repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
BiaDarkia/scikit-learn
sklearn/neighbors/tests/test_ball_tree.py
5
10219
import pickle import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.neighbors.ball_tree import (BallTree, NeighborsHeap, simultaneous_sort, kernel_norm, nodeheap_sort, DTYPE, ITYPE) from sklearn.neighbors.dist_metrics import DistanceMetric from sklearn.utils import check_random_state from sklearn.utils.testing import SkipTest, assert_allclose rng = np.random.RandomState(10) V_mahalanobis = rng.rand(3, 3) V_mahalanobis = np.dot(V_mahalanobis, V_mahalanobis.T) DIMENSION = 3 METRICS = {'euclidean': {}, 'manhattan': {}, 'minkowski': dict(p=3), 'chebyshev': {}, 'seuclidean': dict(V=rng.random_sample(DIMENSION)), 'wminkowski': dict(p=3, w=rng.random_sample(DIMENSION)), 'mahalanobis': dict(V=V_mahalanobis)} DISCRETE_METRICS = ['hamming', 'canberra', 'braycurtis'] BOOLEAN_METRICS = ['matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath'] def dist_func(x1, x2, p): return np.sum((x1 - x2) ** p) ** (1. / p) def brute_force_neighbors(X, Y, k, metric, **kwargs): D = DistanceMetric.get_metric(metric, **kwargs).pairwise(Y, X) ind = np.argsort(D, axis=1)[:, :k] dist = D[np.arange(Y.shape[0])[:, None], ind] return dist, ind def test_ball_tree_query(): rng = check_random_state(0) X = rng.random_sample((40, DIMENSION)) Y = rng.random_sample((10, DIMENSION)) def check_neighbors(dualtree, breadth_first, k, metric, kwargs): bt = BallTree(X, leaf_size=1, metric=metric, **kwargs) dist1, ind1 = bt.query(Y, k, dualtree=dualtree, breadth_first=breadth_first) dist2, ind2 = brute_force_neighbors(X, Y, k, metric, **kwargs) # don't check indices here: if there are any duplicate distances, # the indices may not match. Distances should not have this problem. assert_array_almost_equal(dist1, dist2) for (metric, kwargs) in METRICS.items(): for k in (1, 3, 5): for dualtree in (True, False): for breadth_first in (True, False): yield (check_neighbors, dualtree, breadth_first, k, metric, kwargs) def test_ball_tree_query_boolean_metrics(): rng = check_random_state(0) X = rng.random_sample((40, 10)).round(0) Y = rng.random_sample((10, 10)).round(0) k = 5 def check_neighbors(metric): bt = BallTree(X, leaf_size=1, metric=metric) dist1, ind1 = bt.query(Y, k) dist2, ind2 = brute_force_neighbors(X, Y, k, metric) assert_array_almost_equal(dist1, dist2) for metric in BOOLEAN_METRICS: yield check_neighbors, metric def test_ball_tree_query_discrete_metrics(): rng = check_random_state(0) X = (4 * rng.random_sample((40, 10))).round(0) Y = (4 * rng.random_sample((10, 10))).round(0) k = 5 def check_neighbors(metric): bt = BallTree(X, leaf_size=1, metric=metric) dist1, ind1 = bt.query(Y, k) dist2, ind2 = brute_force_neighbors(X, Y, k, metric) assert_array_almost_equal(dist1, dist2) for metric in DISCRETE_METRICS: yield check_neighbors, metric def test_ball_tree_query_radius(n_samples=100, n_features=10): rng = check_random_state(0) X = 2 * rng.random_sample(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail bt = BallTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind = bt.query_radius([query_pt], r + eps)[0] i = np.where(rad <= r + eps)[0] ind.sort() i.sort() assert_array_almost_equal(i, ind) def test_ball_tree_query_radius_distance(n_samples=100, n_features=10): rng = check_random_state(0) X = 2 * rng.random_sample(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail bt = BallTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind, dist = bt.query_radius([query_pt], r + eps, return_distance=True) ind = ind[0] dist = dist[0] d = np.sqrt(((query_pt - X[ind]) ** 2).sum(1)) assert_array_almost_equal(d, dist) def compute_kernel_slow(Y, X, kernel, h): d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1)) norm = kernel_norm(h, X.shape[1], kernel) if kernel == 'gaussian': return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1) elif kernel == 'tophat': return norm * (d < h).sum(-1) elif kernel == 'epanechnikov': return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1) elif kernel == 'exponential': return norm * (np.exp(-d / h)).sum(-1) elif kernel == 'linear': return norm * ((1 - d / h) * (d < h)).sum(-1) elif kernel == 'cosine': return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1) else: raise ValueError('kernel not recognized') def check_results(kernel, h, atol, rtol, breadth_first, bt, Y, dens_true): dens = bt.kernel_density(Y, h, atol=atol, rtol=rtol, kernel=kernel, breadth_first=breadth_first) assert_allclose(dens, dens_true, atol=atol, rtol=max(rtol, 1e-7)) def test_ball_tree_kde(n_samples=100, n_features=3): rng = check_random_state(0) X = rng.random_sample((n_samples, n_features)) Y = rng.random_sample((n_samples, n_features)) bt = BallTree(X, leaf_size=10) for kernel in ['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']: for h in [0.01, 0.1, 1]: dens_true = compute_kernel_slow(Y, X, kernel, h) for rtol in [0, 1E-5]: for atol in [1E-6, 1E-2]: for breadth_first in (True, False): yield (check_results, kernel, h, atol, rtol, breadth_first, bt, Y, dens_true) def test_gaussian_kde(n_samples=1000): # Compare gaussian KDE results to scipy.stats.gaussian_kde from scipy.stats import gaussian_kde rng = check_random_state(0) x_in = rng.normal(0, 1, n_samples) x_out = np.linspace(-5, 5, 30) for h in [0.01, 0.1, 1]: bt = BallTree(x_in[:, None]) gkde = gaussian_kde(x_in, bw_method=h / np.std(x_in)) dens_bt = bt.kernel_density(x_out[:, None], h) / n_samples dens_gkde = gkde.evaluate(x_out) assert_array_almost_equal(dens_bt, dens_gkde, decimal=3) def test_ball_tree_two_point(n_samples=100, n_features=3): rng = check_random_state(0) X = rng.random_sample((n_samples, n_features)) Y = rng.random_sample((n_samples, n_features)) r = np.linspace(0, 1, 10) bt = BallTree(X, leaf_size=10) D = DistanceMetric.get_metric("euclidean").pairwise(Y, X) counts_true = [(D <= ri).sum() for ri in r] def check_two_point(r, dualtree): counts = bt.two_point_correlation(Y, r=r, dualtree=dualtree) assert_array_almost_equal(counts, counts_true) for dualtree in (True, False): yield check_two_point, r, dualtree def test_ball_tree_pickle(): rng = check_random_state(0) X = rng.random_sample((10, 3)) bt1 = BallTree(X, leaf_size=1) # Test if BallTree with callable metric is picklable bt1_pyfunc = BallTree(X, metric=dist_func, leaf_size=1, p=2) ind1, dist1 = bt1.query(X) ind1_pyfunc, dist1_pyfunc = bt1_pyfunc.query(X) def check_pickle_protocol(protocol): s = pickle.dumps(bt1, protocol=protocol) bt2 = pickle.loads(s) s_pyfunc = pickle.dumps(bt1_pyfunc, protocol=protocol) bt2_pyfunc = pickle.loads(s_pyfunc) ind2, dist2 = bt2.query(X) ind2_pyfunc, dist2_pyfunc = bt2_pyfunc.query(X) assert_array_almost_equal(ind1, ind2) assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1_pyfunc, ind2_pyfunc) assert_array_almost_equal(dist1_pyfunc, dist2_pyfunc) for protocol in (0, 1, 2): yield check_pickle_protocol, protocol def test_neighbors_heap(n_pts=5, n_nbrs=10): heap = NeighborsHeap(n_pts, n_nbrs) for row in range(n_pts): d_in = rng.random_sample(2 * n_nbrs).astype(DTYPE) i_in = np.arange(2 * n_nbrs, dtype=ITYPE) for d, i in zip(d_in, i_in): heap.push(row, d, i) ind = np.argsort(d_in) d_in = d_in[ind] i_in = i_in[ind] d_heap, i_heap = heap.get_arrays(sort=True) assert_array_almost_equal(d_in[:n_nbrs], d_heap[row]) assert_array_almost_equal(i_in[:n_nbrs], i_heap[row]) def test_node_heap(n_nodes=50): vals = rng.random_sample(n_nodes).astype(DTYPE) i1 = np.argsort(vals) vals2, i2 = nodeheap_sort(vals) assert_array_almost_equal(i1, i2) assert_array_almost_equal(vals[i1], vals2) def test_simultaneous_sort(n_rows=10, n_pts=201): dist = rng.random_sample((n_rows, n_pts)).astype(DTYPE) ind = (np.arange(n_pts) + np.zeros((n_rows, 1))).astype(ITYPE) dist2 = dist.copy() ind2 = ind.copy() # simultaneous sort rows using function simultaneous_sort(dist, ind) # simultaneous sort rows using numpy i = np.argsort(dist2, axis=1) row_ind = np.arange(n_rows)[:, None] dist2 = dist2[row_ind, i] ind2 = ind2[row_ind, i] assert_array_almost_equal(dist, dist2) assert_array_almost_equal(ind, ind2) def test_query_haversine(): rng = check_random_state(0) X = 2 * np.pi * rng.random_sample((40, 2)) bt = BallTree(X, leaf_size=1, metric='haversine') dist1, ind1 = bt.query(X, k=5) dist2, ind2 = brute_force_neighbors(X, X, k=5, metric='haversine') assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1, ind2)
bsd-3-clause
hopgal/data-science-from-scratch
code/clustering.py
60
6438
from __future__ import division from linear_algebra import squared_distance, vector_mean, distance import math, random import matplotlib.image as mpimg import matplotlib.pyplot as plt class KMeans: """performs k-means clustering""" def __init__(self, k): self.k = k # number of clusters self.means = None # means of clusters def classify(self, input): """return the index of the cluster closest to the input""" return min(range(self.k), key=lambda i: squared_distance(input, self.means[i])) def train(self, inputs): self.means = random.sample(inputs, self.k) assignments = None while True: # Find new assignments new_assignments = map(self.classify, inputs) # If no assignments have changed, we're done. if assignments == new_assignments: return # Otherwise keep the new assignments, assignments = new_assignments for i in range(self.k): i_points = [p for p, a in zip(inputs, assignments) if a == i] # avoid divide-by-zero if i_points is empty if i_points: self.means[i] = vector_mean(i_points) def squared_clustering_errors(inputs, k): """finds the total squared error from k-means clustering the inputs""" clusterer = KMeans(k) clusterer.train(inputs) means = clusterer.means assignments = map(clusterer.classify, inputs) return sum(squared_distance(input,means[cluster]) for input, cluster in zip(inputs, assignments)) def plot_squared_clustering_errors(plt): ks = range(1, len(inputs) + 1) errors = [squared_clustering_errors(inputs, k) for k in ks] plt.plot(ks, errors) plt.xticks(ks) plt.xlabel("k") plt.ylabel("total squared error") plt.show() # # using clustering to recolor an image # def recolor_image(input_file, k=5): img = mpimg.imread(path_to_png_file) pixels = [pixel for row in img for pixel in row] clusterer = KMeans(k) clusterer.train(pixels) # this might take a while def recolor(pixel): cluster = clusterer.classify(pixel) # index of the closest cluster return clusterer.means[cluster] # mean of the closest cluster new_img = [[recolor(pixel) for pixel in row] for row in img] plt.imshow(new_img) plt.axis('off') plt.show() # # hierarchical clustering # def is_leaf(cluster): """a cluster is a leaf if it has length 1""" return len(cluster) == 1 def get_children(cluster): """returns the two children of this cluster if it's a merged cluster; raises an exception if this is a leaf cluster""" if is_leaf(cluster): raise TypeError("a leaf cluster has no children") else: return cluster[1] def get_values(cluster): """returns the value in this cluster (if it's a leaf cluster) or all the values in the leaf clusters below it (if it's not)""" if is_leaf(cluster): return cluster # is already a 1-tuple containing value else: return [value for child in get_children(cluster) for value in get_values(child)] def cluster_distance(cluster1, cluster2, distance_agg=min): """finds the aggregate distance between elements of cluster1 and elements of cluster2""" return distance_agg([distance(input1, input2) for input1 in get_values(cluster1) for input2 in get_values(cluster2)]) def get_merge_order(cluster): if is_leaf(cluster): return float('inf') else: return cluster[0] # merge_order is first element of 2-tuple def bottom_up_cluster(inputs, distance_agg=min): # start with every input a leaf cluster / 1-tuple clusters = [(input,) for input in inputs] # as long as we have more than one cluster left... while len(clusters) > 1: # find the two closest clusters c1, c2 = min([(cluster1, cluster2) for i, cluster1 in enumerate(clusters) for cluster2 in clusters[:i]], key=lambda (x, y): cluster_distance(x, y, distance_agg)) # remove them from the list of clusters clusters = [c for c in clusters if c != c1 and c != c2] # merge them, using merge_order = # of clusters left merged_cluster = (len(clusters), [c1, c2]) # and add their merge clusters.append(merged_cluster) # when there's only one cluster left, return it return clusters[0] def generate_clusters(base_cluster, num_clusters): # start with a list with just the base cluster clusters = [base_cluster] # as long as we don't have enough clusters yet... while len(clusters) < num_clusters: # choose the last-merged of our clusters next_cluster = min(clusters, key=get_merge_order) # remove it from the list clusters = [c for c in clusters if c != next_cluster] # and add its children to the list (i.e., unmerge it) clusters.extend(get_children(next_cluster)) # once we have enough clusters... return clusters if __name__ == "__main__": inputs = [[-14,-5],[13,13],[20,23],[-19,-11],[-9,-16],[21,27],[-49,15],[26,13],[-46,5],[-34,-1],[11,15],[-49,0],[-22,-16],[19,28],[-12,-8],[-13,-19],[-41,8],[-11,-6],[-25,-9],[-18,-3]] random.seed(0) # so you get the same results as me clusterer = KMeans(3) clusterer.train(inputs) print "3-means:" print clusterer.means print random.seed(0) clusterer = KMeans(2) clusterer.train(inputs) print "2-means:" print clusterer.means print print "errors as a function of k" for k in range(1, len(inputs) + 1): print k, squared_clustering_errors(inputs, k) print print "bottom up hierarchical clustering" base_cluster = bottom_up_cluster(inputs) print base_cluster print print "three clusters, min:" for cluster in generate_clusters(base_cluster, 3): print get_values(cluster) print print "three clusters, max:" base_cluster = bottom_up_cluster(inputs, max) for cluster in generate_clusters(base_cluster, 3): print get_values(cluster)
unlicense
jian-li/rpg_svo
svo_analysis/src/svo_analysis/analyse_dataset.py
17
1178
# -*- coding: utf-8 -*- import associate import numpy as np import matplotlib.pyplot as plt import yaml def loadDataset(filename): file = open(filename) data = file.read() lines = data.replace(","," ").replace("\t"," ").split("\n") D = np.array([[v.strip() for v in line.split(" ") if v.strip()!=""] for line in lines if len(line)>0 and line[0]!="#"], dtype=np.float64) return D dataset_dir = '/home/cforster/Datasets/SlamBenchmark/px4_r2' trajectory_data = dataset_dir+'/groundtruth.txt' stepsize = 10 # load dataset data = loadDataset(trajectory_data) n = data.shape[0] steps = np.arange(0,n,stepsize) # compute trajectory length last_pos = data[0,1:4] trajectory_length = 0 for i in steps[1:]: new_pos = data[i,1:4] trajectory_length += np.linalg.norm(new_pos-last_pos) last_pos = new_pos print 'trajectory lenght = ' + str(trajectory_length) + 'm' print 'height mean = ' + str(np.mean(data[:,3])) + 'm' print 'height median = ' + str(np.median(data[:,3])) + 'm' print 'height std = ' + str(np.std(data[:,3])) + 'm' print 'duration = ' + str(data[-1,0]-data[0,0]) + 's' print 'speed = ' + str(trajectory_length/(data[-1,0]-data[0,0])) + 'm/s'
gpl-3.0
IraKorshunova/kaggle-seizure-prediction
cnn/conv_net.py
1
8166
import numpy as np import theano import theano.tensor as T from theano import Param from sklearn.metrics import roc_curve, auc from utils.train_iterator import RandomTrainIterator from layers.softmax_layer import SoftmaxLayer from layers.feature_extractor import FeatureExtractor class ConvNet(object): def __init__(self, param_dict): self.param_dict = param_dict self.training_batch_size = param_dict['training_batch_size'] nkerns = param_dict['nkerns'] recept_width = param_dict['recept_width'] pool_width = param_dict['pool_width'] stride = param_dict['stride'] dropout_prob = param_dict['dropout_prob'] weight_decay = param_dict['l2_reg'] activation = param_dict['activation'] weights_variance = param_dict['weights_variance'] n_channels = param_dict['n_channels'] n_timesteps = param_dict['n_timesteps'] n_fbins = param_dict['n_fbins'] global_pooling = param_dict['global_pooling'] rng = np.random.RandomState(23455) self.training_mode = T.iscalar('training_mode') self.x = T.tensor4('x') self.y = T.bvector('y') self.batch_size = theano.shared(self.training_batch_size) self.input = self.x.reshape((self.batch_size, 1, n_channels * n_fbins, n_timesteps)) self.feature_extractor = FeatureExtractor(rng, self.input, nkerns, recept_width, pool_width, stride, self.training_mode, dropout_prob[0], activation, weights_variance, n_channels, n_timesteps, n_fbins, global_pooling) self.classifier = SoftmaxLayer(rng=rng, input=self.feature_extractor.output, n_in=nkerns[-1], training_mode=self.training_mode, dropout_prob=dropout_prob[-1]) self.weights = self.feature_extractor.weights + self.classifier.weights # ---------------------- BACKPROP self.cost = self.classifier.cross_entropy_cost(self.y) self.cost = self.classifier.cross_entropy_cost(self.y) L2_sqr = sum((weight ** 2).sum() for weight in self.weights[::2]) self.grads = T.grad(self.cost + weight_decay * L2_sqr, self.weights) self.updates = self.adadelta_updates(self.grads, self.weights) # self.updates = self.nesterov_momentum(self.grads, self.weights) # --------------------- FUNCTIONS self.train_model = theano.function([self.x, self.y, Param(self.training_mode, default=1)], outputs=self.cost, updates=self.updates) self.validate_model = theano.function([self.x, self.y, Param(self.training_mode, default=0)], self.cost) self.test_model = theano.function([self.x, Param(self.training_mode, default=0)], self.classifier.p_y_given_x[:, 1]) def train(self, train_set, max_iter): print 'training for', max_iter, 'iterations' self.batch_size.set_value(self.training_batch_size) train_set_iterator = RandomTrainIterator(train_set, self.training_batch_size) done_looping = False iter = 0 while not done_looping: for train_x, train_y in train_set_iterator: self.train_model(train_x, train_y) # if iter % 10 == 0: # self.batch_size.set_value(train_set[0].shape[0]) # print self.validate_model(train_set[0], train_set[1]) # self.batch_size.set_value(self.training_batch_size) if iter > max_iter: done_looping = True break iter += 1 def validate(self, train_set, valid_set, valid_freq, max_iter, fname_out): train_set_iterator = RandomTrainIterator(train_set, self.training_batch_size) valid_set_size = len(valid_set[1]) f_out = open(fname_out, 'w') # ------------------------------ TRAINING epoch = 0 iter = 0 best_ce = np.inf best_iter_ce = 0 best_auc = 0 best_iter_auc = 0 done_looping = False patience = 100000 patience_increase = 2 improvement_threshold = 0.995 while iter < max_iter and not done_looping: epoch += 1 for train_x, train_y in train_set_iterator: self.train_model(train_x, train_y) iter += 1 # ------------------------ VALIDATION if iter % valid_freq == 0: self.batch_size.set_value(valid_set_size) cost_valid = self.validate_model(valid_set[0], valid_set[1]) auc_valid = self.get_auc(valid_set) # print "%4s %7s %15s %15s %10s " % ( # epoch, iter, auc_valid, cost_valid, # patience) f_out.write("%s \t %s \t %s \n" % ( iter, auc_valid, cost_valid)) self.batch_size.set_value(self.training_batch_size) if cost_valid <= best_ce: if cost_valid < best_ce * improvement_threshold: patience = max(patience, iter * patience_increase) best_iter_ce = iter best_ce = cost_valid if auc_valid >= best_auc: best_iter_auc = iter best_auc = auc_valid if patience <= iter: done_looping = True print 'best_iter_cost:', best_iter_ce, 'best_cost:', best_ce print 'best_iter_auc:', best_iter_auc, 'best_auc:', best_auc f_out.close() return max(best_iter_ce, best_iter_auc) def get_auc(self, data_xy): x, y = data_xy[0], data_xy[1] p_y_given_x = self.get_test_proba(x) fpr, tpr, thresholds = roc_curve(y, p_y_given_x, pos_label=1) roc_auc = auc(fpr, tpr) return roc_auc def get_test_proba(self, x_test): self.batch_size.set_value(len(x_test)) p_y_given_x = self.test_model(x_test) return p_y_given_x def nesterov_momentum(self, grads, weights, learning_rate=0.001, momentum=0.9): updates = [] for param_i, grad_i in zip(weights, grads): mparam_i = theano.shared(np.zeros(param_i.get_value().shape, dtype=theano.config.floatX)) v = momentum * mparam_i - learning_rate * grad_i w = param_i + momentum * v - learning_rate * grad_i updates.append((mparam_i, v)) updates.append((param_i, w)) return updates def adadelta_updates(self, grads, weights, learning_rate=0.01, rho=0.95, epsilon=1e-6): accumulators = [theano.shared(np.zeros_like(param_i.get_value())) for param_i in weights] delta_accumulators = [theano.shared(np.zeros_like(param_i.get_value())) for param_i in weights] updates = [] for param_i, grad_i, acc_i, acc_delta_i in zip(weights, grads, accumulators, delta_accumulators): acc_i_new = rho * acc_i + (1 - rho) * grad_i ** 2 updates.append((acc_i, acc_i_new)) update_i = grad_i * T.sqrt(acc_delta_i + epsilon) / T.sqrt(acc_i_new + epsilon) updates.append((param_i, param_i - learning_rate * update_i)) acc_delta_i_new = rho * acc_delta_i + (1 - rho) * update_i ** 2 updates.append((acc_delta_i, acc_delta_i_new)) return updates def get_state(self): state = {} state['params'] = self.param_dict weights_vals = [] for p in self.weights: weights_vals.append(p.get_value()) state['weights'] = weights_vals return state def set_weights(self, weights_vals): for i, w in enumerate(weights_vals): self.weights[i].set_value(w)
mit
hitszxp/scikit-learn
sklearn/gaussian_process/tests/test_gaussian_process.py
17
6093
""" Testing for Gaussian Process module (sklearn.gaussian_process) """ # Author: Vincent Dubourg <[email protected]> # Licence: BSD 3 clause from nose.tools import raises from nose.tools import assert_true import numpy as np from sklearn.gaussian_process import GaussianProcess from sklearn.gaussian_process import regression_models as regression from sklearn.gaussian_process import correlation_models as correlation from sklearn.utils.testing import assert_greater f = lambda x: x * np.sin(x) X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T X2 = np.atleast_2d([2., 4., 5.5, 6.5, 7.5]).T y = f(X).ravel() def test_1d(regr=regression.constant, corr=correlation.squared_exponential, random_start=10, beta0=None): """ MLE estimation of a one-dimensional Gaussian Process model. Check random start optimization. Test the interpolating property. """ gp = GaussianProcess(regr=regr, corr=corr, beta0=beta0, theta0=1e-2, thetaL=1e-4, thetaU=1e-1, random_start=random_start, verbose=False).fit(X, y) y_pred, MSE = gp.predict(X, eval_MSE=True) y2_pred, MSE2 = gp.predict(X2, eval_MSE=True) assert_true(np.allclose(y_pred, y) and np.allclose(MSE, 0.) and np.allclose(MSE2, 0., atol=10)) def test_2d(regr=regression.constant, corr=correlation.squared_exponential, random_start=10, beta0=None): """ MLE estimation of a two-dimensional Gaussian Process model accounting for anisotropy. Check random start optimization. Test the interpolating property. """ b, kappa, e = 5., .5, .1 g = lambda x: b - x[:, 1] - kappa * (x[:, 0] - e) ** 2. X = np.array([[-4.61611719, -6.00099547], [4.10469096, 5.32782448], [0.00000000, -0.50000000], [-6.17289014, -4.6984743], [1.3109306, -6.93271427], [-5.03823144, 3.10584743], [-2.87600388, 6.74310541], [5.21301203, 4.26386883]]) y = g(X).ravel() thetaL = [1e-4] * 2 thetaU = [1e-1] * 2 gp = GaussianProcess(regr=regr, corr=corr, beta0=beta0, theta0=[1e-2] * 2, thetaL=thetaL, thetaU=thetaU, random_start=random_start, verbose=False) gp.fit(X, y) y_pred, MSE = gp.predict(X, eval_MSE=True) assert_true(np.allclose(y_pred, y) and np.allclose(MSE, 0.)) assert_true(np.all(gp.theta_ >= thetaL)) # Lower bounds of hyperparameters assert_true(np.all(gp.theta_ <= thetaU)) # Upper bounds of hyperparameters def test_2d_2d(regr=regression.constant, corr=correlation.squared_exponential, random_start=10, beta0=None): """ MLE estimation of a two-dimensional Gaussian Process model accounting for anisotropy. Check random start optimization. Test the GP interpolation for 2D output """ b, kappa, e = 5., .5, .1 g = lambda x: b - x[:, 1] - kappa * (x[:, 0] - e) ** 2. f = lambda x: np.vstack((g(x), g(x))).T X = np.array([[-4.61611719, -6.00099547], [4.10469096, 5.32782448], [0.00000000, -0.50000000], [-6.17289014, -4.6984743], [1.3109306, -6.93271427], [-5.03823144, 3.10584743], [-2.87600388, 6.74310541], [5.21301203, 4.26386883]]) y = f(X) gp = GaussianProcess(regr=regr, corr=corr, beta0=beta0, theta0=[1e-2] * 2, thetaL=[1e-4] * 2, thetaU=[1e-1] * 2, random_start=random_start, verbose=False) gp.fit(X, y) y_pred, MSE = gp.predict(X, eval_MSE=True) assert_true(np.allclose(y_pred, y) and np.allclose(MSE, 0.)) @raises(ValueError) def test_wrong_number_of_outputs(): gp = GaussianProcess() gp.fit([[1, 2, 3], [4, 5, 6]], [1, 2, 3]) def test_more_builtin_correlation_models(random_start=1): """ Repeat test_1d and test_2d for several built-in correlation models specified as strings. """ all_corr = ['absolute_exponential', 'squared_exponential', 'cubic', 'linear'] for corr in all_corr: test_1d(regr='constant', corr=corr, random_start=random_start) test_2d(regr='constant', corr=corr, random_start=random_start) test_2d_2d(regr='constant', corr=corr, random_start=random_start) def test_ordinary_kriging(): """ Repeat test_1d and test_2d with given regression weights (beta0) for different regression models (Ordinary Kriging). """ test_1d(regr='linear', beta0=[0., 0.5]) test_1d(regr='quadratic', beta0=[0., 0.5, 0.5]) test_2d(regr='linear', beta0=[0., 0.5, 0.5]) test_2d(regr='quadratic', beta0=[0., 0.5, 0.5, 0.5, 0.5, 0.5]) test_2d_2d(regr='linear', beta0=[0., 0.5, 0.5]) test_2d_2d(regr='quadratic', beta0=[0., 0.5, 0.5, 0.5, 0.5, 0.5]) def test_no_normalize(): gp = GaussianProcess(normalize=False).fit(X, y) y_pred = gp.predict(X) assert_true(np.allclose(y_pred, y)) def test_random_starts(): """ Test that an increasing number of random-starts of GP fitting only increases the reduced likelihood function of the optimal theta. """ n_samples, n_features = 50, 3 np.random.seed(0) rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) * 2 - 1 y = np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1) best_likelihood = -np.inf for random_start in range(1, 5): gp = GaussianProcess(regr="constant", corr="squared_exponential", theta0=[1e-0] * n_features, thetaL=[1e-4] * n_features, thetaU=[1e+1] * n_features, random_start=random_start, random_state=0, verbose=False).fit(X, y) rlf = gp.reduced_likelihood_function()[0] assert_greater(rlf, best_likelihood - np.finfo(np.float32).eps) best_likelihood = rlf
bsd-3-clause
Mctigger/KagglePlanetPytorch
datasets.py
1
3591
import os import torch from torch import np from torch.utils.data.dataset import Dataset from sklearn.preprocessing import MultiLabelBinarizer import skimage.io tags = [ 'blooming', 'selective_logging', 'blow_down', 'conventional_mine', 'bare_ground', 'artisinal_mine', 'primary', 'agriculture', 'water', 'habitation', 'road', 'cultivation', 'slash_burn' ] tags_weather = [ 'cloudy', 'partly_cloudy', 'haze', 'clear' ] mlb = MultiLabelBinarizer() mlb = mlb.fit([tags, tags_weather]) class KaggleAmazonDataset(Dataset): def __init__(self, dataframe, img_path, transform): self.img_path = img_path self.transform = transform self.X_train = dataframe['image_name'].as_matrix() self.y_train = mlb.transform(dataframe['tags'].str.split()).astype(np.float32) def __len__(self): return len(self.X_train) class KaggleAmazonJPGDataset(KaggleAmazonDataset): def __init__(self, dataframe, img_path, transform, divide=True): super(KaggleAmazonJPGDataset, self).__init__(dataframe, img_path, transform) self.divide = divide def __getitem__(self, index): img = skimage.io.imread(self.img_path + self.X_train[index] + '.jpg') if self.divide: img = img / 255 if self.transform: img = self.transform(img) label = torch.from_numpy(self.y_train[index]) return img, label class KaggleAmazonTestDataset(Dataset): def __init__(self, test_images, img_path, img_ext, transform, divide=True): self.img_path = img_path self.img_ext = img_ext self.transform = transform self.test_images = test_images self.divide = divide def __getitem__(self, index): img = skimage.io.imread(self.img_path + self.test_images[index] + self.img_ext) if self.divide: img = img / 255 img = self.transform(img) return img, self.test_images[index] def __len__(self): return len(self.test_images) class KaggleAmazonUnsupervisedDataset(Dataset): def __init__(self, paths, img_path, img_ext, transform_train, transform_val, y_train): self.img_path = img_path self.img_ext = img_ext self.transform_train = transform_train self.transform = transform_train self.transform_val = transform_val self.X_train = paths self.y_train = y_train def __getitem__(self, index): img = skimage.io.imread(self.img_path + self.X_train[index] + self.img_ext) if self.transform: img = self.transform(img) label = torch.from_numpy(self.y_train[index]) return img, label def __len__(self): return len(self.X_train) class KaggleAmazonSemiSupervisedDataset(Dataset): def __init__(self, supervised, unsupervised, transform, indices=True): self.supervised = supervised self.unsupervised = unsupervised self.transform = transform self.indices = indices def __getitem__(self, index): if index < len(self.supervised): x, y = self.supervised[index] i = 0 else: x, y = self.unsupervised[index-len(self.supervised)] i = 1 if self.transform: x = self.transform(x) if self.indices: return x, y, i else: return x, y def __len__(self): return len(self.supervised) + len(self.unsupervised) if __name__ == "__main__": print(mlb.classes)
mit
anirudhjayaraman/scikit-learn
sklearn/feature_extraction/hashing.py
183
6155
# Author: Lars Buitinck <[email protected]> # License: BSD 3 clause import numbers import numpy as np import scipy.sparse as sp from . import _hashing from ..base import BaseEstimator, TransformerMixin def _iteritems(d): """Like d.iteritems, but accepts any collections.Mapping.""" return d.iteritems() if hasattr(d, "iteritems") else d.items() class FeatureHasher(BaseEstimator, TransformerMixin): """Implements feature hashing, aka the hashing trick. This class turns sequences of symbolic feature names (strings) into scipy.sparse matrices, using a hash function to compute the matrix column corresponding to a name. The hash function employed is the signed 32-bit version of Murmurhash3. Feature names of type byte string are used as-is. Unicode strings are converted to UTF-8 first, but no Unicode normalization is done. Feature values must be (finite) numbers. This class is a low-memory alternative to DictVectorizer and CountVectorizer, intended for large-scale (online) learning and situations where memory is tight, e.g. when running prediction code on embedded devices. Read more in the :ref:`User Guide <feature_hashing>`. Parameters ---------- n_features : integer, optional The number of features (columns) in the output matrices. Small numbers of features are likely to cause hash collisions, but large numbers will cause larger coefficient dimensions in linear learners. dtype : numpy type, optional The type of feature values. Passed to scipy.sparse matrix constructors as the dtype argument. Do not set this to bool, np.boolean or any unsigned integer type. input_type : string, optional Either "dict" (the default) to accept dictionaries over (feature_name, value); "pair" to accept pairs of (feature_name, value); or "string" to accept single strings. feature_name should be a string, while value should be a number. In the case of "string", a value of 1 is implied. The feature_name is hashed to find the appropriate column for the feature. The value's sign might be flipped in the output (but see non_negative, below). non_negative : boolean, optional, default np.float64 Whether output matrices should contain non-negative values only; effectively calls abs on the matrix prior to returning it. When True, output values can be interpreted as frequencies. When False, output values will have expected value zero. Examples -------- >>> from sklearn.feature_extraction import FeatureHasher >>> h = FeatureHasher(n_features=10) >>> D = [{'dog': 1, 'cat':2, 'elephant':4},{'dog': 2, 'run': 5}] >>> f = h.transform(D) >>> f.toarray() array([[ 0., 0., -4., -1., 0., 0., 0., 0., 0., 2.], [ 0., 0., 0., -2., -5., 0., 0., 0., 0., 0.]]) See also -------- DictVectorizer : vectorizes string-valued features using a hash table. sklearn.preprocessing.OneHotEncoder : handles nominal/categorical features encoded as columns of integers. """ def __init__(self, n_features=(2 ** 20), input_type="dict", dtype=np.float64, non_negative=False): self._validate_params(n_features, input_type) self.dtype = dtype self.input_type = input_type self.n_features = n_features self.non_negative = non_negative @staticmethod def _validate_params(n_features, input_type): # strangely, np.int16 instances are not instances of Integral, # while np.int64 instances are... if not isinstance(n_features, (numbers.Integral, np.integer)): raise TypeError("n_features must be integral, got %r (%s)." % (n_features, type(n_features))) elif n_features < 1 or n_features >= 2 ** 31: raise ValueError("Invalid number of features (%d)." % n_features) if input_type not in ("dict", "pair", "string"): raise ValueError("input_type must be 'dict', 'pair' or 'string'," " got %r." % input_type) def fit(self, X=None, y=None): """No-op. This method doesn't do anything. It exists purely for compatibility with the scikit-learn transformer API. Returns ------- self : FeatureHasher """ # repeat input validation for grid search (which calls set_params) self._validate_params(self.n_features, self.input_type) return self def transform(self, raw_X, y=None): """Transform a sequence of instances to a scipy.sparse matrix. Parameters ---------- raw_X : iterable over iterable over raw features, length = n_samples Samples. Each sample must be iterable an (e.g., a list or tuple) containing/generating feature names (and optionally values, see the input_type constructor argument) which will be hashed. raw_X need not support the len function, so it can be the result of a generator; n_samples is determined on the fly. y : (ignored) Returns ------- X : scipy.sparse matrix, shape = (n_samples, self.n_features) Feature matrix, for use with estimators or further transformers. """ raw_X = iter(raw_X) if self.input_type == "dict": raw_X = (_iteritems(d) for d in raw_X) elif self.input_type == "string": raw_X = (((f, 1) for f in x) for x in raw_X) indices, indptr, values = \ _hashing.transform(raw_X, self.n_features, self.dtype) n_samples = indptr.shape[0] - 1 if n_samples == 0: raise ValueError("Cannot vectorize empty sequence.") X = sp.csr_matrix((values, indices, indptr), dtype=self.dtype, shape=(n_samples, self.n_features)) X.sum_duplicates() # also sorts the indices if self.non_negative: np.abs(X.data, X.data) return X
bsd-3-clause
jreback/pandas
pandas/tests/frame/methods/test_equals.py
1
2714
import numpy as np from pandas import DataFrame, date_range import pandas._testing as tm class TestEquals: def test_dataframe_not_equal(self): # see GH#28839 df1 = DataFrame({"a": [1, 2], "b": ["s", "d"]}) df2 = DataFrame({"a": ["s", "d"], "b": [1, 2]}) assert df1.equals(df2) is False def test_equals_different_blocks(self): # GH#9330 df0 = DataFrame({"A": ["x", "y"], "B": [1, 2], "C": ["w", "z"]}) df1 = df0.reset_index()[["A", "B", "C"]] # this assert verifies that the above operations have # induced a block rearrangement assert df0._mgr.blocks[0].dtype != df1._mgr.blocks[0].dtype # do the real tests tm.assert_frame_equal(df0, df1) assert df0.equals(df1) assert df1.equals(df0) def test_equals(self): # Add object dtype column with nans index = np.random.random(10) df1 = DataFrame(np.random.random(10), index=index, columns=["floats"]) df1["text"] = "the sky is so blue. we could use more chocolate.".split() df1["start"] = date_range("2000-1-1", periods=10, freq="T") df1["end"] = date_range("2000-1-1", periods=10, freq="D") df1["diff"] = df1["end"] - df1["start"] df1["bool"] = np.arange(10) % 3 == 0 df1.loc[::2] = np.nan df2 = df1.copy() assert df1["text"].equals(df2["text"]) assert df1["start"].equals(df2["start"]) assert df1["end"].equals(df2["end"]) assert df1["diff"].equals(df2["diff"]) assert df1["bool"].equals(df2["bool"]) assert df1.equals(df2) assert not df1.equals(object) # different dtype different = df1.copy() different["floats"] = different["floats"].astype("float32") assert not df1.equals(different) # different index different_index = -index different = df2.set_index(different_index) assert not df1.equals(different) # different columns different = df2.copy() different.columns = df2.columns[::-1] assert not df1.equals(different) # DatetimeIndex index = date_range("2000-1-1", periods=10, freq="T") df1 = df1.set_index(index) df2 = df1.copy() assert df1.equals(df2) # MultiIndex df3 = df1.set_index(["text"], append=True) df2 = df1.set_index(["text"], append=True) assert df3.equals(df2) df2 = df1.set_index(["floats"], append=True) assert not df3.equals(df2) # NaN in index df3 = df1.set_index(["floats"], append=True) df2 = df1.set_index(["floats"], append=True) assert df3.equals(df2)
bsd-3-clause
myusuf3/vincent
examples/stacked_bar_examples.py
11
2691
# -*- coding: utf-8 -*- """ Vincent Stacked Bar Examples """ #Build a Stacked Bar Chart from scratch import pandas as pd from vincent import * farm_1 = {'apples': 10, 'berries': 32, 'squash': 21, 'melons': 13, 'corn': 18} farm_2 = {'apples': 15, 'berries': 40, 'squash': 17, 'melons': 10, 'corn': 22} farm_3 = {'apples': 6, 'berries': 24, 'squash': 22, 'melons': 16, 'corn': 30} farm_4 = {'apples': 12, 'berries': 30, 'squash': 15, 'melons': 9, 'corn': 15} farm_5 = {'apples': 20, 'berries': 35, 'squash': 19, 'melons': 17, 'corn': 19} farm_6 = {'apples': 3, 'berries': 28, 'squash': 21, 'melons': 11, 'corn': 23} data = [farm_1, farm_2, farm_3, farm_4, farm_5, farm_6] index = ['Farm 1', 'Farm 2', 'Farm 3', 'Farm 4', 'Farm 5', 'Farm 6'] df = pd.DataFrame(data, index=index) vis = Visualization(width=500, height=300) vis.padding = {'top': 10, 'left': 50, 'bottom': 50, 'right': 100} data = Data.from_pandas(df) vis.data['table'] = data facets = Transform(type='facet', keys=['data.idx']) stats = Transform(type='stats', value='data.val') stat_dat = Data(name='stats', source='table', transform=[facets, stats]) vis.data['stats'] = stat_dat vis.scales['x'] = Scale(name='x', type='ordinal', range='width', domain=DataRef(data='table', field="data.idx")) vis.scales['y'] = Scale(name='y', range='height', type='linear', nice=True, domain=DataRef(data='stats', field="sum")) vis.scales['color'] = Scale(name='color', type='ordinal', domain=DataRef(data='table', field='data.col'), range='category20') vis.axes.extend([Axis(type='x', scale='x'), Axis(type='y', scale='y')]) facet = Transform(type='facet', keys=['data.col']) stack = Transform(type='stack', point='data.idx', height='data.val') transform = MarkRef(data='table',transform=[facet, stack]) enter_props = PropertySet(x=ValueRef(scale='x', field="data.idx"), y=ValueRef(scale='y', field="y"), width=ValueRef(scale='x', band=True, offset=-1), y2=ValueRef(field='y2', scale='y'), fill=ValueRef(scale='color', field='data.col')) mark = Mark(type='group', from_=transform, marks=[Mark(type='rect', properties=MarkProperties(enter=enter_props))]) vis.marks.append(mark) vis.axis_titles(x='Farms', y='Total Produce') vis.legend(title='Produce Type') vis.to_json('vega.json') #Convenience method vis = StackedBar(df) vis.axis_titles(x='Farms', y='Total Produce') vis.legend(title='Produce Type') vis.scales['x'].padding = 0.2 vis.colors(brew='Set2') vis.to_json('vega.json')
mit
anntzer/scikit-learn
sklearn/model_selection/_search_successive_halving.py
3
40300
from math import ceil, floor, log from abc import abstractmethod from numbers import Integral import numpy as np from ._search import _check_param_grid from ._search import BaseSearchCV from . import ParameterGrid, ParameterSampler from ..utils.validation import _num_samples from ..base import is_classifier from ._split import check_cv, _yields_constant_splits from ..utils import resample __all__ = ['HalvingGridSearchCV', 'HalvingRandomSearchCV'] class _SubsampleMetaSplitter: """Splitter that subsamples a given fraction of the dataset""" def __init__(self, *, base_cv, fraction, subsample_test, random_state): self.base_cv = base_cv self.fraction = fraction self.subsample_test = subsample_test self.random_state = random_state def split(self, X, y, groups=None): for train_idx, test_idx in self.base_cv.split(X, y, groups): train_idx = resample( train_idx, replace=False, random_state=self.random_state, n_samples=int(self.fraction * train_idx.shape[0]) ) if self.subsample_test: test_idx = resample( test_idx, replace=False, random_state=self.random_state, n_samples=int(self.fraction * test_idx.shape[0]) ) yield train_idx, test_idx def _refit_callable(results): # Custom refit callable to return the index of the best candidate. We want # the best candidate out of the last iteration. By default BaseSearchCV # would return the best candidate out of all iterations. last_iter = np.max(results['iter']) last_iter_indices = np.flatnonzero(results['iter'] == last_iter) best_idx = np.argmax(results['mean_test_score'][last_iter_indices]) return last_iter_indices[best_idx] def _top_k(results, k, itr): # Return the best candidates of a given iteration iteration, mean_test_score, params = ( np.asarray(a) for a in (results['iter'], results['mean_test_score'], results['params']) ) iter_indices = np.flatnonzero(iteration == itr) sorted_indices = np.argsort(mean_test_score[iter_indices]) return np.array(params[iter_indices][sorted_indices[-k:]]) class BaseSuccessiveHalving(BaseSearchCV): """Implements successive halving. Ref: Almost optimal exploration in multi-armed bandits, ICML 13 Zohar Karnin, Tomer Koren, Oren Somekh """ def __init__(self, estimator, *, scoring=None, n_jobs=None, refit=True, cv=5, verbose=0, random_state=None, error_score=np.nan, return_train_score=True, max_resources='auto', min_resources='exhaust', resource='n_samples', factor=3, aggressive_elimination=False): refit = _refit_callable if refit else False super().__init__(estimator, scoring=scoring, n_jobs=n_jobs, refit=refit, cv=cv, verbose=verbose, error_score=error_score, return_train_score=return_train_score) self.random_state = random_state self.max_resources = max_resources self.resource = resource self.factor = factor self.min_resources = min_resources self.aggressive_elimination = aggressive_elimination def _check_input_parameters(self, X, y, groups): if self.scoring is not None and not (isinstance(self.scoring, str) or callable(self.scoring)): raise ValueError('scoring parameter must be a string, ' 'a callable or None. Multimetric scoring is not ' 'supported.') # We need to enforce that successive calls to cv.split() yield the same # splits: see https://github.com/scikit-learn/scikit-learn/issues/15149 if not _yields_constant_splits(self._checked_cv_orig): raise ValueError( "The cv parameter must yield consistent folds across " "calls to split(). Set its random_state to an int, or set " "shuffle=False." ) if (self.resource != 'n_samples' and self.resource not in self.estimator.get_params()): raise ValueError( f'Cannot use resource={self.resource} which is not supported ' f'by estimator {self.estimator.__class__.__name__}' ) if (isinstance(self.max_resources, str) and self.max_resources != 'auto'): raise ValueError( "max_resources must be either 'auto' or a positive integer" ) if self.max_resources != 'auto' and ( not isinstance(self.max_resources, Integral) or self.max_resources <= 0): raise ValueError( "max_resources must be either 'auto' or a positive integer" ) if self.min_resources not in ('smallest', 'exhaust') and ( not isinstance(self.min_resources, Integral) or self.min_resources <= 0): raise ValueError( "min_resources must be either 'smallest', 'exhaust', " "or a positive integer " "no greater than max_resources." ) if isinstance(self, HalvingRandomSearchCV): if self.min_resources == self.n_candidates == 'exhaust': # for n_candidates=exhaust to work, we need to know what # min_resources is. Similarly min_resources=exhaust needs to # know the actual number of candidates. raise ValueError( "n_candidates and min_resources cannot be both set to " "'exhaust'." ) if self.n_candidates != 'exhaust' and ( not isinstance(self.n_candidates, Integral) or self.n_candidates <= 0): raise ValueError( "n_candidates must be either 'exhaust' " "or a positive integer" ) self.min_resources_ = self.min_resources if self.min_resources_ in ('smallest', 'exhaust'): if self.resource == 'n_samples': n_splits = self._checked_cv_orig.get_n_splits(X, y, groups) # please see https://gph.is/1KjihQe for a justification magic_factor = 2 self.min_resources_ = n_splits * magic_factor if is_classifier(self.estimator): n_classes = np.unique(y).shape[0] self.min_resources_ *= n_classes else: self.min_resources_ = 1 # if 'exhaust', min_resources_ might be set to a higher value later # in _run_search self.max_resources_ = self.max_resources if self.max_resources_ == 'auto': if not self.resource == 'n_samples': raise ValueError( "max_resources can only be 'auto' if resource='n_samples'") self.max_resources_ = _num_samples(X) if self.min_resources_ > self.max_resources_: raise ValueError( f'min_resources_={self.min_resources_} is greater ' f'than max_resources_={self.max_resources_}.' ) def fit(self, X, y=None, groups=None, **fit_params): """Run fit with all sets of parameters. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) or (n_samples, n_output), optional Target relative to X for classification or regression; None for unsupervised learning. groups : array-like of shape (n_samples,), default=None Group labels for the samples used while splitting the dataset into train/test set. Only used in conjunction with a "Group" :term:`cv` instance (e.g., :class:`~sklearn.model_selection.GroupKFold`). **fit_params : dict of string -> object Parameters passed to the ``fit`` method of the estimator """ self._checked_cv_orig = check_cv( self.cv, y, classifier=is_classifier(self.estimator)) self._check_input_parameters( X=X, y=y, groups=groups, ) self._n_samples_orig = _num_samples(X) super().fit(X, y=y, groups=None, **fit_params) # Set best_score_: BaseSearchCV does not set it, as refit is a callable self.best_score_ = ( self.cv_results_['mean_test_score'][self.best_index_]) return self def _run_search(self, evaluate_candidates): candidate_params = self._generate_candidate_params() if self.resource != 'n_samples' and any( self.resource in candidate for candidate in candidate_params): # Can only check this now since we need the candidates list raise ValueError( f"Cannot use parameter {self.resource} as the resource since " "it is part of the searched parameters." ) # n_required_iterations is the number of iterations needed so that the # last iterations evaluates less than `factor` candidates. n_required_iterations = 1 + floor(log(len(candidate_params), self.factor)) if self.min_resources == 'exhaust': # To exhaust the resources, we want to start with the biggest # min_resources possible so that the last (required) iteration # uses as many resources as possible last_iteration = n_required_iterations - 1 self.min_resources_ = max( self.min_resources_, self.max_resources_ // self.factor**last_iteration ) # n_possible_iterations is the number of iterations that we can # actually do starting from min_resources and without exceeding # max_resources. Depending on max_resources and the number of # candidates, this may be higher or smaller than # n_required_iterations. n_possible_iterations = 1 + floor(log( self.max_resources_ // self.min_resources_, self.factor)) if self.aggressive_elimination: n_iterations = n_required_iterations else: n_iterations = min(n_possible_iterations, n_required_iterations) if self.verbose: print(f'n_iterations: {n_iterations}') print(f'n_required_iterations: {n_required_iterations}') print(f'n_possible_iterations: {n_possible_iterations}') print(f'min_resources_: {self.min_resources_}') print(f'max_resources_: {self.max_resources_}') print(f'aggressive_elimination: {self.aggressive_elimination}') print(f'factor: {self.factor}') self.n_resources_ = [] self.n_candidates_ = [] for itr in range(n_iterations): power = itr # default if self.aggressive_elimination: # this will set n_resources to the initial value (i.e. the # value of n_resources at the first iteration) for as many # iterations as needed (while candidates are being # eliminated), and then go on as usual. power = max( 0, itr - n_required_iterations + n_possible_iterations ) n_resources = int(self.factor**power * self.min_resources_) # guard, probably not needed n_resources = min(n_resources, self.max_resources_) self.n_resources_.append(n_resources) n_candidates = len(candidate_params) self.n_candidates_.append(n_candidates) if self.verbose: print('-' * 10) print(f'iter: {itr}') print(f'n_candidates: {n_candidates}') print(f'n_resources: {n_resources}') if self.resource == 'n_samples': # subsampling will be done in cv.split() cv = _SubsampleMetaSplitter( base_cv=self._checked_cv_orig, fraction=n_resources / self._n_samples_orig, subsample_test=True, random_state=self.random_state ) else: # Need copy so that the n_resources of next iteration does # not overwrite candidate_params = [c.copy() for c in candidate_params] for candidate in candidate_params: candidate[self.resource] = n_resources cv = self._checked_cv_orig more_results = {'iter': [itr] * n_candidates, 'n_resources': [n_resources] * n_candidates} results = evaluate_candidates(candidate_params, cv, more_results=more_results) n_candidates_to_keep = ceil(n_candidates / self.factor) candidate_params = _top_k(results, n_candidates_to_keep, itr) self.n_remaining_candidates_ = len(candidate_params) self.n_required_iterations_ = n_required_iterations self.n_possible_iterations_ = n_possible_iterations self.n_iterations_ = n_iterations @abstractmethod def _generate_candidate_params(self): pass class HalvingGridSearchCV(BaseSuccessiveHalving): """Search over specified parameter values with successive halving. The search strategy starts evaluating all the candidates with a small amount of resources and iteratively selects the best candidates, using more and more resources. Read more in the :ref:`User guide <successive_halving_user_guide>`. .. note:: This estimator is still **experimental** for now: the predictions and the API might change without any deprecation cycle. To use it, you need to explicitly import ``enable_halving_search_cv``:: >>> # explicitly require this experimental feature >>> from sklearn.experimental import enable_halving_search_cv # noqa >>> # now you can import normally from model_selection >>> from sklearn.model_selection import HalvingGridSearchCV Parameters ---------- estimator : estimator object. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. param_grid : dict or list of dictionaries Dictionary with parameters names (string) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored. This enables searching over any sequence of parameter settings. factor : int or float, default=3 The 'halving' parameter, which determines the proportion of candidates that are selected for each subsequent iteration. For example, ``factor=3`` means that only one third of the candidates are selected. resource : ``'n_samples'`` or str, default='n_samples' Defines the resource that increases with each iteration. By default, the resource is the number of samples. It can also be set to any parameter of the base estimator that accepts positive integer values, e.g. 'n_iterations' or 'n_estimators' for a gradient boosting estimator. In this case ``max_resources`` cannot be 'auto' and must be set explicitly. max_resources : int, default='auto' The maximum amount of resource that any candidate is allowed to use for a given iteration. By default, this is set to ``n_samples`` when ``resource='n_samples'`` (default), else an error is raised. min_resources : {'exhaust', 'smallest'} or int, default='exhaust' The minimum amount of resource that any candidate is allowed to use for a given iteration. Equivalently, this defines the amount of resources `r0` that are allocated for each candidate at the first iteration. - 'smallest' is a heuristic that sets `r0` to a small value: - ``n_splits * 2`` when ``resource='n_samples'`` for a regression problem - ``n_classes * n_splits * 2`` when ``resource='n_samples'`` for a classification problem - ``1`` when ``resource != 'n_samples'`` - 'exhaust' will set `r0` such that the **last** iteration uses as much resources as possible. Namely, the last iteration will use the highest value smaller than ``max_resources`` that is a multiple of both ``min_resources`` and ``factor``. In general, using 'exhaust' leads to a more accurate estimator, but is slightly more time consuming. Note that the amount of resources used at each iteration is always a multiple of ``min_resources``. aggressive_elimination : bool, default=False This is only relevant in cases where there isn't enough resources to reduce the remaining candidates to at most `factor` after the last iteration. If ``True``, then the search process will 'replay' the first iteration for as long as needed until the number of candidates is small enough. This is ``False`` by default, which means that the last iteration may evaluate more than ``factor`` candidates. See :ref:`aggressive_elimination` for more details. cv : int, cross-validation generator or iterable, default=5 Determines the cross-validation splitting strategy. Possible inputs for cv are: - integer, to specify the number of folds in a `(Stratified)KFold`, - :term:`CV splitter`, - An iterable yielding (train, test) splits as arrays of indices. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` is used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. .. note:: Due to implementation details, the folds produced by `cv` must be the same across multiple calls to `cv.split()`. For built-in `scikit-learn` iterators, this can be achieved by deactivating shuffling (`shuffle=False`), or by setting the `cv`'s `random_state` parameter to an integer. scoring : string, callable, or None, default=None A single string (see :ref:`scoring_parameter`) or a callable (see :ref:`scoring`) to evaluate the predictions on the test set. If None, the estimator's score method is used. refit : bool, default=True If True, refit an estimator using the best found parameters on the whole dataset. The refitted estimator is made available at the ``best_estimator_`` attribute and permits using ``predict`` directly on this ``HalvingGridSearchCV`` instance. error_score : 'raise' or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Default is ``np.nan`` return_train_score : bool, default=False If ``False``, the ``cv_results_`` attribute will not include training scores. Computing training scores is used to get insights on how different parameter settings impact the overfitting/underfitting trade-off. However computing the scores on the training set can be computationally expensive and is not strictly required to select the parameters that yield the best generalization performance. random_state : int, RandomState instance or None, default=None Pseudo random number generator state used for subsampling the dataset when `resources != 'n_samples'`. Ignored otherwise. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. n_jobs : int or None, default=None Number of jobs to run in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. verbose : int Controls the verbosity: the higher, the more messages. Attributes ---------- n_resources_ : list of int The amount of resources used at each iteration. n_candidates_ : list of int The number of candidate parameters that were evaluated at each iteration. n_remaining_candidates_ : int The number of candidate parameters that are left after the last iteration. It corresponds to `ceil(n_candidates[-1] / factor)` max_resources_ : int The maximum number of resources that any candidate is allowed to use for a given iteration. Note that since the number of resources used at each iteration must be a multiple of ``min_resources_``, the actual number of resources used at the last iteration may be smaller than ``max_resources_``. min_resources_ : int The amount of resources that are allocated for each candidate at the first iteration. n_iterations_ : int The actual number of iterations that were run. This is equal to ``n_required_iterations_`` if ``aggressive_elimination`` is ``True``. Else, this is equal to ``min(n_possible_iterations_, n_required_iterations_)``. n_possible_iterations_ : int The number of iterations that are possible starting with ``min_resources_`` resources and without exceeding ``max_resources_``. n_required_iterations_ : int The number of iterations that are required to end up with less than ``factor`` candidates at the last iteration, starting with ``min_resources_`` resources. This will be smaller than ``n_possible_iterations_`` when there isn't enough resources. cv_results_ : dict of numpy (masked) ndarrays A dict with keys as column headers and values as columns, that can be imported into a pandas ``DataFrame``. It contains many informations for analysing the results of a search. Please refer to the :ref:`User guide<successive_halving_cv_results>` for details. best_estimator_ : estimator or dict Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if ``refit=False``. best_score_ : float Mean cross-validated score of the best_estimator. best_params_ : dict Parameter setting that gave the best results on the hold out data. best_index_ : int The index (of the ``cv_results_`` arrays) which corresponds to the best candidate parameter setting. The dict at ``search.cv_results_['params'][search.best_index_]`` gives the parameter setting for the best model, that gives the highest mean score (``search.best_score_``). scorer_ : function or a dict Scorer function used on the held out data to choose the best parameters for the model. n_splits_ : int The number of cross-validation splits (folds/iterations). refit_time_ : float Seconds used for refitting the best model on the whole dataset. This is present only if ``refit`` is not False. See Also -------- :class:`HalvingRandomSearchCV`: Random search over a set of parameters using successive halving. Notes ----- The parameters selected are those that maximize the score of the held-out data, according to the scoring parameter. Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn.ensemble import RandomForestClassifier >>> from sklearn.experimental import enable_halving_search_cv # noqa >>> from sklearn.model_selection import HalvingGridSearchCV ... >>> X, y = load_iris(return_X_y=True) >>> clf = RandomForestClassifier(random_state=0) ... >>> param_grid = {"max_depth": [3, None], ... "min_samples_split": [5, 10]} >>> search = HalvingGridSearchCV(clf, param_grid, resource='n_estimators', ... max_resources=10, ... random_state=0).fit(X, y) >>> search.best_params_ # doctest: +SKIP {'max_depth': None, 'min_samples_split': 10, 'n_estimators': 9} """ _required_parameters = ["estimator", "param_grid"] def __init__(self, estimator, param_grid, *, factor=3, resource='n_samples', max_resources='auto', min_resources='exhaust', aggressive_elimination=False, cv=5, scoring=None, refit=True, error_score=np.nan, return_train_score=True, random_state=None, n_jobs=None, verbose=0): super().__init__(estimator, scoring=scoring, n_jobs=n_jobs, refit=refit, verbose=verbose, cv=cv, random_state=random_state, error_score=error_score, return_train_score=return_train_score, max_resources=max_resources, resource=resource, factor=factor, min_resources=min_resources, aggressive_elimination=aggressive_elimination) self.param_grid = param_grid _check_param_grid(self.param_grid) def _generate_candidate_params(self): return ParameterGrid(self.param_grid) class HalvingRandomSearchCV(BaseSuccessiveHalving): """Randomized search on hyper parameters. The search strategy starts evaluating all the candidates with a small amount of resources and iteratively selects the best candidates, using more and more resources. The candidates are sampled at random from the parameter space and the number of sampled candidates is determined by ``n_candidates``. Read more in the :ref:`User guide<successive_halving_user_guide>`. .. note:: This estimator is still **experimental** for now: the predictions and the API might change without any deprecation cycle. To use it, you need to explicitly import ``enable_halving_search_cv``:: >>> # explicitly require this experimental feature >>> from sklearn.experimental import enable_halving_search_cv # noqa >>> # now you can import normally from model_selection >>> from sklearn.model_selection import HalvingRandomSearchCV Parameters ---------- estimator : estimator object. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. param_distributions : dict Dictionary with parameters names (string) as keys and distributions or lists of parameters to try. Distributions must provide a ``rvs`` method for sampling (such as those from scipy.stats.distributions). If a list is given, it is sampled uniformly. n_candidates : int, default='exhaust' The number of candidate parameters to sample, at the first iteration. Using 'exhaust' will sample enough candidates so that the last iteration uses as many resources as possible, based on `min_resources`, `max_resources` and `factor`. In this case, `min_resources` cannot be 'exhaust'. factor : int or float, default=3 The 'halving' parameter, which determines the proportion of candidates that are selected for each subsequent iteration. For example, ``factor=3`` means that only one third of the candidates are selected. resource : ``'n_samples'`` or str, default='n_samples' Defines the resource that increases with each iteration. By default, the resource is the number of samples. It can also be set to any parameter of the base estimator that accepts positive integer values, e.g. 'n_iterations' or 'n_estimators' for a gradient boosting estimator. In this case ``max_resources`` cannot be 'auto' and must be set explicitly. max_resources : int, default='auto' The maximum number of resources that any candidate is allowed to use for a given iteration. By default, this is set ``n_samples`` when ``resource='n_samples'`` (default), else an error is raised. min_resources : {'exhaust', 'smallest'} or int, default='smallest' The minimum amount of resource that any candidate is allowed to use for a given iteration. Equivalently, this defines the amount of resources `r0` that are allocated for each candidate at the first iteration. - 'smallest' is a heuristic that sets `r0` to a small value: - ``n_splits * 2`` when ``resource='n_samples'`` for a regression problem - ``n_classes * n_splits * 2`` when ``resource='n_samples'`` for a classification problem - ``1`` when ``resource != 'n_samples'`` - 'exhaust' will set `r0` such that the **last** iteration uses as much resources as possible. Namely, the last iteration will use the highest value smaller than ``max_resources`` that is a multiple of both ``min_resources`` and ``factor``. In general, using 'exhaust' leads to a more accurate estimator, but is slightly more time consuming. 'exhaust' isn't available when `n_candidates='exhaust'`. Note that the amount of resources used at each iteration is always a multiple of ``min_resources``. aggressive_elimination : bool, default=False This is only relevant in cases where there isn't enough resources to reduce the remaining candidates to at most `factor` after the last iteration. If ``True``, then the search process will 'replay' the first iteration for as long as needed until the number of candidates is small enough. This is ``False`` by default, which means that the last iteration may evaluate more than ``factor`` candidates. See :ref:`aggressive_elimination` for more details. cv : int, cross-validation generator or an iterable, default=5 Determines the cross-validation splitting strategy. Possible inputs for cv are: - integer, to specify the number of folds in a `(Stratified)KFold`, - :term:`CV splitter`, - An iterable yielding (train, test) splits as arrays of indices. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` is used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. .. note:: Due to implementation details, the folds produced by `cv` must be the same across multiple calls to `cv.split()`. For built-in `scikit-learn` iterators, this can be achieved by deactivating shuffling (`shuffle=False`), or by setting the `cv`'s `random_state` parameter to an integer. scoring : string, callable, or None, default=None A single string (see :ref:`scoring_parameter`) or a callable (see :ref:`scoring`) to evaluate the predictions on the test set. If None, the estimator's score method is used. refit : bool, default=True If True, refit an estimator using the best found parameters on the whole dataset. The refitted estimator is made available at the ``best_estimator_`` attribute and permits using ``predict`` directly on this ``HalvingRandomSearchCV`` instance. error_score : 'raise' or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Default is ``np.nan`` return_train_score : bool, default=False If ``False``, the ``cv_results_`` attribute will not include training scores. Computing training scores is used to get insights on how different parameter settings impact the overfitting/underfitting trade-off. However computing the scores on the training set can be computationally expensive and is not strictly required to select the parameters that yield the best generalization performance. random_state : int, RandomState instance or None, default=None Pseudo random number generator state used for subsampling the dataset when `resources != 'n_samples'`. Also used for random uniform sampling from lists of possible values instead of scipy.stats distributions. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. n_jobs : int or None, default=None Number of jobs to run in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. verbose : int Controls the verbosity: the higher, the more messages. Attributes ---------- n_resources_ : list of int The amount of resources used at each iteration. n_candidates_ : list of int The number of candidate parameters that were evaluated at each iteration. n_remaining_candidates_ : int The number of candidate parameters that are left after the last iteration. It corresponds to `ceil(n_candidates[-1] / factor)` max_resources_ : int The maximum number of resources that any candidate is allowed to use for a given iteration. Note that since the number of resources used at each iteration must be a multiple of ``min_resources_``, the actual number of resources used at the last iteration may be smaller than ``max_resources_``. min_resources_ : int The amount of resources that are allocated for each candidate at the first iteration. n_iterations_ : int The actual number of iterations that were run. This is equal to ``n_required_iterations_`` if ``aggressive_elimination`` is ``True``. Else, this is equal to ``min(n_possible_iterations_, n_required_iterations_)``. n_possible_iterations_ : int The number of iterations that are possible starting with ``min_resources_`` resources and without exceeding ``max_resources_``. n_required_iterations_ : int The number of iterations that are required to end up with less than ``factor`` candidates at the last iteration, starting with ``min_resources_`` resources. This will be smaller than ``n_possible_iterations_`` when there isn't enough resources. cv_results_ : dict of numpy (masked) ndarrays A dict with keys as column headers and values as columns, that can be imported into a pandas ``DataFrame``. It contains many informations for analysing the results of a search. Please refer to the :ref:`User guide<successive_halving_cv_results>` for details. best_estimator_ : estimator or dict Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if ``refit=False``. best_score_ : float Mean cross-validated score of the best_estimator. best_params_ : dict Parameter setting that gave the best results on the hold out data. best_index_ : int The index (of the ``cv_results_`` arrays) which corresponds to the best candidate parameter setting. The dict at ``search.cv_results_['params'][search.best_index_]`` gives the parameter setting for the best model, that gives the highest mean score (``search.best_score_``). scorer_ : function or a dict Scorer function used on the held out data to choose the best parameters for the model. n_splits_ : int The number of cross-validation splits (folds/iterations). refit_time_ : float Seconds used for refitting the best model on the whole dataset. This is present only if ``refit`` is not False. See Also -------- :class:`HalvingGridSearchCV`: Search over a grid of parameters using successive halving. Notes ----- The parameters selected are those that maximize the score of the held-out data, according to the scoring parameter. Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn.ensemble import RandomForestClassifier >>> from sklearn.experimental import enable_halving_search_cv # noqa >>> from sklearn.model_selection import HalvingRandomSearchCV >>> from scipy.stats import randint ... >>> X, y = load_iris(return_X_y=True) >>> clf = RandomForestClassifier(random_state=0) >>> np.random.seed(0) ... >>> param_distributions = {"max_depth": [3, None], ... "min_samples_split": randint(2, 11)} >>> search = HalvingRandomSearchCV(clf, param_distributions, ... resource='n_estimators', ... max_resources=10, ... random_state=0).fit(X, y) >>> search.best_params_ # doctest: +SKIP {'max_depth': None, 'min_samples_split': 10, 'n_estimators': 9} """ _required_parameters = ["estimator", "param_distributions"] def __init__(self, estimator, param_distributions, *, n_candidates='exhaust', factor=3, resource='n_samples', max_resources='auto', min_resources='smallest', aggressive_elimination=False, cv=5, scoring=None, refit=True, error_score=np.nan, return_train_score=True, random_state=None, n_jobs=None, verbose=0): super().__init__(estimator, scoring=scoring, n_jobs=n_jobs, refit=refit, verbose=verbose, cv=cv, random_state=random_state, error_score=error_score, return_train_score=return_train_score, max_resources=max_resources, resource=resource, factor=factor, min_resources=min_resources, aggressive_elimination=aggressive_elimination) self.param_distributions = param_distributions self.n_candidates = n_candidates def _generate_candidate_params(self): n_candidates_first_iter = self.n_candidates if n_candidates_first_iter == 'exhaust': # This will generate enough candidate so that the last iteration # uses as much resources as possible n_candidates_first_iter = ( self.max_resources_ // self.min_resources_) return ParameterSampler(self.param_distributions, n_candidates_first_iter, random_state=self.random_state)
bsd-3-clause
dsandeephegde/servo
tests/heartbeats/process_logs.py
139
16143
#!/usr/bin/env python # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import argparse import matplotlib.pyplot as plt import numpy as np import os from os import path import sys import warnings HB_LOG_IDX_START_TIME = 7 HB_LOG_IDX_END_TIME = HB_LOG_IDX_START_TIME + 1 HB_LOG_IDX_START_ENERGY = 14 HB_LOG_IDX_END_ENERGY = HB_LOG_IDX_START_ENERGY + 1 ENERGY_PROFILER_NAME = 'ApplicationHeartbeat' SUMMARY_OUTPUT = "summary.txt" SUMMARY_TIME_IDX = 8 SUMMARY_ENERGY_IDX = SUMMARY_TIME_IDX + 1 SUMMARY_POWER_IDX = SUMMARY_ENERGY_IDX + 1 def autolabel(rects, ax): """Attach some text labels. """ for rect in rects: ax.text(rect.get_x() + rect.get_width() / 2., 1.05 * rect.get_height(), '', ha='center', va='bottom') def plot_raw_totals(config, plot_data, max_time, max_time_std, max_energy, max_energy_std, output_dir, normalize): """Plot the raw totals for a configuration. Keyword arguments: config -- configuration name plot_data -- (profiler name, total_time, total_time_std, total_energy, total_energy_std) max_time, max_time_std, max_energy, max_energy_std -- single values normalize -- True/False """ plot_data = sorted(plot_data) keys = [p for (p, tt, tts, te, tes) in plot_data] total_times = [tt for (p, tt, tts, te, tes) in plot_data] total_times_std = [tts for (p, tt, tts, te, tes) in plot_data] total_energies = [te for (p, tt, tts, te, tes) in plot_data] total_energies_std = [tes for (p, tt, tts, te, tes) in plot_data] fig, ax1 = plt.subplots() ind = np.arange(len(keys)) # the x locations for the groups width = 0.35 # the width of the bars # add some text for labels, title and axes ticks ax1.set_title('Time/Energy Data for Configuration ' + config) ax1.set_xticks(ind + width) ax1.set_xticklabels(keys, rotation=45) fig.set_tight_layout(True) fig.set_size_inches(len(plot_data) / 1.5, 8) ax2 = ax1.twinx() # Normalize if normalize: total_times_std /= np.sum(total_times) total_times /= np.sum(total_times) total_energies_std /= np.sum(total_energies) total_energies /= np.sum(total_energies) ax1.set_ylabel('Time (Normalized)') ax2.set_ylabel('Energy (Normalized)') else: # set time in us instead of ns total_times_std /= np.array(1000000.0) total_times /= np.array(1000000.0) total_energies_std /= np.array(1000000.0) total_energies /= np.array(1000000.0) ax1.set_ylabel('Time (ms)') ax2.set_ylabel('Energy (Joules)') rects1 = ax1.bar(ind, total_times, width, color='r', yerr=total_times_std) rects2 = ax2.bar(ind + width, total_energies, width, color='y', yerr=total_energies_std) ax1.legend([rects1[0], rects2[0]], ['Time', 'Energy']) # set axis x1, x2, y1, y2 = plt.axis() if normalize: ax1.set_ylim(ymin=0, ymax=1) ax2.set_ylim(ymin=0, ymax=1) else: ax1.set_ylim(ymin=0, ymax=((max_time + max_time_std) * 1.25 / 1000000.0)) ax2.set_ylim(ymin=0, ymax=((max_energy + max_energy_std) * 1.25 / 1000000.0)) autolabel(rects1, ax1) autolabel(rects2, ax2) # plt.show() plt.savefig(path.join(output_dir, config + ".png")) plt.close(fig) def create_raw_total_data(config_data): """Get the raw data to plot for a configuration Return: [(profiler, time_mean, time_stddev, energy_mean, energy_stddev)] Keyword arguments: config_data -- (trial, trial_data) """ # We can't assume that the same number of heartbeats are always issued across trials # key: profiler name; value: list of timing sums for each trial profiler_total_times = {} # key: profiler name; value: list of energy sums for each trial profiler_total_energies = {} for (t, td) in config_data: for (profiler, ts, te, es, ee) in td: # sum the total times and energies for each profiler in this trial total_time = np.sum(te - ts) total_energy = np.sum(ee - es) # add to list to be averaged later time_list = profiler_total_times.get(profiler, []) time_list.append(total_time) profiler_total_times[profiler] = time_list energy_list = profiler_total_energies.get(profiler, []) energy_list.append(total_energy) profiler_total_energies[profiler] = energy_list # Get mean and stddev for time and energy totals return [(profiler, np.mean(profiler_total_times[profiler]), np.std(profiler_total_times[profiler]), np.mean(profiler_total_energies[profiler]), np.std(profiler_total_energies[profiler])) for profiler in profiler_total_times.keys()] def plot_all_raw_totals(config_list, output_dir): """Plot column charts of the raw total time/energy spent in each profiler category. Keyword arguments: config_list -- [(config, result of process_config_dir(...))] output_dir -- where to write plots to """ raw_total_norm_out_dir = path.join(output_dir, 'raw_totals_normalized') os.makedirs(raw_total_norm_out_dir) raw_total_out_dir = path.join(output_dir, 'raw_totals') os.makedirs(raw_total_out_dir) # (name, (profiler, (time_mean, time_stddev, energy_mean, energy_stddev))) raw_totals_data = [(config, create_raw_total_data(config_data)) for (config, config_data) in config_list] mean_times = [] mean_times_std = [] mean_energies = [] mean_energies_std = [] for profiler_tup in [config_tup[1] for config_tup in raw_totals_data]: for (p, tt, tts, te, tes) in profiler_tup: mean_times.append(tt) mean_times_std.append(tts) mean_energies.append(te) mean_energies_std.append(tes) # get consistent max time/energy values across plots max_t = np.max(mean_times) max_t_std = np.max(mean_times_std) max_e = np.max(mean_energies) max_e_std = np.max(mean_energies_std) [plot_raw_totals(data[0], data[1], max_t, max_t_std, max_e, max_e_std, raw_total_norm_out_dir, True) for data in raw_totals_data] [plot_raw_totals(data[0], data[1], max_t, max_t_std, max_e, max_e_std, raw_total_out_dir, False) for data in raw_totals_data] def plot_trial_time_series(config, trial, trial_data, max_end_time, max_power, output_dir): """Plot time series for a single trial. Keyword arguments: config -- the config name trial -- the trial name trial_data -- [(profiler, [start times], [end times], [start energies], [end energies])] max_end_time -- single value to use as max X axis value (for consistency across trials) output_dir -- the output directory """ # TODO: Some profilers may have parallel tasks - need to identify this on plots max_end_time = max_end_time / 1000000.0 trial_data = sorted(trial_data) fig, ax1 = plt.subplots() keys = [p for (p, ts, te, es, ee) in trial_data] # add some text for labels, title and axes ticks ax1.set_title('Profiler Activity for ' + config + ', ' + trial) ax1.set_xlabel('Time (ms)') ax1.grid(True) width = 8 # the width of the bars ax1.set_yticks(10 * np.arange(1, len(keys) + 2)) ax1.set_yticklabels(keys) ax1.set_ylim(ymin=0, ymax=((len(trial_data) + 1) * 10)) ax1.set_xlim(xmin=0, xmax=max_end_time) fig.set_tight_layout(True) fig.set_size_inches(16, len(trial_data) / 3) i = 10 for (p, ts, te, es, ee) in trial_data: xranges = [(ts[j] / 1000000.0, (te[j] - ts[j]) / 1000000.0) for j in xrange(len(ts))] ax1.broken_barh(xranges, (i - 0.5 * width, width)) i += 10 # place a vbar at the final time for this trial last_profiler_times = map(np.nanmax, filter(lambda x: len(x) > 0, [te for (p, ts, te, es, ee) in trial_data])) plt.axvline(np.max(last_profiler_times) / 1000000.0, color='black') power_times = [] power_values = [] for (p, ts, te, es, ee) in trial_data: if p == ENERGY_PROFILER_NAME: power_times = te / 1000000.0 power_values = (ee - es) / ((te - ts) / 1000.0) ax2 = ax1.twinx() ax2.set_xlim(xmin=0, xmax=max_end_time) ax2.set_ylim(ymin=0, ymax=max_power) ax2.set_ylabel('Power (Watts)') ax2.plot(power_times, power_values, color='r') # plt.show() plt.savefig(path.join(output_dir, "ts_" + config + "_" + trial + ".png")) plt.close(fig) def hb_energy_times_to_power(es, ee, ts, te): """Compute power from start and end energy and times. Return: power values """ return (ee - es) / ((te - ts) / 1000.0) def plot_all_time_series(config_list, output_dir): """Plot column charts of the raw total time/energy spent in each profiler category. Keyword arguments: config_list -- [(config, result of process_config_dir(...))] output_dir -- where to write plots to """ time_series_out_dir = path.join(output_dir, 'time_series') os.makedirs(time_series_out_dir) max_end_times = [] max_power_values = [] for (c, cd) in config_list: for (t, td) in cd: trial_max_end_times = map(np.nanmax, filter(lambda x: len(x) > 0, [te for (p, ts, te, es, ee) in td])) max_end_times.append(np.nanmax(trial_max_end_times)) for (p, ts, te, es, ee) in td: # We only care about the energy profiler (others aren't reliable for instant power anyway) if p == ENERGY_PROFILER_NAME and len(te) > 0: max_power_values.append(np.nanmax(hb_energy_times_to_power(es, ee, ts, te))) max_time = np.nanmax(max_end_times) max_power = np.nanmax(np.array(max_power_values)) * 1.2 # leave a little space at the top for (config, config_data) in config_list: [plot_trial_time_series(config, trial, trial_data, max_time, max_power, time_series_out_dir) for (trial, trial_data) in config_data] def read_heartbeat_log(profiler_hb_log): """Read a heartbeat log file. Return: (profiler name, [start times], [end times], [start energies], [end energies], [instant powers]) Keyword arguments: profiler_hb_log -- the file to read """ with warnings.catch_warnings(): try: warnings.simplefilter("ignore") time_start, time_end, energy_start, energy_end = \ np.loadtxt(profiler_hb_log, dtype=np.dtype('uint64'), skiprows=1, usecols=(HB_LOG_IDX_START_TIME, HB_LOG_IDX_END_TIME, HB_LOG_IDX_START_ENERGY, HB_LOG_IDX_END_ENERGY), unpack=True, ndmin=1) except ValueError: time_start, time_end, energy_start, energy_end = [], [], [], [] name = path.split(profiler_hb_log)[1].split('-')[1].split('.')[0] return (name, np.atleast_1d(time_start), np.atleast_1d(time_end), np.atleast_1d(energy_start), np.atleast_1d(energy_end)) def process_trial_dir(trial_dir): """Process trial directory. Return: [(profiler name, [start times], [end times], [start energies], [end energies])] Time and energy are normalized to 0 start values. Keyword arguments: trial_dir -- the directory for this trial """ log_data = map(lambda h: read_heartbeat_log(path.join(trial_dir, h)), filter(lambda f: f.endswith(".log"), os.listdir(trial_dir))) # Find the earliest timestamps and energy readings min_t = np.nanmin(map(np.nanmin, filter(lambda x: len(x) > 0, [ts for (profiler, ts, te, es, ee) in log_data]))) min_e = np.nanmin(map(np.nanmin, filter(lambda x: len(x) > 0, [es for (profiler, ts, te, es, ee) in log_data]))) # Normalize timing/energy data to start values of 0 return [(profiler, ts - min_t, te - min_t, es - min_e, ee - min_e) for (profiler, ts, te, es, ee) in log_data] def process_config_dir(config_dir): """Process a configuration directory. Return: [(trial, [(profiler name, [start times], [end times], [start energies], [end energies])])] Keyword arguments: config_dir -- the directory for this configuration - contains subdirectories for each trial """ return [(trial_dir, process_trial_dir(path.join(config_dir, trial_dir))) for trial_dir in os.listdir(config_dir)] def process_logs(log_dir): """Process log directory. Return: [(config, [(trial, [(profiler name, [start times], [end times], [start energies], [end energies])])])] Keyword arguments: log_dir -- the log directory to process - contains subdirectories for each configuration """ return [((config_dir.split('_')[1], process_config_dir(path.join(log_dir, config_dir)))) for config_dir in os.listdir(log_dir)] def find_best_executions(log_dir): """Get the best time, energy, and power from the characterization summaries. Return: ((config, trial, min_time), (config, trial, min_energy), (config, trial, min_power)) Keyword arguments: results -- the results from process_logs(...). """ DEFAULT = ('', '', 1000000000.0) min_time = DEFAULT min_energy = DEFAULT min_power = DEFAULT for config_dir in os.listdir(log_dir): for trial_dir in os.listdir(path.join(log_dir, config_dir)): with open(path.join(log_dir, config_dir, trial_dir, SUMMARY_OUTPUT), "r") as s: lines = s.readlines() time = float(lines[SUMMARY_TIME_IDX].split(':')[1]) energy = int(lines[SUMMARY_ENERGY_IDX].split(':')[1]) power = float(lines[SUMMARY_POWER_IDX].split(':')[1]) if time < min_time[2]: min_time = (config_dir, trial_dir, time) if energy < min_energy[2]: min_energy = (config_dir, trial_dir, energy) if power < min_power: min_power = (config_dir, trial_dir, power) return (min_time, min_energy, min_power) def main(): """This script processes the log files from the "characterize.py" script and produces visualizations. """ # Default log directory directory = 'heartbeat_logs' # Default output directory output_dir = 'plots' # Default android android = False # Parsing the input of the script parser = argparse.ArgumentParser(description="Process Heartbeat log files from characterization") parser.add_argument("-d", "--directory", default=directory, help="Heartbeat log directory \"-d heartbeat_logs\"") parser.add_argument("-o", "--output", default=output_dir, help="Specify the log output directory, for example \"-o plots\"") parser.add_argument("--android", action="store_true", dest="android", default=False, help="Specify if processing results from Android") args = parser.parse_args() if args.directory: directory = args.directory if args.output: output_dir = args.output if args.android: android = args.android if not os.path.exists(directory): print "Input directory does not exist: " + directory sys.exit(1) if os.path.exists(output_dir): print "Output directory already exists: " + output_dir sys.exit(1) res = process_logs(directory) if not android: best = find_best_executions(directory) print 'Best time:', best[0] print 'Best energy:', best[1] print 'Best power:', best[2] os.makedirs(output_dir) plot_all_raw_totals(res, output_dir) plot_all_time_series(res, output_dir) if __name__ == "__main__": main()
mpl-2.0
mit-crpg/openmc
tests/regression_tests/surface_tally/test.py
9
7315
import numpy as np import openmc import pandas as pd from tests.testing_harness import PyAPITestHarness class SurfaceTallyTestHarness(PyAPITestHarness): def _build_inputs(self): # Instantiate some Materials and register the appropriate Nuclides uo2 = openmc.Material(name='UO2 fuel at 2.4% wt enrichment') uo2.set_density('g/cc', 10.0) uo2.add_nuclide('U238', 1.0) uo2.add_nuclide('U235', 0.02) uo2.add_nuclide('O16', 2.0) borated_water = openmc.Material(name='Borated water') borated_water.set_density('g/cm3', 1) borated_water.add_nuclide('B10', 10e-5) borated_water.add_nuclide('H1', 2.0) borated_water.add_nuclide('O16', 1.0) # Instantiate a Materials collection and export to XML materials_file = openmc.Materials([uo2, borated_water]) materials_file.export_to_xml() # Instantiate ZCylinder surfaces fuel_or = openmc.ZCylinder(surface_id=1, x0=0, y0=0, r=1, name='Fuel OR') left = openmc.XPlane(surface_id=2, x0=-2, name='left') right = openmc.XPlane(surface_id=3, x0=2, name='right') bottom = openmc.YPlane(y0=-2, name='bottom') top = openmc.YPlane(y0=2, name='top') left.boundary_type = 'vacuum' right.boundary_type = 'reflective' top.boundary_type = 'reflective' bottom.boundary_type = 'reflective' # Instantiate Cells fuel = openmc.Cell(name='fuel') water = openmc.Cell(name='water') # Use surface half-spaces to define regions fuel.region = -fuel_or water.region = +fuel_or & -right & +bottom & -top # Register Materials with Cells fuel.fill = uo2 water.fill = borated_water # Instantiate pin cell Universe pin_cell = openmc.Universe(name='pin cell') pin_cell.add_cells([fuel, water]) # Instantiate root Cell and Universe root_cell = openmc.Cell(name='root cell') root_cell.region = +left & -right & +bottom & -top root_cell.fill = pin_cell root_univ = openmc.Universe(universe_id=0, name='root universe') root_univ.add_cell(root_cell) # Instantiate a Geometry, register the root Universe geometry = openmc.Geometry(root_univ) geometry.export_to_xml() # Instantiate a Settings object, set all runtime parameters settings_file = openmc.Settings() settings_file.batches = 10 settings_file.inactive = 0 settings_file.particles = 1000 #settings_file.output = {'tallies': True} # Create an initial uniform spatial source distribution bounds = [-0.62992, -0.62992, -1, 0.62992, 0.62992, 1] uniform_dist = openmc.stats.Box(bounds[:3], bounds[3:],\ only_fissionable=True) settings_file.source = openmc.source.Source(space=uniform_dist) settings_file.export_to_xml() # Tallies file tallies_file = openmc.Tallies() # Create partial current tallies from fuel to water # Filters two_groups = [0., 4e6, 20e6] energy_filter = openmc.EnergyFilter(two_groups) polar_filter = openmc.PolarFilter([0, np.pi / 4, np.pi]) azimuthal_filter = openmc.AzimuthalFilter([0, np.pi / 4, np.pi]) surface_filter = openmc.SurfaceFilter([1]) cell_from_filter = openmc.CellFromFilter(fuel) cell_filter = openmc.CellFilter(water) # Use Cell to cell filters for partial current cell_to_cell_tally = openmc.Tally(name=str('fuel_to_water_1')) cell_to_cell_tally.filters = [cell_from_filter, cell_filter, \ energy_filter, polar_filter, azimuthal_filter] cell_to_cell_tally.scores = ['current'] tallies_file.append(cell_to_cell_tally) # Use a Cell from + surface filters for partial current cell_to_cell_tally = openmc.Tally(name=str('fuel_to_water_2')) cell_to_cell_tally.filters = [cell_from_filter, surface_filter, \ energy_filter, polar_filter, azimuthal_filter] cell_to_cell_tally.scores = ['current'] tallies_file.append(cell_to_cell_tally) # Create partial current tallies from water to fuel # Filters cell_from_filter = openmc.CellFromFilter(water) cell_filter = openmc.CellFilter(fuel) # Cell to cell filters for partial current cell_to_cell_tally = openmc.Tally(name=str('water_to_fuel_1')) cell_to_cell_tally.filters = [cell_from_filter, cell_filter, \ energy_filter, polar_filter, azimuthal_filter] cell_to_cell_tally.scores = ['current'] tallies_file.append(cell_to_cell_tally) # Cell from + surface filters for partial current cell_to_cell_tally = openmc.Tally(name=str('water_to_fuel_2')) cell_to_cell_tally.filters = [cell_from_filter, surface_filter, \ energy_filter, polar_filter, azimuthal_filter] cell_to_cell_tally.scores = ['current'] tallies_file.append(cell_to_cell_tally) # Create a net current tally on inner surface using a surface filter surface_filter = openmc.SurfaceFilter([1]) surf_tally1 = openmc.Tally(name='net_cylinder') surf_tally1.filters = [surface_filter, energy_filter, polar_filter, \ azimuthal_filter] surf_tally1.scores = ['current'] tallies_file.append(surf_tally1) # Create a net current tally on left surface using a surface filter # This surface has a vacuum boundary condition, so leakage is tallied surface_filter = openmc.SurfaceFilter([2]) surf_tally2 = openmc.Tally(name='leakage_left') surf_tally2.filters = [surface_filter, energy_filter, polar_filter, \ azimuthal_filter] surf_tally2.scores = ['current'] tallies_file.append(surf_tally2) # Create a net current tally on right surface using a surface filter # This surface has a reflective boundary condition, so the net current # should be zero. surface_filter = openmc.SurfaceFilter([3]) surf_tally3 = openmc.Tally(name='net_right') surf_tally3.filters = [surface_filter, energy_filter] surf_tally3.scores = ['current'] tallies_file.append(surf_tally3) surface_filter = openmc.SurfaceFilter([3]) surf_tally3 = openmc.Tally(name='net_right') surf_tally3.filters = [surface_filter, energy_filter] surf_tally3.scores = ['current'] tallies_file.append(surf_tally3) tallies_file.export_to_xml() def _get_results(self): """Digest info in the statepoint and return as a string.""" # Read the statepoint file. sp = openmc.StatePoint(self._sp_name) # Extract the tally data as a Pandas DataFrame. df = pd.DataFrame() for t in sp.tallies.values(): df = df.append(t.get_pandas_dataframe(), ignore_index=True) # Extract the relevant data as a CSV string. cols = ('mean', 'std. dev.') return df.to_csv(None, columns=cols, index=False, float_format='%.7e') return outstr def test_surface_tally(): harness = SurfaceTallyTestHarness('statepoint.10.h5') harness.main()
mit
datapythonista/pandas
pandas/tests/indexes/multi/test_reindex.py
1
4216
import numpy as np import pytest import pandas as pd from pandas import ( Index, MultiIndex, ) import pandas._testing as tm def test_reindex(idx): result, indexer = idx.reindex(list(idx[:4])) assert isinstance(result, MultiIndex) assert result.names == ["first", "second"] assert [level.name for level in result.levels] == ["first", "second"] result, indexer = idx.reindex(list(idx)) assert isinstance(result, MultiIndex) assert indexer is None assert result.names == ["first", "second"] assert [level.name for level in result.levels] == ["first", "second"] def test_reindex_level(idx): index = Index(["one"]) target, indexer = idx.reindex(index, level="second") target2, indexer2 = index.reindex(idx, level="second") exp_index = idx.join(index, level="second", how="right") exp_index2 = idx.join(index, level="second", how="left") assert target.equals(exp_index) exp_indexer = np.array([0, 2, 4]) tm.assert_numpy_array_equal(indexer, exp_indexer, check_dtype=False) assert target2.equals(exp_index2) exp_indexer2 = np.array([0, -1, 0, -1, 0, -1]) tm.assert_numpy_array_equal(indexer2, exp_indexer2, check_dtype=False) with pytest.raises(TypeError, match="Fill method not supported"): idx.reindex(idx, method="pad", level="second") with pytest.raises(TypeError, match="Fill method not supported"): index.reindex(index, method="bfill", level="first") def test_reindex_preserves_names_when_target_is_list_or_ndarray(idx): # GH6552 idx = idx.copy() target = idx.copy() idx.names = target.names = [None, None] other_dtype = MultiIndex.from_product([[1, 2], [3, 4]]) # list & ndarray cases assert idx.reindex([])[0].names == [None, None] assert idx.reindex(np.array([]))[0].names == [None, None] assert idx.reindex(target.tolist())[0].names == [None, None] assert idx.reindex(target.values)[0].names == [None, None] assert idx.reindex(other_dtype.tolist())[0].names == [None, None] assert idx.reindex(other_dtype.values)[0].names == [None, None] idx.names = ["foo", "bar"] assert idx.reindex([])[0].names == ["foo", "bar"] assert idx.reindex(np.array([]))[0].names == ["foo", "bar"] assert idx.reindex(target.tolist())[0].names == ["foo", "bar"] assert idx.reindex(target.values)[0].names == ["foo", "bar"] assert idx.reindex(other_dtype.tolist())[0].names == ["foo", "bar"] assert idx.reindex(other_dtype.values)[0].names == ["foo", "bar"] def test_reindex_lvl_preserves_names_when_target_is_list_or_array(): # GH7774 idx = MultiIndex.from_product([[0, 1], ["a", "b"]], names=["foo", "bar"]) assert idx.reindex([], level=0)[0].names == ["foo", "bar"] assert idx.reindex([], level=1)[0].names == ["foo", "bar"] def test_reindex_lvl_preserves_type_if_target_is_empty_list_or_array(): # GH7774 idx = MultiIndex.from_product([[0, 1], ["a", "b"]]) assert idx.reindex([], level=0)[0].levels[0].dtype.type == np.int64 assert idx.reindex([], level=1)[0].levels[1].dtype.type == np.object_ def test_reindex_base(idx): idx = idx expected = np.arange(idx.size, dtype=np.intp) actual = idx.get_indexer(idx) tm.assert_numpy_array_equal(expected, actual) with pytest.raises(ValueError, match="Invalid fill method"): idx.get_indexer(idx, method="invalid") def test_reindex_non_unique(): idx = MultiIndex.from_tuples([(0, 0), (1, 1), (1, 1), (2, 2)]) a = pd.Series(np.arange(4), index=idx) new_idx = MultiIndex.from_tuples([(0, 0), (1, 1), (2, 2)]) msg = "cannot handle a non-unique multi-index!" with pytest.raises(ValueError, match=msg): a.reindex(new_idx) @pytest.mark.parametrize("values", [[["a"], ["x"]], [[], []]]) def test_reindex_empty_with_level(values): # GH41170 idx = MultiIndex.from_arrays(values) result, result_indexer = idx.reindex(np.array(["b"]), level=0) expected = MultiIndex(levels=[["b"], values[1]], codes=[[], []]) expected_indexer = np.array([], dtype=result_indexer.dtype) tm.assert_index_equal(result, expected) tm.assert_numpy_array_equal(result_indexer, expected_indexer)
bsd-3-clause
fbagirov/scikit-learn
examples/linear_model/plot_ols_ridge_variance.py
387
2060
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Ordinary Least Squares and Ridge Regression Variance ========================================================= Due to the few points in each dimension and the straight line that linear regression uses to follow these points as well as it can, noise on the observations will cause great variance as shown in the first plot. Every line's slope can vary quite a bit for each prediction due to the noise induced in the observations. Ridge regression is basically minimizing a penalised version of the least-squared function. The penalising `shrinks` the value of the regression coefficients. Despite the few data points in each dimension, the slope of the prediction is much more stable and the variance in the line itself is greatly reduced, in comparison to that of the standard linear regression """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model X_train = np.c_[.5, 1].T y_train = [.5, 1] X_test = np.c_[0, 2].T np.random.seed(0) classifiers = dict(ols=linear_model.LinearRegression(), ridge=linear_model.Ridge(alpha=.1)) fignum = 1 for name, clf in classifiers.items(): fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.title(name) ax = plt.axes([.12, .12, .8, .8]) for _ in range(6): this_X = .1 * np.random.normal(size=(2, 1)) + X_train clf.fit(this_X, y_train) ax.plot(X_test, clf.predict(X_test), color='.5') ax.scatter(this_X, y_train, s=3, c='.5', marker='o', zorder=10) clf.fit(X_train, y_train) ax.plot(X_test, clf.predict(X_test), linewidth=2, color='blue') ax.scatter(X_train, y_train, s=30, c='r', marker='+', zorder=10) ax.set_xticks(()) ax.set_yticks(()) ax.set_ylim((0, 1.6)) ax.set_xlabel('X') ax.set_ylabel('y') ax.set_xlim(0, 2) fignum += 1 plt.show()
bsd-3-clause
Juanlu001/xlwings
xlwings/main.py
1
67142
""" xlwings - Make Excel fly with Python! Homepage and documentation: http://xlwings.org See also: http://zoomeranalytics.com Copyright (C) 2014-2016, Zoomer Analytics LLC. All rights reserved. License: BSD 3-clause (see LICENSE.txt for details) """ import os import sys import re import numbers import itertools import inspect import collections import tempfile import shutil from . import xlplatform, string_types, xrange, map, ShapeAlreadyExists from .constants import ChartType # Optional imports try: import numpy as np except ImportError: np = None try: import pandas as pd except ImportError: pd = None try: from matplotlib.backends.backend_agg import FigureCanvas except ImportError: FigureCanvas = None try: from PIL import Image except ImportError: Image = None class Application(object): """ Application is dependent on the Workbook since there might be different application instances on Windows. """ def __init__(self, wkb): self.wkb = wkb self.xl_app = wkb.xl_app @property def version(self): """ Returns Excel's version string. .. versionadded:: 0.5.0 """ return xlplatform.get_app_version_string(self.wkb.xl_workbook) def quit(self): """ Quits the application without saving any workbooks. .. versionadded:: 0.3.3 """ xlplatform.quit_app(self.xl_app) @property def screen_updating(self): """ True if screen updating is turned on. Read/write Boolean. .. versionadded:: 0.3.3 """ return xlplatform.get_screen_updating(self.xl_app) @screen_updating.setter def screen_updating(self, value): xlplatform.set_screen_updating(self.xl_app, value) @property def visible(self): """ Gets or sets the visibility of Excel to ``True`` or ``False``. This property can also be conveniently set during instantiation of a new Workbook: ``Workbook(app_visible=False)`` .. versionadded:: 0.3.3 """ return xlplatform.get_visible(self.xl_app) @visible.setter def visible(self, value): xlplatform.set_visible(self.xl_app, value) @property def calculation(self): """ Returns or sets a Calculation value that represents the calculation mode. Example ------- >>> from xlwings import Workbook, Application >>> from xlwings.constants import Calculation >>> wb = Workbook() >>> Application(wkb=wb).calculation = Calculation.xlCalculationManual .. versionadded:: 0.3.3 """ return xlplatform.get_calculation(self.xl_app) @calculation.setter def calculation(self, value): xlplatform.set_calculation(self.xl_app, value) def calculate(self): """ Calculates all open Workbooks .. versionadded:: 0.3.6 """ xlplatform.calculate(self.xl_app) class Workbook(object): """ ``Workbook`` connects an Excel Workbook with Python. You can create a new connection from Python with * a new workbook: ``wb = Workbook()`` * the active workbook: ``wb = Workbook.active()`` * an unsaved workbook: ``wb = Workbook('Book1')`` * a saved (open) workbook by name (incl. xlsx etc): ``wb = Workbook('MyWorkbook.xlsx')`` * a saved (open or closed) workbook by path: ``wb = Workbook(r'C:\\path\\to\\file.xlsx')`` Keyword Arguments ----------------- fullname : str, default None Full path or name (incl. xlsx, xlsm etc.) of existing workbook or name of an unsaved workbook. xl_workbook : pywin32 or appscript Workbook object, default None This enables to turn existing Workbook objects of the underlying libraries into xlwings objects app_visible : boolean, default True The resulting Workbook will be visible by default. To open it without showing a window, set ``app_visible=False``. Or, to not alter the visibility (e.g., if Excel is already running), set ``app_visible=None``. Note that this property acts on the whole Excel instance, not just the specific Workbook. app_target : str, default None Mac-only, use the full path to the Excel application, e.g. ``/Applications/Microsoft Office 2011/Microsoft Excel`` or ``/Applications/Microsoft Excel`` On Windows, if you want to change the version of Excel that xlwings talks to, go to ``Control Panel > Programs and Features`` and ``Repair`` the Office version that you want as default. To create a connection when the Python function is called from Excel, use: ``wb = Workbook.caller()`` """ def __init__(self, fullname=None, xl_workbook=None, app_visible=True, app_target=None): if xl_workbook: self.xl_workbook = xl_workbook self.xl_app = xlplatform.get_app(self.xl_workbook, app_target) elif fullname: self.fullname = fullname if not os.path.isfile(fullname) or xlplatform.is_file_open(self.fullname): # Connect to unsaved Workbook (e.g. 'Workbook1') or to an opened Workbook self.xl_app, self.xl_workbook = xlplatform.get_open_workbook(self.fullname, app_target) else: # Open Excel and the Workbook self.xl_app, self.xl_workbook = xlplatform.open_workbook(self.fullname, app_target) else: # Open Excel if necessary and create a new workbook self.xl_app, self.xl_workbook = xlplatform.new_workbook(app_target) self.name = xlplatform.get_workbook_name(self.xl_workbook) if fullname is None: self.fullname = xlplatform.get_fullname(self.xl_workbook) # Make the most recently created Workbook the default when creating Range objects directly xlplatform.set_xl_workbook_current(self.xl_workbook) if app_visible is not None: xlplatform.set_visible(self.xl_app, app_visible) @property def active_sheet(self): return Sheet.active(wkb=self) @classmethod def active(cls, app_target=None): """ Returns the Workbook that is currently active or has been active last. On Windows, this works across all instances. .. versionadded:: 0.4.1 """ xl_workbook = xlplatform.get_active_workbook(app_target=app_target) return cls(xl_workbook=xl_workbook, app_target=app_target) @classmethod def caller(cls): """ Creates a connection when the Python function is called from Excel: ``wb = Workbook.caller()`` Always pack the ``Workbook`` call into the function being called from Excel, e.g.: .. code-block:: python def my_macro(): wb = Workbook.caller() Range('A1').value = 1 To be able to easily invoke such code from Python for debugging, use ``Workbook.set_mock_caller()``. .. versionadded:: 0.3.0 """ if hasattr(Workbook, '_mock_file'): # Use mocking Workbook, see Workbook.set_mock_caller() _, xl_workbook = xlplatform.get_open_workbook(Workbook._mock_file) return cls(xl_workbook=xl_workbook) elif len(sys.argv) > 2 and sys.argv[2] == 'from_xl': # Connect to the workbook from which this code has been invoked fullname = sys.argv[1].lower() if sys.platform.startswith('win'): xl_app, xl_workbook = xlplatform.get_open_workbook(fullname, hwnd=sys.argv[4]) return cls(xl_workbook=xl_workbook) else: xl_app, xl_workbook = xlplatform.get_open_workbook(fullname, app_target=sys.argv[3]) return cls(xl_workbook=xl_workbook, app_target=sys.argv[3]) elif xlplatform.get_xl_workbook_current(): # Called through ExcelPython connection return cls(xl_workbook=xlplatform.get_xl_workbook_current()) else: raise Exception('Workbook.caller() must not be called directly. Call through Excel or set a mock caller ' 'first with Workbook.set_mock_caller().') @staticmethod def set_mock_caller(fullpath): """ Sets the Excel file which is used to mock ``Workbook.caller()`` when the code is called from within Python. Examples -------- :: # This code runs unchanged from Excel and Python directly import os from xlwings import Workbook, Range def my_macro(): wb = Workbook.caller() Range('A1').value = 'Hello xlwings!' if __name__ == '__main__': # Mock the calling Excel file Workbook.set_mock_caller(r'C:\\path\\to\\file.xlsx') my_macro() .. versionadded:: 0.3.1 """ Workbook._mock_file = fullpath @classmethod def current(cls): """ Returns the current Workbook object, i.e. the default Workbook used by ``Sheet``, ``Range`` and ``Chart`` if not specified otherwise. On Windows, in case there are various instances of Excel running, opening an existing or creating a new Workbook through ``Workbook()`` is acting on the same instance of Excel as this Workbook. Use like this: ``Workbook.current()``. .. versionadded:: 0.2.2 """ return cls(xl_workbook=xlplatform.get_xl_workbook_current(), app_visible=None) def set_current(self): """ This makes the Workbook the default that ``Sheet``, ``Range`` and ``Chart`` use if not specified otherwise. On Windows, in case there are various instances of Excel running, opening an existing or creating a new Workbook through ``Workbook()`` is acting on the same instance of Excel as this Workbook. .. versionadded:: 0.2.2 """ xlplatform.set_xl_workbook_current(self.xl_workbook) def get_selection(self): """ Returns the currently selected cells from Excel as ``Range`` object. Example ------- >>> import xlwings as xw >>> wb = xw.Workbook.active() >>> wb.get_selection() <Range on Sheet 'Sheet1' of Workbook 'Workbook1'> >>> wb.get_selection.value [[1.0, 2.0], [3.0, 4.0]] >>> wb.get_selection().options(transpose=True).value [[1.0, 3.0], [2.0, 4.0]] Returns ------- Range object """ return Range(xlplatform.get_selection_address(self.xl_app), wkb=self) def close(self): """ Closes the Workbook without saving it. .. versionadded:: 0.1.1 """ xlplatform.close_workbook(self.xl_workbook) def save(self, path=None): """ Saves the Workbook. If a path is being provided, this works like SaveAs() in Excel. If no path is specified and if the file hasn't been saved previously, it's being saved in the current working directory with the current filename. Existing files are overwritten without prompting. Arguments --------- path : str, default None Full path to the workbook Example ------- >>> from xlwings import Workbook >>> wb = Workbook() >>> wb.save() >>> wb.save(r'C:\\path\\to\\new_file_name.xlsx') .. versionadded:: 0.3.1 """ xlplatform.save_workbook(self.xl_workbook, path) @staticmethod def get_xl_workbook(wkb): """ Returns the ``xl_workbook_current`` if ``wkb`` is ``None``, otherwise the ``xl_workbook`` of ``wkb``. On Windows, ``xl_workbook`` is a pywin32 COM object, on Mac it's an appscript object. Arguments --------- wkb : Workbook or None Workbook object """ if wkb is None and xlplatform.get_xl_workbook_current() is None: raise NameError('You must first instantiate a Workbook object.') elif wkb is None: xl_workbook = xlplatform.get_xl_workbook_current() else: xl_workbook = wkb.xl_workbook return xl_workbook @staticmethod def open_template(): """ Creates a new Excel file with the xlwings VBA module already included. This method must be called from an interactive Python shell:: >>> Workbook.open_template() .. versionadded:: 0.3.3 """ this_dir = os.path.abspath(os.path.dirname(inspect.getfile(inspect.currentframe()))) template_file = 'xlwings_template.xltm' try: os.remove(os.path.join(this_dir, '~$' + template_file)) except OSError: pass xlplatform.open_template(os.path.realpath(os.path.join(this_dir, template_file))) @property def names(self): """ A collection of all the (platform-specific) name objects in the application or workbook. Each name object represents a defined name for a range of cells (built-in or custom ones). .. versionadded:: 0.4.0 """ names = NamesDict(self.xl_workbook) xlplatform.set_names(self.xl_workbook, names) return names def vba_macro(self, name): """ Runs a Sub or Function in Excel VBA. Arguments: ---------- name : Name of Sub or Function with or without module name, e.g. ``'Module1.MyMacro'`` or ``'MyMacro'`` Examples: --------- This VBA function: .. code-block:: vb Function MySum(x, y) MySum = x + y End Function can be accessed like this: >>> wb = xw.Workbook.active() >>> my_sum = wb.vba_macro('MySum') >>> my_sum(1, 2) 3 .. versionadded:: 0.7.2 """ return VBAMacro(name, self) def macro(self, name): """ Runs a Sub or Function in Excel. Arguments: ---------- name : Name of Sub or Function with or without module name, e.g. ``'Module1.MyMacro'`` or ``'MyMacro'`` Examples: --------- An addin function or macro named ``'addin_function_or_macro'`` can be accessed like this: >>> wb = xw.Workbook.active() >>> addin_function_or_macro = wb.macro('addin_function_or_macro') >>> addin_function_or_macro() 'Hello world!' .. versionadded:: 0.7.1 """ return Macro(name, self) def __repr__(self): return "<Workbook '{0}'>".format(self.name) class Sheet(object): """ Represents a Sheet of the current Workbook. Either call it with the Sheet name or index:: Sheet('Sheet1') Sheet(1) Arguments --------- sheet : str or int Sheet name or index Keyword Arguments ----------------- wkb : Workbook object, default Workbook.current() Defaults to the Workbook that was instantiated last or set via ``Workbook.set_current()``. .. versionadded:: 0.2.3 """ def __init__(self, sheet, wkb=None): self.xl_workbook = Workbook.get_xl_workbook(wkb) self.sheet = sheet self.xl_sheet = xlplatform.get_xl_sheet(self.xl_workbook, self.sheet) def activate(self): """Activates the sheet.""" xlplatform.activate_sheet(self.xl_workbook, self.sheet) def autofit(self, axis=None): """ Autofits the width of either columns, rows or both on a whole Sheet. Arguments --------- axis : string, default None - To autofit rows, use one of the following: ``rows`` or ``r`` - To autofit columns, use one of the following: ``columns`` or ``c`` - To autofit rows and columns, provide no arguments Examples -------- :: # Autofit columns Sheet('Sheet1').autofit('c') # Autofit rows Sheet('Sheet1').autofit('r') # Autofit columns and rows Range('Sheet1').autofit() .. versionadded:: 0.2.3 """ xlplatform.autofit_sheet(self, axis) def clear_contents(self): """Clears the content of the whole sheet but leaves the formatting.""" xlplatform.clear_contents_worksheet(self.xl_workbook, self.sheet) def clear(self): """Clears the content and formatting of the whole sheet.""" xlplatform.clear_worksheet(self.xl_workbook, self.sheet) @property def name(self): """Get or set the name of the Sheet.""" return xlplatform.get_worksheet_name(self.xl_sheet) @name.setter def name(self, value): xlplatform.set_worksheet_name(self.xl_sheet, value) @property def index(self): """Returns the index of the Sheet.""" return xlplatform.get_worksheet_index(self.xl_sheet) @classmethod def active(cls, wkb=None): """Returns the active Sheet. Use like so: ``Sheet.active()``""" xl_workbook = Workbook.get_xl_workbook(wkb) return cls(xlplatform.get_worksheet_name(xlplatform.get_active_sheet(xl_workbook)), wkb) @classmethod def add(cls, name=None, before=None, after=None, wkb=None): """ Creates a new worksheet: the new worksheet becomes the active sheet. If neither ``before`` nor ``after`` is specified, the new Sheet will be placed at the end. Arguments --------- name : str, default None Sheet name, defaults to Excel standard name before : str or int, default None Sheet name or index after : str or int, default None Sheet name or index Returns ------- Sheet object Examples -------- >>> Sheet.add() # Place at end with default name >>> Sheet.add('NewSheet', before='Sheet1') # Include name and position >>> new_sheet = Sheet.add(after=3) >>> new_sheet.index 4 .. versionadded:: 0.2.3 """ xl_workbook = Workbook.get_xl_workbook(wkb) if before is None and after is None: after = Sheet(Sheet.count(wkb=wkb), wkb=wkb) elif before: before = Sheet(before, wkb=wkb) elif after: after = Sheet(after, wkb=wkb) if name: if name.lower() in [i.name.lower() for i in Sheet.all(wkb=wkb)]: raise Exception('That sheet name is already taken.') else: xl_sheet = xlplatform.add_sheet(xl_workbook, before, after) xlplatform.set_worksheet_name(xl_sheet, name) return cls(name, wkb) else: xl_sheet = xlplatform.add_sheet(xl_workbook, before, after) return cls(xlplatform.get_worksheet_name(xl_sheet), wkb) @staticmethod def count(wkb=None): """ Counts the number of Sheets. Keyword Arguments ----------------- wkb : Workbook object, default Workbook.current() Defaults to the Workbook that was instantiated last or set via ``Workbook.set_current()``. Examples -------- >>> Sheet.count() 3 .. versionadded:: 0.2.3 """ xl_workbook = Workbook.get_xl_workbook(wkb) return xlplatform.count_worksheets(xl_workbook) @staticmethod def all(wkb=None): """ Returns a list with all Sheet objects. Keyword Arguments ----------------- wkb : Workbook object, default Workbook.current() Defaults to the Workbook that was instantiated last or set via ``Workbook.set_current()``. Examples -------- >>> Sheet.all() [<Sheet 'Sheet1' of Workbook 'Book1'>, <Sheet 'Sheet2' of Workbook 'Book1'>] >>> [i.name.lower() for i in Sheet.all()] ['sheet1', 'sheet2'] >>> [i.autofit() for i in Sheet.all()] .. versionadded:: 0.2.3 """ xl_workbook = Workbook.get_xl_workbook(wkb) sheet_list = [] for i in range(1, xlplatform.count_worksheets(xl_workbook) + 1): sheet_list.append(Sheet(i, wkb=wkb)) return sheet_list def delete(self): """ Deletes the Sheet. .. versionadded: 0.6.0 """ xlplatform.delete_sheet(self) def __repr__(self): return "<Sheet '{0}' of Workbook '{1}'>".format(self.name, xlplatform.get_workbook_name(self.xl_workbook)) class Range(object): """ Range(*args, wkb=None) A Range object can be instantiated with the following arguments:: Range('A1') Range('Sheet1', 'A1') Range(1, 'A1') Range('A1:C3') Range('Sheet1', 'A1:C3') Range(1, 'A1:C3') Range((1,2)) Range('Sheet1, (1,2)) Range(1, (1,2)) Range((1,1), (3,3)) Range('Sheet1', (1,1), (3,3)) Range(1, (1,1), (3,3)) Range('NamedRange') Range('Sheet1', 'NamedRange') Range(1, 'NamedRange') The Sheet can also be provided as Sheet object:: sh = Sheet(1) Range(sh, 'A1') If no worksheet name is provided as first argument, it will take the Range from the active sheet. You usually want to go for ``Range(...).value`` to get the values (as list of lists). You can influence the reading/writing behavior by making use of :ref:`converters` and their options: ``Range(...).options(...).value`` Arguments --------- *args : Definition of sheet (optional) and Range in the above described combinations. Keyword Arguments ----------------- wkb : Workbook object, default Workbook.current() Defaults to the Workbook that was instantiated last or set via `Workbook.set_current()``. """ def __init__(self, *args, **options): self.workbook = options.pop('wkb', None) # Arguments if xlplatform.is_range_instance(args[0]): self.xl_range = args[0] self.xl_sheet = xlplatform.get_range_sheet(self.xl_range) self.xl_workbook = xlplatform.get_sheet_workbook(self.xl_sheet) self.workbook = Workbook(xl_workbook=self.xl_workbook) self.row1, self.col1, self.row2, self.col2 = xlplatform.get_range_coordinates(self.xl_range) range_address = None elif len(args) == 1 and isinstance(args[0], string_types): sheet_name_or_index = None range_address = args[0] elif len(args) == 1 and isinstance(args[0], tuple): sheet_name_or_index = None range_address = None self.row1 = args[0][0] self.col1 = args[0][1] self.row2 = self.row1 self.col2 = self.col1 elif (len(args) == 2 and isinstance(args[0], (numbers.Number, string_types, Sheet)) and isinstance(args[1], string_types)): if isinstance(args[0], Sheet): sheet_name_or_index = args[0].index else: sheet_name_or_index = args[0] range_address = args[1] elif (len(args) == 2 and isinstance(args[0], (numbers.Number, string_types, Sheet)) and isinstance(args[1], tuple)): if isinstance(args[0], Sheet): sheet_name_or_index = args[0].index else: sheet_name_or_index = args[0] range_address = None self.row1 = args[1][0] self.col1 = args[1][1] self.row2 = self.row1 self.col2 = self.col1 elif len(args) == 2 and isinstance(args[0], tuple): sheet_name_or_index = None range_address = None self.row1 = args[0][0] self.col1 = args[0][1] self.row2 = args[1][0] self.col2 = args[1][1] elif len(args) == 3: if isinstance(args[0], Sheet): sheet_name_or_index = args[0].index else: sheet_name_or_index = args[0] range_address = None self.row1 = args[1][0] self.col1 = args[1][1] self.row2 = args[2][0] self.col2 = args[2][1] # Keyword Arguments self._options = options if self.workbook is None and xlplatform.get_xl_workbook_current() is None: raise NameError('You must first instantiate a Workbook object.') elif self.workbook is None: self.xl_workbook = xlplatform.get_xl_workbook_current() else: self.xl_workbook = self.workbook.xl_workbook # Get sheet if not hasattr(self, 'xl_sheet'): if sheet_name_or_index: self.xl_sheet = xlplatform.get_worksheet(self.xl_workbook, sheet_name_or_index) else: self.xl_sheet = xlplatform.get_active_sheet(self.xl_workbook) # Get xl_range object if range_address: self.row1 = xlplatform.get_first_row(self.xl_sheet, range_address) self.col1 = xlplatform.get_first_column(self.xl_sheet, range_address) self.row2 = self.row1 + xlplatform.count_rows(self.xl_sheet, range_address) - 1 self.col2 = self.col1 + xlplatform.count_columns(self.xl_sheet, range_address) - 1 if 0 in (self.row1, self.col1, self.row2, self.col2): raise IndexError("Attempted to access 0-based Range. xlwings/Excel Ranges are 1-based.") if not hasattr(self, 'xl_range'): self.xl_range = xlplatform.get_range_from_indices(self.xl_sheet, self.row1, self.col1, self.row2, self.col2) def __iter__(self): # Iterator object that returns cell Ranges: (1, 1), (1, 2) etc. return map(lambda cell: Range(xlplatform.get_worksheet_name(self.xl_sheet), cell, wkb=self.workbook, **self._options), itertools.product(xrange(self.row1, self.row2 + 1), xrange(self.col1, self.col2 + 1))) def options(self, convert=None, **options): """ Allows you to set a converter and their options. Converters define how Excel Ranges and their values are being converted both during reading and writing operations. If no explicit converter is specified, the base converter is being applied, see :ref:`converters`. Arguments --------- ``convert`` : object, default None A converter, e.g. ``dict``, ``np.array``, ``pd.DataFrame``, ``pd.Series``, defaults to default converter Keyword Arguments ----------------- ndim : int, default None number of dimensions numbers : type, default None type of numbers, e.g. ``int`` dates : type, default None e.g. ``datetime.date`` defaults to ``datetime.datetime`` empty : object, default None transformation of empty cells transpose : Boolean, default False transpose values expand : str, default None One of ``'table'``, ``'vertical'``, ``'horizontal'``, see also ``Range.table`` etc => For converter-specific options, see :ref:`converters`. Returns ------- Range object .. versionadded:: 0.7.0 """ options['convert'] = convert return Range( xlplatform.get_worksheet_name(self.xl_sheet), (self.row1, self.col1), (self.row2, self.col2), **options ) def is_cell(self): """ Returns ``True`` if the Range consists of a single Cell otherwise ``False``. .. versionadded:: 0.1.1 """ if self.row1 == self.row2 and self.col1 == self.col2: return True else: return False def is_row(self): """ Returns ``True`` if the Range consists of a single Row otherwise ``False``. .. versionadded:: 0.1.1 """ if self.row1 == self.row2 and self.col1 != self.col2: return True else: return False def is_column(self): """ Returns ``True`` if the Range consists of a single Column otherwise ``False``. .. versionadded:: 0.1.1 """ if self.row1 != self.row2 and self.col1 == self.col2: return True else: return False def is_table(self): """ Returns ``True`` if the Range consists of a 2d array otherwise ``False``. .. versionadded:: 0.1.1 """ if self.row1 != self.row2 and self.col1 != self.col2: return True else: return False @property def shape(self): """ Tuple of Range dimensions. .. versionadded:: 0.3.0 """ return self.row2 - self.row1 + 1, self.col2 - self.col1 + 1 @property def size(self): """ Number of elements in the Range. .. versionadded:: 0.3.0 """ return self.shape[0] * self.shape[1] def __len__(self): return self.row2 - self.row1 + 1 @property def value(self): """ Gets and sets the values for the given Range. Returns ------- object Empty cells are set to ``None``. """ return conversion.read(self, None, self._options) @value.setter def value(self, data): conversion.write(data, self, self._options) @property def formula(self): """ Gets or sets the formula for the given Range. """ return xlplatform.get_formula(self.xl_range) @formula.setter def formula(self, value): xlplatform.set_formula(self.xl_range, value) @property def formula_array(self): """ Gets or sets an array formula for the given Range. .. versionadded:: 0.7.1 """ return xlplatform.get_formula_array(self.xl_range) @formula_array.setter def formula_array(self, value): xlplatform.set_formula_array(self.xl_range, value) @property def table(self): """ Returns a contiguous Range starting with the indicated cell as top-left corner and going down and right as long as no empty cell is hit. Keyword Arguments ----------------- strict : boolean, default False ``True`` stops the table at empty cells even if they contain a formula. Less efficient than if set to ``False``. Returns ------- Range object Examples -------- To get the values of a contiguous range or clear its contents use:: Range('A1').table.value Range('A1').table.clear_contents() """ row2 = Range(xlplatform.get_worksheet_name(self.xl_sheet), (self.row1, self.col1), wkb=self.workbook, **self._options).vertical.row2 col2 = Range(xlplatform.get_worksheet_name(self.xl_sheet), (self.row1, self.col1), wkb=self.workbook, **self._options).horizontal.col2 return Range(xlplatform.get_worksheet_name(self.xl_sheet), (self.row1, self.col1), (row2, col2), wkb=self.workbook, **self._options) @property def vertical(self): """ Returns a contiguous Range starting with the indicated cell and going down as long as no empty cell is hit. This corresponds to ``Ctrl-Shift-DownArrow`` in Excel. Arguments --------- strict : bool, default False ``True`` stops the table at empty cells even if they contain a formula. Less efficient than if set to ``False``. Returns ------- Range object Examples -------- To get the values of a contiguous range or clear its contents use:: Range('A1').vertical.value Range('A1').vertical.clear_contents() """ # A single cell is a special case as End(xlDown) jumps over adjacent empty cells if xlplatform.get_value_from_index(self.xl_sheet, self.row1 + 1, self.col1) in [None, ""]: row2 = self.row1 else: row2 = xlplatform.get_row_index_end_down(self.xl_sheet, self.row1, self.col1) # Strict stops at cells that contain a formula but show an empty value if self.strict: row2 = self.row1 while xlplatform.get_value_from_index(self.xl_sheet, row2 + 1, self.col1) not in [None, ""]: row2 += 1 col2 = self.col2 return Range(xlplatform.get_worksheet_name(self.xl_sheet), (self.row1, self.col1), (row2, col2), wkb=self.workbook, **self._options) @property def strict(self): return self._options.get('strict', False) @property def horizontal(self): """ Returns a contiguous Range starting with the indicated cell and going right as long as no empty cell is hit. Keyword Arguments ----------------- strict : bool, default False ``True`` stops the table at empty cells even if they contain a formula. Less efficient than if set to ``False``. Returns ------- Range object Examples -------- To get the values of a contiguous Range or clear its contents use:: Range('A1').horizontal.value Range('A1').horizontal.clear_contents() """ # A single cell is a special case as End(xlToRight) jumps over adjacent empty cells if xlplatform.get_value_from_index(self.xl_sheet, self.row1, self.col1 + 1) in [None, ""]: col2 = self.col1 else: col2 = xlplatform.get_column_index_end_right(self.xl_sheet, self.row1, self.col1) # Strict: stops at cells that contain a formula but show an empty value if self.strict: col2 = self.col1 while xlplatform.get_value_from_index(self.xl_sheet, self.row1, col2 + 1) not in [None, ""]: col2 += 1 row2 = self.row2 return Range(xlplatform.get_worksheet_name(self.xl_sheet), (self.row1, self.col1), (row2, col2), wbk=self.workbook, **self._options) @property def current_region(self): """ This property returns a Range object representing a range bounded by (but not including) any combination of blank rows and blank columns or the edges of the worksheet. It corresponds to ``Ctrl-*`` on Windows and ``Shift-Ctrl-Space`` on Mac. Returns ------- Range object """ address = xlplatform.get_current_region_address(self.xl_sheet, self.row1, self.col1) return Range(xlplatform.get_worksheet_name(self.xl_sheet), address, wbk=self.workbook, **self._options) @property def number_format(self): """ Gets and sets the number_format of a Range. Examples -------- >>> Range('A1').number_format 'General' >>> Range('A1:C3').number_format = '0.00%' >>> Range('A1:C3').number_format '0.00%' .. versionadded:: 0.2.3 """ return xlplatform.get_number_format(self) @number_format.setter def number_format(self, value): xlplatform.set_number_format(self, value) def clear(self): """ Clears the content and the formatting of a Range. """ xlplatform.clear_range(self.xl_range) def clear_contents(self): """ Clears the content of a Range but leaves the formatting. """ xlplatform.clear_contents_range(self.xl_range) @property def column_width(self): """ Gets or sets the width, in characters, of a Range. One unit of column width is equal to the width of one character in the Normal style. For proportional fonts, the width of the character 0 (zero) is used. If all columns in the Range have the same width, returns the width. If columns in the Range have different widths, returns None. column_width must be in the range: 0 <= column_width <= 255 Note: If the Range is outside the used range of the Worksheet, and columns in the Range have different widths, returns the width of the first column. Returns ------- float .. versionadded:: 0.4.0 """ return xlplatform.get_column_width(self.xl_range) @column_width.setter def column_width(self, value): xlplatform.set_column_width(self.xl_range, value) @property def row_height(self): """ Gets or sets the height, in points, of a Range. If all rows in the Range have the same height, returns the height. If rows in the Range have different heights, returns None. row_height must be in the range: 0 <= row_height <= 409.5 Note: If the Range is outside the used range of the Worksheet, and rows in the Range have different heights, returns the height of the first row. Returns ------- float .. versionadded:: 0.4.0 """ return xlplatform.get_row_height(self.xl_range) @row_height.setter def row_height(self, value): xlplatform.set_row_height(self.xl_range, value) @property def width(self): """ Returns the width, in points, of a Range. Read-only. Returns ------- float .. versionadded:: 0.4.0 """ return xlplatform.get_width(self.xl_range) @property def height(self): """ Returns the height, in points, of a Range. Read-only. Returns ------- float .. versionadded:: 0.4.0 """ return xlplatform.get_height(self.xl_range) @property def left(self): """ Returns the distance, in points, from the left edge of column A to the left edge of the range. Read-only. Returns ------- float .. versionadded:: 0.6.0 """ return xlplatform.get_left(self.xl_range) @property def top(self): """ Returns the distance, in points, from the top edge of row 1 to the top edge of the range. Read-only. Returns ------- float .. versionadded:: 0.6.0 """ return xlplatform.get_top(self.xl_range) def autofit(self, axis=None): """ Autofits the width of either columns, rows or both. Arguments --------- axis : string or integer, default None - To autofit rows, use one of the following: ``rows`` or ``r`` - To autofit columns, use one of the following: ``columns`` or ``c`` - To autofit rows and columns, provide no arguments Examples -------- :: # Autofit column A Range('A:A').autofit('c') # Autofit row 1 Range('1:1').autofit('r') # Autofit columns and rows, taking into account Range('A1:E4') Range('A1:E4').autofit() # AutoFit rows, taking into account Range('A1:E4') Range('A1:E4').autofit('rows') .. versionadded:: 0.2.2 """ xlplatform.autofit(self, axis) def get_address(self, row_absolute=True, column_absolute=True, include_sheetname=False, external=False): """ Returns the address of the range in the specified format. Arguments --------- row_absolute : bool, default True Set to True to return the row part of the reference as an absolute reference. column_absolute : bool, default True Set to True to return the column part of the reference as an absolute reference. include_sheetname : bool, default False Set to True to include the Sheet name in the address. Ignored if external=True. external : bool, default False Set to True to return an external reference with workbook and worksheet name. Returns ------- str Examples -------- :: >>> Range((1,1)).get_address() '$A$1' >>> Range((1,1)).get_address(False, False) 'A1' >>> Range('Sheet1', (1,1), (3,3)).get_address(True, False, True) 'Sheet1!A$1:C$3' >>> Range('Sheet1', (1,1), (3,3)).get_address(True, False, external=True) '[Workbook1]Sheet1!A$1:C$3' .. versionadded:: 0.2.3 """ if include_sheetname and not external: # TODO: when the Workbook name contains spaces but not the Worksheet name, it will still be surrounded # by '' when include_sheetname=True. Also, should probably changed to regex temp_str = xlplatform.get_address(self.xl_range, row_absolute, column_absolute, True) if temp_str.find("[") > -1: results_address = temp_str[temp_str.rfind("]") + 1:] if results_address.find("'") > -1: results_address = "'" + results_address return results_address else: return temp_str else: return xlplatform.get_address(self.xl_range, row_absolute, column_absolute, external) def __repr__(self): return "<Range on Sheet '{0}' of Workbook '{1}'>".format(xlplatform.get_worksheet_name(self.xl_sheet), xlplatform.get_workbook_name(self.xl_workbook)) @property def hyperlink(self): """ Returns the hyperlink address of the specified Range (single Cell only) Examples -------- >>> Range('A1').value 'www.xlwings.org' >>> Range('A1').hyperlink 'http://www.xlwings.org' .. versionadded:: 0.3.0 """ if self.formula.lower().startswith('='): # If it's a formula, extract the URL from the formula string formula = self.formula try: return re.compile(r'\"(.