [(na_value, na_value)] + tuples + [(na_value, na_value)] index = IntervalIndex.from_tuples(tuples, closed=closed) result = index.is_overlapping assert result is expected @pytest.mark.parametrize('tuples', [ lzip(range(10), range(1, 11)), lzip(date_range('20170101', periods=10), date_range('20170101', periods=10)), lzip(timedelta_range('0 days', periods=10), timedelta_range('1 day', periods=10))]) def test_to_tuples(self, tuples): # GH 18756 idx = IntervalIndex.from_tuples(tuples) result = idx.to_tuples() expected = Index(com.asarray_tuplesafe(tuples)) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('tuples', [ lzip(range(10), range(1, 11)) + [np.nan], lzip(date_range('20170101', periods=10), date_range('20170101', periods=10)) + [np.nan], lzip(timedelta_range('0 days', periods=10), timedelta_range('1 day', periods=10)) + [np.nan]]) @pytest.mark.parametrize('na_tuple', [True, False]) def test_to_tuples_na(self, tuples, na_tuple): # GH 18756 idx = IntervalIndex.from_tuples(tuples) result = idx.to_tuples(na_tuple=na_tuple) # check the non-NA portion expected_notna = Index(com.asarray_tuplesafe(tuples[:-1])) result_notna = result[:-1] tm.assert_index_equal(result_notna, expected_notna) # check the NA portion result_na = result[-1] if na_tuple: assert isinstance(result_na, tuple) assert len(result_na) == 2 assert all(isna(x) for x in result_na) else: assert isna(result_na) def test_nbytes(self): # GH 19209 left = np.arange(0, 4, dtype='i8') right = np.arange(1, 5, dtype='i8') result = IntervalIndex.from_arrays(left, right).nbytes expected = 64 # 4 * 8 * 2 assert result == expected def test_itemsize(self): # GH 19209 left = np.arange(0, 4, dtype='i8') right = np.arange(1, 5, dtype='i8') expected = 16 # 8 * 2 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = IntervalIndex.from_arrays(left, right).itemsize assert result == expected @pytest.mark.parametrize('new_closed', [ 'left', 'right', 'both', 'neither']) def test_set_closed(self, name, closed, new_closed): # GH 21670 index = interval_range(0, 5, closed=closed, name=name) result = index.set_closed(new_closed) expected = interval_range(0, 5, closed=new_closed, name=name) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('bad_closed', ['foo', 10, 'LEFT', True, False]) def test_set_closed_errors(self, bad_closed): # GH 21670 index = interval_range(0, 5) msg = "invalid option for 'closed': {closed}".format(closed=bad_closed) with pytest.raises(ValueError, match=msg): index.set_closed(bad_closed) def test_is_all_dates(self): # GH 23576 year_2017 = pd.Interval(pd.Timestamp('2017-01-01 00:00:00'), pd.Timestamp('2018-01-01 00:00:00')) year_2017_index = pd.IntervalIndex([year_2017]) assert not year_2017_index.is_all_dates
bsd-3-clause
vshtanko/scikit-learn
examples/applications/plot_species_distribution_modeling.py
254
7434
""" ============================= Species distribution modeling ============================= Modeling species' geographic distributions is an important problem in conservation biology. In this example we model the geographic distribution of two south american mammals given past observations and 14 environmental variables. Since we have only positive examples (there are no unsuccessful observations), we cast this problem as a density estimation problem and use the `OneClassSVM` provided by the package `sklearn.svm` as our modeling tool. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <http://matplotlib.sourceforge.net/basemap/doc/html/>`_ to plot the coast lines and national boundaries of South America. The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # Authors: Peter Prettenhofer <[email protected]> # Jake Vanderplas <[email protected]> # # License: BSD 3 clause from __future__ import print_function from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.base import Bunch from sklearn.datasets import fetch_species_distributions from sklearn.datasets.species_distributions import construct_grids from sklearn import svm, metrics # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False print(__doc__) def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid): """Create a bunch with information about a particular organism This will use the test/train record arrays to extract the data specific to the given species name. """ bunch = Bunch(name=' '.join(species_name.split("_")[:2])) species_name = species_name.encode('ascii') points = dict(test=test, train=train) for label, pts in points.items(): # choose points associated with the desired species pts = pts[pts['species'] == species_name] bunch['pts_%s' % label] = pts # determine coverage values for each of the training & testing points ix = np.searchsorted(xgrid, pts['dd long']) iy = np.searchsorted(ygrid, pts['dd lat']) bunch['cov_%s' % label] = coverages[:, -iy, ix].T return bunch def plot_species_distribution(species=("bradypus_variegatus_0", "microryzomys_minutus_0")): """ Plot the species distribution. """ if len(species) > 2: print("Note: when more than two species are provided," " only the first two will be used") t0 = time() # Load the compressed data data = fetch_species_distributions() # Set up the data grid xgrid, ygrid = construct_grids(data) # The grid in x,y coordinates X, Y = np.meshgrid(xgrid, ygrid[::-1]) # create a bunch for each species BV_bunch = create_species_bunch(species[0], data.train, data.test, data.coverages, xgrid, ygrid) MM_bunch = create_species_bunch(species[1], data.train, data.test, data.coverages, xgrid, ygrid) # background points (grid coordinates) for evaluation np.random.seed(13) background_points = np.c_[np.random.randint(low=0, high=data.Ny, size=10000), np.random.randint(low=0, high=data.Nx, size=10000)].T # We'll make use of the fact that coverages[6] has measurements at all # land points. This will help us decide between land and water. land_reference = data.coverages[6] # Fit, predict, and plot for each species. for i, species in enumerate([BV_bunch, MM_bunch]): print("_" * 80) print("Modeling distribution of species '%s'" % species.name) # Standardize features mean = species.cov_train.mean(axis=0) std = species.cov_train.std(axis=0) train_cover_std = (species.cov_train - mean) / std # Fit OneClassSVM print(" - fit OneClassSVM ... ", end='') clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5) clf.fit(train_cover_std) print("done.") # Plot map of South America plt.subplot(1, 2, i + 1) if basemap: print(" - plot coastlines using basemap") m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c') m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour(X, Y, land_reference, levels=[-9999], colors="k", linestyles="solid") plt.xticks([]) plt.yticks([]) print(" - predict species distribution") # Predict species distribution using the training data Z = np.ones((data.Ny, data.Nx), dtype=np.float64) # We'll predict only for the land points. idx = np.where(land_reference > -9999) coverages_land = data.coverages[:, idx[0], idx[1]].T pred = clf.decision_function((coverages_land - mean) / std)[:, 0] Z *= pred.min() Z[idx[0], idx[1]] = pred levels = np.linspace(Z.min(), Z.max(), 25) Z[land_reference == -9999] = -9999 # plot contours of the prediction plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) plt.colorbar(format='%.2f') # scatter training/testing points plt.scatter(species.pts_train['dd long'], species.pts_train['dd lat'], s=2 ** 2, c='black', marker='^', label='train') plt.scatter(species.pts_test['dd long'], species.pts_test['dd lat'], s=2 ** 2, c='black', marker='x', label='test') plt.legend() plt.title(species.name) plt.axis('equal') # Compute AUC with regards to background points pred_background = Z[background_points[0], background_points[1]] pred_test = clf.decision_function((species.cov_test - mean) / std)[:, 0] scores = np.r_[pred_test, pred_background] y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)] fpr, tpr, thresholds = metrics.roc_curve(y, scores) roc_auc = metrics.auc(fpr, tpr) plt.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right") print("\n Area under the ROC curve : %f" % roc_auc) print("\ntime elapsed: %.2fs" % (time() - t0)) plot_species_distribution() plt.show()
bsd-3-clause
smrjan/seldon-server
python/seldon/pipeline/auto_transforms.py
2
14874
from sklearn import preprocessing from dateutil.parser import parse import datetime from collections import defaultdict import numpy as np import pandas as pd import math import itertools from sklearn.base import BaseEstimator,TransformerMixin import logging from seldon.util import DeprecationHelper logger = logging.getLogger(__name__) class AutoTransform(BaseEstimator,TransformerMixin): """ Automatically transform a set of features into normalzied numeric or categorical features or dates Parameters ---------- exclude : list str, optional list of features to not include include : list str, optional features to include if None then all unless exclude used max_values_numeric_categorical : int, optional max number of unique values for numeric feature to treat as categorical custom_date_formats : list str, optional list of custom date formats to try ignore_vals : list str, optional list of feature values to treat as NA/ignored values force_categorical : list str, optional features to force to be categorical min_cat_percent : list str, optional min percentage for a categorical value to be kept max_cat_percent : float, optional max percentage for a categorical value to be kept bool_map : dict, optional set of string values to be treated as boolean cat_missing_value : str, optional string to use for missing categorical values date_transforms : list bool, optional which date transforms to apply [hour,month,day_of_week,year], default is all create_date_differences : bool, optional whether to create differences between all date variables nan_threshold : float, optional featurs to drop if too many nan, threshold is between 0-1 as percent drop_constant_features : bool, optional drop a column if its value is constant drop duplicate columns : bool, optional drop duplicate columns min_max_limit : bool, optional limit numeric cols to min and max seen in fit """ def __init__(self,exclude=[],include=None,max_values_numeric_categorical=0,date_cols=[],custom_date_formats=None,ignore_vals=None,force_categorical=[],min_cat_percent=0.0,max_cat_percent=1.0,bool_map={"true":1,"false":0,"1":1,"0":0,"yes":1,"no":0,"1.0":1,"0.0":0},cat_missing_val="UKN",date_transforms=[True,True,True,True],create_date_differences=False,nan_threshold=None,drop_constant_features=True,drop_duplicate_cols=True,min_max_limit=False): super(AutoTransform, self).__init__() self.exclude = exclude self.include = include self.max_values_numeric_categorical = max_values_numeric_categorical self.scalers = {} self.date_diff_scalers = {} self.custom_date_formats = custom_date_formats self.ignore_vals = ignore_vals self.force_categorical = force_categorical self.catValueCount = {} self.convert_categorical = [] self.convert_date = [] self.date_cols = date_cols self.min_cat_percent = min_cat_percent self.max_cat_percent = max_cat_percent self.cat_percent = {} self.bool_map = bool_map self.convert_bool = [] self.cat_missing_val = cat_missing_val self.date_transforms=date_transforms self.create_date_differences = create_date_differences self.nan_threshold=nan_threshold self.drop_cols = [] self.drop_constant_features=drop_constant_features self.drop_duplicate_cols=drop_duplicate_cols self.min_max_limit=min_max_limit self.min_max = {} def _scale(self,v,col): if np.isnan(v): return 0.0 else: return self.scalers[col].transform([[float(v)]])[0,0] def _scale_date_diff(self,v,col): if np.isnan(v): return 0.0 else: return self.date_diff_scalers[col].transform([[float(v)]])[0,0] @staticmethod def _is_number(s): try: float(s) return True except ValueError: return False def _make_cat(self,v,col): if not isinstance(v,basestring) and np.isnan(v): return self.cat_missing_val else: if col in self.cat_percent and v in self.cat_percent[col] and self.cat_percent[col][v] >= self.min_cat_percent and self.cat_percent[col][v] <= self.max_cat_percent: val = unicode(str(v), "utf-8") if self._is_number(v): val = col + "_" + val.replace(" ","_").lower() else: val = val.replace(" ","_").lower() return val else: return np.nan def _create_hour_features(self,v,col): val = (v.hour/24.0) * 2*math.pi v1 = math.sin(val) v2 = math.cos(val) return pd.Series({col+"_hour":"h"+str(v.hour),col+"_"+'h1':v1, col+"_"+'h2':v2}) def _create_month_features(self,v,col): val = (v.month/12.0) * 2*math.pi v1 = math.sin(val) v2 = math.cos(val) return pd.Series({col+"_month":"m"+str(v.month),col+"_"+'m1':v1, col+"_"+'m2':v2}) def _create_dayofweek_features(self,v,col): val = (v.dayofweek/7.0) * 2*math.pi v1 = math.sin(val) v2 = math.cos(val) return pd.Series({col+"_w":"w"+str(v.dayofweek),col+"_"+'w1':v1, col+"_"+'w2':v2}) def _create_year_features(self,v,col): return pd.Series({col+"_year":"y"+str(v.year)}) def _convert_to_date(self,df,col): if not df[col].dtype == 'datetime64[ns]': try: return pd.to_datetime(df[col]) except: logger.info("failed default conversion ") pass for f in self.custom_date_formats: try: return pd.to_datetime(df[col],format=f) except: logger.info("failed custom conversion %s",f) pass return None else: return df[col] def _duplicate_columns(self,frame): groups = frame.columns.to_series().groupby(frame.dtypes).groups dups = [] for t, v in groups.items(): dcols = frame[v].to_dict(orient="list") vs = dcols.values() ks = dcols.keys() lvs = len(vs) for i in range(lvs): for j in range(i+1,lvs): if vs[i] == vs[j]: dups.append(ks[i]) break return dups def fit(self,df): """ Fit models against an input pandas dataframe Parameters ---------- X : pandas dataframe Returns ------- self: object """ if not self.nan_threshold is None: max_nan = float(len(df)) * self.nan_threshold numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] numeric_cols = set(df.select_dtypes(include=numerics).columns) categorical_cols = set(df.select_dtypes(exclude=numerics).columns) if self.drop_duplicate_cols: self.drop_cols = self._duplicate_columns(df) logger.info("Adding duplicate cols to be dropped %s",self.drop_cols) for col in df.columns: if col in self.exclude: continue if col in self.drop_cols: continue elif not self.include or col in self.include: if not self.nan_threshold is None: num_nan = len(df) - df[col].count() if num_nan > max_nan: if not col in self.drop_cols: logger.info("adding %s to drop columns %d %d",col,num_nan,max_nan) self.drop_cols.append(col) continue if not self.ignore_vals is None: df[col].replace(self.ignore_vals,np.nan,inplace=True) df[col] = df[col].apply(lambda x: np.nan if isinstance(x, basestring) and len(x)==0 else x) cat_counts = df[col].value_counts(normalize=True,dropna=False) if len(cat_counts) == 1 and self.drop_constant_features: if not col in self.drop_cols: logger.info("adding %s to drop columns as is constant",col) self.drop_cols.append(col) continue is_bool = True for val in cat_counts.index: if not str(val).lower() in self.bool_map.keys(): is_bool = False break if is_bool: self.convert_bool.append(col) elif df[col].dtype in numerics: if len(cat_counts) > self.max_values_numeric_categorical and not col in self.force_categorical: logger.info("fitting scaler for col %s",col) dfs = df[col].dropna() if dfs.shape[0] > 0: arr = dfs.astype(float).values.reshape(-1,1) self.scalers[col] = preprocessing.StandardScaler(with_mean=True, with_std=True).fit(arr) self.min_max[col] = (dfs.min(),dfs.max()) else: self.convert_categorical.append(col) self.cat_percent[col] = cat_counts else: if df[col].dtype == 'datetime64[ns]': self.convert_date.append(col) elif col in self.date_cols: self.convert_date.append(col) else: self.convert_categorical.append(col) self.cat_percent[col] = cat_counts if self.create_date_differences: dates_converted = pd.DataFrame([]) for col in self.convert_date: date_converted = self._convert_to_date(df,col) if not date_converted is None: dates_converted[col] = date_converted if len(dates_converted.columns)>1: for (col1,col2) in itertools.combinations(dates_converted.columns, 2): logger.info("training date diff scaler for %s %s",col1,col2) d_diff = dates_converted[col1] - dates_converted[col2] d_diff = (d_diff / np.timedelta64(1, 'D')).astype(float) self.date_diff_scalers[col1+"_"+col2] = preprocessing.StandardScaler(with_mean=True, with_std=True).fit(arr) logger.info("num columns to drop %d",len(self.drop_cols)) logger.info("num scalers %d",len(self.scalers)) logger.info("num categorical %d",len(self.convert_categorical)) logger.info("num dates %d",len(self.convert_date)) logger.info("num date diffs %d",len(self.date_diff_scalers)) logger.info("num bool %d",len(self.convert_bool)) return self def transform(self,df): """ transform a datframe with fitted models Parameters ---------- X : pandas dataframe Returns ------- Transformed pandas dataframe """ df = df.drop(self.drop_cols,axis=1) c = 0 num_bools = len(self.convert_bool) for col in self.convert_bool: c += 1 logger.info("convert bool %s %d/%d",col,c,num_bools) df[col] = df[col].apply(str).apply(str.lower) df[col] = df[col].map(self.bool_map) c = 0 num_dates = len(self.convert_date) dates_converted = [] for col in self.convert_date: c += 1 logger.info("convert date %s %d/%d %s",col,c,num_dates,df[col].dtype) date_converted = self._convert_to_date(df,col) if not date_converted is None: logger.info("successfully converted %s to date",col) df[col] = date_converted dates_converted.append(col) if df[col].dtype == 'datetime64[ns]': if self.date_transforms[0]: logger.info("creating hour features") df = pd.concat([df,df[col].apply(self._create_hour_features,col=col)],axis=1) if self.date_transforms[1]: logger.info("creating month features") df = pd.concat([df,df[col].apply(self._create_month_features,col=col)],axis=1) if self.date_transforms[2]: logger.info("creating day of week features") df = pd.concat([df,df[col].apply(self._create_dayofweek_features,col=col)],axis=1) if self.date_transforms[3]: logger.info("creating year features") df = pd.concat([df,df[col].apply(self._create_year_features,col=col)],axis=1) else: logger.info("warning - failed to convert to date col %s",col) if self.create_date_differences and len(dates_converted) > 1: for (col1,col2) in itertools.combinations(dates_converted, 2): logger.info("diff scaler for %s %s",col1,col2) col_name = col1+"_"+col2 df[col_name] = df[col1] - df[col2] df[col_name] = (df[col_name] / np.timedelta64(1, 'D')).astype(float) if not self.ignore_vals is None: df[col_name].replace(self.ignore_vals,np.nan,inplace=True) df[col_name] = df[col_name].apply(self._scale_date_diff,col=col_name) c = 0 num_cats = len(self.convert_categorical) for col in self.convert_categorical: if not self.ignore_vals is None: df[col].replace(self.ignore_vals,np.nan,inplace=True) c += 1 logger.info("convert categorical %s %d/%d ",col,c,num_cats) df[col] = df[col].apply(self._make_cat,col=col) num_scalers = len(self.scalers) c = 0 for col in self.scalers: if not self.ignore_vals is None: df[col].replace(self.ignore_vals,np.nan,inplace=True) if self.min_max_limit: df[col] = df[col].apply(lambda x : self.min_max[col][0] if x < self.min_max[col][0] else x) df[col] = df[col].apply(lambda x : self.min_max[col][1] if x > self.min_max[col][1] else x) c += 1 logger.info("scaling col %s %d/%d",col,c,num_scalers) df[col] = df[col].apply(self._scale,col=col) return df Auto_transform = DeprecationHelper(AutoTransform)
apache-2.0
kjung/scikit-learn
doc/datasets/mldata_fixture.py
367
1183
"""Fixture module to skip the datasets loading when offline Mock urllib2 access to mldata.org and create a temporary data folder. """ from os import makedirs from os.path import join import numpy as np import tempfile import shutil from sklearn import datasets from sklearn.utils.testing import install_mldata_mock from sklearn.utils.testing import uninstall_mldata_mock def globs(globs): # Create a temporary folder for the data fetcher global custom_data_home custom_data_home = tempfile.mkdtemp() makedirs(join(custom_data_home, 'mldata')) globs['custom_data_home'] = custom_data_home return globs def setup_module(): # setup mock urllib2 module to avoid downloading from mldata.org install_mldata_mock({ 'mnist-original': { 'data': np.empty((70000, 784)), 'label': np.repeat(np.arange(10, dtype='d'), 7000), }, 'iris': { 'data': np.empty((150, 4)), }, 'datasets-uci-iris': { 'double0': np.empty((150, 4)), 'class': np.empty((150,)), }, }) def teardown_module(): uninstall_mldata_mock() shutil.rmtree(custom_data_home)
bsd-3-clause
petosegan/scikit-learn
sklearn/decomposition/tests/test_factor_analysis.py
222
3055
# Author: Christian Osendorfer <[email protected]> # Alexandre Gramfort <[email protected]> # Licence: BSD3 import numpy as np from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils import ConvergenceWarning from sklearn.decomposition import FactorAnalysis def test_factor_analysis(): # Test FactorAnalysis ability to recover the data covariance structure rng = np.random.RandomState(0) n_samples, n_features, n_components = 20, 5, 3 # Some random settings for the generative model W = rng.randn(n_components, n_features) # latent variable of dim 3, 20 of it h = rng.randn(n_samples, n_components) # using gamma to model different noise variance # per component noise = rng.gamma(1, size=n_features) * rng.randn(n_samples, n_features) # generate observations # wlog, mean is 0 X = np.dot(h, W) + noise assert_raises(ValueError, FactorAnalysis, svd_method='foo') fa_fail = FactorAnalysis() fa_fail.svd_method = 'foo' assert_raises(ValueError, fa_fail.fit, X) fas = [] for method in ['randomized', 'lapack']: fa = FactorAnalysis(n_components=n_components, svd_method=method) fa.fit(X) fas.append(fa) X_t = fa.transform(X) assert_equal(X_t.shape, (n_samples, n_components)) assert_almost_equal(fa.loglike_[-1], fa.score_samples(X).sum()) assert_almost_equal(fa.score_samples(X).mean(), fa.score(X)) diff = np.all(np.diff(fa.loglike_)) assert_greater(diff, 0., 'Log likelihood dif not increase') # Sample Covariance scov = np.cov(X, rowvar=0., bias=1.) # Model Covariance mcov = fa.get_covariance() diff = np.sum(np.abs(scov - mcov)) / W.size assert_less(diff, 0.1, "Mean absolute difference is %f" % diff) fa = FactorAnalysis(n_components=n_components, noise_variance_init=np.ones(n_features)) assert_raises(ValueError, fa.fit, X[:, :2]) f = lambda x, y: np.abs(getattr(x, y)) # sign will not be equal fa1, fa2 = fas for attr in ['loglike_', 'components_', 'noise_variance_']: assert_almost_equal(f(fa1, attr), f(fa2, attr)) fa1.max_iter = 1 fa1.verbose = True assert_warns(ConvergenceWarning, fa1.fit, X) # Test get_covariance and get_precision with n_components == n_features # with n_components < n_features and with n_components == 0 for n_components in [0, 2, X.shape[1]]: fa.n_components = n_components fa.fit(X) cov = fa.get_covariance() precision = fa.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1]), 12)
bsd-3-clause
samuel1208/scikit-learn
examples/feature_selection/plot_feature_selection.py
249
2827
""" =============================== Univariate Feature Selection =============================== An example showing univariate feature selection. Noisy (non informative) features are added to the iris data and univariate feature selection is applied. For each feature, we plot the p-values for the univariate feature selection and the corresponding weights of an SVM. We can see that univariate feature selection selects the informative features and that these have larger SVM weights. In the total set of features, only the 4 first ones are significant. We can see that they have the highest score with univariate feature selection. The SVM assigns a large weight to one of these features, but also Selects many of the non-informative features. Applying univariate feature selection before the SVM increases the SVM weight attributed to the significant features, and will thus improve classification. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, svm from sklearn.feature_selection import SelectPercentile, f_classif ############################################################################### # import some data to play with # The iris dataset iris = datasets.load_iris() # Some noisy data not correlated E = np.random.uniform(0, 0.1, size=(len(iris.data), 20)) # Add the noisy data to the informative features X = np.hstack((iris.data, E)) y = iris.target ############################################################################### plt.figure(1) plt.clf() X_indices = np.arange(X.shape[-1]) ############################################################################### # Univariate feature selection with F-test for feature scoring # We use the default selection function: the 10% most significant features selector = SelectPercentile(f_classif, percentile=10) selector.fit(X, y) scores = -np.log10(selector.pvalues_) scores /= scores.max() plt.bar(X_indices - .45, scores, width=.2, label=r'Univariate score ($-Log(p_{value})$)', color='g') ############################################################################### # Compare to the weights of an SVM clf = svm.SVC(kernel='linear') clf.fit(X, y) svm_weights = (clf.coef_ ** 2).sum(axis=0) svm_weights /= svm_weights.max() plt.bar(X_indices - .25, svm_weights, width=.2, label='SVM weight', color='r') clf_selected = svm.SVC(kernel='linear') clf_selected.fit(selector.transform(X), y) svm_weights_selected = (clf_selected.coef_ ** 2).sum(axis=0) svm_weights_selected /= svm_weights_selected.max() plt.bar(X_indices[selector.get_support()] - .05, svm_weights_selected, width=.2, label='SVM weights after selection', color='b') plt.title("Comparing feature selection") plt.xlabel('Feature number') plt.yticks(()) plt.axis('tight') plt.legend(loc='upper right') plt.show()
bsd-3-clause
rohanp/scikit-learn
examples/applications/svm_gui.py
287
11161
""" ========== Libsvm GUI ========== A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point and click and visualize the decision region induced by different kernels and parameter settings. To create positive examples click the left mouse button; to create negative examples click the right button. If all examples are from the same class, it uses a one-class SVM. """ from __future__ import division, print_function print(__doc__) # Author: Peter Prettenhoer <[email protected]> # # License: BSD 3 clause import matplotlib matplotlib.use('TkAgg') from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg from matplotlib.figure import Figure from matplotlib.contour import ContourSet import Tkinter as Tk import sys import numpy as np from sklearn import svm from sklearn.datasets import dump_svmlight_file from sklearn.externals.six.moves import xrange y_min, y_max = -50, 50 x_min, x_max = -50, 50 class Model(object): """The Model which hold the data. It implements the observable in the observer pattern and notifies the registered observers on change event. """ def __init__(self): self.observers = [] self.surface = None self.data = [] self.cls = None self.surface_type = 0 def changed(self, event): """Notify the observers. """ for observer in self.observers: observer.update(event, self) def add_observer(self, observer): """Register an observer. """ self.observers.append(observer) def set_surface(self, surface): self.surface = surface def dump_svmlight_file(self, file): data = np.array(self.data) X = data[:, 0:2] y = data[:, 2] dump_svmlight_file(X, y, file) class Controller(object): def __init__(self, model): self.model = model self.kernel = Tk.IntVar() self.surface_type = Tk.IntVar() # Whether or not a model has been fitted self.fitted = False def fit(self): print("fit the model") train = np.array(self.model.data) X = train[:, 0:2] y = train[:, 2] C = float(self.complexity.get()) gamma = float(self.gamma.get()) coef0 = float(self.coef0.get()) degree = int(self.degree.get()) kernel_map = {0: "linear", 1: "rbf", 2: "poly"} if len(np.unique(y)) == 1: clf = svm.OneClassSVM(kernel=kernel_map[self.kernel.get()], gamma=gamma, coef0=coef0, degree=degree) clf.fit(X) else: clf = svm.SVC(kernel=kernel_map[self.kernel.get()], C=C, gamma=gamma, coef0=coef0, degree=degree) clf.fit(X, y) if hasattr(clf, 'score'): print("Accuracy:", clf.score(X, y) * 100) X1, X2, Z = self.decision_surface(clf) self.model.clf = clf self.model.set_surface((X1, X2, Z)) self.model.surface_type = self.surface_type.get() self.fitted = True self.model.changed("surface") def decision_surface(self, cls): delta = 1 x = np.arange(x_min, x_max + delta, delta) y = np.arange(y_min, y_max + delta, delta) X1, X2 = np.meshgrid(x, y) Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()]) Z = Z.reshape(X1.shape) return X1, X2, Z def clear_data(self): self.model.data = [] self.fitted = False self.model.changed("clear") def add_example(self, x, y, label): self.model.data.append((x, y, label)) self.model.changed("example_added") # update decision surface if already fitted. self.refit() def refit(self): """Refit the model if already fitted. """ if self.fitted: self.fit() class View(object): """Test docstring. """ def __init__(self, root, controller): f = Figure() ax = f.add_subplot(111) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlim((x_min, x_max)) ax.set_ylim((y_min, y_max)) canvas = FigureCanvasTkAgg(f, master=root) canvas.show() canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas.mpl_connect('button_press_event', self.onclick) toolbar = NavigationToolbar2TkAgg(canvas, root) toolbar.update() self.controllbar = ControllBar(root, controller) self.f = f self.ax = ax self.canvas = canvas self.controller = controller self.contours = [] self.c_labels = None self.plot_kernels() def plot_kernels(self): self.ax.text(-50, -60, "Linear: $u^T v$") self.ax.text(-20, -60, "RBF: $\exp (-\gamma \| u-v \|^2)$") self.ax.text(10, -60, "Poly: $(\gamma \, u^T v + r)^d$") def onclick(self, event): if event.xdata and event.ydata: if event.button == 1: self.controller.add_example(event.xdata, event.ydata, 1) elif event.button == 3: self.controller.add_example(event.xdata, event.ydata, -1) def update_example(self, model, idx): x, y, l = model.data[idx] if l == 1: color = 'w' elif l == -1: color = 'k' self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0) def update(self, event, model): if event == "examples_loaded": for i in xrange(len(model.data)): self.update_example(model, i) if event == "example_added": self.update_example(model, -1) if event == "clear": self.ax.clear() self.ax.set_xticks([]) self.ax.set_yticks([]) self.contours = [] self.c_labels = None self.plot_kernels() if event == "surface": self.remove_surface() self.plot_support_vectors(model.clf.support_vectors_) self.plot_decision_surface(model.surface, model.surface_type) self.canvas.draw() def remove_surface(self): """Remove old decision surface.""" if len(self.contours) > 0: for contour in self.contours: if isinstance(contour, ContourSet): for lineset in contour.collections: lineset.remove() else: contour.remove() self.contours = [] def plot_support_vectors(self, support_vectors): """Plot the support vectors by placing circles over the corresponding data points and adds the circle collection to the contours list.""" cs = self.ax.scatter(support_vectors[:, 0], support_vectors[:, 1], s=80, edgecolors="k", facecolors="none") self.contours.append(cs) def plot_decision_surface(self, surface, type): X1, X2, Z = surface if type == 0: levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' self.contours.append(self.ax.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)) elif type == 1: self.contours.append(self.ax.contourf(X1, X2, Z, 10, cmap=matplotlib.cm.bone, origin='lower', alpha=0.85)) self.contours.append(self.ax.contour(X1, X2, Z, [0.0], colors='k', linestyles=['solid'])) else: raise ValueError("surface type unknown") class ControllBar(object): def __init__(self, root, controller): fm = Tk.Frame(root) kernel_group = Tk.Frame(fm) Tk.Radiobutton(kernel_group, text="Linear", variable=controller.kernel, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="RBF", variable=controller.kernel, value=1, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="Poly", variable=controller.kernel, value=2, command=controller.refit).pack(anchor=Tk.W) kernel_group.pack(side=Tk.LEFT) valbox = Tk.Frame(fm) controller.complexity = Tk.StringVar() controller.complexity.set("1.0") c = Tk.Frame(valbox) Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(c, width=6, textvariable=controller.complexity).pack( side=Tk.LEFT) c.pack() controller.gamma = Tk.StringVar() controller.gamma.set("0.01") g = Tk.Frame(valbox) Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT) g.pack() controller.degree = Tk.StringVar() controller.degree.set("3") d = Tk.Frame(valbox) Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT) d.pack() controller.coef0 = Tk.StringVar() controller.coef0.set("0") r = Tk.Frame(valbox) Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT) r.pack() valbox.pack(side=Tk.LEFT) cmap_group = Tk.Frame(fm) Tk.Radiobutton(cmap_group, text="Hyperplanes", variable=controller.surface_type, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(cmap_group, text="Surface", variable=controller.surface_type, value=1, command=controller.refit).pack(anchor=Tk.W) cmap_group.pack(side=Tk.LEFT) train_button = Tk.Button(fm, text='Fit', width=5, command=controller.fit) train_button.pack() fm.pack(side=Tk.LEFT) Tk.Button(fm, text='Clear', width=5, command=controller.clear_data).pack(side=Tk.LEFT) def get_parser(): from optparse import OptionParser op = OptionParser() op.add_option("--output", action="store", type="str", dest="output", help="Path where to dump data.") return op def main(argv): op = get_parser() opts, args = op.parse_args(argv[1:]) root = Tk.Tk() model = Model() controller = Controller(model) root.wm_title("Scikit-learn Libsvm GUI") view = View(root, controller) model.add_observer(view) Tk.mainloop() if opts.output: model.dump_svmlight_file(opts.output) if __name__ == "__main__": main(sys.argv)
bsd-3-clause
ryanraaum/african-mtdna
popdata_sources/batai2013/process.py
1
1598
from oldowan.mtconvert import seq2sites, sites2seq, str2sites from string import translate import pandas as pd import numpy as np import sys sys.path.append('../../scripts') from utils import * ## load metadata metadata = pd.read_csv('metadata.csv', index_col=0) region = range2region(metadata.ix[0,'SeqRange']) with open('batai2013.csv', 'rU') as f: header = f.readline() data = f.readlines() counts = np.zeros((len(data), 2), dtype=np.int) hids = [] sites = [] for i in range(len(data)): x = data[i].strip().split(',') hids.append("H%s" % str(i+1).zfill(3)) sites.append(x[0]) count = x[1:] for j in range(2): if count[j] == '': count[j] = '0' counts[i,] = [int(y) for y in count] ## Validate passed_validation = True for i in range(len(sites)): curr_sites = str2sites(sites[i], add16k=True) seq = sites2seq(curr_sites, region) mysites = seq2sites(seq) if not mysites == curr_sites: myseq = translate(sites2seq(mysites, region), None, '-') if not seq == myseq: passed_validation = False print i, hids[i] if passed_validation: counter = [0] * 2 with open('processed.csv', 'w') as f: for i in range(len(sites)): hid = hids[i] curr_sites = str2sites(sites[i], add16k=True) seq = sites2seq(curr_sites, region) mysites = ' '.join([str(x) for x in seq2sites(seq)]) for j in range(2): prefix = metadata.ix[j,'NewPrefix'] for k in range(counts[i,j]): counter[j] += 1 num = str(counter[j]).zfill(3) newid = prefix + num f.write('%s,%s,%s\n' % (newid, hid, mysites))
cc0-1.0
ammarkhann/FinalSeniorCode
lib/python2.7/site-packages/scipy/stats/_multivariate.py
12
112182
# # Author: Joris Vankerschaver 2013 # from __future__ import division, print_function, absolute_import import math import numpy as np import scipy.linalg from scipy.misc import doccer from scipy.special import gammaln, psi, multigammaln, xlogy, entr from scipy._lib._util import check_random_state from scipy.linalg.blas import drot from ._discrete_distns import binom __all__ = ['multivariate_normal', 'matrix_normal', 'dirichlet', 'wishart', 'invwishart', 'multinomial', 'special_ortho_group', 'ortho_group', 'random_correlation'] _LOG_2PI = np.log(2 * np.pi) _LOG_2 = np.log(2) _LOG_PI = np.log(np.pi) _doc_random_state = """\ random_state : None or int or np.random.RandomState instance, optional If int or RandomState, use it for drawing the random variates. If None (or np.random), the global np.random state is used. Default is None. """ def _squeeze_output(out): """ Remove single-dimensional entries from array and convert to scalar, if necessary. """ out = out.squeeze() if out.ndim == 0: out = out[()] return out def _eigvalsh_to_eps(spectrum, cond=None, rcond=None): """ Determine which eigenvalues are "small" given the spectrum. This is for compatibility across various linear algebra functions that should agree about whether or not a Hermitian matrix is numerically singular and what is its numerical matrix rank. This is designed to be compatible with scipy.linalg.pinvh. Parameters ---------- spectrum : 1d ndarray Array of eigenvalues of a Hermitian matrix. cond, rcond : float, optional Cutoff for small eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. Returns ------- eps : float Magnitude cutoff for numerical negligibility. """ if rcond is not None: cond = rcond if cond in [None, -1]: t = spectrum.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps eps = cond * np.max(abs(spectrum)) return eps def _pinv_1d(v, eps=1e-5): """ A helper function for computing the pseudoinverse. Parameters ---------- v : iterable of numbers This may be thought of as a vector of eigenvalues or singular values. eps : float Values with magnitude no greater than eps are considered negligible. Returns ------- v_pinv : 1d float ndarray A vector of pseudo-inverted numbers. """ return np.array([0 if abs(x) <= eps else 1/x for x in v], dtype=float) class _PSD(object): """ Compute coordinated functions of a symmetric positive semidefinite matrix. This class addresses two issues. Firstly it allows the pseudoinverse, the logarithm of the pseudo-determinant, and the rank of the matrix to be computed using one call to eigh instead of three. Secondly it allows these functions to be computed in a way that gives mutually compatible results. All of the functions are computed with a common understanding as to which of the eigenvalues are to be considered negligibly small. The functions are designed to coordinate with scipy.linalg.pinvh() but not necessarily with np.linalg.det() or with np.linalg.matrix_rank(). Parameters ---------- M : array_like Symmetric positive semidefinite matrix (2-D). cond, rcond : float, optional Cutoff for small eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. lower : bool, optional Whether the pertinent array data is taken from the lower or upper triangle of M. (Default: lower) check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. allow_singular : bool, optional Whether to allow a singular matrix. (Default: True) Notes ----- The arguments are similar to those of scipy.linalg.pinvh(). """ def __init__(self, M, cond=None, rcond=None, lower=True, check_finite=True, allow_singular=True): # Compute the symmetric eigendecomposition. # Note that eigh takes care of array conversion, chkfinite, # and assertion that the matrix is square. s, u = scipy.linalg.eigh(M, lower=lower, check_finite=check_finite) eps = _eigvalsh_to_eps(s, cond, rcond) if np.min(s) < -eps: raise ValueError('the input matrix must be positive semidefinite') d = s[s > eps] if len(d) < len(s) and not allow_singular: raise np.linalg.LinAlgError('singular matrix') s_pinv = _pinv_1d(s, eps) U = np.multiply(u, np.sqrt(s_pinv)) # Initialize the eagerly precomputed attributes. self.rank = len(d) self.U = U self.log_pdet = np.sum(np.log(d)) # Initialize an attribute to be lazily computed. self._pinv = None @property def pinv(self): if self._pinv is None: self._pinv = np.dot(self.U, self.U.T) return self._pinv class multi_rv_generic(object): """ Class which encapsulates common functionality between all multivariate distributions. """ def __init__(self, seed=None): super(multi_rv_generic, self).__init__() self._random_state = check_random_state(seed) @property def random_state(self): """ Get or set the RandomState object for generating random variates. This can be either None or an existing RandomState object. If None (or np.random), use the RandomState singleton used by np.random. If already a RandomState instance, use it. If an int, use a new RandomState instance seeded with seed. """ return self._random_state @random_state.setter def random_state(self, seed): self._random_state = check_random_state(seed) def _get_random_state(self, random_state): if random_state is not None: return check_random_state(random_state) else: return self._random_state class multi_rv_frozen(object): """ Class which encapsulates common functionality between all frozen multivariate distributions. """ @property def random_state(self): return self._dist._random_state @random_state.setter def random_state(self, seed): self._dist._random_state = check_random_state(seed) _mvn_doc_default_callparams = """\ mean : array_like, optional Mean of the distribution (default zero) cov : array_like, optional Covariance matrix of the distribution (default one) allow_singular : bool, optional Whether to allow a singular covariance matrix. (Default: False) """ _mvn_doc_callparams_note = \ """Setting the parameter `mean` to `None` is equivalent to having `mean` be the zero-vector. The parameter `cov` can be a scalar, in which case the covariance matrix is the identity times that value, a vector of diagonal entries for the covariance matrix, or a two-dimensional array_like. """ _mvn_doc_frozen_callparams = "" _mvn_doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" mvn_docdict_params = { '_mvn_doc_default_callparams': _mvn_doc_default_callparams, '_mvn_doc_callparams_note': _mvn_doc_callparams_note, '_doc_random_state': _doc_random_state } mvn_docdict_noparams = { '_mvn_doc_default_callparams': _mvn_doc_frozen_callparams, '_mvn_doc_callparams_note': _mvn_doc_frozen_callparams_note, '_doc_random_state': _doc_random_state } class multivariate_normal_gen(multi_rv_generic): r""" A multivariate normal random variable. The `mean` keyword specifies the mean. The `cov` keyword specifies the covariance matrix. Methods ------- ``pdf(x, mean=None, cov=1, allow_singular=False)`` Probability density function. ``logpdf(x, mean=None, cov=1, allow_singular=False)`` Log of the probability density function. ``rvs(mean=None, cov=1, size=1, random_state=None)`` Draw random samples from a multivariate normal distribution. ``entropy()`` Compute the differential entropy of the multivariate normal. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_mvn_doc_default_callparams)s %(_doc_random_state)s Alternatively, the object may be called (as a function) to fix the mean and covariance parameters, returning a "frozen" multivariate normal random variable: rv = multivariate_normal(mean=None, cov=1, allow_singular=False) - Frozen object with the same methods but holding the given mean and covariance fixed. Notes ----- %(_mvn_doc_callparams_note)s The covariance matrix `cov` must be a (symmetric) positive semi-definite matrix. The determinant and inverse of `cov` are computed as the pseudo-determinant and pseudo-inverse, respectively, so that `cov` does not need to have full rank. The probability density function for `multivariate_normal` is .. math:: f(x) = \frac{1}{\sqrt{(2 \pi)^k \det \Sigma}} \exp\left( -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right), where :math:`\mu` is the mean, :math:`\Sigma` the covariance matrix, and :math:`k` is the dimension of the space where :math:`x` takes values. .. versionadded:: 0.14.0 Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.stats import multivariate_normal >>> x = np.linspace(0, 5, 10, endpoint=False) >>> y = multivariate_normal.pdf(x, mean=2.5, cov=0.5); y array([ 0.00108914, 0.01033349, 0.05946514, 0.20755375, 0.43939129, 0.56418958, 0.43939129, 0.20755375, 0.05946514, 0.01033349]) >>> fig1 = plt.figure() >>> ax = fig1.add_subplot(111) >>> ax.plot(x, y) The input quantiles can be any shape of array, as long as the last axis labels the components. This allows us for instance to display the frozen pdf for a non-isotropic random variable in 2D as follows: >>> x, y = np.mgrid[-1:1:.01, -1:1:.01] >>> pos = np.dstack((x, y)) >>> rv = multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]]) >>> fig2 = plt.figure() >>> ax2 = fig2.add_subplot(111) >>> ax2.contourf(x, y, rv.pdf(pos)) """ def __init__(self, seed=None): super(multivariate_normal_gen, self).__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, mvn_docdict_params) def __call__(self, mean=None, cov=1, allow_singular=False, seed=None): """ Create a frozen multivariate normal distribution. See `multivariate_normal_frozen` for more information. """ return multivariate_normal_frozen(mean, cov, allow_singular=allow_singular, seed=seed) def _process_parameters(self, dim, mean, cov): """ Infer dimensionality from mean or covariance matrix, ensure that mean and covariance are full vector resp. matrix. """ # Try to infer dimensionality if dim is None: if mean is None: if cov is None: dim = 1 else: cov = np.asarray(cov, dtype=float) if cov.ndim < 2: dim = 1 else: dim = cov.shape[0] else: mean = np.asarray(mean, dtype=float) dim = mean.size else: if not np.isscalar(dim): raise ValueError("Dimension of random variable must be a scalar.") # Check input sizes and return full arrays for mean and cov if necessary if mean is None: mean = np.zeros(dim) mean = np.asarray(mean, dtype=float) if cov is None: cov = 1.0 cov = np.asarray(cov, dtype=float) if dim == 1: mean.shape = (1,) cov.shape = (1, 1) if mean.ndim != 1 or mean.shape[0] != dim: raise ValueError("Array 'mean' must be a vector of length %d." % dim) if cov.ndim == 0: cov = cov * np.eye(dim) elif cov.ndim == 1: cov = np.diag(cov) elif cov.ndim == 2 and cov.shape != (dim, dim): rows, cols = cov.shape if rows != cols: msg = ("Array 'cov' must be square if it is two dimensional," " but cov.shape = %s." % str(cov.shape)) else: msg = ("Dimension mismatch: array 'cov' is of shape %s," " but 'mean' is a vector of length %d.") msg = msg % (str(cov.shape), len(mean)) raise ValueError(msg) elif cov.ndim > 2: raise ValueError("Array 'cov' must be at most two-dimensional," " but cov.ndim = %d" % cov.ndim) return dim, mean, cov def _process_quantiles(self, x, dim): """ Adjust quantiles array so that last axis labels the components of each data point. """ x = np.asarray(x, dtype=float) if x.ndim == 0: x = x[np.newaxis] elif x.ndim == 1: if dim == 1: x = x[:, np.newaxis] else: x = x[np.newaxis, :] return x def _logpdf(self, x, mean, prec_U, log_det_cov, rank): """ Parameters ---------- x : ndarray Points at which to evaluate the log of the probability density function mean : ndarray Mean of the distribution prec_U : ndarray A decomposition such that np.dot(prec_U, prec_U.T) is the precision matrix, i.e. inverse of the covariance matrix. log_det_cov : float Logarithm of the determinant of the covariance matrix rank : int Rank of the covariance matrix. Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ dev = x - mean maha = np.sum(np.square(np.dot(dev, prec_U)), axis=-1) return -0.5 * (rank * _LOG_2PI + log_det_cov + maha) def logpdf(self, x, mean=None, cov=1, allow_singular=False): """ Log of the multivariate normal probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_mvn_doc_default_callparams)s Returns ------- pdf : ndarray Log of the probability density function evaluated at `x` Notes ----- %(_mvn_doc_callparams_note)s """ dim, mean, cov = self._process_parameters(None, mean, cov) x = self._process_quantiles(x, dim) psd = _PSD(cov, allow_singular=allow_singular) out = self._logpdf(x, mean, psd.U, psd.log_pdet, psd.rank) return _squeeze_output(out) def pdf(self, x, mean=None, cov=1, allow_singular=False): """ Multivariate normal probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_mvn_doc_default_callparams)s Returns ------- pdf : ndarray Probability density function evaluated at `x` Notes ----- %(_mvn_doc_callparams_note)s """ dim, mean, cov = self._process_parameters(None, mean, cov) x = self._process_quantiles(x, dim) psd = _PSD(cov, allow_singular=allow_singular) out = np.exp(self._logpdf(x, mean, psd.U, psd.log_pdet, psd.rank)) return _squeeze_output(out) def rvs(self, mean=None, cov=1, size=1, random_state=None): """ Draw random samples from a multivariate normal distribution. Parameters ---------- %(_mvn_doc_default_callparams)s size : integer, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray or scalar Random variates of size (`size`, `N`), where `N` is the dimension of the random variable. Notes ----- %(_mvn_doc_callparams_note)s """ dim, mean, cov = self._process_parameters(None, mean, cov) random_state = self._get_random_state(random_state) out = random_state.multivariate_normal(mean, cov, size) return _squeeze_output(out) def entropy(self, mean=None, cov=1): """ Compute the differential entropy of the multivariate normal. Parameters ---------- %(_mvn_doc_default_callparams)s Returns ------- h : scalar Entropy of the multivariate normal distribution Notes ----- %(_mvn_doc_callparams_note)s """ dim, mean, cov = self._process_parameters(None, mean, cov) _, logdet = np.linalg.slogdet(2 * np.pi * np.e * cov) return 0.5 * logdet multivariate_normal = multivariate_normal_gen() class multivariate_normal_frozen(multi_rv_frozen): def __init__(self, mean=None, cov=1, allow_singular=False, seed=None): """ Create a frozen multivariate normal distribution. Parameters ---------- mean : array_like, optional Mean of the distribution (default zero) cov : array_like, optional Covariance matrix of the distribution (default one) allow_singular : bool, optional If this flag is True then tolerate a singular covariance matrix (default False). seed : None or int or np.random.RandomState instance, optional This parameter defines the RandomState object to use for drawing random variates. If None (or np.random), the global np.random state is used. If integer, it is used to seed the local RandomState instance Default is None. Examples -------- When called with the default parameters, this will create a 1D random variable with mean 0 and covariance 1: >>> from scipy.stats import multivariate_normal >>> r = multivariate_normal() >>> r.mean array([ 0.]) >>> r.cov array([[1.]]) """ self._dist = multivariate_normal_gen(seed) self.dim, self.mean, self.cov = self._dist._process_parameters( None, mean, cov) self.cov_info = _PSD(self.cov, allow_singular=allow_singular) def logpdf(self, x): x = self._dist._process_quantiles(x, self.dim) out = self._dist._logpdf(x, self.mean, self.cov_info.U, self.cov_info.log_pdet, self.cov_info.rank) return _squeeze_output(out) def pdf(self, x): return np.exp(self.logpdf(x)) def rvs(self, size=1, random_state=None): return self._dist.rvs(self.mean, self.cov, size, random_state) def entropy(self): """ Computes the differential entropy of the multivariate normal. Returns ------- h : scalar Entropy of the multivariate normal distribution """ log_pdet = self.cov_info.log_pdet rank = self.cov_info.rank return 0.5 * (rank * (_LOG_2PI + 1) + log_pdet) # Set frozen generator docstrings from corresponding docstrings in # multivariate_normal_gen and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'rvs']: method = multivariate_normal_gen.