+?)\"').search(formula).group(1) except AttributeError: raise Exception("The cell doesn't seem to contain a hyperlink!") else: # If it has been set pragmatically return xlplatform.get_hyperlink_address(self.xl_range) def add_hyperlink(self, address, text_to_display=None, screen_tip=None): """ Adds a hyperlink to the specified Range (single Cell) Arguments --------- address : str The address of the hyperlink. text_to_display : str, default None The text to be displayed for the hyperlink. Defaults to the hyperlink address. screen_tip: str, default None The screen tip to be displayed when the mouse pointer is paused over the hyperlink. Default is set to '<address> - Click once to follow. Click and hold to select this cell.' .. versionadded:: 0.3.0 """ if text_to_display is None: text_to_display = address if address[:4] == 'www.': address = 'http://' + address if screen_tip is None: screen_tip = address + ' - Click once to follow. Click and hold to select this cell.' xlplatform.set_hyperlink(self.xl_range, address, text_to_display, screen_tip) @property def color(self): """ Gets and sets the background color of the specified Range. To set the color, either use an RGB tuple ``(0, 0, 0)`` or a color constant. To remove the background, set the color to ``None``, see Examples. Returns ------- RGB : tuple Examples -------- >>> Range('A1').color = (255,255,255) >>> from xlwings import RgbColor >>> Range('A2').color = RgbColor.rgbAqua >>> Range('A2').color (0, 255, 255) >>> Range('A2').color = None >>> Range('A2').color is None True .. versionadded:: 0.3.0 """ return xlplatform.get_color(self.xl_range) @color.setter def color(self, color_or_rgb): xlplatform.set_color(self.xl_range, color_or_rgb) def resize(self, row_size=None, column_size=None): """ Resizes the specified Range Arguments --------- row_size: int > 0 The number of rows in the new range (if None, the number of rows in the range is unchanged). column_size: int > 0 The number of columns in the new range (if None, the number of columns in the range is unchanged). Returns ------- Range : Range object .. versionadded:: 0.3.0 """ if row_size is not None: assert row_size > 0 row2 = self.row1 + row_size - 1 else: row2 = self.row2 if column_size is not None: assert column_size > 0 col2 = self.col1 + column_size - 1 else: col2 = self.col2 return Range(xlplatform.get_worksheet_name(self.xl_sheet), (self.row1, self.col1), (row2, col2), wkb=self.workbook, **self._options) def offset(self, row_offset=None, column_offset=None): """ Returns a Range object that represents a Range that's offset from the specified range. Returns ------- Range : Range object .. versionadded:: 0.3.0 """ if row_offset: row1 = self.row1 + row_offset row2 = self.row2 + row_offset else: row1, row2 = self.row1, self.row2 if column_offset: col1 = self.col1 + column_offset col2 = self.col2 + column_offset else: col1, col2 = self.col1, self.col2 return Range(xlplatform.get_worksheet_name(self.xl_sheet), (row1, col1), (row2, col2), wkb=self.workbook, **self._options) @property def column(self): """ Returns the number of the first column in the in the specified range. Read-only. Returns ------- Integer .. versionadded:: 0.3.5 """ return self.col1 @property def row(self): """ Returns the number of the first row in the in the specified range. Read-only. Returns ------- Integer .. versionadded:: 0.3.5 """ return self.row1 @property def last_cell(self): """ Returns the bottom right cell of the specified range. Read-only. Returns ------- Range object Example ------- >>> rng = Range('A1').table >>> rng.last_cell.row, rng.last_cell.column (4, 5) .. versionadded:: 0.3.5 """ return Range(xlplatform.get_worksheet_name(self.xl_sheet), (self.row2, self.col2), **self._options) @property def name(self): """ Sets or gets the name of a Range. To delete a named Range, use ``del wb.names['NamedRange']`` if ``wb`` is your Workbook object. .. versionadded:: 0.4.0 """ return xlplatform.get_named_range(self) @name.setter def name(self, value): xlplatform.set_named_range(self, value) # This has to be after definition of Range to resolve circular reference from . import conversion class Shape(object): """ A Shape object represents an existing Excel shape and can be instantiated with the following arguments:: Shape(1) Shape('Sheet1', 1) Shape(1, 1) Shape('Shape 1') Shape('Sheet1', 'Shape 1') Shape(1, 'Shape 1') The Sheet can also be provided as Sheet object:: sh = Sheet(1) Shape(sh, 'Shape 1') If no Worksheet is provided as first argument, it will take the Shape from the active Sheet. Arguments --------- *args Definition of Sheet (optional) and shape in the above described combinations. Keyword Arguments ----------------- wkb : Workbook object, default Workbook.current() Defaults to the Workbook that was instantiated last or set via ``Workbook.set_current()``. .. versionadded:: 0.5.0 """ def __init__(self, *args, **kwargs): # Use current Workbook if none provided self.wkb = kwargs.get('wkb', None) self.xl_workbook = Workbook.get_xl_workbook(self.wkb) # Arguments if len(args) == 1: self.sheet_name_or_index = xlplatform.get_worksheet_name(xlplatform.get_active_sheet(self.xl_workbook)) self.name_or_index = args[0] elif len(args) == 2: if isinstance(args[0], Sheet): self.sheet_name_or_index = args[0].index else: self.sheet_name_or_index = args[0] self.name_or_index = args[1] self.xl_shape = xlplatform.get_shape(self) self.name = xlplatform.get_shape_name(self) @property def name(self): """ Returns or sets a String value representing the name of the object. .. versionadded:: 0.5.0 """ return xlplatform.get_shape_name(self) @name.setter def name(self, value): self.xl_shape = xlplatform.set_shape_name(self.xl_workbook, self.sheet_name_or_index, self.xl_shape, value) @property def left(self): """ Returns or sets a value that represents the distance, in points, from the left edge of the object to the left edge of column A. .. versionadded:: 0.5.0 """ return xlplatform.get_shape_left(self) @left.setter def left(self, value): xlplatform.set_shape_left(self, value) @property def top(self): """ Returns or sets a value that represents the distance, in points, from the top edge of the topmost shape in the shape range to the top edge of the worksheet. .. versionadded:: 0.5.0 """ return xlplatform.get_shape_top(self) @top.setter def top(self, value): xlplatform.set_shape_top(self, value) @property def width(self): """ Returns or sets a value that represents the width, in points, of the object. .. versionadded:: 0.5.0 """ return xlplatform.get_shape_width(self) @width.setter def width(self, value): xlplatform.set_shape_width(self, value) @property def height(self): """ Returns or sets a value that represents the height, in points, of the object. .. versionadded:: 0.5.0 """ return xlplatform.get_shape_height(self) @height.setter def height(self, value): xlplatform.set_shape_height(self, value) def delete(self): """ Deletes the object. .. versionadded:: 0.5.0 """ xlplatform.delete_shape(self) def activate(self): """ Activates the object. .. versionadded:: 0.5.0 """ xlplatform.activate_shape(self.xl_shape) class Chart(Shape): """ A Chart object represents an existing Excel chart and can be instantiated with the following arguments:: Chart(1) Chart('Sheet1', 1) Chart(1, 1) Chart('Chart 1') Chart('Sheet1', 'Chart 1') Chart(1, 'Chart 1') The Sheet can also be provided as Sheet object:: sh = Sheet(1) Chart(sh, 'Chart 1') If no Worksheet is provided as first argument, it will take the Chart from the active Sheet. To insert a new Chart into Excel, create it as follows:: Chart.add() Arguments --------- *args Definition of Sheet (optional) and chart in the above described combinations. Keyword Arguments ----------------- wkb : Workbook object, default Workbook.current() Defaults to the Workbook that was instantiated last or set via ``Workbook.set_current()``. Example ------- >>> from xlwings import Workbook, Range, Chart, ChartType >>> wb = Workbook() >>> Range('A1').value = [['Foo1', 'Foo2'], [1, 2]] >>> chart = Chart.add(source_data=Range('A1').table, chart_type=ChartType.xlLine) >>> chart.name 'Chart1' >>> chart.chart_type = ChartType.xl3DArea """ def __init__(self, *args, **kwargs): super(Chart, self).__init__(*args, **kwargs) # Get xl_chart object self.xl_chart = xlplatform.get_chart_object(self.xl_workbook, self.sheet_name_or_index, self.name_or_index) self.index = xlplatform.get_chart_index(self.xl_chart) # Chart Type chart_type = kwargs.get('chart_type') if chart_type: self.chart_type = chart_type # Source Data source_data = kwargs.get('source_data') if source_data: self.set_source_data(source_data) @classmethod def add(cls, sheet=None, left=0, top=0, width=355, height=211, **kwargs): """ Inserts a new Chart into Excel. Arguments --------- sheet : str or int or xlwings.Sheet, default None Name or index of the Sheet or Sheet object, defaults to the active Sheet left : float, default 0 left position in points top : float, default 0 top position in points width : float, default 375 width in points height : float, default 225 height in points Keyword Arguments ----------------- chart_type : xlwings.ChartType member, default xlColumnClustered Excel chart type. E.g. xlwings.ChartType.xlLine name : str, default None Excel chart name. Defaults to Excel standard name if not provided, e.g. 'Chart 1' source_data : Range e.g. Range('A1').table wkb : Workbook object, default Workbook.current() Defaults to the Workbook that was instantiated last or set via ``Workbook.set_current()``. Returns ------- xlwings Chart object """ wkb = kwargs.get('wkb', None) xl_workbook = Workbook.get_xl_workbook(wkb) chart_type = kwargs.get('chart_type', ChartType.xlColumnClustered) name = kwargs.get('name') source_data = kwargs.get('source_data') if isinstance(sheet, Sheet): sheet = sheet.index if sheet is None: sheet = xlplatform.get_worksheet_index(xlplatform.get_active_sheet(xl_workbook)) xl_chart = xlplatform.add_chart(xl_workbook, sheet, left, top, width, height) if name: xlplatform.set_chart_name(xl_chart, name) else: name = xlplatform.get_chart_name(xl_chart) return cls(sheet, name, wkb=wkb, chart_type=chart_type, source_data=source_data) @property def chart_type(self): """ Gets and sets the chart type of a chart. .. versionadded:: 0.1.1 """ return xlplatform.get_chart_type(self.xl_chart) @chart_type.setter def chart_type(self, value): xlplatform.set_chart_type(self.xl_chart, value) def set_source_data(self, source): """ Sets the source for the chart. Arguments --------- source : Range Range object, e.g. ``Range('A1')`` """ xlplatform.set_source_data_chart(self.xl_chart, source.xl_range) def __repr__(self): return "<Chart '{0}' on Sheet '{1}' of Workbook '{2}'>".format(self.name, Sheet(self.sheet_name_or_index).name, xlplatform.get_workbook_name(self.xl_workbook)) class Picture(Shape): """ A Picture object represents an existing Excel Picture and can be instantiated with the following arguments:: Picture(1) Picture('Sheet1', 1) Picture(1, 1) Picture('Picture 1') Picture('Sheet1', 'Picture 1') Picture(1, 'Picture 1') The Sheet can also be provided as Sheet object:: sh = Sheet(1) Shape(sh, 'Picture 1') If no Worksheet is provided as first argument, it will take the Picture from the active Sheet. Arguments --------- *args Definition of Sheet (optional) and picture in the above described combinations. Keyword Arguments ----------------- wkb : Workbook object, default Workbook.current() Defaults to the Workbook that was instantiated last or set via ``Workbook.set_current()``. .. versionadded:: 0.5.0 """ def __init__(self, *args, **kwargs): super(Picture, self).__init__(*args, **kwargs) self.xl_picture = xlplatform.get_picture(self) self.index = xlplatform.get_picture_index(self) @classmethod def add(cls, filename, sheet=None, name=None, link_to_file=False, save_with_document=True, left=0, top=0, width=None, height=None, wkb=None): """ Inserts a picture into Excel. Arguments --------- filename : str The full path to the file. Keyword Arguments ----------------- sheet : str or int or xlwings.Sheet, default None Name or index of the Sheet or ``xlwings.Sheet`` object, defaults to the active Sheet name : str, default None Excel picture name. Defaults to Excel standard name if not provided, e.g. 'Picture 1' left : float, default 0 Left position in points. top : float, default 0 Top position in points. width : float, default None Width in points. If PIL/Pillow is installed, it defaults to the width of the picture. Otherwise it defaults to 100 points. height : float, default None Height in points. If PIL/Pillow is installed, it defaults to the height of the picture. Otherwise it defaults to 100 points. wkb : Workbook object, default Workbook.current() Defaults to the Workbook that was instantiated last or set via ``Workbook.set_current()``. Returns ------- xlwings Picture object .. versionadded:: 0.5.0 """ xl_workbook = Workbook.get_xl_workbook(wkb) if isinstance(sheet, Sheet): sheet = sheet.index if sheet is None: sheet = xlplatform.get_worksheet_index(xlplatform.get_active_sheet(xl_workbook)) if name: if name in xlplatform.get_shapes_names(xl_workbook, sheet): raise ShapeAlreadyExists('A shape with this name already exists.') if sys.platform.startswith('darwin') and xlplatform.get_major_app_version_number(xl_workbook) >= 15: # Office 2016 for Mac is sandboxed. This path seems to work without the need of granting access explicitly xlwings_picture = os.path.expanduser("~") + '/Library/Containers/com.microsoft.Excel/Data/xlwings_picture.png' shutil.copy2(filename, xlwings_picture) filename = xlwings_picture # Image dimensions im_width, im_height = None, None if width is None or height is None: if Image: im = Image.open(filename) im_width, im_height = im.size if width is None: if im_width is not None: width = im_width else: width = 100 if height is None: if im_height is not None: height = im_height else: height = 100 xl_picture = xlplatform.add_picture(xl_workbook, sheet, filename, link_to_file, save_with_document, left, top, width, height) if sys.platform.startswith('darwin') and xlplatform.get_major_app_version_number(xl_workbook) >= 15: os.remove(xlwings_picture) if name is None: name = xlplatform.get_picture_name(xl_picture) else: xlplatform.set_shape_name(xl_workbook, sheet, xl_picture, name) return cls(sheet, name, wkb=wkb) def update(self, filename): """ Replaces an existing picture with a new one, taking over the attributes of the existing picture. Arguments --------- filename : str Path to the picture. .. versionadded:: 0.5.0 """ wkb = self.wkb name = self.name left, top, width, height = self.left, self.top, self.width, self.height sheet_name_or_index = self.sheet_name_or_index xlplatform.delete_shape(self) # TODO: link_to_file, save_with_document Picture.add(filename, sheet=sheet_name_or_index, left=left, top=top, width=width, height=height, name=name, wkb=wkb) class Plot(object): """ Plot allows to easily display Matplotlib figures as pictures in Excel. Arguments --------- figure : matplotlib.figure.Figure Matplotlib figure Example ------- Get a matplotlib ``figure`` object: * via PyPlot interface:: import matplotlib.pyplot as plt fig = plt.figure() plt.plot([1, 2, 3, 4, 5]) * via object oriented interface:: from matplotlib.figure import Figure fig = Figure(figsize=(8, 6)) ax = fig.add_subplot(111) ax.plot([1, 2, 3, 4, 5]) * via Pandas:: import pandas as pd import numpy as np df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd']) ax = df.plot(kind='bar') fig = ax.get_figure() Then show it in Excel as picture:: plot = Plot(fig) plot.show('Plot1') .. versionadded:: 0.5.0 """ def __init__(self, figure): self.figure = figure def show(self, name, sheet=None, left=0, top=0, width=None, height=None, wkb=None): """ Inserts the matplotlib figure as picture into Excel if a picture with that name doesn't exist yet. Otherwise it replaces the picture, taking over its position and size. Arguments --------- name : str Name of the picture in Excel Keyword Arguments ----------------- sheet : str or int or xlwings.Sheet, default None Name or index of the Sheet or ``xlwings.Sheet`` object, defaults to the active Sheet left : float, default 0 Left position in points. Only has an effect if the picture doesn't exist yet in Excel. top : float, default 0 Top position in points. Only has an effect if the picture doesn't exist yet in Excel. width : float, default None Width in points, defaults to the width of the matplotlib figure. Only has an effect if the picture doesn't exist yet in Excel. height : float, default None Height in points, defaults to the height of the matplotlib figure. Only has an effect if the picture doesn't exist yet in Excel. wkb : Workbook object, default Workbook.current() Defaults to the Workbook that was instantiated last or set via ``Workbook.set_current()``. Returns ------- xlwings Picture object .. versionadded:: 0.5.0 """ xl_workbook = Workbook.get_xl_workbook(wkb) if isinstance(sheet, Sheet): sheet = sheet.index if sheet is None: sheet = xlplatform.get_worksheet_index(xlplatform.get_active_sheet(xl_workbook)) if sys.platform.startswith('darwin') and xlplatform.get_major_app_version_number(xl_workbook) >= 15: # Office 2016 for Mac is sandboxed. This path seems to work without the need of granting access explicitly filename = os.path.expanduser("~") + '/Library/Containers/com.microsoft.Excel/Data/xlwings_plot.png' else: temp_dir = os.path.realpath(tempfile.gettempdir()) filename = os.path.join(temp_dir, 'xlwings_plot.png') canvas = FigureCanvas(self.figure) canvas.draw() self.figure.savefig(filename, format='png', bbox_inches='tight') if width is None: width = self.figure.bbox.bounds[2:][0] if height is None: height = self.figure.bbox.bounds[2:][1] try: return Picture.add(sheet=sheet, filename=filename, left=left, top=top, width=width, height=height, name=name, wkb=wkb) except ShapeAlreadyExists: pic = Picture(sheet, name, wkb=wkb) pic.update(filename) return pic finally: os.remove(filename) class NamesDict(collections.MutableMapping): """ Implements the Workbook.Names collection. Currently only used to be able to do ``del wb.names['NamedRange']`` """ def __init__(self, xl_workbook, *args, **kwargs): self.xl_workbook = xl_workbook self.store = dict() self.update(dict(*args, **kwargs)) def __getitem__(self, key): return self.store[self.__keytransform__(key)] def __setitem__(self, key, value): self.store[self.__keytransform__(key)] = value def __delitem__(self, key): xlplatform.delete_name(self.xl_workbook, key) def __iter__(self): return iter(self.store) def __len__(self): return len(self.store) def __keytransform__(self, key): return key def view(obj): """ Opens a new workbook and displays an object on its first sheet. Parameters ---------- obj : any type with built-in converter the object to display >>> import xlwings as xw >>> import pandas as pd >>> import numpy as np >>> df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd']) >>> xw.view(df) .. versionadded:: 0.7.1 """ sht = Workbook().active_sheet Range(sht, 'A1').value = obj sht.autofit() class Macro(object): def __init__(self, name, wb=None, app=None): self.name = name self.wb = wb self.app = app def run(self, *args): return xlplatform.run(self.name, self.app or Application(self.wb), args) __call__ = run class VBAMacro(Macro): def __init__(self, name, wb=None, app=None): super(VBAMacro, self).__init__(name, wb=wb, app=app) def run(self, *args): return xlplatform.run("'{0}'!{1}".format(self.wb.name, self.name), self.app or Application(self.wb), args) __call__ = run
apache-2.0
jjx02230808/project0223
examples/cluster/plot_kmeans_digits.py
230
4524
""" =========================================================== A demo of K-Means clustering on the handwritten digits data =========================================================== In this example we compare the various initialization strategies for K-means in terms of runtime and quality of the results. As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the cluster labels to the ground truth. Cluster quality metrics evaluated (see :ref:`clustering_evaluation` for definitions and discussions of the metrics): =========== ======================================================== Shorthand full name =========== ======================================================== homo homogeneity score compl completeness score v-meas V measure ARI adjusted Rand index AMI adjusted mutual information silhouette silhouette coefficient =========== ======================================================== """ print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn.cluster import KMeans from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn.preprocessing import scale np.random.seed(42) digits = load_digits() data = scale(digits.data) n_samples, n_features = data.shape n_digits = len(np.unique(digits.target)) labels = digits.target sample_size = 300 print("n_digits: %d, \t n_samples %d, \t n_features %d" % (n_digits, n_samples, n_features)) print(79 * '_') print('% 9s' % 'init' ' time inertia homo compl v-meas ARI AMI silhouette') def bench_k_means(estimator, name, data): t0 = time() estimator.fit(data) print('% 9s %.2fs %i %.3f %.3f %.3f %.3f %.3f %.3f' % (name, (time() - t0), estimator.inertia_, metrics.homogeneity_score(labels, estimator.labels_), metrics.completeness_score(labels, estimator.labels_), metrics.v_measure_score(labels, estimator.labels_), metrics.adjusted_rand_score(labels, estimator.labels_), metrics.adjusted_mutual_info_score(labels, estimator.labels_), metrics.silhouette_score(data, estimator.labels_, metric='euclidean', sample_size=sample_size))) bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10), name="k-means++", data=data) bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10), name="random", data=data) # in this case the seeding of the centers is deterministic, hence we run the # kmeans algorithm only once with n_init=1 pca = PCA(n_components=n_digits).fit(data) bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1), name="PCA-based", data=data) print(79 * '_') ############################################################################### # Visualize the results on PCA-reduced data reduced_data = PCA(n_components=2).fit_transform(data) kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10) kmeans.fit(reduced_data) # Step size of the mesh. Decrease to increase the quality of the VQ. h = .02 # point in the mesh [x_min, m_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will assign a color to each x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1 y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Obtain labels for each point in mesh. Use last trained model. Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1) plt.clf() plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Paired, aspect='auto', origin='lower') plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2) # Plot the centroids as a white X centroids = kmeans.cluster_centers_ plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=169, linewidths=3, color='w', zorder=10) plt.title('K-means clustering on the digits dataset (PCA-reduced data)\n' 'Centroids are marked with white cross') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
timy/dm_spec
ana/seidner/tmp/plot_ppar_2d.py
1
1414
import numpy as np import matplotlib.pyplot as plt import sys ny, nt = 400, 2000 t_lower, t_upper = -20.0, 500.0 y_lower, y_upper = 0.0, 200.0 # grid grid = np.loadtxt("../res/grid.dat") y, t = grid[::nt,0], grid[:nt,1] # data rawData = np.loadtxt("../res/ppar_2ds_ 2_ 2.dat") idx_y, = np.nonzero( (y >= y_lower) & (y <= y_upper) ) idx_t, = np.nonzero( (t >= t_lower) & (t <= t_upper) ) idx = np.nonzero( (grid[:,0] >= y_lower) & (grid[:,0] <= y_upper) & \ (grid[:,1] >= t_lower) & (grid[:,1] <= t_upper) ) dat = np.sqrt( rawData[idx, 0]**2 + rawData[idx, 1]**2 ) #dat = rawData[idx, 0] dat_max, dat_min = np.amax(dat), np.amin(dat) #lvl_percent = np.array([ 0.2, 0.4, 0.45, 0.48, 0.52, 0.55, 0.6, 0.8 ]) lvl_percent = np.array([ 0.04, 0.1, 0.2, 0.6]) lvl_contour = dat_min + (dat_max - dat_min) * lvl_percent print( "contour levels: ", lvl_contour ) n_y, n_t = np.size( idx_y ), np.size( idx_t ) matData = np.reshape( dat, (n_y, n_t) ) extent = ( t[idx_t[0]], t[idx_t[-1]], y[idx_y[0]], y[idx_y[-1]] ) print("idx_t[0]: ", idx_t[0]) origin = 'lower' norm = plt.cm.colors.Normalize( vmax=matData.max(), vmin=matData.min() ) im = plt.imshow( matData, cmap=plt.cm.summer, norm=norm, origin=origin, extent=extent ) plt.contour( matData, lvl_contour, hold='on', colors = 'k', origin=origin, extent=extent ) plt.grid( True ) plt.savefig("fig/test.svg") plt.show()
mit
tturowski/gwide
gwide/Classes/tRNAFromConcatv2.py
1
65364
#!/usr/bin/env python import numpy as np import sys, collections, re from pypeaks import Data from pyCRAC.Parsers import GTF2 import matplotlib.pyplot as plt import pandas as pd # import seaborn class tRNAFromConcatv2(): def __init__(self, gtf_file, five_prime_flank, three_prime_flank, hits_threshold, lookahead, prefix, print_valleys, print_peaks, readthrough_start, normalized): self.gtf_file = str(gtf_file) self.gtf = GTF2.Parse_GTF() self.gtf.read_GTF(self.gtf_file) self.genes = dict() self.data = dict() self.id_to_names = dict() self.rt = dict() # designated to work with one experiment only self.genes_name_list = list() self.genes_id_list = list() self.five_prime_flank = five_prime_flank self.three_prime_flank = three_prime_flank self.five_prime_to_print= 50 self.longest_gene = 0 self.hits_threshold = hits_threshold self.lookahead = lookahead self.prefix = str(prefix) self.print_peaks = print_peaks self.print_valleys = print_valleys self.readthrough_start = readthrough_start self.experiments = list() self.normalized = normalized # -n option allows for using normalized dataset (reads p[er Million) if self.print_peaks == True or self.print_valleys == True: self.list_of_peaks = dict() self.dna_dna = { 'AA' : [7.9, 0.0222], 'TT' : [7.9, 0.0222], 'AT' : [7.2, 0.0204], 'TA' : [7.2, 0.0213], 'CA' : [8.5, 0.0227], 'TG' : [8.5, 0.0227], 'GT' : [8.4, 0.0224], 'AC' : [8.4, 0.0224], 'CT' : [7.8, 0.021], 'AG' : [7.8, 0.021], 'GA' : [8.2, 0.0222], 'TC' : [8.2, 0.0222], 'CG' : [10.6, 0.0272], 'GC' : [9.8, 0.0244], 'GG' : [8.0, 0.0199], 'CC' : [8.0, 0.0199] } self.rna_dna = { 'AA' : [7.8, 0.0219], 'TT' : [11.5, 0.0364], 'AT' : [8.3, 0.0239], 'TA' : [7.8, 0.0232], 'CA' : [9.0, 0.0261], 'TG' : [10.4, 0.0284], 'GT' : [7.8, 0.0216], 'AC' : [5.9, 0.0123], 'CT' : [7.0, 0.0197], 'AG' : [9.1, 0.0235], 'GA' : [5.5, 0.0135], 'TC' : [8.6, 0.0229], 'CG' : [16.3, 0.0471], 'GC' : [8.0, 0.0171], 'GG' : [12.8, 0.0319], 'CC' : [9.3, 0.0232] } def read_csv(self, concat_file, null_substitution=False): print "# Reading CSV file..." header = ['gene','position','nucleotide','hits','substitutions','deletions','exp_name','n_hits','n_substitutions','n_deletions'] concat_csv = pd.read_csv(concat_file, sep='\t', names=header, comment='#') self.experiments = sorted(set(concat_csv['exp_name'].tolist())) self.genes_name_list = sorted(set(concat_csv['gene'].tolist())) #adding new entry in genes dict print "# Getting details from GTF file and filling dataframe..." for gene_name in self.genes_name_list: gene_id = self.gtf.genes[gene_name]['gene_id'] gene_length = self.gtf.geneLength(gene_name) if self.longest_gene < gene_length: self.longest_gene = gene_length self.genes[gene_name] = { 'gene_name' : gene_name, 'gene_id' : gene_id, 'gene_length' : gene_length, 'introns' : self.get_introns(gene_name), # [[len,len...][(start,stop),etc]] <-[[list_with_lengths],[list_with_start and stop]] 'RT' : dict(), } self.genes[gene_name]['exons'] = self.get_exons(gene_name) self.id_to_names[gene_id] = gene_name self.genes_id_list.append(gene_id) #filling dataframe gene_csv = concat_csv[concat_csv.gene == gene_name].set_index(['position']) frame_index = range(1,(self.five_prime_flank + gene_length + self.three_prime_flank+1)) positions = range(-self.five_prime_flank,0)+range(1,(gene_length+self.three_prime_flank+1)) # columns = ['position','nucleotide']+[self.experiments] columns = ['position','nucleotide'] self.data[gene_name] = pd.DataFrame(index=frame_index, columns=columns) self.data[gene_name]['position'] = positions self.data[gene_name]['nucleotide'] = gene_csv['nucleotide'][:(self.five_prime_flank + gene_length + self.three_prime_flank):] for e in self.experiments: self.data[gene_name][e] = gene_csv[gene_csv.exp_name == e]['hits'] if self.normalized == True: self.data[gene_name][(e+"_nrpm")] = gene_csv[gene_csv.exp_name == e]['n_hits'] #to work with data normalized reads per M self.data[gene_name] = self.data[gene_name].fillna(0) if null_substitution == True: self.data[gene_name] = self.data[gene_name].replace(0,1) # print self.data[gene_name][230:330] self.genes_id_list.sort() return True def get_introns(self, gene_name): gene_coord = self.gtf.chromosomeCoordinates(gene_name) introns_coord_raw = self.gtf.intronCoordinates(gene_name) if not introns_coord_raw: return [[],[]] else: introns = [[],[]] for i in range(0,len(introns_coord_raw)): intron_coord = list(introns_coord_raw[i]) intron_len = max(intron_coord) - min(intron_coord) + 2 #corrected introns[0].append(intron_len) if self.gtf.strand(gene_name) == "+": intron_start = min(intron_coord) - min(gene_coord) elif self.gtf.strand(gene_name) == "-": intron_start = max(gene_coord) - max(intron_coord) intron_stop = intron_start + intron_len - 1 #corrected introns[1].append((intron_start,intron_stop)) return introns def get_exons(self, gene_name): exons = list() introns = self.genes[gene_name]['introns'] if len(introns[0]) == 0: exons = [[1, self.genes[gene_name]['gene_length']]] # print 'no introns for this gene' elif len(introns[0]) == 1: exons = [[1,introns[1][0][0]-1],[introns[1][0][1]+1, self.genes[gene_name]['gene_length']]] else: print "ERROR: Genes with more than one intron are not supported in this version." return exons def find_peaks(self): print '# Finding peaks...' for i in self.data: self.list_of_peaks[i] = dict() for e in self.experiments: self.list_of_peaks[i][e] = dict() hist = Data(list(self.data[i].index), list(self.data[i][e]), smoothness=1, default_smooth=False) hist.normalize() try: hist.get_peaks(method="slope", peak_amp_thresh=0.00005, valley_thresh=0.00003, intervals=None, lookahead=self.lookahead, avg_interval=100) self.list_of_peaks[i][e]['peaks'] = sorted(np.array(hist.peaks['peaks'][0]).tolist()) self.list_of_peaks[i][e]['valleys'] = sorted(np.array(hist.peaks['valleys'][0]).tolist()) except ValueError: pass self.list_of_peaks[i][e]['peaks'] = [] self.list_of_peaks[i][e]['valleys'] = [] # print self.list_of_peaks return True def calculate(self, details=False, ntotal=False, nmax=False, pscounts=False): if details == True or nmax == True or ntotal == True: print '# Calculating readthrough and others...' elif details == True and len(self.experiments) > 1: print '# WORNING: -d parameter works only with one experiment.' exit() else: print '# Calculating readthrough...' for gene_name in self.genes: transcription_start = self.five_prime_flank-21 gene_length = self.genes[gene_name]['gene_length'] gene_end = self.five_prime_flank + gene_length RT_begin = self.five_prime_flank + gene_length + self.readthrough_start gene_middle = self.five_prime_flank + ( gene_length / 2 ) three_middle = self.five_prime_flank + gene_length + (self.three_prime_flank / 2) three_one_third = self.five_prime_flank + gene_length + (self.three_prime_flank / 3) three_two_third = self.five_prime_flank + gene_length + (2*(self.three_prime_flank / 3)) #getting intron length introns = list() if not self.genes[gene_name]['introns'][0]: intron_length = 0 else: for intron in range(0,len(self.genes[gene_name]['introns'][0])): introns.append(str(self.genes[gene_name]['introns'][0][intron])) intron_length = int(''.join(map(str,introns))) intron_start_stop = self.genes[gene_name]['introns'][1][0] #start and stop of first intron only! for exp in self.experiments: # !! changes in exp name !! exp_old = exp try: if max(list(self.data[gene_name][exp])) >= self.hits_threshold: #normalization options if nmax == True: exp = exp_old+'_nmax' self.data[gene_name][exp] = self.data[gene_name][exp_old]/self.data[gene_name][exp_old].max() if pscounts == True: self.data[gene_name][exp] = self.data[gene_name][exp].add(0.000001) #adding pseudocounts if ntotal == True: exp = exp_old+'_ntotal' self.data[gene_name][exp] = self.data[gene_name][exp_old]/self.data[gene_name][exp_old].sum() if pscounts == True: self.data[gene_name][exp] = self.data[gene_name][exp].add(0.000001) #adding pseudocounts if pscounts == True: self.data[gene_name][exp_old] = self.data[gene_name][exp_old].add(10) #adding pseudocounts #slicing dataframes total = self.data[gene_name][transcription_start:].sum()[exp] total_av = self.data[gene_name][transcription_start:].mean()[exp] total_med = self.data[gene_name][transcription_start:].median()[exp] total_SD = self.data[gene_name][transcription_start:].std()[exp] c = float(self.data[gene_name][RT_begin:].sum()[exp]) if details==True: g = self.data[gene_name][transcription_start:gene_end].sum()[exp] g_av = self.data[gene_name][transcription_start:gene_end].mean()[exp] g_med = self.data[gene_name][transcription_start:gene_end].median()[exp] g_SD = self.data[gene_name][transcription_start:gene_end].std()[exp] a1 = float(self.data[gene_name][transcription_start:gene_middle].sum()[exp]) a2 = self.data[gene_name][gene_middle+1:gene_end].sum()[exp] d = self.data[gene_name][gene_end+1:].sum()[exp] d_av = self.data[gene_name][gene_end+1:].mean()[exp] d_med = self.data[gene_name][gene_end+1:].median()[exp] d_SD = self.data[gene_name][gene_end+1:].std()[exp] e1 = float(self.data[gene_name][gene_end+1:three_middle].sum()[exp]) e2 = self.data[gene_name][three_middle+1:].sum()[exp] f1 = float(self.data[gene_name][gene_end+1:three_one_third].sum()[exp]) f2 = self.data[gene_name][three_one_third+1:three_two_third].sum()[exp] f3 = self.data[gene_name][three_two_third+1:].sum()[exp] if intron_length > 0: b1 = float(self.data[gene_name][transcription_start:intron_start_stop[0]+self.five_prime_flank].sum()[exp]) b2 = float(self.data[gene_name][intron_start_stop[0]+1+self.five_prime_flank:intron_start_stop[1]+self.five_prime_flank].sum()[exp]) b3 = self.data[gene_name][intron_start_stop[1]+1+self.five_prime_flank:gene_end].sum()[exp] #calculating RT = np.float64(c) / total #allows for dividing by 0 if details==True: a = np.float64(a1) / a2 e = np.float64(e1) / e2 f = np.float64(f1) / f3 if intron_length > 0: b = np.float64(b1) / b3 i = np.float64(b2) / (b1 + b3) else: b = 0 i = 0 else: RT, total, total_av, total_med, total_SD, c = ['too_low_reads'] * 6 if details == True: g, g_av, g_med, g_SD, d, d_av, d_med, d_SD, a, e, f, b, i = ['too_low_reads'] * 13 except KeyError as e: # print "Error raised by key: "+str(e) RT, total, total_av, total_med, total_SD, c = ['no_reads'] * 6 if details == True: g, g_av, g_med, g_SD, d, d_av, d_med, d_SD, a, e, f, b, i = ['no_reads'] * 13 #stroing in dictionary self.genes[gene_name]['RT'][exp_old] = RT if details==True: self.genes[gene_name]['total'] = total self.genes[gene_name]['total_av'] = total_av self.genes[gene_name]['total_med'] = total_med self.genes[gene_name]['total_std'] = total_SD self.genes[gene_name]['a'] = a self.genes[gene_name]['b'] = b self.genes[gene_name]['i'] = i self.genes[gene_name]['e'] = e self.genes[gene_name]['f'] = f self.genes[gene_name]['d'] = d self.genes[gene_name]['d_av'] = d_av self.genes[gene_name]['d_med'] = d_med self.genes[gene_name]['d_std'] = d_SD self.genes[gene_name]['g'] = g self.genes[gene_name]['g_av'] = g_av self.genes[gene_name]['g_med'] = g_med self.genes[gene_name]['g_std'] = g_SD ### below part of function is needed to sort tRNA according to readthrough tRNA_group = self.genes[gene_name]['gene_id'][0:2] gene_id = self.genes[gene_name]['gene_id'] if tRNA_group not in self.rt: self.rt[tRNA_group] = dict() self.rt[tRNA_group][gene_id] = RT return True def calculate_dG(self): print '# Calculating delta G energy for RNA/DNA and DNA/DNA for 20 nt after 3` end' for gene_name in self.genes_name_list: gene_end = self.genes[gene_name]['gene_length'] + self.five_prime_flank #as before slice_dataframe # calculating energy r_delta_H = 0 r_delta_S = 0 d_delta_H = 0 d_delta_S = 0 pair = str() for i in range(gene_end+1,gene_end+21): if len(pair) > 1: pair = pair[1] pair += self.data[gene_name]['nucleotide'][i] if len(pair) == 2: r_delta_H += self.rna_dna[pair][0] r_delta_S += self.rna_dna[pair][1] d_delta_H += self.dna_dna[pair][0] d_delta_S += self.dna_dna[pair][1] r_delta_G = r_delta_H * (1-(310/(r_delta_H/r_delta_S))) d_delta_G = d_delta_H * (1-(310/(d_delta_H/d_delta_S))) # to_print = str(r_delta_G)+'_'+str(d_delta_G) self.genes[gene_name]['r_delta_G'] = r_delta_G self.genes[gene_name]['d_delta_G'] = d_delta_G return True # making output; if -p option then text file, else to standard output def make_text_file(self, filename, details=False, print_dG=False, ntotal=False, nmax=False): print '# Making text file...' output_dict = dict() for i in self.genes: output_dict[i] = list() introns = list() output_dict[i].append(str(self.genes[i]['gene_name'])) output_dict[i].append(str(self.genes[i]['gene_id'])) output_dict[i].append(str(self.genes[i]['gene_length'])) if not self.genes[i]['introns'][0]: introns_to_print = 'none' else: for intron in range(0,len(self.genes[i]['introns'][0])): introns.append(str(self.genes[i]['introns'][0][intron])) introns_to_print = ', '.join(introns) output_dict[i].append(introns_to_print) # introns length if print_dG == True: output_dict[i].append(str(self.genes[i]['r_delta_G'])) output_dict[i].append(str(self.genes[i]['d_delta_G'])) for e in self.experiments: output_dict[i].append(str(self.genes[i]['RT'][e])) if details==True: output_dict[i].append(str(self.genes[i]['total'])) output_dict[i].append(str(self.genes[i]['total_av'])) output_dict[i].append(str(self.genes[i]['total_med'])) output_dict[i].append(str(self.genes[i]['total_std'])) output_dict[i].append(str(self.genes[i]['a'])) output_dict[i].append(str(self.genes[i]['b'])) output_dict[i].append(str(self.genes[i]['i'])) output_dict[i].append(str(self.genes[i]['e'])) output_dict[i].append(str(self.genes[i]['f'])) output_dict[i].append(str(self.genes[i]['d'])) output_dict[i].append(str(self.genes[i]['d_av'])) output_dict[i].append(str(self.genes[i]['d_med'])) output_dict[i].append(str(self.genes[i]['d_std'])) output_dict[i].append(str(self.genes[i]['g'])) output_dict[i].append(str(self.genes[i]['g_av'])) output_dict[i].append(str(self.genes[i]['g_med'])) output_dict[i].append(str(self.genes[i]['g_std'])) # experiments = '\t'.join(self.experiments) filename.write("# analyse_tRNA_pileups output file using gtf file:"+"\n") filename.write("# "+self.gtf_file+"\n") filename.write("# 5` flank: "+str(self.five_prime_flank)+"\n") filename.write("# 3` flank: "+str(self.three_prime_flank)+"\n") # if self.normalized == True: # filename.write("# calculations performed on data normalized to reads per Million \n") # else: # filename.write("# calculations performed on non-normalized data \n") filename.write("# readthrough calculated: last nucleotide of gene + "+str(self.readthrough_start)+" nt\n") filename.write("# threshold of hits: "+str(self.hits_threshold)+"\n") filename.write("# lookahead option for pypeaks: "+str(self.lookahead)+"\n") if nmax == True and ntotal == False: filename.write("# Calculations performed on normalized data (max = 1)"+"\n") elif ntotal == True: filename.write("# Calculations performed on normalized data (sum = 1)"+"\n") else: filename.write("# Calculations performed on non-normalized data "+"\n") header_list = ["# name","ID","length","int_len"] if print_dG == True: header_list += ["dG_RNA/DNA","dG_DNA/DNA"] header_list += self.experiments if details == True: header_list += ['total','total_av','total_med','total_std','a','b','i','e','f','d','d_av','d_med','d_std','g','g_av','g_med','g_std'] filename.write('\t'.join(header_list)+'\n') for g in self.genes_id_list: line = self.id_to_names[g] filename.write('\t'.join(output_dict[line]) + '\n') if filename != sys.stdout: filename.close() return True def termination_efficency_valleys(self): print '# Calculating energy for termination efficiency...' for e in self.experiments: fig = plt.figure(figsize=(12, 9), dpi=100, facecolor='w', edgecolor='k') fig_no = 0 plot_no = 0 for i_gene_id in self.genes_id_list: gene_name = self.id_to_names[i_gene_id] valleys = self.list_of_peaks[gene_name][e]['valleys'] gene_end = self.genes[gene_name]['gene_length'] + self.five_prime_flank #as before slice_dataframe plot_no += 1 fig.add_subplot(3, 2, plot_no) plt.tight_layout() plt.title(e) plt.ylabel("no. of reads") try: plt.plot(self.data[gene_name][e]['position'], self.data[gene_name][e]['hits']) if self.print_peaks == True: plt.plot(self.data[gene_name][e]['position'], self.data[gene_name][e]['peaks_to_plot'], color='green') if self.print_valleys == True: plt.plot(self.data[gene_name][e]['position'], self.data[gene_name][e]['valleys_to_plot'], color='red') for i in self.genes[gene_name]['exons']: plt.axvspan(i[0], i[1], alpha=0.2, color='green') # some trick figured out by Hywel to plot without problems y_array = np.array(self.data[gene_name][e]['RT_to_plot']) x_array = np.array(self.data[gene_name][e]['position']) y_array[0] = 0 y_array[len(y_array)-1] = 0 plt.fill(x_array, y_array) plt.xlabel('ID: '+i_gene_id+', Name: '+gene_name) plt.text(210-self.five_prime_flank,max(self.data[gene_name][e]['hits'])-150,'RT='+str(round(self.genes[gene_name]['RT'][e],3))) plt.text(gene_end-200,max(self.data[gene_name][e]['hits'])-150,'delta G for: RNA/DNA_DNA/DNA') except KeyError: plt.xlabel("NO READS") aaa = max(self.data[gene_name][e]['hits'])/10 #parameter to print energy in non-overlapping way inkr = 1 print 'valleys: '+str(valleys) for v in valleys: if v >= gene_end: print 'for valley '+str(v)+' energy is:' r_delta_H = 0 r_delta_S = 0 d_delta_H = 0 d_delta_S = 0 pair = str() bbb = aaa * inkr inkr += 1 for i in range(v-5,v+2): print 'position: '+str(i)+' nucleotide: '+self.data[gene_name][e]['nucleotides'][i] if len(pair) > 1: pair = pair[1] pair += self.data[gene_name][e]['nucleotides'][i] if len(pair) == 2: r_delta_H += self.rna_dna[pair][0] r_delta_S += self.rna_dna[pair][1] d_delta_H += self.dna_dna[pair][0] d_delta_S += self.dna_dna[pair][1] r_delta_G = r_delta_H * (1-(310/(r_delta_H/r_delta_S))) d_delta_G = d_delta_H * (1-(310/(d_delta_H/d_delta_S))) to_print = str(r_delta_G)+'_'+str(d_delta_G) print 'r_delta_G: '+str(r_delta_G) print 'd_delta_G: '+str(d_delta_G) plt.text(v-self.five_prime_flank,bbb,to_print) if plot_no == 6: fig_no += 1 plt.savefig(self.prefix+e+'_l'+str(self.lookahead)+'_t'+str(self.hits_threshold)+'_fig_'+str(fig_no)+'.png') plt.clf() plot_no = 0 if plot_no > 0: plt.savefig(self.prefix+e+'_l'+str(self.lookahead)+'_t'+str(self.hits_threshold)+'_fig_'+str(fig_no+1)+'.png') plt.clf() return True def termination_efficency(self): print '# Calculating energy for termination efficiency...' for e in self.experiments: fig = plt.figure(figsize=(12, 9), dpi=100, facecolor='w', edgecolor='k') fig_no = 0 plot_no = 0 for i_gene_id in self.genes_id_list: gene_name = self.id_to_names[i_gene_id] gene_end = self.genes[gene_name]['gene_length'] + self.five_prime_flank #as before slice_dataframe plot_no += 1 fig.add_subplot(3, 2, plot_no) plt.tight_layout() plt.title(e) plt.ylabel("no. of reads") try: plt.plot(self.data[gene_name][e]['position'], self.data[gene_name][e]['hits']) if self.print_peaks == True: plt.plot(self.data[gene_name][e]['position'], self.data[gene_name][e]['peaks_to_plot'], color='green') if self.print_valleys == True: plt.plot(self.data[gene_name][e]['position'], self.data[gene_name][e]['valleys_to_plot'], color='red') for i in self.genes[gene_name]['exons']: plt.axvspan(i[0], i[1], alpha=0.2, color='green') # some trick figured out by Hywel to plot without problems y_array = np.array(self.data[gene_name][e]['RT_to_plot']) x_array = np.array(self.data[gene_name][e]['position']) y_array[0] = 0 y_array[len(y_array)-1] = 0 plt.fill(x_array, y_array) plt.xlabel('ID: '+i_gene_id+', Name: '+gene_name) plt.text(210-self.five_prime_flank,max(self.data[gene_name][e]['hits'])-150,'RT='+str(round(self.genes[gene_name]['RT'][e],3))) plt.text(gene_end-200,max(self.data[gene_name][e]['hits'])-150,'delta G for: RNA/DNA_DNA/DNA') except KeyError: plt.xlabel("NO READS") # calculating energy r_delta_H = 0 r_delta_S = 0 d_delta_H = 0 d_delta_S = 0 pair = str() print gene_name for i in range(gene_end +1,gene_end+21): print 'position: '+str(i)+' nucleotide: '+self.data[gene_name][e]['nucleotides'][i] if len(pair) > 1: pair = pair[1] pair += self.data[gene_name][e]['nucleotides'][i] if len(pair) == 2: r_delta_H += self.rna_dna[pair][0] r_delta_S += self.rna_dna[pair][1] d_delta_H += self.dna_dna[pair][0] d_delta_S += self.dna_dna[pair][1] r_delta_G = r_delta_H * (1-(310/(r_delta_H/r_delta_S))) d_delta_G = d_delta_H * (1-(310/(d_delta_H/d_delta_S))) to_print = str(r_delta_G)+'_'+str(d_delta_G) print 'r_delta_G: '+str(r_delta_G) print 'd_delta_G: '+str(d_delta_G) plt.text(self.genes[gene_name]['gene_length'],(max(self.data[gene_name][e]['hits'])/2),to_print) if plot_no == 6: fig_no += 1 plt.savefig(self.prefix+e+'_l'+str(self.lookahead)+'_t'+str(self.hits_threshold)+'_fig_'+str(fig_no)+'.png') plt.clf() plot_no = 0 if plot_no > 0: plt.savefig(self.prefix+e+'_l'+str(self.lookahead)+'_t'+str(self.hits_threshold)+'_fig_'+str(fig_no+1)+'.png') plt.clf() return True def slice_dataframe(self): five_prime_to_out = self.five_prime_flank - self.five_prime_to_print # maybe changed - it simply gives only -50 flank independly what -r value was used for pyPileups for i in self.data: for e in self.data[i]: self.data[i][e] = self.data[i][e][five_prime_to_out::] # if self.list_of_peaks: # for i in self.list_of_peaks: # for e in self.list_of_peaks[i]: # self.list_of_peaks[i][e]['peaks'] = [x - five_prime_to_out for x in self.list_of_peaks[i][e]['peaks']] # self.list_of_peaks[i][e]['valleys'] = [x - five_prime_to_out for x in self.list_of_peaks[i][e]['valleys']] return True ### making output plots, one gene, different experiments per page def fig_gene_pp(self): print '# Plotting 1 gene per page (all experiments).' if len(self.experiments) <= 6: subplot_layout = [3, 2] elif len(self.experiments) > 6 and len(self.experiments) <= 9: subplot_layout = [3,3] elif len(self.experiments) > 9 and len(self.experiments) <= 12: subplot_layout = [4,3] elif len(self.experiments) > 12 and len(self.experiments) <= 16: subplot_layout = [4,4] else: print '# Unsupported layout - more than 16 different experiments' exit() for i_gene_id in self.genes_id_list: fig = plt.figure(figsize=(12, 9), facecolor='w', edgecolor='k') gene_name = self.id_to_names[i_gene_id] gene_length = self.genes[gene_name]['gene_length'] RT_begin = self.five_prime_flank + gene_length + self.readthrough_start plot_no = 0 for e in self.experiments: plot_no += 1 fig.add_subplot(subplot_layout[0],subplot_layout[1],plot_no) fig.tight_layout() plt.title(e) plt.ylabel("no. of reads") try: plt.plot(self.data[gene_name]['position'], self.data[gene_name][e]) if self.print_peaks == True: for i in self.list_of_peaks[gene_name][e]['peaks']: plt.axvline(i-self.five_prime_flank, color='blue') if self.print_valleys == True: for i in self.list_of_peaks[gene_name][e]['valleys']: plt.axvline(i-self.five_prime_flank, color='red') for i in self.genes[gene_name]['exons']: plt.axvspan(i[0], i[1], alpha=0.2, color='green') # some trick figured out by Hywel to plot without problems y_array = np.array(self.data[gene_name][e][RT_begin:]) x_array = np.array(self.data[gene_name]['position'][RT_begin:]) y_array[0] = 0 y_array[len(y_array)-1] = 0 plt.fill(x_array, y_array) plt.xlabel('ID: '+i_gene_id+', Name: '+gene_name) # plt.text(0.5,0.5,'RT='+str(round(self.genes[gene_name]['RT'][e],3))) except KeyError: plt.xlabel("NO READS") if plot_no == len(self.experiments): plot_no = 0 plt.savefig(self.prefix+i_gene_id+'_l'+str(self.lookahead)+'_t'+str(self.hits_threshold)+'.png', dpi=150) plt.clf() return True ### making output plots, one gene, different experiments per page def fig_gene_pp_tight(self): print '# Plotting 1 gene per page (all experiments).' if len(self.experiments) > 6: exit('# Unsupported layout - more than 16 different experiments') for i_gene_id in self.genes_id_list: #setup figure fig, axes = plt.subplots(len(self.experiments), 1) # fig.tight_layout() fig.subplots_adjust(hspace=0) #leave no space between plt.setp([a.get_xticklabels() for a in fig.axes[:-1]], visible=False) #from stackoverflow to remove xlabels exept bottom plot gene_name = self.id_to_names[i_gene_id] gene_length = self.genes[gene_name]['gene_length'] RT_begin = self.five_prime_flank + gene_length + self.readthrough_start plot_no = 0 for e in self.experiments: #plot subplots plot_no += 1 axes[plot_no-1].set_ylabel(e) try: axes[plot_no-1].plot(self.data[gene_name]['position'], self.data[gene_name][e], color='black') if self.print_peaks == True: for i in self.list_of_peaks[gene_name][e]['peaks']: axes[plot_no-1].axvline(i-self.five_prime_flank, color='blue') if self.print_valleys == True: for i in self.list_of_peaks[gene_name][e]['valleys']: axes[plot_no-1].axvline(i-self.five_prime_flank, color='red') for i in self.genes[gene_name]['exons']: axes[plot_no-1].axvspan(i[0], i[1], alpha=0.2, color='green') # some trick figured out by Hywel to plot without problems y_array = np.array(self.data[gene_name][e][RT_begin:]) x_array = np.array(self.data[gene_name]['position'][RT_begin:]) y_array[0] = 0 y_array[len(y_array)-1] = 0 axes[plot_no-1].fill(x_array, y_array, color='grey') plt.xlabel('ID: '+i_gene_id+', Name: '+gene_name) # plt.text(0.5,0.5,'RT='+str(round(self.genes[gene_name]['RT'][e],3))) except KeyError: plt.xlabel("NO READS") if plot_no == len(self.experiments): plot_no = 0 plt.savefig(self.prefix+i_gene_id+'_l'+str(self.lookahead)+'_t'+str(self.hits_threshold)+'.png', dpi=150) plt.clf() plt.close() return True ###function to plot ratio between sample with -a parameter and -b parameter def fig_ratio(self, a, b): print '# Plotting 1 gene per page. Log2 ratio for '+a+' divided by '+b+' (all experiments).' new_exp_list = self.group_experiments(a,b) for i_gene_id in self.genes_id_list: fig = plt.figure(figsize=(12, 9), dpi=100, facecolor='w', edgecolor='k') gene_name = self.id_to_names[i_gene_id] gene_length = self.genes[gene_name]['gene_length'] RT_begin = self.five_prime_flank + gene_length + self.readthrough_start plot_no = 0 fig_no = 0 for e in new_exp_list: plot_no += 1 fig_no += 1 #plot a fig.add_subplot(4,2,plot_no) # plt.tight_layout() plt.title(e[0]) plt.ylabel("no. of reads") try: plt.plot(self.data[gene_name]['position'], self.data[gene_name][e[0]], color='black') if self.print_peaks == True: for i in self.list_of_peaks[gene_name][e[0]]['peaks']: plt.axvline(i-self.five_prime_flank, color='blue') if self.print_valleys == True: for i in self.list_of_peaks[gene_name][e[0]]['valleys']: plt.axvline(i-self.five_prime_flank, color='red') for i in self.genes[gene_name]['exons']: plt.axvspan(i[0], i[1], alpha=0.2, color='green') # some trick figured out by Hywel to plot without problems y_array = np.array(self.data[gene_name][e[0]][RT_begin:]) x_array = np.array(self.data[gene_name]['position'][RT_begin:]) y_array[0] = 0 y_array[len(y_array)-1] = 0 plt.fill(x_array, y_array, color='#808080') plt.xlabel('ID: '+i_gene_id+', Name: '+gene_name) except KeyError: plt.xlabel("NO READS") #plot b fig.add_subplot(4,2,plot_no+2) # plt.tight_layout() plt.title(e[1]) plt.ylabel("no. of reads") try: plt.plot(self.data[gene_name]['position'], self.data[gene_name][e[1]], color='black') if self.print_peaks == True: for i in self.list_of_peaks[gene_name][e[1]]['peaks']: plt.axvline(i-self.five_prime_flank, color='blue') if self.print_valleys == True: for i in self.list_of_peaks[gene_name][e[1]]['valleys']: plt.axvline(i-self.five_prime_flank, color='red') for i in self.genes[gene_name]['exons']: plt.axvspan(i[0], i[1], alpha=0.2, color='green') # some trick figured out by Hywel to plot without problems y_array = np.array(self.data[gene_name][e[1]][RT_begin:]) x_array = np.array(self.data[gene_name]['position'][RT_begin:]) y_array[0] = 0 y_array[len(y_array)-1] = 0 plt.fill(x_array, y_array, color='#808080') plt.xlabel('ID: '+i_gene_id+', Name: '+gene_name) # plt.text(0.5,0.5,'RT='+str(round(self.genes[gene_name]['RT'][e],3))) except KeyError: plt.xlabel("NO READS") #plot ratio fig.add_subplot(4,2,plot_no+4) plt.tight_layout() plt.title(e[0]+'/'+e[1]+' ratio') plt.ylabel("no. of reads") try: self.data[gene_name][str("ratio_"+e[0]+"_"+e[1])] = self.data[gene_name][e[0]]/self.data[gene_name][e[1]] ###getting ratio plt.plot(self.data[gene_name]['position'], self.data[gene_name][str("ratio_"+e[0]+"_"+e[1])], color='#994C00') for i in self.genes[gene_name]['exons']: plt.axvspan(i[0], i[1], alpha=0.2, color='green') plt.xlabel('ID: '+i_gene_id+', Name: '+gene_name) except KeyError: plt.xlabel("NO READS") #plot log2 ratio fig.add_subplot(4,2,plot_no+6) plt.tight_layout() plt.title('log2 '+e[0]+'/'+e[1]+' ratio') plt.ylabel("no. of reads") try: self.data[gene_name][str("ratio_"+e[0]+"_"+e[1])] = np.log2(self.data[gene_name][e[0]]/self.data[gene_name][e[1]]) ###getting ratio plt.plot(self.data[gene_name]['position'], self.data[gene_name][str("ratio_"+e[0]+"_"+e[1])], color='#994C00') for i in self.genes[gene_name]['exons']: plt.axvspan(i[0], i[1], alpha=0.2, color='green') plt.xlabel('ID: '+i_gene_id+', Name: '+gene_name) except KeyError: plt.xlabel("NO READS") if plot_no == 2: plot_no = 0 plt.savefig(self.prefix+i_gene_id+'_l'+str(self.lookahead)+'_t'+str(self.hits_threshold)+'ratio_fig'+str(fig_no)+'.png') plt.clf() plot_no = 0 plt.savefig(self.prefix+i_gene_id+'_l'+str(self.lookahead)+'_t'+str(self.hits_threshold)+'ratio_fig'+str(fig_no)+'.png') plt.clf() plt.savefig(self.prefix+i_gene_id+'_l'+str(self.lookahead)+'_t'+str(self.hits_threshold)+'ratio_fig'+str(fig_no)+'.png') plt.clf() return True def group_experiments(self, a, b): print 'Looking for groups of experiments...' ### function identifiying 'to_divide' and 'divisor' for ratio results plotting. ### Please use nomenclature gene_variant ### IMPORTANT: only two experiments may contain the same root(gene) added to 'a' or 'b' ### i.e. list_of_experiments = ['A190_MD', 'A190_total', 'A135_MD', 'A135_total'] additional A190 or A135 is forbidden a_experiments = list() b_experiments = list() for e in self.experiments: ##making list with experiments containing -a or -b if re.search(a, e): a_experiments.append(e) elif re.search(b, e): b_experiments.append(e) else: print "fig_ratio module found experiment "+e+" neither containing -a nor -b parameter. \n " \ "This experiment won't be considered" if len(a_experiments) == len(b_experiments): ##checking no. of experiments to divide each other pass else: print "Unequal no. of experiments with -a and -b parameter:" print "-a exp: "+','.join(a_experiments)+"\n -b exp: "+','.join(b_experiments) exit() a_experiments.sort() b_experiments.sort() ratio_exp_list = list() for e in a_experiments: gene = re.search(r'(.*)_'+a, e).group(1) second = [d for d in b_experiments if re.search(gene,d)] if len(second) > 1: print 'To many elements to divide for '+gene exit() couple = [e, second[0]] ratio_exp_list.append(couple) print 'Found pairs:' print ratio_exp_list return ratio_exp_list # print plots, gene after gene, def fig_gene_after_gene(self): print '# Plotting gene after gene.' for e in self.experiments: fig = plt.figure(figsize=(12, 9), dpi=200, facecolor='w', edgecolor='k') fig_no = 0 plot_no = 0 for i_gene_id in self.genes_id_list: gene_name = self.id_to_names[i_gene_id] gene_length = self.genes[gene_name]['gene_length'] RT_begin = self.five_prime_flank + gene_length + self.readthrough_start plot_no += 1 fig.add_subplot(3, 2, plot_no) plt.tight_layout() plt.title(e) plt.ylabel("no. of reads") try: plt.plot(self.data[gene_name]['position'], self.data[gene_name][e]) if self.print_peaks == True: for i in self.list_of_peaks[gene_name][e]['peaks']: plt.axvline(i-self.five_prime_flank, color='blue') if self.print_valleys == True: for i in self.list_of_peaks[gene_name][e]['valleys']: plt.axvline(i-self.five_prime_flank, color='red') for i in self.genes[gene_name]['exons']: plt.axvspan(i[0], i[1], alpha=0.2, color='green') # some trick figured out by Hywel to plot without problems y_array = np.array(self.data[gene_name][e][RT_begin:]) x_array = np.array(self.data[gene_name]['position'][RT_begin:]) y_array[0] = 0 y_array[len(y_array)-1] = 0 plt.fill(x_array, y_array) plt.xlabel('ID: '+i_gene_id+', Name: '+gene_name) # plt.text(210-self.five_prime_flank,max(self.data[gene_name][e])-150,'RT='+str(round(self.genes[gene_name]['RT'][e],3))) except KeyError: plt.xlabel("NO READS") if plot_no == 6: fig_no += 1 plt.savefig(self.prefix+e+'_l'+str(self.lookahead)+'_t'+str(self.hits_threshold)+'_fig_'+str(fig_no)+'.png') plt.clf() plot_no = 0 if plot_no > 0: plt.savefig(self.prefix+e+'_l'+str(self.lookahead)+'_t'+str(self.hits_threshold)+'_fig_'+str(fig_no+1)+'.png') plt.clf() return True # print plots, gene after gene, def mark_T(self, anti_plot=False): print '# Plotting gene after gene marking each T.' for e in self.experiments: fig = plt.figure(figsize=(12, 9), dpi=200, facecolor='w', edgecolor='k') fig_no = 0 plot_no = 0 for i_gene_id in self.genes_id_list: gene_name = self.id_to_names[i_gene_id] gene_length = self.genes[gene_name]['gene_length'] RT_begin = self.five_prime_flank + gene_length + self.readthrough_start plot_no += 1 fig.add_subplot(3, 2, plot_no) plt.tight_layout() plt.title(e) plt.ylabel("no. of reads") try: plt.plot(self.data[gene_name]['position'], self.data[gene_name][e]) if self.print_peaks == True: for i in self.list_of_peaks[gene_name][e]['peaks']: plt.axvline(i-self.five_prime_flank, color='blue') if self.print_valleys == True: for i in self.list_of_peaks[gene_name][e]['valleys']: plt.axvline(i-self.five_prime_flank, color='red') for i in self.genes[gene_name]['exons']: plt.axvspan(i[0], i[1], alpha=0.2, color='green') #marking all T nucleotides new_data = self.data[gene_name][self.data[gene_name].nucleotide == 'T'] for n in list(new_data["position"]): plt.axvline(n, color='grey') if anti_plot == True: new_data = self.data[gene_name][self.data[gene_name].nucleotide == ('G' or 'C')] for n in list(new_data["position"]): plt.axvline(n, color='red', alpha=0.7) # some trick figured out by Hywel to plot without problems y_array = np.array(self.data[gene_name][e][RT_begin:]) x_array = np.array(self.data[gene_name]['position'][RT_begin:]) y_array[0] = 0 y_array[len(y_array)-1] = 0 plt.fill(x_array, y_array) plt.xlabel('ID: '+i_gene_id+', Name: '+gene_name) # plt.text(210-self.five_prime_flank,max(self.data[gene_name][e])-150,'RT='+str(round(self.genes[gene_name]['RT'][e],3))) except KeyError: plt.xlabel("NO READS") if plot_no == 6: fig_no += 1 plt.savefig(self.prefix+e+'_l'+str(self.lookahead)+'_t'+str(self.hits_threshold)+'_fig_'+str(fig_no)+'.png') plt.clf() plot_no = 0 if plot_no > 0: plt.savefig(self.prefix+e+'_l'+str(self.lookahead)+'_t'+str(self.hits_threshold)+'_fig_'+str(fig_no+1)+'.png') plt.clf() return True # print plots, gene after gene, def fig_boxes(self,abox,bbox): print '# Reading A and A box files' abox_dict = dict() abox_len = 16 for line in abox: try: if line[0] == "#": continue line_elements = line.strip().split('\t') gene_name, start = line_elements[0],int(line_elements[1]) if gene_name not in abox_dict: abox_dict[gene_name] = start except IndexError: sys.stderr.write("\nIndexError at line:\n%s\n" % line) pass bbox_dict = dict() bbox_len = 9 for line in bbox: try: if line[0] == "#": continue line_elements = line.strip().split('\t') gene_name, start = line_elements[0],int(line_elements[1]) if gene_name not in bbox_dict: bbox_dict[gene_name] = start except IndexError: sys.stderr.write("\nIndexError at line:\n%s\n" % line) pass print '# Plotting gene after gene, marking boxes.' for e in self.experiments: fig = plt.figure(figsize=(12, 9), dpi=200, facecolor='w', edgecolor='k') fig_no = 0 plot_no = 0 for i_gene_id in self.genes_id_list: gene_name = self.id_to_names[i_gene_id] plot_no += 1 fig.add_subplot(3, 2, plot_no) plt.tight_layout() plt.title(e) plt.ylabel("no. of reads") try: plt.plot(self.data[gene_name][e]['position'], self.data[gene_name][e]['hits']) if self.print_peaks == True: plt.plot(self.data[gene_name][e]['position'], self.data[gene_name][e]['peaks_to_plot'], color='green') if self.print_valleys == True: plt.plot(self.data[gene_name][e]['position'], self.data[gene_name][e]['valleys_to_plot'], color='red') #plot exons background for i in self.genes[gene_name]['exons']: plt.axvspan(i[0], i[1], alpha=0.2, color='green') #plot A and B box try: plt.axvspan(abox_dict[gene_name], abox_dict[gene_name]+abox_len, alpha=0.6, color='red') except: pass try: plt.axvspan(bbox_dict[gene_name], bbox_dict[gene_name]+bbox_len, alpha=0.6, color='green') except: pass # some trick figured out by Hywel to plot without problems y_array = np.array(self.data[gene_name][e]['RT_to_plot']) x_array = np.array(self.data[gene_name][e]['position']) y_array[0] = 0 y_array[len(y_array)-1] = 0 plt.fill(x_array, y_array) plt.xlabel('ID: '+i_gene_id+', Name: '+gene_name) except KeyError: plt.xlabel("NO READS") if plot_no == 6: fig_no += 1 plt.savefig(self.prefix+e+'_l'+str(self.lookahead)+'_t'+str(self.hits_threshold)+'_fig_'+str(fig_no)+'.png') plt.clf() plot_no = 0 if plot_no > 0: plt.savefig(self.prefix+e+'_l'+str(self.lookahead)+'_t'+str(self.hits_threshold)+'_fig_'+str(fig_no+1)+'.png') plt.clf() return True # print histogram for 3` end including nucleotides def fig_3end_nucleotide_resolution(self): print '# Plotting 3` end at nucleotide resolution.' fig = plt.figure(figsize=(15, 10), dpi=80, facecolor='w', edgecolor='k') if len(self.experiments) > 1: exit('More than one experiment. Preprocess concat file to get only one experiment:' \ "cat your.concat | awk '$7 == \"experiment\" {print $0}' > experiment.concat") else: e = self.experiments[0] for tRNA_group in self.rt: fig_no = 0 plot_no = 0 rt_sorted = collections.OrderedDict(sorted(self.rt[tRNA_group].items(), reverse=True, key=lambda t: t[1])) for i_gene_id in rt_sorted: gene_name = self.id_to_names[i_gene_id] plot_no += 1 ax = fig.add_subplot(5, 1, plot_no) fig.tight_layout() plt.title(tRNA_group) try: self.data[gene_name] = self.data[gene_name][(-10-self.three_prime_flank):(120-self.three_prime_flank):] # plot from last 130 nt # print self.data[gene_name] bar = ax.bar(self.data[gene_name]['position'], self.data[gene_name][e], width=0.5) for i in range(0,10): bar[i].set_color('green') for i in range(10,len(bar)): bar[i].set_color('grey') plt.xticks(list(self.data[gene_name]['position']), list(self.data[gene_name]['nucleotide']), fontsize=8) # uno_to_plot = self.data[gene_name][(-10-self.three_prime_flank):(120-self.three_prime_flank):] # plot from last 130 nt # # print uno_to_plot # # exit() # ax.set_ylabel("no. of reads") # ax.set_xlabel('ID: '+i_gene_id+', Name: '+gene_name) # bar = ax.bar(uno_to_plot['position'], uno_to_plot[e], width=0.5) # axes = plt.gca() # axes.set_ylim([0,2000]) # for i in range(0,10): # bar[i].set_color('green') # for i in range(10,len(bar)): # bar[i].set_color('grey') # plt.xticks(list(uno_to_plot['position']), list(uno_to_plot['nucleotide']), fontsize=8) # # # plot_no += 1 # ax = fig.add_subplot(5, 1, plot_no) # ax.set_ylabel("no. of reads") # ax.set_xlabel('ID: '+i_gene_id+', Name: '+gene_name) # duo_to_plot = self.data[gene_name][(120-self.three_prime_flank)::] # plot from last 130 nt # bar = ax.bar(duo_to_plot['position'], duo_to_plot[e], width=0.5, color='grey') # axes = plt.gca() # axes.set_ylim([0,2000]) # # axes.set_ylim([0,max(self.data[gene_name][e]['hits'])]) # plt.xticks(list(duo_to_plot['position']), list(duo_to_plot['nucleotide']), fontsize=8) except KeyError: plt.text(0.5,0.5,"NO READS") if plot_no == 5: fig_no += 1 plt.savefig(self.prefix+'nuc3end'+'_l'+str(self.lookahead)+'_t'+str(self.hits_threshold)+'_'+tRNA_group+'_fig_'+str(fig_no)+'.png') plt.clf() plot_no = 0 if plot_no > 0: plt.savefig(self.prefix+'nuc3end'+'_l'+str(self.lookahead)+'_t'+str(self.hits_threshold)+'_'+tRNA_group+'_fig_'+str(fig_no+1)+'.png') plt.clf() return True # print histogram for 3` end including nucleotides def fig_5end_nucleotide_resolution(self): print "# Plotting 5' end at nucleotide resolution." fig = plt.figure(figsize=(15, 10), dpi=80, facecolor='w', edgecolor='k') if len(self.experiments) > 1: exit('More than one experiment. Preprocess concat file to get only one experiment:' \ "cat your.concat | awk '$7 == \"experiment\" {print $0}' > experiment.concat") else: e = self.experiments[0] for tRNA_group in self.rt: fig_no = 0 plot_no = 0 rt_sorted = collections.OrderedDict( sorted(self.rt[tRNA_group].items(), reverse=True, key=lambda t: t[1])) for i_gene_id in rt_sorted: gene_name = self.id_to_names[i_gene_id] plot_no += 1 ax = fig.add_subplot(5, 1, plot_no) fig.tight_layout() plt.title(tRNA_group) try: self.data[gene_name] = self.data[gene_name][self.five_prime_flank-20:self.five_prime_flank+10:] # plot first 20 nt # print self.data[gene_name] bar = ax.bar(self.data[gene_name]['position'], self.data[gene_name][e], width=0.5) for i in range(0, 20): bar[i].set_color('green') for i in range(20, len(bar)): bar[i].set_color('grey') plt.xticks(list(self.data[gene_name]['position']), list(self.data[gene_name]['nucleotide']),fontsize=8) except KeyError: plt.text(0.5, 0.5, "NO READS") if plot_no == 5: fig_no += 1 plt.savefig(self.prefix + 'nuc5end' + '_l' + str(self.lookahead) + '_t' + str( self.hits_threshold) + '_' + tRNA_group + '_fig_' + str(fig_no) + '.png') plt.clf() plot_no = 0 if plot_no > 0: plt.savefig(self.prefix + 'nuc5end' + '_l' + str(self.lookahead) + '_t' + str( self.hits_threshold) + '_' + tRNA_group + '_fig_' + str(fig_no + 1) + '.png') plt.clf() return True def fig_nucleotide_gene(self): print '# Plotting gene in nucleotide resolution.' fig = plt.figure(figsize=(15, 10), dpi=80, facecolor='w', edgecolor='k') if len(self.experiments) > 1: print 'More than one experiment. Preprocess concat file to get only one experiment:' \ "cat your.concat | awk '$7 == \"experiment\" {print $0}' > experiment.concat" exit() else: e = self.experiments[0] fig_no, plot_no = 0, 0 for i_gene_id in self.genes_id_list: gene_name = self.id_to_names[i_gene_id] plot_no += 1 ax = fig.add_subplot(5, 1, plot_no) fig.tight_layout() plt.title(e) ax.set_ylabel("no. of reads") ax.set_xlabel('ID: '+i_gene_id+', Name: '+gene_name) try: self.data[gene_name][e] = self.data[gene_name][e][self.three_prime_flank:-self.three_prime_flank:] # plot only gene bar = ax.bar(self.data[gene_name][e]['position'], self.data[gene_name][e]['hits'], width=0.5) for i in self.genes[gene_name]['exons']: plt.axvspan(i[0], i[1], alpha=0.2, color='green') plt.xticks(list(self.data[gene_name][e]['position']), list(self.data[gene_name][e]['nucleotides']), fontsize=8) except KeyError: plt.text(0.5,0.5,"NO READS") if plot_no == 5: fig_no += 1 plt.savefig(self.prefix+'nuc_gene'+'_l'+str(self.lookahead)+'_t'+str(self.hits_threshold)+'_'+'_fig_'+str(fig_no)+'.png') plt.clf() plot_no = 0 if plot_no > 0: plt.savefig(self.prefix+'nuc_gene'+'_l'+str(self.lookahead)+'_t'+str(self.hits_threshold)+'_'+'_fig_'+str(fig_no+1)+'.png') plt.clf() return True def fig_energy(self, step): print 'Plotting 3` end and calculating energy for plots...' fig = plt.figure(figsize=(15, 10), dpi=80, facecolor='w', edgecolor='k') if len(self.experiments) > 1: print 'More than one experiment. Preprocess concat file to get only one experiment:' \ "cat your.concat | awk '$7 == \"experiment\" {print $0}' > experiment.concat" exit() else: e = self.experiments[0] for tRNA_group in self.rt: fig_no = 0 plot_no = 0 rt_sorted = collections.OrderedDict(sorted(self.rt[tRNA_group].items(), reverse=True, key=lambda t: t[1])) for i_gene_id in rt_sorted: gene_name = self.id_to_names[i_gene_id] plot_no += 1 fig.add_subplot(5, 1, plot_no) fig.tight_layout() plt.title(tRNA_group) plt.ylabel("no. of reads") plt.xlabel('ID: '+i_gene_id+', Name: '+gene_name) plt.text(str(self.genes[gene_name]['RT'][e]), horizontalalignment='right', verticalalignment='top') try: self.data[gene_name][e] = self.data[gene_name][e][(-10-self.three_prime_flank):(140-self.three_prime_flank):] # plot from last 150 nt bar = plt.bar(self.data[gene_name][e]['position'], self.data[gene_name][e]['hits'], width=0.6) for i in range(0,10): bar[i].set_color('green') for i in range(10,len(bar)): bar[i].set_color('grey') plt.xticks(list(self.data[gene_name][e]['position']), list(self.data[gene_name][e]['nucleotides']), fontsize=8) ax2 = plt.twinx() ax2.set_ylabel("energy") ## plot energy every five nucleotides r_delta_H = 0 r_delta_S = 0 d_delta_H = 0 d_delta_S = 0 window = step pair = str() list_for_G = list() for i in range(min(self.data[gene_name][e].index),max(self.data[gene_name][e].index)+1): if len(pair) > 1: pair = pair[1] pair += self.data[gene_name][e]['nucleotides'][i] if len(pair) == 2: r_delta_H += self.rna_dna[pair][0] r_delta_S += self.rna_dna[pair][1] d_delta_H += self.dna_dna[pair][0] d_delta_S += self.dna_dna[pair][1] list_for_G.append(i) window -= 1 if window == 0: r_delta_G = r_delta_H * (1-(310/(r_delta_H/r_delta_S))) d_delta_G = d_delta_H * (1-(310/(d_delta_H/d_delta_S))) for a in list_for_G: self.data[gene_name][e].loc[a,'r_delta_G'] = r_delta_G self.data[gene_name][e].loc[a,'d_delta_G'] = d_delta_G list_for_G = [] r_delta_G = 0 d_delta_G = 0 r_delta_H = 0 r_delta_S = 0 d_delta_H = 0 d_delta_S = 0 window = step plt.plot(list(self.data[gene_name][e]['position']), list(self.data[gene_name][e]['r_delta_G'])) plt.plot(list(self.data[gene_name][e]['position']), list(self.data[gene_name][e]['d_delta_G'])) except KeyError: plt.text(10, 10, "NO READS") if plot_no == 5: fig_no += 1 plt.savefig(self.prefix+'nuc_energy'+'_w'+str(step)+'_'+tRNA_group+'_fig_'+str(fig_no)+'.png') plt.clf() plot_no = 0 if plot_no > 0: plt.savefig(self.prefix+'nuc_energy'+'_w'+str(step)+'_'+tRNA_group+'_fig_'+str(fig_no+1)+'.png') plt.clf() return True def test_print(self, what): pd.set_option('display.max_rows', 5000) print what pd.reset_option('display.max_rows') return True
apache-2.0
xodus7/tensorflow
tensorflow/examples/learn/text_classification_character_rnn.py
38
4036
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of recurrent neural networks over characters for DBpedia dataset. This model is similar to one described in this paper: "Character-level Convolutional Networks for Text Classification" http://arxiv.org/abs/1509.01626 and is somewhat alternative to the Lua code from here: https://github.com/zhangxiangxiao/Crepe """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import pandas import tensorflow as tf FLAGS = None MAX_DOCUMENT_LENGTH = 100 HIDDEN_SIZE = 20 MAX_LABEL = 15 CHARS_FEATURE = 'chars' # Name of the input character feature. def char_rnn_model(features, labels, mode): """Character level recurrent neural network model to predict classes.""" byte_vectors = tf.one_hot(features[CHARS_FEATURE], 256, 1., 0.) byte_list = tf.unstack(byte_vectors, axis=1) cell = tf.nn.rnn_cell.GRUCell(HIDDEN_SIZE) _, encoding = tf.nn.static_rnn(cell, byte_list, dtype=tf.float32) logits = tf.layers.dense(encoding, MAX_LABEL, activation=None) predicted_classes = tf.argmax(logits, 1) if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec( mode=mode, predictions={ 'class': predicted_classes, 'prob': tf.nn.softmax(logits) }) loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.AdamOptimizer(learning_rate=0.01) train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) eval_metric_ops = { 'accuracy': tf.metrics.accuracy( labels=labels, predictions=predicted_classes) } return tf.estimator.EstimatorSpec( mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) def main(unused_argv): # Prepare training and testing data dbpedia = tf.contrib.learn.datasets.load_dataset( 'dbpedia', test_with_fake_data=FLAGS.test_with_fake_data) x_train = pandas.DataFrame(dbpedia.train.data)[1] y_train = pandas.Series(dbpedia.train.target) x_test = pandas.DataFrame(dbpedia.test.data)[1] y_test = pandas.Series(dbpedia.test.target) # Process vocabulary char_processor = tf.contrib.learn.preprocessing.ByteProcessor( MAX_DOCUMENT_LENGTH) x_train = np.array(list(char_processor.fit_transform(x_train))) x_test = np.array(list(char_processor.transform(x_test))) # Build model classifier = tf.estimator.Estimator(model_fn=char_rnn_model) # Train. train_input_fn = tf.estimator.inputs.numpy_input_fn( x={CHARS_FEATURE: x_train}, y=y_train, batch_size=128, num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=100) # Eval. test_input_fn = tf.estimator.inputs.numpy_input_fn( x={CHARS_FEATURE: x_test}, y=y_test, num_epochs=1, shuffle=False) scores = classifier.evaluate(input_fn=test_input_fn) print('Accuracy: {0:f}'.format(scores['accuracy'])) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--test_with_fake_data', default=False, help='Test the example code with fake data.', action='store_true') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
elkingtonmcb/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/colors.py
69
31676
""" A module for converting numbers or color arguments to *RGB* or *RGBA* *RGB* and *RGBA* are sequences of, respectively, 3 or 4 floats in the range 0-1. This module includes functions and classes for color specification conversions, and for mapping numbers to colors in a 1-D array of colors called a colormap. Colormapping typically involves two steps: a data array is first mapped onto the range 0-1 using an instance of :class:`Normalize` or of a subclass; then this number in the 0-1 range is mapped to a color using an instance of a subclass of :class:`Colormap`. Two are provided here: :class:`LinearSegmentedColormap`, which is used to generate all the built-in colormap instances, but is also useful for making custom colormaps, and :class:`ListedColormap`, which is used for generating a custom colormap from a list of color specifications. The module also provides a single instance, *colorConverter*, of the :class:`ColorConverter` class providing methods for converting single color specifications or sequences of them to *RGB* or *RGBA*. Commands which take color arguments can use several formats to specify the colors. For the basic builtin colors, you can use a single letter - b : blue - g : green - r : red - c : cyan - m : magenta - y : yellow - k : black - w : white Gray shades can be given as a string encoding a float in the 0-1 range, e.g.:: color = '0.75' For a greater range of colors, you have two options. You can specify the color using an html hex string, as in:: color = '#eeefff' or you can pass an *R* , *G* , *B* tuple, where each of *R* , *G* , *B* are in the range [0,1]. Finally, legal html names for colors, like 'red', 'burlywood' and 'chartreuse' are supported. """ import re import numpy as np from numpy import ma import matplotlib.cbook as cbook parts = np.__version__.split('.') NP_MAJOR, NP_MINOR = map(int, parts[:2]) # true if clip supports the out kwarg NP_CLIP_OUT = NP_MAJOR>=1 and NP_MINOR>=2 cnames = { 'aliceblue' : '#F0F8FF', 'antiquewhite' : '#FAEBD7', 'aqua' : '#00FFFF', 'aquamarine' : '#7FFFD4', 'azure' : '#F0FFFF', 'beige' : '#F5F5DC', 'bisque' : '#FFE4C4', 'black' : '#000000', 'blanchedalmond' : '#FFEBCD', 'blue' : '#0000FF', 'blueviolet' : '#8A2BE2', 'brown' : '#A52A2A', 'burlywood' : '#DEB887', 'cadetblue' : '#5F9EA0', 'chartreuse' : '#7FFF00', 'chocolate' : '#D2691E', 'coral' : '#FF7F50', 'cornflowerblue' : '#6495ED', 'cornsilk' : '#FFF8DC', 'crimson' : '#DC143C', 'cyan' : '#00FFFF', 'darkblue' : '#00008B', 'darkcyan' : '#008B8B', 'darkgoldenrod' : '#B8860B', 'darkgray' : '#A9A9A9', 'darkgreen' : '#006400', 'darkkhaki' : '#BDB76B', 'darkmagenta' : '#8B008B', 'darkolivegreen' : '#556B2F', 'darkorange' : '#FF8C00', 'darkorchid' : '#9932CC', 'darkred' : '#8B0000', 'darksalmon' : '#E9967A', 'darkseagreen' : '#8FBC8F', 'darkslateblue' : '#483D8B', 'darkslategray' : '#2F4F4F', 'darkturquoise' : '#00CED1', 'darkviolet' : '#9400D3', 'deeppink' : '#FF1493', 'deepskyblue' : '#00BFFF', 'dimgray' : '#696969', 'dodgerblue' : '#1E90FF', 'firebrick' : '#B22222', 'floralwhite' : '#FFFAF0', 'forestgreen' : '#228B22', 'fuchsia' : '#FF00FF', 'gainsboro' : '#DCDCDC', 'ghostwhite' : '#F8F8FF', 'gold' : '#FFD700', 'goldenrod' : '#DAA520', 'gray' : '#808080', 'green' : '#008000', 'greenyellow' : '#ADFF2F', 'honeydew' : '#F0FFF0', 'hotpink' : '#FF69B4', 'indianred' : '#CD5C5C', 'indigo' : '#4B0082', 'ivory' : '#FFFFF0', 'khaki' : '#F0E68C', 'lavender' : '#E6E6FA', 'lavenderblush' : '#FFF0F5', 'lawngreen' : '#7CFC00', 'lemonchiffon' : '#FFFACD', 'lightblue' : '#ADD8E6', 'lightcoral' : '#F08080', 'lightcyan' : '#E0FFFF', 'lightgoldenrodyellow' : '#FAFAD2', 'lightgreen' : '#90EE90', 'lightgrey' : '#D3D3D3', 'lightpink' : '#FFB6C1', 'lightsalmon' : '#FFA07A', 'lightseagreen' : '#20B2AA', 'lightskyblue' : '#87CEFA', 'lightslategray' : '#778899', 'lightsteelblue' : '#B0C4DE', 'lightyellow' : '#FFFFE0', 'lime' : '#00FF00', 'limegreen' : '#32CD32', 'linen' : '#FAF0E6', 'magenta' : '#FF00FF', 'maroon' : '#800000', 'mediumaquamarine' : '#66CDAA', 'mediumblue' : '#0000CD', 'mediumorchid' : '#BA55D3', 'mediumpurple' : '#9370DB', 'mediumseagreen' : '#3CB371', 'mediumslateblue' : '#7B68EE', 'mediumspringgreen' : '#00FA9A', 'mediumturquoise' : '#48D1CC', 'mediumvioletred' : '#C71585', 'midnightblue' : '#191970', 'mintcream' : '#F5FFFA', 'mistyrose' : '#FFE4E1', 'moccasin' : '#FFE4B5', 'navajowhite' : '#FFDEAD', 'navy' : '#000080', 'oldlace' : '#FDF5E6', 'olive' : '#808000', 'olivedrab' : '#6B8E23', 'orange' : '#FFA500', 'orangered' : '#FF4500', 'orchid' : '#DA70D6', 'palegoldenrod' : '#EEE8AA', 'palegreen' : '#98FB98', 'palevioletred' : '#AFEEEE', 'papayawhip' : '#FFEFD5', 'peachpuff' : '#FFDAB9', 'peru' : '#CD853F', 'pink' : '#FFC0CB', 'plum' : '#DDA0DD', 'powderblue' : '#B0E0E6', 'purple' : '#800080', 'red' : '#FF0000', 'rosybrown' : '#BC8F8F', 'royalblue' : '#4169E1', 'saddlebrown' : '#8B4513', 'salmon' : '#FA8072', 'sandybrown' : '#FAA460', 'seagreen' : '#2E8B57', 'seashell' : '#FFF5EE', 'sienna' : '#A0522D', 'silver' : '#C0C0C0', 'skyblue' : '#87CEEB', 'slateblue' : '#6A5ACD', 'slategray' : '#708090', 'snow' : '#FFFAFA', 'springgreen' : '#00FF7F', 'steelblue' : '#4682B4', 'tan' : '#D2B48C', 'teal' : '#008080', 'thistle' : '#D8BFD8', 'tomato' : '#FF6347', 'turquoise' : '#40E0D0', 'violet' : '#EE82EE', 'wheat' : '#F5DEB3', 'white' : '#FFFFFF', 'whitesmoke' : '#F5F5F5', 'yellow' : '#FFFF00', 'yellowgreen' : '#9ACD32', } # add british equivs for k, v in cnames.items(): if k.find('gray')>=0: k = k.replace('gray', 'grey') cnames[k] = v def is_color_like(c): 'Return *True* if *c* can be converted to *RGB*' try: colorConverter.to_rgb(c) return True except ValueError: return False def rgb2hex(rgb): 'Given a len 3 rgb tuple of 0-1 floats, return the hex string' return '#%02x%02x%02x' % tuple([round(val*255) for val in rgb]) hexColorPattern = re.compile("\A#[a-fA-F0-9]{6}\Z") def hex2color(s): """ Take a hex string *s* and return the corresponding rgb 3-tuple Example: #efefef -> (0.93725, 0.93725, 0.93725) """ if not isinstance(s, basestring): raise TypeError('hex2color requires a string argument') if hexColorPattern.match(s) is None: raise ValueError('invalid hex color string "%s"' % s) return tuple([int(n, 16)/255.0 for n in (s[1:3], s[3:5], s[5:7])]) class ColorConverter: """ Provides methods for converting color specifications to *RGB* or *RGBA* Caching is used for more efficient conversion upon repeated calls with the same argument. Ordinarily only the single instance instantiated in this module, *colorConverter*, is needed. """ colors = { 'b' : (0.0, 0.0, 1.0), 'g' : (0.0, 0.5, 0.0), 'r' : (1.0, 0.0, 0.0), 'c' : (0.0, 0.75, 0.75), 'm' : (0.75, 0, 0.75), 'y' : (0.75, 0.75, 0), 'k' : (0.0, 0.0, 0.0), 'w' : (1.0, 1.0, 1.0), } cache = {} def to_rgb(self, arg): """ Returns an *RGB* tuple of three floats from 0-1. *arg* can be an *RGB* or *RGBA* sequence or a string in any of several forms: 1) a letter from the set 'rgbcmykw' 2) a hex color string, like '#00FFFF' 3) a standard name, like 'aqua' 4) a float, like '0.4', indicating gray on a 0-1 scale if *arg* is *RGBA*, the *A* will simply be discarded. """ try: return self.cache[arg] except KeyError: pass except TypeError: # could be unhashable rgb seq arg = tuple(arg) try: return self.cache[arg] except KeyError: pass except TypeError: raise ValueError( 'to_rgb: arg "%s" is unhashable even inside a tuple' % (str(arg),)) try: if cbook.is_string_like(arg): color = self.colors.get(arg, None) if color is None: str1 = cnames.get(arg, arg) if str1.startswith('#'): color = hex2color(str1) else: fl = float(arg) if fl < 0 or fl > 1: raise ValueError( 'gray (string) must be in range 0-1') color = tuple([fl]*3) elif cbook.iterable(arg): if len(arg) > 4 or len(arg) < 3: raise ValueError( 'sequence length is %d; must be 3 or 4'%len(arg)) color = tuple(arg[:3]) if [x for x in color if (float(x) < 0) or (x > 1)]: # This will raise TypeError if x is not a number. raise ValueError('number in rbg sequence outside 0-1 range') else: raise ValueError('cannot convert argument to rgb sequence') self.cache[arg] = color except (KeyError, ValueError, TypeError), exc: raise ValueError('to_rgb: Invalid rgb arg "%s"\n%s' % (str(arg), exc)) # Error messages could be improved by handling TypeError # separately; but this should be rare and not too hard # for the user to figure out as-is. return color def to_rgba(self, arg, alpha=None): """ Returns an *RGBA* tuple of four floats from 0-1. For acceptable values of *arg*, see :meth:`to_rgb`. If *arg* is an *RGBA* sequence and *alpha* is not *None*, *alpha* will replace the original *A*. """ try: if not cbook.is_string_like(arg) and cbook.iterable(arg): if len(arg) == 4: if [x for x in arg if (float(x) < 0) or (x > 1)]: # This will raise TypeError if x is not a number. raise ValueError('number in rbga sequence outside 0-1 range') if alpha is None: return tuple(arg) if alpha < 0.0 or alpha > 1.0: raise ValueError("alpha must be in range 0-1") return arg[0], arg[1], arg[2], arg[3] * alpha r,g,b = arg[:3] if [x for x in (r,g,b) if (float(x) < 0) or (x > 1)]: raise ValueError('number in rbg sequence outside 0-1 range') else: r,g,b = self.to_rgb(arg) if alpha is None: alpha = 1.0 return r,g,b,alpha except (TypeError, ValueError), exc: raise ValueError('to_rgba: Invalid rgba arg "%s"\n%s' % (str(arg), exc)) def to_rgba_array(self, c, alpha=None): """ Returns a numpy array of *RGBA* tuples. Accepts a single mpl color spec or a sequence of specs. Special case to handle "no color": if *c* is "none" (case-insensitive), then an empty array will be returned. Same for an empty list. """ try: if c.lower() == 'none': return np.zeros((0,4), dtype=np.float_) except AttributeError: pass if len(c) == 0: return np.zeros((0,4), dtype=np.float_) try: result = np.array([self.to_rgba(c, alpha)], dtype=np.float_) except ValueError: if isinstance(c, np.ndarray): if c.ndim != 2 and c.dtype.kind not in 'SU': raise ValueError("Color array must be two-dimensional") result = np.zeros((len(c), 4)) for i, cc in enumerate(c): result[i] = self.to_rgba(cc, alpha) # change in place return np.asarray(result, np.float_) colorConverter = ColorConverter() def makeMappingArray(N, data): """Create an *N* -element 1-d lookup table *data* represented by a list of x,y0,y1 mapping correspondences. Each element in this list represents how a value between 0 and 1 (inclusive) represented by x is mapped to a corresponding value between 0 and 1 (inclusive). The two values of y are to allow for discontinuous mapping functions (say as might be found in a sawtooth) where y0 represents the value of y for values of x <= to that given, and y1 is the value to be used for x > than that given). The list must start with x=0, end with x=1, and all values of x must be in increasing order. Values between the given mapping points are determined by simple linear interpolation. The function returns an array "result" where ``result[x*(N-1)]`` gives the closest value for values of x between 0 and 1. """ try: adata = np.array(data) except: raise TypeError("data must be convertable to an array") shape = adata.shape if len(shape) != 2 and shape[1] != 3: raise ValueError("data must be nx3 format") x = adata[:,0] y0 = adata[:,1] y1 = adata[:,2] if x[0] != 0. or x[-1] != 1.0: raise ValueError( "data mapping points must start with x=0. and end with x=1") if np.sometrue(np.sort(x)-x): raise ValueError( "data mapping points must have x in increasing order") # begin generation of lookup table x = x * (N-1) lut = np.zeros((N,), np.float) xind = np.arange(float(N)) ind = np.searchsorted(x, xind)[1:-1] lut[1:-1] = ( ((xind[1:-1] - x[ind-1]) / (x[ind] - x[ind-1])) * (y0[ind] - y1[ind-1]) + y1[ind-1]) lut[0] = y1[0] lut[-1] = y0[-1] # ensure that the lut is confined to values between 0 and 1 by clipping it np.clip(lut, 0.0, 1.0) #lut = where(lut > 1., 1., lut) #lut = where(lut < 0., 0., lut) return lut class Colormap: """Base class for all scalar to rgb mappings Important methods: * :meth:`set_bad` * :meth:`set_under` * :meth:`set_over` """ def __init__(self, name, N=256): """ Public class attributes: :attr:`N` : number of rgb quantization levels :attr:`name` : name of colormap """ self.name = name self.N = N self._rgba_bad = (0.0, 0.0, 0.0, 0.0) # If bad, don't paint anything. self._rgba_under = None self._rgba_over = None self._i_under = N self._i_over = N+1 self._i_bad = N+2 self._isinit = False def __call__(self, X, alpha=1.0, bytes=False): """ *X* is either a scalar or an array (of any dimension). If scalar, a tuple of rgba values is returned, otherwise an array with the new shape = oldshape+(4,). If the X-values are integers, then they are used as indices into the array. If they are floating point, then they must be in the interval (0.0, 1.0). Alpha must be a scalar. If bytes is False, the rgba values will be floats on a 0-1 scale; if True, they will be uint8, 0-255. """ if not self._isinit: self._init() alpha = min(alpha, 1.0) # alpha must be between 0 and 1 alpha = max(alpha, 0.0) self._lut[:-3, -1] = alpha mask_bad = None if not cbook.iterable(X): vtype = 'scalar' xa = np.array([X]) else: vtype = 'array' xma = ma.asarray(X) xa = xma.filled(0) mask_bad = ma.getmask(xma) if xa.dtype.char in np.typecodes['Float']: np.putmask(xa, xa==1.0, 0.9999999) #Treat 1.0 as slightly less than 1. # The following clip is fast, and prevents possible # conversion of large positive values to negative integers. if NP_CLIP_OUT: np.clip(xa * self.N, -1, self.N, out=xa) else: xa = np.clip(xa * self.N, -1, self.N) xa = xa.astype(int) # Set the over-range indices before the under-range; # otherwise the under-range values get converted to over-range. np.putmask(xa, xa>self.N-1, self._i_over) np.putmask(xa, xa<0, self._i_under) if mask_bad is not None and mask_bad.shape == xa.shape: np.putmask(xa, mask_bad, self._i_bad) if bytes: lut = (self._lut * 255).astype(np.uint8) else: lut = self._lut rgba = np.empty(shape=xa.shape+(4,), dtype=lut.dtype) lut.take(xa, axis=0, mode='clip', out=rgba) # twice as fast as lut[xa]; # using the clip or wrap mode and providing an # output array speeds it up a little more. if vtype == 'scalar': rgba = tuple(rgba[0,:]) return rgba def set_bad(self, color = 'k', alpha = 1.0): '''Set color to be used for masked values. ''' self._rgba_bad = colorConverter.to_rgba(color, alpha) if self._isinit: self._set_extremes() def set_under(self, color = 'k', alpha = 1.0): '''Set color to be used for low out-of-range values. Requires norm.clip = False ''' self._rgba_under = colorConverter.to_rgba(color, alpha) if self._isinit: self._set_extremes() def set_over(self, color = 'k', alpha = 1.0): '''Set color to be used for high out-of-range values. Requires norm.clip = False ''' self._rgba_over = colorConverter.to_rgba(color, alpha) if self._isinit: self._set_extremes() def _set_extremes(self): if self._rgba_under: self._lut[self._i_under] = self._rgba_under else: self._lut[self._i_under] = self._lut[0] if self._rgba_over: self._lut[self._i_over] = self._rgba_over else: self._lut[self._i_over] = self._lut[self.N-1] self._lut[self._i_bad] = self._rgba_bad def _init(): '''Generate the lookup table, self._lut''' raise NotImplementedError("Abstract class only") def is_gray(self): if not self._isinit: self._init() return (np.alltrue(self._lut[:,0] == self._lut[:,1]) and np.alltrue(self._lut[:,0] == self._lut[:,2])) class LinearSegmentedColormap(Colormap): """Colormap objects based on lookup tables using linear segments. The lookup table is generated using linear interpolation for each primary color, with the 0-1 domain divided into any number of segments. """ def __init__(self, name, segmentdata, N=256): """Create color map from linear mapping segments segmentdata argument is a dictionary with a red, green and blue entries. Each entry should be a list of *x*, *y0*, *y1* tuples, forming rows in a table. Example: suppose you want red to increase from 0 to 1 over the bottom half, green to do the same over the middle half, and blue over the top half. Then you would use:: cdict = {'red': [(0.0, 0.0, 0.0), (0.5, 1.0, 1.0), (1.0, 1.0, 1.0)], 'green': [(0.0, 0.0, 0.0), (0.25, 0.0, 0.0), (0.75, 1.0, 1.0), (1.0, 1.0, 1.0)], 'blue': [(0.0, 0.0, 0.0), (0.5, 0.0, 0.0), (1.0, 1.0, 1.0)]} Each row in the table for a given color is a sequence of *x*, *y0*, *y1* tuples. In each sequence, *x* must increase monotonically from 0 to 1. For any input value *z* falling between *x[i]* and *x[i+1]*, the output value of a given color will be linearly interpolated between *y1[i]* and *y0[i+1]*:: row i: x y0 y1 / / row i+1: x y0 y1 Hence y0 in the first row and y1 in the last row are never used. .. seealso:: :func:`makeMappingArray` """ self.monochrome = False # True only if all colors in map are identical; # needed for contouring. Colormap.__init__(self, name, N) self._segmentdata = segmentdata def _init(self): self._lut = np.ones((self.N + 3, 4), np.float) self._lut[:-3, 0] = makeMappingArray(self.N, self._segmentdata['red']) self._lut[:-3, 1] = makeMappingArray(self.N, self._segmentdata['green']) self._lut[:-3, 2] = makeMappingArray(self.N, self._segmentdata['blue']) self._isinit = True self._set_extremes() class ListedColormap(Colormap): """Colormap object generated from a list of colors. This may be most useful when indexing directly into a colormap, but it can also be used to generate special colormaps for ordinary mapping. """ def __init__(self, colors, name = 'from_list', N = None): """ Make a colormap from a list of colors. *colors* a list of matplotlib color specifications, or an equivalent Nx3 floating point array (*N* rgb values) *name* a string to identify the colormap *N* the number of entries in the map. The default is *None*, in which case there is one colormap entry for each element in the list of colors. If:: N < len(colors) the list will be truncated at *N*. If:: N > len(colors) the list will be extended by repetition. """ self.colors = colors self.monochrome = False # True only if all colors in map are identical; # needed for contouring. if N is None: N = len(self.colors) else: if cbook.is_string_like(self.colors): self.colors = [self.colors] * N self.monochrome = True elif cbook.iterable(self.colors): self.colors = list(self.colors) # in case it was a tuple if len(self.colors) == 1: self.monochrome = True if len(self.colors) < N: self.colors = list(self.colors) * N del(self.colors[N:]) else: try: gray = float(self.colors) except TypeError: pass else: self.colors = [gray] * N self.monochrome = True Colormap.__init__(self, name, N) def _init(self): rgb = np.array([colorConverter.to_rgb(c) for c in self.colors], np.float) self._lut = np.zeros((self.N + 3, 4), np.float) self._lut[:-3, :-1] = rgb self._lut[:-3, -1] = 1 self._isinit = True self._set_extremes() class Normalize: """ Normalize a given value to the 0-1 range """ def __init__(self, vmin=None, vmax=None, clip=False): """ If *vmin* or *vmax* is not given, they are taken from the input's minimum and maximum value respectively. If *clip* is *True* and the given value falls outside the range, the returned value will be 0 or 1, whichever is closer. Returns 0 if:: vmin==vmax Works with scalars or arrays, including masked arrays. If *clip* is *True*, masked values are set to 1; otherwise they remain masked. Clipping silently defeats the purpose of setting the over, under, and masked colors in the colormap, so it is likely to lead to surprises; therefore the default is *clip* = *False*. """ self.vmin = vmin self.vmax = vmax self.clip = clip def __call__(self, value, clip=None): if clip is None: clip = self.clip if cbook.iterable(value): vtype = 'array' val = ma.asarray(value).astype(np.float) else: vtype = 'scalar' val = ma.array([value]).astype(np.float) self.autoscale_None(val) vmin, vmax = self.vmin, self.vmax if vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif vmin==vmax: return 0.0 * val else: if clip: mask = ma.getmask(val) val = ma.array(np.clip(val.filled(vmax), vmin, vmax), mask=mask) result = (val-vmin) * (1.0/(vmax-vmin)) if vtype == 'scalar': result = result[0] return result def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") vmin, vmax = self.vmin, self.vmax if cbook.iterable(value): val = ma.asarray(value) return vmin + val * (vmax - vmin) else: return vmin + value * (vmax - vmin) def autoscale(self, A): ''' Set *vmin*, *vmax* to min, max of *A*. ''' self.vmin = ma.minimum(A) self.vmax = ma.maximum(A) def autoscale_None(self, A): ' autoscale only None-valued vmin or vmax' if self.vmin is None: self.vmin = ma.minimum(A) if self.vmax is None: self.vmax = ma.maximum(A) def scaled(self): 'return true if vmin and vmax set' return (self.vmin is not None and self.vmax is not None) class LogNorm(Normalize): """ Normalize a given value to the 0-1 range on a log scale """ def __call__(self, value, clip=None): if clip is None: clip = self.clip if cbook.iterable(value): vtype = 'array' val = ma.asarray(value).astype(np.float) else: vtype = 'scalar' val = ma.array([value]).astype(np.float) self.autoscale_None(val) vmin, vmax = self.vmin, self.vmax if vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif vmin<=0: raise ValueError("values must all be positive") elif vmin==vmax: return 0.0 * val else: if clip: mask = ma.getmask(val) val = ma.array(np.clip(val.filled(vmax), vmin, vmax), mask=mask) result = (ma.log(val)-np.log(vmin))/(np.log(vmax)-np.log(vmin)) if vtype == 'scalar': result = result[0] return result def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") vmin, vmax = self.vmin, self.vmax if cbook.iterable(value): val = ma.asarray(value) return vmin * ma.power((vmax/vmin), val) else: return vmin * pow((vmax/vmin), value) class BoundaryNorm(Normalize): ''' Generate a colormap index based on discrete intervals. Unlike :class:`Normalize` or :class:`LogNorm`, :class:`BoundaryNorm` maps values to integers instead of to the interval 0-1. Mapping to the 0-1 interval could have been done via piece-wise linear interpolation, but using integers seems simpler, and reduces the number of conversions back and forth between integer and floating point. ''' def __init__(self, boundaries, ncolors, clip=False): ''' *boundaries* a monotonically increasing sequence *ncolors* number of colors in the colormap to be used If:: b[i] <= v < b[i+1] then v is mapped to color j; as i varies from 0 to len(boundaries)-2, j goes from 0 to ncolors-1. Out-of-range values are mapped to -1 if low and ncolors if high; these are converted to valid indices by :meth:`Colormap.__call__` . ''' self.clip = clip self.vmin = boundaries[0] self.vmax = boundaries[-1] self.boundaries = np.asarray(boundaries) self.N = len(self.boundaries) self.Ncmap = ncolors if self.N-1 == self.Ncmap: self._interp = False else: self._interp = True def __call__(self, x, clip=None): if clip is None: clip = self.clip x = ma.asarray(x) mask = ma.getmaskarray(x) xx = x.filled(self.vmax+1) if clip: np.clip(xx, self.vmin, self.vmax) iret = np.zeros(x.shape, dtype=np.int16) for i, b in enumerate(self.boundaries): iret[xx>=b] = i if self._interp: iret = (iret * (float(self.Ncmap-1)/(self.N-2))).astype(np.int16) iret[xx<self.vmin] = -1 iret[xx>=self.vmax] = self.Ncmap ret = ma.array(iret, mask=mask) if ret.shape == () and not mask: ret = int(ret) # assume python scalar return ret def inverse(self, value): return ValueError("BoundaryNorm is not invertible") class NoNorm(Normalize): ''' Dummy replacement for Normalize, for the case where we want to use indices directly in a :class:`~matplotlib.cm.ScalarMappable` . ''' def __call__(self, value, clip=None): return value def inverse(self, value): return value # compatibility with earlier class names that violated convention: normalize = Normalize no_norm = NoNorm
agpl-3.0
iwegner/MITK
Modules/Biophotonics/python/iMC/scripts/ipcai_to_caffe/script_create_hdf5_database.py
6
1025
import h5py, os import pandas as pd from regression.preprocessing import preprocess def create_hdf5(path_to_simulation_results, hdf5_name): df = pd.read_csv(path_to_simulation_results, header=[0, 1]) X, y = preprocess(df, snr=10.) y = y.values with h5py.File(hdf5_name,'w') as H: H.create_dataset('data', data=X ) # note the name X given to the dataset! H.create_dataset('label', data=y ) # note the name y given to the dataset! with open(hdf5_name + '_list.txt','w') as L: L.write(hdf5_name) # list all h5 files you are going to use data_root = "/media/wirkert/data/Data/2016_02_02_IPCAI/results/intermediate" TRAIN_IMAGES = os.path.join(data_root, "ipcai_revision_colon_mean_scattering_train_all_spectrocam.txt") TEST_IMAGES = os.path.join(data_root, "ipcai_revision_colon_mean_scattering_test_all_spectrocam.txt") create_hdf5(TRAIN_IMAGES, "ipcai_train_hdf5.h5") create_hdf5(TEST_IMAGES, "ipcai_test_hdf5.h5")
bsd-3-clause
henrynj/PMLMC
plot/plot_sample_numbers.py
1
4135
#!/usr/bin/env python import sys import numpy as np import matplotlib.pyplot as plt MESHSIZES = np.array( [2862, 5982, 8968, 13584, 20822, 32283] ) L = 5 cost = np.array( [195.8, 467.0, 876.9, 1379.7, 2418.4, 4285.1] ) cost_eq = np.array( [cost[i]+cost[i-1] if i!=0 else cost[i] for i in range(L+1) ] ) epss = [5.e-4, 4.e-4, 3.e-4, 2.e-4, 1.e-4, 1.15e-4] ### MC NM_MC = np.array( [ 2411, 3767, 6697, 15068, 60270, 45573] ) COST_MC = np.array( [ 1.03313761e+07, 1.61419717e+07, 2.86973147e+07, 6.45678868e+07, 2.58262977e+08, 1.95284862e+08] ) ### MLMC NM_MLMC = np.array( [[ 7086, 1190, 236, 107, 39, 16], [ 11071, 1858, 369, 167, 60, 25], [ 19682, 3304, 656, 296, 106, 44], [ 44283, 7432, 1475, 665, 238, 97], [177132, 29728, 5897, 2659, 951, 388], [133937, 22479, 4459, 2010, 719, 293]]) COST_MLMC = np.array( [ 2990169.3, 4667409., 8290731.4, 18633619.8, 74524392.8, 56347121.3] ) lf_ress = [-4.0, -4.5, -5.0, -5.5, -6.0, -8.0] COST_MLMF = np.load('cost_total.npy') print COST_MLMF def plot_nm_all(eps, lf_res): """ """ eps_idx = epss.index(eps) lf_idx = lf_ress.index(lf_res) levels = np.arange(L+1) nm_mc = NM_MC[eps_idx] nm_mlmc = NM_MLMC[eps_idx] nm_mlmf = np.load('res_%d.npy' %lf_idx) nm_hf = nm_mlmf[-2, eps_idx] nm_lf = nm_mlmf[-1, eps_idx] plt.figure(figsize=(10, 8)) plt.subplot(1, 1, 1) plt.plot(L, nm_mc, 'ko', label='MC') plt.semilogy(levels, nm_mlmc, 'rx--', label=r'MLMC') plt.semilogy(levels, nm_hf, 'bo--', label=r'$MLMF\_HF$') plt.semilogy(levels, nm_lf, 'b*-', label=r'$MLMF\_LF$') # plt.xlim(-1, L+1) # plt.ylim(1, 1e5) plt.grid(True, which='both', linestyle='--') plt.xlabel('level $l$') plt.ylabel('$N_l$') plt.legend(loc='upper right', frameon=True)#, fontsize='x-small') # plt.title('$eps=%.2e$' %eps) plt.savefig('RANS_nm_all.eps') # plt.close() def plot_nm_mf(eps, lf_res): """ plot ns of HF & LF for MLMFMC and MLMFMC_new""" eps_idx = epss.index(eps) lf_idx = lf_ress.index(lf_res) levels = np.arange(L+1) nm_mlmf = np.load('res_%d.npy' %lf_idx) nm_hf_0 = nm_mlmf[0, eps_idx] nm_lf_0 = nm_mlmf[1, eps_idx] nm_hf_n = nm_mlmf[-2, eps_idx] nm_lf_n = nm_mlmf[-1, eps_idx] plt.figure(figsize=(10, 8)) plt.subplot(1, 1, 1) plt.semilogy(levels, nm_hf_0, 'rx--', label=r'$MLMF\_HF$') plt.semilogy(levels, nm_lf_0, 'ro-', label=r'$MLMF\_HF$') plt.semilogy(levels, nm_hf_n, 'bx--', label=r'$MLMF\_HF\_new$') plt.semilogy(levels, nm_lf_n, 'bo-', label=r'$MLMF\_LF\_new$') # plt.xlim(-1, L+1) # plt.ylim(1, 1e5) plt.grid(True, which='both', linestyle='--') plt.xlabel('level $l$') plt.ylabel('$N_l$') plt.legend(loc='upper right', frameon=True)#, fontsize='x-small') # plt.title('$eps=%.2e$' %eps) plt.savefig('RANS_nm_impv.eps') # plt.close() def plot_nm_res(eps): """ plot ns of HF & LF using MLMFMC_new for different LF_res""" eps_idx = epss.index(eps) levels = np.arange(L+1) plt.figure(figsize=(10, 8)) plt.subplot(1, 1, 1) styles = ['ko', 'bx', 'rd', 'c*', 'ms', 'g^', '>'] for i,lf_res in enumerate(lf_ress[:-1]): # if i ==0: # continue lf_idx = lf_ress.index(lf_res) nm_mlmf = np.load('res_%d.npy' %lf_idx) nm_hf_n = nm_mlmf[-2, eps_idx] nm_lf_n = nm_mlmf[-1, eps_idx] plt.semilogy(levels, nm_hf_n, styles[i]+'--', label=r'$HF\_res=%.1f$'%lf_res) plt.semilogy(levels, nm_lf_n, styles[i]+'-', label=r'$LF\_res=%.1f$'%lf_res) # # plt.xlim(-1, L+1) # plt.ylim(1, 1e5) plt.grid(True, which='both', linestyle='--') plt.xlabel('level $l$') plt.ylabel('$N_l$') plt.legend(loc='upper right', frameon=True)#, fontsize='x-small') # plt.title('$eps=%.2e$' %eps) plt.savefig('RANS_nm_lfs.eps') if __name__ == '__main__': eps = 2.e-4; lf_res = -5.0 # plot_nm_all(eps, lf_res) # plot_nm_mf(eps, lf_res) plot_nm_res(eps)
gpl-3.0
boada/desCluster
analysis/plot_mkProb.py
2
2944
import pylab as pyl from matplotlib.patches import Rectangle import h5py as hdf ### Targeted ### ################ with hdf.File('./result_targetedPerfect.hdf5', 'r') as f: dset = f[list(f.keys())[0]] #data = dset['IDX', 'HALOID', 'ZSPEC', 'M200c', 'NGAL', 'LOSVD', # 'LOSVD_err', 'MASS', 'LOSVD_dist'] data = dset['ZSPEC', 'M200c', 'LOSVD'] mask = ((pyl.log10(data['LOSVD']) > 3.12) & (data['M200c'] < 10**14.5) | (data['LOSVD'] < 50)) data = data[~mask] badData = data[mask] bins = [25, 25] extent = [[0.0, 0.5], [pyl.log10(50), 3.12]] thresh = 3 xdat = data['ZSPEC'] ydat = pyl.log10(data['LOSVD']) f, ax = pyl.subplots(1, 2, figsize=(7, 7 * (pyl.sqrt(5.) - 1.0) / 2.0), squeeze=True) ax = ax.ravel() hh, locx, locy = pyl.histogram2d(xdat, ydat, range=extent, bins=bins) posx = pyl.digitize(xdat, locx) posy = pyl.digitize(ydat, locy) # finds the bins which contain points. posx = 0 for points outside "range" ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1]) # values of histogram with points in the bins. hhsub = hh[posx[ind] - 1, posy[ind] - 1] xdat1 = xdat[ind][hhsub < thresh] # low density points ydat1 = ydat[ind][hhsub < thresh] hh[hh < thresh] = 0 # fill the areas with low density by NaNs # the CMD on the left ax[0].scatter(xdat1, ydat1, s=10, c='0.8', edgecolor='0.8') ax[0].imshow( pyl.log10(hh.T), cmap='gray_r', extent=pyl.array(extent).flatten(), interpolation='nearest') ax[0].set_xlabel('Redshift') ax[0].set_ylabel('Log $\sigma$ (km $s^{-1}$)') #ax[0].set_xticks([-24, -20, -16, -12]) # add some text lables ax[0].text(0.16, 2.4, '1', color='#467821', fontsize=20) ax[0].text(0.36, 2.7, '2', color='#cf4457', fontsize=20) ### add the histograms and little boxes # the two boxes xcoord = [0.15, 0.35] ycoord = [2.3, 2.6] colors = ['#467821', '#cf4457'] for x, y, c in zip(xcoord, ycoord, colors): # find the bins of the color/mag point of interest xbin = pyl.digitize([x], locx) ybin = pyl.digitize([y], locy) # find all of the points inside the bin we are interested ind i = (locx[xbin - 1] < xdat) & (xdat < locx[xbin]) & \ (locy[ybin - 1] < ydat) & (ydat < locy[ybin]) ax[1].hist( pyl.log10(data['M200c'][i]), bins=10, normed=True, histtype='step', lw=2, edgecolor=c) # little boxes rec = Rectangle((locx[xbin], locy[ybin]), locx[xbin + 1] - locx[xbin], locy[ybin + 1] - locy[ybin], lw=2, zorder=10, fc='none', ec=c) ax[0].add_patch(rec) ax[1].set_xlabel('Log $M_{200c}$ ($M_{\odot}$)') ax[1].set_ylabel('P(Log $M_{200c}| z, Log\, \sigma)$') ax[1].text(12.25, 1, '1', color='#467821', fontsize=20) ax[1].text(13.75, 1, '2', color='#cf4457', fontsize=20) pyl.show()
mit
okuta/chainer
chainer/training/extensions/plot_report.py
3
7084
import json from os import path import warnings import numpy import six from chainer import reporter from chainer import serializer as serializer_module from chainer.training import extension from chainer.training import trigger as trigger_module from chainer.utils import argument _available = None def _try_import_matplotlib(): global matplotlib, _available try: import matplotlib # NOQA _available = True except (ImportError, TypeError): _available = False def _check_available(): if _available is None: _try_import_matplotlib() if not _available: warnings.warn('matplotlib is not installed on your environment, ' 'so nothing will be plotted at this time. ' 'Please install matplotlib to plot figures.\n\n' ' $ pip install matplotlib\n') class PlotReport(extension.Extension): """__init__(\ y_keys, x_key='iteration', trigger=(1, 'epoch'), postprocess=None, \ filename='plot.png', marker='x', grid=True) Trainer extension to output plots. This extension accumulates the observations of the trainer to :class:`~chainer.DictSummary` at a regular interval specified by a supplied trigger, and plot a graph with using them. There are two triggers to handle this extension. One is the trigger to invoke this extension, which is used to handle the timing of accumulating the results. It is set to ``1, 'iteration'`` by default. The other is the trigger to determine when to emit the result. When this trigger returns True, this extension appends the summary of accumulated values to the list of past summaries, and writes the list to the log file. Then, this extension makes a new fresh summary object which is used until the next time that the trigger fires. It also adds ``'epoch'`` and ``'iteration'`` entries to each result dictionary, which are the epoch and iteration counts at the output. .. warning:: If your environment needs to specify a backend of matplotlib explicitly, please call ``matplotlib.use`` before calling ``trainer.run``. For example: .. code-block:: python import matplotlib matplotlib.use('Agg') trainer.extend( extensions.PlotReport(['main/loss', 'validation/main/loss'], 'epoch', filename='loss.png')) trainer.run() Then, once one of instances of this extension is called, ``matplotlib.use`` will have no effect. For the details, please see here: https://matplotlib.org/faq/usage_faq.html#what-is-a-backend Args: y_keys (iterable of strs): Keys of values regarded as y. If this is ``None``, nothing is output to the graph. x_key (str): Keys of values regarded as x. The default value is 'iteration'. trigger: Trigger that decides when to aggregate the result and output the values. This is distinct from the trigger of this extension itself. If it is a tuple in the form ``<int>, 'epoch'`` or ``<int>, 'iteration'``, it is passed to :class:`IntervalTrigger`. postprocess: Callback to postprocess the result dictionaries. Figure object, Axes object, and all plot data are passed to this callback in this order. This callback can modify the figure. filename (str): Name of the figure file under the output directory. It can be a format string. For historical reasons ``file_name`` is also accepted as an alias of this argument. marker (str): The marker used to plot the graph. Default is ``'x'``. If ``None`` is given, it draws with no markers. grid (bool): If ``True``, set the axis grid on. The default value is ``True``. """ def __init__(self, y_keys, x_key='iteration', trigger=(1, 'epoch'), postprocess=None, filename=None, marker='x', grid=True, **kwargs): file_name, = argument.parse_kwargs(kwargs, ('file_name', 'plot.png')) if filename is None: filename = file_name del file_name # avoid accidental use _check_available() self._x_key = x_key if isinstance(y_keys, str): y_keys = (y_keys,) self._y_keys = y_keys self._trigger = trigger_module.get_trigger(trigger) self._file_name = filename self._marker = marker self._grid = grid self._postprocess = postprocess self._init_summary() self._data = {k: [] for k in y_keys} @staticmethod def available(): _check_available() return _available def __call__(self, trainer): if self.available(): # Dynamically import pyplot to call matplotlib.use() # after importing chainer.training.extensions import matplotlib.pyplot as plt else: return keys = self._y_keys observation = trainer.observation summary = self._summary if keys is None: summary.add(observation) else: summary.add({k: observation[k] for k in keys if k in observation}) if self._trigger(trainer): stats = self._summary.compute_mean() stats_cpu = {} for name, value in six.iteritems(stats): stats_cpu[name] = float(value) # copy to CPU updater = trainer.updater stats_cpu['epoch'] = updater.epoch stats_cpu['iteration'] = updater.iteration x = stats_cpu[self._x_key] data = self._data for k in keys: if k in stats_cpu: data[k].append((x, stats_cpu[k])) f = plt.figure() a = f.add_subplot(111) a.set_xlabel(self._x_key) if self._grid: a.grid() for k in keys: xy = data[k] if len(xy) == 0: continue xy = numpy.array(xy) a.plot(xy[:, 0], xy[:, 1], marker=self._marker, label=k) if a.has_data(): if self._postprocess is not None: self._postprocess(f, a, summary) l = a.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) f.savefig(path.join(trainer.out, self._file_name), bbox_extra_artists=(l,), bbox_inches='tight') plt.close() self._init_summary() def serialize(self, serializer): if isinstance(serializer, serializer_module.Serializer): serializer('_plot_{}'.format(self._file_name), json.dumps(self._data)) else: self._data = json.loads( serializer('_plot_{}'.format(self._file_name), '')) def _init_summary(self): self._summary = reporter.DictSummary()
mit
AnasGhrab/scikit-learn
examples/ensemble/plot_gradient_boosting_oob.py
230
4762
""" ====================================== Gradient Boosting Out-of-Bag estimates ====================================== Out-of-bag (OOB) estimates can be a useful heuristic to estimate the "optimal" number of boosting iterations. OOB estimates are almost identical to cross-validation estimates but they can be computed on-the-fly without the need for repeated model fitting. OOB estimates are only available for Stochastic Gradient Boosting (i.e. ``subsample < 1.0``), the estimates are derived from the improvement in loss based on the examples not included in the bootstrap sample (the so-called out-of-bag examples). The OOB estimator is a pessimistic estimator of the true test loss, but remains a fairly good approximation for a small number of trees. The figure shows the cumulative sum of the negative OOB improvements as a function of the boosting iteration. As you can see, it tracks the test loss for the first hundred iterations but then diverges in a pessimistic way. The figure also shows the performance of 3-fold cross validation which usually gives a better estimate of the test loss but is computationally more demanding. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn.cross_validation import KFold from sklearn.cross_validation import train_test_split # Generate data (adapted from G. Ridgeway's gbm example) n_samples = 1000 random_state = np.random.RandomState(13) x1 = random_state.uniform(size=n_samples) x2 = random_state.uniform(size=n_samples) x3 = random_state.randint(0, 4, size=n_samples) p = 1 / (1.0 + np.exp(-(np.sin(3 * x1) - 4 * x2 + x3))) y = random_state.binomial(1, p, size=n_samples) X = np.c_[x1, x2, x3] X = X.astype(np.float32) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=9) # Fit classifier with out-of-bag estimates params = {'n_estimators': 1200, 'max_depth': 3, 'subsample': 0.5, 'learning_rate': 0.01, 'min_samples_leaf': 1, 'random_state': 3} clf = ensemble.GradientBoostingClassifier(**params) clf.fit(X_train, y_train) acc = clf.score(X_test, y_test) print("Accuracy: {:.4f}".format(acc)) n_estimators = params['n_estimators'] x = np.arange(n_estimators) + 1 def heldout_score(clf, X_test, y_test): """compute deviance scores on ``X_test`` and ``y_test``. """ score = np.zeros((n_estimators,), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): score[i] = clf.loss_(y_test, y_pred) return score def cv_estimate(n_folds=3): cv = KFold(n=X_train.shape[0], n_folds=n_folds) cv_clf = ensemble.GradientBoostingClassifier(**params) val_scores = np.zeros((n_estimators,), dtype=np.float64) for train, test in cv: cv_clf.fit(X_train[train], y_train[train]) val_scores += heldout_score(cv_clf, X_train[test], y_train[test]) val_scores /= n_folds return val_scores # Estimate best n_estimator using cross-validation cv_score = cv_estimate(3) # Compute best n_estimator for test data test_score = heldout_score(clf, X_test, y_test) # negative cumulative sum of oob improvements cumsum = -np.cumsum(clf.oob_improvement_) # min loss according to OOB oob_best_iter = x[np.argmin(cumsum)] # min loss according to test (normalize such that first loss is 0) test_score -= test_score[0] test_best_iter = x[np.argmin(test_score)] # min loss according to cv (normalize such that first loss is 0) cv_score -= cv_score[0] cv_best_iter = x[np.argmin(cv_score)] # color brew for the three curves oob_color = list(map(lambda x: x / 256.0, (190, 174, 212))) test_color = list(map(lambda x: x / 256.0, (127, 201, 127))) cv_color = list(map(lambda x: x / 256.0, (253, 192, 134))) # plot curves and vertical lines for best iterations plt.plot(x, cumsum, label='OOB loss', color=oob_color) plt.plot(x, test_score, label='Test loss', color=test_color) plt.plot(x, cv_score, label='CV loss', color=cv_color) plt.axvline(x=oob_best_iter, color=oob_color) plt.axvline(x=test_best_iter, color=test_color) plt.axvline(x=cv_best_iter, color=cv_color) # add three vertical lines to xticks xticks = plt.xticks() xticks_pos = np.array(xticks[0].tolist() + [oob_best_iter, cv_best_iter, test_best_iter]) xticks_label = np.array(list(map(lambda t: int(t), xticks[0])) + ['OOB', 'CV', 'Test']) ind = np.argsort(xticks_pos) xticks_pos = xticks_pos[ind] xticks_label = xticks_label[ind] plt.xticks(xticks_pos, xticks_label) plt.legend(loc='upper right') plt.ylabel('normalized loss') plt.xlabel('number of iterations') plt.show()
bsd-3-clause
sem-geologist/hyperspy
hyperspy/roi.py
2
47245
# -*- coding: utf-8 -*- # Copyright 2007-2016 The HyperSpy developers # # This file is part of HyperSpy. # # HyperSpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HyperSpy. If not, see <http://www.gnu.org/licenses/>. """Region of interests (ROIs). ROIs operate on `BaseSignal` instances and include widgets for interactive operation. The following 1D ROIs are available: Point1DROI Single element ROI of a 1D signal. SpanROI Interval ROI of a 1D signal. The following 2D ROIs are available: Point2DROI Single element ROI of a 2D signal. RectangularROI Rectagular ROI of a 2D signal. CircleROI (Hollow) circular ROI of a 2D signal Line2DROI Line profile of a 2D signal with customisable width. """ from functools import partial import traits.api as t import numpy as np from hyperspy.events import Events, Event from hyperspy.interactive import interactive from hyperspy.axes import DataAxis from hyperspy.drawing import widgets from hyperspy.ui_registry import add_gui_method class BaseROI(t.HasTraits): """Base class for all ROIs. Provides some basic functionality that is likely to be shared between all ROIs, and serve as a common type that can be checked for. """ def __init__(self): """Sets up events.changed event, and inits HasTraits. """ super(BaseROI, self).__init__() self.events = Events() self.events.changed = Event(""" Event that triggers when the ROI has changed. What constitues a change varies from ROI to ROI, but in general it should correspond to the region selected by the ROI has changed. Arguments: ---------- roi : The ROI that was changed. """, arguments=['roi']) self.signal_map = dict() _ndim = 0 ndim = property(lambda s: s._ndim) def is_valid(self): """ Determine if the ROI is in a valid state. This is typically determined by all the coordinates being defined, and that the values makes sense relative to each other. """ raise NotImplementedError() def update(self): """Function responsible for updating anything that depends on the ROI. It should be called by implementors whenever the ROI changes. The base implementation simply triggers the changed event. """ if self.is_valid(): self.events.changed.trigger(self) def _get_ranges(self): """ Utility to get the value ranges that the ROI would select. If the ROI is point base or is rectangluar in nature, these can be used slice a signal. Extracted from `_make_slices` to ease implementation in inherited ROIs. """ raise NotImplementedError() def _make_slices(self, axes_collection, axes, ranges=None): """ Utility function to make a slice structure that will slice all the axes in 'axes_collection'. The axes in the `axes` argument will be sliced by the ROI, all other axes with 'slice(None)'. Alternatively, if 'ranges' is passed, `axes[i]` will be sliced with 'ranges[i]'. """ if ranges is None: # Use ROI to slice ranges = self._get_ranges() slices = [] for ax in axes_collection: if ax in axes: i = axes.index(ax) try: ilow = ax.value2index(ranges[i][0]) except ValueError: if ranges[i][0] < ax.low_value: ilow = ax.low_index else: raise if len(ranges[i]) == 1: slices.append(ilow) else: try: ihigh = ax.value2index(ranges[i][1]) except ValueError: if ranges[i][1] > ax.high_value: ihigh = ax.high_index + 1 else: raise slices.append(slice(ilow, ihigh)) else: slices.append(slice(None)) return tuple(slices) def __call__(self, signal, out=None, axes=None): """Slice the signal according to the ROI, and return it. Arguments --------- signal : Signal The signal to slice with the ROI. out : Signal, default = None If the 'out' argument is supplied, the sliced output will be put into this instead of returning a Signal. See Signal.__getitem__() for more details on 'out'. axes : specification of axes to use, default = None The axes argument specifies which axes the ROI will be applied on. The items in the collection can be either of the following: * a tuple of: - DataAxis. These will not be checked with signal.axes_manager. - anything that will index signal.axes_manager * For any other value, it will check whether the navigation space can fit the right number of axis, and use that if it fits. If not, it will try the signal space. """ if axes is None and signal in self.signal_map: axes = self.signal_map[signal][1] else: axes = self._parse_axes(axes, signal.axes_manager) natax = signal.axes_manager._get_axes_in_natural_order() slices = self._make_slices(natax, axes) nav_axes = [ax.navigate for ax in axes] nav_dim = signal.axes_manager.navigation_dimension if True in nav_axes: if False in nav_axes: slicer = signal.inav[slices[:nav_dim]].isig.__getitem__ slices = slices[nav_dim:] else: slicer = signal.inav.__getitem__ slices = slices[0:nav_dim] else: slicer = signal.isig.__getitem__ slices = slices[nav_dim:] roi = slicer(slices, out=out) return roi def _parse_axes(self, axes, axes_manager): """Utility function to parse the 'axes' argument to a list of DataAxis. Arguments --------- axes : specification of axes to use, default = None The axes argument specifies which axes the ROI will be applied on. The DataAxis in the collection can be either of the following: * a tuple of: - DataAxis. These will not be checked with signal.axes_manager. - anything that will index signal.axes_manager * For any other value, it will check whether the navigation space can fit the right number of axis, and use that if it fits. If not, it will try the signal space. axes_manager : AxesManager The AxesManager to use for parsing axes, if axes is not already a tuple of DataAxis. Returns ------- [<DataAxis>] """ nd = self.ndim if isinstance(axes, (tuple, list)): axes_out = axes_manager[axes[:nd]] else: if axes_manager.navigation_dimension >= nd: axes_out = axes_manager.navigation_axes[:nd] elif axes_manager.signal_dimension >= nd: axes_out = axes_manager.signal_axes[:nd] elif nd == 2 and axes_manager.navigation_dimension == 1 and \ axes_manager.signal_dimension == 1: # We probably have a navigator plot including both nav and sig # axes. axes_out = [axes_manager.signal_axes[0], axes_manager.navigation_axes[0]] else: raise ValueError("Could not find valid axes configuration.") return axes_out def _get_mpl_ax(plot, axes): """ Returns MPL Axes that contains the `axes`. The space of the first DataAxis in axes will be used to determine which plot's matplotlib Axes to return. Arguments: ---------- plot : MPL_HyperExplorer The explorer that contains the navigation and signal plots axes : collection of DataAxis The axes to infer from. """ if axes[0].navigate: ax = plot.navigator_plot.ax else: if len(axes) == 2 and axes[1].navigate: ax = plot.navigator_plot.ax else: ax = plot.signal_plot.ax return ax class BaseInteractiveROI(BaseROI): """Base class for interactive ROIs, i.e. ROIs with widget interaction. The base class defines a lot of the common code for interacting with widgets, but inhertors need to implement the following functions: _get_widget_type() _apply_roi2widget(widget) _set_from_widget(widget) """ def __init__(self): super(BaseInteractiveROI, self).__init__() self.widgets = set() self._applying_widget_change = False def update(self): """Function responsible for updating anything that depends on the ROI. It should be called by implementors whenever the ROI changes. This implementation updates the widgets associated with it, and triggers the changed event. """ if self.is_valid(): if not self._applying_widget_change: self._update_widgets() self.events.changed.trigger(self) def _update_widgets(self, exclude=None): """Internal function for updating the associated widgets to the geometry contained in the ROI. Arguments --------- exclude : set() A set of widgets to exclude from the update. Useful e.g. if a widget has triggered a change in the ROI: Then all widgets, excluding the one that was the source for the change, should be updated. """ if exclude is None: exclude = set() if not isinstance(exclude, set): exclude = set(exclude) for w in self.widgets - exclude: with w.events.changed.suppress_callback(self._on_widget_change): self._apply_roi2widget(w) def _get_widget_type(self, axes, signal): """Get the type of a widget that can represent the ROI on the given axes and signal. """ raise NotImplementedError() def _apply_roi2widget(self, widget): """This function is responsible for applying the ROI geometry to the widget. When this function is called, the widget's events are already suppressed, so this should not be necessary for _apply_roi2widget to handle. """ raise NotImplementedError() def _set_from_widget(self, widget): """Sets the internal representation of the ROI from the passed widget, without doing anything to events. """ raise NotImplementedError() def interactive(self, signal, navigation_signal="same", out=None, color="green", **kwargs): """Creates an interactively sliced Signal (sliced by this ROI) via hyperspy.interactive. Arguments: ---------- signal : Signal The source signal to slice navigation_signal : Signal, None or "same" (default) If not None, it will automatically create a widget on navigation_signal. Passing "same" is identical to passing the same signal to 'signal' and 'navigation_signal', but is less ambigous, and allows "same" to be the default value. out : Signal If not None, it will use 'out' as the output instead of returning a new Signal. color : Matplotlib color specifier (default: 'green') The color for the widget. Any format that matplotlib uses should be ok. This will not change the color fo any widget passed with the 'widget' argument. **kwargs All kwargs are passed to the roi __call__ method which is called interactivel on any roi attribute change. """ if hasattr(signal, '_plot_kwargs'): kwargs.update({'_plot_kwargs': signal._plot_kwargs}) # in case of complex signal, it is possible to shift the signal # during plotting, if so this is currently not supported and we # raise a NotImplementedError if signal._plot.signal_data_function_kwargs.get( 'fft_shift', False): raise NotImplementedError('ROIs are not supported when data ' 'are shifted during plotting.') if isinstance(navigation_signal, str) and navigation_signal == "same": navigation_signal = signal if navigation_signal is not None: if navigation_signal not in self.signal_map: self.add_widget(navigation_signal, color=color, axes=kwargs.get("axes", None)) if (self.update not in signal.axes_manager.events.any_axis_changed.connected): signal.axes_manager.events.any_axis_changed.connect( self.update, []) if out is None: return interactive(self.__call__, event=self.events.changed, signal=signal, **kwargs) else: return interactive(self.__call__, event=self.events.changed, signal=signal, out=out, **kwargs) def _on_widget_change(self, widget): """Callback for widgets' 'changed' event. Updates the internal state from the widget, and triggers events (excluding connections to the source widget). """ with self.events.suppress(): self._bounds_check = False self._applying_widget_change = True try: self._set_from_widget(widget) finally: self._bounds_check = True self._applying_widget_change = False self._update_widgets(exclude=(widget,)) self.events.changed.trigger(self) def add_widget(self, signal, axes=None, widget=None, color='green', **kwargs): """Add a widget to visually represent the ROI, and connect it so any changes in either are reflected in the other. Note that only one widget can be added per signal/axes combination. Arguments: ---------- signal : Signal The signal to witch the widget is added. This is used to determine with plot to add the widget to, and it supplies the axes_manager for the widget. axes : specification of axes to use, default = None The axes argument specifies which axes the ROI will be applied on. The DataAxis in the collection can be either of the following: * a tuple of: - DataAxis. These will not be checked with signal.axes_manager. - anything that will index signal.axes_manager * For any other value, it will check whether the navigation space can fit the right number of axis, and use that if it fits. If not, it will try the signal space. widget : Widget or None (default) If specified, this is the widget that will be added. If None, the default widget will be used, as given by _get_widget_type(). color : Matplotlib color specifier (default: 'green') The color for the widget. Any format that matplotlib uses should be ok. This will not change the color fo any widget passed with the 'widget' argument. kwargs: All keyword argument are passed to the widget constructor. """ axes = self._parse_axes(axes, signal.axes_manager,) if widget is None: widget = self._get_widget_type( axes, signal)( signal.axes_manager, **kwargs) widget.color = color # Remove existing ROI, if it exsists and axes match if signal in self.signal_map and \ self.signal_map[signal][1] == axes: self.remove_widget(signal) # Set DataAxes widget.axes = axes if widget.ax is None: if signal._plot is None: raise Exception( "%s does not have an active plot. Plot the signal before " "calling this method using its `plot` method." % repr(signal)) ax = _get_mpl_ax(signal._plot, axes) widget.set_mpl_ax(ax) with widget.events.changed.suppress_callback(self._on_widget_change): self._apply_roi2widget(widget) # Connect widget changes to on_widget_change widget.events.changed.connect(self._on_widget_change, {'obj': 'widget'}) # When widget closes, remove from internal list widget.events.closed.connect(self._remove_widget, {'obj': 'widget'}) self.widgets.add(widget) self.signal_map[signal] = (widget, axes) return widget def _remove_widget(self, widget): widget.events.closed.disconnect(self._remove_widget) widget.events.changed.disconnect(self._on_widget_change) widget.close() for signal, w in self.signal_map.items(): if w[0] == widget: self.signal_map.pop(signal) break def remove_widget(self, signal): if signal in self.signal_map: w = self.signal_map.pop(signal)[0] self._remove_widget(w) class BasePointROI(BaseInteractiveROI): """Base ROI class for point ROIs, i.e. ROIs with a unit size in each of its dimensions. """ def __call__(self, signal, out=None, axes=None): if axes is None and signal in self.signal_map: axes = self.signal_map[signal][1] else: axes = self._parse_axes(axes, signal.axes_manager) s = super(BasePointROI, self).__call__(signal=signal, out=out, axes=axes) return s def guess_vertical_or_horizontal(axes, signal): # Figure out whether to use horizontal or veritcal line: if axes[0].navigate: plotdim = len(signal._plot.navigator_data_function().shape) axdim = signal.axes_manager.navigation_dimension idx = signal.axes_manager.navigation_axes.index(axes[0]) else: plotdim = len(signal._plot.signal_data_function().shape) axdim = signal.axes_manager.signal_dimension idx = signal.axes_manager.signal_axes.index(axes[0]) if plotdim == 2: # Plot is an image # axdim == 1 and plotdim == 2 indicates "spectrum stack" if idx == 0 and axdim != 1: # Axis is horizontal return "vertical" else: # Axis is vertical return "horizontal" elif plotdim == 1: # It is a spectrum return "vertical" else: raise ValueError( "Could not find valid widget type for the given `axes` value") @add_gui_method(toolkey="hyperspy.Point1DROI") class Point1DROI(BasePointROI): """Selects a single point in a 1D space. The coordinate of the point in the 1D space is stored in the 'value' trait. """ value = t.CFloat(t.Undefined) _ndim = 1 def __init__(self, value): super(Point1DROI, self).__init__() self.value = value def is_valid(self): return self.value != t.Undefined def _value_changed(self, old, new): self.update() def _get_ranges(self): ranges = ((self.value,),) return ranges def _set_from_widget(self, widget): self.value = widget.position[0] def _apply_roi2widget(self, widget): widget.position = (self.value,) def _get_widget_type(self, axes, signal): direction = guess_vertical_or_horizontal(axes=axes, signal=signal) if direction == "vertical": return widgets.VerticalLineWidget elif direction == "horizontal": return widgets.HorizontalLineWidget else: raise ValueError("direction must be either horizontal or vertical") def __repr__(self): return "%s(value=%g)" % ( self.__class__.__name__, self.value) @add_gui_method(toolkey="hyperspy.Point2DROI") class Point2DROI(BasePointROI): """Selects a single point in a 2D space. The coordinates of the point in the 2D space are stored in the traits 'x' and 'y'. """ x, y = (t.CFloat(t.Undefined),) * 2 _ndim = 2 def __init__(self, x, y): super(Point2DROI, self).__init__() self.x, self.y = x, y def is_valid(self): return t.Undefined not in (self.x, self.y) def _x_changed(self, old, new): self.update() def _y_changed(self, old, new): self.update() def _get_ranges(self): ranges = ((self.x,), (self.y,),) return ranges def _set_from_widget(self, widget): self.x, self.y = widget.position def _apply_roi2widget(self, widget): widget.position = (self.x, self.y) def _get_widget_type(self, axes, signal): return widgets.SquareWidget def __repr__(self): return "%s(x=%g, y=%g)" % ( self.__class__.__name__, self.x, self.y) @add_gui_method(toolkey="hyperspy.SpanROI") class SpanROI(BaseInteractiveROI): """Selects a range in a 1D space. The coordinates of the range in the 1D space are stored in the traits 'left' and 'right'. """ left, right = (t.CFloat(t.Undefined),) * 2 _ndim = 1 def __init__(self, left, right): super(SpanROI, self).__init__() self._bounds_check = True # Use reponsibly! self.left, self.right = left, right def is_valid(self): return (t.Undefined not in (self.left, self.right) and self.right >= self.left) def _right_changed(self, old, new): if self._bounds_check and \ self.left is not t.Undefined and new <= self.left: self.right = old else: self.update() def _left_changed(self, old, new): if self._bounds_check and \ self.right is not t.Undefined and new >= self.right: self.left = old else: self.update() def _get_ranges(self): ranges = ((self.left, self.right),) return ranges def _set_from_widget(self, widget): value = (widget.position[0], widget.position[0] + widget.size[0]) self.left, self.right = value def _apply_roi2widget(self, widget): widget.set_bounds(left=self.left, right=self.right) def _get_widget_type(self, axes, signal): direction = guess_vertical_or_horizontal(axes=axes, signal=signal) if direction == "vertical": return partial(widgets.RangeWidget, direction="horizontal") elif direction == "horizontal": return partial(widgets.RangeWidget, direction="vertical") else: raise ValueError("direction must be either horizontal or vertical") def __repr__(self): return "%s(left=%g, right=%g)" % ( self.__class__.__name__, self.left, self.right) @add_gui_method(toolkey="hyperspy.RectangularROI") class RectangularROI(BaseInteractiveROI): """Selects a range in a 2D space. The coordinates of the range in the 2D space are stored in the traits 'left', 'right', 'top' and 'bottom'. Convenience properties 'x', 'y', 'width' and 'height' are also available, but cannot be used for initialization. """ top, bottom, left, right = (t.CFloat(t.Undefined),) * 4 _ndim = 2 def __init__(self, left, top, right, bottom): super(RectangularROI, self).__init__() self._bounds_check = True # Use reponsibly! self.top, self.bottom, self.left, self.right = top, bottom, left, right def is_valid(self): return (t.Undefined not in (self.top, self.bottom, self.left, self.right) and self.right >= self.left and self.bottom >= self.top) def _top_changed(self, old, new): if self._bounds_check and \ self.bottom is not t.Undefined and new >= self.bottom: self.top = old else: self.update() @property def width(self): """Returns / sets the width of the ROI""" return self.right - self.left @width.setter def width(self, value): if value == self.width: return self.right -= self.width - value @property def height(self): """Returns / sets the height of the ROI""" return self.bottom - self.top @height.setter def height(self, value): if value == self.height: return self.bottom -= self.height - value @property def x(self): """Returns / sets the x coordinate of the ROI without changing its width""" return self.left @x.setter def x(self, value): if value != self.x: diff = value - self.x try: self._applying_widget_change = True self._bounds_check = False with self.events.changed.suppress(): self.right += diff self.left += diff finally: self._applying_widget_change = False self._bounds_check = True self.update() @property def y(self): """Returns / sets the y coordinate of the ROI without changing its height""" return self.top @y.setter def y(self, value): if value != self.y: diff = value - self.y try: self._applying_widget_change = True self._bounds_check = False with self.events.changed.suppress(): self.top += diff self.bottom += diff finally: self._applying_widget_change = False self._bounds_check = True self.update() def _bottom_changed(self, old, new): if self._bounds_check and \ self.top is not t.Undefined and new <= self.top: self.bottom = old else: self.update() def _right_changed(self, old, new): if self._bounds_check and \ self.left is not t.Undefined and new <= self.left: self.right = old else: self.update() def _left_changed(self, old, new): if self._bounds_check and \ self.right is not t.Undefined and new >= self.right: self.left = old else: self.update() def _get_ranges(self): ranges = ((self.left, self.right), (self.top, self.bottom),) return ranges def _set_from_widget(self, widget): p = np.array(widget.position) s = np.array(widget.size) (self.left, self.top), (self.right, self.bottom) = (p, p + s) def _apply_roi2widget(self, widget): widget.set_bounds(left=self.left, bottom=self.bottom, right=self.right, top=self.top) def _get_widget_type(self, axes, signal): return widgets.RectangleWidget def __repr__(self): return "%s(left=%g, top=%g, right=%g, bottom=%g)" % ( self.__class__.__name__, self.left, self.top, self.right, self.bottom) @add_gui_method(toolkey="hyperspy.CircleROI") class CircleROI(BaseInteractiveROI): cx, cy, r, r_inner = (t.CFloat(t.Undefined),) * 4 _ndim = 2 def __init__(self, cx, cy, r, r_inner=None): super(CircleROI, self).__init__() self._bounds_check = True # Use reponsibly! self.cx, self.cy, self.r = cx, cy, r if r_inner: self.r_inner = r_inner def is_valid(self): return (t.Undefined not in (self.cx, self.cy, self.r,) and (self.r_inner is t.Undefined or t.Undefined not in (self.r, self.r_inner) and self.r >= self.r_inner)) def _cx_changed(self, old, new): self.update() def _cy_changed(self, old, new): self.update() def _r_changed(self, old, new): if self._bounds_check and \ self.r_inner is not t.Undefined and new < self.r_inner: self.r = old else: self.update() def _r_inner_changed(self, old, new): if self._bounds_check and \ self.r is not t.Undefined and new >= self.r: self.r_inner = old else: self.update() def _set_from_widget(self, widget): """Sets the internal representation of the ROI from the passed widget, without doing anything to events. """ self.cx, self.cy = widget.position self.r, self.r_inner = widget.size def _apply_roi2widget(self, widget): widget.position = (self.cx, self.cy) inner = self.r_inner if self.r_inner != t.Undefined else 0.0 widget.size = (self.r, inner) def _get_widget_type(self, axes, signal): return widgets.CircleWidget def __call__(self, signal, out=None, axes=None): """Slice the signal according to the ROI, and return it. Arguments --------- signal : Signal The signal to slice with the ROI. out : Signal, default = None If the 'out' argument is supplied, the sliced output will be put into this instead of returning a Signal. See Signal.__getitem__() for more details on 'out'. axes : specification of axes to use, default = None The axes argument specifies which axes the ROI will be applied on. The items in the collection can be either of the following: * a tuple of: - DataAxis. These will not be checked with signal.axes_manager. - anything that will index signal.axes_manager * For any other value, it will check whether the navigation space can fit the right number of axis, and use that if it fits. If not, it will try the signal space. """ if axes is None and signal in self.signal_map: axes = self.signal_map[signal][1] else: axes = self._parse_axes(axes, signal.axes_manager) natax = signal.axes_manager._get_axes_in_natural_order() # Slice original data with a circumscribed rectangle cx = self.cx + 0.5001 * axes[0].scale cy = self.cy + 0.5001 * axes[1].scale ranges = [[cx - self.r, cx + self.r], [cy - self.r, cy + self.r]] slices = self._make_slices(natax, axes, ranges) ir = [slices[natax.index(axes[0])], slices[natax.index(axes[1])]] vx = axes[0].axis[ir[0]] - cx vy = axes[1].axis[ir[1]] - cy gx, gy = np.meshgrid(vx, vy) gr = gx**2 + gy**2 mask = gr > self.r**2 if self.r_inner != t.Undefined: mask |= gr < self.r_inner**2 tiles = [] shape = [] chunks = [] for i in range(len(slices)): if signal._lazy: chunks.append(signal.data.chunks[i][0]) if i == natax.index(axes[0]): thisshape = mask.shape[0] tiles.append(thisshape) shape.append(thisshape) elif i == natax.index(axes[1]): thisshape = mask.shape[1] tiles.append(thisshape) shape.append(thisshape) else: tiles.append(signal.axes_manager._axes[i].size) shape.append(1) mask = mask.reshape(shape) nav_axes = [ax.navigate for ax in axes] nav_dim = signal.axes_manager.navigation_dimension if True in nav_axes: if False in nav_axes: slicer = signal.inav[slices[:nav_dim]].isig.__getitem__ slices = slices[nav_dim:] else: slicer = signal.inav.__getitem__ slices = slices[0:nav_dim] else: slicer = signal.isig.__getitem__ slices = slices[nav_dim:] roi = slicer(slices, out=out) roi = out or roi if roi._lazy: import dask.array as da mask = da.from_array(mask, chunks=chunks) mask = da.broadcast_to(mask, tiles) # By default promotes dtype to float if required roi.data = da.where(mask, np.nan, roi.data) else: mask = np.broadcast_to(mask, tiles) roi.data = np.ma.masked_array(roi.data, mask, hard_mask=True) if out is None: return roi else: out.events.data_changed.trigger(out) def __repr__(self): if self.r_inner == t.Undefined: return "%s(cx=%g, cy=%g, r=%g)" % ( self.__class__.__name__, self.cx, self.cy, self.r) else: return "%s(cx=%g, cy=%g, r=%g, r_inner=%g)" % ( self.__class__.__name__, self.cx, self.cy, self.r, self.r_inner) @add_gui_method(toolkey="hyperspy.Line2DROI") class Line2DROI(BaseInteractiveROI): x1, y1, x2, y2, linewidth = (t.CFloat(t.Undefined),) * 5 _ndim = 2 def __init__(self, x1, y1, x2, y2, linewidth=0): super(Line2DROI, self).__init__() self.x1, self.y1, self.x2, self.y2 = x1, y1, x2, y2 self.linewidth = linewidth def is_valid(self): return t.Undefined not in (self.x1, self.y1, self.x2, self.y2) def _x1_changed(self, old, new): self.update() def _x2_changed(self, old, new): self.update() def _y1_changed(self, old, new): self.update() def _y2_changed(self, old, new): self.update() def _linewidth_changed(self, old, new): self.update() def _set_from_widget(self, widget): """Sets the internal representation of the ROI from the passed widget, without doing anything to events. """ c = widget.position s = widget.size[0] (self.x1, self.y1), (self.x2, self.y2) = c self.linewidth = s def _apply_roi2widget(self, widget): widget.position = (self.x1, self.y1), (self.x2, self.y2) widget.size = np.array([self.linewidth]) def _get_widget_type(self, axes, signal): return widgets.Line2DWidget @staticmethod def _line_profile_coordinates(src, dst, linewidth=1): """Return the coordinates of the profile of an image along a scan line. Parameters ---------- src : 2-tuple of numeric scalar (float or int) The start point of the scan line. dst : 2-tuple of numeric scalar (float or int) The end point of the scan line. linewidth : int, optional Width of the scan, perpendicular to the line Returns ------- coords : array, shape (2, N, C), float The coordinates of the profile along the scan line. The length of the profile is the ceil of the computed length of the scan line. Notes ----- This is a utility method meant to be used internally by skimage functions. The destination point is included in the profile, in contrast to standard numpy indexing. """ src_row, src_col = src = np.asarray(src, dtype=float) dst_row, dst_col = dst = np.asarray(dst, dtype=float) d_row, d_col = dst - src theta = np.arctan2(d_row, d_col) length = np.ceil(np.hypot(d_row, d_col) + 1).astype(int) # we add one above because we include the last point in the profile # (in contrast to standard numpy indexing) line_col = np.linspace(src_col, dst_col, length) line_row = np.linspace(src_row, dst_row, length) data = np.zeros((2, length, linewidth)) data[0, :, :] = np.tile(line_col, [linewidth, 1]).T data[1, :, :] = np.tile(line_row, [linewidth, 1]).T if linewidth != 1: # we subtract 1 from linewidth to change from pixel-counting # (make this line 3 pixels wide) to point distances (the # distance between pixel centers) col_width = (linewidth - 1) * np.sin(-theta) / 2 row_width = (linewidth - 1) * np.cos(theta) / 2 row_off = np.linspace(-row_width, row_width, linewidth) col_off = np.linspace(-col_width, col_width, linewidth) data[0, :, :] += np.tile(col_off, [length, 1]) data[1, :, :] += np.tile(row_off, [length, 1]) return data @property def length(self): p0 = np.array((self.x1, self.y1), dtype=np.float) p1 = np.array((self.x2, self.y2), dtype=np.float) d_row, d_col = p1 - p0 return np.hypot(d_row, d_col) def angle(self, axis='horizontal', units='degrees'): """"Angle between ROI line and selected axis Parameters ---------- axis : str, {'horizontal', 'vertical'}, optional Select axis against which the angle of the ROI line is measured. 'x' is alias to 'horizontal' and 'y' is 'vertical' (Default: 'horizontal') units : str, {'degrees', 'radians'} The angle units of the output (Default: 'degrees') Returns ------- angle : float Examples -------- >>> import hyperspy.api as hs >>> hs.roi.Line2DROI(0., 0., 1., 2., 1) >>> r.angle() 63.43494882292201 """ x = self.x2 - self.x1 y = self.y2 - self.y1 if units == 'degrees': conversation = 180. / np.pi elif units == 'radians': conversation = 1. else: raise ValueError( "Units are not recognized. Use either 'degrees' or 'radians'.") if axis == 'horizontal': return np.arctan2(y, x) * conversation elif axis == 'vertical': return np.arctan2(x, y) * conversation else: raise ValueError("Axis is not recognized. " "Use either 'horizontal' or 'vertical'.") @staticmethod def profile_line(img, src, dst, axes, linewidth=1, order=1, mode='constant', cval=0.0): """Return the intensity profile of an image measured along a scan line. Parameters ---------- img : numeric array, shape (M, N[, C]) The image, either grayscale (2D array) or multichannel (3D array, where the final axis contains the channel information). src : 2-tuple of numeric scalar (float or int) The start point of the scan line. dst : 2-tuple of numeric scalar (float or int) The end point of the scan line. linewidth : int, optional Width of the scan, perpendicular to the line order : int in {0, 1, 2, 3, 4, 5}, optional The order of the spline interpolation to compute image values at non-integer coordinates. 0 means nearest-neighbor interpolation. mode : string, one of {'constant', 'nearest', 'reflect', 'wrap'}, optional How to compute any values falling outside of the image. cval : float, optional If `mode` is 'constant', what constant value to use outside the image. Returns ------- return_value : array The intensity profile along the scan line. The length of the profile is the ceil of the computed length of the scan line. Examples -------- >>> x = np.array([[1, 1, 1, 2, 2, 2]]) >>> img = np.vstack([np.zeros_like(x), x, x, x, np.zeros_like(x)]) >>> img array([[0, 0, 0, 0, 0, 0], [1, 1, 1, 2, 2, 2], [1, 1, 1, 2, 2, 2], [1, 1, 1, 2, 2, 2], [0, 0, 0, 0, 0, 0]]) >>> profile_line(img, (2, 1), (2, 4)) array([ 1., 1., 2., 2.]) Notes ----- The destination point is included in the profile, in contrast to standard numpy indexing. """ import scipy.ndimage as nd # Convert points coordinates from axes units to pixels p0 = ((src[0] - axes[0].offset) / axes[0].scale, (src[1] - axes[1].offset) / axes[1].scale) p1 = ((dst[0] - axes[0].offset) / axes[0].scale, (dst[1] - axes[1].offset) / axes[1].scale) if linewidth < 0: raise ValueError("linewidth must be positive number") linewidth_px = linewidth / np.min([ax.scale for ax in axes]) linewidth_px = int(round(linewidth_px)) # Minimum size 1 pixel linewidth_px = linewidth_px if linewidth_px >= 1 else 1 perp_lines = Line2DROI._line_profile_coordinates(p0, p1, linewidth=linewidth_px) if img.ndim > 2: idx = [ax.index_in_array for ax in axes] if idx[0] < idx[1]: img = np.rollaxis(img, idx[0], 0) img = np.rollaxis(img, idx[1], 1) else: img = np.rollaxis(img, idx[1], 0) img = np.rollaxis(img, idx[0], 0) orig_shape = img.shape img = np.reshape(img, orig_shape[0:2] + (np.product(orig_shape[2:]),)) pixels = [nd.map_coordinates(img[..., i].T, perp_lines, order=order, mode=mode, cval=cval) for i in range(img.shape[2])] i0 = min(axes[0].index_in_array, axes[1].index_in_array) pixels = np.transpose(np.asarray(pixels), (1, 2, 0)) intensities = pixels.mean(axis=1) intensities = np.rollaxis( np.reshape(intensities, intensities.shape[0:1] + orig_shape[2:]), 0, i0 + 1) else: pixels = nd.map_coordinates(img, perp_lines, order=order, mode=mode, cval=cval) intensities = pixels.mean(axis=1) return intensities def __call__(self, signal, out=None, axes=None, order=0): """Slice the signal according to the ROI, and return it. Arguments --------- signal : Signal The signal to slice with the ROI. out : Signal, default = None If the 'out' argument is supplied, the sliced output will be put into this instead of returning a Signal. See Signal.__getitem__() for more details on 'out'. axes : specification of axes to use, default = None The axes argument specifies which axes the ROI will be applied on. The items in the collection can be either of the following: * a tuple of: - DataAxis. These will not be checked with signal.axes_manager. - anything that will index signal.axes_manager * For any other value, it will check whether the navigation space can fit the right number of axis, and use that if it fits. If not, it will try the signal space. order : The spline interpolation order to use when extracting the line profile. 0 means nearest-neighbor interpolation, and is both the default and the fastest. """ if axes is None and signal in self.signal_map: axes = self.signal_map[signal][1] else: axes = self._parse_axes(axes, signal.axes_manager) profile = Line2DROI.profile_line(signal.data, (self.x1, self.y1), (self.x2, self.y2), axes=axes, linewidth=self.linewidth, order=order) length = np.linalg.norm(np.diff( np.array(((self.x1, self.y1), (self.x2, self.y2))), axis=0), axis=1)[0] if out is None: axm = signal.axes_manager.deepcopy() i0 = min(axes[0].index_in_array, axes[1].index_in_array) axm.remove([ax.index_in_array + 3j for ax in axes]) axis = DataAxis(profile.shape[i0], scale=length / profile.shape[i0], units=axes[0].units, navigate=axes[0].navigate) axis.axes_manager = axm axm._axes.insert(i0, axis) from hyperspy.signals import BaseSignal roi = BaseSignal(profile, axes=axm._get_axes_dicts(), metadata=signal.metadata.deepcopy( ).as_dictionary(), original_metadata=signal.original_metadata. deepcopy().as_dictionary()) return roi else: out.data = profile i0 = min(axes[0].index_in_array, axes[1].index_in_array) ax = out.axes_manager._axes[i0] size = len(profile) scale = length / len(profile) axchange = size != ax.size or scale != ax.scale if axchange: ax.size = len(profile) ax.scale = length / len(profile) out.events.data_changed.trigger(out) def __repr__(self): return "%s(x1=%g, y1=%g, x2=%g, y2=%g, linewidth=%g)" % ( self.__class__.__name__, self.x1, self.y1, self.x2, self.y2, self.linewidth)
gpl-3.0
crichardson17/starburst_atlas
Low_resolution_sims/DustFree_LowRes/Padova_cont/padova_cont_0/UV2.py
33
7365
import csv import matplotlib.pyplot as plt from numpy import * import scipy.interpolate import math from pylab import * from matplotlib.ticker import MultipleLocator, FormatStrFormatter import matplotlib.patches as patches from matplotlib.path import Path import os # ------------------------------------------------------------------------------------------------------ #inputs for file in os.listdir('.'): if file.endswith(".grd"): inputfile = file for file in os.listdir('.'): if file.endswith(".txt"): inputfile2 = file # ------------------------------------------------------------------------------------------------------ #Patches data #for the Kewley and Levesque data verts = [ (1., 7.97712125471966000000), # left, bottom (1., 9.57712125471966000000), # left, top (2., 10.57712125471970000000), # right, top (2., 8.97712125471966000000), # right, bottom (0., 0.), # ignored ] codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY, ] path = Path(verts, codes) # ------------------------ #for the Kewley 01 data verts2 = [ (2.4, 9.243038049), # left, bottom (2.4, 11.0211893), # left, top (2.6, 11.0211893), # right, top (2.6, 9.243038049), # right, bottom (0, 0.), # ignored ] path = Path(verts, codes) path2 = Path(verts2, codes) # ------------------------- #for the Moy et al data verts3 = [ (1., 6.86712125471966000000), # left, bottom (1., 10.18712125471970000000), # left, top (3., 12.18712125471970000000), # right, top (3., 8.86712125471966000000), # right, bottom (0., 0.), # ignored ] path = Path(verts, codes) path3 = Path(verts3, codes) # ------------------------------------------------------------------------------------------------------ #the routine to add patches for others peoples' data onto our plots. def add_patches(ax): patch3 = patches.PathPatch(path3, facecolor='yellow', lw=0) patch2 = patches.PathPatch(path2, facecolor='green', lw=0) patch = patches.PathPatch(path, facecolor='red', lw=0) ax1.add_patch(patch3) ax1.add_patch(patch2) ax1.add_patch(patch) # ------------------------------------------------------------------------------------------------------ #the subplot routine def add_sub_plot(sub_num): numplots = 16 plt.subplot(numplots/4.,4,sub_num) rbf = scipy.interpolate.Rbf(x, y, z[:,sub_num-1], function='linear') zi = rbf(xi, yi) contour = plt.contour(xi,yi,zi, levels, colors='c', linestyles = 'dashed') contour2 = plt.contour(xi,yi,zi, levels2, colors='k', linewidths=1.5) plt.scatter(max_values[line[sub_num-1],2], max_values[line[sub_num-1],3], c ='k',marker = '*') plt.annotate(headers[line[sub_num-1]], xy=(8,11), xytext=(6,8.5), fontsize = 10) plt.annotate(max_values[line[sub_num-1],0], xy= (max_values[line[sub_num-1],2], max_values[line[sub_num-1],3]), xytext = (0, -10), textcoords = 'offset points', ha = 'right', va = 'bottom', fontsize=10) if sub_num == numplots / 2.: print "half the plots are complete" #axis limits yt_min = 8 yt_max = 23 xt_min = 0 xt_max = 12 plt.ylim(yt_min,yt_max) plt.xlim(xt_min,xt_max) plt.yticks(arange(yt_min+1,yt_max,1),fontsize=10) plt.xticks(arange(xt_min+1,xt_max,1), fontsize = 10) if sub_num in [2,3,4,6,7,8,10,11,12,14,15,16]: plt.tick_params(labelleft = 'off') else: plt.tick_params(labelleft = 'on') plt.ylabel('Log ($ \phi _{\mathrm{H}} $)') if sub_num in [1,2,3,4,5,6,7,8,9,10,11,12]: plt.tick_params(labelbottom = 'off') else: plt.tick_params(labelbottom = 'on') plt.xlabel('Log($n _{\mathrm{H}} $)') if sub_num == 1: plt.yticks(arange(yt_min+1,yt_max+1,1),fontsize=10) if sub_num == 13: plt.yticks(arange(yt_min,yt_max,1),fontsize=10) plt.xticks(arange(xt_min,xt_max,1), fontsize = 10) if sub_num == 16 : plt.xticks(arange(xt_min+1,xt_max+1,1), fontsize = 10) # --------------------------------------------------- #this is where the grid information (phi and hdens) is read in and saved to grid. grid = []; with open(inputfile, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid.append(row); grid = asarray(grid) #here is where the data for each line is read in and saved to dataEmissionlines dataEmissionlines = []; with open(inputfile2, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers = csvReader.next() for row in csvReader: dataEmissionlines.append(row); dataEmissionlines = asarray(dataEmissionlines) print "import files complete" # --------------------------------------------------- #for grid phi_values = grid[1:len(dataEmissionlines)+1,6] hdens_values = grid[1:len(dataEmissionlines)+1,7] #for lines headers = headers[1:] Emissionlines = dataEmissionlines[:, 1:] concatenated_data = zeros((len(Emissionlines),len(Emissionlines[0]))) max_values = zeros((len(Emissionlines[0]),4)) #select the scaling factor #for 1215 #incident = Emissionlines[1:,4] #for 4860 incident = Emissionlines[:,57] #take the ratio of incident and all the lines and put it all in an array concatenated_data for i in range(len(Emissionlines)): for j in range(len(Emissionlines[0])): if math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) > 0: concatenated_data[i,j] = math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) else: concatenated_data[i,j] == 0 # for 1215 #for i in range(len(Emissionlines)): # for j in range(len(Emissionlines[0])): # if math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) > 0: # concatenated_data[i,j] = math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) # else: # concatenated_data[i,j] == 0 #find the maxima to plot onto the contour plots for j in range(len(concatenated_data[0])): max_values[j,0] = max(concatenated_data[:,j]) max_values[j,1] = argmax(concatenated_data[:,j], axis = 0) max_values[j,2] = hdens_values[max_values[j,1]] max_values[j,3] = phi_values[max_values[j,1]] #to round off the maxima max_values[:,0] = [ '%.1f' % elem for elem in max_values[:,0] ] print "data arranged" # --------------------------------------------------- #Creating the grid to interpolate with for contours. gridarray = zeros((len(Emissionlines),2)) gridarray[:,0] = hdens_values gridarray[:,1] = phi_values x = gridarray[:,0] y = gridarray[:,1] #change desired lines here! line = [18, #1549 19, #1640 20, #1665 21, #1671 23, #1750 24, #1860 25, #1888 26, #1907 27, #2297 28, #2321 29, #2471 30, #2326 31, #2335 32, #2665 33, #2798 34] #2803 #create z array for this plot z = concatenated_data[:,line[:]] # --------------------------------------------------- # Interpolate print "starting interpolation" xi, yi = linspace(x.min(), x.max(), 10), linspace(y.min(), y.max(), 10) xi, yi = meshgrid(xi, yi) # --------------------------------------------------- print "interpolatation complete; now plotting" #plot plt.subplots_adjust(wspace=0, hspace=0) #remove space between plots levels = arange(10**-1,10, .2) levels2 = arange(10**-2,10**2, 1) plt.suptitle("UV Lines Continued", fontsize=14) # --------------------------------------------------- for i in range(16): add_sub_plot(i) ax1 = plt.subplot(4,4,1) add_patches(ax1) print "complete" plt.savefig('UV_Lines_cntd.pdf') plt.clf()
gpl-2.0
mueller-lab/PyFRAP
setup.py
2
20933
#Import setuptools from setuptools import setup #We need those two for doing some file permission magic later import os import platform import shutil #Overwrite setuptools install to be able to set file permissions from setuptools.command.install import install from distutils import log from setuptools.command.install_scripts import install_scripts #Import option parser so we can parse in options import sys # Define version version='1.1.13' def getOptions(): """Checks options given to script. If --fiji is in sys.argv, will set dFiji=1. \n If --gmsh is in sys.argv, will set dGmsh=1. If --silent is in sys.argv, will set silent=1. Note: Makes dGmsh and dFiji global: Not nice but seems easiest way to get options into OverrideInstall. """ global dGmsh global dFiji global silent dFiji=getOpt("--fiji") dGmsh=getOpt("--noGmsh",default=0) silent=getOpt("--silent") def getOpt(optStr,default=0): """Checks if optStr is in sys.argv. If this is the case, returns 1 and removes it form sys.argv so setup.py will not crash, otherwise returns default. """ if optStr in sys.argv: opt=1 sys.argv.remove(optStr) else: opt=default return opt #Get Options if __name__ == '__main__': getOptions() class OverrideInstall(install): """Override class subclassing install class from setuptools. The Main purpose of this class is to give more possibilities when installing PyFRAP, such as: * Download Gmsh and enter it automatically into path spec file * Download Fiji and enter it automatically into path spec file * Set ownership of data files so that even PyFRAP gets installed as superuser, users will be able to use its full capacities. Idea taken from http://stackoverflow.com/questions/5932804/set-file-permission-in-setup-py-file (thanks a bunch!) """ def initOptions(self): """Parses options into override class. """ self.dFiji=bool(dFiji) self.dGmsh=not bool(dGmsh) self.silent=bool(silent) log.info("Install options are:") log.info("Install Fiji: " + str(self.dFiji)) log.info("Install gmsh: " + str(self.dGmsh)) log.info("Silent Mode: " + str(self.silent)) #Define pathFile self.pathFile='paths' def run(self): """Runs install. """ self.initOptions() #Try to download gmsh if self.dGmsh: self.downloadGmsh() else: self.gmshDownloaded=False #Try to download fiji if self.dFiji: self.downloadFiji() else: self.fijiDownloaded=False #Run setuptools install install.run(self) #Print log info if not self.silent: log.info("Overriding setuptools mode of scripts ...") #Add Data and edit file permissions self.addData() def addData(self): """Adds Datafiles to PyFRAP installation. Makes sure that $USER has proper read/write/execute rights. Note that for Windows it will change rights, since it is not necesary. \n Also makes sure that gmsh/Fiji bin ins properly linked. """ if not self.silent: log.info("in add data") uid,gid,mode=self.getPermDetails() #Overwrite file permissions for filepath in self.get_outputs(): #log.info("Copying files.") if platform.system() not in ["Windows"]: if "meshfiles" in filepath or "configurations" in filepath or "executables" in filepath: #Change permissions for folder containing files folderpath=os.path.dirname(os.path.realpath(filepath)) self.changePermissions(folderpath,uid,gid,mode) #Change permissions of file self.changePermissions(filepath,uid,gid,mode) #Make some more necessary data folders if folderpath.endswith("meshfiles"): self.makeAdditionalDataFolders(folderpath,"field",uid,gid,mode) self.makeAdditionalDataFolders(folderpath,"field/custom",uid,gid,mode) if folderpath.endswith("configurations"): self.makeAdditionalDataFolders(folderpath,"macros",uid,gid,mode) #log.info("Adding executables to path file") #Add gmsh into paths.default if download was successful if self.pathFile == os.path.basename(filepath): if self.gmshDownloaded: self.setGmshPath(filepath) if self.fijiDownloaded: self.setFijiPath(filepath) if platform.system() not in ["Windows"]: folderpath=os.path.dirname(os.path.realpath(filepath)) self.changePermissions(folderpath,uid,gid,mode) self.changePermissions(filepath,uid,gid,mode) def getPermDetails(self): """Returns the permission details used to change permissions. """ if platform.system() not in ["Windows"]: import pwd #Grab user ID and group ID of actual use try: uid=pwd.getpwnam(os.getlogin())[2] gid=pwd.getpwnam(os.getlogin())[3] except: if not self.silent: log.info("Was not able to retrieve UID via os.getlogin, using os.getuid instead.") uid=os.getuid() gid=os.getgid() #Mode for files (everyone can read/write/execute. This is somewhat an overkill, but 0666 seems somehow not to work.) mode=0777 return uid,gid,mode return 0,0,0 def cleanUpExe(self,fnDL,folderFn,filesBefore,exePath): """Moves it to executables directory and cleans up afterwards. """ #Copy file to pyfrp/executables/ try: shutil.rmtree(exePath) except: pass if os.path.isdir(folderFn): shutil.copytree(folderFn+"/",exePath) else: try: os.mkdir(os.path.dirname(exePath)) except: log.info("Was not able to create folder " + os.path.dirname(exePath)) shutil.copy(folderFn,exePath) #Remove downloaded files os.remove(fnDL) #Get fileList before filesAfter=os.listdir('.') self.cleanDiff(filesBefore,filesAfter) def cleanDiff(self,filesBefore,filesAfter): #Difference between files filesDiff=list(set(filesAfter)-set(filesBefore)) for fn in filesDiff: try: if os.path.isdir(fn): shutil.rmtree(fn) else: os.remove(fn) except: log.info("cleanDiff report: Was not able to delete file:" + fn) def downloadGmsh(self): """Downloads Gmsh, moves it to executables directory and cleans up afterwards. Note that this will only work if *wget* is installed. """ #Define gmshVersion (might need to update this line once in a while) gmshVersion='2.14.0' #Flag to see if gmsh DL went through self.gmshDownloaded=False self.makeExeFolder() #Get fileList before filesBefore=os.listdir('.') #Try to import wget try: import wget #Get Architecture arch=platform.architecture()[0].replace('bit','') if platform.system() in ["Windows"]: fnDL,folderFn=self.downloadGmshWin(arch,gmshVersion) elif platform.system() in ["Linux"]: fnDL,folderFn=self.downloadGmshLinux(arch,gmshVersion) elif platform.system() in ["Darwin"]: fnDL,folderFn=self.downloadGmshOSX(arch,gmshVersion) #Remove files self.cleanUpExe(fnDL,folderFn,filesBefore,'pyfrp/executables/gmsh/') uid,gid,mode=self.getPermDetails() if platform.system() not in ["Windows"]: self.changePermissions(self.gmshPath,uid,gid,mode) #self.addPathToWinPATHs(self.gmshPath) log.info("Installed gmsh to "+ self.gmshPath) #Set Flag=True self.gmshDownloaded=True except ImportError: log.info("Cannot find wget, will not be downloading gmsh. You will need to install it later manually") def downloadFileIfNotExist(self,url): """Downloads URL if file does not already exist. Args: url (str): URL to download. Returns: tuple: Tuple containing: * fnDL (str): Donwload filename * folderFn (str): Filename of extracted download files """ import wget cwd=os.getcwd()+"/" if not os.path.exists(cwd+os.path.basename(url)): log.info(cwd+os.path.basename(url) +" does not exist, will download it.") folderFn=wget.download(url) else: log.info(cwd+os.path.basename(url) +" alreay exists, will not download.") folderFn=os.path.basename(url) fnDL=str(folderFn) print return folderFn, fnDL def downloadGmshWin(self,arch,gmshVersion): """Downloads Gmsh from Gmsh website for Windows Args: arch (str): System architecture, e.g. 64/32. gmshVersion (str): gmshVersion String, e.g. 2.12.0 . Returns: tuple: Tuple containing: * fnDL (str): Donwload filename * folderFn (str): Filename of extracted download files """ #Download Gmsh url='http://gmsh.info/bin/Windows/gmsh-'+gmshVersion+'-Windows'+arch+'.zip' folderFn, fnDL=self.downloadFileIfNotExist(url) #Decompress import zipfile with zipfile.ZipFile(folderFn) as zf: zf.extractall() folderFn='gmsh-'+gmshVersion+'-Windows' self.gmshPath='executables/gmsh/gmsh.exe' return fnDL,folderFn def downloadGmshOSX(self,arch,gmshVersion): """Downloads Gmsh from Gmsh website for OSX. Args: arch (str): System architecture, e.g. 64/32. gmshVersion (str): gmshVersion String, e.g. 2.12.0 . Returns: tuple: Tuple containing: * fnDL (str): Donwload filename * folderFn (str): Filename of extracted download files """ #Download Gmsh (if file isn't there yet) url='http://gmsh.info/bin/MacOSX/gmsh-'+gmshVersion+'-MacOSX'+'.dmg' folderFn, fnDL=self.downloadFileIfNotExist(url) #Mount dmg file (Here the user need to read through LICENSE, don't know how to fix this) log.info("executing: "+ 'hdiutil attach '+folderFn) os.system('hdiutil attach '+folderFn) folderFn=folderFn.replace('.dmg','') #try: #os.mkdir(folderFn) #except OSError: #pass cwd=os.getcwd() #Copy gmsh executable to cwd #Note: It seems to vary where gmsh executable is in mounted dmg file, hence we #just have to try out, take the one that actually worked and remember it rets=[] possFiles=["bin/","share/","gmsh"] rets.append(os.system('cp -rv /Volumes/'+folderFn+'/Gmsh.app/Contents/MacOS/bin/ '+ cwd)) rets.append(os.system('cp -rv /Volumes/'+folderFn+'/Gmsh.app/Contents/MacOS/share/ '+ cwd)) rets.append(os.system('cp -rv /Volumes/'+folderFn+'/Gmsh.app/Contents/MacOS/gmsh '+ cwd)) fnWorked=possFiles[rets.index(0)] #Unmount gmsh os.system('hdiutil detach /Volumes/'+folderFn+'/') #Build filename of acutally copied file folderFn=cwd+"/"+fnWorked self.gmshPath='executables/gmsh/./gmsh' return fnDL,folderFn def downloadGmshLinux(self,arch,gmshVersion): """Downloads Gmsh from Gmsh website for Linux. Args: arch (str): System architecture, e.g. 64/32. gmshVersion (str): gmshVersion String, e.g. 2.12.0 . Returns: tuple: Tuple containing: * fnDL (str): Donwload filename * folderFn (str): Filename of extracted download files """ #Download Gmsh url='http://gmsh.info/bin/Linux/gmsh-'+gmshVersion+'-Linux'+arch+'.tgz' folderFn, fnDL=self.downloadFileIfNotExist(url) #Decompress import tarfile with tarfile.open(folderFn,mode='r:gz') as zf: zf.extractall() folderFn='gmsh-'+gmshVersion+'-Linux' self.gmshPath='executables/gmsh/bin/./gmsh' return fnDL,folderFn def makeExeFolder(self): #Make executables folder if it doesn't exist yet try: os.mkdir('pyfrp/executables') except OSError: log.info('Was not able to create directory pyfrp/executables') def addPathToWinPATHs(self,path): """Adds a path to Windows' PATH list. .. note:: Only adds path if file exits. .. note:: You will need to restart the terminal to be sure that the change has any effect. Args: path (str): Path to be added. Returns: bool: True if successful. """ if platform.system() not in ["Windows"]: log.info("OS is not Windows, won't set path") return False if path in os.environ['PATH']: log.info("Path is already in PATH, won't set path") return False if os.path.exists(path): os.system("set PATH=%PATH%;"+path) return True else: log.info(path + " does not exist, won't set path") return False def downloadFiji(self): """Downloads Gmsh, moves it to executables directory and cleans up afterwards. Note that this will only work if *wget* is installed. """ #Flag to see if gmsh DL went through self.fijiDownloaded=False self.makeExeFolder() #Get fileList before filesBefore=os.listdir('.') #Try to import wget try: import wget #Get Architecture arch=platform.architecture()[0].replace('bit','') if platform.system() in ["Windows"]: fnDL,folderFn=self.downloadFijiWin(arch) elif platform.system() in ["Linux"]: fnDL,folderFn=self.downloadFijiLinux(arch) elif platform.system() in ["Darwin"]: fnDL,folderFn=self.downloadFijiOSX(arch) #Remove files self.cleanUpExe(fnDL,folderFn,filesBefore,'pyfrp/executables/Fiji.app/') uid,gid,mode=self.getPermDetails() if platform.system() not in ["Windows"]: self.changePermissions(self.fijiPath,uid,gid,mode) #self.addPathToWinPATHs(self.fijiPath) log.info("Installed Fiji to "+ self.fijiPath) #Set Flag=True self.fijiDownloaded=True except ImportError: log.info("Cannot find wget, will not be downloading fiji. You will need to install it later manually") def downloadFijiLinux(self,arch): """Downloads Fiji from Fiji website for Linux. Args: arch (str): System architecture, e.g. 64/32. Returns: tuple: Tuple containing: * fnDL (str): Donwload filename * folderFn (str): Filename of extracted download files """ import wget #Download Fiji url='http://downloads.imagej.net/fiji/latest/fiji-linux'+arch+'.zip' folderFn=wget.download(url) fnDL=str(folderFn) print #Decompress import zipfile with zipfile.ZipFile(folderFn) as zf: zf.extractall() folderFn='Fiji.app' self.fijiPath='executables/Fiji.app/./ImageJ-linux64' return fnDL,folderFn def downloadFijiWin(self,arch): """Downloads Fiji from Fiji website for Windows. Args: arch (str): System architecture, e.g. 64/32. Returns: tuple: Tuple containing: * fnDL (str): Donwload filename * folderFn (str): Filename of extracted download files """ import wget #Download fiji url='http://downloads.imagej.net/fiji/latest/fiji-win'+arch+'.zip' folderFn=wget.download(url) fnDL=str(folderFn) print #Decompress import zipfile with zipfile.ZipFile(folderFn) as zf: zf.extractall() folderFn='Fiji.app' self.fijiPath='executables/Fiji.app/ImageJ-linux64.exe' return fnDL,folderFn def downloadFijiOSX(self,arch): """Downloads Fiji from Fiji website for OSX. Returns: tuple: Tuple containing: * fnDL (str): Donwload filename * folderFn (str): Filename of extracted download files """ import wget #Download fiji url='http://downloads.imagej.net/fiji/latest/fiji-macosx.dmg' folderFn=wget.download(url) fnDL=str(folderFn) print #Mount dmg file os.system('hdiutil attach '+folderFn) cwd=os.getcwd() #Copy fiji executable to cwd os.system('cp -rv /Volumes/Fiji/Fiji.app '+ cwd) #Unmount gmsh os.system('hdiutil detach /Volumes/Fiji') folderFn='Fiji.app' self.fijiPath='executables/Fiji.app/Contents/MacOS/./ImageJ-macosx' return fnDL,folderFn def winToLinPath(self,path): return path.replace('\\','/') def setExePath(self,fn,identifier,exePath): """Enters executable path into path spec file. Args: fn (str): Path to gmsh executable. identifier (str): Identifier in spec file. exePath (str): Path to exe file """ #Make backup of default path file shutil.copy(fn,fn+'_backup') #Get filepath to PyFRAP fnPyfrp=fn.split('configurations')[0] # Remove possible backslashes from path fn=self.winToLinPath(fn) #Open file and enter new gmsh bin with open(fn,'rb') as fPath: with open(fn+"_new",'wb') as fPathNew: for line in fPath: if line.strip().startswith(identifier): ident,path=line.split('=') path=path.strip() lineNew=ident+"="+fnPyfrp+exePath fPathNew.write(lineNew+'\n') else: fPathNew.write(line) #Rename file shutil.move(fn+'_new',fn) def setGmshPath(self,fn): """Enters gmsh executable path into path spec file. Args: fn (str): Path to gmsh executable. """ self.setExePath(fn,'gmshBin',self.gmshPath) def setFijiPath(self,fn): """Enters fiji executable path into path spec file. Args: fn (str): Path to fiji executable. """ self.setExePath(fn,'fijiBin',self.fijiPath) def changePermissions(self,filepath,uid,gid,mode): """Sets File Permissions. Args: filepath (str): Path to file. uid (int): user ID. gid (int): group ID. mode (int): Permission mode. Returns: bool: True if success """ ret=True try: os.chown(filepath, uid, gid) if not self.silent: log.info("Changing ownership of %s to uid:%s gid %s" %(filepath, uid, gid)) except: if not self.silent: log.info("Was not able to change ownership of file %s" %(filepath)) ret=False try: if not self.silent: log.info("Changing permissions of %s to %s" %(filepath, oct(mode))) os.chmod(filepath, mode) except: if not self.silent: log.info("Was not able to change file permissions of file %s" %(filepath)) ret=False return ret def makeAdditionalDataFolders(self,folder,fn,uid,gid,mode): """Tries to generate additional data folders. Args: folder (str): Path to containing folder. fn (str): New folder name uid (int): user ID. gid (int): group ID. mode (int): Permission mode. Returns: bool: True if success """ if not folder.endswith("/"): folder=folder+"/" if os.path.isdir(folder+fn): return False else: try: os.mkdir(folder+fn) self.changePermissions(folder+fn,uid,gid,mode) return True except: log.info("Unable to create folder %s" %(folder+fn)) return False #Define setup #Check if setup.py is used to build RTD, then don't overwrite install command if os.environ.get('READTHEDOCS', None) == 'True': print "Installing on RTD, will not overwrite install command." setup(name='pyfrp', version=version, description='PyFRAP: A Python based FRAP analysis tool box', url='https://github.com/alexblaessle/PyFRAP', author='Alexander Blaessle', author_email='[email protected]', license='GNU GPL Version 3', packages=['pyfrp','pyfrp.modules','pyfrp.subclasses','pyfrp.gui'], package_dir={'pyfrp': 'pyfrp', 'pyfrp.modules': 'pyfrp/modules', 'pyfrp.gui' : 'pyfrp/gui' }, #package_data = {'pyfrp':['meshfiles','configurations']}, include_package_data=True, classifiers= [ 'Development Status :: 4 - Beta', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2.7', 'Topic :: Scientific/Engineering :: Bio-Informatics', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: GNU General Public License v3 (GPLv3)',\ 'Programming Language :: Python :: 2.7', ], install_requires=['pyopenssl','ndg-httpsclient','pyasn1','ez_setup','numpy','scipy','matplotlib','scikit-image','FiPy','colorama','numpy-stl','solidpython','wget','python-bioformats'], platforms=['ALL'], keywords=["FRAP", "fluorescence",'recovery','after','photobleaching','reaction-diffusion','fitting' ], zip_safe=False ) else: setup(name='pyfrp', version=version, description='PyFRAP: A Python based FRAP analysis tool box', url='https://github.com/alexblaessle/PyFRAP', author='Alexander Blaessle', author_email='[email protected]', license='GNU GPL Version 3', packages=['pyfrp','pyfrp.modules','pyfrp.subclasses','pyfrp.gui'], package_dir={'pyfrp': 'pyfrp', 'pyfrp.modules': 'pyfrp/modules', 'pyfrp.gui' : 'pyfrp/gui' }, #package_data = {'pyfrp':['meshfiles','configurations']}, include_package_data=True, classifiers= [ 'Development Status :: 4 - Beta', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2.7', 'Topic :: Scientific/Engineering :: Bio-Informatics', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: GNU General Public License v3 (GPLv3)',\ 'Programming Language :: Python :: 2.7', ], install_requires=['pyopenssl','ndg-httpsclient','pyasn1','ez_setup','numpy','scipy','matplotlib','scikit-image','FiPy','colorama','numpy-stl','solidpython','wget','python-bioformats'], platforms=['ALL'], keywords=["FRAP", "fluorescence",'recovery','after','photobleaching','reaction-diffusion','fitting' ], zip_safe=False, cmdclass={'install': OverrideInstall} #Need this here to overwrite our install )
gpl-3.0
kenshay/ImageScript
ProgramData/SystemFiles/Python/Lib/site-packages/pandas/tseries/timedeltas.py
7
6047
""" timedelta support tools """ import numpy as np import pandas as pd import pandas.tslib as tslib from pandas.types.common import (_ensure_object, is_integer_dtype, is_timedelta64_dtype, is_list_like) from pandas.types.generic import ABCSeries, ABCIndexClass from pandas.util.decorators import deprecate_kwarg @deprecate_kwarg(old_arg_name='coerce', new_arg_name='errors', mapping={True: 'coerce', False: 'raise'}) def to_timedelta(arg, unit='ns', box=True, errors='raise', coerce=None): """ Convert argument to timedelta Parameters ---------- arg : string, timedelta, list, tuple, 1-d array, or Series unit : unit of the arg (D,h,m,s,ms,us,ns) denote the unit, which is an integer/float number box : boolean, default True - If True returns a Timedelta/TimedeltaIndex of the results - if False returns a np.timedelta64 or ndarray of values of dtype timedelta64[ns] errors : {'ignore', 'raise', 'coerce'}, default 'raise' - If 'raise', then invalid parsing will raise an exception - If 'coerce', then invalid parsing will be set as NaT - If 'ignore', then invalid parsing will return the input Returns ------- ret : timedelta64/arrays of timedelta64 if parsing succeeded Examples -------- Parsing a single string to a Timedelta: >>> pd.to_timedelta('1 days 06:05:01.00003') Timedelta('1 days 06:05:01.000030') >>> pd.to_timedelta('15.5us') Timedelta('0 days 00:00:00.000015') Parsing a list or array of strings: >>> pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan']) TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT], dtype='timedelta64[ns]', freq=None) Converting numbers by specifying the `unit` keyword argument: >>> pd.to_timedelta(np.arange(5), unit='s') TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02', '00:00:03', '00:00:04'], dtype='timedelta64[ns]', freq=None) >>> pd.to_timedelta(np.arange(5), unit='d') TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq=None) """ unit = _validate_timedelta_unit(unit) if errors not in ('ignore', 'raise', 'coerce'): raise ValueError("errors must be one of 'ignore', " "'raise', or 'coerce'}") if arg is None: return arg elif isinstance(arg, ABCSeries): from pandas import Series values = _convert_listlike(arg._values, unit=unit, box=False, errors=errors) return Series(values, index=arg.index, name=arg.name) elif isinstance(arg, ABCIndexClass): return _convert_listlike(arg, unit=unit, box=box, errors=errors, name=arg.name) elif is_list_like(arg) and getattr(arg, 'ndim', 1) == 1: return _convert_listlike(arg, unit=unit, box=box, errors=errors) elif getattr(arg, 'ndim', 1) > 1: raise TypeError('arg must be a string, timedelta, list, tuple, ' '1-d array, or Series') # ...so it must be a scalar value. Return scalar. return _coerce_scalar_to_timedelta_type(arg, unit=unit, box=box, errors=errors) _unit_map = { 'Y': 'Y', 'y': 'Y', 'W': 'W', 'w': 'W', 'D': 'D', 'd': 'D', 'days': 'D', 'Days': 'D', 'day': 'D', 'Day': 'D', 'M': 'M', 'H': 'h', 'h': 'h', 'm': 'm', 'T': 'm', 'S': 's', 's': 's', 'L': 'ms', 'MS': 'ms', 'ms': 'ms', 'US': 'us', 'us': 'us', 'NS': 'ns', 'ns': 'ns', } def _validate_timedelta_unit(arg): """ provide validation / translation for timedelta short units """ try: return _unit_map[arg] except: if arg is None: return 'ns' raise ValueError("invalid timedelta unit {0} provided".format(arg)) def _coerce_scalar_to_timedelta_type(r, unit='ns', box=True, errors='raise'): """Convert string 'r' to a timedelta object.""" try: result = tslib.convert_to_timedelta64(r, unit) except ValueError: if errors == 'raise': raise elif errors == 'ignore': return r # coerce result = pd.NaT if box: result = tslib.Timedelta(result) return result def _convert_listlike(arg, unit='ns', box=True, errors='raise', name=None): """Convert a list of objects to a timedelta index object.""" if isinstance(arg, (list, tuple)) or not hasattr(arg, 'dtype'): arg = np.array(list(arg), dtype='O') # these are shortcut-able if is_timedelta64_dtype(arg): value = arg.astype('timedelta64[ns]') elif is_integer_dtype(arg): value = arg.astype('timedelta64[{0}]'.format( unit)).astype('timedelta64[ns]', copy=False) else: try: value = tslib.array_to_timedelta64(_ensure_object(arg), unit=unit, errors=errors) value = value.astype('timedelta64[ns]', copy=False) except ValueError: if errors == 'ignore': return arg else: # This else-block accounts for the cases when errors='raise' # and errors='coerce'. If errors == 'raise', these errors # should be raised. If errors == 'coerce', we shouldn't # expect any errors to be raised, since all parsing errors # cause coercion to pd.NaT. However, if an error / bug is # introduced that causes an Exception to be raised, we would # like to surface it. raise if box: from pandas import TimedeltaIndex value = TimedeltaIndex(value, unit='ns', name=name) return value
gpl-3.0
ainafp/nilearn
plot_haxby_grid_search.py
1
5358
""" Setting a parameter by cross-validation ======================================================= Here we set the number of features selected in an Anova-SVC approach to maximize the cross-validation score. After separating 2 sessions for validation, we vary that parameter and measure the cross-validation score. We also measure the prediction score on the left-out validation data. As we can see, the two scores vary by a significant amount: this is due to sampling noise in cross validation, and choosing the parameter k to maximize the cross-validation score, might not maximize the score on left-out data. Thus using data to maximize a cross-validation score computed on that same data is likely to optimistic and lead to an overfit. The proper appraoch is known as a "nested cross-validation". It consists in doing cross-validation loops to set the model parameters inside the cross-validation loop used to judge the prediction performance: the parameters are set separately on each fold, never using the data used to measure performance. In scikit-learn, this can be done using the GridSearchCV object, that will automatically select the best parameters of an estimator from a grid of parameter values. One difficulty here is that we are working with a composite estimator: a pipeline of feature selection followed by SVC. Thus to give the name of the parameter that we want to tune we need to give the name of the step in the pipeline, followed by the name of the parameter, with '__' as a separator. """ ### Load Haxby dataset ######################################################## from nilearn import datasets import numpy as np dataset_files = datasets.fetch_haxby_simple() y, session = np.loadtxt(dataset_files.session_target).astype("int").T conditions = np.recfromtxt(dataset_files.conditions_target)['f0'] mask_file = dataset_files.mask # fmri_data.shape is (40, 64, 64, 1452) # and mask.shape is (40, 64, 64) ### Preprocess data ########################################################### ### Restrict to faces and houses ############################################## # Keep only data corresponding to shoes or bottles condition_mask = np.logical_or(conditions == 'shoe', conditions == 'bottle') y = y[condition_mask] session = session[condition_mask] conditions = conditions[condition_mask] ### Loading step ############################################################## from nilearn.input_data import NiftiMasker # For decoding, standardizing is often very important nifti_masker = NiftiMasker(mask=mask_file, sessions=session, smoothing_fwhm=4, standardize=True, memory="nilearn_cache", memory_level=1) X = nifti_masker.fit_transform(dataset_files.func) # Restrict to non rest data X = X[condition_mask] ### Prediction function ####################################################### ### Define the prediction function to be used. # Here we use a Support Vector Classification, with a linear kernel from sklearn.svm import SVC svc = SVC(kernel='linear') ### Dimension reduction ####################################################### from sklearn.feature_selection import SelectKBest, f_classif ### Define the dimension reduction to be used. # Here we use a classical univariate feature selection based on F-test, # namely Anova. We set the number of features to be selected to 500 feature_selection = SelectKBest(f_classif, k=500) # We have our classifier (SVC), our feature selection (SelectKBest), and now, # we can plug them together in a *pipeline* that performs the two operations # successively: from sklearn.pipeline import Pipeline anova_svc = Pipeline([('anova', feature_selection), ('svc', svc)]) ### Cross validation ########################################################## anova_svc.fit(X, y) y_pred = anova_svc.predict(X) from sklearn.cross_validation import LeaveOneLabelOut, cross_val_score cv = LeaveOneLabelOut(session[session < 10]) k_range = [10, 15, 30, 50, 150, 300, 500, 1000, 1500, 3000, 5000] cv_scores = [] scores_validation = [] for k in k_range: feature_selection.k = k cv_scores.append(np.mean( cross_val_score(anova_svc, X[session < 10], y[session < 10]))) print "CV score", cv_scores[-1] anova_svc.fit(X[session < 10], y[session < 10]) y_pred = anova_svc.predict(X[session == 10]) scores_validation.append(np.mean(y_pred == y[session == 10])) print "score validation", scores_validation[-1] from matplotlib import pyplot as plt plt.figure(figsize=(6, 4)) plt.plot(cv_scores, label='Cross validation scores') plt.plot(scores_validation, label='Left-out validation data scores') plt.xticks(np.arange(len(k_range)), k_range) plt.axis('tight') plt.xlabel('k') ### Nested cross-validation ################################################### from sklearn.grid_search import GridSearchCV # We are going to tune the parameter 'k' of the step called 'anova' in # the pipeline. Thus we need to address it as 'anova__k'. # Note that GridSearchCV takes an n_jobs argument that can make it go # much faster grid = GridSearchCV(anova_svc, param_grid={'anova__k': k_range}, verbose=True) nested_cv_scores = cross_val_score(grid, X, y) plt.axhline(np.mean(nested_cv_scores), label='Nested cross-validation', color='r') plt.legend(loc='best', frameon=False) plt.show()
bsd-3-clause
wavelets/hmmlearn
examples/plot_hmm_stock_analysis.py
4
2785
""" ========================== Gaussian HMM of stock data ========================== This script shows how to use Gaussian HMM. It uses stock price data, which can be obtained from yahoo finance. For more information on how to get stock prices with matplotlib, please refer to date_demo1.py of matplotlib. """ from __future__ import print_function import datetime import numpy as np import pylab as pl from matplotlib.finance import quotes_historical_yahoo from matplotlib.dates import YearLocator, MonthLocator, DateFormatter from hmmlearn.hmm import GaussianHMM print(__doc__) ############################################################################### # Downloading the data date1 = datetime.date(1995, 1, 1) # start date date2 = datetime.date(2012, 1, 6) # end date # get quotes from yahoo finance quotes = quotes_historical_yahoo("INTC", date1, date2) if len(quotes) == 0: raise SystemExit # unpack quotes dates = np.array([q[0] for q in quotes], dtype=int) close_v = np.array([q[2] for q in quotes]) volume = np.array([q[5] for q in quotes])[1:] # take diff of close value # this makes len(diff) = len(close_t) - 1 # therefore, others quantity also need to be shifted diff = close_v[1:] - close_v[:-1] dates = dates[1:] close_v = close_v[1:] # pack diff and volume for training X = np.column_stack([diff, volume]) ############################################################################### # Run Gaussian HMM print("fitting to HMM and decoding ...", end='') n_components = 5 # make an HMM instance and execute fit model = GaussianHMM(n_components, covariance_type="diag", n_iter=1000) model.fit([X]) # predict the optimal sequence of internal hidden state hidden_states = model.predict(X) print("done\n") ############################################################################### # print trained parameters and plot print("Transition matrix") print(model.transmat_) print() print("means and vars of each hidden state") for i in range(n_components): print("%dth hidden state" % i) print("mean = ", model.means_[i]) print("var = ", np.diag(model.covars_[i])) print() years = YearLocator() # every year months = MonthLocator() # every month yearsFmt = DateFormatter('%Y') fig = pl.figure() ax = fig.add_subplot(111) for i in range(n_components): # use fancy indexing to plot data in each state idx = (hidden_states == i) ax.plot_date(dates[idx], close_v[idx], 'o', label="%dth hidden state" % i) ax.legend() # format the ticks ax.xaxis.set_major_locator(years) ax.xaxis.set_major_formatter(yearsFmt) ax.xaxis.set_minor_locator(months) ax.autoscale_view() # format the coords message box ax.fmt_xdata = DateFormatter('%Y-%m-%d') ax.fmt_ydata = lambda x: '$%1.2f' % x ax.grid(True) fig.autofmt_xdate() pl.show()
bsd-3-clause
RussianOtter/networking
RoA.py
1
7731
""" R --------- R O O ------ O N C A --- A D C L O U G +Copyright SavSec (c) 2017 M r O E R +Algorithms are intellectual N I so no Copyright except C T directly to ownership of the E H base algorithm. M -MIT License- """ import time, random, sys, string, itertools, os import base64, hashlib from Crypto import Random from Crypto.Cipher import AES class AESCipher (object): def __init__(self, key): self.bs = 32 self.key = key def encrypt(self, raw): raw = self._pad(raw) iv = Random.new().read(AES.block_size) cipher = AES.new(self.key, AES.MODE_CBC, iv) return base64.b64encode(iv + cipher.encrypt(raw)) def decrypt(self, enc): enc = base64.b64decode(enc) iv = enc[:AES.block_size] cipher = AES.new(self.key, AES.MODE_CBC, iv) return self._unpad(cipher.decrypt(enc[AES.block_size:])).decode("utf-8") def _pad(self, s): return s + (self.bs - len(s) % self.bs) * chr(self.bs - len(s) % self.bs) @staticmethod def _unpad(s): return s[:-ord(s[len(s)-1:])] class RoA (object): """ RoA / Random Occurence Algorithm is an algorithm developed by Russian Otter! This basic algorithm generates random data based on the exponential outputs given from the algorithm! Requirements To Decrypt: 1.) AES Key 2.) RoA Key 3.) Salt 4.) Encrypted Dictionary """ def __init__(self,verbose=False): """ Setting this option to True makes RoA display all active activities! """ self.verbose = verbose def algorithm(self,tm,base_length): """ RoA.algorithm(3 Digits, Key Length) -> Numeric Algorithm Output This is how RoA generates it's data! The output to RoA is simular to Pi in the fact that it doesnt end and doesnt repeat! """ base = "" d = ".".join("`"*i+" "[i : i+i] for i in range(0,125,random.randint(1,4)))+ ".".join("`"*i+" "[i : i] for i in range(0,125,random.randint(1,10))) b = "".join(d[a : i] for i in range(0,10+tm,2) for a in range(i+~-i*i)) for _ in "".join(b[i:i+i] for i in range(0,tm+base_length,2)): base += _ time.sleep(0.000005) base = base[:base_length] n = "" for _ in range(tm): n += str("".join(random.sample(base,random.choice(range(len(base))))).count(".")) time.sleep(0.0005) try: n = hex(int(n))[2:].replace("L","")[:base_length] except: return n while 1: if len(n) == base_length: break n += random.choice(string.hexdigits.lower()) return n[:base_length] def generate_key(self,AESkey): """ RoA.generate_key(32bit AES Key) This is used to general the basic RoA Encryption Key """ if len(AESkey) != 32: raise "AESkey length is %s. 32 bit key is required!" tm = random.choice(range(0,100)) if len(str(tm)) == 2 and tm < 77: tm = int("0"+str(tm)) if len(str(tm)) == 1: tm = int("00"+str(tm)) key = self.algorithm(tm,16) key = key + AESkey return key def encrypt(self,msg,key): """ RoA.Encrypt(message, RoAKey) This is the main encryption process of RoA which makes it secure """ if self.verbose: print "Master Key:",key print "\nAES Key:",key[16:] print "\nRoA Key:",key[:16] print "\nEncrypting Message in AES..." AESKey = key[16:] rokey = key[:16] *2 aes = AESCipher(key[16:]) en_msg = aes.encrypt(msg) if self.verbose: print "\nEncrypted AES:",en_msg print "\nApplying Salt Mix..." msg = en_msg frag = None while 1: for _ in range(4,9): l = len(msg)/float(_) if l.is_integer(): frag = _ msg += b"\x01" if frag != None: break sp = len(msg)/frag fragged = [] salt = [] while 1: pun = True for _ in msg: if _ in string.punctuation: t = "".join(random.sample(string.ascii_letters + string.digits + string.punctuation.strip("}").strip("'").strip("\"") +b"\x01",7)) pun = False break if pun: t = "".join(random.sample(string.ascii_letters + string.digits+b"\x01",7)) if t not in "".join(msg): salt.append(t) if len(salt) > 15: break prev = 0 while True: f = random.randint(1,sp) fragged.append(msg[prev:prev+f]) prev = prev + f if prev >= len(msg)-1: break if self.verbose: print "Fragmented Text:" print fragged print "\nSalt & Pepper:" print salt refrag = {} def shuffled(x): y = x[:] random.shuffle(y) return y x = shuffled(fragged) for _ in fragged: for i in x: if i == _: refrag.update( {str(x[x.index(_)] ):fragged.index(i)}) if self.verbose: print "\nMixed Fragments:" print x print "\nDictionary:" print refrag comp_refrag = str(refrag).replace(", '",",'") comp_salt = str(salt).replace(", '",",'") comp_dict = comp_refrag+b"\x02"+comp_salt.strip("\n") if self.verbose: print "\nCompressed Dictionary:" print comp_dict salt_mix = "" sl = 0 for _ in x: if sl > len(salt)-1: sl = 0 salt_mix += _+salt[sl] sl = sl + 1 if self.verbose: print "\nSalted Text:" print salt_mix aessalt = AESCipher(rokey) en_comp_dict = aessalt.encrypt(comp_dict) en_salt = aessalt.encrypt(salt_mix) if self.verbose: print "\nEncrypted Dictionary:" print en_comp_dict print "\nEncrypted Salt:" print en_salt return en_salt+b"\x03"+en_comp_dict,rokey,AESKey def decrypt(self,en_saltdict,key,AESKey): """ RoA.decrypt(encrypted salt dictionary, RoA Key, AES Key) This fuction process reverses all the past actions based on the information it decrypts """ en_comp_dict = en_saltdict.split(b"\x03")[1] en_salt = en_saltdict.split(b"\x03")[0] aessalt = AESCipher(key) comp_dict = aessalt.decrypt(en_comp_dict) aessalt = AESCipher(key) salt_mix = aessalt.decrypt(en_salt) if self.verbose: print "\n - Starting Decryption Process -" print "\nCollecting Dictionary Data..." de_dict = eval(comp_dict.split(b"\x02")[0]) water = eval(comp_dict.split(b"\x02")[1]) de_salt = salt_mix remain = [] if self.verbose: print "Diluting Salt..." for _ in water: de_salt = de_salt.replace(_,"") if self.verbose: print "Re-arranging Text..." c = 0 en_txt = "" for _ in de_dict: for _ in de_dict: if de_dict[_] == c: en_txt += _ c = c + 1 aes = AESCipher(AESKey) de_txt = aes.decrypt(en_txt) if self.verbose: print "\nEncrypted Text:" print en_txt print "\nDecrypting..." print "\nDecrypted Text:" print de_txt return de_txt Ro = RoA(True) def example(): Ro = RoA(True) saltdic = Ro.encrypt("Follow @Russian_Otter on Instagram!",Ro.generate_key("PythonRo"*4)) time.sleep(5) decrypted = Ro.decrypt(saltdic[0],saltdic[1],saltdic[2]) def pattern_test(): import matplotlib.pyplot as plt import numpy as np amount = "\r\r\ra: %s b: %s c: %s d: %s e: %s f: %s 1: %s 2: %s 3: %s 4: %s 5: %s 6: %s 7: %s 8: %s 9: %s 0: %s " for _ in range(100): key = Ro.algorithm(10,16) f = open("tmp.bit","a") f.write(key) f.close() total = open("tmp.bit").read() a = amount.replace(" "," | ") t = total data = a % (t.count("a"),t.count("b"),t.count("c" ),t.count("d"),t.count("e"),t.count("f"),t.count("1"),t.count("2" ),t.count("3"),t.count("4"),t.count("5"),t.count("6"),t.count("7"),t.count("8"),t.count("9"), t.count("0")) sys.stdout.write(data) time.sleep(0.00005) t = data.split(" | ") alphab = list("abcdef1234567890") frequencies = [] for _ in range(1,32,2): frequencies.append(int(t[_].replace(" ",""))) pos = np.arange(len(alphab)) width = 1.0 ax = plt.axes() ax.set_xticks(pos + (width / 1)) ax.set_xticklabels(alphab) plt.bar(pos, frequencies, width, color="lime") plt.show() os.remove("./tmp.bit")
gpl-3.0
robblack007/clase-dinamica-robot
Practicas/practica2/robots/estaciones.py
4
2501
def estacion_3gdl(puerto_zmq = "5555"): ''' Esta función crea un socket de 0MQ para publicar datos de tres referencias. >>> from robots.estaciones import estacion_3gdl >>> estacion_3gdl("5555") Iniciando estacion de referencias en el puerto 5555 ''' from zmq import Context, PUB from msgpack import packb from ipywidgets import interact context = Context() socket = context.socket(PUB) socket.bind("tcp://*:" + puerto_zmq) def mandar_mensaje(q1=0, q2=0, q3=0): socket.send(packb([q1, q2, q3])) print("Iniciando estacion de referencias en el puerto " + puerto_zmq) interact(mandar_mensaje, q1=(-180.0, 180.0), q2=(-180.0, 180.0), q3=(-180.0, 180.0)); def estacion_1gdl(puerto_zmq = "5555"): ''' Esta función crea un socket de 0MQ para publicar datos de tres referencias. >>> from robots.estaciones import estacion_3gdl >>> estacion_3gdl("5555") Iniciando estacion de referencias en el puerto 5555 ''' from zmq import Context, PUB from msgpack import packb from ipywidgets import interact context = Context() socket = context.socket(PUB) socket.bind("tcp://*:" + puerto_zmq) def mandar_mensaje(q1=0): socket.send(packb([q1])) print("Iniciando estacion de referencias en el puerto " + puerto_zmq) interact(mandar_mensaje, q1=(-180.0, 180.0)); def gen_sen_3gdl(puerto_zmq, gen1=True, gen2=True, gen3=True): from zmq import Context, PUB from msgpack import packb from matplotlib.pyplot import figure from time import time, sleep from numpy import sin, pi context = Context() socket = context.socket(PUB) socket.bind("tcp://*:" + puerto_zmq) def mandar_mensaje(señal, g1, g2, g3): socket.send(packb([señal if gen else 0 for gen in [g1, g2, g3]])) fig = figure(figsize=(6,3)) ax = fig.gca() t0 = time() ts = [] ys = [] while True: try: t = time()-t0 if t >= 0.005: y = 30*sin(pi*t) mandar_mensaje(y, gen1, gen2, gen3) ts.append(t) ys.append(y) ax.clear() if len(ys) > 100: ax.plot(ts[-100:], ys[-100:]) else: ax.plot(ts, ys) fig.canvas.draw() except KeyboardInterrupt: break
mit
IssamLaradji/scikit-learn
sklearn/datasets/mlcomp.py
41
3803
# Copyright (c) 2010 Olivier Grisel <[email protected]> # License: BSD 3 clause """Glue code to load http://mlcomp.org data as a scikit.learn dataset""" import os import numbers from sklearn.datasets.base import load_files def _load_document_classification(dataset_path, metadata, set_=None, **kwargs): if set_ is not None: dataset_path = os.path.join(dataset_path, set_) return load_files(dataset_path, metadata.get('description'), **kwargs) LOADERS = { 'DocumentClassification': _load_document_classification, # TODO: implement the remaining domain formats } def load_mlcomp(name_or_id, set_="raw", mlcomp_root=None, **kwargs): """Load a datasets as downloaded from http://mlcomp.org Parameters ---------- name_or_id : the integer id or the string name metadata of the MLComp dataset to load set_ : select the portion to load: 'train', 'test' or 'raw' mlcomp_root : the filesystem path to the root folder where MLComp datasets are stored, if mlcomp_root is None, the MLCOMP_DATASETS_HOME environment variable is looked up instead. **kwargs : domain specific kwargs to be passed to the dataset loader. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'filenames', the files holding the raw to learn, 'target', the classification labels (integer index), 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. Note on the lookup process: depending on the type of name_or_id, will choose between integer id lookup or metadata name lookup by looking at the unzipped archives and metadata file. TODO: implement zip dataset loading too """ if mlcomp_root is None: try: mlcomp_root = os.environ['MLCOMP_DATASETS_HOME'] except KeyError: raise ValueError("MLCOMP_DATASETS_HOME env variable is undefined") mlcomp_root = os.path.expanduser(mlcomp_root) mlcomp_root = os.path.abspath(mlcomp_root) mlcomp_root = os.path.normpath(mlcomp_root) if not os.path.exists(mlcomp_root): raise ValueError("Could not find folder: " + mlcomp_root) # dataset lookup if isinstance(name_or_id, numbers.Integral): # id lookup dataset_path = os.path.join(mlcomp_root, str(name_or_id)) else: # assume name based lookup dataset_path = None expected_name_line = "name: " + name_or_id for dataset in os.listdir(mlcomp_root): metadata_file = os.path.join(mlcomp_root, dataset, 'metadata') if not os.path.exists(metadata_file): continue with open(metadata_file) as f: for line in f: if line.strip() == expected_name_line: dataset_path = os.path.join(mlcomp_root, dataset) break if dataset_path is None: raise ValueError("Could not find dataset with metadata line: " + expected_name_line) # loading the dataset metadata metadata = dict() metadata_file = os.path.join(dataset_path, 'metadata') if not os.path.exists(metadata_file): raise ValueError(dataset_path + ' is not a valid MLComp dataset') with open(metadata_file) as f: for line in f: if ":" in line: key, value = line.split(":", 1) metadata[key.strip()] = value.strip() format = metadata.get('format', 'unknow') loader = LOADERS.get(format) if loader is None: raise ValueError("No loader implemented for format: " + format) return loader(dataset_path, metadata, set_=set_, **kwargs)
bsd-3-clause
michigraber/scikit-learn
examples/linear_model/plot_ols_3d.py
350
2040
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Sparsity Example: Fitting only features 1 and 2 ========================================================= Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that although feature 2 has a strong coefficient on the full model, it does not give us much regarding `y` when compared to just feature 1 """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets, linear_model diabetes = datasets.load_diabetes() indices = (0, 1) X_train = diabetes.data[:-20, indices] X_test = diabetes.data[-20:, indices] y_train = diabetes.target[:-20] y_test = diabetes.target[-20:] ols = linear_model.LinearRegression() ols.fit(X_train, y_train) ############################################################################### # Plot the figure def plot_figs(fig_num, elev, azim, X_train, clf): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, elev=elev, azim=azim) ax.scatter(X_train[:, 0], X_train[:, 1], y_train, c='k', marker='+') ax.plot_surface(np.array([[-.1, -.1], [.15, .15]]), np.array([[-.1, .15], [-.1, .15]]), clf.predict(np.array([[-.1, -.1, .15, .15], [-.1, .15, -.1, .15]]).T ).reshape((2, 2)), alpha=.5) ax.set_xlabel('X_1') ax.set_ylabel('X_2') ax.set_zlabel('Y') ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) #Generate the three different figures from different views elev = 43.5 azim = -110 plot_figs(1, elev, azim, X_train, ols) elev = -.5 azim = 0 plot_figs(2, elev, azim, X_train, ols) elev = -.5 azim = 90 plot_figs(3, elev, azim, X_train, ols) plt.show()
bsd-3-clause
lthurlow/Network-Grapher
proj/external/matplotlib-1.2.1/build/lib.linux-i686-2.7/matplotlib/axes.py
2
324939
from __future__ import division, print_function import math, sys, warnings, datetime from operator import itemgetter import itertools import numpy as np from numpy import ma import matplotlib rcParams = matplotlib.rcParams import matplotlib.artist as martist from matplotlib.artist import allow_rasterization import matplotlib.axis as maxis import matplotlib.cbook as cbook import matplotlib.collections as mcoll import matplotlib.colors as mcolors import matplotlib.contour as mcontour import matplotlib.dates as _ # <-registers a date unit converter from matplotlib import docstring import matplotlib.font_manager as font_manager import matplotlib.image as mimage import matplotlib.legend as mlegend import matplotlib.lines as mlines import matplotlib.markers as mmarkers import matplotlib.mlab as mlab import matplotlib.path as mpath import matplotlib.patches as mpatches import matplotlib.spines as mspines import matplotlib.quiver as mquiver import matplotlib.scale as mscale import matplotlib.stackplot as mstack import matplotlib.streamplot as mstream import matplotlib.table as mtable import matplotlib.text as mtext import matplotlib.ticker as mticker import matplotlib.transforms as mtransforms import matplotlib.tri as mtri from matplotlib import MatplotlibDeprecationWarning as mplDeprecation from matplotlib.container import BarContainer, ErrorbarContainer, StemContainer iterable = cbook.iterable is_string_like = cbook.is_string_like is_sequence_of_strings = cbook.is_sequence_of_strings def _string_to_bool(s): if not is_string_like(s): return s if s == 'on': return True if s == 'off': return False raise ValueError("string argument must be either 'on' or 'off'") def _process_plot_format(fmt): """ Process a MATLAB style color/line style format string. Return a (*linestyle*, *color*) tuple as a result of the processing. Default values are ('-', 'b'). Example format strings include: * 'ko': black circles * '.b': blue dots * 'r--': red dashed lines .. seealso:: :func:`~matplotlib.Line2D.lineStyles` and :func:`~matplotlib.pyplot.colors` for all possible styles and color format string. """ linestyle = None marker = None color = None # Is fmt just a colorspec? try: color = mcolors.colorConverter.to_rgb(fmt) # We need to differentiate grayscale '1.0' from tri_down marker '1' try: fmtint = str(int(fmt)) except ValueError: return linestyle, marker, color # Yes else: if fmt != fmtint: # user definitely doesn't want tri_down marker return linestyle, marker, color # Yes else: # ignore converted color color = None except ValueError: pass # No, not just a color. # handle the multi char special cases and strip them from the # string if fmt.find('--')>=0: linestyle = '--' fmt = fmt.replace('--', '') if fmt.find('-.')>=0: linestyle = '-.' fmt = fmt.replace('-.', '') if fmt.find(' ')>=0: linestyle = 'None' fmt = fmt.replace(' ', '') chars = [c for c in fmt] for c in chars: if c in mlines.lineStyles: if linestyle is not None: raise ValueError( 'Illegal format string "%s"; two linestyle symbols' % fmt) linestyle = c elif c in mlines.lineMarkers: if marker is not None: raise ValueError( 'Illegal format string "%s"; two marker symbols' % fmt) marker = c elif c in mcolors.colorConverter.colors: if color is not None: raise ValueError( 'Illegal format string "%s"; two color symbols' % fmt) color = c else: raise ValueError( 'Unrecognized character %c in format string' % c) if linestyle is None and marker is None: linestyle = rcParams['lines.linestyle'] if linestyle is None: linestyle = 'None' if marker is None: marker = 'None' return linestyle, marker, color def set_default_color_cycle(clist): """ Change the default cycle of colors that will be used by the plot command. This must be called before creating the :class:`Axes` to which it will apply; it will apply to all future axes. *clist* is a sequence of mpl color specifiers. See also: :meth:`~matplotlib.axes.Axes.set_color_cycle`. .. Note:: Deprecated 2010/01/03. Set rcParams['axes.color_cycle'] directly. """ rcParams['axes.color_cycle'] = clist warnings.warn("Set rcParams['axes.color_cycle'] directly", mplDeprecation) class _process_plot_var_args(object): """ Process variable length arguments to the plot command, so that plot commands like the following are supported:: plot(t, s) plot(t1, s1, t2, s2) plot(t1, s1, 'ko', t2, s2) plot(t1, s1, 'ko', t2, s2, 'r--', t3, e3) an arbitrary number of *x*, *y*, *fmt* are allowed """ def __init__(self, axes, command='plot'): self.axes = axes self.command = command self.set_color_cycle() def __getstate__(self): # note: it is not possible to pickle a itertools.cycle instance return {'axes': self.axes, 'command': self.command} def __setstate__(self, state): self.__dict__ = state.copy() self.set_color_cycle() def set_color_cycle(self, clist=None): if clist is None: clist = rcParams['axes.color_cycle'] self.color_cycle = itertools.cycle(clist) def __call__(self, *args, **kwargs): if self.axes.xaxis is not None and self.axes.yaxis is not None: xunits = kwargs.pop( 'xunits', self.axes.xaxis.units) if self.axes.name == 'polar': xunits = kwargs.pop( 'thetaunits', xunits ) yunits = kwargs.pop( 'yunits', self.axes.yaxis.units) if self.axes.name == 'polar': yunits = kwargs.pop( 'runits', yunits ) if xunits!=self.axes.xaxis.units: self.axes.xaxis.set_units(xunits) if yunits!=self.axes.yaxis.units: self.axes.yaxis.set_units(yunits) ret = self._grab_next_args(*args, **kwargs) return ret def set_lineprops(self, line, **kwargs): assert self.command == 'plot', 'set_lineprops only works with "plot"' for key, val in kwargs.items(): funcName = "set_%s"%key if not hasattr(line,funcName): raise TypeError('There is no line property "%s"'%key) func = getattr(line,funcName) func(val) def set_patchprops(self, fill_poly, **kwargs): assert self.command == 'fill', 'set_patchprops only works with "fill"' for key, val in kwargs.items(): funcName = "set_%s"%key if not hasattr(fill_poly,funcName): raise TypeError('There is no patch property "%s"'%key) func = getattr(fill_poly,funcName) func(val) def _xy_from_xy(self, x, y): if self.axes.xaxis is not None and self.axes.yaxis is not None: bx = self.axes.xaxis.update_units(x) by = self.axes.yaxis.update_units(y) if self.command!='plot': # the Line2D class can handle unitized data, with # support for post hoc unit changes etc. Other mpl # artists, eg Polygon which _process_plot_var_args # also serves on calls to fill, cannot. So this is a # hack to say: if you are not "plot", which is # creating Line2D, then convert the data now to # floats. If you are plot, pass the raw data through # to Line2D which will handle the conversion. So # polygons will not support post hoc conversions of # the unit type since they are not storing the orig # data. Hopefully we can rationalize this at a later # date - JDH if bx: x = self.axes.convert_xunits(x) if by: y = self.axes.convert_yunits(y) x = np.atleast_1d(x) #like asanyarray, but converts scalar to array y = np.atleast_1d(y) if x.shape[0] != y.shape[0]: raise ValueError("x and y must have same first dimension") if x.ndim > 2 or y.ndim > 2: raise ValueError("x and y can be no greater than 2-D") if x.ndim == 1: x = x[:,np.newaxis] if y.ndim == 1: y = y[:,np.newaxis] return x, y def _makeline(self, x, y, kw, kwargs): kw = kw.copy() # Don't modify the original kw. if not 'color' in kw and not 'color' in kwargs.keys(): kw['color'] = self.color_cycle.next() # (can't use setdefault because it always evaluates # its second argument) seg = mlines.Line2D(x, y, axes=self.axes, **kw ) self.set_lineprops(seg, **kwargs) return seg def _makefill(self, x, y, kw, kwargs): try: facecolor = kw['color'] except KeyError: facecolor = self.color_cycle.next() seg = mpatches.Polygon(np.hstack( (x[:,np.newaxis],y[:,np.newaxis])), facecolor = facecolor, fill=True, closed=kw['closed'] ) self.set_patchprops(seg, **kwargs) return seg def _plot_args(self, tup, kwargs): ret = [] if len(tup) > 1 and is_string_like(tup[-1]): linestyle, marker, color = _process_plot_format(tup[-1]) tup = tup[:-1] elif len(tup) == 3: raise ValueError('third arg must be a format string') else: linestyle, marker, color = None, None, None kw = {} for k, v in zip(('linestyle', 'marker', 'color'), (linestyle, marker, color)): if v is not None: kw[k] = v y = np.atleast_1d(tup[-1]) if len(tup) == 2: x = np.atleast_1d(tup[0]) else: x = np.arange(y.shape[0], dtype=float) x, y = self._xy_from_xy(x, y) if self.command == 'plot': func = self._makeline else: kw['closed'] = kwargs.get('closed', True) func = self._makefill ncx, ncy = x.shape[1], y.shape[1] for j in xrange(max(ncx, ncy)): seg = func(x[:,j%ncx], y[:,j%ncy], kw, kwargs) ret.append(seg) return ret def _grab_next_args(self, *args, **kwargs): remaining = args while 1: if len(remaining)==0: return if len(remaining) <= 3: for seg in self._plot_args(remaining, kwargs): yield seg return if is_string_like(remaining[2]): isplit = 3 else: isplit = 2 for seg in self._plot_args(remaining[:isplit], kwargs): yield seg remaining=remaining[isplit:] class Axes(martist.Artist): """ The :class:`Axes` contains most of the figure elements: :class:`~matplotlib.axis.Axis`, :class:`~matplotlib.axis.Tick`, :class:`~matplotlib.lines.Line2D`, :class:`~matplotlib.text.Text`, :class:`~matplotlib.patches.Polygon`, etc., and sets the coordinate system. The :class:`Axes` instance supports callbacks through a callbacks attribute which is a :class:`~matplotlib.cbook.CallbackRegistry` instance. The events you can connect to are 'xlim_changed' and 'ylim_changed' and the callback will be called with func(*ax*) where *ax* is the :class:`Axes` instance. """ name = "rectilinear" _shared_x_axes = cbook.Grouper() _shared_y_axes = cbook.Grouper() def __str__(self): return "Axes(%g,%g;%gx%g)" % tuple(self._position.bounds) def __init__(self, fig, rect, axisbg = None, # defaults to rc axes.facecolor frameon = True, sharex=None, # use Axes instance's xaxis info sharey=None, # use Axes instance's yaxis info label='', xscale=None, yscale=None, **kwargs ): """ Build an :class:`Axes` instance in :class:`~matplotlib.figure.Figure` *fig* with *rect=[left, bottom, width, height]* in :class:`~matplotlib.figure.Figure` coordinates Optional keyword arguments: ================ ========================================= Keyword Description ================ ========================================= *adjustable* [ 'box' | 'datalim' | 'box-forced'] *alpha* float: the alpha transparency (can be None) *anchor* [ 'C', 'SW', 'S', 'SE', 'E', 'NE', 'N', 'NW', 'W' ] *aspect* [ 'auto' | 'equal' | aspect_ratio ] *autoscale_on* [ *True* | *False* ] whether or not to autoscale the *viewlim* *axis_bgcolor* any matplotlib color, see :func:`~matplotlib.pyplot.colors` *axisbelow* draw the grids and ticks below the other artists *cursor_props* a (*float*, *color*) tuple *figure* a :class:`~matplotlib.figure.Figure` instance *frame_on* a boolean - draw the axes frame *label* the axes label *navigate* [ *True* | *False* ] *navigate_mode* [ 'PAN' | 'ZOOM' | None ] the navigation toolbar button status *position* [left, bottom, width, height] in class:`~matplotlib.figure.Figure` coords *sharex* an class:`~matplotlib.axes.Axes` instance to share the x-axis with *sharey* an class:`~matplotlib.axes.Axes` instance to share the y-axis with *title* the title string *visible* [ *True* | *False* ] whether the axes is visible *xlabel* the xlabel *xlim* (*xmin*, *xmax*) view limits *xscale* [%(scale)s] *xticklabels* sequence of strings *xticks* sequence of floats *ylabel* the ylabel strings *ylim* (*ymin*, *ymax*) view limits *yscale* [%(scale)s] *yticklabels* sequence of strings *yticks* sequence of floats ================ ========================================= """ % {'scale': ' | '.join([repr(x) for x in mscale.get_scale_names()])} martist.Artist.__init__(self) if isinstance(rect, mtransforms.Bbox): self._position = rect else: self._position = mtransforms.Bbox.from_bounds(*rect) self._originalPosition = self._position.frozen() self.set_axes(self) self.set_aspect('auto') self._adjustable = 'box' self.set_anchor('C') self._sharex = sharex self._sharey = sharey if sharex is not None: self._shared_x_axes.join(self, sharex) if sharex._adjustable == 'box': sharex._adjustable = 'datalim' #warnings.warn( # 'shared axes: "adjustable" is being changed to "datalim"') self._adjustable = 'datalim' if sharey is not None: self._shared_y_axes.join(self, sharey) if sharey._adjustable == 'box': sharey._adjustable = 'datalim' #warnings.warn( # 'shared axes: "adjustable" is being changed to "datalim"') self._adjustable = 'datalim' self.set_label(label) self.set_figure(fig) self.set_axes_locator(kwargs.get("axes_locator", None)) self.spines = self._gen_axes_spines() # this call may differ for non-sep axes, eg polar self._init_axis() if axisbg is None: axisbg = rcParams['axes.facecolor'] self._axisbg = axisbg self._frameon = frameon self._axisbelow = rcParams['axes.axisbelow'] self._rasterization_zorder = None self._hold = rcParams['axes.hold'] self._connected = {} # a dict from events to (id, func) self.cla() # funcs used to format x and y - fall back on major formatters self.fmt_xdata = None self.fmt_ydata = None self.set_cursor_props((1,'k')) # set the cursor properties for axes self._cachedRenderer = None self.set_navigate(True) self.set_navigate_mode(None) if xscale: self.set_xscale(xscale) if yscale: self.set_yscale(yscale) if len(kwargs): martist.setp(self, **kwargs) if self.xaxis is not None: self._xcid = self.xaxis.callbacks.connect('units finalize', self.relim) if self.yaxis is not None: self._ycid = self.yaxis.callbacks.connect('units finalize', self.relim) def __setstate__(self, state): self.__dict__ = state # put the _remove_method back on all artists contained within the axes for container_name in ['lines', 'collections', 'tables', 'patches', 'texts', 'images']: container = getattr(self, container_name) for artist in container: artist._remove_method = container.remove def get_window_extent(self, *args, **kwargs): """ get the axes bounding box in display space; *args* and *kwargs* are empty """ return self.bbox def _init_axis(self): "move this out of __init__ because non-separable axes don't use it" self.xaxis = maxis.XAxis(self) self.spines['bottom'].register_axis(self.xaxis) self.spines['top'].register_axis(self.xaxis) self.yaxis = maxis.YAxis(self) self.spines['left'].register_axis(self.yaxis) self.spines['right'].register_axis(self.yaxis) self._update_transScale() def set_figure(self, fig): """ Set the class:`~matplotlib.axes.Axes` figure accepts a class:`~matplotlib.figure.Figure` instance """ martist.Artist.set_figure(self, fig) self.bbox = mtransforms.TransformedBbox(self._position, fig.transFigure) #these will be updated later as data is added self.dataLim = mtransforms.Bbox.unit() self.viewLim = mtransforms.Bbox.unit() self.transScale = mtransforms.TransformWrapper( mtransforms.IdentityTransform()) self._set_lim_and_transforms() def _set_lim_and_transforms(self): """ set the *dataLim* and *viewLim* :class:`~matplotlib.transforms.Bbox` attributes and the *transScale*, *transData*, *transLimits* and *transAxes* transformations. .. note:: This method is primarily used by rectilinear projections of the :class:`~matplotlib.axes.Axes` class, and is meant to be overridden by new kinds of projection axes that need different transformations and limits. (See :class:`~matplotlib.projections.polar.PolarAxes` for an example. """ self.transAxes = mtransforms.BboxTransformTo(self.bbox) # Transforms the x and y axis separately by a scale factor. # It is assumed that this part will have non-linear components # (e.g. for a log scale). self.transScale = mtransforms.TransformWrapper( mtransforms.IdentityTransform()) # An affine transformation on the data, generally to limit the # range of the axes self.transLimits = mtransforms.BboxTransformFrom( mtransforms.TransformedBbox(self.viewLim, self.transScale)) # The parentheses are important for efficiency here -- they # group the last two (which are usually affines) separately # from the first (which, with log-scaling can be non-affine). self.transData = self.transScale + (self.transLimits + self.transAxes) self._xaxis_transform = mtransforms.blended_transform_factory( self.transData, self.transAxes) self._yaxis_transform = mtransforms.blended_transform_factory( self.transAxes, self.transData) def get_xaxis_transform(self,which='grid'): """ Get the transformation used for drawing x-axis labels, ticks and gridlines. The x-direction is in data coordinates and the y-direction is in axis coordinates. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ if which=='grid': return self._xaxis_transform elif which=='tick1': # for cartesian projection, this is bottom spine return self.spines['bottom'].get_spine_transform() elif which=='tick2': # for cartesian projection, this is top spine return self.spines['top'].get_spine_transform() else: raise ValueError('unknown value for which') def get_xaxis_text1_transform(self, pad_points): """ Get the transformation used for drawing x-axis labels, which will add the given amount of padding (in points) between the axes and the label. The x-direction is in data coordinates and the y-direction is in axis coordinates. Returns a 3-tuple of the form:: (transform, valign, halign) where *valign* and *halign* are requested alignments for the text. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ return (self.get_xaxis_transform(which='tick1') + mtransforms.ScaledTranslation(0, -1 * pad_points / 72.0, self.figure.dpi_scale_trans), "top", "center") def get_xaxis_text2_transform(self, pad_points): """ Get the transformation used for drawing the secondary x-axis labels, which will add the given amount of padding (in points) between the axes and the label. The x-direction is in data coordinates and the y-direction is in axis coordinates. Returns a 3-tuple of the form:: (transform, valign, halign) where *valign* and *halign* are requested alignments for the text. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ return (self.get_xaxis_transform(which='tick2') + mtransforms.ScaledTranslation(0, pad_points / 72.0, self.figure.dpi_scale_trans), "bottom", "center") def get_yaxis_transform(self,which='grid'): """ Get the transformation used for drawing y-axis labels, ticks and gridlines. The x-direction is in axis coordinates and the y-direction is in data coordinates. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ if which=='grid': return self._yaxis_transform elif which=='tick1': # for cartesian projection, this is bottom spine return self.spines['left'].get_spine_transform() elif which=='tick2': # for cartesian projection, this is top spine return self.spines['right'].get_spine_transform() else: raise ValueError('unknown value for which') def get_yaxis_text1_transform(self, pad_points): """ Get the transformation used for drawing y-axis labels, which will add the given amount of padding (in points) between the axes and the label. The x-direction is in axis coordinates and the y-direction is in data coordinates. Returns a 3-tuple of the form:: (transform, valign, halign) where *valign* and *halign* are requested alignments for the text. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ return (self.get_yaxis_transform(which='tick1') + mtransforms.ScaledTranslation(-1 * pad_points / 72.0, 0, self.figure.dpi_scale_trans), "center", "right") def get_yaxis_text2_transform(self, pad_points): """ Get the transformation used for drawing the secondary y-axis labels, which will add the given amount of padding (in points) between the axes and the label. The x-direction is in axis coordinates and the y-direction is in data coordinates. Returns a 3-tuple of the form:: (transform, valign, halign) where *valign* and *halign* are requested alignments for the text. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ return (self.get_yaxis_transform(which='tick2') + mtransforms.ScaledTranslation(pad_points / 72.0, 0, self.figure.dpi_scale_trans), "center", "left") def _update_transScale(self): self.transScale.set( mtransforms.blended_transform_factory( self.xaxis.get_transform(), self.yaxis.get_transform())) if hasattr(self, "lines"): for line in self.lines: try: line._transformed_path.invalidate() except AttributeError: pass def get_position(self, original=False): 'Return the a copy of the axes rectangle as a Bbox' if original: return self._originalPosition.frozen() else: return self._position.frozen() def set_position(self, pos, which='both'): """ Set the axes position with:: pos = [left, bottom, width, height] in relative 0,1 coords, or *pos* can be a :class:`~matplotlib.transforms.Bbox` There are two position variables: one which is ultimately used, but which may be modified by :meth:`apply_aspect`, and a second which is the starting point for :meth:`apply_aspect`. Optional keyword arguments: *which* ========== ==================== value description ========== ==================== 'active' to change the first 'original' to change the second 'both' to change both ========== ==================== """ if not isinstance(pos, mtransforms.BboxBase): pos = mtransforms.Bbox.from_bounds(*pos) if which in ('both', 'active'): self._position.set(pos) if which in ('both', 'original'): self._originalPosition.set(pos) def reset_position(self): """Make the original position the active position""" pos = self.get_position(original=True) self.set_position(pos, which='active') def set_axes_locator(self, locator): """ set axes_locator ACCEPT : a callable object which takes an axes instance and renderer and returns a bbox. """ self._axes_locator = locator def get_axes_locator(self): """ return axes_locator """ return self._axes_locator def _set_artist_props(self, a): """set the boilerplate props for artists added to axes""" a.set_figure(self.figure) if not a.is_transform_set(): a.set_transform(self.transData) a.set_axes(self) def _gen_axes_patch(self): """ Returns the patch used to draw the background of the axes. It is also used as the clipping path for any data elements on the axes. In the standard axes, this is a rectangle, but in other projections it may not be. .. note:: Intended to be overridden by new projection types. """ return mpatches.Rectangle((0.0, 0.0), 1.0, 1.0) def _gen_axes_spines(self, locations=None, offset=0.0, units='inches'): """ Returns a dict whose keys are spine names and values are Line2D or Patch instances. Each element is used to draw a spine of the axes. In the standard axes, this is a single line segment, but in other projections it may not be. .. note:: Intended to be overridden by new projection types. """ return { 'left':mspines.Spine.linear_spine(self,'left'), 'right':mspines.Spine.linear_spine(self,'right'), 'bottom':mspines.Spine.linear_spine(self,'bottom'), 'top':mspines.Spine.linear_spine(self,'top'), } def cla(self): """Clear the current axes.""" # Note: this is called by Axes.__init__() self.xaxis.cla() self.yaxis.cla() for name,spine in self.spines.iteritems(): spine.cla() self.ignore_existing_data_limits = True self.callbacks = cbook.CallbackRegistry() if self._sharex is not None: # major and minor are class instances with # locator and formatter attributes self.xaxis.major = self._sharex.xaxis.major self.xaxis.minor = self._sharex.xaxis.minor x0, x1 = self._sharex.get_xlim() self.set_xlim(x0, x1, emit=False, auto=None) # Save the current formatter/locator so we don't lose it majf = self._sharex.xaxis.get_major_formatter() minf = self._sharex.xaxis.get_minor_formatter() majl = self._sharex.xaxis.get_major_locator() minl = self._sharex.xaxis.get_minor_locator() # This overwrites the current formatter/locator self.xaxis.set_scale(self._sharex.xaxis.get_scale()) # Reset the formatter/locator self.xaxis.set_major_formatter(majf) self.xaxis.set_minor_formatter(minf) self.xaxis.set_major_locator(majl) self.xaxis.set_minor_locator(minl) else: self.xaxis.set_scale('linear') if self._sharey is not None: self.yaxis.major = self._sharey.yaxis.major self.yaxis.minor = self._sharey.yaxis.minor y0, y1 = self._sharey.get_ylim() self.set_ylim(y0, y1, emit=False, auto=None) # Save the current formatter/locator so we don't lose it majf = self._sharey.yaxis.get_major_formatter() minf = self._sharey.yaxis.get_minor_formatter() majl = self._sharey.yaxis.get_major_locator() minl = self._sharey.yaxis.get_minor_locator() # This overwrites the current formatter/locator self.yaxis.set_scale(self._sharey.yaxis.get_scale()) # Reset the formatter/locator self.yaxis.set_major_formatter(majf) self.yaxis.set_minor_formatter(minf) self.yaxis.set_major_locator(majl) self.yaxis.set_minor_locator(minl) else: self.yaxis.set_scale('linear') self._autoscaleXon = True self._autoscaleYon = True self._xmargin = 0 self._ymargin = 0 self._tight = False self._update_transScale() # needed? self._get_lines = _process_plot_var_args(self) self._get_patches_for_fill = _process_plot_var_args(self, 'fill') self._gridOn = rcParams['axes.grid'] self.lines = [] self.patches = [] self.texts = [] self.tables = [] self.artists = [] self.images = [] self._current_image = None # strictly for pyplot via _sci, _gci self.legend_ = None self.collections = [] # collection.Collection instances self.containers = [] # self.grid(self._gridOn) props = font_manager.FontProperties(size=rcParams['axes.titlesize']) self.titleOffsetTrans = mtransforms.ScaledTranslation( 0.0, 5.0 / 72.0, self.figure.dpi_scale_trans) self.title = mtext.Text( x=0.5, y=1.0, text='', fontproperties=props, verticalalignment='baseline', horizontalalignment='center', ) self.title.set_transform(self.transAxes + self.titleOffsetTrans) self.title.set_clip_box(None) self._set_artist_props(self.title) # the patch draws the background of the axes. we want this to # be below the other artists; the axesPatch name is # deprecated. We use the frame to draw the edges so we are # setting the edgecolor to None self.patch = self.axesPatch = self._gen_axes_patch() self.patch.set_figure(self.figure) self.patch.set_facecolor(self._axisbg) self.patch.set_edgecolor('None') self.patch.set_linewidth(0) self.patch.set_transform(self.transAxes) self.axison = True self.xaxis.set_clip_path(self.patch) self.yaxis.set_clip_path(self.patch) self._shared_x_axes.clean() self._shared_y_axes.clean() def get_frame(self): raise AttributeError('Axes.frame was removed in favor of Axes.spines') frame = property(get_frame) def clear(self): """clear the axes""" self.cla() def set_color_cycle(self, clist): """ Set the color cycle for any future plot commands on this Axes. *clist* is a list of mpl color specifiers. """ self._get_lines.set_color_cycle(clist) self._get_patches_for_fill.set_color_cycle(clist) def ishold(self): """return the HOLD status of the axes""" return self._hold def hold(self, b=None): """ Call signature:: hold(b=None) Set the hold state. If *hold* is *None* (default), toggle the *hold* state. Else set the *hold* state to boolean value *b*. Examples:: # toggle hold hold() # turn hold on hold(True) # turn hold off hold(False) When hold is *True*, subsequent plot commands will be added to the current axes. When hold is *False*, the current axes and figure will be cleared on the next plot command """ if b is None: self._hold = not self._hold else: self._hold = b def get_aspect(self): return self._aspect def set_aspect(self, aspect, adjustable=None, anchor=None): """ *aspect* ======== ================================================ value description ======== ================================================ 'auto' automatic; fill position rectangle with data 'normal' same as 'auto'; deprecated 'equal' same scaling from data to plot units for x and y num a circle will be stretched such that the height is num times the width. aspect=1 is the same as aspect='equal'. ======== ================================================ *adjustable* ============ ===================================== value description ============ ===================================== 'box' change physical size of axes 'datalim' change xlim or ylim 'box-forced' same as 'box', but axes can be shared ============ ===================================== 'box' does not allow axes sharing, as this can cause unintended side effect. For cases when sharing axes is fine, use 'box-forced'. *anchor* ===== ===================== value description ===== ===================== 'C' centered 'SW' lower left corner 'S' middle of bottom edge 'SE' lower right corner etc. ===== ===================== """ if aspect in ('normal', 'auto'): self._aspect = 'auto' elif aspect == 'equal': self._aspect = 'equal' else: self._aspect = float(aspect) # raise ValueError if necessary if adjustable is not None: self.set_adjustable(adjustable) if anchor is not None: self.set_anchor(anchor) def get_adjustable(self): return self._adjustable def set_adjustable(self, adjustable): """ ACCEPTS: [ 'box' | 'datalim' | 'box-forced'] """ if adjustable in ('box', 'datalim', 'box-forced'): if self in self._shared_x_axes or self in self._shared_y_axes: if adjustable == 'box': raise ValueError( 'adjustable must be "datalim" for shared axes') self._adjustable = adjustable else: raise ValueError('argument must be "box", or "datalim"') def get_anchor(self): return self._anchor def set_anchor(self, anchor): """ *anchor* ===== ============ value description ===== ============ 'C' Center 'SW' bottom left 'S' bottom 'SE' bottom right 'E' right 'NE' top right 'N' top 'NW' top left 'W' left ===== ============ """ if anchor in mtransforms.Bbox.coefs.keys() or len(anchor) == 2: self._anchor = anchor else: raise ValueError('argument must be among %s' % ', '.join(mtransforms.Bbox.coefs.keys())) def get_data_ratio(self): """ Returns the aspect ratio of the raw data. This method is intended to be overridden by new projection types. """ xmin,xmax = self.get_xbound() ymin,ymax = self.get_ybound() xsize = max(math.fabs(xmax-xmin), 1e-30) ysize = max(math.fabs(ymax-ymin), 1e-30) return ysize/xsize def get_data_ratio_log(self): """ Returns the aspect ratio of the raw data in log scale. Will be used when both axis scales are in log. """ xmin,xmax = self.get_xbound() ymin,ymax = self.get_ybound() xsize = max(math.fabs(math.log10(xmax)-math.log10(xmin)), 1e-30) ysize = max(math.fabs(math.log10(ymax)-math.log10(ymin)), 1e-30) return ysize/xsize def apply_aspect(self, position=None): """ Use :meth:`_aspect` and :meth:`_adjustable` to modify the axes box or the view limits. """ if position is None: position = self.get_position(original=True) aspect = self.get_aspect() if self.name != 'polar': xscale, yscale = self.get_xscale(), self.get_yscale() if xscale == "linear" and yscale == "linear": aspect_scale_mode = "linear" elif xscale == "log" and yscale == "log": aspect_scale_mode = "log" elif (xscale == "linear" and yscale == "log") or \ (xscale == "log" and yscale == "linear"): if aspect is not "auto": warnings.warn( 'aspect is not supported for Axes with xscale=%s, yscale=%s' \ % (xscale, yscale)) aspect = "auto" else: # some custom projections have their own scales. pass else: aspect_scale_mode = "linear" if aspect == 'auto': self.set_position( position , which='active') return if aspect == 'equal': A = 1 else: A = aspect #Ensure at drawing time that any Axes involved in axis-sharing # does not have its position changed. if self in self._shared_x_axes or self in self._shared_y_axes: if self._adjustable == 'box': self._adjustable = 'datalim' warnings.warn( 'shared axes: "adjustable" is being changed to "datalim"') figW,figH = self.get_figure().get_size_inches() fig_aspect = figH/figW if self._adjustable in ['box', 'box-forced']: if aspect_scale_mode == "log": box_aspect = A * self.get_data_ratio_log() else: box_aspect = A * self.get_data_ratio() pb = position.frozen() pb1 = pb.shrunk_to_aspect(box_aspect, pb, fig_aspect) self.set_position(pb1.anchored(self.get_anchor(), pb), 'active') return # reset active to original in case it had been changed # by prior use of 'box' self.set_position(position, which='active') xmin,xmax = self.get_xbound() ymin,ymax = self.get_ybound() if aspect_scale_mode == "log": xmin, xmax = math.log10(xmin), math.log10(xmax) ymin, ymax = math.log10(ymin), math.log10(ymax) xsize = max(math.fabs(xmax-xmin), 1e-30) ysize = max(math.fabs(ymax-ymin), 1e-30) l,b,w,h = position.bounds box_aspect = fig_aspect * (h/w) data_ratio = box_aspect / A y_expander = (data_ratio*xsize/ysize - 1.0) #print 'y_expander', y_expander # If y_expander > 0, the dy/dx viewLim ratio needs to increase if abs(y_expander) < 0.005: #print 'good enough already' return if aspect_scale_mode == "log": dL = self.dataLim dL_width = math.log10(dL.x1) - math.log10(dL.x0) dL_height = math.log10(dL.y1) - math.log10(dL.y0) xr = 1.05 * dL_width yr = 1.05 * dL_height else: dL = self.dataLim xr = 1.05 * dL.width yr = 1.05 * dL.height xmarg = xsize - xr ymarg = ysize - yr Ysize = data_ratio * xsize Xsize = ysize / data_ratio Xmarg = Xsize - xr Ymarg = Ysize - yr xm = 0 # Setting these targets to, e.g., 0.05*xr does not seem to help. ym = 0 #print 'xmin, xmax, ymin, ymax', xmin, xmax, ymin, ymax #print 'xsize, Xsize, ysize, Ysize', xsize, Xsize, ysize, Ysize changex = (self in self._shared_y_axes and self not in self._shared_x_axes) changey = (self in self._shared_x_axes and self not in self._shared_y_axes) if changex and changey: warnings.warn("adjustable='datalim' cannot work with shared " "x and y axes") return if changex: adjust_y = False else: #print 'xmarg, ymarg, Xmarg, Ymarg', xmarg, ymarg, Xmarg, Ymarg if xmarg > xm and ymarg > ym: adjy = ((Ymarg > 0 and y_expander < 0) or (Xmarg < 0 and y_expander > 0)) else: adjy = y_expander > 0 #print 'y_expander, adjy', y_expander, adjy adjust_y = changey or adjy #(Ymarg > xmarg) if adjust_y: yc = 0.5*(ymin+ymax) y0 = yc - Ysize/2.0 y1 = yc + Ysize/2.0 if aspect_scale_mode == "log": self.set_ybound((10.**y0, 10.**y1)) else: self.set_ybound((y0, y1)) #print 'New y0, y1:', y0, y1 #print 'New ysize, ysize/xsize', y1-y0, (y1-y0)/xsize else: xc = 0.5*(xmin+xmax) x0 = xc - Xsize/2.0 x1 = xc + Xsize/2.0 if aspect_scale_mode == "log": self.set_xbound((10.**x0, 10.