__dict__[name] method_frozen = multivariate_normal_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat(method.__doc__, mvn_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, mvn_docdict_params) _matnorm_doc_default_callparams = """\ mean : array_like, optional Mean of the distribution (default: `None`) rowcov : array_like, optional Among-row covariance matrix of the distribution (default: `1`) colcov : array_like, optional Among-column covariance matrix of the distribution (default: `1`) """ _matnorm_doc_callparams_note = \ """If `mean` is set to `None` then a matrix of zeros is used for the mean. The dimensions of this matrix are inferred from the shape of `rowcov` and `colcov`, if these are provided, or set to `1` if ambiguous. `rowcov` and `colcov` can be two-dimensional array_likes specifying the covariance matrices directly. Alternatively, a one-dimensional array will be be interpreted as the entries of a diagonal matrix, and a scalar or zero-dimensional array will be interpreted as this value times the identity matrix. """ _matnorm_doc_frozen_callparams = "" _matnorm_doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" matnorm_docdict_params = { '_matnorm_doc_default_callparams': _matnorm_doc_default_callparams, '_matnorm_doc_callparams_note': _matnorm_doc_callparams_note, '_doc_random_state': _doc_random_state } matnorm_docdict_noparams = { '_matnorm_doc_default_callparams': _matnorm_doc_frozen_callparams, '_matnorm_doc_callparams_note': _matnorm_doc_frozen_callparams_note, '_doc_random_state': _doc_random_state } class matrix_normal_gen(multi_rv_generic): r""" A matrix normal random variable. The `mean` keyword specifies the mean. The `rowcov` keyword specifies the among-row covariance matrix. The 'colcov' keyword specifies the among-column covariance matrix. Methods ------- ``pdf(X, mean=None, rowcov=1, colcov=1)`` Probability density function. ``logpdf(X, mean=None, rowcov=1, colcov=1)`` Log of the probability density function. ``rvs(mean=None, rowcov=1, colcov=1, size=1, random_state=None)`` Draw random samples. Parameters ---------- X : array_like Quantiles, with the last two axes of `X` denoting the components. %(_matnorm_doc_default_callparams)s %(_doc_random_state)s Alternatively, the object may be called (as a function) to fix the mean and covariance parameters, returning a "frozen" matrix normal random variable: rv = matrix_normal(mean=None, rowcov=1, colcov=1) - Frozen object with the same methods but holding the given mean and covariance fixed. Notes ----- %(_matnorm_doc_callparams_note)s The covariance matrices specified by `rowcov` and `colcov` must be (symmetric) positive definite. If the samples in `X` are :math:`m \times n`, then `rowcov` must be :math:`m \times m` and `colcov` must be :math:`n \times n`. `mean` must be the same shape as `X`. The probability density function for `matrix_normal` is .. math:: f(X) = (2 \pi)^{-\frac{mn}{2}}|U|^{-\frac{n}{2}} |V|^{-\frac{m}{2}} \exp\left( -\frac{1}{2} \mathrm{Tr}\left[ U^{-1} (X-M) V^{-1} (X-M)^T \right] \right), where :math:`M` is the mean, :math:`U` the among-row covariance matrix, :math:`V` the among-column covariance matrix. The `allow_singular` behaviour of the `multivariate_normal` distribution is not currently supported. Covariance matrices must be full rank. The `matrix_normal` distribution is closely related to the `multivariate_normal` distribution. Specifically, :math:`\mathrm{Vec}(X)` (the vector formed by concatenating the columns of :math:`X`) has a multivariate normal distribution with mean :math:`\mathrm{Vec}(M)` and covariance :math:`V \otimes U` (where :math:`\otimes` is the Kronecker product). Sampling and pdf evaluation are :math:`\mathcal{O}(m^3 + n^3 + m^2 n + m n^2)` for the matrix normal, but :math:`\mathcal{O}(m^3 n^3)` for the equivalent multivariate normal, making this equivalent form algorithmically inefficient. .. versionadded:: 0.17.0 Examples -------- >>> from scipy.stats import matrix_normal >>> M = np.arange(6).reshape(3,2); M array([[0, 1], [2, 3], [4, 5]]) >>> U = np.diag([1,2,3]); U array([[1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> V = 0.3*np.identity(2); V array([[ 0.3, 0. ], [ 0. , 0.3]]) >>> X = M + 0.1; X array([[ 0.1, 1.1], [ 2.1, 3.1], [ 4.1, 5.1]]) >>> matrix_normal.pdf(X, mean=M, rowcov=U, colcov=V) 0.023410202050005054 >>> # Equivalent multivariate normal >>> from scipy.stats import multivariate_normal >>> vectorised_X = X.T.flatten() >>> equiv_mean = M.T.flatten() >>> equiv_cov = np.kron(V,U) >>> multivariate_normal.pdf(vectorised_X, mean=equiv_mean, cov=equiv_cov) 0.023410202050005054 """ def __init__(self, seed=None): super(matrix_normal_gen, self).__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, matnorm_docdict_params) def __call__(self, mean=None, rowcov=1, colcov=1, seed=None): """ Create a frozen matrix normal distribution. See `matrix_normal_frozen` for more information. """ return matrix_normal_frozen(mean, rowcov, colcov, seed=seed) def _process_parameters(self, mean, rowcov, colcov): """ Infer dimensionality from mean or covariance matrices. Handle defaults. Ensure compatible dimensions. """ # Process mean if mean is not None: mean = np.asarray(mean, dtype=float) meanshape = mean.shape if len(meanshape) != 2: raise ValueError("Array `mean` must be two dimensional.") if np.any(meanshape == 0): raise ValueError("Array `mean` has invalid shape.") # Process among-row covariance rowcov = np.asarray(rowcov, dtype=float) if rowcov.ndim == 0: if mean is not None: rowcov = rowcov * np.identity(meanshape[0]) else: rowcov = rowcov * np.identity(1) elif rowcov.ndim == 1: rowcov = np.diag(rowcov) rowshape = rowcov.shape if len(rowshape) != 2: raise ValueError("`rowcov` must be a scalar or a 2D array.") if rowshape[0] != rowshape[1]: raise ValueError("Array `rowcov` must be square.") if rowshape[0] == 0: raise ValueError("Array `rowcov` has invalid shape.") numrows = rowshape[0] # Process among-column covariance colcov = np.asarray(colcov, dtype=float) if colcov.ndim == 0: if mean is not None: colcov = colcov * np.identity(meanshape[1]) else: colcov = colcov * np.identity(1) elif colcov.ndim == 1: colcov = np.diag(colcov) colshape = colcov.shape if len(colshape) != 2: raise ValueError("`colcov` must be a scalar or a 2D array.") if colshape[0] != colshape[1]: raise ValueError("Array `colcov` must be square.") if colshape[0] == 0: raise ValueError("Array `colcov` has invalid shape.") numcols = colshape[0] # Ensure mean and covariances compatible if mean is not None: if meanshape[0] != numrows: raise ValueError("Arrays `mean` and `rowcov` must have the" "same number of rows.") if meanshape[1] != numcols: raise ValueError("Arrays `mean` and `colcov` must have the" "same number of columns.") else: mean = np.zeros((numrows,numcols)) dims = (numrows, numcols) return dims, mean, rowcov, colcov def _process_quantiles(self, X, dims): """ Adjust quantiles array so that last two axes labels the components of each data point. """ X = np.asarray(X, dtype=float) if X.ndim == 2: X = X[np.newaxis, :] if X.shape[-2:] != dims: raise ValueError("The shape of array `X` is not compatible " "with the distribution parameters.") return X def _logpdf(self, dims, X, mean, row_prec_rt, log_det_rowcov, col_prec_rt, log_det_colcov): """ Parameters ---------- dims : tuple Dimensions of the matrix variates X : ndarray Points at which to evaluate the log of the probability density function mean : ndarray Mean of the distribution row_prec_rt : ndarray A decomposition such that np.dot(row_prec_rt, row_prec_rt.T) is the inverse of the among-row covariance matrix log_det_rowcov : float Logarithm of the determinant of the among-row covariance matrix col_prec_rt : ndarray A decomposition such that np.dot(col_prec_rt, col_prec_rt.T) is the inverse of the among-column covariance matrix log_det_colcov : float Logarithm of the determinant of the among-column covariance matrix Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ numrows, numcols = dims roll_dev = np.rollaxis(X-mean, axis=-1, start=0) scale_dev = np.tensordot(col_prec_rt.T, np.dot(roll_dev, row_prec_rt), 1) maha = np.sum(np.sum(np.square(scale_dev), axis=-1), axis=0) return -0.5 * (numrows*numcols*_LOG_2PI + numcols*log_det_rowcov + numrows*log_det_colcov + maha) def logpdf(self, X, mean=None, rowcov=1, colcov=1): """ Log of the matrix normal probability density function. Parameters ---------- X : array_like Quantiles, with the last two axes of `X` denoting the components. %(_matnorm_doc_default_callparams)s Returns ------- logpdf : ndarray Log of the probability density function evaluated at `X` Notes ----- %(_matnorm_doc_callparams_note)s """ dims, mean, rowcov, colcov = self._process_parameters(mean, rowcov, colcov) X = self._process_quantiles(X, dims) rowpsd = _PSD(rowcov, allow_singular=False) colpsd = _PSD(colcov, allow_singular=False) out = self._logpdf(dims, X, mean, rowpsd.U, rowpsd.log_pdet, colpsd.U, colpsd.log_pdet) return _squeeze_output(out) def pdf(self, X, mean=None, rowcov=1, colcov=1): """ Matrix normal probability density function. Parameters ---------- X : array_like Quantiles, with the last two axes of `X` denoting the components. %(_matnorm_doc_default_callparams)s Returns ------- pdf : ndarray Probability density function evaluated at `X` Notes ----- %(_matnorm_doc_callparams_note)s """ return np.exp(self.logpdf(X, mean, rowcov, colcov)) def rvs(self, mean=None, rowcov=1, colcov=1, size=1, random_state=None): """ Draw random samples from a matrix normal distribution. Parameters ---------- %(_matnorm_doc_default_callparams)s size : integer, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray or scalar Random variates of size (`size`, `dims`), where `dims` is the dimension of the random matrices. Notes ----- %(_matnorm_doc_callparams_note)s """ size = int(size) dims, mean, rowcov, colcov = self._process_parameters(mean, rowcov, colcov) rowchol = scipy.linalg.cholesky(rowcov, lower=True) colchol = scipy.linalg.cholesky(colcov, lower=True) random_state = self._get_random_state(random_state) std_norm = random_state.standard_normal(size=(dims[1],size,dims[0])) roll_rvs = np.tensordot(colchol, np.dot(std_norm, rowchol.T), 1) out = np.rollaxis(roll_rvs.T, axis=1, start=0) + mean[np.newaxis,:,:] if size == 1: #out = np.squeeze(out, axis=0) out = out.reshape(mean.shape) return out matrix_normal = matrix_normal_gen() class matrix_normal_frozen(multi_rv_frozen): def __init__(self, mean=None, rowcov=1, colcov=1, seed=None): """ Create a frozen matrix normal distribution. Parameters ---------- %(_matnorm_doc_default_callparams)s seed : None or int or np.random.RandomState instance, optional If int or RandomState, use it for drawing the random variates. If None (or np.random), the global np.random state is used. Default is None. Examples -------- >>> from scipy.stats import matrix_normal >>> distn = matrix_normal(mean=np.zeros((3,3))) >>> X = distn.rvs(); X array([[-0.02976962, 0.93339138, -0.09663178], [ 0.67405524, 0.28250467, -0.93308929], [-0.31144782, 0.74535536, 1.30412916]]) >>> distn.pdf(X) 2.5160642368346784e-05 >>> distn.logpdf(X) -10.590229595124615 """ self._dist = matrix_normal_gen(seed) self.dims, self.mean, self.rowcov, self.colcov = \ self._dist._process_parameters(mean, rowcov, colcov) self.rowpsd = _PSD(self.rowcov, allow_singular=False) self.colpsd = _PSD(self.colcov, allow_singular=False) def logpdf(self, X): X = self._dist._process_quantiles(X, self.dims) out = self._dist._logpdf(self.dims, X, self.mean, self.rowpsd.U, self.rowpsd.log_pdet, self.colpsd.U, self.colpsd.log_pdet) return _squeeze_output(out) def pdf(self, X): return np.exp(self.logpdf(X)) def rvs(self, size=1, random_state=None): return self._dist.rvs(self.mean, self.rowcov, self.colcov, size, random_state) # Set frozen generator docstrings from corresponding docstrings in # matrix_normal_gen and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'rvs']: method = matrix_normal_gen.__dict__[name] method_frozen = matrix_normal_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat(method.__doc__, matnorm_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, matnorm_docdict_params) _dirichlet_doc_default_callparams = """\ alpha : array_like The concentration parameters. The number of entries determines the dimensionality of the distribution. """ _dirichlet_doc_frozen_callparams = "" _dirichlet_doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" dirichlet_docdict_params = { '_dirichlet_doc_default_callparams': _dirichlet_doc_default_callparams, '_doc_random_state': _doc_random_state } dirichlet_docdict_noparams = { '_dirichlet_doc_default_callparams': _dirichlet_doc_frozen_callparams, '_doc_random_state': _doc_random_state } def _dirichlet_check_parameters(alpha): alpha = np.asarray(alpha) if np.min(alpha) <= 0: raise ValueError("All parameters must be greater than 0") elif alpha.ndim != 1: raise ValueError("Parameter vector 'a' must be one dimensional, " "but a.shape = %s." % (alpha.shape, )) return alpha def _dirichlet_check_input(alpha, x): x = np.asarray(x) if x.shape[0] + 1 != alpha.shape[0] and x.shape[0] != alpha.shape[0]: raise ValueError("Vector 'x' must have either the same number " "of entries as, or one entry fewer than, " "parameter vector 'a', but alpha.shape = %s " "and x.shape = %s." % (alpha.shape, x.shape)) if x.shape[0] != alpha.shape[0]: xk = np.array([1 - np.sum(x, 0)]) if xk.ndim == 1: x = np.append(x, xk) elif xk.ndim == 2: x = np.vstack((x, xk)) else: raise ValueError("The input must be one dimensional or a two " "dimensional matrix containing the entries.") if np.min(x) <= 0: raise ValueError("Each entry in 'x' must be greater than zero.") if np.max(x) > 1: raise ValueError("Each entry in 'x' must be smaller or equal one.") if (np.abs(np.sum(x, 0) - 1.0) > 10e-10).any(): raise ValueError("The input vector 'x' must lie within the normal " "simplex. but np.sum(x, 0) = %s." % np.sum(x, 0)) return x def _lnB(alpha): r""" Internal helper function to compute the log of the useful quotient .. math:: B(\alpha) = \frac{\prod_{i=1}{K}\Gamma(\alpha_i)}{\Gamma\left(\sum_{i=1}^{K}\alpha_i\right)} Parameters ---------- %(_dirichlet_doc_default_callparams)s Returns ------- B : scalar Helper quotient, internal use only """ return np.sum(gammaln(alpha)) - gammaln(np.sum(alpha)) class dirichlet_gen(multi_rv_generic): r""" A Dirichlet random variable. The `alpha` keyword specifies the concentration parameters of the distribution. .. versionadded:: 0.15.0 Methods ------- ``pdf(x, alpha)`` Probability density function. ``logpdf(x, alpha)`` Log of the probability density function. ``rvs(alpha, size=1, random_state=None)`` Draw random samples from a Dirichlet distribution. ``mean(alpha)`` The mean of the Dirichlet distribution ``var(alpha)`` The variance of the Dirichlet distribution ``entropy(alpha)`` Compute the differential entropy of the Dirichlet distribution. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_dirichlet_doc_default_callparams)s %(_doc_random_state)s Alternatively, the object may be called (as a function) to fix concentration parameters, returning a "frozen" Dirichlet random variable: rv = dirichlet(alpha) - Frozen object with the same methods but holding the given concentration parameters fixed. Notes ----- Each :math:`\alpha` entry must be positive. The distribution has only support on the simplex defined by .. math:: \sum_{i=1}^{K} x_i \le 1 The probability density function for `dirichlet` is .. math:: f(x) = \frac{1}{\mathrm{B}(\boldsymbol\alpha)} \prod_{i=1}^K x_i^{\alpha_i - 1} where .. math:: \mathrm{B}(\boldsymbol\alpha) = \frac{\prod_{i=1}^K \Gamma(\alpha_i)} {\Gamma\bigl(\sum_{i=1}^K \alpha_i\bigr)} and :math:`\boldsymbol\alpha=(\alpha_1,\ldots,\alpha_K)`, the concentration parameters and :math:`K` is the dimension of the space where :math:`x` takes values. Note that the dirichlet interface is somewhat inconsistent. The array returned by the rvs function is transposed with respect to the format expected by the pdf and logpdf. """ def __init__(self, seed=None): super(dirichlet_gen, self).__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, dirichlet_docdict_params) def __call__(self, alpha, seed=None): return dirichlet_frozen(alpha, seed=seed) def _logpdf(self, x, alpha): """ Parameters ---------- x : ndarray Points at which to evaluate the log of the probability density function %(_dirichlet_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ lnB = _lnB(alpha) return - lnB + np.sum((np.log(x.T) * (alpha - 1)).T, 0) def logpdf(self, x, alpha): """ Log of the Dirichlet probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_dirichlet_doc_default_callparams)s Returns ------- pdf : ndarray Log of the probability density function evaluated at `x`. """ alpha = _dirichlet_check_parameters(alpha) x = _dirichlet_check_input(alpha, x) out = self._logpdf(x, alpha) return _squeeze_output(out) def pdf(self, x, alpha): """ The Dirichlet probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_dirichlet_doc_default_callparams)s Returns ------- pdf : ndarray The probability density function evaluated at `x`. """ alpha = _dirichlet_check_parameters(alpha) x = _dirichlet_check_input(alpha, x) out = np.exp(self._logpdf(x, alpha)) return _squeeze_output(out) def mean(self, alpha): """ Compute the mean of the dirichlet distribution. Parameters ---------- %(_dirichlet_doc_default_callparams)s Returns ------- mu : scalar Mean of the Dirichlet distribution """ alpha = _dirichlet_check_parameters(alpha) out = alpha / (np.sum(alpha)) return _squeeze_output(out) def var(self, alpha): """ Compute the variance of the dirichlet distribution. Parameters ---------- %(_dirichlet_doc_default_callparams)s Returns ------- v : scalar Variance of the Dirichlet distribution """ alpha = _dirichlet_check_parameters(alpha) alpha0 = np.sum(alpha) out = (alpha * (alpha0 - alpha)) / ((alpha0 * alpha0) * (alpha0 + 1)) return out def entropy(self, alpha): """ Compute the differential entropy of the dirichlet distribution. Parameters ---------- %(_dirichlet_doc_default_callparams)s Returns ------- h : scalar Entropy of the Dirichlet distribution """ alpha = _dirichlet_check_parameters(alpha) alpha0 = np.sum(alpha) lnB = _lnB(alpha) K = alpha.shape[0] out = lnB + (alpha0 - K) * scipy.special.psi(alpha0) - np.sum( (alpha - 1) * scipy.special.psi(alpha)) return _squeeze_output(out) def rvs(self, alpha, size=1, random_state=None): """ Draw random samples from a Dirichlet distribution. Parameters ---------- %(_dirichlet_doc_default_callparams)s size : int, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray or scalar Random variates of size (`size`, `N`), where `N` is the dimension of the random variable. """ alpha = _dirichlet_check_parameters(alpha) random_state = self._get_random_state(random_state) return random_state.dirichlet(alpha, size=size) dirichlet = dirichlet_gen() class dirichlet_frozen(multi_rv_frozen): def __init__(self, alpha, seed=None): self.alpha = _dirichlet_check_parameters(alpha) self._dist = dirichlet_gen(seed) def logpdf(self, x): return self._dist.logpdf(x, self.alpha) def pdf(self, x): return self._dist.pdf(x, self.alpha) def mean(self): return self._dist.mean(self.alpha) def var(self): return self._dist.var(self.alpha) def entropy(self): return self._dist.entropy(self.alpha) def rvs(self, size=1, random_state=None): return self._dist.rvs(self.alpha, size, random_state) # Set frozen generator docstrings from corresponding docstrings in # multivariate_normal_gen and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'rvs', 'mean', 'var', 'entropy']: method = dirichlet_gen.__dict__[name] method_frozen = dirichlet_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat( method.__doc__, dirichlet_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, dirichlet_docdict_params) _wishart_doc_default_callparams = """\ df : int Degrees of freedom, must be greater than or equal to dimension of the scale matrix scale : array_like Symmetric positive definite scale matrix of the distribution """ _wishart_doc_callparams_note = "" _wishart_doc_frozen_callparams = "" _wishart_doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" wishart_docdict_params = { '_doc_default_callparams': _wishart_doc_default_callparams, '_doc_callparams_note': _wishart_doc_callparams_note, '_doc_random_state': _doc_random_state } wishart_docdict_noparams = { '_doc_default_callparams': _wishart_doc_frozen_callparams, '_doc_callparams_note': _wishart_doc_frozen_callparams_note, '_doc_random_state': _doc_random_state } class wishart_gen(multi_rv_generic): r""" A Wishart random variable. The `df` keyword specifies the degrees of freedom. The `scale` keyword specifies the scale matrix, which must be symmetric and positive definite. In this context, the scale matrix is often interpreted in terms of a multivariate normal precision matrix (the inverse of the covariance matrix). Methods ------- ``pdf(x, df, scale)`` Probability density function. ``logpdf(x, df, scale)`` Log of the probability density function. ``rvs(df, scale, size=1, random_state=None)`` Draw random samples from a Wishart distribution. ``entropy()`` Compute the differential entropy of the Wishart distribution. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_doc_default_callparams)s %(_doc_random_state)s Alternatively, the object may be called (as a function) to fix the degrees of freedom and scale parameters, returning a "frozen" Wishart random variable: rv = wishart(df=1, scale=1) - Frozen object with the same methods but holding the given degrees of freedom and scale fixed. See Also -------- invwishart, chi2 Notes ----- %(_doc_callparams_note)s The scale matrix `scale` must be a symmetric positive definite matrix. Singular matrices, including the symmetric positive semi-definite case, are not supported. The Wishart distribution is often denoted .. math:: W_p(\nu, \Sigma) where :math:`\nu` is the degrees of freedom and :math:`\Sigma` is the :math:`p \times p` scale matrix. The probability density function for `wishart` has support over positive definite matrices :math:`S`; if :math:`S \sim W_p(\nu, \Sigma)`, then its PDF is given by: .. math:: f(S) = \frac{|S|^{\frac{\nu - p - 1}{2}}}{2^{ \frac{\nu p}{2} } |\Sigma|^\frac{\nu}{2} \Gamma_p \left ( \frac{\nu}{2} \right )} \exp\left( -tr(\Sigma^{-1} S) / 2 \right) If :math:`S \sim W_p(\nu, \Sigma)` (Wishart) then :math:`S^{-1} \sim W_p^{-1}(\nu, \Sigma^{-1})` (inverse Wishart). If the scale matrix is 1-dimensional and equal to one, then the Wishart distribution :math:`W_1(\nu, 1)` collapses to the :math:`\chi^2(\nu)` distribution. .. versionadded:: 0.16.0 References ---------- .. [1] M.L. Eaton, "Multivariate Statistics: A Vector Space Approach", Wiley, 1983. .. [2] W.B. Smith and R.R. Hocking, "Algorithm AS 53: Wishart Variate Generator", Applied Statistics, vol. 21, pp. 341-345, 1972. Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.stats import wishart, chi2 >>> x = np.linspace(1e-5, 8, 100) >>> w = wishart.pdf(x, df=3, scale=1); w[:5] array([ 0.00126156, 0.10892176, 0.14793434, 0.17400548, 0.1929669 ]) >>> c = chi2.pdf(x, 3); c[:5] array([ 0.00126156, 0.10892176, 0.14793434, 0.17400548, 0.1929669 ]) >>> plt.plot(x, w) The input quantiles can be any shape of array, as long as the last axis labels the components. """ def __init__(self, seed=None): super(wishart_gen, self).__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, wishart_docdict_params) def __call__(self, df=None, scale=None, seed=None): """ Create a frozen Wishart distribution. See `wishart_frozen` for more information. """ return wishart_frozen(df, scale, seed) def _process_parameters(self, df, scale): if scale is None: scale = 1.0 scale = np.asarray(scale, dtype=float) if scale.ndim == 0: scale = scale[np.newaxis,np.newaxis] elif scale.ndim == 1: scale = np.diag(scale) elif scale.ndim == 2 and not scale.shape[0] == scale.shape[1]: raise ValueError("Array 'scale' must be square if it is two" " dimensional, but scale.scale = %s." % str(scale.shape)) elif scale.ndim > 2: raise ValueError("Array 'scale' must be at most two-dimensional," " but scale.ndim = %d" % scale.ndim) dim = scale.shape[0] if df is None: df = dim elif not np.isscalar(df): raise ValueError("Degrees of freedom must be a scalar.") elif df < dim: raise ValueError("Degrees of freedom cannot be less than dimension" " of scale matrix, but df = %d" % df) return dim, df, scale def _process_quantiles(self, x, dim): """ Adjust quantiles array so that last axis labels the components of each data point. """ x = np.asarray(x, dtype=float) if x.ndim == 0: x = x * np.eye(dim)[:, :, np.newaxis] if x.ndim == 1: if dim == 1: x = x[np.newaxis, np.newaxis, :] else: x = np.diag(x)[:, :, np.newaxis] elif x.ndim == 2: if not x.shape[0] == x.shape[1]: raise ValueError("Quantiles must be square if they are two" " dimensional, but x.shape = %s." % str(x.shape)) x = x[:, :, np.newaxis] elif x.ndim == 3: if not x.shape[0] == x.shape[1]: raise ValueError("Quantiles must be square in the first two" " dimensions if they are three dimensional" ", but x.shape = %s." % str(x.shape)) elif x.ndim > 3: raise ValueError("Quantiles must be at most two-dimensional with" " an additional dimension for multiple" "components, but x.ndim = %d" % x.ndim) # Now we have 3-dim array; should have shape [dim, dim, *] if not x.shape[0:2] == (dim, dim): raise ValueError('Quantiles have incompatible dimensions: should' ' be %s, got %s.' % ((dim, dim), x.shape[0:2])) return x def _process_size(self, size): size = np.asarray(size) if size.ndim == 0: size = size[np.newaxis] elif size.ndim > 1: raise ValueError('Size must be an integer or tuple of integers;' ' thus must have dimension <= 1.' ' Got size.ndim = %s' % str(tuple(size))) n = size.prod() shape = tuple(size) return n, shape def _logpdf(self, x, dim, df, scale, log_det_scale, C): """ Parameters ---------- x : ndarray Points at which to evaluate the log of the probability density function dim : int Dimension of the scale matrix df : int Degrees of freedom scale : ndarray Scale matrix log_det_scale : float Logarithm of the determinant of the scale matrix C : ndarray Cholesky factorization of the scale matrix, lower triagular. Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ # log determinant of x # Note: x has components along the last axis, so that x.T has # components alone the 0-th axis. Then since det(A) = det(A'), this # gives us a 1-dim vector of determinants # Retrieve tr(scale^{-1} x) log_det_x = np.zeros(x.shape[-1]) scale_inv_x = np.zeros(x.shape) tr_scale_inv_x = np.zeros(x.shape[-1]) for i in range(x.shape[-1]): _, log_det_x[i] = self._cholesky_logdet(x[:,:,i]) scale_inv_x[:,:,i] = scipy.linalg.cho_solve((C, True), x[:,:,i]) tr_scale_inv_x[i] = scale_inv_x[:,:,i].trace() # Log PDF out = ((0.5 * (df - dim - 1) * log_det_x - 0.5 * tr_scale_inv_x) - (0.5 * df * dim * _LOG_2 + 0.5 * df * log_det_scale + multigammaln(0.5*df, dim))) return out def logpdf(self, x, df, scale): """ Log of the Wishart probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. Each quantile must be a symmetric positive definite matrix. %(_doc_default_callparams)s Returns ------- pdf : ndarray Log of the probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ dim, df, scale = self._process_parameters(df, scale) x = self._process_quantiles(x, dim) # Cholesky decomposition of scale, get log(det(scale)) C, log_det_scale = self._cholesky_logdet(scale) out = self._logpdf(x, dim, df, scale, log_det_scale, C) return _squeeze_output(out) def pdf(self, x, df, scale): """ Wishart probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. Each quantile must be a symmetric positive definite matrix. %(_doc_default_callparams)s Returns ------- pdf : ndarray Probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ return np.exp(self.logpdf(x, df, scale)) def _mean(self, dim, df, scale): """ Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'mean' instead. """ return df * scale def mean(self, df, scale): """ Mean of the Wishart distribution Parameters ---------- %(_doc_default_callparams)s Returns ------- mean : float The mean of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._mean(dim, df, scale) return _squeeze_output(out) def _mode(self, dim, df, scale): """ Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'mode' instead. """ if df >= dim + 1: out = (df-dim-1) * scale else: out = None return out def mode(self, df, scale): """ Mode of the Wishart distribution Only valid if the degrees of freedom are greater than the dimension of the scale matrix. Parameters ---------- %(_doc_default_callparams)s Returns ------- mode : float or None The Mode of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._mode(dim, df, scale) return _squeeze_output(out) if out is not None else out def _var(self, dim, df, scale): """ Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'var' instead. """ var = scale**2 diag = scale.diagonal() # 1 x dim array var += np.outer(diag, diag) var *= df return var def var(self, df, scale): """ Variance of the Wishart distribution Parameters ---------- %(_doc_default_callparams)s Returns ------- var : float The variance of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._var(dim, df, scale) return _squeeze_output(out) def _standard_rvs(self, n, shape, dim, df, random_state): """ Parameters ---------- n : integer Number of variates to generate shape : iterable Shape of the variates to generate dim : int Dimension of the scale matrix df : int Degrees of freedom random_state : np.random.RandomState instance RandomState used for drawing the random variates. Notes ----- As this function does no argument checking, it should not be called directly; use 'rvs' instead. """ # Random normal variates for off-diagonal elements n_tril = dim * (dim-1) // 2 covariances = random_state.normal( size=n*n_tril).reshape(shape+(n_tril,)) # Random chi-square variates for diagonal elements variances = np.r_[[random_state.chisquare(df-(i+1)+1, size=n)**0.5 for i in range(dim)]].reshape((dim,) + shape[::-1]).T # Create the A matri(ces) - lower triangular A = np.zeros(shape + (dim, dim)) # Input the covariances size_idx = tuple([slice(None,None,None)]*len(shape)) tril_idx = np.tril_indices(dim, k=-1) A[size_idx + tril_idx] = covariances # Input the variances diag_idx = np.diag_indices(dim) A[size_idx + diag_idx] = variances return A def _rvs(self, n, shape, dim, df, C, random_state): """ Parameters ---------- n : integer Number of variates to generate shape : iterable Shape of the variates to generate dim : int Dimension of the scale matrix df : int Degrees of freedom scale : ndarray Scale matrix C : ndarray Cholesky factorization of the scale matrix, lower triangular. %(_doc_random_state)s Notes ----- As this function does no argument checking, it should not be called directly; use 'rvs' instead. """ random_state = self._get_random_state(random_state) # Calculate the matrices A, which are actually lower triangular # Cholesky factorizations of a matrix B such that B ~ W(df, I) A = self._standard_rvs(n, shape, dim, df, random_state) # Calculate SA = C A A' C', where SA ~ W(df, scale) # Note: this is the product of a (lower) (lower) (lower)' (lower)' # or, denoting B = AA', it is C B C' where C is the lower # triangular Cholesky factorization of the scale matrix. # this appears to conflict with the instructions in [1]_, which # suggest that it should be D' B D where D is the lower # triangular factorization of the scale matrix. However, it is # meant to refer to the Bartlett (1933) representation of a # Wishart random variate as L A A' L' where L is lower triangular # so it appears that understanding D' to be upper triangular # is either a typo in or misreading of [1]_. for index in np.ndindex(shape): CA = np.dot(C, A[index]) A[index] = np.dot(CA, CA.T) return A def rvs(self, df, scale, size=1, random_state=None): """ Draw random samples from a Wishart distribution. Parameters ---------- %(_doc_default_callparams)s size : integer or iterable of integers, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray Random variates of shape (`size`) + (`dim`, `dim), where `dim` is the dimension of the scale matrix. Notes ----- %(_doc_callparams_note)s """ n, shape = self._process_size(size) dim, df, scale = self._process_parameters(df, scale) # Cholesky decomposition of scale C = scipy.linalg.cholesky(scale, lower=True) out = self._rvs(n, shape, dim, df, C, random_state) return _squeeze_output(out) def _entropy(self, dim, df, log_det_scale): """ Parameters ---------- dim : int Dimension of the scale matrix df : int Degrees of freedom log_det_scale : float Logarithm of the determinant of the scale matrix Notes ----- As this function does no argument checking, it should not be called directly; use 'entropy' instead. """ return ( 0.5 * (dim+1) * log_det_scale + 0.5 * dim * (dim+1) * _LOG_2 + multigammaln(0.5*df, dim) - 0.5 * (df - dim - 1) * np.sum( [psi(0.5*(df + 1 - (i+1))) for i in range(dim)] ) + 0.5 * df * dim ) def entropy(self, df, scale): """ Compute the differential entropy of the Wishart. Parameters ---------- %(_doc_default_callparams)s Returns ------- h : scalar Entropy of the Wishart distribution Notes ----- %(_doc_callparams_note)s """ dim, df, scale = self._process_parameters(df, scale) _, log_det_scale = self._cholesky_logdet(scale) return self._entropy(dim, df, log_det_scale) def _cholesky_logdet(self, scale): """ Compute Cholesky decomposition and determine (log(det(scale)). Parameters ---------- scale : ndarray Scale matrix. Returns ------- c_decomp : ndarray The Cholesky decomposition of `scale`. logdet : scalar The log of the determinant of `scale`. Notes ----- This computation of ``logdet`` is equivalent to ``np.linalg.slogdet(scale)``. It is ~2x faster though. """ c_decomp = scipy.linalg.cholesky(scale, lower=True) logdet = 2 * np.sum(np.log(c_decomp.diagonal())) return c_decomp, logdet wishart = wishart_gen() class wishart_frozen(multi_rv_frozen): """ Create a frozen Wishart distribution. Parameters ---------- df : array_like Degrees of freedom of the distribution scale : array_like Scale matrix of the distribution seed : None or int or np.random.RandomState instance, optional This parameter defines the RandomState object to use for drawing random variates. If None (or np.random), the global np.random state is used. If integer, it is used to seed the local RandomState instance Default is None. """ def __init__(self, df, scale, seed=None): self._dist = wishart_gen(seed) self.dim, self.df, self.scale = self._dist._process_parameters( df, scale) self.C, self.log_det_scale = self._dist._cholesky_logdet(self.scale) def logpdf(self, x): x = self._dist._process_quantiles(x, self.dim) out = self._dist._logpdf(x, self.dim, self.df, self.scale, self.log_det_scale, self.C) return _squeeze_output(out) def pdf(self, x): return np.exp(self.logpdf(x)) def mean(self): out = self._dist._mean(self.dim, self.df, self.scale) return _squeeze_output(out) def mode(self): out = self._dist._mode(self.dim, self.df, self.scale) return _squeeze_output(out) if out is not None else out def var(self): out = self._dist._var(self.dim, self.df, self.scale) return _squeeze_output(out) def rvs(self, size=1, random_state=None): n, shape = self._dist._process_size(size) out = self._dist._rvs(n, shape, self.dim, self.df, self.C, random_state) return _squeeze_output(out) def entropy(self): return self._dist._entropy(self.dim, self.df, self.log_det_scale) # Set frozen generator docstrings from corresponding docstrings in # Wishart and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'mean', 'mode', 'var', 'rvs', 'entropy']: method = wishart_gen.__dict__[name] method_frozen = wishart_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat( method.__doc__, wishart_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, wishart_docdict_params) from numpy import asarray_chkfinite, asarray from scipy.linalg.misc import LinAlgError from scipy.linalg.lapack import get_lapack_funcs def _cho_inv_batch(a, check_finite=True): """ Invert the matrices a_i, using a Cholesky factorization of A, where a_i resides in the last two dimensions of a and the other indices describe the index i. Overwrites the data in a. Parameters ---------- a : array Array of matrices to invert, where the matrices themselves are stored in the last two dimensions. check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- x : array Array of inverses of the matrices ``a_i``. See also -------- scipy.linalg.cholesky : Cholesky factorization of a matrix """ if check_finite: a1 = asarray_chkfinite(a) else: a1 = asarray(a) if len(a1.shape) < 2 or a1.shape[-2] != a1.shape[-1]: raise ValueError('expected square matrix in last two dimensions') potrf, potri = get_lapack_funcs(('potrf','potri'), (a1,)) tril_idx = np.tril_indices(a.shape[-2], k=-1) triu_idx = np.triu_indices(a.shape[-2], k=1) for index in np.ndindex(a1.shape[:-2]): # Cholesky decomposition a1[index], info = potrf(a1[index], lower=True, overwrite_a=False, clean=False) if info > 0: raise LinAlgError("%d-th leading minor not positive definite" % info) if info < 0: raise ValueError('illegal value in %d-th argument of internal' ' potrf' % -info) # Inversion a1[index], info = potri(a1[index], lower=True, overwrite_c=False) if info > 0: raise LinAlgError("the inverse could not be computed") if info < 0: raise ValueError('illegal value in %d-th argument of internal' ' potrf' % -info) # Make symmetric (dpotri only fills in the lower triangle) a1[index][triu_idx] = a1[index][tril_idx] return a1 class invwishart_gen(wishart_gen): r""" An inverse Wishart random variable. The `df` keyword specifies the degrees of freedom. The `scale` keyword specifies the scale matrix, which must be symmetric and positive definite. In this context, the scale matrix is often interpreted in terms of a multivariate normal covariance matrix. Methods ------- ``pdf(x, df, scale)`` Probability density function. ``logpdf(x, df, scale)`` Log of the probability density function. ``rvs(df, scale, size=1, random_state=None)`` Draw random samples from an inverse Wishart distribution. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_doc_default_callparams)s %(_doc_random_state)s Alternatively, the object may be called (as a function) to fix the degrees of freedom and scale parameters, returning a "frozen" inverse Wishart random variable: rv = invwishart(df=1, scale=1) - Frozen object with the same methods but holding the given degrees of freedom and scale fixed. See Also -------- wishart Notes ----- %(_doc_callparams_note)s The scale matrix `scale` must be a symmetric positive definite matrix. Singular matrices, including the symmetric positive semi-definite case, are not supported. The inverse Wishart distribution is often denoted .. math:: W_p^{-1}(\nu, \Psi) where :math:`\nu` is the degrees of freedom and :math:`\Psi` is the :math:`p \times p` scale matrix. The probability density function for `invwishart` has support over positive definite matrices :math:`S`; if :math:`S \sim W^{-1}_p(\nu, \Sigma)`, then its PDF is given by: .. math:: f(S) = \frac{|\Sigma|^\frac{\nu}{2}}{2^{ \frac{\nu p}{2} } |S|^{\frac{\nu + p + 1}{2}} \Gamma_p \left(\frac{\nu}{2} \right)} \exp\left( -tr(\Sigma S^{-1}) / 2 \right) If :math:`S \sim W_p^{-1}(\nu, \Psi)` (inverse Wishart) then :math:`S^{-1} \sim W_p(\nu, \Psi^{-1})` (Wishart). If the scale matrix is 1-dimensional and equal to one, then the inverse Wishart distribution :math:`W_1(\nu, 1)` collapses to the inverse Gamma distribution with parameters shape = :math:`\frac{\nu}{2}` and scale = :math:`\frac{1}{2}`. .. versionadded:: 0.16.0 References ---------- .. [1] M.L. Eaton, "Multivariate Statistics: A Vector Space Approach", Wiley, 1983. .. [2] M.C. Jones, "Generating Inverse Wishart Matrices", Communications in Statistics - Simulation and Computation, vol. 14.2, pp.511-514, 1985. Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.stats import invwishart, invgamma >>> x = np.linspace(0.01, 1, 100) >>> iw = invwishart.pdf(x, df=6, scale=1) >>> iw[:3] array([ 1.20546865e-15, 5.42497807e-06, 4.45813929e-03]) >>> ig = invgamma.pdf(x, 6/2., scale=1./2) >>> ig[:3] array([ 1.20546865e-15, 5.42497807e-06, 4.45813929e-03]) >>> plt.plot(x, iw) The input quantiles can be any shape of array, as long as the last axis labels the components. """ def __init__(self, seed=None): super(invwishart_gen, self).__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, wishart_docdict_params) def __call__(self, df=None, scale=None, seed=None): """ Create a frozen inverse Wishart distribution. See `invwishart_frozen` for more information. """ return invwishart_frozen(df, scale, seed) def _logpdf(self, x, dim, df, scale, log_det_scale): """ Parameters ---------- x : ndarray Points at which to evaluate the log of the probability density function. dim : int Dimension of the scale matrix df : int Degrees of freedom scale : ndarray Scale matrix log_det_scale : float Logarithm of the determinant of the scale matrix Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ log_det_x = np.zeros(x.shape[-1]) #scale_x_inv = np.zeros(x.shape) x_inv = np.copy(x).T if dim > 1: _cho_inv_batch(x_inv) # works in-place else: x_inv = 1./x_inv tr_scale_x_inv = np.zeros(x.shape[-1]) for i in range(x.shape[-1]): C, lower = scipy.linalg.cho_factor(x[:,:,i], lower=True) log_det_x[i] = 2 * np.sum(np.log(C.diagonal())) #scale_x_inv[:,:,i] = scipy.linalg.cho_solve((C, True), scale).T tr_scale_x_inv[i] = np.dot(scale, x_inv[i]).trace() # Log PDF out = ((0.5 * df * log_det_scale - 0.5 * tr_scale_x_inv) - (0.5 * df * dim * _LOG_2 + 0.5 * (df + dim + 1) * log_det_x) - multigammaln(0.5*df, dim)) return out def logpdf(self, x, df, scale): """ Log of the inverse Wishart probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. Each quantile must be a symmetric positive definite matrix. %(_doc_default_callparams)s Returns ------- pdf : ndarray Log of the probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ dim, df, scale = self._process_parameters(df, scale) x = self._process_quantiles(x, dim) _, log_det_scale = self._cholesky_logdet(scale) out = self._logpdf(x, dim, df, scale, log_det_scale) return _squeeze_output(out) def pdf(self, x, df, scale): """ Inverse Wishart probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. Each quantile must be a symmetric positive definite matrix. %(_doc_default_callparams)s Returns ------- pdf : ndarray Probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ return np.exp(self.logpdf(x, df, scale)) def _mean(self, dim, df, scale): """ Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'mean' instead. """ if df > dim + 1: out = scale / (df - dim - 1) else: out = None return out def mean(self, df, scale): """ Mean of the inverse Wishart distribution Only valid if the degrees of freedom are greater than the dimension of the scale matrix plus one. Parameters ---------- %(_doc_default_callparams)s Returns ------- mean : float or None The mean of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._mean(dim, df, scale) return _squeeze_output(out) if out is not None else out def _mode(self, dim, df, scale): """ Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'mode' instead. """ return scale / (df + dim + 1) def mode(self, df, scale): """ Mode of the inverse Wishart distribution Parameters ---------- %(_doc_default_callparams)s Returns ------- mode : float The Mode of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._mode(dim, df, scale) return _squeeze_output(out) def _var(self, dim, df, scale): """ Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'var' instead. """ if df > dim + 3: var = (df - dim + 1) * scale**2 diag = scale.diagonal() # 1 x dim array var += (df - dim - 1) * np.outer(diag, diag) var /= (df - dim) * (df - dim - 1)**2 * (df - dim - 3) else: var = None return var def var(self, df, scale): """ Variance of the inverse Wishart distribution Only valid if the degrees of freedom are greater than the dimension of the scale matrix plus three. Parameters ---------- %(_doc_default_callparams)s Returns ------- var : float The variance of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._var(dim, df, scale) return _squeeze_output(out) if out is not None else out def _rvs(self, n, shape, dim, df, C, random_state): """ Parameters ---------- n : integer Number of variates to generate shape : iterable Shape of the variates to generate dim : int Dimension of the scale matrix df : int Degrees of freedom C : ndarray Cholesky factorization of the scale matrix, lower triagular. %(_doc_random_state)s Notes ----- As this function does no argument checking, it should not be called directly; use 'rvs' instead. """ random_state = self._get_random_state(random_state) # Get random draws A such that A ~ W(df, I) A = super(invwishart_gen, self)._standard_rvs(n, shape, dim, df, random_state) # Calculate SA = (CA)'^{-1} (CA)^{-1} ~ iW(df, scale) eye = np.eye(dim) trtrs = get_lapack_funcs(('trtrs'), (A,)) for index in np.ndindex(A.shape[:-2]): # Calculate CA CA = np.dot(C, A[index]) # Get (C A)^{-1} via triangular solver if dim > 1: CA, info = trtrs(CA, eye, lower=True) if info > 0: raise LinAlgError("Singular matrix.") if info < 0: raise ValueError('Illegal value in %d-th argument of' ' internal trtrs' % -info) else: CA = 1. / CA # Get SA A[index] = np.dot(CA.T, CA) return A def rvs(self, df, scale, size=1, random_state=None): """ Draw random samples from an inverse Wishart distribution. Parameters ---------- %(_doc_default_callparams)s size : integer or iterable of integers, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray Random variates of shape (`size`) + (`dim`, `dim), where `dim` is the dimension of the scale matrix. Notes ----- %(_doc_callparams_note)s """ n, shape = self._process_size(size) dim, df, scale = self._process_parameters(df, scale) # Invert the scale eye = np.eye(dim) L, lower = scipy.linalg.cho_factor(scale, lower=True) inv_scale = scipy.linalg.cho_solve((L, lower), eye) # Cholesky decomposition of inverted scale C = scipy.linalg.cholesky(inv_scale, lower=True) out = self._rvs(n, shape, dim, df, C, random_state) return _squeeze_output(out) def entropy(self): # Need to find reference for inverse Wishart entropy raise AttributeError invwishart = invwishart_gen() class invwishart_frozen(multi_rv_frozen): def __init__(self, df, scale, seed=None): """ Create a frozen inverse Wishart distribution. Parameters ---------- df : array_like Degrees of freedom of the distribution scale : array_like Scale matrix of the distribution seed : None or int or np.random.RandomState instance, optional This parameter defines the RandomState object to use for drawing random variates. If None (or np.random), the global np.random state is used. If integer, it is used to seed the local RandomState instance Default is None. """ self._dist = invwishart_gen(seed) self.dim, self.df, self.scale = self._dist._process_parameters( df, scale ) # Get the determinant via Cholesky factorization C, lower = scipy.linalg.cho_factor(self.scale, lower=True) self.log_det_scale = 2 * np.sum(np.log(C.diagonal())) # Get the inverse using the Cholesky factorization eye = np.eye(self.dim) self.inv_scale = scipy.linalg.cho_solve((C, lower), eye) # Get the Cholesky factorization of the inverse scale self.C = scipy.linalg.cholesky(self.inv_scale, lower=True) def logpdf(self, x): x = self._dist._process_quantiles(x, self.dim) out = self._dist._logpdf(x, self.dim, self.df, self.scale, self.log_det_scale) return _squeeze_output(out) def pdf(self, x): return np.exp(self.logpdf(x)) def mean(self): out = self._dist._mean(self.dim, self.df, self.scale) return _squeeze_output(out) if out is not None else out def mode(self): out = self._dist._mode(self.dim, self.df, self.scale) return _squeeze_output(out) def var(self): out = self._dist._var(self.dim, self.df, self.scale) return _squeeze_output(out) if out is not None else out def rvs(self, size=1, random_state=None): n, shape = self._dist._process_size(size) out = self._dist._rvs(n, shape, self.dim, self.df, self.C, random_state) return _squeeze_output(out) def entropy(self): # Need to find reference for inverse Wishart entropy raise AttributeError # Set frozen generator docstrings from corresponding docstrings in # inverse Wishart and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'mean', 'mode', 'var', 'rvs']: method = invwishart_gen.