**x1)) else: self.set_xbound((x0, x1)) #print 'New x0, x1:', x0, x1 #print 'New xsize, ysize/xsize', x1-x0, ysize/(x1-x0) def axis(self, *v, **kwargs): """ Convenience method for manipulating the x and y view limits and the aspect ratio of the plot. For details, see :func:`~matplotlib.pyplot.axis`. *kwargs* are passed on to :meth:`set_xlim` and :meth:`set_ylim` """ if len(v) == 0 and len(kwargs) == 0: xmin, xmax = self.get_xlim() ymin, ymax = self.get_ylim() return xmin, xmax, ymin, ymax if len(v)==1 and is_string_like(v[0]): s = v[0].lower() if s=='on': self.set_axis_on() elif s=='off': self.set_axis_off() elif s in ('equal', 'tight', 'scaled', 'normal', 'auto', 'image'): self.set_autoscale_on(True) self.set_aspect('auto') self.autoscale_view(tight=False) # self.apply_aspect() if s=='equal': self.set_aspect('equal', adjustable='datalim') elif s == 'scaled': self.set_aspect('equal', adjustable='box', anchor='C') self.set_autoscale_on(False) # Req. by Mark Bakker elif s=='tight': self.autoscale_view(tight=True) self.set_autoscale_on(False) elif s == 'image': self.autoscale_view(tight=True) self.set_autoscale_on(False) self.set_aspect('equal', adjustable='box', anchor='C') else: raise ValueError('Unrecognized string %s to axis; ' 'try on or off' % s) xmin, xmax = self.get_xlim() ymin, ymax = self.get_ylim() return xmin, xmax, ymin, ymax emit = kwargs.get('emit', True) try: v[0] except IndexError: xmin = kwargs.get('xmin', None) xmax = kwargs.get('xmax', None) auto = False # turn off autoscaling, unless... if xmin is None and xmax is None: auto = None # leave autoscaling state alone xmin, xmax = self.set_xlim(xmin, xmax, emit=emit, auto=auto) ymin = kwargs.get('ymin', None) ymax = kwargs.get('ymax', None) auto = False # turn off autoscaling, unless... if ymin is None and ymax is None: auto = None # leave autoscaling state alone ymin, ymax = self.set_ylim(ymin, ymax, emit=emit, auto=auto) return xmin, xmax, ymin, ymax v = v[0] if len(v) != 4: raise ValueError('v must contain [xmin xmax ymin ymax]') self.set_xlim([v[0], v[1]], emit=emit, auto=False) self.set_ylim([v[2], v[3]], emit=emit, auto=False) return v def get_child_artists(self): """ Return a list of artists the axes contains. .. deprecated:: 0.98 """ raise mplDeprecation('Use get_children instead') def get_frame(self): """Return the axes Rectangle frame""" warnings.warn('use ax.patch instead', mplDeprecation) return self.patch def get_legend(self): """Return the legend.Legend instance, or None if no legend is defined""" return self.legend_ def get_images(self): """return a list of Axes images contained by the Axes""" return cbook.silent_list('AxesImage', self.images) def get_lines(self): """Return a list of lines contained by the Axes""" return cbook.silent_list('Line2D', self.lines) def get_xaxis(self): """Return the XAxis instance""" return self.xaxis def get_xgridlines(self): """Get the x grid lines as a list of Line2D instances""" return cbook.silent_list('Line2D xgridline', self.xaxis.get_gridlines()) def get_xticklines(self): """Get the xtick lines as a list of Line2D instances""" return cbook.silent_list('Text xtickline', self.xaxis.get_ticklines()) def get_yaxis(self): """Return the YAxis instance""" return self.yaxis def get_ygridlines(self): """Get the y grid lines as a list of Line2D instances""" return cbook.silent_list('Line2D ygridline', self.yaxis.get_gridlines()) def get_yticklines(self): """Get the ytick lines as a list of Line2D instances""" return cbook.silent_list('Line2D ytickline', self.yaxis.get_ticklines()) #### Adding and tracking artists def _sci(self, im): """ helper for :func:`~matplotlib.pyplot.sci`; do not use elsewhere. """ if isinstance(im, matplotlib.contour.ContourSet): if im.collections[0] not in self.collections: raise ValueError( "ContourSet must be in current Axes") elif im not in self.images and im not in self.collections: raise ValueError( "Argument must be an image, collection, or ContourSet in this Axes") self._current_image = im def _gci(self): """ Helper for :func:`~matplotlib.pyplot.gci`; do not use elsewhere. """ return self._current_image def has_data(self): """ Return *True* if any artists have been added to axes. This should not be used to determine whether the *dataLim* need to be updated, and may not actually be useful for anything. """ return ( len(self.collections) + len(self.images) + len(self.lines) + len(self.patches))>0 def add_artist(self, a): """ Add any :class:`~matplotlib.artist.Artist` to the axes. Returns the artist. """ a.set_axes(self) self.artists.append(a) self._set_artist_props(a) a.set_clip_path(self.patch) a._remove_method = lambda h: self.artists.remove(h) return a def add_collection(self, collection, autolim=True): """ Add a :class:`~matplotlib.collections.Collection` instance to the axes. Returns the collection. """ label = collection.get_label() if not label: collection.set_label('_collection%d'%len(self.collections)) self.collections.append(collection) self._set_artist_props(collection) if collection.get_clip_path() is None: collection.set_clip_path(self.patch) if autolim: if collection._paths and len(collection._paths): self.update_datalim(collection.get_datalim(self.transData)) collection._remove_method = lambda h: self.collections.remove(h) return collection def add_line(self, line): """ Add a :class:`~matplotlib.lines.Line2D` to the list of plot lines Returns the line. """ self._set_artist_props(line) if line.get_clip_path() is None: line.set_clip_path(self.patch) self._update_line_limits(line) if not line.get_label(): line.set_label('_line%d' % len(self.lines)) self.lines.append(line) line._remove_method = lambda h: self.lines.remove(h) return line def _update_line_limits(self, line): """Figures out the data limit of the given line, updating self.dataLim.""" path = line.get_path() if path.vertices.size == 0: return line_trans = line.get_transform() if line_trans == self.transData: data_path = path elif any(line_trans.contains_branch_seperately(self.transData)): # identify the transform to go from line's coordinates # to data coordinates trans_to_data = line_trans - self.transData # if transData is affine we can use the cached non-affine component # of line's path. (since the non-affine part of line_trans is # entirely encapsulated in trans_to_data). if self.transData.is_affine: line_trans_path = line._get_transformed_path() na_path, _ = line_trans_path.get_transformed_path_and_affine() data_path = trans_to_data.transform_path_affine(na_path) else: data_path = trans_to_data.transform_path(path) else: # for backwards compatibility we update the dataLim with the # coordinate range of the given path, even though the coordinate # systems are completely different. This may occur in situations # such as when ax.transAxes is passed through for absolute # positioning. data_path = path if data_path.vertices.size > 0: updatex, updatey = line_trans.contains_branch_seperately( self.transData ) self.dataLim.update_from_path(data_path, self.ignore_existing_data_limits, updatex=updatex, updatey=updatey) self.ignore_existing_data_limits = False def add_patch(self, p): """ Add a :class:`~matplotlib.patches.Patch` *p* to the list of axes patches; the clipbox will be set to the Axes clipping box. If the transform is not set, it will be set to :attr:`transData`. Returns the patch. """ self._set_artist_props(p) if p.get_clip_path() is None: p.set_clip_path(self.patch) self._update_patch_limits(p) self.patches.append(p) p._remove_method = lambda h: self.patches.remove(h) return p def _update_patch_limits(self, patch): """update the data limits for patch *p*""" # hist can add zero height Rectangles, which is useful to keep # the bins, counts and patches lined up, but it throws off log # scaling. We'll ignore rects with zero height or width in # the auto-scaling # cannot check for '==0' since unitized data may not compare to zero if (isinstance(patch, mpatches.Rectangle) and ((not patch.get_width()) or (not patch.get_height()))): return vertices = patch.get_path().vertices if vertices.size > 0: xys = patch.get_patch_transform().transform(vertices) if patch.get_data_transform() != self.transData: patch_to_data = (patch.get_data_transform() - self.transData) xys = patch_to_data.transform(xys) updatex, updatey = patch.get_transform().\ contains_branch_seperately(self.transData) self.update_datalim(xys, updatex=updatex, updatey=updatey) def add_table(self, tab): """ Add a :class:`~matplotlib.tables.Table` instance to the list of axes tables Returns the table. """ self._set_artist_props(tab) self.tables.append(tab) tab.set_clip_path(self.patch) tab._remove_method = lambda h: self.tables.remove(h) return tab def add_container(self, container): """ Add a :class:`~matplotlib.container.Container` instance to the axes. Returns the collection. """ label = container.get_label() if not label: container.set_label('_container%d'%len(self.containers)) self.containers.append(container) container.set_remove_method(lambda h: self.containers.remove(h)) return container def relim(self): """ Recompute the data limits based on current artists. At present, :class:`~matplotlib.collections.Collection` instances are not supported. """ # Collections are deliberately not supported (yet); see # the TODO note in artists.py. self.dataLim.ignore(True) self.ignore_existing_data_limits = True for line in self.lines: self._update_line_limits(line) for p in self.patches: self._update_patch_limits(p) def update_datalim(self, xys, updatex=True, updatey=True): """Update the data lim bbox with seq of xy tups or equiv. 2-D array""" # if no data is set currently, the bbox will ignore its # limits and set the bound to be the bounds of the xydata. # Otherwise, it will compute the bounds of it's current data # and the data in xydata if iterable(xys) and not len(xys): return if not ma.isMaskedArray(xys): xys = np.asarray(xys) self.dataLim.update_from_data_xy(xys, self.ignore_existing_data_limits, updatex=updatex, updatey=updatey) self.ignore_existing_data_limits = False def update_datalim_numerix(self, x, y): """Update the data lim bbox with seq of xy tups""" # if no data is set currently, the bbox will ignore it's # limits and set the bound to be the bounds of the xydata. # Otherwise, it will compute the bounds of it's current data # and the data in xydata if iterable(x) and not len(x): return self.dataLim.update_from_data(x, y, self.ignore_existing_data_limits) self.ignore_existing_data_limits = False def update_datalim_bounds(self, bounds): """ Update the datalim to include the given :class:`~matplotlib.transforms.Bbox` *bounds* """ self.dataLim.set(mtransforms.Bbox.union([self.dataLim, bounds])) def _process_unit_info(self, xdata=None, ydata=None, kwargs=None): """Look for unit *kwargs* and update the axis instances as necessary""" if self.xaxis is None or self.yaxis is None: return #print 'processing', self.get_geometry() if xdata is not None: # we only need to update if there is nothing set yet. if not self.xaxis.have_units(): self.xaxis.update_units(xdata) #print '\tset from xdata', self.xaxis.units if ydata is not None: # we only need to update if there is nothing set yet. if not self.yaxis.have_units(): self.yaxis.update_units(ydata) #print '\tset from ydata', self.yaxis.units # process kwargs 2nd since these will override default units if kwargs is not None: xunits = kwargs.pop( 'xunits', self.xaxis.units) if self.name == 'polar': xunits = kwargs.pop( 'thetaunits', xunits ) if xunits!=self.xaxis.units: #print '\tkw setting xunits', xunits self.xaxis.set_units(xunits) # If the units being set imply a different converter, # we need to update. if xdata is not None: self.xaxis.update_units(xdata) yunits = kwargs.pop('yunits', self.yaxis.units) if self.name == 'polar': yunits = kwargs.pop( 'runits', yunits ) if yunits!=self.yaxis.units: #print '\tkw setting yunits', yunits self.yaxis.set_units(yunits) # If the units being set imply a different converter, # we need to update. if ydata is not None: self.yaxis.update_units(ydata) def in_axes(self, mouseevent): """ Return *True* if the given *mouseevent* (in display coords) is in the Axes """ return self.patch.contains(mouseevent)[0] def get_autoscale_on(self): """ Get whether autoscaling is applied for both axes on plot commands """ return self._autoscaleXon and self._autoscaleYon def get_autoscalex_on(self): """ Get whether autoscaling for the x-axis is applied on plot commands """ return self._autoscaleXon def get_autoscaley_on(self): """ Get whether autoscaling for the y-axis is applied on plot commands """ return self._autoscaleYon def set_autoscale_on(self, b): """ Set whether autoscaling is applied on plot commands accepts: [ *True* | *False* ] """ self._autoscaleXon = b self._autoscaleYon = b def set_autoscalex_on(self, b): """ Set whether autoscaling for the x-axis is applied on plot commands accepts: [ *True* | *False* ] """ self._autoscaleXon = b def set_autoscaley_on(self, b): """ Set whether autoscaling for the y-axis is applied on plot commands accepts: [ *True* | *False* ] """ self._autoscaleYon = b def set_xmargin(self, m): """ Set padding of X data limits prior to autoscaling. *m* times the data interval will be added to each end of that interval before it is used in autoscaling. accepts: float in range 0 to 1 """ if m < 0 or m > 1: raise ValueError("margin must be in range 0 to 1") self._xmargin = m def set_ymargin(self, m): """ Set padding of Y data limits prior to autoscaling. *m* times the data interval will be added to each end of that interval before it is used in autoscaling. accepts: float in range 0 to 1 """ if m < 0 or m > 1: raise ValueError("margin must be in range 0 to 1") self._ymargin = m def margins(self, *args, **kw): """ Set or retrieve autoscaling margins. signatures:: margins() returns xmargin, ymargin :: margins(margin) margins(xmargin, ymargin) margins(x=xmargin, y=ymargin) margins(..., tight=False) All three forms above set the xmargin and ymargin parameters. All keyword parameters are optional. A single argument specifies both xmargin and ymargin. The *tight* parameter is passed to :meth:`autoscale_view`, which is executed after a margin is changed; the default here is *True*, on the assumption that when margins are specified, no additional padding to match tick marks is usually desired. Setting *tight* to *None* will preserve the previous setting. Specifying any margin changes only the autoscaling; for example, if *xmargin* is not None, then *xmargin* times the X data interval will be added to each end of that interval before it is used in autoscaling. """ if not args and not kw: return self._xmargin, self._ymargin tight = kw.pop('tight', True) mx = kw.pop('x', None) my = kw.pop('y', None) if len(args) == 1: mx = my = args[0] elif len(args) == 2: mx, my = args else: raise ValueError("more than two arguments were supplied") if mx is not None: self.set_xmargin(mx) if my is not None: self.set_ymargin(my) scalex = (mx is not None) scaley = (my is not None) self.autoscale_view(tight=tight, scalex=scalex, scaley=scaley) def set_rasterization_zorder(self, z): """ Set zorder value below which artists will be rasterized. Set to `None` to disable rasterizing of artists below a particular zorder. """ self._rasterization_zorder = z def get_rasterization_zorder(self): """ Get zorder value below which artists will be rasterized """ return self._rasterization_zorder def autoscale(self, enable=True, axis='both', tight=None): """ Autoscale the axis view to the data (toggle). Convenience method for simple axis view autoscaling. It turns autoscaling on or off, and then, if autoscaling for either axis is on, it performs the autoscaling on the specified axis or axes. *enable*: [True | False | None] True (default) turns autoscaling on, False turns it off. None leaves the autoscaling state unchanged. *axis*: ['x' | 'y' | 'both'] which axis to operate on; default is 'both' *tight*: [True | False | None] If True, set view limits to data limits; if False, let the locator and margins expand the view limits; if None, use tight scaling if the only artist is an image, otherwise treat *tight* as False. The *tight* setting is retained for future autoscaling until it is explicitly changed. Returns None. """ if enable is None: scalex = True scaley = True else: scalex = False scaley = False if axis in ['x', 'both']: self._autoscaleXon = bool(enable) scalex = self._autoscaleXon if axis in ['y', 'both']: self._autoscaleYon = bool(enable) scaley = self._autoscaleYon self.autoscale_view(tight=tight, scalex=scalex, scaley=scaley) def autoscale_view(self, tight=None, scalex=True, scaley=True): """ Autoscale the view limits using the data limits. You can selectively autoscale only a single axis, eg, the xaxis by setting *scaley* to *False*. The autoscaling preserves any axis direction reversal that has already been done. The data limits are not updated automatically when artist data are changed after the artist has been added to an Axes instance. In that case, use :meth:`matplotlib.axes.Axes.relim` prior to calling autoscale_view. """ if tight is None: # if image data only just use the datalim _tight = self._tight or (len(self.images)>0 and len(self.lines)==0 and len(self.patches)==0) else: _tight = self._tight = bool(tight) if scalex and self._autoscaleXon: xshared = self._shared_x_axes.get_siblings(self) dl = [ax.dataLim for ax in xshared] bb = mtransforms.BboxBase.union(dl) x0, x1 = bb.intervalx xlocator = self.xaxis.get_major_locator() try: # e.g. DateLocator has its own nonsingular() x0, x1 = xlocator.nonsingular(x0, x1) except AttributeError: # Default nonsingular for, e.g., MaxNLocator x0, x1 = mtransforms.nonsingular(x0, x1, increasing=False, expander=0.05) if self._xmargin > 0: delta = (x1 - x0) * self._xmargin x0 -= delta x1 += delta if not _tight: x0, x1 = xlocator.view_limits(x0, x1) self.set_xbound(x0, x1) if scaley and self._autoscaleYon: yshared = self._shared_y_axes.get_siblings(self) dl = [ax.dataLim for ax in yshared] bb = mtransforms.BboxBase.union(dl) y0, y1 = bb.intervaly ylocator = self.yaxis.get_major_locator() try: y0, y1 = ylocator.nonsingular(y0, y1) except AttributeError: y0, y1 = mtransforms.nonsingular(y0, y1, increasing=False, expander=0.05) if self._ymargin > 0: delta = (y1 - y0) * self._ymargin y0 -= delta y1 += delta if not _tight: y0, y1 = ylocator.view_limits(y0, y1) self.set_ybound(y0, y1) #### Drawing @allow_rasterization def draw(self, renderer=None, inframe=False): """Draw everything (plot lines, axes, labels)""" if renderer is None: renderer = self._cachedRenderer if renderer is None: raise RuntimeError('No renderer defined') if not self.get_visible(): return renderer.open_group('axes') locator = self.get_axes_locator() if locator: pos = locator(self, renderer) self.apply_aspect(pos) else: self.apply_aspect() artists = [] artists.extend(self.collections) artists.extend(self.patches) artists.extend(self.lines) artists.extend(self.texts) artists.extend(self.artists) if self.axison and not inframe: if self._axisbelow: self.xaxis.set_zorder(0.5) self.yaxis.set_zorder(0.5) else: self.xaxis.set_zorder(2.5) self.yaxis.set_zorder(2.5) artists.extend([self.xaxis, self.yaxis]) if not inframe: artists.append(self.title) artists.extend(self.tables) if self.legend_ is not None: artists.append(self.legend_) # the frame draws the edges around the axes patch -- we # decouple these so the patch can be in the background and the # frame in the foreground. if self.axison and self._frameon: artists.extend(self.spines.itervalues()) dsu = [ (a.zorder, a) for a in artists if not a.get_animated() ] # add images to dsu if the backend support compositing. # otherwise, does the manaul compositing without adding images to dsu. if len(self.images)<=1 or renderer.option_image_nocomposite(): dsu.extend([(im.zorder, im) for im in self.images]) _do_composite = False else: _do_composite = True dsu.sort(key=itemgetter(0)) # rasterize artists with negative zorder # if the minimum zorder is negative, start rasterization rasterization_zorder = self._rasterization_zorder if (rasterization_zorder is not None and len(dsu) > 0 and dsu[0][0] < rasterization_zorder): renderer.start_rasterizing() dsu_rasterized = [l for l in dsu if l[0] < rasterization_zorder] dsu = [l for l in dsu if l[0] >= rasterization_zorder] else: dsu_rasterized = [] # the patch draws the background rectangle -- the frame below # will draw the edges if self.axison and self._frameon: self.patch.draw(renderer) if _do_composite: # make a composite image blending alpha # list of (mimage.Image, ox, oy) zorder_images = [(im.zorder, im) for im in self.images \ if im.get_visible()] zorder_images.sort(key=lambda x: x[0]) mag = renderer.get_image_magnification() ims = [(im.make_image(mag),0,0) for z,im in zorder_images] l, b, r, t = self.bbox.extents width = mag*((round(r) + 0.5) - (round(l) - 0.5)) height = mag*((round(t) + 0.5) - (round(b) - 0.5)) im = mimage.from_images(height, width, ims) im.is_grayscale = False l, b, w, h = self.bbox.bounds # composite images need special args so they will not # respect z-order for now gc = renderer.new_gc() gc.set_clip_rectangle(self.bbox) gc.set_clip_path(mtransforms.TransformedPath( self.patch.get_path(), self.patch.get_transform())) renderer.draw_image(gc, round(l), round(b), im) gc.restore() if dsu_rasterized: for zorder, a in dsu_rasterized: a.draw(renderer) renderer.stop_rasterizing() for zorder, a in dsu: a.draw(renderer) renderer.close_group('axes') self._cachedRenderer = renderer def draw_artist(self, a): """ This method can only be used after an initial draw which caches the renderer. It is used to efficiently update Axes data (axis ticks, labels, etc are not updated) """ assert self._cachedRenderer is not None a.draw(self._cachedRenderer) def redraw_in_frame(self): """ This method can only be used after an initial draw which caches the renderer. It is used to efficiently update Axes data (axis ticks, labels, etc are not updated) """ assert self._cachedRenderer is not None self.draw(self._cachedRenderer, inframe=True) def get_renderer_cache(self): return self._cachedRenderer def __draw_animate(self): # ignore for now; broken if self._lastRenderer is None: raise RuntimeError('You must first call ax.draw()') dsu = [(a.zorder, a) for a in self.animated.keys()] dsu.sort(key=lambda x: x[0]) renderer = self._lastRenderer renderer.blit() for tmp, a in dsu: a.draw(renderer) #### Axes rectangle characteristics def get_frame_on(self): """ Get whether the axes rectangle patch is drawn """ return self._frameon def set_frame_on(self, b): """ Set whether the axes rectangle patch is drawn ACCEPTS: [ *True* | *False* ] """ self._frameon = b def get_axisbelow(self): """ Get whether axis below is true or not """ return self._axisbelow def set_axisbelow(self, b): """ Set whether the axis ticks and gridlines are above or below most artists ACCEPTS: [ *True* | *False* ] """ self._axisbelow = b @docstring.dedent_interpd def grid(self, b=None, which='major', axis='both', **kwargs): """ Turn the axes grids on or off. Call signature:: grid(self, b=None, which='major', axis='both', **kwargs) Set the axes grids on or off; *b* is a boolean. (For MATLAB compatibility, *b* may also be a string, 'on' or 'off'.) If *b* is *None* and ``len(kwargs)==0``, toggle the grid state. If *kwargs* are supplied, it is assumed that you want a grid and *b* is thus set to *True*. *which* can be 'major' (default), 'minor', or 'both' to control whether major tick grids, minor tick grids, or both are affected. *axis* can be 'both' (default), 'x', or 'y' to control which set of gridlines are drawn. *kwargs* are used to set the grid line properties, eg:: ax.grid(color='r', linestyle='-', linewidth=2) Valid :class:`~matplotlib.lines.Line2D` kwargs are %(Line2D)s """ if len(kwargs): b = True b = _string_to_bool(b) if axis == 'x' or axis == 'both': self.xaxis.grid(b, which=which, **kwargs) if axis == 'y' or axis == 'both': self.yaxis.grid(b, which=which, **kwargs) def ticklabel_format(self, **kwargs): """ Change the `~matplotlib.ticker.ScalarFormatter` used by default for linear axes. Optional keyword arguments: ============ ========================================= Keyword Description ============ ========================================= *style* [ 'sci' (or 'scientific') | 'plain' ] plain turns off scientific notation *scilimits* (m, n), pair of integers; if *style* is 'sci', scientific notation will be used for numbers outside the range 10`m`:sup: to 10`n`:sup:. Use (0,0) to include all numbers. *useOffset* [True | False | offset]; if True, the offset will be calculated as needed; if False, no offset will be used; if a numeric offset is specified, it will be used. *axis* [ 'x' | 'y' | 'both' ] *useLocale* If True, format the number according to the current locale. This affects things such as the character used for the decimal separator. If False, use C-style (English) formatting. The default setting is controlled by the axes.formatter.use_locale rcparam. ============ ========================================= Only the major ticks are affected. If the method is called when the :class:`~matplotlib.ticker.ScalarFormatter` is not the :class:`~matplotlib.ticker.Formatter` being used, an :exc:`AttributeError` will be raised. """ style = kwargs.pop('style', '').lower() scilimits = kwargs.pop('scilimits', None) useOffset = kwargs.pop('useOffset', None) useLocale = kwargs.pop('useLocale', None) axis = kwargs.pop('axis', 'both').lower() if scilimits is not None: try: m, n = scilimits m+n+1 # check that both are numbers except (ValueError, TypeError): raise ValueError("scilimits must be a sequence of 2 integers") if style[:3] == 'sci': sb = True elif style in ['plain', 'comma']: sb = False if style == 'plain': cb = False else: cb = True raise NotImplementedError("comma style remains to be added") elif style == '': sb = None else: raise ValueError("%s is not a valid style value") try: if sb is not None: if axis == 'both' or axis == 'x': self.xaxis.major.formatter.set_scientific(sb) if axis == 'both' or axis == 'y': self.yaxis.major.formatter.set_scientific(sb) if scilimits is not None: if axis == 'both' or axis == 'x': self.xaxis.major.formatter.set_powerlimits(scilimits) if axis == 'both' or axis == 'y': self.yaxis.major.formatter.set_powerlimits(scilimits) if useOffset is not None: if axis == 'both' or axis == 'x': self.xaxis.major.formatter.set_useOffset(useOffset) if axis == 'both' or axis == 'y': self.yaxis.major.formatter.set_useOffset(useOffset) if useLocale is not None: if axis == 'both' or axis == 'x': self.xaxis.major.formatter.set_useLocale(useLocale) if axis == 'both' or axis == 'y': self.yaxis.major.formatter.set_useLocale(useLocale) except AttributeError: raise AttributeError( "This method only works with the ScalarFormatter.") def locator_params(self, axis='both', tight=None, **kwargs): """ Control behavior of tick locators. Keyword arguments: *axis* ['x' | 'y' | 'both'] Axis on which to operate; default is 'both'. *tight* [True | False | None] Parameter passed to :meth:`autoscale_view`. Default is None, for no change. Remaining keyword arguments are passed to directly to the :meth:`~matplotlib.ticker.MaxNLocator.set_params` method. Typically one might want to reduce the maximum number of ticks and use tight bounds when plotting small subplots, for example:: ax.locator_params(tight=True, nbins=4) Because the locator is involved in autoscaling, :meth:`autoscale_view` is called automatically after the parameters are changed. This presently works only for the :class:`~matplotlib.ticker.MaxNLocator` used by default on linear axes, but it may be generalized. """ _x = axis in ['x', 'both'] _y = axis in ['y', 'both'] if _x: self.xaxis.get_major_locator().set_params(**kwargs) if _y: self.yaxis.get_major_locator().set_params(**kwargs) self.autoscale_view(tight=tight, scalex=_x, scaley=_y) def tick_params(self, axis='both', **kwargs): """ Change the appearance of ticks and tick labels. Keyword arguments: *axis* : ['x' | 'y' | 'both'] Axis on which to operate; default is 'both'. *reset* : [True | False] If *True*, set all parameters to defaults before processing other keyword arguments. Default is *False*. *which* : ['major' | 'minor' | 'both'] Default is 'major'; apply arguments to *which* ticks. *direction* : ['in' | 'out' | 'inout'] Puts ticks inside the axes, outside the axes, or both. *length* Tick length in points. *width* Tick width in points. *color* Tick color; accepts any mpl color spec. *pad* Distance in points between tick and label. *labelsize* Tick label font size in points or as a string (e.g. 'large'). *labelcolor* Tick label color; mpl color spec. *colors* Changes the tick color and the label color to the same value: mpl color spec. *zorder* Tick and label zorder. *bottom*, *top*, *left*, *right* : [bool | 'on' | 'off'] controls whether to draw the respective ticks. *labelbottom*, *labeltop*, *labelleft*, *labelright* Boolean or ['on' | 'off'], controls whether to draw the respective tick labels. Example:: ax.tick_params(direction='out', length=6, width=2, colors='r') This will make all major ticks be red, pointing out of the box, and with dimensions 6 points by 2 points. Tick labels will also be red. """ if axis in ['x', 'both']: xkw = dict(kwargs) xkw.pop('left', None) xkw.pop('right', None) xkw.pop('labelleft', None) xkw.pop('labelright', None) self.xaxis.set_tick_params(**xkw) if axis in ['y', 'both']: ykw = dict(kwargs) ykw.pop('top', None) ykw.pop('bottom', None) ykw.pop('labeltop', None) ykw.pop('labelbottom', None) self.yaxis.set_tick_params(**ykw) def set_axis_off(self): """turn off the axis""" self.axison = False def set_axis_on(self): """turn on the axis""" self.axison = True def get_axis_bgcolor(self): """Return the axis background color""" return self._axisbg def set_axis_bgcolor(self, color): """ set the axes background color ACCEPTS: any matplotlib color - see :func:`~matplotlib.pyplot.colors` """ self._axisbg = color self.patch.set_facecolor(color) ### data limits, ticks, tick labels, and formatting def invert_xaxis(self): "Invert the x-axis." left, right = self.get_xlim() self.set_xlim(right, left, auto=None) def xaxis_inverted(self): """Returns *True* if the x-axis is inverted.""" left, right = self.get_xlim() return right < left def get_xbound(self): """ Returns the x-axis numerical bounds where:: lowerBound < upperBound """ left, right = self.get_xlim() if left < right: return left, right else: return right, left def set_xbound(self, lower=None, upper=None): """ Set the lower and upper numerical bounds of the x-axis. This method will honor axes inversion regardless of parameter order. It will not change the _autoscaleXon attribute. """ if upper is None and iterable(lower): lower,upper = lower old_lower,old_upper = self.get_xbound() if lower is None: lower = old_lower if upper is None: upper = old_upper if self.xaxis_inverted(): if lower < upper: self.set_xlim(upper, lower, auto=None) else: self.set_xlim(lower, upper, auto=None) else: if lower < upper: self.set_xlim(lower, upper, auto=None) else: self.set_xlim(upper, lower, auto=None) def get_xlim(self): """ Get the x-axis range [*left*, *right*] """ return tuple(self.viewLim.intervalx) def set_xlim(self, left=None, right=None, emit=True, auto=False, **kw): """ Call signature:: set_xlim(self, *args, **kwargs): Set the data limits for the xaxis Examples:: set_xlim((left, right)) set_xlim(left, right) set_xlim(left=1) # right unchanged set_xlim(right=1) # left unchanged Keyword arguments: *left*: scalar The left xlim; *xmin*, the previous name, may still be used *right*: scalar The right xlim; *xmax*, the previous name, may still be used *emit*: [ *True* | *False* ] Notify observers of limit change *auto*: [ *True* | *False* | *None* ] Turn *x* autoscaling on (*True*), off (*False*; default), or leave unchanged (*None*) Note, the *left* (formerly *xmin*) value may be greater than the *right* (formerly *xmax*). For example, suppose *x* is years before present. Then one might use:: set_ylim(5000, 0) so 5000 years ago is on the left of the plot and the present is on the right. Returns the current xlimits as a length 2 tuple ACCEPTS: length 2 sequence of floats """ if 'xmin' in kw: left = kw.pop('xmin') if 'xmax' in kw: right = kw.pop('xmax') if kw: raise ValueError("unrecognized kwargs: %s" % kw.keys()) if right is None and iterable(left): left,right = left self._process_unit_info(xdata=(left, right)) if left is not None: left = self.convert_xunits(left) if right is not None: right = self.convert_xunits(right) old_left, old_right = self.get_xlim() if left is None: left = old_left if right is None: right = old_right if left==right: warnings.warn(('Attempting to set identical left==right results\n' + 'in singular transformations; automatically expanding.\n' + 'left=%s, right=%s') % (left, right)) left, right = mtransforms.nonsingular(left, right, increasing=False) left, right = self.xaxis.limit_range_for_scale(left, right) self.viewLim.intervalx = (left, right) if auto is not None: self._autoscaleXon = bool(auto) if emit: self.callbacks.process('xlim_changed', self) # Call all of the other x-axes that are shared with this one for other in self._shared_x_axes.get_siblings(self): if other is not self: other.set_xlim(self.viewLim.intervalx, emit=False, auto=auto) if (other.figure != self.figure and other.figure.canvas is not None): other.figure.canvas.draw_idle() return left, right def get_xscale(self): return self.xaxis.get_scale() get_xscale.__doc__ = "Return the xaxis scale string: %s""" % ( ", ".join(mscale.get_scale_names())) @docstring.dedent_interpd def set_xscale(self, value, **kwargs): """ Call signature:: set_xscale(value) Set the scaling of the x-axis: %(scale)s ACCEPTS: [%(scale)s] Different kwargs are accepted, depending on the scale: %(scale_docs)s """ self.xaxis.set_scale(value, **kwargs) self.autoscale_view(scaley=False) self._update_transScale() def get_xticks(self, minor=False): """Return the x ticks as a list of locations""" return self.xaxis.get_ticklocs(minor=minor) def set_xticks(self, ticks, minor=False): """ Set the x ticks with list of *ticks* ACCEPTS: sequence of floats """ return self.xaxis.set_ticks(ticks, minor=minor) def get_xmajorticklabels(self): """ Get the xtick labels as a list of :class:`~matplotlib.text.Text` instances. """ return cbook.silent_list('Text xticklabel', self.xaxis.get_majorticklabels()) def get_xminorticklabels(self): """ Get the x minor tick labels as a list of :class:`matplotlib.text.Text` instances. """ return cbook.silent_list('Text xticklabel', self.xaxis.get_minorticklabels()) def get_xticklabels(self, minor=False): """ Get the x tick labels as a list of :class:`~matplotlib.text.Text` instances. """ return cbook.silent_list('Text xticklabel', self.xaxis.get_ticklabels(minor=minor)) @docstring.dedent_interpd def set_xticklabels(self, labels, fontdict=None, minor=False, **kwargs): """ Call signature:: set_xticklabels(labels, fontdict=None, minor=False, **kwargs) Set the xtick labels with list of strings *labels*. Return a list of axis text instances. *kwargs* set the :class:`~matplotlib.text.Text` properties. Valid properties are %(Text)s ACCEPTS: sequence of strings """ return self.xaxis.set_ticklabels(labels, fontdict, minor=minor, **kwargs) def invert_yaxis(self): "Invert the y-axis." bottom, top = self.get_ylim() self.set_ylim(top, bottom, auto=None) def yaxis_inverted(self): """Returns *True* if the y-axis is inverted.""" bottom, top = self.get_ylim() return top < bottom def get_ybound(self): "Return y-axis numerical bounds in the form of lowerBound < upperBound" bottom, top = self.get_ylim() if bottom < top: return bottom, top else: return top, bottom def set_ybound(self, lower=None, upper=None): """ Set the lower and upper numerical bounds of the y-axis. This method will honor axes inversion regardless of parameter order. It will not change the _autoscaleYon attribute. """ if upper is None and iterable(lower): lower,upper = lower old_lower,old_upper = self.get_ybound() if lower is None: lower = old_lower if upper is None: upper = old_upper if self.yaxis_inverted(): if lower < upper: self.set_ylim(upper, lower, auto=None) else: self.set_ylim(lower, upper, auto=None) else: if lower < upper: self.set_ylim(lower, upper, auto=None) else: self.set_ylim(upper, lower, auto=None) def get_ylim(self): """ Get the y-axis range [*bottom*, *top*] """ return tuple(self.viewLim.intervaly) def set_ylim(self, bottom=None, top=None, emit=True, auto=False, **kw): """ Call signature:: set_ylim(self, *args, **kwargs): Set the data limits for the yaxis Examples:: set_ylim((bottom, top)) set_ylim(bottom, top) set_ylim(bottom=1) # top unchanged set_ylim(top=1) # bottom unchanged Keyword arguments: *bottom*: scalar The bottom ylim; the previous name, *ymin*, may still be used *top*: scalar The top ylim; the previous name, *ymax*, may still be used *emit*: [ *True* | *False* ] Notify observers of limit change *auto*: [ *True* | *False* | *None* ] Turn *y* autoscaling on (*True*), off (*False*; default), or leave unchanged (*None*) Note, the *bottom* (formerly *ymin*) value may be greater than the *top* (formerly *ymax*). For example, suppose *y* is depth in the ocean. Then one might use:: set_ylim(5000, 0) so 5000 m depth is at the bottom of the plot and the surface, 0 m, is at the top. Returns the current ylimits as a length 2 tuple ACCEPTS: length 2 sequence of floats """ if 'ymin' in kw: bottom = kw.pop('ymin') if 'ymax' in kw: top = kw.pop('ymax') if kw: raise ValueError("unrecognized kwargs: %s" % kw.keys()) if top is None and iterable(bottom): bottom,top = bottom if bottom is not None: bottom = self.convert_yunits(bottom) if top is not None: top = self.convert_yunits(top) old_bottom, old_top = self.get_ylim() if bottom is None: bottom = old_bottom if top is None: top = old_top if bottom==top: warnings.warn(('Attempting to set identical bottom==top results\n' + 'in singular transformations; automatically expanding.\n' + 'bottom=%s, top=%s') % (bottom, top)) bottom, top = mtransforms.nonsingular(bottom, top, increasing=False) bottom, top = self.yaxis.limit_range_for_scale(bottom, top) self.viewLim.intervaly = (bottom, top) if auto is not None: self._autoscaleYon = bool(auto) if emit: self.callbacks.process('ylim_changed', self) # Call all of the other y-axes that are shared with this one for other in self._shared_y_axes.get_siblings(self): if other is not self: other.set_ylim(self.viewLim.intervaly, emit=False, auto=auto) if (other.figure != self.figure and other.figure.canvas is not None): other.figure.canvas.draw_idle() return bottom, top def get_yscale(self): return self.yaxis.get_scale() get_yscale.__doc__ = "Return the yaxis scale string: %s""" % ( ", ".join(mscale.get_scale_names())) @docstring.dedent_interpd def set_yscale(self, value, **kwargs): """ Call signature:: set_yscale(value) Set the scaling of the y-axis: %(scale)s ACCEPTS: [%(scale)s] Different kwargs are accepted, depending on the scale: %(scale_docs)s """ self.yaxis.set_scale(value, **kwargs) self.autoscale_view(scalex=False) self._update_transScale() def get_yticks(self, minor=False): """Return the y ticks as a list of locations""" return self.yaxis.get_ticklocs(minor=minor) def set_yticks(self, ticks, minor=False): """ Set the y ticks with list of *ticks* ACCEPTS: sequence of floats Keyword arguments: *minor*: [ *False* | *True* ] Sets the minor ticks if *True* """ return self.yaxis.set_ticks(ticks, minor=minor) def get_ymajorticklabels(self): """ Get the major y tick labels as a list of :class:`~matplotlib.text.Text` instances. """ return cbook.silent_list('Text yticklabel', self.yaxis.get_majorticklabels()) def get_yminorticklabels(self): """ Get the minor y tick labels as a list of :class:`~matplotlib.text.Text` instances. """ return cbook.silent_list('Text yticklabel', self.yaxis.get_minorticklabels()) def get_yticklabels(self, minor=False): """ Get the y tick labels as a list of :class:`~matplotlib.text.Text` instances """ return cbook.silent_list('Text yticklabel', self.yaxis.get_ticklabels(minor=minor)) @docstring.dedent_interpd def set_yticklabels(self, labels, fontdict=None, minor=False, **kwargs): """ Call signature:: set_yticklabels(labels, fontdict=None, minor=False, **kwargs) Set the y tick labels with list of strings *labels*. Return a list of :class:`~matplotlib.text.Text` instances. *kwargs* set :class:`~matplotlib.text.Text` properties for the labels. Valid properties are %(Text)s ACCEPTS: sequence of strings """ return self.yaxis.set_ticklabels(labels, fontdict, minor=minor, **kwargs) def xaxis_date(self, tz=None): """ Sets up x-axis ticks and labels that treat the x data as dates. *tz* is a timezone string or :class:`tzinfo` instance. Defaults to rc value. """ # should be enough to inform the unit conversion interface # dates are coming in self.xaxis.axis_date(tz) def yaxis_date(self, tz=None): """ Sets up y-axis ticks and labels that treat the y data as dates. *tz* is a timezone string or :class:`tzinfo` instance. Defaults to rc value. """ self.yaxis.axis_date(tz) def format_xdata(self, x): """ Return *x* string formatted. This function will use the attribute self.fmt_xdata if it is callable, else will fall back on the xaxis major formatter """ try: return self.fmt_xdata(x) except TypeError: func = self.xaxis.get_major_formatter().format_data_short val = func(x) return val def format_ydata(self, y): """ Return y string formatted. This function will use the :attr:`fmt_ydata` attribute if it is callable, else will fall back on the yaxis major formatter """ try: return self.fmt_ydata(y) except TypeError: func = self.yaxis.get_major_formatter().format_data_short val = func(y) return val def format_coord(self, x, y): """Return a format string formatting the *x*, *y* coord""" if x is None: xs = '???' else: xs = self.format_xdata(x) if y is None: ys = '???' else: ys = self.format_ydata(y) return 'x=%s y=%s'%(xs,ys) #### Interactive manipulation def can_zoom(self): """ Return *True* if this axes supports the zoom box button functionality. """ return True def can_pan(self) : """ Return *True* if this axes supports any pan/zoom button functionality. """ return True def get_navigate(self): """ Get whether the axes responds to navigation commands """ return self._navigate def set_navigate(self, b): """ Set whether the axes responds to navigation toolbar commands ACCEPTS: [ *True* | *False* ] """ self._navigate = b def get_navigate_mode(self): """ Get the navigation toolbar button status: 'PAN', 'ZOOM', or None """ return self._navigate_mode def set_navigate_mode(self, b): """ Set the navigation toolbar button status; .. warning:: this is not a user-API function. """ self._navigate_mode = b def start_pan(self, x, y, button): """ Called when a pan operation has started. *x*, *y* are the mouse coordinates in display coords. button is the mouse button number: * 1: LEFT * 2: MIDDLE * 3: RIGHT .. note:: Intended to be overridden by new projection types. """ self._pan_start = cbook.Bunch( lim = self.viewLim.frozen(), trans = self.transData.frozen(), trans_inverse = self.transData.inverted().frozen(), bbox = self.bbox.frozen(), x = x, y = y ) def end_pan(self): """ Called when a pan operation completes (when the mouse button is up.) .. note:: Intended to be overridden by new projection types. """ del self._pan_start def drag_pan(self, button, key, x, y): """ Called when the mouse moves during a pan operation. *button* is the mouse button number: * 1: LEFT * 2: MIDDLE * 3: RIGHT *key* is a "shift" key *x*, *y* are the mouse coordinates in display coords. .. note:: Intended to be overridden by new projection types. """ def format_deltas(key, dx, dy): if key=='control': if(abs(dx)>abs(dy)): dy = dx else: dx = dy elif key=='x': dy = 0 elif key=='y': dx = 0 elif key=='shift': if 2*abs(dx) < abs(dy): dx=0 elif 2*abs(dy) < abs(dx): dy=0 elif(abs(dx)>abs(dy)): dy=dy/abs(dy)*abs(dx) else: dx=dx/abs(dx)*abs(dy) return (dx,dy) p = self._pan_start dx = x - p.x dy = y - p.y if dx == 0 and dy == 0: return if button == 1: dx, dy = format_deltas(key, dx, dy) result = p.bbox.translated(-dx, -dy) \ .transformed(p.trans_inverse) elif button == 3: try: dx = -dx / float(self.bbox.width) dy = -dy / float(self.bbox.height) dx, dy = format_deltas(key, dx, dy) if self.get_aspect() != 'auto': dx = 0.5 * (dx + dy) dy = dx alpha = np.power(10.0, (dx, dy)) start = np.array([p.x, p.y]) oldpoints = p.lim.transformed(p.trans) newpoints = start + alpha * (oldpoints - start) result = mtransforms.Bbox(newpoints) \ .transformed(p.trans_inverse) except OverflowError: warnings.warn('Overflow while panning') return self.set_xlim(*result.intervalx) self.set_ylim(*result.intervaly) def get_cursor_props(self): """ Return the cursor propertiess as a (*linewidth*, *color*) tuple, where *linewidth* is a float and *color* is an RGBA tuple """ return self._cursorProps def set_cursor_props(self, *args): """ Set the cursor property as:: ax.set_cursor_props(linewidth, color) or:: ax.set_cursor_props((linewidth, color)) ACCEPTS: a (*float*, *color*) tuple """ if len(args)==1: lw, c = args[0] elif len(args)==2: lw, c = args else: raise ValueError('args must be a (linewidth, color) tuple') c =mcolors.colorConverter.to_rgba(c) self._cursorProps = lw, c def connect(self, s, func): """ Register observers to be notified when certain events occur. Register with callback functions with the following signatures. The function has the following signature:: func(ax) # where ax is the instance making the callback. The following events can be connected to: 'xlim_changed','ylim_changed' The connection id is is returned - you can use this with disconnect to disconnect from the axes event """ raise mplDeprecation('use the callbacks CallbackRegistry instance ' 'instead') def disconnect(self, cid): """disconnect from the Axes event.""" raise mplDeprecation('use the callbacks CallbackRegistry instance ' 'instead') def get_children(self): """return a list of child artists""" children = [] children.append(self.xaxis) children.append(self.yaxis) children.extend(self.lines) children.extend(self.patches) children.extend(self.texts) children.extend(self.tables) children.extend(self.artists) children.extend(self.images) if self.legend_ is not None: children.append(self.legend_) children.extend(self.collections) children.append(self.title) children.append(self.patch) children.extend(self.spines.itervalues()) return children def contains(self,mouseevent): """ Test whether the mouse event occured in the axes. Returns *True* / *False*, {} """ if callable(self._contains): return self._contains(self,mouseevent) return self.patch.contains(mouseevent) def contains_point(self, point): """ Returns *True* if the point (tuple of x,y) is inside the axes (the area defined by the its patch). A pixel coordinate is required. """ return self.patch.contains_point(point, radius=1.0) def pick(self, *args): """ Call signature:: pick(mouseevent) each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set """ if len(args) > 1: raise mplDeprecation('New pick API implemented -- ' 'see API_CHANGES in the src distribution') martist.Artist.pick(self, args[0]) def __pick(self, x, y, trans=None, among=None): """ Return the artist under point that is closest to the *x*, *y*. If *trans* is *None*, *x*, and *y* are in window coords, (0,0 = lower left). Otherwise, *trans* is a :class:`~matplotlib.transforms.Transform` that specifies the coordinate system of *x*, *y*. The selection of artists from amongst which the pick function finds an artist can be narrowed using the optional keyword argument *among*. If provided, this should be either a sequence of permitted artists or a function taking an artist as its argument and returning a true value if and only if that artist can be selected. Note this algorithm calculates distance to the vertices of the polygon, so if you want to pick a patch, click on the edge! """ # MGDTODO: Needs updating if trans is not None: xywin = trans.transform_point((x,y)) else: xywin = x,y def dist_points(p1, p2): 'return the distance between two points' x1, y1 = p1 x2, y2 = p2 return math.sqrt((x1-x2)**2+(y1-y2)**2) def dist_x_y(p1, x, y): '*x* and *y* are arrays; return the distance to the closest point' x1, y1 = p1 return min(np.sqrt((x-x1)**2+(y-y1)**2)) def dist(a): if isinstance(a, Text): bbox = a.get_window_extent() l,b,w,h = bbox.bounds verts = (l,b), (l,b+h), (l+w,b+h), (l+w, b) xt, yt = zip(*verts) elif isinstance(a, Patch): path = a.get_path() tverts = a.get_transform().transform_path(path) xt, yt = zip(*tverts) elif isinstance(a, mlines.Line2D): xdata = a.get_xdata(orig=False) ydata = a.get_ydata(orig=False) xt, yt = a.get_transform().numerix_x_y(xdata, ydata) return dist_x_y(xywin, np.asarray(xt), np.asarray(yt)) artists = self.lines + self.patches + self.texts if callable(among): artists = filter(test, artists) elif iterable(among): amongd = dict([(k,1) for k in among]) artists = [a for a in artists if a in amongd] elif among is None: pass else: raise ValueError('among must be callable or iterable') if not len(artists): return None ds = [ (dist(a),a) for a in artists] ds.sort() return ds[0][1] #### Labelling def get_title(self): """ Get the title text string. """ return self.title.get_text() @docstring.dedent_interpd def set_title(self, label, fontdict=None, **kwargs): """ Call signature:: set_title(label, fontdict=None, **kwargs): Set the title for the axes. kwargs are Text properties: %(Text)s ACCEPTS: str .. seealso:: :meth:`text` for information on how override and the optional args work """ default = { 'fontsize':rcParams['axes.titlesize'], 'verticalalignment' : 'baseline', 'horizontalalignment' : 'center' } self.title.set_text(label) self.title.update(default) if fontdict is not None: self.title.update(fontdict) self.title.update(kwargs) return self.title def get_xlabel(self): """ Get the xlabel text string. """ label = self.xaxis.get_label() return label.get_text() @docstring.dedent_interpd def set_xlabel(self, xlabel, fontdict=None, labelpad=None, **kwargs): """ Call signature:: set_xlabel(xlabel, fontdict=None, labelpad=None, **kwargs) Set the label for the xaxis. *labelpad* is the spacing in points between the label and the x-axis Valid kwargs are :class:`~matplotlib.text.Text` properties: %(Text)s ACCEPTS: str .. seealso:: :meth:`text` for information on how override and the optional args work """ if labelpad is not None: self.xaxis.labelpad = labelpad return self.xaxis.set_label_text(xlabel, fontdict, **kwargs) def get_ylabel(self): """ Get the ylabel text string. """ label = self.yaxis.get_label() return label.get_text() @docstring.dedent_interpd def set_ylabel(self, ylabel, fontdict=None, labelpad=None, **kwargs): """ Call signature:: set_ylabel(ylabel, fontdict=None, labelpad=None, **kwargs) Set the label for the yaxis *labelpad* is the spacing in points between the label and the y-axis Valid kwargs are :class:`~matplotlib.text.Text` properties: %(Text)s ACCEPTS: str .. seealso:: :meth:`text` for information on how override and the optional args work """ if labelpad is not None: self.yaxis.labelpad = labelpad return self.yaxis.set_label_text(ylabel, fontdict, **kwargs) @docstring.dedent_interpd def text(self, x, y, s, fontdict=None, withdash=False, **kwargs): """ Add text to the axes. Call signature:: text(x, y, s, fontdict=None, **kwargs) Add text in string *s* to axis at location *x*, *y*, data coordinates. Keyword arguments: *fontdict*: A dictionary to override the default text properties. If *fontdict* is *None*, the defaults are determined by your rc parameters. *withdash*: [ *False* | *True* ] Creates a :class:`~matplotlib.text.TextWithDash` instance instead of a :class:`~matplotlib.text.Text` instance. Individual keyword arguments can be used to override any given parameter:: text(x, y, s, fontsize=12) The default transform specifies that text is in data coords, alternatively, you can specify text in axis coords (0,0 is lower-left and 1,1 is upper-right). The example below places text in the center of the axes:: text(0.5, 0.5,'matplotlib', horizontalalignment='center', verticalalignment='center', transform = ax.transAxes) You can put a rectangular box around the text instance (eg. to set a background color) by using the keyword *bbox*. *bbox* is a dictionary of :class:`matplotlib.patches.Rectangle` properties. For example:: text(x, y, s, bbox=dict(facecolor='red', alpha=0.5)) Valid kwargs are :class:`~matplotlib.text.Text` properties: %(Text)s """ default = { 'verticalalignment' : 'baseline', 'horizontalalignment' : 'left', 'transform' : self.transData, } # At some point if we feel confident that TextWithDash # is robust as a drop-in replacement for Text and that # the performance impact of the heavier-weight class # isn't too significant, it may make sense to eliminate # the withdash kwarg and simply delegate whether there's # a dash to TextWithDash and dashlength. if withdash: t = mtext.TextWithDash( x=x, y=y, text=s, ) else: t = mtext.Text( x=x, y=y, text=s, ) self._set_artist_props(t) t.update(default) if fontdict is not None: t.update(fontdict) t.update(kwargs) self.texts.append(t) t._remove_method = lambda h: self.texts.remove(h) #if t.get_clip_on(): t.set_clip_box(self.bbox) if 'clip_on' in kwargs: t.set_clip_box(self.bbox) return t @docstring.dedent_interpd def annotate(self, *args, **kwargs): """ Create an annotation: a piece of text referring to a data point. Call signature:: annotate(s, xy, xytext=None, xycoords='data', textcoords='data', arrowprops=None, **kwargs) Keyword arguments: %(Annotation)s .. plot:: mpl_examples/pylab_examples/annotation_demo2.py """ a = mtext.Annotation(*args, **kwargs) a.set_transform(mtransforms.IdentityTransform()) self._set_artist_props(a) if kwargs.has_key('clip_on'): a.set_clip_path(self.patch) self.texts.append(a) a._remove_method = lambda h: self.texts.remove(h) return a #### Lines and spans @docstring.dedent_interpd def axhline(self, y=0, xmin=0, xmax=1, **kwargs): """ Add a horizontal line across the axis. Call signature:: axhline(y=0, xmin=0, xmax=1, **kwargs) Draw a horizontal line at *y* from *xmin* to *xmax*. With the default values of *xmin* = 0 and *xmax* = 1, this line will always span the horizontal extent of the axes, regardless of the xlim settings, even if you change them, eg. with the :meth:`set_xlim` command. That is, the horizontal extent is in axes coords: 0=left, 0.5=middle, 1.0=right but the *y* location is in data coordinates. Return value is the :class:`~matplotlib.lines.Line2D` instance. kwargs are the same as kwargs to plot, and can be used to control the line properties. Eg., * draw a thick red hline at *y* = 0 that spans the xrange:: >>> axhline(linewidth=4, color='r') * draw a default hline at *y* = 1 that spans the xrange:: >>> axhline(y=1) * draw a default hline at *y* = .5 that spans the the middle half of the xrange:: >>> axhline(y=.5, xmin=0.25, xmax=0.75) Valid kwargs are :class:`~matplotlib.lines.Line2D` properties, with the exception of 'transform': %(Line2D)s .. seealso:: :meth:`axhspan` for example plot and source code """ if "transform" in kwargs: raise ValueError( "'transform' is not allowed as a kwarg;" + "axhline generates its own transform.") ymin, ymax = self.get_ybound() # We need to strip away the units for comparison with # non-unitized bounds self._process_unit_info( ydata=y, kwargs=kwargs ) yy = self.convert_yunits( y ) scaley = (yy<ymin) or (yy>ymax) trans = mtransforms.blended_transform_factory( self.transAxes, self.transData) l = mlines.Line2D([xmin,xmax], [y,y], transform=trans, **kwargs) self.add_line(l) self.autoscale_view(scalex=False, scaley=scaley) return l @docstring.dedent_interpd def axvline(self, x=0, ymin=0, ymax=1, **kwargs): """ Add a vertical line across the axes. Call signature:: axvline(x=0, ymin=0, ymax=1, **kwargs) Draw a vertical line at *x* from *ymin* to *ymax*. With the default values of *ymin* = 0 and *ymax* = 1, this line will always span the vertical extent of the axes, regardless of the ylim settings, even if you change them, eg. with the :meth:`set_ylim` command. That is, the vertical extent is in axes coords: 0=bottom, 0.5=middle, 1.0=top but the *x* location is in data coordinates. Return value is the :class:`~matplotlib.lines.Line2D` instance. kwargs are the same as kwargs to plot, and can be used to control the line properties. Eg., * draw a thick red vline at *x* = 0 that spans the yrange:: >>> axvline(linewidth=4, color='r') * draw a default vline at *x* = 1 that spans the yrange:: >>> axvline(x=1) * draw a default vline at *x* = .5 that spans the the middle half of the yrange:: >>> axvline(x=.5, ymin=0.25, ymax=0.75) Valid kwargs are :class:`~matplotlib.lines.Line2D` properties, with the exception of 'transform': %(Line2D)s .. seealso:: :meth:`axhspan` for example plot and source code """ if "transform" in kwargs: raise ValueError( "'transform' is not allowed as a kwarg;" + "axvline generates its own transform.") xmin, xmax = self.get_xbound() # We need to strip away the units for comparison with # non-unitized bounds self._process_unit_info( xdata=x, kwargs=kwargs ) xx = self.convert_xunits( x ) scalex = (xx<xmin) or (xx>xmax) trans = mtransforms.blended_transform_factory( self.transData, self.transAxes) l = mlines.Line2D([x,x], [ymin,ymax] , transform=trans, **kwargs) self.add_line(l) self.autoscale_view(scalex=scalex, scaley=False) return l @docstring.dedent_interpd def axhspan(self, ymin, ymax, xmin=0, xmax=1, **kwargs): """ Add a horizontal span (rectangle) across the axis. Call signature:: axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs) *y* coords are in data units and *x* coords are in axes (relative 0-1) units. Draw a horizontal span (rectangle) from *ymin* to *ymax*. With the default values of *xmin* = 0 and *xmax* = 1, this always spans the xrange, regardless of the xlim settings, even if you change them, eg. with the :meth:`set_xlim` command. That is, the horizontal extent is in axes coords: 0=left, 0.5=middle, 1.0=right but the *y* location is in data coordinates. Return value is a :class:`matplotlib.patches.Polygon` instance. Examples: * draw a gray rectangle from *y* = 0.25-0.75 that spans the horizontal extent of the axes:: >>> axhspan(0.25, 0.75, facecolor='0.5', alpha=0.5) Valid kwargs are :class:`~matplotlib.patches.Polygon` properties: %(Polygon)s **Example:** .. plot:: mpl_examples/pylab_examples/axhspan_demo.py """ trans = mtransforms.blended_transform_factory( self.transAxes, self.transData) # process the unit information self._process_unit_info( [xmin, xmax], [ymin, ymax], kwargs=kwargs ) # first we need to strip away the units xmin, xmax = self.convert_xunits( [xmin, xmax] ) ymin, ymax = self.convert_yunits( [ymin, ymax] ) verts = (xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin) p = mpatches.Polygon(verts, **kwargs) p.set_transform(trans) self.add_patch(p) self.autoscale_view(scalex=False) return p @docstring.dedent_interpd def axvspan(self, xmin, xmax, ymin=0, ymax=1, **kwargs): """ Add a vertical span (rectangle) across the axes. Call signature:: axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs) *x* coords are in data units and *y* coords are in axes (relative 0-1) units. Draw a vertical span (rectangle) from *xmin* to *xmax*. With the default values of *ymin* = 0 and *ymax* = 1, this always spans the yrange, regardless of the ylim settings, even if you change them, eg. with the :meth:`set_ylim` command. That is, the vertical extent is in axes coords: 0=bottom, 0.5=middle, 1.0=top but the *y* location is in data coordinates. Return value is the :class:`matplotlib.patches.Polygon` instance. Examples: * draw a vertical green translucent rectangle from x=1.25 to 1.55 that spans the yrange of the axes:: >>> axvspan(1.25, 1.55, facecolor='g', alpha=0.5) Valid kwargs are :class:`~matplotlib.patches.Polygon` properties: %(Polygon)s .. seealso:: :meth:`axhspan` for example plot and source code """ trans = mtransforms.blended_transform_factory( self.transData, self.transAxes) # process the unit information self._process_unit_info( [xmin, xmax], [ymin, ymax], kwargs=kwargs ) # first we need to strip away the units xmin, xmax = self.convert_xunits( [xmin, xmax] ) ymin, ymax = self.convert_yunits( [ymin, ymax] ) verts = [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)] p = mpatches.Polygon(verts, **kwargs) p.set_transform(trans) self.add_patch(p) self.autoscale_view(scaley=False) return p @docstring.dedent def hlines(self, y, xmin, xmax, colors='k', linestyles='solid', label='', **kwargs): """ Plot horizontal lines. call signature:: hlines(y, xmin, xmax, colors='k', linestyles='solid', **kwargs) Plot horizontal lines at each *y* from *xmin* to *xmax*. Returns the :class:`~matplotlib.collections.LineCollection` that was added. Required arguments: *y*: a 1-D numpy array or iterable. *xmin* and *xmax*: can be scalars or ``len(x)`` numpy arrays. If they are scalars, then the respective values are constant, else the widths of the lines are determined by *xmin* and *xmax*. Optional keyword arguments: *colors*: a line collections color argument, either a single color or a ``len(y)`` list of colors *linestyles*: [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ] **Example:** .. plot:: mpl_examples/pylab_examples/hline_demo.py """ if kwargs.get('fmt') is not None: raise mplDeprecation('hlines now uses a ' 'collections.LineCollection and not a ' 'list of Line2D to draw; see API_CHANGES') # We do the conversion first since not all unitized data is uniform # process the unit information self._process_unit_info( [xmin, xmax], y, kwargs=kwargs ) y = self.convert_yunits( y ) xmin = self.convert_xunits(xmin) xmax = self.convert_xunits(xmax) if not iterable(y): y = [y] if not iterable(xmin): xmin = [xmin] if not iterable(xmax): xmax = [xmax] y = np.asarray(y) xmin = np.asarray(xmin) xmax = np.asarray(xmax) if len(xmin)==1: xmin = np.resize( xmin, y.shape ) if len(xmax)==1: xmax = np.resize( xmax, y.shape ) if len(xmin)!=len(y): raise ValueError('xmin and y are unequal sized sequences') if len(xmax)!=len(y): raise ValueError('xmax and y are unequal sized sequences') verts = [ ((thisxmin, thisy), (thisxmax, thisy)) for thisxmin, thisxmax, thisy in zip(xmin, xmax, y)] coll = mcoll.LineCollection(verts, colors=colors, linestyles=linestyles, label=label) self.add_collection(coll) coll.update(kwargs) if len(y) > 0: minx = min(xmin.min(), xmax.min()) maxx = max(xmin.max(), xmax.max()) miny = y.min() maxy = y.max() corners = (minx, miny), (maxx, maxy) self.update_datalim(corners) self.autoscale_view() return coll @docstring.dedent_interpd def vlines(self, x, ymin, ymax, colors='k', linestyles='solid', label='', **kwargs): """ Plot vertical lines. Call signature:: vlines(x, ymin, ymax, color='k', linestyles='solid') Plot vertical lines at each *x* from *ymin* to *ymax*. *ymin* or *ymax* can be scalars or len(*x*) numpy arrays. If they are scalars, then the respective values are constant, else the heights of the lines are determined by *ymin* and *ymax*. *colors* : A line collection's color args, either a single color or a ``len(x)`` list of colors *linestyles* : [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ] Returns the :class:`matplotlib.collections.LineCollection` that was added. kwargs are :class:`~matplotlib.collections.LineCollection` properties: %(LineCollection)s """ if kwargs.get('fmt') is not None: raise mplDeprecation('vlines now uses a ' 'collections.LineCollection and not a ' 'list of Line2D to draw; see API_CHANGES') self._process_unit_info(xdata=x, ydata=[ymin, ymax], kwargs=kwargs) # We do the conversion first since not all unitized data is uniform x = self.convert_xunits( x ) ymin = self.convert_yunits( ymin ) ymax = self.convert_yunits( ymax ) if not iterable(x): x = [x] if not iterable(ymin): ymin = [ymin] if not iterable(ymax): ymax = [ymax] x = np.asarray(x) ymin = np.asarray(ymin) ymax = np.asarray(ymax) if len(ymin)==1: ymin = np.resize( ymin, x.shape ) if len(ymax)==1: ymax = np.resize( ymax, x.shape ) if len(ymin)!=len(x): raise ValueError('ymin and x are unequal sized sequences') if len(ymax)!=len(x): raise ValueError('ymax and x are unequal sized sequences') Y = np.array([ymin, ymax]).T verts = [ ((thisx, thisymin), (thisx, thisymax)) for thisx, (thisymin, thisymax) in zip(x,Y)] #print 'creating line collection' coll = mcoll.LineCollection(verts, colors=colors, linestyles=linestyles, label=label) self.add_collection(coll) coll.update(kwargs) if len(x) > 0: minx = min( x ) maxx = max( x ) miny = min( min(ymin), min(ymax) ) maxy = max( max(ymin), max(ymax) ) corners = (minx, miny), (maxx, maxy) self.update_datalim(corners) self.autoscale_view() return coll #### Basic plotting @docstring.dedent_interpd def plot(self, *args, **kwargs): """ Plot lines and/or markers to the :class:`~matplotlib.axes.Axes`. *args* is a variable length argument, allowing for multiple *x*, *y* pairs with an optional format string. For example, each of the following is legal:: plot(x, y) # plot x and y using default line style and color plot(x, y, 'bo') # plot x and y using blue circle markers plot(y) # plot y using x as index array 0..N-1 plot(y, 'r+') # ditto, but with red plusses If *x* and/or *y* is 2-dimensional, then the corresponding columns will be plotted. An arbitrary number of *x*, *y*, *fmt* groups can be specified, as in:: a.plot(x1, y1, 'g^', x2, y2, 'g-') Return value is a list of lines that were added. By default, each line is assigned a different color specified by a 'color cycle'. To change this behavior, you can edit the axes.color_cycle rcParam. Alternatively, you can use :meth:`~matplotlib.axes.Axes.set_default_color_cycle`. The following format string characters are accepted to control the line style or marker: ================ =============================== character description ================ =============================== ``'-'`` solid line style ``'--'`` dashed line style ``'-.'`` dash-dot line style ``':'`` dotted line style ``'.'`` point marker ``','`` pixel marker ``'o'`` circle marker ``'v'`` triangle_down marker ``'^'`` triangle_up marker ``'<'`` triangle_left marker ``'>'`` triangle_right marker ``'1'`` tri_down marker ``'2'`` tri_up marker ``'3'`` tri_left marker ``'4'`` tri_right marker ``'s'`` square marker ``'p'`` pentagon marker ``'*'`` star marker ``'h'`` hexagon1 marker ``'H'`` hexagon2 marker ``'+'`` plus marker ``'x'`` x marker ``'D'`` diamond marker ``'d'`` thin_diamond marker ``'|'`` vline marker ``'_'`` hline marker ================ =============================== The following color abbreviations are supported: ========== ======== character color ========== ======== 'b' blue 'g' green 'r' red 'c' cyan 'm' magenta 'y' yellow 'k' black 'w' white ========== ======== In addition, you can specify colors in many weird and wonderful ways, including full names (``'green'``), hex strings (``'#008000'``), RGB or RGBA tuples (``(0,1,0,1)``) or grayscale intensities as a string (``'0.8'``). Of these, the string specifications can be used in place of a ``fmt`` group, but the tuple forms can be used only as ``kwargs``. Line styles and colors are combined in a single format string, as in ``'bo'`` for blue circles. The *kwargs* can be used to set line properties (any property that has a ``set_*`` method). You can use this to set a line label (for auto legends), linewidth, anitialising, marker face color, etc. Here is an example:: plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2) plot([1,2,3], [1,4,9], 'rs', label='line 2') axis([0, 4, 0, 10]) legend() If you make multiple lines with one plot command, the kwargs apply to all those lines, e.g.:: plot(x1, y1, x2, y2, antialised=False) Neither line will be antialiased. You do not need to use format strings, which are just abbreviations. All of the line properties can be controlled by keyword arguments. For example, you can set the color, marker, linestyle, and markercolor with:: plot(x, y, color='green', linestyle='dashed', marker='o', markerfacecolor='blue', markersize=12). See :class:`~matplotlib.lines.Line2D` for details. The kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s kwargs *scalex* and *scaley*, if defined, are passed on to :meth:`~matplotlib.axes.Axes.autoscale_view` to determine whether the *x* and *y* axes are autoscaled; the default is *True*. """ scalex = kwargs.pop( 'scalex', True) scaley = kwargs.pop( 'scaley', True) if not self._hold: self.cla() lines = [] for line in self._get_lines(*args, **kwargs): self.add_line(line) lines.append(line) self.autoscale_view(scalex=scalex, scaley=scaley) return lines @docstring.dedent_interpd def plot_date(self, x, y, fmt='bo', tz=None, xdate=True, ydate=False, **kwargs): """ Plot with data with dates. Call signature:: plot_date(x, y, fmt='bo', tz=None, xdate=True, ydate=False, **kwargs) Similar to the :func:`~matplotlib.pyplot.plot` command, except the *x* or *y* (or both) data is considered to be dates, and the axis is labeled accordingly. *x* and/or *y* can be a sequence of dates represented as float days since 0001-01-01 UTC. Keyword arguments: *fmt*: string The plot format string. *tz*: [ *None* | timezone string | :class:`tzinfo` instance] The time zone to use in labeling dates. If *None*, defaults to rc value. *xdate*: [ *True* | *False* ] If *True*, the *x*-axis will be labeled with dates. *ydate*: [ *False* | *True* ] If *True*, the *y*-axis will be labeled with dates. Note if you are using custom date tickers and formatters, it may be necessary to set the formatters/locators after the call to :meth:`plot_date` since :meth:`plot_date` will set the default tick locator to :class:`matplotlib.dates.AutoDateLocator` (if the tick locator is not already set to a :class:`matplotlib.dates.DateLocator` instance) and the default tick formatter to :class:`matplotlib.dates.AutoDateFormatter` (if the tick formatter is not already set to a :class:`matplotlib.dates.DateFormatter` instance). Valid kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s .. seealso:: :mod:`~matplotlib.dates` for helper functions :func:`~matplotlib.dates.date2num`, :func:`~matplotlib.dates.num2date` and :func:`~matplotlib.dates.drange` for help on creating the required floating point dates. """ if not self._hold: self.cla() ret = self.plot(x, y, fmt, **kwargs) if xdate: self.xaxis_date(tz) if ydate: self.yaxis_date(tz) self.autoscale_view() return ret @docstring.dedent_interpd def loglog(self, *args, **kwargs): """ Make a plot with log scaling on both the *x* and *y* axis. Call signature:: loglog(*args, **kwargs) :func:`~matplotlib.pyplot.loglog` supports all the keyword arguments of :func:`~matplotlib.pyplot.plot` and :meth:`matplotlib.axes.Axes.set_xscale` / :meth:`matplotlib.axes.Axes.set_yscale`. Notable keyword arguments: *basex*/*basey*: scalar > 1 Base of the *x*/*y* logarithm *subsx*/*subsy*: [ *None* | sequence ] The location of the minor *x*/*y* ticks; *None* defaults to autosubs, which depend on the number of decades in the plot; see :meth:`matplotlib.axes.Axes.set_xscale` / :meth:`matplotlib.axes.Axes.set_yscale` for details *nonposx*/*nonposy*: ['mask' | 'clip' ] Non-positive values in *x* or *y* can be masked as invalid, or clipped to a very small positive number The remaining valid kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s **Example:** .. plot:: mpl_examples/pylab_examples/log_demo.py """ if not self._hold: self.cla() dx = {'basex': kwargs.pop('basex', 10), 'subsx': kwargs.pop('subsx', None), 'nonposx': kwargs.pop('nonposx', 'mask'), } dy = {'basey': kwargs.pop('basey', 10), 'subsy': kwargs.pop('subsy', None), 'nonposy': kwargs.pop('nonposy', 'mask'), } self.set_xscale('log', **dx) self.set_yscale('log', **dy) b = self._hold self._hold = True # we've already processed the hold l = self.plot(*args, **kwargs) self._hold = b # restore the hold return l @docstring.dedent_interpd def semilogx(self, *args, **kwargs): """ Make a plot with log scaling on the *x* axis. Call signature:: semilogx(*args, **kwargs) :func:`semilogx` supports all the keyword arguments of :func:`~matplotlib.pyplot.plot` and :meth:`matplotlib.axes.Axes.set_xscale`. Notable keyword arguments: *basex*: scalar > 1 Base of the *x* logarithm *subsx*: [ *None* | sequence ] The location of the minor xticks; *None* defaults to autosubs, which depend on the number of decades in the plot; see :meth:`~matplotlib.axes.Axes.set_xscale` for details. *nonposx*: [ 'mask' | 'clip' ] Non-positive values in *x* can be masked as invalid, or clipped to a very small positive number The remaining valid kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s .. seealso:: :meth:`loglog` For example code and figure """ if not self._hold: self.cla() d = {'basex': kwargs.pop( 'basex', 10), 'subsx': kwargs.pop( 'subsx', None), 'nonposx': kwargs.pop('nonposx', 'mask'), } self.set_xscale('log', **d) b = self._hold self._hold = True # we've already processed the hold l = self.plot(*args, **kwargs) self._hold = b # restore the hold return l @docstring.dedent_interpd def semilogy(self, *args, **kwargs): """ Make a plot with log scaling on the *y* axis. call signature:: semilogy(*args, **kwargs) :func:`semilogy` supports all the keyword arguments of :func:`~matplotlib.pylab.plot` and :meth:`matplotlib.axes.Axes.set_yscale`. Notable keyword arguments: *basey*: scalar > 1 Base of the *y* logarithm *subsy*: [ *None* | sequence ] The location of the minor yticks; *None* defaults to autosubs, which depend on the number of decades in the plot; see :meth:`~matplotlib.axes.Axes.set_yscale` for details. *nonposy*: [ 'mask' | 'clip' ] Non-positive values in *y* can be masked as invalid, or clipped to a very small positive number The remaining valid kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s .. seealso:: :meth:`loglog` For example code and figure """ if not self._hold: self.cla() d = {'basey': kwargs.pop('basey', 10), 'subsy': kwargs.pop('subsy', None), 'nonposy': kwargs.pop('nonposy', 'mask'), } self.set_yscale('log', **d) b = self._hold self._hold = True # we've already processed the hold l = self.plot(*args, **kwargs) self._hold = b # restore the hold return l @docstring.dedent_interpd def acorr(self, x, **kwargs): """ Plot the autocorrelation of *x*. Call signature:: acorr(x, normed=True, detrend=mlab.detrend_none, usevlines=True, maxlags=10, **kwargs) If *normed* = *True*, normalize the data by the autocorrelation at 0-th lag. *x* is detrended by the *detrend* callable (default no normalization). Data are plotted as ``plot(lags, c, **kwargs)`` Return value is a tuple (*lags*, *c*, *line*) where: - *lags* are a length 2*maxlags+1 lag vector - *c* is the 2*maxlags+1 auto correlation vector - *line* is a :class:`~matplotlib.lines.Line2D` instance returned by :meth:`plot` The default *linestyle* is None and the default *marker* is ``'o'``, though these can be overridden with keyword args. The cross correlation is performed with :func:`numpy.correlate` with *mode* = 2. If *usevlines* is *True*, :meth:`~matplotlib.axes.Axes.vlines` rather than :meth:`~matplotlib.axes.Axes.plot` is used to draw vertical lines from the origin to the acorr. Otherwise, the plot style is determined by the kwargs, which are :class:`~matplotlib.lines.Line2D` properties. *maxlags* is a positive integer detailing the number of lags to show. The default value of *None* will return all ``(2*len(x)-1)`` lags. The return value is a tuple (*lags*, *c*, *linecol*, *b*) where - *linecol* is the :class:`~matplotlib.collections.LineCollection` - *b* is the *x*-axis. .. seealso:: :meth:`~matplotlib.axes.Axes.plot` or :meth:`~matplotlib.axes.Axes.vlines` For documentation on valid kwargs. **Example:** :func:`~matplotlib.pyplot.xcorr` is top graph, and :func:`~matplotlib.pyplot.acorr` is bottom graph. .. plot:: mpl_examples/pylab_examples/xcorr_demo.py """ return self.xcorr(x, x, **kwargs) @docstring.dedent_interpd def xcorr(self, x, y, normed=True, detrend=mlab.detrend_none, usevlines=True, maxlags=10, **kwargs): """ Plot the cross correlation between *x* and *y*. Call signature:: xcorr(self, x, y, normed=True, detrend=mlab.detrend_none, usevlines=True, maxlags=10, **kwargs) If *normed* = *True*, normalize the data by the cross correlation at 0-th lag. *x* and y are detrended by the *detrend* callable (default no normalization). *x* and *y* must be equal length. Data are plotted as ``plot(lags, c, **kwargs)`` Return value is a tuple (*lags*, *c*, *line*) where: - *lags* are a length ``2*maxlags+1`` lag vector - *c* is the ``2*maxlags+1`` auto correlation vector - *line* is a :class:`~matplotlib.lines.Line2D` instance returned by :func:`~matplotlib.pyplot.plot`. The default *linestyle* is *None* and the default *marker* is 'o', though these can be overridden with keyword args. The cross correlation is performed with :func:`numpy.correlate` with *mode* = 2. If *usevlines* is *True*: :func:`~matplotlib.pyplot.vlines` rather than :func:`~matplotlib.pyplot.plot` is used to draw vertical lines from the origin to the xcorr. Otherwise the plotstyle is determined by the kwargs, which are :class:`~matplotlib.lines.Line2D` properties. The return value is a tuple (*lags*, *c*, *linecol*, *b*) where *linecol* is the :class:`matplotlib.collections.LineCollection` instance and *b* is the *x*-axis. *maxlags* is a positive integer detailing the number of lags to show. The default value of *None* will return all ``(2*len(x)-1)`` lags. **Example:** :func:`~matplotlib.pyplot.xcorr` is top graph, and :func:`~matplotlib.pyplot.acorr` is bottom graph. .. plot:: mpl_examples/pylab_examples/xcorr_demo.py """ Nx = len(x) if Nx!=len(y): raise ValueError('x and y must be equal length') x = detrend(np.asarray(x)) y = detrend(np.asarray(y)) c = np.correlate(x, y, mode=2) if normed: c/= np.sqrt(np.dot(x,x) * np.dot(y,y)) if maxlags is None: maxlags = Nx - 1 if maxlags >= Nx or maxlags < 1: raise ValueError('maglags must be None or strictly ' 'positive < %d'%Nx) lags = np.arange(-maxlags,maxlags+1) c = c[Nx-1-maxlags:Nx+maxlags] if usevlines: a = self.vlines(lags, [0], c, **kwargs) b = self.axhline(**kwargs) else: kwargs.setdefault('marker', 'o') kwargs.setdefault('linestyle', 'None') a, = self.plot(lags, c, **kwargs) b = None return lags, c, a, b def _get_legend_handles(self, legend_handler_map=None): "return artists that will be used as handles for legend" handles_original = self.lines + self.patches + \ self.collections + self.containers # collections handler_map = mlegend.Legend.get_default_handler_map() if legend_handler_map is not None: handler_map = handler_map.copy() handler_map.update(legend_handler_map) handles = [] for h in handles_original: if h.get_label() == "_nolegend_": #.startswith('_'): continue if mlegend.Legend.get_legend_handler(handler_map, h): handles.append(h) return handles def get_legend_handles_labels(self, legend_handler_map=None): """ Return handles and labels for legend ``ax.legend()`` is equivalent to :: h, l = ax.get_legend_handles_labels() ax.legend(h, l) """ handles = [] labels = [] for handle in self._get_legend_handles(legend_handler_map): label = handle.get_label() #if (label is not None and label != '' and not label.startswith('_')): if label and not label.startswith('_'): handles.append(handle) labels.append(label) return handles, labels def legend(self, *args, **kwargs): """ Place a legend on the current axes. Call signature:: legend(*args, **kwargs) Places legend at location *loc*. Labels are a sequence of strings and *loc* can be a string or an integer specifying the legend location. To make a legend with existing lines:: legend() :meth:`legend` by itself will try and build a legend using the label property of the lines/patches/collections. You can set the label of a line by doing:: plot(x, y, label='my data') or:: line.set_label('my data'). If label is set to '_nolegend_', the item will not be shown in legend. To automatically generate the legend from labels:: legend( ('label1', 'label2', 'label3') ) To make a legend for a list of lines and labels:: legend( (line1, line2, line3), ('label1', 'label2', 'label3') ) To make a legend at a given location, using a location argument:: legend( ('label1', 'label2', 'label3'), loc='upper left') or:: legend( (line1, line2, line3), ('label1', 'label2', 'label3'), loc=2) The location codes are =============== ============= Location String Location Code =============== ============= 'best' 0 'upper right' 1 'upper left' 2 'lower left' 3 'lower right' 4 'right' 5 'center left' 6 'center right' 7 'lower center' 8 'upper center' 9 'center' 10 =============== ============= Users can specify any arbitrary location for the legend using the *bbox_to_anchor* keyword argument. bbox_to_anchor can be an instance of BboxBase(or its derivatives) or a tuple of 2 or 4 floats. For example, loc = 'upper right', bbox_to_anchor = (0.5, 0.5) will place the legend so that the upper right corner of the legend at the center of the axes. The legend location can be specified in other coordinate, by using the *bbox_transform* keyword. The loc itslef can be a 2-tuple giving x,y of the lower-left corner of the legend in axes coords (*bbox_to_anchor* is ignored). Keyword arguments: *prop*: [ *None* | FontProperties | dict ] A :class:`matplotlib.font_manager.FontProperties` instance. If *prop* is a dictionary, a new instance will be created with *prop*. If *None*, use rc settings. *fontsize*: [ size in points | 'xx-small' | 'x-small' | 'small' | 'medium' | 'large' | 'x-large' | 'xx-large' ] Set the font size. May be either a size string, relative to the default font size, or an absolute font size in points. This argument is only used if prop is not specified. *numpoints*: integer The number of points in the legend for line *scatterpoints*: integer The number of points in the legend for scatter plot *scatteroffsets*: list of floats a list of yoffsets for scatter symbols in legend *markerscale*: [ *None* | scalar ] The relative size of legend markers vs. original. If *None*, use rc settings. *frameon*: [ *True* | *False* ] if *True*, draw a frame around the legend. The default is set by the rcParam 'legend.frameon' *fancybox*: [ *None* | *False* | *True* ] if *True*, draw a frame with a round fancybox. If *None*, use rc settings *shadow*: [ *None* | *False* | *True* ] If *True*, draw a shadow behind legend. If *None*, use rc settings. *ncol* : integer number of columns. default is 1 *mode* : [ "expand" | *None* ] if mode is "expand", the legend will be horizontally expanded to fill the axes area (or *bbox_to_anchor*) *bbox_to_anchor* : an instance of BboxBase or a tuple of 2 or 4 floats the bbox that the legend will be anchored. *bbox_transform* : [ an instance of Transform | *None* ] the transform for the bbox. transAxes if *None*. *title* : string the legend title Padding and spacing between various elements use following keywords parameters. These values are measure in font-size units. E.g., a fontsize of 10 points and a handlelength=5 implies a handlelength of 50 points. Values from rcParams will be used if None. ================ ================================================================== Keyword Description ================ ================================================================== borderpad the fractional whitespace inside the legend border labelspacing the vertical space between the legend entries handlelength the length of the legend handles handletextpad the pad between the legend handle and text borderaxespad the pad between the axes and legend border columnspacing the spacing between columns ================ ================================================================== .. Note:: Not all kinds of artist are supported by the legend command. See LINK (FIXME) for details. **Example:** .. plot:: mpl_examples/api/legend_demo.py .. seealso:: :ref:`plotting-guide-legend`. """ if len(args)==0: handles, labels = self.get_legend_handles_labels() if len(handles) == 0: warnings.warn("No labeled objects found. " "Use label='...' kwarg on individual plots.") return None elif len(args)==1: # LABELS labels = args[0] handles = [h for h, label in zip(self._get_legend_handles(), labels)] elif len(args)==2: if is_string_like(args[1]) or isinstance(args[1], int): # LABELS, LOC labels, loc = args handles = [h for h, label in zip(self._get_legend_handles(), labels)] kwargs['loc'] = loc else: # LINES, LABELS handles, labels = args elif len(args)==3: # LINES, LABELS, LOC handles, labels, loc = args kwargs['loc'] = loc else: raise TypeError('Invalid arguments to legend') # Why do we need to call "flatten" here? -JJL # handles = cbook.flatten(handles) self.legend_ = mlegend.Legend(self, handles, labels, **kwargs) return self.legend_ #### Specialized plotting def step(self, x, y, *args, **kwargs): """ Make a step plot. Call signature:: step(x, y, *args, **kwargs) Additional keyword args to :func:`step` are the same as those for :func:`~matplotlib.pyplot.plot`. *x* and *y* must be 1-D sequences, and it is assumed, but not checked, that *x* is uniformly increasing. Keyword arguments: *where*: [ 'pre' | 'post' | 'mid' ] If 'pre', the interval from x[i] to x[i+1] has level y[i+1] If 'post', that interval has level y[i] If 'mid', the jumps in *y* occur half-way between the *x*-values. """ where = kwargs.pop('where', 'pre') if where not in ('pre', 'post', 'mid'): raise ValueError("'where' argument to step must be " "'pre', 'post' or 'mid'") kwargs['linestyle'] = 'steps-' + where return self.plot(x, y, *args, **kwargs) @docstring.dedent_interpd def bar(self, left, height, width=0.8, bottom=None, **kwargs): """ Make a bar plot. Call signature:: bar(left, height, width=0.8, bottom=0, **kwargs) Make a bar plot with rectangles bounded by: *left*, *left* + *width*, *bottom*, *bottom* + *height* (left, right, bottom and top edges) *left*, *height*, *width*, and *bottom* can be either scalars or sequences Return value is a list of :class:`matplotlib.patches.Rectangle` instances. Required arguments: ======== =============================================== Argument Description ======== =============================================== *left* the x coordinates of the left sides of the bars *height* the heights of the bars ======== =============================================== Optional keyword arguments: =============== ========================================== Keyword Description =============== ========================================== *width* the widths of the bars *bottom* the y coordinates of the bottom edges of the bars *color* the colors of the bars *edgecolor* the colors of the bar edges *linewidth* width of bar edges; None means use default linewidth; 0 means don't draw edges. *xerr* if not None, will be used to generate errorbars on the bar chart *yerr* if not None, will be used to generate errorbars on the bar chart *ecolor* specifies the color of any errorbar *capsize* (default 3) determines the length in points of the error bar caps *error_kw* dictionary of kwargs to be passed to errorbar method. *ecolor* and *capsize* may be specified here rather than as independent kwargs. *align* 'edge' (default) | 'center' *orientation* 'vertical' | 'horizontal' *log* [False|True] False (default) leaves the orientation axis as-is; True sets it to log scale =============== ========================================== For vertical bars, *align* = 'edge' aligns bars by their left edges in left, while *align* = 'center' interprets these values as the *x* coordinates of the bar centers. For horizontal bars, *align* = 'edge' aligns bars by their bottom edges in bottom, while *align* = 'center' interprets these values as the *y* coordinates of the bar centers. The optional arguments *color*, *edgecolor*, *linewidth*, *xerr*, and *yerr* can be either scalars or sequences of length equal to the number of bars. This enables you to use bar as the basis for stacked bar charts, or candlestick plots. Detail: *xerr* and *yerr* are passed directly to :meth:`errorbar`, so they can also have shape 2xN for independent specification of lower and upper errors. Other optional kwargs: %(Rectangle)s **Example:** A stacked bar chart. .. plot:: mpl_examples/pylab_examples/bar_stacked.py """ if not self._hold: self.cla() color = kwargs.pop('color', None) edgecolor = kwargs.pop('edgecolor', None) linewidth = kwargs.pop('linewidth', None) # Because xerr and yerr will be passed to errorbar, # most dimension checking and processing will be left # to the errorbar method. xerr = kwargs.pop('xerr', None) yerr = kwargs.pop('yerr', None) error_kw = kwargs.pop('error_kw', dict()) ecolor = kwargs.pop('ecolor', None) capsize = kwargs.pop('capsize', 3) error_kw.setdefault('ecolor', ecolor) error_kw.setdefault('capsize', capsize) align = kwargs.pop('align', 'edge') orientation = kwargs.pop('orientation', 'vertical') log = kwargs.pop('log', False) label = kwargs.pop('label', '') def make_iterable(x): if not iterable(x): return [x] else: return x # make them safe to take len() of _left = left left = make_iterable(left) height = make_iterable(height) width = make_iterable(width) _bottom = bottom bottom = make_iterable(bottom) linewidth = make_iterable(linewidth) adjust_ylim = False adjust_xlim = False if orientation == 'vertical': self._process_unit_info(xdata=left, ydata=height, kwargs=kwargs) if log: self.set_yscale('log', nonposy='clip') # size width and bottom according to length of left if _bottom is None: if self.get_yscale() == 'log': adjust_ylim = True else: bottom = [0] nbars = len(left) if len(width) == 1: width *= nbars if len(bottom) == 1: bottom *= nbars elif orientation == 'horizontal': self._process_unit_info(xdata=width, ydata=bottom, kwargs=kwargs) if log: self.set_xscale('log', nonposx='clip') # size left and height according to length of bottom if _left is None: if self.get_xscale() == 'log': adjust_xlim = True else: left = [0] nbars = len(bottom) if len(left) == 1: left *= nbars if len(height) == 1: height *= nbars else: raise ValueError('invalid orientation: %s' % orientation) if len(linewidth) < nbars: linewidth *= nbars if color is None: color = [None] * nbars else: color = list(mcolors.colorConverter.to_rgba_array(color)) if len(color) == 0: # until to_rgba_array is changed color = [[0,0,0,0]] if len(color) < nbars: color *= nbars if edgecolor is None: edgecolor = [None] * nbars else: edgecolor = list(mcolors.colorConverter.to_rgba_array(edgecolor)) if len(edgecolor) == 0: # until to_rgba_array is changed edgecolor = [[0,0,0,0]] if len(edgecolor) < nbars: edgecolor *= nbars # FIXME: convert the following to proper input validation # raising ValueError; don't use assert for this. assert len(left)==nbars, "incompatible sizes: argument 'left' must be length %d or scalar" % nbars assert len(height)==nbars, ("incompatible sizes: argument 'height' must be length %d or scalar" % nbars) assert len(width)==nbars, ("incompatible sizes: argument 'width' must be length %d or scalar" % nbars) assert len(bottom)==nbars, ("incompatible sizes: argument 'bottom' must be length %d or scalar" % nbars) patches = [] # lets do some conversions now since some types cannot be # subtracted uniformly if self.xaxis is not None: left = self.convert_xunits( left ) width = self.convert_xunits( width ) if xerr is not None: xerr = self.convert_xunits( xerr ) if self.yaxis is not None: bottom = self.convert_yunits( bottom ) height = self.convert_yunits( height ) if yerr is not None: yerr = self.convert_yunits( yerr ) if align == 'edge': pass elif align == 'center': if orientation == 'vertical': left = [left[i] - width[i]/2. for i in xrange(len(left))] elif orientation == 'horizontal': bottom = [bottom[i] - height[i]/2. for i in xrange(len(bottom))] else: raise ValueError('invalid alignment: %s' % align) args = zip(left, bottom, width, height, color, edgecolor, linewidth) for l, b, w, h, c, e, lw in args: if h<0: b += h h = abs(h) if w<0: l += w w = abs(w) r = mpatches.Rectangle( xy=(l, b), width=w, height=h, facecolor=c, edgecolor=e, linewidth=lw, label='_nolegend_' ) r.update(kwargs) r.get_path()._interpolation_steps = 100 #print r.get_label(), label, 'label' in kwargs self.add_patch(r) patches.append(r) holdstate = self._hold self.hold(True) # ensure hold is on before plotting errorbars if xerr is not None or yerr is not None: if orientation == 'vertical': # using list comps rather than arrays to preserve unit info x = [l+0.5*w for l, w in zip(left, width)] y = [b+h for b,h in zip(bottom, height)] elif orientation == 'horizontal': # using list comps rather than arrays to preserve unit info x = [l+w for l,w in zip(left, width)] y = [b+0.5*h for b,h in zip(bottom, height)] if "label" not in error_kw: error_kw["label"] = '_nolegend_' errorbar = self.errorbar(x, y, yerr=yerr, xerr=xerr, fmt=None, **error_kw) else: errorbar = None self.hold(holdstate) # restore previous hold state if adjust_xlim: xmin, xmax = self.dataLim.intervalx xmin = np.amin([w for w in width if w > 0]) if xerr is not None: xmin = xmin - np.amax(xerr) xmin = max(xmin*0.9, 1e-100) self.dataLim.intervalx = (xmin, xmax) if adjust_ylim: ymin, ymax = self.dataLim.intervaly ymin = np.amin([h for h in height if h > 0]) if yerr is not None: ymin = ymin - np.amax(yerr) ymin = max(ymin*0.9, 1e-100) self.dataLim.intervaly = (ymin, ymax) self.autoscale_view() bar_container = BarContainer(patches, errorbar, label=label) self.add_container(bar_container) return bar_container @docstring.dedent_interpd def barh(self, bottom, width, height=0.8, left=None, **kwargs): """ Make a horizontal bar plot. Call signature:: barh(bottom, width, height=0.8, left=0, **kwargs) Make a horizontal bar plot with rectangles bounded by: *left*, *left* + *width*, *bottom*, *bottom* + *height* (left, right, bottom and top edges) *bottom*, *width*, *height*, and *left* can be either scalars or sequences Return value is a list of :class:`matplotlib.patches.Rectangle` instances. Required arguments: ======== ====================================================== Argument Description ======== ====================================================== *bottom* the vertical positions of the bottom edges of the bars *width* the lengths of the bars ======== ====================================================== Optional keyword arguments: =============== ========================================== Keyword Description =============== ========================================== *height* the heights (thicknesses) of the bars *left* the x coordinates of the left edges of the bars *color* the colors of the bars *edgecolor* the colors of the bar edges *linewidth* width of bar edges; None means use default linewidth; 0 means don't draw edges. *xerr* if not None, will be used to generate errorbars on the bar chart *yerr* if not None, will be used to generate errorbars on the bar chart *ecolor* specifies the color of any errorbar *capsize* (default 3) determines the length in points of the error bar caps *align* 'edge' (default) | 'center' *log* [False|True] False (default) leaves the horizontal axis as-is; True sets it to log scale =============== ========================================== Setting *align* = 'edge' aligns bars by their bottom edges in bottom, while *align* = 'center' interprets these values as the *y* coordinates of the bar centers. The optional arguments *color*, *edgecolor*, *linewidth*, *xerr*, and *yerr* can be either scalars or sequences of length equal to the number of bars. This enables you to use barh as the basis for stacked bar charts, or candlestick plots. other optional kwargs: %(Rectangle)s """ patches = self.bar(left=left, height=height, width=width, bottom=bottom, orientation='horizontal', **kwargs) return patches @docstring.dedent_interpd def broken_barh(self, xranges, yrange, **kwargs): """ Plot horizontal bars. Call signature:: broken_barh(self, xranges, yrange, **kwargs) A collection of horizontal bars spanning *yrange* with a sequence of *xranges*. Required arguments: ========= ============================== Argument Description ========= ============================== *xranges* sequence of (*xmin*, *xwidth*) *yrange* sequence of (*ymin*, *ywidth*) ========= ============================== kwargs are :class:`matplotlib.collections.BrokenBarHCollection` properties: %(BrokenBarHCollection)s these can either be a single argument, ie:: facecolors = 'black' or a sequence of arguments for the various bars, ie:: facecolors = ('black', 'red', 'green') **Example:** .. plot:: mpl_examples/pylab_examples/broken_barh.py """ col = mcoll.BrokenBarHCollection(xranges, yrange, **kwargs) self.add_collection(col, autolim=True) self.autoscale_view() return col def stem(self, x, y, linefmt='b-', markerfmt='bo', basefmt='r-', bottom=None, label=None): """ Create a stem plot. Call signature:: stem(x, y, linefmt='b-', markerfmt='bo', basefmt='r-') A stem plot plots vertical lines (using *linefmt*) at each *x* location from the baseline to *y*, and places a marker there using *markerfmt*. A horizontal line at 0 is is plotted using *basefmt*. Return value is a tuple (*markerline*, *stemlines*, *baseline*). .. seealso:: This `document <http://www.mathworks.com/help/techdoc/ref/stem.html>`_ for details. **Example:** .. plot:: mpl_examples/pylab_examples/stem_plot.py """ remember_hold=self._hold if not self._hold: self.cla() self.hold(True) markerline, = self.plot(x, y, markerfmt, label="_nolegend_") if bottom is None: bottom = 0 stemlines = [] for thisx, thisy in zip(x, y): l, = self.plot([thisx,thisx], [bottom, thisy], linefmt, label="_nolegend_") stemlines.append(l) baseline, = self.plot([np.amin(x), np.amax(x)], [bottom,bottom], basefmt, label="_nolegend_") self.hold(remember_hold) stem_container = StemContainer((markerline, stemlines, baseline), label=label) self.add_container(stem_container) return stem_container def pie(self, x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None, radius=None): r""" Plot a pie chart. Call signature:: pie(x, explode=None, labels=None, colors=('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'), autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None, radius=None) Make a pie chart of array *x*. The fractional area of each wedge is given by x/sum(x). If sum(x) <= 1, then the values of x give the fractional area directly and the array will not be normalized. The wedges are plotted counterclockwise, by default starting from the x-axis. Keyword arguments: *explode*: [ *None* | len(x) sequence ] If not *None*, is a ``len(x)`` array which specifies the fraction of the radius with which to offset each wedge. *colors*: [ *None* | color sequence ] A sequence of matplotlib color args through which the pie chart will cycle. *labels*: [ *None* | len(x) sequence of strings ] A sequence of strings providing the labels for each wedge *autopct*: [ *None* | format string | format function ] If not *None*, is a string or function used to label the wedges with their numeric value. The label will be placed inside the wedge. If it is a format string, the label will be ``fmt%pct``. If it is a function, it will be called. *pctdistance*: scalar The ratio between the center of each pie slice and the start of the text generated by *autopct*. Ignored if *autopct* is *None*; default is 0.6. *labeldistance*: scalar The radial distance at which the pie labels are drawn *shadow*: [ *False* | *True* ] Draw a shadow beneath the pie. *startangle*: [ *None* | Offset angle ] If not *None*, rotates the start of the pie chart by *angle* degrees counterclockwise from the x-axis. *radius*: [ *None* | scalar ] The radius of the pie, if *radius* is *None* it will be set to 1. The pie chart will probably look best if the figure and axes are square. Eg.:: figure(figsize=(8,8)) ax = axes([0.1, 0.1, 0.8, 0.8]) Return value: If *autopct* is *None*, return the tuple (*patches*, *texts*): - *patches* is a sequence of :class:`matplotlib.patches.Wedge` instances - *texts* is a list of the label :class:`matplotlib.text.Text` instances. If *autopct* is not *None*, return the tuple (*patches*, *texts*, *autotexts*), where *patches* and *texts* are as above, and *autotexts* is a list of :class:`~matplotlib.text.Text` instances for the numeric labels. """ self.set_frame_on(False) x = np.asarray(x).astype(np.float32) sx = float(x.sum()) if sx>1: x = np.divide(x,sx) if labels is None: labels = ['']*len(x) if explode is None: explode = [0]*len(x) assert(len(x)==len(labels)) assert(len(x)==len(explode)) if colors is None: colors = ('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w') center = 0,0 if radius is None: radius = 1 # Starting theta1 is the start fraction of the circle if startangle is None: theta1 = 0 else: theta1 = startangle / 360.0 texts = [] slices = [] autotexts = [] i = 0 for frac, label, expl in cbook.safezip(x,labels, explode): x, y = center theta2 = theta1 + frac thetam = 2*math.pi*0.5*(theta1+theta2) x += expl*math.cos(thetam) y += expl*math.sin(thetam) w = mpatches.Wedge((x,y), radius, 360.*theta1, 360.*theta2, facecolor=colors[i%len(colors)]) slices.append(w) self.add_patch(w) w.set_label(label) if shadow: # make sure to add a shadow after the call to # add_patch so the figure and transform props will be # set shad = mpatches.Shadow(w, -0.02, -0.02, #props={'facecolor':w.get_facecolor()} ) shad.set_zorder(0.9*w.get_zorder()) shad.set_label('_nolegend_') self.add_patch(shad) xt = x + labeldistance*radius*math.cos(thetam) yt = y + labeldistance*radius*math.sin(thetam) label_alignment = xt > 0 and 'left' or 'right' t = self.text(xt, yt, label, size=rcParams['xtick.labelsize'], horizontalalignment=label_alignment, verticalalignment='center') texts.append(t) if autopct is not None: xt = x + pctdistance*radius*math.cos(thetam) yt = y + pctdistance*radius*math.sin(thetam) if is_string_like(autopct): s = autopct%(100.*frac) elif callable(autopct): s = autopct(100.*frac) else: raise TypeError( 'autopct must be callable or a format string') t = self.text(xt, yt, s, horizontalalignment='center', verticalalignment='center') autotexts.append(t) theta1 = theta2 i += 1 self.set_xlim((-1.25, 1.25)) self.set_ylim((-1.25, 1.25)) self.set_xticks([]) self.set_yticks([]) if autopct is None: return slices, texts else: return slices, texts, autotexts @docstring.dedent_interpd def errorbar(self, x, y, yerr=None, xerr=None, fmt='-', ecolor=None, elinewidth=None, capsize=3, barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False, errorevery=1, capthick=None, **kwargs): """ Plot an errorbar graph. Call signature:: errorbar(x, y, yerr=None, xerr=None, fmt='-', ecolor=None, elinewidth=None, capsize=3, barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False, errorevery=1, capthick=None) Plot *x* versus *y* with error deltas in *yerr* and *xerr*. Vertical errorbars are plotted if *yerr* is not *None*. Horizontal errorbars are plotted if *xerr* is not *None*. *x*, *y*, *xerr*, and *yerr* can all be scalars, which plots a single error bar at *x*, *y*. Optional keyword arguments: *xerr*/*yerr*: [ scalar | N, Nx1, or 2xN array-like ] If a scalar number, len(N) array-like object, or an Nx1 array-like object, errorbars are drawn at +/-value relative to the data. If a sequence of shape 2xN, errorbars are drawn at -row1 and +row2 relative to the data. *fmt*: '-' The plot format symbol. If *fmt* is *None*, only the errorbars are plotted. This is used for adding errorbars to a bar plot, for example. *ecolor*: [ *None* | mpl color ] A matplotlib color arg which gives the color the errorbar lines; if *None*, use the marker color. *elinewidth*: scalar The linewidth of the errorbar lines. If *None*, use the linewidth. *capsize*: scalar The length of the error bar caps in points *capthick*: scalar An alias kwarg to *markeredgewidth* (a.k.a. - *mew*). This setting is a more sensible name for the property that controls the thickness of the error bar cap in points. For backwards compatibility, if *mew* or *markeredgewidth* are given, then they will over-ride *capthick*. This may change in future releases. *barsabove*: [ *True* | *False* ] if *True*, will plot the errorbars above the plot symbols. Default is below. *lolims* / *uplims* / *xlolims* / *xuplims*: [ *False* | *True* ] These arguments can be used to indicate that a value gives only upper/lower limits. In that case a caret symbol is used to indicate this. lims-arguments may be of the same type as *xerr* and *yerr*. *errorevery*: positive integer subsamples the errorbars. Eg if everyerror=5, errorbars for every 5-th datapoint will be plotted. The data plot itself still shows all data points. All other keyword arguments are passed on to the plot command for the markers. For example, this code makes big red squares with thick green edges:: x,y,yerr = rand(3,10) errorbar(x, y, yerr, marker='s', mfc='red', mec='green', ms=20, mew=4) where *mfc*, *mec*, *ms* and *mew* are aliases for the longer property names, *markerfacecolor*, *markeredgecolor*, *markersize* and *markeredgewith*. valid kwargs for the marker properties are %(Line2D)s Returns (*plotline*, *caplines*, *barlinecols*): *plotline*: :class:`~matplotlib.lines.Line2D` instance *x*, *y* plot markers and/or line *caplines*: list of error bar cap :class:`~matplotlib.lines.Line2D` instances *barlinecols*: list of :class:`~matplotlib.collections.LineCollection` instances for the horizontal and vertical error ranges. **Example:** .. plot:: mpl_examples/pylab_examples/errorbar_demo.py """ if errorevery < 1: raise ValueError('errorevery has to be a strictly positive integer') self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs) if not self._hold: self.cla() holdstate = self._hold self._hold = True label = kwargs.pop("label", None) # make sure all the args are iterable; use lists not arrays to # preserve units if not iterable(x): x = [x] if not iterable(y): y = [y] if xerr is not None: if not iterable(xerr): xerr = [xerr]*len(x) if yerr is not None: if not iterable(yerr): yerr = [yerr]*len(y) l0 = None if barsabove and fmt is not None: l0, = self.plot(x,y,fmt,label="_nolegend_", **kwargs) barcols = [] caplines = [] lines_kw = {'label':'_nolegend_'} if elinewidth: lines_kw['linewidth'] = elinewidth else: if 'linewidth' in kwargs: lines_kw['linewidth']=kwargs['linewidth'] if 'lw' in kwargs: lines_kw['lw']=kwargs['lw'] if 'transform' in kwargs: lines_kw['transform'] = kwargs['transform'] if 'alpha' in kwargs: lines_kw['alpha'] = kwargs['alpha'] if 'zorder' in kwargs: lines_kw['zorder'] = kwargs['zorder'] # arrays fine here, they are booleans and hence not units if not iterable(lolims): lolims = np.asarray([lolims]*len(x), bool) else: lolims = np.asarray(lolims, bool) if not iterable(uplims): uplims = np.array([uplims]*len(x), bool) else: uplims = np.asarray(uplims, bool) if not iterable(xlolims): xlolims = np.array([xlolims]*len(x), bool) else: xlolims = np.asarray(xlolims, bool) if not iterable(xuplims): xuplims = np.array([xuplims]*len(x), bool) else: xuplims = np.asarray(xuplims, bool) everymask = np.arange(len(x)) % errorevery == 0 def xywhere(xs, ys, mask): """ return xs[mask], ys[mask] where mask is True but xs and ys are not arrays """ assert len(xs)==len(ys) assert len(xs)==len(mask) xs = [thisx for thisx, b in zip(xs, mask) if b] ys = [thisy for thisy, b in zip(ys, mask) if b] return xs, ys if capsize > 0: plot_kw = { 'ms':2*capsize, 'label':'_nolegend_'} if capthick is not None: # 'mew' has higher priority, I believe, # if both 'mew' and 'markeredgewidth' exists. # So, save capthick to markeredgewidth so that # explicitly setting mew or markeredgewidth will # over-write capthick. plot_kw['markeredgewidth'] = capthick # For backwards-compat, allow explicit setting of # 'mew' or 'markeredgewidth' to over-ride capthick. if 'markeredgewidth' in kwargs: plot_kw['markeredgewidth']=kwargs['markeredgewidth'] if 'mew' in kwargs: plot_kw['mew']=kwargs['mew'] if 'transform' in kwargs: plot_kw['transform'] = kwargs['transform'] if 'alpha' in kwargs: plot_kw['alpha'] = kwargs['alpha'] if 'zorder' in kwargs: plot_kw['zorder'] = kwargs['zorder'] if xerr is not None: if (iterable(xerr) and len(xerr)==2 and iterable(xerr[0]) and iterable(xerr[1])): # using list comps rather than arrays to preserve units left = [thisx-thiserr for (thisx, thiserr) in cbook.safezip(x,xerr[0])] right = [thisx+thiserr for (thisx, thiserr) in cbook.safezip(x,xerr[1])] else: # using list comps rather than arrays to preserve units left = [thisx-thiserr for (thisx, thiserr) in cbook.safezip(x,xerr)] right = [thisx+thiserr for (thisx, thiserr) in cbook.safezip(x,xerr)] yo, _ = xywhere(y, right, everymask) lo, ro= xywhere(left, right, everymask) barcols.append( self.hlines(yo, lo, ro, **lines_kw ) ) if capsize > 0: if xlolims.any(): # can't use numpy logical indexing since left and # y are lists leftlo, ylo = xywhere(left, y, xlolims & everymask) caplines.extend( self.plot(leftlo, ylo, ls='None', marker=mlines.CARETLEFT, **plot_kw) ) xlolims = ~xlolims leftlo, ylo = xywhere(left, y, xlolims & everymask) caplines.extend( self.plot(leftlo, ylo, 'k|', **plot_kw) ) else: leftlo, ylo = xywhere(left, y, everymask) caplines.extend( self.plot(leftlo, ylo, 'k|', **plot_kw) ) if xuplims.any(): rightup, yup = xywhere(right, y, xuplims & everymask) caplines.extend( self.plot(rightup, yup, ls='None', marker=mlines.CARETRIGHT, **plot_kw) ) xuplims = ~xuplims rightup, yup = xywhere(right, y, xuplims & everymask) caplines.extend( self.plot(rightup, yup, 'k|', **plot_kw) ) else: rightup, yup = xywhere(right, y, everymask) caplines.extend( self.plot(rightup, yup, 'k|', **plot_kw) ) if yerr is not None: if (iterable(yerr) and len(yerr)==2 and iterable(yerr[0]) and iterable(yerr[1])): # using list comps rather than arrays to preserve units lower = [thisy-thiserr for (thisy, thiserr) in cbook.safezip(y,yerr[0])] upper = [thisy+thiserr for (thisy, thiserr) in cbook.safezip(y,yerr[1])] else: # using list comps rather than arrays to preserve units lower = [thisy-thiserr for (thisy, thiserr) in cbook.safezip(y,yerr)] upper = [thisy+thiserr for (thisy, thiserr) in cbook.safezip(y,yerr)] xo, _ = xywhere(x, lower, everymask) lo, uo= xywhere(lower, upper, everymask) barcols.append( self.vlines(xo, lo, uo, **lines_kw) ) if capsize > 0: if lolims.any(): xlo, lowerlo = xywhere(x, lower, lolims & everymask) caplines.extend( self.plot(xlo, lowerlo, ls='None', marker=mlines.CARETDOWN, **plot_kw) ) lolims = ~lolims xlo, lowerlo = xywhere(x, lower, lolims & everymask) caplines.extend( self.plot(xlo, lowerlo, 'k_', **plot_kw) ) else: xlo, lowerlo = xywhere(x, lower, everymask) caplines.extend( self.plot(xlo, lowerlo, 'k_', **plot_kw) ) if uplims.any(): xup, upperup = xywhere(x, upper, uplims & everymask) caplines.extend( self.plot(xup, upperup, ls='None', marker=mlines.CARETUP, **plot_kw) ) uplims = ~uplims xup, upperup = xywhere(x, upper, uplims & everymask) caplines.extend( self.plot(xup, upperup, 'k_', **plot_kw) ) else: xup, upperup = xywhere(x, upper, everymask) caplines.extend( self.plot(xup, upperup, 'k_', **plot_kw) ) if not barsabove and fmt is not None: l0, = self.plot(x,y,fmt,**kwargs) if ecolor is None: if l0 is None: ecolor = self._get_lines.color_cycle.next() else: ecolor = l0.get_color() for l in barcols: l.set_color(ecolor) for l in caplines: l.set_color(ecolor) self.autoscale_view() self._hold = holdstate errorbar_container = ErrorbarContainer((l0, tuple(caplines), tuple(barcols)), has_xerr=(xerr is not None), has_yerr=(yerr is not None), label=label) self.containers.append(errorbar_container) return errorbar_container # (l0, caplines, barcols) def boxplot(self, x, notch=False, sym='b+', vert=True, whis=1.5, positions=None, widths=None, patch_artist=False, bootstrap=None, usermedians=None, conf_intervals=None): """ Make a box and whisker plot. Call signature:: boxplot(x, notch=False, sym='+', vert=True, whis=1.5, positions=None, widths=None, patch_artist=False, bootstrap=None, usermedians=None, conf_intervals=None) Make a box and whisker plot for each column of *x* or each vector in sequence *x*. The box extends from the lower to upper quartile values of the data, with a line at the median. The whiskers extend from the box to show the range of the data. Flier points are those past the end of the whiskers. Function Arguments: *x* : Array or a sequence of vectors. *notch* : [ False (default) | True ] If False (default), produces a rectangular box plot. If True, will produce a notched box plot *sym* : [ default 'b+' ] The default symbol for flier points. Enter an empty string ('') if you don't want to show fliers. *vert* : [ False | True (default) ] If True (default), makes the boxes vertical. If False, makes horizontal boxes. *whis* : [ default 1.5 ] Defines the length of the whiskers as a function of the inner quartile range. They extend to the most extreme data point within ( ``whis*(75%-25%)`` ) data range. *bootstrap* : [ *None* (default) | integer ] Specifies whether to bootstrap the confidence intervals around the median for notched boxplots. If bootstrap==None, no bootstrapping is performed, and notches are calculated using a Gaussian-based asymptotic approximation (see McGill, R., Tukey, J.W., and Larsen, W.A., 1978, and Kendall and Stuart, 1967). Otherwise, bootstrap specifies the number of times to bootstrap the median to determine it's 95% confidence intervals. Values between 1000 and 10000 are recommended. *usermedians* : [ default None ] An array or sequence whose first dimension (or length) is compatible with *x*. This overrides the medians computed by matplotlib for each element of *usermedians* that is not None. When an element of *usermedians* == None, the median will be computed directly as normal. *conf_intervals* : [ default None ] Array or sequence whose first dimension (or length) is compatible with *x* and whose second dimension is 2. When the current element of *conf_intervals* is not None, the notch locations computed by matplotlib are overridden (assuming notch is True). When an element of *conf_intervals* is None, boxplot compute notches the method specified by the other kwargs (e.g. *bootstrap*). *positions* : [ default 1,2,...,n ] Sets the horizontal positions of the boxes. The ticks and limits are automatically set to match the positions. *widths* : [ default 0.5 ] Either a scalar or a vector and sets the width of each box. The default is 0.5, or ``0.15*(distance between extreme positions)`` if that is smaller. *patch_artist* : [ False (default) | True ] If False produces boxes with the Line2D artist If True produces boxes with the Patch artist Returns a dictionary mapping each component of the boxplot to a list of the :class:`matplotlib.lines.Line2D` instances created. That dictionary has the following keys (assuming vertical boxplots): - boxes: the main body of the boxplot showing the quartiles and the median's confidence intervals if enabled. - medians: horizonal lines at the median of each box. - whiskers: the vertical lines extending to the most extreme, n-outlier data points. - caps: the horizontal lines at the ends of the whiskers. - fliers: points representing data that extend beyone the whiskers (outliers). **Example:** .. plot:: pyplots/boxplot_demo.py """ def bootstrapMedian(data, N=5000): # determine 95% confidence intervals of the median M = len(data) percentile = [2.5,97.5] estimate = np.zeros(N) for n in range(N): bsIndex = np.random.random_integers(0,M-1,M) bsData = data[bsIndex] estimate[n] = mlab.prctile(bsData, 50) CI = mlab.prctile(estimate, percentile) return CI def computeConfInterval(data, med, iq, bootstrap): if bootstrap is not None: # Do a bootstrap estimate of notch locations. # get conf. intervals around median CI = bootstrapMedian(data, N=bootstrap) notch_min = CI[0] notch_max = CI[1] else: # Estimate notch locations using Gaussian-based # asymptotic approximation. # # For discussion: McGill, R., Tukey, J.W., # and Larsen, W.A. (1978) "Variations of # Boxplots", The American Statistician, 32:12-16. N = len(data) notch_min = med - 1.57*iq/np.sqrt(N) notch_max = med + 1.57*iq/np.sqrt(N) return notch_min, notch_max if not self._hold: self.cla() holdStatus = self._hold whiskers, caps, boxes, medians, fliers = [], [], [], [], [] # convert x to a list of vectors if hasattr(x, 'shape'): if len(x.shape) == 1: if hasattr(x[0], 'shape'): x = list(x) else: x = [x,] elif len(x.shape) == 2: nr, nc = x.shape if nr == 1: x = [x] elif nc == 1: x = [x.ravel()] else: x = [x[:,i] for i in xrange(nc)] else: raise ValueError("input x can have no more than 2 dimensions") if not hasattr(x[0], '__len__'): x = [x] col = len(x) # sanitize user-input medians msg1 = "usermedians must either be a list/tuple or a 1d array" msg2 = "usermedians' length must be compatible with x" if usermedians is not None: if hasattr(usermedians, 'shape'): if len(usermedians.shape) != 1: raise ValueError(msg1) elif usermedians.shape[0] != col: raise ValueError(msg2) elif len(usermedians) != col: raise ValueError(msg2) #sanitize user-input confidence intervals msg1 = "conf_intervals must either be a list of tuples or a 2d array" msg2 = "conf_intervals' length must be compatible with x" msg3 = "each conf_interval, if specificied, must have two values" if conf_intervals is not None: if hasattr(conf_intervals, 'shape'): if len(conf_intervals.shape) != 2: raise ValueError(msg1) elif conf_intervals.shape[0] != col: raise ValueError(msg2) elif conf_intervals.shape[1] == 2: raise ValueError(msg3) else: if len(conf_intervals) != col: raise ValueError(msg2) for ci in conf_intervals: if ci is not None and len(ci) != 2: raise ValueError(msg3) # get some plot info if positions is None: positions = range(1, col + 1) if widths is None: distance = max(positions) - min(positions) widths = min(0.15*max(distance,1.0), 0.5) if isinstance(widths, float) or isinstance(widths, int): widths = np.ones((col,), float) * widths # loop through columns, adding each to plot self.hold(True) for i, pos in enumerate(positions): d = np.ravel(x[i]) row = len(d) if row==0: # no data, skip this position continue # get median and quartiles q1, med, q3 = mlab.prctile(d,[25,50,75]) # replace with input medians if available if usermedians is not None: if usermedians[i] is not None: med = usermedians[i] # get high extreme iq = q3 - q1 hi_val = q3 + whis*iq wisk_hi = np.compress( d <= hi_val , d ) if len(wisk_hi) == 0: wisk_hi = q3 else: wisk_hi = max(wisk_hi) # get low extreme lo_val = q1 - whis*iq wisk_lo = np.compress( d >= lo_val, d ) if len(wisk_lo) == 0: wisk_lo = q1 else: wisk_lo = min(wisk_lo) # get fliers - if we are showing them flier_hi = [] flier_lo = [] flier_hi_x = [] flier_lo_x = [] if len(sym) != 0: flier_hi = np.compress( d > wisk_hi, d ) flier_lo = np.compress( d < wisk_lo, d ) flier_hi_x = np.ones(flier_hi.shape[0]) * pos flier_lo_x = np.ones(flier_lo.shape[0]) * pos # get x locations for fliers, whisker, whisker cap and box sides box_x_min = pos - widths[i] * 0.5 box_x_max = pos + widths[i] * 0.5 wisk_x = np.ones(2) * pos cap_x_min = pos - widths[i] * 0.25 cap_x_max = pos + widths[i] * 0.25 cap_x = [cap_x_min, cap_x_max] # get y location for median med_y = [med, med] # calculate 'notch' plot if notch: # conf. intervals from user, if available if conf_intervals is not None and conf_intervals[i] is not None: notch_max = np.max(conf_intervals[i]) notch_min = np.min(conf_intervals[i]) else: notch_min, notch_max = computeConfInterval(d, med, iq, bootstrap) # make our notched box vectors box_x = [box_x_min, box_x_max, box_x_max, cap_x_max, box_x_max, box_x_max, box_x_min, box_x_min, cap_x_min, box_x_min, box_x_min ] box_y = [q1, q1, notch_min, med, notch_max, q3, q3, notch_max, med, notch_min, q1] # make our median line vectors med_x = [cap_x_min, cap_x_max] med_y = [med, med] # calculate 'regular' plot else: # make our box vectors box_x = [box_x_min, box_x_max, box_x_max, box_x_min, box_x_min ] box_y = [q1, q1, q3, q3, q1 ] # make our median line vectors med_x = [box_x_min, box_x_max] def to_vc(xs,ys): # convert arguments to verts and codes verts = [] #codes = [] for xi,yi in zip(xs,ys): verts.append( (xi,yi) ) verts.append( (0,0) ) # ignored codes = [mpath.Path.MOVETO] + \ [mpath.Path.LINETO]*(len(verts)-2) + \ [mpath.Path.CLOSEPOLY] return verts,codes def patch_list(xs,ys): verts,codes = to_vc(xs,ys) path = mpath.Path( verts, codes ) patch = mpatches.PathPatch(path) self.add_artist(patch) return [patch] # vertical or horizontal plot? if vert: def doplot(*args): return self.plot(*args) def dopatch(xs,ys): return patch_list(xs,ys) else: def doplot(*args): shuffled = [] for i in xrange(0, len(args), 3): shuffled.extend([args[i+1], args[i], args[i+2]]) return self.plot(*shuffled) def dopatch(xs,ys): xs,ys = ys,xs # flip X, Y return patch_list(xs,ys) if patch_artist: median_color = 'k' else: median_color = 'r' whiskers.extend(doplot(wisk_x, [q1, wisk_lo], 'b--', wisk_x, [q3, wisk_hi], 'b--')) caps.extend(doplot(cap_x, [wisk_hi, wisk_hi], 'k-', cap_x, [wisk_lo, wisk_lo], 'k-')) if patch_artist: boxes.extend(dopatch(box_x, box_y)) else: boxes.extend(doplot(box_x, box_y, 'b-')) medians.extend(doplot(med_x, med_y, median_color+'-')) fliers.extend(doplot(flier_hi_x, flier_hi, sym, flier_lo_x, flier_lo, sym)) # fix our axes/ticks up a little if vert: setticks, setlim = self.set_xticks, self.set_xlim else: setticks, setlim = self.set_yticks, self.set_ylim newlimits = min(positions)-0.5, max(positions)+0.5 setlim(newlimits) setticks(positions) # reset hold status self.hold(holdStatus) return dict(whiskers=whiskers, caps=caps, boxes=boxes, medians=medians, fliers=fliers) @docstring.dedent_interpd def scatter(self, x, y, s=20, c='b', marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, faceted=True, verts=None, **kwargs): """ Make a scatter plot. Call signatures:: scatter(x, y, s=20, c='b', marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, **kwargs) Make a scatter plot of *x* versus *y*, where *x*, *y* are converted to 1-D sequences which must be of the same length, *N*. Keyword arguments: *s*: size in points^2. It is a scalar or an array of the same length as *x* and *y*. *c*: a color. *c* can be a single color format string, or a sequence of color specifications of length *N*, or a sequence of *N* numbers to be mapped to colors using the *cmap* and *norm* specified via kwargs (see below). Note that *c* should not be a single numeric RGB or RGBA sequence because that is indistinguishable from an array of values to be colormapped. *c* can be a 2-D array in which the rows are RGB or RGBA, however. *marker*: can be one of: %(MarkerTable)s Any or all of *x*, *y*, *s*, and *c* may be masked arrays, in which case all masks will be combined and only unmasked points will be plotted. Other keyword arguments: the color mapping and normalization arguments will be used only if *c* is an array of floats. *cmap*: [ *None* | Colormap ] A :class:`matplotlib.colors.Colormap` instance or registered name. If *None*, defaults to rc ``image.cmap``. *cmap* is only used if *c* is an array of floats. *norm*: [ *None* | Normalize ] A :class:`matplotlib.colors.Normalize` instance is used to scale luminance data to 0, 1. If *None*, use the default :func:`normalize`. *norm* is only used if *c* is an array of floats. *vmin*/*vmax*: *vmin* and *vmax* are used in conjunction with norm to normalize luminance data. If either are *None*, the min and max of the color array *C* is used. Note if you pass a *norm* instance, your settings for *vmin* and *vmax* will be ignored. *alpha*: ``0 <= scalar <= 1`` or *None* The alpha value for the patches *linewidths*: [ *None* | scalar | sequence ] If *None*, defaults to (lines.linewidth,). Note that this is a tuple, and if you set the linewidths argument you must set it as a sequence of floats, as required by :class:`~matplotlib.collections.RegularPolyCollection`. Optional kwargs control the :class:`~matplotlib.collections.Collection` properties; in particular: *edgecolors*: The string 'none' to plot faces with no outlines *facecolors*: The string 'none' to plot unfilled outlines Here are the standard descriptions of all the :class:`~matplotlib.collections.Collection` kwargs: %(Collection)s A :class:`~matplotlib.collections.Collection` instance is returned. """ if not self._hold: self.cla() self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs) x = self.convert_xunits(x) y = self.convert_yunits(y) # np.ma.ravel yields an ndarray, not a masked array, # unless its argument is a masked array. x = np.ma.ravel(x) y = np.ma.ravel(y) if x.size != y.size: raise ValueError("x and y must be the same size") s = np.ma.ravel(s) # This doesn't have to match x, y in size. c_is_stringy = is_string_like(c) or is_sequence_of_strings(c) if not c_is_stringy: c = np.asanyarray(c) if c.size == x.size: c = np.ma.ravel(c) x, y, s, c = cbook.delete_masked_points(x, y, s, c) scales = s # Renamed for readability below. if c_is_stringy: colors = mcolors.colorConverter.to_rgba_array(c, alpha) else: # The inherent ambiguity is resolved in favor of color # mapping, not interpretation as rgb or rgba: if c.size == x.size: colors = None # use cmap, norm after collection is created else: colors = mcolors.colorConverter.to_rgba_array(c, alpha) if faceted: edgecolors = None else: edgecolors = 'none' warnings.warn( '''replace "faceted=False" with "edgecolors='none'"''', mplDeprecation) # 2008/04/18 sym = None symstyle = 0 # to be API compatible if marker is None and not (verts is None): marker = (verts, 0) verts = None marker_obj = mmarkers.MarkerStyle(marker) path = marker_obj.get_path().transformed( marker_obj.get_transform()) if not marker_obj.is_filled(): edgecolors = 'face' collection = mcoll.PathCollection( (path,), scales, facecolors = colors, edgecolors = edgecolors, linewidths = linewidths, offsets = zip(x,y), transOffset = kwargs.pop('transform', self.transData), ) collection.set_transform(mtransforms.IdentityTransform()) collection.set_alpha(alpha) collection.update(kwargs) if colors is None: if norm is not None: assert(isinstance(norm, mcolors.Normalize)) collection.set_array(np.asarray(c)) collection.set_cmap(cmap) collection.set_norm(norm) if vmin is not None or vmax is not None: collection.set_clim(vmin, vmax) else: collection.autoscale_None() # The margin adjustment is a hack to deal with the fact that we don't # want to transform all the symbols whose scales are in points # to data coords to get the exact bounding box for efficiency # reasons. It can be done right if this is deemed important. # Also, only bother with this padding if there is anything to draw. if self._xmargin < 0.05 and x.size > 0 : self.set_xmargin(0.05) if self._ymargin < 0.05 and x.size > 0 : self.set_ymargin(0.05) self.add_collection(collection) self.autoscale_view() return collection @docstring.dedent_interpd def hexbin(self, x, y, C = None, gridsize = 100, bins = None, xscale = 'linear', yscale = 'linear', extent = None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, edgecolors='none', reduce_C_function = np.mean, mincnt=None, marginals=False, **kwargs): """ Make a hexagonal binning plot. Call signature:: hexbin(x, y, C = None, gridsize = 100, bins = None, xscale = 'linear', yscale = 'linear', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, edgecolors='none' reduce_C_function = np.mean, mincnt=None, marginals=True **kwargs) Make a hexagonal binning plot of *x* versus *y*, where *x*, *y* are 1-D sequences of the same length, *N*. If *C* is *None* (the default), this is a histogram of the number of occurences of the observations at (x[i],y[i]). If *C* is specified, it specifies values at the coordinate (x[i],y[i]). These values are accumulated for each hexagonal bin and then reduced according to *reduce_C_function*, which defaults to numpy's mean function (np.mean). (If *C* is specified, it must also be a 1-D sequence of the same length as *x* and *y*.) *x*, *y* and/or *C* may be masked arrays, in which case only unmasked points will be plotted. Optional keyword arguments: *gridsize*: [ 100 | integer ] The number of hexagons in the *x*-direction, default is 100. The corresponding number of hexagons in the *y*-direction is chosen such that the hexagons are approximately regular. Alternatively, gridsize can be a tuple with two elements specifying the number of hexagons in the *x*-direction and the *y*-direction. *bins*: [ *None* | 'log' | integer | sequence ] If *None*, no binning is applied; the color of each hexagon directly corresponds to its count value. If 'log', use a logarithmic scale for the color map. Internally, :math:`log_{10}(i+1)` is used to determine the hexagon color. If an integer, divide the counts in the specified number of bins, and color the hexagons accordingly. If a sequence of values, the values of the lower bound of the bins to be used. *xscale*: [ 'linear' | 'log' ] Use a linear or log10 scale on the horizontal axis. *scale*: [ 'linear' | 'log' ] Use a linear or log10 scale on the vertical axis. *mincnt*: [ *None* | a positive integer ] If not *None*, only display cells with more than *mincnt* number of points in the cell *marginals*: [ *True* | *False* ] if marginals is *True*, plot the marginal density as colormapped rectagles along the bottom of the x-axis and left of the y-axis *extent*: [ *None* | scalars (left, right, bottom, top) ] The limits of the bins. The default assigns the limits based on gridsize, x, y, xscale and yscale. Other keyword arguments controlling color mapping and normalization arguments: *cmap*: [ *None* | Colormap ] a :class:`matplotlib.colors.Colormap` instance. If *None*, defaults to rc ``image.cmap``. *norm*: [ *None* | Normalize ] :class:`matplotlib.colors.Normalize` instance is used to scale luminance data to 0,1. *vmin* / *vmax*: scalar *vmin* and *vmax* are used in conjunction with *norm* to normalize luminance data. If either are *None*, the min and max of the color array *C* is used. Note if you pass a norm instance, your settings for *vmin* and *vmax* will be ignored. *alpha*: scalar between 0 and 1, or *None* the alpha value for the patches *linewidths*: [ *None* | scalar ] If *None*, defaults to rc lines.linewidth. Note that this is a tuple, and if you set the linewidths argument you must set it as a sequence of floats, as required by :class:`~matplotlib.collections.RegularPolyCollection`. Other keyword arguments controlling the Collection properties: *edgecolors*: [ *None* | ``'none'`` | mpl color | color sequence ] If ``'none'``, draws the edges in the same color as the fill color. This is the default, as it avoids unsightly unpainted pixels between the hexagons. If *None*, draws the outlines in the default color. If a matplotlib color arg or sequence of rgba tuples, draws the outlines in the specified color. Here are the standard descriptions of all the :class:`~matplotlib.collections.Collection` kwargs: %(Collection)s The return value is a :class:`~matplotlib.collections.PolyCollection` instance; use :meth:`~matplotlib.collections.PolyCollection.get_array` on this :class:`~matplotlib.collections.PolyCollection` to get the counts in each hexagon. If *marginals* is *True*, horizontal bar and vertical bar (both PolyCollections) will be attached to the return collection as attributes *hbar* and *vbar*. **Example:** .. plot:: mpl_examples/pylab_examples/hexbin_demo.py """ if not self._hold: self.cla() self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs) x, y, C = cbook.delete_masked_points(x, y, C) # Set the size of the hexagon grid if iterable(gridsize): nx, ny = gridsize else: nx = gridsize ny = int(nx/math.sqrt(3)) # Count the number of data in each hexagon x = np.array(x, float) y = np.array(y, float) if xscale=='log': if np.any(x <= 0.0): raise ValueError("x contains non-positive values, so can not" " be log-scaled") x = np.log10(x) if yscale=='log': if np.any(y <= 0.0): raise ValueError("y contains non-positive values, so can not" " be log-scaled") y = np.log10(y) if extent is not None: xmin, xmax, ymin, ymax = extent else: xmin = np.amin(x) xmax = np.amax(x) ymin = np.amin(y) ymax = np.amax(y) # In the x-direction, the hexagons exactly cover the region from # xmin to xmax. Need some padding to avoid roundoff errors. padding = 1.e-9 * (xmax - xmin) xmin -= padding xmax += padding sx = (xmax-xmin) / nx sy = (ymax-ymin) / ny if marginals: xorig = x.copy() yorig = y.copy() x = (x-xmin)/sx y = (y-ymin)/sy ix1 = np.round(x).astype(int) iy1 = np.round(y).astype(int) ix2 = np.floor(x).astype(int) iy2 = np.floor(y).astype(int) nx1 = nx + 1 ny1 = ny + 1 nx2 = nx ny2 = ny n = nx1*ny1+nx2*ny2 d1 = (x-ix1)**2 + 3.0 * (y-iy1)**2 d2 = (x-ix2-0.5)**2 + 3.0 * (y-iy2-0.5)**2 bdist = (d1<d2) if C is None: accum = np.zeros(n) # Create appropriate views into "accum" array. lattice1 = accum[:nx1*ny1] lattice2 = accum[nx1*ny1:] lattice1.shape = (nx1,ny1) lattice2.shape = (nx2,ny2) for i in xrange(len(x)): if bdist[i]: if ((ix1[i] >= 0) and (ix1[i] < nx1) and (iy1[i] >= 0) and (iy1[i] < ny1)): lattice1[ix1[i], iy1[i]]+=1 else: if ((ix2[i] >= 0) and (ix2[i] < nx2) and (iy2[i] >= 0) and (iy2[i] < ny2)): lattice2[ix2[i], iy2[i]]+=1 # threshold if mincnt is not None: for i in xrange(nx1): for j in xrange(ny1): if lattice1[i,j]<mincnt: lattice1[i,j] = np.nan for i in xrange(nx2): for j in xrange(ny2): if lattice2[i,j]<mincnt: lattice2[i,j] = np.nan accum = np.hstack(( lattice1.astype(float).ravel(), lattice2.astype(float).ravel())) good_idxs = ~np.isnan(accum) else: if mincnt is None: mincnt = 0 # create accumulation arrays lattice1 = np.empty((nx1,ny1),dtype=object) for i in xrange(nx1): for j in xrange(ny1): lattice1[i,j] = [] lattice2 = np.empty((nx2,ny2),dtype=object) for i in xrange(nx2): for j in xrange(ny2): lattice2[i,j] = [] for i in xrange(len(x)): if bdist[i]: if ((ix1[i] >= 0) and (ix1[i] < nx1) and (iy1[i] >= 0) and (iy1[i] < ny1)): lattice1[ix1[i], iy1[i]].append( C[i] ) else: if ((ix2[i] >= 0) and (ix2[i] < nx2) and (iy2[i] >= 0) and (iy2[i] < ny2)): lattice2[ix2[i], iy2[i]].append( C[i] ) for i in xrange(nx1): for j in xrange(ny1): vals = lattice1[i,j] if len(vals)>mincnt: lattice1[i,j] = reduce_C_function( vals ) else: lattice1[i,j] = np.nan for i in xrange(nx2): for j in xrange(ny2): vals = lattice2[i,j] if len(vals)>mincnt: lattice2[i,j] = reduce_C_function( vals ) else: lattice2[i,j] = np.nan accum = np.hstack(( lattice1.astype(float).ravel(), lattice2.astype(float).ravel())) good_idxs = ~np.isnan(accum) offsets = np.zeros((n, 2), float) offsets[:nx1*ny1,0] = np.repeat(np.arange(nx1), ny1) offsets[:nx1*ny1,1] = np.tile(np.arange(ny1), nx1) offsets[nx1*ny1:,0] = np.repeat(np.arange(nx2) + 0.5, ny2) offsets[nx1*ny1:,1] = np.tile(np.arange(ny2), nx2) + 0.5 offsets[:,0] *= sx offsets[:,1] *= sy offsets[:,0] += xmin offsets[:,1] += ymin # remove accumulation bins with no data offsets = offsets[good_idxs,:] accum = accum[good_idxs] polygon = np.zeros((6, 2), float) polygon[:,0] = sx * np.array([ 0.5, 0.5, 0.0, -0.5, -0.5, 0.0]) polygon[:,1] = sy * np.array([-0.5, 0.5, 1.0, 0.5, -0.5, -1.0]) / 3.0 if edgecolors=='none': edgecolors = 'face' if xscale == 'log' or yscale == 'log': polygons = np.expand_dims(polygon, 0) + np.expand_dims(offsets, 1) if xscale == 'log': polygons[:, :, 0] = 10.0 ** polygons[:, :, 0] xmin = 10.0 ** xmin xmax = 10.0 ** xmax self.set_xscale(xscale) if yscale == 'log': polygons[:, :, 1] = 10.0 ** polygons[:, :, 1] ymin = 10.0 ** ymin ymax = 10.0 ** ymax self.set_yscale(yscale) collection = mcoll.PolyCollection( polygons, edgecolors=edgecolors, linewidths=linewidths, ) else: collection = mcoll.PolyCollection( [polygon], edgecolors=edgecolors, linewidths=linewidths, offsets=offsets, transOffset=mtransforms.IdentityTransform(), offset_position="data" ) if isinstance(norm, mcolors.LogNorm): if (accum==0).any(): # make sure we have not zeros accum += 1 # autoscale the norm with curren accum values if it hasn't # been set if norm is not None: if norm.vmin is None and norm.vmax is None: norm.autoscale(accum) # Transform accum if needed if bins=='log': accum = np.log10(accum+1) elif bins!=None: if not iterable(bins): minimum, maximum = min(accum), max(accum) bins-=1 # one less edge than bins bins = minimum + (maximum-minimum)*np.arange(bins)/bins bins = np.sort(bins) accum = bins.searchsorted(accum) if norm is not None: assert(isinstance(norm, mcolors.Normalize)) collection.set_array(accum) collection.set_cmap(cmap) collection.set_norm(norm) collection.set_alpha(alpha) collection.update(kwargs) if vmin is not None or vmax is not None: collection.set_clim(vmin, vmax) else: collection.autoscale_None() corners = ((xmin, ymin), (xmax, ymax)) self.update_datalim( corners) self.autoscale_view(tight=True) # add the collection last self.add_collection(collection) if not marginals: return collection if C is None: C = np.ones(len(x)) def coarse_bin(x, y, coarse): ind = coarse.searchsorted(x).clip(0, len(coarse)-1) mus = np.zeros(len(coarse)) for i in range(len(coarse)): mu = reduce_C_function(y[ind==i]) mus[i] = mu return mus coarse = np.linspace(xmin, xmax, gridsize) xcoarse = coarse_bin(xorig, C, coarse) valid = ~np.isnan(xcoarse) verts, values = [], [] for i,val in enumerate(xcoarse): thismin = coarse[i] if i<len(coarse)-1: thismax = coarse[i+1] else: thismax = thismin + np.diff(coarse)[-1] if not valid[i]: continue verts.append([(thismin, 0), (thismin, 0.05), (thismax, 0.05), (thismax, 0)]) values.append(val) values = np.array(values) trans = mtransforms.blended_transform_factory( self.transData, self.transAxes) hbar = mcoll.PolyCollection(verts, transform=trans, edgecolors='face') hbar.set_array(values) hbar.set_cmap(cmap) hbar.set_norm(norm) hbar.set_alpha(alpha) hbar.update(kwargs) self.add_collection(hbar) coarse = np.linspace(ymin, ymax, gridsize) ycoarse = coarse_bin(yorig, C, coarse) valid = ~np.isnan(ycoarse) verts, values = [], [] for i,val in enumerate(ycoarse): thismin = coarse[i] if i<len(coarse)-1: thismax = coarse[i+1] else: thismax = thismin + np.diff(coarse)[-1] if not valid[i]: continue verts.append([(0, thismin), (0.0, thismax), (0.05, thismax), (0.05, thismin)]) values.append(val) values = np.array(values) trans = mtransforms.blended_transform_factory( self.transAxes, self.transData) vbar = mcoll.PolyCollection(verts, transform=trans, edgecolors='face') vbar.set_array(values) vbar.set_cmap(cmap) vbar.set_norm(norm) vbar.set_alpha(alpha) vbar.update(kwargs) self.add_collection(vbar) collection.hbar = hbar collection.vbar = vbar def on_changed(collection): hbar.set_cmap(collection.get_cmap()) hbar.set_clim(collection.get_clim()) vbar.set_cmap(collection.get_cmap()) vbar.set_clim(collection.get_clim()) collection.callbacksSM.connect('changed', on_changed) return collection @docstring.dedent_interpd def arrow(self, x, y, dx, dy, **kwargs): """ Add an arrow to the axes. Call signature:: arrow(x, y, dx, dy, **kwargs) Draws arrow on specified axis from (*x*, *y*) to (*x* + *dx*, *y* + *dy*). Uses FancyArrow patch to construct the arrow. Optional kwargs control the arrow construction and properties: %(FancyArrow)s **Example:** .. plot:: mpl_examples/pylab_examples/arrow_demo.py """ # Strip away units for the underlying patch since units # do not make sense to most patch-like code x = self.convert_xunits(x) y = self.convert_yunits(y) dx = self.convert_xunits(dx) dy = self.convert_yunits(dy) a = mpatches.FancyArrow(x, y, dx, dy, **kwargs) self.add_artist(a) return a def quiverkey(self, *args, **kw): qk = mquiver.QuiverKey(*args, **kw) self.add_artist(qk) return qk quiverkey.__doc__ = mquiver.QuiverKey.quiverkey_doc def quiver(self, *args, **kw): if not self._hold: self.cla() q = mquiver.Quiver(self, *args, **kw) self.add_collection(q, False) self.update_datalim(q.XY) self.autoscale_view() return q quiver.__doc__ = mquiver.Quiver.quiver_doc def stackplot(self, x, *args, **kwargs): return mstack.stackplot(self, x, *args, **kwargs) stackplot.__doc__ = mstack.stackplot.__doc__ def streamplot(self, x, y, u, v, density=1, linewidth=None, color=None, cmap=None, norm=None, arrowsize=1, arrowstyle='-|>', minlength=0.1, transform=None): if not self._hold: self.cla() stream_container = mstream.streamplot(self, x, y, u, v, density=density, linewidth=linewidth, color=color, cmap=cmap, norm=norm, arrowsize=arrowsize, arrowstyle=arrowstyle, minlength=minlength, transform=transform) return stream_container streamplot.__doc__ = mstream.streamplot.__doc__ @docstring.dedent_interpd def barbs(self, *args, **kw): """ %(barbs_doc)s **Example:** .. plot:: mpl_examples/pylab_examples/barb_demo.py """ if not self._hold: self.cla() b = mquiver.Barbs(self, *args, **kw) self.add_collection(b) self.update_datalim(b.get_offsets()) self.autoscale_view() return b @docstring.dedent_interpd def fill(self, *args, **kwargs): """ Plot filled polygons. Call signature:: fill(*args, **kwargs) *args* is a variable length argument, allowing for multiple *x*, *y* pairs with an optional color format string; see :func:`~matplotlib.pyplot.plot` for details on the argument parsing. For example, to plot a polygon with vertices at *x*, *y* in blue.:: ax.fill(x,y, 'b' ) An arbitrary number of *x*, *y*, *color* groups can be specified:: ax.fill(x1, y1, 'g', x2, y2, 'r') Return value is a list of :class:`~matplotlib.patches.Patch` instances that were added. The same color strings that :func:`~matplotlib.pyplot.plot` supports are supported by the fill format string. If you would like to fill below a curve, eg. shade a region between 0 and *y* along *x*, use :meth:`fill_between` The *closed* kwarg will close the polygon when *True* (default). kwargs control the :class:`~matplotlib.patches.Polygon` properties: %(Polygon)s **Example:** .. plot:: mpl_examples/pylab_examples/fill_demo.py """ if not self._hold: self.cla() patches = [] for poly in self._get_patches_for_fill(*args, **kwargs): self.add_patch( poly ) patches.append( poly ) self.autoscale_view() return patches @docstring.dedent_interpd def fill_between(self, x, y1, y2=0, where=None, interpolate=False, **kwargs): """ Make filled polygons between two curves. Call signature:: fill_between(x, y1, y2=0, where=None, **kwargs) Create a :class:`~matplotlib.collections.PolyCollection` filling the regions between *y1* and *y2* where ``where==True`` *x* : An N-length array of the x data *y1* : An N-length array (or scalar) of the y data *y2* : An N-length array (or scalar) of the y data *where* : If *None*, default to fill between everywhere. If not *None*, it is an N-length numpy boolean array and the fill will only happen over the regions where ``where==True``. *interpolate* : If *True*, interpolate between the two lines to find the precise point of intersection. Otherwise, the start and end points of the filled region will only occur on explicit values in the *x* array. *kwargs* : Keyword args passed on to the :class:`~matplotlib.collections.PolyCollection`. kwargs control the :class:`~matplotlib.patches.Polygon` properties: %(PolyCollection)s .. plot:: mpl_examples/pylab_examples/fill_between_demo.py .. seealso:: :meth:`fill_betweenx` for filling between two sets of x-values """ # Handle united data, such as dates self._process_unit_info(xdata=x, ydata=y1, kwargs=kwargs) self._process_unit_info(ydata=y2) # Convert the arrays so we can work with them x = ma.masked_invalid(self.convert_xunits(x)) y1 = ma.masked_invalid(self.convert_yunits(y1)) y2 = ma.masked_invalid(self.convert_yunits(y2)) if y1.ndim == 0: y1 = np.ones_like(x)*y1 if y2.ndim == 0: y2 = np.ones_like(x)*y2 if where is None: where = np.ones(len(x), np.bool) else: where = np.asarray(where, np.bool) if not (x.shape == y1.shape == y2.shape == where.shape): raise ValueError("Argument dimensions are incompatible") mask = reduce(ma.mask_or, [ma.getmask(a) for a in (x, y1, y2)]) if mask is not ma.nomask: where &= ~mask polys = [] for ind0, ind1 in mlab.contiguous_regions(where): xslice = x[ind0:ind1] y1slice = y1[ind0:ind1] y2slice = y2[ind0:ind1] if not len(xslice): continue N = len(xslice) X = np.zeros((2*N+2, 2), np.float) if interpolate: def get_interp_point(ind): im1 = max(ind-1, 0) x_values = x[im1:ind+1] diff_values = y1[im1:ind+1] - y2[im1:ind+1] y1_values = y1[im1:ind+1] if len(diff_values) == 2: if np.ma.is_masked(diff_values[1]): return x[im1], y1[im1] elif np.ma.is_masked(diff_values[0]): return x[ind], y1[ind] diff_order = diff_values.argsort() diff_root_x = np.interp( 0, diff_values[diff_order], x_values[diff_order]) diff_root_y = np.interp(diff_root_x, x_values, y1_values) return diff_root_x, diff_root_y start = get_interp_point(ind0) end = get_interp_point(ind1) else: # the purpose of the next two lines is for when y2 is a # scalar like 0 and we want the fill to go all the way # down to 0 even if none of the y1 sample points do start = xslice[0], y2slice[0] end = xslice[-1], y2slice[-1] X[0] = start X[N+1] = end X[1:N+1,0] = xslice X[1:N+1,1] = y1slice X[N+2:,0] = xslice[::-1] X[N+2:,1] = y2slice[::-1] polys.append(X) collection = mcoll.PolyCollection(polys, **kwargs) # now update the datalim and autoscale XY1 = np.array([x[where], y1[where]]).T XY2 = np.array([x[where], y2[where]]).T self.dataLim.update_from_data_xy(XY1, self.ignore_existing_data_limits, updatex=True, updatey=True) self.dataLim.update_from_data_xy(XY2, self.ignore_existing_data_limits, updatex=False, updatey=True) self.add_collection(collection) self.autoscale_view() return collection @docstring.dedent_interpd def fill_betweenx(self, y, x1, x2=0, where=None, **kwargs): """ Make filled polygons between two horizontal curves. Call signature:: fill_betweenx(y, x1, x2=0, where=None, **kwargs) Create a :class:`~matplotlib.collections.PolyCollection` filling the regions between *x1* and *x2* where ``where==True`` *y* : An N-length array of the y data *x1* : An N-length array (or scalar) of the x data *x2* : An N-length array (or scalar) of the x data *where* : If *None*, default to fill between everywhere. If not *None*, it is a N length numpy boolean array and the fill will only happen over the regions where ``where==True`` *kwargs* : keyword args passed on to the :class:`~matplotlib.collections.PolyCollection` kwargs control the :class:`~matplotlib.patches.Polygon` properties: %(PolyCollection)s .. plot:: mpl_examples/pylab_examples/fill_betweenx_demo.py .. seealso:: :meth:`fill_between` for filling between two sets of y-values """ # Handle united data, such as dates self._process_unit_info(ydata=y, xdata=x1, kwargs=kwargs) self._process_unit_info(xdata=x2) # Convert the arrays so we can work with them y = ma.masked_invalid(self.convert_yunits(y)) x1 = ma.masked_invalid(self.convert_xunits(x1)) x2 = ma.masked_invalid(self.convert_xunits(x2)) if x1.ndim == 0: x1 = np.ones_like(y)*x1 if x2.ndim == 0: x2 = np.ones_like(y)*x2 if where is None: where = np.ones(len(y), np.bool) else: where = np.asarray(where, np.bool) if not (y.shape == x1.shape == x2.shape == where.shape): raise ValueError("Argument dimensions are incompatible") mask = reduce(ma.mask_or, [ma.getmask(a) for a in (y, x1, x2)]) if mask is not ma.nomask: where &= ~mask polys = [] for ind0, ind1 in mlab.contiguous_regions(where): yslice = y[ind0:ind1] x1slice = x1[ind0:ind1] x2slice = x2[ind0:ind1] if not len(yslice): continue N = len(yslice) Y = np.zeros((2*N+2, 2), np.float) # the purpose of the next two lines is for when x2 is a # scalar like 0 and we want the fill to go all the way # down to 0 even if none of the x1 sample points do Y[0] = x2slice[0], yslice[0] Y[N+1] = x2slice[-1], yslice[-1] Y[1:N+1,0] = x1slice Y[1:N+1,1] = yslice Y[N+2:,0] = x2slice[::-1] Y[N+2:,1] = yslice[::-1] polys.append(Y) collection = mcoll.PolyCollection(polys, **kwargs) # now update the datalim and autoscale X1Y = np.array([x1[where], y[where]]).T X2Y = np.array([x2[where], y[where]]).T self.dataLim.update_from_data_xy(X1Y, self.ignore_existing_data_limits, updatex=True, updatey=True) self.dataLim.update_from_data_xy(X2Y, self.ignore_existing_data_limits, updatex=False, updatey=True) self.add_collection(collection) self.autoscale_view() return collection #### plotting z(x,y): imshow, pcolor and relatives, contour @docstring.dedent_interpd def imshow(self, X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None, vmin=None, vmax=None, origin=None, extent=None, shape=None, filternorm=1, filterrad=4.0, imlim=None, resample=None, url=None, **kwargs): """ Display an image on the axes. Call signature:: imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None, vmin=None, vmax=None, origin=None, extent=None, **kwargs) Display the image in *X* to current axes. *X* may be a float array, a uint8 array or a PIL image. If *X* is an array, *X* can have the following shapes: * MxN -- luminance (grayscale, float array only) * MxNx3 -- RGB (float or uint8 array) * MxNx4 -- RGBA (float or uint8 array) The value for each component of MxNx3 and MxNx4 float arrays should be in the range 0.0 to 1.0; MxN float arrays may be normalised. An :class:`matplotlib.image.AxesImage` instance is returned. Keyword arguments: *cmap*: [ *None* | Colormap ] A :class:`matplotlib.colors.Colormap` instance, eg. cm.jet. If *None*, default to rc ``image.cmap`` value. *cmap* is ignored when *X* has RGB(A) information *aspect*: [ *None* | 'auto' | 'equal' | scalar ] If 'auto', changes the image aspect ratio to match that of the axes If 'equal', and *extent* is *None*, changes the axes aspect ratio to match that of the image. If *extent* is not *None*, the axes aspect ratio is changed to match that of the extent. If *None*, default to rc ``image.aspect`` value. *interpolation*: Acceptable values are *None*, 'none', 'nearest', 'bilinear', 'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos' If *interpolation* is *None*, default to rc ``image.interpolation``. See also the *filternorm* and *filterrad* parameters If *interpolation* is ``'none'``, then no interpolation is performed on the Agg, ps and pdf backends. Other backends will fall back to 'nearest'. *norm*: [ *None* | Normalize ] An :class:`matplotlib.colors.Normalize` instance; if *None*, default is ``normalization()``. This scales luminance -> 0-1 *norm* is only used for an MxN float array. *vmin*/*vmax*: [ *None* | scalar ] Used to scale a luminance image to 0-1. If either is *None*, the min and max of the luminance values will be used. Note if *norm* is not *None*, the settings for *vmin* and *vmax* will be ignored. *alpha*: scalar The alpha blending value, between 0 (transparent) and 1 (opaque) or *None* *origin*: [ *None* | 'upper' | 'lower' ] Place the [0,0] index of the array in the upper left or lower left corner of the axes. If *None*, default to rc ``image.origin``. *extent*: [ *None* | scalars (left, right, bottom, top) ] Data limits for the axes. The default assigns zero-based row, column indices to the *x*, *y* centers of the pixels. *shape*: [ *None* | scalars (columns, rows) ] For raw buffer images *filternorm*: A parameter for the antigrain image resize filter. From the antigrain documentation, if *filternorm* = 1, the filter normalizes integer values and corrects the rounding errors. It doesn't do anything with the source floating point values, it corrects only integers according to the rule of 1.0 which means that any sum of pixel weights must be equal to 1.0. So, the filter function must produce a graph of the proper shape. *filterrad*: The filter radius for filters that have a radius parameter, i.e. when interpolation is one of: 'sinc', 'lanczos' or 'blackman' Additional kwargs are :class:`~matplotlib.artist.Artist` properties. %(Artist)s **Example:** .. plot:: mpl_examples/pylab_examples/image_demo.py """ if not self._hold: self.cla() if norm is not None: assert(isinstance(norm, mcolors.Normalize)) if aspect is None: aspect = rcParams['image.aspect'] self.set_aspect(aspect) im = mimage.AxesImage(self, cmap, norm, interpolation, origin, extent, filternorm=filternorm, filterrad=filterrad, resample=resample, **kwargs) im.set_data(X) im.set_alpha(alpha) self._set_artist_props(im) if im.get_clip_path() is None: # image does not already have clipping set, clip to axes patch im.set_clip_path(self.patch) #if norm is None and shape is None: # im.set_clim(vmin, vmax) if vmin is not None or vmax is not None: im.set_clim(vmin, vmax) else: im.autoscale_None() im.set_url(url) # update ax.dataLim, and, if autoscaling, set viewLim # to tightly fit the image, regardless of dataLim. im.set_extent(im.get_extent()) self.images.append(im) im._remove_method = lambda h: self.images.remove(h) return im def _pcolorargs(self, funcname, *args): if len(args)==1: C = args[0] numRows, numCols = C.shape X, Y = np.meshgrid(np.arange(numCols+1), np.arange(numRows+1) ) elif len(args)==3: X, Y, C = args else: raise TypeError( 'Illegal arguments to %s; see help(%s)' % (funcname, funcname)) Nx = X.shape[-1] Ny = Y.shape[0] if len(X.shape) != 2 or X.shape[0] == 1: x = X.reshape(1,Nx) X = x.repeat(Ny, axis=0) if len(Y.shape) != 2 or Y.shape[1] == 1: y = Y.reshape(Ny, 1) Y = y.repeat(Nx, axis=1) if X.shape != Y.shape: raise TypeError( 'Incompatible X, Y inputs to %s; see help(%s)' % ( funcname, funcname)) return X, Y, C @docstring.dedent_interpd def pcolor(self, *args, **kwargs): """ Create a pseudocolor plot of a 2-D array. Note: pcolor can be very slow for large arrays; consider using the similar but much faster :func:`~matplotlib.pyplot.pcolormesh` instead. Call signatures:: pcolor(C, **kwargs) pcolor(X, Y, C, **kwargs) *C* is the array of color values. *X* and *Y*, if given, specify the (*x*, *y*) coordinates of the colored quadrilaterals; the quadrilateral for C[i,j] has corners at:: (X[i, j], Y[i, j]), (X[i, j+1], Y[i, j+1]), (X[i+1, j], Y[i+1, j]), (X[i+1, j+1], Y[i+1, j+1]). Ideally the dimensions of *X* and *Y* should be one greater than those of *C*; if the dimensions are the same, then the last row and column of *C* will be ignored. Note that the the column index corresponds to the *x*-coordinate, and the row index corresponds to *y*; for details, see the :ref:`Grid Orientation <axes-pcolor-grid-orientation>` section below. If either or both of *X* and *Y* are 1-D arrays or column vectors, they will be expanded as needed into the appropriate 2-D arrays, making a rectangular grid. *X*, *Y* and *C* may be masked arrays. If either C[i, j], or one of the vertices surrounding C[i,j] (*X* or *Y* at [i, j], [i+1, j], [i, j+1],[i+1, j+1]) is masked, nothing is plotted. Keyword arguments: *cmap*: [ *None* | Colormap ] A :class:`matplotlib.colors.Colormap` instance. If *None*, use rc settings. *norm*: [ *None* | Normalize ] An :class:`matplotlib.colors.Normalize` instance is used to scale luminance data to 0,1. If *None*, defaults to :func:`normalize`. *vmin*/*vmax*: [ *None* | scalar ] *vmin* and *vmax* are used in conjunction with *norm* to normalize luminance data. If either is *None*, it is autoscaled to the respective min or max of the color array *C*. If not *None*, *vmin* or *vmax* passed in here override any pre-existing values supplied in the *norm* instance. *shading*: [ 'flat' | 'faceted' ] If 'faceted', a black grid is drawn around each rectangle; if 'flat', edges are not drawn. Default is 'flat', contrary to MATLAB. This kwarg is deprecated; please use 'edgecolors' instead: * shading='flat' -- edgecolors='none' * shading='faceted -- edgecolors='k' *edgecolors*: [ *None* | ``'none'`` | color | color sequence] If *None*, the rc setting is used by default. If ``'none'``, edges will not be visible. An mpl color or sequence of colors will set the edge color *alpha*: ``0 <= scalar <= 1`` or *None* the alpha blending value Return value is a :class:`matplotlib.collections.Collection` instance. .. _axes-pcolor-grid-orientation: The grid orientation follows the MATLAB convention: an array *C* with shape (*nrows*, *ncolumns*) is plotted with the column number as *X* and the row number as *Y*, increasing up; hence it is plotted the way the array would be printed, except that the *Y* axis is reversed. That is, *C* is taken as *C*(*y*, *x*). Similarly for :func:`meshgrid`:: x = np.arange(5) y = np.arange(3) X, Y = meshgrid(x,y) is equivalent to:: X = array([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]) Y = array([[0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [2, 2, 2, 2, 2]]) so if you have:: C = rand( len(x), len(y)) then you need:: pcolor(X, Y, C.T) or:: pcolor(C.T) MATLAB :func:`pcolor` always discards the last row and column of *C*, but matplotlib displays the last row and column if *X* and *Y* are not specified, or if *X* and *Y* have one more row and column than *C*. kwargs can be used to control the :class:`~matplotlib.collections.PolyCollection` properties: %(PolyCollection)s Note: the default *antialiaseds* is False if the default *edgecolors*="none" is used. This eliminates artificial lines at patch boundaries, and works regardless of the value of alpha. If *edgecolors* is not "none", then the default *antialiaseds* is taken from rcParams['patch.antialiased'], which defaults to *True*. Stroking the edges may be preferred if *alpha* is 1, but will cause artifacts otherwise. .. seealso:: :func:`~matplotlib.pyplot.pcolormesh` For an explanation of the differences between pcolor and pcolormesh. """ if not self._hold: self.cla() alpha = kwargs.pop('alpha', None) norm = kwargs.pop('norm', None) cmap = kwargs.pop('cmap', None) vmin = kwargs.pop('vmin', None) vmax = kwargs.pop('vmax', None) shading = kwargs.pop('shading', 'flat') X, Y, C = self._pcolorargs('pcolor', *args) Ny, Nx = X.shape # convert to MA, if necessary. C = ma.asarray(C) X = ma.asarray(X) Y = ma.asarray(Y) mask = ma.getmaskarray(X)+ma.getmaskarray(Y) xymask = mask[0:-1,0:-1]+mask[1:,1:]+mask[0:-1,1:]+mask[1:,0:-1] # don't plot if C or any of the surrounding vertices are masked. mask = ma.getmaskarray(C)[0:Ny-1,0:Nx-1]+xymask newaxis = np.newaxis compress = np.compress ravelmask = (mask==0).ravel() X1 = compress(ravelmask, ma.filled(X[0:-1,0:-1]).ravel()) Y1 = compress(ravelmask, ma.filled(Y[0:-1,0:-1]).ravel()) X2 = compress(ravelmask, ma.filled(X[1:,0:-1]).ravel()) Y2 = compress(ravelmask, ma.filled(Y[1:,0:-1]).ravel()) X3 = compress(ravelmask, ma.filled(X[1:,1:]).ravel()) Y3 = compress(ravelmask, ma.filled(Y[1:,1:]).ravel()) X4 = compress(ravelmask, ma.filled(X[0:-1,1:]).ravel()) Y4 = compress(ravelmask, ma.filled(Y[0:-1,1:]).ravel()) npoly = len(X1) xy = np.concatenate((X1[:,newaxis], Y1[:,newaxis], X2[:,newaxis], Y2[:,newaxis], X3[:,newaxis], Y3[:,newaxis], X4[:,newaxis], Y4[:,newaxis], X1[:,newaxis], Y1[:,newaxis]), axis=1) verts = xy.reshape((npoly, 5, 2)) C = compress(ravelmask, ma.filled(C[0:Ny-1,0:Nx-1]).ravel()) linewidths = (0.25,) if 'linewidth' in kwargs: kwargs['linewidths'] = kwargs.pop('linewidth') kwargs.setdefault('linewidths', linewidths) if shading == 'faceted': edgecolors = 'k', else: edgecolors = 'none' if 'edgecolor' in kwargs: kwargs['edgecolors'] = kwargs.pop('edgecolor') ec = kwargs.setdefault('edgecolors', edgecolors) # aa setting will default via collections to patch.antialiased # unless the boundary is not stroked, in which case the # default will be False; with unstroked boundaries, aa # makes artifacts that are often disturbing. if 'antialiased' in kwargs: kwargs['antialiaseds'] = kwargs.pop('antialiased') if 'antialiaseds' not in kwargs and (is_string_like(ec) and ec.lower() == "none"): kwargs['antialiaseds'] = False collection = mcoll.PolyCollection(verts, **kwargs) collection.set_alpha(alpha) collection.set_array(C) if norm is not None: assert(isinstance(norm, mcolors.Normalize)) collection.set_cmap(cmap) collection.set_norm(norm) collection.set_clim(vmin, vmax) collection.autoscale_None() self.grid(False) x = X.compressed() y = Y.compressed() # Transform from native to data coordinates? t = collection._transform if (not isinstance(t, mtransforms.Transform) and hasattr(t, '_as_mpl_transform')): t = t._as_mpl_transform(self.axes) if t and any(t.contains_branch_seperately(self.transData)): trans_to_data = t - self.transData pts = np.vstack([x, y]).T.astype(np.float) transformed_pts = trans_to_data.transform(pts) x = transformed_pts[..., 0] y = transformed_pts[..., 1] minx = np.amin(x) maxx = np.amax(x) miny = np.amin(y) maxy = np.amax(y) corners = (minx, miny), (maxx, maxy) self.update_datalim( corners) self.autoscale_view() self.add_collection(collection) return collection @docstring.dedent_interpd def pcolormesh(self, *args, **kwargs): """ Plot a quadrilateral mesh. Call signatures:: pcolormesh(C) pcolormesh(X, Y, C) pcolormesh(C, **kwargs) Create a pseudocolor plot of a 2-D array. pcolormesh is similar to :func:`~matplotlib.pyplot.pcolor`, but uses a different mechanism and returns a different object; pcolor returns a :class:`~matplotlib.collections.PolyCollection` but pcolormesh returns a :class:`~matplotlib.collections.QuadMesh`. It is much faster, so it is almost always preferred for large arrays. *C* may be a masked array, but *X* and *Y* may not. Masked array support is implemented via *cmap* and *norm*; in contrast, :func:`~matplotlib.pyplot.pcolor` simply does not draw quadrilaterals with masked colors or vertices. Keyword arguments: *cmap*: [ *None* | Colormap ] A :class:`matplotlib.colors.Colormap` instance. If *None*, use rc settings. *norm*: [ *None* | Normalize ] A :class:`matplotlib.colors.Normalize` instance is used to scale luminance data to 0,1. If *None*, defaults to :func:`normalize`. *vmin*/*vmax*: [ *None* | scalar ] *vmin* and *vmax* are used in conjunction with *norm* to normalize luminance data. If either is *None*, it is autoscaled to the respective min or max of the color array *C*. If not *None*, *vmin* or *vmax* passed in here override any pre-existing values supplied in the *norm* instance. *shading*: [ 'flat' | 'gouraud' ] 'flat' indicates a solid color for each quad. When 'gouraud', each quad will be Gouraud shaded. When gouraud shading, edgecolors is ignored. *edgecolors*: [ *None* | ``'None'`` | ``'face'`` | color | color sequence] If *None*, the rc setting is used by default. If ``'None'``, edges will not be visible. If ``'face'``, edges will have the same color as the faces. An mpl color or sequence of colors will set the edge color *alpha*: ``0 <= scalar <= 1`` or *None* the alpha blending value Return value is a :class:`matplotlib.collections.QuadMesh` object. kwargs can be used to control the :class:`matplotlib.collections.QuadMesh` properties: %(QuadMesh)s .. seealso:: :func:`~matplotlib.pyplot.pcolor` For an explanation of the grid orientation and the expansion of 1-D *X* and/or *Y* to 2-D arrays. """ if not self._hold: self.cla() alpha = kwargs.pop('alpha', None) norm = kwargs.pop('norm', None) cmap = kwargs.pop('cmap', None) vmin = kwargs.pop('vmin', None) vmax = kwargs.pop('vmax', None) shading = kwargs.pop('shading', 'flat').lower() antialiased = kwargs.pop('antialiased', False) kwargs.setdefault('edgecolors', 'None') X, Y, C = self._pcolorargs('pcolormesh', *args) Ny, Nx = X.shape # convert to one dimensional arrays if shading != 'gouraud': C = ma.ravel(C[0:Ny-1, 0:Nx-1]) # data point in each cell is value at # lower left corner else: C = C.ravel() X = X.ravel() Y = Y.ravel() coords = np.zeros(((Nx * Ny), 2), dtype=float) coords[:, 0] = X coords[:, 1] = Y collection = mcoll.QuadMesh( Nx - 1, Ny - 1, coords, antialiased=antialiased, shading=shading, **kwargs) collection.set_alpha(alpha) collection.set_array(C) if norm is not None: assert(isinstance(norm, mcolors.Normalize)) collection.set_cmap(cmap) collection.set_norm(norm) collection.set_clim(vmin, vmax) collection.autoscale_None() self.grid(False) # Transform from native to data coordinates? t = collection._transform if (not isinstance(t, mtransforms.Transform) and hasattr(t, '_as_mpl_transform')): t = t._as_mpl_transform(self.axes) if t and any(t.contains_branch_seperately(self.transData)): trans_to_data = t - self.transData pts = np.vstack([X, Y]).T.astype(np.float) transformed_pts = trans_to_data.transform(pts) X = transformed_pts[..., 0] Y = transformed_pts[..., 1] minx = np.amin(X) maxx = np.amax(X) miny = np.amin(Y) maxy = np.amax(Y) corners = (minx, miny), (maxx, maxy) self.update_datalim( corners) self.autoscale_view() self.add_collection(collection) return collection @docstring.dedent_interpd def pcolorfast(self, *args, **kwargs): """ pseudocolor plot of a 2-D array Experimental; this is a pcolor-type method that provides the fastest possible rendering with the Agg backend, and that can handle any quadrilateral grid. It supports only flat shading (no outlines), it lacks support for log scaling of the axes, and it does not have a pyplot wrapper. Call signatures:: ax.pcolorfast(C, **kwargs) ax.pcolorfast(xr, yr, C, **kwargs) ax.pcolorfast(x, y, C, **kwargs) ax.pcolorfast(X, Y, C, **kwargs) C is the 2D array of color values corresponding to quadrilateral cells. Let (nr, nc) be its shape. C may be a masked array. ``ax.pcolorfast(C, **kwargs)`` is equivalent to ``ax.pcolorfast([0,nc], [0,nr], C, **kwargs)`` *xr*, *yr* specify the ranges of *x* and *y* corresponding to the rectangular region bounding *C*. If:: xr = [x0, x1] and:: yr = [y0,y1] then *x* goes from *x0* to *x1* as the second index of *C* goes from 0 to *nc*, etc. (*x0*, *y0*) is the outermost corner of cell (0,0), and (*x1*, *y1*) is the outermost corner of cell (*nr*-1, *nc*-1). All cells are rectangles of the same size. This is the fastest version. *x*, *y* are 1D arrays of length *nc* +1 and *nr* +1, respectively, giving the x and y boundaries of the cells. Hence the cells are rectangular but the grid may be nonuniform. The speed is intermediate. (The grid is checked, and if found to be uniform the fast version is used.) *X* and *Y* are 2D arrays with shape (*nr* +1, *nc* +1) that specify the (x,y) coordinates of the corners of the colored quadrilaterals; the quadrilateral for C[i,j] has corners at (X[i,j],Y[i,j]), (X[i,j+1],Y[i,j+1]), (X[i+1,j],Y[i+1,j]), (X[i+1,j+1],Y[i+1,j+1]). The cells need not be rectangular. This is the most general, but the slowest to render. It may produce faster and more compact output using ps, pdf, and svg backends, however. Note that the the column index corresponds to the x-coordinate, and the row index corresponds to y; for details, see the "Grid Orientation" section below. Optional keyword arguments: *cmap*: [ *None* | Colormap ] A :class:`matplotlib.colors.Colormap` instance from cm. If *None*, use rc settings. *norm*: [ *None* | Normalize ] A :class:`matplotlib.colors.Normalize` instance is used to scale luminance data to 0,1. If *None*, defaults to normalize() *vmin*/*vmax*: [ *None* | scalar ] *vmin* and *vmax* are used in conjunction with norm to normalize luminance data. If either are *None*, the min and max of the color array *C* is used. If you pass a norm instance, *vmin* and *vmax* will be *None*. *alpha*: ``0 <= scalar <= 1`` or *None* the alpha blending value Return value is an image if a regular or rectangular grid is specified, and a :class:`~matplotlib.collections.QuadMesh` collection in the general quadrilateral case. """ if not self._hold: self.cla() alpha = kwargs.pop('alpha', None) norm = kwargs.pop('norm', None) cmap = kwargs.pop('cmap', None) vmin = kwargs.pop('vmin', None) vmax = kwargs.pop('vmax', None) if norm is not None: assert(isinstance(norm, mcolors.Normalize)) C = args[-1] nr, nc = C.shape if len(args) == 1: style = "image" x = [0, nc] y = [0, nr] elif len(args) == 3: x, y = args[:2] x = np.asarray(x) y = np.asarray(y) if x.ndim == 1 and y.ndim == 1: if x.size == 2 and y.size == 2: style = "image" else: dx = np.diff(x) dy = np.diff(y) if (np.ptp(dx) < 0.01*np.abs(dx.mean()) and np.ptp(dy) < 0.01*np.abs(dy.mean())): style = "image" else: style = "pcolorimage" elif x.ndim == 2 and y.ndim == 2: style = "quadmesh" else: raise TypeError("arguments do not match valid signatures") else: raise TypeError("need 1 argument or 3 arguments") if style == "quadmesh": # convert to one dimensional arrays # This should also be moved to the QuadMesh class C = ma.ravel(C) # data point in each cell is value # at lower left corner X = x.ravel() Y = y.ravel() Nx = nc+1 Ny = nr+1 # The following needs to be cleaned up; the renderer # requires separate contiguous arrays for X and Y, # but the QuadMesh class requires the 2D array. coords = np.empty(((Nx * Ny), 2), np.float64) coords[:, 0] = X coords[:, 1] = Y # The QuadMesh class can also be changed to # handle relevant superclass kwargs; the initializer # should do much more than it does now. collection = mcoll.QuadMesh(nc, nr, coords, 0, edgecolors="None") collection.set_alpha(alpha) collection.set_array(C) collection.set_cmap(cmap) collection.set_norm(norm) self.add_collection(collection) xl, xr, yb, yt = X.min(), X.max(), Y.min(), Y.max() ret = collection else: # One of the image styles: xl, xr, yb, yt = x[0], x[-1], y[0], y[-1] if style == "image": im = mimage.AxesImage(self, cmap, norm, interpolation='nearest', origin='lower', extent=(xl, xr, yb, yt), **kwargs) im.set_data(C) im.set_alpha(alpha) self.images.append(im) ret = im if style == "pcolorimage": im = mimage.PcolorImage(self, x, y, C, cmap=cmap, norm=norm, alpha=alpha, **kwargs) self.images.append(im) ret = im self._set_artist_props(ret) if vmin is not None or vmax is not None: ret.set_clim(vmin, vmax) else: ret.autoscale_None() self.update_datalim(np.array([[xl, yb], [xr, yt]])) self.autoscale_view(tight=True) return ret def contour(self, *args, **kwargs): if not self._hold: self.cla() kwargs['filled'] = False return mcontour.QuadContourSet(self, *args, **kwargs) contour.__doc__ = mcontour.QuadContourSet.contour_doc def contourf(self, *args, **kwargs): if not self._hold: self.cla() kwargs['filled'] = True return mcontour.QuadContourSet(self, *args, **kwargs) contourf.__doc__ = mcontour.QuadContourSet.contour_doc def clabel(self, CS, *args, **kwargs): return CS.clabel(*args, **kwargs) clabel.__doc__ = mcontour.ContourSet.clabel.__doc__ @docstring.dedent_interpd def table(self, **kwargs): """ Add a table to the current axes. Call signature:: table(cellText=None, cellColours=None, cellLoc='right', colWidths=None, rowLabels=None, rowColours=None, rowLoc='left', colLabels=None, colColours=None, colLoc='center', loc='bottom', bbox=None): Returns a :class:`matplotlib.table.Table` instance. For finer grained control over tables, use the :class:`~matplotlib.table.Table` class and add it to the axes with :meth:`~matplotlib.axes.Axes.add_table`. Thanks to John Gill for providing the class and table. kwargs control the :class:`~matplotlib.table.Table` properties: %(Table)s """ return mtable.table(self, **kwargs) def _make_twin_axes(self, *kl, **kwargs): """ make a twinx axes of self. This is used for twinx and twiny. """ ax2 = self.figure.add_axes(self.get_position(True), *kl, **kwargs) return ax2 def twinx(self): """ Call signature:: ax = twinx() create a twin of Axes for generating a plot with a sharex x-axis but independent y axis. The y-axis of self will have ticks on left and the returned axes will have ticks on the right. .. note:: For those who are 'picking' artists while using twinx, pick events are only called for the artists in the top-most axes. """ ax2 = self._make_twin_axes(sharex=self, frameon=False) ax2.yaxis.tick_right() ax2.yaxis.set_label_position('right') ax2.yaxis.set_offset_position('right') self.yaxis.tick_left() ax2.xaxis.set_visible(False) return ax2 def twiny(self): """ Call signature:: ax = twiny() create a twin of Axes for generating a plot with a shared y-axis but independent x axis. The x-axis of self will have ticks on bottom and the returned axes will have ticks on the top. .. note:: For those who are 'picking' artists while using twiny, pick events are only called for the artists in the top-most axes. """ ax2 = self._make_twin_axes(sharey=self, frameon=False) ax2.xaxis.tick_top() ax2.xaxis.set_label_position('top') self.xaxis.tick_bottom() ax2.yaxis.set_visible(False) return ax2 def get_shared_x_axes(self): 'Return a copy of the shared axes Grouper object for x axes' return self._shared_x_axes def get_shared_y_axes(self): 'Return a copy of the shared axes Grouper object for y axes' return self._shared_y_axes #### Data analysis @docstring.dedent_interpd def hist(self, x, bins=10, range=None, normed=False, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, stacked=False, **kwargs): """ Plot a histogram. Call signature:: hist(x, bins=10, range=None, normed=False, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, stacked=False, **kwargs) Compute and draw the histogram of *x*. The return value is a tuple (*n*, *bins*, *patches*) or ([*n0*, *n1*, ...], *bins*, [*patches0*, *patches1*,...]) if the input contains multiple data. Multiple data can be provided via *x* as a list of datasets of potentially different length ([*x0*, *x1*, ...]), or as a 2-D ndarray in which each column is a dataset. Note that the ndarray form is transposed relative to the list form. Masked arrays are not supported at present. Keyword arguments: *bins*: Either an integer number of bins or a sequence giving the bins. If *bins* is an integer, *bins* + 1 bin edges will be returned, consistent with :func:`numpy.histogram` for numpy version >= 1.3, and with the *new* = True argument in earlier versions. Unequally spaced bins are supported if *bins* is a sequence. *range*: The lower and upper range of the bins. Lower and upper outliers are ignored. If not provided, *range* is (x.min(), x.max()). Range has no effect if *bins* is a sequence. If *bins* is a sequence or *range* is specified, autoscaling is based on the specified bin range instead of the range of x. *normed*: If *True*, the first element of the return tuple will be the counts normalized to form a probability density, i.e., ``n/(len(x)*dbin)``. In a probability density, the integral of the histogram should be 1; you can verify that with a trapezoidal integration of the probability density function:: pdf, bins, patches = ax.hist(...) print np.sum(pdf * np.diff(bins)) .. note:: Until numpy release 1.5, the underlying numpy histogram function was incorrect with *normed*=*True* if bin sizes were unequal. MPL inherited that error. It is now corrected within MPL when using earlier numpy versions *weights*: An array of weights, of the same shape as *x*. Each value in *x* only contributes its associated weight towards the bin count (instead of 1). If *normed* is True, the weights are normalized, so that the integral of the density over the range remains 1. *cumulative*: If *True*, then a histogram is computed where each bin gives the counts in that bin plus all bins for smaller values. The last bin gives the total number of datapoints. If *normed* is also *True* then the histogram is normalized such that the last bin equals 1. If *cumulative* evaluates to less than 0 (e.g. -1), the direction of accumulation is reversed. In this case, if *normed* is also *True*, then the histogram is normalized such that the first bin equals 1. *histtype*: [ 'bar' | 'barstacked' | 'step' | 'stepfilled' ] The type of histogram to draw. - 'bar' is a traditional bar-type histogram. If multiple data are given the bars are aranged side by side. - 'barstacked' is a bar-type histogram where multiple data are stacked on top of each other. - 'step' generates a lineplot that is by default unfilled. - 'stepfilled' generates a lineplot that is by default filled. *align*: ['left' | 'mid' | 'right' ] Controls how the histogram is plotted. - 'left': bars are centered on the left bin edges. - 'mid': bars are centered between the bin edges. - 'right': bars are centered on the right bin edges. *orientation*: [ 'horizontal' | 'vertical' ] If 'horizontal', :func:`~matplotlib.pyplot.barh` will be used for bar-type histograms and the *bottom* kwarg will be the left edges. *rwidth*: The relative width of the bars as a fraction of the bin width. If *None*, automatically compute the width. Ignored if *histtype* = 'step' or 'stepfilled'. *log*: If *True*, the histogram axis will be set to a log scale. If *log* is *True* and *x* is a 1D array, empty bins will be filtered out and only the non-empty (*n*, *bins*, *patches*) will be returned. *color*: Color spec or sequence of color specs, one per dataset. Default (*None*) uses the standard line color sequence. *label*: String, or sequence of strings to match multiple datasets. Bar charts yield multiple patches per dataset, but only the first gets the label, so that the legend command will work as expected:: ax.hist(10+2*np.random.randn(1000), label='men') ax.hist(12+3*np.random.randn(1000), label='women', alpha=0.5) ax.legend() *stacked*: If *True*, multiple data are stacked on top of each other If *False* multiple data are aranged side by side if histtype is 'bar' or on top of each other if histtype is 'step' . kwargs are used to update the properties of the :class:`~matplotlib.patches.Patch` instances returned by *hist*: %(Patch)s **Example:** .. plot:: mpl_examples/pylab_examples/histogram_demo.py """ if not self._hold: self.cla() # xrange becomes range after 2to3 bin_range = range range = __builtins__["range"] # NOTE: the range keyword overwrites the built-in func range !!! # needs to be fixed in numpy !!! # Validate string inputs here so we don't have to clutter # subsequent code. if histtype not in ['bar', 'barstacked', 'step', 'stepfilled']: raise ValueError("histtype %s is not recognized" % histtype) if align not in ['left', 'mid', 'right']: raise ValueError("align kwarg %s is not recognized" % align) if orientation not in [ 'horizontal', 'vertical']: raise ValueError( "orientation kwarg %s is not recognized" % orientation) if kwargs.get('width') is not None: raise mplDeprecation( 'hist now uses the rwidth to give relative width ' 'and not absolute width') if histtype == 'barstacked' and not stacked: stacked=True # Massage 'x' for processing. # NOTE: Be sure any changes here is also done below to 'weights' if isinstance(x, np.ndarray) or not iterable(x[0]): # TODO: support masked arrays; x = np.asarray(x) if x.ndim == 2: x = x.T # 2-D input with columns as datasets; switch to rows elif x.ndim == 1: x = x.reshape(1, x.shape[0]) # new view, single row else: raise ValueError("x must be 1D or 2D") if x.shape[1] < x.shape[0]: warnings.warn('2D hist input should be nsamples x nvariables;\n ' 'this looks transposed (shape is %d x %d)' % x.shape[::-1]) else: # multiple hist with data of different length x = [np.asarray(xi) for xi in x] nx = len(x) # number of datasets if color is None: color = [self._get_lines.color_cycle.next() for i in xrange(nx)] else: color = mcolors.colorConverter.to_rgba_array(color) if len(color) != nx: raise ValueError("color kwarg must have one color per dataset") # We need to do to 'weights' what was done to 'x' if weights is not None: if isinstance(weights, np.ndarray) or not iterable(weights[0]) : w = np.array(weights) if w.ndim == 2: w = w.T elif w.ndim == 1: w.shape = (1, w.shape[0]) else: raise ValueError("weights must be 1D or 2D") else: w = [np.asarray(wi) for wi in weights] if len(w) != nx: raise ValueError('weights should have the same shape as x') for i in xrange(nx): if len(w[i]) != len(x[i]): raise ValueError( 'weights should have the same shape as x') else: w = [None]*nx # Save autoscale state for later restoration; turn autoscaling # off so we can do it all a single time at the end, instead # of having it done by bar or fill and then having to be redone. _saved_autoscalex = self.get_autoscalex_on() _saved_autoscaley = self.get_autoscaley_on() self.set_autoscalex_on(False) self.set_autoscaley_on(False) # Save the datalimits for the same reason: _saved_bounds = self.dataLim.bounds # Check whether bins or range are given explicitly. In that # case use those values for autoscaling. binsgiven = (cbook.iterable(bins) or bin_range != None) # If bins are not specified either explicitly or via range, # we need to figure out the range required for all datasets, # and supply that to np.histogram. if not binsgiven: xmin = np.inf xmax = -np.inf for xi in x: xmin = min(xmin, xi.min()) xmax = max(xmax, xi.max()) bin_range = (xmin, xmax) #hist_kwargs = dict(range=range, normed=bool(normed)) # We will handle the normed kwarg within mpl until we # get to the point of requiring numpy >= 1.5. hist_kwargs = dict(range=bin_range) if np.__version__ < "1.3": # version 1.1 and 1.2 hist_kwargs['new'] = True n = [] mlast = bottom for i in xrange(nx): # this will automatically overwrite bins, # so that each histogram uses the same bins m, bins = np.histogram(x[i], bins, weights=w[i], **hist_kwargs) if mlast is None: mlast = np.zeros(len(bins)-1, m.dtype) if normed: db = np.diff(bins) m = (m.astype(float) / db) / m.sum() if stacked: m += mlast mlast[:] = m n.append(m) if cumulative: slc = slice(None) if cbook.is_numlike(cumulative) and cumulative < 0: slc = slice(None,None,-1) if normed: n = [(m * np.diff(bins))[slc].cumsum()[slc] for m in n] else: n = [m[slc].cumsum()[slc] for m in n] patches = [] if histtype.startswith('bar'): totwidth = np.diff(bins) if rwidth is not None: dr = min(1.0, max(0.0, rwidth)) elif len(n)>1: dr = 0.8 else: dr = 1.0 if histtype=='bar' and not stacked: width = dr*totwidth/nx dw = width if nx > 1: boffset = -0.5*dr*totwidth*(1.0-1.0/nx) else: boffset = 0.0 stacked = False elif histtype=='barstacked' or stacked: width = dr*totwidth boffset, dw = 0.0, 0.0 if align == 'mid' or align == 'edge': boffset += 0.5*totwidth elif align == 'right': boffset += totwidth if orientation == 'horizontal': _barfunc = self.barh else: # orientation == 'vertical' _barfunc = self.bar for m, c in zip(n, color): if bottom is None: bottom = np.zeros(len(m), np.float) if stacked: height = m - bottom else : height = m patch = _barfunc(bins[:-1]+boffset, height, width, align='center', log=log, color=c, bottom=bottom) patches.append(patch) if stacked: bottom[:] = m boffset += dw elif histtype.startswith('step'): # these define the perimeter of the polygon x = np.zeros( 4*len(bins)-3, np.float ) y = np.zeros( 4*len(bins)-3, np.float ) x[0:2*len(bins)-1:2], x[1:2*len(bins)-1:2] = bins, bins[:-1] x[2*len(bins)-1:] = x[1:2*len(bins)-1][::-1] if log: if orientation == 'horizontal': self.set_xscale('log', nonposx = 'clip') logbase = self.xaxis._scale.base else: # orientation == 'vertical' self.set_yscale('log', nonposy = 'clip') logbase = self.yaxis._scale.base # Setting a minimum of 0 results in problems for log plots if normed: # For normed data, set to log base * minimum data value # (gives 1 full tick-label unit for the lowest filled bin) ndata = np.array(n) minimum = (np.min(ndata[ndata>0])) / logbase else: # For non-normed data, set the min to log base, again so that # there is 1 full tick-label unit for the lowest bin minimum = 1.0 / logbase y[0], y[-1] = minimum, minimum else: minimum = np.min(bins) if align == 'left' or align == 'center': x -= 0.5*(bins[1]-bins[0]) elif align == 'right': x += 0.5*(bins[1]-bins[0]) # If fill kwarg is set, it will be passed to the patch collection, # overriding this fill = (histtype == 'stepfilled') xvals, yvals = [], [] for m in n: # starting point for drawing polygon y[0] = y[-1] # top of the previous polygon becomes the bottom y[2*len(bins)-1:] = y[1:2*len(bins)-1][::-1] # set the top of this polygon y[1:2*len(bins)-1:2], y[2:2*len(bins):2] = m, m if log: y[y<minimum]=minimum if orientation == 'horizontal': x,y = y,x xvals.append(x.copy()) yvals.append(y.copy()) # add patches in reverse order so that when stacking, # items lower in the stack are plottted on top of # items higher in the stack for x, y, c in reversed(zip(xvals, yvals, color)): if fill: patches.append( self.fill(x, y, closed=False, facecolor=c) ) else: patches.append( self.fill(x, y, closed=False, edgecolor=c, fill=False) ) # we return patches, so put it back in the expected order patches.reverse() # adopted from adjust_x/ylim part of the bar method if orientation == 'horizontal': xmin0 = max(_saved_bounds[0]*0.9, minimum) xmax = self.dataLim.intervalx[1] for m in n: xmin = np.amin(m[m!=0]) # filter out the 0 height bins xmin = max(xmin*0.9, minimum) xmin = min(xmin0, xmin) self.dataLim.intervalx = (xmin, xmax) elif orientation == 'vertical': ymin0 = max(_saved_bounds[1]*0.9, minimum) ymax = self.dataLim.intervaly[1] for m in n: ymin = np.amin(m[m!=0]) # filter out the 0 height bins ymin = max(ymin*0.9, minimum) ymin = min(ymin0, ymin) self.dataLim.intervaly = (ymin, ymax) if label is None: labels = [None] elif is_string_like(label): labels = [label] elif is_sequence_of_strings(label): labels = list(label) else: raise ValueError('invalid label: must be string or sequence of strings') if len(labels) < nx: labels += [None] * (nx - len(labels)) for (patch, lbl) in zip(patches, labels): if patch: p = patch[0] p.update(kwargs) if lbl is not None: p.set_label(lbl) p.set_snap(False) for p in patch[1:]: p.update(kwargs) p.set_label('_nolegend_') if binsgiven: if orientation == 'vertical': self.update_datalim([(bins[0],0), (bins[-1],0)], updatey=False) else: self.update_datalim([(0,bins[0]), (0,bins[-1])], updatex=False) self.set_autoscalex_on(_saved_autoscalex) self.set_autoscaley_on(_saved_autoscaley) self.autoscale_view() if nx == 1: return n[0], bins, cbook.silent_list('Patch', patches[0]) else: return n, bins, cbook.silent_list('Lists of Patches', patches) @docstring.dedent_interpd def hist2d(self, x, y, bins = 10, range=None, normed=False, weights=None, cmin=None, cmax=None, **kwargs): """ Make a 2D histogram plot. Call signature:: hist2d(x, y, bins = None, range=None, weights=None, cmin=None, cmax=None **kwargs) Make a 2d histogram plot of *x* versus *y*, where *x*, *y* are 1-D sequences of the same length. The return value is ``(counts, xedges, yedges, Image)``. Optional keyword arguments: *bins*: [None | int | [int, int] | array_like | [array, array]] The bin specification: - If int, the number of bins for the two dimensions (nx=ny=bins). - If [int, int], the number of bins in each dimension (nx, ny = bins). - If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins). - If [array, array], the bin edges in each dimension (x_edges, y_edges = bins). The default value is 10. *range*: [*None* | array_like shape(2,2)] The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the bins parameters): [[xmin, xmax], [ymin, ymax]]. All values outside of this range will be considered outliers and not tallied in the histogram. *normed*:[True|False] Normalize histogram. The default value is False *weights*: [*None* | array] An array of values w_i weighing each sample (x_i, y_i). *cmin* : [None| scalar] All bins that has count less than cmin will not be displayed and these count values in the return value count histogram will also be set to nan upon return *cmax* : [None| scalar] All bins that has count more than cmax will not be displayed (set to none before passing to imshow) and these count values in the return value count histogram will also be set to nan upon return Remaining keyword arguments are passed directly to :meth:`pcolorfast`. Rendering the histogram with a logarithmic color scale is accomplished by passing a :class:`colors.LogNorm` instance to the *norm* keyword argument. **Example:** .. plot:: mpl_examples/pylab_examples/hist2d_demo.py """ # xrange becomes range after 2to3 bin_range = range range = __builtins__["range"] h,xedges,yedges = np.histogram2d(x, y, bins=bins, range=bin_range, normed=normed, weights=weights) if cmin is not None: h[h<cmin]=None if cmax is not None: h[h>cmax]=None pc = self.pcolorfast(xedges,yedges,h.T,**kwargs) self.set_xlim(xedges[0],xedges[-1]) self.set_ylim(yedges[0],yedges[-1]) return h,xedges,yedges,pc @docstring.dedent_interpd def psd(self, x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs): """ Plot the power spectral density. Call signature:: psd(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs) The power spectral density by Welch's average periodogram method. The vector *x* is divided into *NFFT* length segments. Each segment is detrended by function *detrend* and windowed by function *window*. *noverlap* gives the length of the overlap between segments. The :math:`|\mathrm{fft}(i)|^2` of each segment :math:`i` are averaged to compute *Pxx*, with a scaling to correct for power loss due to windowing. *Fs* is the sampling frequency. %(PSD)s *noverlap*: integer The number of points of overlap between blocks. The default value is 0 (no overlap). *Fc*: integer The center frequency of *x* (defaults to 0), which offsets the x extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. Returns the tuple (*Pxx*, *freqs*). For plotting, the power is plotted as :math:`10\log_{10}(P_{xx})` for decibels, though *Pxx* itself is returned. References: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) kwargs control the :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s **Example:** .. plot:: mpl_examples/pylab_examples/psd_demo.py """ if not self._hold: self.cla() pxx, freqs = mlab.psd(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) pxx.shape = len(freqs), freqs += Fc if scale_by_freq in (None, True): psd_units = 'dB/Hz' else: psd_units = 'dB' self.plot(freqs, 10*np.log10(pxx), **kwargs) self.set_xlabel('Frequency') self.set_ylabel('Power Spectral Density (%s)' % psd_units) self.grid(True) vmin, vmax = self.viewLim.intervaly intv = vmax-vmin logi = int(np.log10(intv)) if logi==0: logi=.1 step = 10*logi #print vmin, vmax, step, intv, math.floor(vmin), math.ceil(vmax)+1 ticks = np.arange(math.floor(vmin), math.ceil(vmax)+1, step) self.set_yticks(ticks) return pxx, freqs @docstring.dedent_interpd def csd(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs): """ Plot cross-spectral density. Call signature:: csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs) The cross spectral density :math:`P_{xy}` by Welch's average periodogram method. The vectors *x* and *y* are divided into *NFFT* length segments. Each segment is detrended by function *detrend* and windowed by function *window*. The product of the direct FFTs of *x* and *y* are averaged over each segment to compute :math:`P_{xy}`, with a scaling to correct for power loss due to windowing. Returns the tuple (*Pxy*, *freqs*). *P* is the cross spectrum (complex valued), and :math:`10\log_{10}|P_{xy}|` is plotted. %(PSD)s *noverlap*: integer The number of points of overlap between blocks. The default value is 0 (no overlap). *Fc*: integer The center frequency of *x* (defaults to 0), which offsets the x extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. References: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) kwargs control the Line2D properties: %(Line2D)s **Example:** .. plot:: mpl_examples/pylab_examples/csd_demo.py .. seealso: :meth:`psd` For a description of the optional parameters. """ if not self._hold: self.cla() pxy, freqs = mlab.csd(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) pxy.shape = len(freqs), # pxy is complex freqs += Fc self.plot(freqs, 10*np.log10(np.absolute(pxy)), **kwargs) self.set_xlabel('Frequency') self.set_ylabel('Cross Spectrum Magnitude (dB)') self.grid(True) vmin, vmax = self.viewLim.intervaly intv = vmax-vmin step = 10*int(np.log10(intv)) ticks = np.arange(math.floor(vmin), math.ceil(vmax)+1, step) self.set_yticks(ticks) return pxy, freqs @docstring.dedent_interpd def cohere(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs): """ Plot the coherence between *x* and *y*. Call signature:: cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend = mlab.detrend_none, window = mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs) Plot the coherence between *x* and *y*. Coherence is the normalized cross spectral density: .. math:: C_{xy} = \\frac{|P_{xy}|^2}{P_{xx}P_{yy}} %(PSD)s *noverlap*: integer The number of points of overlap between blocks. The default value is 0 (no overlap). *Fc*: integer The center frequency of *x* (defaults to 0), which offsets the x extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. The return value is a tuple (*Cxy*, *f*), where *f* are the frequencies of the coherence vector. kwargs are applied to the lines. References: * Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) kwargs control the :class:`~matplotlib.lines.Line2D` properties of the coherence plot: %(Line2D)s **Example:** .. plot:: mpl_examples/pylab_examples/cohere_demo.py """ if not self._hold: self.cla() cxy, freqs = mlab.cohere(x, y, NFFT, Fs, detrend, window, noverlap, scale_by_freq) freqs += Fc self.plot(freqs, cxy, **kwargs) self.set_xlabel('Frequency') self.set_ylabel('Coherence') self.grid(True) return cxy, freqs @docstring.dedent_interpd def specgram(self, x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=128, cmap=None, xextent=None, pad_to=None, sides='default', scale_by_freq=None, **kwargs): """ Plot a spectrogram. Call signature:: specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=128, cmap=None, xextent=None, pad_to=None, sides='default', scale_by_freq=None, **kwargs) Compute a spectrogram of data in *x*. Data are split into *NFFT* length segments and the PSD of each section is computed. The windowing function *window* is applied to each segment, and the amount of overlap of each segment is specified with *noverlap*. %(PSD)s *noverlap*: integer The number of points of overlap between blocks. The default value is 128. *Fc*: integer The center frequency of *x* (defaults to 0), which offsets the y extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. *cmap*: A :class:`matplotlib.colors.Colormap` instance; if *None*, use default determined by rc *xextent*: The image extent along the x-axis. xextent = (xmin,xmax) The default is (0,max(bins)), where bins is the return value from :func:`~matplotlib.mlab.specgram` *kwargs*: Additional kwargs are passed on to imshow which makes the specgram image Return value is (*Pxx*, *freqs*, *bins*, *im*): - *bins* are the time points the spectrogram is calculated over - *freqs* is an array of frequencies - *Pxx* is an array of shape `(len(times), len(freqs))` of power - *im* is a :class:`~matplotlib.image.AxesImage` instance Note: If *x* is real (i.e. non-complex), only the positive spectrum is shown. If *x* is complex, both positive and negative parts of the spectrum are shown. This can be overridden using the *sides* keyword argument. **Example:** .. plot:: mpl_examples/pylab_examples/specgram_demo.py """ if not self._hold: self.cla() Pxx, freqs, bins = mlab.specgram(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Z = 10. * np.log10(Pxx) Z = np.flipud(Z) if xextent is None: xextent = 0, np.amax(bins) xmin, xmax = xextent freqs += Fc extent = xmin, xmax, freqs[0], freqs[-1] im = self.imshow(Z, cmap, extent=extent, **kwargs) self.axis('auto') return Pxx, freqs, bins, im def spy(self, Z, precision=0, marker=None, markersize=None, aspect='equal', **kwargs): """ Plot the sparsity pattern on a 2-D array. Call signature:: spy(Z, precision=0, marker=None, markersize=None, aspect='equal', **kwargs) ``spy(Z)`` plots the sparsity pattern of the 2-D array *Z*. If *precision* is 0, any non-zero value will be plotted; else, values of :math:`|Z| > precision` will be plotted. For :class:`scipy.sparse.spmatrix` instances, there is a special case: if *precision* is 'present', any value present in the array will be plotted, even if it is identically zero. The array will be plotted as it would be printed, with the first index (row) increasing down and the second index (column) increasing to the right. By default aspect is 'equal', so that each array element occupies a square space; set the aspect kwarg to 'auto' to allow the plot to fill the plot box, or to any scalar number to specify the aspect ratio of an array element directly. Two plotting styles are available: image or marker. Both are available for full arrays, but only the marker style works for :class:`scipy.sparse.spmatrix` instances. If *marker* and *markersize* are *None*, an image will be returned and any remaining kwargs are passed to :func:`~matplotlib.pyplot.imshow`; else, a :class:`~matplotlib.lines.Line2D` object will be returned with the value of marker determining the marker type, and any remaining kwargs passed to the :meth:`~matplotlib.axes.Axes.plot` method. If *marker* and *markersize* are *None*, useful kwargs include: * *cmap* * *alpha* .. seealso:: :func:`~matplotlib.pyplot.imshow` For image options. For controlling colors, e.g. cyan background and red marks, use:: cmap = mcolors.ListedColormap(['c','r']) If *marker* or *markersize* is not *None*, useful kwargs include: * *marker* * *markersize* * *color* Useful values for *marker* include: * 's' square (default) * 'o' circle * '.' point * ',' pixel .. seealso:: :func:`~matplotlib.pyplot.plot` For plotting options """ if precision is None: precision = 0 warnings.warn("Use precision=0 instead of None", mplDeprecation) # 2008/10/03 if marker is None and markersize is None and hasattr(Z, 'tocoo'): marker = 's' if marker is None and markersize is None: Z = np.asarray(Z) mask = np.absolute(Z)>precision if 'cmap' not in kwargs: kwargs['cmap'] = mcolors.ListedColormap(['w', 'k'], name='binary') nr, nc = Z.shape extent = [-0.5, nc-0.5, nr-0.5, -0.5] ret = self.imshow(mask, interpolation='nearest', aspect=aspect, extent=extent, origin='upper', **kwargs) else: if hasattr(Z, 'tocoo'): c = Z.tocoo() if precision == 'present': y = c.row x = c.col else: nonzero = np.absolute(c.data) > precision y = c.row[nonzero] x = c.col[nonzero] else: Z = np.asarray(Z) nonzero = np.absolute(Z)>precision y, x = np.nonzero(nonzero) if marker is None: marker = 's' if markersize is None: markersize = 10 marks = mlines.Line2D(x, y, linestyle='None', marker=marker, markersize=markersize, **kwargs) self.add_line(marks) nr, nc = Z.shape self.set_xlim(xmin=-0.5, xmax=nc-0.5) self.set_ylim(ymin=nr-0.5, ymax=-0.5) self.set_aspect(aspect) ret = marks self.title.set_y(1.05) self.xaxis.tick_top() self.xaxis.set_ticks_position('both') self.xaxis.set_major_locator(mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True)) self.yaxis.set_major_locator(mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True)) return ret def matshow(self, Z, **kwargs): """ Plot a matrix or array as an image. The matrix will be shown the way it would be printed, with the first row at the top. Row and column numbering is zero-based. Argument: *Z* anything that can be interpreted as a 2-D array kwargs all are passed to :meth:`~matplotlib.axes.Axes.imshow`. :meth:`matshow` sets defaults for *origin*, *interpolation*, and *aspect*; if you want row zero to be at the bottom instead of the top, you can set the *origin* kwarg to "lower". Returns: an :class:`matplotlib.image.AxesImage` instance. """ Z = np.asanyarray(Z) nr, nc = Z.shape kw = {'origin': 'upper', 'interpolation': 'nearest', 'aspect': 'equal'} # (already the imshow default) kw.update(kwargs) im = self.imshow(Z, **kw) self.title.set_y(1.05) self.xaxis.tick_top() self.xaxis.set_ticks_position('both') self.xaxis.set_major_locator(mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True)) self.yaxis.set_major_locator(mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True)) return im def get_default_bbox_extra_artists(self): bbox_extra_artists = [t for t in self.texts if t.get_visible()] if self.legend_: bbox_extra_artists.append(self.legend_) return bbox_extra_artists def get_tightbbox(self, renderer, call_axes_locator=True): """ Return the tight bounding box of the axes. The dimension of the Bbox in canvas coordinate. If *call_axes_locator* is *False*, it does not call the _axes_locator attribute, which is necessary to get the correct bounding box. ``call_axes_locator==False`` can be used if the caller is only intereted in the relative size of the tightbbox compared to the axes bbox. """ artists = [] bb = [] if not self.get_visible(): return None locator = self.get_axes_locator() if locator and call_axes_locator: pos = locator(self, renderer) self.apply_aspect(pos) else: self.apply_aspect() bb.append(self.get_window_extent(renderer)) if self.title.get_visible(): bb.append(self.title.get_window_extent(renderer)) bb_xaxis = self.xaxis.get_tightbbox(renderer) if bb_xaxis: bb.append(bb_xaxis) bb_yaxis = self.yaxis.get_tightbbox(renderer) if bb_yaxis: bb.append(bb_yaxis) _bbox = mtransforms.Bbox.union([b for b in bb if b.width!=0 or b.height!=0]) return _bbox def minorticks_on(self): 'Add autoscaling minor ticks to the axes.' for ax in (self.xaxis, self.yaxis): if ax.get_scale() == 'log': s = ax._scale ax.set_minor_locator(mticker.LogLocator(s.base, s.subs)) else: ax.set_minor_locator(mticker.AutoMinorLocator()) def minorticks_off(self): """Remove minor ticks from the axes.""" self.xaxis.set_minor_locator(mticker.NullLocator()) self.yaxis.set_minor_locator(mticker.NullLocator()) def tricontour(self, *args, **kwargs): return mtri.tricontour(self, *args, **kwargs) tricontour.__doc__ = mtri.TriContourSet.tricontour_doc def tricontourf(self, *args, **kwargs): return mtri.tricontourf(self, *args, **kwargs) tricontourf.__doc__ = mtri.TriContourSet.tricontour_doc def tripcolor(self, *args, **kwargs): return mtri.tripcolor(self, *args, **kwargs) tripcolor.__doc__ = mtri.tripcolor.__doc__ def triplot(self, *args, **kwargs): mtri.triplot(self, *args, **kwargs) triplot.__doc__ = mtri.triplot.__doc__ from matplotlib.gridspec import GridSpec, SubplotSpec class SubplotBase: """ Base class for subplots, which are :class:`Axes` instances with additional methods to facilitate generating and manipulating a set of :class:`Axes` within a figure. """ def __init__(self, fig, *args, **kwargs): """ *fig* is a :class:`matplotlib.figure.Figure` instance. *args* is the tuple (*numRows*, *numCols*, *plotNum*), where the array of subplots in the figure has dimensions *numRows*, *numCols*, and where *plotNum* is the number of the subplot being created. *plotNum* starts at 1 in the upper left corner and increases to the right. If *numRows* <= *numCols* <= *plotNum* < 10, *args* can be the decimal integer *numRows* * 100 + *numCols* * 10 + *plotNum*. """ self.figure = fig if len(args) == 1: if isinstance(args[0], SubplotSpec): self._subplotspec = args[0] else: try: s = str(int(args[0])) rows, cols, num = map(int, s) except ValueError: raise ValueError( 'Single argument to subplot must be a 3-digit integer') self._subplotspec = GridSpec(rows, cols)[num-1] # num - 1 for converting from MATLAB to python indexing elif len(args)==3: rows, cols, num = args rows = int(rows) cols = int(cols) if isinstance(num, tuple) and len(num) == 2: num = [int(n) for n in num] self._subplotspec = GridSpec(rows, cols)[num[0]-1:num[1]] else: self._subplotspec = GridSpec(rows, cols)[int(num)-1] # num - 1 for converting from MATLAB to python indexing else: raise ValueError('Illegal argument(s) to subplot: %s' % (args,)) self.update_params() # _axes_class is set in the subplot_class_factory self._axes_class.__init__(self, fig, self.figbox, **kwargs) def __reduce__(self): # get the first axes class which does not inherit from a subplotbase not_subplotbase = lambda c: issubclass(c, Axes) and \ not issubclass(c, SubplotBase) axes_class = [c for c in self.__class__.mro() if not_subplotbase(c)][0] r = [_PicklableSubplotClassConstructor(), (axes_class,), self.__getstate__()] return tuple(r) def get_geometry(self): """get the subplot geometry, eg 2,2,3""" rows, cols, num1, num2 = self.get_subplotspec().get_geometry() return rows, cols, num1+1 # for compatibility # COVERAGE NOTE: Never used internally or from examples def change_geometry(self, numrows, numcols, num): """change subplot geometry, eg. from 1,1,1 to 2,2,3""" self._subplotspec = GridSpec(numrows, numcols)[num-1] self.update_params() self.set_position(self.figbox) def get_subplotspec(self): """get the SubplotSpec instance associated with the subplot""" return self._subplotspec def set_subplotspec(self, subplotspec): """set the SubplotSpec instance associated with the subplot""" self._subplotspec = subplotspec def update_params(self): """update the subplot position from fig.subplotpars""" self.figbox, self.rowNum, self.colNum, self.numRows, self.numCols = \ self.get_subplotspec().get_position(self.figure, return_all=True) def is_first_col(self): return self.colNum==0 def is_first_row(self): return self.rowNum==0 def is_last_row(self): return self.rowNum==self.numRows-1 def is_last_col(self): return self.colNum==self.numCols-1 # COVERAGE NOTE: Never used internally or from examples def label_outer(self): """ set the visible property on ticklabels so xticklabels are visible only if the subplot is in the last row and yticklabels are visible only if the subplot is in the first column """ lastrow = self.is_last_row() firstcol = self.is_first_col() for label in self.get_xticklabels(): label.set_visible(lastrow) for label in self.get_yticklabels(): label.set_visible(firstcol) def _make_twin_axes(self, *kl, **kwargs): """ make a twinx axes of self. This is used for twinx and twiny. """ ax2 = self.figure.add_subplot(self.get_subplotspec(), *kl, **kwargs) return ax2 _subplot_classes = {} def subplot_class_factory(axes_class=None): # This makes a new class that inherits from SubplotBase and the # given axes_class (which is assumed to be a subclass of Axes). # This is perhaps a little bit roundabout to make a new class on # the fly like this, but it means that a new Subplot class does # not have to be created for every type of Axes. if axes_class is None: axes_class = Axes new_class = _subplot_classes.get(axes_class) if new_class is None: new_class = type("%sSubplot" % (axes_class.__name__), (SubplotBase, axes_class), {'_axes_class': axes_class}) _subplot_classes[axes_class] = new_class return new_class # This is provided for backward compatibility Subplot = subplot_class_factory() class _PicklableSubplotClassConstructor(object): """ This stub class exists to return the appropriate subplot class when __call__-ed with an axes class. This is purely to allow Pickling of Axes and Subplots. """ def __call__(self, axes_class): # create a dummy object instance subplot_instance = _PicklableSubplotClassConstructor() subplot_class = subplot_class_factory(axes_class) # update the class to the desired subplot class subplot_instance.__class__ = subplot_class return subplot_instance docstring.interpd.update(Axes=martist.kwdoc(Axes)) docstring.interpd.update(Subplot=martist.kwdoc(Axes)) """ # this is some discarded code I was using to find the minimum positive # data point for some log scaling fixes. I realized there was a # cleaner way to do it, but am keeping this around as an example for # how to get the data out of the axes. Might want to make something # like this a method one day, or better yet make get_verts an Artist # method minx, maxx = self.get_xlim() if minx<=0 or maxx<=0: # find the min pos value in the data xs = [] for line in self.lines: xs.extend(line.get_xdata(orig=False)) for patch in self.patches: xs.extend([x for x,y in patch.get_verts()]) for collection in self.collections: xs.extend([x for x,y in collection.get_verts()]) posx = [x for x in xs if x>0] if len(posx): minx = min(posx) maxx = max(posx) # warning, probably breaks inverted axis self.set_xlim((0.1*minx, maxx)) """
mit
unnikrishnankgs/va
venv/lib/python3.5/site-packages/matplotlib/backends/backend_wxagg.py
10
5840
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import matplotlib from matplotlib.figure import Figure from .backend_agg import FigureCanvasAgg from . import wx_compat as wxc from . import backend_wx from .backend_wx import (FigureManagerWx, FigureCanvasWx, FigureFrameWx, DEBUG_MSG, NavigationToolbar2Wx, Toolbar) import wx show = backend_wx.Show() class FigureFrameWxAgg(FigureFrameWx): def get_canvas(self, fig): return FigureCanvasWxAgg(self, -1, fig) def _get_toolbar(self, statbar): if matplotlib.rcParams['toolbar'] == 'toolbar2': toolbar = NavigationToolbar2WxAgg(self.canvas) toolbar.set_status_bar(statbar) else: toolbar = None return toolbar class FigureCanvasWxAgg(FigureCanvasAgg, FigureCanvasWx): """ The FigureCanvas contains the figure and does event handling. In the wxPython backend, it is derived from wxPanel, and (usually) lives inside a frame instantiated by a FigureManagerWx. The parent window probably implements a wxSizer to control the displayed control size - but we give a hint as to our preferred minimum size. """ def draw(self, drawDC=None): """ Render the figure using agg. """ DEBUG_MSG("draw()", 1, self) FigureCanvasAgg.draw(self) self.bitmap = _convert_agg_to_wx_bitmap(self.get_renderer(), None) self._isDrawn = True self.gui_repaint(drawDC=drawDC, origin='WXAgg') def blit(self, bbox=None): """ Transfer the region of the agg buffer defined by bbox to the display. If bbox is None, the entire buffer is transferred. """ if bbox is None: self.bitmap = _convert_agg_to_wx_bitmap(self.get_renderer(), None) self.gui_repaint() return l, b, w, h = bbox.bounds r = l + w t = b + h x = int(l) y = int(self.bitmap.GetHeight() - t) srcBmp = _convert_agg_to_wx_bitmap(self.get_renderer(), None) srcDC = wx.MemoryDC() srcDC.SelectObject(srcBmp) destDC = wx.MemoryDC() destDC.SelectObject(self.bitmap) destDC.Blit(x, y, int(w), int(h), srcDC, x, y) destDC.SelectObject(wx.NullBitmap) srcDC.SelectObject(wx.NullBitmap) self.gui_repaint() filetypes = FigureCanvasAgg.filetypes def print_figure(self, filename, *args, **kwargs): # Use pure Agg renderer to draw FigureCanvasAgg.print_figure(self, filename, *args, **kwargs) # Restore the current view; this is needed because the # artist contains methods rely on particular attributes # of the rendered figure for determining things like # bounding boxes. if self._isDrawn: self.draw() class NavigationToolbar2WxAgg(NavigationToolbar2Wx): def get_canvas(self, frame, fig): return FigureCanvasWxAgg(frame, -1, fig) def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ # in order to expose the Figure constructor to the pylab # interface we need to create the figure here DEBUG_MSG("new_figure_manager()", 3, None) backend_wx._create_wx_app() FigureClass = kwargs.pop('FigureClass', Figure) fig = FigureClass(*args, **kwargs) return new_figure_manager_given_figure(num, fig) def new_figure_manager_given_figure(num, figure): """ Create a new figure manager instance for the given figure. """ frame = FigureFrameWxAgg(num, figure) figmgr = frame.get_figure_manager() if matplotlib.is_interactive(): figmgr.frame.Show() figure.canvas.draw_idle() return figmgr # # agg/wxPython image conversion functions (wxPython >= 2.8) # def _convert_agg_to_wx_image(agg, bbox): """ Convert the region of the agg buffer bounded by bbox to a wx.Image. If bbox is None, the entire buffer is converted. Note: agg must be a backend_agg.RendererAgg instance. """ if bbox is None: # agg => rgb -> image image = wxc.EmptyImage(int(agg.width), int(agg.height)) image.SetData(agg.tostring_rgb()) return image else: # agg => rgba buffer -> bitmap => clipped bitmap => image return wx.ImageFromBitmap(_WX28_clipped_agg_as_bitmap(agg, bbox)) def _convert_agg_to_wx_bitmap(agg, bbox): """ Convert the region of the agg buffer bounded by bbox to a wx.Bitmap. If bbox is None, the entire buffer is converted. Note: agg must be a backend_agg.RendererAgg instance. """ if bbox is None: # agg => rgba buffer -> bitmap return wxc.BitmapFromBuffer(int(agg.width), int(agg.height), agg.buffer_rgba()) else: # agg => rgba buffer -> bitmap => clipped bitmap return _WX28_clipped_agg_as_bitmap(agg, bbox) def _WX28_clipped_agg_as_bitmap(agg, bbox): """ Convert the region of a the agg buffer bounded by bbox to a wx.Bitmap. Note: agg must be a backend_agg.RendererAgg instance. """ l, b, width, height = bbox.bounds r = l + width t = b + height srcBmp = wxc.BitmapFromBuffer(int(agg.width), int(agg.height), agg.buffer_rgba()) srcDC = wx.MemoryDC() srcDC.SelectObject(srcBmp) destBmp = wxc.EmptyBitmap(int(width), int(height)) destDC = wx.MemoryDC() destDC.SelectObject(destBmp) x = int(l) y = int(int(agg.height) - t) destDC.Blit(0, 0, int(width), int(height), srcDC, x, y) srcDC.SelectObject(wx.NullBitmap) destDC.SelectObject(wx.NullBitmap) return destBmp FigureCanvas = FigureCanvasWxAgg FigureManager = FigureManagerWx
bsd-2-clause
hdmetor/scikit-learn
examples/cluster/plot_mean_shift.py
351
1793
""" ============================================= A demo of the mean-shift clustering algorithm ============================================= Reference: Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward feature space analysis". IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619. """ print(__doc__) import numpy as np from sklearn.cluster import MeanShift, estimate_bandwidth from sklearn.datasets.samples_generator import make_blobs ############################################################################### # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, _ = make_blobs(n_samples=10000, centers=centers, cluster_std=0.6) ############################################################################### # Compute clustering with MeanShift # The following bandwidth can be automatically detected using bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500) ms = MeanShift(bandwidth=bandwidth, bin_seeding=True) ms.fit(X) labels = ms.labels_ cluster_centers = ms.cluster_centers_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) print("number of estimated clusters : %d" % n_clusters_) ############################################################################### # Plot result import matplotlib.pyplot as plt from itertools import cycle plt.figure(1) plt.clf() colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk') for k, col in zip(range(n_clusters_), colors): my_members = labels == k cluster_center = cluster_centers[k] plt.plot(X[my_members, 0], X[my_members, 1], col + '.') plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
bioconda/bioconda-utils
test/conftest.py
1
5084
import contextlib import datetime import os import os.path as op import shutil import tempfile from copy import deepcopy from ruamel_yaml import YAML import pandas as pd import pytest import py from bioconda_utils import utils yaml = YAML(typ="rt") # pylint: disable=invalid-name # common settings TEST_RECIPES_FOLDER = 'recipes' TEST_CONFIG_YAML_FNAME = 'config.yaml' TEST_CONFIG_YAML = { 'blacklists': [], 'channels': [] } def pytest_runtest_makereport(item, call): if "successive" in item.keywords: # if we failed, mark parent with callspec id (name from test args) if call.excinfo is not None: item.parent.failedcallspec = item.callspec.id def pytest_runtest_setup(item): if "successive" in item.keywords: if getattr(item.parent, "failedcallspec", None) == item.callspec.id: pytest.xfail("preceding test failed") @pytest.fixture def mock_repodata(repodata, case): """Pepares RepoData singleton to contain mock data Expects function to be parametrized with ``case`` and ``repodata``, where ``case`` may contain a ``repodata`` key to be added to base ``repodata`` contents. ``repodata`` should be of this form:: <channel>: <package_name>: - <key>: value <key>: value E.g.:: bioconda: package_one: - version: 0.1 build_number: 0 """ if 'repodata' in case: data = deepcopy(repodata) dict_merge(data, case['repodata']) else: data = repodata dataframe = pd.DataFrame(columns=utils.RepoData.columns) for channel, packages in data.items(): for name, versions in packages.items(): for item in versions: pkg = { 'channel': channel, 'name': name, 'build': '', 'build_number': 0, 'version': 0, 'depends': [], 'subdir': '', 'platform': 'noarch', } pkg.update(item) dataframe = dataframe.append(pkg, ignore_index=True) backup = utils.RepoData()._df, utils.RepoData()._df_ts utils.RepoData()._df = dataframe utils.RepoData()._df_ts = datetime.datetime.now() yield utils.RepoData()._df, utils.RepoData()._df_ts = backup @pytest.fixture def recipes_folder(tmpdir: py.path.local): """Prepares a temp dir with '/recipes' folder as configured""" orig_cwd = tmpdir.chdir() yield tmpdir.mkdir(TEST_RECIPES_FOLDER) orig_cwd.chdir() def dict_merge(base, add): for key, value in add.items(): if isinstance(value, dict): base[key] = dict_merge(base.get(key, {}), value) elif isinstance(base, list): for num in range(len(base)): base[num][key] = dict_merge(base[num].get(key, {}), add) else: base[key] = value return base @pytest.fixture def config_file(tmpdir: py.path.local, case): """Prepares Bioconda config.yaml""" if 'add_root_files' in case: for fname, data in case['add_root_files'].items(): with tmpdir.join(fname).open('w') as fdes: fdes.write(data) data = deepcopy(TEST_CONFIG_YAML) if 'config' in case: dict_merge(data, case['config']) config_fname = tmpdir.join(TEST_CONFIG_YAML_FNAME) with config_fname.open('w') as fdes: yaml.dump(data, fdes) yield config_fname @pytest.fixture def recipe_dir(recipes_folder: py.path.local, tmpdir: py.path.local, case, recipe_data): """Prepares a recipe from recipe_data in recipes_folder""" recipe = deepcopy(recipe_data['meta.yaml']) if 'remove' in case: for remove in utils.ensure_list(case['remove']): path = remove.split('/') cont = recipe for p in path[:-1]: cont = cont[p] if isinstance(cont, list): for n in range(len(cont)): del cont[n][path[-1]] else: del cont[path[-1]] if 'add' in case: dict_merge(recipe, case['add']) recipe_dir = recipes_folder.mkdir(recipe_data['folder']) with recipe_dir.join('meta.yaml').open('w') as fdes: yaml.dump(recipe, fdes, transform=lambda l: l.replace('#{%', '{%').replace("#{{", "{{")) if 'add_files' in case: for fname, data in case['add_files'].items(): with recipe_dir.join(fname).open('w') as fdes: fdes.write(data) if 'move_files' in case: for src, dest in case['move_files'].items(): src_path = recipe_dir.join(src) if not dest: if os.path.isdir(src_path): shutil.rmtree(src_path) else: os.remove(src_path) else: dest_path = recipe_dir.join(dest) shutil.move(src_path, dest_path) yield recipe_dir
mit
marcocaccin/scikit-learn
sklearn/covariance/tests/test_covariance.py
34
11120
# Author: Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> # Virgile Fritsch <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_greater from sklearn import datasets from sklearn.covariance import empirical_covariance, EmpiricalCovariance, \ ShrunkCovariance, shrunk_covariance, \ LedoitWolf, ledoit_wolf, ledoit_wolf_shrinkage, OAS, oas X = datasets.load_diabetes().data X_1d = X[:, 0] n_samples, n_features = X.shape def test_covariance(): # Tests Covariance module on a simple dataset. # test covariance fit from data cov = EmpiricalCovariance() cov.fit(X) emp_cov = empirical_covariance(X) assert_array_almost_equal(emp_cov, cov.covariance_, 4) assert_almost_equal(cov.error_norm(emp_cov), 0) assert_almost_equal( cov.error_norm(emp_cov, norm='spectral'), 0) assert_almost_equal( cov.error_norm(emp_cov, norm='frobenius'), 0) assert_almost_equal( cov.error_norm(emp_cov, scaling=False), 0) assert_almost_equal( cov.error_norm(emp_cov, squared=False), 0) assert_raises(NotImplementedError, cov.error_norm, emp_cov, norm='foo') # Mahalanobis distances computation test mahal_dist = cov.mahalanobis(X) assert_greater(np.amin(mahal_dist), 0) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) cov = EmpiricalCovariance() cov.fit(X_1d) assert_array_almost_equal(empirical_covariance(X_1d), cov.covariance_, 4) assert_almost_equal(cov.error_norm(empirical_covariance(X_1d)), 0) assert_almost_equal( cov.error_norm(empirical_covariance(X_1d), norm='spectral'), 0) # test with one sample # Create X with 1 sample and 5 features X_1sample = np.arange(5).reshape(1, 5) cov = EmpiricalCovariance() assert_warns(UserWarning, cov.fit, X_1sample) assert_array_almost_equal(cov.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test integer type X_integer = np.asarray([[0, 1], [1, 0]]) result = np.asarray([[0.25, -0.25], [-0.25, 0.25]]) assert_array_almost_equal(empirical_covariance(X_integer), result) # test centered case cov = EmpiricalCovariance(assume_centered=True) cov.fit(X) assert_array_equal(cov.location_, np.zeros(X.shape[1])) def test_shrunk_covariance(): # Tests ShrunkCovariance module on a simple dataset. # compare shrunk covariance obtained from data and from MLE estimate cov = ShrunkCovariance(shrinkage=0.5) cov.fit(X) assert_array_almost_equal( shrunk_covariance(empirical_covariance(X), shrinkage=0.5), cov.covariance_, 4) # same test with shrinkage not provided cov = ShrunkCovariance() cov.fit(X) assert_array_almost_equal( shrunk_covariance(empirical_covariance(X)), cov.covariance_, 4) # same test with shrinkage = 0 (<==> empirical_covariance) cov = ShrunkCovariance(shrinkage=0.) cov.fit(X) assert_array_almost_equal(empirical_covariance(X), cov.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) cov = ShrunkCovariance(shrinkage=0.3) cov.fit(X_1d) assert_array_almost_equal(empirical_covariance(X_1d), cov.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) cov = ShrunkCovariance(shrinkage=0.5, store_precision=False) cov.fit(X) assert(cov.precision_ is None) def test_ledoit_wolf(): # Tests LedoitWolf module on a simple dataset. # test shrinkage coeff on a simple data set X_centered = X - X.mean(axis=0) lw = LedoitWolf(assume_centered=True) lw.fit(X_centered) shrinkage_ = lw.shrinkage_ score_ = lw.score(X_centered) assert_almost_equal(ledoit_wolf_shrinkage(X_centered, assume_centered=True), shrinkage_) assert_almost_equal(ledoit_wolf_shrinkage(X_centered, assume_centered=True, block_size=6), shrinkage_) # compare shrunk covariance obtained from data and from MLE estimate lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_centered, assume_centered=True) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) # compare estimates given by LW and ShrunkCovariance scov = ShrunkCovariance(shrinkage=lw.shrinkage_, assume_centered=True) scov.fit(X_centered) assert_array_almost_equal(scov.covariance_, lw.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) lw = LedoitWolf(assume_centered=True) lw.fit(X_1d) lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_1d, assume_centered=True) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) assert_array_almost_equal((X_1d ** 2).sum() / n_samples, lw.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) lw = LedoitWolf(store_precision=False, assume_centered=True) lw.fit(X_centered) assert_almost_equal(lw.score(X_centered), score_, 4) assert(lw.precision_ is None) # Same tests without assuming centered data # test shrinkage coeff on a simple data set lw = LedoitWolf() lw.fit(X) assert_almost_equal(lw.shrinkage_, shrinkage_, 4) assert_almost_equal(lw.shrinkage_, ledoit_wolf_shrinkage(X)) assert_almost_equal(lw.shrinkage_, ledoit_wolf(X)[1]) assert_almost_equal(lw.score(X), score_, 4) # compare shrunk covariance obtained from data and from MLE estimate lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) # compare estimates given by LW and ShrunkCovariance scov = ShrunkCovariance(shrinkage=lw.shrinkage_) scov.fit(X) assert_array_almost_equal(scov.covariance_, lw.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) lw = LedoitWolf() lw.fit(X_1d) lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_1d) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) assert_array_almost_equal(empirical_covariance(X_1d), lw.covariance_, 4) # test with one sample # warning should be raised when using only 1 sample X_1sample = np.arange(5).reshape(1, 5) lw = LedoitWolf() assert_warns(UserWarning, lw.fit, X_1sample) assert_array_almost_equal(lw.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test shrinkage coeff on a simple data set (without saving precision) lw = LedoitWolf(store_precision=False) lw.fit(X) assert_almost_equal(lw.score(X), score_, 4) assert(lw.precision_ is None) def test_ledoit_wolf_large(): # test that ledoit_wolf doesn't error on data that is wider than block_size rng = np.random.RandomState(0) # use a number of features that is larger than the block-size X = rng.normal(size=(10, 20)) lw = LedoitWolf(block_size=10).fit(X) # check that covariance is about diagonal (random normal noise) assert_almost_equal(lw.covariance_, np.eye(20), 0) cov = lw.covariance_ # check that the result is consistent with not splitting data into blocks. lw = LedoitWolf(block_size=25).fit(X) assert_almost_equal(lw.covariance_, cov) def test_oas(): # Tests OAS module on a simple dataset. # test shrinkage coeff on a simple data set X_centered = X - X.mean(axis=0) oa = OAS(assume_centered=True) oa.fit(X_centered) shrinkage_ = oa.shrinkage_ score_ = oa.score(X_centered) # compare shrunk covariance obtained from data and from MLE estimate oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_centered, assume_centered=True) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) # compare estimates given by OAS and ShrunkCovariance scov = ShrunkCovariance(shrinkage=oa.shrinkage_, assume_centered=True) scov.fit(X_centered) assert_array_almost_equal(scov.covariance_, oa.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0:1] oa = OAS(assume_centered=True) oa.fit(X_1d) oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d, assume_centered=True) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) assert_array_almost_equal((X_1d ** 2).sum() / n_samples, oa.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) oa = OAS(store_precision=False, assume_centered=True) oa.fit(X_centered) assert_almost_equal(oa.score(X_centered), score_, 4) assert(oa.precision_ is None) # Same tests without assuming centered data-------------------------------- # test shrinkage coeff on a simple data set oa = OAS() oa.fit(X) assert_almost_equal(oa.shrinkage_, shrinkage_, 4) assert_almost_equal(oa.score(X), score_, 4) # compare shrunk covariance obtained from data and from MLE estimate oa_cov_from_mle, oa_shinkrage_from_mle = oas(X) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) # compare estimates given by OAS and ShrunkCovariance scov = ShrunkCovariance(shrinkage=oa.shrinkage_) scov.fit(X) assert_array_almost_equal(scov.covariance_, oa.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) oa = OAS() oa.fit(X_1d) oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) assert_array_almost_equal(empirical_covariance(X_1d), oa.covariance_, 4) # test with one sample # warning should be raised when using only 1 sample X_1sample = np.arange(5).reshape(1, 5) oa = OAS() assert_warns(UserWarning, oa.fit, X_1sample) assert_array_almost_equal(oa.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test shrinkage coeff on a simple data set (without saving precision) oa = OAS(store_precision=False) oa.fit(X) assert_almost_equal(oa.score(X), score_, 4) assert(oa.precision_ is None)
bsd-3-clause
johannfaouzi/pyts
pyts/metrics/lower_bounds.py
1
12840
"""Code for Lower Bounds of Dynamic Time Warping.""" # Author: Johann Faouzi <[email protected]> # License: BSD-3-Clause import numpy as np from math import sqrt from numba import njit, prange from sklearn.utils import check_array def _check_consistent_lengths(X, Y): n_timestamps_X, n_timestamps_Y = X.shape[-1], Y.shape[-1] if not n_timestamps_X == n_timestamps_Y: raise ValueError( "Found input variables with inconsistent numbers of " "timestamps: [{0}, {1}]".format(n_timestamps_X, n_timestamps_Y) ) @njit() def _lower_bound_yi_x_y(x, x_min, x_max, y, y_min, y_max): if x_max >= y_max: if x_min < y_min: sum1 = np.sum(np.square(x[x > y_max] - y_max)) sum2 = np.sum(np.square(x[x < y_min] - y_min)) return sqrt(sum1 + sum2) elif x_min > y_max: return sqrt(max(np.sum(np.square(x - y_max)), np.sum(np.square(y - x_min)))) else: sum1 = np.sum(np.square(x[x > y_max] - y_max)) sum2 = np.sum(np.square(y[y < x_min] - x_min)) return sqrt(sum1 + sum2) else: if y_min < x_min: sum1 = np.sum(np.square(y[y > x_max] - x_max)) sum2 = np.sum(np.square(y[y < x_min] - x_min)) return sqrt(sum1 + sum2) elif y_min > x_max: return sqrt(max(np.sum(np.square(y - x_max)), np.sum(np.square(x - y_min)))) else: sum1 = np.sum(np.square(y[y > x_max] - x_max)) sum2 = np.sum(np.square(x[x < y_min] - y_min)) return sqrt(sum1 + sum2) @njit() def _lower_bound_yi_X_Y(X, X_min, X_max, Y, Y_min, Y_max): n_samples_X, _ = X.shape n_samples_Y, _ = Y.shape X_yi = np.empty((n_samples_X, n_samples_Y)) for i in prange(n_samples_X): for j in prange(n_samples_Y): X_yi[i, j] = _lower_bound_yi_x_y( X[i], X_min[i], X_max[i], Y[j], Y_min[j], Y_max[j] ) return X_yi def lower_bound_yi(X_train, X_test): """Compute the "LB_Yi" lower bounds between two datasets. Parameters ---------- X_train : array-like, shape = (n_samples_train, n_timestamps) Training set. X_test: : array-like, shape = (n_samples_test, n_timestamps) Test set. Returns ------- lower_bounds : array, shape = (n_samples_test, n_samples_train) "LB_Yi" lower bounds. References ---------- .. [1] B. K. Yi et al, "Efficient Retrieval of Similar Time Sequences Under Time Warping". International Conference on Data Engineering, 201-208 (1998). Examples -------- >>> X_train = [[5, 4, 3, 2, 1], [1, 8, 4, 3, 2], [6, 3, 5, 4, 7]] >>> X_test = [[2, 1, 8, 4, 5]] >>> lower_bound_yi(X_train, X_test) array([[3. , 0. , 2.44...]]) """ X_train = check_array(X_train) X_test = check_array(X_test) _check_consistent_lengths(X_train, X_test) X_train_min = np.min(X_train, axis=1) X_train_max = np.max(X_train, axis=1) X_test_min = np.min(X_test, axis=1) X_test_max = np.max(X_test, axis=1) lb_yi = _lower_bound_yi_X_Y(X_test, X_test_min, X_test_max, X_train, X_train_min, X_train_max) return lb_yi def lower_bound_kim(X_train, X_test): """Compute the "LB_Kim" lower bounds between two datasets. Parameters ---------- X_train : array-like, shape = (n_samples_train, n_timestamps) Training set. X_test: : array-like, shape = (n_samples_test, n_timestamps) Test set. Returns ------- lower_bounds : array, shape = (n_samples_test, n_samples_train) "LB_Kim" lower bounds. References ---------- .. [1] S. W. Kim et al, "An Index-Based Approach for Similarity Search Supporting Time Warping in Large Sequence Databases". International Conference on Data Engineering, 607-614 (2001). Examples -------- >>> X_train = [[2, 1, 8, 4, 5], [1, 2, 3, 4, 5]] >>> X_test = [[5, 4, 3, 2, 1], [1, 8, 4, 3, 2], [6, 3, 5, 4, 7]] >>> lower_bound_kim(X_train, X_test) array([[4, 4], [3, 3], [4, 5]]) """ X_train = check_array(X_train) X_test = check_array(X_test) _check_consistent_lengths(X_train, X_test) first = np.abs(X_test[:, 0, None] - X_train[None, :, 0]) last = np.abs(X_test[:, -1, None] - X_train[None, :, -1]) max_ = np.abs(np.max(X_test, axis=1)[:, None] - np.max(X_train, axis=1)[None, :]) min_ = np.abs(np.min(X_test, axis=1)[:, None] - np.min(X_train, axis=1)[None, :]) lb_kim = np.max(np.asarray([first, last, max_, min_]), axis=0) return lb_kim @njit() def _warping_envelope_2d(X, n_samples, n_timestamps, region): lower = np.empty((n_samples, n_timestamps)) upper = np.empty((n_samples, n_timestamps)) for i in prange(n_samples): for j in prange(n_timestamps): sub_series = X[i, region[0, j]:region[1, j]] lower[i, j] = np.min(sub_series) upper[i, j] = np.max(sub_series) return lower, upper @njit() def _warping_envelope_3d(X, n_samples_X, n_samples_Y, n_timestamps, region): lower = np.empty((n_samples_X, n_samples_Y, n_timestamps)) upper = np.empty((n_samples_X, n_samples_Y, n_timestamps)) for i in prange(n_samples_X): for j in prange(n_samples_Y): for k in prange(n_timestamps): sub_series = X[i, j, region[0, k]:region[1, k]] lower[i, j, k] = np.min(sub_series) upper[i, j, k] = np.max(sub_series) return lower, upper def _warping_envelope(X, region): """Compute the warping envelope. Parameters ---------- X : array Input data. It must be two- or three-dimensional. region : array, shape = (2, n_timestamps) Constraint region. The first row consists of the starting indices (included) and the second row consists of the ending indices (excluded) of the valid rows for each column. Returns ------- lower : array The lower envelope. upper : array The upper envelope. """ X = check_array(X, ensure_2d=False, allow_nd=True) region = check_array(region, ensure_min_samples=2) n_dims = X.ndim if n_dims not in (2, 3): raise ValueError("X must be a two- or three-dimensional.") if n_dims == 2: n_samples, n_timestamps = X.shape lower, upper = _warping_envelope_2d( X, n_samples, n_timestamps, region ) else: n_samples_X, n_samples_Y, n_timestamps = X.shape lower, upper = _warping_envelope_3d( X, n_samples_X, n_samples_Y, n_timestamps, region ) return lower, upper @njit() def _clip_2d(X, X_min, X_max, n_samples_X, n_samples_clip, n_timestamps): X_clipped = np.empty((n_samples_X, n_samples_clip, n_timestamps)) for i in prange(n_samples_X): X_clipped[i] = np.minimum(np.maximum(X[i], X_min), X_max) return X_clipped @njit() def _clip_3d(X, X_min, X_max, n_samples_X, n_samples_clip, n_timestamps): X_clipped = np.empty((n_samples_X, n_samples_clip, n_timestamps)) for i in prange(n_samples_X): X_clipped[i] = np.minimum(np.maximum(X[i], X_min[:, i]), X_max[:, i]) return X_clipped def _clip(X, lower, upper): """Clip an array. Parameters ---------- X : array, shape = (n_samples, n_timestamps) Array to clip. lower : array Minimum values in the clipped array. It must be two- or three-dimensional. upper : array Maximum values in the clipped array. It must be two- or three-dimensional, and have the same shape as ``lower``. Returns ------- X_clipped : array Clipped array. """ X = check_array(X) lower = check_array(lower, ensure_2d=False, allow_nd=True) upper = check_array(upper, ensure_2d=False, allow_nd=True) n_dims = lower.ndim if n_dims not in (2, 3): raise ValueError("'lower' must be two- or three-dimensional.") if not lower.shape == upper.shape: raise ValueError( "'lower' and 'upper' must have the same shape " "({0} != {1})".format(lower.shape, upper.shape) ) if n_dims == 2: n_samples_X, n_timestamps = X.shape n_samples_clip, _ = lower.shape X_clipped = _clip_2d( X, lower, upper, n_samples_X, n_samples_clip, n_timestamps ) else: n_samples_X, n_samples_Y, n_timestamps = lower.shape X_clipped = _clip_3d( X, lower, upper, n_samples_Y, n_samples_X, n_timestamps ) return X_clipped def lower_bound_keogh(X_train, X_test, region): r"""Compute the "LB_Keogh" lower bounds between two datasets. Parameters ---------- X_train : array-like, shape = (n_samples_train, n_timestamps) Training set. The warping envelopes are computed on this set. X_test: : array-like, shape = (n_samples_test, n_timestamps) Test set. region : array, shape = (2, n_timestamps) Constraint region. The first row consists of the starting indices (included) and the second row consists of the ending indices (excluded) of the valid rows for each column. Returns ------- lower_bounds : array, shape = (n_samples_test, n_samples_train) "LB_Keogh" lower bounds. Notes ----- The "LB_Keogh" lower bounds are computed as .. math:: LB_Keogh(X, Y) = \Vert X - H(X, Y) \Vert_{2} where :math:`X` is the test set (``X_test``), :math:`Y` is the training set (``X_train``), and :math:`H(X, Y)` is the projection of :math:`X` on :math:`Y`. References ---------- .. [1] E. Keogh and C. A. Ratanamahatana, "Exact indexing of dynamic time warping". Knowledge and Information Systems, 7(3), 358-386 (2005). Examples -------- >>> X_train = [[0, 1, 2, 3], [1, 2, 3, 4]] >>> X_test = [[0, 2.5, 3.5, 6]] >>> region = [[0, 0, 1, 2], [2, 3, 4, 4]] >>> lower_bound_keogh(X_train, X_test, region) array([[3.08... , 2.23...]]) """ X_train = check_array(X_train) X_test = check_array(X_test) _check_consistent_lengths(X_train, X_test) lower, upper = _warping_envelope(X_train, region) X_proj = _clip(X_test, lower, upper) squared_lb_keogh = np.sum( (X_test[:, None, :] - X_proj) ** 2, axis=-1 ) return np.sqrt(squared_lb_keogh) def lower_bound_improved(X_train, X_test, region): r"""Compute the "LB_Improved" lower bounds between two datasets. Parameters ---------- X_train : array-like, shape = (n_samples_train, n_timestamps) Training set. X_test: : array-like, shape = (n_samples_test, n_timestamps) Test set. region : array, shape = (2, n_timestamps) Constraint region. The first row consists of the starting indices (included) and the second row consists of the ending indices (excluded) of the valid rows for each column. Returns ------- lower_bounds : array, shape = (n_samples_test, n_samples_train) "LB_Improved" lower bounds. Notes ----- The "LB_Improved" lower bounds are computed as .. math:: LB_Improved(X, Y) = \sqrt\left\( \Vert X - H(X, Y) \Vert_{2}^2 + \Vert Y - H(Y, H(X, Y)) \Vert_{2}^2 \right\) where :math:`X` is the test set (``X_test``), :math:`Y` is the training set (``X_train``), and :math:`H(X, Y)` is the projection of :math:`X` on :math:`Y`. References ---------- .. [1] D. Lemire, "Faster Retrieval with a Two-Pass Dynamic-Time-Warping Lower Bound". Pattern Recognition, 42(9), 2169-2180 (2009). Examples -------- >>> X_train = [[0, 1, 2, 3], [1, 2, 3, 4]] >>> X_test = [[0, 2.5, 3.5, 3.3]] >>> region = [[0, 0, 1, 2], [2, 3, 4, 4]] >>> lower_bound_improved(X_train, X_test, region) array([[0.76..., 1.11...]]) """ X_train = check_array(X_train) X_test = check_array(X_test) _check_consistent_lengths(X_train, X_test) # LB Keogh lower bounds lower_train, upper_train = _warping_envelope(X_train, region) X_test_proj = _clip(X_test, lower_train, upper_train) squared_lb_keogh = np.sum( (X_test[:, None, :] - X_test_proj) ** 2, axis=-1 ) # LB Improved lower bounds lower_test, upper_test = _warping_envelope(X_test_proj, region) X_train_proj = _clip(X_train, lower_test, upper_test) squared_lb_improved = np.sum( (X_train[:, None, :] - X_train_proj) ** 2, axis=-1 ) return np.sqrt(squared_lb_keogh + squared_lb_improved.T)
bsd-3-clause
Nehoroshiy/multi_classifier
dataset/features.py
10
4825
import matplotlib import numpy as np from scipy.ndimage import uniform_filter def extract_features(imgs, feature_fns, verbose=False): """ Given pixel data for images and several feature functions that can operate on single images, apply all feature functions to all images, concatenating the feature vectors for each image and storing the features for all images in a single matrix. Inputs: - imgs: N x H X W X C array of pixel data for N images. - feature_fns: List of k feature functions. The ith feature function should take as input an H x W x D array and return a (one-dimensional) array of length F_i. - verbose: Boolean; if true, print progress. Returns: An array of shape (F_1 + ... + F_k, N) where each column is the concatenation of all features for a single image. """ num_images = imgs.shape[0] if num_images == 0: return np.array([]) # Use the first image to determine feature dimensions feature_dims = [] first_image_features = [] for feature_fn in feature_fns: feats = feature_fn(imgs[0].squeeze()) assert len(feats.shape) == 1, 'Feature functions must be one-dimensional' feature_dims.append(feats.size) first_image_features.append(feats) # Now that we know the dimensions of the features, we can allocate a single # big array to store all features as columns. total_feature_dim = sum(feature_dims) imgs_features = np.zeros((total_feature_dim, num_images)) imgs_features[:total_feature_dim, 0] = np.hstack(first_image_features) # Extract features for the rest of the images. for i in xrange(1, num_images): idx = 0 for feature_fn, feature_dim in zip(feature_fns, feature_dims): next_idx = idx + feature_dim imgs_features[idx:next_idx, i] = feature_fn(imgs[i].squeeze()) idx = next_idx if verbose and i % 1000 == 0: print 'Done extracting features for %d / %d images' % (i, num_images) return imgs_features def rgb2gray(rgb): """Convert RGB image to grayscale Parameters: rgb : RGB image Returns: gray : grayscale image """ return np.dot(rgb[...,:3], [0.299, 0.587, 0.144]) def hog_feature(im): """Compute Histogram of Gradient (HOG) feature for an image Modified from skimage.feature.hog http://pydoc.net/Python/scikits-image/0.4.2/skimage.feature.hog Reference: Histograms of Oriented Gradients for Human Detection Navneet Dalal and Bill Triggs, CVPR 2005 Parameters: im : an input grayscale or rgb image Returns: feat: Histogram of Gradient (HOG) feature """ # convert rgb to grayscale if needed if im.ndim == 3: image = rgb2gray(im) else: image = np.at_least_2d(im) sx, sy = image.shape # image size orientations = 9 # number of gradient bins cx, cy = (8, 8) # pixels per cell gx = np.zeros(image.shape) gy = np.zeros(image.shape) gx[:, :-1] = np.diff(image, n=1, axis=1) # compute gradient on x-direction gy[:-1, :] = np.diff(image, n=1, axis=0) # compute gradient on y-direction grad_mag = np.sqrt(gx ** 2 + gy ** 2) # gradient magnitude grad_ori = np.arctan2(gy, (gx + 1e-15)) * (180 / np.pi) + 90 # gradient orientation n_cellsx = int(np.floor(sx / cx)) # number of cells in x n_cellsy = int(np.floor(sy / cy)) # number of cells in y # compute orientations integral images orientation_histogram = np.zeros((n_cellsx, n_cellsy, orientations)) for i in range(orientations): # create new integral image for this orientation # isolate orientations in this range temp_ori = np.where(grad_ori < 180 / orientations * (i + 1), grad_ori, 0) temp_ori = np.where(grad_ori >= 180 / orientations * i, temp_ori, 0) # select magnitudes for those orientations cond2 = temp_ori > 0 temp_mag = np.where(cond2, grad_mag, 0) orientation_histogram[:,:,i] = uniform_filter(temp_mag, size=(cx, cy))[cx/2::cx, cy/2::cy].T return orientation_histogram.ravel() def color_histogram_hsv(im, nbin=10, xmin=0, xmax=255, normalized=True): """ Compute color histogram for an image using hue. Inputs: - im: H x W x C array of pixel data for an RGB image. - nbin: Number of histogram bins. (default: 10) - xmin: Minimum pixel value (default: 0) - xmax: Maximum pixel value (default: 255) - normalized: Whether to normalize the histogram (default: True) Returns: 1D vector of length nbin giving the color histogram over the hue of the input image. """ ndim = im.ndim bins = np.linspace(xmin, xmax, nbin+1) hsv = matplotlib.colors.rgb_to_hsv(im/xmax) * xmax imhist, bin_edges = np.histogram(hsv[:,:,0], bins=bins, density=normalized) imhist = imhist * np.diff(bin_edges) # return histogram return imhist pass
mit
hcmlab/nova
bin/cml/models/templates/discrete/feature/sklearn/sklearn_naivebayes.py
1
6393
import sys import importlib if not hasattr(sys, 'argv'): sys.argv = [''] import numpy as np import random from xml.dom import minidom import os import shutil import site import pprint import pickle from sklearn.naive_bayes import GaussianNB #interface def getModelType(types, opts, vars): return types.REGRESSION if opts["is_regression"] else types.CLASSIFICATION def getOptions(opts, vars): try: vars['x'] = None vars['y'] = None vars['session'] = None vars['model'] = None vars['model_id'] = "." '''Setting the default options. All options can be overwritten by adding them to the conf-dictionary in the same file as the network''' opts['network'] = '' opts['experiment_id'] = '' opts['is_regression'] = False opts['n_timesteps'] = 1 opts['perma_drop'] = False opts['n_fp'] = 1 opts['loss_function'] = 'mean_squared_error' opts['optimizier'] = 'adam' opts['metrics'] = [] opts['lr'] = 0.0001 opts['n_epoch'] = 1 opts['batch_size'] = 32 except Exception as e: print_exception(e, 'getOptions') exit() def train(data,label_score, opts, vars): try: n_input = data[0].dim if not opts['is_regression']: #adding one output for the restclass n_output = int(max(label_score)+1) else: n_output = 1 print ('load network architecture from ' + opts['network'] + '.py') print('#input: {} \n#output: {}'.format(n_input, n_output)) nts = opts['n_timesteps'] if nts < 1: raise ValueError('n_timesteps must be >= 1 but is {}'.format(nts)) elif nts == 1: sample_shape = (n_input, ) else: sample_shape = (int(n_input / nts), nts) #(number of samples, number of features, number of timesteps) sample_list_shape = ((len(data),) + sample_shape) x = np.empty(sample_list_shape) y = np.empty((len(label_score))) print('Input data array should be of shape: {} \nLabel array should be of shape {} \nStart reshaping input accordingly...\n'.format(x.shape, y.shape)) #reshaping for sample in range(len(data)): #input temp = np.reshape(data[sample], sample_shape) x[sample] = temp y[sample] = label_score[sample] sanity_check(x) #model = LinearSVC(random_state=1234, tol=1e-4) model = GaussianNB() print('train_x shape: {} | train_x[0] shape: {}'.format(x.shape, x[0].shape)) model.fit(x, y) vars['n_input'] = n_input vars['n_output'] = n_output vars['model'] = model except Exception as e: print_exception(e, 'train') exit() def forward(data, probs_or_score, opts, vars): try: model = vars['model'] #reshaping the input if model: n_input = data.dim n_output = len(probs_or_score) n_fp = int(opts['n_fp']) nts = opts['n_timesteps'] if nts < 1: raise ValueError('n_timesteps must be >= 1 but is {}'.format(nts)) elif nts == 1: sample_shape = (n_input,) else: sample_shape = (int(n_input / nts), nts) x = np.asarray(data) x = x.astype('float32') x.reshape(sample_shape) n_output = len(probs_or_score) results = np.zeros((n_fp, n_output), dtype=np.float32) #TODO: Add logic for multiple time frames for fp in range(n_fp): pred = model.predict_proba(data) # for i in range(len(pred[fp])): # results[fp][i] = pred[fp][i] # print(pred) # if opts['is_regression']: # results[0] = pred[0] # else: # results[fp] = pred[0] #for i in range(len(mean)): # probs_or_score = pred # conf = 1 #mean = np.mean(results, axis=0) #std = np.std(results, axis=0) #conf = max(0,1-np.mean(std)) conf = max(pred[0]) for i in range(pred.size): probs_or_score[i] = pred[0][i] return conf else: print('Train model first') return 1 except Exception as e: print_exception(e, 'forward') exit() def save(path, opts, vars): try: with open(path, 'wb') as f: pickle.dump(vars['model'], f) # # copy scripts src_dir = os.path.dirname(os.path.realpath(__file__)) dst_dir = os.path.dirname(path) # print('copy scripts from \'' + src_dir + '\' to \'' + dst_dir + '\'') srcFiles = os.listdir(src_dir) for fileName in srcFiles: full_file_name = os.path.join(src_dir, fileName) if os.path.isfile(full_file_name) and (fileName.endswith('sklearn_naivebayes.py')): shutil.copy(full_file_name, dst_dir) except Exception as e: print_exception(e, 'save') sys.exit() def load(path, opts, vars): try: print('\nLoading model\n') with open(path, 'rb') as f: model = pickle.load(f) vars['model'] = model except Exception as e: print_exception(e, 'load') sys.exit() # helper functions def print_exception(exception, function): exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print('Exception in {}: {} \nType: {} Fname: {} LN: {} '.format(function, exception, exc_type, fname, exc_tb.tb_lineno)) def set_opts_from_config(opts, conf): print(conf) for key, value in conf.items(): opts[key] = value print('Options haven been set to:\n') pprint.pprint(opts) print('\n') #checking the input for corrupted values def sanity_check(x): if np.any(np.isnan(x)): print('At least one input is not a number!') if np.any(np.isinf(x)): print('At least one input is inf!')