__dict__[name] method_frozen = wishart_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat( method.__doc__, wishart_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, wishart_docdict_params) _multinomial_doc_default_callparams = """\ n : int Number of trials p : array_like Probability of a trial falling into each category; should sum to 1 """ _multinomial_doc_callparams_note = \ """`n` should be a positive integer. Each element of `p` should be in the interval :math:`[0,1]` and the elements should sum to 1. If they do not sum to 1, the last element of the `p` array is not used and is replaced with the remaining probability left over from the earlier elements. """ _multinomial_doc_frozen_callparams = "" _multinomial_doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" multinomial_docdict_params = { '_doc_default_callparams': _multinomial_doc_default_callparams, '_doc_callparams_note': _multinomial_doc_callparams_note, '_doc_random_state': _doc_random_state } multinomial_docdict_noparams = { '_doc_default_callparams': _multinomial_doc_frozen_callparams, '_doc_callparams_note': _multinomial_doc_frozen_callparams_note, '_doc_random_state': _doc_random_state } class multinomial_gen(multi_rv_generic): r""" A multinomial random variable. Methods ------- ``pmf(x, n, p)`` Probability mass function. ``logpmf(x, n, p)`` Log of the probability mass function. ``rvs(n, p, size=1, random_state=None)`` Draw random samples from a multinomial distribution. ``entropy(n, p)`` Compute the entropy of the multinomial distribution. ``cov(n, p)`` Compute the covariance matrix of the multinomial distribution. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_doc_default_callparams)s %(_doc_random_state)s Notes ----- %(_doc_callparams_note)s Alternatively, the object may be called (as a function) to fix the `n` and `p` parameters, returning a "frozen" multinomial random variable: The probability mass function for `multinomial` is .. math:: f(x) = \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k}, supported on :math:`x=(x_1, \ldots, x_k)` where each :math:`x_i` is a nonnegative integer and their sum is :math:`n`. .. versionadded:: 0.19.0 Examples -------- >>> from scipy.stats import multinomial >>> rv = multinomial(8, [0.3, 0.2, 0.5]) >>> rv.pmf([1, 3, 4]) 0.042000000000000072 The multinomial distribution for :math:`k=2` is identical to the corresponding binomial distribution (tiny numerical differences notwithstanding): >>> from scipy.stats import binom >>> multinomial.pmf([3, 4], n=7, p=[0.4, 0.6]) 0.29030399999999973 >>> binom.pmf(3, 7, 0.4) 0.29030400000000012 The functions ``pmf``, ``logpmf``, ``entropy``, and ``cov`` support broadcasting, under the convention that the vector parameters (``x`` and ``p``) are interpreted as if each row along the last axis is a single object. For instance: >>> multinomial.pmf([[3, 4], [3, 5]], n=[7, 8], p=[.3, .7]) array([0.2268945, 0.25412184]) Here, ``x.shape == (2, 2)``, ``n.shape == (2,)``, and ``p.shape == (2,)``, but following the rules mentioned above they behave as if the rows ``[3, 4]`` and ``[3, 5]`` in ``x`` and ``[.3, .7]`` in ``p`` were a single object, and as if we had ``x.shape = (2,)``, ``n.shape = (2,)``, and ``p.shape = ()``. To obtain the individual elements without broadcasting, we would do this: >>> multinomial.pmf([3, 4], n=7, p=[.3, .7]) 0.2268945 >>> multinomial.pmf([3, 5], 8, p=[.3, .7]) 0.25412184 This broadcasting also works for ``cov``, where the output objects are square matrices of size ``p.shape[-1]``. For example: >>> multinomial.cov([4, 5], [[.3, .7], [.4, .6]]) array([[[ 0.84, -0.84], [-0.84, 0.84]], [[ 1.2 , -1.2 ], [-1.2 , 1.2 ]]]) In this example, ``n.shape == (2,)`` and ``p.shape == (2, 2)``, and following the rules above, these broadcast as if ``p.shape == (2,)``. Thus the result should also be of shape ``(2,)``, but since each output is a :math:`2 \times 2` matrix, the result in fact has shape ``(2, 2, 2)``, where ``result[0]`` is equal to ``multinomial.cov(n=4, p=[.3, .7])`` and ``result[1]`` is equal to ``multinomial.cov(n=5, p=[.4, .6])``. See also -------- scipy.stats.binom : The binomial distribution. numpy.random.multinomial : Sampling from the multinomial distribution. """ def __init__(self, seed=None): super(multinomial_gen, self).__init__(seed) self.__doc__ = \ doccer.docformat(self.__doc__, multinomial_docdict_params) def __call__(self, n, p, seed=None): """ Create a frozen multinomial distribution. See `multinomial_frozen` for more information. """ return multinomial_frozen(n, p, seed) def _process_parameters(self, n, p): """ Return: n_, p_, npcond. n_ and p_ are arrays of the correct shape; npcond is a boolean array flagging values out of the domain. """ p = np.array(p, dtype=np.float64, copy=True) p[...,-1] = 1. - p[...,:-1].sum(axis=-1) # true for bad p pcond = np.any(p <= 0, axis=-1) pcond |= np.any(p > 1, axis=-1) n = np.array(n, dtype=np.int, copy=True) # true for bad n ncond = n <= 0 return n, p, ncond | pcond def _process_quantiles(self, x, n, p): """ Return: x_, xcond. x_ is an int array; xcond is a boolean array flagging values out of the domain. """ xx = np.asarray(x, dtype=np.int) if xx.ndim == 0: raise ValueError("x must be an array.") if xx.size != 0 and not xx.shape[-1] == p.shape[-1]: raise ValueError("Size of each quantile should be size of p: " "received %d, but expected %d." % (xx.shape[-1], p.shape[-1])) # true for x out of the domain cond = np.any(xx != x, axis=-1) cond |= np.any(xx < 0, axis=-1) cond = cond | (np.sum(xx, axis=-1) != n) return xx, cond def _checkresult(self, result, cond, bad_value): result = np.asarray(result) if cond.ndim != 0: result[cond] = bad_value elif cond: if result.ndim == 0: return bad_value result[...] = bad_value return result def _logpmf(self, x, n, p): return gammaln(n+1) + np.sum(xlogy(x, p) - gammaln(x+1), axis=-1) def logpmf(self, x, n, p): """ Log of the Multinomial probability mass function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. Each quantile must be a symmetric positive definite matrix. %(_doc_default_callparams)s Returns ------- logpmf : ndarray or scalar Log of the probability mass function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ n, p, npcond = self._process_parameters(n, p) x, xcond = self._process_quantiles(x, n, p) result = self._logpmf(x, n, p) # replace values for which x was out of the domain; broadcast # xcond to the right shape xcond_ = xcond | np.zeros(npcond.shape, dtype=np.bool_) result = self._checkresult(result, xcond_, np.NINF) # replace values bad for n or p; broadcast npcond to the right shape npcond_ = npcond | np.zeros(xcond.shape, dtype=np.bool_) return self._checkresult(result, npcond_, np.NAN) def pmf(self, x, n, p): """ Multinomial probability mass function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. Each quantile must be a symmetric positive definite matrix. %(_doc_default_callparams)s Returns ------- pmf : ndarray or scalar Probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ return np.exp(self.logpmf(x, n, p)) def mean(self, n, p): """ Mean of the Multinomial distribution Parameters ---------- %(_doc_default_callparams)s Returns ------- mean : float The mean of the distribution """ n, p, npcond = self._process_parameters(n, p) result = n[..., np.newaxis]*p return self._checkresult(result, npcond, np.NAN) def cov(self, n, p): """ Covariance matrix of the multinomial distribution. Parameters ---------- %(_doc_default_callparams)s Returns ------- cov : ndarray The covariance matrix of the distribution """ n, p, npcond = self._process_parameters(n, p) nn = n[..., np.newaxis, np.newaxis] result = nn * np.einsum('...j,...k->...jk', -p, p) # change the diagonal for i in range(p.shape[-1]): result[...,i, i] += n*p[..., i] return self._checkresult(result, npcond, np.nan) def entropy(self, n, p): r""" Compute the entropy of the multinomial distribution. The entropy is computed using this expression: .. math:: f(x) = - \log n! - n\sum_{i=1}^k p_i \log p_i + \sum_{i=1}^k \sum_{x=0}^n \binom n x p_i^x(1-p_i)^{n-x} \log x! Parameters ---------- %(_doc_default_callparams)s Returns ------- h : scalar Entropy of the Multinomial distribution Notes ----- %(_doc_callparams_note)s """ n, p, npcond = self._process_parameters(n, p) x = np.r_[1:np.max(n)+1] term1 = n*np.sum(entr(p), axis=-1) term1 -= gammaln(n+1) n = n[..., np.newaxis] new_axes_needed = max(p.ndim, n.ndim) - x.ndim + 1 x.shape += (1,)*new_axes_needed term2 = np.sum(binom.pmf(x, n, p)*gammaln(x+1), axis=(-1, -1-new_axes_needed)) return self._checkresult(term1 + term2, npcond, np.nan) def rvs(self, n, p, size=None, random_state=None): """ Draw random samples from a Multinomial distribution. Parameters ---------- %(_doc_default_callparams)s size : integer or iterable of integers, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray or scalar Random variates of shape (`size`, `len(p)`) Notes ----- %(_doc_callparams_note)s """ n, p, npcond = self._process_parameters(n, p) random_state = self._get_random_state(random_state) return random_state.multinomial(n, p, size) multinomial = multinomial_gen() class multinomial_frozen(multi_rv_frozen): r""" Create a frozen Multinomial distribution. Parameters ---------- n : int number of trials p: array_like probability of a trial falling into each category; should sum to 1 seed : None or int or np.random.RandomState instance, optional This parameter defines the RandomState object to use for drawing random variates. If None (or np.random), the global np.random state is used. If integer, it is used to seed the local RandomState instance Default is None. """ def __init__(self, n, p, seed=None): self._dist = multinomial_gen(seed) self.n, self.p, self.npcond = self._dist._process_parameters(n, p) # monkey patch self._dist def _process_parameters(n, p): return self.n, self.p, self.npcond self._dist._process_parameters = _process_parameters def logpmf(self, x): return self._dist.logpmf(x, self.n, self.p) def pmf(self, x): return self._dist.pmf(x, self.n, self.p) def mean(self): return self._dist.mean(self.n, self.p) def cov(self): return self._dist.cov(self.n, self.p) def entropy(self): return self._dist.entropy(self.n, self.p) def rvs(self, size=1, random_state=None): return self._dist.rvs(self.n, self.p, size, random_state) # Set frozen generator docstrings from corresponding docstrings in # multinomial and fill in default strings in class docstrings for name in ['logpmf', 'pmf', 'mean', 'cov', 'rvs']: method = multinomial_gen.__dict__[name] method_frozen = multinomial_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat( method.__doc__, multinomial_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, multinomial_docdict_params) class special_ortho_group_gen(multi_rv_generic): r""" A matrix-valued SO(N) random variable. Return a random rotation matrix, drawn from the Haar distribution (the only uniform distribution on SO(n)). The `dim` keyword specifies the dimension N. Methods ------- ``rvs(dim=None, size=1, random_state=None)`` Draw random samples from SO(N). Parameters ---------- dim : scalar Dimension of matrices Notes ---------- This class is wrapping the random_rot code from the MDP Toolkit, https://github.com/mdp-toolkit/mdp-toolkit Return a random rotation matrix, drawn from the Haar distribution (the only uniform distribution on SO(n)). The algorithm is described in the paper Stewart, G.W., "The efficient generation of random orthogonal matrices with an application to condition estimators", SIAM Journal on Numerical Analysis, 17(3), pp. 403-409, 1980. For more information see http://en.wikipedia.org/wiki/Orthogonal_matrix#Randomization See also the similar `ortho_group`. Examples -------- >>> from scipy.stats import special_ortho_group >>> x = special_ortho_group.rvs(3) >>> np.dot(x, x.T) array([[ 1.00000000e+00, 1.13231364e-17, -2.86852790e-16], [ 1.13231364e-17, 1.00000000e+00, -1.46845020e-16], [ -2.86852790e-16, -1.46845020e-16, 1.00000000e+00]]) >>> import scipy.linalg >>> scipy.linalg.det(x) 1.0 This generates one random matrix from SO(3). It is orthogonal and has a determinant of 1. """ def __init__(self, seed=None): super(special_ortho_group_gen, self).__init__(seed) self.__doc__ = doccer.docformat(self.__doc__) def __call__(self, dim=None, seed=None): """ Create a frozen SO(N) distribution. See `special_ortho_group_frozen` for more information. """ return special_ortho_group_frozen(dim, seed=seed) def _process_parameters(self, dim): """ Dimension N must be specified; it cannot be inferred. """ if dim is None or not np.isscalar(dim) or dim <= 1 or dim != int(dim): raise ValueError("""Dimension of rotation must be specified, and must be a scalar greater than 1.""") return dim def rvs(self, dim, size=1, random_state=None): """ Draw random samples from SO(N). Parameters ---------- dim : integer Dimension of rotation space (N). size : integer, optional Number of samples to draw (default 1). Returns ------- rvs : ndarray or scalar Random size N-dimensional matrices, dimension (size, dim, dim) """ size = int(size) if size > 1: return np.array([self.rvs(dim, size=1, random_state=random_state) for i in range(size)]) dim = self._process_parameters(dim) random_state = self._get_random_state(random_state) H = np.eye(dim) D = np.ones((dim,)) for n in range(1, dim): x = random_state.normal(size=(dim-n+1,)) D[n-1] = np.sign(x[0]) x[0] -= D[n-1]*np.sqrt((x*x).sum()) # Householder transformation Hx = (np.eye(dim-n+1) - 2.*np.outer(x, x)/(x*x).sum()) mat = np.eye(dim) mat[n-1:, n-1:] = Hx H = np.dot(H, mat) # Fix the last sign such that the determinant is 1 D[-1] = (-1)**(1-(dim % 2))*D.prod() # Equivalent to np.dot(np.diag(D), H) but faster, apparently H = (D*H.T).T return H special_ortho_group = special_ortho_group_gen() class special_ortho_group_frozen(multi_rv_frozen): def __init__(self, dim=None, seed=None): """ Create a frozen SO(N) distribution. Parameters ---------- dim : scalar Dimension of matrices seed : None or int or np.random.RandomState instance, optional This parameter defines the RandomState object to use for drawing random variates. If None (or np.random), the global np.random state is used. If integer, it is used to seed the local RandomState instance Default is None. Examples -------- >>> from scipy.stats import special_ortho_group >>> g = special_ortho_group(5) >>> x = g.rvs() """ self._dist = special_ortho_group_gen(seed) self.dim = self._dist._process_parameters(dim) def rvs(self, size=1, random_state=None): return self._dist.rvs(self.dim, size, random_state) class ortho_group_gen(multi_rv_generic): r""" A matrix-valued O(N) random variable. Return a random orthogonal matrix, drawn from the O(N) Haar distribution (the only uniform distribution on O(N)). The `dim` keyword specifies the dimension N. Methods ------- ``rvs(dim=None, size=1, random_state=None)`` Draw random samples from O(N). Parameters ---------- dim : scalar Dimension of matrices Notes ---------- This class is closely related to `special_ortho_group`. Some care is taken to avoid numerical error, as per the paper by Mezzadri. References ---------- .. [1] F. Mezzadri, "How to generate random matrices from the classical compact groups", :arXiv:`math-ph/0609050v2`. Examples -------- >>> from scipy.stats import ortho_group >>> x = ortho_group.rvs(3) >>> np.dot(x, x.T) array([[ 1.00000000e+00, 1.13231364e-17, -2.86852790e-16], [ 1.13231364e-17, 1.00000000e+00, -1.46845020e-16], [ -2.86852790e-16, -1.46845020e-16, 1.00000000e+00]]) >>> import scipy.linalg >>> np.fabs(scipy.linalg.det(x)) 1.0 This generates one random matrix from O(3). It is orthogonal and has a determinant of +1 or -1. """ def __init__(self, seed=None): super(ortho_group_gen, self).__init__(seed) self.__doc__ = doccer.docformat(self.__doc__) def _process_parameters(self, dim): """ Dimension N must be specified; it cannot be inferred. """ if dim is None or not np.isscalar(dim) or dim <= 1 or dim != int(dim): raise ValueError("Dimension of rotation must be specified," "and must be a scalar greater than 1.") return dim def rvs(self, dim, size=1, random_state=None): """ Draw random samples from O(N). Parameters ---------- dim : integer Dimension of rotation space (N). size : integer, optional Number of samples to draw (default 1). Returns ------- rvs : ndarray or scalar Random size N-dimensional matrices, dimension (size, dim, dim) """ size = int(size) if size > 1: return np.array([self.rvs(dim, size=1, random_state=random_state) for i in range(size)]) dim = self._process_parameters(dim) random_state = self._get_random_state(random_state) H = np.eye(dim) for n in range(1, dim): x = random_state.normal(size=(dim-n+1,)) # random sign, 50/50, but chosen carefully to avoid roundoff error D = np.sign(x[0]) x[0] += D*np.sqrt((x*x).sum()) # Householder transformation Hx = -D*(np.eye(dim-n+1) - 2.*np.outer(x, x)/(x*x).sum()) mat = np.eye(dim) mat[n-1:, n-1:] = Hx H = np.dot(H, mat) return H ortho_group = ortho_group_gen() class random_correlation_gen(multi_rv_generic): r""" A random correlation matrix. Return a random correlation matrix, given a vector of eigenvalues. The `eigs` keyword specifies the eigenvalues of the correlation matrix, and implies the dimension. Methods ------- ``rvs(eigs=None, random_state=None)`` Draw random correlation matrices, all with eigenvalues eigs. Parameters ---------- eigs : 1d ndarray Eigenvalues of correlation matrix. Notes ---------- Generates a random correlation matrix following a numerically stable algorithm spelled out by Davies & Higham. This algorithm uses a single O(N) similarity transformation to construct a symmetric positive semi-definite matrix, and applies a series of Givens rotations to scale it to have ones on the diagonal. References ---------- .. [1] Davies, Philip I; Higham, Nicholas J; "Numerically stable generation of correlation matrices and their factors", BIT 2000, Vol. 40, No. 4, pp. 640 651 Examples -------- >>> from scipy.stats import random_correlation >>> np.random.seed(514) >>> x = random_correlation.rvs((.5, .8, 1.2, 1.5)) >>> x array([[ 1. , -0.20387311, 0.18366501, -0.04953711], [-0.20387311, 1. , -0.24351129, 0.06703474], [ 0.18366501, -0.24351129, 1. , 0.38530195], [-0.04953711, 0.06703474, 0.38530195, 1. ]]) >>> import scipy.linalg >>> e, v = scipy.linalg.eigh(x) >>> e array([ 0.5, 0.8, 1.2, 1.5]) """ def __init__(self, seed=None): super(random_correlation_gen, self).__init__(seed) self.__doc__ = doccer.docformat(self.__doc__) def _process_parameters(self, eigs, tol): eigs = np.asarray(eigs, dtype=float) dim = eigs.size if eigs.ndim != 1 or eigs.shape[0] != dim or dim <= 1: raise ValueError("Array 'eigs' must be a vector of length greater than 1.") if np.fabs(np.sum(eigs) - dim) > tol: raise ValueError("Sum of eigenvalues must equal dimensionality.") for x in eigs: if x < -tol: raise ValueError("All eigenvalues must be non-negative.") return dim, eigs def _givens_to_1(self, aii, ajj, aij): """Computes a 2x2 Givens matrix to put 1's on the diagonal for the input matrix. The input matrix is a 2x2 symmetric matrix M = [ aii aij ; aij ajj ]. The output matrix g is a 2x2 anti-symmetric matrix of the form [ c s ; -s c ]; the elements c and s are returned. Applying the output matrix to the input matrix (as b=g.T M g) results in a matrix with bii=1, provided tr(M) - det(M) >= 1 and floating point issues do not occur. Otherwise, some other valid rotation is returned. When tr(M)==2, also bjj=1. """ aiid = aii - 1. ajjd = ajj - 1. if ajjd == 0: # ajj==1, so swap aii and ajj to avoid division by zero return 0., 1. dd = math.sqrt(max(aij**2 - aiid*ajjd, 0)) # The choice of t should be chosen to avoid cancellation [1] t = (aij + math.copysign(dd, aij)) / ajjd c = 1. / math.sqrt(1. + t*t) if c == 0: # Underflow s = 1.0 else: s = c*t return c, s def _to_corr(self, m): """ Given a psd matrix m, rotate to put one's on the diagonal, turning it into a correlation matrix. This also requires the trace equal the dimensionality. Note: modifies input matrix """ # Check requirements for in-place Givens if not (m.flags.c_contiguous and m.dtype == np.float64 and m.shape[0] == m.shape[1]): raise ValueError() d = m.shape[0] for i in range(d-1): if m[i,i] == 1: continue elif m[i, i] > 1: for j in range(i+1, d): if m[j, j] < 1: break else: for j in range(i+1, d): if m[j, j] > 1: break c, s = self._givens_to_1(m[i,i], m[j,j], m[i,j]) # Use BLAS to apply Givens rotations in-place. Equivalent to: # g = np.eye(d) # g[i, i] = g[j,j] = c # g[j, i] = -s; g[i, j] = s # m = np.dot(g.T, np.dot(m, g)) mv = m.ravel() drot(mv, mv, c, -s, n=d, offx=i*d, incx=1, offy=j*d, incy=1, overwrite_x=True, overwrite_y=True) drot(mv, mv, c, -s, n=d, offx=i, incx=d, offy=j, incy=d, overwrite_x=True, overwrite_y=True) return m def rvs(self, eigs, random_state=None, tol=1e-13, diag_tol=1e-7): """ Draw random correlation matrices Parameters ---------- eigs : 1d ndarray Eigenvalues of correlation matrix tol : float, optional Tolerance for input parameter checks diag_tol : float, optional Tolerance for deviation of the diagonal of the resulting matrix. Default: 1e-7 Raises ------ RuntimeError Floating point error prevented generating a valid correlation matrix. Returns ------- rvs : ndarray or scalar Random size N-dimensional matrices, dimension (size, dim, dim), each having eigenvalues eigs. """ dim, eigs = self._process_parameters(eigs, tol=tol) random_state = self._get_random_state(random_state) m = ortho_group.rvs(dim, random_state=random_state) m = np.dot(np.dot(m, np.diag(eigs)), m.T) # Set the trace of m m = self._to_corr(m) # Carefully rotate to unit diagonal # Check diagonal if abs(m.diagonal() - 1).max() > diag_tol: raise RuntimeError("Failed to generate a valid correlation matrix") return m random_correlation = random_correlation_gen()
mit
zorroblue/scikit-learn
sklearn/feature_extraction/hashing.py
29
6866
# Author: Lars Buitinck # License: BSD 3 clause import numbers import warnings import numpy as np import scipy.sparse as sp from . import _hashing from ..base import BaseEstimator, TransformerMixin def _iteritems(d): """Like d.iteritems, but accepts any collections.Mapping.""" return d.iteritems() if hasattr(d, "iteritems") else d.items() class FeatureHasher(BaseEstimator, TransformerMixin): """Implements feature hashing, aka the hashing trick. This class turns sequences of symbolic feature names (strings) into scipy.sparse matrices, using a hash function to compute the matrix column corresponding to a name. The hash function employed is the signed 32-bit version of Murmurhash3. Feature names of type byte string are used as-is. Unicode strings are converted to UTF-8 first, but no Unicode normalization is done. Feature values must be (finite) numbers. This class is a low-memory alternative to DictVectorizer and CountVectorizer, intended for large-scale (online) learning and situations where memory is tight, e.g. when running prediction code on embedded devices. Read more in the :ref:`User Guide <feature_hashing>`. Parameters ---------- n_features : integer, optional The number of features (columns) in the output matrices. Small numbers of features are likely to cause hash collisions, but large numbers will cause larger coefficient dimensions in linear learners. input_type : string, optional, default "dict" Either "dict" (the default) to accept dictionaries over (feature_name, value); "pair" to accept pairs of (feature_name, value); or "string" to accept single strings. feature_name should be a string, while value should be a number. In the case of "string", a value of 1 is implied. The feature_name is hashed to find the appropriate column for the feature. The value's sign might be flipped in the output (but see non_negative, below). dtype : numpy type, optional, default np.float64 The type of feature values. Passed to scipy.sparse matrix constructors as the dtype argument. Do not set this to bool, np.boolean or any unsigned integer type. alternate_sign : boolean, optional, default True When True, an alternating sign is added to the features as to approximately conserve the inner product in the hashed space even for small n_features. This approach is similar to sparse random projection. non_negative : boolean, optional, default False When True, an absolute value is applied to the features matrix prior to returning it. When used in conjunction with alternate_sign=True, this significantly reduces the inner product preservation property. .. deprecated:: 0.19 This option will be removed in 0.21. Examples -------- >>> from sklearn.feature_extraction import FeatureHasher >>> h = FeatureHasher(n_features=10) >>> D = [{'dog': 1, 'cat':2, 'elephant':4},{'dog': 2, 'run': 5}] >>> f = h.transform(D) >>> f.toarray() array([[ 0., 0., -4., -1., 0., 0., 0., 0., 0., 2.], [ 0., 0., 0., -2., -5., 0., 0., 0., 0., 0.]]) See also -------- DictVectorizer : vectorizes string-valued features using a hash table. sklearn.preprocessing.OneHotEncoder : handles nominal/categorical features encoded as columns of integers. """ def __init__(self, n_features=(2 ** 20), input_type="dict", dtype=np.float64, alternate_sign=True, non_negative=False): self._validate_params(n_features, input_type) if non_negative: warnings.warn("the option non_negative=True has been deprecated" " in 0.19 and will be removed" " in version 0.21.", DeprecationWarning) self.dtype = dtype self.input_type = input_type self.n_features = n_features self.alternate_sign = alternate_sign self.non_negative = non_negative @staticmethod def _validate_params(n_features, input_type): # strangely, np.int16 instances are not instances of Integral, # while np.int64 instances are... if not isinstance(n_features, (numbers.Integral, np.integer)): raise TypeError("n_features must be integral, got %r (%s)." % (n_features, type(n_features))) elif n_features < 1 or n_features >= 2 ** 31: raise ValueError("Invalid number of features (%d)." % n_features) if input_type not in ("dict", "pair", "string"): raise ValueError("input_type must be 'dict', 'pair' or 'string'," " got %r." % input_type) def fit(self, X=None, y=None): """No-op. This method doesn't do anything. It exists purely for compatibility with the scikit-learn transformer API. Parameters ---------- X : array-like Returns ------- self : FeatureHasher """ # repeat input validation for grid search (which calls set_params) self._validate_params(self.n_features, self.input_type) return self def transform(self, raw_X): """Transform a sequence of instances to a scipy.sparse matrix. Parameters ---------- raw_X : iterable over iterable over raw features, length = n_samples Samples. Each sample must be iterable an (e.g., a list or tuple) containing/generating feature names (and optionally values, see the input_type constructor argument) which will be hashed. raw_X need not support the len function, so it can be the result of a generator; n_samples is determined on the fly. Returns ------- X : scipy.sparse matrix, shape = (n_samples, self.n_features) Feature matrix, for use with estimators or further transformers. """ raw_X = iter(raw_X) if self.input_type == "dict": raw_X = (_iteritems(d) for d in raw_X) elif self.input_type == "string": raw_X = (((f, 1) for f in x) for x in raw_X) indices, indptr, values = \ _hashing.transform(raw_X, self.n_features, self.dtype, self.alternate_sign) n_samples = indptr.shape[0] - 1 if n_samples == 0: raise ValueError("Cannot vectorize empty sequence.") X = sp.csr_matrix((values, indices, indptr), dtype=self.dtype, shape=(n_samples, self.n_features)) X.sum_duplicates() # also sorts the indices if self.non_negative: np.abs(X.data, X.data) return X
bsd-3-clause
lavakyan/mstm-spectrum
mstm_studio/mie_theory.py
1
6127
""" code from nanophotonics/npmie repository url: https://github.com/nanophotonics/npmie code by Alan Sanders modified to use in MSTM-studio by L.Aavakyan """ import numpy as np from mstm_studio.mstm_spectrum import Material try: from scipy.special import sph_jnyn except: from scipy.special import spherical_yn, spherical_jn def sph_jnyn(maxn, z): jn = [] djn = [] yn = [] dyn = [] for n in range(0, maxn+1): jn.append (spherical_jn(n, z)) djn.append(spherical_jn(n, z, derivative=True)) yn.append (spherical_yn(n, z)) dyn.append(spherical_yn(n, z, derivative=True)) return np.array(jn), np.array(djn), np.array(yn), np.array(dyn) def sph_hn(n, x): # calculate spherical hankel, h(n,x) = j(n,x) + iy(n,x) # jn, djn, yn, dyn = sph_jnyn(n, x) hn = jn + 1j * yn dhn = djn + 1j * dyn return hn, dhn def calculate_mie_coefficients(n_max, x, m): """ Calculates the Mie coefficients. :rtype : object :param n_max: :param x: size parameter :param m: """ # calculate spherical bessels # jn, djn, yn, dyn = sph_jnyn(n_max, x) # j(n, x), y(n, x) jm, djm, ym, dym = sph_jnyn(n_max, m * x) # j(n, mx), y(n, mx) # calculate spherical hankel # hn, dhn = sph_hn(n_max, x) # h(n, x) # calculate riccati bessel functions # dpsi_n = [x * jn[n-1] - n * jn[n] for n in range(0, len(jn))] dpsi_m = [m * x * jm[n-1] - n * jm[n] for n in range(0, len(jm))] dzeta_n = [x * hn[n-1] - n * hn[n] for n in range(0, len(hn))] a_n = (m**2 * jm * dpsi_n - jn * dpsi_m) / (m**2 * jm * dzeta_n - hn * dpsi_m) b_n = (jm * dpsi_n - jn * dpsi_m) / (jm * dzeta_n - hn * dpsi_m) return a_n, b_n def calculate_mie_efficiencies(r, wavelength, n_sph, n_med): """ Calculates the mie efficiencies (q_scat, q_abs, q_ext, q_bscat) for a sphere in a dielectric medium at a given wavelength. :rtype : object :param r: radius of the sphere :param wavelength: wavelength of illumination :param n_sph: complex refractive index of the sphere :param n_med: real refractive index of the dielectric medium :return: """ # calculate size parameter # x = n_med * (2 * np.pi / wavelength) * r # x = n_med * kr, size parameter m = n_sph / n_med # n_max = int(np.ceil(x.real)+1) # number of terms in series expansion n_max = int(x + 4 * x**(1.0 / 3.0) + 2) # number of terms in series expansion q_scat = 0 q_bscat = 0 q_ext = 0 q_abs = 0 a_n, b_n = calculate_mie_coefficients(n_max, x, m) a = 0 b = 0 for n in range(1, n_max): a += a_n[n] b += b_n[n] q_scat += (2 * n + 1) * (abs(a_n[n])**2 + abs(b_n[n])**2) q_bscat += (2 * n + 1) * ((-1)**n) * (abs(a_n[n])**2 + abs(b_n[n])**2) q_ext += (2 * n + 1) * (a_n[n] + b_n[n]).real q_scat *= 2 / x**2 q_bscat *= 2 / x**2 q_ext *= 2 / x**2 q_abs = q_ext - q_scat return q_scat, q_bscat, q_ext, q_abs def calculate_mie_spectra(wavelengths, r, material, n_medium=1.): """ Calculates the mie scattering and extinction efficiency of spherical nanoparticles with radius r and given material surrounded by a medium n_med for a set of given wavelengths. :rtype : object :param wavelengths: array of wavelengths to calculate spectra from :param r: radius of the sphere :param material: instance of Material class :param n_med: refractive index of the surrounding dielectric medium """ mie_scattering = [] mie_backscattering = [] mie_extinction = [] mie_absorption = [] for wl in wavelengths: n_sph = material.get_n(wl) + 1j * material.get_k(wl) q_scat, q_bscat, q_ext, q_abs = calculate_mie_efficiencies( r, wl, n_sph, n_medium ) mie_scattering.append(q_scat) mie_backscattering.append(q_bscat) mie_extinction.append(q_ext) mie_absorption.append(q_abs) return (np.array(mie_scattering), np.array(mie_backscattering), np.array(mie_extinction), np.array(mie_absorption)) if __name__ == '__main__': import matplotlib.pyplot as plt #~ diameter_np = raw_input('Enter nanoparticle diameter (nm): ') #~ material = raw_input("Enter nanoparticle material: ") #~ medium = raw_input("Enter surrounding medium: ") diameter_np = material = medium = '' # test if diameter_np == '': diameter_np = 140. else: diameter_np = float(diameter_np) if material == '': material = 'Au' if medium == '': medium = 1. else: medium = float(medium) mat_dict = {'Au': 'etaGold.txt', 'Ag': 'etaSilver.txt'} material_object = Material(3) # Material(mat_dict[material]) wavelength = np.arange(300, 1000, 0.1) mie_scattering, mie_backscattering, mie_extinction, \ mie_absorption = calculate_mie_spectra( wavelength, diameter_np / 2.0, material_object, medium ) # save to file data = np.stack([wavelength, mie_scattering, mie_backscattering, \ mie_extinction, mie_absorption]) np.savetxt('MIE.dat', np.transpose(data), header='wl\tscatt\tbscatt\text\tabs') fig = plt.figure() # wavelength plots # ax = fig.add_subplot(411) ax.plot(wavelength, mie_scattering, 'r', label='scattering') ax.set_xticklabels(ax.get_xticklabels(), visible=False) ax.set_ylabel('scattering') ax = fig.add_subplot(412) ax.plot(wavelength, mie_backscattering, 'k', label='back-scattering') ax.set_xticklabels(ax.get_xticklabels(), visible=False) ax.set_ylabel('back-scattering') ax = fig.add_subplot(413) ax.plot(wavelength, mie_extinction, 'b', label='extinction') ax.set_xticklabels(ax.get_xticklabels(), visible=False) ax.set_ylabel('extinction') ax = fig.add_subplot(414) ax.plot(wavelength, mie_absorption, 'g', label='absorption') ax.set_ylabel('absorption') ax.set_xlabel('wavelength (nm)') plt.tight_layout() plt.show()
gpl-3.0
lisette-espin/mrqap
libs/profiling.py
1
4473
__author__ = 'espin' ####################################################################################### ### Dependences ### Reference: ### http://fa.bianp.net/blog/2013/different-ways-to-get-memory-consumption-or-lessons-learned-from-memory_profiler/ ####################################################################################### import resource import psutil import sys import os import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from libs import utils import copy from threading import Thread import time from collections import OrderedDict ####################################################################################### # FUNCTIONS ####################################################################################### class Profiling(): def __init__(self, title=None, fn=None, perm=False): self.mem_resource = OrderedDict() self.mem_psutil = OrderedDict() self.cpu_usage = OrderedDict() self.virtual_memory_usage = OrderedDict() self.swap_memory_usage = OrderedDict() self.title = title self.fn = fn self.perm = perm def check_memory(self, key): self.memory_usage_resource(key) self.memory_usage_psutil(key) self.memory_cpu_usage(key) self.plot() def kill_if_necessary(self, vm, sm): if vm.percent >= 85. or sm.percent >= 85.: print('FULL MEMORY: \n- Virtual Memory: {}\n- Swap Memory: {}'.format(vm, sm)) def memory_cpu_usage(self, key): cpu = psutil.cpu_percent(interval=None) vm = psutil.virtual_memory() sm = psutil.swap_memory() self.cpu_usage[key] = int(255 * cpu / 100) self.virtual_memory_usage[key] = vm.percent self.swap_memory_usage[key] = sm.percent self.kill_if_necessary(vm, sm) def memory_usage_psutil(self, key): # return the memory usage in MB process = psutil.Process(os.getpid()) self.mem_psutil[key] = process.memory_info()[0] / float(2 ** 20) def memory_usage_resource(self, key): rusage_denom = 1024. if sys.platform == 'darwin': # ... it seems that in OSX the output is different units ... rusage_denom = rusage_denom * rusage_denom self.mem_resource[key] = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / rusage_denom def copy(self, mem): self.mem_resource = mem.mem_resource.deepcopy() self.mem_psutil = mem.mem_psutil.deepcopy() self.cpu_usage = mem.cpu_usage.deepcopy() self.virtual_memory_usage = mem.virtual_memory_usage.deepcopy() self.swap_memory_usage = mem.swap_memory_usage.deepcopy() def plot(self): ''' Plots the Memory usage in MB :return: ''' if self.fn is not None and self.title is not None: labels = self.mem_resource.keys() x = range(len(labels)) plt.figure(1) ax1 = plt.subplot(211) ax1.plot(x, self.mem_resource.values(), color='red', marker='o', label='mem_resource') ax1.plot(x, self.mem_psutil.values(), color='blue', marker='o', label='mem_psutil') ax1.set_ylabel('Memory usage in MB') ax1.grid(True) ax1.set_xticks(x) ax1.set_xticklabels(labels, rotation=20, fontsize=7) box = ax1.get_position() ax1.set_position([box.x0, box.y0, box.width * 0.8, box.height]) ax1.legend(loc='center left', bbox_to_anchor=(1, 0.5), prop={'size':10}) ax2 = plt.subplot(212) ax2.plot(x, self.cpu_usage.values(), color='black', marker='o', label='cpu_usage') ax2.plot(x, self.virtual_memory_usage.values(), color='orange', marker='o', label='virtual_memory') ax2.plot(x, self.swap_memory_usage.values(), color='green', marker='o', label='swap_memory') #ax2.set_xlabel(self.xlabel) ax2.set_ylabel('Percentage (usage)') ax2.grid(True) ax2.set_xticks(x) ax2.set_xticklabels(labels, rotation=20, fontsize=7) box = ax2.get_position() ax2.set_position([box.x0, box.y0, box.width * 0.8, box.height]) ax2.legend(loc='center left', prop={'size':10}) # bbox_to_anchor=(1, 0.5), plt.suptitle('Profiling - {}'.format(self.title)) plt.tight_layout() plt.savefig(self.fn) plt.close()
cc0-1.0
potash/scikit-learn
sklearn/tests/test_dummy.py
186
17778
from __future__ import division import numpy as np import scipy.sparse as sp from sklearn.base import clone from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.stats import _weighted_percentile from sklearn.dummy import DummyClassifier, DummyRegressor @ignore_warnings def _check_predict_proba(clf, X, y): proba = clf.predict_proba(X) # We know that we can have division by zero log_proba = clf.predict_log_proba(X) y = np.atleast_1d(y) if y.ndim == 1: y = np.reshape(y, (-1, 1)) n_outputs = y.shape[1] n_samples = len(X) if n_outputs == 1: proba = [proba] log_proba = [log_proba] for k in range(n_outputs): assert_equal(proba[k].shape[0], n_samples) assert_equal(proba[k].shape[1], len(np.unique(y[:, k]))) assert_array_equal(proba[k].sum(axis=1), np.ones(len(X))) # We know that we can have division by zero assert_array_equal(np.log(proba[k]), log_proba[k]) def _check_behavior_2d(clf): # 1d case X = np.array([[0], [0], [0], [0]]) # ignored y = np.array([1, 2, 1, 1]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) # 2d case y = np.array([[1, 0], [2, 0], [1, 0], [1, 3]]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) def _check_behavior_2d_for_constant(clf): # 2d case only X = np.array([[0], [0], [0], [0]]) # ignored y = np.array([[1, 0, 5, 4, 3], [2, 0, 1, 2, 5], [1, 0, 4, 5, 2], [1, 3, 3, 2, 0]]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) def _check_equality_regressor(statistic, y_learn, y_pred_learn, y_test, y_pred_test): assert_array_equal(np.tile(statistic, (y_learn.shape[0], 1)), y_pred_learn) assert_array_equal(np.tile(statistic, (y_test.shape[0], 1)), y_pred_test) def test_most_frequent_and_prior_strategy(): X = [[0], [0], [0], [0]] # ignored y = [1, 2, 1, 1] for strategy in ("most_frequent", "prior"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), np.ones(len(X))) _check_predict_proba(clf, X, y) if strategy == "prior": assert_array_equal(clf.predict_proba([X[0]]), clf.class_prior_.reshape((1, -1))) else: assert_array_equal(clf.predict_proba([X[0]]), clf.class_prior_.reshape((1, -1)) > 0.5) def test_most_frequent_and_prior_strategy_multioutput(): X = [[0], [0], [0], [0]] # ignored y = np.array([[1, 0], [2, 0], [1, 0], [1, 3]]) n_samples = len(X) for strategy in ("prior", "most_frequent"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_stratified_strategy(): X = [[0]] * 5 # ignored y = [1, 2, 1, 1, 2] clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) p = np.bincount(y_pred) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[2], 2. / 5, decimal=1) _check_predict_proba(clf, X, y) def test_stratified_strategy_multioutput(): X = [[0]] * 5 # ignored y = np.array([[2, 1], [2, 2], [1, 1], [1, 2], [1, 1]]) clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[2], 2. / 5, decimal=1) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_uniform_strategy(): X = [[0]] * 4 # ignored y = [1, 2, 1, 1] clf = DummyClassifier(strategy="uniform", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) p = np.bincount(y_pred) / float(len(X)) assert_almost_equal(p[1], 0.5, decimal=1) assert_almost_equal(p[2], 0.5, decimal=1) _check_predict_proba(clf, X, y) def test_uniform_strategy_multioutput(): X = [[0]] * 4 # ignored y = np.array([[2, 1], [2, 2], [1, 2], [1, 1]]) clf = DummyClassifier(strategy="uniform", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 0.5, decimal=1) assert_almost_equal(p[2], 0.5, decimal=1) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_string_labels(): X = [[0]] * 5 y = ["paris", "paris", "tokyo", "amsterdam", "berlin"] clf = DummyClassifier(strategy="most_frequent") clf.fit(X, y) assert_array_equal(clf.predict(X), ["paris"] * 5) def test_classifier_exceptions(): clf = DummyClassifier(strategy="unknown") assert_raises(ValueError, clf.fit, [], []) assert_raises(ValueError, clf.predict, []) assert_raises(ValueError, clf.predict_proba, []) def test_mean_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 4 # ignored y = random_state.randn(4) reg = DummyRegressor() reg.fit(X, y) assert_array_equal(reg.predict(X), [np.mean(y)] * len(X)) def test_mean_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) mean = np.mean(y_learn, axis=0).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor() est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor(mean, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_regressor_exceptions(): reg = DummyRegressor() assert_raises(ValueError, reg.predict, []) def test_median_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="median") reg.fit(X, y) assert_array_equal(reg.predict(X), [np.median(y)] * len(X)) def test_median_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) median = np.median(y_learn, axis=0).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="median") est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( median, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_quantile_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="quantile", quantile=0.5) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.median(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=0) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.min(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=1) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.max(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=0.3) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.percentile(y, q=30)] * len(X)) def test_quantile_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) median = np.median(y_learn, axis=0).reshape((1, -1)) quantile_values = np.percentile(y_learn, axis=0, q=80).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="quantile", quantile=0.5) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( median, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) # Correctness oracle est = DummyRegressor(strategy="quantile", quantile=0.8) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( quantile_values, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_quantile_invalid(): X = [[0]] * 5 # ignored y = [0] * 5 # ignored est = DummyRegressor(strategy="quantile") assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=None) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=[0]) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=-0.1) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=1.1) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile='abc') assert_raises(TypeError, est.fit, X, y) def test_quantile_strategy_empty_train(): est = DummyRegressor(strategy="quantile", quantile=0.4) assert_raises(ValueError, est.fit, [], []) def test_constant_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="constant", constant=[43]) reg.fit(X, y) assert_array_equal(reg.predict(X), [43] * len(X)) reg = DummyRegressor(strategy="constant", constant=43) reg.fit(X, y) assert_array_equal(reg.predict(X), [43] * len(X)) def test_constant_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) # test with 2d array constants = random_state.randn(5) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="constant", constant=constants) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( constants, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d_for_constant(est) def test_y_mean_attribute_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] # when strategy = 'mean' est = DummyRegressor(strategy='mean') est.fit(X, y) assert_equal(est.constant_, np.mean(y)) def test_unknown_strategey_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] est = DummyRegressor(strategy='gona') assert_raises(ValueError, est.fit, X, y) def test_constants_not_specified_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] est = DummyRegressor(strategy='constant') assert_raises(TypeError, est.fit, X, y) def test_constant_size_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X = random_state.randn(10, 10) y = random_state.randn(10, 5) est = DummyRegressor(strategy='constant', constant=[1, 2, 3, 4]) assert_raises(ValueError, est.fit, X, y) def test_constant_strategy(): X = [[0], [0], [0], [0]] # ignored y = [2, 1, 2, 2] clf = DummyClassifier(strategy="constant", random_state=0, constant=1) clf.fit(X, y) assert_array_equal(clf.predict(X), np.ones(len(X))) _check_predict_proba(clf, X, y) X = [[0], [0], [0], [0]] # ignored y = ['two', 'one', 'two', 'two'] clf = DummyClassifier(strategy="constant", random_state=0, constant='one') clf.fit(X, y) assert_array_equal(clf.predict(X), np.array(['one'] * 4)) _check_predict_proba(clf, X, y) def test_constant_strategy_multioutput(): X = [[0], [0], [0], [0]] # ignored y = np.array([[2, 3], [1, 3], [2, 3], [2, 0]]) n_samples = len(X) clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0]) clf.fit(X, y) assert_array_equal(clf.predict(X), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) _check_predict_proba(clf, X, y) def test_constant_strategy_exceptions(): X = [[0], [0], [0], [0]] # ignored y = [2, 1, 2, 2] clf = DummyClassifier(strategy="constant", random_state=0) assert_raises(ValueError, clf.fit, X, y) clf = DummyClassifier(strategy="constant", random_state=0, constant=[2, 0]) assert_raises(ValueError, clf.fit, X, y) def test_classification_sample_weight(): X = [[0], [0], [1]] y = [0, 1, 0] sample_weight = [0.1, 1., 0.1] clf = DummyClassifier().fit(X, y, sample_weight) assert_array_almost_equal(clf.class_prior_, [0.2 / 1.2, 1. / 1.2]) def test_constant_strategy_sparse_target(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[0, 1], [4, 0], [1, 1], [1, 4], [1, 1]])) n_samples = len(X) clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0]) clf.fit(X, y) y_pred = clf.predict(X) assert_true(sp.issparse(y_pred)) assert_array_equal(y_pred.toarray(), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) def test_uniform_strategy_sparse_target_warning(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[2, 1], [2, 2], [1, 4], [4, 2], [1, 1]])) clf = DummyClassifier(strategy="uniform", random_state=0) assert_warns_message(UserWarning, "the uniform strategy would not save memory", clf.fit, X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 1 / 3, decimal=1) assert_almost_equal(p[2], 1 / 3, decimal=1) assert_almost_equal(p[4], 1 / 3, decimal=1) def test_stratified_strategy_sparse_target(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[4, 1], [0, 0], [1, 1], [1, 4], [1, 1]])) clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) assert_true(sp.issparse(y_pred)) y_pred = y_pred.toarray() for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[0], 1. / 5, decimal=1) assert_almost_equal(p[4], 1. / 5, decimal=1) def test_most_frequent_and_prior_strategy_sparse_target(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[1, 0], [1, 3], [4, 0], [0, 1], [1, 0]])) n_samples = len(X) y_expected = np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))]) for strategy in ("most_frequent", "prior"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) y_pred = clf.predict(X) assert_true(sp.issparse(y_pred)) assert_array_equal(y_pred.toarray(), y_expected) def test_dummy_regressor_sample_weight(n_samples=10): random_state = np.random.RandomState(seed=1) X = [[0]] * n_samples y = random_state.rand(n_samples) sample_weight = random_state.rand(n_samples) est = DummyRegressor(strategy="mean").fit(X, y, sample_weight) assert_equal(est.constant_, np.average(y, weights=sample_weight)) est = DummyRegressor(strategy="median").fit(X, y, sample_weight) assert_equal(est.constant_, _weighted_percentile(y, sample_weight, 50.)) est = DummyRegressor(strategy="quantile", quantile=.95).fit(X, y, sample_weight) assert_equal(est.constant_, _weighted_percentile(y, sample_weight, 95.))
bsd-3-clause
PatrickChrist/scikit-learn
examples/text/document_classification_20newsgroups.py
222
10500
""" ====================================================== Classification of text documents using sparse features ====================================================== This is an example showing how scikit-learn can be used to classify documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features and demonstrates various classifiers that can efficiently handle sparse matrices. The dataset used in this example is the 20 newsgroups dataset. It will be automatically downloaded, then cached. The bar plot indicates the accuracy, training time (normalized) and test time (normalized) of each classifier. """ # Author: Peter Prettenhofer <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Lars Buitinck <[email protected]> # License: BSD 3 clause from __future__ import print_function import logging import numpy as np from optparse import OptionParser import sys from time import time import matplotlib.pyplot as plt from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_selection import SelectKBest, chi2 from sklearn.linear_model import RidgeClassifier from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC from sklearn.linear_model import SGDClassifier from sklearn.linear_model import Perceptron from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.naive_bayes import BernoulliNB, MultinomialNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neighbors import NearestCentroid from sklearn.ensemble import RandomForestClassifier from sklearn.utils.extmath import density from sklearn import metrics # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') # parse commandline arguments op = OptionParser() op.add_option("--report", action="store_true", dest="print_report", help="Print a detailed classification report.") op.add_option("--chi2_select", action="store", type="int", dest="select_chi2", help="Select some number of features using a chi-squared test") op.add_option("--confusion_matrix", action="store_true", dest="print_cm", help="Print the confusion matrix.") op.add_option("--top10", action="store_true", dest="print_top10", help="Print ten most discriminative terms per class" " for every classifier.") op.add_option("--all_categories", action="store_true", dest="all_categories", help="Whether to use all categories or not.") op.add_option("--use_hashing", action="store_true", help="Use a hashing vectorizer.") op.add_option("--n_features", action="store", type=int, default=2 ** 16, help="n_features when using the hashing vectorizer.") op.add_option("--filtered", action="store_true", help="Remove newsgroup information that is easily overfit: " "headers, signatures, and quoting.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) print(__doc__) op.print_help() print() ############################################################################### # Load some categories from the training set if opts.all_categories: categories = None else: categories = [ 'alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space', ] if opts.filtered: remove = ('headers', 'footers', 'quotes') else: remove = () print("Loading 20 newsgroups dataset for categories:") print(categories if categories else "all") data_train = fetch_20newsgroups(subset='train', categories=categories, shuffle=True, random_state=42, remove=remove) data_test = fetch_20newsgroups(subset='test', categories=categories, shuffle=True, random_state=42, remove=remove) print('data loaded') categories = data_train.target_names # for case categories == None def size_mb(docs): return sum(len(s.encode('utf-8')) for s in docs) / 1e6 data_train_size_mb = size_mb(data_train.data) data_test_size_mb = size_mb(data_test.data) print("%d documents - %0.3fMB (training set)" % ( len(data_train.data), data_train_size_mb)) print("%d documents - %0.3fMB (test set)" % ( len(data_test.data), data_test_size_mb)) print("%d categories" % len(categories)) print() # split a training set and a test set y_train, y_test = data_train.target, data_test.target print("Extracting features from the training data using a sparse vectorizer") t0 = time() if opts.use_hashing: vectorizer = HashingVectorizer(stop_words='english', non_negative=True, n_features=opts.n_features) X_train = vectorizer.transform(data_train.data) else: vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5, stop_words='english') X_train = vectorizer.fit_transform(data_train.data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_train_size_mb / duration)) print("n_samples: %d, n_features: %d" % X_train.shape) print() print("Extracting features from the test data using the same vectorizer") t0 = time() X_test = vectorizer.transform(data_test.data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_test_size_mb / duration)) print("n_samples: %d, n_features: %d" % X_test.shape) print() # mapping from integer feature name to original token string if opts.use_hashing: feature_names = None else: feature_names = vectorizer.get_feature_names() if opts.select_chi2: print("Extracting %d best features by a chi-squared test" % opts.select_chi2) t0 = time() ch2 = SelectKBest(chi2, k=opts.select_chi2) X_train = ch2.fit_transform(X_train, y_train) X_test = ch2.transform(X_test) if feature_names: # keep selected feature names feature_names = [feature_names[i] for i in ch2.get_support(indices=True)] print("done in %fs" % (time() - t0)) print() if feature_names: feature_names = np.asarray(feature_names) def trim(s): """Trim string to fit on terminal (assuming 80-column display)""" return s if len(s) <= 80 else s[:77] + "..." ############################################################################### # Benchmark classifiers def benchmark(clf): print('_' * 80) print("Training: ") print(clf) t0 = time() clf.fit(X_train, y_train) train_time = time() - t0 print("train time: %0.3fs" % train_time) t0 = time() pred = clf.predict(X_test) test_time = time() - t0 print("test time: %0.3fs" % test_time) score = metrics.accuracy_score(y_test, pred) print("accuracy: %0.3f" % score) if hasattr(clf, 'coef_'): print("dimensionality: %d" % clf.coef_.shape[1]) print("density: %f" % density(clf.coef_)) if opts.print_top10 and feature_names is not None: print("top 10 keywords per class:") for i, category in enumerate(categories): top10 = np.argsort(clf.coef_[i])[-10:] print(trim("%s: %s" % (category, " ".join(feature_names[top10])))) print() if opts.print_report: print("classification report:") print(metrics.classification_report(y_test, pred, target_names=categories)) if opts.print_cm: print("confusion matrix:") print(metrics.confusion_matrix(y_test, pred)) print() clf_descr = str(clf).split('(')[0] return clf_descr, score, train_time, test_time results = [] for clf, name in ( (RidgeClassifier(tol=1e-2, solver="lsqr"), "Ridge Classifier"), (Perceptron(n_iter=50), "Perceptron"), (PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"), (KNeighborsClassifier(n_neighbors=10), "kNN"), (RandomForestClassifier(n_estimators=100), "Random forest")): print('=' * 80) print(name) results.append(benchmark(clf)) for penalty in ["l2", "l1"]: print('=' * 80) print("%s penalty" % penalty.upper()) # Train Liblinear model results.append(benchmark(LinearSVC(loss='l2', penalty=penalty, dual=False, tol=1e-3))) # Train SGD model results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, penalty=penalty))) # Train SGD with Elastic Net penalty print('=' * 80) print("Elastic-Net penalty") results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, penalty="elasticnet"))) # Train NearestCentroid without threshold print('=' * 80) print("NearestCentroid (aka Rocchio classifier)") results.append(benchmark(NearestCentroid())) # Train sparse Naive Bayes classifiers print('=' * 80) print("Naive Bayes") results.append(benchmark(MultinomialNB(alpha=.01))) results.append(benchmark(BernoulliNB(alpha=.01))) print('=' * 80) print("LinearSVC with L1-based feature selection") # The smaller C, the stronger the regularization. # The more regularization, the more sparsity. results.append(benchmark(Pipeline([ ('feature_selection', LinearSVC(penalty="l1", dual=False, tol=1e-3)), ('classification', LinearSVC()) ]))) # make some plots indices = np.arange(len(results)) results = [[x[i] for x in results] for i in range(4)] clf_names, score, training_time, test_time = results training_time = np.array(training_time) / np.max(training_time) test_time = np.array(test_time) / np.max(test_time) plt.figure(figsize=(12, 8)) plt.title("Score") plt.barh(indices, score, .2, label="score", color='r') plt.barh(indices + .3, training_time, .2, label="training time", color='g') plt.barh(indices + .6, test_time, .2, label="test time", color='b') plt.yticks(()) plt.legend(loc='best') plt.subplots_adjust(left=.25) plt.subplots_adjust(top=.95) plt.subplots_adjust(bottom=.05) for i, c in zip(indices, clf_names): plt.text(-.3, i, c) plt.show()
bsd-3-clause
tum-ens/rivus
rivus/utils/pandaspyomo.py
2
7016
""" pandaspyomo: read data from coopr.pyomo models to pandas DataFrames Pyomo is a GAMS-like model description language for mathematical optimization problems. This module provides functions to read data from Pyomo model instances and result objects. Use list_entities to get a list of all entities (sets, params, variables, objectives or constraints) inside a pyomo instance, before get its contents by get_entity (or get_entities). Usage: import pandaspyomo as pdpo pdpo.list_entities(instance, 'var') [('EprOut', ['time', 'process', 'commodity', 'commodity']), ... ('EprIn', ['time', 'process', 'commodity', 'commodity'])] epr = pdpo.get_entities(instance, ['EprOut', 'EprInt']) ... """ import coopr.pyomo as pyomo import pandas as pd def get_entity(instance, name): """ Return a DataFrame for an entity in model instance. Args: instance: a Pyomo ConcreteModel instance name: name of a Set, Param, Var, Constraint or Objective Returns: a single-columned Pandas DataFrame with domain as index """ # retrieve entity, its type and its onset names entity = instance.__getattribute__(name) labels = _get_onset_names(entity) # extract values if isinstance(entity, pyomo.Set): # Pyomo sets don't have values, only elements results = pd.DataFrame([(v, 1) for v in entity.value]) # for unconstrained sets, the column label is identical to their index # hence, make index equal to entity name and append underscore to name # (=the later column title) to preserve identical index names for both # unconstrained supersets if not labels: labels = [name] name = name+'_' elif isinstance(entity, pyomo.Param): if entity.dim() > 1: results = pd.DataFrame([v[0]+(v[1],) for v in entity.iteritems()]) else: results = pd.DataFrame(entity.iteritems()) else: # create DataFrame if entity.dim() > 1: # concatenate index tuples with value if entity has # multidimensional indices v[0] results = pd.DataFrame( [v[0]+(v[1].value,) for v in entity.iteritems()]) else: # otherwise, create tuple from scalar index v[0] results = pd.DataFrame( [(v[0], v[1].value) for v in entity.iteritems()]) # check for duplicate onset names and append one to several "_" to make # them unique, e.g. ['sit', 'sit', 'com'] becomes ['sit', 'sit_', 'com'] for k, label in enumerate(labels): if label in labels[:k]: labels[k] = labels[k] + "_" if not results.empty: # name columns according to labels + entity name results.columns = labels + [name] results.set_index(labels, inplace=True) return results def get_entities(instance, names): """ Return one DataFrame with entities in columns and a common index. Works only on entities that share a common domain (set or set_tuple), which is used as index of the returned DataFrame. Args: instance: a Pyomo ConcreteModel instance names: list of entity names (as returned by list_entities) Returns: a Pandas DataFrame with entities as columns and domains as index """ df = pd.DataFrame() for name in names: other = get_entity(instance, name) if df.empty: df = other else: index_names_before = df.index.names df = df.join(other, how='outer') if index_names_before != df.index.names: df.index.names = index_names_before return df def list_entities(instance, entity_type): """ Return list of sets, params, variables, constraints or objectives Args: instance: a Pyomo ConcreteModel object entity_type: "set", "par", "var", "con" or "obj" Returns: DataFrame of entities Example: >>> data = read_excel('mimo-example.xlsx') >>> model = create_model(data, range(1,25)) >>> list_entities(model, 'obj') #doctest: +NORMALIZE_WHITESPACE Description Domain Name obj minimize(cost = sum of all cost types) [] """ # helper function to discern entities by type def filter_by_type(entity, entity_type): if entity_type == 'set': return isinstance(entity, pyomo.Set) and not entity.virtual elif entity_type == 'par': return isinstance(entity, pyomo.Param) elif entity_type == 'var': return isinstance(entity, pyomo.Var) elif entity_type == 'con': return isinstance(entity, pyomo.Constraint) elif entity_type == 'obj': return isinstance(entity, pyomo.Objective) else: raise ValueError("Unknown entity_type '{}'".format(entity_type)) # iterate through all model components and keep only iter_entities = instance.__dict__.iteritems() entities = sorted( (name, entity.doc, _get_onset_names(entity)) for (name, entity) in iter_entities if filter_by_type(entity, entity_type)) # if something was found, wrap tuples in DataFrame, otherwise return empty if entities: entities = pd.DataFrame(entities, columns=['Name', 'Description', 'Domain']) entities.set_index('Name', inplace=True) else: entities = pd.DataFrame() return entities def _get_onset_names(entity): """ Example: >>> data = read_excel('mimo-example.xlsx') >>> model = create_model(data, range(1,25)) >>> _get_onset_names(model.e_co_stock) ['t', 'sit', 'com', 'com_type'] """ # get column titles for entities from domain set names labels = [] if isinstance(entity, pyomo.Set): if entity.dimen > 1: # N-dimensional set tuples, possibly with nested set tuples within if entity.domain: domains = entity.domain.set_tuple else: domains = entity.set_tuple for domain_set in domains: labels.extend(_get_onset_names(domain_set)) elif entity.dimen == 1: if entity.domain: # 1D subset; add domain name labels.append(entity.domain.name) else: # unrestricted set; add entity name labels.append(entity.name) else: # no domain, so no labels needed pass elif isinstance(entity, (pyomo.Param, pyomo.Var, pyomo.Constraint, pyomo.Objective)): if entity.dim() > 0 and entity._index: labels = _get_onset_names(entity._index) else: # zero dimensions, so no onset labels pass else: raise ValueError("Unknown entity type!") return labels
gpl-3.0
mdanielwork/intellij-community
python/helpers/pydev/pydev_ipython/matplotlibtools.py
15
6107
import sys backends = {'tk': 'TkAgg', 'gtk': 'GTKAgg', 'wx': 'WXAgg', 'qt': 'Qt4Agg', # qt3 not supported 'qt4': 'Qt4Agg', 'qt5': 'Qt5Agg', 'osx': 'MacOSX'} # We also need a reverse backends2guis mapping that will properly choose which # GUI support to activate based on the desired matplotlib backend. For the # most part it's just a reverse of the above dict, but we also need to add a # few others that map to the same GUI manually: backend2gui = dict(zip(backends.values(), backends.keys())) backend2gui['Qt4Agg'] = 'qt4' backend2gui['Qt5Agg'] = 'qt5' # In the reverse mapping, there are a few extra valid matplotlib backends that # map to the same GUI support backend2gui['GTK'] = backend2gui['GTKCairo'] = 'gtk' backend2gui['WX'] = 'wx' backend2gui['CocoaAgg'] = 'osx' def do_enable_gui(guiname): from _pydev_bundle.pydev_versioncheck import versionok_for_gui if versionok_for_gui(): try: from pydev_ipython.inputhook import enable_gui enable_gui(guiname) except: sys.stderr.write("Failed to enable GUI event loop integration for '%s'\n" % guiname) import traceback traceback.print_exc() elif guiname not in ['none', '', None]: # Only print a warning if the guiname was going to do something sys.stderr.write("Debug console: Python version does not support GUI event loop integration for '%s'\n" % guiname) # Return value does not matter, so return back what was sent return guiname def find_gui_and_backend(): """Return the gui and mpl backend.""" matplotlib = sys.modules['matplotlib'] # WARNING: this assumes matplotlib 1.1 or newer!! backend = matplotlib.rcParams['backend'] # In this case, we need to find what the appropriate gui selection call # should be for IPython, so we can activate inputhook accordingly gui = backend2gui.get(backend, None) return gui, backend def is_interactive_backend(backend): """ Check if backend is interactive """ matplotlib = sys.modules['matplotlib'] from matplotlib.rcsetup import interactive_bk, non_interactive_bk # @UnresolvedImport if backend in interactive_bk: return True elif backend in non_interactive_bk: return False else: return matplotlib.is_interactive() def patch_use(enable_gui_function): """ Patch matplotlib function 'use' """ matplotlib = sys.modules['matplotlib'] def patched_use(*args, **kwargs): matplotlib.real_use(*args, **kwargs) gui, backend = find_gui_and_backend() enable_gui_function(gui) matplotlib.real_use = matplotlib.use matplotlib.use = patched_use def patch_is_interactive(): """ Patch matplotlib function 'use' """ matplotlib = sys.modules['matplotlib'] def patched_is_interactive(): return matplotlib.rcParams['interactive'] matplotlib.real_is_interactive = matplotlib.is_interactive matplotlib.is_interactive = patched_is_interactive def _get_major_version(module): return int(module.__version__.split('.')[0]) def activate_matplotlib(enable_gui_function): """Set interactive to True for interactive backends. enable_gui_function - Function which enables gui, should be run in the main thread. """ matplotlib = sys.modules['matplotlib'] if not hasattr(matplotlib, 'rcParams'): # matplotlib module wasn't fully imported, try later return False if _get_major_version(matplotlib) >= 3: # since matplotlib 3.0, accessing `matplotlib.rcParams` lead to pyplot import, # so we need to wait until necessary pyplot attributes will be imported as well if 'matplotlib.pyplot' not in sys.modules: return False pyplot = sys.modules['matplotlib.pyplot'] if not hasattr(pyplot, 'switch_backend'): return False gui, backend = find_gui_and_backend() is_interactive = is_interactive_backend(backend) if is_interactive: enable_gui_function(gui) if not matplotlib.is_interactive(): sys.stdout.write("Backend %s is interactive backend. Turning interactive mode on.\n" % backend) matplotlib.interactive(True) else: if matplotlib.is_interactive(): sys.stdout.write("Backend %s is non-interactive backend. Turning interactive mode off.\n" % backend) matplotlib.interactive(False) patch_use(enable_gui_function) patch_is_interactive() return True def flag_calls(func): """Wrap a function to detect and flag when it gets called. This is a decorator which takes a function and wraps it in a function with a 'called' attribute. wrapper.called is initialized to False. The wrapper.called attribute is set to False right before each call to the wrapped function, so if the call fails it remains False. After the call completes, wrapper.called is set to True and the output is returned. Testing for truth in wrapper.called allows you to determine if a call to func() was attempted and succeeded.""" # don't wrap twice if hasattr(func, 'called'): return func def wrapper(*args,**kw): wrapper.called = False out = func(*args,**kw) wrapper.called = True return out wrapper.called = False wrapper.__doc__ = func.__doc__ return wrapper def activate_pylab(): pylab = sys.modules['pylab'] pylab.show._needmain = False # We need to detect at runtime whether show() is called by the user. # For this, we wrap it into a decorator which adds a 'called' flag. pylab.draw_if_interactive = flag_calls(pylab.draw_if_interactive) return True def activate_pyplot(): pyplot = sys.modules['matplotlib.pyplot'] pyplot.show._needmain = False # We need to detect at runtime whether show() is called by the user. # For this, we wrap it into a decorator which adds a 'called' flag. pyplot.draw_if_interactive = flag_calls(pyplot.draw_if_interactive) return True
apache-2.0
alexandrebarachant/Grasp-and-lift-EEG-challenge
ensembling/XGB.py
4
3853
# -*- coding: utf-8 -*- """ Created on Sat Aug 15 21:19:51 2015. @author: rc, alex """ import numpy as np from sklearn.base import BaseEstimator, ClassifierMixin from progressbar import Bar, ETA, Percentage, ProgressBar, RotatingMarker from preprocessing.aux import delay_preds import xgboost as xgb class XGB(BaseEstimator, ClassifierMixin): """Ensembling with eXtreme Gradient Boosting.""" def __init__(self, ensemble, n_estimators=100, max_depth=5, subsample=0.7, nthread=12,delay=None,skip=None,subsample_data=1,partsTest=1, jump=None): """Init.""" self.ensemble = ensemble self.n_estimators = n_estimators self.max_depth = max_depth self.subsample = subsample self.nthread = nthread ### timecourse history parameters ### # how many past time samples to include along with the most recent sample self.applyPreds = delay is not None and skip is not None # how many past time samples to include along with the most recent sample self.delay = delay # subsample above samples self.skip = skip # here can be set a custom subsampling scheme, it overrides previous params self.jump = jump # due to RAM limitations testing data has to be split into 'partsTest' parts self.partsTest = partsTest # subsampling input data as an efficient form of regularization self.subsample_data = subsample_data # used in bagging to set different starting points when subsampling the data self.mdlNr = 0 self.clf = [] def fit(self, X, y): """Fit.""" X = X[(self.mdlNr*5 % self.subsample_data)::self.subsample_data] y = y[(self.mdlNr*5 % self.subsample_data)::self.subsample_data] if self.applyPreds: if self.jump is not None: X = delay_preds(X, delay=self.delay/self.subsample_data, skip=self.skip/self.subsample_data, jump=self.jump/self.subsample_data) else: X = delay_preds(X, delay=self.delay/self.subsample_data, skip=self.skip/self.subsample_data) self.clf = [] widgets = ['Training : ', Percentage(), ' ', Bar(marker=RotatingMarker()), ' ', ETA(), ' '] pbar = ProgressBar(widgets=widgets, maxval=6) pbar.start() # training separate models for each event for col in range(6): self.clf.append(xgb.XGBClassifier(n_estimators=self.n_estimators, max_depth=self.max_depth, subsample=self.subsample, nthread=self.nthread)) self.clf[col].fit(X, y[:, col]) pbar.update(col) def _predict_proba(self,X): """Predict probability for each event separately, then concatenate results.""" pred = [] for col in range(6): pred.append(self.clf[col].predict_proba(X)[:, 1]) pred = np.vstack(pred).transpose() return pred def predict_proba(self, X): """Predict probability.""" if self.applyPreds: p = np.zeros((X.shape[0],6)) for part in range(self.partsTest): start = part*X.shape[0]//self.partsTest-self.delay*(part>0) stop = (part+1)*X.shape[0]//self.partsTest X_delayed = delay_preds(X[slice(start,stop)], delay=self.delay, skip=self.skip, jump=self.jump)[self.delay*(part>0):] start += self.delay*(part>0) p[slice(start,stop)] += self._predict_proba(X_delayed) X_delayed = None return p else: return self._predict_proba(X)
bsd-3-clause
shirtsgroup/pygo
analysis/figure_generation/Tab2_plot.py
1
1101
import numpy import matplotlib import matplotlib.pyplot as plt def main(): plt.rc('text',usetex=True) matplotlib.rc('font', family = 'serif') font = {'family' : 'serif', 'size' : 'larger'} adsorbed = numpy.load('adsorbed_rate.out.npy') desorbed = numpy.load('desorbed_rate.out.npy') N = len(adsorbed) width = 0.35 ind = numpy.arange(N) fig,ax = plt.subplots() rects1 = ax.bar(ind,adsorbed[:,0],width,yerr=adsorbed[:,1]/N**.5) rects2 = ax.bar(ind+width,desorbed[:,0],width,color='g',yerr=desorbed[:,1]/N**.5) lam = numpy.arange(0.1,0.65,.05) ax.set_ylabel('Number of folding and unfolding transitions') ax.set_xlabel(r'$\lambda$') ax.set_xticks(ind+width) ax.set_xticklabels([str(x) for x in lam]) ax.legend((rects1[0],rects2[0]),('adsorbed states','desorbed states')) plt.xlim((-.3,N)) plt.savefig('/home/edz3fz/proteinmontecarlo/manuscripts/figures/Tab2.pdf') plt.savefig('/home/edz3fz/proteinmontecarlo/manuscripts/figures/Tab2.eps') plt.show() if __name__ == '__main__': main()
gpl-2.0
SmartCheckCentrale/Fatigue
Code/main.py
1
8706
# -*- coding: utf-8 -*- """ Created on Tue May 2 02:23:37 2017 @author: Houssam """ import sys import matplotlib.pyplot as plt from PyQt5 import uic from matplotlib.figure import Figure from PyQt5.QtWidgets import QApplication, QMainWindow, QSizePolicy, QWidget from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from datapreparing import DataPreparing import random initial_path='Features' class App(QWidget): """Launches the main window, and is the main user interface. It has a 3 QPushButton, that are herited from uic.loadUI which calls 'GUI/mainwindow.ui'. Open the previous file in Qt Creator to see all the widgets. It also creates plots from itself, that are supposed to be placed with move method.(FigureCanvas object). This class calls Plot class in order to plot the charts. """ def __init__(self): QWidget.__init__(self) self.UI = uic.loadUi('GUI/mainwindow_.ui', self, package='GUI') self.list_diseases = ['ArtG','ArtH','AVC','CER','Genou','LCA','LEC','LER','NC','NEUP','PAR','T-'] self.diseases_selected = [] #self.completed = False self.initUI() def initUI(self): #---------------------- # Working on ACP button #---------------------- acp = Plot(self, width=5, height=4, mode='acp') # Creating the plot object for acp acp.move(1200,0) # Heriting ACP_Button from the mainwindow.ui file, see Qt Creator ACP_Button = self.UI.ACP_Button # Information when clicking on the button ACP_Button.setToolTip('Effectuer une analyse en composantes principales') # Signal/Slot, connecting the click to the function that will display the chart ACP_Button.clicked.connect(lambda : App.on_click(self,acp)) #---------------------- # Working on Kernel button #---------------------- kernel = Plot(self, width=5, height=4, mode='kernel') # Creating the plot object for kernel kernel.move(1200,0) # Heriting AKERNEL_Button from the mainwindow.ui file, see Qt Creator AKERNEL_Button = self.UI.AKERNEL_Button # Information when clicking on the button AKERNEL_Button.setToolTip('Effectuer une analyse en composantes principales à noyaux') # Signal/Slot, connecting the click to the function that will display the chart AKERNEL_Button.clicked.connect(lambda : App.on_click(self,kernel)) #---------------------- # Working on Sparse button #---------------------- sparse = Plot(self, width=5, height=4, mode='sparse') sparse.move(1200,0) # Heriting ASPARSE_Button from the mainwindow.ui file, see Qt Creator ASPARSE_Button = self.UI.ASPARSE_Button # Information when clicking on the button ASPARSE_Button.setToolTip('Effectuer une analyse en composantes principales sparse') # Signal/Slot, connecting the click to the function that will display the chart ASPARSE_Button.clicked.connect(lambda : App.on_click(self,sparse)) # See the mainwindow.ui file on QT creator # Adding possible disease to the possible choices of the user self.UI.Disease_1.addItems(['Faire un choix'] + self.list_diseases + ['None']) self.UI.Disease_2.addItems(['Faire un choix'] + self.list_diseases + ['None']) self.UI.Disease_3.addItems(['Faire un choix'] + self.list_diseases + ['None']) self.UI.Disease_4.addItems(['Faire un choix'] + self.list_diseases + ['None']) # Connecting the choices of the user with the slot function self.UI.Disease_1.activated[str].connect(self.disease_activated) self.UI.Disease_2.activated[str].connect(self.disease_activated) self.UI.Disease_3.activated[str].connect(self.disease_activated) self.UI.Disease_4.activated[str].connect(self.disease_activated) self.showMaximized() # Maximazing the size of the window self.show() # Showing the window def disease_activated(self,text): if text != 'None' and text != 'Faire un choix': self.diseases_selected += [text] if len(self.diseases_selected) == 4: self.completed = True def on_click(self,m): m.plot() #m.plot_test() #if you want to test with the random file. class Plot(FigureCanvas): """FigureCanvas object, see https://matplotlib.org/users/artists.html It has a 3 QPushButton, that are herited from uic.loadUI which calls 'GUI/mainwindow.ui'. Open the previous file in Qt Creator to see all the widgets. It also creates plots from itself, that are supposed to be placed with move method.(FigureCanvas object). This class calls Plot class in order to plot the charts. """ def __init__(self, parent=None, width=5, height=4, dpi=100, mode='pca'): """ Pris sur internet : https://pythonspot.com/en/pyqt5-matplotlib/ """ self.visu = False self.fig = plt.figure() self.matplotlibWidget = MatplotlibWidget(self.fig) fig = Figure(figsize=(width, height), dpi=dpi) self.axes = fig.add_subplot(111) FigureCanvas.__init__(self, fig) self.setParent(parent) FigureCanvas.setSizePolicy(self, QSizePolicy.Expanding, QSizePolicy.Expanding) FigureCanvas.updateGeometry(self) self.mode = mode # Je l'ai rajouté def plot_test(self): """ Taken from the internet """ data = [random.random() for i in range(25)] ax = self.figure.add_subplot(111) ax.plot(data, 'r-') ax.set_title('PyQt Matplotlib Example') self.draw() def plot(self) : """ Plotting the charts - To plot the charts, you have to select the diseases, for example AVC, PAR, Témoin,etc... - Then you have to prepare the data, that is to say, only selecting patients who have those diseases, and only sorting the data, and preparing it for the method you want to use when visualizing the dataset. - DataPreparing.prepare() returns a list c with the occurences of each diseases. You can select at most 4 diseases. - The mode is fixed when you press on one of the QPushButtons above. Therefore self.mode is known. X_plot_method applies the method. - Then, data_plot_preparation gives the "ordonnées" and "absisses" (je sais pas comment on dit en anglais et il est 2h du mat je suis KO) for every disease to be displayed. """ diseases_selected = ex.diseases_selected process = DataPreparing(initial_path,diseases_selected) tab_std,c = DataPreparing.prepare(process) X_a = DataPreparing.X_plot_method(process,tab_std,self.mode) X1,Y1,X2,Y2,X3,Y3,X4,Y4 = DataPreparing.data_plot_preparation(process,X_a,c) #ax = self.figure.add_subplot(111) # Adds the plot to the place you tell when using move (voir plus haut). self.fig.clf() self.subplot = self.fig.add_subplot(111) self.subplot.plot(X1, Y1, "ro", color='red', picker=4.0) self.subplot.plot(X2, Y2, "ro", color='blue', picker=4.0) self.subplot.plot(X3, Y3, "ro", color='green', picker=4.0) self.subplot.plot(X4, Y4, "ro", color='yellow', picker=4.0) self.subplot.legend() self.matplotlibWidget.draw() self.show() print(X1,Y1) """ ax.plot(X1,Y1,cmap=plt.cm.Paired,c='orange') # Je suis pas sûr que scatter soit la bonne fonction ax.plot(X2,Y2,cmap=plt.cm.Paired,c='red') # à utiliser, à voir ax.plot(X3,Y3,cmap=plt.cm.Paired,c='green') ax.plot(X4,Y4,cmap=plt.cm.Paired,c='blue') ax.set_title('Analysis - ' + self.mode) # sets the title self.draw # draws the plot. print('coucou2') """ class MatplotlibWidget(FigureCanvas): """ Initialisation du matplotlib pour le plot """ def __init__(self, fig): super(MatplotlibWidget, self).__init__(fig) # Launching the general application if __name__ == '__main__': app=0 app = QApplication(sys.argv) ex = App() app.exec_()
mit
Vvucinic/Wander
venv_2_7/lib/python2.7/site-packages/IPython/core/tests/test_completer.py
3
24991
# encoding: utf-8 """Tests for the IPython tab-completion machinery.""" # Copyright (c) IPython Development Team. # Distributed under the terms of the Modified BSD License. import os import sys import unittest from contextlib import contextmanager import nose.tools as nt from traitlets.config.loader import Config from IPython.core import completer from IPython.external.decorators import knownfailureif from IPython.utils.tempdir import TemporaryDirectory, TemporaryWorkingDirectory from IPython.utils.generics import complete_object from IPython.utils import py3compat from IPython.utils.py3compat import string_types, unicode_type from IPython.testing import decorators as dec #----------------------------------------------------------------------------- # Test functions #----------------------------------------------------------------------------- @contextmanager def greedy_completion(): ip = get_ipython() greedy_original = ip.Completer.greedy try: ip.Completer.greedy = True yield finally: ip.Completer.greedy = greedy_original def test_protect_filename(): pairs = [ ('abc','abc'), (' abc',r'\ abc'), ('a bc',r'a\ bc'), ('a bc',r'a\ \ bc'), (' bc',r'\ \ bc'), ] # On posix, we also protect parens and other special characters if sys.platform != 'win32': pairs.extend( [('a(bc',r'a\(bc'), ('a)bc',r'a\)bc'), ('a( )bc',r'a\(\ \)bc'), ('a[1]bc', r'a\[1\]bc'), ('a{1}bc', r'a\{1\}bc'), ('a#bc', r'a\#bc'), ('a?bc', r'a\?bc'), ('a=bc', r'a\=bc'), ('a\\bc', r'a\\bc'), ('a|bc', r'a\|bc'), ('a;bc', r'a\;bc'), ('a:bc', r'a\:bc'), ("a'bc", r"a\'bc"), ('a*bc', r'a\*bc'), ('a"bc', r'a\"bc'), ('a^bc', r'a\^bc'), ('a&bc', r'a\&bc'), ] ) # run the actual tests for s1, s2 in pairs: s1p = completer.protect_filename(s1) nt.assert_equal(s1p, s2) def check_line_split(splitter, test_specs): for part1, part2, split in test_specs: cursor_pos = len(part1) line = part1+part2 out = splitter.split_line(line, cursor_pos) nt.assert_equal(out, split) def test_line_split(): """Basic line splitter test with default specs.""" sp = completer.CompletionSplitter() # The format of the test specs is: part1, part2, expected answer. Parts 1 # and 2 are joined into the 'line' sent to the splitter, as if the cursor # was at the end of part1. So an empty part2 represents someone hitting # tab at the end of the line, the most common case. t = [('run some/scrip', '', 'some/scrip'), ('run scripts/er', 'ror.py foo', 'scripts/er'), ('echo $HOM', '', 'HOM'), ('print sys.pa', '', 'sys.pa'), ('print(sys.pa', '', 'sys.pa'), ("execfile('scripts/er", '', 'scripts/er'), ('a[x.', '', 'x.'), ('a[x.', 'y', 'x.'), ('cd "some_file/', '', 'some_file/'), ] check_line_split(sp, t) # Ensure splitting works OK with unicode by re-running the tests with # all inputs turned into unicode check_line_split(sp, [ map(unicode_type, p) for p in t] ) def test_custom_completion_error(): """Test that errors from custom attribute completers are silenced.""" ip = get_ipython() class A(object): pass ip.user_ns['a'] = A() @complete_object.when_type(A) def complete_A(a, existing_completions): raise TypeError("this should be silenced") ip.complete("a.") def test_unicode_completions(): ip = get_ipython() # Some strings that trigger different types of completion. Check them both # in str and unicode forms s = ['ru', '%ru', 'cd /', 'floa', 'float(x)/'] for t in s + list(map(unicode_type, s)): # We don't need to check exact completion values (they may change # depending on the state of the namespace, but at least no exceptions # should be thrown and the return value should be a pair of text, list # values. text, matches = ip.complete(t) nt.assert_true(isinstance(text, string_types)) nt.assert_true(isinstance(matches, list)) @dec.onlyif(sys.version_info[0] >= 3, 'This test only applies in Py>=3') def test_latex_completions(): from IPython.core.latex_symbols import latex_symbols import random ip = get_ipython() # Test some random unicode symbols keys = random.sample(latex_symbols.keys(), 10) for k in keys: text, matches = ip.complete(k) nt.assert_equal(len(matches),1) nt.assert_equal(text, k) nt.assert_equal(matches[0], latex_symbols[k]) # Test a more complex line text, matches = ip.complete(u'print(\\alpha') nt.assert_equals(text, u'\\alpha') nt.assert_equals(matches[0], latex_symbols['\\alpha']) # Test multiple matching latex symbols text, matches = ip.complete(u'\\al') nt.assert_in('\\alpha', matches) nt.assert_in('\\aleph', matches) @dec.onlyif(sys.version_info[0] >= 3, 'This test only apply on python3') def test_back_latex_completion(): ip = get_ipython() # do not return more than 1 matches fro \beta, only the latex one. name, matches = ip.complete('\\β') nt.assert_equal(len(matches), 1) nt.assert_equal(matches[0], '\\beta') @dec.onlyif(sys.version_info[0] >= 3, 'This test only apply on python3') def test_back_unicode_completion(): ip = get_ipython() name, matches = ip.complete('\\Ⅴ') nt.assert_equal(len(matches), 1) nt.assert_equal(matches[0], '\\ROMAN NUMERAL FIVE') @dec.onlyif(sys.version_info[0] >= 3, 'This test only apply on python3') def test_forward_unicode_completion(): ip = get_ipython() name, matches = ip.complete('\\ROMAN NUMERAL FIVE') nt.assert_equal(len(matches), 1) nt.assert_equal(matches[0], 'Ⅴ') @dec.onlyif(sys.version_info[0] >= 3, 'This test only apply on python3') def test_no_ascii_back_completion(): ip = get_ipython() with TemporaryWorkingDirectory(): # Avoid any filename completions # single ascii letter that don't have yet completions for letter in 'fjqyJMQVWY' : name, matches = ip.complete('\\'+letter) nt.assert_equal(matches, []) class CompletionSplitterTestCase(unittest.TestCase): def setUp(self): self.sp = completer.CompletionSplitter() def test_delim_setting(self): self.sp.delims = ' ' nt.assert_equal(self.sp.delims, ' ') nt.assert_equal(self.sp._delim_expr, '[\ ]') def test_spaces(self): """Test with only spaces as split chars.""" self.sp.delims = ' ' t = [('foo', '', 'foo'), ('run foo', '', 'foo'), ('run foo', 'bar', 'foo'), ] check_line_split(self.sp, t) def test_has_open_quotes1(): for s in ["'", "'''", "'hi' '"]: nt.assert_equal(completer.has_open_quotes(s), "'") def test_has_open_quotes2(): for s in ['"', '"""', '"hi" "']: nt.assert_equal(completer.has_open_quotes(s), '"') def test_has_open_quotes3(): for s in ["''", "''' '''", "'hi' 'ipython'"]: nt.assert_false(completer.has_open_quotes(s)) def test_has_open_quotes4(): for s in ['""', '""" """', '"hi" "ipython"']: nt.assert_false(completer.has_open_quotes(s)) @knownfailureif(sys.platform == 'win32', "abspath completions fail on Windows") def test_abspath_file_completions(): ip = get_ipython() with TemporaryDirectory() as tmpdir: prefix = os.path.join(tmpdir, 'foo') suffixes = ['1', '2'] names = [prefix+s for s in suffixes] for n in names: open(n, 'w').close() # Check simple completion c = ip.complete(prefix)[1] nt.assert_equal(c, names) # Now check with a function call cmd = 'a = f("%s' % prefix c = ip.complete(prefix, cmd)[1] comp = [prefix+s for s in suffixes] nt.assert_equal(c, comp) def test_local_file_completions(): ip = get_ipython() with TemporaryWorkingDirectory(): prefix = './foo' suffixes = ['1', '2'] names = [prefix+s for s in suffixes] for n in names: open(n, 'w').close() # Check simple completion c = ip.complete(prefix)[1] nt.assert_equal(c, names) # Now check with a function call cmd = 'a = f("%s' % prefix c = ip.complete(prefix, cmd)[1] comp = [prefix+s for s in suffixes] nt.assert_equal(c, comp) def test_greedy_completions(): ip = get_ipython() ip.ex('a=list(range(5))') _,c = ip.complete('.',line='a[0].') nt.assert_false('a[0].real' in c, "Shouldn't have completed on a[0]: %s"%c) with greedy_completion(): _,c = ip.complete('.',line='a[0].') nt.assert_true('a[0].real' in c, "Should have completed on a[0]: %s"%c) def test_omit__names(): # also happens to test IPCompleter as a configurable ip = get_ipython() ip._hidden_attr = 1 ip._x = {} c = ip.Completer ip.ex('ip=get_ipython()') cfg = Config() cfg.IPCompleter.omit__names = 0 c.update_config(cfg) s,matches = c.complete('ip.') nt.assert_in('ip.__str__', matches) nt.assert_in('ip._hidden_attr', matches) cfg = Config() cfg.IPCompleter.omit__names = 1 c.update_config(cfg) s,matches = c.complete('ip.') nt.assert_not_in('ip.__str__', matches) nt.assert_in('ip._hidden_attr', matches) cfg = Config() cfg.IPCompleter.omit__names = 2 c.update_config(cfg) s,matches = c.complete('ip.') nt.assert_not_in('ip.__str__', matches) nt.assert_not_in('ip._hidden_attr', matches) s,matches = c.complete('ip._x.') nt.assert_in('ip._x.keys', matches) del ip._hidden_attr def test_limit_to__all__False_ok(): ip = get_ipython() c = ip.Completer ip.ex('class D: x=24') ip.ex('d=D()') cfg = Config() cfg.IPCompleter.limit_to__all__ = False c.update_config(cfg) s, matches = c.complete('d.') nt.assert_in('d.x', matches) def test_limit_to__all__True_ok(): ip = get_ipython() c = ip.Completer ip.ex('class D: x=24') ip.ex('d=D()') ip.ex("d.__all__=['z']") cfg = Config() cfg.IPCompleter.limit_to__all__ = True c.update_config(cfg) s, matches = c.complete('d.') nt.assert_in('d.z', matches) nt.assert_not_in('d.x', matches) def test_get__all__entries_ok(): class A(object): __all__ = ['x', 1] words = completer.get__all__entries(A()) nt.assert_equal(words, ['x']) def test_get__all__entries_no__all__ok(): class A(object): pass words = completer.get__all__entries(A()) nt.assert_equal(words, []) def test_func_kw_completions(): ip = get_ipython() c = ip.Completer ip.ex('def myfunc(a=1,b=2): return a+b') s, matches = c.complete(None, 'myfunc(1,b') nt.assert_in('b=', matches) # Simulate completing with cursor right after b (pos==10): s, matches = c.complete(None, 'myfunc(1,b)', 10) nt.assert_in('b=', matches) s, matches = c.complete(None, 'myfunc(a="escaped\\")string",b') nt.assert_in('b=', matches) #builtin function s, matches = c.complete(None, 'min(k, k') nt.assert_in('key=', matches) def test_default_arguments_from_docstring(): doc = min.__doc__ ip = get_ipython() c = ip.Completer kwd = c._default_arguments_from_docstring( 'min(iterable[, key=func]) -> value') nt.assert_equal(kwd, ['key']) #with cython type etc kwd = c._default_arguments_from_docstring( 'Minuit.migrad(self, int ncall=10000, resume=True, int nsplit=1)\n') nt.assert_equal(kwd, ['ncall', 'resume', 'nsplit']) #white spaces kwd = c._default_arguments_from_docstring( '\n Minuit.migrad(self, int ncall=10000, resume=True, int nsplit=1)\n') nt.assert_equal(kwd, ['ncall', 'resume', 'nsplit']) def test_line_magics(): ip = get_ipython() c = ip.Completer s, matches = c.complete(None, 'lsmag') nt.assert_in('%lsmagic', matches) s, matches = c.complete(None, '%lsmag') nt.assert_in('%lsmagic', matches) def test_cell_magics(): from IPython.core.magic import register_cell_magic @register_cell_magic def _foo_cellm(line, cell): pass ip = get_ipython() c = ip.Completer s, matches = c.complete(None, '_foo_ce') nt.assert_in('%%_foo_cellm', matches) s, matches = c.complete(None, '%%_foo_ce') nt.assert_in('%%_foo_cellm', matches) def test_line_cell_magics(): from IPython.core.magic import register_line_cell_magic @register_line_cell_magic def _bar_cellm(line, cell): pass ip = get_ipython() c = ip.Completer # The policy here is trickier, see comments in completion code. The # returned values depend on whether the user passes %% or not explicitly, # and this will show a difference if the same name is both a line and cell # magic. s, matches = c.complete(None, '_bar_ce') nt.assert_in('%_bar_cellm', matches) nt.assert_in('%%_bar_cellm', matches) s, matches = c.complete(None, '%_bar_ce') nt.assert_in('%_bar_cellm', matches) nt.assert_in('%%_bar_cellm', matches) s, matches = c.complete(None, '%%_bar_ce') nt.assert_not_in('%_bar_cellm', matches) nt.assert_in('%%_bar_cellm', matches) def test_magic_completion_order(): ip = get_ipython() c = ip.Completer # Test ordering of magics and non-magics with the same name # We want the non-magic first # Before importing matplotlib, there should only be one option: text, matches = c.complete('mat') nt.assert_equal(matches, ["%matplotlib"]) ip.run_cell("matplotlib = 1") # introduce name into namespace # After the import, there should be two options, ordered like this: text, matches = c.complete('mat') nt.assert_equal(matches, ["matplotlib", "%matplotlib"]) ip.run_cell("timeit = 1") # define a user variable called 'timeit' # Order of user variable and line and cell magics with same name: text, matches = c.complete('timeit') nt.assert_equal(matches, ["timeit", "%timeit","%%timeit"]) def test_dict_key_completion_string(): """Test dictionary key completion for string keys""" ip = get_ipython() complete = ip.Completer.complete ip.user_ns['d'] = {'abc': None} # check completion at different stages _, matches = complete(line_buffer="d[") nt.assert_in("'abc'", matches) nt.assert_not_in("'abc']", matches) _, matches = complete(line_buffer="d['") nt.assert_in("abc", matches) nt.assert_not_in("abc']", matches) _, matches = complete(line_buffer="d['a") nt.assert_in("abc", matches) nt.assert_not_in("abc']", matches) # check use of different quoting _, matches = complete(line_buffer="d[\"") nt.assert_in("abc", matches) nt.assert_not_in('abc\"]', matches) _, matches = complete(line_buffer="d[\"a") nt.assert_in("abc", matches) nt.assert_not_in('abc\"]', matches) # check sensitivity to following context _, matches = complete(line_buffer="d[]", cursor_pos=2) nt.assert_in("'abc'", matches) _, matches = complete(line_buffer="d['']", cursor_pos=3) nt.assert_in("abc", matches) nt.assert_not_in("abc'", matches) nt.assert_not_in("abc']", matches) # check multiple solutions are correctly returned and that noise is not ip.user_ns['d'] = {'abc': None, 'abd': None, 'bad': None, object(): None, 5: None} _, matches = complete(line_buffer="d['a") nt.assert_in("abc", matches) nt.assert_in("abd", matches) nt.assert_not_in("bad", matches) assert not any(m.endswith((']', '"', "'")) for m in matches), matches # check escaping and whitespace ip.user_ns['d'] = {'a\nb': None, 'a\'b': None, 'a"b': None, 'a word': None} _, matches = complete(line_buffer="d['a") nt.assert_in("a\\nb", matches) nt.assert_in("a\\'b", matches) nt.assert_in("a\"b", matches) nt.assert_in("a word", matches) assert not any(m.endswith((']', '"', "'")) for m in matches), matches # - can complete on non-initial word of the string _, matches = complete(line_buffer="d['a w") nt.assert_in("word", matches) # - understands quote escaping _, matches = complete(line_buffer="d['a\\'") nt.assert_in("b", matches) # - default quoting should work like repr _, matches = complete(line_buffer="d[") nt.assert_in("\"a'b\"", matches) # - when opening quote with ", possible to match with unescaped apostrophe _, matches = complete(line_buffer="d[\"a'") nt.assert_in("b", matches) # need to not split at delims that readline won't split at if '-' not in ip.Completer.splitter.delims: ip.user_ns['d'] = {'before-after': None} _, matches = complete(line_buffer="d['before-af") nt.assert_in('before-after', matches) def test_dict_key_completion_contexts(): """Test expression contexts in which dict key completion occurs""" ip = get_ipython() complete = ip.Completer.complete d = {'abc': None} ip.user_ns['d'] = d class C: data = d ip.user_ns['C'] = C ip.user_ns['get'] = lambda: d def assert_no_completion(**kwargs): _, matches = complete(**kwargs) nt.assert_not_in('abc', matches) nt.assert_not_in('abc\'', matches) nt.assert_not_in('abc\']', matches) nt.assert_not_in('\'abc\'', matches) nt.assert_not_in('\'abc\']', matches) def assert_completion(**kwargs): _, matches = complete(**kwargs) nt.assert_in("'abc'", matches) nt.assert_not_in("'abc']", matches) # no completion after string closed, even if reopened assert_no_completion(line_buffer="d['a'") assert_no_completion(line_buffer="d[\"a\"") assert_no_completion(line_buffer="d['a' + ") assert_no_completion(line_buffer="d['a' + '") # completion in non-trivial expressions assert_completion(line_buffer="+ d[") assert_completion(line_buffer="(d[") assert_completion(line_buffer="C.data[") # greedy flag def assert_completion(**kwargs): _, matches = complete(**kwargs) nt.assert_in("get()['abc']", matches) assert_no_completion(line_buffer="get()[") with greedy_completion(): assert_completion(line_buffer="get()[") assert_completion(line_buffer="get()['") assert_completion(line_buffer="get()['a") assert_completion(line_buffer="get()['ab") assert_completion(line_buffer="get()['abc") @dec.onlyif(sys.version_info[0] >= 3, 'This test only applies in Py>=3') def test_dict_key_completion_bytes(): """Test handling of bytes in dict key completion""" ip = get_ipython() complete = ip.Completer.complete ip.user_ns['d'] = {'abc': None, b'abd': None} _, matches = complete(line_buffer="d[") nt.assert_in("'abc'", matches) nt.assert_in("b'abd'", matches) if False: # not currently implemented _, matches = complete(line_buffer="d[b") nt.assert_in("b'abd'", matches) nt.assert_not_in("b'abc'", matches) _, matches = complete(line_buffer="d[b'") nt.assert_in("abd", matches) nt.assert_not_in("abc", matches) _, matches = complete(line_buffer="d[B'") nt.assert_in("abd", matches) nt.assert_not_in("abc", matches) _, matches = complete(line_buffer="d['") nt.assert_in("abc", matches) nt.assert_not_in("abd", matches) @dec.onlyif(sys.version_info[0] < 3, 'This test only applies in Py<3') def test_dict_key_completion_unicode_py2(): """Test handling of unicode in dict key completion""" ip = get_ipython() complete = ip.Completer.complete ip.user_ns['d'] = {u'abc': None, u'a\u05d0b': None} _, matches = complete(line_buffer="d[") nt.assert_in("u'abc'", matches) nt.assert_in("u'a\\u05d0b'", matches) _, matches = complete(line_buffer="d['a") nt.assert_in("abc", matches) nt.assert_not_in("a\\u05d0b", matches) _, matches = complete(line_buffer="d[u'a") nt.assert_in("abc", matches) nt.assert_in("a\\u05d0b", matches) _, matches = complete(line_buffer="d[U'a") nt.assert_in("abc", matches) nt.assert_in("a\\u05d0b", matches) # query using escape _, matches = complete(line_buffer=u"d[u'a\\u05d0") nt.assert_in("u05d0b", matches) # tokenized after \\ # query using character _, matches = complete(line_buffer=u"d[u'a\u05d0") nt.assert_in(u"a\u05d0b", matches) with greedy_completion(): _, matches = complete(line_buffer="d[") nt.assert_in("d[u'abc']", matches) nt.assert_in("d[u'a\\u05d0b']", matches) _, matches = complete(line_buffer="d['a") nt.assert_in("d['abc']", matches) nt.assert_not_in("d[u'a\\u05d0b']", matches) _, matches = complete(line_buffer="d[u'a") nt.assert_in("d[u'abc']", matches) nt.assert_in("d[u'a\\u05d0b']", matches) _, matches = complete(line_buffer="d[U'a") nt.assert_in("d[U'abc']", matches) nt.assert_in("d[U'a\\u05d0b']", matches) # query using escape _, matches = complete(line_buffer=u"d[u'a\\u05d0") nt.assert_in("d[u'a\\u05d0b']", matches) # tokenized after \\ # query using character _, matches = complete(line_buffer=u"d[u'a\u05d0") nt.assert_in(u"d[u'a\u05d0b']", matches) @dec.onlyif(sys.version_info[0] >= 3, 'This test only applies in Py>=3') def test_dict_key_completion_unicode_py3(): """Test handling of unicode in dict key completion""" ip = get_ipython() complete = ip.Completer.complete ip.user_ns['d'] = {u'a\u05d0': None} # query using escape _, matches = complete(line_buffer="d['a\\u05d0") nt.assert_in("u05d0", matches) # tokenized after \\ # query using character _, matches = complete(line_buffer="d['a\u05d0") nt.assert_in(u"a\u05d0", matches) with greedy_completion(): # query using escape _, matches = complete(line_buffer="d['a\\u05d0") nt.assert_in("d['a\\u05d0']", matches) # tokenized after \\ # query using character _, matches = complete(line_buffer="d['a\u05d0") nt.assert_in(u"d['a\u05d0']", matches) @dec.skip_without('numpy') def test_struct_array_key_completion(): """Test dict key completion applies to numpy struct arrays""" import numpy ip = get_ipython() complete = ip.Completer.complete ip.user_ns['d'] = numpy.array([], dtype=[('hello', 'f'), ('world', 'f')]) _, matches = complete(line_buffer="d['") nt.assert_in("hello", matches) nt.assert_in("world", matches) # complete on the numpy struct itself dt = numpy.dtype([('my_head', [('my_dt', '>u4'), ('my_df', '>u4')]), ('my_data', '>f4', 5)]) x = numpy.zeros(2, dtype=dt) ip.user_ns['d'] = x[1] _, matches = complete(line_buffer="d['") nt.assert_in("my_head", matches) nt.assert_in("my_data", matches) # complete on a nested level with greedy_completion(): ip.user_ns['d'] = numpy.zeros(2, dtype=dt) _, matches = complete(line_buffer="d[1]['my_head']['") nt.assert_true(any(["my_dt" in m for m in matches])) nt.assert_true(any(["my_df" in m for m in matches])) @dec.skip_without('pandas') def test_dataframe_key_completion(): """Test dict key completion applies to pandas DataFrames""" import pandas ip = get_ipython() complete = ip.Completer.complete ip.user_ns['d'] = pandas.DataFrame({'hello': [1], 'world': [2]}) _, matches = complete(line_buffer="d['") nt.assert_in("hello", matches) nt.assert_in("world", matches) def test_dict_key_completion_invalids(): """Smoke test cases dict key completion can't handle""" ip = get_ipython() complete = ip.Completer.complete ip.user_ns['no_getitem'] = None ip.user_ns['no_keys'] = [] ip.user_ns['cant_call_keys'] = dict ip.user_ns['empty'] = {} ip.user_ns['d'] = {'abc': 5} _, matches = complete(line_buffer="no_getitem['") _, matches = complete(line_buffer="no_keys['") _, matches = complete(line_buffer="cant_call_keys['") _, matches = complete(line_buffer="empty['") _, matches = complete(line_buffer="name_error['") _, matches = complete(line_buffer="d['\\") # incomplete escape
artistic-2.0