gpl-3.0
maxlikely/scikit-learn
examples/linear_model/plot_lasso_and_elasticnet.py
12
1962
""" ======================================== Lasso and Elastic Net for Sparse Signals ======================================== Estimates Lasso and Elastic-Net regression models on a manually generated sparse signal corrupted with an additive noise. Estimated coefficients are compared with the ground-truth. """ print(__doc__) import numpy as np import pylab as pl from sklearn.metrics import r2_score ############################################################################### # generate some sparse data to play with np.random.seed(42) n_samples, n_features = 50, 200 X = np.random.randn(n_samples, n_features) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[10:]] = 0 # sparsify coef y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal((n_samples,)) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples / 2], y[:n_samples / 2] X_test, y_test = X[n_samples / 2:], y[n_samples / 2:] ############################################################################### # Lasso from sklearn.linear_model import Lasso alpha = 0.1 lasso = Lasso(alpha=alpha) y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test) r2_score_lasso = r2_score(y_test, y_pred_lasso) print(lasso) print("r^2 on test data : %f" % r2_score_lasso) ############################################################################### # ElasticNet from sklearn.linear_model import ElasticNet enet = ElasticNet(alpha=alpha, l1_ratio=0.7) y_pred_enet = enet.fit(X_train, y_train).predict(X_test) r2_score_enet = r2_score(y_test, y_pred_enet) print(enet) print("r^2 on test data : %f" % r2_score_enet) pl.plot(enet.coef_, label='Elastic net coefficients') pl.plot(lasso.coef_, label='Lasso coefficients') pl.plot(coef, '--', label='original coefficients') pl.legend(loc='best') pl.title("Lasso R^2: %f, Elastic Net R^2: %f" % (r2_score_lasso, r2_score_enet)) pl.show()
bsd-3-clause
harisbal/pandas
pandas/tests/scalar/test_nat.py
3
10319
import pytest from datetime import datetime, timedelta import pytz import numpy as np from pandas import (NaT, Index, Timestamp, Timedelta, Period, DatetimeIndex, TimedeltaIndex, Series, isna) from pandas.core.arrays import PeriodArray from pandas.util import testing as tm from pandas._libs.tslib import iNaT from pandas.compat import callable @pytest.mark.parametrize('nat, idx', [(Timestamp('NaT'), DatetimeIndex), (Timedelta('NaT'), TimedeltaIndex), (Period('NaT', freq='M'), PeriodArray)]) def test_nat_fields(nat, idx): for field in idx._field_ops: # weekday is a property of DTI, but a method # on NaT/Timestamp for compat with datetime if field == 'weekday': continue result = getattr(NaT, field) assert np.isnan(result) result = getattr(nat, field) assert np.isnan(result) for field in idx._bool_ops: result = getattr(NaT, field) assert result is False result = getattr(nat, field) assert result is False def test_nat_vector_field_access(): idx = DatetimeIndex(['1/1/2000', None, None, '1/4/2000']) for field in DatetimeIndex._field_ops: # weekday is a property of DTI, but a method # on NaT/Timestamp for compat with datetime if field == 'weekday': continue result = getattr(idx, field) expected = Index([getattr(x, field) for x in idx]) tm.assert_index_equal(result, expected) s = Series(idx) for field in DatetimeIndex._field_ops: # weekday is a property of DTI, but a method # on NaT/Timestamp for compat with datetime if field == 'weekday': continue result = getattr(s.dt, field) expected = [getattr(x, field) for x in idx] tm.assert_series_equal(result, Series(expected)) for field in DatetimeIndex._bool_ops: result = getattr(s.dt, field) expected = [getattr(x, field) for x in idx] tm.assert_series_equal(result, Series(expected)) @pytest.mark.parametrize('klass', [Timestamp, Timedelta, Period]) def test_identity(klass): assert klass(None) is NaT result = klass(np.nan) assert result is NaT result = klass(None) assert result is NaT result = klass(iNaT) assert result is NaT result = klass(np.nan) assert result is NaT result = klass(float('nan')) assert result is NaT result = klass(NaT) assert result is NaT result = klass('NaT') assert result is NaT assert isna(klass('nat')) @pytest.mark.parametrize('klass', [Timestamp, Timedelta, Period]) def test_equality(klass): # nat if klass is not Period: klass('').value == iNaT klass('nat').value == iNaT klass('NAT').value == iNaT klass(None).value == iNaT klass(np.nan).value == iNaT assert isna(klass('nat')) @pytest.mark.parametrize('klass', [Timestamp, Timedelta]) def test_round_nat(klass): # GH14940 ts = klass('nat') for method in ["round", "floor", "ceil"]: round_method = getattr(ts, method) for freq in ["s", "5s", "min", "5min", "h", "5h"]: assert round_method(freq) is ts def test_NaT_methods(): # GH 9513 # GH 17329 for `timestamp` raise_methods = ['astimezone', 'combine', 'ctime', 'dst', 'fromordinal', 'fromtimestamp', 'isocalendar', 'strftime', 'strptime', 'time', 'timestamp', 'timetuple', 'timetz', 'toordinal', 'tzname', 'utcfromtimestamp', 'utcnow', 'utcoffset', 'utctimetuple', 'timestamp'] nat_methods = ['date', 'now', 'replace', 'to_datetime', 'today', 'tz_convert', 'tz_localize'] nan_methods = ['weekday', 'isoweekday'] for method in raise_methods: if hasattr(NaT, method): with pytest.raises(ValueError): getattr(NaT, method)() for method in nan_methods: if hasattr(NaT, method): assert np.isnan(getattr(NaT, method)()) for method in nat_methods: if hasattr(NaT, method): # see gh-8254 exp_warning = None if method == 'to_datetime': exp_warning = FutureWarning with tm.assert_produces_warning( exp_warning, check_stacklevel=False): assert getattr(NaT, method)() is NaT # GH 12300 assert NaT.isoformat() == 'NaT' def test_NaT_docstrings(): # GH#17327 nat_names = dir(NaT) # NaT should have *most* of the Timestamp methods, with matching # docstrings. The attributes that are not expected to be present in NaT # are private methods plus `ts_expected` below. ts_names = dir(Timestamp) ts_missing = [x for x in ts_names if x not in nat_names and not x.startswith('_')] ts_missing.sort() ts_expected = ['freqstr', 'normalize', 'to_julian_date', 'to_period', 'tz'] assert ts_missing == ts_expected ts_overlap = [x for x in nat_names if x in ts_names and not x.startswith('_') and callable(getattr(Timestamp, x))] for name in ts_overlap: tsdoc = getattr(Timestamp, name).__doc__ natdoc = getattr(NaT, name).__doc__ assert tsdoc == natdoc # NaT should have *most* of the Timedelta methods, with matching # docstrings. The attributes that are not expected to be present in NaT # are private methods plus `td_expected` below. # For methods that are both Timestamp and Timedelta methods, the # Timestamp docstring takes priority. td_names = dir(Timedelta) td_missing = [x for x in td_names if x not in nat_names and not x.startswith('_')] td_missing.sort() td_expected = ['components', 'delta', 'is_populated', 'to_pytimedelta', 'to_timedelta64', 'view'] assert td_missing == td_expected td_overlap = [x for x in nat_names if x in td_names and x not in ts_names and # Timestamp __doc__ takes priority not x.startswith('_') and callable(getattr(Timedelta, x))] assert td_overlap == ['total_seconds'] for name in td_overlap: tddoc = getattr(Timedelta, name).__doc__ natdoc = getattr(NaT, name).__doc__ assert tddoc == natdoc @pytest.mark.parametrize('klass', [Timestamp, Timedelta]) def test_isoformat(klass): result = klass('NaT').isoformat() expected = 'NaT' assert result == expected def test_nat_arithmetic(): # GH 6873 i = 2 f = 1.5 for (left, right) in [(NaT, i), (NaT, f), (NaT, np.nan)]: assert left / right is NaT assert left * right is NaT assert right * left is NaT with pytest.raises(TypeError): right / left # Timestamp / datetime t = Timestamp('2014-01-01') dt = datetime(2014, 1, 1) for (left, right) in [(NaT, NaT), (NaT, t), (NaT, dt)]: # NaT __add__ or __sub__ Timestamp-like (or inverse) returns NaT assert right + left is NaT assert left + right is NaT assert left - right is NaT assert right - left is NaT # timedelta-like # offsets are tested in test_offsets.py delta = timedelta(3600) td = Timedelta('5s') for (left, right) in [(NaT, delta), (NaT, td)]: # NaT + timedelta-like returns NaT assert right + left is NaT assert left + right is NaT assert right - left is NaT assert left - right is NaT assert np.isnan(left / right) assert np.isnan(right / left) # GH 11718 t_utc = Timestamp('2014-01-01', tz='UTC') t_tz = Timestamp('2014-01-01', tz='US/Eastern') dt_tz = pytz.timezone('Asia/Tokyo').localize(dt) for (left, right) in [(NaT, t_utc), (NaT, t_tz), (NaT, dt_tz)]: # NaT __add__ or __sub__ Timestamp-like (or inverse) returns NaT assert right + left is NaT assert left + right is NaT assert left - right is NaT assert right - left is NaT # int addition / subtraction for (left, right) in [(NaT, 2), (NaT, 0), (NaT, -3)]: assert right + left is NaT assert left + right is NaT assert left - right is NaT assert right - left is NaT def test_nat_rfloordiv_timedelta(): # GH#18846 # See also test_timedelta.TestTimedeltaArithmetic.test_floordiv td = Timedelta(hours=3, minutes=4) assert td // np.nan is NaT assert np.isnan(td // NaT) assert np.isnan(td // np.timedelta64('NaT')) def test_nat_arithmetic_index(): # GH 11718 dti = DatetimeIndex(['2011-01-01', '2011-01-02'], name='x') exp = DatetimeIndex([NaT, NaT], name='x') tm.assert_index_equal(dti + NaT, exp) tm.assert_index_equal(NaT + dti, exp) dti_tz = DatetimeIndex(['2011-01-01', '2011-01-02'], tz='US/Eastern', name='x') exp = DatetimeIndex([NaT, NaT], name='x', tz='US/Eastern') tm.assert_index_equal(dti_tz + NaT, exp) tm.assert_index_equal(NaT + dti_tz, exp) exp = TimedeltaIndex([NaT, NaT], name='x') for (left, right) in [(NaT, dti), (NaT, dti_tz)]: tm.assert_index_equal(left - right, exp) tm.assert_index_equal(right - left, exp) # timedelta # GH#19124 tdi = TimedeltaIndex(['1 day', '2 day'], name='x') tdi_nat = TimedeltaIndex([NaT, NaT], name='x') tm.assert_index_equal(tdi + NaT, tdi_nat) tm.assert_index_equal(NaT + tdi, tdi_nat) tm.assert_index_equal(tdi - NaT, tdi_nat) tm.assert_index_equal(NaT - tdi, tdi_nat) @pytest.mark.parametrize('box', [TimedeltaIndex, Series]) def test_nat_arithmetic_td64_vector(box): # GH#19124 vec = box(['1 day', '2 day'], dtype='timedelta64[ns]') box_nat = box([NaT, NaT], dtype='timedelta64[ns]') tm.assert_equal(vec + NaT, box_nat) tm.assert_equal(NaT + vec, box_nat) tm.assert_equal(vec - NaT, box_nat) tm.assert_equal(NaT - vec, box_nat) def test_nat_pinned_docstrings(): # GH17327 assert NaT.ctime.__doc__ == datetime.ctime.__doc__
bsd-3-clause
SiLab-Bonn/pyBAR
examples/example_multi_chip_analysis/plot_occupancy.py
1
1512
'Simple example how to draw hit maps from a raw data file with data from multiple chips. No event builing is done, thus no feedback about FE status!' import os.path from matplotlib.backends.backend_pdf import PdfPages import tables as tb import numpy as np from pybar.daq import readout_utils from pybar.analysis.plotting import plotting def draw_hit_map_from_raw_data(raw_data_file, front_ends): with PdfPages(os.path.splitext(raw_data_file)[0] + '.pdf') as output_pdf: with tb.open_file(raw_data_file, 'r') as in_file_h5: raw_data = in_file_h5.root.raw_data[:] for front_end in range(front_ends): print 'Create occupancy hist of front end %d' % front_end occupancy_array, _, _ = np.histogram2d(*readout_utils.convert_data_array(raw_data, filter_func=readout_utils.logical_and(readout_utils.is_data_record, readout_utils.is_data_from_channel(4 - front_end)), converter_func=readout_utils.get_col_row_array_from_data_record_array), bins=(80, 336), range=[[1, 80], [1, 336]]) plotting.plot_three_way(hist=occupancy_array.T, title="Occupancy of chip %d" % front_end, x_axis_title="Occupancy", filename=output_pdf) if __name__ == "__main__": draw_hit_map_from_raw_data('/home/davidlp/Downloads/digital_analog/21_module_test_analog_scan.h5', 4)
bsd-3-clause
youdar/work
work/Clashes/collecting_overlap_data.py
1
11675
from __future__ import division from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import cPickle as pickle import numpy as np import sys import os class Plot_data(object): def __init__(self): """ When using multiple lines of similar data, collect the plot info using this object count (y value): count of files for each year percent (y value): 100* count/total_structure years (x value): year when PDB structure was published n_ignored (int): the number of structures not included nbo (int): file included are those with NBO >= nbo """ self.count = None self.percent = None self.years = None self.n_ignored = None self.nbo = None class Collecting_overlaps_data(object): def __init__(self,start_year=1980,end_year=2014): """ if "test_clean_data" and "test_clean_dict" exist, plotting is done on existing data if "test_clean_data" and "test_clean_dict" do not exist, collect info from the folder containing the tests, from the queue and create them. the file "test_data.txt" is a comma separated file, containing all data. the file "test_clean_data" is a pickled list containing only files that could be processed (without error of any kind). the file "test_clean_dict" is a pickled dictionary containing all data. "test_data.txt" is a comma separated file with the header: PDB ID,Macro molecule overlaps,Symmetry overlaps,All overlaps, Macro molecule overlaps per 1000 atoms,Symmetry overlaps per 1000 atoms, All overlaps per 1000 atoms,year model deposited in PDB,experiment type Args: start_year, end_year (int): start and end years to show on plots """ self.data_file_name = 'test_data.txt' self.clean_dict_file_name = 'test_clean_dict' self.clean_data_file_name = 'test_clean_data' # self.data = [] self.clean_data = [] self.clean_data_dict = {} self.queue_data_path = "/net/cci/youval/work/work/Clashes/queue_clash_compare" # filtered data self.plot_data_list = [] # total data self.n_total = None self.n_total_dict = {} self.years = None self.start_year = start_year self.end_year = end_year # collecting years for structures with x[i] > min_nbo self.nbo_per_1000_atoms = [] self.sym = True def set_working_path(self): """ Set working and data folders """ p = r'C:\Users\Youval\Google Drive\Documents\LBNL\phenix\publications' p += r'\news letter\clash score\related code' p += r'\pdb_overlap_scan' osType = sys.platform if osType.startswith('win'): assert os.path.isdir(p) self.working_path = p print 'data path: ',p else: path = '/net/cci/youval/work/work/Clashes' assert os.path.isdir(path) self.working_path = path print 'data path: ',path os.chdir(self.working_path) def get_test_data(self): """ collect data from pdb scan or existing data files """ have_data = os.path.isfile(self.data_file_name) have_data &= os.path.isfile(self.clean_dict_file_name) have_data &= os.path.isfile(self.clean_data_file_name) if have_data: print 'using existing data files' self.data = self.read_csv_data() self.clean_data = pickle.load(open(self.clean_data_file_name,'r')) self.clean_data = [x for x in self.clean_data if x[1] >= 0 ] self.data_dict = pickle.load(open(self.clean_dict_file_name,'r')) print "Number of good files: ",len(self.clean_data) print "Total number files processed: ",len(self.data) else: print 'getting new data from {}'.format(self.queue_data_path) # check if data folder exist if os.path.isdir(self.queue_data_path): # Read files in directory_path files = os.listdir(self.queue_data_path) # collect only the files that starts with log_ files = [x for x in files if x.startswith('log_')] print "Number of log files: ",len(files) for fn in files: d = open(os.path.join(self.queue_data_path, fn), "r").readlines() if d: data = format_data_types(d[0]) else: data = [] if not ((len(d)==1) and (len(data) == 9)): # Some issue with results pdb_id = fn[-4:] data = [pdb_id] + ([-9] * 8) self.data.append(data) # clean data, collect good data print 'Total number data records: {}'.format(len(self.data)) f = open(self.data_file_name,'w') out_str = ['{}'] * 9 out_str = ','.join(out_str) + '\n' for d in self.data: pdb_id = d[0] f.write(out_str.format(*d)) if d[1] >= 0: self.clean_data.append(d) self.clean_data_dict[pdb_id] = d f.close() print "Number of good records: ",len(self.clean_data) pickle.dump(self.clean_data, open(self.clean_data_file_name,'w')) pickle.dump(self.clean_data_dict, open(self.clean_dict_file_name,'w')) def read_csv_data(self): """ read the data from csv text file """ data = open(self.data_file_name,'r').read().splitlines() data_list = [] for l in data: if (not l.startswith('#')) and (not l.startswith('PDB ID')): d = format_data_types(l) data_list.append(d) return data_list def prepare_data_for_plotting(self,sym=True): """ Process data for plotting. nonbonded overlaps (NBO) > min_nbo vs. year pdb structure was submitted, starting at 1980 till 2014 Build self.plot_data_list Args: sym (bool): when True plot symmetry NBO when False use all NBO """ self.sym = sym plt.close('all') if not self.clean_data: raise IOError('No Data to plot') # get data year: x[7], sym NBO: x[2], all NBO: x[3] # get data year: x[7], sym NBO per 1000 atoms: x[5], all NBO: x[3] assert len(self.clean_data[0]) == 9 if sym: # i = 2 # NBO i = 5 # NBO per 1000 atoms else: # i = 3 # NBO i = 6 # NBO per 1000 atoms # collecting years for structures with x[i] > min_nbo # nbo_list = [10,20,50,100] nbo_per_1000_atoms = [0,3,6,9,15] data = [x[7] for x in self.clean_data if (x[7] >= self.start_year) and (x[7] <= self.end_year)] n_bins = np.arange(min(data)-0.5,max(data)+1.5,1) years = range(min(data),max(data)+1,1) # get the total of structure for each year n_total, all_years, _ = plt.hist(data, bins=n_bins) n_total_dict = {y:n for y,n in zip(years,n_total)} plt.clf() n_all = len(self.clean_data) # for min_nbo in nbo_list: for min_nbo in nbo_per_1000_atoms: pd = Plot_data() pd.nbo = min_nbo data = [x[7] for x in self.clean_data if x[i] > min_nbo] pd.n_ignored = len(self.clean_data)-len(data) # use histogram to get the data point for each nbo pd.count, _, _ = plt.hist(data, bins=n_bins) plt.clf() pd.years = np.array(years) assert len(pd.count) == len(years) # collect the total number of structure deposited for present years tmp = np.array([n_total_dict[y] for y in pd.years]) tmp = np.array([(x,y) for x,y in zip(pd.count,tmp) if y>0]) pd.percent = 100*tmp[:,0]/tmp[:,1] pd.count = tmp[:,0] assert len(pd.years) == len(pd.percent) # filtered data self.plot_data_list.append(pd) # total data self.n_total = n_total self.years = years self.nbo_per_1000_atoms = nbo_per_1000_atoms self.n_total_dict = n_total_dict def nbo_vs_year(self): """ Plot percent of structures, with different NBO per 1000 atoms levels, from "good" pdb structures (all PDB files with a single model, no unknown atom types and good CRYST1 records) VS. year Second sub plot: the total of "good" structures deposited VS. year """ plt.close('all') # figure parameters # plt.ion() # enables interactive mode max_y = 105 fontsize = 20 fig = plt.figure(figsize=(8,10)) gs = GridSpec(2,1,height_ratios=[2,1]) # first subplot ax1 = plt.subplot(gs[0,0]) ax2 = plt.subplot(gs[1,0]) lines = [] line_type = ['.:','.-','.--'] n = len(line_type) for i,pd in enumerate(self.plot_data_list): lt = line_type[i%n] l, = ax1.plot(pd.years,pd.percent,lt) lines.append(l) ax1.set_ylabel('Percent of PDB structures',fontsize=fontsize) ax1.text(min(self.years)+0.5,max_y-4,'a.',fontsize=fontsize) ax1.tick_params(axis='both',labelsize=fontsize - 2) ax1.axes.get_xaxis().set_visible(False) ax1.set_yticks([5,10,40,70,100]) ax1.set_ylim([0,max_y]) ax1.set_xlim([self.start_year,self.end_year]) # legend labels = ['NBO per 1000 atom > {}']*len(self.nbo_per_1000_atoms) labels = [x.format(y) for x,y in zip(labels,self.nbo_per_1000_atoms)] if self.sym: legend_pos = [0.96,0.70] else: legend_pos = [0.54,0.30] ax1.legend( lines,labels, bbox_to_anchor=legend_pos, loc=1,borderaxespad=0.0) # Second subplot ax2.plot(self.years,self.n_total,'.:g') ax2.set_xlim([self.start_year,self.end_year]) ax2.set_xlabel('Year',fontsize=fontsize) ax2.set_ylabel('Number of structures',fontsize=fontsize) ax2.text(min(self.years)+0.5,max(self.n_total)-5,'b.',fontsize=fontsize) ax2.tick_params(axis='both',labelsize=fontsize - 2) ax2.set_xticks([self.start_year,1990,2000,self.end_year]) ax2.set_yscale('log') ax2.set_yticks([10,100,1000]) # gs.tight_layout(fig) gs.update(hspace=0) s = 'all'*(not self.sym) + 'sym'*self.sym fig_name = 'nbo_vs_year_{}.png'.format(s) plt.savefig(fig_name) fig.show() def show_values(self,year=2014): """ Show the plot numbers for a particular year """ print '--------------------------' print 'Showing info for {}'.format(year) print '--------------------------' msg = 'total number of structure PDB files with a single model, \n' msg += 'no unknown atom types and good CRYST1 records: {}\n' print msg.format(int(self.n_total_dict[year])) # find and collect number of structure. for each NBO limit, # for the desired year data = self.plot_data_list[0] i = list(data.years).index(year) n = [x.count[i] for x in self.plot_data_list] p = [x.percent[i] for x in self.plot_data_list] # s = ['NBO per 1000 atom > {:3}, , # of structure: {:5}, percent: {:5.1f}'] s = s*len(self.nbo_per_1000_atoms) s = [x.format(y,int(z),k) for x,y,z,k in zip(s,self.nbo_per_1000_atoms,n,p)] for l in s: print l print def format_data_types(s): """ apply the correct data type to each value in the list created from a comma separated sting "s" x1: PDB ID (string) x2: Macro molecule overlaps (int) x3: Symmetry overlaps (int) x4: All overlaps (int) x5: Macro molecule overlaps per 1000 atoms (float) x6: Symmetry overlaps per 1000 atoms (float) x7: All overlaps per 1000 atoms (float) x8: year model deposited in PDB (int) x9: experiment type (string) """ d = [x.strip() for x in s.split(',')] if len(d) == 9: # integer values for i in [1,2,3,7]: d[i] = int(d[i]) # float values for i in [4,5,6]: d[i] = round(float(d[i]),1) return d else: return None def run(): print 'Start' test_results = Collecting_overlaps_data() test_results.set_working_path() test_results.get_test_data() test_results.prepare_data_for_plotting(sym=False) test_results.nbo_vs_year() test_results.show_values(year=2014) print 'Done...' if __name__=='__main__': run()
mit
hugobowne/scikit-learn
sklearn/datasets/tests/test_kddcup99.py
59
1336
"""Test kddcup99 loader. Only 'percent10' mode is tested, as the full data is too big to use in unit-testing. The test is skipped if the data wasn't previously fetched and saved to scikit-learn data folder. """ import errno from sklearn.datasets import fetch_kddcup99 from sklearn.utils.testing import assert_equal, SkipTest def test_percent10(): try: data = fetch_kddcup99(download_if_missing=False) except IOError as e: if e.errno == errno.ENOENT: raise SkipTest("kddcup99 dataset can not be loaded.") assert_equal(data.data.shape, (494021, 41)) assert_equal(data.target.shape, (494021,)) data_shuffled = fetch_kddcup99(shuffle=True, random_state=0) assert_equal(data.data.shape, data_shuffled.data.shape) assert_equal(data.target.shape, data_shuffled.target.shape) data = fetch_kddcup99('SA') assert_equal(data.data.shape, (100655, 41)) assert_equal(data.target.shape, (100655,)) data = fetch_kddcup99('SF') assert_equal(data.data.shape, (73237, 4)) assert_equal(data.target.shape, (73237,)) data = fetch_kddcup99('http') assert_equal(data.data.shape, (58725, 3)) assert_equal(data.target.shape, (58725,)) data = fetch_kddcup99('smtp') assert_equal(data.data.shape, (9571, 3)) assert_equal(data.target.shape, (9571,))
bsd-3-clause
dsullivan7/scikit-learn
sklearn/neighbors/regression.py
39
10464
"""Nearest Neighbor Regression""" # Authors: Jake Vanderplas <[email protected]> # Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Sparseness support by Lars Buitinck <[email protected]> # Multi-output support by Arnaud Joly <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import numpy as np from .base import _get_weights, _check_weights, NeighborsBase, KNeighborsMixin from .base import RadiusNeighborsMixin, SupervisedFloatMixin from ..base import RegressorMixin from ..utils import check_array class KNeighborsRegressor(NeighborsBase, KNeighborsMixin, SupervisedFloatMixin, RegressorMixin): """Regression based on k-nearest neighbors. The target is predicted by local interpolation of the targets associated of the nearest neighbors in the training set. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. weights : str or callable weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Uniform weights are used by default. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : string or DistanceMetric object (default='minkowski') the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics. p : integer, optional (default = 2) Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional (default = None) additional keyword arguments for the metric function. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import KNeighborsRegressor >>> neigh = KNeighborsRegressor(n_neighbors=2) >>> neigh.fit(X, y) # doctest: +ELLIPSIS KNeighborsRegressor(...) >>> print(neigh.predict([[1.5]])) [ 0.5] See also -------- NearestNeighbors RadiusNeighborsRegressor KNeighborsClassifier RadiusNeighborsClassifier Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. .. warning:: Regarding the Nearest Neighbors algorithms, if it is found that two neighbors, neighbor `k+1` and `k`, have identical distances but but different labels, the results will depend on the ordering of the training data. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, **kwargs): self._init_params(n_neighbors=n_neighbors, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, **kwargs) self.weights = _check_weights(weights) def predict(self, X): """Predict the target for the provided data Parameters ---------- X : array or matrix, shape = [n_samples, n_features] Returns ------- y : array of int, shape = [n_samples] or [n_samples, n_outputs] Target values """ X = check_array(X, accept_sparse='csr') neigh_dist, neigh_ind = self.kneighbors(X) weights = _get_weights(neigh_dist, self.weights) _y = self._y if _y.ndim == 1: _y = _y.reshape((-1, 1)) if weights is None: y_pred = np.mean(_y[neigh_ind], axis=1) else: y_pred = np.empty((X.shape[0], _y.shape[1]), dtype=np.float) denom = np.sum(weights, axis=1) for j in range(_y.shape[1]): num = np.sum(_y[neigh_ind, j] * weights, axis=1) y_pred[:, j] = num / denom if self._y.ndim == 1: y_pred = y_pred.ravel() return y_pred class RadiusNeighborsRegressor(NeighborsBase, RadiusNeighborsMixin, SupervisedFloatMixin, RegressorMixin): """Regression based on neighbors within a fixed radius. The target is predicted by local interpolation of the targets associated of the nearest neighbors in the training set. Parameters ---------- radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. weights : str or callable weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Uniform weights are used by default. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : string or DistanceMetric object (default='minkowski') the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics. p : integer, optional (default = 2) Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional (default = None) additional keyword arguments for the metric function. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import RadiusNeighborsRegressor >>> neigh = RadiusNeighborsRegressor(radius=1.0) >>> neigh.fit(X, y) # doctest: +ELLIPSIS RadiusNeighborsRegressor(...) >>> print(neigh.predict([[1.5]])) [ 0.5] See also -------- NearestNeighbors KNeighborsRegressor KNeighborsClassifier RadiusNeighborsClassifier Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, radius=1.0, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, **kwargs): self._init_params(radius=radius, algorithm=algorithm, leaf_size=leaf_size, p=p, metric=metric, metric_params=metric_params, **kwargs) self.weights = _check_weights(weights) def predict(self, X): """Predict the target for the provided data Parameters ---------- X : array or matrix, shape = [n_samples, n_features] Returns ------- y : array of int, shape = [n_samples] or [n_samples, n_outputs] Target values """ X = check_array(X, accept_sparse='csr') neigh_dist, neigh_ind = self.radius_neighbors(X) weights = _get_weights(neigh_dist, self.weights) _y = self._y if _y.ndim == 1: _y = _y.reshape((-1, 1)) if weights is None: y_pred = np.array([np.mean(_y[ind, :], axis=0) for ind in neigh_ind]) else: y_pred = np.array([(np.average(_y[ind, :], axis=0, weights=weights[i])) for (i, ind) in enumerate(neigh_ind)]) if self._y.ndim == 1: y_pred = y_pred.ravel() return y_pred
bsd-3-clause
hdmetor/scikit-learn
examples/applications/wikipedia_principal_eigenvector.py
233
7819
""" =============================== Wikipedia principal eigenvector =============================== A classical way to assert the relative importance of vertices in a graph is to compute the principal eigenvector of the adjacency matrix so as to assign to each vertex the values of the components of the first eigenvector as a centrality score: http://en.wikipedia.org/wiki/Eigenvector_centrality On the graph of webpages and links those values are called the PageRank scores by Google. The goal of this example is to analyze the graph of links inside wikipedia articles to rank articles by relative importance according to this eigenvector centrality. The traditional way to compute the principal eigenvector is to use the power iteration method: http://en.wikipedia.org/wiki/Power_iteration Here the computation is achieved thanks to Martinsson's Randomized SVD algorithm implemented in the scikit. The graph data is fetched from the DBpedia dumps. DBpedia is an extraction of the latent structured data of the Wikipedia content. """ # Author: Olivier Grisel <[email protected]> # License: BSD 3 clause from __future__ import print_function from bz2 import BZ2File import os from datetime import datetime from pprint import pprint from time import time import numpy as np from scipy import sparse from sklearn.decomposition import randomized_svd from sklearn.externals.joblib import Memory from sklearn.externals.six.moves.urllib.request import urlopen from sklearn.externals.six import iteritems print(__doc__) ############################################################################### # Where to download the data, if not already on disk redirects_url = "http://downloads.dbpedia.org/3.5.1/en/redirects_en.nt.bz2" redirects_filename = redirects_url.rsplit("/", 1)[1] page_links_url = "http://downloads.dbpedia.org/3.5.1/en/page_links_en.nt.bz2" page_links_filename = page_links_url.rsplit("/", 1)[1] resources = [ (redirects_url, redirects_filename), (page_links_url, page_links_filename), ] for url, filename in resources: if not os.path.exists(filename): print("Downloading data from '%s', please wait..." % url) opener = urlopen(url) open(filename, 'wb').write(opener.read()) print() ############################################################################### # Loading the redirect files memory = Memory(cachedir=".") def index(redirects, index_map, k): """Find the index of an article name after redirect resolution""" k = redirects.get(k, k) return index_map.setdefault(k, len(index_map)) DBPEDIA_RESOURCE_PREFIX_LEN = len("http://dbpedia.org/resource/") SHORTNAME_SLICE = slice(DBPEDIA_RESOURCE_PREFIX_LEN + 1, -1) def short_name(nt_uri): """Remove the < and > URI markers and the common URI prefix""" return nt_uri[SHORTNAME_SLICE] def get_redirects(redirects_filename): """Parse the redirections and build a transitively closed map out of it""" redirects = {} print("Parsing the NT redirect file") for l, line in enumerate(BZ2File(redirects_filename)): split = line.split() if len(split) != 4: print("ignoring malformed line: " + line) continue redirects[short_name(split[0])] = short_name(split[2]) if l % 1000000 == 0: print("[%s] line: %08d" % (datetime.now().isoformat(), l)) # compute the transitive closure print("Computing the transitive closure of the redirect relation") for l, source in enumerate(redirects.keys()): transitive_target = None target = redirects[source] seen = set([source]) while True: transitive_target = target target = redirects.get(target) if target is None or target in seen: break seen.add(target) redirects[source] = transitive_target if l % 1000000 == 0: print("[%s] line: %08d" % (datetime.now().isoformat(), l)) return redirects # disabling joblib as the pickling of large dicts seems much too slow #@memory.cache def get_adjacency_matrix(redirects_filename, page_links_filename, limit=None): """Extract the adjacency graph as a scipy sparse matrix Redirects are resolved first. Returns X, the scipy sparse adjacency matrix, redirects as python dict from article names to article names and index_map a python dict from article names to python int (article indexes). """ print("Computing the redirect map") redirects = get_redirects(redirects_filename) print("Computing the integer index map") index_map = dict() links = list() for l, line in enumerate(BZ2File(page_links_filename)): split = line.split() if len(split) != 4: print("ignoring malformed line: " + line) continue i = index(redirects, index_map, short_name(split[0])) j = index(redirects, index_map, short_name(split[2])) links.append((i, j)) if l % 1000000 == 0: print("[%s] line: %08d" % (datetime.now().isoformat(), l)) if limit is not None and l >= limit - 1: break print("Computing the adjacency matrix") X = sparse.lil_matrix((len(index_map), len(index_map)), dtype=np.float32) for i, j in links: X[i, j] = 1.0 del links print("Converting to CSR representation") X = X.tocsr() print("CSR conversion done") return X, redirects, index_map # stop after 5M links to make it possible to work in RAM X, redirects, index_map = get_adjacency_matrix( redirects_filename, page_links_filename, limit=5000000) names = dict((i, name) for name, i in iteritems(index_map)) print("Computing the principal singular vectors using randomized_svd") t0 = time() U, s, V = randomized_svd(X, 5, n_iter=3) print("done in %0.3fs" % (time() - t0)) # print the names of the wikipedia related strongest compenents of the the # principal singular vector which should be similar to the highest eigenvector print("Top wikipedia pages according to principal singular vectors") pprint([names[i] for i in np.abs(U.T[0]).argsort()[-10:]]) pprint([names[i] for i in np.abs(V[0]).argsort()[-10:]]) def centrality_scores(X, alpha=0.85, max_iter=100, tol=1e-10): """Power iteration computation of the principal eigenvector This method is also known as Google PageRank and the implementation is based on the one from the NetworkX project (BSD licensed too) with copyrights by: Aric Hagberg <[email protected]> Dan Schult <[email protected]> Pieter Swart <[email protected]> """ n = X.shape[0] X = X.copy() incoming_counts = np.asarray(X.sum(axis=1)).ravel() print("Normalizing the graph") for i in incoming_counts.nonzero()[0]: X.data[X.indptr[i]:X.indptr[i + 1]] *= 1.0 / incoming_counts[i] dangle = np.asarray(np.where(X.sum(axis=1) == 0, 1.0 / n, 0)).ravel() scores = np.ones(n, dtype=np.float32) / n # initial guess for i in range(max_iter): print("power iteration #%d" % i) prev_scores = scores scores = (alpha * (scores * X + np.dot(dangle, prev_scores)) + (1 - alpha) * prev_scores.sum() / n) # check convergence: normalized l_inf norm scores_max = np.abs(scores).max() if scores_max == 0.0: scores_max = 1.0 err = np.abs(scores - prev_scores).max() / scores_max print("error: %0.6f" % err) if err < n * tol: return scores return scores print("Computing principal eigenvector score using a power iteration method") t0 = time() scores = centrality_scores(X, max_iter=100, tol=1e-10) print("done in %0.3fs" % (time() - t0)) pprint([names[i] for i in np.abs(scores).argsort()[-10:]])
bsd-3-clause
mrcslws/htmresearch
projects/sequence_learning/generate_plots.py
6
2426
import matplotlib.pyplot as plt import multiprocessing from optparse import OptionParser import sequence_simulations import sys def fig6a(cliArgs, noises): argsTpl = cliArgs + " --noise {}" return [ sequence_simulations.parser.parse_args(argsTpl.format(noise).split(" "))[0] for noise in noises ] + [ sequence_simulations.parser.parse_args((argsTpl + " --cells 1") .format(noise).split(" "))[0] for noise in noises ] def fig6b(cliArgs, noises): argsTpl = cliArgs + " --noise {}" return [ sequence_simulations.parser.parse_args(argsTpl.format(noise).split(" "))[0] for noise in noises ] if __name__ == "__main__": parser = OptionParser("python %prog noise [noise ...]") parser.add_option("--figure", help="Which figure to plot. Must be 'A' or 'B'.") parser.add_option("--passthru", help=("Pass options through to sequence_simulations.py. " "See `python sequence_simulations.py --help` for " "options")) # Parse CLI arguments options, args = parser.parse_args(sys.argv[1:]) if not args: print "You must specify at least one 'noise' argument." sys.exit(1) if options.figure == "A": figure = fig6a elif options.figure == "B": figure = fig6b else: print "You must specify one of '--figure A' or '--figure B'" sys.exit(1) # Convert list of str to list of float noises = [float(noise) for noise in args] # Run simulations in parallel pool = multiprocessing.Pool() results = pool.map(sequence_simulations.runExperiment1, figure(options.passthru, noises)) fig = plt.figure() ax = fig.add_subplot(111) ax.set_xlabel("Sequence Elements") ax.set_ylabel("Accuracy") # Plot results for result in results: ax.plot(result, linewidth=2.0) # Legend if options.figure == "A": ax.legend(["HTM Layer", "First Order Model"], loc="lower right") elif options.figure == "B": ax.legend(["{}% cell death".format(int(noise * 100)) for noise in noises], loc="lower right") # Horizontal bar at 50% ax.plot([0.5 for x in xrange(len(results[0]))], "--") # Re-tick axes plt.yticks((0.1, 0.2, 0.3, 0.4, 0.5, 0.6), ("10%", "20%", "30%", "40%", "50%", "60%")) plt.xticks((2000, 4000, 6000, 8000)) # Show plot plt.show()
agpl-3.0
vnpy/vnpy
examples/data_analysis/data_analysis.py
3
10377
from datetime import datetime import warnings import numpy as np import pandas as pd from pandas import DataFrame import matplotlib.pyplot as plt from statsmodels.stats.diagnostic import acorr_ljungbox from statsmodels.tsa.stattools import adfuller as ADF from statsmodels.graphics.tsaplots import plot_acf, plot_pacf import talib from vnpy.trader.constant import Exchange, Interval from vnpy.trader.database import database_manager warnings.filterwarnings("ignore") class DataAnalysis: def __init__(self): """""" self.symbol = "" self.exchange = None self.interval = None self.start = None self.end = None self.rate = 0.0 self.window_volatility = 20 self.window_index = 20 self.orignal = pd.DataFrame() self.index_1to1 = [] self.index_2to2 = [] self.index_3to1 = [] self.index_2to1 = [] self.index_4to1 = [] self.intervals = [] self.results = {} def load_history( self, symbol: str, exchange: Exchange, interval: Interval, start: datetime, end: datetime, rate: float = 0.0, index_1to1: list = None, index_2to2: list = None, index_3to1: list = None, index_2to1: list = None, index_4to1: list = None, window_index: int = 20, window_volatility: int = 20, ): """""" output("开始加载历史数据") self.window_volatility = window_volatility self.window_index = window_index self.rate = rate self.index_1to1 = index_1to1 self.index_2to2 = index_2to2 self.index_3to1 = index_3to1 self.index_2to1 = index_2to1 self.index_4to1 = index_4to1 # Load history data from database bars = database_manager.load_bar_data( symbol=symbol, exchange=exchange, interval=interval, start=start, end=end, ) output(f"历史数据加载完成,数据量:{len(bars)}") # Generate history data in DataFrame t = [] o = [] h = [] l = [] # noqa c = [] v = [] for bar in bars: time = bar.datetime open_price = bar.open_price high_price = bar.high_price low_price = bar.low_price close_price = bar.close_price volume = bar.volume t.append(time) o.append(open_price) h.append(high_price) l.append(low_price) c.append(close_price) v.append(volume) self.orignal["open"] = o self.orignal["high"] = h self.orignal["low"] = l self.orignal["close"] = c self.orignal["volume"] = v self.orignal.index = t def base_analysis(self, df: DataFrame = None): """""" if df is None: df = self.orignal if df is None: output("数据为空,请输入数据") close_price = df["close"] output("第一步:画出行情图,检查数据断点") close_price.plot(figsize=(20, 8), title="close_price") plt.show() random_test(close_price) stability_test(close_price) autocorrelation_test(close_price) self.relative_volatility_analysis(df) self.growth_analysis(df) self.calculate_index(df) return df def relative_volatility_analysis(self, df: DataFrame = None): """ 相对波动率 """ output("第五步:相对波动率分析") df["volatility"] = talib.ATR( np.array(df["high"]), np.array(df["low"]), np.array(df["close"]), self.window_volatility ) df["fixed_cost"] = df["close"] * self.rate df["relative_vol"] = df["volatility"] - df["fixed_cost"] df["relative_vol"].plot(figsize=(20, 6), title="relative volatility") plt.show() df["relative_vol"].hist(bins=200, figsize=(20, 6), grid=False) plt.show() statitstic_info(df["relative_vol"]) def growth_analysis(self, df: DataFrame = None): """ 百分比K线变化率 """ output("第六步:变化率分析") df["pre_close"] = df["close"].shift(1).fillna(0) df["g%"] = 100 * (df["close"] - df["pre_close"]) / df["close"] df["g%"].plot(figsize=(20, 6), title="growth", ylim=(-5, 5)) plt.show() df["g%"].hist(bins=200, figsize=(20, 6), grid=False) plt.show() statitstic_info(df["g%"]) def calculate_index(self, df: DataFrame = None): """""" output("第七步:计算相关技术指标,返回DataFrame\n") if self.index_1to1: for i in self.index_1to1: func = getattr(talib, i) df[i] = func( np.array(df["close"]), self.window_index ) if self.index_3to1: for i in self.index_3to1: func = getattr(talib, i) df[i] = func( np.array(df["high"]), np.array(df["low"]), np.array(df["close"]), self.window_index ) if self.index_2to2: for i in self.index_2to2: func = getattr(talib, i) result_down, result_up = func( np.array(df["high"]), np.array(df["low"]), self.window_index ) up = i + "_UP" down = i + "_DOWN" df[up] = result_up df[down] = result_down if self.index_2to1: for i in self.index_2to1: func = getattr(talib, i) df[i] = func( np.array(df["high"]), np.array(df["low"]), self.window_index ) if self.index_4to1: for i in self.index_4to1: func = getattr(talib, i) df[i] = func( np.array(df["open"]), np.array(df["high"]), np.array(df["low"]), np.array(df["close"]), ) return df def multi_time_frame_analysis(self, intervals: list = None, df: DataFrame = None): """""" if not intervals: output("请输入K线合成周期") return if df is None: df = self.orignal if df is None: output("请先加载数据") return for interval in intervals: output("------------------------------------------------") output(f"合成{interval}周期K先并开始数据分析") data = pd.DataFrame() data["open"] = df["open"].resample(interval, how="first") data["high"] = df["high"].resample(interval, how="max") data["low"] = df["low"].resample(interval, how="min") data["close"] = df["close"].resample(interval, how="last") data["volume"] = df["volume"].resample(interval, how="sum") result = self.base_analysis(data) self.results[interval] = result def show_chart(self, data, boll_wide): """""" data["boll_up"] = data["SMA"] + data["STDDEV"] * boll_wide data["boll_down"] = data["SMA"] - data["STDDEV"] * boll_wide up_signal = [] down_signal = [] len_data = len(data["close"]) for i in range(1, len_data): if data.iloc[i]["close"] > data.iloc[i]["boll_up"]and data.iloc[i - 1]["close"] < data.iloc[i - 1]["boll_up"]: up_signal.append(i) elif data.iloc[i]["close"] < data.iloc[i]["boll_down"] and data.iloc[i - 1]["close"] > data.iloc[i - 1]["boll_down"]: down_signal.append(i) plt.figure(figsize=(20, 8)) close = data["close"] plt.plot(close, lw=1) plt.plot(close, '^', markersize=5, color='r', label='UP signal', markevery=up_signal) plt.plot(close, 'v', markersize=5, color='g', label='DOWN signal', markevery=down_signal) plt.plot(data["boll_up"], lw=0.5, color="r") plt.plot(data["boll_down"], lw=0.5, color="g") plt.legend() plt.show() data["ATR"].plot(figsize=(20, 3), title="ATR") plt.show() def random_test(close_price): """""" acorr_result = acorr_ljungbox(close_price, lags=1) p_value = acorr_result[1] if p_value < 0.05: output("第二步:随机性检验:非纯随机性") else: output("第二步:随机性检验:纯随机性") output(f"白噪声检验结果:{acorr_result}\n") def stability_test(close_price): """""" statitstic = ADF(close_price) t_s = statitstic[1] t_c = statitstic[4]["10%"] if t_s > t_c: output("第三步:平稳性检验:存在单位根,时间序列不平稳") else: output("第三步:平稳性检验:不存在单位根,时间序列平稳") output(f"ADF检验结果:{statitstic}\n") def autocorrelation_test(close_price): """""" output("第四步:画出自相关性图,观察自相关特性") plot_acf(close_price, lags=60) plt.show() plot_pacf(close_price, lags=60).show() plt.show() def statitstic_info(df): """""" mean = round(df.mean(), 4) median = round(df.median(), 4) output(f"样本平均数:{mean}, 中位数: {median}") skew = round(df.skew(), 4) kurt = round(df.kurt(), 4) if skew == 0: skew_attribute = "对称分布" elif skew > 0: skew_attribute = "分布偏左" else: skew_attribute = "分布偏右" if kurt == 0: kurt_attribute = "正态分布" elif kurt > 0: kurt_attribute = "分布陡峭" else: kurt_attribute = "分布平缓" output(f"偏度为:{skew},属于{skew_attribute};峰度为:{kurt},属于{kurt_attribute}\n") def output(msg): """ Output message of backtesting engine. """ print(f"{datetime.now()}\t{msg}")
mit
ClimbsRocks/scikit-learn
examples/mixture/plot_gmm_selection.py
95
3310
""" ================================ Gaussian Mixture Model Selection ================================ This example shows that model selection can be performed with Gaussian Mixture Models using information-theoretic criteria (BIC). Model selection concerns both the covariance type and the number of components in the model. In that case, AIC also provides the right result (not shown to save time), but BIC is better suited if the problem is to identify the right model. Unlike Bayesian procedures, such inferences are prior-free. In that case, the model with 2 components and full covariance (which corresponds to the true generative model) is selected. """ import numpy as np import itertools from scipy import linalg import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import mixture print(__doc__) # Number of samples per component n_samples = 500 # Generate random sample, two components np.random.seed(0) C = np.array([[0., -0.1], [1.7, .4]]) X = np.r_[np.dot(np.random.randn(n_samples, 2), C), .7 * np.random.randn(n_samples, 2) + np.array([-6, 3])] lowest_bic = np.infty bic = [] n_components_range = range(1, 7) cv_types = ['spherical', 'tied', 'diag', 'full'] for cv_type in cv_types: for n_components in n_components_range: # Fit a Gaussian mixture with EM gmm = mixture.GaussianMixture(n_components=n_components, covariance_type=cv_type) gmm.fit(X) bic.append(gmm.bic(X)) if bic[-1] < lowest_bic: lowest_bic = bic[-1] best_gmm = gmm bic = np.array(bic) color_iter = itertools.cycle(['navy', 'turquoise', 'cornflowerblue', 'darkorange']) clf = best_gmm bars = [] # Plot the BIC scores spl = plt.subplot(2, 1, 1) for i, (cv_type, color) in enumerate(zip(cv_types, color_iter)): xpos = np.array(n_components_range) + .2 * (i - 2) bars.append(plt.bar(xpos, bic[i * len(n_components_range): (i + 1) * len(n_components_range)], width=.2, color=color)) plt.xticks(n_components_range) plt.ylim([bic.min() * 1.01 - .01 * bic.max(), bic.max()]) plt.title('BIC score per model') xpos = np.mod(bic.argmin(), len(n_components_range)) + .65 +\ .2 * np.floor(bic.argmin() / len(n_components_range)) plt.text(xpos, bic.min() * 0.97 + .03 * bic.max(), '*', fontsize=14) spl.set_xlabel('Number of components') spl.legend([b[0] for b in bars], cv_types) # Plot the winner splot = plt.subplot(2, 1, 2) Y_ = clf.predict(X) for i, (mean, cov, color) in enumerate(zip(clf.means_, clf.covariances_, color_iter)): v, w = linalg.eigh(cov) if not np.any(Y_ == i): continue plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color) # Plot an ellipse to show the Gaussian component angle = np.arctan2(w[0][1], w[0][0]) angle = 180. * angle / np.pi # convert to degrees v = 2. * np.sqrt(2.) * np.sqrt(v) ell = mpl.patches.Ellipse(mean, v[0], v[1], 180. + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(.5) splot.add_artist(ell) plt.xticks(()) plt.yticks(()) plt.title('Selected GMM: full model, 2 components') plt.subplots_adjust(hspace=.35, bottom=.02) plt.show()
bsd-3-clause
SylvainGuieu/smartplotlib
plotclasses.py
1
26242
from __future__ import division, absolute_import, print_function from .recursive import alias, KWS from .base import PlotFactory, rproperty from . import plotfuncs as pfs from .figaxes import subplot, plots, axes, figure, fa import numpy as np class _BaseFigAxes(object): """ just a colection of usefull axes/figure for other plots. """ subplot = subplot axes = axes plots = plots figure = figure aclear = pfs.aclear fclear = pfs.fclear cla = pfs.aclear clf = pfs.fclear def fa(self, **kwargs): self.axes(**kwargs) self.figure(**kwargs) #axes = axes #fset = fset show = pfs.show draw = pfs.draw legend = pfs.legend grid = pfs.grid savefig = pfs.savefig @rproperty def grids(self): """ axes.grids plot setter """ return self.axes.grids @rproperty def xlabel(self): """ axes.x.label plot setter """ return self.axes.x.label @rproperty def ylabel(self): """ axes.y.label plot setter """ return self.axes.y.label @rproperty def labels(self): """ axes.labels plot setter """ return self.axes.labels @rproperty def xaxis(self): """ axes.x plot setter """ return self.axes.x @rproperty def yaxis(self): """ axes.y plot setter """ return self.axes.y @rproperty def ticks(self): """ axes.ticks plot setter """ return self.ticks @rproperty def xticks(self): """ axes.x.ticks plot setter """ return self.axes.x.ticks @rproperty def yticks(self): """ axes.y.ticks plot setter """ return self.axes.y.ticks def get_axes(self): """ Return the matplotlib axes linked """ return pfs.get_axes(self.get("axes", None), self.get("figure", None)) def get_figure(self): """ Return the matplotlib figure linked """ return pfs.get_figure(self.get("figure", None), self.get("axes", None)) @property def a(self): return self.get_axes() @property def f(self): return self.get_figure() """ Define the main plot classes and their plotfuncs All the other more sofiticated Plots are added later """ def _k2edge(plot,k): """convert array plot[k] to bar edge (remove the last)""" return np.asarray(plot[k])[:-1] def _k2width(plot,k): """convert array plot[k] to bar width np.diff()""" return np.diff(plot[k]) def _make_array(value): if not isinstance(value, np.ndarray): return np.asarray(value) return value class _subxy(object): def __init__(self, _xyplot=None): self.xyplot = _xyplot def __get__(self, xyplot, cl=None): if xyplot is None: return self new = self.__class__(xyplot) return new def __getitem__(self, item): xyplot = self.xyplot try: y = xyplot["y"] except KeyError: raise TypeError("missing y data, cannot extract sub-data") y = _make_array(y)[item] is_scalar = not hasattr(y, "__iter__") if is_scalar: new = scalarplot.derive(value=y) else: new = xyplot.derive(y=y) try: x = xyplot["x"] except KeyError: pass else: if x is not None: if is_scalar: new["index"] = _make_array(x)[item] else: new["x"] = _make_array(x)[item] try: xerr = xyplot["xerr"] except KeyError: pass else: if not is_scalar and (xerr is not None) and hasattr(xerr, "__iter__"): new["xerr"] = _make_array(xerr)[item] try: yerr = xyplot["yerr"] except KeyError: pass else: if yerr is not None and hasattr(yerr, "__iter__"): if is_scalar: new["err"] = _make_array(yerr)[item] else: new["yerr"] = _make_array(yerr)[item] elif yerr is not None: new["yerr"] = _make_array(yerr) return new def __getslice__(self, start, end): return self.__getitem__(slice(start, end)) class XYFit(PlotFactory, _BaseFigAxes): """ a PlotColection of fit factory for x vs y type of data PlotFactory Methods: |------------|------------|-------------------------------------------------| | method | Factory | comment | |------------|------------|-------------------------------------------------| | polynome | XYPlot | polynome fitting capability from x/y data | | linear | XYPlot | polynome fit with dim=1 | | inverse | XYPlot | fit y = (a*x +b) | """ pass class XYPlot(PlotFactory, _BaseFigAxes): """ PlotFactory. Return a new instance of xyplot ready to plot 2d x/y data call signature: xyplot(y) xyplot(x,y) xyplot(x,y, yerr, xerr, **kwargs) All arguments can inerite from a parent Plot object if any. All args can be keyword arguments or assigned parameter as obj['x'] = array(..) Use .info attribute to print a state of this curent PlotFactory object Args: x (array-like) : the x absis data y (array-like) : y-axis data yerr (Optional[array-like]) : error on y-data, can be scalar or None. xerr (Optional[array-like]) : error on x-data, can be scalar or None. params (Optional[dict]) : A dictionary of any parameters for child plots or child plots function (FuncPlot) go (Optional[list of string]) : Action taken after the ready-instance created see the .go method help **kwargs : Any other parameters that will ramp-up the hierarchy of childs Returns: xyplot : New ready instance of xyplot. Machined Parameters: x (array-like) : if not present x = np.arange(len(y)) All other are set as they are PlotFunc Methods: The ones using "x" "y" like: |---------------|--------------------------------------------------------------| | method | action | |---------------|--------------------------------------------------------------| | plot | plot line point etc... | | errorbar | errobar plotting | | scatter | scattered points plot | | step | plot line has step | | fill | polygone fill | | xhist | histogram on x axis of x data | | yhist | histogram on y axis of y data | | vlines | verticl lines where by default ymin=0 and ymax=alias("y") | | hlines | horozontal lines where by default xmin=0 and xmax=alias("x") | | axvline | Use only the x data | | | (axes ymin and ymax are 0 and 1 by default) | | axhline | Use only the y data | | | (axes xmin and xmax are 0 and 1 by default) | | bar2x | plot bars horizontaly edges are y[:-1], width are diff(y) | | | and height are x. align="center" by default | | bar2y | plot bars verticaly edges are x[:-1], width are diff(x) | | | and height are y. align="center" by default | | bar | is bar2y | | annotates | annotate x/y points | | fill_betweeny | fill between y lines. Use 'y' bydefault for the first line | | fill_betweenx | fill between x lines. Use 'x' bydefault for the first line | | fill_between | is fill_betweeny | | fillstep | plot a polygone that envelop data if it was ploted with bars | |---------------|--------------------------------------------------------------| Not related to "x", "y" data, for conveniant use: {conveniant} PlotFactory Methods: |------------|------------|-------------------------------------------------| | method | Factory | comment | |------------|------------|-------------------------------------------------| | polyfit | XYPlot | polynome fitting capability from x/y data | | linearfit | XYPlot | same as polyfit with ["dim"] = 1 | | ybinedstat | XYPlot | make plot-ready binned statistic of y data. | | | | this is the samething than .ydata.binedstat | | ydata | DataPlot | a dataplot factory where data=alias("y") | | xdata | DataPlot | a dataplot factory where data=alias("y") | | cohere | XYPlot | coherence plot factory on 'x' vs 'y' by default | | csd | XYPlot | Cross Spectral Density plot factory on | | | | 'x' vs 'y' by default | | histogram2 | XYZPlot | histogram2d Factory from 'x' and 'y' | | | | | | | | | | ystat | ScalarPlot | scalar statistic plot factory on y-data | | | | (e.i mean, median, etc). same as ydata.stat | | xstat | ScalarPlot | scalar statistic plot factory on x-data | | | | (e.i mean, median, etc).same as ydata.stat | |------------|------------|-------------------------------------------------| | xmedian | ScalarPlot | xstat with fstat="median" | | ymedian | ScalarPlot | ystat with fstat="median" | | xmean | ScalarPlot | xstat with fstat="mean" | | ymean | ScalarPlot | ystat with fstat="mean" | | xmin | ScalarPlot | xstat with fstat="min" | | ymin | ScalarPlot | ystat with fstat="min" | | xmax | ScalarPlot | xstat with fstat="max" | | ymax | ScalarPlot | ystat with fstat="max" | | xstd | ScalarPlot | xstat with fstat="std" | | ystd | ScalarPlot | ystat with fstat="std" | |------------|------------|-------------------------------------------------| | subplot | SubPlot | return the subplot factory with all the default | | | | of thi xyplot | | plots | Plots | return a plots factory (plots linked to figure) | | | | with all default taken from that xyxplot | | fits | PlotCollec | containe fit plot factory | |------------|------------|-------------------------------------------------| Others usefull methods: {useful} And Attributes: {usefulattr} See the doc of PlotFactory for other methods shared by PlotFactoty objects """ sub = _subxy() fits = XYFit() plot = pfs.plot step = pfs.step errorbar = pfs.errorbar scatter = pfs.scatter ## fit and statistic xhist = pfs.hist.derive(orientation="vertical", data=alias("x")) yhist = pfs.hist.derive(orientation="horizontal", data=alias("y")) vlines = pfs.vlines.derive(ymin=0, ymax=alias("y")) hlines = pfs.hlines.derive(xmin=0, xmax=alias("x")) ## # put the default in axvline and axhline, they have # nothing to do with data but axes axvline = pfs.axvline.derive(ymin=0, ymax=1.0) axhline = pfs.axhline.derive(xmin=0, xmax=1.0) bar2y = pfs.bar.derive(edge= alias(lambda p:_k2edge(p,"x"), "-> x[:-1]"), width=alias(lambda p:_k2width(p,"x"), "-> diff(x)"), height=alias(lambda p:_k2edge(p,"y"), "-> y[:-1]"), align="center" ) bar2x = pfs.bar.derive(edge=alias(lambda p:_k2edge(p,"y"), "-> y[:-1]"), width=alias(lambda p:_k2width(p,"y"), "-> diff(y)"), height=alias(lambda p:_k2edge(p,"x"), "-> x[:-1]"), align="center", direction="x" ) bar = bar2y fillstep = pfs.fillstep fill = pfs.fill fill_betweeny = pfs.fill_betweeny.derive(y1=alias("y")) fill_betweenx = pfs.fill_betweenx.derive(x1=alias("x")) fill_between = fill_betweeny annotates = pfs.annotates @staticmethod def finit(plot, *args,**kwargs): """ """ plot.update(kwargs.pop(KWS,{}), **kwargs) x, y = plot.parseargs(args, "x","y", x=None, y=None ) if y is None: # with one arg, x is y if x is not None: y, x = x, None plot.update(y=y) #if x is None: # x = alias(lambda p:np.arange(np.asarray(p["y"]).shape[0]), "-> arange(len(y))") plot.update(x=x) class _subdata(object): def __init__(self, _dataplot=None): self.dataplot = _dataplot def __get__(self, dataplot, cl=None): if dataplot is None: return self new = self.__class__(dataplot) return new def __getitem__(self, item): dataplot = self.dataplot try: data = dataplot["data"] except KeyError: raise TypeError("missing 'data', cannot extract sub-data") data = _make_array(data)[item] is_scalar = not hasattr(data, "__iter__") if is_scalar: new = scalarplot.derive(value=data) else: new = dataplot.derive(data=data) try: x = dataplot["indexes"] except KeyError: pass else: if is_scalar: new["index"] = _make_array(x)[item] else: new["indexes"] = _make_array(x)[item] try: weights = dataplot["weights"] except KeyError: pass else: if not is_scalar and (weights is not None) and hasattr(weights, "__iter__"): new["weights"] = _make_array(weights)[item] return new def __getslice__(self, start, end): return self.__getitem__(slice(start, end)) class DataPlot(PlotFactory, _BaseFigAxes): """ PlotFactory for single array like data Contain a colection of PlotFunc and PlotFactory to represend the data and its statistic. Use .info attribute to print a state of this curent PlotFactory object Args: data (array-like) : the (mostly 1-d) data indexes (Optiona[array]) : optional array of data indexes, can be used for binedstat or stat factories. params (Optional[dict]) : A dictionary of any parameters for child plots or child plots function (FuncPlot) go (Optional[list of string]) : Action taken after the ready-instance created see the .go method help **kwargs : Any other parameters that will ramp-up the hierarchy of childs Returns: dataplot factory : a new instance of self Machined Parameters: None, all are set as they are PlotFunc Methods: |--------|-------------------------| | method | action | |--------|-------------------------| | hist | plot histogram directly | |--------|-------------------------| Not related to "x", "y" data, for conveniant use: {conveniant} PlotFactory Methods: |--------------------|------------|-------------------------------------------------| | method | Factory | comment | |--------------------|------------|-------------------------------------------------| | histogram | DataPlot | Histogram factory on *data* | | binedstat | DataPlot | binned statistic (mean, max, etc) on *data* | | stat | ScalarPlot | A scalar factory tha contain full data | | | | statistics. | | distribfit | XYPlot | Fit the data distribution (e.g. with | | | | 'normal'). Usefull to plot on top of histograms | | mean, median, min | ScalarPlot | inerit from stat with the right fstat param | | max, std | | | | | | arange(len(data)) else | | specgram | ImgPlot | a specgram factory (produce image) | | psd | XYPlot | power spectral density factory | | angle_spectrum | XYPlot | Angle spectrum factory from *data* see doc | | magnitude_spectrum | XYPlot | Magnitude Spectrum factory .. | | phase_spectrum | XYPlot | Phase Spectrum factory | |--------------------|------------|-------------------------------------------------| | subplot | SubPlot | return the subplot factory with all the default | | | | of thi xyplot | | plots | Plots | return a plots factory (plots linked to figure) | | | | with all default taken from that xyxplot | | | | | |--------------------|------------|-------------------------------------------------| Others usefull methods: {useful} And Attributes: {usefulattr} """ sub = _subdata() subplot = subplot plots = plots lines = pfs.lines vlines = pfs.vlines.derive(x=alias("data")) hlines = pfs.vlines.derive(y=alias("data")) hist = pfs.hist @staticmethod def finit(plot, data, **kwargs): plot.update(kwargs.pop(KWS,{}), **kwargs) data, = plot.parseargs([data], "data") plot["data"] = data def colors_or_z(p,k): return p[k] if k in p else p["z"] class XYZPlot(PlotFactory, _BaseFigAxes): """ plot for 3 dimentional data """ imshow = pfs.imshow.derive(img=alias("colors"), colors=alias("Z")) pcolor = pfs.pcolor pcolormesh = pfs.pcolormesh pcolorfast = pfs.pcolorfast contour = pfs.contour contourf = pfs.contourf colorbar = pfs.colorbar class _subimg(object): def __init__(self, _imgplot=None): self.imgplot = _imgplot def __get__(self, imgplot, cl=None): if imgplot is None: return self new = self.__class__(imgplot) return new def __getitem__(self, item): imgplot = self.imgplot try: img = imgplot["img"] except KeyError: raise TypeError("'img' is not defined, cannot extract sub-image") img = img[item] if not hasattr(img, "__iter__"): # this is a scalar return scalarplot(img) if len(img.shape)<2: # this is a vector return xyplot( np.arange(len(img)), img ) if self.imgplot: return self.imgplot.derive(img=img) return imgplot(img=img) def __getslice__(self, start, end): return self.__getitem__(slice(start, end)) class ImgPlot(PlotFactory, _BaseFigAxes): """ plot used for image """ imshow = pfs.imshow hist = pfs.hist.derive(data=alias(lambda p: np.asarray(p["img"]).flatten(), "-> img.flatten()")) colorbar = pfs.colorbar sub = _subimg() @staticmethod def finit(plot, img, **kwargs): plot.update(kwargs.pop(KWS,{}), **kwargs) img, = plot.parseargs([img], "img") plot["img"] = img class ScalarPlot(PlotFactory, _BaseFigAxes): axline = pfs.axline ## # here ymin and ymax has nothing to do with the data # change it to 0,1 by default axvline = pfs.axvline.derive(x=alias("value"),ymin=0,ymax=1) axhline = pfs.axhline.derive(y=alias("value"),xmin=0,xmax=1) vlines = pfs.vlines.derive(x=alias(lambda p:np.asarray(p["value"]), "-> array(value)")) hlines = pfs.vlines.derive(y=alias(lambda p:np.asarray(p["value"]), "-> array(value)")) lines = pfs.vlines.derive(data=alias(lambda p:np.asarray(p["value"]), "-> array(value)")) axspan = pfs.axspan.derive(value1=alias("previous"), value2=alias("value")) axvspan = pfs.axvspan.derive(xmin=alias("previous"), xmax=alias("value")) axhspan = pfs.axvspan.derive(ymin=alias("previous"), ymax=alias("value")) text = pfs.text.derive(text=alias(lambda p: str(p["value"]), "-> str(value)")) annotate = pfs.annotate @staticmethod def finit(plot, *args, **kwargs): plot.update(kwargs.pop(KWS,{}), **kwargs) value = plot.parseargs(args, "value") plot["value"] = value conveniant = """ |--------|-------------------------------------------------| | method | action | |--------|-------------------------------------------------| | axes | set all valid axes parameters to the axes plot. | | | Like "xlabel", "ylabel", grid, title etc ... | | figure | set all figure parameters | | aclear | clear the axes | | fclear | clear the figure | | legend | plot the axes legend | | show | figure.show() | | draw | figure.canvas.draw() | | grids | axes.grids setting | |--------|-------------------------------------------------| """ useful = """ | method | return | comment | |------------|----------------|-----------------------------------------------------| | update | None | update parameters of the factory | | derive | (Self class) | A new factory instance where defaults are | | | | in self | | go | dict (results) | execute a list actions from list of strings | | | | e.g. .go("axes", "legend", "show") | | get | any object | As for dict get a parameter value | | pop | any object | As for dict pop a parameter | | clear | None | clear the local parameters | | setdefault | None | As for dict set a default parameter | | iter | (self class) | Iter on iterables and return new instances of self | | iteraxes | (self class) | Same has iter but buil *axes* params for each new | | iterfigure | (self class) | Same has iter but buil *figure* params for each new | | itercall | (self class) | Iter on iterables and return new() | | get_axes | plt.Axes | return the matplotlib Axes instance obect | | get_figure | plt.Figure | return the matplotlib Figure instance obect | | | | | """ usefulattr = """ | attribute | return | comment | |-----------|-------------|---------------------------------------------| | info | None | Print a state of the Factory object | | all | dict | return a dictionary with all parameters set | | | | the locals and the inerited. | | locals | dict | the local parameter dictionary | | example | string/None | If any return an string example ready for | | | | print or exec | | axes | plt.Axes | the matplotlib Axes instance obect | | figure | plt.Figure | the matplotlib Figure instance obect | |-----------|-------------|---------------------------------------------| """ xyplot = XYPlot() xyplot.finit.__doc__ = XYPlot.__doc__.format(conveniant=conveniant, useful=useful, usefulattr=usefulattr ) xyplot.__doc__ = xyplot.finit.__doc__ xyplot["_example_"] = ("xyplot", None) dataplot = DataPlot() dataplot["_example_"] = ("histogram", None) xyzplot = XYZPlot() imgplot = ImgPlot() scalarplot = ScalarPlot()
gpl-2.0
valexandersaulys/airbnb_kaggle_contest
prototype_alpha/xgboost_take2.py
1
1916
""" Take 1 on the RandomForest, predicting for country_destinations. """ import pandas as pd import numpy as np from sklearn.cross_validation import train_test_split training = pd.read_csv("protoAlpha_training.csv") testing = pd.read_csv("protoAlpha_testing.csv") X = training.iloc[:,1:-1].values y = training['country_destination'].values x_train,x_valid,y_train,y_valid = train_test_split(X,y,test_size=0.3,random_state=None) # LabelEncoder from sklearn.preprocessing import LabelEncoder le = LabelEncoder() le.fit(y_train); y_train = le.transform(y_train); y_valid = le.transform(y_valid); # Train classifier import xgboost as xgb xg_train = xgb.DMatrix(x_train,label=y_train); xg_valid = xgb.DMatrix(x_valid,label=y_valid); # setup parameters for xgboost param = {} # use softmax multi-class classification param['objective'] = 'multi:softmax' # scale weight of positive examples param['eta'] = 0.7 param['max_depth'] = 100 param['silent'] = 1 param['nthread'] = 5 param['num_class'] = len(np.unique(y_train).tolist()); # Train & Get validation data num_round = 1000 clf = xgb.train(param, xg_train, num_round); # get prediction y_preds = clf.predict( xg_valid ); # Run Predictions from sklearn.metrics import confusion_matrix, accuracy_score print( confusion_matrix(y_valid,y_preds) ); print( "Accuracy: %f" % (accuracy_score(y_valid,y_preds)) ); f = open('xgboost_take2.txt', 'w') f.write( str(confusion_matrix(y_valid,y_preds)) ); f.write( "\nAccuracy: %f" % (accuracy_score(y_valid,y_preds)) ); f.write( "\nclf = xgboost{1000 rounds, 0.7 eta, 100 max_depth}" ); # Now on to final submission xg_test = xgb.DMatrix(testing.iloc[:,1:].values); y_final = le.inverse_transform( clf.predict(xg_test).reshape([62096,]).astype(int) ); y_final = pd.DataFrame(y_final); numbahs = testing['id'] df = pd.concat([numbahs,y_final],axis=1) df.columns = ['id','country'] df.to_csv("xgboost_take2.csv",index=False)
gpl-2.0
GreenGear5/planet-wars
train-bot.py
1
6405
import argparse import multiprocessing import multiprocessing.pool import sys import random from sklearn.linear_model import LogisticRegression from sklearn.externals import joblib from api import State, util from bots.featurebot.featurebot import features from bots.rand import rand BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE = range(8) colors = { 'SUCCESS': GREEN, 'INFO': BLUE, 'WARN': YELLOW, 'FAIL': RED } # How many games to play args = None NOTIFY_AMOUNT = 50 def main(): pool = multiprocessing.Pool(processes=args.parallelism) bots = [] for id, botname in enumerate(args.players): bots.append(util.load_player(botname)) matches = len(bots) * args.matches * len(args.planets) log("Training against {} Bots, {} Maps, {} Matches".format(len(bots), len(args.planets), matches)) data, target = [], [] try: i = 0 for ret in pool.imap_unordered(execute, gen_rounds(bots)): i += 1 (bid, mid), winner, state_vectors, (map_size, seed) = ret if winner == 1: result = 'won' elif winner == 2: result = 'lost' else: result = 'draw' data += state_vectors target += [result] * len(state_vectors) log("({}:{} | {}:{}): {}".format(bid, mid, map_size, seed, result), lvl=1) if i % NOTIFY_AMOUNT == 0: log("Finished {}/{} matches ({:.2f})%.".format(i, matches, (float(i) / matches * 100))) except KeyboardInterrupt: log("Tournament interrupted by user", type="FAIL") pool.terminate() pool.join() sys.exit(1) pool.close() pool.join() log("All games finished", type="SUCCESS") generate_model(data, target) # If you wish to use a different model, this # is where to edit def generate_model(data, target): log("Training logistic regression model", lvl=1) learner = LogisticRegression() model = learner.fit(data, target) log("Checking class imbalance", lvl=1) count = {} for str in target: if str not in count: count[str] = 0 count[str] += 1 log("Instances per class: {}".format(count)) try: joblib.dump(model, args.model, compress=True) except IOError as e: log("Failed to dump model: "+args.model, type="FAIL") print e return log("Done. Model saved at: "+args.model, type="SUCCESS") def gen_rounds(bots): for bid, bot in enumerate(bots): for map_id, map_size in enumerate(args.planets): for i in range(args.matches): mid = map_id * args.matches + i seed = random.randint(0, 100000) yield ((bid, mid), bot, (map_size, seed, args.max_turns, args.asym)) def execute(params): ids, bot, (map_size, seed, max_turns, asym) = params state, _ = State.generate(map_size, seed, symmetric=not asym) state_vectors = [] i = 0 while not state.finished() and i <= max_turns: state_vectors.append(features(state)) move = bot.get_move(state) state = state.next(move) i += 1 winner = state.winner() return ids, winner, state_vectors, (map_size, seed) # following from Python cookbook, #475186 def has_colours(stream): if not hasattr(stream, "isatty"): return False if not stream.isatty(): return False # auto color only on TTYs try: import curses curses.setupterm() return curses.tigetnum("colors") > 2 except: # guess false in case of error return False def log(s, type='INFO', lvl=0): color = WHITE if type in colors: color = colors[type] if args.verbose >= lvl: sys.stdout.write("[") printout("%07s" % type, color) sys.stdout.write("] %s\n" % s) def printout(text, colour=WHITE): if args.color: seq = "\x1b[1;%dm" % (30 + colour) + text + "\x1b[0m" sys.stdout.write(seq) else: sys.stdout.write(text) def optparse(): global args parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-c', '--color', action='store_true', dest='color', help="force color output") parser.add_argument('-n', '--no-color', action='store_false', dest='color', help="force disable color output") parser.add_argument("-p", "--num-planets", dest="planets", help="List of map sizes to use", type=int, nargs='*', default=[6]) parser.add_argument("-m", "--num-matches", dest="matches", help="Amount of matches played per map size", type=int, default=1000) parser.add_argument("-t", "--max-time", dest="max_time", help="Maximum amount of time allowed per turn in seconds", type=float, default=5) parser.add_argument("-T", "--max-turns", dest="max_turns", help="Maximum amount of turns per game", type=int, default=100) parser.add_argument("model", help="Output file for model", type=str, default="./bots/featurebot/kr-model.pkl") parser.add_argument("players", metavar="player", help="Players for the game", type=str, nargs='+') parser.add_argument("-P", "--pool-size", dest="parallelism", help="Pool size for parallelism. Do not use unless you know what you are doing", type=int, default=multiprocessing.cpu_count()) parser.add_argument("-v", "--verbose", action="count", default=0, help="Show more output") parser.add_argument("-a", "--asym", dest="asym", help="Whether to start with an asymmetric state.", action="store_true") parser.set_defaults(color=has_colours(sys.stdout)) args = parser.parse_args() if __name__ == "__main__": optparse() main()
mit
cvjena/libmaxdiv
experiments/gaussian_bias.py
1
1754
""" Create an example for the small-interval bias of the KL divergence. """ import sys sys.path.append('..') import numpy as np import matplotlib.pylab as plt from maxdiv.maxdiv import maxdiv from maxdiv.eval import plotDetections # Create synthetic time series with one/two huge flat region(s) mean = 5.0 sd = 2.0 ts_len = 500 window_center1 = 350 window_center2 = 100 window_sd = 10 np.random.seed(0) gauss_window1 = np.exp(-0.5 * ((np.arange(0.0, ts_len) - window_center1) ** 2) / (window_sd ** 2)) gauss_window2 = np.exp(-0.5 * ((np.arange(0.0, ts_len) - window_center2) ** 2) / (window_sd ** 2)) ts = mean + np.random.randn(ts_len) * sd ts1 = gauss_window1 * ts + 0.1 * np.random.randn(ts_len) ts2 = (gauss_window1 + gauss_window2) * ts + 0.1 * np.random.randn(ts_len) gt = [(window_center1 - 3 * window_sd, window_center1 + 3 * window_sd + 1), (window_center2 - 3 * window_sd, window_center2 + 3 * window_sd + 1)] # Apply MDI Gaussian on different scenarios print('--- OMEGA_I on single extremum ---') det = maxdiv(ts1.reshape((1, ts_len)), 'gaussian_cov', None, mode = 'OMEGA_I', extint_min_len = 10, extint_max_len = 8 * window_sd, preproc = 'td') plotDetections(ts1.reshape((1, ts_len)), det, [gt[0]], silent = False) print('--- I_OMEGA on single extremum ---') det = maxdiv(ts1.reshape((1, ts_len)), 'gaussian_cov', None, mode = 'I_OMEGA', extint_min_len = 10, extint_max_len = 8 * window_sd, preproc = 'td') plotDetections(ts1.reshape((1, ts_len)), det, [gt[0]], silent = False) print('--- I_OMEGA on two extrema ---') det = maxdiv(ts2.reshape((1, ts_len)), 'gaussian_cov', None, mode = 'I_OMEGA', extint_min_len = 10, extint_max_len = 8 * window_sd, preproc = 'td') plotDetections(ts2.reshape((1, ts_len)), det, gt, silent = False)
lgpl-3.0
veeresht/CommPy
commpy/examples/conv_encode_decode.py
1
5009
# Authors: CommPy contributors # License: BSD 3-Clause from __future__ import division, print_function # Python 2 compatibility import math import matplotlib.pyplot as plt import numpy as np import commpy.channelcoding.convcode as cc import commpy.channels as chan import commpy.links as lk import commpy.modulation as mod import commpy.utilities as util # ============================================================================= # Convolutional Code 1: G(D) = [1+D^2, 1+D+D^2] # Standard code with rate 1/2 # ============================================================================= # Number of delay elements in the convolutional encoder memory = np.array(2, ndmin=1) # Generator matrix g_matrix = np.array((0o5, 0o7), ndmin=2) # Create trellis data structure trellis1 = cc.Trellis(memory, g_matrix) # ============================================================================= # Convolutional Code 1: G(D) = [1+D^2, 1+D^2+D^3] # Standard code with rate 1/2 # ============================================================================= # Number of delay elements in the convolutional encoder memory = np.array(3, ndmin=1) # Generator matrix (1+D^2+D^3 <-> 13 or 0o15) g_matrix = np.array((0o5, 0o15), ndmin=2) # Create trellis data structure trellis2 = cc.Trellis(memory, g_matrix) # ============================================================================= # Convolutional Code 2: G(D) = [[1, 0, 0], [0, 1, 1+D]]; F(D) = [[D, D], [1+D, 1]] # RSC with rate 2/3 # ============================================================================= # Number of delay elements in the convolutional encoder memory = np.array((1, 1)) # Generator matrix & feedback matrix g_matrix = np.array(((1, 0, 0), (0, 1, 3))) feedback = np.array(((2, 2), (3, 1))) # Create trellis data structure trellis3 = cc.Trellis(memory, g_matrix, feedback, 'rsc') # ============================================================================= # Basic example using homemade counting and hard decoding # ============================================================================= # Traceback depth of the decoder tb_depth = None # Default value is 5 times the number or memories for trellis in (trellis1, trellis2, trellis3): for i in range(10): # Generate random message bits to be encoded message_bits = np.random.randint(0, 2, 1000) # Encode message bits coded_bits = cc.conv_encode(message_bits, trellis) # Introduce bit errors (channel) coded_bits[np.random.randint(0, 1000)] = 0 coded_bits[np.random.randint(0, 1000)] = 0 coded_bits[np.random.randint(0, 1000)] = 1 coded_bits[np.random.randint(0, 1000)] = 1 # Decode the received bits decoded_bits = cc.viterbi_decode(coded_bits.astype(float), trellis, tb_depth) num_bit_errors = util.hamming_dist(message_bits, decoded_bits[:len(message_bits)]) if num_bit_errors != 0: print(num_bit_errors, "Bit Errors found!") elif i == 9: print("No Bit Errors :)") # ================================================================================================== # Complete example using Commpy features and compare hard and soft demodulation. Example with code 1 # ================================================================================================== # Modem : QPSK modem = mod.QAMModem(4) # AWGN channel channels = chan.SISOFlatChannel(None, (1 + 0j, 0j)) # SNR range to test SNRs = np.arange(0, 6) + 10 * math.log10(modem.num_bits_symbol) # Modulation function def modulate(bits): return modem.modulate(cc.conv_encode(bits, trellis1, 'cont')) # Receiver function (no process required as there are no fading) def receiver_hard(y, h, constellation, noise_var): return modem.demodulate(y, 'hard') # Receiver function (no process required as there are no fading) def receiver_soft(y, h, constellation, noise_var): return modem.demodulate(y, 'soft', noise_var) # Decoder function def decoder_hard(msg): return cc.viterbi_decode(msg, trellis1) # Decoder function def decoder_soft(msg): return cc.viterbi_decode(msg, trellis1, decoding_type='soft') # Build model from parameters code_rate = trellis1.k / trellis1.n model_hard = lk.LinkModel(modulate, channels, receiver_hard, modem.num_bits_symbol, modem.constellation, modem.Es, decoder_hard, code_rate) model_soft = lk.LinkModel(modulate, channels, receiver_soft, modem.num_bits_symbol, modem.constellation, modem.Es, decoder_soft, code_rate) # Test BERs_hard = model_hard.link_performance(SNRs, 10000, 600, 5000, code_rate) BERs_soft = model_soft.link_performance(SNRs, 10000, 600, 5000, code_rate) plt.semilogy(SNRs, BERs_hard, 'o-', SNRs, BERs_soft, 'o-') plt.grid() plt.xlabel('Signal to Noise Ration (dB)') plt.ylabel('Bit Error Rate') plt.legend(('Hard demodulation', 'Soft demodulation')) plt.show()
bsd-3-clause
RosesTheN00b/BudgetButlerWeb
butler_offline/core/database/sparen/depotauszuege.py
1
3510
from butler_offline.core.database.database_object import DatabaseObject import pandas as pd import numpy as np class Depotauszuege(DatabaseObject): TABLE_HEADER = ['Datum', 'Depotwert', 'Konto', 'Wert'] def __init__(self): super().__init__(self.TABLE_HEADER) def add(self, datum, depotwert, konto, wert): neuer_auszug = pd.DataFrame([[datum, depotwert, konto, wert]], columns=self.TABLE_HEADER) self.content = self.content.append(neuer_auszug, ignore_index=True) self.taint() self._sort() def get_all(self): return self.content def edit(self, index, datum, depotwert, konto, wert): self.edit_element(index, { 'Datum': datum, 'Depotwert': depotwert, 'Konto': konto, 'Wert': wert }) def get_by(self, datum, konto): auszuege = self.content[self.content.Konto == konto].copy() auszuege = auszuege[auszuege.Datum == datum] return auszuege def get_latest_datum_by(self, konto): auszuege = self.content[self.content.Konto == konto].copy() if len(auszuege) == 0: return None return auszuege.Datum.max() def resolve_index(self, datum, konto, depotwert): auszuege = self.get_by(datum, konto) result_frame = auszuege[auszuege.Depotwert == depotwert] if len(result_frame) == 0: return None return result_frame.index[0] def exists_wert(self, konto, depotwert): frame = self.content[self.content.Konto == konto].copy() frame = frame[frame.Depotwert == depotwert] return len(frame) != 0 def get_kontostand_by(self, konto): latest_datum = self.get_latest_datum_by(konto) if not latest_datum: return 0 auszuege = self.content[self.content.Konto == konto].copy() auszug = auszuege[auszuege.Datum == latest_datum] return auszug.Wert.sum() def get_depotwert_by(self, depotwert): auszuege = self.content[self.content.Depotwert == depotwert].copy() if len(auszuege) == 0: return 0 kontos = set(auszuege.Konto.tolist()) gesamt = 0 for konto in kontos: konto_auszuege = auszuege[auszuege.Konto == konto].copy() datum_max = konto_auszuege.Datum.max() gesamt += konto_auszuege[konto_auszuege.Datum == datum_max].Wert.sum() return gesamt def delete_depotauszug(self, datum, konto): index = self._resolve_indices(konto, datum) for i in index: self.delete(i) def _resolve_indices(self, konto, datum): values = self.content[self.content.Konto == konto].copy() return values[values.Datum == datum].index.tolist() def get_all(self): return self.content def resolve_konto(self, index): return self.content.loc[index, 'Konto'] def resolve_datum(self, index): return self.content.loc[index, 'Datum'] def _sort(self): self.content = self.content.sort_values(by=['Datum', 'Konto', 'Depotwert']) self.content = self.content.reset_index(drop=True) def select_max_year(self, year): include = self.content.copy() include['datum_filter'] = include.Datum.map(lambda x: x.year) include = include[include.datum_filter <= year].copy() del include['datum_filter'] selected = Depotauszuege() selected.content = include return selected
agpl-3.0
fabianp/scikit-learn
examples/gaussian_process/plot_gpc_xor.py
104
2132
""" ======================================================================== Illustration of Gaussian process classification (GPC) on the XOR dataset ======================================================================== This example illustrates GPC on XOR data. Compared are a stationary, isotropic kernel (RBF) and a non-stationary kernel (DotProduct). On this particular dataset, the DotProduct kernel obtains considerably better results because the class-boundaries are linear and coincide with the coordinate axes. In general, stationary kernels often obtain better results. """ print(__doc__) # Authors: Jan Hendrik Metzen <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF, DotProduct xx, yy = np.meshgrid(np.linspace(-3, 3, 50), np.linspace(-3, 3, 50)) rng = np.random.RandomState(0) X = rng.randn(200, 2) Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0) # fit the model plt.figure(figsize=(10, 5)) kernels = [1.0 * RBF(length_scale=1.0), 1.0 * DotProduct(sigma_0=1.0)**2] for i, kernel in enumerate(kernels): clf = GaussianProcessClassifier(kernel=kernel, warm_start=True).fit(X, Y) # plot the decision function for each datapoint on the grid Z = clf.predict_proba(np.vstack((xx.ravel(), yy.ravel())).T)[:, 1] Z = Z.reshape(xx.shape) plt.subplot(1, 2, i + 1) image = plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), aspect='auto', origin='lower', cmap=plt.cm.PuOr_r) contours = plt.contour(xx, yy, Z, levels=[0], linewidths=2, linetypes='--') plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired) plt.xticks(()) plt.yticks(()) plt.axis([-3, 3, -3, 3]) plt.colorbar(image) plt.title("%s\n Log-Marginal-Likelihood:%.3f" % (clf.kernel_, clf.log_marginal_likelihood(clf.kernel_.theta)), fontsize=12) plt.tight_layout() plt.show()
bsd-3-clause
ajoros/ves_ajoros
ves/equations.py
1
17103
import numpy as np np.seterr(all='ignore') from numpy import nan import scipy.integrate as integrate import scipy.interpolate as interpolate import scipy.special as special def wennerResistivity(voltageSpacing, Vm, I): """Wenner spacing apparent restivity implementation Parameters ---------- voltageSpacing: `np.array.npfloat` Distance between the central location an a probing point Vm: `np.array.npfloat` The mean voltage of the four readings taken at the probing point I: `np.array.npfloat` The mean current of the four readings taken at the probing locale Notes ----- The Wenner layout of the probes requires that all probes be evenly spaced Returns ------- apparentResitivity: `np.array.float` The apparent resitivity as calculated via the Wenner approach """ a = voltageSpacing[0] * 2 apparentResitivity = 2 * np.pi * a * (Vm / I) return apparentResitivity def schlumbergerResistivity(voltageSpacing, Vm, I): """Schlumberger spacing apprent resitivity implementation Parameters ---------- voltageSpacing: `np.array.float64` Distance between the central location an a probing point Vm: `np.array.npfloat` The mean voltage of the four readings taken at the probing point I: `np.array.npfloat` The mean current of the four readings taken at the probing locale Notes ----- The Schlumber layout requires a particular spacing. The probes must be separated from the central point by 0.6, 1.0, 1.6, 2.0, 3.0, 6.0, 9.0, 15.0, 20.0, 30.0, and 60 (meters) Returns ------- apparentResitivity: `np.array.float` The apparent resitivity as calculated via the Wenner approach """ # Initialize empty arrays that are the same length as voltage spacing nRows = len(voltageSpacing) s, L = np.empty(nRows), np.empty(nRows) s[:], L[:] = np.nan, np.nan # Create arrays of offset distances to define s and L for each data point # See Clark, 2011 for i in range(nRows): if i == len(voltageSpacing) - 1: break s[i] = voltageSpacing[i] L[i] = voltageSpacing[i + 1] apparentResitivity = (np.pi * Vm * (L**2 - s**2)) / (2 * s * I) return apparentResitivity def schlumbergerResistivityModified(voltageSpacing, Vm, I): """Alternative impleMENtation for a modified Schlumber arrangement""" apparentResitivity = 2 * np.pi * voltageSpacing * (Vm / I) return apparentResitivity def T(lam, rhoA, rhoB, rhoM, dA): TTT = ( (rhoB + rhoM * np.tanh(lam * dA)) / (1. + (rhoB / rhoM) * np.tanh(lam * dA)) ) TT = ( (TTT + rhoA * np.tanh(lam * 5.)) / (1. + (TTT / rhoA) * np.tanh(lam * 5.)) ) return TT def integrand(lam, rhoA, rhoB, rhoM, dA): kernel = lam * (T(lam, rhoA, rhoB, rhoM, dA) - rhoA) integrandResult = kernel * special.jn(1, r * lam) return integrandResult def apparentResitivity(aSpacing, ab, dA): for a in aSpacing: rhoA = a answers, rhoplot, rplot = [], [], [] for r in ab: integral = integrate.quad(integrand, 0, np.inf, limit=100) answer = rhoA + (r**2) * float(integral[0]) answers.append(answer) rplot.append(r / dA) rhoplot.append(answer / rhoA) del answer, integral return (answers, rplot, rhoplot) def interpolateFieldData(voltageSpacing, apparentResistivity, arraySpacing, bounds_error=True): """""" # Define the recommended sample interval from Gosh 1971 # np.log is natural log sampleInterval = np.log(10) / 3. # Deal with the fact that Schlumberger layout produces nan as last value apparentResistivity[np.isnan(apparentResistivity)] = np.nanmax( apparentResistivity) lastApparentRestivity = apparentResistivity[-1] ## The following two steps are done to ensure np.interpolate can produce ## new values, as it mandates that the new values be contained within the ## range of values used to produce the function; ## Gosh refers to this as extrapolation # Extend the voltageSpacing and apparentRestivity arrays # New arrays for max and min sample ranges # voltageSpacingInsertion = np.array( # [voltageSpacing[0] - sampleInterval * i + 1 for i in range(3)]) # voltageSpacingAppend = np.array( # [voltageSpacing[0] + sampleInterval * i + 1 for i in range(3)]) if arraySpacing.lower() == 'schlumberger': voltageSpacingInsertion = np.array( [0 - sampleInterval * i + 1 for i in range(3)]) voltageSpacingAppend = np.array( [0 + sampleInterval * i + 1 for i in range(3)]) if arraySpacing.lower() == 'wenner': voltageSpacing = voltageSpacing - sampleInterval voltageSpacingInsertion = np.array( [-0.48 - sampleInterval * i + 1 for i in range(3)]) voltageSpacingAppend = np.array( [-0.48 + sampleInterval * i + 1 for i in range(3)]) apparentResistivityInsertion = np.empty(3) apparentResistivityInsertion.fill(apparentResistivity[0]) apparentResistivityAppend = np.empty(3) apparentResistivityAppend.fill(lastApparentRestivity) # New arrays with the extended values for input into scipy.interpolate # Voltage Spacing (m) voltageSpacingExtrapolated = np.insert( voltageSpacing, 0, voltageSpacingInsertion) voltageSpacingExtrapolated = np.append( voltageSpacingExtrapolated, voltageSpacingAppend) voltageSpacingExtrapolated.sort() # Apparent Restivity (ohm-m) apparentResistivityExtrapolate = np.insert( apparentResistivity, 0, apparentResistivityInsertion) apparentResistivityExtrapolate = np.append( apparentResistivityExtrapolate, apparentResistivityAppend) # # Replace nan values with the maximum # apparentResistivityExtrapolate[np.isnan( # apparentResistivityExtrapolate)] = np.nanmax(apparentResistivity) # Interpolate the measured resistivity data if len(voltageSpacingExtrapolated) > len(apparentResistivityExtrapolate): voltageSpacingExtrapolated = ( voltageSpacingExtrapolated[:len(apparentResistivityExtrapolate)]) if len(apparentResistivityExtrapolate) > len(voltageSpacingExtrapolated): apparentResistivityExtrapolate = ( apparentResistivityExtrapolate[:len(voltageSpacingExtrapolated)]) function = interpolate.interp1d( voltageSpacingExtrapolated, apparentResistivityExtrapolate, bounds_error=bounds_error) newRestivity = function(voltageSpacingExtrapolated) return (voltageSpacingExtrapolated, newRestivity) def applyFilter(extrapolatedResistivity, filterCoefficients): """""" # Calculate the last index of the extrapolated resistivity values # upon which the filters are to be applied lastIndex = len(extrapolatedResistivity) - len(filterCoefficients) # Fill a list with numpy arrays of the extrapolated resistivity values # with the digitial filter coefficients systematically applied resistList = [] for i in range(lastIndex): resistOut = np.copy(extrapolatedResistivity) for j in range(len(filterCoefficients)): try: resistOut[(i + 1) + j] = ( resistOut[(i + 1) + j] * filterCoefficients[j]) except IndexError: break resistList.append(resistOut) del resistOut # Collapse the list into a one dimensional array of the sum of all the # extrapolated values with the digital filter coefficients applied resistArray = np.array(resistList) # resistArray.dump('/Users/avitale/Desktop/array') # load with np.load filteredApparentResistivity = np.nansum(resistArray, axis=0) return filteredApparentResistivity if __name__ == '__main__': sleep_time = 0.5 # Import time to control the printing a bit import time # I'm using Qt5 as the matplotlib backend because I'm on a minimal # environment. Comment out the next two lines if you're having problems # related to the matplotlib backend # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! import matplotlib matplotlib.use('Qt5Agg') import matplotlib.pyplot as plt plt.style.use('bmh') # Prettier defaults on matplotlib.__version__ >= 1.5 # plt.hold(False) # Don't hold on first plt.show() import matplotlib.lines as mlines # to create manual legend # Import some parameters that are defined elsewhere from templates.tempData import ( colors, tableData, coefficients) from aggregate import aggregateTable schlumberferFilterCoefficients, wennerFilterCoefficients = coefficients sampleInterval = np.log(10) / 3. # Print out the table that is the "input" table from the field survey print('Schlumberger example:') time.sleep(sleep_time) print('This is the starting table:') for row in tableData: print(row) # Aggregate the table to get the mean voltage and current voltageSpacing, meanVoltage, meanCurrent = aggregateTable( tableData) # Print out the aggregated values print('\nVoltage Spacing: {}\nMean Voltage: {}'.format( voltageSpacing, meanVoltage)) print('Mean Current: {}'.format(meanCurrent)) # Use the modified Schlumberger equation like that used in the spreadsheet apparentResistivity = schlumbergerResistivityModified( voltageSpacing, meanVoltage, meanCurrent) print('\nApparent resistivity (same formula as ' + 'spreadsheet for Schlum):\n{}'.format(apparentResistivity)) # Interpolate the field data to get values at Gosh's suggested intervals voltageSpacingExtrapolated, newRestivity = interpolateFieldData( voltageSpacing, apparentResistivity, 'schlumberger') print('\nNew Resitivity values:\n{}'.format(newRestivity)) # Apply the filter coefficients. In this case, using the Schlumber short # coeffieients for the digital filter filteredResistivity = applyFilter(newRestivity, shortFilterCoefficients) print('\nFiltered resistivity after coefficients applied:\n{}'.format( filteredResistivity)) # Create poitns for the plot samplePoints = np.arange( start=( - sampleInterval * 2), stop=sampleInterval * 30, step=sampleInterval) print("\nNew sample points based on Gosh's suggested interval:\n{}".format( samplePoints)) print('\nCoefficients:') print(' Schlum. short:\n {}'.format(shortFilterCoefficients)) print(' Schlum. long: \n {}'.format(longFilterCoefficients)) print(' Wenner. short:\n {}'.format(wennerFilterCoefficients)) # Plot out the results print(len(samplePoints)) print(len(filteredResistivity)) plt.semilogy(samplePoints[:len(filteredResistivity)], filteredResistivity, marker='o', linestyle='--', color='#348ABD') plt.semilogy(voltageSpacing, apparentResistivity, marker='o', linestyle='-', color='#A60628') plt.xlabel('Electrode Spacing (m)') plt.ylabel('Apparent Resitivity (ohm-m)') blue_line = mlines.Line2D( [], [], marker='o',linestyle='--', label='Filtered values', color='#348ABD') red_lines = mlines.Line2D( [], [], marker='o', linestyle='-', label='Field values', color='#A60628') plt.legend( handles=[blue_line, red_lines], bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, mode="expand", borderaxespad=0.) plt.show() with open('./ves/templates/MafingaExample.txt', 'r') as f: lines = f.read() newLines = [line.split(' ') for line in lines.split('\n')] wennerVoltageSpacing, wennerApparentResistivity = [], [] for line in newLines[2:-3]: try: wennerVoltageSpacing.append(line.pop(0)) wennerApparentResistivity.append(line.pop(-1)) except IndexError: pass print('\n\nWenner Example:') time.sleep(sleep_time) print('Probe spacing (m), apparent res.') for spacing, res in zip(wennerVoltageSpacing, wennerApparentResistivity): print('{:<17} {:<12}'.format(spacing, res)) wennerVoltageSpacing = np.array( wennerVoltageSpacing, dtype=np.float64) wennerApparentResistivity = np.array( wennerApparentResistivity, dtype=np.float64) # Interpolate the field data to get values at Gosh's suggested intervals voltageSpacingExtrapolated, newRestivity = interpolateFieldData( wennerVoltageSpacing, wennerApparentResistivity, 'wenner') print('\nNew Resitivity values:\n{}'.format(newRestivity)) # Apply the filter coefficients. In this case, using the Schlumber short # coeffieients for the digital filter filteredResistivity = applyFilter(newRestivity, wennerFilterCoefficients) print('\nFiltered resistivity after coefficients applied:\n{}'.format( filteredResistivity)) # Create poitns for the plot samplePoints = np.arange( start=( - sampleInterval * 2), stop=sampleInterval * 20, step=sampleInterval) print('\nNew sample points based on Gosh\'s suggested interval:\n{}'.format( samplePoints)) print('\nCoefficients:') print(' Schlum. short:\n {}'.format(shortFilterCoefficients)) print(' Schlum. long: \n {}'.format(longFilterCoefficients)) print(' Wenner. short:\n {}'.format(wennerFilterCoefficients)) # Plot out the results plt.semilogy(samplePoints[:len(filteredResistivity)], filteredResistivity, marker='o', linestyle='--', color='#348ABD') plt.semilogy(voltageSpacing, apparentResistivity, marker='o', linestyle='-', color='#A60628') plt.xlabel('Electrode Spacing (m)') plt.ylabel('Apparent Resitivity (ohm-m)') blue_line = mlines.Line2D( [], [], marker='o',linestyle='--', label='Filtered values', color='#348ABD') red_lines = mlines.Line2D( [], [], marker='o', linestyle='-', label='Field values', color='#A60628') plt.legend( handles=[blue_line, red_lines], bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, mode="expand", borderaxespad=0.) plt.show() with open('./ves/templates/UgandaPIM.txt', 'r') as f: lines = f.read() newLines = [line.split(' ') for line in lines.split('\n')] wennerVoltageSpacing, wennerApparentResistivity = [], [] for line in newLines[2:-3]: try: wennerVoltageSpacing.append(line.pop(0)) wennerApparentResistivity.append(line.pop(-1)) except IndexError: pass print('\n\nWenner Example 2:') time.sleep(sleep_time) print('Probe spacing (m), apparent res.') for spacing, res in zip(wennerVoltageSpacing, wennerApparentResistivity): print('{:<17} {:<12}'.format(spacing, res)) wennerVoltageSpacing = np.array( wennerVoltageSpacing, dtype=np.float64) wennerApparentResistivity = np.array( wennerApparentResistivity, dtype=np.float64) # Interpolate the field data to get values at Gosh's suggested intervals voltageSpacingExtrapolated, newRestivity = interpolateFieldData( wennerVoltageSpacing, wennerApparentResistivity, 'wenner') print('\nNew Resitivity values:\n{}'.format(newRestivity)) # Apply the filter coefficients. In this case, using the Schlumber short # coeffieients for the digital filter filteredResistivity = applyFilter(newRestivity, wennerFilterCoefficients) print('\nFiltered resistivity after coefficients applied:\n{}'.format( filteredResistivity)) # Create poitns for the plot samplePoints = np.arange( start=( - sampleInterval * 2), stop=sampleInterval * 20, step=sampleInterval) print('\nNew sample points based on Gosh\'s suggested interval:\n{}'.format( samplePoints)) print('\nCoefficients:') print(' Schlum. short:\n {}'.format(shortFilterCoefficients)) print(' Schlum. long: \n {}'.format(longFilterCoefficients)) print(' Wenner. short:\n {}'.format(wennerFilterCoefficients)) # print(samplePoints[:len(filteredResistivity)]) # Plot out the results plt.semilogy(samplePoints[:len(filteredResistivity)], filteredResistivity, marker='o', linestyle='--', color='#348ABD') plt.semilogy(voltageSpacing, apparentResistivity, marker='o', linestyle='-', color='#A60628') plt.xlabel('Electrode Spacing (m)') plt.ylabel('Apparent Resitivity (ohm-m)') blue_line = mlines.Line2D( [], [], marker='o',linestyle='--', label='Filtered values', color='#348ABD') red_lines = mlines.Line2D( [], [], marker='o', linestyle='-', label='Field values', color='#A60628') plt.legend( handles=[blue_line, red_lines], bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, mode="expand", borderaxespad=0.) plt.show()
lgpl-3.0
uelei/api_cluster
back/trainning.py
1
1208
# -*- coding: utf-8 -*- import json from .database import db from .models import ClusterLogs import numpy as np from sklearn.cluster import MeanShift, estimate_bandwidth __author__ = 'wesleywwerneck' def train_cluster(): rows, data = get_train_data() data_set = np.array(data) bandwidth = estimate_bandwidth(data_set, quantile=0.2, n_samples=200) ms = MeanShift(bandwidth=bandwidth, cluster_all=False, bin_seeding=True) labels = ms.fit_predict(data_set) print(labels) for row, label in zip(rows, labels): row.label = int(label) db.session.commit() return labels def get_train_data(): data = [] rows = ClusterLogs.query.filter_by(label=None) for log in rows: formated_data = format_data_set_peaks(log) data.append(formated_data[1::]) return rows, data def format_data_set_peaks(data): selected = [ 'PowerActive', 'PowerReactive', 'PowerAppearent', 'LineCurrent', 'LineVoltage', 'Peaks' ] clean = [getattr(data, s) for s in selected] list_peaks = [float(l) for l in json.loads(clean[5])[:3]] clean_list = clean[:5] + list_peaks return clean_list
mit
davidgbe/scikit-learn
examples/applications/plot_model_complexity_influence.py
323
6372
""" ========================== Model Complexity Influence ========================== Demonstrate how model complexity influences both prediction accuracy and computational performance. The dataset is the Boston Housing dataset (resp. 20 Newsgroups) for regression (resp. classification). For each class of models we make the model complexity vary through the choice of relevant model parameters and measure the influence on both computational performance (latency) and predictive power (MSE or Hamming Loss). """ print(__doc__) # Author: Eustache Diemert <[email protected]> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.parasite_axes import host_subplot from mpl_toolkits.axisartist.axislines import Axes from scipy.sparse.csr import csr_matrix from sklearn import datasets from sklearn.utils import shuffle from sklearn.metrics import mean_squared_error from sklearn.svm.classes import NuSVR from sklearn.ensemble.gradient_boosting import GradientBoostingRegressor from sklearn.linear_model.stochastic_gradient import SGDClassifier from sklearn.metrics import hamming_loss ############################################################################### # Routines # initialize random generator np.random.seed(0) def generate_data(case, sparse=False): """Generate regression/classification data.""" bunch = None if case == 'regression': bunch = datasets.load_boston() elif case == 'classification': bunch = datasets.fetch_20newsgroups_vectorized(subset='all') X, y = shuffle(bunch.data, bunch.target) offset = int(X.shape[0] * 0.8) X_train, y_train = X[:offset], y[:offset] X_test, y_test = X[offset:], y[offset:] if sparse: X_train = csr_matrix(X_train) X_test = csr_matrix(X_test) else: X_train = np.array(X_train) X_test = np.array(X_test) y_test = np.array(y_test) y_train = np.array(y_train) data = {'X_train': X_train, 'X_test': X_test, 'y_train': y_train, 'y_test': y_test} return data def benchmark_influence(conf): """ Benchmark influence of :changing_param: on both MSE and latency. """ prediction_times = [] prediction_powers = [] complexities = [] for param_value in conf['changing_param_values']: conf['tuned_params'][conf['changing_param']] = param_value estimator = conf['estimator'](**conf['tuned_params']) print("Benchmarking %s" % estimator) estimator.fit(conf['data']['X_train'], conf['data']['y_train']) conf['postfit_hook'](estimator) complexity = conf['complexity_computer'](estimator) complexities.append(complexity) start_time = time.time() for _ in range(conf['n_samples']): y_pred = estimator.predict(conf['data']['X_test']) elapsed_time = (time.time() - start_time) / float(conf['n_samples']) prediction_times.append(elapsed_time) pred_score = conf['prediction_performance_computer']( conf['data']['y_test'], y_pred) prediction_powers.append(pred_score) print("Complexity: %d | %s: %.4f | Pred. Time: %fs\n" % ( complexity, conf['prediction_performance_label'], pred_score, elapsed_time)) return prediction_powers, prediction_times, complexities def plot_influence(conf, mse_values, prediction_times, complexities): """ Plot influence of model complexity on both accuracy and latency. """ plt.figure(figsize=(12, 6)) host = host_subplot(111, axes_class=Axes) plt.subplots_adjust(right=0.75) par1 = host.twinx() host.set_xlabel('Model Complexity (%s)' % conf['complexity_label']) y1_label = conf['prediction_performance_label'] y2_label = "Time (s)" host.set_ylabel(y1_label) par1.set_ylabel(y2_label) p1, = host.plot(complexities, mse_values, 'b-', label="prediction error") p2, = par1.plot(complexities, prediction_times, 'r-', label="latency") host.legend(loc='upper right') host.axis["left"].label.set_color(p1.get_color()) par1.axis["right"].label.set_color(p2.get_color()) plt.title('Influence of Model Complexity - %s' % conf['estimator'].__name__) plt.show() def _count_nonzero_coefficients(estimator): a = estimator.coef_.toarray() return np.count_nonzero(a) ############################################################################### # main code regression_data = generate_data('regression') classification_data = generate_data('classification', sparse=True) configurations = [ {'estimator': SGDClassifier, 'tuned_params': {'penalty': 'elasticnet', 'alpha': 0.001, 'loss': 'modified_huber', 'fit_intercept': True}, 'changing_param': 'l1_ratio', 'changing_param_values': [0.25, 0.5, 0.75, 0.9], 'complexity_label': 'non_zero coefficients', 'complexity_computer': _count_nonzero_coefficients, 'prediction_performance_computer': hamming_loss, 'prediction_performance_label': 'Hamming Loss (Misclassification Ratio)', 'postfit_hook': lambda x: x.sparsify(), 'data': classification_data, 'n_samples': 30}, {'estimator': NuSVR, 'tuned_params': {'C': 1e3, 'gamma': 2 ** -15}, 'changing_param': 'nu', 'changing_param_values': [0.1, 0.25, 0.5, 0.75, 0.9], 'complexity_label': 'n_support_vectors', 'complexity_computer': lambda x: len(x.support_vectors_), 'data': regression_data, 'postfit_hook': lambda x: x, 'prediction_performance_computer': mean_squared_error, 'prediction_performance_label': 'MSE', 'n_samples': 30}, {'estimator': GradientBoostingRegressor, 'tuned_params': {'loss': 'ls'}, 'changing_param': 'n_estimators', 'changing_param_values': [10, 50, 100, 200, 500], 'complexity_label': 'n_trees', 'complexity_computer': lambda x: x.n_estimators, 'data': regression_data, 'postfit_hook': lambda x: x, 'prediction_performance_computer': mean_squared_error, 'prediction_performance_label': 'MSE', 'n_samples': 30}, ] for conf in configurations: prediction_performances, prediction_times, complexities = \ benchmark_influence(conf) plot_influence(conf, prediction_performances, prediction_times, complexities)
bsd-3-clause
dsquareindia/scikit-learn
sklearn/tests/test_kernel_ridge.py
342
3027
import numpy as np import scipy.sparse as sp from sklearn.datasets import make_regression from sklearn.linear_model import Ridge from sklearn.kernel_ridge import KernelRidge from sklearn.metrics.pairwise import pairwise_kernels from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_array_almost_equal X, y = make_regression(n_features=10) Xcsr = sp.csr_matrix(X) Xcsc = sp.csc_matrix(X) Y = np.array([y, y]).T def test_kernel_ridge(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_csr(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsr, y).predict(Xcsr) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsr, y).predict(Xcsr) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_csc(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsc, y).predict(Xcsc) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsc, y).predict(Xcsc) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_singular_kernel(): # alpha=0 causes a LinAlgError in computing the dual coefficients, # which causes a fallback to a lstsq solver. This is tested here. pred = Ridge(alpha=0, fit_intercept=False).fit(X, y).predict(X) kr = KernelRidge(kernel="linear", alpha=0) ignore_warnings(kr.fit)(X, y) pred2 = kr.predict(X) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_precomputed(): for kernel in ["linear", "rbf", "poly", "cosine"]: K = pairwise_kernels(X, X, metric=kernel) pred = KernelRidge(kernel=kernel).fit(X, y).predict(X) pred2 = KernelRidge(kernel="precomputed").fit(K, y).predict(K) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_precomputed_kernel_unchanged(): K = np.dot(X, X.T) K2 = K.copy() KernelRidge(kernel="precomputed").fit(K, y) assert_array_almost_equal(K, K2) def test_kernel_ridge_sample_weights(): K = np.dot(X, X.T) # precomputed kernel sw = np.random.RandomState(0).rand(X.shape[0]) pred = Ridge(alpha=1, fit_intercept=False).fit(X, y, sample_weight=sw).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y, sample_weight=sw).predict(X) pred3 = KernelRidge(kernel="precomputed", alpha=1).fit(K, y, sample_weight=sw).predict(K) assert_array_almost_equal(pred, pred2) assert_array_almost_equal(pred, pred3) def test_kernel_ridge_multi_output(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, Y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, Y).predict(X) assert_array_almost_equal(pred, pred2) pred3 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) pred3 = np.array([pred3, pred3]).T assert_array_almost_equal(pred2, pred3)
bsd-3-clause
wwf5067/statsmodels
statsmodels/iolib/summary.py
8
34185
from statsmodels.compat.python import range, lrange, lmap, lzip, zip_longest import numpy as np from statsmodels.iolib.table import SimpleTable from statsmodels.iolib.tableformatting import (gen_fmt, fmt_2, fmt_params, fmt_base, fmt_2cols) #from statsmodels.iolib.summary2d import summary_params_2dflat #from summary2d import summary_params_2dflat def forg(x, prec=3): if prec == 3: #for 3 decimals if (abs(x) >= 1e4) or (abs(x) < 1e-4): return '%9.3g' % x else: return '%9.3f' % x elif prec == 4: if (abs(x) >= 1e4) or (abs(x) < 1e-4): return '%10.4g' % x else: return '%10.4f' % x else: raise NotImplementedError def summary(self, yname=None, xname=None, title=0, alpha=.05, returns='text', model_info=None): """ Parameters ----------- yname : string optional, Default is `Y` xname : list of strings optional, Default is `X.#` for # in p the number of regressors Confidance interval : (0,1) not implimented title : string optional, Defualt is 'Generalized linear model' returns : string 'text', 'table', 'csv', 'latex', 'html' Returns ------- Defualt : returns='print' Prints the summarirized results Option : returns='text' Prints the summarirized results Option : returns='table' SimpleTable instance : summarizing the fit of a linear model. Option : returns='csv' returns a string of csv of the results, to import into a spreadsheet Option : returns='latex' Not implimented yet Option : returns='HTML' Not implimented yet Examples (needs updating) -------- >>> import statsmodels as sm >>> data = sm.datasets.longley.load() >>> data.exog = sm.add_constant(data.exog) >>> ols_results = sm.OLS(data.endog, data.exog).results >>> print ols_results.summary() ... Notes ----- conf_int calculated from normal dist. """ import time as time #TODO Make sure all self.model.__class__.__name__ are listed model_types = {'OLS' : 'Ordinary least squares', 'GLS' : 'Generalized least squares', 'GLSAR' : 'Generalized least squares with AR(p)', 'WLS' : 'Weigthed least squares', 'RLM' : 'Robust linear model', 'GLM' : 'Generalized linear model' } model_methods = {'OLS' : 'Least Squares', 'GLS' : 'Least Squares', 'GLSAR' : 'Least Squares', 'WLS' : 'Least Squares', 'RLM' : '?', 'GLM' : '?' } if title==0: title = model_types[self.model.__class__.__name__] if yname is None: try: yname = self.model.endog_names except AttributeError: yname = 'y' if xname is None: try: xname = self.model.exog_names except AttributeError: xname = ['var_%d' % i for i in range(len(self.params))] time_now = time.localtime() time_of_day = [time.strftime("%H:%M:%S", time_now)] date = time.strftime("%a, %d %b %Y", time_now) modeltype = self.model.__class__.__name__ #dist_family = self.model.family.__class__.__name__ nobs = self.nobs df_model = self.df_model df_resid = self.df_resid #General part of the summary table, Applicable to all? models #------------------------------------------------------------ #TODO: define this generically, overwrite in model classes #replace definition of stubs data by single list #e.g. gen_left = [('Model type:', [modeltype]), ('Date:', [date]), ('Dependent Variable:', yname), #What happens with multiple names? ('df model', [df_model]) ] gen_stubs_left, gen_data_left = zip_longest(*gen_left) #transpose row col gen_title = title gen_header = None ## gen_stubs_left = ('Model type:', ## 'Date:', ## 'Dependent Variable:', ## 'df model' ## ) ## gen_data_left = [[modeltype], ## [date], ## yname, #What happens with multiple names? ## [df_model] ## ] gen_table_left = SimpleTable(gen_data_left, gen_header, gen_stubs_left, title = gen_title, txt_fmt = gen_fmt ) gen_stubs_right = ('Method:', 'Time:', 'Number of Obs:', 'df resid' ) gen_data_right = ([modeltype], #was dist family need to look at more time_of_day, [nobs], [df_resid] ) gen_table_right = SimpleTable(gen_data_right, gen_header, gen_stubs_right, title = gen_title, txt_fmt = gen_fmt ) gen_table_left.extend_right(gen_table_right) general_table = gen_table_left #Parameters part of the summary table #------------------------------------ #Note: this is not necessary since we standardized names, only t versus normal tstats = {'OLS' : self.t(), 'GLS' : self.t(), 'GLSAR' : self.t(), 'WLS' : self.t(), 'RLM' : self.t(), 'GLM' : self.t() } prob_stats = {'OLS' : self.pvalues, 'GLS' : self.pvalues, 'GLSAR' : self.pvalues, 'WLS' : self.pvalues, 'RLM' : self.pvalues, 'GLM' : self.pvalues } #Dictionary to store the header names for the parameter part of the #summary table. look up by modeltype alp = str((1-alpha)*100)+'%' param_header = { 'OLS' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'], 'GLS' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'], 'GLSAR' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'], 'WLS' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'], 'GLM' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'], #glm uses t-distribution 'RLM' : ['coef', 'std err', 'z', 'P>|z|', alp + ' Conf. Interval'] #checke z } params_stubs = xname params = self.params conf_int = self.conf_int(alpha) std_err = self.bse exog_len = lrange(len(xname)) tstat = tstats[modeltype] prob_stat = prob_stats[modeltype] # Simpletable should be able to handle the formating params_data = lzip(["%#6.4g" % (params[i]) for i in exog_len], ["%#6.4f" % (std_err[i]) for i in exog_len], ["%#6.4f" % (tstat[i]) for i in exog_len], ["%#6.4f" % (prob_stat[i]) for i in exog_len], ["(%#5g, %#5g)" % tuple(conf_int[i]) for i in \ exog_len] ) parameter_table = SimpleTable(params_data, param_header[modeltype], params_stubs, title = None, txt_fmt = fmt_2, #gen_fmt, ) #special table #------------- #TODO: exists in linear_model, what about other models #residual diagnostics #output options #-------------- #TODO: JP the rest needs to be fixed, similar to summary in linear_model def ols_printer(): """ print summary table for ols models """ table = str(general_table)+'\n'+str(parameter_table) return table def ols_to_csv(): """ exports ols summary data to csv """ pass def glm_printer(): table = str(general_table)+'\n'+str(parameter_table) return table pass printers = {'OLS': ols_printer, 'GLM' : glm_printer } if returns=='print': try: return printers[modeltype]() except KeyError: return printers['OLS']() def _getnames(self, yname=None, xname=None): '''extract names from model or construct names ''' if yname is None: if hasattr(self.model, 'endog_names') and ( not self.model.endog_names is None): yname = self.model.endog_names else: yname = 'y' if xname is None: if hasattr(self.model, 'exog_names') and ( not self.model.exog_names is None): xname = self.model.exog_names else: xname = ['var_%d' % i for i in range(len(self.params))] return yname, xname def summary_top(results, title=None, gleft=None, gright=None, yname=None, xname=None): '''generate top table(s) TODO: this still uses predefined model_methods ? allow gleft, gright to be 1 element tuples instead of filling with None? ''' #change of names ? gen_left, gen_right = gleft, gright #time and names are always included import time time_now = time.localtime() time_of_day = [time.strftime("%H:%M:%S", time_now)] date = time.strftime("%a, %d %b %Y", time_now) yname, xname = _getnames(results, yname=yname, xname=xname) #create dictionary with default #use lambdas because some values raise exception if they are not available #alternate spellings are commented out to force unique labels default_items = dict([ ('Dependent Variable:', lambda: [yname]), ('Dep. Variable:', lambda: [yname]), ('Model:', lambda: [results.model.__class__.__name__]), #('Model type:', lambda: [results.model.__class__.__name__]), ('Date:', lambda: [date]), ('Time:', lambda: time_of_day), ('Number of Obs:', lambda: [results.nobs]), #('No. of Observations:', lambda: ["%#6d" % results.nobs]), ('No. Observations:', lambda: ["%#6d" % results.nobs]), #('Df model:', lambda: [results.df_model]), ('Df Model:', lambda: ["%#6d" % results.df_model]), #TODO: check when we have non-integer df ('Df Residuals:', lambda: ["%#6d" % results.df_resid]), #('Df resid:', lambda: [results.df_resid]), #('df resid:', lambda: [results.df_resid]), #check capitalization ('Log-Likelihood:', lambda: ["%#8.5g" % results.llf]) #doesn't exist for RLM - exception #('Method:', lambda: [???]), #no default for this ]) if title is None: title = results.model.__class__.__name__ + 'Regression Results' if gen_left is None: #default: General part of the summary table, Applicable to all? models gen_left = [('Dep. Variable:', None), ('Model type:', None), ('Date:', None), ('No. Observations:', None), ('Df model:', None), ('Df resid:', None)] try: llf = results.llf gen_left.append(('Log-Likelihood', None)) except: #AttributeError, NotImplementedError pass gen_right = [] gen_title = title gen_header = None #needed_values = [k for k,v in gleft + gright if v is None] #not used anymore #replace missing (None) values with default values gen_left_ = [] for item, value in gen_left: if value is None: value = default_items[item]() #let KeyErrors raise exception gen_left_.append((item, value)) gen_left = gen_left_ if gen_right: gen_right_ = [] for item, value in gen_right: if value is None: value = default_items[item]() #let KeyErrors raise exception gen_right_.append((item, value)) gen_right = gen_right_ #check missing_values = [k for k,v in gen_left + gen_right if v is None] assert missing_values == [], missing_values #pad both tables to equal number of rows if gen_right: if len(gen_right) < len(gen_left): #fill up with blank lines to same length gen_right += [(' ', ' ')] * (len(gen_left) - len(gen_right)) elif len(gen_right) > len(gen_left): #fill up with blank lines to same length, just to keep it symmetric gen_left += [(' ', ' ')] * (len(gen_right) - len(gen_left)) #padding in SimpleTable doesn't work like I want #force extra spacing and exact string length in right table gen_right = [('%-21s' % (' '+k), v) for k,v in gen_right] gen_stubs_right, gen_data_right = zip_longest(*gen_right) #transpose row col gen_table_right = SimpleTable(gen_data_right, gen_header, gen_stubs_right, title = gen_title, txt_fmt = fmt_2cols #gen_fmt ) else: gen_table_right = [] #because .extend_right seems works with [] #moved below so that we can pad if needed to match length of gen_right #transpose rows and columns, `unzip` gen_stubs_left, gen_data_left = zip_longest(*gen_left) #transpose row col gen_table_left = SimpleTable(gen_data_left, gen_header, gen_stubs_left, title = gen_title, txt_fmt = fmt_2cols ) gen_table_left.extend_right(gen_table_right) general_table = gen_table_left return general_table #, gen_table_left, gen_table_right def summary_params(results, yname=None, xname=None, alpha=.05, use_t=True, skip_header=False, title=None): '''create a summary table for the parameters Parameters ---------- res : results instance some required information is directly taken from the result instance yname : string or None optional name for the endogenous variable, default is "y" xname : list of strings or None optional names for the exogenous variables, default is "var_xx" alpha : float significance level for the confidence intervals use_t : bool indicator whether the p-values are based on the Student-t distribution (if True) or on the normal distribution (if False) skip_headers : bool If false (default), then the header row is added. If true, then no header row is added. Returns ------- params_table : SimpleTable instance ''' #Parameters part of the summary table #------------------------------------ #Note: this is not necessary since we standardized names, only t versus normal if isinstance(results, tuple): #for multivariate endog #TODO: check whether I don't want to refactor this #we need to give parameter alpha to conf_int results, params, std_err, tvalues, pvalues, conf_int = results else: params = results.params std_err = results.bse tvalues = results.tvalues #is this sometimes called zvalues pvalues = results.pvalues conf_int = results.conf_int(alpha) #Dictionary to store the header names for the parameter part of the #summary table. look up by modeltype alp = str((1-alpha)*100)+'%' if use_t: param_header = ['coef', 'std err', 't', 'P>|t|', '[' + alp + ' Conf. Int.]'] else: param_header = ['coef', 'std err', 'z', 'P>|z|', '[' + alp + ' Conf. Int.]'] if skip_header: param_header = None _, xname = _getnames(results, yname=yname, xname=xname) params_stubs = xname exog_idx = lrange(len(xname)) #center confidence intervals if they are unequal lengths # confint = ["(%#6.3g, %#6.3g)" % tuple(conf_int[i]) for i in \ # exog_idx] confint = ["%s %s" % tuple(lmap(forg, conf_int[i])) for i in \ exog_idx] len_ci = lmap(len, confint) max_ci = max(len_ci) min_ci = min(len_ci) if min_ci < max_ci: confint = [ci.center(max_ci) for ci in confint] #explicit f/g formatting, now uses forg, f or g depending on values # params_data = lzip(["%#6.4g" % (params[i]) for i in exog_idx], # ["%#6.4f" % (std_err[i]) for i in exog_idx], # ["%#6.3f" % (tvalues[i]) for i in exog_idx], # ["%#6.3f" % (pvalues[i]) for i in exog_idx], # confint ## ["(%#6.3g, %#6.3g)" % tuple(conf_int[i]) for i in \ ## exog_idx] # ) params_data = lzip([forg(params[i], prec=4) for i in exog_idx], [forg(std_err[i]) for i in exog_idx], [forg(tvalues[i]) for i in exog_idx], ["%#6.3f" % (pvalues[i]) for i in exog_idx], confint # ["(%#6.3g, %#6.3g)" % tuple(conf_int[i]) for i in \ # exog_idx] ) parameter_table = SimpleTable(params_data, param_header, params_stubs, title = title, txt_fmt = fmt_params #gen_fmt #fmt_2, #gen_fmt, ) return parameter_table def summary_params_frame(results, yname=None, xname=None, alpha=.05, use_t=True): '''create a summary table for the parameters Parameters ---------- res : results instance some required information is directly taken from the result instance yname : string or None optional name for the endogenous variable, default is "y" xname : list of strings or None optional names for the exogenous variables, default is "var_xx" alpha : float significance level for the confidence intervals use_t : bool indicator whether the p-values are based on the Student-t distribution (if True) or on the normal distribution (if False) skip_headers : bool If false (default), then the header row is added. If true, then no header row is added. Returns ------- params_table : SimpleTable instance ''' #Parameters part of the summary table #------------------------------------ #Note: this is not necessary since we standardized names, only t versus normal if isinstance(results, tuple): #for multivariate endog #TODO: check whether I don't want to refactor this #we need to give parameter alpha to conf_int results, params, std_err, tvalues, pvalues, conf_int = results else: params = results.params std_err = results.bse tvalues = results.tvalues #is this sometimes called zvalues pvalues = results.pvalues conf_int = results.conf_int(alpha) #Dictionary to store the header names for the parameter part of the #summary table. look up by modeltype alp = str((1-alpha)*100)+'%' if use_t: param_header = ['coef', 'std err', 't', 'P>|t|', 'Conf. Int. Low', 'Conf. Int. Upp.'] else: param_header = ['coef', 'std err', 'z', 'P>|z|', 'Conf. Int. Low', 'Conf. Int. Upp.'] _, xname = _getnames(results, yname=yname, xname=xname) #------------------ from pandas import DataFrame table = np.column_stack((params, std_err, tvalues, pvalues, conf_int)) return DataFrame(table, columns=param_header, index=xname) def summary_params_2d(result, extras=None, endog_names=None, exog_names=None, title=None): '''create summary table of regression parameters with several equations This allows interleaving of parameters with bse and/or tvalues Parameters ---------- result : result instance the result instance with params and attributes in extras extras : list of strings additional attributes to add below a parameter row, e.g. bse or tvalues endog_names : None or list of strings names for rows of the parameter array (multivariate endog) exog_names : None or list of strings names for columns of the parameter array (exog) alpha : float level for confidence intervals, default 0.95 title : None or string Returns ------- tables : list of SimpleTable this contains a list of all seperate Subtables table_all : SimpleTable the merged table with results concatenated for each row of the parameter array ''' if endog_names is None: #TODO: note the [1:] is specific to current MNLogit endog_names = ['endog_%d' % i for i in np.unique(result.model.endog)[1:]] if exog_names is None: exog_names = ['var%d' %i for i in range(len(result.params))] #TODO: check formatting options with different values #res_params = [['%10.4f'%item for item in row] for row in result.params] res_params = [[forg(item, prec=4) for item in row] for row in result.params] if extras: #not None or non-empty #maybe this should be a simple triple loop instead of list comprehension? #below_list = [[['%10s' % ('('+('%10.3f'%v).strip()+')') extras_list = [[['%10s' % ('(' + forg(v, prec=3).strip() + ')') for v in col] for col in getattr(result, what)] for what in extras ] data = lzip(res_params, *extras_list) data = [i for j in data for i in j] #flatten stubs = lzip(endog_names, *[['']*len(endog_names)]*len(extras)) stubs = [i for j in stubs for i in j] #flatten #return SimpleTable(data, headers=exog_names, stubs=stubs) else: data = res_params stubs = endog_names # return SimpleTable(data, headers=exog_names, stubs=stubs, # data_fmts=['%10.4f']) import copy txt_fmt = copy.deepcopy(fmt_params) txt_fmt.update(dict(data_fmts = ["%s"]*result.params.shape[1])) return SimpleTable(data, headers=exog_names, stubs=stubs, title=title, # data_fmts = ["%s"]), txt_fmt = txt_fmt) def summary_params_2dflat(result, endog_names=None, exog_names=None, alpha=0.05, use_t=True, keep_headers=True, endog_cols=False): #skip_headers2=True): '''summary table for parameters that are 2d, e.g. multi-equation models Parameters ---------- result : result instance the result instance with params, bse, tvalues and conf_int endog_names : None or list of strings names for rows of the parameter array (multivariate endog) exog_names : None or list of strings names for columns of the parameter array (exog) alpha : float level for confidence intervals, default 0.95 use_t : bool indicator whether the p-values are based on the Student-t distribution (if True) or on the normal distribution (if False) keep_headers : bool If true (default), then sub-tables keep their headers. If false, then only the first headers are kept, the other headerse are blanked out endog_cols : bool If false (default) then params and other result statistics have equations by rows. If true, then equations are assumed to be in columns. Not implemented yet. Returns ------- tables : list of SimpleTable this contains a list of all seperate Subtables table_all : SimpleTable the merged table with results concatenated for each row of the parameter array ''' res = result params = res.params if params.ndim == 2: # we've got multiple equations n_equ = params.shape[1] if not len(endog_names) == params.shape[1]: raise ValueError('endog_names has wrong length') else: if not len(endog_names) == len(params): raise ValueError('endog_names has wrong length') n_equ = 1 #VAR doesn't have conf_int #params = res.params.T # this is a convention for multi-eq models if not isinstance(endog_names, list): #this might be specific to multinomial logit type, move? if endog_names is None: endog_basename = 'endog' else: endog_basename = endog_names #TODO: note, the [1:] is specific to current MNLogit endog_names = res.model.endog_names[1:] #check if we have the right length of names tables = [] for eq in range(n_equ): restup = (res, res.params[:,eq], res.bse[:,eq], res.tvalues[:,eq], res.pvalues[:,eq], res.conf_int(alpha)[eq]) #not used anymore in current version # if skip_headers2: # skiph = (row != 0) # else: # skiph = False skiph = False tble = summary_params(restup, yname=endog_names[eq], xname=exog_names, alpha=alpha, use_t=use_t, skip_header=skiph) tables.append(tble) #add titles, they will be moved to header lines in table_extend for i in range(len(endog_names)): tables[i].title = endog_names[i] table_all = table_extend(tables, keep_headers=keep_headers) return tables, table_all def table_extend(tables, keep_headers=True): '''extend a list of SimpleTables, adding titles to header of subtables This function returns the merged table as a deepcopy, in contrast to the SimpleTable extend method. Parameters ---------- tables : list of SimpleTable instances keep_headers : bool If true, then all headers are kept. If falls, then the headers of subtables are blanked out. Returns ------- table_all : SimpleTable merged tables as a single SimpleTable instance ''' from copy import deepcopy for ii, t in enumerate(tables[:]): #[1:]: t = deepcopy(t) #move title to first cell of header #TODO: check if we have multiline headers if t[0].datatype == 'header': t[0][0].data = t.title t[0][0]._datatype = None t[0][0].row = t[0][1].row if not keep_headers and (ii > 0): for c in t[0][1:]: c.data = '' #add separating line and extend tables if ii == 0: table_all = t else: r1 = table_all[-1] r1.add_format('txt', row_dec_below='-') table_all.extend(t) table_all.title = None return table_all def summary_return(tables, return_fmt='text'): ######## Return Summary Tables ######## # join table parts then print if return_fmt == 'text': strdrop = lambda x: str(x).rsplit('\n',1)[0] #convert to string drop last line return '\n'.join(lmap(strdrop, tables[:-1]) + [str(tables[-1])]) elif return_fmt == 'tables': return tables elif return_fmt == 'csv': return '\n'.join(map(lambda x: x.as_csv(), tables)) elif return_fmt == 'latex': #TODO: insert \hline after updating SimpleTable import copy table = copy.deepcopy(tables[0]) del table[-1] for part in tables[1:]: table.extend(part) return table.as_latex_tabular() elif return_fmt == 'html': return "\n".join(table.as_html() for table in tables) else: raise ValueError('available output formats are text, csv, latex, html') class Summary(object): '''class to hold tables for result summary presentation Construction does not take any parameters. Tables and text can be added with the `add_` methods. Attributes ---------- tables : list of tables Contains the list of SimpleTable instances, horizontally concatenated tables are not saved separately. extra_txt : string extra lines that are added to the text output, used for warnings and explanations. ''' def __init__(self): self.tables = [] self.extra_txt = None def __str__(self): return self.as_text() def __repr__(self): #return '<' + str(type(self)) + '>\n"""\n' + self.__str__() + '\n"""' return str(type(self)) + '\n"""\n' + self.__str__() + '\n"""' def _repr_html_(self): '''Display as HTML in IPython notebook.''' return self.as_html() def add_table_2cols(self, res, title=None, gleft=None, gright=None, yname=None, xname=None): '''add a double table, 2 tables with one column merged horizontally Parameters ---------- res : results instance some required information is directly taken from the result instance title : string or None if None, then a default title is used. gleft : list of tuples elements for the left table, tuples are (name, value) pairs If gleft is None, then a default table is created gright : list of tuples or None elements for the right table, tuples are (name, value) pairs yname : string or None optional name for the endogenous variable, default is "y" xname : list of strings or None optional names for the exogenous variables, default is "var_xx" Returns ------- None : tables are attached ''' table = summary_top(res, title=title, gleft=gleft, gright=gright, yname=yname, xname=xname) self.tables.append(table) def add_table_params(self, res, yname=None, xname=None, alpha=.05, use_t=True): '''create and add a table for the parameter estimates Parameters ---------- res : results instance some required information is directly taken from the result instance yname : string or None optional name for the endogenous variable, default is "y" xname : list of strings or None optional names for the exogenous variables, default is "var_xx" alpha : float significance level for the confidence intervals use_t : bool indicator whether the p-values are based on the Student-t distribution (if True) or on the normal distribution (if False) Returns ------- None : table is attached ''' if res.params.ndim == 1: table = summary_params(res, yname=yname, xname=xname, alpha=alpha, use_t=use_t) elif res.params.ndim == 2: # _, table = summary_params_2dflat(res, yname=yname, xname=xname, # alpha=alpha, use_t=use_t) _, table = summary_params_2dflat(res, endog_names=yname, exog_names=xname, alpha=alpha, use_t=use_t) else: raise ValueError('params has to be 1d or 2d') self.tables.append(table) def add_extra_txt(self, etext): '''add additional text that will be added at the end in text format Parameters ---------- etext : string string with lines that are added to the text output. ''' self.extra_txt = '\n'.join(etext) def as_text(self): '''return tables as string Returns ------- txt : string summary tables and extra text as one string ''' txt = summary_return(self.tables, return_fmt='text') if not self.extra_txt is None: txt = txt + '\n\n' + self.extra_txt return txt def as_latex(self): '''return tables as string Returns ------- latex : string summary tables and extra text as string of Latex Notes ----- This currently merges tables with different number of columns. It is recommended to use `as_latex_tabular` directly on the individual tables. ''' return summary_return(self.tables, return_fmt='latex') def as_csv(self): '''return tables as string Returns ------- csv : string concatenated summary tables in comma delimited format ''' return summary_return(self.tables, return_fmt='csv') def as_html(self): '''return tables as string Returns ------- html : string concatenated summary tables in HTML format ''' return summary_return(self.tables, return_fmt='html') if __name__ == "__main__": import statsmodels.api as sm data = sm.datasets.longley.load() data.exog = sm.add_constant(data.exog) res = sm.OLS(data.endog, data.exog).fit() #summary(
bsd-3-clause
awdensmore/mg-econ-model
mgplot.py
1
5552
__author__ = 'adensmore' import matplotlib.pyplot as plt import matplotlib.patches as mpatches import numpy as np global mk mk = ['b-', 'r-', 'g-', 'y-', 'm-', 'c-', 'k-'] def plot_pd(prod, demand, ul=[]): hrs = range(len(prod)) fig, ax = plt.subplots() p1 = ax.plot(hrs, prod, 'b-') p2 = ax.plot(hrs, demand, 'm-') if len(ul) > 0: ax.plot(hrs, ul, 'r-') ax.set_xlabel("Hours of the year") ax.set_ylabel("Hourly Production or Load (Whr)") ax.legend( (p1[0], p2[0]), ('Production', 'Load') ) def plot_socw(socw, bal=[]): hrs = range(len(socw)) #mk = ['b-', 'r-', 'g-', 'y-', 'm-', 'c-', 'k-'] fig, ax = plt.subplots() ax.set_xlabel("Hours of the year") ax.set_ylabel("Hourly Battery State of Charge (Whr)") b = [] for i in range(len(socw[0])): y = [] for j in range(len(socw)): y.append(socw[j][i]) b.append(y) for i in range(len(b)): ax.plot(hrs, b[i], mk[i]) if len(bal) > 0: ax2 = ax.twinx() ax2.plot(hrs, bal, 'k--') def plot_soc(soc): hrs = range(len(soc)) plt.xlabel("Simulation Hours") plt.ylabel("Battery State of Charge (%)") plt.plot(hrs, soc) def plot_prices(prc, bal=[]): hrs = range(len(prc)) fig, ax = plt.subplots() ax.plot(hrs, prc, 'r-') ax.set_xlabel("Hours of the year") ax.set_ylabel("Hourly price of electricity ($/Whr)") if bal>0: ax2 = ax.twinx() ax2.plot(hrs, bal, 'k-') def plot_price(results, labels): ind = np.arange(len(results)) width_bar = 0.25 #width_cat = width_bar * plt.bar(ind, results, width_bar) plt.xticks(ind+width_bar/2, labels) plt.xlabel("Elasticity of demand (% change in demand / % change in price)") plt.ylabel("Cost of electricity (Currency / Whr)") plt.title("Change in nominal electricity price with elasticity of demand") def plot_rev(results, labels, ttl): ind = np.arange(len(results[6])) width_bar = 0.25 plt.bar(ind, results[6], width_bar) plt.xticks(ind+width_bar/2, labels) # FOR USE WITH CHANGING ELASTICITY #plt.xlabel("Elasticity of demand (% change in demand / % change in price)") #plt.title("Change in revenue with elasticity of demand, 1*d") # FOR USE WITH CHANGING DEMAND plt.xlabel("Actual demand as a ratio of expected") plt.title("Change in annual revenue with demand, e= " + str(ttl)) # FOR USE WITH BASELINE #plt.title("Baseline Annual Revenue") plt.ylabel("Annual Revenue") def plot_hd(results, labels, ttl): ul_soc = [a * 100 for a in results[1]] # % unmet load due to low soc ul_p = [(a - b)*100 for a,b in zip(results[2], results[1])] # % unmet load due to high prices ind = np.arange(len(results[1])) width_bar = 0.25 p1 = plt.bar(ind, ul_soc, width_bar, color='r') p2 = plt.bar(ind, ul_p, width_bar, color='b', bottom=ul_soc) plt.xticks(ind+width_bar/2, labels) # FOR USE WITH CHANGING ELASTICITY #plt.xlabel("Elasticity of demand (% change in demand / % change in price)") #plt.title("Change in unmet load with elasticity of demand, 0.5*d") # FOR USE WITH CHANGING DEMAND plt.xlabel("Actual demand as a ratio of expected") plt.title("Change in unmet load with demand, e= " + str(ttl)) # FOR USE WITH BASELINE #plt.title("Baseline unmet load") plt.ylabel("% of total load unmet due to disconnection") plt.legend( (p1[0], p2[0]), ('Due to low SOC', 'Due to high prices'), loc=2 ) def import_data(file): results = [] delim = "," with open(file, 'r') as f: while True: rx = [] l = f.readline().rstrip() if not l: break b = False while True: n = l.find(delim) if n > 0: a = l[0:n] else: a = l[0:] b = True rx.append(a) l = l.lstrip(a + delim) l = l.lstrip() if b == True: break results.append(rx) return results def results_diff(results): out = [] lines = len(results) for i in range(lines): if len(results[i]) == 5: j = 1 while (i + j*7) < lines: rp = float(results[i+j*7][2]) rb = float(results[i][2]) r_diff = 100 * (rp / rb - 1) u_diff = float(results[i+j*7][3]) - float(results[i][3]) line = [r_diff] + [u_diff] + results[i+j*7] j = j + 1 out.append(line) else: break return out def plot_scatter(results): x = [a[1] for a in results] y = [b[0] for b in results] m = ["o", "v", "s", "*", "+", "D", "x"] c = ["r", "b", "g", "y", "0", "0.5", "0.75"] p = [] for i in range(0,7): for j in range(0,7): a = plt.scatter(x[i*7+j],y[i*7+j], marker=m[i], c=c[j], s=64) p.append(a) plt.xlabel("% change in unmet load vs. baseline") plt.ylabel("% change in revenue vs. baseline") plt.legend([p[0], p[7], p[14], p[21], p[28], p[35], p[42],\ p[0], p[1], p[2], p[3], p[4], p[5], p[6]],\ ['-0.2e', '-0.4e','-0.7e', '-0.9e', '-1e', '-1.25e', '-1.5e', \ '1/4d', '1/2d', '3/4d', 'd', '1.5d', '2d', '3d'], loc=(1.005,0.05)) plt.axis([-7,7,-5,20]) plt.show() a = import_data("results.txt") b = results_diff(a) print(b) plot_scatter(b) def show(): plt.show()
gpl-3.0
treycausey/scikit-learn
sklearn/ensemble/__init__.py
44
1228
""" The :mod:`sklearn.ensemble` module includes ensemble-based methods for classification and regression. """ from .base import BaseEnsemble from .forest import RandomForestClassifier from .forest import RandomForestRegressor from .forest import RandomTreesEmbedding from .forest import ExtraTreesClassifier from .forest import ExtraTreesRegressor from .bagging import BaggingClassifier from .bagging import BaggingRegressor from .weight_boosting import AdaBoostClassifier from .weight_boosting import AdaBoostRegressor from .gradient_boosting import GradientBoostingClassifier from .gradient_boosting import GradientBoostingRegressor from . import bagging from . import forest from . import weight_boosting from . import gradient_boosting from . import partial_dependence __all__ = ["BaseEnsemble", "RandomForestClassifier", "RandomForestRegressor", "RandomTreesEmbedding", "ExtraTreesClassifier", "ExtraTreesRegressor", "BaggingClassifier", "BaggingRegressor", "GradientBoostingClassifier", "GradientBoostingRegressor", "AdaBoostClassifier", "AdaBoostRegressor", "bagging", "forest", "gradient_boosting", "partial_dependence", "weight_boosting"]
bsd-3-clause
yhat/digit-recognizer
model/crossfold.py
1
2307
import numpy as np import pandas as pd from PIL import Image from StringIO import StringIO import base64 import os import csv from ggplot import * from sklearn.decomposition import RandomizedPCA from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score from sklearn.cross_validation import train_test_split wd = "./numbers/" files = [f for f in os.listdir(wd)] files = [wd + f for f in files] STANDARD_SIZE = (50, 50) def get_image_data(filename): img = Image.open(filename) img = img.getdata() img = img.resize(STANDARD_SIZE) img = map(list, img) img = np.array(img) s = img.shape[0] * img.shape[1] img_wide = img.reshape(1, s) return img_wide[0] data = [] labels = [] print "extracting features..." for i, f in enumerate(files): print i, "of", len(files) data.append(get_image_data(f)) labels.append(int(f.split(".")[-2][-1])) print "done.\n" output = open('./results.csv', 'w') w = csv.writer(output) w.writerow(["actual"] + range(10)) results = [] for n_components in [2, 5, 10, 25, 50, 100, 250, 500, 1000]: print "Training for %d components..." % n_components pca = RandomizedPCA(n_components=n_components) std_scaler = StandardScaler() X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.1) X_train = pca.fit_transform(X_train) X_test = pca.transform(X_test) X_train = std_scaler.fit_transform(X_train) X_test = std_scaler.transform(X_test) clf = KNeighborsClassifier(n_neighbors=13) clf.fit(X_train, y_train) print "Results for %d components:" % n_components cm = confusion_matrix(y_test, clf.predict(X_test)) for i, row in enumerate(cm): w.writerow([i] + row.tolist()) acc = accuracy_score(y_test, clf.predict(X_test)) # print precision_score(y_test, clf.predict(X_test)) # print recall_score(y_test, clf.predict(X_test)) print acc results.append({"n_components": n_components, "accuracy": acc}) output.close() results = pd.DataFrame(results) print ggplot(results, aes(x='n_components', y='accuracy')) + \ geom_line()