jamesblunt/sympy
sympy/external/tests/test_importtools.py
91
1215
from sympy.external import import_module # fixes issue that arose in addressing issue 6533 def test_no_stdlib_collections(): ''' make sure we get the right collections when it is not part of a larger list ''' import collections matplotlib = import_module('matplotlib', __import__kwargs={'fromlist': ['cm', 'collections']}, min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: assert collections != matplotlib.collections def test_no_stdlib_collections2(): ''' make sure we get the right collections when it is not part of a larger list ''' import collections matplotlib = import_module('matplotlib', __import__kwargs={'fromlist': ['collections']}, min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: assert collections != matplotlib.collections def test_no_stdlib_collections3(): '''make sure we get the right collections with no catch''' import collections matplotlib = import_module('matplotlib', __import__kwargs={'fromlist': ['cm', 'collections']}, min_module_version='1.1.0') if matplotlib: assert collections != matplotlib.collections
bsd-3-clause
vortex-ape/scikit-learn
sklearn/tests/test_isotonic.py
31
15103
import warnings import numpy as np import pickle import copy from sklearn.isotonic import (check_increasing, isotonic_regression, IsotonicRegression) from sklearn.utils.testing import (assert_raises, assert_array_equal, assert_true, assert_false, assert_equal, assert_array_almost_equal, assert_warns_message, assert_no_warnings) from sklearn.utils import shuffle def test_permutation_invariance(): # check that fit is permutation invariant. # regression test of missing sorting of sample-weights ir = IsotonicRegression() x = [1, 2, 3, 4, 5, 6, 7] y = [1, 41, 51, 1, 2, 5, 24] sample_weight = [1, 2, 3, 4, 5, 6, 7] x_s, y_s, sample_weight_s = shuffle(x, y, sample_weight, random_state=0) y_transformed = ir.fit_transform(x, y, sample_weight=sample_weight) y_transformed_s = ir.fit(x_s, y_s, sample_weight=sample_weight_s).transform(x) assert_array_equal(y_transformed, y_transformed_s) def test_check_increasing_small_number_of_samples(): x = [0, 1, 2] y = [1, 1.1, 1.05] is_increasing = assert_no_warnings(check_increasing, x, y) assert_true(is_increasing) def test_check_increasing_up(): x = [0, 1, 2, 3, 4, 5] y = [0, 1.5, 2.77, 8.99, 8.99, 50] # Check that we got increasing=True and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_true(is_increasing) def test_check_increasing_up_extreme(): x = [0, 1, 2, 3, 4, 5] y = [0, 1, 2, 3, 4, 5] # Check that we got increasing=True and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_true(is_increasing) def test_check_increasing_down(): x = [0, 1, 2, 3, 4, 5] y = [0, -1.5, -2.77, -8.99, -8.99, -50] # Check that we got increasing=False and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_false(is_increasing) def test_check_increasing_down_extreme(): x = [0, 1, 2, 3, 4, 5] y = [0, -1, -2, -3, -4, -5] # Check that we got increasing=False and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_false(is_increasing) def test_check_ci_warn(): x = [0, 1, 2, 3, 4, 5] y = [0, -1, 2, -3, 4, -5] # Check that we got increasing=False and CI interval warning is_increasing = assert_warns_message(UserWarning, "interval", check_increasing, x, y) assert_false(is_increasing) def test_isotonic_regression(): y = np.array([3, 7, 5, 9, 8, 7, 10]) y_ = np.array([3, 6, 6, 8, 8, 8, 10]) assert_array_equal(y_, isotonic_regression(y)) y = np.array([10, 0, 2]) y_ = np.array([4, 4, 4]) assert_array_equal(y_, isotonic_regression(y)) x = np.arange(len(y)) ir = IsotonicRegression(y_min=0., y_max=1.) ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(ir.transform(x), ir.predict(x)) # check that it is immune to permutation perm = np.random.permutation(len(y)) ir = IsotonicRegression(y_min=0., y_max=1.) assert_array_equal(ir.fit_transform(x[perm], y[perm]), ir.fit_transform(x, y)[perm]) assert_array_equal(ir.transform(x[perm]), ir.transform(x)[perm]) # check we don't crash when all x are equal: ir = IsotonicRegression() assert_array_equal(ir.fit_transform(np.ones(len(x)), y), np.mean(y)) def test_isotonic_regression_ties_min(): # Setup examples with ties on minimum x = [1, 1, 2, 3, 4, 5] y = [1, 2, 3, 4, 5, 6] y_true = [1.5, 1.5, 3, 4, 5, 6] # Check that we get identical results for fit/transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(y_true, ir.fit_transform(x, y)) def test_isotonic_regression_ties_max(): # Setup examples with ties on maximum x = [1, 2, 3, 4, 5, 5] y = [1, 2, 3, 4, 5, 6] y_true = [1, 2, 3, 4, 5.5, 5.5] # Check that we get identical results for fit/transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(y_true, ir.fit_transform(x, y)) def test_isotonic_regression_ties_secondary_(): """ Test isotonic regression fit, transform and fit_transform against the "secondary" ties method and "pituitary" data from R "isotone" package, as detailed in: J. d. Leeuw, K. Hornik, P. Mair, Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods Set values based on pituitary example and the following R command detailed in the paper above: > library("isotone") > data("pituitary") > res1 <- gpava(pituitary$age, pituitary$size, ties="secondary") > res1$x `isotone` version: 1.0-2, 2014-09-07 R version: R version 3.1.1 (2014-07-10) """ x = [8, 8, 8, 10, 10, 10, 12, 12, 12, 14, 14] y = [21, 23.5, 23, 24, 21, 25, 21.5, 22, 19, 23.5, 25] y_true = [22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 24.25, 24.25] # Check fit, transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_almost_equal(ir.transform(x), y_true, 4) assert_array_almost_equal(ir.fit_transform(x, y), y_true, 4) def test_isotonic_regression_with_ties_in_differently_sized_groups(): """ Non-regression test to handle issue 9432: https://github.com/scikit-learn/scikit-learn/issues/9432 Compare against output in R: > library("isotone") > x <- c(0, 1, 1, 2, 3, 4) > y <- c(0, 0, 1, 0, 0, 1) > res1 <- gpava(x, y, ties="secondary") > res1$x `isotone` version: 1.1-0, 2015-07-24 R version: R version 3.3.2 (2016-10-31) """ x = np.array([0, 1, 1, 2, 3, 4]) y = np.array([0, 0, 1, 0, 0, 1]) y_true = np.array([0., 0.25, 0.25, 0.25, 0.25, 1.]) ir = IsotonicRegression() ir.fit(x, y) assert_array_almost_equal(ir.transform(x), y_true) assert_array_almost_equal(ir.fit_transform(x, y), y_true) def test_isotonic_regression_reversed(): y = np.array([10, 9, 10, 7, 6, 6.1, 5]) y_ = IsotonicRegression(increasing=False).fit_transform( np.arange(len(y)), y) assert_array_equal(np.ones(y_[:-1].shape), ((y_[:-1] - y_[1:]) >= 0)) def test_isotonic_regression_auto_decreasing(): # Set y and x for decreasing y = np.array([10, 9, 10, 7, 6, 6.1, 5]) x = np.arange(len(y)) # Create model and fit_transform ir = IsotonicRegression(increasing='auto') with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") y_ = ir.fit_transform(x, y) # work-around for pearson divide warnings in scipy <= 0.17.0 assert_true(all(["invalid value encountered in " in str(warn.message) for warn in w])) # Check that relationship decreases is_increasing = y_[0] < y_[-1] assert_false(is_increasing) def test_isotonic_regression_auto_increasing(): # Set y and x for decreasing y = np.array([5, 6.1, 6, 7, 10, 9, 10]) x = np.arange(len(y)) # Create model and fit_transform ir = IsotonicRegression(increasing='auto') with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") y_ = ir.fit_transform(x, y) # work-around for pearson divide warnings in scipy <= 0.17.0 assert_true(all(["invalid value encountered in " in str(warn.message) for warn in w])) # Check that relationship increases is_increasing = y_[0] < y_[-1] assert_true(is_increasing) def test_assert_raises_exceptions(): ir = IsotonicRegression() rng = np.random.RandomState(42) assert_raises(ValueError, ir.fit, [0, 1, 2], [5, 7, 3], [0.1, 0.6]) assert_raises(ValueError, ir.fit, [0, 1, 2], [5, 7]) assert_raises(ValueError, ir.fit, rng.randn(3, 10), [0, 1, 2]) assert_raises(ValueError, ir.transform, rng.randn(3, 10)) def test_isotonic_sample_weight_parameter_default_value(): # check if default value of sample_weight parameter is one ir = IsotonicRegression() # random test data rng = np.random.RandomState(42) n = 100 x = np.arange(n) y = rng.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n)) # check if value is correctly used weights = np.ones(n) y_set_value = ir.fit_transform(x, y, sample_weight=weights) y_default_value = ir.fit_transform(x, y) assert_array_equal(y_set_value, y_default_value) def test_isotonic_min_max_boundaries(): # check if min value is used correctly ir = IsotonicRegression(y_min=2, y_max=4) n = 6 x = np.arange(n) y = np.arange(n) y_test = [2, 2, 2, 3, 4, 4] y_result = np.round(ir.fit_transform(x, y)) assert_array_equal(y_result, y_test) def test_isotonic_sample_weight(): ir = IsotonicRegression() x = [1, 2, 3, 4, 5, 6, 7] y = [1, 41, 51, 1, 2, 5, 24] sample_weight = [1, 2, 3, 4, 5, 6, 7] expected_y = [1, 13.95, 13.95, 13.95, 13.95, 13.95, 24] received_y = ir.fit_transform(x, y, sample_weight=sample_weight) assert_array_equal(expected_y, received_y) def test_isotonic_regression_oob_raise(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="raise") ir.fit(x, y) # Check that an exception is thrown assert_raises(ValueError, ir.predict, [min(x) - 10, max(x) + 10]) def test_isotonic_regression_oob_clip(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="clip") ir.fit(x, y) # Predict from training and test x and check that min/max match. y1 = ir.predict([min(x) - 10, max(x) + 10]) y2 = ir.predict(x) assert_equal(max(y1), max(y2)) assert_equal(min(y1), min(y2)) def test_isotonic_regression_oob_nan(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="nan") ir.fit(x, y) # Predict from training and test x and check that we have two NaNs. y1 = ir.predict([min(x) - 10, max(x) + 10]) assert_equal(sum(np.isnan(y1)), 2) def test_isotonic_regression_oob_bad(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="xyz") # Make sure that we throw an error for bad out_of_bounds value assert_raises(ValueError, ir.fit, x, y) def test_isotonic_regression_oob_bad_after(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="raise") # Make sure that we throw an error for bad out_of_bounds value in transform ir.fit(x, y) ir.out_of_bounds = "xyz" assert_raises(ValueError, ir.transform, x) def test_isotonic_regression_pickle(): y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="clip") ir.fit(x, y) ir_ser = pickle.dumps(ir, pickle.HIGHEST_PROTOCOL) ir2 = pickle.loads(ir_ser) np.testing.assert_array_equal(ir.predict(x), ir2.predict(x)) def test_isotonic_duplicate_min_entry(): x = [0, 0, 1] y = [0, 0, 1] ir = IsotonicRegression(increasing=True, out_of_bounds="clip") ir.fit(x, y) all_predictions_finite = np.all(np.isfinite(ir.predict(x))) assert_true(all_predictions_finite) def test_isotonic_ymin_ymax(): # Test from @NelleV's issue: # https://github.com/scikit-learn/scikit-learn/issues/6921 x = np.array([1.263, 1.318, -0.572, 0.307, -0.707, -0.176, -1.599, 1.059, 1.396, 1.906, 0.210, 0.028, -0.081, 0.444, 0.018, -0.377, -0.896, -0.377, -1.327, 0.180]) y = isotonic_regression(x, y_min=0., y_max=0.1) assert(np.all(y >= 0)) assert(np.all(y <= 0.1)) # Also test decreasing case since the logic there is different y = isotonic_regression(x, y_min=0., y_max=0.1, increasing=False) assert(np.all(y >= 0)) assert(np.all(y <= 0.1)) # Finally, test with only one bound y = isotonic_regression(x, y_min=0., increasing=False) assert(np.all(y >= 0)) def test_isotonic_zero_weight_loop(): # Test from @ogrisel's issue: # https://github.com/scikit-learn/scikit-learn/issues/4297 # Get deterministic RNG with seed rng = np.random.RandomState(42) # Create regression and samples regression = IsotonicRegression() n_samples = 50 x = np.linspace(-3, 3, n_samples) y = x + rng.uniform(size=n_samples) # Get some random weights and zero out w = rng.uniform(size=n_samples) w[5:8] = 0 regression.fit(x, y, sample_weight=w) # This will hang in failure case. regression.fit(x, y, sample_weight=w) def test_fast_predict(): # test that the faster prediction change doesn't # affect out-of-sample predictions: # https://github.com/scikit-learn/scikit-learn/pull/6206 rng = np.random.RandomState(123) n_samples = 10 ** 3 # X values over the -10,10 range X_train = 20.0 * rng.rand(n_samples) - 10 y_train = np.less( rng.rand(n_samples), 1.0 / (1.0 + np.exp(-X_train)) ).astype('int64') weights = rng.rand(n_samples) # we also want to test that everything still works when some weights are 0 weights[rng.rand(n_samples) < 0.1] = 0 slow_model = IsotonicRegression(y_min=0, y_max=1, out_of_bounds="clip") fast_model = IsotonicRegression(y_min=0, y_max=1, out_of_bounds="clip") # Build interpolation function with ALL input data, not just the # non-redundant subset. The following 2 lines are taken from the # .fit() method, without removing unnecessary points X_train_fit, y_train_fit = slow_model._build_y(X_train, y_train, sample_weight=weights, trim_duplicates=False) slow_model._build_f(X_train_fit, y_train_fit) # fit with just the necessary data fast_model.fit(X_train, y_train, sample_weight=weights) X_test = 20.0 * rng.rand(n_samples) - 10 y_pred_slow = slow_model.predict(X_test) y_pred_fast = fast_model.predict(X_test) assert_array_equal(y_pred_slow, y_pred_fast) def test_isotonic_copy_before_fit(): # https://github.com/scikit-learn/scikit-learn/issues/6628 ir = IsotonicRegression() copy.copy(ir)
bsd-3-clause
BeiLuoShiMen/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_qt.py
69
16846
from __future__ import division import math import os import sys import matplotlib from matplotlib import verbose from matplotlib.cbook import is_string_like, onetrue from matplotlib.backend_bases import RendererBase, GraphicsContextBase, \ FigureManagerBase, FigureCanvasBase, NavigationToolbar2, cursors from matplotlib._pylab_helpers import Gcf from matplotlib.figure import Figure from matplotlib.mathtext import MathTextParser from matplotlib.widgets import SubplotTool try: import qt except ImportError: raise ImportError("Qt backend requires pyqt to be installed.") backend_version = "0.9.1" def fn_name(): return sys._getframe(1).f_code.co_name DEBUG = False cursord = { cursors.MOVE : qt.Qt.PointingHandCursor, cursors.HAND : qt.Qt.WaitCursor, cursors.POINTER : qt.Qt.ArrowCursor, cursors.SELECT_REGION : qt.Qt.CrossCursor, } def draw_if_interactive(): """ Is called after every pylab drawing command """ if matplotlib.is_interactive(): figManager = Gcf.get_active() if figManager != None: figManager.canvas.draw() def _create_qApp(): """ Only one qApp can exist at a time, so check before creating one """ if qt.QApplication.startingUp(): if DEBUG: print "Starting up QApplication" global qApp qApp = qt.QApplication( [" "] ) qt.QObject.connect( qApp, qt.SIGNAL( "lastWindowClosed()" ), qApp, qt.SLOT( "quit()" ) ) #remember that matplotlib created the qApp - will be used by show() _create_qApp.qAppCreatedHere = True _create_qApp.qAppCreatedHere = False def show(): """ Show all the figures and enter the qt main loop This should be the last line of your script """ for manager in Gcf.get_all_fig_managers(): manager.window.show() if DEBUG: print 'Inside show' figManager = Gcf.get_active() if figManager != None: figManager.canvas.draw() if _create_qApp.qAppCreatedHere: qt.qApp.exec_loop() def new_figure_manager( num, *args, **kwargs ): """ Create a new figure manager instance """ FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass( *args, **kwargs ) canvas = FigureCanvasQT( thisFig ) manager = FigureManagerQT( canvas, num ) return manager class FigureCanvasQT( qt.QWidget, FigureCanvasBase ): keyvald = { qt.Qt.Key_Control : 'control', qt.Qt.Key_Shift : 'shift', qt.Qt.Key_Alt : 'alt', } # left 1, middle 2, right 3 buttond = {1:1, 2:3, 4:2} def __init__( self, figure ): if DEBUG: print 'FigureCanvasQt: ', figure _create_qApp() qt.QWidget.__init__( self, None, "QWidget figure" ) FigureCanvasBase.__init__( self, figure ) self.figure = figure self.setMouseTracking( True ) w,h = self.get_width_height() self.resize( w, h ) def enterEvent(self, event): FigureCanvasBase.enter_notify_event(self, event) def leaveEvent(self, event): FigureCanvasBase.leave_notify_event(self, event) def mousePressEvent( self, event ): x = event.pos().x() # flipy so y=0 is bottom of canvas y = self.figure.bbox.height - event.pos().y() button = self.buttond[event.button()] FigureCanvasBase.button_press_event( self, x, y, button ) if DEBUG: print 'button pressed:', event.button() def mouseMoveEvent( self, event ): x = event.x() # flipy so y=0 is bottom of canvas y = self.figure.bbox.height - event.y() FigureCanvasBase.motion_notify_event( self, x, y ) if DEBUG: print 'mouse move' def mouseReleaseEvent( self, event ): x = event.x() # flipy so y=0 is bottom of canvas y = self.figure.bbox.height - event.y() button = self.buttond[event.button()] FigureCanvasBase.button_release_event( self, x, y, button ) if DEBUG: print 'button released' def keyPressEvent( self, event ): key = self._get_key( event ) FigureCanvasBase.key_press_event( self, key ) if DEBUG: print 'key press', key def keyReleaseEvent( self, event ): key = self._get_key(event) FigureCanvasBase.key_release_event( self, key ) if DEBUG: print 'key release', key def resizeEvent( self, event ): if DEBUG: print 'resize (%d x %d)' % (event.size().width(), event.size().height()) qt.QWidget.resizeEvent( self, event ) w = event.size().width() h = event.size().height() if DEBUG: print "FigureCanvasQt.resizeEvent(", w, ",", h, ")" dpival = self.figure.dpi winch = w/dpival hinch = h/dpival self.figure.set_size_inches( winch, hinch ) self.draw() def resize( self, w, h ): # Pass through to Qt to resize the widget. qt.QWidget.resize( self, w, h ) # Resize the figure by converting pixels to inches. pixelPerInch = self.figure.dpi wInch = w / pixelPerInch hInch = h / pixelPerInch self.figure.set_size_inches( wInch, hInch ) # Redraw everything. self.draw() def sizeHint( self ): w, h = self.get_width_height() return qt.QSize( w, h ) def minumumSizeHint( self ): return qt.QSize( 10, 10 ) def _get_key( self, event ): if event.key() < 256: key = event.text().latin1() elif event.key() in self.keyvald.has_key: key = self.keyvald[ event.key() ] else: key = None return key def flush_events(self): qt.qApp.processEvents() def start_event_loop(self,timeout): FigureCanvasBase.start_event_loop_default(self,timeout) start_event_loop.__doc__=FigureCanvasBase.start_event_loop_default.__doc__ def stop_event_loop(self): FigureCanvasBase.stop_event_loop_default(self) stop_event_loop.__doc__=FigureCanvasBase.stop_event_loop_default.__doc__ class FigureManagerQT( FigureManagerBase ): """ Public attributes canvas : The FigureCanvas instance num : The Figure number toolbar : The qt.QToolBar window : The qt.QMainWindow """ def __init__( self, canvas, num ): if DEBUG: print 'FigureManagerQT.%s' % fn_name() FigureManagerBase.__init__( self, canvas, num ) self.canvas = canvas self.window = qt.QMainWindow( None, None, qt.Qt.WDestructiveClose ) self.window.closeEvent = self._widgetCloseEvent centralWidget = qt.QWidget( self.window ) self.canvas.reparent( centralWidget, qt.QPoint( 0, 0 ) ) # Give the keyboard focus to the figure instead of the manager self.canvas.setFocusPolicy( qt.QWidget.ClickFocus ) self.canvas.setFocus() self.window.setCaption( "Figure %d" % num ) self.window._destroying = False self.toolbar = self._get_toolbar(self.canvas, centralWidget) # Use a vertical layout for the plot and the toolbar. Set the # stretch to all be in the plot so the toolbar doesn't resize. self.layout = qt.QVBoxLayout( centralWidget ) self.layout.addWidget( self.canvas, 1 ) if self.toolbar: self.layout.addWidget( self.toolbar, 0 ) self.window.setCentralWidget( centralWidget ) # Reset the window height so the canvas will be the right # size. This ALMOST works right. The first issue is that the # height w/ a toolbar seems to be off by just a little bit (so # we add 4 pixels). The second is that the total width/height # is slightly smaller that we actually want. It seems like # the border of the window is being included in the size but # AFAIK there is no way to get that size. w = self.canvas.width() h = self.canvas.height() if self.toolbar: h += self.toolbar.height() + 4 self.window.resize( w, h ) if matplotlib.is_interactive(): self.window.show() # attach a show method to the figure for pylab ease of use self.canvas.figure.show = lambda *args: self.window.show() def notify_axes_change( fig ): # This will be called whenever the current axes is changed if self.toolbar != None: self.toolbar.update() self.canvas.figure.add_axobserver( notify_axes_change ) def _widgetclosed( self ): if self.window._destroying: return self.window._destroying = True Gcf.destroy(self.num) def _widgetCloseEvent( self, event ): self._widgetclosed() qt.QWidget.closeEvent( self.window, event ) def _get_toolbar(self, canvas, parent): # must be inited after the window, drawingArea and figure # attrs are set if matplotlib.rcParams['toolbar'] == 'classic': print "Classic toolbar is not yet supported" elif matplotlib.rcParams['toolbar'] == 'toolbar2': toolbar = NavigationToolbar2QT(canvas, parent) else: toolbar = None return toolbar def resize(self, width, height): 'set the canvas size in pixels' self.window.resize(width, height) def destroy( self, *args ): if self.window._destroying: return self.window._destroying = True if self.toolbar: self.toolbar.destroy() if DEBUG: print "destroy figure manager" self.window.close(True) def set_window_title(self, title): self.window.setCaption(title) class NavigationToolbar2QT( NavigationToolbar2, qt.QWidget ): # list of toolitems to add to the toolbar, format is: # text, tooltip_text, image_file, callback(str) toolitems = ( ('Home', 'Reset original view', 'home.ppm', 'home'), ('Back', 'Back to previous view','back.ppm', 'back'), ('Forward', 'Forward to next view','forward.ppm', 'forward'), (None, None, None, None), ('Pan', 'Pan axes with left mouse, zoom with right', 'move.ppm', 'pan'), ('Zoom', 'Zoom to rectangle','zoom_to_rect.ppm', 'zoom'), (None, None, None, None), ('Subplots', 'Configure subplots','subplots.png', 'configure_subplots'), ('Save', 'Save the figure','filesave.ppm', 'save_figure'), ) def __init__( self, canvas, parent ): self.canvas = canvas self.buttons = {} qt.QWidget.__init__( self, parent ) # Layout toolbar buttons horizontally. self.layout = qt.QHBoxLayout( self ) self.layout.setMargin( 2 ) NavigationToolbar2.__init__( self, canvas ) def _init_toolbar( self ): basedir = os.path.join(matplotlib.rcParams[ 'datapath' ],'images') for text, tooltip_text, image_file, callback in self.toolitems: if text == None: self.layout.addSpacing( 8 ) continue fname = os.path.join( basedir, image_file ) image = qt.QPixmap() image.load( fname ) button = qt.QPushButton( qt.QIconSet( image ), "", self ) qt.QToolTip.add( button, tooltip_text ) self.buttons[ text ] = button # The automatic layout doesn't look that good - it's too close # to the images so add a margin around it. margin = 4 button.setFixedSize( image.width()+margin, image.height()+margin ) qt.QObject.connect( button, qt.SIGNAL( 'clicked()' ), getattr( self, callback ) ) self.layout.addWidget( button ) self.buttons[ 'Pan' ].setToggleButton( True ) self.buttons[ 'Zoom' ].setToggleButton( True ) # Add the x,y location widget at the right side of the toolbar # The stretch factor is 1 which means any resizing of the toolbar # will resize this label instead of the buttons. self.locLabel = qt.QLabel( "", self ) self.locLabel.setAlignment( qt.Qt.AlignRight | qt.Qt.AlignVCenter ) self.locLabel.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Ignored, qt.QSizePolicy.Ignored)) self.layout.addWidget( self.locLabel, 1 ) # reference holder for subplots_adjust window self.adj_window = None def destroy( self ): for text, tooltip_text, image_file, callback in self.toolitems: if text is not None: qt.QObject.disconnect( self.buttons[ text ], qt.SIGNAL( 'clicked()' ), getattr( self, callback ) ) def pan( self, *args ): self.buttons[ 'Zoom' ].setOn( False ) NavigationToolbar2.pan( self, *args ) def zoom( self, *args ): self.buttons[ 'Pan' ].setOn( False ) NavigationToolbar2.zoom( self, *args ) def dynamic_update( self ): self.canvas.draw() def set_message( self, s ): self.locLabel.setText( s ) def set_cursor( self, cursor ): if DEBUG: print 'Set cursor' , cursor qt.QApplication.restoreOverrideCursor() qt.QApplication.setOverrideCursor( qt.QCursor( cursord[cursor] ) ) def draw_rubberband( self, event, x0, y0, x1, y1 ): height = self.canvas.figure.bbox.height y1 = height - y1 y0 = height - y0 w = abs(x1 - x0) h = abs(y1 - y0) rect = [ int(val)for val in min(x0,x1), min(y0, y1), w, h ] self.canvas.drawRectangle( rect ) def configure_subplots(self): self.adj_window = qt.QMainWindow(None, None, qt.Qt.WDestructiveClose) win = self.adj_window win.setCaption("Subplot Configuration Tool") toolfig = Figure(figsize=(6,3)) toolfig.subplots_adjust(top=0.9) w = int (toolfig.bbox.width) h = int (toolfig.bbox.height) canvas = self._get_canvas(toolfig) tool = SubplotTool(self.canvas.figure, toolfig) centralWidget = qt.QWidget(win) canvas.reparent(centralWidget, qt.QPoint(0, 0)) win.setCentralWidget(centralWidget) layout = qt.QVBoxLayout(centralWidget) layout.addWidget(canvas, 1) win.resize(w, h) canvas.setFocus() win.show() def _get_canvas(self, fig): return FigureCanvasQT(fig) def save_figure( self ): filetypes = self.canvas.get_supported_filetypes_grouped() sorted_filetypes = filetypes.items() sorted_filetypes.sort() default_filetype = self.canvas.get_default_filetype() start = "image." + default_filetype filters = [] selectedFilter = None for name, exts in sorted_filetypes: exts_list = " ".join(['*.%s' % ext for ext in exts]) filter = '%s (%s)' % (name, exts_list) if default_filetype in exts: selectedFilter = filter filters.append(filter) filters = ';;'.join(filters) fname = qt.QFileDialog.getSaveFileName( start, filters, self, "Save image", "Choose a filename to save to", selectedFilter) if fname: try: self.canvas.print_figure( unicode(fname) ) except Exception, e: qt.QMessageBox.critical( self, "Error saving file", str(e), qt.QMessageBox.Ok, qt.QMessageBox.NoButton) def set_history_buttons( self ): canBackward = ( self._views._pos > 0 ) canForward = ( self._views._pos < len( self._views._elements ) - 1 ) self.buttons[ 'Back' ].setEnabled( canBackward ) self.buttons[ 'Forward' ].setEnabled( canForward ) # set icon used when windows are minimized try: # TODO: This is badly broken qt.window_set_default_icon_from_file ( os.path.join( matplotlib.rcParams['datapath'], 'images', 'matplotlib.svg' ) ) except: verbose.report( 'Could not load matplotlib icon: %s' % sys.exc_info()[1] ) def error_msg_qt( msg, parent=None ): if not is_string_like( msg ): msg = ','.join( map( str,msg ) ) qt.QMessageBox.warning( None, "Matplotlib", msg, qt.QMessageBox.Ok ) def exception_handler( type, value, tb ): """Handle uncaught exceptions It does not catch SystemExit """ msg = '' # get the filename attribute if available (for IOError) if hasattr(value, 'filename') and value.filename != None: msg = value.filename + ': ' if hasattr(value, 'strerror') and value.strerror != None: msg += value.strerror else: msg += str(value) if len( msg ) : error_msg_qt( msg ) FigureManager = FigureManagerQT
agpl-3.0
jreback/pandas
pandas/tests/io/pytables/common.py
4
2054
from contextlib import contextmanager import os import tempfile import pytest from pandas.io.pytables import HDFStore tables = pytest.importorskip("tables") # set these parameters so we don't have file sharing tables.parameters.MAX_NUMEXPR_THREADS = 1 tables.parameters.MAX_BLOSC_THREADS = 1 tables.parameters.MAX_THREADS = 1 def safe_remove(path): if path is not None: try: os.remove(path) except OSError: pass def safe_close(store): try: if store is not None: store.close() except OSError: pass def create_tempfile(path): """ create an unopened named temporary file """ return os.path.join(tempfile.gettempdir(), path) # contextmanager to ensure the file cleanup @contextmanager def ensure_clean_store(path, mode="a", complevel=None, complib=None, fletcher32=False): try: # put in the temporary path if we don't have one already if not len(os.path.dirname(path)): path = create_tempfile(path) store = HDFStore( path, mode=mode, complevel=complevel, complib=complib, fletcher32=False ) yield store finally: safe_close(store) if mode == "w" or mode == "a": safe_remove(path) @contextmanager def ensure_clean_path(path): """ return essentially a named temporary file that is not opened and deleted on exiting; if path is a list, then create and return list of filenames """ try: if isinstance(path, list): filenames = [create_tempfile(p) for p in path] yield filenames else: filenames = [create_tempfile(path)] yield filenames[0] finally: for f in filenames: safe_remove(f) def _maybe_remove(store, key): """ For tests using tables, try removing the table to be sure there is no content from previous tests using the same table name. """ try: store.remove(key) except (ValueError, KeyError): pass
bsd-3-clause
dankolbman/NumericalAnalysis
Homeworks/HW2/Problem5ii.py
1
3007
import math import scipy.interpolate as intrp import numpy as np import matplotlib.pyplot as plt from matplotlib import rc rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']}) ## for Palatino and other serif fonts use: #rc('font',**{'family':'serif','serif':['Palatino']}) rc('text', usetex=True) font = {'family' : 'normal', 'size' : 24} rc('font', **font) ### The function def f(t): return 1/(1+t**2) # Spline def spline(xpts, ypts): n = len(xpts) mat = np.zeros(( n, n)) rhs = np.zeros(( n,1 )) for i in range(1,n-1): rhs[i] = 6 * ( (ypts[i+1]-ypts[i]) / (xpts[i+1]-xpts[i]) \ -(ypts[i]-ypts[i-1]) / (xpts[i]-xpts[i-1]) ) for j in range(0,n-1): # Set triagonal elements if(j==i-1): mat[i][j] += xpts[i] - xpts[i-1] elif(j==i): mat[i][j] += 2*(xpts[i+1]-xpts[i-1]) elif(j==i+1): mat[i][j] += xpts[i+1]-xpts[i] # BCs mat[0][0] = 1 mat[-1][-1] = 1 rhs[0] = 0 rhs[-1] = 0 # Solve it x_vec = np.linalg.solve(mat, rhs) return x_vec ####### # The function x = [ i/100 for i in range(-500,500) ] fx = [ f(i) for i in x ] plt.plot(x,fx, 'k--',label='f(t)', linewidth=5) ### 5 points xpts = np.linspace(-5, 5, 5) ypts = [ f(t) for t in xpts ] sol = spline(xpts, ypts) n = len(xpts) x = [] fx = [] t = 1000 for i in range(0,n-1): dx = xpts[i+1]-xpts[i] for j in range(t): bb = 1*j/(t) aa = 1 - bb x.append(xpts[i]+bb*dx) cc = dx**2*aa*(aa**2-1)/6 dd = dx**2*bb*(bb**2-1)/6 fx.append(aa*ypts[i]+bb*ypts[i+1]+cc*sol[i]+dd*sol[i+1]) plt.plot(x,fx, 'r', label='5 Points') diffs = [ f( x[i] ) - fx[i] for i in range(len(x)) ] rmse=np.linalg.norm( diffs )/np.sqrt(len(fx)) print('Error for 5 Points:', rmse) ### 10 points xpts = np.linspace(-5, 5, 10) ypts = [ f(t) for t in xpts ] sol = spline(xpts, ypts) n = len(xpts) x = [] fx = [] t = 1000 for i in range(0,n-1): dx = xpts[i+1]-xpts[i] for j in range(t): bb = 1*j/(t) aa = 1 - bb x.append(xpts[i]+bb*dx) cc = dx**2*aa*(aa**2-1)/6 dd = dx**2*bb*(bb**2-1)/6 fx.append(aa*ypts[i]+bb*ypts[i+1]+cc*sol[i]+dd*sol[i+1]) plt.plot(x,fx, 'b', label='10 Points') diffs = [ f( x[i] ) - fx[i] for i in range(len(x)) ] rmse=np.linalg.norm( diffs )/np.sqrt(len(fx)) print('Error for 10 Points:', rmse) ### 15 points xpts = np.linspace(-5, 5, 15) ypts = [ f(t) for t in xpts ] sol = spline(xpts, ypts) n = len(xpts) x = [] fx = [] t = 1000 for i in range(0,n-1): dx = xpts[i+1]-xpts[i] for j in range(t): bb = 1*j/(t) aa = 1 - bb x.append(xpts[i]+bb*dx) cc = dx**2*aa*(aa**2-1)/6 dd = dx**2*bb*(bb**2-1)/6 fx.append(aa*ypts[i]+bb*ypts[i+1]+cc*sol[i]+dd*sol[i+1]) plt.plot(x,fx, 'g', label='15 Points',linewidth=3) diffs = [ f( x[i] ) - fx[i] for i in range(len(x)) ] rmse=np.linalg.norm( diffs )/np.sqrt(len(fx)) print('Error for 15 Points:', rmse) plt.legend(fontsize=16) plt.ylim( [-0.2, 1.1] ) plt.title('Natural Cubic Splines for $f(t)$') plt.savefig('Problem5ii.png') plt.show()
mit
samueljackson92/NDImage
ndimage/gui/mpl_canvas.py
1
2950
from __future__ import unicode_literals from PyQt4 import QtGui import numpy as np import matplotlib.pyplot as plt from matplotlib.backends.backend_qt4agg import ( FigureCanvasQTAgg as FigureCanvas, NavigationToolbar2QT as NavigationToolbar) from matplotlib.figure import Figure class PandasMplWidget(QtGui.QWidget): def __init__(self, parent=None): QtGui.QWidget.__init__(self, parent) self.pmc = PandasMplCanvas(width=2, height=2, dpi=100) self.toolbar = NavigationToolbar(self.pmc.figure.canvas, self) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Fixed) sizePolicy.setHeightForWidth(True) self.toolbar.setSizePolicy(sizePolicy) vbox = QtGui.QVBoxLayout() vbox.addWidget(self.pmc) vbox.addWidget(self.toolbar) self.setLayout(vbox) def get_figure_canvas(self): return self.pmc def plot(self, data): self.pmc.plot_data_frame(data) class PandasMplCanvas(FigureCanvas): def __init__(self, parent=None, width=5, height=4, dpi=100): self.figure = Figure(figsize=(width, height), dpi=dpi) self.axes = self.figure.add_subplot(111) # We want the axes cleared every time plot() is called self.axes.hold(False) FigureCanvas.__init__(self, self.figure) self.setParent(parent) FigureCanvas.setSizePolicy(self, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding) FigureCanvas.updateGeometry(self) def plot_data_frame(self, dataFrame): x = dataFrame[[0]] y = dataFrame[[1]] self.points = self.axes.scatter(x, y, picker=True) self.reset_face_color() self.draw() def set_class_label(self, labels): categories = np.unique(labels) colors = np.linspace(0, 1, len(categories)) colordict = dict(zip(categories, colors)) colour_weights = labels.apply(lambda x: colordict[x]) color_map = plt.get_cmap("Spectral") class_colors = color_map(colour_weights) # copy existing alpha values class_colors[:, -1] = self.face_color[:, -1] self.face_color = class_colors self.points.set_facecolors(self.face_color) self.draw() def reset_face_color(self): npts = len(self.points.get_offsets()) self.face_color = self.points.get_facecolors() self.face_color = np.tile(self.face_color, npts).reshape(npts, -1) def reset_color(self): self.face_color = self.points.get_facecolors() self.face_color[:, -1] = 1 self.points.set_facecolors(self.face_color) self.draw() def highlight_points(self, idx, alpha=0.2): self.face_color[:, -1] = alpha self.face_color[idx, -1] = 1 self.points.set_facecolors(self.face_color)
mit
natashabatalha/PandExo
pandexo/engine/create_input.py
1
18989
import numpy as np import pickle import pandas as pd from sqlalchemy import * import astropy.units as u import astropy.constants as c import os from astropy.modeling import blackbody as bb import warnings with warnings.catch_warnings(): warnings.filterwarnings("ignore") import pysynphot as psyn def outTrans(input) : """Compute out of transit spectra Computes the out of transit spectra by normalizing flux to specified magnitude and convert to specified Pandeia units of milliJy and microns. Parameters ---------- input : dict stellar scene which includes parameters to extract phoenix database or a filename which points to a stellar spectrum Return ------ dict contains wave and flux_out_trans """ ref_wave = float(input['ref_wave']) mag = float(input['mag']) ################# USER #################################### if input['type'] == 'user': if isinstance(input['starpath'], dict): star = input['starpath'] else: #if isinstance(input['starpath'], str): star = np.genfromtxt(input['starpath'], dtype=(float, float), names='w, f') #get flux flux = star['f'] #star.field(input['logg']) #get wavelength and reference wavelength for mag normalization wave = star['w'] #star.field('WAVELENGTH') #sort if not in ascending order sort = np.array([wave,flux]).T sort= sort[sort[:,0].argsort()] wave = sort[:,0] flux = sort[:,1] if input['w_unit'] == 'um': PANDEIA_WAVEUNITS = 'um' elif input['w_unit'] == 'nm': PANDEIA_WAVEUNITS = 'nm' elif input['w_unit'] == 'cm' : PANDEIA_WAVEUNITS = 'cm' elif input['w_unit'] == 'Angs' : PANDEIA_WAVEUNITS = 'angstrom' elif input['w_unit'] == 'Hz' : PANDEIA_WAVEUNITS = 'Hz' else: raise Exception('Units are not correct. Pick um, nm, cm, hz, or Angs') #convert to photons/s/nm/m^2 for flux normalization based on #http://www.gemini.edu/sciops/instruments/integration-time-calculators/itc-help/source-definition if input['f_unit'] == 'Jy': PANDEIA_FLUXUNITS = 'jy' elif input['f_unit'] == 'FLAM' : PANDEIA_FLUXUNITS = 'FLAM' elif input['f_unit'] == 'erg/cm2/s/Hz': flux = flux*1e23 PANDEIA_FLUXUNITS = 'jy' else: raise Exception('Units are not correct. Pick FLAM or Jy or erg/cm2/s/Hz') sp = psyn.ArraySpectrum(wave, flux, waveunits=PANDEIA_WAVEUNITS, fluxunits=PANDEIA_FLUXUNITS) #Convert evrything to nanometer for converstion based on gemini.edu sp.convert("nm") sp.convert('jy') ############ PHOENIX ################################################ elif input['type'] =='phoenix': #make sure metal is not out of bounds if input['metal'] > 0.5: input['metal'] = 0.5 sp = psyn.Icat("phoenix", input['temp'], input['metal'], input['logg']) sp.convert("nm") sp.convert("jy") wave = sp.wave flux = sp.flux input['w_unit'] ='nm' input['f_unit'] = 'jy' else: raise Exception('Wrong input type for stellar spectra') ############ NORMALIZATION ################################################ refdata = os.environ.get("pandeia_refdata") all_bps = {"H": 'bessell_h_004_syn.fits', "J":'bessell_j_003_syn.fits' , "K": 'bessell_k_003_syn.fits'} if (ref_wave <= 1.3) & (ref_wave >= 1.2): filt = 'J' elif (ref_wave <= 1.7) & (ref_wave >= 1.6): filt = 'H' elif (ref_wave <= 2.3) & (ref_wave >= 2.1): filt = 'K' else: raise Exception('Only J H and K zeropoints are included') bp_path = os.path.join(refdata, "normalization", "bandpass", all_bps[filt]) bp = psyn.FileBandpass(bp_path) sp.convert('angstroms') bp.convert('angstroms') rn_sp = sp.renorm(mag, 'vegamag', bp) rn_sp.convert("microns") rn_sp.convert("mjy") flux_out_trans = rn_sp.flux wave = rn_sp.wave return {'flux_out_trans': flux_out_trans, 'wave': wave,'phoenix':sp} def bothTrans(out_trans, planet,star=None) : """Calculates in transit flux Takes output from `outTrans`, which is the normalized stellar flux, and creates either a transit transmission spectrum, phase curve or emission spectrum. Magnitude Parameters ---------- out_trans: dict includes dictionary from `outTrans` output. planet: dict dictionary with direction to planet spectra, wavelength and flux units star: dict (Optional) dictionary within exo_input with stellar information. Only used when scaling Fortney Grid spectra to get (rp/r*)^2 Return ------ dict dictionary with out of transit flux, in transit flux, original model and corresponding wavelengths """ if planet['type'] =='user': if isinstance(planet['exopath'], dict): load_file = planet['exopath'] else: #if isinstance(planet['exopath'], str): load_file = np.genfromtxt(planet['exopath'], dtype=(float, float), names='w, f') #get wavelength wave_planet = load_file['w'] #get planet flux flux_planet = load_file['f'] #sort if not in ascending order sort = np.array([wave_planet,flux_planet]).T sort= sort[sort[:,0].argsort()] wave_planet = sort[:,0] flux_planet = sort[:,1] ############## IF USER SELECTS CONSTANT VALUE ################## elif planet['type'] == 'constant': rplan = (planet['radius']*u.Unit(planet['r_unit'])).to(u.km) rstar = (star['radius']*u.Unit(star['r_unit'])).to(u.km) #constant transit depth if planet['f_unit'] == 'rp^2/r*^2': wave_planet = np.linspace(0.5,15,1000) planet['depth'] = float(rplan**2 / rstar**2) flux_planet = np.linspace(0.5,15,1000)*0 + planet['depth'] planet['w_unit'] = 'um' #constant fp/f* (using out_trans from user) elif planet['f_unit'] == 'fp/f*': planet['w_unit'] = 'um' wave_planet = out_trans['wave'][(out_trans['wave']>0.5) & (out_trans['wave']<15)] flux_star = (out_trans['phoenix'].flux*(u.Jy)).to(u.mJy)[(out_trans['wave']>0.5) & (out_trans['wave']<15)] #MAKING SURE TO ADD IN SUPID PI FOR PER STERADIAN!!!! flux_planet = (bb.blackbody_nu(wave_planet*u.micron, planet['temp']*u.K)*np.pi*u.sr).to(u.mJy) # ( bb planet / pheonix sed ) * (rp/r*)^2 flux_planet = np.array((flux_planet/flux_star) * (rplan/rstar)**2.0) ############## IF USER SELECTS TO PULL FROM GRID ################## elif planet['type'] =='grid': try: db = create_engine('sqlite:///'+os.environ.get('FORTGRID_DIR')) header= pd.read_sql_table('header',db) except: raise Exception('Fortney Grid File Path is incorrect, or not initialized') #radius of star try: rstar = (star['radius']*u.Unit(star['r_unit'])).to(u.km) except: raise Exception("Radius of Star not supplied for scaling. Check exo_input['star']['radius']") #radius of planet try: rplan = (planet['radius']*u.Unit(planet['r_unit'])).to(u.km) except: planet['radius'] = (1.25*c.R_jup).to(u.km) rplan = planet['radius'] print('Default Planet Radius of 1.25 Rj given') #clouds if planet['cloud'].find('flat') != -1: planet['flat'] = int(planet['cloud'][4:]) planet['ray'] = 0 elif planet['cloud'].find('ray') != -1: planet['ray'] = int(planet['cloud'][3:]) planet['flat'] = 0 elif int(planet['cloud']) == 0: planet['flat'] = 0 planet['ray'] = 0 else: planet['flat'] = 0 planet['ray'] = 0 print('No cloud parameter not specified, default no clouds added') #chemistry if planet['chem'] == 'noTiO': planet['noTiO'] = True planet['eqchem'] = True if planet['chem'] == 'eqchem': planet['noTiO'] = False planet['eqchem'] = True #grid does not allow clouds for cases with TiO planet['flat'] = 0 planet['ray'] = 0 #we are only using gravity of 25 and scaling by mass from there fort_grav = 25.0*u.m/u.s/u.s df = header.loc[(header.gravity==fort_grav) & (header.temp==planet['temp']) & (header.noTiO==planet['noTiO']) & (header.ray==planet['ray']) & (header.flat==planet['flat'])] wave_planet=np.array(pd.read_sql_table(df['name'].values[0],db)['wavelength'])[::-1] r_lambda=np.array(pd.read_sql_table(df['name'].values[0],db)['radius'])*u.km z_lambda = r_lambda- (1.25*u.R_jup).to(u.km) #all fortney models have fixed 1.25 radii #scale with planetary mass try: mass = (planet['mass']*u.Unit(planet['m_unit'])).to(u.kg) gravity = c.G*(mass)/(rplan.to(u.m))**2.0 #convert radius to m for gravity units #scale lambbda (this technically ignores the fact that scaleheight is altitude dependent) #therefore, it will not be valide for very very low gravities z_lambda = z_lambda*fort_grav/gravity except: #keep original z lambda gravity=25.0 z_lambda = z_lambda*fort_grav/fort_grav print('Default Planet Gravity of 25 m/s2 given') #create new wavelength dependent R based on scaled ravity r_lambda = z_lambda + rplan #finally compute (rp/r*)^2 flux_planet = np.array(r_lambda**2/rstar**2)[::-1] planet['w_unit'] = 'um' planet['f_unit'] = 'rp^2/r*^2' else: raise Exception("Incorrect Planet Type. Options are 'user','constant','grid'") #Convert wave to micron if planet['w_unit'] == 'um': wave_planet = wave_planet elif planet['w_unit'] == 'nm': wave_planet = wave_planet*1e-3 elif planet['w_unit'] == 'cm': wave_planet = wave_planet*1e4 elif planet['w_unit'] == 'Angs' : wave_planet = wave_planet*1e-4 elif planet['w_unit'] == 'Hz' : wave_planet = 3e17/wave_planet elif planet['w_unit'] == 'sec' : wave_planet = wave_planet else: raise Exception('Units are not correct. Pick um, nm, cm, Angs or sec.') if planet['w_unit'] == 'sec' : #star flux to feed into pandeia time = wave_planet flux_star = out_trans['flux_out_trans'] wave_star = out_trans['wave'] if planet['f_unit'] == 'fp/f*' : flux_planet = flux_planet else: print("Seconds with rp^2/r*^2 units not an option. Switch to Fp/F*") return return {'time':time, 'wave':wave_star,'flux_out_trans':flux_star, 'planet_phase':flux_planet, 'model_wave':time, 'model_spec':flux_planet, 'frac':(1.+flux_planet)} else: #star flux to calc transit depth flux_star = out_trans['flux_out_trans'] wave_star = out_trans['wave'] #give them same wave min and wave max wavemin = max([min(wave_planet), min(wave_star),0.5]) wavemax = min([max(wave_planet),max(wave_star),15]) flux_planet = flux_planet[(wave_planet>wavemin) & (wave_planet<wavemax)] wave_planet = wave_planet[(wave_planet>wavemin) & (wave_planet<wavemax)] flux_out_trans = np.interp(wave_planet, wave_star, flux_star) #convert to 1-depth if planet['f_unit'] == 'rp^2/r*^2' : depth_fraction = 1.-flux_planet flux_in_trans = depth_fraction*flux_out_trans elif planet['f_unit'] == 'fp/f*': depth_fraction = (1.0 + flux_planet) flux_in_trans = flux_out_trans*(1.0 + flux_planet) else: raise Exception('Units are not correct. Pick rp^2/r*^2 or fp/f*') results= {'wave':wave_planet, 'flux_in_trans': flux_in_trans, 'flux_out_trans':flux_out_trans, 'model_wave':wave_planet, 'model_spec': flux_planet, 'frac':depth_fraction} return results def hst_spec(planet,star) : """Calculates in transit flux Takes output from `outTrans`, which is the normalized stellar flux, and creates either a transit transmission spectrum, phase curve or emission spectrum. Magnitude Parameters ---------- planet: dict dictionary with direction to planet spectra, wavelength and flux units star: dict dictionary within exo_input with stellar information. Only used when scaling Fortney Grid spectra to get (rp/r*)^2 Return ------ dict dictionary with out of transit flux, in transit flux, original model and corresponding wavelengths """ if planet['type'] =='user': load_file = np.genfromtxt(planet['exopath'], dtype=(float, float), names='w, f') #get wavelength wave_planet = load_file['w'] #get planet flux flux_planet = load_file['f'] #sort if not in ascending order sort = np.array([wave_planet,flux_planet]).T sort= sort[sort[:,0].argsort()] wave_planet = sort[:,0] flux_planet = sort[:,1] ############## IF USER SELECTS CONSTANT VALUE ################## elif planet['type'] == 'constant': rplan = (planet['radius']*u.Unit(planet['r_unit'])).to(u.km) rstar = (star['radius']*u.Unit(star['r_unit'])).to(u.km) #constant transit depth if planet['f_unit'] == 'rp^2/r*^2': wave_planet = np.linspace(0.1,3,500) planet['depth'] = float(rplan**2 / rstar**2) flux_planet = np.linspace(0.1,3,500)*0 + planet['depth'] planet['w_unit'] = 'um' #constant fp/f* (using out_trans from user) elif planet['f_unit'] == 'fp/f*': planet['w_unit'] = 'um' wave_planet = np.linspace(0.1,3,500) flux_star = (bb.blackbody_nu(wave_planet*u.micron, star['temp']*u.K)*np.pi*u.sr).to(u.mJy) #MAKING SURE TO ADD IN SUPID PI FOR PER STERADIAN!!!! flux_planet = (bb.blackbody_nu(wave_planet*u.micron, planet['temp']*u.K)*np.pi*u.sr).to(u.mJy) # ( bb planet / pheonix sed ) * (rp/r*)^2 flux_planet = np.array((flux_planet/flux_star) * (rplan/rstar)**2.0) ############## IF USER SELECTS TO PULL FROM GRID ################## elif planet['type'] =='grid': try: db = create_engine('sqlite:///'+os.environ.get('FORTGRID_DIR')) header= pd.read_sql_table('header',db) except: raise Exception('Fortney Grid File Path is incorrect, or not initialized') #radius of star try: rstar = (star['radius']*u.Unit(star['r_unit'])).to(u.km) except: raise Exception("Radius of Star not supplied for scaling. Check exo_input['star']['radius']") #radius of planet try: rplan = (planet['radius']*u.Unit(planet['r_unit'])).to(u.km) except: planet['radius'] = (1.25*c.R_jup).to(u.km) rplan = planet['radius'] print('Default Planet Radius of 1.25 Rj given') #clouds if planet['cloud'].find('flat') != -1: planet['flat'] = int(planet['cloud'][4:]) planet['ray'] = 0 elif planet['cloud'].find('ray') != -1: planet['ray'] = int(planet['cloud'][3:]) planet['flat'] = 0 elif int(planet['cloud']) == 0: planet['flat'] = 0 planet['ray'] = 0 else: planet['flat'] = 0 planet['ray'] = 0 print('No cloud parameter not specified, default no clouds added') #chemistry if planet['chem'] == 'noTiO': planet['noTiO'] = True planet['eqchem'] = True if planet['chem'] == 'eqchem': planet['noTiO'] = False planet['eqchem'] = True #grid does not allow clouds for cases with TiO planet['flat'] = 0 planet['ray'] = 0 #we are only using gravity of 25 and scaling by mass from there fort_grav = 25.0*u.m/u.s/u.s df = header.loc[(header.gravity==fort_grav) & (header.temp==planet['temp']) & (header.noTiO==planet['noTiO']) & (header.ray==planet['ray']) & (header.flat==planet['flat'])] wave_planet=np.array(pd.read_sql_table(df['name'].values[0],db)['wavelength'])[::-1] r_lambda=np.array(pd.read_sql_table(df['name'].values[0],db)['radius'])*u.km z_lambda = r_lambda- (1.25*u.R_jup).to(u.km) #all fortney models have fixed 1.25 radii #scale with planetary mass try: mass = (planet['mass']*u.Unit(planet['m_unit'])).to(u.kg) gravity = c.G*(mass)/(rplan.to(u.m))**2.0 #convert radius to m for gravity units #scale lambbda (this technically ignores the fact that scaleheight is altitude dependent) #therefore, it will not be valide for very very low gravities z_lambda = z_lambda*fort_grav/gravity except: #keep original z lambda gravity=25.0 z_lambda = z_lambda*fort_grav/fort_grav print('Default Planet Gravity of 25 m/s2 given') #create new wavelength dependent R based on scaled ravity r_lambda = z_lambda + rplan #finally compute (rp/r*)^2 flux_planet = np.array(r_lambda**2/rstar**2)[::-1] planet['w_unit'] = 'um' planet['f_unit'] = 'rp^2/r*^2' else: raise Exception("Incorrect Planet Type. Options are 'user','constant','grid'") #Convert wave to micron if planet['w_unit'] == 'um': wave_planet = wave_planet elif planet['w_unit'] == 'nm': wave_planet = wave_planet*1e-3 elif planet['w_unit'] == 'cm': wave_planet = wave_planet*1e4 elif planet['w_unit'] == 'Angs' : wave_planet = wave_planet*1e-4 elif planet['w_unit'] == 'Hz' : wave_planet = 3e17/wave_planet else: raise Exception('Units are not correct. Pick um, nm, cm, Angs or sec.') return wave_planet, flux_planet
gpl-3.0
X-martin/robot_quant
frame/filter_method.py
1
1740
import pandas as pd from datetime import datetime from datetime import timedelta def cross(factor_list, stock_list, date, args): dt = timedelta(days=1) df1 = factor_list[0].get_val(stock_list, date) df2 = factor_list[1].get_val(stock_list, date) df1_0 = factor_list[0].get_val(stock_list, date - dt) df2_0 = factor_list[1].get_val(stock_list, date - dt) id = (df1_0['FACTOR_VALUE'] < df2_0['FACTOR_VALUE']) & (df1['FACTOR_VALUE'] > df2['FACTOR_VALUE']) df1 = df1[id] return df1 def greater(factor_list, stock_list, date, args): nf = len(factor_list) if nf == 1: df = factor_list[0].get_val(stock_list, date) df = df[df['FACTOR_VALUE'] > args[0]] else: df1 = factor_list[0].get_val(stock_list, date) df2 = factor_list[1].get_val(stock_list, date) df = df1[df1['FACTOR_VALUE'] > df2['FACTOR_VALUE']] return df def sort(factor_list, stock_list, date, args): args = args[0] df = factor_list[0].get_val(stock_list, date) if args[0] == 'asc': df = df.sort_values(['FACTOR_VALUE'], ascending=True) nn = float(args[1]) if nn < 1: nn = int(len(df) * nn) nn = int(nn) df = df.iloc[:nn, :] else: df = df.sort_values(['FACTOR_VALUE'], ascending=False) nn = float(args[1]) if nn < 1: nn = int(len(df) * nn) nn = int(nn) df = df.iloc[:nn, :] return df __d_filter_method = {'CROSS': cross, 'GREATER': greater, 'SORT': sort} def apply_filter_method(method_name, factor_list, stock_list, date, args): df = __d_filter_method[method_name](factor_list, stock_list, date, args) return df
mit
valexandersaulys/airbnb_kaggle_contest
venv/lib/python3.4/site-packages/pandas/tseries/plotting.py
9
9293
""" Period formatters and locators adapted from scikits.timeseries by Pierre GF Gerard-Marchant & Matt Knox """ #!!! TODO: Use the fact that axis can have units to simplify the process import numpy as np from matplotlib import pylab from pandas.tseries.period import Period from pandas.tseries.offsets import DateOffset import pandas.tseries.frequencies as frequencies from pandas.tseries.index import DatetimeIndex import pandas.core.common as com import pandas.compat as compat from pandas.tseries.converter import (TimeSeries_DateLocator, TimeSeries_DateFormatter) #---------------------------------------------------------------------- # Plotting functions and monkey patches def tsplot(series, plotf, ax=None, **kwargs): """ Plots a Series on the given Matplotlib axes or the current axes Parameters ---------- axes : Axes series : Series Notes _____ Supports same kwargs as Axes.plot """ # Used inferred freq is possible, need a test case for inferred if ax is None: import matplotlib.pyplot as plt ax = plt.gca() freq, series = _maybe_resample(series, ax, kwargs) # Set ax with freq info _decorate_axes(ax, freq, kwargs) ax._plot_data.append((series, plotf, kwargs)) lines = plotf(ax, series.index._mpl_repr(), series.values, **kwargs) # set date formatter, locators and rescale limits format_dateaxis(ax, ax.freq) return lines def _maybe_resample(series, ax, kwargs): # resample against axes freq if necessary freq, ax_freq = _get_freq(ax, series) if freq is None: # pragma: no cover raise ValueError('Cannot use dynamic axis without frequency info') # Convert DatetimeIndex to PeriodIndex if isinstance(series.index, DatetimeIndex): series = series.to_period(freq=freq) if ax_freq is not None and freq != ax_freq: if frequencies.is_superperiod(freq, ax_freq): # upsample input series = series.copy() series.index = series.index.asfreq(ax_freq, how='s') freq = ax_freq elif _is_sup(freq, ax_freq): # one is weekly how = kwargs.pop('how', 'last') series = series.resample('D', how=how).dropna() series = series.resample(ax_freq, how=how).dropna() freq = ax_freq elif frequencies.is_subperiod(freq, ax_freq) or _is_sub(freq, ax_freq): _upsample_others(ax, freq, kwargs) ax_freq = freq else: # pragma: no cover raise ValueError('Incompatible frequency conversion') return freq, series def _is_sub(f1, f2): return ((f1.startswith('W') and frequencies.is_subperiod('D', f2)) or (f2.startswith('W') and frequencies.is_subperiod(f1, 'D'))) def _is_sup(f1, f2): return ((f1.startswith('W') and frequencies.is_superperiod('D', f2)) or (f2.startswith('W') and frequencies.is_superperiod(f1, 'D'))) def _upsample_others(ax, freq, kwargs): legend = ax.get_legend() lines, labels = _replot_ax(ax, freq, kwargs) _replot_ax(ax, freq, kwargs) other_ax = None if hasattr(ax, 'left_ax'): other_ax = ax.left_ax if hasattr(ax, 'right_ax'): other_ax = ax.right_ax if other_ax is not None: rlines, rlabels = _replot_ax(other_ax, freq, kwargs) lines.extend(rlines) labels.extend(rlabels) if (legend is not None and kwargs.get('legend', True) and len(lines) > 0): title = legend.get_title().get_text() if title == 'None': title = None ax.legend(lines, labels, loc='best', title=title) def _replot_ax(ax, freq, kwargs): data = getattr(ax, '_plot_data', None) # clear current axes and data ax._plot_data = [] ax.clear() _decorate_axes(ax, freq, kwargs) lines = [] labels = [] if data is not None: for series, plotf, kwds in data: series = series.copy() idx = series.index.asfreq(freq, how='S') series.index = idx ax._plot_data.append((series, plotf, kwds)) # for tsplot if isinstance(plotf, compat.string_types): from pandas.tools.plotting import _plot_klass plotf = _plot_klass[plotf]._plot lines.append(plotf(ax, series.index._mpl_repr(), series.values, **kwds)[0]) labels.append(com.pprint_thing(series.name)) return lines, labels def _decorate_axes(ax, freq, kwargs): """Initialize axes for time-series plotting""" if not hasattr(ax, '_plot_data'): ax._plot_data = [] ax.freq = freq xaxis = ax.get_xaxis() xaxis.freq = freq if not hasattr(ax, 'legendlabels'): ax.legendlabels = [kwargs.get('label', None)] else: ax.legendlabels.append(kwargs.get('label', None)) ax.view_interval = None ax.date_axis_info = None def _get_freq(ax, series): # get frequency from data freq = getattr(series.index, 'freq', None) if freq is None: freq = getattr(series.index, 'inferred_freq', None) ax_freq = getattr(ax, 'freq', None) if ax_freq is None: if hasattr(ax, 'left_ax'): ax_freq = getattr(ax.left_ax, 'freq', None) elif hasattr(ax, 'right_ax'): ax_freq = getattr(ax.right_ax, 'freq', None) # use axes freq if no data freq if freq is None: freq = ax_freq # get the period frequency if isinstance(freq, DateOffset): freq = freq.rule_code else: freq = frequencies.get_base_alias(freq) freq = frequencies.get_period_alias(freq) return freq, ax_freq def _use_dynamic_x(ax, data): freq = _get_index_freq(data) ax_freq = getattr(ax, 'freq', None) if freq is None: # convert irregular if axes has freq info freq = ax_freq else: # do not use tsplot if irregular was plotted first if (ax_freq is None) and (len(ax.get_lines()) > 0): return False if freq is None: return False if isinstance(freq, DateOffset): freq = freq.rule_code else: freq = frequencies.get_base_alias(freq) freq = frequencies.get_period_alias(freq) if freq is None: return False # hack this for 0.10.1, creating more technical debt...sigh if isinstance(data.index, DatetimeIndex): base = frequencies.get_freq(freq) x = data.index if (base <= frequencies.FreqGroup.FR_DAY): return x[:1].is_normalized return Period(x[0], freq).to_timestamp(tz=x.tz) == x[0] return True def _get_index_freq(data): freq = getattr(data.index, 'freq', None) if freq is None: freq = getattr(data.index, 'inferred_freq', None) if freq == 'B': weekdays = np.unique(data.index.dayofweek) if (5 in weekdays) or (6 in weekdays): freq = None return freq def _maybe_convert_index(ax, data): # tsplot converts automatically, but don't want to convert index # over and over for DataFrames if isinstance(data.index, DatetimeIndex): freq = getattr(data.index, 'freq', None) if freq is None: freq = getattr(data.index, 'inferred_freq', None) if isinstance(freq, DateOffset): freq = freq.rule_code if freq is None: freq = getattr(ax, 'freq', None) if freq is None: raise ValueError('Could not get frequency alias for plotting') freq = frequencies.get_base_alias(freq) freq = frequencies.get_period_alias(freq) data = data.to_period(freq=freq) return data # Patch methods for subplot. Only format_dateaxis is currently used. # Do we need the rest for convenience? def format_dateaxis(subplot, freq): """ Pretty-formats the date axis (x-axis). Major and minor ticks are automatically set for the frequency of the current underlying series. As the dynamic mode is activated by default, changing the limits of the x axis will intelligently change the positions of the ticks. """ majlocator = TimeSeries_DateLocator(freq, dynamic_mode=True, minor_locator=False, plot_obj=subplot) minlocator = TimeSeries_DateLocator(freq, dynamic_mode=True, minor_locator=True, plot_obj=subplot) subplot.xaxis.set_major_locator(majlocator) subplot.xaxis.set_minor_locator(minlocator) majformatter = TimeSeries_DateFormatter(freq, dynamic_mode=True, minor_locator=False, plot_obj=subplot) minformatter = TimeSeries_DateFormatter(freq, dynamic_mode=True, minor_locator=True, plot_obj=subplot) subplot.xaxis.set_major_formatter(majformatter) subplot.xaxis.set_minor_formatter(minformatter) # x and y coord info subplot.format_coord = lambda t, y: ("t = {0} " "y = {1:8f}".format(Period(ordinal=int(t), freq=freq), y)) pylab.draw_if_interactive()
gpl-2.0
Rossonero/bmlswp
ch06/02_tuning.py
22
5484
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License # # This script trains tries to tweak hyperparameters to improve P/R AUC # import time start_time = time.time() import numpy as np from sklearn.metrics import precision_recall_curve, roc_curve, auc from sklearn.cross_validation import ShuffleSplit from utils import plot_pr from utils import load_sanders_data from utils import tweak_labels from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.metrics import f1_score from sklearn.naive_bayes import MultinomialNB phase = "02" def create_ngram_model(params=None): tfidf_ngrams = TfidfVectorizer(ngram_range=(1, 3), analyzer="word", binary=False) clf = MultinomialNB() pipeline = Pipeline([('vect', tfidf_ngrams), ('clf', clf)]) if params: pipeline.set_params(**params) return pipeline def grid_search_model(clf_factory, X, Y): cv = ShuffleSplit( n=len(X), n_iter=10, test_size=0.3, random_state=0) param_grid = dict(vect__ngram_range=[(1, 1), (1, 2), (1, 3)], vect__min_df=[1, 2], vect__stop_words=[None, "english"], vect__smooth_idf=[False, True], vect__use_idf=[False, True], vect__sublinear_tf=[False, True], vect__binary=[False, True], clf__alpha=[0, 0.01, 0.05, 0.1, 0.5, 1], ) grid_search = GridSearchCV(clf_factory(), param_grid=param_grid, cv=cv, score_func=f1_score, verbose=10) grid_search.fit(X, Y) clf = grid_search.best_estimator_ print(clf) return clf def train_model(clf, X, Y, name="NB ngram", plot=False): # create it again for plotting cv = ShuffleSplit( n=len(X), n_iter=10, test_size=0.3, indices=True, random_state=0) train_errors = [] test_errors = [] scores = [] pr_scores = [] precisions, recalls, thresholds = [], [], [] for train, test in cv: X_train, y_train = X[train], Y[train] X_test, y_test = X[test], Y[test] clf.fit(X_train, y_train) train_score = clf.score(X_train, y_train) test_score = clf.score(X_test, y_test) train_errors.append(1 - train_score) test_errors.append(1 - test_score) scores.append(test_score) proba = clf.predict_proba(X_test) fpr, tpr, roc_thresholds = roc_curve(y_test, proba[:, 1]) precision, recall, pr_thresholds = precision_recall_curve( y_test, proba[:, 1]) pr_scores.append(auc(recall, precision)) precisions.append(precision) recalls.append(recall) thresholds.append(pr_thresholds) if plot: scores_to_sort = pr_scores median = np.argsort(scores_to_sort)[len(scores_to_sort) / 2] plot_pr(pr_scores[median], name, phase, precisions[median], recalls[median], label=name) summary = (np.mean(scores), np.std(scores), np.mean(pr_scores), np.std(pr_scores)) print("%.3f\t%.3f\t%.3f\t%.3f\t" % summary) return np.mean(train_errors), np.mean(test_errors) def print_incorrect(clf, X, Y): Y_hat = clf.predict(X) wrong_idx = Y_hat != Y X_wrong = X[wrong_idx] Y_wrong = Y[wrong_idx] Y_hat_wrong = Y_hat[wrong_idx] for idx in range(len(X_wrong)): print("clf.predict('%s')=%i instead of %i" % (X_wrong[idx], Y_hat_wrong[idx], Y_wrong[idx])) def get_best_model(): best_params = dict(vect__ngram_range=(1, 2), vect__min_df=1, vect__stop_words=None, vect__smooth_idf=False, vect__use_idf=False, vect__sublinear_tf=True, vect__binary=False, clf__alpha=0.01, ) best_clf = create_ngram_model(best_params) return best_clf if __name__ == "__main__": X_orig, Y_orig = load_sanders_data() classes = np.unique(Y_orig) for c in classes: print("#%s: %i" % (c, sum(Y_orig == c))) print("== Pos vs. neg ==") pos_neg = np.logical_or(Y_orig == "positive", Y_orig == "negative") X = X_orig[pos_neg] Y = Y_orig[pos_neg] Y = tweak_labels(Y, ["positive"]) train_model(get_best_model(), X, Y, name="pos vs neg", plot=True) print("== Pos/neg vs. irrelevant/neutral ==") X = X_orig Y = tweak_labels(Y_orig, ["positive", "negative"]) # best_clf = grid_search_model(create_ngram_model, X, Y, name="sent vs # rest", plot=True) train_model(get_best_model(), X, Y, name="pos vs neg", plot=True) print("== Pos vs. rest ==") X = X_orig Y = tweak_labels(Y_orig, ["positive"]) train_model(get_best_model(), X, Y, name="pos vs rest", plot=True) print("== Neg vs. rest ==") X = X_orig Y = tweak_labels(Y_orig, ["negative"]) train_model(get_best_model(), X, Y, name="neg vs rest", plot=True) print("time spent:", time.time() - start_time)
mit
xubenben/scikit-learn
examples/ensemble/plot_forest_importances_faces.py
403
1519
""" ================================================= Pixel importances with a parallel forest of trees ================================================= This example shows the use of forests of trees to evaluate the importance of the pixels in an image classification task (faces). The hotter the pixel, the more important. The code below also illustrates how the construction and the computation of the predictions can be parallelized within multiple jobs. """ print(__doc__) from time import time import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.ensemble import ExtraTreesClassifier # Number of cores to use to perform parallel fitting of the forest model n_jobs = 1 # Load the faces dataset data = fetch_olivetti_faces() X = data.images.reshape((len(data.images), -1)) y = data.target mask = y < 5 # Limit to 5 classes X = X[mask] y = y[mask] # Build a forest and compute the pixel importances print("Fitting ExtraTreesClassifier on faces data with %d cores..." % n_jobs) t0 = time() forest = ExtraTreesClassifier(n_estimators=1000, max_features=128, n_jobs=n_jobs, random_state=0) forest.fit(X, y) print("done in %0.3fs" % (time() - t0)) importances = forest.feature_importances_ importances = importances.reshape(data.images[0].shape) # Plot pixel importances plt.matshow(importances, cmap=plt.cm.hot) plt.title("Pixel importances with forests of trees") plt.show()
bsd-3-clause
samuel1208/scikit-learn
benchmarks/bench_tree.py
297
3617
""" To run this, you'll need to have installed. * scikit-learn Does two benchmarks First, we fix a training set, increase the number of samples to classify and plot number of classified samples as a function of time. In the second benchmark, we increase the number of dimensions of the training set, classify a sample and plot the time taken as a function of the number of dimensions. """ import numpy as np import pylab as pl import gc from datetime import datetime # to store the results scikit_classifier_results = [] scikit_regressor_results = [] mu_second = 0.0 + 10 ** 6 # number of microseconds in a second def bench_scikit_tree_classifier(X, Y): """Benchmark with scikit-learn decision tree classifier""" from sklearn.tree import DecisionTreeClassifier gc.collect() # start time tstart = datetime.now() clf = DecisionTreeClassifier() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_classifier_results.append( delta.seconds + delta.microseconds / mu_second) def bench_scikit_tree_regressor(X, Y): """Benchmark with scikit-learn decision tree regressor""" from sklearn.tree import DecisionTreeRegressor gc.collect() # start time tstart = datetime.now() clf = DecisionTreeRegressor() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_regressor_results.append( delta.seconds + delta.microseconds / mu_second) if __name__ == '__main__': print('============================================') print('Warning: this is going to take a looong time') print('============================================') n = 10 step = 10000 n_samples = 10000 dim = 10 n_classes = 10 for i in range(n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') n_samples += step X = np.random.randn(n_samples, dim) Y = np.random.randint(0, n_classes, (n_samples,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(n_samples) bench_scikit_tree_regressor(X, Y) xx = range(0, n * step, step) pl.figure('scikit-learn tree benchmark results') pl.subplot(211) pl.title('Learning with varying number of samples') pl.plot(xx, scikit_classifier_results, 'g-', label='classification') pl.plot(xx, scikit_regressor_results, 'r-', label='regression') pl.legend(loc='upper left') pl.xlabel('number of samples') pl.ylabel('Time (s)') scikit_classifier_results = [] scikit_regressor_results = [] n = 10 step = 500 start_dim = 500 n_classes = 10 dim = start_dim for i in range(0, n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') dim += step X = np.random.randn(100, dim) Y = np.random.randint(0, n_classes, (100,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(100) bench_scikit_tree_regressor(X, Y) xx = np.arange(start_dim, start_dim + n * step, step) pl.subplot(212) pl.title('Learning in high dimensional spaces') pl.plot(xx, scikit_classifier_results, 'g-', label='classification') pl.plot(xx, scikit_regressor_results, 'r-', label='regression') pl.legend(loc='upper left') pl.xlabel('number of dimensions') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
blackecho/Deep-Belief-Network
yadlt/core/unsupervised_model.py
2
4251
"""Unsupervised Model scheleton.""" from __future__ import division from __future__ import print_function import tensorflow as tf from yadlt.core.model import Model from yadlt.utils import tf_utils class UnsupervisedModel(Model): """Unsupervised Model scheleton class. The interface of the class is sklearn-like. Methods ------- * fit(): model training procedure. * transform(): model inference procedure. * reconstruct(): model reconstruction procedure (autoencoders). * score(): model scoring procedure (mean error). """ def __init__(self, name): """Constructor.""" Model.__init__(self, name) def fit(self, train_X, train_Y=None, val_X=None, val_Y=None, graph=None): """Fit the model to the data. Parameters ---------- train_X : array_like, shape (n_samples, n_features) Training data. train_Y : array_like, shape (n_samples, n_features) Training reference data. val_X : array_like, shape (N, n_features) optional, (default = None). Validation data. val_Y : array_like, shape (N, n_features) optional, (default = None). Validation reference data. graph : tf.Graph, optional (default = None) Tensorflow Graph object. Returns ------- """ g = graph if graph is not None else self.tf_graph with g.as_default(): # Build model self.build_model(train_X.shape[1]) with tf.Session() as self.tf_session: # Initialize tf stuff summary_objs = tf_utils.init_tf_ops(self.tf_session) self.tf_merged_summaries = summary_objs[0] self.tf_summary_writer = summary_objs[1] self.tf_saver = summary_objs[2] # Train model self._train_model(train_X, train_Y, val_X, val_Y) # Save model self.tf_saver.save(self.tf_session, self.model_path) def transform(self, data, graph=None): """Transform data according to the model. Parameters ---------- data : array_like, shape (n_samples, n_features) Data to transform. graph : tf.Graph, optional (default = None) Tensorflow Graph object Returns ------- array_like, transformed data """ g = graph if graph is not None else self.tf_graph with g.as_default(): with tf.Session() as self.tf_session: self.tf_saver.restore(self.tf_session, self.model_path) feed = {self.input_data: data, self.keep_prob: 1} return self.encode.eval(feed) def reconstruct(self, data, graph=None): """Reconstruct data according to the model. Parameters ---------- data : array_like, shape (n_samples, n_features) Data to transform. graph : tf.Graph, optional (default = None) Tensorflow Graph object Returns ------- array_like, transformed data """ g = graph if graph is not None else self.tf_graph with g.as_default(): with tf.Session() as self.tf_session: self.tf_saver.restore(self.tf_session, self.model_path) feed = {self.input_data: data, self.keep_prob: 1} return self.reconstruction.eval(feed) def score(self, data, data_ref, graph=None): """Compute the reconstruction loss over the test set. Parameters ---------- data : array_like Data to reconstruct. data_ref : array_like Reference data. Returns ------- float: Mean error. """ g = graph if graph is not None else self.tf_graph with g.as_default(): with tf.Session() as self.tf_session: self.tf_saver.restore(self.tf_session, self.model_path) feed = { self.input_data: data, self.input_labels: data_ref, self.keep_prob: 1 } return self.cost.eval(feed)
apache-2.0
braghiere/JULESv4.6_clump
examples/us-me2/output/plot_gpp_anomaly_boreas.py
1
11326
import os import matplotlib.pyplot as plt import numpy as np import sys from matplotlib.font_manager import FontProperties from matplotlib.ticker import MultipleLocator import matplotlib.patches as mpatches # for mask legend from matplotlib.font_manager import FontProperties from matplotlib import cm import pandas as pd import matplotlib from matplotlib import dates as d import datetime as dt import scipy.stats as st import matplotlib.pyplot as plt; plt.rcdefaults() import numpy as np import matplotlib.pyplot as plt plt.style.use('ggplot') SIZE = 32 plt.rc('font', size=SIZE) # controls default text sizes plt.rc('axes', titlesize=SIZE) # fontsize of the axes title plt.rc('axes', labelsize=SIZE) # fontsize of the x any y labels plt.rc('xtick', labelsize=SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SIZE) # legend fontsize plt.rc('figure', titlesize=SIZE) # # size of the figure title inputdir = "/glusterfs/phd/users/mn811042/jules_struct/JULES_trunk_lim_gpp/examples/boreas/output/files/" #filename = 'output_layer_250_%i_12_a_042.csv' filename1 = 'output_layer_500_%i_11_CRM_4.txt' #filename2 = 'output_layer_500_%i_11_struc.txt' filename2 = 'output_layer_500_%i_11_CRM_5.txt' PPFDs = np.arange(50) #temps = np.arange(0,52,2) #cas = np.arange(200,850,50) layers = np.arange(1,11,1) szas = np.arange(30,91,1) data = pd.read_csv("file_lai_500_CRM_4_5.csv", index_col=0, parse_dates=True).tz_localize("UTC").tz_convert("Etc/GMT+7") data.head() #data['Time'] = data.index.map(lambda x: x.strftime("%H:%M")) #print data['Time'] #data.head() #data = data.groupby('Time').describe().unstack() data = data.groupby(pd.cut(data["cosz"], np.arange(0.0,1.0,0.075))).describe().unstack() #print data #data.index = pd.to_datetime(data.index.astype(str)) data.index = np.degrees(np.arccos(data["cosz"]['mean'])) szas = np.int16(data.index) print szas #for opt T #filename = 'output_%i_%i_pft%i_opt_t' #PPFDs = np.arange(0) #temps = np.arange(0,90,10) #cas = np.arange(400) # create a matrix dim0: PPFDs, # dim1: Tl # dim2: cas # dim3: variables # An, Wc, Wl, We, mask (1 = Wcarb limiting; 2= Wexp limiting) ft = 1 #W = np.zeros((len(PPFDs),len(temps),len(cas),12)) W_1 = np.zeros((len(szas),len(layers),11)) #for i,p in enumerate(PPFDs): for j,sza in enumerate(szas): ofile = filename1 %(sza) print ofile with open(os.path.join(inputdir,ofile),'r') as f: #header = f.readline() lines = f.readlines() for k,line in enumerate(lines): #podria hacer otro loop #por todas las variables W_1[j,k,0] = line.split(' ')[1] # GPP W_1[j,k,1] = line.split(' ')[3] # Wcarb W_1[j,k,2] = line.split(' ')[2] # Wlite W_1[j,k,3] = line.split(' ')[4] # Wexp #W[j,k,4] = line.split(',')[14] # Rd #W[j,k,5] = line.split(',')[11] # ci #W[j,k,6] = line.split(',')[12] # gl #W[j,k,7] = line.split(',')[18] # dqc W_1[j,k,9] = W_1[j,k,0] # GPP #print j,k,W[j,k,0] if (W_1[j,k,1]==0) & (W_1[j,k,2]==0) & (W_1[j,k,3]==0): Wmin = 0 ma = 0 # all are zero elif (W_1[j,k,1] <= W_1[j,k,2]): # compare Wcarb and Wlite Wmin = W_1[j,k,1] ma= 1 # Wcarb limiting else: Wmin = W_1[j,k,2] ma= 2 # Wlite limiting # compare the minimun of Wcarb and Wlite with Wexp, but only if they are not all 0 if (ma!=0) & (W_1[j,k,3] <= Wmin): Wmin = W_1[j,k,3] ma= 3 # Wexp limiting W_1[j,k,8] = ma #print W[j,k,8] #create masks # ILL TRy without, just using vataible l=8 #if (f==0): W[i,j,9] = 1 #if (f==1): W[i,j,10] = 1 #if (f==2): W[i,j,11] = 1 ########################################################################################### #sys.exit() # create a matrix dim0: PPFDs, # dim1: Tl # dim2: cas # dim3: variables # An, Wc, Wl, We, mask (1 = Wcarb limiting; 2= Wexp limiting) ft = 1 #W = np.zeros((len(PPFDs),len(temps),len(cas),12)) W_2 = np.zeros((len(szas),len(layers),11)) #for i,p in enumerate(PPFDs): for j,sza in enumerate(szas): ofile = filename2 %(sza) print ofile with open(os.path.join(inputdir,ofile),'r') as f: #header = f.readline() lines = f.readlines() for k,line in enumerate(lines): #podria hacer otro loop #por todas las variables W_2[j,k,0] = line.split(' ')[1] # GPP W_2[j,k,1] = line.split(' ')[3] # Wcarb W_2[j,k,2] = line.split(' ')[2] # Wlite W_2[j,k,3] = line.split(' ')[4] # Wexp W_2[j,k,9] = W_2[j,k,0] # GPP #print j,k,W[j,k,0] if (W_2[j,k,1]==0) & (W_2[j,k,2]==0) & (W_2[j,k,3]==0): Wmin = 0 ma = 0 # all are zero elif (W_2[j,k,1] <= W_2[j,k,2]): # compare Wcarb and Wlite Wmin = W_2[j,k,1] ma= 1 # Wcarb limiting else: Wmin = W_2[j,k,2] ma= 2 # Wlite limiting # compare the minimun of Wcarb and Wlite with Wexp, but only if they are not all 0 if (ma!=0) & (W_2[j,k,3] <= Wmin): Wmin = W_2[j,k,3] ma= 3 # Wexp limiting W_2[j,k,8] = ma #print W[j,k,8] #create masks # ILL TRy without, just using vataible l=8 #if (f==0): W[i,j,9] = 1 #if (f==1): W[i,j,10] = 1 #if (f==2): W[i,j,11] = 1 ########################################################################################### #sys.exit() szas_repeat= np.repeat(layers,len(szas)) layers_tile = np.tile(szas,len(layers)) W_1_carb = np.ma.masked_where(W_1[:,:,8].T !=1, W_1[:,:,8].T) W_1_lite = np.ma.masked_where(W_1[:,:,8].T !=2, W_1[:,:,8].T) W_1_exp = np.ma.masked_where(W_1[:,:,8].T !=3, W_1[:,:,8].T) W_2_carb = np.ma.masked_where(W_2[:,:,8].T !=1, W_2[:,:,8].T) W_2_lite = np.ma.masked_where(W_2[:,:,8].T !=2, W_2[:,:,8].T) W_2_exp = np.ma.masked_where(W_2[:,:,8].T !=3, W_2[:,:,8].T) print "GPP_TS[:,:,0,0]*1e6=",W_1[:,:,0]*1e6,"GPP_SF[:,:,0,0]*1e6=",W_2[:,:,0]*1e6 GPP_anomaly = np.zeros((len(szas),len(layers),10)) GPP_anomaly_perc = np.zeros((len(szas),len(layers),10)) for j,sza in enumerate(szas): for k,line in enumerate(lines): GPP_anomaly[j,k,9] = (W_2[j,k,9]-W_1[j,k,9]) GPP_anomaly_perc[j,k,9] = 100*(W_2[j,k,9] - W_1[j,k,9])/((W_1[j,k,9] + W_2[j,k,9])/2) #print GPP_anomaly[j,k,0] #print "GPP_anomaly[",j,",",k,",0]=(",W_1[j,k,9],"-",W_2[j,k,9],")*1e6" szas_repeat= np.repeat(layers,len(szas)) layers_tile = np.tile(szas,len(layers)) #W=W5 print "Integral(GPPanomaly)=",np.sum(GPP_anomaly) print "Integral(GPPTS)=",np.sum(W_1[:,:,0]*1e6) print "Integral(GPPSF)=",np.sum(W_2[:,:,0]*1e6) fig,ax = plt.subplots(figsize=(10,10)) levels = np.arange(0,11,1) fig.subplots_adjust(right=0.75) W_carb = np.ma.masked_where(W_2[:,:,8].T == W_1[:,:,8].T,W_2_carb) W_lite = np.ma.masked_where(W_2[:,:,8].T == W_1[:,:,8].T,W_2_lite) W_exp = np.ma.masked_where(W_2[:,:,8].T == W_1[:,:,8].T,W_2_exp) plt.gca().invert_yaxis() plt.ylim(ymin=10.5,ymax=0.5) plt.xlim(xmin=29.2,xmax=90.5) plt.yticks(np.arange(1.0, 10.1, 1.0)) c1=plt.contourf(szas,layers,GPP_anomaly_perc[:,:,9].T,np.arange(-100, 100.1, 10),extend='both',cmap=cm.bwr,alpha=1.0,interpolation='bicubic') #c1=plt.contourf(szas,layers,GPP_anomaly[:,:,9].T,np.arange(-2.0, 2.1, 0.2),extend='both',cmap=cm.bwr,alpha=1.0,interpolation='bicubic') plt.scatter(layers_tile,szas_repeat,c=W_carb,marker='^',color='k',s=120,label='carbon limited') plt.scatter(layers_tile,szas_repeat,c=W_lite,marker='.',color='k',s=120,label='light limited') plt.scatter(layers_tile,szas_repeat,c=W_exp,marker='+',color='k',s=120,label='export limited') #WITH LEGEND # loc = 4 > 'lower right' #plt.legend(loc=4,fontsize = 20) #NO LEGEND plt.legend_ = None #c1=plt.contourf(szas,layers,GPP_anomaly[:,:,9].T,np.arange(-0.0000009, 0.0000000015, .00000015),extend='both',cmap=cm.Blues_r,alpha=0.8) # in white # To avoid rainbow scale could use , cmap=plt.cm.RdYlBu, but i think is less clear # Gives error if the mask is all true (that limit is not present) # If the mask is all tru, scatter gives a value error,in that case # scatter with dummy argument, so the label still appears in the legend #try: plt.scatter(szas_repeat,layers_tile,c=W_carb,marker='^',color='k',s=30,label='carbon limited') #try: plt.scatter(layers_tile,szas_repeat,c=W_carb,marker='^',color='k',s=30,label='carbon limited') #except ValueError: plt.scatter([],[],marker='^',color='k',s=30,label='carbon limited') ##try: plt.scatter(szas_repeat,layers_tile,c=W_lite,marker='.',color='k',s=30,label='light limited') #try: plt.scatter(layers_tile,szas_repeat,c=W_lite,marker='.',color='k',s=30,label='light limited') #except ValueError: plt.scatter([],[],marker='.',color='k',s=30,label='light limited') ##try: plt.scatter(szas_repeat,layers_tile,c=W_exp,marker='+',color='k',s=30,label='export limited') #try: plt.scatter(layers_tile,szas_repeat,c=W_exp,marker='+',color='k',s=30,label='export limited') #except ValueError: plt.scatter([],[],marker='+',color='k',s=30,label='export limited') plt.ylabel('Layer',fontsize = 20) #plt.text(0.5,1500,'ca = 200ppm',bbox=dict(facecolor='white')) #plt.legend(ncol=3,prop={'size':10},bbox_to_anchor = (0.755, 1.2),scatterpoints=1) plt.xlabel('Solar Zenith Angle',fontsize = 20) plt.tick_params(labelsize=20) plt.title(r'Diurnal Profile - DOY 193-206',fontsize = 20) cbar_ax = fig.add_axes([0.8, 0.15, 0.03, 0.7]) cbar=fig.colorbar(c1, cax=cbar_ax) cbar.ax.set_ylabel(r'GPP anomaly (%)',fontsize = 20) #cbar.ax.set_ylabel(r'GPP anomaly ($\mu$mol.m$^{-2}$.s$^{-1}$)',fontsize = 20) cbar.ax.tick_params(labelsize=20) plt.savefig('/home/mn811042/Thesis/chapter6/sensitivity_jules_boreas/figures_boreas_ssa_oa_can_rad_mod/gpp_anomaly_lai_500_CRM_4_5_perc_cosz.png') #plt.savefig('/home/mn811042/Desktop_1/report/MC5/mc5_angus/gpp_anomaly_ppdf_t_25_c4_lai_450_a_042-250_a_1_alpha_wcarb_exp_divided_by_layers.pdf') #plt.savefig('/home/mn811042/Thesis/chapter6/GPP_layer_sza_ppdf_342_sza_t_22_ca_400_pft_c3_lai_250_albedo_12_SF-TS.pdf') plt.show()
gpl-2.0
braghiere/JULESv4.6_clump
examples/boreas_4.6/output/plotfapar_cosz.py
1
7233
import pandas as pd import matplotlib.pyplot as plt import matplotlib from matplotlib import dates as d import datetime as dt import numpy as np # CODE FROM http://nipunbatra.github.io/2015/06/timeseries/ plt.style.use('ggplot') SIZE = 32 plt.rc('font', size=SIZE) # controls default text sizes plt.rc('axes', titlesize=SIZE) # fontsize of the axes title plt.rc('axes', labelsize=SIZE) # fontsize of the x any y labels plt.rc('xtick', labelsize=SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SIZE) # legend fontsize plt.rc('figure', titlesize=SIZE) # # size of the figure title # CODE FROM https://www.davidhagan.me/articles?id=7 #data = pd.read_excel(filename, sheetname, skiprows = skiprows, index_col = index_col) #data = pd.read_csv("weather_2.csv", index_col=0, parse_dates=True).tz_localize("UTC").tz_convert("US/Cebtral") #data = pd.read_csv("file_193_206_bt_flag_no.csv", index_col=0, parse_dates=True).tz_localize("UTC") #data = pd.read_csv("file_193_206_bt_flag_no.csv", index_col=0, parse_dates=True).tz_localize("UTC").tz_convert("US/Pacific") data = pd.read_csv("file_193_206_bt_500_can_mod_5_diff_struc.csv", index_col=0, parse_dates=True).tz_localize("UTC").tz_convert("Etc/GMT+7") #print data data.head() #data['Time'] = data.index.map(lambda x: x.strftime("%H:%M")) #print data['Time'] #data.head() #data = data.groupby('Time').describe().unstack() data = data.groupby(pd.cut(data["cosz"], np.arange(0.0,1.0,0.075))).describe().unstack() #print data #data.index = pd.to_datetime(data.index.astype(str)) data.index = np.degrees(np.arccos(data["cosz"]['mean'])) #print data.index, data["PARi"]['mean']/4.6 print data.index, data["temp"]['mean'] fig, ax = plt.subplots(1, figsize=(24,12)) ax.set_title('Diurnal Profile - DOY 193-206', fontsize=32) ax.set_ylabel('fAPAR', fontsize=32, weight='bold') ax.set_xlabel('Solar Zenith Angle', fontsize=32) ax.plot(data.index, data["fapar_jules"]['mean'], 'g', linewidth=2.0, label = 'Option 5') ax.plot(data.index, data["fapar_jules_struc"]['mean'], 'r', linewidth=2.0, label = 'Option 5 (diff + struc)') ticks = ax.get_xticks() #ax.set_xticks(np.linspace(ticks[0], d.date2num(d.num2date(ticks[-1]) + dt.timedelta(hours=3)), 5)) #ax.set_xticks(np.linspace(ticks[0], d.date2num(d.num2date(ticks[-1]) + dt.timedelta(hours=3)), 25), minor=True) #ax.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%I:%M %p')) plt.tight_layout() #plt.show() plt.legend(loc="best") ax.plot(data.index, data["fapar_jules"]['75%'], color='g') ax.plot(data.index, data["fapar_jules"]['25%'], color='g') ax.plot(data.index, data["fapar_jules_struc"]['75%'], color='r') ax.plot(data.index, data["fapar_jules_struc"]['25%'], color='r') ax.fill_between(data.index, data["fapar_jules"]['mean'], data["fapar_jules"]['75%'], alpha=.5, facecolor='g') ax.fill_between(data.index, data["fapar_jules"]['mean'], data["fapar_jules"]['25%'], alpha=.5, facecolor='g') ax.fill_between(data.index, data["fapar_jules_struc"]['mean'], data["fapar_jules_struc"]['75%'], alpha=.5, facecolor='r') ax.fill_between(data.index, data["fapar_jules_struc"]['mean'], data["fapar_jules_struc"]['25%'], alpha=.5, facecolor='r') plt.savefig('/home/mn811042/Thesis/chapter6/sensitivity_jules_boreas/figures_boreas_ssa_oa_can_rad_mod/fapar_193_206_bt_lai_500_can_rad_5_diff_struc_cosz.png') plt.show() fig, ax = plt.subplots(1, figsize=(24,12)) ax.set_title('Diurnal Profile - DOY 193-206', fontsize=32) ax.set_ylabel('Fraction of Diffuse Radiation', fontsize=32, weight='bold') ax.set_xlabel('Solar Zenith Angle', fontsize=32) #ax.plot(data.index, data["diff_jules"]['mean'], 'g', linewidth=2.0, label = 'JULES') #ax.plot(data.index, data["diff_jules_struc"]['mean'], 'r', linewidth=2.0, label = 'JULES Struc') ticks = ax.get_xticks() #ax.set_xticks(np.linspace(ticks[0], d.date2num(d.num2date(ticks[-1]) + dt.timedelta(hours=3)), 5)) #ax.set_xticks(np.linspace(ticks[0], d.date2num(d.num2date(ticks[-1]) + dt.timedelta(hours=3)), 25), minor=True) #ax.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%I:%M %p')) plt.tight_layout() #plt.show() #plt.legend(loc="best") #ax.plot(data.index, data["diff_jules"]['75%'], color='g') #ax.plot(data.index, data["diff_jules"]['25%'], color='g') #ax.plot(data.index, data["diff_jules_struc"]['75%'], color='r') #ax.plot(data.index, data["diff_jules_struc"]['25%'], color='r') #ax.fill_between(data.index, data["diff_jules"]['mean'], data["diff_jules"]['75%'], alpha=.5, facecolor='g') #ax.fill_between(data.index, data["diff_jules"]['mean'], data["diff_jules"]['25%'], alpha=.5, facecolor='g') #ax.fill_between(data.index, data["diff_jules_struc"]['mean'], data["diff_jules_struc"]['75%'], alpha=.5, facecolor='r') #ax.fill_between(data.index, data["diff_jules_struc"]['mean'], data["diff_jules_struc"]['25%'], alpha=.5, facecolor='r') #plt.savefig('/home/mn811042/Thesis/chapter6/sensitivity_jules_boreas/figures_boreas_ssa_oa_can_rad_mod/diff_193_206_bt_lai_500_can_rad_5_diff_cosz.png') plt.show() fig, ax = plt.subplots(1, figsize=(24,12)) ax.set_title('Diurnal Profile - DOY 193-206', fontsize=32) ax.set_ylabel(r'GPP ($\mu$mol.m$^{-2}$.s$^{-1}$)', fontsize=32, weight='bold') ax.set_xlabel('Solar Zenith Angle', fontsize=32) data["gpp_jules"] = data["gpp_jules"]/data["fsmc_jules"] data["gpp_jules_struc"] = data["gpp_jules_struc"]/data["fsmc_jules_struc"] ax.plot(data.index, data["gpp"]['mean'], 'ko', linewidth=2.0, label = 'Obs.') ax.plot(data.index, data["gpp_jules"]['mean'], 'g', linewidth=2.0, label = 'Option 5') ax.plot(data.index, data["gpp_jules_struc"]['mean'], 'r', linewidth=2.0, label = 'Option 5 (diff + struc)') ticks = ax.get_xticks() #ax.set_xticks(np.linspace(ticks[0], d.date2num(d.num2date(ticks[-1]) + dt.timedelta(hours=3)), 5)) #ax.set_xticks(np.linspace(ticks[0], d.date2num(d.num2date(ticks[-1]) + dt.timedelta(hours=3)), 25), minor=True) #ax.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%I:%M %p')) plt.tight_layout() #plt.show() plt.legend(loc="best") ax.plot(data.index, data["gpp"]['75%'], color='k') ax.plot(data.index, data["gpp"]['25%'], color='k') ax.plot(data.index, data["gpp_jules"]['75%'], color='g') ax.plot(data.index, data["gpp_jules"]['25%'], color='g') ax.plot(data.index, data["gpp_jules_struc"]['75%'], color='r') ax.plot(data.index, data["gpp_jules_struc"]['25%'], color='r') ax.fill_between(data.index, data["gpp"]['mean'], data["gpp"]['75%'], alpha=.5, facecolor='k') ax.fill_between(data.index, data["gpp"]['mean'], data["gpp"]['25%'], alpha=.5, facecolor='k') ax.fill_between(data.index, data["gpp_jules"]['mean'], data["gpp_jules"]['75%'], alpha=.5, facecolor='g') ax.fill_between(data.index, data["gpp_jules"]['mean'], data["gpp_jules"]['25%'], alpha=.5, facecolor='g') ax.fill_between(data.index, data["gpp_jules_struc"]['mean'], data["gpp_jules_struc"]['75%'], alpha=.5, facecolor='r') ax.fill_between(data.index, data["gpp_jules_struc"]['mean'], data["gpp_jules_struc"]['25%'], alpha=.5, facecolor='r') plt.savefig('/home/mn811042/Thesis/chapter6/sensitivity_jules_boreas/figures_boreas_ssa_oa_can_rad_mod/gpp_193_206_bt_lai_500_can_rad_5_diff_struc_cosz.png') plt.show()
gpl-2.0
toobaz/pandas
scripts/download_wheels.py
1
1173
#!/usr/bin/env python """Fetch wheels from wheels.scipy.org for a pandas version.""" import argparse import pathlib import sys import urllib.parse import urllib.request from lxml import html def parse_args(args=None): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("version", type=str, help="Pandas version (0.23.0)") return parser.parse_args(args) def fetch(version): base = "http://wheels.scipy.org" tree = html.parse(base) root = tree.getroot() dest = pathlib.Path("dist") dest.mkdir(exist_ok=True) files = [ x for x in root.xpath("//a/text()") if x.startswith("pandas-{}".format(version)) and not dest.joinpath(x).exists() ] N = len(files) for i, filename in enumerate(files, 1): out = str(dest.joinpath(filename)) link = urllib.request.urljoin(base, filename) urllib.request.urlretrieve(link, out) print( "Downloaded {link} to {out} [{i}/{N}]".format(link=link, out=out, i=i, N=N) ) def main(args=None): args = parse_args(args) fetch(args.version) if __name__ == "__main__": sys.exit(main())
bsd-3-clause
spinellic/Mission-Planner
Lib/site-packages/numpy/doc/creation.py
94
5411
""" ============== Array Creation ============== Introduction ============ There are 5 general mechanisms for creating arrays: 1) Conversion from other Python structures (e.g., lists, tuples) 2) Intrinsic numpy array array creation objects (e.g., arange, ones, zeros, etc.) 3) Reading arrays from disk, either from standard or custom formats 4) Creating arrays from raw bytes through the use of strings or buffers 5) Use of special library functions (e.g., random) This section will not cover means of replicating, joining, or otherwise expanding or mutating existing arrays. Nor will it cover creating object arrays or record arrays. Both of those are covered in their own sections. Converting Python array_like Objects to Numpy Arrays ==================================================== In general, numerical data arranged in an array-like structure in Python can be converted to arrays through the use of the array() function. The most obvious examples are lists and tuples. See the documentation for array() for details for its use. Some objects may support the array-protocol and allow conversion to arrays this way. A simple way to find out if the object can be converted to a numpy array using array() is simply to try it interactively and see if it works! (The Python Way). Examples: :: >>> x = np.array([2,3,1,0]) >>> x = np.array([2, 3, 1, 0]) >>> x = np.array([[1,2.0],[0,0],(1+1j,3.)]) # note mix of tuple and lists, and types >>> x = np.array([[ 1.+0.j, 2.+0.j], [ 0.+0.j, 0.+0.j], [ 1.+1.j, 3.+0.j]]) Intrinsic Numpy Array Creation ============================== Numpy has built-in functions for creating arrays from scratch: zeros(shape) will create an array filled with 0 values with the specified shape. The default dtype is float64. ``>>> np.zeros((2, 3)) array([[ 0., 0., 0.], [ 0., 0., 0.]])`` ones(shape) will create an array filled with 1 values. It is identical to zeros in all other respects. arange() will create arrays with regularly incrementing values. Check the docstring for complete information on the various ways it can be used. A few examples will be given here: :: >>> np.arange(10) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.arange(2, 10, dtype=np.float) array([ 2., 3., 4., 5., 6., 7., 8., 9.]) >>> np.arange(2, 3, 0.1) array([ 2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9]) Note that there are some subtleties regarding the last usage that the user should be aware of that are described in the arange docstring. linspace() will create arrays with a specified number of elements, and spaced equally between the specified beginning and end values. For example: :: >>> np.linspace(1., 4., 6) array([ 1. , 1.6, 2.2, 2.8, 3.4, 4. ]) The advantage of this creation function is that one can guarantee the number of elements and the starting and end point, which arange() generally will not do for arbitrary start, stop, and step values. indices() will create a set of arrays (stacked as a one-higher dimensioned array), one per dimension with each representing variation in that dimension. An example illustrates much better than a verbal description: :: >>> np.indices((3,3)) array([[[0, 0, 0], [1, 1, 1], [2, 2, 2]], [[0, 1, 2], [0, 1, 2], [0, 1, 2]]]) This is particularly useful for evaluating functions of multiple dimensions on a regular grid. Reading Arrays From Disk ======================== This is presumably the most common case of large array creation. The details, of course, depend greatly on the format of data on disk and so this section can only give general pointers on how to handle various formats. Standard Binary Formats ----------------------- Various fields have standard formats for array data. The following lists the ones with known python libraries to read them and return numpy arrays (there may be others for which it is possible to read and convert to numpy arrays so check the last section as well) :: HDF5: PyTables FITS: PyFITS Examples of formats that cannot be read directly but for which it is not hard to convert are libraries like PIL (able to read and write many image formats such as jpg, png, etc). Common ASCII Formats ------------------------ Comma Separated Value files (CSV) are widely used (and an export and import option for programs like Excel). There are a number of ways of reading these files in Python. There are CSV functions in Python and functions in pylab (part of matplotlib). More generic ascii files can be read using the io package in scipy. Custom Binary Formats --------------------- There are a variety of approaches one can use. If the file has a relatively simple format then one can write a simple I/O library and use the numpy fromfile() function and .tofile() method to read and write numpy arrays directly (mind your byteorder though!) If a good C or C++ library exists that read the data, one can wrap that library with a variety of techniques though that certainly is much more work and requires significantly more advanced knowledge to interface with C or C++. Use of Special Libraries ------------------------ There are libraries that can be used to generate arrays for special purposes and it isn't possible to enumerate all of them. The most common uses are use of the many array generation functions in random that can generate arrays of random values, and some utility functions to generate special matrices (e.g. diagonal). """
gpl-3.0
yslib/SGMMCluster
SGMM/TrainBlockGMM.py
1
7987
import numpy as np from multiprocessing import Process from sklearn import mixture import time import os import sys import logging # counts = [0]*256 # path1 = "d:/count.txt" # path2 = "d:/gaussian.txt" # def save_count(path,count): # file = open(path,'w') # for i in range(len(count)): # file.write(str(count[i])+'\n') # file.close() # single gauss component class Gauss: def __init__(self, weight, mean, covariance): self.weight_ = weight self.mean_ = mean self.covariance_ = covariance # single block class Block: def __init__(self): self.gauss_num_ = 0 self.gausses_ = [] def add_gauss(self, gauss): self.gausses_.append(gauss) def save_block(path, block): file = open(path,'w') for i in range(len(block.gausses_)): file.write(str(block.gausses_[i].weight_)+' '+str(block.gausses_[i].mean_)+' '+str(block.gausses_[i].covariance_)+'\n') file.close() # read all data into a array def read_all_data(file_path, data): f = open(file_path, 'rb') filedata = f.read() filesize = f.tell() print(filesize) filedata2 = bytearray(filedata) for index in range(0, filesize): data[index] = filedata2[index] # data = bytearray(f.read()) print("file size:"+str(filesize)+" byte(s)") f.close() # train xth GMM def train_single_block(index, width, depth, width_num, depth_num, side, ubg, data): height_index = int(index / (width_num * depth_num)) depth_index = int((index - height_index * (width_num * depth_num)) / width_num) width_index = int(index - height_index * (width_num * depth_num) - depth_index * width_num) start_width = width_index * side start_depth = depth_index * side start_height = height_index * side # print("--------IN BLOCK:"+str(index)) # print("block num:"+str(width_num)+" "+str(depth_num)) # print("block coordinates:"+str(width_index)+" "+str(depth_index)+" "+str(height_index)) obs = [[]] * side * side * side zero = True zero_count = 0; for x in range(0, side): for y in range(0, side): for z in range(0, side): final_index = x * side * side + y * side + z data_index = (start_height + x) * width * depth + (start_depth + y) * width + (start_width + z) temp = data[data_index] # if index == 456: # counts.append(temp) # if temp != 0: # zero_count+=1 # zero = False obs[final_index] = [temp] # if zero == True: # print("block:"+str(index)+" is zero") # return Block() # print(str(index)+" is non-zero:"+str(zero_count)) # if index == 456: # save_count(path1,counts) final_component_num = 4 g = mixture.GaussianMixture(n_components=final_component_num) g.fit(obs) final_g = g # max_bic = g.bic(np.array(obs)) # max_num = min(ubg, len(obs)) # for component_num in range(2, max_num+1): # g = mixture.GaussianMixture(n_components=component_num) # g.fit(obs) # bic_temp = g.bic(np.array(obs)) # if index == 456: # print component_num,bic_temp # if bic_temp < max_bic: # final_g = g # final_component_num = component_num # max_bic = bic_temp block = Block() block.gauss_num_ = final_component_num for component_index in range(0, final_component_num): gauss = Gauss(final_g.weights_[component_index], final_g.means_[component_index][0], final_g.covariances_[component_index][0][0]) block.add_gauss(gauss) # if index == 456: # save_block(path2,block) return block # train a part of original data def train_blocks(result_disk_address, data_source, block_num, index, stride, data, width, depth, depth_num, width_num, side, ubg): block_gmm = [Block()] * stride end_block = (index+1)*stride end_index = stride for i in range(0, stride): if index * stride + i >= block_num: end_block = index*stride+i; end_index = i break; block_gmm[i] = train_single_block(index * stride + i, width, depth, width_num, depth_num, side, ubg, data) gmm_output = result_disk_address + data_source + '_GMM_Result_'+str(index)+'.txt' # restore block_sgmm into txt file with open(gmm_output, "w") as f_out: for i in range(0, end_index): f_out.write(str(block_gmm[i].gauss_num_)+'\n') for j in range(0, block_gmm[i].gauss_num_): f_out.write(str(block_gmm[i].gausses_[j].weight_)+'\n') f_out.write(str(block_gmm[i].gausses_[j].mean_)+'\n') f_out.write(str(block_gmm[i].gausses_[j].covariance_)+'\n') print("-----------IN FILE:"+str(index)+" training and saving blocks from "+str(index*stride)+" to "+str(end_block)+" done") if __name__ == '__main__': result_disk_address = "" data_source = "" width = 0 depth = 0 height = 0 process_num = 0 side = 0 if len(sys.argv) == 1: result_disk_address = raw_input("input disk address:") data_source = raw_input('input the data name:') width = int(raw_input('weight:')) depth = int(raw_input('depth:')) height = int(raw_input('height:')) side = int(raw_input('side:')) process_num = int(raw_input('input the process num (must be the divisor of the block number):')) else: result_disk_address = sys.argv[1] data_source = sys.argv[2] width = int(sys.argv[3]) depth = int(sys.argv[4]) height = int(sys.argv[5]) side = int(sys.argv[6]) process_num = int(sys.argv[7]) if not os.path.exists(result_disk_address + data_source + ".raw"): print('file doesn\'t exists') exit(0) print("disk address:" + result_disk_address) print("data name:" + data_source) print("width:" + str(width) + " depth:" + str(depth) + " height:" + str(height) + " side:" + str(side)) print("process num (file num):" + str(process_num)) ubg = 4 np.random.seed(1) width_num = width / side depth_num = depth / side height_num = height / side total_num = width_num * depth_num * height_num data = [0] * width * depth * height stride = (total_num+process_num-1) / process_num print("stride:"+str(stride)) read_all_data(result_disk_address + data_source + '.raw', data) begin_time = time.localtime(time.time()) cpu_time_begin = time.clock() print("total_num = " + str(total_num)) proc_record = [] for i in range(0, process_num): p = Process(target=train_blocks, args=(result_disk_address, data_source, total_num, i, stride, data, width, depth, width_num, depth_num, side, ubg)) p.start() proc_record.append(p) for p in proc_record: p.join() print("training GMM done.") cpu_time_end = time.clock() print time.strftime('Training began at %Y-%m-%d %H:%M:%S',begin_time) print time.strftime('Training finished at %Y-%m-%d %H:%M:%S', time.localtime(time.time())) print("cpu time cost in python:" + str(cpu_time_end - cpu_time_begin)+"s.") # train_single_block(73800)