bsd-2-clause
billy-inn/scikit-learn
sklearn/utils/testing.py
84
24860
"""Testing utilities.""" # Copyright (c) 2011, 2012 # Authors: Pietro Berkes, # Andreas Muller # Mathieu Blondel # Olivier Grisel # Arnaud Joly # Denis Engemann # License: BSD 3 clause import os import inspect import pkgutil import warnings import sys import re import platform import scipy as sp import scipy.io from functools import wraps try: # Python 2 from urllib2 import urlopen from urllib2 import HTTPError except ImportError: # Python 3+ from urllib.request import urlopen from urllib.error import HTTPError import tempfile import shutil import os.path as op import atexit # WindowsError only exist on Windows try: WindowsError except NameError: WindowsError = None import sklearn from sklearn.base import BaseEstimator from sklearn.externals import joblib # Conveniently import all assertions in one place. from nose.tools import assert_equal from nose.tools import assert_not_equal from nose.tools import assert_true from nose.tools import assert_false from nose.tools import assert_raises from nose.tools import raises from nose import SkipTest from nose import with_setup from numpy.testing import assert_almost_equal from numpy.testing import assert_array_equal from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_less import numpy as np from sklearn.base import (ClassifierMixin, RegressorMixin, TransformerMixin, ClusterMixin) __all__ = ["assert_equal", "assert_not_equal", "assert_raises", "assert_raises_regexp", "raises", "with_setup", "assert_true", "assert_false", "assert_almost_equal", "assert_array_equal", "assert_array_almost_equal", "assert_array_less", "assert_less", "assert_less_equal", "assert_greater", "assert_greater_equal"] try: from nose.tools import assert_in, assert_not_in except ImportError: # Nose < 1.0.0 def assert_in(x, container): assert_true(x in container, msg="%r in %r" % (x, container)) def assert_not_in(x, container): assert_false(x in container, msg="%r in %r" % (x, container)) try: from nose.tools import assert_raises_regex except ImportError: # for Python 2 def assert_raises_regex(expected_exception, expected_regexp, callable_obj=None, *args, **kwargs): """Helper function to check for message patterns in exceptions""" not_raised = False try: callable_obj(*args, **kwargs) not_raised = True except expected_exception as e: error_message = str(e) if not re.compile(expected_regexp).search(error_message): raise AssertionError("Error message should match pattern " "%r. %r does not." % (expected_regexp, error_message)) if not_raised: raise AssertionError("%s not raised by %s" % (expected_exception.__name__, callable_obj.__name__)) # assert_raises_regexp is deprecated in Python 3.4 in favor of # assert_raises_regex but lets keep the bacward compat in scikit-learn with # the old name for now assert_raises_regexp = assert_raises_regex def _assert_less(a, b, msg=None): message = "%r is not lower than %r" % (a, b) if msg is not None: message += ": " + msg assert a < b, message def _assert_greater(a, b, msg=None): message = "%r is not greater than %r" % (a, b) if msg is not None: message += ": " + msg assert a > b, message def assert_less_equal(a, b, msg=None): message = "%r is not lower than or equal to %r" % (a, b) if msg is not None: message += ": " + msg assert a <= b, message def assert_greater_equal(a, b, msg=None): message = "%r is not greater than or equal to %r" % (a, b) if msg is not None: message += ": " + msg assert a >= b, message def assert_warns(warning_class, func, *args, **kw): """Test that a certain warning occurs. Parameters ---------- warning_class : the warning class The class to test for, e.g. UserWarning. func : callable Calable object to trigger warnings. *args : the positional arguments to `func`. **kw : the keyword arguments to `func` Returns ------- result : the return value of `func` """ # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. result = func(*args, **kw) if hasattr(np, 'VisibleDeprecationWarning'): # Filter out numpy-specific warnings in numpy >= 1.9 w = [e for e in w if e.category is not np.VisibleDeprecationWarning] # Verify some things if not len(w) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) found = any(warning.category is warning_class for warning in w) if not found: raise AssertionError("%s did not give warning: %s( is %s)" % (func.__name__, warning_class, w)) return result def assert_warns_message(warning_class, message, func, *args, **kw): # very important to avoid uncontrolled state propagation """Test that a certain warning occurs and with a certain message. Parameters ---------- warning_class : the warning class The class to test for, e.g. UserWarning. message : str | callable The entire message or a substring to test for. If callable, it takes a string as argument and will trigger an assertion error if it returns `False`. func : callable Calable object to trigger warnings. *args : the positional arguments to `func`. **kw : the keyword arguments to `func`. Returns ------- result : the return value of `func` """ clean_warning_registry() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") if hasattr(np, 'VisibleDeprecationWarning'): # Let's not catch the numpy internal DeprecationWarnings warnings.simplefilter('ignore', np.VisibleDeprecationWarning) # Trigger a warning. result = func(*args, **kw) # Verify some things if not len(w) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) found = [issubclass(warning.category, warning_class) for warning in w] if not any(found): raise AssertionError("No warning raised for %s with class " "%s" % (func.__name__, warning_class)) message_found = False # Checks the message of all warnings belong to warning_class for index in [i for i, x in enumerate(found) if x]: # substring will match, the entire message with typo won't msg = w[index].message # For Python 3 compatibility msg = str(msg.args[0] if hasattr(msg, 'args') else msg) if callable(message): # add support for certain tests check_in_message = message else: check_in_message = lambda msg: message in msg if check_in_message(msg): message_found = True break if not message_found: raise AssertionError("Did not receive the message you expected " "('%s') for <%s>, got: '%s'" % (message, func.__name__, msg)) return result # To remove when we support numpy 1.7 def assert_no_warnings(func, *args, **kw): # XXX: once we may depend on python >= 2.6, this can be replaced by the # warnings module context manager. # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') result = func(*args, **kw) if hasattr(np, 'VisibleDeprecationWarning'): # Filter out numpy-specific warnings in numpy >= 1.9 w = [e for e in w if e.category is not np.VisibleDeprecationWarning] if len(w) > 0: raise AssertionError("Got warnings when calling %s: %s" % (func.__name__, w)) return result def ignore_warnings(obj=None): """ Context manager and decorator to ignore warnings Note. Using this (in both variants) will clear all warnings from all python modules loaded. In case you need to test cross-module-warning-logging this is not your tool of choice. Examples -------- >>> with ignore_warnings(): ... warnings.warn('buhuhuhu') >>> def nasty_warn(): ... warnings.warn('buhuhuhu') ... print(42) >>> ignore_warnings(nasty_warn)() 42 """ if callable(obj): return _ignore_warnings(obj) else: return _IgnoreWarnings() def _ignore_warnings(fn): """Decorator to catch and hide warnings without visual nesting""" @wraps(fn) def wrapper(*args, **kwargs): # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') return fn(*args, **kwargs) w[:] = [] return wrapper class _IgnoreWarnings(object): """Improved and simplified Python warnings context manager Copied from Python 2.7.5 and modified as required. """ def __init__(self): """ Parameters ========== category : warning class The category to filter. Defaults to Warning. If None, all categories will be muted. """ self._record = True self._module = sys.modules['warnings'] self._entered = False self.log = [] def __repr__(self): args = [] if self._record: args.append("record=True") if self._module is not sys.modules['warnings']: args.append("module=%r" % self._module) name = type(self).__name__ return "%s(%s)" % (name, ", ".join(args)) def __enter__(self): clean_warning_registry() # be safe and not propagate state + chaos warnings.simplefilter('always') if self._entered: raise RuntimeError("Cannot enter %r twice" % self) self._entered = True self._filters = self._module.filters self._module.filters = self._filters[:] self._showwarning = self._module.showwarning if self._record: self.log = [] def showwarning(*args, **kwargs): self.log.append(warnings.WarningMessage(*args, **kwargs)) self._module.showwarning = showwarning return self.log else: return None def __exit__(self, *exc_info): if not self._entered: raise RuntimeError("Cannot exit %r without entering first" % self) self._module.filters = self._filters self._module.showwarning = self._showwarning self.log[:] = [] clean_warning_registry() # be safe and not propagate state + chaos try: from nose.tools import assert_less except ImportError: assert_less = _assert_less try: from nose.tools import assert_greater except ImportError: assert_greater = _assert_greater def _assert_allclose(actual, desired, rtol=1e-7, atol=0, err_msg='', verbose=True): actual, desired = np.asanyarray(actual), np.asanyarray(desired) if np.allclose(actual, desired, rtol=rtol, atol=atol): return msg = ('Array not equal to tolerance rtol=%g, atol=%g: ' 'actual %s, desired %s') % (rtol, atol, actual, desired) raise AssertionError(msg) if hasattr(np.testing, 'assert_allclose'): assert_allclose = np.testing.assert_allclose else: assert_allclose = _assert_allclose def assert_raise_message(exceptions, message, function, *args, **kwargs): """Helper function to test error messages in exceptions Parameters ---------- exceptions : exception or tuple of exception Name of the estimator func : callable Calable object to raise error *args : the positional arguments to `func`. **kw : the keyword arguments to `func` """ try: function(*args, **kwargs) except exceptions as e: error_message = str(e) if message not in error_message: raise AssertionError("Error message does not include the expected" " string: %r. Observed error message: %r" % (message, error_message)) else: # concatenate exception names if isinstance(exceptions, tuple): names = " or ".join(e.__name__ for e in exceptions) else: names = exceptions.__name__ raise AssertionError("%s not raised by %s" % (names, function.__name__)) def fake_mldata(columns_dict, dataname, matfile, ordering=None): """Create a fake mldata data set. Parameters ---------- columns_dict : dict, keys=str, values=ndarray Contains data as columns_dict[column_name] = array of data. dataname : string Name of data set. matfile : string or file object The file name string or the file-like object of the output file. ordering : list, default None List of column_names, determines the ordering in the data set. Notes ----- This function transposes all arrays, while fetch_mldata only transposes 'data', keep that into account in the tests. """ datasets = dict(columns_dict) # transpose all variables for name in datasets: datasets[name] = datasets[name].T if ordering is None: ordering = sorted(list(datasets.keys())) # NOTE: setting up this array is tricky, because of the way Matlab # re-packages 1D arrays datasets['mldata_descr_ordering'] = sp.empty((1, len(ordering)), dtype='object') for i, name in enumerate(ordering): datasets['mldata_descr_ordering'][0, i] = name scipy.io.savemat(matfile, datasets, oned_as='column') class mock_mldata_urlopen(object): def __init__(self, mock_datasets): """Object that mocks the urlopen function to fake requests to mldata. `mock_datasets` is a dictionary of {dataset_name: data_dict}, or {dataset_name: (data_dict, ordering). `data_dict` itself is a dictionary of {column_name: data_array}, and `ordering` is a list of column_names to determine the ordering in the data set (see `fake_mldata` for details). When requesting a dataset with a name that is in mock_datasets, this object creates a fake dataset in a StringIO object and returns it. Otherwise, it raises an HTTPError. """ self.mock_datasets = mock_datasets def __call__(self, urlname): dataset_name = urlname.split('/')[-1] if dataset_name in self.mock_datasets: resource_name = '_' + dataset_name from io import BytesIO matfile = BytesIO() dataset = self.mock_datasets[dataset_name] ordering = None if isinstance(dataset, tuple): dataset, ordering = dataset fake_mldata(dataset, resource_name, matfile, ordering) matfile.seek(0) return matfile else: raise HTTPError(urlname, 404, dataset_name + " is not available", [], None) def install_mldata_mock(mock_datasets): # Lazy import to avoid mutually recursive imports from sklearn import datasets datasets.mldata.urlopen = mock_mldata_urlopen(mock_datasets) def uninstall_mldata_mock(): # Lazy import to avoid mutually recursive imports from sklearn import datasets datasets.mldata.urlopen = urlopen # Meta estimators need another estimator to be instantiated. META_ESTIMATORS = ["OneVsOneClassifier", "OutputCodeClassifier", "OneVsRestClassifier", "RFE", "RFECV", "BaseEnsemble"] # estimators that there is no way to default-construct sensibly OTHER = ["Pipeline", "FeatureUnion", "GridSearchCV", "RandomizedSearchCV"] # some trange ones DONT_TEST = ['SparseCoder', 'EllipticEnvelope', 'DictVectorizer', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', 'TfidfTransformer', 'TfidfVectorizer', 'IsotonicRegression', 'OneHotEncoder', 'RandomTreesEmbedding', 'FeatureHasher', 'DummyClassifier', 'DummyRegressor', 'TruncatedSVD', 'PolynomialFeatures', 'GaussianRandomProjectionHash', 'HashingVectorizer', 'CheckingClassifier', 'PatchExtractor', 'CountVectorizer', # GradientBoosting base estimators, maybe should # exclude them in another way 'ZeroEstimator', 'ScaledLogOddsEstimator', 'QuantileEstimator', 'MeanEstimator', 'LogOddsEstimator', 'PriorProbabilityEstimator', '_SigmoidCalibration', 'VotingClassifier'] def all_estimators(include_meta_estimators=False, include_other=False, type_filter=None, include_dont_test=False): """Get a list of all estimators from sklearn. This function crawls the module and gets all classes that inherit from BaseEstimator. Classes that are defined in test-modules are not included. By default meta_estimators such as GridSearchCV are also not included. Parameters ---------- include_meta_estimators : boolean, default=False Whether to include meta-estimators that can be constructed using an estimator as their first argument. These are currently BaseEnsemble, OneVsOneClassifier, OutputCodeClassifier, OneVsRestClassifier, RFE, RFECV. include_other : boolean, default=False Wether to include meta-estimators that are somehow special and can not be default-constructed sensibly. These are currently Pipeline, FeatureUnion and GridSearchCV include_dont_test : boolean, default=False Whether to include "special" label estimator or test processors. type_filter : string, list of string, or None, default=None Which kind of estimators should be returned. If None, no filter is applied and all estimators are returned. Possible values are 'classifier', 'regressor', 'cluster' and 'transformer' to get estimators only of these specific types, or a list of these to get the estimators that fit at least one of the types. Returns ------- estimators : list of tuples List of (name, class), where ``name`` is the class name as string and ``class`` is the actuall type of the class. """ def is_abstract(c): if not(hasattr(c, '__abstractmethods__')): return False if not len(c.__abstractmethods__): return False return True all_classes = [] # get parent folder path = sklearn.__path__ for importer, modname, ispkg in pkgutil.walk_packages( path=path, prefix='sklearn.', onerror=lambda x: None): if ".tests." in modname: continue module = __import__(modname, fromlist="dummy") classes = inspect.getmembers(module, inspect.isclass) all_classes.extend(classes) all_classes = set(all_classes) estimators = [c for c in all_classes if (issubclass(c[1], BaseEstimator) and c[0] != 'BaseEstimator')] # get rid of abstract base classes estimators = [c for c in estimators if not is_abstract(c[1])] if not include_dont_test: estimators = [c for c in estimators if not c[0] in DONT_TEST] if not include_other: estimators = [c for c in estimators if not c[0] in OTHER] # possibly get rid of meta estimators if not include_meta_estimators: estimators = [c for c in estimators if not c[0] in META_ESTIMATORS] if type_filter is not None: if not isinstance(type_filter, list): type_filter = [type_filter] else: type_filter = list(type_filter) # copy filtered_estimators = [] filters = {'classifier': ClassifierMixin, 'regressor': RegressorMixin, 'transformer': TransformerMixin, 'cluster': ClusterMixin} for name, mixin in filters.items(): if name in type_filter: type_filter.remove(name) filtered_estimators.extend([est for est in estimators if issubclass(est[1], mixin)]) estimators = filtered_estimators if type_filter: raise ValueError("Parameter type_filter must be 'classifier', " "'regressor', 'transformer', 'cluster' or None, got" " %s." % repr(type_filter)) # drop duplicates, sort for reproducibility return sorted(set(estimators)) def set_random_state(estimator, random_state=0): if "random_state" in estimator.get_params().keys(): estimator.set_params(random_state=random_state) def if_matplotlib(func): """Test decorator that skips test if matplotlib not installed. """ @wraps(func) def run_test(*args, **kwargs): try: import matplotlib matplotlib.use('Agg', warn=False) # this fails if no $DISPLAY specified import matplotlib.pyplot as plt plt.figure() except ImportError: raise SkipTest('Matplotlib not available.') else: return func(*args, **kwargs) return run_test def if_not_mac_os(versions=('10.7', '10.8', '10.9'), message='Multi-process bug in Mac OS X >= 10.7 ' '(see issue #636)'): """Test decorator that skips test if OS is Mac OS X and its major version is one of ``versions``. """ mac_version, _, _ = platform.mac_ver() skip = '.'.join(mac_version.split('.')[:2]) in versions def decorator(func): if skip: @wraps(func) def func(*args, **kwargs): raise SkipTest(message) return func return decorator def clean_warning_registry(): """Safe way to reset warnings """ warnings.resetwarnings() reg = "__warningregistry__" for mod_name, mod in list(sys.modules.items()): if 'six.moves' in mod_name: continue if hasattr(mod, reg): getattr(mod, reg).clear() def check_skip_network(): if int(os.environ.get('SKLEARN_SKIP_NETWORK_TESTS', 0)): raise SkipTest("Text tutorial requires large dataset download") def check_skip_travis(): """Skip test if being run on Travis.""" if os.environ.get('TRAVIS') == "true": raise SkipTest("This test needs to be skipped on Travis") def _delete_folder(folder_path, warn=False): """Utility function to cleanup a temporary folder if still existing. Copy from joblib.pool (for independance)""" try: if os.path.exists(folder_path): # This can fail under windows, # but will succeed when called by atexit shutil.rmtree(folder_path) except WindowsError: if warn: warnings.warn("Could not delete temporary folder %s" % folder_path) class TempMemmap(object): def __init__(self, data, mmap_mode='r'): self.temp_folder = tempfile.mkdtemp(prefix='sklearn_testing_') self.mmap_mode = mmap_mode self.data = data def __enter__(self): fpath = op.join(self.temp_folder, 'data.pkl') joblib.dump(self.data, fpath) data_read_only = joblib.load(fpath, mmap_mode=self.mmap_mode) atexit.register(lambda: _delete_folder(self.temp_folder, warn=True)) return data_read_only def __exit__(self, exc_type, exc_val, exc_tb): _delete_folder(self.temp_folder) with_network = with_setup(check_skip_network) with_travis = with_setup(check_skip_travis)
bsd-3-clause
jeremiedecock/snippets
python/matplotlib/animation_fourier.py
1
1042
#!/usr/bin/env python3 import numpy as np import math import matplotlib.pyplot as plt import matplotlib.animation as animation fig = plt.figure() ax = plt.axes(xlim=(-7, 7), ylim=(-5, 5)) line, = ax.plot([], [], "o-", lw=2) ax.axvline(0, color="gray", lw=1) ax.axhline(0, color="gray", lw=1) def init(): line.set_data([], []) return line, def update(frame): t = float(frame)/10. e = math.e z1 = 2. * e ** (1j * t) z2 = z1 + 1. * e ** (1j * 2. * t) z3 = z2 - 0.5 * e ** (1j * 3. * t) x = [0, z1.real, z2.real, z3.real] y = [0, z1.imag, z2.imag, z3.imag] line.set_data(x, y) return line, ani = animation.FuncAnimation(fig, func=update, init_func=init, frames=62, interval=50, blit=True) #ani.save('fourier.mp4') ani.save('animation_fourier.gif', writer='imagemagick', fps=20) ## Set up formatting for the movie files #Writer = animation.writers['ffmpeg'] #writer = Writer(fps=15, metadata=dict(artist='Me'), bitrate=1800) #anim.save('fourier.mp4', writer=writer) plt.show()
mit
valexandersaulys/airbnb_kaggle_contest
venv/lib/python3.4/site-packages/sklearn/metrics/tests/test_score_objects.py
138
14048
import pickle import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_true from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_not_equal from sklearn.base import BaseEstimator from sklearn.metrics import (f1_score, r2_score, roc_auc_score, fbeta_score, log_loss, precision_score, recall_score) from sklearn.metrics.cluster import adjusted_rand_score from sklearn.metrics.scorer import (check_scoring, _PredictScorer, _passthrough_scorer) from sklearn.metrics import make_scorer, get_scorer, SCORERS from sklearn.svm import LinearSVC from sklearn.pipeline import make_pipeline from sklearn.cluster import KMeans from sklearn.dummy import DummyRegressor from sklearn.linear_model import Ridge, LogisticRegression from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.datasets import make_blobs from sklearn.datasets import make_classification from sklearn.datasets import make_multilabel_classification from sklearn.datasets import load_diabetes from sklearn.cross_validation import train_test_split, cross_val_score from sklearn.grid_search import GridSearchCV from sklearn.multiclass import OneVsRestClassifier REGRESSION_SCORERS = ['r2', 'mean_absolute_error', 'mean_squared_error', 'median_absolute_error'] CLF_SCORERS = ['accuracy', 'f1', 'f1_weighted', 'f1_macro', 'f1_micro', 'roc_auc', 'average_precision', 'precision', 'precision_weighted', 'precision_macro', 'precision_micro', 'recall', 'recall_weighted', 'recall_macro', 'recall_micro', 'log_loss', 'adjusted_rand_score' # not really, but works ] MULTILABEL_ONLY_SCORERS = ['precision_samples', 'recall_samples', 'f1_samples'] class EstimatorWithoutFit(object): """Dummy estimator to test check_scoring""" pass class EstimatorWithFit(BaseEstimator): """Dummy estimator to test check_scoring""" def fit(self, X, y): return self class EstimatorWithFitAndScore(object): """Dummy estimator to test check_scoring""" def fit(self, X, y): return self def score(self, X, y): return 1.0 class EstimatorWithFitAndPredict(object): """Dummy estimator to test check_scoring""" def fit(self, X, y): self.y = y return self def predict(self, X): return self.y class DummyScorer(object): """Dummy scorer that always returns 1.""" def __call__(self, est, X, y): return 1 def test_check_scoring(): # Test all branches of check_scoring estimator = EstimatorWithoutFit() pattern = (r"estimator should a be an estimator implementing 'fit' method," r" .* was passed") assert_raises_regexp(TypeError, pattern, check_scoring, estimator) estimator = EstimatorWithFitAndScore() estimator.fit([[1]], [1]) scorer = check_scoring(estimator) assert_true(scorer is _passthrough_scorer) assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0) estimator = EstimatorWithFitAndPredict() estimator.fit([[1]], [1]) pattern = (r"If no scoring is specified, the estimator passed should have" r" a 'score' method\. The estimator .* does not\.") assert_raises_regexp(TypeError, pattern, check_scoring, estimator) scorer = check_scoring(estimator, "accuracy") assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0) estimator = EstimatorWithFit() scorer = check_scoring(estimator, "accuracy") assert_true(isinstance(scorer, _PredictScorer)) estimator = EstimatorWithFit() scorer = check_scoring(estimator, allow_none=True) assert_true(scorer is None) def test_check_scoring_gridsearchcv(): # test that check_scoring works on GridSearchCV and pipeline. # slightly redundant non-regression test. grid = GridSearchCV(LinearSVC(), param_grid={'C': [.1, 1]}) scorer = check_scoring(grid, "f1") assert_true(isinstance(scorer, _PredictScorer)) pipe = make_pipeline(LinearSVC()) scorer = check_scoring(pipe, "f1") assert_true(isinstance(scorer, _PredictScorer)) # check that cross_val_score definitely calls the scorer # and doesn't make any assumptions about the estimator apart from having a # fit. scores = cross_val_score(EstimatorWithFit(), [[1], [2], [3]], [1, 0, 1], scoring=DummyScorer()) assert_array_equal(scores, 1) def test_make_scorer(): # Sanity check on the make_scorer factory function. f = lambda *args: 0 assert_raises(ValueError, make_scorer, f, needs_threshold=True, needs_proba=True) def test_classification_scores(): # Test classification scorers. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LinearSVC(random_state=0) clf.fit(X_train, y_train) for prefix, metric in [('f1', f1_score), ('precision', precision_score), ('recall', recall_score)]: score1 = get_scorer('%s_weighted' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='weighted') assert_almost_equal(score1, score2) score1 = get_scorer('%s_macro' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='macro') assert_almost_equal(score1, score2) score1 = get_scorer('%s_micro' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='micro') assert_almost_equal(score1, score2) score1 = get_scorer('%s' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=1) assert_almost_equal(score1, score2) # test fbeta score that takes an argument scorer = make_scorer(fbeta_score, beta=2) score1 = scorer(clf, X_test, y_test) score2 = fbeta_score(y_test, clf.predict(X_test), beta=2) assert_almost_equal(score1, score2) # test that custom scorer can be pickled unpickled_scorer = pickle.loads(pickle.dumps(scorer)) score3 = unpickled_scorer(clf, X_test, y_test) assert_almost_equal(score1, score3) # smoke test the repr: repr(fbeta_score) def test_regression_scorers(): # Test regression scorers. diabetes = load_diabetes() X, y = diabetes.data, diabetes.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = Ridge() clf.fit(X_train, y_train) score1 = get_scorer('r2')(clf, X_test, y_test) score2 = r2_score(y_test, clf.predict(X_test)) assert_almost_equal(score1, score2) def test_thresholded_scorers(): # Test scorers that take thresholds. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LogisticRegression(random_state=0) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.decision_function(X_test)) score3 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]) assert_almost_equal(score1, score2) assert_almost_equal(score1, score3) logscore = get_scorer('log_loss')(clf, X_test, y_test) logloss = log_loss(y_test, clf.predict_proba(X_test)) assert_almost_equal(-logscore, logloss) # same for an estimator without decision_function clf = DecisionTreeClassifier() clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]) assert_almost_equal(score1, score2) # test with a regressor (no decision_function) reg = DecisionTreeRegressor() reg.fit(X_train, y_train) score1 = get_scorer('roc_auc')(reg, X_test, y_test) score2 = roc_auc_score(y_test, reg.predict(X_test)) assert_almost_equal(score1, score2) # Test that an exception is raised on more than two classes X, y = make_blobs(random_state=0, centers=3) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf.fit(X_train, y_train) assert_raises(ValueError, get_scorer('roc_auc'), clf, X_test, y_test) def test_thresholded_scorers_multilabel_indicator_data(): # Test that the scorer work with multilabel-indicator format # for multilabel and multi-output multi-class classifier X, y = make_multilabel_classification(allow_unlabeled=False, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # Multi-output multi-class predict_proba clf = DecisionTreeClassifier() clf.fit(X_train, y_train) y_proba = clf.predict_proba(X_test) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, np.vstack(p[:, -1] for p in y_proba).T) assert_almost_equal(score1, score2) # Multi-output multi-class decision_function # TODO Is there any yet? clf = DecisionTreeClassifier() clf.fit(X_train, y_train) clf._predict_proba = clf.predict_proba clf.predict_proba = None clf.decision_function = lambda X: [p[:, 1] for p in clf._predict_proba(X)] y_proba = clf.decision_function(X_test) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, np.vstack(p for p in y_proba).T) assert_almost_equal(score1, score2) # Multilabel predict_proba clf = OneVsRestClassifier(DecisionTreeClassifier()) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.predict_proba(X_test)) assert_almost_equal(score1, score2) # Multilabel decision function clf = OneVsRestClassifier(LinearSVC(random_state=0)) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.decision_function(X_test)) assert_almost_equal(score1, score2) def test_unsupervised_scorers(): # Test clustering scorers against gold standard labeling. # We don't have any real unsupervised Scorers yet. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) km = KMeans(n_clusters=3) km.fit(X_train) score1 = get_scorer('adjusted_rand_score')(km, X_test, y_test) score2 = adjusted_rand_score(y_test, km.predict(X_test)) assert_almost_equal(score1, score2) @ignore_warnings def test_raises_on_score_list(): # Test that when a list of scores is returned, we raise proper errors. X, y = make_blobs(random_state=0) f1_scorer_no_average = make_scorer(f1_score, average=None) clf = DecisionTreeClassifier() assert_raises(ValueError, cross_val_score, clf, X, y, scoring=f1_scorer_no_average) grid_search = GridSearchCV(clf, scoring=f1_scorer_no_average, param_grid={'max_depth': [1, 2]}) assert_raises(ValueError, grid_search.fit, X, y) @ignore_warnings def test_scorer_sample_weight(): # Test that scorers support sample_weight or raise sensible errors # Unlike the metrics invariance test, in the scorer case it's harder # to ensure that, on the classifier output, weighted and unweighted # scores really should be unequal. X, y = make_classification(random_state=0) _, y_ml = make_multilabel_classification(n_samples=X.shape[0], random_state=0) split = train_test_split(X, y, y_ml, random_state=0) X_train, X_test, y_train, y_test, y_ml_train, y_ml_test = split sample_weight = np.ones_like(y_test) sample_weight[:10] = 0 # get sensible estimators for each metric sensible_regr = DummyRegressor(strategy='median') sensible_regr.fit(X_train, y_train) sensible_clf = DecisionTreeClassifier(random_state=0) sensible_clf.fit(X_train, y_train) sensible_ml_clf = DecisionTreeClassifier(random_state=0) sensible_ml_clf.fit(X_train, y_ml_train) estimator = dict([(name, sensible_regr) for name in REGRESSION_SCORERS] + [(name, sensible_clf) for name in CLF_SCORERS] + [(name, sensible_ml_clf) for name in MULTILABEL_ONLY_SCORERS]) for name, scorer in SCORERS.items(): if name in MULTILABEL_ONLY_SCORERS: target = y_ml_test else: target = y_test try: weighted = scorer(estimator[name], X_test, target, sample_weight=sample_weight) ignored = scorer(estimator[name], X_test[10:], target[10:]) unweighted = scorer(estimator[name], X_test, target) assert_not_equal(weighted, unweighted, msg="scorer {0} behaves identically when " "called with sample weights: {1} vs " "{2}".format(name, weighted, unweighted)) assert_almost_equal(weighted, ignored, err_msg="scorer {0} behaves differently when " "ignoring samples and setting sample_weight to" " 0: {1} vs {2}".format(name, weighted, ignored)) except TypeError as e: assert_true("sample_weight" in str(e), "scorer {0} raises unhelpful exception when called " "with sample weights: {1}".format(name, str(e)))
gpl-2.0
jgbarah/revisor
report.py
1
45149
#! /usr/bin/python # -*- coding: utf-8 -*- ## Copyright (C) 2014 Bitergia ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ## ## Package to report about details from a Gerrit database retrieved via revisor ## ## Authors: ## Jesus M. Gonzalez-Barahona <[email protected]> ## from query_gerrit import DB, Query from sqlalchemy import func, Column, and_, desc, type_coerce, Float, or_ from sqlalchemy.sql import label from datetime import datetime, timedelta import argparse import textwrap from ggplot import * import pandas as pd import numpy as np description = """ Simple script to produce reports with information extracted from a revisor Gerrit-based database. Example: report.py --summary mysql://jgb:XXX@localhost/ gerrit_changes """ def parse_args (): """ Parse command line arguments """ parser = argparse.ArgumentParser(description = description) parser.add_argument("database", help = "SQLAlchemy url of the database " + \ "to read data from (schema not included)." ) parser.add_argument("schema", help = "Name of the schema " + \ "to read data from." ) parser.add_argument("--projects", help = "Name of projects to consider, " + \ "separated by comma." ) parser.add_argument("--branches", help = "Name of branches to consider, " + \ "separated by comma." ) parser.add_argument("--owners", help = "Name of change owners to consider, " + \ "separated by comma." ) parser.add_argument("--no_owners", help = "Name of change owners to filter out, " + \ "separated by comma." ) parser.add_argument("--since", help = "Only changes starting since date, " \ + "in format 2014-10-29." ) parser.add_argument("--until", help = "Only changes starting until date, " \ + "in format 2014-10-29." ) parser.add_argument("--max_results", help = "Maximum number of results" ) parser.add_argument("--summary", help = "Summary of main stats in the database.", action = "store_true" ) parser.add_argument("--summary_projects", help = "Summary of main stats by projects.", action = "store_true" ) parser.add_argument("--full_messages", help = "Show full messages wherever messages " + \ "are to be shown.", action = "store_true" ) parser.add_argument("--plot", help = "Produce plots, when applicable.", action = "store_true" ) parser.add_argument("--plot_file", help = "File name to plot to, when applicable.", ) parser.add_argument("--period", help = "Period length: day, week, month." ) parser.add_argument("--change", help = "Summary of a change, given change number" ) parser.add_argument("--check_change_numbers", help = "Check change numbers." ) parser.add_argument("--check_upload", help = "Check upload time of first revision with " + \ "created time for change. (time in mins.)" ) parser.add_argument("--check_first_revision", help = "Check that changes have a first revision." ) parser.add_argument("--check_status", help = "Check status of changes" ) parser.add_argument("--check_abandon", help = "Check that changes with an 'Abandoned' " \ + "message are abandoned." ) parser.add_argument("--check_abandon_cont", help = "Check changes with an 'Abandoned' " \ + "but continuing with activity." ) parser.add_argument("--check_subm", help = "Check Check that changes with 'SUBM' " + \ "approval are closed" ) parser.add_argument("--check_events", help = "Check that evolution of events matches " \ + "current situation.", action = "store_true" ) parser.add_argument("--check_newer_dates", help = "Check that all dates related to a " + \ "are newer than the creation date " + \ "(print at most n issues found)." ) parser.add_argument("--show_drafts", help = "Show revisins with isdraft == True, up to the number specified.", ) parser.add_argument("--calc_duration_changes", help = "Calculate duration of changes.", ) parser.add_argument("--calc_duration_changes_approvals", help = "Calculate duration of changes (using approvals).", ) parser.add_argument("--show_events", help = "Produce a list with all " \ + "events of specified kind " \ + "('start', 'submit', 'push', " \ + "'abandon','restore','revert').", ) parser.add_argument("--show_events_byperiod", help = "Produce a list with number of " \ "events by period..", ) parser.add_argument("--show_start_end", help = "Show start and end for changes.", action = "store_true" ) args = parser.parse_args() return args def show_summary (): """Summary of main stats in the database. Number of changes, messages, revisions, approvals. """ q = session.query(label ("changes", func.count (DB.Change.id))) print "Changes: " + str(q.scalar()) + " (", q = session.query( label ("status", DB.Change.status), label ("number", func.count(DB.Change.uid)) ) \ .group_by(DB.Change.status) for row in q.all(): print row.status + ": " + str(row.number), print ")" q = session.query(label ("messages", func.count (DB.Message.uid))) print "Messages: " + str(q.scalar()) q = session.query(label ("revisions", func.count (DB.Revision.uid))) print "Revisions: " + str(q.scalar()) q = session.query( label ("change", DB.Revision.uid), ) \ .join(DB.Change) \ .group_by(DB.Change.uid) print "Changes with revisions: " + str(q.count()) q = session.query(label ("approvals", func.count (DB.Approval.uid))) print "Approvals: " + str(q.scalar()) q = session.query(label("max", func.max(DB.Change.updated))) last_date = q.one().max print last_date q = session.query(DB.Change).filter(DB.Change.updated == last_date) last_change = q.one() print "Last change: " + str(last_change.number) print " Updated: " + str(last_change.updated) def show_summary_projects (): """Summary of main stats by project (and name of projects). """ q = session.query (label ("project", DB.Change.project), label ("changes", func.count(DB.Change.uid)) ) \ .group_by(DB.Change.project) \ .order_by(desc("changes")) for project, changes in q.all(): print project + ": " + str(changes) def show_change_record (change): """Show a change record. Parameters ---------- change: DB.Change Change record to show. """ print "Change: " + str(change.number) print "Project: " + change.project + " (branch: " + \ change.branch + ") " + change.url print "Status: " + change.status + " / Created: " + \ str (change.created) + \ " Updated: " + str (change.updated) print "Subject: " + change.subject def show_revision_record (rev, approvals = True, change = None): """Show a revision record. Parameters ---------- rev: DB.Revision Revision record to show. approvals: bool Flag to show approvals (or not). change: int Change number (show if not None) """ print "Revision (patchset) " + str(rev.number) + " (" + \ rev.revision + ")", if change: print ", Change: " + str(change), if rev.isdraft: print " (rev is DRAFT)", print print " Date: " + str(rev.date) if approvals: res = session.query(DB.Approval) \ .filter(DB.Approval.revision_id == rev.uid) \ .order_by(DB.Approval.date) for approval in res.all(): show_approval_record (approval) def show_approval_record (approval): """Show an approval record. Parameters ---------- approval: DB.Approval Approval record to show. """ print " " + approval.type + ": " + str(approval.value) print " Date: " + str(approval.date) def show_message_record (message): """Show an message record. Parameters ---------- message: DB.Message Message record to show. """ print "Message: " + message.header print " Date: " + str(message.date) if args.full_messages: print " Full text: \n" + \ "".join ( [" " + line for line in message.message.splitlines(True)] ) def show_change (change_no): """Summary of data for a change (including revisions, approvals, etc.) Parameters ---------- change_no: str Change number. """ res = session.query(DB.Change) \ .filter (DB.Change.number == change_no) change = res.one() show_change_record (change) res = session.query(DB.Revision) \ .filter (DB.Revision.change_id == change.uid) \ .order_by (DB.Revision.number) for revision in res.all(): show_revision_record (revision) res = session.query(DB.Message) \ .filter(DB.Message.change_id == change.uid) \ .order_by(DB.Message.date) for message in res.all(): show_message_record (message) def check_change_numbers(max): """Check change numbers. """ numbers = session.query( label("number", DB.Change.number), label("rep", func.count(DB.Change.number)), ) \ .group_by (DB.Change.number).subquery() q = session.query( label("number", numbers.c.number), ) \ .filter(numbers.c.rep > 1) print "Repeated change numbers: " + str(q.count()) + " [", for number in q.limit(max).all(): print number.number, print "]" def check_upload (diff): """Check upload time of first revision with created time for change. For each change, the upload time of the first revision (patchset) is matched against the created time for the change. Those changes with more than diff mins. of difference are shown. Parameters ---------- diff: int Minutes of difference considered. """ revs = session.query(label ("daterev", func.min(DB.Revision.date)), label ("change_id", DB.Revision.change_id), label ("number", DB.Change.number)) \ .filter (DB.Revision.change_id == DB.Change.uid) \ .group_by("change_id") \ .subquery() res = session.query( label ("number", revs.c.number), label ("created", DB.Change.created), label ("daterev", revs.c.daterev) ) \ .filter(and_( func.abs(func.timediff( DB.Change.created, revs.c.daterev) > timedelta (minutes = diff)), DB.Change.uid == revs.c.change_id)) \ .order_by (func.datediff(DB.Change.created, revs.c.daterev), func.timediff(DB.Change.created, revs.c.daterev)) messages = res.all() for message in messages: print "Change " + str(message.number) + ": " + \ str(message.created - message.daterev) + \ " -- " + str(message.created) + " (created), " + \ str(message.daterev) + " (first revision)" print "Total changes with discrepancy: " + str (len(messages)) def check_newer_dates(max): """Check that dates related to a change are newer than creation date. This will print sumary stats about dates that are not correct, and will show at most max cases. Parameters ---------- max: int Max number of cases to show among those violating the check. """ res = session.query( label ("number", DB.Change.number), label ("created", DB.Change.created), label ("updated", DB.Change.updated) ) \ .filter (DB.Change.created > DB.Change.updated) \ .order_by (desc (func.datediff(DB.Change.created, DB.Change.updated))) cases = res.limit(max).all() for case in cases: print str(case.number) + ": " + str(case.created) + \ " (created), " + str(case.updated) + " (updated) Mismatch: " + \ str(case.created - case.updated) + ")" print "Total number of mismatchs: " + str(res.count()) def check_first_revision(max): """Check that changes have a first revision. Parameters ---------- max: int Max number of cases to show among those violating the check. """ q = session.query( label ("revision", DB.Revision.uid), ) \ .join (DB.Change) \ .filter (DB.Revision.number == 1) \ .group_by (DB.Change.uid) print "Changes with first revision: " + str(q.count()) first = session.query( label ("change", DB.Revision.change_id), ) \ .filter (DB.Revision.number == 1) \ .subquery() q = session.query( label ("change", DB.Change.number), ) \ .filter (~DB.Change.uid.in_(first)) for change in q.limit(max).all(): print change.change print "Changes with no first revision: " + str(q.count()) def check_status(max): """Check status of changes. Check the status of each change, in combination with its "open" flag. Parameters ---------- max: int Max number of cases to show among those violating the check. """ q = session.query( label("num", func.count(DB.Change.uid)), label("open", DB.Change.open), label("status", DB.Change.status), ) \ .group_by (DB.Change.open, DB.Change.status) for state in q.all(): print "Open is " + str(state.open) + ", status is " \ + state.status + ": " + str(state.num) def check_abandon(max): """Check that changes with an "Abandoned" message are abandoned. Parameters ---------- max: int Max number of cases to show among those violating the check. """ q = session.query( label("num", DB.Change.number), ) \ .filter (DB.Change.status == "ABANDONED") print q.count() q = session.query( label("num", DB.Change.number), ) \ .filter (DB.Change.status == "ABANDONED") \ .join (DB.Message) \ .filter (DB.Message.header == "Abandoned") print q.count() q_abandoned = session.query(DB.Message) \ .filter(DB.Change.uid == DB.Message.change_id, or_ (DB.Message.header == "Abandoned", DB.Message.header.like ("Patch%Abandoned"))) q = session.query( label("num", DB.Change.number), ) \ .filter (DB.Change.status == "ABANDONED") \ .filter(~q_abandoned.exists()) print q.count() for change in q.limit(max).all(): print str(change.num), print q = session.query( label("num", DB.Change.number), ) \ .filter (DB.Change.status != "ABANDONED") \ .filter(q_abandoned.exists()) print q.count() def check_abandon_cont(max): """Check changes with an "Abandoned" but continuing with activity. Parameters ---------- max: int Max number of cases to show among those violating the check. """ q_abandons = session.query( label("id", DB.Change.uid), label("date", func.min(DB.Message.date)), label("num", DB.Change.number) ) \ .select_from(DB.Change) \ .join(DB.Message) \ .filter (or_ (DB.Message.header == "Abandoned", DB.Message.header.like ("Patch%Abandoned"))) \ .group_by(DB.Change.uid) \ .subquery() q = session.query( label("num", q_abandons.c.num) ) \ .join(DB.Message, DB.Message.change_id == q_abandons.c.id) \ .filter(DB.Message.date > q_abandons.c.date) \ .group_by(q_abandons.c.id) changes = q.count() print "Changes abandoned, with activity after abandon (" \ + str(changes) + "): ", for change in q.limit(max).all(): print change.num print def check_subm(max): """Check that changes with "SUBM" approval are closed. Parameters ---------- max: int Max number of cases to show among those violating the check. """ # Subquery for changes with at least one SUBM approval q_subm = session.query(DB.Revision) \ .join(DB.Approval) \ .filter (DB.Change.uid == DB.Revision.change_id, DB.Approval.type == "SUBM") # Query for list of changes with at least one SUBM approval q_changes_subm = session.query( label ("num", DB.Change.number), ) \ .filter(q_subm.exists()) total = q_changes_subm.count() print "Changes with at least a SUBM approval (" + str(total) + "):" # Query for cases of changes with at least one SUBM approval q_changes_subm_cases = session.query( label ("open", DB.Change.open), label ("num", func.count(DB.Change.uid)), ) \ .filter(q_subm.exists()) \ .group_by (DB.Change.open) cases = q_changes_subm_cases.all() for case in cases: print " Open is " + str(case.open) + ": " + str(case.num) if case.open == 1: print " Changes still open (list): ", cases = q_changes_subm.filter(DB.Change.open == 1).limit(max).all() for case in cases: print str(case.num) + " ", print # Query for list of changes with no SUBM approval q_changes_nosubm = session.query( label ("num", DB.Change.number), ) \ .filter(~q_subm.exists()) total = q_changes_nosubm.count() print "Changes with no SUBM approval (" + str(total) + "):" # Query for cases of changes with no SUBM approval q_changes_nosubm_cases = session.query( label ("open", DB.Change.open), label ("num", func.count(DB.Change.uid)), label ("status", DB.Change.status), ) \ .filter(~q_subm.exists()) \ .group_by (DB.Change.open) cases = q_changes_nosubm_cases.all() for case in cases: print " Open is " + str(case.open) + ": " + str(case.num) if case.open == 0: # Closed changes, but no SUBM cases_status = q_changes_nosubm_cases \ .filter(DB.Change.open == 0) \ .group_by (DB.Change.status).all() for case_status in cases_status: print " Status is " + case_status.status \ + ": " + str(case_status.num) if case_status.status == "MERGED": # Closed & merged changes, but no SUBM pushed = q_changes_nosubm \ .join(DB.Message) \ .filter(DB.Change.status == "MERGED") \ .filter(DB.Change.open == 0) \ .filter(DB.Message.header.like( "Change has been successfully pushed%" )) print " Changes merged by being pushed: " \ + str(pushed.count()) # Other remaining changes q_pushed = session.query(DB.Message) \ .filter(DB.Change.uid == DB.Message.change_id, DB.Message.header.like( "Change has been successfully pushed%" )) not_pushed = q_changes_nosubm \ .filter(DB.Change.status == "MERGED") \ .filter(DB.Change.open == 0) \ .filter(~q_pushed.exists()) not_pushed_no = not_pushed.count() print " Other changes (" + str(not_pushed_no) \ + ", list): ", changes = not_pushed.limit(max).all() for change in changes: print str(change.num), print def check_events (projects = None): """Check that evolution of events matches current situation. Parameters ---------- projects: list of str List of projects to consider. Default: None """ q = query_start (projects) started = q.count() print "Started: " + str(started) q = query_submit (projects) submitted = q.count() print "Submitted: " + str(submitted) q = query_in_header ("Pushed", "Change has been successfully pushed%", projects) pushed = q.count() print "Pushed: " + str(pushed) q = query_in_header ("Abandoned", "Patch%Abandoned", projects) abandoned = q.count() print "Abandoned: " + str(abandoned) q = query_in_header ("Restored", "Patch%Restored", projects) restored = q.count() print "Restored: " + str(restored) q = query_in_header ("Reverted", "Patch%Reverted", projects) reverted = q.count() print "Reverted: " + str(reverted) res_merged = submitted + pushed print "Resulting merged: " + str(res_merged) res_abandoned = abandoned - restored print "Resulting abandoned: " + str(res_abandoned) print "Resulting new:" + str( started - res_merged - res_abandoned) def show_drafts(max): """Find revisins with isdraft == True up to the number specified. Parameters ---------- max: int Maximum number of isdraft revisions to print. """ res = session.query(DB.Revision, label("change", DB.Change.number)) \ .join(DB.Change) \ .filter (DB.Revision.isdraft == True) for rev in res.limit(max).all(): show_revision_record(rev = rev.Revision, change = rev.change) print "Total number of drafts: " + str(res.count()) def calc_duration_changes(max): """Calculate duration of changes (time from created to updated). This will print sumary stats about the duration of the changes in the review system, and will show some of them. Parameters ---------- max: int Max number of changes to show. """ res = session.query( label ("number", DB.Change.number), label ("start", DB.Change.created), label ("finish", DB.Change.updated), ) \ .filter (DB.Change.created < DB.Change.updated) \ .order_by (desc (func.datediff(DB.Change.updated, DB.Change.created))) cases = res.limit(max).all() for case in cases: print str(case.number) + ": " + str(case.start) + \ " (start), " + str(case.finish) + " (finish) Duration: " + \ str(case.finish - case.start) def calc_duration_changes_approvals(max): """Calculate duration of changes using information about approvals. This will print sumary stats about the duration of the changes in the review system, and will show some of them. A change is defined to start when the first upload for it is found, and defined to end when the latest approval is found. Parameters ---------- max: int Max number of changes to show. """ starts = session.query( label ("number", DB.Change.number), label ("date", func.min (DB.Revision.date)), ) \ .filter (DB.Change.uid == DB.Revision.change_id) \ .group_by (DB.Change.uid) \ .subquery() finishes = session.query( label ("number", DB.Change.number), label ("date", func.max (DB.Approval.date)), ) \ .filter (DB.Change.uid == DB.Revision.change_id, DB.Revision.uid == DB.Approval.revision_id) \ .group_by (DB.Change.uid) \ .subquery() query = session.query( label ("number", starts.c.number), label ("start", starts.c.date), label ("finish", finishes.c.date), ) \ .filter (starts.c.number == finishes.c.number) cases = query.limit(max).all() for case in cases: print str(case.number) + ": " + str(case.start) + \ " (start), " + str(case.finish) + " (finish) Duration: " + \ str(case.finish - case.start) def plot_events_byperiod (byperiod, filename = None): """Plot a series of events. Parameters ---------- byperiod: panda.timeseries Events to plot, as a timeseries dataframe with three columns: period (as starting date), event name, number of events. filename: str File name to plot to. (Default: None, means plot online). """ chart = ggplot (aes(x='date', y='change', color='event'), data=byperiod) \ + geom_line() \ + labs("Date", "Number of events") if filename is None: print chart else: ggsave (filename, chart) def query_create (): """Produce a query for selecting change create events. The query will select "date" as the date for the event, and "change" for the change number. The date is the "created" field for the change. Returns ------- query_gerrit.query: produced query """ q = session.query( label ("date", DB.Change.created), label ("change", DB.Change.number), ) return q def query_start (changes = None): """Produce a query for selecting chnage start events. The query will select "date" as the date for the event, and "change" for the change number. The date is calculated as the date of the first revision. Parameters ---------- changes: list of int List of change numbers to consider. Returns ------- query_gerrit.query: produced query """ q = session.query( label ("date", func.min(DB.Revision.date)), label ("change", DB.Change.number), ) \ .join(DB.Change) q = q.group_by(DB.Change.uid) if changes is not None: q = q.filter(DB.Change.number.in_(changes)) return q def query_submit (): """Produce a query for selecting submit (ready to merge) events. The query will select "date" as the date for the event, and "change" for the change number. Returns ------- query_gerrit.query: produced query """ q = session.query( label ("date", func.max(DB.Approval.date)), label ("change", DB.Change.number), ) \ .select_from(DB.Change) \ .join(DB.Revision) \ .join(DB.Approval) \ .filter (DB.Approval.type == "SUBM") q = q.group_by(DB.Change.uid) return q def query_in_header (header, like_header, unique = False): """Produce a query for selecting events by finding header in messages. The query will select "date" as the date for the event, and "change" for the change number. Parameters ---------- header: str String to find (exactly) in header of messages. like_header: str String to find (using like) in header of messages. unique: bool Consider only unique changes (count as one if a change has several abandoned. Returns ------- query_gerrit.query: produced query """ if unique: q = session.query( label ("date", func.min(DB.Message.date)), label ("change", DB.Change.number), ) else: q = session.query( label ("date", DB.Message.date), label ("change", DB.Change.number), ) q = q.select_from(DB.Change) \ .join(DB.Message) \ .filter (or_ (DB.Message.header == header, DB.Message.header.like (like_header))) if unique: q = q.group_by(DB.Change.uid) return q def query_revisions (): """Produce a query for selecting new revision events. The query will select "date" in revision record as the date for the event, and "change" for the change number. """ q = session.query( label ("date", DB.Revision.date), label ("change", DB.Change.number), ) q = q.select_from(DB.Revision) \ .join(DB.Change) return q def get_events (kinds, max, projects = None, branches = None, owners = None, no_owners = None, since = None, until = None): """Get a dataframe with avents of kind kinds. Parameters ---------- kinds: list of {"start", "submit", "push", "abandon", "restore", "revert"} Kinds of events to be produced. max: int Max number of changes to consider (0 means "all"). projects: list of str List of projects to consider. Default: None branches: list of str List of branches to consider. Default: None. owners: list of str List of owners to consider. Default: None. no_owners: list of str List of owners to filter out. Default: None. since: datetime Only changes starting later than since. Default: None. until: datetime Only changes starting before until. Default: None. Returns ------- pandas.dataframe: Events Dataframe with columns "date" (datetime), "change" (change number), "event" (str, kind of event). """ queries = {} if "create" in kinds: queries["create"] = query_create () if "start" in kinds: queries["start"] = query_start () if "submit" in kinds: queries["submit"] = query_submit () if "push" in kinds: queries["push"] = query_in_header ( "Pushed", "Change has been successfully pushed%") if "abandon" in kinds: queries["abandon"] = query_in_header ("Abandoned", "Patch%Abandoned") if "restore" in kinds: queries["restore"] = query_in_header ("Restored", "Patch%Restored") if "revert" in kinds: queries["revert"] = query_in_header ("Reverted", "Patch%Reverted") if "revision" in kinds: queries["revision"] = query_revisions () event_list = [] for kind in queries: # Add owners to query if owners is not None: q_owners = session.query (DB.People.uid) \ .filter (DB.People.username.in_(owners)) owner_ids = [id for (id, ) in q_owners.all()] queries[kind] = queries[kind].filter ( DB.Change.owner_id.in_(owner_ids)) elif no_owners is not None: q_no_owners = session.query (DB.People.uid) \ .filter (DB.People.username.in_(no_owners)) no_owner_ids = [id for (id, ) in q_no_owners.all()] queries[kind] = queries[kind].filter ( ~DB.Change.owner_id.in_(no_owner_ids)) # Add projects to query if projects is not None: queries[kind] = queries[kind].filter ( DB.Change.project.in_(projects)) # Add branches to query if branches is not None: queries[kind] = queries[kind].filter ( DB.Change.branch.in_(branches)) # Add limit to query, query, add kind column if max != 0: queries[kind] = queries[kind].limit(max) for date, change in queries[kind]: event_list.append( [date, change, kind] ) events_df = pd.DataFrame.from_records ( event_list, columns = ["date", "change", "event"] ) if (since is not None) or (until is not None): # Get all start events start_q = query_start(events_df["change"].unique()) start_df = pd.DataFrame.from_records ( start_q.all(), columns = ["date", "change"] ) if since is not None: start_df = start_df[start_df["date"] >= since] if until is not None: start_df = start_df[start_df["date"] < until] events_df = events_df[events_df["change"].isin(start_df["change"])] # print events_df return events_df def get_events_byperiod (events_df, period = "month"): """Get a pandas timeseries with events per period. Parameters ---------- events_df: pandas.dataframe Events to group by period. It is a dataframe with the following columns: "date" (datetime), "change" (change number), "event" (str, kind of event). period: { "day", "week", "month" } Length of period (Default: "month"). Returns ------- pandas.timeseries: Number of events per period Pandas grouped object. """ if period == "month": freq = 'M' elif period == "day": freq = 'D' elif period == "week": freq = 'W' byperiod = events_df.set_index('date') \ .groupby([pd.TimeGrouper(freq=freq), "event"], as_index=False) \ .aggregate(len) return byperiod def change_start_end (events): """Produce a (start, end) list for the events of a change. Parameters ---------- events: pandas.DataFrame Each row contains an event as "date" (datetime), "change" (int, change number), and "event" (str, kind of event). Returns ------- datetime: start of the change. datetime: end of the change (None if still not finished). """ events = events.sort("date") # print "Events: \n", events start = None end = None reason = None for i, row in events.iterrows(): if start is None: if row ["event"] == "start": start = row ["date"] elif row ["event"] in ["submit", "push", "abandon"]: end = row ["date"] reason = row ["event"] break if start is not None and end is not None: diff = end - start duration = (diff.seconds + diff.days * 86400 ) / 3600 else: duration = None return pd.DataFrame( {"start": [start], "end": [end], "duration": [duration], "reason": reason}) def get_start_end (events_df): """Get a dataframe with start and end times per change. The dataframe has fields "change" (change number), "start" (datetime, start of the change), "end" (datetime, end of the change). For "start", the "start" event will be considered (first upload). For "end", the first "submit", "push" or "abandon" will be considered. Parameters ---------- events_df: pandas.dateframe Events for all changes, including at least "start", "submit", "push" and "abandon". Columns are "change", "date", and "event". Returns ------- pandas.dateframe: start and end times (datetime) per change. Columns of the dataframe: "change", "start", "end". """ bychange = events_df.groupby("change") start_end = bychange.apply(change_start_end) return start_end def show_events (kinds, max, projects = None, branches = None, no_owners = None, owners = None, plot = False, plot_file = False): """Produce a list with events of kind kinds. Parameters ---------- kinds: list of {"start", "submit", "push", "abandon", "restore", "revert"} Kinds of events to be produced. max: int Max number of changes to consider (0 means "all"). projects: list of str List of projects to consider. Default: None branches: list of str List of branches to consider. Default: None. owners: list of str List of owners to consider. Default: None. no_owners: list of str List of owners to filter out. Default: None. plot: bool Plot results in a chart (Default: False) plot_file: str File name to plot to (Default: None, means plot online) """ events_df = get_events (kinds, max, projects, branches, owners, no_owners) print events_df if plot: plot_events_all(events_df, plot_file) def show_events_byperiod (kinds, max, projects = None, branches = None, owners = None, no_owners = None, since = None, until = None, plot = False, plot_file = None, period = "month"): """Produce a list with number of events by period. Parameters ---------- kinds: list of {"start", "submit", "push", "abandon", "restore", "revert"} Kinds of events to be produced. max: int Max number of changes to consider (0 means "all"). projects: list of str List of projects to consider. Default: None. branches: list of str List of branches to consider. Default: None. owners: list of str List of owners to consider. Default: None. no_owners: list of str List of owners to filter out. Default: None. since: datetime Only changes starting later than since. Default: None. until: datetime Only changes starting before until. Default: None. plot: bool Plot results in a chart (Default: False) plot_file: str File name to plot to (Default: None, means plot online). period: { "day", "week", "month" } Length of period (Default: "month"). """ events_df = get_events (kinds, max, projects, branches, owners, no_owners, since = since, until = until) byperiod = get_events_byperiod (events_df, period) print byperiod print "Total number of changes: " + str(byperiod.sum()["change"]) if plot: plot_events_byperiod(byperiod, plot_file) def show_start_end (max, projects = None, branches = None, owners = None, no_owners = None, since = None, until = None, plot = False, plot_file = False): """Show start and end for changes. Parameters ---------- max: int Max number of changes to consider (0 means "all"). projects: list of str List of projects to consider. Default: None. branches: list of str List of branches to consider. Default: None. owners: list of str List of owners to consider. Default: None. no_owners: list of str List of owners to filter out. Default: None. since: datetime Only changes starting later than since. Default: None. until: datetime Only changes starting before until. Default: None. plot: bool Plot results in a chart. Default: False. plot_file: str file name to plot to. Default: None, means plot online. """ events = get_events (["start", "submit", "push", "abandon"], max, projects, branches, owners, no_owners, since = since, until = until) start_end = get_start_end (events) print start_end print start_end.describe() if __name__ == "__main__": from grimoirelib_alch.aux.standalone import stdout_utf8, print_banner stdout_utf8() args = parse_args() database = DB (url = args.database, schema = args.schema, schema_id = args.schema) session = database.build_session(Query, echo = False) if args.summary: show_summary() if args.summary_projects: show_summary_projects() if args.change: show_change(args.change) if args.projects: projects = args.projects.split (",") else: projects = None if args.branches: branches = args.branches.split (",") else: branches = None if args.owners: owners = args.owners.split (",") else: owners = None if args.no_owners: no_owners = args.no_owners.split (",") else: no_owners = None if args.since: since = datetime.strptime(args.since, "%Y-%m-%d") print since else: since = None if args.until: until = datetime.strptime(args.until, "%Y-%m-%d") else: until = None if args.max_results: max_results = args.max_results else: max_results = 0 if args.plot: plot = True else: plot = False if args.plot_file: plot_file = args.plot_file else: plot_file = None if args.period: period = args.period else: period = "month" if args.check_change_numbers: check_change_numbers(int(args.check_change_numbers)) if args.check_upload: check_upload(int(args.check_upload)) if args.check_first_revision: check_first_revision(int(args.check_first_revision)) if args.check_status: check_status(int(args.check_status)) if args.check_abandon: check_abandon(int(args.check_abandon)) if args.check_abandon_cont: check_abandon_cont(int(args.check_abandon_cont)) if args.check_subm: check_subm(int(args.check_subm)) if args.check_events: check_events(projects) if args.show_drafts: show_drafts(args.show_drafts) if args.check_newer_dates: check_newer_dates(args.check_newer_dates) if args.calc_duration_changes: calc_duration_changes(args.calc_duration_changes) if args.calc_duration_changes_approvals: calc_duration_changes_approvals( args.calc_duration_changes_approvals) if args.show_events: show_events(args.show_events, max_results, projects, plot, plot_file) if args.show_events_byperiod: show_events_byperiod(args.show_events_byperiod, max_results, projects, branches, owners, no_owners, since = since, until = until, plot = plot, plot_file = plot_file, period = period) if args.show_start_end: show_start_end(max_results, projects, branches, owners, no_owners, since = since, until = until, plot = plot, plot_file = plot_file)
gpl-3.0
RPGOne/scikit-learn
examples/decomposition/plot_kernel_pca.py
353
2011
""" ========== Kernel PCA ========== This example shows that Kernel PCA is able to find a projection of the data that makes data linearly separable. """ print(__doc__) # Authors: Mathieu Blondel # Andreas Mueller # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets import make_circles np.random.seed(0) X, y = make_circles(n_samples=400, factor=.3, noise=.05) kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True, gamma=10) X_kpca = kpca.fit_transform(X) X_back = kpca.inverse_transform(X_kpca) pca = PCA() X_pca = pca.fit_transform(X) # Plot results plt.figure() plt.subplot(2, 2, 1, aspect='equal') plt.title("Original space") reds = y == 0 blues = y == 1 plt.plot(X[reds, 0], X[reds, 1], "ro") plt.plot(X[blues, 0], X[blues, 1], "bo") plt.xlabel("$x_1$") plt.ylabel("$x_2$") X1, X2 = np.meshgrid(np.linspace(-1.5, 1.5, 50), np.linspace(-1.5, 1.5, 50)) X_grid = np.array([np.ravel(X1), np.ravel(X2)]).T # projection on the first principal component (in the phi space) Z_grid = kpca.transform(X_grid)[:, 0].reshape(X1.shape) plt.contour(X1, X2, Z_grid, colors='grey', linewidths=1, origin='lower') plt.subplot(2, 2, 2, aspect='equal') plt.plot(X_pca[reds, 0], X_pca[reds, 1], "ro") plt.plot(X_pca[blues, 0], X_pca[blues, 1], "bo") plt.title("Projection by PCA") plt.xlabel("1st principal component") plt.ylabel("2nd component") plt.subplot(2, 2, 3, aspect='equal') plt.plot(X_kpca[reds, 0], X_kpca[reds, 1], "ro") plt.plot(X_kpca[blues, 0], X_kpca[blues, 1], "bo") plt.title("Projection by KPCA") plt.xlabel("1st principal component in space induced by $\phi$") plt.ylabel("2nd component") plt.subplot(2, 2, 4, aspect='equal') plt.plot(X_back[reds, 0], X_back[reds, 1], "ro") plt.plot(X_back[blues, 0], X_back[blues, 1], "bo") plt.title("Original space after inverse transform") plt.xlabel("$x_1$") plt.ylabel("$x_2$") plt.subplots_adjust(0.02, 0.10, 0.98, 0.94, 0.04, 0.35) plt.show()
bsd-3-clause
mitdbg/modeldb
client/verta/verta/_internal_utils/_pip_requirements_utils.py
1
11105
# -*- coding: utf-8 -*- from __future__ import print_function import importlib import re import subprocess import sys import warnings import cloudpickle from ..external import six from .. import __about__ # for process_requirements() PYPI_TO_IMPORT = { 'scikit-learn': "sklearn", 'tensorflow-gpu': "tensorflow", 'tensorflow-hub': "tensorflow_hub", 'beautifulsoup4': "bs4", } IMPORT_TO_PYPI = { # separate mapping because PyPI to import is surjective 'sklearn': "scikit-learn", 'tensorflow_hub': "tensorflow-hub", 'bs4': "beautifulsoup4", } PKG_NAME_PATTERN = r"([A-Z0-9][A-Z0-9._-]*[A-Z0-9]|[A-Z0-9])" # https://www.python.org/dev/peps/pep-0508/#names VER_SPEC_PATTERN = r"(~=|==|!=|<=|>=|<|>|===)" # https://www.python.org/dev/peps/pep-0440/#version-specifiers VER_NUM_PATTERN = r"([0-9]+(?:\.[0-9]+){0,2}[^\s]*)" # https://www.python.org/dev/peps/pep-0440/#version-scheme REQ_SPEC_PATTERN = ( PKG_NAME_PATTERN + r"\s*" + VER_SPEC_PATTERN + r"\s*" + VER_NUM_PATTERN ) SPACY_MODEL_PATTERN = r"[a-z]{2}(?:[_-][a-z]+){2}[_-](?:sm|md|lg)" # https://spacy.io/models#conventions PKG_NAME_REGEX = re.compile(PKG_NAME_PATTERN, flags=re.IGNORECASE) VER_SPEC_REGEX = re.compile(VER_SPEC_PATTERN) VER_NUM_REGEX = re.compile(VER_NUM_PATTERN) REQ_SPEC_REGEX = re.compile(REQ_SPEC_PATTERN, flags=re.IGNORECASE) SPACY_MODEL_REGEX = re.compile(SPACY_MODEL_PATTERN) def get_pip_freeze(): pip_freeze = subprocess.check_output([sys.executable, '-m', 'pip', 'freeze']) pip_freeze = six.ensure_str(pip_freeze) req_specs = pip_freeze.splitlines() req_specs = clean_reqs_file_lines(req_specs) return req_specs def parse_req_spec(req_spec): """ Parses a requirement specifier into its components. Parameters ---------- req_spec : str e.g. "banana >= 3.6.0" Returns ------- library : str e.g. "banana" constraint : str e.g. ">=" version : str e.g. "3.6.0" """ match = REQ_SPEC_REGEX.match(req_spec) if match is None: raise ValueError("\"{}\" does not appear to be a valid pip requirement specifier;" " it may be misspelled or missing its version specifier".format(req_spec)) return match.groups() def parse_version(version): """ Parses a version number into its components. A missing component will be returned as a ``0``. Parameters ---------- version : str e.g. "3.6" Returns ------- major : int e.g. 3 minor : int e.g. 6 patch : int e.g. 0 suffix : str Additional characters, such as build metadata or sub-patch release numbers. """ if VER_NUM_REGEX.match(version) is None: raise ValueError("\"{}\" does not appear to be a valid version number".format(version)) MAJOR_REGEX = re.compile(r"^([0-9]+)") MINOR_OR_PATCH_REGEX = re.compile(r"^(\.[0-9]+)") # extract major version split = MAJOR_REGEX.split(version, maxsplit=1)[1:] # first element is empty major = int(split[0]) suffix = ''.join(split[1:]) # extract minor version if MINOR_OR_PATCH_REGEX.match(suffix): split = MINOR_OR_PATCH_REGEX.split(suffix, maxsplit=1)[1:] # first element is empty minor = int(split[0][1:]) # first character is period suffix = ''.join(split[1:]) else: minor = 0 # extract patch version if MINOR_OR_PATCH_REGEX.match(suffix): split = MINOR_OR_PATCH_REGEX.split(suffix, maxsplit=1)[1:] # first element is empty patch = int(split[0][1:]) # first character is period suffix = ''.join(split[1:]) else: patch = 0 return major, minor, patch, suffix def process_requirements(requirements): """ Validates `requirements` against packages available in the current environment. Parameters ---------- requirements : list of str PyPI package names. Raises ------ ValueError If a package's name is invalid for PyPI, or its exact version cannot be determined. """ # validate package names for req in requirements: if not PKG_NAME_REGEX.match(req): raise ValueError("'{}' does not appear to be a valid PyPI-installable package;" " please check its spelling," " or file an issue if you believe it is in error".format(req)) strip_inexact_specifiers(requirements) set_version_pins(requirements) add_verta_and_cloudpickle(requirements) def strip_inexact_specifiers(requirements): """ Removes any version specifier that is not ``==``, leaving just the package name. Parameters ---------- requirements : list of str Warns ----- UserWarning If a requirement specifier uses version specifier other than ``==``, to inform the user that it will be replaced with an exact version pin. """ for i, req in enumerate(requirements): _, pkg, ver_spec = PKG_NAME_REGEX.split(req, maxsplit=1) if not ver_spec: continue elif '==' in ver_spec: continue else: msg = ("'{}' does not use '=='; for reproducibility in deployment, it will be replaced" " with an exact pin of the currently-installed version".format(req)) warnings.warn(msg) requirements[i] = pkg def set_version_pins(requirements): """ Sets version pins for packages in `requirements`. Parameters ---------- requirements : list of str Notes ----- This function attempts an import of each package and checks its version using the module's ``__version__`` attribute. This can lead to problems if the package is not importable (e.g. PyPI name is different from its package module name) or if it does not have supply ``__version__``. This approach is taken because Python package management is complete anarchy, and the Client can't determine whether the environment is using pip or conda in order to check the installed version directly from the environment. """ # map of packages to their versions according to pip pip_pkg_vers = dict( req_spec.split('==') for req_spec in six.ensure_str(subprocess.check_output([sys.executable, '-m', 'pip', 'freeze'])).splitlines() if '==' in req_spec ) # replace importable module names with PyPI package names in case of user error for i, req in enumerate(requirements): requirements[i] = IMPORT_TO_PYPI.get(req, req) for i, req in enumerate(requirements): error = ValueError("unable to determine a version number for requirement '{}';" " it might not be installed;" " please manually specify it as '{}==x.y.z'".format(req, req)) if VER_SPEC_REGEX.search(req) is None: # obtain package version try: mod_name = PYPI_TO_IMPORT.get(req, req) mod = importlib.import_module(mod_name) ver = mod.__version__ except (ImportError, AttributeError): # fall back to checking pip try: ver = pip_pkg_vers[req] except KeyError: six.raise_from(error, None) requirements[i] = req + "==" + ver def add_verta_and_cloudpickle(requirements): """ Adds verta and cloudpickle to `requirements`, pinning their versions from the environment. verta and cloudpickle are required for deployment, but a user might not have specified them in their manual deployment requirements. Parameters ---------- requirements : list of str Raises ------ ValueError If verta or cloudpickle already have a version pin specified in `requirements`, but it conflicts with the version in the current environment. """ # add verta verta_req = "verta=={}".format(__about__.__version__) for req in requirements: if req.startswith("verta"): # if present, check version our_ver = verta_req.split('==')[-1] their_ver = req.split('==')[-1] if our_ver != their_ver: # versions conflict, so raise exception raise ValueError("Client is running with verta v{}, but the provided requirements specify v{};" " these must match".format(our_ver, their_ver)) else: # versions match, so proceed break else: # if not present, add requirements.append(verta_req) # add cloudpickle cloudpickle_req = "cloudpickle=={}".format(cloudpickle.__version__) for req in requirements: if req.startswith("cloudpickle"): # if present, check version our_ver = cloudpickle_req.split('==')[-1] their_ver = req.split('==')[-1] if our_ver != their_ver: # versions conflict, so raise exception raise ValueError("Client is running with cloudpickle v{}, but the provided requirements specify v{};" " these must match".format(our_ver, their_ver)) else: # versions match, so proceed break else: # if not present, add requirements.append(cloudpickle_req) def clean_reqs_file_lines(requirements): """ Performs basic preprocessing on a requirements file's lines so it's easier to handle downstream. Parameters ---------- requirements : list of str ``requirements_file.readlines()``. Returns ------- cleaned_requirements : list of str Requirement specifiers. """ requirements = [req.strip() for req in requirements] requirements = [req for req in requirements if req] # empty line requirements = [req for req in requirements if not req.startswith('#')] # comment line # remove unsupported options supported_requirements = [] for req in requirements: # https://pip.pypa.io/en/stable/reference/pip_install/#requirements-file-format if req.startswith(('--', '-c ', '-f ', '-i ')): print("skipping unsupported option \"{}\"".format(req)) continue # https://pip.pypa.io/en/stable/reference/pip_install/#vcs-support # TODO: upgrade protos and Client to handle VCS-installed packages if req.startswith(('-e ', 'git:', 'git+', 'hg+', 'svn+', 'bzr+')): print("skipping unsupported VCS-installed package \"{}\"".format(req)) continue # TODO: follow references to other requirements files if req.startswith('-r '): print("skipping unsupported file reference \"{}\"".format(req)) continue # non-PyPI-installable spaCy models if SPACY_MODEL_REGEX.match(req): print("skipping non-PyPI-installable spaCy model \"{}\"".format(req)) continue supported_requirements.append(req) return supported_requirements
mit
alexrudnick/chipa
src/learn.py
1
2747
#!/usr/bin/env python3 import argparse import readline import functools from nltk.classify.scikitlearn import SklearnClassifier from sklearn.feature_selection import SelectKBest, chi2 from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline import nltk from nltk.probability import FreqDist from nltk.probability import ConditionalFreqDist from nltk.probability import ConditionalProbDist from nltk.probability import ELEProbDist import features from constants import UNTRANSLATED from constants import OOV DEBUG=False def pause(): if DEBUG: input("ENTER TO CONTINUE") def cpd(cfd): """Take a ConditionalFreqDist and turn it into a ConditionalProdDist""" return ConditionalProbDist(cfd, ELEProbDist) def reverse_cfd(cfd): """Given a ConditionalFreqDist, reverse the conditions and the samples!!""" out = ConditionalFreqDist() for condition in cfd.conditions(): for sample in cfd[condition].samples(): out[sample].inc(condition, cfd[condition][sample]) return out @functools.lru_cache(maxsize=100000) def mfs_for(word): fd = nltk.probability.FreqDist() labeled_featuresets = trainingdata_for(word) for (f,label) in labeled_featuresets: fd[label] += 1 return fd.max() @functools.lru_cache(maxsize=100000) def mfs_translation(word): """Return the MFS for the given word, but require that it's not the untranslated token unless that's all we've seen.""" fd = nltk.probability.FreqDist() labeled_featuresets = trainingdata_for(word) for (f,label) in labeled_featuresets: if label == UNTRANSLATED: continue fd[label] += 1 mostcommon = fd.most_common() if not mostcommon: return OOV return mostcommon[0][0] class MFSClassifier(nltk.classify.ClassifierI): def __init__(self): self.fd = nltk.probability.FreqDist() def train(self, labeled_featuresets): self.fd.clear() for (f,label) in labeled_featuresets: self.fd[label] += 1 def classify(self, featureset): return self.fd.max() def prob_classify(self, featureset): return nltk.probability.DictionaryProbDist({self.fd.max(): 1.0}) class OOVClassifier(nltk.classify.ClassifierI): def __init__(self): pass def train(self, labeled_featuresets): pass def classify(self, featureset): return OOV def prob_classify(self, featureset): return nltk.probability.DictionaryProbDist({OOV: 1.0}) @functools.lru_cache(maxsize=100000) def distribution_for(word): fd = nltk.probability.FreqDist() labeled_featuresets = trainingdata_for(word) for (f,label) in labeled_featuresets: fd[label] += 1 return fd
gpl-3.0
MTgeophysics/mtpy
legacy/create_modem_input.py
1
6364
# -*- coding: utf-8 -*- """ Create modem input files: This script includes topography in the model. To not include topography, set number of air layers to zero (recommended) or comment out add_topography line. Note: setting number of air layers to zero will add bathymetry but not topography. USAGE examples: python examples/create_modem_input.py tests/data/edifiles/ examples/etopo1.asc /e/tmp/modem_test python examples/create_modem_input.py /e/Data/MT_Datasets/WenPingJiang_EDI /e/Data/MT_Datasets/concurry_topo/AussieContinent_etopo1.asc /e/tmp/WenPingTest python examples/create_modem_input.py /e/Data/MT_Datasets/concurry_EDI_files/ /e/Data/MT_Datasets/concurry_topo/AussieContinent_etopo1.asc /e/tmp/Concurry Developed by [email protected] [email protected] Create Date: 2017-02-01 """ from __future__ import print_function import glob import os import sys import matplotlib.pyplot as plt import numpy as np from mtpy.modeling.modem import Covariance, Data, Model from mtpy.core.edi_collection import EdiCollection # YG: patch that changes the matplotlib behaviour # plt.ion() # enable interactive # plt.ioff() # disable interactive, which will also disable this patch def show_patcher(show_func): """ patch the plt.show() if interactive is enabled to display and then close the plot after 1 second so plt.show() will not block the script and the figure is still visible to the user :param show_func: :return: """ def new_show_func(*args, **kwargs): stuff = show_func(*args, **kwargs) # wait 1 second for the image to show on screen figManager = plt.gcf() if figManager is not None: canvas = figManager.canvas # if canvas.figure.stale: # canvas.draw() # show(block=False) canvas.start_event_loop(1) # wait time = 1 plt.close() return stuff return new_show_func if plt.isinteractive() else show_func # plt.show = show_patcher(plt.show) # end of patch if __name__ == '__main__': if len(sys.argv) < 4: print("USAGE: %s path2edifiles path2topo.asc path2outdir" % sys.argv[0]) sys.exit(1) else: edipath = sys.argv[1] # edi files to be inversioned topofile = sys.argv[2] # topography file, if using outputdir = sys.argv[3] # path to save to if not os.path.exists(outputdir): os.mkdir(outputdir) # epsg to project to. Google epsg 'your projection' epsg_code = 28354 epsg_code = 3112 edi_list = glob.glob(edipath + '/*.edi') if edi_list is None or (edi_list) < 1: print("Error: No edi files found in the dir %s" % edipath) sys.exit(2) # period list (can take periods from one of the edi files, or just specify # periods directly using the logspace function (commented out)) # eo = mtedi.Edi(edi_list[0]) # this may miss some periods? # period_list = 1. / eo.Z.freq # period_list = np.logspace(-3,3) print ("edi_list = {}".format(edi_list)) period_list = EdiCollection(edi_list).select_periods() datob = Data(edi_list=edi_list, inv_mode='1', period_list=period_list, epsg=epsg_code, error_type='floor', error_floor=10) # period_buffer=0.000001) datob.write_data_file(save_path=outputdir) # create mesh grid model object # model = Model(Data=datob, model = Model(station_object=datob.station_locations, epsg=epsg_code, # epsg # cell_size_east=500, cell_size_north=500, # concurry cell_size_east=10000, cell_size_north=10000, #GA_VIC # cell_size_east=1000, cell_size_north=1000, # Concurry cell_number_ew=120, cell_number_ns=100, # option to specify cell numbers pad_north=8, # number of padding cells in each of the north and south directions pad_east=8, # number of east and west padding cells pad_z=8, # number of vertical padding cells pad_stretch_v=1.5, # factor to increase by in padding cells (vertical) pad_stretch_h=1.5, # factor to increase by in padding cells (horizontal) n_airlayers=10, # number of air layers 0, 10, 20, depend on topo elev height res_model=100, # halfspace resistivity value for initial reference model n_layers=55, # total number of z layers, including air and pad_z z1_layer=50, # first layer thickness metres, depend z_target_depth=500000) model.make_mesh() # the data file will be re-write in this method. No topo elev file used yet model.plot_mesh() model.plot_mesh_xy() model.plot_mesh_xz() # write a model file and initialise a resistivity model model.write_model_file(save_path=outputdir) #=========== now add topo data, with or without air layers? # 1) the data file will be changed in 3 columns sxi, syi and szi meters # 2) The covariance file will be written. # 3) the model file not changed?? No air layers can be seen in the .ws file. # add topography, define an initial resistivity model, modify and re-write the data file, define covariance mask # dat file will be changed and rewritten, # grid centre is used as the new origin of coordinate system, topo data used in the elev column. # model.add_topography(topofile, interp_method='nearest') # dat file will be written again as elevation updated model.add_topography_2mesh(topofile, interp_method='nearest') # dat file will be written again as elevation updated model.plot_topograph() # plot the MT stations on topography elevation data print("*** Re-writing model file after topo data and air layers are added - will include air sea-water resistivity") model.write_model_file(save_path=model.save_path) # model.write_model_file(save_path='temp/') # make covariance (mask) file cov = Covariance(mask_arr=model.covariance_mask, save_path=outputdir, smoothing_east=0.3, smoothing_north=0.3, smoothing_z=0.3) cov.write_covariance_file(model_fn=model.model_fn)
gpl-3.0
zihua/scikit-learn
sklearn/metrics/tests/test_score_objects.py
15
17443
import pickle import tempfile import shutil import os import numbers import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_true from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_warns_message from sklearn.base import BaseEstimator from sklearn.metrics import (f1_score, r2_score, roc_auc_score, fbeta_score, log_loss, precision_score, recall_score) from sklearn.metrics.cluster import adjusted_rand_score from sklearn.metrics.scorer import (check_scoring, _PredictScorer, _passthrough_scorer) from sklearn.metrics import make_scorer, get_scorer, SCORERS from sklearn.svm import LinearSVC from sklearn.pipeline import make_pipeline from sklearn.cluster import KMeans from sklearn.dummy import DummyRegressor from sklearn.linear_model import Ridge, LogisticRegression from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.datasets import make_blobs from sklearn.datasets import make_classification from sklearn.datasets import make_multilabel_classification from sklearn.datasets import load_diabetes from sklearn.model_selection import train_test_split, cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.multiclass import OneVsRestClassifier from sklearn.externals import joblib REGRESSION_SCORERS = ['r2', 'neg_mean_absolute_error', 'neg_mean_squared_error', 'neg_median_absolute_error', 'mean_absolute_error', 'mean_squared_error', 'median_absolute_error'] CLF_SCORERS = ['accuracy', 'f1', 'f1_weighted', 'f1_macro', 'f1_micro', 'roc_auc', 'average_precision', 'precision', 'precision_weighted', 'precision_macro', 'precision_micro', 'recall', 'recall_weighted', 'recall_macro', 'recall_micro', 'neg_log_loss', 'log_loss', 'adjusted_rand_score' # not really, but works ] MULTILABEL_ONLY_SCORERS = ['precision_samples', 'recall_samples', 'f1_samples'] def _make_estimators(X_train, y_train, y_ml_train): # Make estimators that make sense to test various scoring methods sensible_regr = DummyRegressor(strategy='median') sensible_regr.fit(X_train, y_train) sensible_clf = DecisionTreeClassifier(random_state=0) sensible_clf.fit(X_train, y_train) sensible_ml_clf = DecisionTreeClassifier(random_state=0) sensible_ml_clf.fit(X_train, y_ml_train) return dict( [(name, sensible_regr) for name in REGRESSION_SCORERS] + [(name, sensible_clf) for name in CLF_SCORERS] + [(name, sensible_ml_clf) for name in MULTILABEL_ONLY_SCORERS] ) X_mm, y_mm, y_ml_mm = None, None, None ESTIMATORS = None TEMP_FOLDER = None def setup_module(): # Create some memory mapped data global X_mm, y_mm, y_ml_mm, TEMP_FOLDER, ESTIMATORS TEMP_FOLDER = tempfile.mkdtemp(prefix='sklearn_test_score_objects_') X, y = make_classification(n_samples=30, n_features=5, random_state=0) _, y_ml = make_multilabel_classification(n_samples=X.shape[0], random_state=0) filename = os.path.join(TEMP_FOLDER, 'test_data.pkl') joblib.dump((X, y, y_ml), filename) X_mm, y_mm, y_ml_mm = joblib.load(filename, mmap_mode='r') ESTIMATORS = _make_estimators(X_mm, y_mm, y_ml_mm) def teardown_module(): global X_mm, y_mm, y_ml_mm, TEMP_FOLDER, ESTIMATORS # GC closes the mmap file descriptors X_mm, y_mm, y_ml_mm, ESTIMATORS = None, None, None, None shutil.rmtree(TEMP_FOLDER) class EstimatorWithoutFit(object): """Dummy estimator to test check_scoring""" pass class EstimatorWithFit(BaseEstimator): """Dummy estimator to test check_scoring""" def fit(self, X, y): return self class EstimatorWithFitAndScore(object): """Dummy estimator to test check_scoring""" def fit(self, X, y): return self def score(self, X, y): return 1.0 class EstimatorWithFitAndPredict(object): """Dummy estimator to test check_scoring""" def fit(self, X, y): self.y = y return self def predict(self, X): return self.y class DummyScorer(object): """Dummy scorer that always returns 1.""" def __call__(self, est, X, y): return 1 def test_all_scorers_repr(): # Test that all scorers have a working repr for name, scorer in SCORERS.items(): repr(scorer) def test_check_scoring(): # Test all branches of check_scoring estimator = EstimatorWithoutFit() pattern = (r"estimator should be an estimator implementing 'fit' method," r" .* was passed") assert_raises_regexp(TypeError, pattern, check_scoring, estimator) estimator = EstimatorWithFitAndScore() estimator.fit([[1]], [1]) scorer = check_scoring(estimator) assert_true(scorer is _passthrough_scorer) assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0) estimator = EstimatorWithFitAndPredict() estimator.fit([[1]], [1]) pattern = (r"If no scoring is specified, the estimator passed should have" r" a 'score' method\. The estimator .* does not\.") assert_raises_regexp(TypeError, pattern, check_scoring, estimator) scorer = check_scoring(estimator, "accuracy") assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0) estimator = EstimatorWithFit() scorer = check_scoring(estimator, "accuracy") assert_true(isinstance(scorer, _PredictScorer)) estimator = EstimatorWithFit() scorer = check_scoring(estimator, allow_none=True) assert_true(scorer is None) def test_check_scoring_gridsearchcv(): # test that check_scoring works on GridSearchCV and pipeline. # slightly redundant non-regression test. grid = GridSearchCV(LinearSVC(), param_grid={'C': [.1, 1]}) scorer = check_scoring(grid, "f1") assert_true(isinstance(scorer, _PredictScorer)) pipe = make_pipeline(LinearSVC()) scorer = check_scoring(pipe, "f1") assert_true(isinstance(scorer, _PredictScorer)) # check that cross_val_score definitely calls the scorer # and doesn't make any assumptions about the estimator apart from having a # fit. scores = cross_val_score(EstimatorWithFit(), [[1], [2], [3]], [1, 0, 1], scoring=DummyScorer()) assert_array_equal(scores, 1) def test_make_scorer(): # Sanity check on the make_scorer factory function. f = lambda *args: 0 assert_raises(ValueError, make_scorer, f, needs_threshold=True, needs_proba=True) def test_classification_scores(): # Test classification scorers. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LinearSVC(random_state=0) clf.fit(X_train, y_train) for prefix, metric in [('f1', f1_score), ('precision', precision_score), ('recall', recall_score)]: score1 = get_scorer('%s_weighted' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='weighted') assert_almost_equal(score1, score2) score1 = get_scorer('%s_macro' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='macro') assert_almost_equal(score1, score2) score1 = get_scorer('%s_micro' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='micro') assert_almost_equal(score1, score2) score1 = get_scorer('%s' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=1) assert_almost_equal(score1, score2) # test fbeta score that takes an argument scorer = make_scorer(fbeta_score, beta=2) score1 = scorer(clf, X_test, y_test) score2 = fbeta_score(y_test, clf.predict(X_test), beta=2) assert_almost_equal(score1, score2) # test that custom scorer can be pickled unpickled_scorer = pickle.loads(pickle.dumps(scorer)) score3 = unpickled_scorer(clf, X_test, y_test) assert_almost_equal(score1, score3) # smoke test the repr: repr(fbeta_score) def test_regression_scorers(): # Test regression scorers. diabetes = load_diabetes() X, y = diabetes.data, diabetes.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = Ridge() clf.fit(X_train, y_train) score1 = get_scorer('r2')(clf, X_test, y_test) score2 = r2_score(y_test, clf.predict(X_test)) assert_almost_equal(score1, score2) def test_thresholded_scorers(): # Test scorers that take thresholds. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LogisticRegression(random_state=0) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.decision_function(X_test)) score3 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]) assert_almost_equal(score1, score2) assert_almost_equal(score1, score3) logscore = get_scorer('neg_log_loss')(clf, X_test, y_test) logloss = log_loss(y_test, clf.predict_proba(X_test)) assert_almost_equal(-logscore, logloss) # same for an estimator without decision_function clf = DecisionTreeClassifier() clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]) assert_almost_equal(score1, score2) # test with a regressor (no decision_function) reg = DecisionTreeRegressor() reg.fit(X_train, y_train) score1 = get_scorer('roc_auc')(reg, X_test, y_test) score2 = roc_auc_score(y_test, reg.predict(X_test)) assert_almost_equal(score1, score2) # Test that an exception is raised on more than two classes X, y = make_blobs(random_state=0, centers=3) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf.fit(X_train, y_train) assert_raises(ValueError, get_scorer('roc_auc'), clf, X_test, y_test) def test_thresholded_scorers_multilabel_indicator_data(): # Test that the scorer work with multilabel-indicator format # for multilabel and multi-output multi-class classifier X, y = make_multilabel_classification(allow_unlabeled=False, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # Multi-output multi-class predict_proba clf = DecisionTreeClassifier() clf.fit(X_train, y_train) y_proba = clf.predict_proba(X_test) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, np.vstack(p[:, -1] for p in y_proba).T) assert_almost_equal(score1, score2) # Multi-output multi-class decision_function # TODO Is there any yet? clf = DecisionTreeClassifier() clf.fit(X_train, y_train) clf._predict_proba = clf.predict_proba clf.predict_proba = None clf.decision_function = lambda X: [p[:, 1] for p in clf._predict_proba(X)] y_proba = clf.decision_function(X_test) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, np.vstack(p for p in y_proba).T) assert_almost_equal(score1, score2) # Multilabel predict_proba clf = OneVsRestClassifier(DecisionTreeClassifier()) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.predict_proba(X_test)) assert_almost_equal(score1, score2) # Multilabel decision function clf = OneVsRestClassifier(LinearSVC(random_state=0)) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.decision_function(X_test)) assert_almost_equal(score1, score2) def test_unsupervised_scorers(): # Test clustering scorers against gold standard labeling. # We don't have any real unsupervised Scorers yet. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) km = KMeans(n_clusters=3) km.fit(X_train) score1 = get_scorer('adjusted_rand_score')(km, X_test, y_test) score2 = adjusted_rand_score(y_test, km.predict(X_test)) assert_almost_equal(score1, score2) @ignore_warnings def test_raises_on_score_list(): # Test that when a list of scores is returned, we raise proper errors. X, y = make_blobs(random_state=0) f1_scorer_no_average = make_scorer(f1_score, average=None) clf = DecisionTreeClassifier() assert_raises(ValueError, cross_val_score, clf, X, y, scoring=f1_scorer_no_average) grid_search = GridSearchCV(clf, scoring=f1_scorer_no_average, param_grid={'max_depth': [1, 2]}) assert_raises(ValueError, grid_search.fit, X, y) @ignore_warnings def test_scorer_sample_weight(): # Test that scorers support sample_weight or raise sensible errors # Unlike the metrics invariance test, in the scorer case it's harder # to ensure that, on the classifier output, weighted and unweighted # scores really should be unequal. X, y = make_classification(random_state=0) _, y_ml = make_multilabel_classification(n_samples=X.shape[0], random_state=0) split = train_test_split(X, y, y_ml, random_state=0) X_train, X_test, y_train, y_test, y_ml_train, y_ml_test = split sample_weight = np.ones_like(y_test) sample_weight[:10] = 0 # get sensible estimators for each metric estimator = _make_estimators(X_train, y_train, y_ml_train) for name, scorer in SCORERS.items(): if name in MULTILABEL_ONLY_SCORERS: target = y_ml_test else: target = y_test try: weighted = scorer(estimator[name], X_test, target, sample_weight=sample_weight) ignored = scorer(estimator[name], X_test[10:], target[10:]) unweighted = scorer(estimator[name], X_test, target) assert_not_equal(weighted, unweighted, msg="scorer {0} behaves identically when " "called with sample weights: {1} vs " "{2}".format(name, weighted, unweighted)) assert_almost_equal(weighted, ignored, err_msg="scorer {0} behaves differently when " "ignoring samples and setting sample_weight to" " 0: {1} vs {2}".format(name, weighted, ignored)) except TypeError as e: assert_true("sample_weight" in str(e), "scorer {0} raises unhelpful exception when called " "with sample weights: {1}".format(name, str(e))) @ignore_warnings # UndefinedMetricWarning for P / R scores def check_scorer_memmap(scorer_name): scorer, estimator = SCORERS[scorer_name], ESTIMATORS[scorer_name] if scorer_name in MULTILABEL_ONLY_SCORERS: score = scorer(estimator, X_mm, y_ml_mm) else: score = scorer(estimator, X_mm, y_mm) assert isinstance(score, numbers.Number), scorer_name def test_scorer_memmap_input(): # Non-regression test for #6147: some score functions would # return singleton memmap when computed on memmap data instead of scalar # float values. for name in SCORERS.keys(): yield check_scorer_memmap, name def test_deprecated_names(): X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LogisticRegression(random_state=0) clf.fit(X_train, y_train) for name in ('mean_absolute_error', 'mean_squared_error', 'median_absolute_error', 'log_loss'): warning_msg = "Scoring method %s was renamed to" % name for scorer in (get_scorer(name), SCORERS[name]): assert_warns_message(DeprecationWarning, warning_msg, scorer, clf, X, y) assert_warns_message(DeprecationWarning, warning_msg, cross_val_score, clf, X, y, scoring=name) def test_scoring_is_not_metric(): assert_raises_regexp(ValueError, 'make_scorer', check_scoring, LogisticRegression(), f1_score) assert_raises_regexp(ValueError, 'make_scorer', check_scoring, LogisticRegression(), roc_auc_score) assert_raises_regexp(ValueError, 'make_scorer', check_scoring, Ridge(), r2_score) assert_raises_regexp(ValueError, 'make_scorer', check_scoring, KMeans(), adjusted_rand_score)
bsd-3-clause
tz3/ml_homework
source/bag_of_word/imutils.py
1
1105
#!/usr/local/bin/python2.7 import cv2 import matplotlib.pyplot as plt import os def imlist(path): """ The function imlist returns all the names of the files in the directory path supplied as argument to the function. """ return [os.path.join(path, f) for f in os.listdir(path)] def imshow(im_title, im): """ This is function to display the image""" plt.figure() plt.title(im_title) plt.axis("off") if len(im.shape) == 2: plt.imshow(im, cmap="gray") else: im_display = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) plt.imshow(im_display) plt.show() def imreads(path): """ This reads all the images in a given folder and returns the results """ images_path = imlist("/home/bikz05/Desktop/back_projection") images = [] for image_path in images_path: images.append(cv2.imread(image_path, cv2.CV_LOAD_IMAGE_COLOR)) return images def show(image, name="Image"): """ Routine to display the image. """ cv2.namedWindow(name, cv2.WINDOW_NORMAL) cv2.imshow(name, image) cv2.waitKey(0)
mit
mortonjt/scipy
scipy/cluster/tests/test_hierarchy.py
26
35159
#! /usr/bin/env python # # Author: Damian Eads # Date: April 17, 2008 # # Copyright (C) 2008 Damian Eads # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # 3. The name of the author may not be used to endorse or promote # products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import division, print_function, absolute_import import numpy as np from numpy.testing import (TestCase, run_module_suite, dec, assert_raises, assert_allclose, assert_equal, assert_) from scipy._lib.six import xrange, u import scipy.cluster.hierarchy from scipy.cluster.hierarchy import ( linkage, from_mlab_linkage, to_mlab_linkage, num_obs_linkage, inconsistent, cophenet, fclusterdata, fcluster, is_isomorphic, single, leaders, correspond, is_monotonic, maxdists, maxinconsts, maxRstat, is_valid_linkage, is_valid_im, to_tree, leaves_list, dendrogram, set_link_color_palette) from scipy.spatial.distance import pdist import hierarchy_test_data # Matplotlib is not a scipy dependency but is optionally used in dendrogram, so # check if it's available try: import matplotlib # and set the backend to be Agg (no gui) matplotlib.use('Agg') # before importing pyplot import matplotlib.pyplot as plt have_matplotlib = True except: have_matplotlib = False class TestLinkage(object): def test_linkage_empty_distance_matrix(self): # Tests linkage(Y) where Y is a 0x4 linkage matrix. Exception expected. y = np.zeros((0,)) assert_raises(ValueError, linkage, y) def test_linkage_tdist(self): for method in ['single', 'complete', 'average', 'weighted', u('single')]: yield self.check_linkage_tdist, method def check_linkage_tdist(self, method): # Tests linkage(Y, method) on the tdist data set. Z = linkage(hierarchy_test_data.ytdist, method) expectedZ = getattr(hierarchy_test_data, 'linkage_ytdist_' + method) assert_allclose(Z, expectedZ, atol=1e-10) def test_linkage_X(self): for method in ['centroid', 'median', 'ward']: yield self.check_linkage_q, method def check_linkage_q(self, method): # Tests linkage(Y, method) on the Q data set. Z = linkage(hierarchy_test_data.X, method) expectedZ = getattr(hierarchy_test_data, 'linkage_X_' + method) assert_allclose(Z, expectedZ, atol=1e-06) class TestInconsistent(object): def test_inconsistent_tdist(self): for depth in hierarchy_test_data.inconsistent_ytdist: yield self.check_inconsistent_tdist, depth def check_inconsistent_tdist(self, depth): Z = hierarchy_test_data.linkage_ytdist_single assert_allclose(inconsistent(Z, depth), hierarchy_test_data.inconsistent_ytdist[depth]) class TestCopheneticDistance(object): def test_linkage_cophenet_tdist_Z(self): # Tests cophenet(Z) on tdist data set. expectedM = np.array([268, 295, 255, 255, 295, 295, 268, 268, 295, 295, 295, 138, 219, 295, 295]) Z = hierarchy_test_data.linkage_ytdist_single M = cophenet(Z) assert_allclose(M, expectedM, atol=1e-10) def test_linkage_cophenet_tdist_Z_Y(self): # Tests cophenet(Z, Y) on tdist data set. Z = hierarchy_test_data.linkage_ytdist_single (c, M) = cophenet(Z, hierarchy_test_data.ytdist) expectedM = np.array([268, 295, 255, 255, 295, 295, 268, 268, 295, 295, 295, 138, 219, 295, 295]) expectedc = 0.639931296433393415057366837573 assert_allclose(c, expectedc, atol=1e-10) assert_allclose(M, expectedM, atol=1e-10) class TestMLabLinkageConversion(object): def test_mlab_linkage_conversion_empty(self): # Tests from/to_mlab_linkage on empty linkage array. X = np.asarray([]) assert_equal(from_mlab_linkage([]), X) assert_equal(to_mlab_linkage([]), X) def test_mlab_linkage_conversion_single_row(self): # Tests from/to_mlab_linkage on linkage array with single row. Z = np.asarray([[0., 1., 3., 2.]]) Zm = [[1, 2, 3]] assert_equal(from_mlab_linkage(Zm), Z) assert_equal(to_mlab_linkage(Z), Zm) def test_mlab_linkage_conversion_multiple_rows(self): # Tests from/to_mlab_linkage on linkage array with multiple rows. Zm = np.asarray([[3, 6, 138], [4, 5, 219], [1, 8, 255], [2, 9, 268], [7, 10, 295]]) Z = np.array([[2., 5., 138., 2.], [3., 4., 219., 2.], [0., 7., 255., 3.], [1., 8., 268., 4.], [6., 9., 295., 6.]], dtype=np.double) assert_equal(from_mlab_linkage(Zm), Z) assert_equal(to_mlab_linkage(Z), Zm) class TestFcluster(object): def test_fclusterdata(self): for t in hierarchy_test_data.fcluster_inconsistent: yield self.check_fclusterdata, t, 'inconsistent' for t in hierarchy_test_data.fcluster_distance: yield self.check_fclusterdata, t, 'distance' for t in hierarchy_test_data.fcluster_maxclust: yield self.check_fclusterdata, t, 'maxclust' def check_fclusterdata(self, t, criterion): # Tests fclusterdata(X, criterion=criterion, t=t) on a random 3-cluster data set. expectedT = getattr(hierarchy_test_data, 'fcluster_' + criterion)[t] X = hierarchy_test_data.Q_X T = fclusterdata(X, criterion=criterion, t=t) assert_(is_isomorphic(T, expectedT)) def test_fcluster(self): for t in hierarchy_test_data.fcluster_inconsistent: yield self.check_fcluster, t, 'inconsistent' for t in hierarchy_test_data.fcluster_distance: yield self.check_fcluster, t, 'distance' for t in hierarchy_test_data.fcluster_maxclust: yield self.check_fcluster, t, 'maxclust' def check_fcluster(self, t, criterion): # Tests fcluster(Z, criterion=criterion, t=t) on a random 3-cluster data set. expectedT = getattr(hierarchy_test_data, 'fcluster_' + criterion)[t] Z = single(hierarchy_test_data.Q_X) T = fcluster(Z, criterion=criterion, t=t) assert_(is_isomorphic(T, expectedT)) def test_fcluster_monocrit(self): for t in hierarchy_test_data.fcluster_distance: yield self.check_fcluster_monocrit, t for t in hierarchy_test_data.fcluster_maxclust: yield self.check_fcluster_maxclust_monocrit, t def check_fcluster_monocrit(self, t): expectedT = hierarchy_test_data.fcluster_distance[t] Z = single(hierarchy_test_data.Q_X) T = fcluster(Z, t, criterion='monocrit', monocrit=maxdists(Z)) assert_(is_isomorphic(T, expectedT)) def check_fcluster_maxclust_monocrit(self, t): expectedT = hierarchy_test_data.fcluster_maxclust[t] Z = single(hierarchy_test_data.Q_X) T = fcluster(Z, t, criterion='maxclust_monocrit', monocrit=maxdists(Z)) assert_(is_isomorphic(T, expectedT)) class TestLeaders(object): def test_leaders_single(self): # Tests leaders using a flat clustering generated by single linkage. X = hierarchy_test_data.Q_X Y = pdist(X) Z = linkage(Y) T = fcluster(Z, criterion='maxclust', t=3) Lright = (np.array([53, 55, 56]), np.array([2, 3, 1])) L = leaders(Z, T) assert_equal(L, Lright) class TestIsIsomorphic(object): def test_is_isomorphic_1(self): # Tests is_isomorphic on test case #1 (one flat cluster, different labellings) a = [1, 1, 1] b = [2, 2, 2] assert_(is_isomorphic(a, b)) assert_(is_isomorphic(b, a)) def test_is_isomorphic_2(self): # Tests is_isomorphic on test case #2 (two flat clusters, different labelings) a = [1, 7, 1] b = [2, 3, 2] assert_(is_isomorphic(a, b)) assert_(is_isomorphic(b, a)) def test_is_isomorphic_3(self): # Tests is_isomorphic on test case #3 (no flat clusters) a = [] b = [] assert_(is_isomorphic(a, b)) def test_is_isomorphic_4A(self): # Tests is_isomorphic on test case #4A (3 flat clusters, different labelings, isomorphic) a = [1, 2, 3] b = [1, 3, 2] assert_(is_isomorphic(a, b)) assert_(is_isomorphic(b, a)) def test_is_isomorphic_4B(self): # Tests is_isomorphic on test case #4B (3 flat clusters, different labelings, nonisomorphic) a = [1, 2, 3, 3] b = [1, 3, 2, 3] assert_(is_isomorphic(a, b) == False) assert_(is_isomorphic(b, a) == False) def test_is_isomorphic_4C(self): # Tests is_isomorphic on test case #4C (3 flat clusters, different labelings, isomorphic) a = [7, 2, 3] b = [6, 3, 2] assert_(is_isomorphic(a, b)) assert_(is_isomorphic(b, a)) def test_is_isomorphic_5(self): # Tests is_isomorphic on test case #5 (1000 observations, 2/3/5 random # clusters, random permutation of the labeling). for nc in [2, 3, 5]: yield self.help_is_isomorphic_randperm, 1000, nc def test_is_isomorphic_6(self): # Tests is_isomorphic on test case #5A (1000 observations, 2/3/5 random # clusters, random permutation of the labeling, slightly # nonisomorphic.) for nc in [2, 3, 5]: yield self.help_is_isomorphic_randperm, 1000, nc, True, 5 def help_is_isomorphic_randperm(self, nobs, nclusters, noniso=False, nerrors=0): for k in range(3): a = np.int_(np.random.rand(nobs) * nclusters) b = np.zeros(a.size, dtype=np.int_) P = np.random.permutation(nclusters) for i in xrange(0, a.shape[0]): b[i] = P[a[i]] if noniso: Q = np.random.permutation(nobs) b[Q[0:nerrors]] += 1 b[Q[0:nerrors]] %= nclusters assert_(is_isomorphic(a, b) == (not noniso)) assert_(is_isomorphic(b, a) == (not noniso)) class TestIsValidLinkage(object): def test_is_valid_linkage_various_size(self): for nrow, ncol, valid in [(2, 5, False), (2, 3, False), (1, 4, True), (2, 4, True)]: yield self.check_is_valid_linkage_various_size, nrow, ncol, valid def check_is_valid_linkage_various_size(self, nrow, ncol, valid): # Tests is_valid_linkage(Z) with linkage matrics of various sizes Z = np.asarray([[0, 1, 3.0, 2, 5], [3, 2, 4.0, 3, 3]], dtype=np.double) Z = Z[:nrow, :ncol] assert_(is_valid_linkage(Z) == valid) if not valid: assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_int_type(self): # Tests is_valid_linkage(Z) with integer type. Z = np.asarray([[0, 1, 3.0, 2], [3, 2, 4.0, 3]], dtype=np.int) assert_(is_valid_linkage(Z) == False) assert_raises(TypeError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_empty(self): # Tests is_valid_linkage(Z) with empty linkage. Z = np.zeros((0, 4), dtype=np.double) assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_4_and_up(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3). for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) assert_(is_valid_linkage(Z) == True) def test_is_valid_linkage_4_and_up_neg_index_left(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3) with negative indices (left). for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) Z[i//2,0] = -2 assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_4_and_up_neg_index_right(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3) with negative indices (right). for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) Z[i//2,1] = -2 assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_4_and_up_neg_dist(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3) with negative distances. for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) Z[i//2,2] = -0.5 assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_4_and_up_neg_counts(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3) with negative counts. for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) Z[i//2,3] = -2 assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) class TestIsValidInconsistent(object): def test_is_valid_im_int_type(self): # Tests is_valid_im(R) with integer type. R = np.asarray([[0, 1, 3.0, 2], [3, 2, 4.0, 3]], dtype=np.int) assert_(is_valid_im(R) == False) assert_raises(TypeError, is_valid_im, R, throw=True) def test_is_valid_im_various_size(self): for nrow, ncol, valid in [(2, 5, False), (2, 3, False), (1, 4, True), (2, 4, True)]: yield self.check_is_valid_im_various_size, nrow, ncol, valid def check_is_valid_im_various_size(self, nrow, ncol, valid): # Tests is_valid_im(R) with linkage matrics of various sizes R = np.asarray([[0, 1, 3.0, 2, 5], [3, 2, 4.0, 3, 3]], dtype=np.double) R = R[:nrow, :ncol] assert_(is_valid_im(R) == valid) if not valid: assert_raises(ValueError, is_valid_im, R, throw=True) def test_is_valid_im_empty(self): # Tests is_valid_im(R) with empty inconsistency matrix. R = np.zeros((0, 4), dtype=np.double) assert_(is_valid_im(R) == False) assert_raises(ValueError, is_valid_im, R, throw=True) def test_is_valid_im_4_and_up(self): # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 # (step size 3). for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) R = inconsistent(Z) assert_(is_valid_im(R) == True) def test_is_valid_im_4_and_up_neg_index_left(self): # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 # (step size 3) with negative link height means. for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) R = inconsistent(Z) R[i//2,0] = -2.0 assert_(is_valid_im(R) == False) assert_raises(ValueError, is_valid_im, R, throw=True) def test_is_valid_im_4_and_up_neg_index_right(self): # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 # (step size 3) with negative link height standard deviations. for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) R = inconsistent(Z) R[i//2,1] = -2.0 assert_(is_valid_im(R) == False) assert_raises(ValueError, is_valid_im, R, throw=True) def test_is_valid_im_4_and_up_neg_dist(self): # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 # (step size 3) with negative link counts. for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) R = inconsistent(Z) R[i//2,2] = -0.5 assert_(is_valid_im(R) == False) assert_raises(ValueError, is_valid_im, R, throw=True) class TestNumObsLinkage(TestCase): def test_num_obs_linkage_empty(self): # Tests num_obs_linkage(Z) with empty linkage. Z = np.zeros((0, 4), dtype=np.double) assert_raises(ValueError, num_obs_linkage, Z) def test_num_obs_linkage_1x4(self): # Tests num_obs_linkage(Z) on linkage over 2 observations. Z = np.asarray([[0, 1, 3.0, 2]], dtype=np.double) assert_equal(num_obs_linkage(Z), 2) def test_num_obs_linkage_2x4(self): # Tests num_obs_linkage(Z) on linkage over 3 observations. Z = np.asarray([[0, 1, 3.0, 2], [3, 2, 4.0, 3]], dtype=np.double) assert_equal(num_obs_linkage(Z), 3) def test_num_obs_linkage_4_and_up(self): # Tests num_obs_linkage(Z) on linkage on observation sets between sizes # 4 and 15 (step size 3). for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) assert_equal(num_obs_linkage(Z), i) class TestLeavesList(object): def test_leaves_list_1x4(self): # Tests leaves_list(Z) on a 1x4 linkage. Z = np.asarray([[0, 1, 3.0, 2]], dtype=np.double) to_tree(Z) assert_equal(leaves_list(Z), [0, 1]) def test_leaves_list_2x4(self): # Tests leaves_list(Z) on a 2x4 linkage. Z = np.asarray([[0, 1, 3.0, 2], [3, 2, 4.0, 3]], dtype=np.double) to_tree(Z) assert_equal(leaves_list(Z), [0, 1, 2]) def test_leaves_list_Q(self): for method in ['single', 'complete', 'average', 'weighted', 'centroid', 'median', 'ward']: yield self.check_leaves_list_Q, method def check_leaves_list_Q(self, method): # Tests leaves_list(Z) on the Q data set X = hierarchy_test_data.Q_X Z = linkage(X, method) node = to_tree(Z) assert_equal(node.pre_order(), leaves_list(Z)) def test_Q_subtree_pre_order(self): # Tests that pre_order() works when called on sub-trees. X = hierarchy_test_data.Q_X Z = linkage(X, 'single') node = to_tree(Z) assert_equal(node.pre_order(), (node.get_left().pre_order() + node.get_right().pre_order())) class TestCorrespond(TestCase): def test_correspond_empty(self): # Tests correspond(Z, y) with empty linkage and condensed distance matrix. y = np.zeros((0,)) Z = np.zeros((0,4)) assert_raises(ValueError, correspond, Z, y) def test_correspond_2_and_up(self): # Tests correspond(Z, y) on linkage and CDMs over observation sets of # different sizes. for i in xrange(2, 4): y = np.random.rand(i*(i-1)//2) Z = linkage(y) assert_(correspond(Z, y)) for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) assert_(correspond(Z, y)) def test_correspond_4_and_up(self): # Tests correspond(Z, y) on linkage and CDMs over observation sets of # different sizes. Correspondance should be false. for (i, j) in (list(zip(list(range(2, 4)), list(range(3, 5)))) + list(zip(list(range(3, 5)), list(range(2, 4))))): y = np.random.rand(i*(i-1)//2) y2 = np.random.rand(j*(j-1)//2) Z = linkage(y) Z2 = linkage(y2) assert_equal(correspond(Z, y2), False) assert_equal(correspond(Z2, y), False) def test_correspond_4_and_up_2(self): # Tests correspond(Z, y) on linkage and CDMs over observation sets of # different sizes. Correspondance should be false. for (i, j) in (list(zip(list(range(2, 7)), list(range(16, 21)))) + list(zip(list(range(2, 7)), list(range(16, 21))))): y = np.random.rand(i*(i-1)//2) y2 = np.random.rand(j*(j-1)//2) Z = linkage(y) Z2 = linkage(y2) assert_equal(correspond(Z, y2), False) assert_equal(correspond(Z2, y), False) def test_num_obs_linkage_multi_matrix(self): # Tests num_obs_linkage with observation matrices of multiple sizes. for n in xrange(2, 10): X = np.random.rand(n, 4) Y = pdist(X) Z = linkage(Y) assert_equal(num_obs_linkage(Z), n) class TestIsMonotonic(TestCase): def test_is_monotonic_empty(self): # Tests is_monotonic(Z) on an empty linkage. Z = np.zeros((0, 4)) assert_raises(ValueError, is_monotonic, Z) def test_is_monotonic_1x4(self): # Tests is_monotonic(Z) on 1x4 linkage. Expecting True. Z = np.asarray([[0, 1, 0.3, 2]], dtype=np.double) assert_equal(is_monotonic(Z), True) def test_is_monotonic_2x4_T(self): # Tests is_monotonic(Z) on 2x4 linkage. Expecting True. Z = np.asarray([[0, 1, 0.3, 2], [2, 3, 0.4, 3]], dtype=np.double) assert_equal(is_monotonic(Z), True) def test_is_monotonic_2x4_F(self): # Tests is_monotonic(Z) on 2x4 linkage. Expecting False. Z = np.asarray([[0, 1, 0.4, 2], [2, 3, 0.3, 3]], dtype=np.double) assert_equal(is_monotonic(Z), False) def test_is_monotonic_3x4_T(self): # Tests is_monotonic(Z) on 3x4 linkage. Expecting True. Z = np.asarray([[0, 1, 0.3, 2], [2, 3, 0.4, 2], [4, 5, 0.6, 4]], dtype=np.double) assert_equal(is_monotonic(Z), True) def test_is_monotonic_3x4_F1(self): # Tests is_monotonic(Z) on 3x4 linkage (case 1). Expecting False. Z = np.asarray([[0, 1, 0.3, 2], [2, 3, 0.2, 2], [4, 5, 0.6, 4]], dtype=np.double) assert_equal(is_monotonic(Z), False) def test_is_monotonic_3x4_F2(self): # Tests is_monotonic(Z) on 3x4 linkage (case 2). Expecting False. Z = np.asarray([[0, 1, 0.8, 2], [2, 3, 0.4, 2], [4, 5, 0.6, 4]], dtype=np.double) assert_equal(is_monotonic(Z), False) def test_is_monotonic_3x4_F3(self): # Tests is_monotonic(Z) on 3x4 linkage (case 3). Expecting False Z = np.asarray([[0, 1, 0.3, 2], [2, 3, 0.4, 2], [4, 5, 0.2, 4]], dtype=np.double) assert_equal(is_monotonic(Z), False) def test_is_monotonic_tdist_linkage1(self): # Tests is_monotonic(Z) on clustering generated by single linkage on # tdist data set. Expecting True. Z = linkage(hierarchy_test_data.ytdist, 'single') assert_equal(is_monotonic(Z), True) def test_is_monotonic_tdist_linkage2(self): # Tests is_monotonic(Z) on clustering generated by single linkage on # tdist data set. Perturbing. Expecting False. Z = linkage(hierarchy_test_data.ytdist, 'single') Z[2,2] = 0.0 assert_equal(is_monotonic(Z), False) def test_is_monotonic_Q_linkage(self): # Tests is_monotonic(Z) on clustering generated by single linkage on # Q data set. Expecting True. X = hierarchy_test_data.Q_X Z = linkage(X, 'single') assert_equal(is_monotonic(Z), True) class TestMaxDists(object): def test_maxdists_empty_linkage(self): # Tests maxdists(Z) on empty linkage. Expecting exception. Z = np.zeros((0, 4), dtype=np.double) assert_raises(ValueError, maxdists, Z) def test_maxdists_one_cluster_linkage(self): # Tests maxdists(Z) on linkage with one cluster. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) MD = maxdists(Z) expectedMD = calculate_maximum_distances(Z) assert_allclose(MD, expectedMD, atol=1e-15) def test_maxdists_Q_linkage(self): for method in ['single', 'complete', 'ward', 'centroid', 'median']: yield self.check_maxdists_Q_linkage, method def check_maxdists_Q_linkage(self, method): # Tests maxdists(Z) on the Q data set X = hierarchy_test_data.Q_X Z = linkage(X, method) MD = maxdists(Z) expectedMD = calculate_maximum_distances(Z) assert_allclose(MD, expectedMD, atol=1e-15) class TestMaxInconsts(object): def test_maxinconsts_empty_linkage(self): # Tests maxinconsts(Z, R) on empty linkage. Expecting exception. Z = np.zeros((0, 4), dtype=np.double) R = np.zeros((0, 4), dtype=np.double) assert_raises(ValueError, maxinconsts, Z, R) def test_maxinconsts_difrow_linkage(self): # Tests maxinconsts(Z, R) on linkage and inconsistency matrices with # different numbers of clusters. Expecting exception. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.random.rand(2, 4) assert_raises(ValueError, maxinconsts, Z, R) def test_maxinconsts_one_cluster_linkage(self): # Tests maxinconsts(Z, R) on linkage with one cluster. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.asarray([[0, 0, 0, 0.3]], dtype=np.double) MD = maxinconsts(Z, R) expectedMD = calculate_maximum_inconsistencies(Z, R) assert_allclose(MD, expectedMD, atol=1e-15) def test_maxinconsts_Q_linkage(self): for method in ['single', 'complete', 'ward', 'centroid', 'median']: yield self.check_maxinconsts_Q_linkage, method def check_maxinconsts_Q_linkage(self, method): # Tests maxinconsts(Z, R) on the Q data set X = hierarchy_test_data.Q_X Z = linkage(X, method) R = inconsistent(Z) MD = maxinconsts(Z, R) expectedMD = calculate_maximum_inconsistencies(Z, R) assert_allclose(MD, expectedMD, atol=1e-15) class TestMaxRStat(object): def test_maxRstat_invalid_index(self): for i in [3.3, -1, 4]: yield self.check_maxRstat_invalid_index, i def check_maxRstat_invalid_index(self, i): # Tests maxRstat(Z, R, i). Expecting exception. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.asarray([[0, 0, 0, 0.3]], dtype=np.double) if isinstance(i, int): assert_raises(ValueError, maxRstat, Z, R, i) else: assert_raises(TypeError, maxRstat, Z, R, i) def test_maxRstat_empty_linkage(self): for i in range(4): yield self.check_maxRstat_empty_linkage, i def check_maxRstat_empty_linkage(self, i): # Tests maxRstat(Z, R, i) on empty linkage. Expecting exception. Z = np.zeros((0, 4), dtype=np.double) R = np.zeros((0, 4), dtype=np.double) assert_raises(ValueError, maxRstat, Z, R, i) def test_maxRstat_difrow_linkage(self): for i in range(4): yield self.check_maxRstat_difrow_linkage, i def check_maxRstat_difrow_linkage(self, i): # Tests maxRstat(Z, R, i) on linkage and inconsistency matrices with # different numbers of clusters. Expecting exception. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.random.rand(2, 4) assert_raises(ValueError, maxRstat, Z, R, i) def test_maxRstat_one_cluster_linkage(self): for i in range(4): yield self.check_maxRstat_one_cluster_linkage, i def check_maxRstat_one_cluster_linkage(self, i): # Tests maxRstat(Z, R, i) on linkage with one cluster. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.asarray([[0, 0, 0, 0.3]], dtype=np.double) MD = maxRstat(Z, R, 1) expectedMD = calculate_maximum_inconsistencies(Z, R, 1) assert_allclose(MD, expectedMD, atol=1e-15) def test_maxRstat_Q_linkage(self): for method in ['single', 'complete', 'ward', 'centroid', 'median']: for i in range(4): yield self.check_maxRstat_Q_linkage, method, i def check_maxRstat_Q_linkage(self, method, i): # Tests maxRstat(Z, R, i) on the Q data set X = hierarchy_test_data.Q_X Z = linkage(X, method) R = inconsistent(Z) MD = maxRstat(Z, R, 1) expectedMD = calculate_maximum_inconsistencies(Z, R, 1) assert_allclose(MD, expectedMD, atol=1e-15) class TestDendrogram(object): def test_dendrogram_single_linkage_tdist(self): # Tests dendrogram calculation on single linkage of the tdist data set. Z = linkage(hierarchy_test_data.ytdist, 'single') R = dendrogram(Z, no_plot=True) leaves = R["leaves"] assert_equal(leaves, [2, 5, 1, 0, 3, 4]) def test_valid_orientation(self): Z = linkage(hierarchy_test_data.ytdist, 'single') assert_raises(ValueError, dendrogram, Z, orientation="foo") @dec.skipif(not have_matplotlib) def test_dendrogram_plot(self): for orientation in ['top', 'bottom', 'left', 'right']: yield self.check_dendrogram_plot, orientation def check_dendrogram_plot(self, orientation): # Tests dendrogram plotting. Z = linkage(hierarchy_test_data.ytdist, 'single') expected = {'color_list': ['g', 'b', 'b', 'b', 'b'], 'dcoord': [[0.0, 138.0, 138.0, 0.0], [0.0, 219.0, 219.0, 0.0], [0.0, 255.0, 255.0, 219.0], [0.0, 268.0, 268.0, 255.0], [138.0, 295.0, 295.0, 268.0]], 'icoord': [[5.0, 5.0, 15.0, 15.0], [45.0, 45.0, 55.0, 55.0], [35.0, 35.0, 50.0, 50.0], [25.0, 25.0, 42.5, 42.5], [10.0, 10.0, 33.75, 33.75]], 'ivl': ['2', '5', '1', '0', '3', '4'], 'leaves': [2, 5, 1, 0, 3, 4]} fig = plt.figure() ax = fig.add_subplot(111) # test that dendrogram accepts ax keyword R1 = dendrogram(Z, ax=ax, orientation=orientation) plt.close() assert_equal(R1, expected) # test plotting to gca (will import pylab) R2 = dendrogram(Z, orientation=orientation) plt.close() assert_equal(R2, expected) @dec.skipif(not have_matplotlib) def test_dendrogram_truncate_mode(self): Z = linkage(hierarchy_test_data.ytdist, 'single') R = dendrogram(Z, 2, 'lastp', show_contracted=True) plt.close() assert_equal(R, {'color_list': ['b'], 'dcoord': [[0.0, 295.0, 295.0, 0.0]], 'icoord': [[5.0, 5.0, 15.0, 15.0]], 'ivl': ['(2)', '(4)'], 'leaves': [6, 9]}) R = dendrogram(Z, 2, 'mtica', show_contracted=True) plt.close() assert_equal(R, {'color_list': ['g', 'b', 'b', 'b'], 'dcoord': [[0.0, 138.0, 138.0, 0.0], [0.0, 255.0, 255.0, 0.0], [0.0, 268.0, 268.0, 255.0], [138.0, 295.0, 295.0, 268.0]], 'icoord': [[5.0, 5.0, 15.0, 15.0], [35.0, 35.0, 45.0, 45.0], [25.0, 25.0, 40.0, 40.0], [10.0, 10.0, 32.5, 32.5]], 'ivl': ['2', '5', '1', '0', '(2)'], 'leaves': [2, 5, 1, 0, 7]}) def test_dendrogram_colors(self): # Tests dendrogram plots with alternate colors Z = linkage(hierarchy_test_data.ytdist, 'single') set_link_color_palette(['c', 'm', 'y', 'k']) R = dendrogram(Z, no_plot=True, above_threshold_color='g', color_threshold=250) set_link_color_palette(['g', 'r', 'c', 'm', 'y', 'k']) color_list = R['color_list'] assert_equal(color_list, ['c', 'm', 'g', 'g', 'g']) def calculate_maximum_distances(Z): # Used for testing correctness of maxdists. n = Z.shape[0] + 1 B = np.zeros((n-1,)) q = np.zeros((3,)) for i in xrange(0, n - 1): q[:] = 0.0 left = Z[i, 0] right = Z[i, 1] if left >= n: q[0] = B[int(left) - n] if right >= n: q[1] = B[int(right) - n] q[2] = Z[i, 2] B[i] = q.max() return B def calculate_maximum_inconsistencies(Z, R, k=3): # Used for testing correctness of maxinconsts. n = Z.shape[0] + 1 B = np.zeros((n-1,)) q = np.zeros((3,)) for i in xrange(0, n - 1): q[:] = 0.0 left = Z[i, 0] right = Z[i, 1] if left >= n: q[0] = B[int(left) - n] if right >= n: q[1] = B[int(right) - n] q[2] = R[i, k] B[i] = q.max() return B def test_euclidean_linkage_value_error(): for method in scipy.cluster.hierarchy._cpy_euclid_methods: assert_raises(ValueError, linkage, [[1, 1], [1, 1]], method=method, metric='cityblock') def test_2x2_linkage(): Z1 = linkage([1], method='single', metric='euclidean') Z2 = linkage([[0, 1], [0, 0]], method='single', metric='euclidean') assert_allclose(Z1, Z2) if __name__ == "__main__": run_module_suite()
bsd-3-clause
ningchi/scikit-learn
examples/linear_model/plot_lasso_coordinate_descent_path.py
254
2639
""" ===================== Lasso and Elastic Net ===================== Lasso and elastic net (L1 and L2 penalisation) implemented using a coordinate descent. The coefficients can be forced to be positive. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import lasso_path, enet_path from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target X /= X.std(axis=0) # Standardize data (easier to set the l1_ratio parameter) # Compute paths eps = 5e-3 # the smaller it is the longer is the path print("Computing regularization path using the lasso...") alphas_lasso, coefs_lasso, _ = lasso_path(X, y, eps, fit_intercept=False) print("Computing regularization path using the positive lasso...") alphas_positive_lasso, coefs_positive_lasso, _ = lasso_path( X, y, eps, positive=True, fit_intercept=False) print("Computing regularization path using the elastic net...") alphas_enet, coefs_enet, _ = enet_path( X, y, eps=eps, l1_ratio=0.8, fit_intercept=False) print("Computing regularization path using the positve elastic net...") alphas_positive_enet, coefs_positive_enet, _ = enet_path( X, y, eps=eps, l1_ratio=0.8, positive=True, fit_intercept=False) # Display results plt.figure(1) ax = plt.gca() ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k']) l1 = plt.plot(-np.log10(alphas_lasso), coefs_lasso.T) l2 = plt.plot(-np.log10(alphas_enet), coefs_enet.T, linestyle='--') plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Lasso and Elastic-Net Paths') plt.legend((l1[-1], l2[-1]), ('Lasso', 'Elastic-Net'), loc='lower left') plt.axis('tight') plt.figure(2) ax = plt.gca() ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k']) l1 = plt.plot(-np.log10(alphas_lasso), coefs_lasso.T) l2 = plt.plot(-np.log10(alphas_positive_lasso), coefs_positive_lasso.T, linestyle='--') plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Lasso and positive Lasso') plt.legend((l1[-1], l2[-1]), ('Lasso', 'positive Lasso'), loc='lower left') plt.axis('tight') plt.figure(3) ax = plt.gca() ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k']) l1 = plt.plot(-np.log10(alphas_enet), coefs_enet.T) l2 = plt.plot(-np.log10(alphas_positive_enet), coefs_positive_enet.T, linestyle='--') plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Elastic-Net and positive Elastic-Net') plt.legend((l1[-1], l2[-1]), ('Elastic-Net', 'positive Elastic-Net'), loc='lower left') plt.axis('tight') plt.show()
bsd-3-clause
gregvw/qho-control
qho.py
1
4949
from __future__ import division import numpy as np import matplotlib.pyplot as plt from scipy.linalg import solve_banded from scipy.optimize import fmin_bfgs from mult_banded import mult_banded class QHO(object): """ Quantum Harmonic Oscillator class """ def __init__(self,modes,N,T,i,f,g): """ Create and store the three banded matrices for the system (I,H, and X) since they will be reused """ self.modes = modes self.N = N self.dt = T/N self.i = i self.f = f self.g = g self.u = np.zeros(N) j = np.arange(modes) # Identity matrix in banded form self.I = np.zeros((3,modes)) self.I[1,:] = 1 # Stationary part of Hamiltonian in banded form self.H = np.zeros((3,modes)) self.H[1,:] = j+0.5 # Dipole term in banded form self.X = np.zeros((3,modes)) x = np.sqrt(j+1)/2 self.X[0,1:] = x[:-1] self.X[2,:-1] = x[:-1] # Allocate space for the state variable self.Y = np.zeros((modes,N+1),dtype=complex) # Allocate space for the adjoint variable self.Z = np.zeros((modes,N+1),dtype=complex) def _solve_state(self,u): """ Compute the solution to the state equation for a given initial condition y[i]=1 and control u. See eq. (25) """ self.Y[self.i,0] = 1 for k in range(self.N): ab = self.I+0.5j*self.dt*(self.H+u[k]*self.X) b = mult_banded((1,1),np.conj(ab),self.Y[:,k]) self.Y[:,k+1] = solve_banded((1,1),ab,b,overwrite_ab=True, overwrite_b=True,debug=False, check_finite=True) self.u = u def _solve_adjoint(self,u): """ Compute the solution to the adjoint equation for a given final condition and control u. See eq. (26) """ self.Z[self.f,-1] = 1j*np.conj(self.Y[self.f,-1]) for j in range(self.N): k = self.N-j-1 ab = self.I+0.5j*self.dt*(self.H+u[k]*self.X) b = mult_banded((1,1),np.conj(ab),self.Z[:,k+1]) self.Z[:,k] = solve_banded((1,1),ab,b,overwrite_ab=True, overwrite_b=True,debug=False, check_finite=True) self.u = u def cost(self,u): """ Evaluate the reduced cost functional """ if not np.array_equal(u,self.u): self._solve_state(u) J = 0.5*self.dt*self.g*sum(u**2)-abs(self.Y[self.f,-1])**2 return J def grad(self,u): """ Evaluate the reduced gradient """ if not np.array_equal(u,self.u): self._solve_state(u) self._solve_adjoint(u) dex = range(1,self.N+1) # Inner product term in eq (28) ip = [np.dot((self.Z[:,j]+self.Z[:,j-1]), mult_banded((1,1),self.X,(self.Y[:,j]+self.Y[:,j-1]))) for j in dex] dJ = self.dt*(self.g*u+0.5*np.real(np.array(ip))) return dJ if __name__ == '__main__': # Number of Hermite functions modes = 10 # Number of time steps N = 10 # Control duration T = 10 # Regularization parameter g = 1e-2 # Time grid t = np.linspace(0,T,N+1) # Midpoints of time steps tm = 0.5*(t[:-1]+t[1:]) # Initial guess of control u = 0.01*np.ones(N) # Instantiate Quantum Harmonic Oscillator for 0 -> 1 transition qho = QHO(modes,N,T,0,1,g) uopt = fmin_bfgs(qho.cost,u,qho.grad,args=(),gtol=1e-6,norm=np.inf, epsilon=1e-7, maxiter=1000, full_output=0, disp=1, retall=0, callback=None) for k in range(4): t_old = t tm_old = tm u = np.repeat(uopt,2*np.ones(N,dtype=int)) N *= 2 t = np.linspace(0,T,N+1) tm = 0.5*(t[:-1]+t[1:]) g /= 2 # Instantiate the controlled oscillator object qho = QHO(modes,N,T,0,1,g) # Compute a local minimizer uopt = fmin_bfgs(qho.cost,u,qho.grad,args=(),gtol=1e-6,norm=np.inf, epsilon=1e-7, maxiter=1000, full_output=0, disp=1, retall=0, callback=None) fig = plt.figure(1,(16,7)) ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122) ax1.set_xlabel('time',fontsize=16) ax1.set_title('Control',fontsize=18) ax1.tick_params(axis='both',which='major',labelsize=16) ax2.set_xlabel('time',fontsize=16) ax2.set_title('State',fontsize=18) ax2.tick_params(axis='both',which='major',labelsize=16) ax1.plot(tm,uopt) ax2.plot(t,np.abs(qho.Y.T)**2) plt.show()
mit
jdmcbr/blaze
blaze/compute/tests/test_core_compute.py
8
4256
from __future__ import absolute_import, division, print_function import pytest import operator from datashape import discover, dshape from blaze.compute.core import (compute_up, compute, bottom_up_until_type_break, top_then_bottom_then_top_again_etc, swap_resources_into_scope) from blaze.expr import by, symbol, Expr, Symbol from blaze.dispatch import dispatch from blaze.compatibility import raises, reduce from blaze.utils import example import pandas as pd import numpy as np def test_errors(): t = symbol('t', 'var * {foo: int}') with raises(NotImplementedError): compute_up(by(t, count=t.count()), 1) def test_optimize(): class Foo(object): pass s = symbol('s', '5 * {x: int, y: int}') @dispatch(Expr, Foo) def compute_down(expr, foo): return str(expr) assert compute(s.x * 2, Foo()) == "s.x * 2" @dispatch(Expr, Foo) def optimize(expr, foo): return expr + 1 assert compute(s.x * 2, Foo()) == "(s.x * 2) + 1" def test_bottom_up_until_type_break(): s = symbol('s', 'var * {name: string, amount: int}') data = np.array([('Alice', 100), ('Bob', 200), ('Charlie', 300)], dtype=[('name', 'S7'), ('amount', 'i4')]) e = (s.amount + 1).distinct() expr, scope = bottom_up_until_type_break(e, {s: data}) amount = symbol('amount', 'var * int64', token=1) assert expr.isidentical(amount) assert len(scope) == 1 assert amount in scope assert (scope[amount] == np.array([101, 201, 301], dtype='i4')).all() # This computation has a type change midstream, so we stop and get the # unfinished computation. e = s.amount.sum() + 1 expr, scope = bottom_up_until_type_break(e, {s: data}) amount_sum = symbol('amount_sum', 'int64') assert expr.isidentical(amount_sum + 1) assert len(scope) == 1 assert amount_sum in scope assert scope[amount_sum] == 600 # ensure that we work on binops with one child x = symbol('x', 'real') expr, scope = bottom_up_until_type_break(x + x, {x: 1}) assert len(scope) == 1 x2 = list(scope.keys())[0] assert isinstance(x2, Symbol) assert isinstance(expr, Symbol) assert scope[x2] == 2 def test_top_then_bottom_then_top_again_etc(): s = symbol('s', 'var * {name: string, amount: int32}') data = np.array([('Alice', 100), ('Bob', 200), ('Charlie', 300)], dtype=[('name', 'S7'), ('amount', 'i4')]) e = s.amount.sum() + 1 assert top_then_bottom_then_top_again_etc(e, {s: data}) == 601 def test_swap_resources_into_scope(): from blaze import Data t = Data([1, 2, 3], dshape='3 * int', name='t') expr, scope = swap_resources_into_scope(t.head(2), {t: t.data}) assert t._resources() assert not expr._resources() assert t not in scope def test_compute_up_on_dict(): d = {'a': [1, 2, 3], 'b': [4, 5, 6]} assert str(discover(d)) == str(dshape('{a: 3 * int64, b: 3 * int64}')) s = symbol('s', discover(d)) assert compute(s.a, {s: d}) == [1, 2, 3] def test_pre_compute_on_multiple_datasets_is_selective(): from odo import CSV from blaze import Data from blaze.cached import CachedDataset df = pd.DataFrame([[1, 'Alice', 100], [2, 'Bob', -200], [3, 'Charlie', 300], [4, 'Denis', 400], [5, 'Edith', -500]], columns=['id', 'name', 'amount']) iris = CSV(example('iris.csv')) dset = CachedDataset({'df': df, 'iris': iris}) d = Data(dset) assert str(compute(d.df.amount)) == str(df.amount) def test_raises_on_valid_expression_but_no_implementation(): class MyExpr(Expr): __slots__ = '_hash', '_child' @property def dshape(self): return self._child.dshape t = symbol('t', 'var * {amount: real}') expr = MyExpr(t.amount) df = [(1.0,), (2.0,), (3.0,)] with pytest.raises(NotImplementedError): compute(expr, df) @pytest.mark.parametrize('n', range(2, 11)) def test_simple_add(n): x = symbol('x', 'int') expr = reduce(operator.add, [x] * n) assert compute(expr, 1) == n
bsd-3-clause
bikong2/scikit-learn
examples/decomposition/plot_ica_vs_pca.py
306
3329
""" ========================== FastICA on 2D point clouds ========================== This example illustrates visually in the feature space a comparison by results using two different component analysis techniques. :ref:`ICA` vs :ref:`PCA`. Representing ICA in the feature space gives the view of 'geometric ICA': ICA is an algorithm that finds directions in the feature space corresponding to projections with high non-Gaussianity. These directions need not be orthogonal in the original feature space, but they are orthogonal in the whitened feature space, in which all directions correspond to the same variance. PCA, on the other hand, finds orthogonal directions in the raw feature space that correspond to directions accounting for maximum variance. Here we simulate independent sources using a highly non-Gaussian process, 2 student T with a low number of degrees of freedom (top left figure). We mix them to create observations (top right figure). In this raw observation space, directions identified by PCA are represented by orange vectors. We represent the signal in the PCA space, after whitening by the variance corresponding to the PCA vectors (lower left). Running ICA corresponds to finding a rotation in this space to identify the directions of largest non-Gaussianity (lower right). """ print(__doc__) # Authors: Alexandre Gramfort, Gael Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA, FastICA ############################################################################### # Generate sample data rng = np.random.RandomState(42) S = rng.standard_t(1.5, size=(20000, 2)) S[:, 0] *= 2. # Mix data A = np.array([[1, 1], [0, 2]]) # Mixing matrix X = np.dot(S, A.T) # Generate observations pca = PCA() S_pca_ = pca.fit(X).transform(X) ica = FastICA(random_state=rng) S_ica_ = ica.fit(X).transform(X) # Estimate the sources S_ica_ /= S_ica_.std(axis=0) ############################################################################### # Plot results def plot_samples(S, axis_list=None): plt.scatter(S[:, 0], S[:, 1], s=2, marker='o', zorder=10, color='steelblue', alpha=0.5) if axis_list is not None: colors = ['orange', 'red'] for color, axis in zip(colors, axis_list): axis /= axis.std() x_axis, y_axis = axis # Trick to get legend to work plt.plot(0.1 * x_axis, 0.1 * y_axis, linewidth=2, color=color) plt.quiver(0, 0, x_axis, y_axis, zorder=11, width=0.01, scale=6, color=color) plt.hlines(0, -3, 3) plt.vlines(0, -3, 3) plt.xlim(-3, 3) plt.ylim(-3, 3) plt.xlabel('x') plt.ylabel('y') plt.figure() plt.subplot(2, 2, 1) plot_samples(S / S.std()) plt.title('True Independent Sources') axis_list = [pca.components_.T, ica.mixing_] plt.subplot(2, 2, 2) plot_samples(X / np.std(X), axis_list=axis_list) legend = plt.legend(['PCA', 'ICA'], loc='upper right') legend.set_zorder(100) plt.title('Observations') plt.subplot(2, 2, 3) plot_samples(S_pca_ / np.std(S_pca_, axis=0)) plt.title('PCA recovered signals') plt.subplot(2, 2, 4) plot_samples(S_ica_ / np.std(S_ica_)) plt.title('ICA recovered signals') plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.36) plt.show()
bsd-3-clause
slimpotatoes/STEM_Moire_GPA
src/guidisplay.py
1
10738
# Image Display module import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from matplotlib.widgets import Button, SpanSelector, TextBox from matplotlib_scalebar.scalebar import ScaleBar from matplotlib.colorbar import Colorbar from imageio import imwrite as imsave import numpy as np import guilinemanager import skimage.measure # import time # import string import collections ButtonParams = collections.namedtuple('bp', ['text', 'x', 'y', 'functioncall']) class GUIDisplay(object): """Display 2d arrays with interactive parameters: - Contrast - Colormap - Axis label - Legend - Calibration - Scalebar - Line profile - Export""" def __init__(self, data_to_display, cal=None): # 2D array to display with calibration cal in nm/pixel self.image_data = data_to_display # Window for image display + matplotlib parameters self.fig_image = plt.figure(figsize=(10, 7), dpi=100) # Layout figure self.gs_fig_image = gridspec.GridSpec(8, 8) # Make buttons and assign function calls buttons = ( ButtonParams('Refresh', 0, 0, self.test), ButtonParams('Set\nColourmap', 1, 0, self.colourmap_button), ButtonParams('Calibration', 2, 0, self.test), ButtonParams('Scale bar', 3, 0, self.update_scalebar), ButtonParams('Line profile', 4, 0, self.line_profile), ButtonParams('Rot 90 CCW', 5, 0, self.rotate_90), ButtonParams('Num 6', 6, 0, self.test), ButtonParams('Export', 7, 0, self.export_data) ) self.fig_image_parameter = [] # Assign button to subplot in figure for ii in buttons: button = Button(plt.subplot(self.gs_fig_image[ii.x, ii.y]), ii.text) button.on_clicked(ii.functioncall) self.fig_image_parameter.append(button) # Define image axis self.ax_image = plt.subplot(self.gs_fig_image[1:-1, 1:6]) self.ax_image.set_axis_off() self.cmap = 'bwr' self.image = self.ax_image.imshow(self.image_data, cmap=self.cmap, vmin=-0.02, vmax=0.02) # Contrast histogram display and span selector self.ax_contrast = plt.subplot(self.gs_fig_image[0, 1:6]) self.contrastbins = 256 self.cmin = -0.02 self.cmax = 0.02 self.imhist, self.imbins = np.histogram(self.image_data, bins=self.contrastbins) self.ax_contrast_span = None self.plot_contrast_histogram() # Colormaps self.maps = sorted([m for m in plt.cm.datad if not m.endswith("_r")]) self.cmapfig = None self.cmapaxes = None # (https://scipy.github.io/old-wiki/pages/Cookbook/Matplotlib/Show_colormaps) # Colourbar self.ax_colourbar = plt.subplot(self.gs_fig_image[1:-1, 7]) self.colourbar = Colorbar(self.ax_colourbar, self.image) # Textbox for colormap self.ax_cmin = plt.axes([0.8, 0.85, 0.1, 0.05]) self.ax_cmax = plt.axes([0.8, 0.8, 0.1, 0.05]) self.text_cmin = TextBox(self.ax_cmin, label='min', initial="%.4f" % self.cmin, label_pad=0.25) self.text_cmax = TextBox(self.ax_cmax, label='max', initial="%.4f" % self.cmax, label_pad=0.25) self.text_cmin.on_submit(self.update_cmin) self.text_cmax.on_submit(self.update_cmax) # Calibration textbox self.cal = cal self.ax_cal = plt.axes([0.5, 0.1, 0.1, 0.05]) if self.cal is None: self.text_cal = TextBox(self.ax_cal, label='Calibration (nm/pixel)', initial='', label_pad=0.25) else: self.text_cal = TextBox(self.ax_cal, label='Calibration (nm/pixel)', initial=self.cal, label_pad=0.25) self.text_cal.on_submit(self.update_calibration) # Scalebar self.state_scalebar = 0 self.scalebar = None # Line profile self.line_prof = None self.line_prof_edit = 0 self.fig_line_prof = None self.ax_fig_line_prof = None self.profile = None # Show the display window plt.show() @staticmethod def test(event): print(event) # Button to open colourmap selection window def colourmap_button(self, event): if event.inaxes == self.fig_image_parameter[1].ax: nummaps = len(self.maps) self.cmapfig = plt.figure('Colourmap options, pick one!', figsize=(5, 2 * nummaps)) self.cmapaxes = {} gradient = np.linspace(0, 1, 100) * np.ones((3, 100)) for mm in range(nummaps): corners = [0., mm / float(nummaps), 0.75, 1. / nummaps] self.cmapaxes[mm] = plt.axes(corners) self.cmapaxes[mm].annotate(self.maps[mm], xy=(0.77, (mm + 0.2) / float(nummaps)), xycoords='figure fraction', fontsize=11) self.cmapaxes[mm].set_axis_off() self.cmapaxes[mm].imshow(gradient, cmap=plt.get_cmap(self.maps[mm])) self.cmapfig.canvas.mpl_connect('button_press_event', self.colourmap_axis_select) plt.show() # Set colourmap based on clicking on an axis in the colourmap window def colourmap_axis_select(self, event): for aa in self.cmapaxes: if event.inaxes == self.cmapaxes[aa]: self.cmap = self.maps[aa] self.image.set_cmap(plt.get_cmap(self.cmap)) self.update_colourmap() self.fig_image.canvas.draw() def line_profile(self, event): if event.inaxes == self.fig_image_parameter[4].ax: if self.line_prof_edit == 0: if self.line_prof is None: print('create line') self.line_prof_edit = 1 self.line_prof = guilinemanager.LineDraw(self.ax_image) self.line_prof.ConnectDraw() else: print('edit line') self.line_prof_edit = 1 self.line_prof.ConnectMove() elif self.line_prof_edit == 1: print('disconect') self.line_prof_edit = 0 self.line_prof.DisconnectDraw() self.line_prof.DisconnectMove() self.fig_line_prof = plt.figure() self.ax_fig_line_prof = self.fig_line_prof.add_subplot(1, 1, 1) print(self.line_prof.WidthData) first_postion = (self.line_prof.LineCoords[0][1], self.line_prof.LineCoords[0][0]) second_postion = (self.line_prof.LineCoords[1][1], self.line_prof.LineCoords[1][0]) self.profile = skimage.measure.profile_line(self.image_data, first_postion, second_postion, linewidth=int(self.line_prof.WidthData)) self.ax_fig_line_prof.plot(self.profile) plt.show() else: return # Function to update image after changing it def update_image(self): self.image.set_clim(vmin=self.cmin, vmax=self.cmax) def update_colourmap(self): self.colourbar.update_bruteforce(self.image) def update_cm_textbox(self): self.text_cmin.set_val("%.4f" % self.cmin) self.text_cmax.set_val("%.4f" % self.cmax) def update_cmin(self, event): self.cmin = float(event) self.contrast_span(self.cmin, self.cmax) def update_cmax(self, event): self.cmax = float(event) self.contrast_span(self.cmin, self.cmax) # Calculates and plots image histogram and connects interactive spanselector def plot_contrast_histogram(self): self.ax_contrast.cla() self.ax_contrast.plot(self.imbins[:-1], self.imhist, color='k') self.ax_contrast.set_axis_off() self.ax_contrast_span = SpanSelector(self.ax_contrast, self.contrast_span, 'horizontal', span_stays=True, rectprops=dict(alpha=0.5, facecolor='green')) # Function for interactive spanselector for contrast histogram def contrast_span(self, cmin, cmax): self.cmin = cmin self.cmax = cmax self.update_image() self.update_colourmap() self.update_cm_textbox() def update_calibration(self, event): self.cal = float(event) def update_scalebar(self, event): if event.inaxes == self.fig_image_parameter[3].ax: if self.state_scalebar == 0: if self.cal is not None: self.state_scalebar = 1 self.scalebar = self.ax_image.add_artist(ScaleBar(self.cal * 10 ** -9)) self.fig_image.canvas.draw() elif self.state_scalebar == 1: if self.cal is not None: self.state_scalebar = 0 self.scalebar.remove() self.fig_image.canvas.draw() else: raise Exception("Invalid parameter for scalebar") def rotate_90(self, event): if event.inaxes == self.fig_image_parameter[5].ax: self.image_data = np.rot90(self.image_data) self.image.set_array(self.image_data) self.fig_image.canvas.draw() def export_data(self, event): if event.inaxes == self.fig_image_parameter[7].ax: print('export') #'''Save image respecting the number of pixels of the origin image''' #imsave('image_array.png', self.image_data) #'''Save image without respecting the number of pixels of the origin image''' plt.ioff() fig_export = plt.figure(figsize=(10, 7), dpi=100) ax_fig_export = fig_export.add_subplot(1, 1, 1) image_fig_export = ax_fig_export.imshow(self.image_data, cmap=self.cmap, vmin=self.cmin, vmax=self.cmax) ax_fig_export.set_axis_off() if self.state_scalebar == 1: ax_fig_export.add_artist(ScaleBar(self.cal * 10 ** -9)) fig_export.canvas.draw() if self.line_prof is not None: np.savetxt('line_profile', self.profile) fig_export.colorbar(image_fig_export) fig_export.savefig('image.png') print('Image saved') status_export_raw = 1 if status_export_raw == 1: np.savetxt('image_raw', self.image_data, delimiter=',') print('Raw data extracted') plt.close(fig_export)
bsd-3-clause
bmazin/ARCONS-pipeline
examples/Pal2012-0656/timePL.py
1
5792
#!/bin/python ''' Author: Matt Strader Date: March 20,2014 This program takes previously created photon lists (customized pulsar lists with empty columns for timing information) and feeds them through tempo2 to fill the jd,bjd,pulseNumber,totalPhase, and phase columns. It then creates an index in the PLs so that they may be searched for pulseNumber efficiently. It also fills the waveOutOfRange and waveUpperLimit columns using the corresponding obs file's wavecal solution. In the course of running, this program creates temporary text files filled with timestamps to feed to tempo2. Tempo2 makes it's own temporary output files for this program to read. ''' from flatcal.flatCal import FlatCal from util.ObsFile import ObsFile from hackedPipeline.photlist import PhotList from util.FileName import FileName from util.popup import PopUp import matplotlib.pyplot as plt import numpy as np import datetime import tables import ephem import matplotlib import matplotlib.cm as cm import os import time import subprocess import numexpr def main(): obsSequence0=""" 112633 112731 113234 113737 114240 114743 115246 115749 120252 120755 121258 121801 122304 """ run = 'PAL2012' obsSequences = [obsSequence0] obsUtcDates = ['20121208'] wvlCals = ['112506'] flatCals = ['20121211'] fluxCalDates = ['20121206'] fluxCals = ['20121207-072055'] #Row coordinate of center of pulsar for each obsSequence centersRow = [30] #Col coordinate of center of pulsar for each obsSequence centersCol = [30] path = '/Scratch/dataProcessing/psr0656/' parFile = 'B0656+14_LAT.par' #parFile = 'B0531+21.par' obsFileNames = [] obsFileNameTimestamps = [] wvlFileNames = [] flatFileNames = [] fluxFileNames = [] timeMaskFileNames = [] plFileNames = [] for iSeq in range(len(obsSequences)): obsSequence = obsSequences[iSeq] obsSequence = obsSequence.strip().split() obsFileNameTimestamps.append(obsSequence) obsUtcDate = obsUtcDates[iSeq] sunsetDate = str(int(obsUtcDate)-1) obsSequence = [obsUtcDates[iSeq]+'-'+ts for ts in obsSequence] obsFileNames.append([FileName(run=run,date=sunsetDate,tstamp=ts).obs() for ts in obsSequence]) plFileNames.append([FileName(run=run,date=sunsetDate,tstamp=ts).timedPhotonList() for ts in obsSequence]) timeMaskFileNames.append([FileName(run=run,date=sunsetDate,tstamp=ts).timeMask() for ts in obsSequence]) wvlCalTstamp = obsUtcDate+'-'+wvlCals[iSeq] wvlFileNames.append(FileName(run=run,date=sunsetDate,tstamp=wvlCalTstamp).calSoln()) fluxFileNames.append(FileName(run=run,date=fluxCalDates[iSeq],tstamp=fluxCals[iSeq]).fluxSoln()) flatFileNames.append(FileName(run=run,date=flatCals[iSeq],tstamp='').flatSoln()) apertureRadius = 4 obLists = [[ObsFile(fn) for fn in seq ] for seq in obsFileNames] plLists = [[PhotList(fn) for fn in seq ] for seq in plFileNames] tstampFormat = '%H:%M:%S' #print 'fileName','headerUnix','headerUTC','logUnix','packetReceivedUnixTime' wvlRangeTable = np.zeros([46, 44, 2]) wvlCalData = plLists[0][0].file.root.wavecal.calsoln for calPixel in wvlCalData: if calPixel['wave_flag'] == 0: wvlRangeTable[calPixel['pixelrow']][calPixel['pixelcol']] = calPixel['solnrange'] #obsDate = obList[0].getFromHeader('jd') unixEpochJD = 2440587.5 epochMJD = 2400000.5 secsPerDay = (24.*3600) processList = [] for iSeq,(obList,plList) in enumerate(zip(obLists,plLists)): for iOb,(ob,pl) in enumerate(zip(obList,plList)): print iOb,'of',len(obList),ob.fileName ob.loadTimeAdjustmentFile(FileName(run='PAL2012').timeAdjustments()) pl.loadData() print 'loaded...', obsDate = ob.getFromHeader('unixtime')/secsPerDay+unixEpochJD timestamps = np.array(pl.data['arrivalTime'],dtype=np.float64) jdTimestamps = obsDate+timestamps/secsPerDay - epochMJD tempJDPath = path+'temp_timestamps_{:.3f}'.format(time.time()) tempBJDPath = path+'temp_bary_timestamps_{:.3f}'.format(time.time()) np.savetxt(tempJDPath,jdTimestamps) strCommand = 'tempo2 -gr arcons -f {} -a {} -o {}'.format(parFile,tempJDPath,tempBJDPath) print strCommand proc = subprocess.Popen(strCommand,shell=True,stdout=subprocess.PIPE) proc.wait() processList.append(proc) tempoOutput = np.loadtxt(tempBJDPath,usecols=[1,2]) bjdTimestamps = tempoOutput[:,0] phases = tempoOutput[:,1] pl.photTable.cols.jd[:] = jdTimestamps pl.photTable.cols.bjd[:] = bjdTimestamps pl.photTable.cols.totalPhase[:] = phases print 'tempo done...', pl.photTable.cols.pulseNumber[:] = np.array(phases,dtype=np.uint32) pl.photTable.cols.phase[:] = numexpr.evaluate('phases%1.') print 'phases done...', try: pl.photTable.cols.pulseNumber.createCSIndex() print 'index made...', except: print 'WARNING:couldn\'t make index (probably exists already)...' os.remove(tempJDPath) os.remove(tempBJDPath) for photon in pl.photTable.iterrows(): x = photon['xPix'] y = photon['yPix'] wave = photon['wavelength'] photon['waveUpperLimit']=wvlRangeTable[y,x][1] photon.update() print 'wave checked.' pl.file.flush() del pl if __name__ == '__main__': main()
gpl-2.0
scienceopen/hist-feasibility
Plots/FirstAuroralConjugate.py
2
2453
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Plots first recorded auroral conjugate plausible geometry. Willis 1996 http://adsabs.harvard.edu/abs/1996QJRAS..37..733W FIXME: add geomagnetic coordinates for 1770 Chinese font: apt install fonts-wqy-zenhei """ import numpy as np import cartopy # #import matplotlib as mpl #font_name = "WenQuanYi Zen Hei" #mpl.rcParams['font.family']=font_name # #import matplotlib.font_manager as mfm #ch_font = mfm.FontProperties(fname="/usr/share/fonts/truetype/wqy/wqy-zenhei.ttc") # #from matplotlib import font_manager #fontP = font_manager.FontProperties() #fontP.set_family('WenQuanYi Zen Hei') # from matplotlib.pyplot import show,figure # from pymap3d import geodetic2aer # PROJ = cartopy.crs.PlateCarree() # arbitrary def main(): # %% from paper sitella = {'HMS Endeavour':[-10.45, 122.82], '冀县 Ji-zhou':[ 40.1, 117.4]} Narclla = np.array([[41,118], [41.5,123.5], [40.5,127.5], [38.5,132]]) Sarclla = np.array([[-26, 119], [-26.5,123], [-26, 126], [-25, 129.5] ]) # %% simple calculations for presumable LOS archeight = 350e3 # m, assumed aer = geodetic2aer(Sarclla[1,0], Sarclla[1,1], archeight, *sitella['HMS Endeavour'], 0.) print(f'aurora elevation angle (deg) {aer[1]:.1f}') # %% ax= figure().gca(projection=PROJ) ax.add_feature(cartopy.feature.LAND) ax.add_feature(cartopy.feature.OCEAN) ax.add_feature(cartopy.feature.COASTLINE) ax.add_feature(cartopy.feature.BORDERS, linestyle=':') ax.set_extent((90,160,-40,45)) #%% sites for o,lla in sitella.items(): ax.plot(*lla[::-1],'o', color='limegreen',markersize=12, transform=PROJ) ax.annotate(o, xy=lla[::-1], xytext = (3, 3), textcoords = 'offset points', ha='right', family='WenQuanYi Wen Hei') #%% aurora ax.plot(Narclla[:,1], Narclla[:,0], color='firebrick',linewidth=2, transform=PROJ) ax.plot(Sarclla[:,1], Sarclla[:,0], color='firebrick',linewidth=2, transform=PROJ) ax.set_title('First Conjugate Auroral Observation 1770 CE') #fontproperties=fontP) if __name__ == '__main__': main() show()
gpl-3.0
albertoferna/compmech
compmech/conecyl/conecyl.py
1
87599
from __future__ import division import gc import os import sys import traceback from collections import Iterable import time import cPickle import __main__ import numpy as np from scipy.sparse import coo_matrix, csr_matrix, csc_matrix from scipy.sparse.linalg import eigsh from scipy.optimize import leastsq from numpy import linspace, pi, cos, sin, tan, deg2rad from conecylDB import ccs, laminaprops import compmech.composite.laminate as laminate from compmech.analysis import Analysis from compmech.logger import msg, warn, error from compmech.sparse import remove_null_cols, make_symmetric from compmech.constants import DOUBLE import modelDB from modelDB import get_model def load(name): if '.ConeCyl' in name: cc = cPickle.load(open(name, 'rb')) else: cc = cPickle.load(open(name + '.ConeCyl', 'rb')) cc.analysis.calc_fext = cc.calc_fext cc.analysis.calc_k0 = cc.calc_k0 cc.analysis.calc_fint = cc.calc_fint cc.analysis.calc_kT = cc.calc_kT return cc class ConeCyl(object): """ """ __slots__ = ['_load_rebuilt', 'name', 'alphadeg', 'alpharad', 'r1', 'r2', 'L', 'H', 'h', 'K', 'is_cylinder', 'inf', 'zero', 'bc', 'kuBot', 'kvBot', 'kwBot', 'kphixBot', 'kphitBot', 'kuTop', 'kvTop', 'kwTop', 'kphixTop', 'kphitTop', 'model', 'm1', 'm2', 'size', 'n2', 's', 'nx', 'nt', 'ni_num_cores', 'ni_method', 'forces', 'forces_inc', 'P', 'P_inc', 'pdC', 'Fc', 'Nxxtop', 'uTM', 'c0', 'm0', 'n0', 'funcnum', 'pdT', 'T', 'T_inc', 'thetaTdeg', 'thetaTrad', 'pdLA', 'tLAdeg', 'tLArad', 'betadeg', 'betarad', 'xiLA', 'MLA', 'LA', 'num0', 'excluded_dofs', 'excluded_dofs_ck', 'sina', 'cosa', 'laminaprop', 'plyt', 'laminaprops', 'stack', 'plyts', 'F', 'F_reuse', 'force_orthotropic_laminate', 'E11', 'nu', 'num_eigvalues', 'num_eigvalues_print', 'analysis', 'with_k0L', 'with_kLL', 'cs', 'increments', 'outputs', 'eigvals', 'eigvecs', 'k0', 'k0uk', 'k0uu', 'kTuk', 'kTuu', 'kG0', 'kG0_Fc', 'kG0_P', 'kG0_T', 'kG', 'kGuu', 'kL', 'kLuu', 'lam', 'u', 'v', 'w', 'phix', 'phit', 'Xs', 'Ts', 'out_num_cores', ] def __init__(self): self.name = '' # geometry self.alphadeg = 0. self.alpharad = 0. self.r1 = None self.r2 = None self.L = None self.H = None self.h = None # total thickness, required for isotropic shells self.is_cylinder = None # boundary conditions self.inf = 1.e8 # used to define high stiffnesses self.zero = 0. # used to define zero stiffnesses self.bc = None self.kuBot = self.inf self.kvBot = self.inf self.kwBot = self.inf self.kphixBot = 0. self.kphitBot = 0. self.kuTop = self.inf self.kvTop = self.inf self.kwTop = self.inf self.kphixTop = 0. self.kphitTop = 0. # default equations self.model = 'clpt_donnell_bc1' # approximation series self.m1 = 120 self.m2 = 25 self.n2 = 45 # analytical integration for cones self.s = 79 # numerical integration self.nx = 120 self.nt = 180 self.ni_num_cores = 4 self.ni_method = 'trapz2d' # punctual loads self.forces = [] self.forces_inc = [] # internal pressure measured in force/area self.P = 0. self.P_inc = 0. # axial compression self.pdC = False self.Fc = None self.Nxxtop = None self.uTM = 0. self._load_rebuilt = False # initial imperfection self.c0 = None self.m0 = 0 self.n0 = 0 self.funcnum = 2 # torsion self.pdT = True self.T = 0. self.T_inc = 0. self.thetaTdeg = 0. self.thetaTrad = 0. # load asymmetry (la) self.pdLA = True self.tLAdeg = 0. self.tLArad = 0. self.betadeg = 0. self.betarad = 0. self.xiLA = None self.MLA = None self.LA = None self.num0 = 3 self.excluded_dofs = [] self.excluded_dofs_ck = [] self.sina = None self.cosa = None # material self.laminaprop = None self.plyt = None self.laminaprops = [] self.stack = [] self.plyts = [] # constitutive law self.F_reuse = None self.F = None self.force_orthotropic_laminate = False self.E11 = None self.nu = None self.K = 5/6. # eigenvalue analysis self.num_eigvalues = 50 self.num_eigvalues_print = 5 # output queries self.out_num_cores = 4 self.cs = [] self.increments = [] # analysis self.analysis = Analysis(self.calc_fext, self.calc_k0, self.calc_fint, self.calc_kT) self.with_k0L = True self.with_kLL = True # outputs self.outputs = {} self._clear_matrices() def _clear_matrices(self): self.k0 = None self.k0uk = None self.k0uu = None self.kTuk = None self.kTuu = None self.kG0 = None self.kG0_Fc = None self.kG0_P = None self.kG0_T = None self.kG = None self.kGuu = None self.kL = None self.kLuu = None self.lam = None self.u = None self.v = None self.w = None self.phix = None self.phit = None self.Xs = None self.Ts = None self.Nxxtop = None gc.collect() def _rebuild(self): if not self.name: try: self.name = os.path.basename(__main__.__file__).split('.py')[0] except AttributeError: warn('ConeCyl name unchanged') if self.k0 is not None: if self.k0.shape[0] != self.get_size(): self._clear_matrices() self._load_rebuilt = False self._rebuild() self.model = self.model.lower() model_dict = get_model(self.model) # boundary conditions inf = self.inf zero = self.zero if inf > 1.e8: warn('"inf" parameter reduced to 1.e8 due to the verified ' + 'numerical instability for higher values', level=2) inf = 1.e8 if self.bc is not None: bc = self.bc.lower() if '_' in bc: # different bc for Bot and Top bc_Bot, bc_Top = self.bc.split('_') elif '-' in bc: # different bc for Bot and Top bc_Bot, bc_Top = self.bc.split('-') else: bc_Bot = bc_Top = bc bcs = dict(bc_Bot=bc_Bot, bc_Top=bc_Top) for k in bcs.keys(): sufix = k.split('_')[1] # Bot or Top if bcs[k] == 'ss1': setattr(self, 'ku' + sufix, inf) setattr(self, 'kv' + sufix, inf) setattr(self, 'kw' + sufix, inf) setattr(self, 'kphix' + sufix, zero) setattr(self, 'kphit' + sufix, zero) elif bcs[k] == 'ss2': setattr(self, 'ku' + sufix, zero) setattr(self, 'kv' + sufix, inf) setattr(self, 'kw' + sufix, inf) setattr(self, 'kphix' + sufix, zero) setattr(self, 'kphit' + sufix, zero) elif bcs[k] == 'ss3': setattr(self, 'ku' + sufix, inf) setattr(self, 'kv' + sufix, zero) setattr(self, 'kw' + sufix, inf) setattr(self, 'kphix' + sufix, zero) setattr(self, 'kphit' + sufix, zero) elif bcs[k] == 'ss4': setattr(self, 'ku' + sufix, zero) setattr(self, 'kv' + sufix, zero) setattr(self, 'kw' + sufix, inf) setattr(self, 'kphix' + sufix, zero) setattr(self, 'kphit' + sufix, zero) elif bcs[k] == 'cc1': setattr(self, 'ku' + sufix, inf) setattr(self, 'kv' + sufix, inf) setattr(self, 'kw' + sufix, inf) setattr(self, 'kphix' + sufix, inf) setattr(self, 'kphit' + sufix, zero) elif bcs[k] == 'cc2': setattr(self, 'ku' + sufix, zero) setattr(self, 'kv' + sufix, inf) setattr(self, 'kw' + sufix, inf) setattr(self, 'kphix' + sufix, inf) setattr(self, 'kphit' + sufix, zero) elif bcs[k] == 'cc3': setattr(self, 'ku' + sufix, inf) setattr(self, 'kv' + sufix, zero) setattr(self, 'kw' + sufix, inf) setattr(self, 'kphix' + sufix, inf) setattr(self, 'kphit' + sufix, zero) elif bcs[k] == 'cc4': setattr(self, 'ku' + sufix, zero) setattr(self, 'kv' + sufix, zero) setattr(self, 'kw' + sufix, inf) setattr(self, 'kphix' + sufix, inf) setattr(self, 'kphit' + sufix, zero) elif bcs[k] == 'free': setattr(self, 'ku' + sufix, zero) setattr(self, 'kv' + sufix, zero) setattr(self, 'kw' + sufix, zero) setattr(self, 'kphix' + sufix, zero) setattr(self, 'kphit' + sufix, zero) else: text = '"{}" is not a valid boundary condition!'.format(bc) raise ValueError(text) self.alpharad = deg2rad(self.alphadeg) self.sina = sin(self.alpharad) self.cosa = cos(self.alpharad) if not self.H and not self.L: self.H = (self.r1-self.r2)/tan(self.alpharad) if self.H and not self.L: self.L = self.H/self.cosa if self.L and not self.H: self.H = self.L*self.cosa if not self.r2: if not self.r1: raise ValueError('Radius "r1" or "r2" must be specified') else: self.r2 = self.r1 - self.L*self.sina else: self.r1 = self.r2 + self.L*self.sina self.thetaTrad = deg2rad(self.thetaTdeg) self.tLArad = deg2rad(self.tLAdeg) self.betarad = deg2rad(self.betadeg) self.LA = self.r2*tan(self.betarad) if not self.laminaprops: self.laminaprops = [self.laminaprop for i in self.stack] if not self.plyts: self.plyts = [self.plyt for i in self.stack] if self.alpharad == 0: self.is_cylinder = True else: self.is_cylinder = False self.excluded_dofs = [] self.excluded_dofs_ck = [] if self.pdC: self.excluded_dofs.append(0) self.excluded_dofs_ck.append(self.uTM) if self.pdT: self.excluded_dofs.append(1) self.excluded_dofs_ck.append(self.thetaTrad) if self.pdLA: self.excluded_dofs.append(2) self.excluded_dofs_ck.append(self.LA) else: raise NotImplementedError('pdLA == False is giving wrong results!') if self.nx < 4*self.m2: warn('Number of integration points along x too small') if self.nt < 4*self.n2: warn('Number of integration points along theta too small') if self.laminaprop is None: h = self.h E11 = self.E11 nu = self.nu if h is None or E11 is None or nu is None: raise ValueError( 'laminaprop or (E11, nu and h) must be defined') G12 = E11/(2*(1 + nu)) A11 = E11*h/(1 - nu**2) A12 = nu*E11*h/(1 - nu**2) A16 = 0 A22 = E11*h/(1 - nu**2) A26 = 0 A66 = G12*h D11 = E11*h**3/(12*(1 - nu**2)) D12 = nu*E11*h**3/(12*(1 - nu**2)) D16 = 0 D22 = E11*h**3/(12*(1 - nu**2)) D26 = 0 D66 = G12*h**3/12 # TODO, what if FSDT is used? if 'fsdt' in self.model: raise NotImplementedError( 'For FSDT laminaprop must be defined!') self.F = np.array([[A11, A12, A16, 0, 0, 0], [A12, A22, A26, 0, 0, 0], [A16, A26, A66, 0, 0, 0], [0, 0, 0, D11, D12, D16], [0, 0, 0, D12, D22, D26], [0, 0, 0, D16, D26, D66]]) if self.c0 is not None: self.analysis.kT_initial_state = True if self.Nxxtop is not None and self._load_rebuilt: return # axial load if self.Nxxtop is not None: if type(self.Nxxtop) in (int, float): Nxxtop0 = self.Nxxtop self.Nxxtop = np.zeros(2*self.n2+1, dtype=DOUBLE) self.Nxxtop[0] = Nxxtop0 check = False if isinstance(self.Nxxtop, np.ndarray): if self.Nxxtop.ndim == 1: assert self.Nxxtop.shape[0] == (2*self.n2+1) check = True if not check: raise ValueError('Invalid Nxxtop input') else: self.Nxxtop = np.zeros(2*self.n2+1, dtype=DOUBLE) if self.Fc is not None: self.Nxxtop[0] = self.Fc/(2*pi*self.r2*self.cosa) msg('Nxxtop[0] calculated from Fc', level=2) if self.MLA is None: if self.xiLA is not None: self.MLA = self.xiLA*self.Fc msg('MLA calculated from xiLA', level=2) if self.MLA is not None: self.Nxxtop[2] = self.MLA/(pi*self.r2**2*self.cosa) msg('Nxxtop[2] calculated from MLA', level=2) self._load_rebuilt = True def get_size(self): r"""Calculates the size of the stiffness matrices The size of the stiffness matrices can be interpreted as the number of rows or columns, recalling that this will be the size of the Ritz constants' vector `\{c\}`, the internal force vector `\{F_{int}\}` and the external force vector `\{F_{ext}\}`. Returns ------- size : int The size of the stiffness matrices. """ model_dict = get_model(self.model) num0 = model_dict['num0'] num1 = model_dict['num1'] num2 = model_dict['num2'] self.size = num0 + num1*self.m1 + num2*self.m2*self.n2 return self.size def from_DB(self, name): """Load cone / cylinder data from the local database Parameters ---------- name : str A key contained in the ``ccs`` dictionary of module :mod:`compmech.conecyl.conecylDB`. """ try: attrs = ['r1', 'r2', 'H', 'L', 'alphadeg', 'plyt', 'stack'] cc = ccs[name] self.laminaprop = laminaprops[cc['laminapropKey']] for attr in attrs: setattr(self, attr, cc.get(attr, getattr(self, attr))) except: raise ValueError('Invalid data-base entry!') def exclude_dofs_matrix(self, k, return_kkk=False, return_kku=False, return_kuk=False): """Makes the partition of the dofs for prescribed displacements Makes the following partition of a given matrix:: k = | kkk kku | | kuk kuu | Parameters ---------- k : scipy.sparse.coo_matrix Matrix to be partitioned. return_kkk : bool, optional If the region `kkk` must be returned. return_kku : bool, optional If the region `kku` must be returned. return_kuk : bool, optional If the region `kuk` must be returned. Returns ------- out : dict A ``dict`` object containing the keys for the corresponding sub-matrices ``kkk``, ``kku``, ``kuk``, ``kuu``. The sub-matrix ``out['kuu']`` is a ``scipy.sparse.csr_matrix``, while the others are 2-D ``np.ndarray`` objects. """ if not isinstance(k, coo_matrix): k = coo_matrix(k) if return_kkk: kkk = coo_matrix(np.zeros((self.num0, self.num0))) ind = np.where(((k.row < self.num0) & (k.col < self.num0)))[0] kkk.row = np.take(k.row, ind) kkk.col = np.take(k.col, ind) kkk.data = np.take(k.data, ind) kkk = kkk.toarray() kkk = np.delete(kkk, self.excluded_dofs, axis=0) kkk = np.delete(kkk, self.excluded_dofs, axis=1) if return_kku: kku = coo_matrix(np.zeros((self.num0, k.shape[0]))) ind = np.where(k.row < self.num0)[0] kku.row = np.take(k.row, ind) kku.col = np.take(k.col, ind) kku.data = np.take(k.data, ind) kku = kku.toarray() kku = np.delete(kku, self.excluded_dofs, axis=1) if return_kuk: kuk = coo_matrix(np.zeros((k.shape[0], self.num0))) ind = np.where(k.col < self.num0)[0] kuk.row = np.take(k.row, ind) kuk.col = np.take(k.col, ind) kuk.data = np.take(k.data, ind) kuk = kuk.toarray() kuk = np.delete(kuk, self.excluded_dofs, axis=0) rows = np.sort(self.excluded_dofs)[::-1] cols = np.sort(self.excluded_dofs)[::-1] kuu = k.copy() for r in rows: ind = np.where(kuu.row != r)[0] kuu.row[kuu.row > r] -= 1 kuu.row = np.take(kuu.row, ind) kuu.col = np.take(kuu.col, ind) kuu.data = np.take(kuu.data, ind) kuu._shape = (kuu._shape[0]-1, kuu._shape[1]) for c in cols: ind = np.where(kuu.col != c)[0] kuu.col[kuu.col > c] -= 1 kuu.row = np.take(kuu.row, ind) kuu.col = np.take(kuu.col, ind) kuu.data = np.take(kuu.data, ind) kuu._shape = (kuu._shape[0], kuu._shape[1]-1) kuu = csr_matrix(kuu) out = {} out['kuu'] = kuu if return_kkk: out['kkk'] = kkk if return_kku: out['kku'] = kku if return_kuk: out['kuk'] = kuk return out def calc_full_c(self, cu, inc=1.): """Returns the full set of Ritz constants When prescribed displacements take place the matrices and the Ritz constants are partitioned like:: k = | kkk kku | | kuk kuu | and the corresponding Ritz constants:: c = | ck | | cu | This function adds the set of known Ritz constants (``ck``) to the set of unknown (``cu``) based on the prescribed displacements. Parameters ---------- cu : np.ndarray The set of unknown Ritz constants inc : float, optional Load increment, necessary to calculate the full set of Ritz constants. Returns ------- c : np.ndarray The full set of Ritz constants. """ c = cu.copy() size = self.get_size() if c.shape[0] == size: for dof in self.excluded_dofs: c[dof] *= inc return c ordered = sorted(zip(self.excluded_dofs, self.excluded_dofs_ck), key=lambda x:x[0]) for dof, cai in ordered: c = np.insert(c, dof, inc*cai) return c def _default_field(self, xs, ts, gridx, gridt): if xs is None or ts is None: xs = linspace(0, self.L, gridx) ts = linspace(-pi, pi, gridt) xs, ts = np.meshgrid(xs, ts, copy=False) xs = np.atleast_1d(np.array(xs, dtype=DOUBLE)) ts = np.atleast_1d(np.array(ts, dtype=DOUBLE)) xshape = xs.shape tshape = ts.shape if xshape != tshape: raise ValueError('Arrays xs and ts must have the same shape') self.Xs = xs self.Ts = ts xs = xs.ravel() ts = ts.ravel() return xs, ts, xshape, tshape def _calc_linear_matrices(self, combined_load_case=None): self._rebuild() msg('Calculating linear matrices... ', level=2) fk0, fk0_cyl, fkG0, fkG0_cyl, k0edges = modelDB.get_linear_matrices( self, combined_load_case) model = self.model alpharad = self.alpharad cosa = self.cosa r1 = self.r1 r2 = self.r2 L = self.L m1 = self.m1 m2 = self.m2 n2 = self.n2 s = self.s laminaprops = self.laminaprops plyts = self.plyts stack = self.stack P = self.P T = self.T E11 = self.E11 nu = self.nu h = self.h Fc = self.Nxxtop[0]*(2*pi*r2*cosa) lam = self.lam if stack != [] and self.F_reuse is None: lam = laminate.read_stack(stack, plyts=plyts, laminaprops=laminaprops) if 'clpt' in model: if self.F_reuse is not None: msg('') msg('Reusing F matrix...', level=2) F = self.F_reuse elif lam is not None: F = lam.ABD else: F = self.F elif 'fsdt' in model: if self.F_reuse is not None: msg('') msg('Reusing F matrix...', level=2) F = self.F_reuse elif lam is not None: F = lam.ABDE F[6:, 6:] *= self.K else: F = self.F if self.force_orthotropic_laminate: msg('') msg('Forcing orthotropic laminate...', level=2) F[0, 2] = 0. # A16 F[1, 2] = 0. # A26 F[2, 0] = 0. # A61 F[2, 1] = 0. # A62 F[0, 5] = 0. # B16 F[5, 0] = 0. # B61 F[1, 5] = 0. # B26 F[5, 1] = 0. # B62 F[3, 2] = 0. # B16 F[2, 3] = 0. # B61 F[4, 2] = 0. # B26 F[2, 4] = 0. # B62 F[3, 5] = 0. # D16 F[4, 5] = 0. # D26 F[5, 3] = 0. # D61 F[5, 4] = 0. # D62 if F.shape[0] == 8: F[6, 7] = 0. # A45 F[7, 6] = 0. # A54 self.lam = lam self.F = F if self.is_cylinder: if 'iso_' in model: k0 = fk0_cyl(r2, L, E11, nu, h, m1, m2, n2) else: k0 = fk0_cyl(r2, L, F, m1, m2, n2) if not combined_load_case: kG0 = fkG0_cyl(Fc, P, T, r2, L, m1, m2, n2) else: kG0_Fc = fkG0_cyl(Fc, 0, 0, r2, L, m1, m2, n2) kG0_P = fkG0_cyl(0, P, 0, r2, L, m1, m2, n2) kG0_T = fkG0_cyl(0, 0, T, r2, L, m1, m2, n2) else: if 'iso_' in model: k0 = fk0(alpharad, r2, L, E11, nu, h, m1, m2, n2, s) else: k0 = fk0(alpharad, r2, L, F, m1, m2, n2, s) if not combined_load_case: kG0 = fkG0(Fc, P, T, r2, alpharad, L, m1, m2, n2, s) else: kG0_Fc = fkG0(Fc, 0, 0, r2, alpharad, L, m1, m2, n2, s) kG0_P = fkG0(0, P, 0, r2, alpharad, L, m1, m2, n2, s) kG0_T = fkG0(0, 0, T, r2, alpharad, L, m1, m2, n2, s) if k0edges is not None: k0 = csr_matrix(k0) + csr_matrix(k0edges) assert np.any((np.isnan(k0.data) | np.isinf(k0.data))) == False k0 = make_symmetric(k0) if not combined_load_case: assert np.any((np.isnan(kG0.data) | np.isinf(kG0.data))) == False self.kG0 = make_symmetric(kG0) else: assert np.any((np.isnan(kG0_Fc.data) | np.isinf(kG0_Fc.data))) == False assert np.any((np.isnan(kG0_P.data) | np.isinf(kG0_P.data))) == False assert np.any((np.isnan(kG0_T.data) | np.isinf(kG0_T.data))) == False self.kG0_Fc = make_symmetric(kG0_Fc) self.kG0_P = make_symmetric(kG0_P) self.kG0_T = make_symmetric(kG0_T) k = self.exclude_dofs_matrix(k0, return_kuk=True) k0uk = k['kuk'] k0uu = k['kuu'] self.k0 = k0 self.k0uk = k0uk self.k0uu = k0uu #NOTE forcing Python garbage collector to clean the memory # it DOES make a difference! There is a memory leak not # identified, probably in the csr_matrix process gc.collect() msg('finished!', level=2) def calc_k0(self): if self.k0uu is None: self._calc_linear_matrices() return self.k0uu def calc_kT(self, c, inc=1.): r"""Calculates the tangent stiffness matrix The following attributes will affect the numerical integration: ================= ================================================ Attribute Description ================= ================================================ ``ni_num_cores`` ``int``, number of cores used for the numerical integration ``ni_method`` ``str``, integration method: - ``'trapz2d'`` for 2-D Trapezoidal's rule - ``'simps2d'`` for 2-D Simpsons' rule ``nx`` ``int``, number of integration points along the `x` coordinate ``nt`` ``int``, number of integration points along the `\theta` coordinate ================= ================================================ Parameters ---------- c : np.ndarray The Ritz constants vector of the current state. inc : float, optional Load increment, necessary to calculate the full set of Ritz constants using :meth:`calc_full_c`. Returns ------- kTuu : sparse matrix The tangent stiffness matrix corresponding to the unknown degrees of freedom. """ self._calc_NL_matrices(c, inc=inc) return self.kTuu def lb(self, c=None, tol=0, combined_load_case=None): """Performs a linear buckling analysis The following parameters of the ``ConeCyl`` object will affect the linear buckling analysis: ======================= ===================================== Attribute Description ======================= ===================================== ``num_eigenvalues`` Number of eigenvalues to be extracted ``num_eigvalues_print`` Number of eigenvalues to print after the analysis is completed ======================= ===================================== Parameters ---------- combined_load_case : int, optional It tells whether the linear buckling analysis must be computed considering combined load cases, each value will tell the algorithm to rearrange the linear matrices in a different way. The valid values are ``1``, or ``2``, where: - ``1`` : find the critical axial load for a fixed torsion load - ``2`` : find the critical axial load for a fixed pressure load - ``3`` : find the critical torsion load for a fixed axial load Notes ----- The extracted eigenvalues are stored in the ``eigvals`` parameter of the ``ConeCyl`` object and the `i^{th}` eigenvector in the ``eigvecs[i-1, :]`` parameter. """ model_dict = get_model(self.model) if not model_dict['linear buckling']: msg('________________________________________________') msg('') warn('Model {} cannot be used in linear buckling analysis!'. format(self.model)) msg('________________________________________________') msg('Running linear buckling analysis...') if self.Fc is None and self.Nxxtop is None: warn('using Fc = 1.', level=1) self.Fc = 1. if self.pdC is None: self.pdC = False self._calc_linear_matrices(combined_load_case=combined_load_case) #TODO maybe a better estimator to sigma would be to run # a preliminary eigsh using a small m2 and n2 #NOTE runs faster for self.k0 than -self.k0, so that the negative # sign is applied later msg('Eigenvalue solver... ', level=2) model_dict = get_model(self.model) i0 = model_dict['i0'] num0 = model_dict['num0'] num1 = model_dict['num1'] num2 = model_dict['num2'] pos = num0 if not combined_load_case: M = csr_matrix(self.k0) A = csr_matrix(self.kG0) elif combined_load_case == 1: M = csr_matrix(self.k0) + csr_matrix(self.kG0_T) A = csr_matrix(self.kG0_Fc) elif combined_load_case == 2: M = csr_matrix(self.k0) + csr_matrix(self.kG0_P) A = csr_matrix(self.kG0_Fc) elif combined_load_case == 3: M = csr_matrix(self.k0) + csr_matrix(self.kG0_Fc) A = csr_matrix(self.kG0_T) A = A[pos:, pos:] M = M[pos:, pos:] try: eigvals, eigvecs = eigsh(A=A, k=self.num_eigvalues, which='SM', M=M, tol=tol, sigma=1., mode='cayley') except Exception, e: warn(str(e), level=3) size22 = M.shape[0] M, A, used_cols = remove_null_cols(M, A) msg('solver...', level=3) try: eigvals, peigvecs = eigsh(A=A, k=self.num_eigvalues, which='SM', M=M, tol=tol, sigma=1., mode='cayley') except: eigvals, peigvecs = eigsh(A=A, k=self.num_eigvalues, which='SM', M=M, tol=tol, sigma=1., mode='buckling') msg('finished!', level=3) eigvecs = np.zeros((size22, self.num_eigvalues), dtype=DOUBLE) eigvecs[used_cols, :] = peigvecs eigvals = -1./eigvals self.eigvals = eigvals self.eigvecs = np.vstack((np.zeros((pos, self.num_eigvalues)), eigvecs)) msg('finished!', level=2) msg('first {} eigenvalues:'.format(self.num_eigvalues_print), level=1) for eig in eigvals[:self.num_eigvalues_print]: msg('{}'.format(eig), level=2) self.analysis.last_analysis = 'lb' def eigen(self, c=None, tol=0, kL=None, kG=None): """Performs a non-linear eigenvalue analysis at a given state The following attributes of the ``ConeCyl`` object will affect the non-linear eigenvalue analysis: ======================= ===================================== Attribute Description ======================= ===================================== ``num_eigenvalues`` Number of eigenvalues to be extracted ``num_eigvalues_print`` Number of eigenvalues to print after the analysis is completed ======================= ===================================== Additionally, the non-linear analysis parameters described in :meth:`static` will affect the integration of the non-linear matrices ``kL`` and ``kG`` if they are not given as input parameters. Parameters ---------- combined_load_case : int, optional It tells whether the linear buckling analysis must be computed considering combined load cases, each value will tell the algorithm to rearrange the linear matrices in a different way. The valid values are ``1``, or ``2``, where: - ``1`` : find the critical axial load for a fixed torsion load - ``2`` : find the critical axial load for a fixed pressure load - ``3`` : find the critical torsion load for a fixed axial load Notes ----- The extracted eigenvalues are stored in the ``eigvals`` parameter of the ``ConeCyl`` object and the `i^{th}` eigenvector in the ``eigvecs[i-1, :]`` parameter. """ model_dict = get_model(self.model) if not model_dict['linear buckling']: msg('________________________________________________') msg('') warn('Model {} cannot be used in linear buckling analysis!'. format(self.model)) msg('________________________________________________') msg('Running linear buckling analysis...') if self.Fc is None: self.Fc = 1. if self.pdC is None: self.pdC = False self._calc_linear_matrices(combined_load_case=combined_load_case) #TODO maybe a better estimator to sigma would be to run # a preliminary eigsh using a small m2 and n2 #NOTE runs faster for self.k0 than -self.k0, so that the negative # sign is applied later msg('Eigenvalue solver... ', level=2) model_dict = get_model(self.model) i0 = model_dict['i0'] num0 = model_dict['num0'] num1 = model_dict['num1'] num2 = model_dict['num2'] pos = num0 if not combined_load_case: M = csr_matrix(self.k0) A = csr_matrix(self.kG0) elif combined_load_case == 1: M = csr_matrix(self.k0) + csr_matrix(self.kG0_T) A = csr_matrix(self.kG0_Fc) elif combined_load_case == 2: M = csr_matrix(self.k0) + csr_matrix(self.kG0_P) A = csr_matrix(self.kG0_Fc) elif combined_load_case == 3: M = csr_matrix(self.k0) + csr_matrix(self.kG0_Fc) A = csr_matrix(self.kG0_T) A = A[pos:, pos:] M = M[pos:, pos:] try: eigvals, eigvecs = eigsh(A=A, k=self.num_eigvalues, which='SM', M=M, tol=tol, sigma=1., mode='cayley') except Exception, e: warn(str(e), level=3) size22 = M.shape[0] M, A, used_cols = remove_null_cols(M, A) msg('solver...', level=3) try: eigvals, peigvecs = eigsh(A=A, k=self.num_eigvalues, which='SM', M=M, tol=tol, sigma=1., mode='cayley') except: eigvals, peigvecs = eigsh(A=A, k=self.num_eigvalues, which='SM', M=M, tol=tol, sigma=1., mode='buckling') msg('finished!', level=3) eigvecs = np.zeros((size22, self.num_eigvalues), dtype=DOUBLE) eigvecs[used_cols, :] = peigvecs eigvals = (-1./eigvals) self.eigvals = eigvals self.eigvecs = np.vstack((np.zeros((pos, self.num_eigvalues)), eigvecs)) msg('finished!', level=2) msg('first {} eigenvalues:'.format(self.num_eigvalues_print), level=1) for eig in eigvals[:self.num_eigvalues_print]: msg('{}'.format(eig), level=2) self.analysis.last_analysis = 'lb' def _calc_NL_matrices(self, c, inc=1., with_kLL=None, with_k0L=None): r"""Calculates the non-linear stiffness matrices Parameters ---------- c : np.ndarray Ritz constants representing the current state to calculate the stiffness matrices. inc : float, optional Load increment, necessary to calculate the full set of Ritz constants using :meth:`calc_full_c`. with_kLL : bool, optional When ``with_kLL=False`` assumes kLL << than k0L and kG. with_k0L : bool, optional When ``with_k0L=False`` assumes k0L << than kLL and kG. Notes ----- Nothing is returned, the calculated matrices """ c = self.calc_full_c(c, inc=inc) if self.k0 is None: self._calc_linear_matrices() if with_k0L is None: with_k0L = self.with_k0L if with_kLL is None: with_kLL = self.with_kLL msg('Calculating non-linear matrices...', level=2) alpharad = self.alpharad r2 = self.r2 L = self.L tLArad = self.tLArad F = self.F m1 = self.m1 m2 = self.m2 n2 = self.n2 c0 = self.c0 m0 = self.m0 n0 = self.n0 funcnum = self.funcnum model = self.model model_dict = get_model(model) nlmodule = model_dict['non-linear'] ni_method = self.ni_method num_cores = self.ni_num_cores nx = self.nx nt = self.nt if nlmodule: calc_k0L = nlmodule.calc_k0L calc_kLL = nlmodule.calc_kLL if 'iso_' in model: calc_kG = modelDB.db[model[4:]]['non-linear'].calc_kG else: calc_kG = nlmodule.calc_kG kG = calc_kG(c, alpharad, r2, L, tLArad, F, m1, m2, n2, nx=nx, nt=nt, num_cores=num_cores, method=ni_method, c0=c0, m0=m0, n0=n0) kG = make_symmetric(kG) if 'iso_' in model: E11 = self.E11 nu = self.nu h = self.h if with_k0L: k0L = calc_k0L(c, alpharad, r2, L, tLArad, E11, nu, h, m1, m2, n2, nx=nx, nt=nt, num_cores=num_cores, method=ni_method, c0=c0, m0=m0, n0=n0) else: k0L = kG*0 if with_kLL: kLL = calc_kLL(c, alpharad, r2, L, tLArad, E11, nu, h, m1, m2, n2, nx=nx, nt=nt, num_cores=num_cores, method=ni_method, c0=c0, m0=m0, n0=n0) kLL = make_symmetric(kLL) else: kLL = kG*0 else: if with_k0L: k0L = calc_k0L(c, alpharad, r2, L, tLArad, F, m1, m2, n2, nx=nx, nt=nt, num_cores=num_cores, method=ni_method, c0=c0, m0=m0, n0=n0) else: k0L = kG*0 if with_kLL: kLL = calc_kLL(c, alpharad, r2, L, tLArad, F, m1, m2, n2, nx=nx, nt=nt, num_cores=num_cores, method=ni_method, c0=c0, m0=m0, n0=n0) kLL = make_symmetric(kLL) else: kLL = kG*0 else: raise ValueError( 'Non-Linear analysis not implemented for model {0}'.format(model)) kL0 = k0L.T #TODO maybe slow... kT = coo_matrix(self.k0 + k0L + kL0 + kLL + kG) # kS was deprecated, now fint is integrated numerically #kS = coo_matrix(self.k0 + k0L/2 + kL0 + kLL/2) k = self.exclude_dofs_matrix(kT, return_kuk=True) self.kTuk = k['kuk'] self.kTuu = k['kuu'] #NOTE intended for non-linear eigenvalue analyses self.kL = csr_matrix(self.k0 + k0L + kL0 + kLL) self.kG = csr_matrix(kG) msg('finished!', level=2) def uvw(self, c, xs=None, ts=None, gridx=300, gridt=300, inc=1.): r"""Calculates the displacement field For a given full set of Ritz constants ``c``, the displacement field is calculated and stored in the parameters ``u``, ``v``, ``w``, ``phix``, ``phit`` of the ``ConeCyl`` object. Parameters ---------- c : float The full set of Ritz constants xs : np.ndarray The `x` positions where to calculate the displacement field. Default is ``None`` and the method ``_default_field`` is used. ts : np.ndarray The ``theta`` positions where to calculate the displacement field. Default is ``None`` and the method ``_default_field`` is used. gridx : int Number of points along the `x` axis where to calculate the displacement field. gridt : int Number of points along the `theta` where to calculate the displacement field. inc : float, optional Load increment, necessary to calculate the full set of Ritz constants using :meth:`calc_full_c`. Returns ------- out : tuple A tuple of ``np.ndarrays`` containing ``(u, v, w, phix, phit)``. Notes ----- The returned values ``u```, ``v``, ``w``, ``phix``, ``phit`` are stored as parameters with the same name in the ``ConeCyl`` object. """ xs, ts, xshape, tshape = self._default_field(xs, ts, gridx, gridt) alpharad = self.alpharad tLArad = self.tLArad m1 = self.m1 m2 = self.m2 n2 = self.n2 r2 = self.r2 L = self.L c = self.calc_full_c(c, inc=inc) model_dict = get_model(self.model) fuvw = model_dict['commons'].fuvw us, vs, ws, phixs, phits = fuvw(c, m1, m2, n2, alpharad, r2, L, tLArad, xs, ts, self.out_num_cores) self.u = us.reshape(xshape) self.v = vs.reshape(xshape) self.w = ws.reshape(xshape) self.phix = phixs.reshape(xshape) self.phit = phits.reshape(xshape) return self.u, self.v, self.w, self.phix, self.phit def strain(self, c, xs=None, ts=None, gridx=300, gridt=300, inc=1.): r"""Calculates the strain field Parameters ---------- c : np.ndarray The Ritz constants vector to be used for the strain field calculation. xs : np.ndarray, optional The `x` coordinates where to calculate the strains. ts : np.ndarray, optional The `\theta` coordinates where to calculate the strains, must have the same shape as ``xs``. gridx : int, optional When ``xs`` and ``ts`` are not supplied, ``gridx`` and ``gridt`` are used. gridt : int, optional When ``xs`` and ``ts`` are not supplied, ``gridx`` and ``gridt`` are used. inc : float, optional Load increment, necessary to calculate the full set of Ritz constants using :meth:`calc_full_c`. """ xs, ts, xshape, tshape = self._default_field(xs, ts, gridx, gridt) alpharad = self.alpharad L = self.L r2 = self.r2 sina = self.sina cosa = self.cosa tLArad = self.tLArad m1 = self.m1 m2 = self.m2 n2 = self.n2 c0 = self.c0 m0 = self.m0 n0 = self.n0 funcnum = self.funcnum model = self.model model_dict = get_model(model) NL_kinematics = model.split('_')[1] fstrain = model_dict['commons'].fstrain e_num = model_dict['e_num'] if 'donnell' in NL_kinematics: int_NL_kinematics = 0 elif 'sanders' in NL_kinematics: int_NL_kinematics = 1 else: raise NotImplementedError( '{} is not a valid "NL_kinematics" option'.format( NL_kinematics)) c = self.calc_full_c(c, inc=inc) es = fstrain(c, sina, cosa, tLArad, xs, ts, r2, L, m1, m2, n2, c0, m0, n0, funcnum, int_NL_kinematics, self.out_num_cores) return es.reshape((xshape + (e_num,))) def stress(self, c, xs=None, ts=None, gridx=300, gridt=300, inc=1.): r"""Calculates the stress field Parameters ---------- c : np.ndarray The Ritz constants vector to be used for the strain field calculation. xs : np.ndarray, optional The `x` coordinates where to calculate the strains. ts : np.ndarray, optional The `\theta` coordinates where to calculate the strains, must have the same shape as ``xs``. gridx : int, optional When ``xs`` and ``ts`` are not supplied, ``gridx`` and ``gridt`` are used. gridt : int, optional When ``xs`` and ``ts`` are not supplied, ``gridx`` and ``gridt`` are used. inc : float, optional Load increment, necessary to calculate the full set of Ritz constants using :meth:`calc_full_c`. """ xs, ts, xshape, tshape = self._default_field(xs, ts, gridx, gridt) F = self.F alpharad = self.alpharad L = self.L r2 = self.r2 sina = self.sina cosa = self.cosa tLArad = self.tLArad m1 = self.m1 m2 = self.m2 n2 = self.n2 c0 = self.c0 m0 = self.m0 n0 = self.n0 funcnum = self.funcnum model = self.model model_dict = get_model(model) NL_kinematics = model.split('_')[1] fstress = model_dict['commons'].fstress e_num = model_dict['e_num'] if 'donnell' in NL_kinematics: int_NL_kinematics = 0 elif 'sanders' in NL_kinematics: int_NL_kinematics = 1 else: raise NotImplementedError( '{} is not a valid "NL_kinematics" option'.format( NL_kinematics)) c = self.calc_full_c(c, inc=inc) Ns = fstress(c, F, sina, cosa, tLArad, xs, ts, r2, L, m1, m2, n2, c0, m0, n0, funcnum, int_NL_kinematics, self.out_num_cores) return Ns.reshape((xshape + (e_num,))) def calc_fint(self, c, inc=1., m=1, return_u=True): r"""Calculates the internal force vector `\{F_{int}\}` The following attributes will affect the numerical integration: ================= ================================================ Attribute Description ================= ================================================ ``ni_num_cores`` ``int``, number of cores used for the numerical integration ``ni_method`` ``str``, integration method: - ``'trapz2d'`` for 2-D Trapezoidal's rule - ``'simps2d'`` for 2-D Simpsons' rule ``nx`` ``int``, number of integration points along the `x` coordinate ``nt`` ``int``, number of integration points along the `\theta` coordinate ================= ================================================ Parameters ---------- c : np.ndarray The Ritz constants that will be used to compute the internal forces. inc : float, optional Load increment, necessary to calculate the full set of Ritz constants using :meth:`calc_full_c`. m : integer, optional A multiplier to be applied to ``nx`` and ``nt``, if one whishes to use more integration points. return_u : bool, optional If the internal force vector corresponsing to the unknown set of Ritz constants should be returned. Returns ------- fint : np.ndarray The internal force vector. """ c = self.calc_full_c(c, inc=inc) if 'iso_' in self.model: nlmodule = modelDB.db[self.model[4:]]['non-linear'] else: nlmodule = modelDB.db[self.model]['non-linear'] ni_method = self.ni_method ni_num_cores = self.ni_num_cores nx = self.nx*m nt = self.nt*m fint = nlmodule.calc_fint_0L_L0_LL(c, self.alpharad, self.r2, self.L, self.tLArad, self.F, self.m1, self.m2, self.n2, nx, nt, ni_num_cores, ni_method, self.c0, self.m0, self.n0) fint += self.k0*c if return_u: fint = np.delete(fint, self.excluded_dofs) return fint def add_SPL(self, PL, pt=0.5, thetadeg=0., increment=False): """Add a Single Perturbation Load `\{{F_{PL}}_i\}` Adds a perturbation load to the ``ConeCyl`` object, the perturbation load is a particular case of the punctual load with only a normal component. Parameters ---------- PL : float The perturbation load value. pt : float, optional The normalized position along the `x` axis in which the new SPL will be included. thetadeg : float, optional The angular position of the SPL in degrees. increment : bool, optional If this perturbation load should be incrementally applied in a non-linear analysis. Notes ----- Each single perturbation load is added to the ``forces`` parameter of the ``ConeCyl`` object, which may be changed by the analyst at any time. """ self._rebuild() thetarad = deg2rad(thetadeg) if increment: self.forces_inc.append([pt*self.L, thetarad, 0., 0., PL]) else: self.forces.append([pt*self.L, thetarad, 0., 0., PL]) def add_force(self, x, thetadeg, fx, ftheta, fz, increment=False): r"""Add a punctual force Adds a force vector `\{f_x, f_\theta, f_z\}^T` to the ``forces`` parameter of the ``ConeCyl`` object. Parameters ---------- x : float The `x` position. thetadeg : float The `\theta` position in degrees. fx : float The `x` component of the force vector. ftheta : float The `\theta` component of the force vector. fz : float The `z` component of the force vector. increment : bool, optional If this punctual force should be incrementally applied in a non-linear analysis. """ thetarad = deg2rad(thetadeg) if incremented: self.forces_inc.append([x, thetarad, fx, ftheta, fz]) else: self.forces.append([x, thetarad, fx, ftheta, fz]) def calc_fext(self, inc=1., kuk=None, silent=False): """Calculates the external force vector `\{F_{ext}\}` Recall that: .. math:: \{F_{ext}\}=\{{F_{ext}}_0\} + \{{F_{ext}}_\lambda\} such that the terms in `\{{F_{ext}}_0\}` are constant and the terms in `\{{F_{ext}}_\lambda\}` will be scaled by the parameter ``inc``. Parameters ---------- inc : float, optional Since this function is called during the non-linear analysis, ``inc`` will multiply the terms `\{{F_{ext}}_\lambda\}`. kuk : np.ndarray, optional Obsolete, created for displacement controlled analyses, but the implementation has not been finished, see :meth:`exclude_dofs_matrix`. silent : bool, optional A boolean to tell whether the msg messages should be printed. Returns ------- fext : np.ndarray The external force vector """ self._rebuild() if self.k0 is None: self._calc_linear_matrices() msg('Calculating external forces...', level=2, silent=silent) uTM = inc*self.uTM Nxxtop = inc*self.Nxxtop thetaTrad = inc*self.thetaTrad sina = self.sina cosa = self.cosa r2 = self.r2 L = self.L tLArad = self.tLArad m1 = self.m1 m2 = self.m2 n2 = self.n2 pdC = self.pdC pdT = self.pdT model = self.model model_dict = get_model(model) i0 = model_dict['i0'] j0 = model_dict['j0'] num0 = model_dict['num0'] num1 = model_dict['num1'] num2 = model_dict['num2'] dofs = model_dict['dofs'] fg = model_dict['commons'].fg size = self.get_size() g = np.zeros((dofs, size), dtype=DOUBLE) fext = np.zeros(size, dtype=DOUBLE) fext = np.delete(fext, self.excluded_dofs) # constant punctual forces for i, force in enumerate(self.forces): x, theta, fx, ftheta, fz = force fg(g, m1, m2, n2, r2, x, theta, L, cosa, tLArad) gu = np.delete(g, self.excluded_dofs, axis=1) if dofs == 3: fpt = np.array([[fx, ftheta, fz]]) elif dofs == 5: fpt = np.array([[fx, ftheta, fz, 0, 0]]) fext += -fpt.dot(gu).ravel() # incremented punctual forces for i, force in enumerate(self.forces_inc): x, theta, fx, ftheta, fz = force fg(g, m1, m2, n2, r2, x, theta, L, cosa, tLArad) gu = np.delete(g, self.excluded_dofs, axis=1) if dofs == 3: fpt = inc*np.array([[fx, ftheta, fz]]) elif dofs == 5: fpt = inc*np.array([[fx, ftheta, fz, 0, 0]]) fext += -fpt.dot(gu).ravel() # axial load fext_tmp = np.zeros(size, dtype=DOUBLE) if not 0 in self.excluded_dofs: fext_tmp[0] += Nxxtop[0]*(2*pi*r2)/cosa if 'bc2' in model or 'bc4' in model: for j2 in range(j0, n2+j0): for i2 in range(i0, m2+i0): row = (num0 + num1*m1 + (i2-i0)*num2 + (j2-j0)*num2*m2) rowNxx = 1+2*(j2-j0) fext_tmp[row+0]+=(Nxxtop[rowNxx+0]*pi*r2) fext_tmp[row+1]+=(Nxxtop[rowNxx+1]*pi*r2) else: if kuk is None: kuk_C = self.k0uk[:, 0].ravel() else: kuk_C = kuk[:, 0].ravel() fext += -uTM*kuk_C if not 2 in self.excluded_dofs: fext_tmp[2] += Nxxtop[2]*(2*pi*r2)/cosa # pressure P = self.P + inc*self.P_inc if P != 0: if 'clpt' in model: for i1 in range(i0, m1+i0): if i1 == 0: continue col = num0 + (i1-i0)*num1 fext_tmp[col+2] += P*(L*2./i1*(r2 - (-1)**i1*(r2 + L*sina))) elif 'fsdt' in model: #TODO it might be the same as for the CLPT raise NotImplementedError( 'Pressure not implemented for static analysis for FSDT') fext_tmp = np.delete(fext_tmp, self.excluded_dofs) fext += fext_tmp # torsion if pdT: if kuk is None: kuk_T = self.k0uk[:, 1].ravel() else: kuk_T = kuk[:, 1].ravel() fext += -thetaTrad*kuk_T else: T = self.T + inc*self.T_inc if T != 0: fg(g, m1, m2, n2, r2, 0, 0, L, cosa, tLArad) gu = np.delete(g, self.excluded_dofs, axis=1) if dofs == 3: fpt = np.array([[0, T/r2, 0]]) elif dofs == 5: fpt = np.array([[0, T/r2, 0, 0, 0]]) fext += fpt.dot(gu).ravel() msg('finished!', level=2, silent=silent) return fext def static(self, NLgeom=False, silent=False): """Static analysis for cones and cylinders The analysis can be linear or geometrically non-linear. See :class:`.Analysis` for further details about the parameters controlling the non-linear analysis. Parameters ---------- NLgeom : bool Flag to indicate whether a linear or a non-linear analysis is to be performed. silent : bool, optional A boolean to tell whether the msg messages should be printed. Returns ------- cs : list A list containing the Ritz constants for each load increment of the static analysis. The list will have only one entry in case of a linear analysis. Notes ----- The returned ``cs`` is stored in the ``cs`` parameter of the ``ConeCyl`` object. The actual increments used in the non-linear analysis are stored in the ``increments`` parameter. """ self.cs = [] self.increments = [] if self.pdC: text ='Non-linear analysis with prescribed displacements' raise NotImplementedError(text) if NLgeom and not modelDB.db[self.model]['non-linear static']: msg('________________________________________________', silent=silent) msg('', silent=silent) warn('Model {} cannot be used in non-linear static analysis!'. format(self.model), silent=silent) msg('________________________________________________', silent=silent) raise elif not NLgeom and not modelDB.db[self.model]['linear static']: msg('________________________________________________', level=1, silent=silent) msg('', level=1, silent=silent) warn('Model {} cannot be used in linear static analysis!'. format(self.model), level=1, silent=silent) lob('________________________________________________', level=1, silent=silent) raise self.analysis.static(NLgeom=NLgeom, silent=silent) self.cs = self.analysis.cs self.increments = self.analysis.increments return self.cs def plot(self, c, invert_x=False, plot_type=1, vec='w', deform_u=False, deform_u_sf=100., filename='', ax=None, figsize=(3.5, 2.), save=True, add_title=True, title='', colorbar=False, cbar_nticks=2, cbar_format=None, cbar_title='', cbar_fontsize=10, aspect='equal', clean=True, dpi=400, texts=[], xs=None, ts=None, gridx=300, gridt=300, num_levels=400, inc=1.): r"""Contour plot for a Ritz constants vector. Parameters ---------- c : np.ndarray The Ritz constants that will be used to compute the field contour. vec : str, optional Can be one of the components: - Displacement: ``'u'``, ``'v'``, ``'w'``, ``'phix'``, ``'phit'``, ``'magnitude'`` - Strain: ``'exx'``, ``'ett'``, ``'gxt'``, ``'kxx'``, ``'ktt'``, ``'kxt'``, ``'gtz'``, ``'gxz'`` - Stress: ``'Nxx'``, ``'Ntt'``, ``'Nxt'``, ``'Mxx'``, ``'Mtt'``, ``'Mxt'``, ``'Qt'``, ``'Qx'`` deform_u : bool, optional If ``True`` the contour plot will look deformed. deform_u_sf : float, optional The scaling factor used to deform the contour. invert_x : bool, optional Inverts the `x` axis of the plot. It may be used to match the coordinate system of the finite element models created using the ``desicos.abaqus`` module. plot_type : int, optional For cylinders only ``4`` and ``5`` are valid. For cones all the following types can be used: - ``1``: concave up (with ``invert_x=False``) (default) - ``2``: concave down (with ``invert_x=False``) - ``3``: stretched closed - ``4``: stretched opened (`r \times \theta` vs. `H`) - ``5``: stretched opened (`\theta` vs. `H`) save : bool, optional Flag telling whether the contour should be saved to an image file. dpi : int, optional Resolution of the saved file in dots per inch. filename : str, optional The file name for the generated image file. If no value is given, the `name` parameter of the ``ConeCyl`` object will be used. ax : AxesSubplot, optional When ``ax`` is given, the contour plot will be created inside it. figsize : tuple, optional The figure size given by ``(width, height)``. add_title : bool, optional If a title should be added to the figure. title : str, optional If any string is given ``add_title`` will be ignored and the given title added to the contour plot. colorbar : bool, optional If a colorbar should be added to the contour plot. cbar_nticks : int, optional Number of ticks added to the colorbar. cbar_format : [ None | format string | Formatter object ], optional See the ``matplotlib.pyplot.colorbar`` documentation. cbar_fontsize : int, optional Fontsize of the colorbar labels. cbar_title : str, optional Colorbar title. If ``cbar_title == ''`` no title is added. aspect : str, optional String that will be passed to the ``AxesSubplot.set_aspect()`` method. clean : bool, optional Clean axes ticks, grids, spines etc. xs : np.ndarray, optional The `x` positions where to calculate the displacement field. Default is ``None`` and the method ``_default_field`` is used. ts : np.ndarray, optional The ``theta`` positions where to calculate the displacement field. Default is ``None`` and the method ``_default_field`` is used. gridx : int, optional Number of points along the `x` axis where to calculate the displacement field. gridt : int, optional Number of points along the `theta` where to calculate the displacement field. num_levels : int, optional Number of contour levels (higher values make the contour smoother). inc : float, optional Load increment, necessary to calculate the full set of Ritz constants using :meth:`calc_full_c`. Returns ------- ax : matplotlib.axes.Axes The Matplotlib object that can be used to modify the current plot if needed. """ msg('Plotting contour...') ubkp, vbkp, wbkp, phixbkp, phitbkp = (self.u, self.v, self.w, self.phix, self.phit) import matplotlib.pyplot as plt import matplotlib from plotutils import get_filename c = self.calc_full_c(c, inc=inc) msg('Computing field variables...', level=1) displs = ['u', 'v', 'w', 'phix', 'phit', 'magnitude', 'test'] strains = ['exx', 'ett', 'gxt', 'kxx', 'ktt', 'kxt', 'gtz', 'gxz'] stresses = ['Nxx', 'Ntt', 'Nxt', 'Mxx', 'Mtt', 'Mxt', 'Qt', 'Qx'] if vec in displs or 'eq_' in vec: self.uvw(c, xs=xs, ts=ts, gridx=gridx, gridt=gridt, inc=inc) if vec == 'magnitude': u = self.u v = self.v w = self.w field = (u**2 + v**2 + w**2)**0.5 elif 'eq_' in vec: u = self.u v = self.v w = self.w field = eval(vec[3:]) else: field = getattr(self, vec) elif vec in strains: es = self.strain(c, xs=xs, ts=ts, gridx=gridx, gridt=gridt, inc=inc) field = es[..., strains.index(vec)] elif vec in stresses: Ns = self.stress(c, xs=xs, ts=ts, gridx=gridx, gridt=gridt, inc=inc) field = Ns[..., stresses.index(vec)] else: raise ValueError( '{0} is not a valid "vec" parameter value!'.format(vec)) msg('Finished!', level=1) Xs = self.Xs Ts = self.Ts vecmin = field.min() vecmax = field.max() levels = np.linspace(vecmin, vecmax, num_levels) if ax is None: fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) else: if isinstance(ax, matplotlib.axes.Axes): ax = ax fig = ax.figure save = False else: raise ValueError('"ax" must be an Axes object') def r(x): return self.r2 + x*self.sina if self.is_cylinder: plot_type=4 if plot_type == 1: r_plot = self.r2/self.sina + Xs r_plot_max = self.r2/self.sina + self.L y = r_plot_max - r_plot*cos(Ts*self.sina) x = r_plot*sin(Ts*self.sina) elif plot_type == 2: r_plot = self.r2/self.sina + Xs y = r_plot*cos(Ts*self.sina) x = r_plot*sin(Ts*self.sina) elif plot_type == 3: r_plot = self.r2/self.sina + Xs r_plot_max = self.r2/self.sina + self.L y = r_plot_max - r_plot*cos(Ts) x = r_plot*sin(Ts) elif plot_type == 4: x = r(Xs)*Ts y = self.L-Xs elif plot_type == 5: x = Ts y = Xs if deform_u: if vec in displs: pass else: self.uvw(c, xs=xs, ts=ts, gridx=gridx, gridt=gridt, inc=inc) field_u = self.u y -= deform_u_sf*field_u contour = ax.contourf(x, y, field, levels=levels) if colorbar: from mpl_toolkits.axes_grid1 import make_axes_locatable fsize = cbar_fontsize divider = make_axes_locatable(ax) cax = divider.append_axes('right', size='5%', pad=0.05) cbarticks = np.linspace(vecmin, vecmax, cbar_nticks) cbar = plt.colorbar(contour, ticks=cbarticks, format=cbar_format, cax=cax) if cbar_title: cax.text(0.5, 1.05, cbar_title, horizontalalignment='center', verticalalignment='bottom', fontsize=fsize) cbar.outline.remove() cbar.ax.tick_params(labelsize=fsize, pad=0., tick2On=False) if invert_x: ax.invert_yaxis() if title!='': ax.set_title(str(title)) elif add_title: if self.analysis.last_analysis == 'static': ax.set_title(r'$m_1={0}$, $m_2={1}$, $n_2={2}$'. format(self.m1, self.m2, self.n2)) elif self.analysis.last_analysis == 'lb': ax.set_title( r'$m_1={0}$, $m2={1}$, $n2={2}$, $\lambda_{{CR}}={3:1.3e}$'.format( self.m1, self.m2, self.n2, self.eigvals[0])) fig.tight_layout() ax.set_aspect(aspect) if clean: ax.grid(False) ax.xaxis.set_ticks_position('none') ax.yaxis.set_ticks_position('none') ax.xaxis.set_ticklabels([]) ax.yaxis.set_ticklabels([]) ax.set_frame_on(False) for kwargs in texts: ax.text(transform=ax.transAxes, **kwargs) if save: if not filename: filename = get_filename(self) fig.savefig(filename, transparent=True, bbox_inches='tight', pad_inches=0.05, dpi=dpi) plt.close() if ubkp is not None: self.u = ubkp if vbkp is not None: self.v = vbkp if wbkp is not None: self.w = wbkp if phixbkp is not None: self.phix = phixbkp if phitbkp is not None: self.phit = phitbkp msg('finished!') return ax def plotAbaqus(self, frame, fieldOutputKey, vec, nodes, numel_cir, elem_type='S4R', ignore=[], ax=None, figsize=(3.3, 3.3), save=True, aspect='equal', clean=True, plot_type=1, outpath='', filename='', npzname='', pyname='', num_levels=400): r"""Print a field output for a cylinder/cone model from Abaqus This function is intended to be used with models created by the `DESICOS plug-in for Abaqus <http://desicos.github.io/desicos/>`_, where a **mapped mesh** is used and the models comparable to the models of :mod:`compmech.conecyl`. The ``frame`` and ``nodes`` input types are described in `Abaqus Scripting Reference Manual <http://abaqus.me.chalmers.se/v6.11/books/ker/default.htm>`_ and they can be obtained through: >>> frame = session.odbs['odb_name.odb'].steps['step_name'].frames[0] >>> nodes = mdb.models['model_name'].parts['part_name'].nodes Parameters ---------- frame : OdbFrame The frame from where the field output will be taken from. fieldOutputKey : str The field output key to be used. It must be available in ``frame.fieldOutputs.keys()``. This function was tested with ``'UT'`` and ``'U'`` only. vec : str The displacement vector to be plotted: ``'u'``, ``'v'`` or ``'w'``. nodes : MeshNodeArray The part nodes. numel_cir : int The number of elements around the circumference. elem_type : str, optional The element type. The elements ``'S4R', 'S4R5'`` where tested. ignore : list, optional A list with the node ids to be ignored. It must contain any nodes outside the mapped mesh included in ``parts['part_name'].nodes``. ax : AxesSubplot, optional When ``ax`` is given, the contour plot will be created inside it. figsize : tuple, optional The figure size given by ``(width, height)``. save : bool, optional Flag telling whether the contour should be saved to an image file. aspect : str, optional String that will be passed to the ``AxesSubplot.set_aspect()`` method. clean : bool, optional Clean axes ticks, grids, spines etc. plot_type : int, optional See :meth:`plot`. outpath : str, optional Output path where the data from Abaqus and the plots are saved (see notes). filename : str, optional The file name for the generated image file. npzname : str, optional The file name for the generated npz file. pyname : str, optional The file name for the generated Python file. num_levels : int, optional Number of contour levels (higher values make the contour smoother). Returns ------- out : tuple Where ``out[0]`` and ``out[1]`` contain the circumferential and meridional grids of coordinates and ``out[2]`` the corresponding field output. Notes ----- The data is saved using ``np.savez()`` into ``outpath`` as ``abaqus_output.npz`` with an accompanying script for plotting ``abaqus_output_plot.py``, very handy when Matplotlib is not importable from Abaqus. """ workingplt = True if not npzname: npzname = 'abaqus_output.npz' npzname = os.path.join(outpath, npzname) if not pyname: pyname = 'abaqus_output_plot.py' pyname = os.path.join(outpath, pyname) if not filename: filename = 'plot_from_abaqus.png' filename = os.path.join(outpath, filename) try: import matplotlib.pyplot as plt import matplotlib except: workingplt = False try: if not frame: frame = utils.get_current_frame() if not frame: raise ValueError('A frame must be selected!') frame_num = int(frame.frameValue) coords = np.array([n.coordinates for n in nodes if n.label not in ignore]) #TODO include more outputs like stress etc field = frame.fieldOutputs[fieldOutputKey] uvw_rec = np.array([val.data for val in field.values if getattr(val.instance, 'name', None) == 'INSTANCECYLINDER']) u_rec = uvw_rec[:,0] v_rec = uvw_rec[:,1] w_rec = uvw_rec[:,2] res_alpha = np.arctan2(v_rec, u_rec) thetas = np.arctan2(coords[:, 1], coords[:, 0]) sina = sin(self.alpharad) cosa = cos(self.alpharad) ucyl = -w_rec vcyl = v_rec*cos(thetas) - u_rec*sin(thetas) wcyl = v_rec*sin(thetas) + u_rec*cos(thetas) u = wcyl*sina + ucyl*cosa v = vcyl w = wcyl*cosa - ucyl*sina displ_vecs = {'u':u, 'v':v, 'w':w} uvw = displ_vecs[vec] zs = coords[:, 2] nt = numel_cir if 'S8' in elem_type: raise NotImplementedError('{0} elements!'.format(elem_type)) #nt *= 2 #first sort asort = zs.argsort() zs = zs[asort].reshape(-1, nt) thetas = thetas[asort].reshape(-1, nt) uvw = uvw[asort].reshape(-1, nt) #second sort asort = thetas.argsort(axis=1) for i, asorti in enumerate(asort): zs[i,:] = zs[i,:][asorti] thetas[i,:] = thetas[i,:][asorti] uvw[i,:] = uvw[i,:][asorti] H = self.H r2 = self.r2 r1 = self.r1 L = H/cosa def fr(z): return r1 - z*sina/cosa if self.alpharad == 0.: plot_type=4 if plot_type == 1: r_plot = fr(zs) if self.alpharad == 0.: r_plot_max = L else: r_plot_max = r2/sina + L y = r_plot_max - r_plot*cos(thetas*sina) x = r_plot*sin(thetas*sina) elif plot_type == 2: r_plot = fr(zs) y = r_plot*cos(thetas*sina) x = r_plot*sin(thetas*sina) elif plot_type == 3: r_plot = fr(zs) r_plot_max = r2/sina + L y = r_plot_max - r_plot*cos(thetas) x = r_plot*sin(thetas) elif plot_type == 4: x = fr(zs)*thetas y = zs elif plot_type == 5: x = thetas y = zs cir = x mer = y field = uvw if workingplt: levels = np.linspace(field.min(), field.max(), num_levels) if ax is None: fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) else: if isinstance(ax, matplotlib.axes.Axes): ax = ax fig = ax.figure save = False else: raise ValueError('"ax" must be an Axes object') ax.contourf(cir, mer, field, levels=levels) ax.grid(False) ax.set_aspect(aspect) ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') #lim = self.r2*pi #ax.xaxis.set_ticks([-lim, 0, lim]) #ax.xaxis.set_ticklabels([r'$-\pi$', '$0$', r'$+\pi$']) #ax.set_title( #r'$PL=20 N$, $F_{{C}}=50 kN$, $w_{{PL}}=\beta$, $mm$') if clean: ax.xaxis.set_ticks_position('none') ax.yaxis.set_ticks_position('none') ax.xaxis.set_ticklabels([]) ax.yaxis.set_ticklabels([]) ax.set_frame_on(False) if save: msg('Plot saved at: {0}'.format(filename)) plt.tight_layout() plt.savefig(filename, transparent=True, bbox_inches='tight', pad_inches=0.05, dpi=400) else: warn('Matplotlib cannot be imported from Abaqus') np.savez(npzname, cir=cir, mer=mer, field=field) with open(pyname, 'w') as f: f.write("import os\n") f.write("import numpy as np\n") f.write("import matplotlib.pyplot as plt\n") f.write("tmp = np.load('abaqus_output.npz')\n") f.write("cir = tmp['cir']\n") f.write("mer = tmp['mer']\n") f.write("field = tmp['field']\n") f.write("clean = {0}\n".format(clean)) f.write("filename = '{0}'\n".format(filename)) f.write("plt.figure(figsize={0})\n".format(figsize)) f.write("ax = plt.gca()\n") f.write("levels = np.linspace(field.min(), field.max(), {0})\n".format( num_levels)) f.write("ax.contourf(cir, mer, field, levels=levels)\n") f.write("ax.grid(b=None)\n") f.write("ax.set_aspect('{0}')\n".format(aspect)) f.write("ax.xaxis.set_ticks_position('bottom')\n") f.write("ax.yaxis.set_ticks_position('left')\n") f.write("ax.xaxis.set_ticks([{0}, 0, {1}])\n".format( -self.r2*pi, self.r2*pi)) f.write("ax.xaxis.set_ticklabels([r'$-\pi$', '$0$', r'$+\pi$'])\n") f.write("ax.set_title(r'Abaqus, $PL=20 N$, $F_{{C}}=50 kN$, $w_{{PL}}=\beta$, $mm$')\n") f.write("if clean:\n") f.write(" ax.xaxis.set_ticks_position('none')\n") f.write(" ax.yaxis.set_ticks_position('none')\n") f.write(" ax.xaxis.set_ticklabels([])\n") f.write(" ax.yaxis.set_ticklabels([])\n") f.write(" ax.set_frame_on(False)\n") f.write("if not filename:\n") f.write(" filename = 'abaqus_result.png'\n") f.write("plt.savefig(filename, transparent=True,\n") f.write(" bbox_inches='tight', pad_inches=0.05, dpi=400)\n") f.write("plt.show()\n") msg('Output exported to "{0}"'.format(npzname)) msg('Please run the file "{0}" to plot the output'.format( pyname)) return cir, mer, field except: traceback.print_exc() error('Opened plot could not be generated! :(') def SPLA(self, PLs, NLgeom=True, plot=False): """Runs the Single Perturbation Load Approach (SPLA) A set of non-linear results will be Parameters ---------- PLs: list The perturbation loads used to build the knock-down curve. It must be a list of float values. NLgeom : bool, optional Flag passed to the ``static()`` method that tells whether a geometrically non-linear analysis is to be performed. Returns ------- curves : list The sequence of curves, one curve for each perturbation load given in the input parameter ``PLs``. Each curve in the list is a ``dict`` object with the keys: ================= ============================================== Key Description ================= ============================================== ``'wall_time_s'`` The wall time for the non-linear analysis ``'name'`` The name of the curve. Ex: ``'PL = 1. N'`` ``'cs'`` A list with a vector of Ritz constants for each load increment needed ``'increments'`` A list with the values of increments needed ``'wPLs'`` A list with the normal displacement at the perturbation load application point for each load increment ``'uTMs'`` A list containing the axial displacement for each load increment ``'Fcs'`` A list containing the axial reaction force for each load increment ================= ============================================== Notes ----- The curves are stores in the ``ConeCyl`` parameter ``outputs['SPLA_curves']``. """ curves = [] for PLi, PL in enumerate(PLs): curve = {} self.forces = [] self.add_SPL(PL) time1 = time.clock() cs = self.static(NLgeom=NLgeom) if plot: self.plot(cs[-1]) curve['wall_time_s'] = time.clock() - time1 curve['name'] = 'PL = {} N'.format(PL) curve['cs'] = cs curve['increments'] = self.increments curve['wPLs'] = [] curve['uTMs'] = [] curve['Fcs'] = [] for i, c in enumerate(self.cs): inc = self.increments[i] self.uvw(c, xs=self.L/2, ts=0) curve['wPLs'].append(self.w[0]) if self.pdC: ts = np.linspace(0, pi*2, 1000, endpoint=False) xs = np.zeros_like(ts) es = self.strain(c=c, xs=xs, ts=ts, inc=inc) fvec = self.F.dot(es.T) Fc = -fvec[0,:].mean()*(2*self.r2*pi) curve['Fcs'].append(Fc/1000) curve['uTMs'].append(inc*self.uTM) else: curve['Fcs'].append(inc*self.Fc/1000) curve['uTMs'].append(c[0]) curves.append(curve) self.outputs['SPLA_curves'] = curves return curves def apply_shim(self, thetadeg, width, thick, ncpts=10000): r"""Distributes the axial load in order to simulate a shim The axial load distribution `{N_{xx}}_{top}` will be adjusted such that the resulting displacement `u` at `x=0` (top edge) will look similar to a case where a shim is applied. Parameters ---------- thetadeg : float Position in degrees of the center of the shim. width : float Circumferential width of the shim. thick : float Thickness of the shim. ncpts : int, optional Number of control points used in the least-squares routine. Returns ------- ts : np.ndarray Positions `\theta` of the control points. us : np.ndarray Displacements `u` of the control points. Notes ----- This function changes the ``Nxxtop`` parameter of the current ``ConeCyl`` object. Returning ``ts`` and ``us`` is useful for post processing purposes only. Examples -------- >>> ts, us = cc.apply_shim(0., 25.4, 0.1) """ ts = np.linspace(-np.pi, np.pi, ncpts) xs = np.zeros_like(ts) us = np.zeros_like(ts) self.static(NLgeom=False) thetashim = width/self.r2 thetarad = deg2rad(thetadeg) theta1 = thetarad - thetashim theta2 = thetarad + thetashim uTM = self.cs[0][0] utop = uTM/self.cosa us += uTM shim_region = (ts >= theta1) & (ts <= theta2) us[shim_region] += thick self.fit_Nxxtop(ts, us) return ts, us def fit_Nxxtop(self, ts, us, update_Nxxtop=True): r"""Adjusts the axial load distribution for a desired top edge displacement Parameters ---------- ts : np.ndarray Corrdinates `\theta` of each control point. us : np.ndarray Desired displacement `u` for each control point. update_Nxxtop : bool, optional Tells whether ``self.Nxxtop`` should be updated. Returns ------- Nxxtop : np.ndarray The coefficients for the `{N_{xx}}_{top}` function. """ from scipy.sparse.linalg import inv as sparseinv assert ts.ndim == 1 and us.ndim == 1 assert ts.shape[0] == us.shape[0] xs = np.zeros_like(ts) if not update_Nxxtop: Nxxtop_backup = self.Nxxtop.copy() k0uuinv = sparseinv(csc_matrix(self.k0uu)) Nxxtop_new = self.Nxxtop.copy() def fit_Nxxtop_residual(Nxxtop_new): self.Nxxtop = Nxxtop_new.copy() fext = self.calc_fext(silent=True) c = k0uuinv*fext self.uvw(c, xs=xs, ts=ts) res = (self.u - us)**2 return res popt, pcov = leastsq(fit_Nxxtop_residual, x0=Nxxtop_new, maxfev=10000) if not update_Nxxtop: self.Nxxtop = Nxxtop_backup else: self.Nxxtop = popt return popt def save(self): """Save the ``ConeCyl`` object using ``cPickle`` Notes ----- The pickled file will have the name stored in ``ConeCyl.name`` followed by a ``'.ConeCyl'`` extension. """ name = self.name + '.ConeCyl' msg('Saving ConeCyl to {}'.format(name)) self.analysis.calc_fext = None self.analysis.calc_k0 = None self.analysis.calc_fint = None self.analysis.calc_kT = None self._clear_matrices() with open(name, 'wb') as f: cPickle.dump(self, f, protocol=cPickle.HIGHEST_PROTOCOL)
bsd-3-clause
hsuantien/scikit-learn
examples/plot_digits_pipe.py
250
1809
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Pipelining: chaining a PCA and a logistic regression ========================================================= The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction. We use a GridSearchCV to set the dimensionality of the PCA """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, decomposition, datasets from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV logistic = linear_model.LogisticRegression() pca = decomposition.PCA() pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)]) digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target ############################################################################### # Plot the PCA spectrum pca.fit(X_digits) plt.figure(1, figsize=(4, 3)) plt.clf() plt.axes([.2, .2, .7, .7]) plt.plot(pca.explained_variance_, linewidth=2) plt.axis('tight') plt.xlabel('n_components') plt.ylabel('explained_variance_') ############################################################################### # Prediction n_components = [20, 40, 64] Cs = np.logspace(-4, 4, 3) #Parameters of pipelines can be set using ‘__’ separated parameter names: estimator = GridSearchCV(pipe, dict(pca__n_components=n_components, logistic__C=Cs)) estimator.fit(X_digits, y_digits) plt.axvline(estimator.best_estimator_.named_steps['pca'].n_components, linestyle=':', label='n_components chosen') plt.legend(prop=dict(size=12)) plt.show()
bsd-3-clause
pkreissl/espresso
samples/visualization_ljliquid.py
2
5850
# # Copyright (C) 2013-2019 The ESPResSo project # # This file is part of ESPResSo. # # ESPResSo is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ESPResSo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # """ Visualize a Lennard-Jones liquid with live plotting via matplotlib. """ import numpy as np from matplotlib import pyplot from threading import Thread import espressomd from espressomd import visualization import argparse required_features = ["LENNARD_JONES"] espressomd.assert_features(required_features) parser = argparse.ArgumentParser(epilog=__doc__) group = parser.add_mutually_exclusive_group() group.add_argument("--opengl", action="store_const", dest="visualizer", const="opengl", help="OpenGL visualizer", default="opengl") group.add_argument("--mayavi", action="store_const", dest="visualizer", const="mayavi", help="MayaVi visualizer") args = parser.parse_args() print(""" ======================================================= = lj_liquid.py = ======================================================= """) # System parameters ############################################################# # 10 000 Particles box_l = 10.7437 density = 0.7 # Interaction parameters (repulsive Lennard-Jones) ############################################################# lj_eps = 1.0 lj_sig = 1.0 lj_cut = 1.12246 # Integration parameters ############################################################# system = espressomd.System(box_l=[box_l] * 3) np.random.seed(seed=42) system.time_step = 0.001 system.cell_system.skin = 0.4 # warmup integration (steepest descent) warm_steps = 20 warm_n_times = 30 # convergence criterion (particles are separated by at least 90% sigma) min_dist = 0.9 * lj_sig # integration int_steps = 10 int_n_times = 50000 ############################################################# # Setup System # ############################################################# # Interaction setup ############################################################# system.non_bonded_inter[0, 0].lennard_jones.set_params( epsilon=lj_eps, sigma=lj_sig, cutoff=lj_cut, shift="auto") print("LJ-parameters:") print(system.non_bonded_inter[0, 0].lennard_jones.get_params()) # Particle setup ############################################################# volume = box_l**3 n_part = int(volume * density) for i in range(n_part): system.part.add(id=i, pos=np.random.random(3) * system.box_l) print("Simulate {} particles in a cubic box {} at density {}." .format(n_part, box_l, density).strip()) print("Interactions:\n") act_min_dist = system.analysis.min_dist() print("Start with minimal distance {}".format(act_min_dist)) # Select visualizer if args.visualizer == "mayavi": visualizer = visualization.mayaviLive(system) else: visualizer = visualization.openGLLive(system) ############################################################# # Warmup Integration # ############################################################# print(""" Start warmup integration: At maximum {} times {} steps Stop if minimal distance is larger than {} """.strip().format(warm_n_times, warm_steps, min_dist)) print(system.non_bonded_inter[0, 0].lennard_jones) # minimize energy using min_dist as the convergence criterion system.integrator.set_steepest_descent(f_max=0, gamma=1e-3, max_displacement=lj_sig / 100) i = 0 while i < warm_n_times and system.analysis.min_dist() < min_dist: print("minimization: {:+.2e}".format(system.analysis.energy()["total"])) system.integrator.run(warm_steps) i += 1 visualizer.update() print("minimization: {:+.2e}".format(system.analysis.energy()["total"])) print() system.integrator.set_vv() # activate thermostat system.thermostat.set_langevin(kT=1.0, gamma=1.0, seed=42) ############################################################# # Integration # ############################################################# print("\nStart integration: run %d times %d steps" % (int_n_times, int_steps)) # print initial energies energies = system.analysis.energy() print(energies) plot, = pyplot.plot([0], [energies['total']], label="total") pyplot.xlabel("Time") pyplot.ylabel("Energy") pyplot.legend() pyplot.show(block=False) def main_loop(): global energies print("run at time={:.2f}".format(system.time)) system.integrator.run(int_steps) visualizer.update() energies = system.analysis.energy() plot.set_xdata(np.append(plot.get_xdata(), system.time)) plot.set_ydata(np.append(plot.get_ydata(), energies['total'])) def main_thread(): for _ in range(int_n_times): main_loop() last_plotted = 0 def update_plot(): global last_plotted current_time = plot.get_xdata()[-1] if last_plotted == current_time: return last_plotted = current_time pyplot.xlim(0, plot.get_xdata()[-1]) pyplot.ylim(plot.get_ydata().min(), plot.get_ydata().max()) pyplot.draw() pyplot.pause(0.01) t = Thread(target=main_thread) t.daemon = True t.start() visualizer.register_callback(update_plot, interval=1000) visualizer.start() # terminate program print("\nFinished.")
gpl-3.0
andreww/theia_tools
terraheat.py
1
2132
#!/usr/bin/env python import numpy as np def read_terra_heat(file): """Read an optionally compressed heat file from TERRA Returns five numpy arrays of summary data from a TERRA heat file. The arrays contain the time (years), power exiting via the surface (W), entering via bottom heating (W), added via the decay of radioisotopes (W) and the total power (W), respectivly. """ # We can use the numpy loadtxt to read this file format, which is # nice - and allows file to be a file object or file name, and the # file can be .gz or .bz2 compressed. time, htop, hbot, hrad, heat = np.loadtxt(file, unpack=True) return time, htop, hbot, hrad, heat def plot_heat(time, htop, hbot, hrad, heat, filename=None): """Create a graph of data from a TERRA heat file Creates a line graph of the contributions to the power of the system using data that can be read from a TERRA heat file. Data must be presented as numpy arrays (or a format that can be converted into a numpy array). Setting the optional filename argument will result in the graph being written to a file. """ import matplotlib if filename is not None: matplotlib.use('Agg') import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) ax.plot(time, htop, 'g-', label='htop') ax.plot(time, hbot, 'b-', label='hbot') ax.plot(time, hrad, 'r-', label='hrad') ax.plot(time, heat, 'k-', label='heat') ax.legend() ax.set_xlabel('Time (yr)') ax.set_ylabel('Heat (W)') if filename is not None: plt.savefig(filename) else: plt.show() if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description= 'Generate a graph from a TERRA heat file.') parser.add_argument('histfile', help='TERRA heat file') parser.add_argument('-o', '--outfile', help='Ouput graph to a file') args = parser.parse_args() time, htop, hbot, hrad, heat = read_terra_heat(args.histfile) plot_heat(time, htop, hbot, hrad, heat, filename=args.outfile)
mit
kaichogami/scikit-learn
examples/svm/plot_rbf_parameters.py
44
8096
''' ================== RBF SVM parameters ================== This example illustrates the effect of the parameters ``gamma`` and ``C`` of the Radial Basis Function (RBF) kernel SVM. Intuitively, the ``gamma`` parameter defines how far the influence of a single training example reaches, with low values meaning 'far' and high values meaning 'close'. The ``gamma`` parameters can be seen as the inverse of the radius of influence of samples selected by the model as support vectors. The ``C`` parameter trades off misclassification of training examples against simplicity of the decision surface. A low ``C`` makes the decision surface smooth, while a high ``C`` aims at classifying all training examples correctly by giving the model freedom to select more samples as support vectors. The first plot is a visualization of the decision function for a variety of parameter values on a simplified classification problem involving only 2 input features and 2 possible target classes (binary classification). Note that this kind of plot is not possible to do for problems with more features or target classes. The second plot is a heatmap of the classifier's cross-validation accuracy as a function of ``C`` and ``gamma``. For this example we explore a relatively large grid for illustration purposes. In practice, a logarithmic grid from :math:`10^{-3}` to :math:`10^3` is usually sufficient. If the best parameters lie on the boundaries of the grid, it can be extended in that direction in a subsequent search. Note that the heat map plot has a special colorbar with a midpoint value close to the score values of the best performing models so as to make it easy to tell them appart in the blink of an eye. The behavior of the model is very sensitive to the ``gamma`` parameter. If ``gamma`` is too large, the radius of the area of influence of the support vectors only includes the support vector itself and no amount of regularization with ``C`` will be able to prevent overfitting. When ``gamma`` is very small, the model is too constrained and cannot capture the complexity or "shape" of the data. The region of influence of any selected support vector would include the whole training set. The resulting model will behave similarly to a linear model with a set of hyperplanes that separate the centers of high density of any pair of two classes. For intermediate values, we can see on the second plot that good models can be found on a diagonal of ``C`` and ``gamma``. Smooth models (lower ``gamma`` values) can be made more complex by selecting a larger number of support vectors (larger ``C`` values) hence the diagonal of good performing models. Finally one can also observe that for some intermediate values of ``gamma`` we get equally performing models when ``C`` becomes very large: it is not necessary to regularize by limiting the number of support vectors. The radius of the RBF kernel alone acts as a good structural regularizer. In practice though it might still be interesting to limit the number of support vectors with a lower value of ``C`` so as to favor models that use less memory and that are faster to predict. We should also note that small differences in scores results from the random splits of the cross-validation procedure. Those spurious variations can be smoothed out by increasing the number of CV iterations ``n_iter`` at the expense of compute time. Increasing the value number of ``C_range`` and ``gamma_range`` steps will increase the resolution of the hyper-parameter heat map. ''' print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import Normalize from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_iris from sklearn.model_selection import StratifiedShuffleSplit from sklearn.model_selection import GridSearchCV # Utility function to move the midpoint of a colormap to be around # the values of interest. class MidpointNormalize(Normalize): def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False): self.midpoint = midpoint Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y)) ############################################################################## # Load and prepare data set # # dataset for grid search iris = load_iris() X = iris.data y = iris.target # Dataset for decision function visualization: we only keep the first two # features in X and sub-sample the dataset to keep only 2 classes and # make it a binary classification problem. X_2d = X[:, :2] X_2d = X_2d[y > 0] y_2d = y[y > 0] y_2d -= 1 # It is usually a good idea to scale the data for SVM training. # We are cheating a bit in this example in scaling all of the data, # instead of fitting the transformation on the training set and # just applying it on the test set. scaler = StandardScaler() X = scaler.fit_transform(X) X_2d = scaler.fit_transform(X_2d) ############################################################################## # Train classifiers # # For an initial search, a logarithmic grid with basis # 10 is often helpful. Using a basis of 2, a finer # tuning can be achieved but at a much higher cost. C_range = np.logspace(-2, 10, 13) gamma_range = np.logspace(-9, 3, 13) param_grid = dict(gamma=gamma_range, C=C_range) cv = StratifiedShuffleSplit(n_iter=5, test_size=0.2, random_state=42) grid = GridSearchCV(SVC(), param_grid=param_grid, cv=cv) grid.fit(X, y) print("The best parameters are %s with a score of %0.2f" % (grid.best_params_, grid.best_score_)) # Now we need to fit a classifier for all parameters in the 2d version # (we use a smaller set of parameters here because it takes a while to train) C_2d_range = [1e-2, 1, 1e2] gamma_2d_range = [1e-1, 1, 1e1] classifiers = [] for C in C_2d_range: for gamma in gamma_2d_range: clf = SVC(C=C, gamma=gamma) clf.fit(X_2d, y_2d) classifiers.append((C, gamma, clf)) ############################################################################## # visualization # # draw visualization of parameter effects plt.figure(figsize=(8, 6)) xx, yy = np.meshgrid(np.linspace(-3, 3, 200), np.linspace(-3, 3, 200)) for (k, (C, gamma, clf)) in enumerate(classifiers): # evaluate decision function in a grid Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # visualize decision function for these parameters plt.subplot(len(C_2d_range), len(gamma_2d_range), k + 1) plt.title("gamma=10^%d, C=10^%d" % (np.log10(gamma), np.log10(C)), size='medium') # visualize parameter's effect on decision function plt.pcolormesh(xx, yy, -Z, cmap=plt.cm.RdBu) plt.scatter(X_2d[:, 0], X_2d[:, 1], c=y_2d, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.axis('tight') # plot the scores of the grid # grid_scores_ contains parameter settings and scores # We extract just the scores scores = [x[1] for x in grid.grid_scores_] scores = np.array(scores).reshape(len(C_range), len(gamma_range)) # Draw heatmap of the validation accuracy as a function of gamma and C # # The score are encoded as colors with the hot colormap which varies from dark # red to bright yellow. As the most interesting scores are all located in the # 0.92 to 0.97 range we use a custom normalizer to set the mid-point to 0.92 so # as to make it easier to visualize the small variations of score values in the # interesting range while not brutally collapsing all the low score values to # the same color. plt.figure(figsize=(8, 6)) plt.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95) plt.imshow(scores, interpolation='nearest', cmap=plt.cm.hot, norm=MidpointNormalize(vmin=0.2, midpoint=0.92)) plt.xlabel('gamma') plt.ylabel('C') plt.colorbar() plt.xticks(np.arange(len(gamma_range)), gamma_range, rotation=45) plt.yticks(np.arange(len(C_range)), C_range) plt.title('Validation accuracy') plt.show()
bsd-3-clause
tri2sing/OpenStack
correlate_host_load_vm_count.py
1
3907
#!/usr/bin/env python from datetime import datetime as dt, timedelta import logging as lg import pandas as pd import pandas.tools as tl import pymongo import sys import csv today = dt.now() today = today.replace (hour=0, minute=0, second=0, microsecond=0) yesterday = today + timedelta (days=-1) MONGO_URL = os.environ['MONGO_URL'] try: conn = pymongo.Connection (MONGO_URL, safe=True) except pymongo.errors.ConnectionFailure as e: print 'Error: check your MongoDB connectivity' print 'Error:', e sys.exit() # Databases to use db1 = conn.inventory db2 = conn.collectd # Collections to use hy = db1.hypervisors vms = db1.instances caph = db1.hostcapacity ld = db2.load qry1 = {'timestamp': today} sltr1 = {'_id': 0} sltr2 = {'_id': 0} sltr3 = {'_id': 0} try: # Get the list of hypervisors hvsrs = hy.find (qry1, sltr1) # print 'timestamp', 'host_name', 'vms_count', 'host_ram', 'vms_ram_alloc', 'ratio_ram', 'host_cpus', 'vms_vcpu_alloc', 'ratio_cpu', 'host_load_total', 'host_load_per_cpu' for h in hvsrs: info = {} # Get the cpu load data which is of the form [short term, medium term, long term] # We focus on the long-term as the barometer of host compute capacity. qry2 = {"time" : { "$gte" : yesterday, "$lte" : today }, "host": h['name']} lddocs = ld.find (qry2, sltr2) ldlist = list(lddocs) if ldlist: ldvals = [item["values"][2] for item in ldlist] lddf = pd.DataFrame(ldvals) ldmean = round(lddf.mean().tolist()[0], 4) else: ldmean = -1.0 * (float(h['host_os_cpus'])) print str(today) + ': No load data for ' + h['name'] info['timestamp'] = today info['host_name'] = h['name'] info['host_load_total'] = ldmean info['vms_count'] = h['vms'] info['host_ram'] = h['ram_mb'] info['host_cpus'] = h['host_os_cpus'] info['host_load_per_cpu'] = round(ldmean/ float(h['host_os_cpus']), 4) if h['vms'] > 0: qry3 = {"timestamp" : today, "hypervisor": h['name']} vmdocs = vms.find (qry3, sltr3) vmlist = list(vmdocs) vmvals = [{"vcpus": item["flavor"]["vcpus"], "ram": item["flavor"]["ram"]} for item in vmlist] vmdf = pd.DataFrame(vmvals) totals = vmdf.sum() # We have to cast the values stored in totals[] to types that MongoDB can understand. # For example totals['vms_ram_alloc'] is of type numpy.int64 which we cannot insert into MongoDB. info['vms_ram_alloc'] = long(totals['ram']) info['vms_vcpu_alloc'] = long(totals['vcpus']) info['ratio_ram'] = round(float(totals['ram'])/ float(h['ram_mb']), 4) info['ratio_cpu'] = round(float(totals['vcpus'])/ float(h['host_os_cpus']), 4) else: info['vms_ram_alloc'] = 0 info['vms_vcpu_alloc'] = 0 info['ratio_ram'] = 0.0 info['ratio_cpu'] = 0.0 if info['host_load_per_cpu'] >= 0.75 or info['vms_count'] >= 70: info['state'] = 'RED' elif info['host_load_per_cpu'] > 0.5 or info['vms_count'] >= 60: info['state'] = 'YELLOW' else: info['state'] = 'GREEN' # To debug why MongoDB insert was failing printed the data types of values. #for k,v in info.items(): print k, type(v) caph.update({'host_name':h['name'], 'timestamp':today}, info, upsert=True) # print info['timestamp'], info['host_name'], info['vms_count'], info['host_ram'], info['vms_ram_alloc'], info['ratio_ram'], info['host_cpus'], info['vms_vcpu_alloc'], info['ratio_cpu'], info['host_load_total'], info['host_load_per_cpu'] except pymongo.errors.PyMongoError as e: print str(today) + ': Error: unable to query' print str(today) + ': Error:', e
apache-2.0
dieterich-lab/rp-bp
rpbp/translation_prediction/estimate_orf_bayes_factors.py
1
17952
#! /usr/bin/env python3 import argparse import pickle import logging import sys import ctypes import multiprocessing import numpy as np import pandas as pd import scipy.io import pbio.utils.bed_utils as bed_utils import pbio.misc.logging_utils as logging_utils import pbio.misc.parallel as parallel import pbio.misc.slurm as slurm import pbio.misc.utils as utils from pbio.misc.suppress_stdout_stderr import suppress_stdout_stderr import pbio.ribo.ribo_utils as ribo_utils from rpbp.defaults import default_num_cpus, default_num_groups, translation_options logger = logging.getLogger(__name__) # we will use global variables to share the (read-only) scipy.sparse.csr_matrix # across the child processes. # see: http://stackoverflow.com/questions/1675766/ # how-to-combine-pool-map-with-array-shared-memory-in-python-multiprocessing profiles_data = 0 profiles_indices = 0 profiles_indptr = 0 profiles_shape = 0 translated_models = 0 untranslated_models = 0 args = 0 # Not passed as arguments, unlikely to be required default_orf_num_field = 'orf_num' default_orf_type_field = 'orf_type' # --num-orfs is not used in the the Rp-Bp pipeline def get_bayes_factor(profile, translated_models, untranslated_models, args): """ This function calculates the Bayes' factor for a single ORF profile. Args: profile (np.array): the (dense) profile for this ORF translated_models (list of pystan.StanModel): the models which explain translation untranslated_models (list of pystan.StanModel): the models which account for background args (namespace): a namespace (presumably from argparse) which includes the following: seed (int): random seed for initializing MCMC chains (int): the number of MCMC chains iterations (int): the number of iterations for each chain Returns: pd.Series: a series containing: the mean and variance for each of the following estimated values: bayes_factor p_translated p_background translated_location translated_scale background_location background_scale the chi-square p-value """ profile_sum = sum(profile) # split the signal based on frame x_1 = profile[0::3] x_2 = profile[1::3] x_3 = profile[2::3] T = len(x_1) x_1_sum = sum(x_1) x_2_sum = sum(x_2) x_3_sum = sum(x_3) ret = { "p_translated_mean": float('-inf'), "p_translated_var": float('-inf'), "p_background_mean": float('-inf'), "p_background_var": float('-inf'), "translated_location_mean": float('-inf'), "translated_location_var": float('-inf'), "translated_scale_mean": float('-inf'), "translated_scale_var": float('-inf'), "background_location_mean": float('-inf'), "background_location_var": float('-inf'), "background_scale_mean": float('-inf'), "background_scale_var": float('-inf'), "bayes_factor_mean": float('-inf'), "bayes_factor_var": float('-inf'), "chi_square_p": float('-inf'), "x_1_sum": x_1_sum, "x_2_sum": x_2_sum, "x_3_sum": x_3_sum, "profile_sum": profile_sum } ret = pd.Series(ret) # check if something odd happens with the length # this should already be checked before calling the function. if (T != len(x_2)) or (T != len(x_3)): return ret # and make sure we have more reads in x_1 than each of the others if (x_1_sum < x_2_sum) or (x_1_sum < x_3_sum): return ret # chi-square values f_obs = [x_1_sum, x_2_sum, x_3_sum] chisq, chi_square_p = scipy.stats.chisquare(f_obs) ret['chi_square_p'] = chi_square_p # check if we only wanted the chi square value if args.chi_square_only: return ret # now, smooth the signals smoothed_profile = ribo_utils.smooth_profile(profile, reweighting_iterations=args.reweighting_iterations, fraction=args.fraction) # split the signal based on frame x_1 = smoothed_profile[0::3] x_2 = smoothed_profile[1::3] x_3 = smoothed_profile[2::3] nonzero_x_1 = np.count_nonzero(x_1) # construct the input for Stan data = { "x_1": x_1, "x_2": x_2, "x_3": x_3, "T": T, "nonzero_x_1": nonzero_x_1 } m_translated = [tm.sampling(data=data, iter=args.iterations, chains=args.chains, n_jobs=1, seed=args.seed, refresh=0) for tm in translated_models] m_background = [bm.sampling(data=data, iter=args.iterations, chains=args.chains, n_jobs=1, seed=args.seed, refresh=0) for bm in untranslated_models] # extract the parameters of interest m_translated_ex = [m.extract(pars=['lp__', 'background_location', 'background_scale']) for m in m_translated] m_background_ex = [m.extract(pars=['lp__', 'background_location', 'background_scale']) for m in m_background] # now, choose the best model of each class, based on mean likelihood m_translated_means = [np.mean(m_ex['lp__']) for m_ex in m_translated_ex] m_background_means = [np.mean(m_ex['lp__']) for m_ex in m_background_ex] max_translated_mean = np.argmax(m_translated_means) max_background_mean = np.argmax(m_background_means) # select the best sampling results m_translated_ex = m_translated_ex[max_translated_mean] m_background_ex = m_background_ex[max_background_mean] # extract the relevant means and variances ret['p_translated_mean'] = np.mean(m_translated_ex['lp__']) ret['p_translated_var'] = np.var(m_translated_ex['lp__']) ret['p_background_mean'] = np.mean(m_background_ex['lp__']) ret['p_background_var'] = np.var(m_background_ex['lp__']) ret['translated_location_mean'] = np.mean(m_translated_ex['background_location']) ret['translated_location_var'] = np.var(m_translated_ex['background_location']) ret['translated_scale_mean'] = np.mean(m_translated_ex['background_scale']) ret['translated_scale_var'] = np.var(m_translated_ex['background_scale']) ret['background_location_mean'] = np.mean(m_background_ex['background_location']) ret['background_location_var'] = np.var(m_background_ex['background_location']) ret['background_scale_mean'] = np.mean(m_background_ex['background_scale']) ret['background_scale_var'] = np.var(m_background_ex['background_scale']) # the (log of) the Bayes factor is the difference between two normals: # (the best translated model) - (the best background model) # # thus, it is also a normal whose mean is the difference of the two means # and whose variance is the sum of the two variances ret['bayes_factor_mean'] = ret['p_translated_mean'] - ret['p_background_mean'] ret['bayes_factor_var'] = ret['p_translated_var'] + ret['p_background_var'] return ret def get_all_bayes_factors(orfs, args): """ This function calculates the Bayes' factor term for each region in regions. See the description of the script for the Bayes' factor calculations. Args: orfs (pd.DataFrame) : a set of orfs. The columns must include: orf_num exon_lengths args (namespace) : a namespace containing the models and profiles filenames Returns: pandas.Series: the Bayes' factors (and other estimated quantities) for each region """ # read in the signals and sequences logger.debug("Reading profiles") profiles = scipy.io.mmread(args.profiles).tocsr() logger.debug("Reading models") translated_models = [pickle.load(open(tm, 'rb')) for tm in args.translated_models] untranslated_models = [pickle.load(open(bm, 'rb')) for bm in args.untranslated_models] logger.debug("Applying on regions") bfs = [] for idx, row in orfs.iterrows(): orf_num = row[args.orf_num_field] orf_len = row['orf_len'] # sometimes the orf_len is off... if orf_len % 3 != 0: msg = "Found an ORF whose length was not 0 mod 3. Skipping. orf_id: {}".format(row['id']) logger.warning(msg) continue profile = utils.to_dense(profiles, orf_num, float, length=orf_len) row_bf = get_bayes_factor(profile, translated_models, untranslated_models, args) row = row.append(row_bf) bfs.append(row) bfs = pd.DataFrame(bfs) return bfs def get_all_bayes_factors_args(orfs): """ This function calculates the Bayes' factor term for each region in regions. See the description of the script for the Bayes' factor calculations. Args: orfs (pd.DataFrame) : a set of orfs. The columns must include: orf_num exon_lengths args (namespace) : a namespace containing the models and profiles filenames Returns: pandas.Series: the Bayes' factors (and other estimated quantities) for each region """ # read in the signals and sequences # logger.debug("Reading profiles") # profiles = scipy.io.mmread(args.profiles).tocsr() # logger.debug("Reading models") # translated_models = [pickle.load(open(tm, 'rb')) for tm in args.translated_models] # untranslated_models = [pickle.load(open(bm, 'rb')) for bm in args.untranslated_models] # this is code to initialize a csc matrix using the internal numpy arrays # csr is basically the same # b = scipy.sparse.csc_matrix((a.data, a.indices, a.indptr), shape=a.shape, copy=False) profiles = scipy.sparse.csr_matrix((profiles_data, profiles_indices, profiles_indptr), shape=profiles_shape, copy=False) logger.debug("Applying on regions") bfs = [] for idx, row in orfs.iterrows(): orf_num = row[args.orf_num_field] orf_len = row['orf_len'] # sometimes the orf_len is off... if orf_len % 3 != 0: msg = "Found an ORF whose length was not 0 mod 3. Skipping. orf_id: {}".format(row['id']) logger.warning(msg) continue profile = utils.to_dense(profiles, orf_num, float, length=orf_len) row_bf = get_bayes_factor(profile, translated_models, untranslated_models, args) row = row.append(row_bf) bfs.append(row) bfs = pd.DataFrame(bfs) return bfs def main(): global profiles_data, profiles_indices, profiles_indptr, profiles_shape global translated_models, untranslated_models global args parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="""This script uses Hamiltonian MCMC with Stan to estimate translation parameters for a set of regions (presumably ORFs). Roughly, it takes as input: (1) a set of regions (ORFs) and their corresponding profiles (2) a "translated" model which gives the probability that a region is translated (3) an "untranslated" model which gives the probability that a region is not translated. The script first smoothes the profiles using LOWESS. It then calculates both the Bayes' factor (using the smoothed profile) and chi2 value (using the raw counts) for each ORF.""") parser.add_argument('profiles', help="The ORF profiles (counts) (mtx)") parser.add_argument('regions', help="The regions (ORFs) for which predictions will be made (BED12+)") parser.add_argument('out', help="The output file for the Bayes' factors (BED12+)") parser.add_argument('--chi-square-only', help="""If this flag is present, then only the chi square test will be performed for each ORF. This can also be a way to get the counts within each of the ORFs.""", action='store_true') parser.add_argument('--translated-models', help="The models to use as H_t (pkl)", nargs='+') parser.add_argument('--untranslated-models', help="The models to use as H_u (pkl)", nargs='+') # filtering options parser.add_argument('--orf-types', help="If values are given, then only orfs with those types are processed.", nargs='*', default=translation_options['orf_types']) parser.add_argument('--orf-type-field', default=default_orf_type_field) parser.add_argument('--min-length', help="ORFs with length less than this value will not be processed", type=int, default=translation_options['orf_min_length_pre']) parser.add_argument('--max-length', help="ORFs with length greater than this value will not be processed", type=int, default=translation_options['orf_max_length_pre']) parser.add_argument('--min-profile', help="""ORFs with profile sum (i.e., number of reads) less than this value will not be processed.""", type=float, default=translation_options['orf_min_profile_count_pre']) # smoothing options parser.add_argument('--fraction', help="The fraction of signal to use in LOWESS", type=float, default=translation_options['smoothing_fraction']) parser.add_argument('--reweighting-iterations', help="The number of reweighting " "iterations to use in LOWESS. " "Please see the statsmodels documentation for a " "detailed description of this parameter.", type=int, default=translation_options['smoothing_reweighting_iterations']) # MCMC options parser.add_argument('-s', '--seed', help="The random seeds to use for inference", type=int, default=translation_options['seed']) parser.add_argument('-c', '--chains', help="The number of MCMC chains to use", type=int, default=translation_options['chains']) parser.add_argument('-i', '--iterations', help="The number of MCMC iterations to use for each chain", type=int, default=translation_options['translation_iterations']) # behavior options parser.add_argument('--num-orfs', help="If n>0, then only this many ORFs will be processed", type=int, default=0) parser.add_argument('--orf-num-field', default=default_orf_num_field) parser.add_argument('--do-not-compress', help="Unless otherwise specified, the output will " "be written in GZip format", action='store_true') parser.add_argument('-g', '--num-groups', help="The number of groups into which to split " "the ORFs. More groups means the progress bar is " "updated more frequently but incurs more overhead " "because of the parallel calls.", type=int, default=default_num_groups) slurm.add_sbatch_options(parser) logging_utils.add_logging_options(parser) args = parser.parse_args() logging_utils.update_logging(args) if args.use_slurm: cmd = ' '.join(sys.argv) slurm.check_sbatch(cmd, args=args) return # read in the regions and apply the filters msg = "Reading and filtering ORFs" logger.info(msg) regions = bed_utils.read_bed(args.regions) # by default, keep everything m_filters = np.array([True] * len(regions)) if len(args.orf_types) > 0: m_orf_type = regions[args.orf_type_field].isin(args.orf_types) m_filters = m_orf_type & m_filters # min length if args.min_length > 0: m_min_length = regions['orf_len'] >= args.min_length m_filters = m_min_length & m_filters # max length if args.max_length > 0: m_max_length = regions['orf_len'] <= args.max_length m_filters = m_max_length & m_filters # min profile profiles = scipy.io.mmread(args.profiles).tocsr() profiles_sums = profiles.sum(axis=1) good_orf_nums = np.where(profiles_sums >= args.min_profile) good_orf_nums = set(good_orf_nums[0]) m_profile = regions['orf_num'].isin(good_orf_nums) m_filters = m_profile & m_filters regions = regions[m_filters] if args.num_orfs > 0: regions = regions.head(args.num_orfs) regions = regions.reset_index(drop=True) msg = "Number of regions after filtering: {}".format(len(regions)) logger.info(msg) logger.debug("Reading models") translated_models = [pickle.load(open(tm, 'rb')) for tm in args.translated_models] untranslated_models = [pickle.load(open(bm, 'rb')) for bm in args.untranslated_models] profiles_data = multiprocessing.RawArray(ctypes.c_double, profiles.data.flat) profiles_indices = multiprocessing.RawArray(ctypes.c_int, profiles.indices) profiles_indptr = multiprocessing.RawArray(ctypes.c_int, profiles.indptr) profiles_shape = multiprocessing.RawArray(ctypes.c_int, profiles.shape) with suppress_stdout_stderr(): bfs_l = parallel.apply_parallel_split( regions, args.num_cpus, get_all_bayes_factors_args, num_groups=args.num_groups, progress_bar=True, backend='multiprocessing' ) bfs = pd.concat(bfs_l) # write the results as a bed12+ file bed_utils.write_bed(bfs, args.out) if __name__ == '__main__': main()
mit
ycaihua/scikit-learn
examples/decomposition/plot_kernel_pca.py
353
2011
""" ========== Kernel PCA ========== This example shows that Kernel PCA is able to find a projection of the data that makes data linearly separable. """ print(__doc__) # Authors: Mathieu Blondel # Andreas Mueller # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets import make_circles np.random.seed(0) X, y = make_circles(n_samples=400, factor=.3, noise=.05) kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True, gamma=10) X_kpca = kpca.fit_transform(X) X_back = kpca.inverse_transform(X_kpca) pca = PCA() X_pca = pca.fit_transform(X) # Plot results plt.figure() plt.subplot(2, 2, 1, aspect='equal') plt.title("Original space") reds = y == 0 blues = y == 1 plt.plot(X[reds, 0], X[reds, 1], "ro") plt.plot(X[blues, 0], X[blues, 1], "bo") plt.xlabel("$x_1$") plt.ylabel("$x_2$") X1, X2 = np.meshgrid(np.linspace(-1.5, 1.5, 50), np.linspace(-1.5, 1.5, 50)) X_grid = np.array([np.ravel(X1), np.ravel(X2)]).T # projection on the first principal component (in the phi space) Z_grid = kpca.transform(X_grid)[:, 0].reshape(X1.shape) plt.contour(X1, X2, Z_grid, colors='grey', linewidths=1, origin='lower') plt.subplot(2, 2, 2, aspect='equal') plt.plot(X_pca[reds, 0], X_pca[reds, 1], "ro") plt.plot(X_pca[blues, 0], X_pca[blues, 1], "bo") plt.title("Projection by PCA") plt.xlabel("1st principal component") plt.ylabel("2nd component") plt.subplot(2, 2, 3, aspect='equal') plt.plot(X_kpca[reds, 0], X_kpca[reds, 1], "ro") plt.plot(X_kpca[blues, 0], X_kpca[blues, 1], "bo") plt.title("Projection by KPCA") plt.xlabel("1st principal component in space induced by $\phi$") plt.ylabel("2nd component") plt.subplot(2, 2, 4, aspect='equal') plt.plot(X_back[reds, 0], X_back[reds, 1], "ro") plt.plot(X_back[blues, 0], X_back[blues, 1], "bo") plt.title("Original space after inverse transform") plt.xlabel("$x_1$") plt.ylabel("$x_2$") plt.subplots_adjust(0.02, 0.10, 0.98, 0.94, 0.04, 0.35) plt.show()
bsd-3-clause
DaRasch/spiceminer
spiceminer/simple/__init__.py
1
2206
#!/usr/bin/env python #-*- coding:utf-8 -*- import numpy import matplotlib.pyplot as plt from . import views from . import animation from .. import kernel from ..time_ import Time from ..bodies import Body import pdb class BodyData(object): def __init__(self, body, args, times): self.body = Body(body) self.plotargs = args self.data = self.body.position(times) class SpiceAnimation(animation.PlaybackController): def __init__(self, path='.', bodies=None, times=None, title=None, **animargs): kernel.load(path, force_reload=True) if times is None: times =numpy.arange(Time.now() - 56 * Time.WEEK, Time.now(), Time.DAY, dtype=float) if title is None: title = 'From {}\nto {}'.format(str(Time.fromposix(times[0])), str(Time.fromposix(times[-1]))) self.bodydata = [BodyData(body, args, times) for body, args in bodies.items()] limit = max(item.data[1:3].max() for item in self.bodydata) * 1.1 frame_count = max(len(item.data[0]) for item in self.bodydata) self._view = views.QuadView(title, limit) self._view.widgets['play'].on_clicked(self._play_cb) self._view.widgets['slider'].on_changed(self._slider_cb) for item in self.bodydata: self._view.add(item.data[1:,:1], item.plotargs) super(self.__class__, self).__init__(self._view.figure, frame_count, **animargs) def _play_cb(self, event): super(self.__class__, self)._pause() def _slider_cb(self, pos): self.current_frame = int(pos * self.frame_count) def _draw_frame(self, frame): self._view.update(Time.fromposix( self.bodydata[0].data[0, frame - 1]), [item.data[1:, :frame] for item in self.bodydata] ) slider = self._view.widgets['slider'] slider.eventson = False slider.set_val(frame / float(self.frame_count)) slider.eventson = True def show(self): try: plt.show(self._view.figure) finally: plt.close(self._view.figure) def close(self): try: plt.close(self._view.figure) except Exception: pass
mit
robbymeals/scikit-learn
examples/ensemble/plot_forest_importances.py
241
1761
""" ========================================= Feature importances with forests of trees ========================================= This examples shows the use of forests of trees to evaluate the importance of features on an artificial classification task. The red bars are the feature importances of the forest, along with their inter-trees variability. As expected, the plot suggests that 3 features are informative, while the remaining are not. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.ensemble import ExtraTreesClassifier # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, n_classes=2, random_state=0, shuffle=False) # Build a forest and compute the feature importances forest = ExtraTreesClassifier(n_estimators=250, random_state=0) forest.fit(X, y) importances = forest.feature_importances_ std = np.std([tree.feature_importances_ for tree in forest.estimators_], axis=0) indices = np.argsort(importances)[::-1] # Print the feature ranking print("Feature ranking:") for f in range(10): print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]])) # Plot the feature importances of the forest plt.figure() plt.title("Feature importances") plt.bar(range(10), importances[indices], color="r", yerr=std[indices], align="center") plt.xticks(range(10), indices) plt.xlim([-1, 10]) plt.show()
bsd-3-clause
zoyahav/incubator-airflow
setup.py
5
9813
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from setuptools import setup, find_packages, Command from setuptools.command.test import test as TestCommand import imp import logging import os import pip import sys logger = logging.getLogger(__name__) # Kept manually in sync with airflow.__version__ version = imp.load_source( 'airflow.version', os.path.join('airflow', 'version.py')).version class Tox(TestCommand): user_options = [('tox-args=', None, "Arguments to pass to tox")] def initialize_options(self): TestCommand.initialize_options(self) self.tox_args = '' def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): #import here, cause outside the eggs aren't loaded import tox errno = tox.cmdline(args=self.tox_args.split()) sys.exit(errno) class CleanCommand(Command): """Custom clean command to tidy up the project root.""" user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): os.system('rm -vrf ./build ./dist ./*.pyc ./*.tgz ./*.egg-info') def git_version(version): """ Return a version to identify the state of the underlying git repo. The version will indicate whether the head of the current git-backed working directory is tied to a release tag or not : it will indicate the former with a 'release:{version}' prefix and the latter with a 'dev0' prefix. Following the prefix will be a sha of the current branch head. Finally, a "dirty" suffix is appended to indicate that uncommitted changes are present. """ repo = None try: import git repo = git.Repo('.git') except ImportError: logger.warning('gitpython not found: Cannot compute the git version.') return '' except Exception as e: logger.warning('Git repo not found: Cannot compute the git version.') return '' if repo: sha = repo.head.commit.hexsha if repo.is_dirty(): return '.dev0+{sha}.dirty'.format(sha=sha) # commit is clean # is it release of `version` ? try: tag = repo.git.describe( match='[0-9]*', exact_match=True, tags=True, dirty=True) assert tag == version, (tag, version) return '.release:{version}+{sha}'.format(version=version, sha=sha) except git.GitCommandError: return '.dev0+{sha}'.format(sha=sha) else: return 'no_git_version' def write_version(filename=os.path.join(*['airflow', 'git_version'])): text = "{}".format(git_version(version)) with open(filename, 'w') as a: a.write(text) def check_previous(): installed_packages = ([package.project_name for package in pip.get_installed_distributions()]) if 'airflow' in installed_packages: print("An earlier non-apache version of Airflow was installed, " "please uninstall it first. Then reinstall.") sys.exit(1) async = [ 'greenlet>=0.4.9', 'eventlet>= 0.9.7', 'gevent>=0.13' ] azure = ['azure-storage>=0.34.0'] celery = [ 'celery>=3.1.17', 'flower>=0.7.3' ] cgroups = [ 'cgroupspy>=0.1.4', ] crypto = ['cryptography>=0.9.3'] dask = [ 'distributed>=1.15.2, <2' ] databricks = ['requests>=2.5.1, <3'] datadog = ['datadog>=0.14.0'] doc = [ 'sphinx>=1.2.3', 'sphinx-argparse>=0.1.13', 'sphinx-rtd-theme>=0.1.6', 'Sphinx-PyPI-upload>=0.2.1' ] docker = ['docker-py>=1.6.0'] druid = ['pydruid>=0.2.1'] emr = ['boto3>=1.0.0'] gcp_api = [ 'httplib2', 'google-api-python-client>=1.5.0, <1.6.0', 'oauth2client>=2.0.2, <2.1.0', 'PyOpenSSL', 'pandas-gbq' ] hdfs = ['snakebite>=2.7.8'] webhdfs = ['hdfs[dataframe,avro,kerberos]>=2.0.4'] jira = ['JIRA>1.0.7'] hive = [ 'hive-thrift-py>=0.0.1', 'pyhive>=0.1.3', 'impyla>=0.13.3', 'unicodecsv>=0.14.1' ] jdbc = ['jaydebeapi>=0.2.0'] mssql = ['pymssql>=2.1.1', 'unicodecsv>=0.14.1'] mysql = ['mysqlclient>=1.3.6'] rabbitmq = ['librabbitmq>=1.6.1'] oracle = ['cx_Oracle>=5.1.2'] postgres = ['psycopg2>=2.7.1'] salesforce = ['simple-salesforce>=0.72'] s3 = [ 'boto>=2.36.0', 'filechunkio>=1.6', ] samba = ['pysmbclient>=0.1.3'] slack = ['slackclient>=1.0.0'] statsd = ['statsd>=3.0.1, <4.0'] vertica = ['vertica-python>=0.5.1'] ldap = ['ldap3>=0.9.9.1'] kerberos = ['pykerberos>=1.1.13', 'requests_kerberos>=0.10.0', 'thrift_sasl>=0.2.0', 'snakebite[kerberos]>=2.7.8', 'kerberos>=1.2.5'] password = [ 'bcrypt>=2.0.0', 'flask-bcrypt>=0.7.1', ] github_enterprise = ['Flask-OAuthlib>=0.9.1'] qds = ['qds-sdk>=1.9.0'] cloudant = ['cloudant>=0.5.9,<2.0'] # major update coming soon, clamp to 0.x redis = ['redis>=2.10.5'] all_dbs = postgres + mysql + hive + mssql + hdfs + vertica + cloudant devel = [ 'click', 'freezegun', 'jira', 'lxml>=3.3.4', 'mock', 'moto', 'nose', 'nose-ignore-docstring==0.2', 'nose-timer', 'parameterized', 'rednose' ] devel_minreq = devel + mysql + doc + password + s3 + cgroups devel_hadoop = devel_minreq + hive + hdfs + webhdfs + kerberos devel_all = devel + all_dbs + doc + samba + s3 + slack + crypto + oracle + docker def do_setup(): check_previous() write_version() setup( name='apache-airflow', description='Programmatically author, schedule and monitor data pipelines', license='Apache License 2.0', version=version, packages=find_packages(), package_data={'': ['airflow/alembic.ini', "airflow/git_version"]}, include_package_data=True, zip_safe=False, scripts=['airflow/bin/airflow'], install_requires=[ 'alembic>=0.8.3, <0.9', 'bleach==2.0.0', 'configparser>=3.5.0, <3.6.0', 'croniter>=0.3.8, <0.4', 'dill>=0.2.2, <0.3', 'flask>=0.11, <0.12', 'flask-admin==1.4.1', 'flask-cache>=0.13.1, <0.14', 'flask-login==0.2.11', 'flask-swagger==0.2.13', 'flask-wtf==0.14', 'funcsigs==1.0.0', 'future>=0.16.0, <0.17', 'gitpython>=2.0.2', 'gunicorn>=19.3.0, <19.4.0', # 19.4.? seemed to have issues 'jinja2>=2.7.3, <2.9.0', 'lxml>=3.6.0, <4.0', 'markdown>=2.5.2, <3.0', 'pandas>=0.17.1, <1.0.0', 'psutil>=4.2.0, <5.0.0', 'pygments>=2.0.1, <3.0', 'python-daemon>=2.1.1, <2.2', 'python-dateutil>=2.3, <3', 'python-nvd3==0.14.2', 'requests>=2.5.1, <3', 'setproctitle>=1.1.8, <2', 'sqlalchemy>=0.9.8', 'tabulate>=0.7.5, <0.8.0', 'thrift>=0.9.2, <0.10', 'zope.deprecation>=4.0, <5.0', ], extras_require={ 'all': devel_all, 'all_dbs': all_dbs, 'async': async, 'azure': azure, 'celery': celery, 'cgroups': cgroups, 'cloudant': cloudant, 'crypto': crypto, 'dask': dask, 'databricks': databricks, 'datadog': datadog, 'devel': devel_minreq, 'devel_hadoop': devel_hadoop, 'doc': doc, 'docker': docker, 'druid': druid, 'emr': emr, 'gcp_api': gcp_api, 'github_enterprise': github_enterprise, 'hdfs': hdfs, 'hive': hive, 'jdbc': jdbc, 'kerberos': kerberos, 'ldap': ldap, 'mssql': mssql, 'mysql': mysql, 'oracle': oracle, 'password': password, 'postgres': postgres, 'qds': qds, 'rabbitmq': rabbitmq, 's3': s3, 'salesforce': salesforce, 'samba': samba, 'slack': slack, 'statsd': statsd, 'vertica': vertica, 'webhdfs': webhdfs, 'jira': jira, 'redis': redis, }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Topic :: System :: Monitoring', ], author='Apache Software Foundation', author_email='[email protected]', url='http://airflow.incubator.apache.org/', download_url=( 'https://dist.apache.org/repos/dist/release/incubator/airflow/' + version), cmdclass={ 'test': Tox, 'extra_clean': CleanCommand, }, ) if __name__ == "__main__": do_setup()
apache-2.0
mwv/scikit-learn
sklearn/decomposition/tests/test_truncated_svd.py
240
6055
"""Test truncated SVD transformer.""" import numpy as np import scipy.sparse as sp from sklearn.decomposition import TruncatedSVD from sklearn.utils import check_random_state from sklearn.utils.testing import (assert_array_almost_equal, assert_equal, assert_raises, assert_greater, assert_array_less) # Make an X that looks somewhat like a small tf-idf matrix. # XXX newer versions of SciPy have scipy.sparse.rand for this. shape = 60, 55 n_samples, n_features = shape rng = check_random_state(42) X = rng.randint(-100, 20, np.product(shape)).reshape(shape) X = sp.csr_matrix(np.maximum(X, 0), dtype=np.float64) X.data[:] = 1 + np.log(X.data) Xdense = X.A def test_algorithms(): svd_a = TruncatedSVD(30, algorithm="arpack") svd_r = TruncatedSVD(30, algorithm="randomized", random_state=42) Xa = svd_a.fit_transform(X)[:, :6] Xr = svd_r.fit_transform(X)[:, :6] assert_array_almost_equal(Xa, Xr) comp_a = np.abs(svd_a.components_) comp_r = np.abs(svd_r.components_) # All elements are equal, but some elements are more equal than others. assert_array_almost_equal(comp_a[:9], comp_r[:9]) assert_array_almost_equal(comp_a[9:], comp_r[9:], decimal=3) def test_attributes(): for n_components in (10, 25, 41): tsvd = TruncatedSVD(n_components).fit(X) assert_equal(tsvd.n_components, n_components) assert_equal(tsvd.components_.shape, (n_components, n_features)) def test_too_many_components(): for algorithm in ["arpack", "randomized"]: for n_components in (n_features, n_features+1): tsvd = TruncatedSVD(n_components=n_components, algorithm=algorithm) assert_raises(ValueError, tsvd.fit, X) def test_sparse_formats(): for fmt in ("array", "csr", "csc", "coo", "lil"): Xfmt = Xdense if fmt == "dense" else getattr(X, "to" + fmt)() tsvd = TruncatedSVD(n_components=11) Xtrans = tsvd.fit_transform(Xfmt) assert_equal(Xtrans.shape, (n_samples, 11)) Xtrans = tsvd.transform(Xfmt) assert_equal(Xtrans.shape, (n_samples, 11)) def test_inverse_transform(): for algo in ("arpack", "randomized"): # We need a lot of components for the reconstruction to be "almost # equal" in all positions. XXX Test means or sums instead? tsvd = TruncatedSVD(n_components=52, random_state=42) Xt = tsvd.fit_transform(X) Xinv = tsvd.inverse_transform(Xt) assert_array_almost_equal(Xinv, Xdense, decimal=1) def test_integers(): Xint = X.astype(np.int64) tsvd = TruncatedSVD(n_components=6) Xtrans = tsvd.fit_transform(Xint) assert_equal(Xtrans.shape, (n_samples, tsvd.n_components)) def test_explained_variance(): # Test sparse data svd_a_10_sp = TruncatedSVD(10, algorithm="arpack") svd_r_10_sp = TruncatedSVD(10, algorithm="randomized", random_state=42) svd_a_20_sp = TruncatedSVD(20, algorithm="arpack") svd_r_20_sp = TruncatedSVD(20, algorithm="randomized", random_state=42) X_trans_a_10_sp = svd_a_10_sp.fit_transform(X) X_trans_r_10_sp = svd_r_10_sp.fit_transform(X) X_trans_a_20_sp = svd_a_20_sp.fit_transform(X) X_trans_r_20_sp = svd_r_20_sp.fit_transform(X) # Test dense data svd_a_10_de = TruncatedSVD(10, algorithm="arpack") svd_r_10_de = TruncatedSVD(10, algorithm="randomized", random_state=42) svd_a_20_de = TruncatedSVD(20, algorithm="arpack") svd_r_20_de = TruncatedSVD(20, algorithm="randomized", random_state=42) X_trans_a_10_de = svd_a_10_de.fit_transform(X.toarray()) X_trans_r_10_de = svd_r_10_de.fit_transform(X.toarray()) X_trans_a_20_de = svd_a_20_de.fit_transform(X.toarray()) X_trans_r_20_de = svd_r_20_de.fit_transform(X.toarray()) # helper arrays for tests below svds = (svd_a_10_sp, svd_r_10_sp, svd_a_20_sp, svd_r_20_sp, svd_a_10_de, svd_r_10_de, svd_a_20_de, svd_r_20_de) svds_trans = ( (svd_a_10_sp, X_trans_a_10_sp), (svd_r_10_sp, X_trans_r_10_sp), (svd_a_20_sp, X_trans_a_20_sp), (svd_r_20_sp, X_trans_r_20_sp), (svd_a_10_de, X_trans_a_10_de), (svd_r_10_de, X_trans_r_10_de), (svd_a_20_de, X_trans_a_20_de), (svd_r_20_de, X_trans_r_20_de), ) svds_10_v_20 = ( (svd_a_10_sp, svd_a_20_sp), (svd_r_10_sp, svd_r_20_sp), (svd_a_10_de, svd_a_20_de), (svd_r_10_de, svd_r_20_de), ) svds_sparse_v_dense = ( (svd_a_10_sp, svd_a_10_de), (svd_a_20_sp, svd_a_20_de), (svd_r_10_sp, svd_r_10_de), (svd_r_20_sp, svd_r_20_de), ) # Assert the 1st component is equal for svd_10, svd_20 in svds_10_v_20: assert_array_almost_equal( svd_10.explained_variance_ratio_, svd_20.explained_variance_ratio_[:10], decimal=5, ) # Assert that 20 components has higher explained variance than 10 for svd_10, svd_20 in svds_10_v_20: assert_greater( svd_20.explained_variance_ratio_.sum(), svd_10.explained_variance_ratio_.sum(), ) # Assert that all the values are greater than 0 for svd in svds: assert_array_less(0.0, svd.explained_variance_ratio_) # Assert that total explained variance is less than 1 for svd in svds: assert_array_less(svd.explained_variance_ratio_.sum(), 1.0) # Compare sparse vs. dense for svd_sparse, svd_dense in svds_sparse_v_dense: assert_array_almost_equal(svd_sparse.explained_variance_ratio_, svd_dense.explained_variance_ratio_) # Test that explained_variance is correct for svd, transformed in svds_trans: total_variance = np.var(X.toarray(), axis=0).sum() variances = np.var(transformed, axis=0) true_explained_variance_ratio = variances / total_variance assert_array_almost_equal( svd.explained_variance_ratio_, true_explained_variance_ratio, )
bsd-3-clause
pratapvardhan/pandas
pandas/tests/dtypes/test_generic.py
3
3780
# -*- coding: utf-8 -*- from warnings import catch_warnings import numpy as np import pandas as pd from pandas.core.dtypes import generic as gt from pandas.util import testing as tm class TestABCClasses(object): tuples = [[1, 2, 2], ['red', 'blue', 'red']] multi_index = pd.MultiIndex.from_arrays(tuples, names=('number', 'color')) datetime_index = pd.to_datetime(['2000/1/1', '2010/1/1']) timedelta_index = pd.to_timedelta(np.arange(5), unit='s') period_index = pd.period_range('2000/1/1', '2010/1/1/', freq='M') categorical = pd.Categorical([1, 2, 3], categories=[2, 3, 1]) categorical_df = pd.DataFrame({"values": [1, 2, 3]}, index=categorical) df = pd.DataFrame({'names': ['a', 'b', 'c']}, index=multi_index) sparse_series = pd.Series([1, 2, 3]).to_sparse() sparse_array = pd.SparseArray(np.random.randn(10)) sparse_frame = pd.SparseDataFrame({'a': [1, -1, None]}) def test_abc_types(self): assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndex) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCInt64Index) assert isinstance(pd.UInt64Index([1, 2, 3]), gt.ABCUInt64Index) assert isinstance(pd.Float64Index([1, 2, 3]), gt.ABCFloat64Index) assert isinstance(self.multi_index, gt.ABCMultiIndex) assert isinstance(self.datetime_index, gt.ABCDatetimeIndex) assert isinstance(self.timedelta_index, gt.ABCTimedeltaIndex) assert isinstance(self.period_index, gt.ABCPeriodIndex) assert isinstance(self.categorical_df.index, gt.ABCCategoricalIndex) assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndexClass) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCIndexClass) assert isinstance(pd.Series([1, 2, 3]), gt.ABCSeries) assert isinstance(self.df, gt.ABCDataFrame) with catch_warnings(record=True): assert isinstance(self.df.to_panel(), gt.ABCPanel) assert isinstance(self.sparse_series, gt.ABCSparseSeries) assert isinstance(self.sparse_array, gt.ABCSparseArray) assert isinstance(self.sparse_frame, gt.ABCSparseDataFrame) assert isinstance(self.categorical, gt.ABCCategorical) assert isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCPeriod) assert isinstance(pd.DateOffset(), gt.ABCDateOffset) assert isinstance(pd.Period('2012', freq='A-DEC').freq, gt.ABCDateOffset) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCDateOffset) assert isinstance(pd.Interval(0, 1.5), gt.ABCInterval) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCInterval) def test_setattr_warnings(): # GH7175 - GOTCHA: You can't use dot notation to add a column... d = {'one': pd.Series([1., 2., 3.], index=['a', 'b', 'c']), 'two': pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])} df = pd.DataFrame(d) with catch_warnings(record=True) as w: # successfully add new column # this should not raise a warning df['three'] = df.two + 1 assert len(w) == 0 assert df.three.sum() > df.two.sum() with catch_warnings(record=True) as w: # successfully modify column in place # this should not raise a warning df.one += 1 assert len(w) == 0 assert df.one.iloc[0] == 2 with catch_warnings(record=True) as w: # successfully add an attribute to a series # this should not raise a warning df.two.not_an_index = [1, 2] assert len(w) == 0 with tm.assert_produces_warning(UserWarning): # warn when setting column to nonexistent name df.four = df.two + 2 assert df.four.sum() > df.two.sum()
bsd-3-clause
pv/scikit-learn
sklearn/utils/__init__.py
132
14185
""" The :mod:`sklearn.utils` module includes various utilities. """ from collections import Sequence import numpy as np from scipy.sparse import issparse import warnings from .murmurhash import murmurhash3_32 from .validation import (as_float_array, assert_all_finite, check_random_state, column_or_1d, check_array, check_consistent_length, check_X_y, indexable, check_symmetric, DataConversionWarning) from .class_weight import compute_class_weight, compute_sample_weight from ..externals.joblib import cpu_count __all__ = ["murmurhash3_32", "as_float_array", "assert_all_finite", "check_array", "check_random_state", "compute_class_weight", "compute_sample_weight", "column_or_1d", "safe_indexing", "check_consistent_length", "check_X_y", 'indexable', "check_symmetric"] class deprecated(object): """Decorator to mark a function or class as deprecated. Issue a warning when the function is called/the class is instantiated and adds a warning to the docstring. The optional extra argument will be appended to the deprecation message and the docstring. Note: to use this with the default value for extra, put in an empty of parentheses: >>> from sklearn.utils import deprecated >>> deprecated() # doctest: +ELLIPSIS <sklearn.utils.deprecated object at ...> >>> @deprecated() ... def some_function(): pass """ # Adapted from http://wiki.python.org/moin/PythonDecoratorLibrary, # but with many changes. def __init__(self, extra=''): """ Parameters ---------- extra: string to be added to the deprecation messages """ self.extra = extra def __call__(self, obj): if isinstance(obj, type): return self._decorate_class(obj) else: return self._decorate_fun(obj) def _decorate_class(self, cls): msg = "Class %s is deprecated" % cls.__name__ if self.extra: msg += "; %s" % self.extra # FIXME: we should probably reset __new__ for full generality init = cls.__init__ def wrapped(*args, **kwargs): warnings.warn(msg, category=DeprecationWarning) return init(*args, **kwargs) cls.__init__ = wrapped wrapped.__name__ = '__init__' wrapped.__doc__ = self._update_doc(init.__doc__) wrapped.deprecated_original = init return cls def _decorate_fun(self, fun): """Decorate function fun""" msg = "Function %s is deprecated" % fun.__name__ if self.extra: msg += "; %s" % self.extra def wrapped(*args, **kwargs): warnings.warn(msg, category=DeprecationWarning) return fun(*args, **kwargs) wrapped.__name__ = fun.__name__ wrapped.__dict__ = fun.__dict__ wrapped.__doc__ = self._update_doc(fun.__doc__) return wrapped def _update_doc(self, olddoc): newdoc = "DEPRECATED" if self.extra: newdoc = "%s: %s" % (newdoc, self.extra) if olddoc: newdoc = "%s\n\n%s" % (newdoc, olddoc) return newdoc def safe_mask(X, mask): """Return a mask which is safe to use on X. Parameters ---------- X : {array-like, sparse matrix} Data on which to apply mask. mask: array Mask to be used on X. Returns ------- mask """ mask = np.asarray(mask) if np.issubdtype(mask.dtype, np.int): return mask if hasattr(X, "toarray"): ind = np.arange(mask.shape[0]) mask = ind[mask] return mask def safe_indexing(X, indices): """Return items or rows from X using indices. Allows simple indexing of lists or arrays. Parameters ---------- X : array-like, sparse-matrix, list. Data from which to sample rows or items. indices : array-like, list Indices according to which X will be subsampled. """ if hasattr(X, "iloc"): # Pandas Dataframes and Series try: return X.iloc[indices] except ValueError: # Cython typed memoryviews internally used in pandas do not support # readonly buffers. warnings.warn("Copying input dataframe for slicing.", DataConversionWarning) return X.copy().iloc[indices] elif hasattr(X, "shape"): if hasattr(X, 'take') and (hasattr(indices, 'dtype') and indices.dtype.kind == 'i'): # This is often substantially faster than X[indices] return X.take(indices, axis=0) else: return X[indices] else: return [X[idx] for idx in indices] def resample(*arrays, **options): """Resample arrays or sparse matrices in a consistent way The default strategy implements one step of the bootstrapping procedure. Parameters ---------- *arrays : sequence of indexable data-structures Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension. replace : boolean, True by default Implements resampling with replacement. If False, this will implement (sliced) random permutations. n_samples : int, None by default Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays. random_state : int or RandomState instance Control the shuffling for reproducible behavior. Returns ------- resampled_arrays : sequence of indexable data-structures Sequence of resampled views of the collections. The original arrays are not impacted. Examples -------- It is possible to mix sparse and dense arrays in the same run:: >>> X = np.array([[1., 0.], [2., 1.], [0., 0.]]) >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import resample >>> X, X_sparse, y = resample(X, X_sparse, y, random_state=0) >>> X array([[ 1., 0.], [ 2., 1.], [ 1., 0.]]) >>> X_sparse # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE <3x2 sparse matrix of type '<... 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[ 1., 0.], [ 2., 1.], [ 1., 0.]]) >>> y array([0, 1, 0]) >>> resample(y, n_samples=2, random_state=0) array([0, 1]) See also -------- :func:`sklearn.utils.shuffle` """ random_state = check_random_state(options.pop('random_state', None)) replace = options.pop('replace', True) max_n_samples = options.pop('n_samples', None) if options: raise ValueError("Unexpected kw arguments: %r" % options.keys()) if len(arrays) == 0: return None first = arrays[0] n_samples = first.shape[0] if hasattr(first, 'shape') else len(first) if max_n_samples is None: max_n_samples = n_samples if max_n_samples > n_samples: raise ValueError("Cannot sample %d out of arrays with dim %d" % ( max_n_samples, n_samples)) check_consistent_length(*arrays) if replace: indices = random_state.randint(0, n_samples, size=(max_n_samples,)) else: indices = np.arange(n_samples) random_state.shuffle(indices) indices = indices[:max_n_samples] # convert sparse matrices to CSR for row-based indexing arrays = [a.tocsr() if issparse(a) else a for a in arrays] resampled_arrays = [safe_indexing(a, indices) for a in arrays] if len(resampled_arrays) == 1: # syntactic sugar for the unit argument case return resampled_arrays[0] else: return resampled_arrays def shuffle(*arrays, **options): """Shuffle arrays or sparse matrices in a consistent way This is a convenience alias to ``resample(*arrays, replace=False)`` to do random permutations of the collections. Parameters ---------- *arrays : sequence of indexable data-structures Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension. random_state : int or RandomState instance Control the shuffling for reproducible behavior. n_samples : int, None by default Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays. Returns ------- shuffled_arrays : sequence of indexable data-structures Sequence of shuffled views of the collections. The original arrays are not impacted. Examples -------- It is possible to mix sparse and dense arrays in the same run:: >>> X = np.array([[1., 0.], [2., 1.], [0., 0.]]) >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import shuffle >>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0) >>> X array([[ 0., 0.], [ 2., 1.], [ 1., 0.]]) >>> X_sparse # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE <3x2 sparse matrix of type '<... 'numpy.float64'>' with 3 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[ 0., 0.], [ 2., 1.], [ 1., 0.]]) >>> y array([2, 1, 0]) >>> shuffle(y, n_samples=2, random_state=0) array([0, 1]) See also -------- :func:`sklearn.utils.resample` """ options['replace'] = False return resample(*arrays, **options) def safe_sqr(X, copy=True): """Element wise squaring of array-likes and sparse matrices. Parameters ---------- X : array like, matrix, sparse matrix copy : boolean, optional, default True Whether to create a copy of X and operate on it or to perform inplace computation (default behaviour). Returns ------- X ** 2 : element wise square """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) if issparse(X): if copy: X = X.copy() X.data **= 2 else: if copy: X = X ** 2 else: X **= 2 return X def gen_batches(n, batch_size): """Generator to create slices containing batch_size elements, from 0 to n. The last slice may contain less than batch_size elements, when batch_size does not divide n. Examples -------- >>> from sklearn.utils import gen_batches >>> list(gen_batches(7, 3)) [slice(0, 3, None), slice(3, 6, None), slice(6, 7, None)] >>> list(gen_batches(6, 3)) [slice(0, 3, None), slice(3, 6, None)] >>> list(gen_batches(2, 3)) [slice(0, 2, None)] """ start = 0 for _ in range(int(n // batch_size)): end = start + batch_size yield slice(start, end) start = end if start < n: yield slice(start, n) def gen_even_slices(n, n_packs, n_samples=None): """Generator to create n_packs slices going up to n. Pass n_samples when the slices are to be used for sparse matrix indexing; slicing off-the-end raises an exception, while it works for NumPy arrays. Examples -------- >>> from sklearn.utils import gen_even_slices >>> list(gen_even_slices(10, 1)) [slice(0, 10, None)] >>> list(gen_even_slices(10, 10)) #doctest: +ELLIPSIS [slice(0, 1, None), slice(1, 2, None), ..., slice(9, 10, None)] >>> list(gen_even_slices(10, 5)) #doctest: +ELLIPSIS [slice(0, 2, None), slice(2, 4, None), ..., slice(8, 10, None)] >>> list(gen_even_slices(10, 3)) [slice(0, 4, None), slice(4, 7, None), slice(7, 10, None)] """ start = 0 if n_packs < 1: raise ValueError("gen_even_slices got n_packs=%s, must be >=1" % n_packs) for pack_num in range(n_packs): this_n = n // n_packs if pack_num < n % n_packs: this_n += 1 if this_n > 0: end = start + this_n if n_samples is not None: end = min(n_samples, end) yield slice(start, end, None) start = end def _get_n_jobs(n_jobs): """Get number of jobs for the computation. This function reimplements the logic of joblib to determine the actual number of jobs depending on the cpu count. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. Parameters ---------- n_jobs : int Number of jobs stated in joblib convention. Returns ------- n_jobs : int The actual number of jobs as positive integer. Examples -------- >>> from sklearn.utils import _get_n_jobs >>> _get_n_jobs(4) 4 >>> jobs = _get_n_jobs(-2) >>> assert jobs == max(cpu_count() - 1, 1) >>> _get_n_jobs(0) Traceback (most recent call last): ... ValueError: Parameter n_jobs == 0 has no meaning. """ if n_jobs < 0: return max(cpu_count() + 1 + n_jobs, 1) elif n_jobs == 0: raise ValueError('Parameter n_jobs == 0 has no meaning.') else: return n_jobs def tosequence(x): """Cast iterable x to a Sequence, avoiding a copy if possible.""" if isinstance(x, np.ndarray): return np.asarray(x) elif isinstance(x, Sequence): return x else: return list(x) class ConvergenceWarning(UserWarning): """Custom warning to capture convergence problems""" class DataDimensionalityWarning(UserWarning): """Custom warning to notify potential issues with data dimensionality"""
bsd-3-clause