mit
khkaminska/scikit-learn
examples/cluster/plot_ward_structured_vs_unstructured.py
320
3369
""" =========================================================== Hierarchical clustering: structured vs unstructured ward =========================================================== Example builds a swiss roll dataset and runs hierarchical clustering on their position. For more information, see :ref:`hierarchical_clustering`. In a first step, the hierarchical clustering is performed without connectivity constraints on the structure and is solely based on distance, whereas in a second step the clustering is restricted to the k-Nearest Neighbors graph: it's a hierarchical clustering with structure prior. Some of the clusters learned without connectivity constraints do not respect the structure of the swiss roll and extend across different folds of the manifolds. On the opposite, when opposing connectivity constraints, the clusters form a nice parcellation of the swiss roll. """ # Authors : Vincent Michel, 2010 # Alexandre Gramfort, 2010 # Gael Varoquaux, 2010 # License: BSD 3 clause print(__doc__) import time as time import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as p3 from sklearn.cluster import AgglomerativeClustering from sklearn.datasets.samples_generator import make_swiss_roll ############################################################################### # Generate data (swiss roll dataset) n_samples = 1500 noise = 0.05 X, _ = make_swiss_roll(n_samples, noise) # Make it thinner X[:, 1] *= .5 ############################################################################### # Compute clustering print("Compute unstructured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) ############################################################################### # Plot result fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2], 'o', color=plt.cm.jet(np.float(l) / np.max(label + 1))) plt.title('Without connectivity constraints (time %.2fs)' % elapsed_time) ############################################################################### # Define the structure A of the data. Here a 10 nearest neighbors from sklearn.neighbors import kneighbors_graph connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False) ############################################################################### # Compute clustering print("Compute structured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, connectivity=connectivity, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) ############################################################################### # Plot result fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2], 'o', color=plt.cm.jet(float(l) / np.max(label + 1))) plt.title('With connectivity constraints (time %.2fs)' % elapsed_time) plt.show()
bsd-3-clause
siutanwong/scikit-learn
sklearn/feature_selection/tests/test_from_model.py
244
1593
import numpy as np import scipy.sparse as sp from nose.tools import assert_raises, assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.datasets import load_iris from sklearn.linear_model import LogisticRegression from sklearn.linear_model import SGDClassifier from sklearn.svm import LinearSVC iris = load_iris() def test_transform_linear_model(): for clf in (LogisticRegression(C=0.1), LinearSVC(C=0.01, dual=False), SGDClassifier(alpha=0.001, n_iter=50, shuffle=True, random_state=0)): for thresh in (None, ".09*mean", "1e-5 * median"): for func in (np.array, sp.csr_matrix): X = func(iris.data) clf.set_params(penalty="l1") clf.fit(X, iris.target) X_new = clf.transform(X, thresh) if isinstance(clf, SGDClassifier): assert_true(X_new.shape[1] <= X.shape[1]) else: assert_less(X_new.shape[1], X.shape[1]) clf.set_params(penalty="l2") clf.fit(X_new, iris.target) pred = clf.predict(X_new) assert_greater(np.mean(pred == iris.target), 0.7) def test_invalid_input(): clf = SGDClassifier(alpha=0.1, n_iter=10, shuffle=True, random_state=None) clf.fit(iris.data, iris.target) assert_raises(ValueError, clf.transform, iris.data, "gobbledigook") assert_raises(ValueError, clf.transform, iris.data, ".5 * gobbledigook")
bsd-3-clause
Srisai85/scikit-learn
sklearn/utils/tests/test_utils.py
215
8100
import warnings import numpy as np import scipy.sparse as sp from scipy.linalg import pinv2 from itertools import chain from sklearn.utils.testing import (assert_equal, assert_raises, assert_true, assert_almost_equal, assert_array_equal, SkipTest, assert_raises_regex) from sklearn.utils import check_random_state from sklearn.utils import deprecated from sklearn.utils import resample from sklearn.utils import safe_mask from sklearn.utils import column_or_1d from sklearn.utils import safe_indexing from sklearn.utils import shuffle from sklearn.utils import gen_even_slices from sklearn.utils.extmath import pinvh from sklearn.utils.mocking import MockDataFrame def test_make_rng(): # Check the check_random_state utility function behavior assert_true(check_random_state(None) is np.random.mtrand._rand) assert_true(check_random_state(np.random) is np.random.mtrand._rand) rng_42 = np.random.RandomState(42) assert_true(check_random_state(42).randint(100) == rng_42.randint(100)) rng_42 = np.random.RandomState(42) assert_true(check_random_state(rng_42) is rng_42) rng_42 = np.random.RandomState(42) assert_true(check_random_state(43).randint(100) != rng_42.randint(100)) assert_raises(ValueError, check_random_state, "some invalid seed") def test_resample_noarg(): # Border case not worth mentioning in doctests assert_true(resample() is None) def test_deprecated(): # Test whether the deprecated decorator issues appropriate warnings # Copied almost verbatim from http://docs.python.org/library/warnings.html # First a function... with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated() def ham(): return "spam" spam = ham() assert_equal(spam, "spam") # function must remain usable assert_equal(len(w), 1) assert_true(issubclass(w[0].category, DeprecationWarning)) assert_true("deprecated" in str(w[0].message).lower()) # ... then a class. with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated("don't use this") class Ham(object): SPAM = 1 ham = Ham() assert_true(hasattr(ham, "SPAM")) assert_equal(len(w), 1) assert_true(issubclass(w[0].category, DeprecationWarning)) assert_true("deprecated" in str(w[0].message).lower()) def test_resample_value_errors(): # Check that invalid arguments yield ValueError assert_raises(ValueError, resample, [0], [0, 1]) assert_raises(ValueError, resample, [0, 1], [0, 1], n_samples=3) assert_raises(ValueError, resample, [0, 1], [0, 1], meaning_of_life=42) def test_safe_mask(): random_state = check_random_state(0) X = random_state.rand(5, 4) X_csr = sp.csr_matrix(X) mask = [False, False, True, True, True] mask = safe_mask(X, mask) assert_equal(X[mask].shape[0], 3) mask = safe_mask(X_csr, mask) assert_equal(X_csr[mask].shape[0], 3) def test_pinvh_simple_real(): a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 10]], dtype=np.float64) a = np.dot(a, a.T) a_pinv = pinvh(a) assert_almost_equal(np.dot(a, a_pinv), np.eye(3)) def test_pinvh_nonpositive(): a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float64) a = np.dot(a, a.T) u, s, vt = np.linalg.svd(a) s[0] *= -1 a = np.dot(u * s, vt) # a is now symmetric non-positive and singular a_pinv = pinv2(a) a_pinvh = pinvh(a) assert_almost_equal(a_pinv, a_pinvh) def test_pinvh_simple_complex(): a = (np.array([[1, 2, 3], [4, 5, 6], [7, 8, 10]]) + 1j * np.array([[10, 8, 7], [6, 5, 4], [3, 2, 1]])) a = np.dot(a, a.conj().T) a_pinv = pinvh(a) assert_almost_equal(np.dot(a, a_pinv), np.eye(3)) def test_column_or_1d(): EXAMPLES = [ ("binary", ["spam", "egg", "spam"]), ("binary", [0, 1, 0, 1]), ("continuous", np.arange(10) / 20.), ("multiclass", [1, 2, 3]), ("multiclass", [0, 1, 2, 2, 0]), ("multiclass", [[1], [2], [3]]), ("multilabel-indicator", [[0, 1, 0], [0, 0, 1]]), ("multiclass-multioutput", [[1, 2, 3]]), ("multiclass-multioutput", [[1, 1], [2, 2], [3, 1]]), ("multiclass-multioutput", [[5, 1], [4, 2], [3, 1]]), ("multiclass-multioutput", [[1, 2, 3]]), ("continuous-multioutput", np.arange(30).reshape((-1, 3))), ] for y_type, y in EXAMPLES: if y_type in ["binary", 'multiclass', "continuous"]: assert_array_equal(column_or_1d(y), np.ravel(y)) else: assert_raises(ValueError, column_or_1d, y) def test_safe_indexing(): X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] inds = np.array([1, 2]) X_inds = safe_indexing(X, inds) X_arrays = safe_indexing(np.array(X), inds) assert_array_equal(np.array(X_inds), X_arrays) assert_array_equal(np.array(X_inds), np.array(X)[inds]) def test_safe_indexing_pandas(): try: import pandas as pd except ImportError: raise SkipTest("Pandas not found") X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) X_df = pd.DataFrame(X) inds = np.array([1, 2]) X_df_indexed = safe_indexing(X_df, inds) X_indexed = safe_indexing(X_df, inds) assert_array_equal(np.array(X_df_indexed), X_indexed) # fun with read-only data in dataframes # this happens in joblib memmapping X.setflags(write=False) X_df_readonly = pd.DataFrame(X) with warnings.catch_warnings(record=True): X_df_ro_indexed = safe_indexing(X_df_readonly, inds) assert_array_equal(np.array(X_df_ro_indexed), X_indexed) def test_safe_indexing_mock_pandas(): X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) X_df = MockDataFrame(X) inds = np.array([1, 2]) X_df_indexed = safe_indexing(X_df, inds) X_indexed = safe_indexing(X_df, inds) assert_array_equal(np.array(X_df_indexed), X_indexed) def test_shuffle_on_ndim_equals_three(): def to_tuple(A): # to make the inner arrays hashable return tuple(tuple(tuple(C) for C in B) for B in A) A = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) # A.shape = (2,2,2) S = set(to_tuple(A)) shuffle(A) # shouldn't raise a ValueError for dim = 3 assert_equal(set(to_tuple(A)), S) def test_shuffle_dont_convert_to_array(): # Check that shuffle does not try to convert to numpy arrays with float # dtypes can let any indexable datastructure pass-through. a = ['a', 'b', 'c'] b = np.array(['a', 'b', 'c'], dtype=object) c = [1, 2, 3] d = MockDataFrame(np.array([['a', 0], ['b', 1], ['c', 2]], dtype=object)) e = sp.csc_matrix(np.arange(6).reshape(3, 2)) a_s, b_s, c_s, d_s, e_s = shuffle(a, b, c, d, e, random_state=0) assert_equal(a_s, ['c', 'b', 'a']) assert_equal(type(a_s), list) assert_array_equal(b_s, ['c', 'b', 'a']) assert_equal(b_s.dtype, object) assert_equal(c_s, [3, 2, 1]) assert_equal(type(c_s), list) assert_array_equal(d_s, np.array([['c', 2], ['b', 1], ['a', 0]], dtype=object)) assert_equal(type(d_s), MockDataFrame) assert_array_equal(e_s.toarray(), np.array([[4, 5], [2, 3], [0, 1]])) def test_gen_even_slices(): # check that gen_even_slices contains all samples some_range = range(10) joined_range = list(chain(*[some_range[slice] for slice in gen_even_slices(10, 3)])) assert_array_equal(some_range, joined_range) # check that passing negative n_chunks raises an error slices = gen_even_slices(10, -1) assert_raises_regex(ValueError, "gen_even_slices got n_packs=-1, must be" " >=1", next, slices)
bsd-3-clause
neuropower/neuropower
neuropower/apps/neuropowertoolbox/neuropowercore/cluster.py
2
1826
import numpy as np import pandas as pd """ Extract local maxima from a spm, return a csv file with variables: - x coordinate - y coordinate - z coordinate - peak height """ def PeakTable(spm,exc,mask): # make a new array with an extra row/column/plane around the original array spm_newdim = tuple(map(lambda x: x+2,spm.shape)) spm_ext = np.zeros((spm_newdim)) msk_ext = np.zeros((spm_newdim)) spm_ext.fill(-100) spm_ext[1:(spm.shape[0]+1),1:(spm.shape[1]+1),1:(spm.shape[2]+1)] = spm msk_ext[1:(spm.shape[0]+1),1:(spm.shape[1]+1),1:(spm.shape[2]+1)] = mask spm_ext = spm_ext * msk_ext shape = spm.shape spm = None # open peak csv labels = ['x','y','z','peak'] peaks = pd.DataFrame(columns=labels) # check for each voxel whether it's a peak, if it is, add to table for m in xrange(1,shape[0]+1): for n in xrange(1,shape[1]+1): for o in xrange(1,shape[2]+1): surroundings = None res = None if spm_ext[m,n,o]>exc: surroundings=[spm_ext[m-1,n-1,o-1], spm_ext[m-1,n-1,o], spm_ext[m-1,n-1,o+1], spm_ext[m-1,n,o-1], spm_ext[m-1,n,o], spm_ext[m-1,n,o+1], spm_ext[m-1,n+1,o-1], spm_ext[m-1,n+1,o], spm_ext[m-1,n+1,o+1], spm_ext[m,n-1,o-1], spm_ext[m,n-1,o], spm_ext[m,n-1,o+1], spm_ext[m,n,o-1], spm_ext[m,n,o+1], spm_ext[m,n+1,o-1], spm_ext[m,n+1,o], spm_ext[m,n+1,o+1], spm_ext[m+1,n-1,o-1], spm_ext[m+1,n-1,o], spm_ext[m+1,n-1,o+1], spm_ext[m+1,n,o-1], spm_ext[m+1,n,o], spm_ext[m+1,n,o+1], spm_ext[m+1,n+1,o-1], spm_ext[m+1,n+1,o], spm_ext[m+1,n+1,o+1]] if spm_ext[m,n,o] > np.max(surroundings): res =pd.DataFrame(data=[[m-1,n-1,o-1,spm_ext[m,n,o]]],columns=labels) peaks=peaks.append(res) peaks = peaks.set_index([range(len(peaks))]) return peaks
mit
BhallaLab/moose-full
moose-core/python/moose/recording.py
2
4617
from . import moose as _moose _tick = 8 _base = '/_utils' _path = _base + '/y{0}' _counter = 0 _plots = [] _moose.Neutral( _base ) _defaultFields = { _moose.Compartment : 'Vm', _moose.ZombieCompartment : 'Vm', _moose.HHChannel: 'Gk', _moose.ZombieHHChannel: 'Gk', _moose.HHChannel2D: 'Gk', _moose.SynChan: 'Gk', _moose.CaConc: 'Ca', _moose.ZombieCaConc: 'Ca', _moose.Pool: 'conc', _moose.ZombiePool: 'conc', _moose.ZPool: 'conc', _moose.BufPool: 'conc', _moose.ZombieBufPool: 'conc', _moose.ZBufPool: 'conc', _moose.FuncPool: 'conc', _moose.ZombieFuncPool: 'conc', _moose.ZFuncPool: 'conc', } def _defaultField( obj ): return _defaultFields[ type( obj ) ] def setDt( dt ): '''----------- Description ----------- Sets time-step for recording values. --------- Arguments --------- dt: Time-step for recording values. ------- Returns ------- Nothing.''' _moose.setClock( _tick, dt ) class SetupError( Exception ): pass def _time( npoints = None ): import numpy if npoints is None: try: npoints = len( _plots[ 0 ].vec ) except IndexError: raise SetupError( 'List of time-points cannot be constructed because ' 'no plots have been set up yet.' ) begin = 0.0 end = _moose.Clock( '/clock' ).currentTime return numpy.linspace( begin, end, npoints ) class _Plot( _moose.Table ): def __init__( self, path, obj, field, label ): _moose.Table.__init__( self, path ) self._table = _moose.Table( path ) self.obj = obj self.field = field self.label = label @property def values( self ): return self._table.vec @property def size( self ): return len( self.values ) @property def time( self ): return _time( self.size ) def __iter__( self ): return iter( self.values ) def record( obj, field = None, label = None ): ''' ''' global _counter # Checking if object is an iterable like list or a tuple, but not a string. if hasattr( obj, '__iter__' ): return [ record( o, field, label ) for o in obj ] if isinstance( obj, str ): obj = _moose.element( obj ) if field is None: field = _defaultField( obj ) path = _path.format( _counter ) _counter += 1 p = _Plot( path, obj, field, label ) _plots.append( p ) _moose.connect( p, "requestData", obj, 'get_' + field ) _moose.useClock( _tick, path, "process" ) return p def _label( plot, labelFormat = '{path}.{field}' ): # Over-ride label format if label has been given explicitly. if plot.label: labelFormat = plot.label return labelFormat.format( path = plot.obj.path, name = plot.obj.name, field = plot.field ) def _selectedPlots( selected ): if selected is None: # Returning a copy of this list, instead of reference. The returned # list will be manipulated later. return _plots[ : ] elif isinstance( selected, _Plot ): return [ selected ] else: return selected def saveCSV( fileName, selected = None, delimiter = '\t', header = True, headerCommentCharacter = '#', labelFormat = '{path}.{field}', timeCol = True, timeHeader = 'Time', fileMode = 'w' ): ''' ''' import csv plots = _selectedPlots( selected ) if header: header = [] if timeCol: header.append( timeHeader ) for plot in plots: header.append( _label( plot, labelFormat ) ) header[ 0 ] = headerCommentCharacter + header[ 0 ] if timeCol: plots.insert( 0, _time() ) with open( fileName, fileMode ) as fout: writer = csv.writer( fout, delimiter = delimiter ) if header: writer.writerow( header ) writer.writerows( list(zip( *plots )) ) def saveXPLOT( fileName, selected = None, labelFormat = '{path}.{field}', fileMode = 'w' ): ''' ''' plots = _selectedPlots( selected ) with open( fileName, fileMode ) as fout: write = lambda line: fout.write( line + '\n' ) for ( i, plot ) in enumerate( plots ): label = '/plotname ' + _label( plot, labelFormat ) if i > 0: write( '' ) write( '/newplot' ) write( label ) for value in plot: write( str( value ) ) def show( selected = None, combine = True, labelFormat = '{path}.{field}', xLabel = 'Time (s)', yLabel = '{field}' ): ''' ''' try: from matplotlib import pyplot as plt except ImportError: print("Warning: recording.show(): Cannot find 'matplotlib'. Not showing plots.") return plots = _selectedPlots( selected ) if combine: plt.figure() for plot in plots: if not combine: plt.figure() print(_label( plot )) plt.plot( plot.time, plot.values, label = _label( plot ) ) plt.legend() plt.show() def HDF5(): pass
gpl-2.0
Achuth17/scikit-learn
benchmarks/bench_plot_lasso_path.py
301
4003
"""Benchmarks of Lasso regularization path computation using Lars and CD The input data is mostly low rank but is a fat infinite tail. """ from __future__ import print_function from collections import defaultdict import gc import sys from time import time import numpy as np from sklearn.linear_model import lars_path from sklearn.linear_model import lasso_path from sklearn.datasets.samples_generator import make_regression def compute_bench(samples_range, features_range): it = 0 results = defaultdict(lambda: []) max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print('====================') print('Iteration %03d of %03d' % (it, max_it)) print('====================') dataset_kwargs = { 'n_samples': n_samples, 'n_features': n_features, 'n_informative': n_features / 10, 'effective_rank': min(n_samples, n_features) / 10, #'effective_rank': None, 'bias': 0.0, } print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) X, y = make_regression(**dataset_kwargs) gc.collect() print("benchmarking lars_path (with Gram):", end='') sys.stdout.flush() tstart = time() G = np.dot(X.T, X) # precomputed Gram matrix Xy = np.dot(X.T, y) lars_path(X, y, Xy=Xy, Gram=G, method='lasso') delta = time() - tstart print("%0.3fs" % delta) results['lars_path (with Gram)'].append(delta) gc.collect() print("benchmarking lars_path (without Gram):", end='') sys.stdout.flush() tstart = time() lars_path(X, y, method='lasso') delta = time() - tstart print("%0.3fs" % delta) results['lars_path (without Gram)'].append(delta) gc.collect() print("benchmarking lasso_path (with Gram):", end='') sys.stdout.flush() tstart = time() lasso_path(X, y, precompute=True) delta = time() - tstart print("%0.3fs" % delta) results['lasso_path (with Gram)'].append(delta) gc.collect() print("benchmarking lasso_path (without Gram):", end='') sys.stdout.flush() tstart = time() lasso_path(X, y, precompute=False) delta = time() - tstart print("%0.3fs" % delta) results['lasso_path (without Gram)'].append(delta) return results if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection import matplotlib.pyplot as plt samples_range = np.linspace(10, 2000, 5).astype(np.int) features_range = np.linspace(10, 2000, 5).astype(np.int) results = compute_bench(samples_range, features_range) max_time = max(max(t) for t in results.values()) fig = plt.figure('scikit-learn Lasso path benchmark results') i = 1 for c, (label, timings) in zip('bcry', sorted(results.items())): ax = fig.add_subplot(2, 2, i, projection='3d') X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z.T, cstride=1, rstride=1, color=c, alpha=0.8) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) #ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') ax.set_zlabel('Time (s)') ax.set_zlim3d(0.0, max_time * 1.1) ax.set_title(label) #ax.legend() i += 1 plt.show()
bsd-3-clause
EntilZha/qb
guesser/classify/learn_classifiers.py
1
2269
from numpy import * import nltk.classify.util from util.math_util import * from nltk.classify.scikitlearn import SklearnClassifier from sklearn.linear_model import LogisticRegression from scipy import stats from collections import Counter import cPickle, csv, random, argparse # trains a classifier, saves it to disk, and evaluates on heldout data def evaluate(train_qs, test_qs, params, d): data = [train_qs, test_qs] (W, b, W2, b2, W3, b3, L) = params train_feats = [] test_feats = [] for tt, split in enumerate(data): for qs, ans in split: prev_qs = zeros((d, 1)) prev_sum = zeros((d, 1)) count = 0. history = [] for dist in qs: sent = qs[dist] # input is average of all nouns in sentence # av = average(L[:, sent], axis=1).reshape((d, 1)) history += sent prev_sum += sum(L[:, sent], axis=1).reshape((d, 1)) if len(history) == 0: av = zeros((d, 1)) else: av = prev_sum / len(history) # apply non-linearity p = relu(W.dot(av) + b) p2 = relu(W2.dot(p) + b2) p3 = relu(W3.dot(p2) + b3) curr_feats = {} for dim, val in ndenumerate(p3): curr_feats['__' + str(dim)] = val if tt == 0: train_feats.append( (curr_feats, ans[0]) ) else: test_feats.append( (curr_feats, ans[0]) ) print 'total training instances:', len(train_feats) print 'total testing instances:', len(test_feats) random.shuffle(train_feats) # can modify this classifier / do grid search on regularization parameter using sklearn classifier = SklearnClassifier(LogisticRegression(C=10)) classifier.train(train_feats) print 'accuracy train:', nltk.classify.util.accuracy(classifier, train_feats) print 'accuracy test:', nltk.classify.util.accuracy(classifier, test_feats) print '' print 'dumping classifier' cPickle.dump(classifier, open('data/deep/classifier', 'wb'), protocol=cPickle.HIGHEST_PROTOCOL)
mit
bowenliu16/deepchem
deepchem/utils/save.py
1
4968
""" Simple utils to save and load from disk. """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals # TODO(rbharath): Use standard joblib once old-data has been regenerated. import joblib from sklearn.externals import joblib as old_joblib import gzip import pickle import pandas as pd import numpy as np import os from rdkit import Chem def log(string, verbose=True): """Print string if verbose.""" if verbose: print(string) def save_to_disk(dataset, filename, compress=3): """Save a dataset to file.""" joblib.dump(dataset, filename, compress=compress) def get_input_type(input_file): """Get type of input file. Must be csv/pkl.gz/sdf file.""" filename, file_extension = os.path.splitext(input_file) # If gzipped, need to compute extension again if file_extension == ".gz": filename, file_extension = os.path.splitext(filename) if file_extension == ".csv": return "csv" elif file_extension == ".pkl": return "pandas-pickle" elif file_extension == ".joblib": return "pandas-joblib" elif file_extension == ".sdf": return "sdf" else: raise ValueError("Unrecognized extension %s" % file_extension) def load_data(input_files, shard_size=None, verbose=True): """Loads data from disk. For CSV files, supports sharded loading for large files. """ if not len(input_files): return input_type = get_input_type(input_files[0]) if input_type == "sdf": if shard_size is not None: log("Ignoring shard_size for sdf input.", verbose) for value in load_sdf_files(input_files): yield value elif input_type == "csv": for value in load_csv_files(input_files, shard_size, verbose=verbose): yield value elif input_type == "pandas-pickle": for input_file in input_files: yield load_pickle_from_disk(input_file) def load_sdf_files(input_files): """Load SDF file into dataframe.""" dataframes = [] for input_file in input_files: # Tasks are stored in .sdf.csv file raw_df = next(load_csv_files([input_file+".csv"], shard_size=None)) # Structures are stored in .sdf file print("Reading structures from %s." % input_file) suppl = Chem.SDMolSupplier(str(input_file), False, False, False) df_rows = [] for ind, mol in enumerate(suppl): if mol is not None: smiles = Chem.MolToSmiles(mol) df_rows.append([ind,smiles,mol]) mol_df = pd.DataFrame(df_rows, columns=('mol_id', 'smiles', 'mol')) dataframes.append(pd.concat([mol_df, raw_df], axis=1, join='inner')) return dataframes def load_csv_files(filenames, shard_size=None, verbose=True): """Load data as pandas dataframe.""" # First line of user-specified CSV *must* be header. shard_num = 1 for filename in filenames: if shard_size is None: yield pd.read_csv(filename) else: log("About to start loading CSV from %s" % filename, verbose) for df in pd.read_csv(filename, chunksize=shard_size): log("Loading shard %d of size %s." % (shard_num, str(shard_size)), verbose) df = df.replace(np.nan, str(""), regex=True) shard_num += 1 yield df def load_from_disk(filename): """Load a dataset from file.""" name = filename if os.path.splitext(name)[1] == ".gz": name = os.path.splitext(name)[0] if os.path.splitext(name)[1] == ".pkl": return load_pickle_from_disk(filename) elif os.path.splitext(name)[1] == ".joblib": try: return joblib.load(filename) except KeyError: # Try older joblib version for legacy files. return old_joblib.load(filename) elif os.path.splitext(name)[1] == ".csv": # First line of user-specified CSV *must* be header. df = pd.read_csv(filename, header=0) df = df.replace(np.nan, str(""), regex=True) return df else: raise ValueError("Unrecognized filetype for %s" % filename) def load_sharded_csv(filenames): """Load a dataset from multiple files. Each file MUST have same column headers""" dataframes = [] for name in filenames: placeholder_name = name if os.path.splitext(name)[1] == ".gz": name = os.path.splitext(name)[0] if os.path.splitext(name)[1] == ".csv": # First line of user-specified CSV *must* be header. df = pd.read_csv(placeholder_name, header=0) df = df.replace(np.nan, str(""), regex=True) dataframes.append(df) else: raise ValueError("Unrecognized filetype for %s" % filename) #combine dataframes combined_df = dataframes[0] for i in range(0, len(dataframes) - 1): combined_df = combined_df.append(dataframes[i+1]) combined_df = combined_df.reset_index(drop=True) return combined_df def load_pickle_from_disk(filename): """Load dataset from pickle file.""" if ".gz" in filename: with gzip.open(filename, "rb") as f: df = pickle.load(f) else: with open(filename, "rb") as f: df = pickle.load(f) return df
gpl-3.0
cwhanse/pvlib-python
pvlib/tests/iotools/test_psm3.py
2
6112
""" test iotools for PSM3 """ import os from pvlib.iotools import psm3 from ..conftest import DATA_DIR, RERUNS, RERUNS_DELAY import numpy as np import pandas as pd import pytest from requests import HTTPError from io import StringIO import warnings TMY_TEST_DATA = DATA_DIR / 'test_psm3_tmy-2017.csv' YEAR_TEST_DATA = DATA_DIR / 'test_psm3_2017.csv' YEAR_TEST_DATA_5MIN = DATA_DIR / 'test_psm3_2019_5min.csv' MANUAL_TEST_DATA = DATA_DIR / 'test_read_psm3.csv' LATITUDE, LONGITUDE = 40.5137, -108.5449 HEADER_FIELDS = [ 'Source', 'Location ID', 'City', 'State', 'Country', 'Latitude', 'Longitude', 'Time Zone', 'Elevation', 'Local Time Zone', 'Dew Point Units', 'DHI Units', 'DNI Units', 'GHI Units', 'Temperature Units', 'Pressure Units', 'Wind Direction Units', 'Wind Speed', 'Surface Albedo Units', 'Version'] PVLIB_EMAIL = '[email protected]' @pytest.fixture(scope="module") def nrel_api_key(): """Supplies pvlib-python's NREL Developer Network API key. Azure Pipelines CI utilizes a secret variable set to NREL_API_KEY to mitigate failures associated with using the default key of "DEMO_KEY". A user is capable of using their own key this way if desired however the default key should suffice for testing purposes. """ try: demo_key = os.environ["NREL_API_KEY"] except KeyError: warnings.warn( "WARNING: NREL API KEY environment variable not set! " "Using DEMO_KEY instead. Unexpected failures may occur." ) demo_key = 'DEMO_KEY' return demo_key def assert_psm3_equal(header, data, expected): """check consistency of PSM3 data""" # check datevec columns assert np.allclose(data.Year, expected.Year) assert np.allclose(data.Month, expected.Month) assert np.allclose(data.Day, expected.Day) assert np.allclose(data.Hour, expected.Hour) assert np.allclose(data.Minute, expected.Minute) # check data columns assert np.allclose(data.GHI, expected.GHI) assert np.allclose(data.DNI, expected.DNI) assert np.allclose(data.DHI, expected.DHI) assert np.allclose(data.Temperature, expected.Temperature) assert np.allclose(data.Pressure, expected.Pressure) assert np.allclose(data['Dew Point'], expected['Dew Point']) assert np.allclose(data['Surface Albedo'], expected['Surface Albedo']) assert np.allclose(data['Wind Speed'], expected['Wind Speed']) assert np.allclose(data['Wind Direction'], expected['Wind Direction']) # check header for hf in HEADER_FIELDS: assert hf in header # check timezone assert (data.index.tzinfo.zone == 'Etc/GMT%+d' % -header['Time Zone']) @pytest.mark.remote_data @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY) def test_get_psm3_tmy(nrel_api_key): """test get_psm3 with a TMY""" header, data = psm3.get_psm3(LATITUDE, LONGITUDE, nrel_api_key, PVLIB_EMAIL, names='tmy-2017') expected = pd.read_csv(TMY_TEST_DATA) assert_psm3_equal(header, data, expected) @pytest.mark.remote_data @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY) def test_get_psm3_singleyear(nrel_api_key): """test get_psm3 with a single year""" header, data = psm3.get_psm3(LATITUDE, LONGITUDE, nrel_api_key, PVLIB_EMAIL, names='2017', interval=30) expected = pd.read_csv(YEAR_TEST_DATA) assert_psm3_equal(header, data, expected) @pytest.mark.remote_data @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY) def test_get_psm3_5min(nrel_api_key): """test get_psm3 for 5-minute data""" header, data = psm3.get_psm3(LATITUDE, LONGITUDE, nrel_api_key, PVLIB_EMAIL, names='2019', interval=5) assert len(data) == 525600/5 first_day = data.loc['2019-01-01'] expected = pd.read_csv(YEAR_TEST_DATA_5MIN) assert_psm3_equal(header, first_day, expected) @pytest.mark.remote_data @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY) def test_get_psm3_check_leap_day(nrel_api_key): _, data_2012 = psm3.get_psm3(LATITUDE, LONGITUDE, nrel_api_key, PVLIB_EMAIL, names="2012", interval=60, leap_day=True) assert len(data_2012) == (8760 + 24) @pytest.mark.parametrize('latitude, longitude, api_key, names, interval', [(LATITUDE, LONGITUDE, 'BAD', 'tmy-2017', 60), (51, -5, nrel_api_key, 'tmy-2017', 60), (LATITUDE, LONGITUDE, nrel_api_key, 'bad', 60), (LATITUDE, LONGITUDE, nrel_api_key, '2017', 15), ]) @pytest.mark.remote_data @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY) def test_get_psm3_tmy_errors( latitude, longitude, api_key, names, interval ): """Test get_psm3() for multiple erroneous input scenarios. These scenarios include: * Bad API key -> HTTP 403 forbidden because api_key is rejected * Bad latitude/longitude -> Coordinates were not found in the NSRDB. * Bad name -> Name is not one of the available options. * Bad interval, single year -> Intervals can only be 30 or 60 minutes. """ with pytest.raises(HTTPError) as excinfo: psm3.get_psm3(latitude, longitude, api_key, PVLIB_EMAIL, names=names, interval=interval) # ensure the HTTPError caught isn't due to overuse of the API key assert "OVER_RATE_LIMIT" not in str(excinfo.value) @pytest.fixture def io_input(request): """file-like object for parse_psm3""" with MANUAL_TEST_DATA.open() as f: data = f.read() obj = StringIO(data) return obj def test_parse_psm3(io_input): """test parse_psm3""" header, data = psm3.parse_psm3(io_input) expected = pd.read_csv(YEAR_TEST_DATA) assert_psm3_equal(header, data, expected) def test_read_psm3(): """test read_psm3""" header, data = psm3.read_psm3(MANUAL_TEST_DATA) expected = pd.read_csv(YEAR_TEST_DATA) assert_psm3_equal(header, data, expected)
bsd-3-clause
georgetown-analytics/machine-learning
archive/text_analytics/solutions/exercise_02_sentiment.py
254
2795
"""Build a sentiment analysis / polarity model Sentiment analysis can be casted as a binary text classification problem, that is fitting a linear classifier on features extracted from the text of the user messages so as to guess wether the opinion of the author is positive or negative. In this examples we will use a movie review dataset. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics if __name__ == "__main__": # NOTE: we put the following in a 'if __name__ == "__main__"' protected # block to be able to use a multi-core grid search that also works under # Windows, see: http://docs.python.org/library/multiprocessing.html#windows # The multiprocessing module is used as the backend of joblib.Parallel # that is used when n_jobs != 1 in GridSearchCV # the training data folder must be passed as first argument movie_reviews_data_folder = sys.argv[1] dataset = load_files(movie_reviews_data_folder, shuffle=False) print("n_samples: %d" % len(dataset.data)) # split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.25, random_state=None) # TASK: Build a vectorizer / classifier pipeline that filters out tokens # that are too rare or too frequent pipeline = Pipeline([ ('vect', TfidfVectorizer(min_df=3, max_df=0.95)), ('clf', LinearSVC(C=1000)), ]) # TASK: Build a grid search to find out whether unigrams or bigrams are # more useful. # Fit the pipeline on the training set using grid search for the parameters parameters = { 'vect__ngram_range': [(1, 1), (1, 2)], } grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1) grid_search.fit(docs_train, y_train) # TASK: print the cross-validated scores for the each parameters set # explored by the grid search print(grid_search.grid_scores_) # TASK: Predict the outcome on the testing set and store it in a variable # named y_predicted y_predicted = grid_search.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Print and plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) # import matplotlib.pyplot as plt # plt.matshow(cm) # plt.show()
mit
CompPhysics/MachineLearning
doc/src/Regression/fit.py
1
2660
# Common imports import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression, Ridge, Lasso from sklearn.model_selection import train_test_split from sklearn.utils import resample from sklearn.metrics import mean_squared_error # Where to save the figures and data files PROJECT_ROOT_DIR = "Results" FIGURE_ID = "Results/FigureFiles" DATA_ID = "DataFiles/" if not os.path.exists(PROJECT_ROOT_DIR): os.mkdir(PROJECT_ROOT_DIR) if not os.path.exists(FIGURE_ID): os.makedirs(FIGURE_ID) if not os.path.exists(DATA_ID): os.makedirs(DATA_ID) def image_path(fig_id): return os.path.join(FIGURE_ID, fig_id) def data_path(dat_id): return os.path.join(DATA_ID, dat_id) def save_fig(fig_id): plt.savefig(image_path(fig_id) + ".png", format='png') infile = open(data_path("EoS.csv"),'r') # Read the EoS data as csv file and organize the data into two arrays with density and energies EoS = pd.read_csv(infile, names=('Density', 'Energy')) EoS['Energy'] = pd.to_numeric(EoS['Energy'], errors='coerce') EoS = EoS.dropna() Energies = EoS['Energy'] Density = EoS['Density'] # The design matrix now as function of various polytrops Maxpolydegree = 30 X = np.zeros((len(Density),Maxpolydegree)) X[:,0] = 1.0 testerror = np.zeros(Maxpolydegree) trainingerror = np.zeros(Maxpolydegree) polynomial = np.zeros(Maxpolydegree) trials = 100 for polydegree in range(1, Maxpolydegree): polynomial[polydegree] = polydegree for degree in range(polydegree): X[:,degree] = Density**(degree/3.0) # loop over trials in order to estimate the expectation value of the MSE testerror[polydegree] = 0.0 trainingerror[polydegree] = 0.0 for samples in range(trials): x_train, x_test, y_train, y_test = train_test_split(X, Energies, test_size=0.2) model = LinearRegression(fit_intercept=True).fit(x_train, y_train) ypred = model.predict(x_train) ytilde = model.predict(x_test) testerror[polydegree] += mean_squared_error(y_test, ytilde) trainingerror[polydegree] += mean_squared_error(y_train, ypred) testerror[polydegree] /= trials trainingerror[polydegree] /= trials print("Degree of polynomial: %3d"% polynomial[polydegree]) print("Mean squared error on training data: %.8f" % trainingerror[polydegree]) print("Mean squared error on test data: %.8f" % testerror[polydegree]) plt.plot(polynomial, np.log10(trainingerror), label='Training Error') plt.plot(polynomial, np.log10(testerror), label='Test Error') plt.xlabel('Polynomial degree') plt.ylabel('log10[MSE]') plt.legend() plt.show()
cc0-1.0
lmallin/coverage_test
python_venv/lib/python2.7/site-packages/pandas/tests/test_algos.py
3
57570
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from pandas import (Series, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import pandas as pd from pandas import compat from pandas._libs import (groupby as libgroupby, algos as libalgos, hashtable) from pandas._libs.hashtable import unique_label_indices from pandas.compat import lrange, range import pandas.core.algorithms as algos import pandas.util.testing as tm from pandas.compat.numpy import np_array_datetime64_compat from pandas.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(to_match, values, np.nan)) expected = Series(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_series_equal(result, expected) s = Series(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(s, [2, 4], np.nan)) expected = Series(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_series_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(to_match, values, np.nan)) expected = Series(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_series_equal(result, expected) class TestSafeSort(object): def test_basic_sort(self): values = [3, 1, 2, 0, 4] result = algos.safe_sort(values) expected = np.array([0, 1, 2, 3, 4]) tm.assert_numpy_array_equal(result, expected) values = list("baaacb") result = algos.safe_sort(values) expected = np.array(list("aaabbc")) tm.assert_numpy_array_equal(result, expected) values = [] result = algos.safe_sort(values) expected = np.array([]) tm.assert_numpy_array_equal(result, expected) def test_labels(self): values = [3, 1, 2, 0, 4] expected = np.array([0, 1, 2, 3, 4]) labels = [0, 1, 1, 2, 3, 0, -1, 4] result, result_labels = algos.safe_sort(values, labels) expected_labels = np.array([3, 1, 1, 2, 0, 3, -1, 4], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_labels, expected_labels) # na_sentinel labels = [0, 1, 1, 2, 3, 0, 99, 4] result, result_labels = algos.safe_sort(values, labels, na_sentinel=99) expected_labels = np.array([3, 1, 1, 2, 0, 3, 99, 4], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_labels, expected_labels) # out of bound indices labels = [0, 101, 102, 2, 3, 0, 99, 4] result, result_labels = algos.safe_sort(values, labels) expected_labels = np.array([3, -1, -1, 2, 0, 3, -1, 4], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_labels, expected_labels) labels = [] result, result_labels = algos.safe_sort(values, labels) expected_labels = np.array([], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_labels, expected_labels) def test_mixed_integer(self): values = np.array(['b', 1, 0, 'a', 0, 'b'], dtype=object) result = algos.safe_sort(values) expected = np.array([0, 0, 1, 'a', 'b', 'b'], dtype=object) tm.assert_numpy_array_equal(result, expected) values = np.array(['b', 1, 0, 'a'], dtype=object) labels = [0, 1, 2, 3, 0, -1, 1] result, result_labels = algos.safe_sort(values, labels) expected = np.array([0, 1, 'a', 'b'], dtype=object) expected_labels = np.array([3, 1, 0, 2, 3, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_labels, expected_labels) def test_unsortable(self): # GH 13714 arr = np.array([1, 2, datetime.now(), 0, 3], dtype=object) if compat.PY2 and not pd._np_version_under1p10: # RuntimeWarning: tp_compare didn't return -1 or -2 for exception with tm.assert_produces_warning(RuntimeWarning): pytest.raises(TypeError, algos.safe_sort, arr) else: pytest.raises(TypeError, algos.safe_sort, arr) def test_exceptions(self): with tm.assert_raises_regex(TypeError, "Only list-like objects are allowed"): algos.safe_sort(values=1) with tm.assert_raises_regex(TypeError, "Only list-like objects or None"): algos.safe_sort(values=[0, 1, 2], labels=1) with tm.assert_raises_regex(ValueError, "values should be unique"): algos.safe_sort(values=[0, 1, 2, 1], labels=[0, 1]) class TestFactorize(object): def test_basic(self): labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( uniques, np.array(['a', 'b', 'c'], dtype=object)) labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(uniques, exp) def test_mixed(self): # doc example reshaping.rst x = Series(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = pd.Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = pd.Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(uniques, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Series([v1, v1, v1, v2, v2, v1]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(uniques, exp) # period v1 = pd.Period('201302', freq='M') v2 = pd.Period('201303', freq='M') x = Series([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, uniques = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2])) labels, uniques = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2])) # GH 5986 v1 = pd.to_timedelta('1 day 1 min') v2 = pd.to_timedelta('1 day') x = Series([v1, v2, v1, v1, v2, v2, v1]) labels, uniques = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.to_timedelta([v1, v2])) labels, uniques = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should map to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = hashtable.Factorizer(len(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isnull(key), expected == na_sentinel) # nan still maps to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isnull(key), expected == na_sentinel) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if pd._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63, 1], dtype=np.uint64) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63, -1], dtype=object) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.unique(arr) assert isinstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).astype('O') result = algos.unique(arr) assert isinstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): len(algos.unique(lst)) def test_on_index_object(self): mindex = pd.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = mindex.values expected.sort() mindex = mindex.repeat(2) result = pd.unique(mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = pd.to_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.unique(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Series(dt_index) result = algos.unique(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.unique(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = pd.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.unique(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Series(td_index) result = algos.unique(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.unique(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Series([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.unique(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = pd.unique(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = pd.Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = pd.Categorical(list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = pd.Categorical(list('baabc')) result = c.unique() tm.assert_categorical_equal(result, expected) result = algos.unique(c) tm.assert_categorical_equal(result, expected) c = pd.Categorical(list('baabc'), ordered=True) result = c.unique() tm.assert_categorical_equal(result, expected_o) result = algos.unique(c) tm.assert_categorical_equal(result, expected_o) # Series of categorical dtype s = Series(pd.Categorical(list('baabc')), name='foo') result = s.unique() tm.assert_categorical_equal(result, expected) result = pd.unique(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = pd.CategoricalIndex(pd.Categorical(list('baabc'), categories=list('bac'))) expected = pd.CategoricalIndex(expected) result = ci.unique() tm.assert_index_equal(result, expected) result = pd.unique(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Series( pd.Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).unique() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = pd.Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).unique() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = pd.unique( Series(pd.Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = pd.unique(pd.Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = pd.unique(Series([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = pd.unique(Series([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = pd.unique(Series([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = pd.unique(pd.Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = pd.unique(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = pd.unique(Series(pd.Categorical(list('aabc')))) expected = pd.Categorical(list('abc')) tm.assert_categorical_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.isin(1, 1)) pytest.raises(TypeError, lambda: algos.isin(1, [1])) pytest.raises(TypeError, lambda: algos.isin([1], 1)) def test_basic(self): result = algos.isin([1, 2], [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(np.array([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series([1, 2]), Series([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series([1, 2]), set([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(['a', 'b'], ['a']) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series(['a', 'b']), Series(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series(['a', 'b']), set(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(['a', 'b'], [1]) expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) def test_i8(self): arr = pd.date_range('20130101', periods=3).values result = algos.isin(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) arr = pd.timedelta_range('1 day', periods=3).values result = algos.isin(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) def test_large(self): s = pd.date_range('20000101', periods=2000000, freq='s').values result = algos.isin(s, s[0:2]) expected = np.zeros(len(s), dtype=bool) expected[0] = True expected[1] = True tm.assert_numpy_array_equal(result, expected) class TestValueCounts(object): def test_value_counts(self): np.random.seed(1234) from pandas.core.reshape.tile import cut arr = np.random.randn(4) factor = cut(arr, 4) # assert isinstance(factor, n) result = algos.value_counts(factor) breaks = [-1.194, -0.535, 0.121, 0.777, 1.433] expected_index = pd.IntervalIndex.from_breaks( breaks).astype('category') expected = Series([1, 1, 1, 1], index=expected_index) tm.assert_series_equal(result.sort_index(), expected.sort_index()) def test_value_counts_bins(self): s = [1, 2, 3, 4] result = algos.value_counts(s, bins=1) expected = Series([4], index=IntervalIndex.from_tuples([(0.996, 4.0)])) tm.assert_series_equal(result, expected) result = algos.value_counts(s, bins=2, sort=False) expected = Series([2, 2], index=IntervalIndex.from_tuples([(0.996, 2.5), (2.5, 4.0)])) tm.assert_series_equal(result, expected) def test_value_counts_dtypes(self): result = algos.value_counts([1, 1.]) assert len(result) == 1 result = algos.value_counts([1, 1.], bins=1) assert len(result) == 1 result = algos.value_counts(Series([1, 1., '1'])) # object assert len(result) == 2 pytest.raises(TypeError, lambda s: algos.value_counts(s, bins=1), ['1', 1]) def test_value_counts_nat(self): td = Series([np.timedelta64(10000), pd.NaT], dtype='timedelta64[ns]') dt = pd.to_datetime(['NaT', '2014-01-01']) for s in [td, dt]: vc = algos.value_counts(s) vc_with_na = algos.value_counts(s, dropna=False) assert len(vc) == 1 assert len(vc_with_na) == 2 exp_dt = Series({Timestamp('2014-01-01 00:00:00'): 1}) tm.assert_series_equal(algos.value_counts(dt), exp_dt) # TODO same for (timedelta) def test_value_counts_datetime_outofbounds(self): # GH 13663 s = Series([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1), datetime(3000, 1, 1), datetime(3000, 1, 1)]) res = s.value_counts() exp_index = pd.Index([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1)], dtype=object) exp = Series([3, 2, 1], index=exp_index) tm.assert_series_equal(res, exp) # GH 12424 res = pd.to_datetime(Series(['2362-01-01', np.nan]), errors='ignore') exp = Series(['2362-01-01', np.nan], dtype=object) tm.assert_series_equal(res, exp) def test_categorical(self): s = Series(pd.Categorical(list('aaabbc'))) result = s.value_counts() expected = Series([3, 2, 1], index=pd.CategoricalIndex(['a', 'b', 'c'])) tm.assert_series_equal(result, expected, check_index_type=True) # preserve order? s = s.cat.as_ordered() result = s.value_counts() expected.index = expected.index.as_ordered() tm.assert_series_equal(result, expected, check_index_type=True) def test_categorical_nans(self): s = Series(pd.Categorical(list('aaaaabbbcc'))) # 4,3,2,1 (nan) s.iloc[1] = np.nan result = s.value_counts() expected = Series([4, 3, 2], index=pd.CategoricalIndex( ['a', 'b', 'c'], categories=['a', 'b', 'c'])) tm.assert_series_equal(result, expected, check_index_type=True) result = s.value_counts(dropna=False) expected = Series([ 4, 3, 2, 1 ], index=CategoricalIndex(['a', 'b', 'c', np.nan])) tm.assert_series_equal(result, expected, check_index_type=True) # out of order s = Series(pd.Categorical( list('aaaaabbbcc'), ordered=True, categories=['b', 'a', 'c'])) s.iloc[1] = np.nan result = s.value_counts() expected = Series([4, 3, 2], index=pd.CategoricalIndex( ['a', 'b', 'c'], categories=['b', 'a', 'c'], ordered=True)) tm.assert_series_equal(result, expected, check_index_type=True) result = s.value_counts(dropna=False) expected = Series([4, 3, 2, 1], index=pd.CategoricalIndex( ['a', 'b', 'c', np.nan], categories=['b', 'a', 'c'], ordered=True)) tm.assert_series_equal(result, expected, check_index_type=True) def test_categorical_zeroes(self): # keep the `d` category with 0 s = Series(pd.Categorical( list('bbbaac'), categories=list('abcd'), ordered=True)) result = s.value_counts() expected = Series([3, 2, 1, 0], index=pd.Categorical( ['b', 'a', 'c', 'd'], categories=list('abcd'), ordered=True)) tm.assert_series_equal(result, expected, check_index_type=True) def test_dropna(self): # https://github.com/pandas-dev/pandas/issues/9443#issuecomment-73719328 tm.assert_series_equal( Series([True, True, False]).value_counts(dropna=True), Series([2, 1], index=[True, False])) tm.assert_series_equal( Series([True, True, False]).value_counts(dropna=False), Series([2, 1], index=[True, False])) tm.assert_series_equal( Series([True, True, False, None]).value_counts(dropna=True), Series([2, 1], index=[True, False])) tm.assert_series_equal( Series([True, True, False, None]).value_counts(dropna=False), Series([2, 1, 1], index=[True, False, np.nan])) tm.assert_series_equal( Series([10.3, 5., 5.]).value_counts(dropna=True), Series([2, 1], index=[5., 10.3])) tm.assert_series_equal( Series([10.3, 5., 5.]).value_counts(dropna=False), Series([2, 1], index=[5., 10.3])) tm.assert_series_equal( Series([10.3, 5., 5., None]).value_counts(dropna=True), Series([2, 1], index=[5., 10.3])) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): result = Series([10.3, 5., 5., None]).value_counts(dropna=False) expected = Series([2, 1, 1], index=[5., 10.3, np.nan]) tm.assert_series_equal(result, expected) def test_value_counts_normalized(self): # GH12558 s = Series([1, 2, np.nan, np.nan, np.nan]) dtypes = (np.float64, np.object, 'M8[ns]') for t in dtypes: s_typed = s.astype(t) result = s_typed.value_counts(normalize=True, dropna=False) expected = Series([0.6, 0.2, 0.2], index=Series([np.nan, 2.0, 1.0], dtype=t)) tm.assert_series_equal(result, expected) result = s_typed.value_counts(normalize=True, dropna=True) expected = Series([0.5, 0.5], index=Series([2.0, 1.0], dtype=t)) tm.assert_series_equal(result, expected) def test_value_counts_uint64(self): arr = np.array([2**63], dtype=np.uint64) expected = Series([1], index=[2**63]) result = algos.value_counts(arr) tm.assert_series_equal(result, expected) arr = np.array([-1, 2**63], dtype=object) expected = Series([1, 1], index=[-1, 2**63]) result = algos.value_counts(arr) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): tm.assert_series_equal(result, expected) class TestDuplicated(object): def test_duplicated_with_nas(self): keys = np.array([0, 1, np.nan, 0, 2, np.nan], dtype=object) result = algos.duplicated(keys) expected = np.array([False, False, False, True, False, True]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated(keys, keep='first') expected = np.array([False, False, False, True, False, True]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated(keys, keep='last') expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated(keys, keep=False) expected = np.array([True, False, True, True, False, True]) tm.assert_numpy_array_equal(result, expected) keys = np.empty(8, dtype=object) for i, t in enumerate(zip([0, 0, np.nan, np.nan] * 2, [0, np.nan, 0, np.nan] * 2)): keys[i] = t result = algos.duplicated(keys) falses = [False] * 4 trues = [True] * 4 expected = np.array(falses + trues) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated(keys, keep='last') expected = np.array(trues + falses) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated(keys, keep=False) expected = np.array(trues + trues) tm.assert_numpy_array_equal(result, expected) def test_numeric_object_likes(self): cases = [np.array([1, 2, 1, 5, 3, 2, 4, 1, 5, 6]), np.array([1.1, 2.2, 1.1, np.nan, 3.3, 2.2, 4.4, 1.1, np.nan, 6.6]), np.array([1 + 1j, 2 + 2j, 1 + 1j, 5 + 5j, 3 + 3j, 2 + 2j, 4 + 4j, 1 + 1j, 5 + 5j, 6 + 6j]), np.array(['a', 'b', 'a', 'e', 'c', 'b', 'd', 'a', 'e', 'f'], dtype=object), np.array([1, 2**63, 1, 3**5, 10, 2**63, 39, 1, 3**5, 7], dtype=np.uint64)] exp_first = np.array([False, False, True, False, False, True, False, True, True, False]) exp_last = np.array([True, True, True, True, False, False, False, False, False, False]) exp_false = exp_first | exp_last for case in cases: res_first = algos.duplicated(case, keep='first') tm.assert_numpy_array_equal(res_first, exp_first) res_last = algos.duplicated(case, keep='last') tm.assert_numpy_array_equal(res_last, exp_last) res_false = algos.duplicated(case, keep=False) tm.assert_numpy_array_equal(res_false, exp_false) # index for idx in [pd.Index(case), pd.Index(case, dtype='category')]: res_first = idx.duplicated(keep='first') tm.assert_numpy_array_equal(res_first, exp_first) res_last = idx.duplicated(keep='last') tm.assert_numpy_array_equal(res_last, exp_last) res_false = idx.duplicated(keep=False) tm.assert_numpy_array_equal(res_false, exp_false) # series for s in [Series(case), Series(case, dtype='category')]: res_first = s.duplicated(keep='first') tm.assert_series_equal(res_first, Series(exp_first)) res_last = s.duplicated(keep='last') tm.assert_series_equal(res_last, Series(exp_last)) res_false = s.duplicated(keep=False) tm.assert_series_equal(res_false, Series(exp_false)) def test_datetime_likes(self): dt = ['2011-01-01', '2011-01-02', '2011-01-01', 'NaT', '2011-01-03', '2011-01-02', '2011-01-04', '2011-01-01', 'NaT', '2011-01-06'] td = ['1 days', '2 days', '1 days', 'NaT', '3 days', '2 days', '4 days', '1 days', 'NaT', '6 days'] cases = [np.array([Timestamp(d) for d in dt]), np.array([Timestamp(d, tz='US/Eastern') for d in dt]), np.array([pd.Period(d, freq='D') for d in dt]), np.array([np.datetime64(d) for d in dt]), np.array([pd.Timedelta(d) for d in td])] exp_first = np.array([False, False, True, False, False, True, False, True, True, False]) exp_last = np.array([True, True, True, True, False, False, False, False, False, False]) exp_false = exp_first | exp_last for case in cases: res_first = algos.duplicated(case, keep='first') tm.assert_numpy_array_equal(res_first, exp_first) res_last = algos.duplicated(case, keep='last') tm.assert_numpy_array_equal(res_last, exp_last) res_false = algos.duplicated(case, keep=False) tm.assert_numpy_array_equal(res_false, exp_false) # index for idx in [pd.Index(case), pd.Index(case, dtype='category'), pd.Index(case, dtype=object)]: res_first = idx.duplicated(keep='first') tm.assert_numpy_array_equal(res_first, exp_first) res_last = idx.duplicated(keep='last') tm.assert_numpy_array_equal(res_last, exp_last) res_false = idx.duplicated(keep=False) tm.assert_numpy_array_equal(res_false, exp_false) # series for s in [Series(case), Series(case, dtype='category'), Series(case, dtype=object)]: res_first = s.duplicated(keep='first') tm.assert_series_equal(res_first, Series(exp_first)) res_last = s.duplicated(keep='last') tm.assert_series_equal(res_last, Series(exp_last)) res_false = s.duplicated(keep=False) tm.assert_series_equal(res_false, Series(exp_false)) def test_unique_index(self): cases = [pd.Index([1, 2, 3]), pd.RangeIndex(0, 3)] for case in cases: assert case.is_unique tm.assert_numpy_array_equal(case.duplicated(), np.array([False, False, False])) class GroupVarTestMixin(object): def test_group_var_generic_1d(self): prng = RandomState(1234) out = (np.nan * np.ones((5, 1))).astype(self.dtype) counts = np.zeros(5, dtype='int64') values = 10 * prng.rand(15, 1).astype(self.dtype) labels = np.tile(np.arange(5), (3, )).astype('int64') expected_out = (np.squeeze(values) .reshape((5, 3), order='F') .std(axis=1, ddof=1) ** 2)[:, np.newaxis] expected_counts = counts + 3 self.algo(out, counts, values, labels) assert np.allclose(out, expected_out, self.rtol) tm.assert_numpy_array_equal(counts, expected_counts) def test_group_var_generic_1d_flat_labels(self): prng = RandomState(1234) out = (np.nan * np.ones((1, 1))).astype(self.dtype) counts = np.zeros(1, dtype='int64') values = 10 * prng.rand(5, 1).astype(self.dtype) labels = np.zeros(5, dtype='int64') expected_out = np.array([[values.std(ddof=1) ** 2]]) expected_counts = counts + 5 self.algo(out, counts, values, labels) assert np.allclose(out, expected_out, self.rtol) tm.assert_numpy_array_equal(counts, expected_counts) def test_group_var_generic_2d_all_finite(self): prng = RandomState(1234) out = (np.nan * np.ones((5, 2))).astype(self.dtype) counts = np.zeros(5, dtype='int64') values = 10 * prng.rand(10, 2).astype(self.dtype) labels = np.tile(np.arange(5), (2, )).astype('int64') expected_out = np.std(values.reshape(2, 5, 2), ddof=1, axis=0) ** 2 expected_counts = counts + 2 self.algo(out, counts, values, labels) assert np.allclose(out, expected_out, self.rtol) tm.assert_numpy_array_equal(counts, expected_counts) def test_group_var_generic_2d_some_nan(self): prng = RandomState(1234) out = (np.nan * np.ones((5, 2))).astype(self.dtype) counts = np.zeros(5, dtype='int64') values = 10 * prng.rand(10, 2).astype(self.dtype) values[:, 1] = np.nan labels = np.tile(np.arange(5), (2, )).astype('int64') expected_out = np.vstack([values[:, 0] .reshape(5, 2, order='F') .std(ddof=1, axis=1) ** 2, np.nan * np.ones(5)]).T.astype(self.dtype) expected_counts = counts + 2 self.algo(out, counts, values, labels) tm.assert_almost_equal(out, expected_out, check_less_precise=6) tm.assert_numpy_array_equal(counts, expected_counts) def test_group_var_constant(self): # Regression test from GH 10448. out = np.array([[np.nan]], dtype=self.dtype) counts = np.array([0], dtype='int64') values = 0.832845131556193 * np.ones((3, 1), dtype=self.dtype) labels = np.zeros(3, dtype='int64') self.algo(out, counts, values, labels) assert counts[0] == 3 assert out[0, 0] >= 0 tm.assert_almost_equal(out[0, 0], 0.0) class TestGroupVarFloat64(GroupVarTestMixin): __test__ = True algo = libgroupby.group_var_float64 dtype = np.float64 rtol = 1e-5 def test_group_var_large_inputs(self): prng = RandomState(1234) out = np.array([[np.nan]], dtype=self.dtype) counts = np.array([0], dtype='int64') values = (prng.rand(10 ** 6) + 10 ** 12).astype(self.dtype) values.shape = (10 ** 6, 1) labels = np.zeros(10 ** 6, dtype='int64') self.algo(out, counts, values, labels) assert counts[0] == 10 ** 6 tm.assert_almost_equal(out[0, 0], 1.0 / 12, check_less_precise=True) class TestGroupVarFloat32(GroupVarTestMixin): __test__ = True algo = libgroupby.group_var_float32 dtype = np.float32 rtol = 1e-2 class TestHashTable(object): def test_lookup_nan(self): xs = np.array([2.718, 3.14, np.nan, -7, 5, 2, 3]) m = hashtable.Float64HashTable() m.map_locations(xs) tm.assert_numpy_array_equal(m.lookup(xs), np.arange(len(xs), dtype=np.int64)) def test_lookup_overflow(self): xs = np.array([1, 2, 2**63], dtype=np.uint64) m = hashtable.UInt64HashTable() m.map_locations(xs) tm.assert_numpy_array_equal(m.lookup(xs), np.arange(len(xs), dtype=np.int64)) def test_get_unique(self): s = Series([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(s.unique(), exp) def test_vector_resize(self): # Test for memory errors after internal vector # reallocations (pull request #7157) def _test_vector_resize(htable, uniques, dtype, nvals): vals = np.array(np.random.randn(1000), dtype=dtype) # get_labels appends to the vector htable.get_labels(vals[:nvals], uniques, 0, -1) # to_array resizes the vector uniques.to_array() htable.get_labels(vals, uniques, 0, -1) test_cases = [ (hashtable.PyObjectHashTable, hashtable.ObjectVector, 'object'), (hashtable.StringHashTable, hashtable.ObjectVector, 'object'), (hashtable.Float64HashTable, hashtable.Float64Vector, 'float64'), (hashtable.Int64HashTable, hashtable.Int64Vector, 'int64'), (hashtable.UInt64HashTable, hashtable.UInt64Vector, 'uint64')] for (tbl, vect, dtype) in test_cases: # resizing to empty is a special case _test_vector_resize(tbl(), vect(), dtype, 0) _test_vector_resize(tbl(), vect(), dtype, 10) def test_quantile(): s = Series(np.random.randn(100)) result = algos.quantile(s, [0, .25, .5, .75, 1.]) expected = algos.quantile(s.values, [0, .25, .5, .75, 1.]) tm.assert_almost_equal(result, expected) def test_unique_label_indices(): a = np.random.randint(1, 1 << 10, 1 << 15).astype('i8') left = unique_label_indices(a) right = np.unique(a, return_index=True)[1] tm.assert_numpy_array_equal(left, right, check_dtype=False) a[np.random.choice(len(a), 10)] = -1 left = unique_label_indices(a) right = np.unique(a, return_index=True)[1][1:] tm.assert_numpy_array_equal(left, right, check_dtype=False) class TestRank(object): def test_scipy_compat(self): tm._skip_if_no_scipy() from scipy.stats import rankdata def _check(arr): mask = ~np.isfinite(arr) arr = arr.copy() result = libalgos.rank_1d_float64(arr) arr[mask] = np.inf exp = rankdata(arr) exp[mask] = nan assert_almost_equal(result, exp) _check(np.array([nan, nan, 5., 5., 5., nan, 1, 2, 3, nan])) _check(np.array([4., nan, 5., 5., 5., nan, 1, 2, 4., nan])) def test_basic(self): exp = np.array([1, 2], dtype=np.float64) for dtype in np.typecodes['AllInteger']: s = Series([1, 100], dtype=dtype) tm.assert_numpy_array_equal(algos.rank(s), exp) def test_uint64_overflow(self): exp = np.array([1, 2], dtype=np.float64) for dtype in [np.float64, np.uint64]: s = Series([1, 2**63], dtype=dtype) tm.assert_numpy_array_equal(algos.rank(s), exp) def test_too_many_ndims(self): arr = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]) msg = "Array with ndim > 2 are not supported" with tm.assert_raises_regex(TypeError, msg): algos.rank(arr) def test_pad_backfill_object_segfault(): old = np.array([], dtype='O') new = np.array([datetime(2010, 12, 31)], dtype='O') result = libalgos.pad_object(old, new) expected = np.array([-1], dtype=np.int64) assert (np.array_equal(result, expected)) result = libalgos.pad_object(new, old) expected = np.array([], dtype=np.int64) assert (np.array_equal(result, expected)) result = libalgos.backfill_object(old, new) expected = np.array([-1], dtype=np.int64) assert (np.array_equal(result, expected)) result = libalgos.backfill_object(new, old) expected = np.array([], dtype=np.int64) assert (np.array_equal(result, expected)) def test_arrmap(): values = np.array(['foo', 'foo', 'bar', 'bar', 'baz', 'qux'], dtype='O') result = libalgos.arrmap_object(values, lambda x: x in ['foo', 'bar']) assert (result.dtype == np.bool_) class TestTseriesUtil(object): def test_combineFunc(self): pass def test_reindex(self): pass def test_isnull(self): pass def test_groupby(self): pass def test_groupby_withnull(self): pass def test_backfill(self): old = Index([1, 5, 10]) new = Index(lrange(12)) filler = libalgos.backfill_int64(old.values, new.values) expect_filler = np.array([0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(filler, expect_filler) # corner case old = Index([1, 4]) new = Index(lrange(5, 10)) filler = libalgos.backfill_int64(old.values, new.values) expect_filler = np.array([-1, -1, -1, -1, -1], dtype=np.int64) tm.assert_numpy_array_equal(filler, expect_filler) def test_pad(self): old = Index([1, 5, 10]) new = Index(lrange(12)) filler = libalgos.pad_int64(old.values, new.values) expect_filler = np.array([-1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2], dtype=np.int64) tm.assert_numpy_array_equal(filler, expect_filler) # corner case old = Index([5, 10]) new = Index(lrange(5)) filler = libalgos.pad_int64(old.values, new.values) expect_filler = np.array([-1, -1, -1, -1, -1], dtype=np.int64) tm.assert_numpy_array_equal(filler, expect_filler) def test_is_lexsorted(): failure = [ np.array([3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), np.array([30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0])] assert (not libalgos.is_lexsorted(failure)) # def test_get_group_index(): # a = np.array([0, 1, 2, 0, 2, 1, 0, 0], dtype=np.int64) # b = np.array([1, 0, 3, 2, 0, 2, 3, 0], dtype=np.int64) # expected = np.array([1, 4, 11, 2, 8, 6, 3, 0], dtype=np.int64) # result = lib.get_group_index([a, b], (3, 4)) # assert(np.array_equal(result, expected)) def test_groupsort_indexer(): a = np.random.randint(0, 1000, 100).astype(np.int64) b = np.random.randint(0, 1000, 100).astype(np.int64) result = libalgos.groupsort_indexer(a, 1000)[0] # need to use a stable sort expected = np.argsort(a, kind='mergesort') assert (np.array_equal(result, expected)) # compare with lexsort key = a * 1000 + b result = libalgos.groupsort_indexer(key, 1000000)[0] expected = np.lexsort((b, a)) assert (np.array_equal(result, expected)) def test_infinity_sort(): # GH 13445 # numpy's argsort can be unhappy if something is less than # itself. Instead, let's give our infinities a self-consistent # ordering, but outside the float extended real line. Inf = libalgos.Infinity() NegInf = libalgos.NegInfinity() ref_nums = [NegInf, float("-inf"), -1e100, 0, 1e100, float("inf"), Inf] assert all(Inf >= x for x in ref_nums) assert all(Inf > x or x is Inf for x in ref_nums) assert Inf >= Inf and Inf == Inf assert not Inf < Inf and not Inf > Inf assert all(NegInf <= x for x in ref_nums) assert all(NegInf < x or x is NegInf for x in ref_nums) assert NegInf <= NegInf and NegInf == NegInf assert not NegInf < NegInf and not NegInf > NegInf for perm in permutations(ref_nums): assert sorted(perm) == ref_nums # smoke tests np.array([libalgos.Infinity()] * 32).argsort() np.array([libalgos.NegInfinity()] * 32).argsort() def test_ensure_platform_int(): arr = np.arange(100, dtype=np.intp) result = libalgos.ensure_platform_int(arr) assert (result is arr) def test_int64_add_overflow(): # see gh-14068 msg = "Overflow in int64 addition" m = np.iinfo(np.int64).max n = np.iinfo(np.int64).min with tm.assert_raises_regex(OverflowError, msg): algos.checked_add_with_arr(np.array([m, m]), m) with tm.assert_raises_regex(OverflowError, msg): algos.checked_add_with_arr(np.array([m, m]), np.array([m, m])) with tm.assert_raises_regex(OverflowError, msg): algos.checked_add_with_arr(np.array([n, n]), n) with tm.assert_raises_regex(OverflowError, msg): algos.checked_add_with_arr(np.array([n, n]), np.array([n, n])) with tm.assert_raises_regex(OverflowError, msg): algos.checked_add_with_arr(np.array([m, n]), np.array([n, n])) with tm.assert_raises_regex(OverflowError, msg): algos.checked_add_with_arr(np.array([m, m]), np.array([m, m]), arr_mask=np.array([False, True])) with tm.assert_raises_regex(OverflowError, msg): algos.checked_add_with_arr(np.array([m, m]), np.array([m, m]), b_mask=np.array([False, True])) with tm.assert_raises_regex(OverflowError, msg): algos.checked_add_with_arr(np.array([m, m]), np.array([m, m]), arr_mask=np.array([False, True]), b_mask=np.array([False, True])) with tm.assert_raises_regex(OverflowError, msg): with tm.assert_produces_warning(RuntimeWarning): algos.checked_add_with_arr(np.array([m, m]), np.array([np.nan, m])) # Check that the nan boolean arrays override whether or not # the addition overflows. We don't check the result but just # the fact that an OverflowError is not raised. with pytest.raises(AssertionError): with tm.assert_raises_regex(OverflowError, msg): algos.checked_add_with_arr(np.array([m, m]), np.array([m, m]), arr_mask=np.array([True, True])) with pytest.raises(AssertionError): with tm.assert_raises_regex(OverflowError, msg): algos.checked_add_with_arr(np.array([m, m]), np.array([m, m]), b_mask=np.array([True, True])) with pytest.raises(AssertionError): with tm.assert_raises_regex(OverflowError, msg): algos.checked_add_with_arr(np.array([m, m]), np.array([m, m]), arr_mask=np.array([True, False]), b_mask=np.array([False, True])) class TestMode(object): def test_no_mode(self): exp = Series([], dtype=np.float64) tm.assert_series_equal(algos.mode([]), exp) def test_mode_single(self): # GH 15714 exp_single = [1] data_single = [1] exp_multi = [1] data_multi = [1, 1] for dt in np.typecodes['AllInteger'] + np.typecodes['Float']: s = Series(data_single, dtype=dt) exp = Series(exp_single, dtype=dt) tm.assert_series_equal(algos.mode(s), exp) s = Series(data_multi, dtype=dt) exp = Series(exp_multi, dtype=dt) tm.assert_series_equal(algos.mode(s), exp) exp = Series([1], dtype=np.int) tm.assert_series_equal(algos.mode([1]), exp) exp = Series(['a', 'b', 'c'], dtype=np.object) tm.assert_series_equal(algos.mode(['a', 'b', 'c']), exp) def test_number_mode(self): exp_single = [1] data_single = [1] * 5 + [2] * 3 exp_multi = [1, 3] data_multi = [1] * 5 + [2] * 3 + [3] * 5 for dt in np.typecodes['AllInteger'] + np.typecodes['Float']: s = Series(data_single, dtype=dt) exp = Series(exp_single, dtype=dt) tm.assert_series_equal(algos.mode(s), exp) s = Series(data_multi, dtype=dt) exp = Series(exp_multi, dtype=dt) tm.assert_series_equal(algos.mode(s), exp) def test_strobj_mode(self): exp = ['b'] data = ['a'] * 2 + ['b'] * 3 s = Series(data, dtype='c') exp = Series(exp, dtype='c') tm.assert_series_equal(algos.mode(s), exp) exp = ['bar'] data = ['foo'] * 2 + ['bar'] * 3 for dt in [str, object]: s = Series(data, dtype=dt) exp = Series(exp, dtype=dt) tm.assert_series_equal(algos.mode(s), exp) def test_datelike_mode(self): exp = Series(['1900-05-03', '2011-01-03', '2013-01-02'], dtype="M8[ns]") s = Series(['2011-01-03', '2013-01-02', '1900-05-03'], dtype='M8[ns]') tm.assert_series_equal(algos.mode(s), exp) exp = Series(['2011-01-03', '2013-01-02'], dtype='M8[ns]') s = Series(['2011-01-03', '2013-01-02', '1900-05-03', '2011-01-03', '2013-01-02'], dtype='M8[ns]') tm.assert_series_equal(algos.mode(s), exp) def test_timedelta_mode(self): exp = Series(['-1 days', '0 days', '1 days'], dtype='timedelta64[ns]') s = Series(['1 days', '-1 days', '0 days'], dtype='timedelta64[ns]') tm.assert_series_equal(algos.mode(s), exp) exp = Series(['2 min', '1 day'], dtype='timedelta64[ns]') s = Series(['1 day', '1 day', '-1 day', '-1 day 2 min', '2 min', '2 min'], dtype='timedelta64[ns]') tm.assert_series_equal(algos.mode(s), exp) def test_mixed_dtype(self): exp = Series(['foo']) s = Series([1, 'foo', 'foo']) tm.assert_series_equal(algos.mode(s), exp) def test_uint64_overflow(self): exp = Series([2**63], dtype=np.uint64) s = Series([1, 2**63, 2**63], dtype=np.uint64) tm.assert_series_equal(algos.mode(s), exp) exp = Series([1, 2**63], dtype=np.uint64) s = Series([1, 2**63], dtype=np.uint64) tm.assert_series_equal(algos.mode(s), exp) def test_categorical(self): c = Categorical([1, 2]) exp = c tm.assert_categorical_equal(algos.mode(c), exp) tm.assert_categorical_equal(c.mode(), exp) c = Categorical([1, 'a', 'a']) exp = Categorical(['a'], categories=[1, 'a']) tm.assert_categorical_equal(algos.mode(c), exp) tm.assert_categorical_equal(c.mode(), exp) c = Categorical([1, 1, 2, 3, 3]) exp = Categorical([1, 3], categories=[1, 2, 3]) tm.assert_categorical_equal(algos.mode(c), exp) tm.assert_categorical_equal(c.mode(), exp) def test_index(self): idx = Index([1, 2, 3]) exp = Series([1, 2, 3], dtype=np.int64) tm.assert_series_equal(algos.mode(idx), exp) idx = Index([1, 'a', 'a']) exp = Series(['a'], dtype=object) tm.assert_series_equal(algos.mode(idx), exp) idx = Index([1, 1, 2, 3, 3]) exp = Series([1, 3], dtype=np.int64) tm.assert_series_equal(algos.mode(idx), exp) exp = Series(['2 min', '1 day'], dtype='timedelta64[ns]') idx = Index(['1 day', '1 day', '-1 day', '-1 day 2 min', '2 min', '2 min'], dtype='timedelta64[ns]') tm.assert_series_equal(algos.mode(idx), exp)
mit
quantumlib/ReCirq
recirq/otoc/parallel_xeb.py
1
31044
# Copyright 2020 Google # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions for performing parallel cross entropy benchmarking.""" from dataclasses import dataclass from typing import Sequence, List, Set, Tuple, Dict, Union, Optional import cirq import numpy as np import pybobyqa from cirq.experiments.cross_entropy_benchmarking import _default_interaction_sequence from matplotlib import pyplot as plt from recirq.otoc.utils import ( bits_to_probabilities, angles_to_fsim, pauli_error_fit, generic_fsim_gate, cz_to_sqrt_iswap, ) _rot_ops = [ cirq.X ** 0.5, cirq.PhasedXPowGate(phase_exponent=0.25, exponent=0.5), cirq.Y ** 0.5, cirq.PhasedXPowGate(phase_exponent=0.75, exponent=0.5), cirq.X ** -0.5, cirq.PhasedXPowGate(phase_exponent=-0.75, exponent=0.5), cirq.Y ** -0.5, cirq.PhasedXPowGate(phase_exponent=-0.25, exponent=0.5), ] _rot_mats = [cirq.unitary(r) for r in _rot_ops] _fsim_angle_labels = [ "theta", "delta_plus", "delta_minus_off_diag", "delta_minus_diag", "phi", ] @dataclass class XEBData: """Class for storing the cycle-dependent fidelities and purities of an XEB experiment. Each field contains two 1D arrays representing the circuit length (i.e. number of cycles) and the corresponding fidelity or purity values. Fields containing 'fit' in their names are fitting results to an exponential decay. """ fidelity_optimized: Tuple[np.ndarray, np.ndarray] fidelity_optimized_fit: Tuple[np.ndarray, np.ndarray] fidelity_unoptimized: Tuple[np.ndarray, np.ndarray] fidelity_unoptimized_fit: Tuple[np.ndarray, np.ndarray] purity: Tuple[np.ndarray, np.ndarray] purity_fit: Tuple[np.ndarray, np.ndarray] @dataclass class ParallelXEBResults: """Class for storing results of a parallel-XEB experiment.""" fitted_gates: Dict[Tuple[Tuple[int, int], Tuple[int, int]], cirq.Circuit] correction_gates: Dict[Tuple[Tuple[int, int], Tuple[int, int]], cirq.Circuit] fitted_angles: Dict[Tuple[Tuple[int, int], Tuple[int, int]], Dict[str, float]] final_errors_optimized: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float] final_errors_unoptimized: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float] purity_errors: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float] raw_data: Dict[Tuple[Tuple[int, int], Tuple[int, int]], XEBData] def plot_xeb_results(xeb_results: ParallelXEBResults) -> None: """Plots the results of a parallel XEB experiment.""" for (q0, q1), xeb_data in xeb_results.raw_data.items(): # Plot the fidelities (both with unoptimized and optimized two-qubit unitaries) and speckle # purities as functions of XEB cycles, for each qubit pair. err_0 = xeb_results.final_errors_unoptimized[(q0, q1)] err_1 = xeb_results.final_errors_optimized[(q0, q1)] err_p = xeb_results.purity_errors[(q0, q1)] fig = plt.figure() plt.plot( xeb_data.fidelity_unoptimized[0], xeb_data.fidelity_unoptimized[1], "ro", figure=fig, label=r"{} and {}, unoptimized [$r_p$ = {}]".format(q0, q1, err_0.__round__(5)), ) plt.plot( xeb_data.fidelity_optimized[0], xeb_data.fidelity_optimized[1], "bo", figure=fig, label=r"{} and {}, optimized [$r_p$ = {}]".format(q0, q1, err_1.__round__(5)), ) plt.plot( xeb_data.purity[0], xeb_data.purity[1], "go", figure=fig, label=r"{} and {}, purity error = {}".format(q0, q1, err_p.__round__(5)), ) plt.plot(xeb_data.fidelity_unoptimized_fit[0], xeb_data.fidelity_unoptimized_fit[1], "r--") plt.plot(xeb_data.fidelity_optimized_fit[0], xeb_data.fidelity_optimized_fit[1], "b--") plt.plot(xeb_data.purity_fit[0], xeb_data.purity_fit[1], "g--") plt.legend() plt.xlabel("Number of Cycles") plt.ylabel(r"XEB Fidelity") num_pairs = len(list(xeb_results.final_errors_optimized.keys())) pair_pos = np.linspace(0, 1, num_pairs) # Plot the integrated histogram of Pauli errors for all pairs. fig_0 = plt.figure() plt.plot( sorted(xeb_results.final_errors_unoptimized.values()), pair_pos, figure=fig_0, label="Unoptimized Unitaries", ) plt.plot( sorted(xeb_results.final_errors_optimized.values()), pair_pos, figure=fig_0, label="Optimized Unitaries", ) plt.plot( sorted(xeb_results.purity_errors.values()), pair_pos, figure=fig_0, label="Purity Errors", ) plt.xlabel(r"Pauli Error Rate, $r_p$") plt.ylabel(r"Integrated Histogram") plt.legend() # Plot the shifts in the FSIM angles derived from fitting the XEB data. fig_1 = plt.figure() for label in _fsim_angle_labels: shifts = [a[label] for a in xeb_results.fitted_angles.values()] plt.plot(sorted(shifts), pair_pos, figure=fig_1, label=label) plt.xlabel(r"FSIM Angle Error (Radian)") plt.ylabel(r"Integrated Histogram") plt.legend() def build_xeb_circuits( qubits: Sequence[cirq.GridQubit], cycles: Sequence[int], benchmark_ops: Sequence[Union[cirq.Moment, Sequence[cirq.Moment]]] = None, random_seed: int = None, sq_rand_nums: Optional[np.ndarray] = None, reverse: bool = False, z_only: bool = False, ancilla: Optional[cirq.GridQubit] = None, cycles_per_echo: Optional[int] = None, light_cones: Optional[List[List[Set[cirq.GridQubit]]]] = None, echo_indices: Optional[np.ndarray] = None, ) -> Tuple[List[cirq.Circuit], np.ndarray]: r"""Builds random circuits for cross entropy benchmarking (XEB). A list of cirq.Circuits of varying lengths are generated, which are made of random single-qubit gates and optional two-qubit gates. Args: qubits: The qubits to be involved in XEB. cycles: The different numbers of cycles the random circuits will have. benchmark_ops: The operations to be inserted between random single-qubit gates. They can be one or more cirq.Moment objects, or None (in which case no operation will be inserted between the random single-qubit gates). random_seed: The random seed for the single-qubit gates. If unspecified, no random seed will be used. sq_rand_nums: The random numbers representing the single-qubit gates. They must be integers from 0 to 7 if the z_only is False, and floats between -1 and 1 if z_only is True. The dimension of sq_rand_nums should be len(qubits) by max(cycles). If unspecified, the gates will be generated in-situ at random. reverse: If True, benchmark_ops will be applied before the random single-qubit gates in each cycle. Otherwise, it will be applied after the random single-qubit gates. z_only: Whether the single-qubit gates are to be random \pi/2 rotations around axes on the equatorial plane of the Bloch sphere (z_only = False), or random rotations around the z-axis (z_only = True). In the former case, the axes of rotations will be chosen randomly from 8 evenly spaced axes ($\pi/4$, $\pi/2$ ... $7\pi/4$ radians from the x-axis). In the latter case, the angles of rotation will be any random value between $-\pi$ and $\pi$. ancilla: If specified, an additional qubit will be included in the circuit which does not interact with the other qubits and only has spin-echo pulses applied to itself. cycles_per_echo: How often a spin-echo (Y gate) gate is to be applied to the ancilla qubit. For example, if the value is 2, a Y gate will be applied every other cycle. light_cones: A list of length 1 or 2, each specifying a lightcone correponding to a list of sets of qubits with the same length as max(cycles). For each cycle, single-qubit gates outside the first lightcone are either removed or replaced with a spin-echo pulse. Single-qubit gates outside the second lightcone, if specified, are always removed. echo_indices: An array with the same dimension as sq_rand_nums and random integer values of 1, 2, 3 or 4. They specify the spin-echo pulses applied to qubits outside the first lightcone, which can be +/-X or +/-Y gates. Returns: all_circuits: A list of random circuits, each containing a specified number of cycles. sq_gate_indices: An NxM array, where N is the number of qubits and M is the maximnum number of cycles. The array elements are the indices for the random single-qubit gates. """ if light_cones is not None: if len(light_cones) > 2: raise ValueError("light_cones may only have length 1 or 2") if benchmark_ops is not None: num_d = len(benchmark_ops) else: num_d = 0 max_cycles = max(cycles) single_rots, sq_gate_indices = _random_rotations( qubits, max_cycles, random_seed, sq_rand_nums, light_cones, echo_indices, z_rotations_only=z_only, ) all_circuits = [] # type: List[cirq.Circuit] for num_cycles in cycles: circuit_exp = cirq.Circuit() for i in range(num_cycles): c = i + 1 if not reverse else num_cycles - i if ancilla is not None and cycles_per_echo is not None: if c % cycles_per_echo == 0: op_list = [cirq.Y(ancilla)] op_list.extend(single_rots[i]) rots = cirq.Moment(op_list) else: rots = cirq.Moment(single_rots[i]) else: rots = cirq.Moment(single_rots[i]) if reverse: if benchmark_ops is not None: circuit_exp.append(benchmark_ops[i % num_d]) circuit_exp.append(rots, strategy=cirq.InsertStrategy.NEW) else: circuit_exp.append(rots, strategy=cirq.InsertStrategy.NEW) if benchmark_ops is not None: circuit_exp.append(benchmark_ops[i % num_d]) all_circuits.append(circuit_exp) return all_circuits, sq_gate_indices def parallel_xeb_fidelities( all_qubits: List[Tuple[int, int]], num_cycle_range: Sequence[int], measured_bits: List[List[List[np.ndarray]]], scrambling_gates: List[List[np.ndarray]], fsim_angles: Dict[str, float], interaction_sequence: Optional[ List[Set[Tuple[Tuple[float, float], Tuple[float, float]]]] ] = None, gate_to_fit: str = "iswap", num_restarts: int = 3, num_points: int = 8, print_fitting_progress: bool = True, ) -> ParallelXEBResults: """Computes and optimizes cycle fidelities from parallel XEB data. Args: all_qubits: List of qubits involved in a parallel XEB experiment, specified using their (row, col) locations. num_cycle_range: The different numbers of cycles in the random circuits. measured_bits: The experimental bit-strings stored in a nested list. The first dimension of the nested list represents different configurations (e.g. how the two-qubit gates are applied) used in parallel XEB. The second dimension represents different trials (i.e. random circuit instances) used in XEB. The third dimension represents the different numbers of cycles and must be the same as len(num_cycle_range). Each np.ndarray has dimension M x N, where M is the number of repetitions (stats) for each circuit and N is the number of qubits involved. scrambling_gates: The random circuit indices specified as integers between 0 and 7. See the documentation of build_xeb_circuits for details. The first dimension of the nested list represents the different configurations and must be the same as the first dimension of measured_bits. The second dimension represents the different trials and must be the same as the second dimension of measured_bits. fsim_angles: An initial guess for the five FSIM angles for each qubit pair. interaction_sequence: The pairs of qubits with FSIM applied for each configuration. Must be the same as len(measured_bits). gate_to_fit: Can be either 'iswap', 'sqrt-iswap', 'cz' or any other string. Determines the FSIM angles that will be changed from their initial guess values to optimize the XEB fidelity of each qubit pair. For 'iswap', only 'delta_plus' and 'delta_minus_off_diag' are changed. For 'sqrt-iswap', 'delta_plus', 'delta_minus_off_diag' and 'delta_minus_diag' are changed. For 'cz', only 'delta_plus' and 'delta_minus_diag' are changed. For any other string, all five angles are changed. num_restarts: Number of restarts with different random initial guesses. num_points: The total number of XEB fidelities to be used in the cost function for optimization. Default is 8, such that the cost function is the sum of the XEB fidelities for the first 8 numbers of cycles in num_cycle_range. print_fitting_progress: Whether to print progress during the fitting process. Returns: A ParallelXEBResults object that contains the following fields: fitted_gates: A dictionary with qubit pairs as keys and optimized FSIM unitaries, represented by cirq.Circuit objects, as values. correction_gates: Same as fitted_gates, but with all Z rotations reversed in signs. fitted_angles: A dictionary with qubit pairs as keys and optimized FSIM unitaries as values. Here the FSIM unitaries are represented as a dictionaries with the names of the FSIM phases as keys and their fitted values as values. final_errors_optimized: A dictionary with qubit pairs as keys and their cycle errors after fitting as values. final_errors_unoptimized: A dictionary with qubit pairs as keys and their cycle errors before fitting as values. purity_errors: A dictionary with qubit pairs as keys and their speckle purity errors per cycle as values. raw_data: A dictionary with qubit pairs as keys and XEBData as values. Each XEBData contains the cycle-dependent XEB fidelities and purities, as well as their fits. """ num_trials = len(measured_bits[0]) p_data_all, sq_gates = _pairwise_xeb_probabilities( all_qubits, num_cycle_range, measured_bits, scrambling_gates, interaction_sequence, ) final_errors_unoptimized = {} final_errors_optimized = {} delta_angles = {} purity_errors = {} fitted_gates = {} fitted_angles = {} correction_gates = {} raw_data = {} for (q0, q1), p_data in p_data_all.items(): if print_fitting_progress: print("Fitting qubits {} and {}".format(q0, q1)) def xeb_fidelity( angle_shifts: np.ndarray, num_p: int ) -> Tuple[float, List[float], np.ndarray, np.ndarray, float]: new_angles = fsim_angles.copy() for i, angle_name in enumerate(_fsim_angle_labels): new_angles[angle_name] += angle_shifts[i] fsim_mat = angles_to_fsim(**new_angles) max_cycles = num_cycle_range[num_p - 1] p_sim = [np.zeros((num_trials, 4)) for _ in range(max_cycles)] for i in range(num_trials): unitary = np.identity(4, dtype=complex) for j in range(max_cycles): mat_0 = _rot_mats[sq_gates[(q0, q1)][i][0, j]] mat_1 = _rot_mats[sq_gates[(q0, q1)][i][1, j]] unitary = np.kron(mat_0, mat_1).dot(unitary) unitary = fsim_mat.dot(unitary) if j + 1 in num_cycle_range: idx = num_cycle_range.index(j + 1) p_sim[idx][i, :] = np.abs(unitary[:, 0]) ** 2 fidelities = [_alpha_least_square(p_sim[i], p_data[i]) for i in range(num_p)] cost = -np.sum(fidelities) err, x_vals, y_vals = pauli_error_fit( np.asarray(num_cycle_range)[0:num_p], np.asarray(fidelities), add_offset=False, ) return err, fidelities, x_vals, y_vals, cost def cost_function(angle_shifts: np.ndarray) -> float: # Accepts shifts in a variable number of FSIM angles and outputs a cost function (i.e. # XEB fidelity). If the sqrt-iSWAP is the gate, shifts in delta_plus, # delta_minus_off_diag and delta_minus_diag are specified. If iSWAP is the gate, # shifts in delta_plus and delta_minus_off_diag are specified. If CZ is the gate, # shifts in delta_plus and delta_minus_diag are specified. In other cases, shifts in # all 5 angles are specified. The unspecified angles are set to have zero shifts from # their initial values. if gate_to_fit == "sqrt-iswap": full_shifts = np.zeros(5, dtype=float) full_shifts[1:4] = angle_shifts elif gate_to_fit == "iswap": full_shifts = np.zeros(5, dtype=float) full_shifts[1:3] = angle_shifts elif gate_to_fit == "cz" or gate_to_fit == "composite-cz": full_shifts = np.zeros(5, dtype=float) full_shifts[1] = angle_shifts[0] full_shifts[3] = angle_shifts[1] else: full_shifts = angle_shifts _, _, _, _, cost = xeb_fidelity(full_shifts, num_p=num_points) return cost sp_purities = [_speckle_purity(p_data[i]) ** 0.5 for i in range(len(num_cycle_range))] err_p, x_vals_p, y_vals_p = pauli_error_fit( np.asarray(num_cycle_range), np.asarray(sp_purities), add_offset=True ) purity_errors[(q0, q1)] = err_p err_0, f_vals_0, x_fitted_0, y_fitted_0, _ = xeb_fidelity( np.zeros(5), num_p=len(num_cycle_range) ) final_errors_unoptimized[(q0, q1)] = err_0 # Set up initial guesses on the relevant FSIM angles according to the ideal gate. See # comments in cost_function. All angles are allowed to shift up to +/- 1 rad from their # ideal (initial guess) values. err_min = 1.0 soln_vec = np.zeros(5) if gate_to_fit == "sqrt-iswap": init_guess = np.zeros(3) bounds = (np.ones(3) * -1.0, np.ones(3) * 1.0) elif gate_to_fit == "iswap" or gate_to_fit == "cz" or gate_to_fit == "composite-cz": init_guess = np.zeros(2) bounds = (np.ones(2) * -1.0, np.ones(2) * 1.0) else: init_guess = np.array([0.0, 0.0, 0.0, 0.0, 0.1]) bounds = (np.ones(5) * -1.0, np.ones(5) * 1.0) for _ in range(num_restarts): res = pybobyqa.solve( cost_function, init_guess, maxfun=3000, bounds=bounds, rhoend=1e-11 ) # Randomize the initial values for the relevant FSIM angles. if gate_to_fit == "sqrt-iswap": init_guess = np.random.uniform(-0.3, 0.3, 3) elif gate_to_fit == "iswap" or gate_to_fit == "cz" or gate_to_fit == "composite-cz": init_guess = np.random.uniform(-0.3, 0.3, 2) else: init_guess = np.random.uniform(-0.2, 0.2, 5) init_guess[0] = 0.0 init_guess[4] = 0.1 if res.f < err_min: err_min = res.f if gate_to_fit == "sqrt-iswap": soln_vec = np.zeros(5) soln_vec[1:4] = np.asarray(res.x) elif gate_to_fit == "iswap": soln_vec = np.zeros(5) soln_vec[1:3] = np.asarray(res.x) elif gate_to_fit == "cz" or gate_to_fit == "composite-cz": soln_vec = np.zeros(5) soln_vec[1] = np.asarray(res.x)[0] soln_vec[3] = np.asarray(res.x)[1] else: soln_vec = np.asarray(res.x) err_1, f_vals_1, x_fitted_1, y_fitted_1, _ = xeb_fidelity( soln_vec, num_p=len(num_cycle_range) ) final_errors_optimized[(q0, q1)] = err_1 delta_angles[(q0, q1)] = {a: soln_vec[i] for i, a in enumerate(_fsim_angle_labels)} new_angles = fsim_angles.copy() for k, v in new_angles.items(): new_angles[k] += delta_angles[(q0, q1)][k] fitted_angles[(q0, q1)] = new_angles q_0 = cirq.GridQubit(*q0) q_1 = cirq.GridQubit(*q1) gate_list = generic_fsim_gate(new_angles, (q_0, q_1)) circuit_fitted = cirq.Circuit(gate_list) fitted_gates[(q0, q1)] = circuit_fitted # Use the fitted FSIM to set up the virtual-Z gates that are needed to cancel out the # shifts in the SQ phases (i.e. delta angles). corrected_angles = new_angles.copy() corrected_angles["delta_plus"] *= -1.0 corrected_angles["delta_minus_off_diag"] *= -1.0 corrected_angles["delta_minus_diag"] *= -1.0 corrected_angles["theta"] = fsim_angles["theta"] corrected_angles["phi"] = fsim_angles["phi"] gate_list_corrected = generic_fsim_gate(corrected_angles, (q_0, q_1)) if gate_to_fit == "composite-cz": circuit_corrected = cirq.Circuit(gate_list_corrected[0:2]) circuit_corrected.append(cz_to_sqrt_iswap(q_0, q_1)) circuit_corrected.append(cirq.Moment(gate_list_corrected[-2:])) else: circuit_corrected = cirq.Circuit(gate_list_corrected) correction_gates[(q0, q1)] = circuit_corrected raw_data[(q0, q1)] = XEBData( fidelity_optimized=(np.asarray(num_cycle_range), np.asarray(f_vals_1)), fidelity_optimized_fit=(x_fitted_1, y_fitted_1), fidelity_unoptimized=(np.asarray(num_cycle_range), np.asarray(f_vals_0)), fidelity_unoptimized_fit=(x_fitted_0, y_fitted_0), purity=(np.asarray(num_cycle_range), np.asarray(sp_purities)), purity_fit=(x_vals_p, y_vals_p), ) return ParallelXEBResults( fitted_gates=fitted_gates, correction_gates=correction_gates, fitted_angles=fitted_angles, final_errors_optimized=final_errors_optimized, final_errors_unoptimized=final_errors_unoptimized, purity_errors=purity_errors, raw_data=raw_data, ) def _random_rotations( qubits: Sequence[cirq.GridQubit], num_layers: int, rand_seed: Optional[int] = None, rand_nums: Optional[np.ndarray] = None, light_cones: Optional[List[List[Set[cirq.GridQubit]]]] = None, echo_indices: Optional[np.ndarray] = None, z_rotations_only: bool = False, ) -> Tuple[List[List[cirq.OP_TREE]], np.ndarray]: """Generate random single-qubit rotations and group them into different circuit layers.""" num_qubits = len(qubits) random_state = cirq.value.parse_random_state(rand_seed) if rand_nums is None: if z_rotations_only: rand_nums = random_state.uniform(-1, 1, (num_qubits, num_layers)) else: rand_nums = random_state.choice(8, (num_qubits, num_layers)) single_q_layers = [] # type: List[List[cirq.OP_TREE]] for i in range(num_layers): op_seq = [] for j in range(num_qubits): gate_choice = 0 if light_cones is not None: if len(light_cones) == 1: if qubits[j] not in light_cones[0][i]: gate_choice = 1 elif len(light_cones) == 2: if qubits[j] not in light_cones[1][i]: gate_choice = 2 elif qubits[j] not in light_cones[0][i]: gate_choice = 1 if gate_choice == 0: if z_rotations_only: op_seq.append(cirq.Z(qubits[j]) ** rand_nums[j, i]) else: op_seq.append(_rot_ops[rand_nums[j, i]](qubits[j])) elif gate_choice == 1: if echo_indices is None: op_seq.append(cirq.Y(qubits[j])) else: if echo_indices[j, i] > 0: op_seq.append(_spin_echo_gates(echo_indices[j, i])(qubits[j])) else: continue single_q_layers.append(op_seq) return single_q_layers, rand_nums def _alpha_least_square(probs_exp: np.ndarray, probs_data: np.ndarray) -> float: """Compare an ideal and an experimental probability distribution and compute their cross-entropy fidelity. """ if probs_exp.shape != probs_data.shape: raise ValueError("probs_exp and probs_data must have the same shape") num_trials, num_states = probs_exp.shape p_exp = np.maximum(probs_exp, np.zeros_like(probs_exp) + 1e-22) p_data = np.maximum(probs_data, np.zeros_like(probs_data)) nominator = 0.0 denominator = 0.0 p_uni = 1.0 / num_states for i in range(num_trials): s_incoherent = -np.sum(p_uni * np.log(p_exp[i, :])) s_expected = -np.sum(p_exp[i, :] * np.log(p_exp[i, :])) s_meas = -np.sum(p_data[i, :] * np.log(p_exp[i, :])) delta_h_meas = float(s_incoherent - s_meas) delta_h = float(s_incoherent - s_expected) nominator += delta_h_meas * delta_h denominator += delta_h ** 2 return nominator / denominator def _speckle_purity(probs_data: np.ndarray) -> float: """Compute the speckle purity of a probability distribution""" d = 4 return np.var(probs_data) * d ** 2 * (d + 1) / (d - 1) def _pairwise_xeb_probabilities( all_qubits: List[Tuple[int, int]], num_cycle_range: Sequence[int], measured_bits: List[List[List[np.ndarray]]], scrambling_gates: List[List[np.ndarray]], interaction_sequence: Optional[ List[Set[Tuple[Tuple[float, float], Tuple[float, float]]]] ] = None, ) -> Tuple[ Dict[Tuple[Tuple[int, int], Tuple[int, int]], List[np.ndarray]], Dict[Tuple[Tuple[int, int], Tuple[int, int]], List[np.ndarray]], ]: """Computes the probability distributions of each qubit pair in a parallel XEB experiment. Args: all_qubits: List of qubits involved in parallel XEB, specified as (col, row) tuples. num_cycle_range: Different numbers of circuit cycles used in parallel XEB. measured_bits: The experimental bit-strings stored in a nested list. The first dimension of the nested list represents different configurations (e.g. how the two-qubit gates are applied) used in parallel XEB. The second dimension represents different trials (i.e. random circuit instances) used in XEB. The third dimension represents the different numbers of cycles and must be the same as len(num_cycle_range). Each np.ndarray has dimension M x N, where M is the number of repetitions (stats) for each circuit and N is the number of qubits involved. scrambling_gates: The random circuit indices specified as integers between 0 and 7. See the documentation of build_xeb_circuits for details. The first dimension of the nested list represents the different configurations and must be the same as the first dimension of measured_bits. The second dimension represents the different trials and must be the same as the second dimension of measured_bits. interaction_sequence: The pairs of qubits with FSIM applied for each configuration. Must be the same as len(measured_bits). Returns: p_data_all: Keys are qubit pairs. Each value is a list (with length = len(num_cycle_range)) of np.array. The rows of the array are of length 4 and represent the measured probabilities of two-qubit basis states. Each row represents the result from a different trial (circuit instance). sq_gates: Keys are qubit pairs. Each value is a list (with length = number of circuit instances) of np.array. Each array contains the indices (integers between 0 and 7) for the random SQ gates relevant to the given qubit pair. """ num_trials = len(measured_bits[0]) qubits = [cirq.GridQubit(*idx) for idx in all_qubits] if interaction_sequence is None: int_layers = _default_interaction_sequence(qubits) else: int_layers = [ {(cirq.GridQubit(i, j), cirq.GridQubit(k, l)) for ((i, j), (k, l)) in layer} for layer in interaction_sequence ] p_data_all = {} sq_gates = {} for l, qubit_set in enumerate(int_layers): qubit_pairs = [ ((q_s[0].row, q_s[0].col), (q_s[1].row, q_s[1].col)) for q_s in int_layers[l] ] p_data = { q_s: [np.zeros((num_trials, 4)) for _ in range(len(num_cycle_range))] for q_s in qubit_pairs } for (q0, q1) in qubit_pairs: idx_0, idx_1 = all_qubits.index(q0), all_qubits.index(q1) sq_gates[(q0, q1)] = [ scrambling_gates[l][k][[idx_0, idx_1], :] for k in range(num_trials) ] for i in range(num_trials): for j in range(len(num_cycle_range)): bits = measured_bits[l][i][j] for q_s in qubit_pairs: p_data[q_s][j][i, :] = bits_to_probabilities(all_qubits, q_s, bits) p_data_all = {**p_data_all, **p_data} return p_data_all, sq_gates def _spin_echo_gates(idx: int) -> cirq.ops: """Outputs one of 4 single-qubit pi rotations which is used for spin echoes.""" pi_pulses = [ cirq.PhasedXPowGate(phase_exponent=0.0, exponent=1.0), cirq.PhasedXPowGate(phase_exponent=0.5, exponent=1.0), cirq.PhasedXPowGate(phase_exponent=1.0, exponent=1.0), cirq.PhasedXPowGate(phase_exponent=-0.5, exponent=1.0), ] return pi_pulses[idx - 1]
apache-2.0