repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
kmike/scikit-learn
examples/linear_model/plot_logistic_l1_l2_sparsity.py
4
2586
""" ============================================== L1 Penalty and Sparsity in Logistic Regression ============================================== Comparison of the sparsity (percentage of zero coefficients) of solutions when L1 and L2 penalty are used for different values of C. We can see that large values of C give more freedom to the model. Conversely, smaller values of C constrain the model more. In the L1 penalty case, this leads to sparser solutions. We classify 8x8 images of digits into two classes: 0-4 against 5-9. The visualization shows coefficients of the models for varying C. """ print(__doc__) # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Andreas Mueller <[email protected]> # License: BSD Style. import numpy as np import pylab as pl from sklearn.linear_model import LogisticRegression from sklearn import datasets from sklearn.preprocessing import StandardScaler digits = datasets.load_digits() X, y = digits.data, digits.target X = StandardScaler().fit_transform(X) # classify small against large digits y = (y > 4).astype(np.int) # Set regularization parameter for i, C in enumerate(10. ** np.arange(1, 4)): # turn down tolerance for short training time clf_l1_LR = LogisticRegression(C=C, penalty='l1', tol=0.01) clf_l2_LR = LogisticRegression(C=C, penalty='l2', tol=0.01) clf_l1_LR.fit(X, y) clf_l2_LR.fit(X, y) coef_l1_LR = clf_l1_LR.coef_.ravel() coef_l2_LR = clf_l2_LR.coef_.ravel() # coef_l1_LR contains zeros due to the # L1 sparsity inducing norm sparsity_l1_LR = np.mean(coef_l1_LR == 0) * 100 sparsity_l2_LR = np.mean(coef_l2_LR == 0) * 100 print("C=%d" % C) print("Sparsity with L1 penalty: %.2f%%" % sparsity_l1_LR) print("score with L1 penalty: %.4f" % clf_l1_LR.score(X, y)) print("Sparsity with L2 penalty: %.2f%%" % sparsity_l2_LR) print("score with L2 penalty: %.4f" % clf_l2_LR.score(X, y)) l1_plot = pl.subplot(3, 2, 2 * i + 1) l2_plot = pl.subplot(3, 2, 2 * (i + 1)) if i == 0: l1_plot.set_title("L1 penalty") l2_plot.set_title("L2 penalty") l1_plot.imshow(np.abs(coef_l1_LR.reshape(8, 8)), interpolation='nearest', cmap='binary', vmax=1, vmin=0) l2_plot.imshow(np.abs(coef_l2_LR.reshape(8, 8)), interpolation='nearest', cmap='binary', vmax=1, vmin=0) pl.text(-8, 3, "C = %d" % C) l1_plot.set_xticks(()) l1_plot.set_yticks(()) l2_plot.set_xticks(()) l2_plot.set_yticks(()) pl.show()
bsd-3-clause
rrohan/scikit-learn
sklearn/ensemble/weight_boosting.py
71
40664
"""Weight Boosting This module contains weight boosting estimators for both classification and regression. The module structure is the following: - The ``BaseWeightBoosting`` base class implements a common ``fit`` method for all the estimators in the module. Regression and classification only differ from each other in the loss function that is optimized. - ``AdaBoostClassifier`` implements adaptive boosting (AdaBoost-SAMME) for classification problems. - ``AdaBoostRegressor`` implements adaptive boosting (AdaBoost.R2) for regression problems. """ # Authors: Noel Dawe <[email protected]> # Gilles Louppe <[email protected]> # Hamzeh Alsalhi <[email protected]> # Arnaud Joly <[email protected]> # # Licence: BSD 3 clause from abc import ABCMeta, abstractmethod import numpy as np from numpy.core.umath_tests import inner1d from .base import BaseEnsemble from ..base import ClassifierMixin, RegressorMixin from ..externals import six from ..externals.six.moves import zip from ..externals.six.moves import xrange as range from .forest import BaseForest from ..tree import DecisionTreeClassifier, DecisionTreeRegressor from ..tree.tree import BaseDecisionTree from ..tree._tree import DTYPE from ..utils import check_array, check_X_y, check_random_state from ..metrics import accuracy_score, r2_score from sklearn.utils.validation import has_fit_parameter, check_is_fitted __all__ = [ 'AdaBoostClassifier', 'AdaBoostRegressor', ] class BaseWeightBoosting(six.with_metaclass(ABCMeta, BaseEnsemble)): """Base class for AdaBoost estimators. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator=None, n_estimators=50, estimator_params=tuple(), learning_rate=1., random_state=None): super(BaseWeightBoosting, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, estimator_params=estimator_params) self.learning_rate = learning_rate self.random_state = random_state def fit(self, X, y, sample_weight=None): """Build a boosted classifier/regressor from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. The dtype is forced to DTYPE from tree._tree if the base classifier of this ensemble weighted boosting classifier is a tree or forest. y : array-like of shape = [n_samples] The target values (class labels in classification, real numbers in regression). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to 1 / n_samples. Returns ------- self : object Returns self. """ # Check parameters if self.learning_rate <= 0: raise ValueError("learning_rate must be greater than zero") if (self.base_estimator is None or isinstance(self.base_estimator, (BaseDecisionTree, BaseForest))): dtype = DTYPE accept_sparse = 'csc' else: dtype = None accept_sparse = ['csr', 'csc'] X, y = check_X_y(X, y, accept_sparse=accept_sparse, dtype=dtype) if sample_weight is None: # Initialize weights to 1 / n_samples sample_weight = np.empty(X.shape[0], dtype=np.float) sample_weight[:] = 1. / X.shape[0] else: # Normalize existing weights sample_weight = sample_weight / sample_weight.sum(dtype=np.float64) # Check that the sample weights sum is positive if sample_weight.sum() <= 0: raise ValueError( "Attempting to fit with a non-positive " "weighted number of samples.") # Check parameters self._validate_estimator() # Clear any previous fit results self.estimators_ = [] self.estimator_weights_ = np.zeros(self.n_estimators, dtype=np.float) self.estimator_errors_ = np.ones(self.n_estimators, dtype=np.float) for iboost in range(self.n_estimators): # Boosting step sample_weight, estimator_weight, estimator_error = self._boost( iboost, X, y, sample_weight) # Early termination if sample_weight is None: break self.estimator_weights_[iboost] = estimator_weight self.estimator_errors_[iboost] = estimator_error # Stop if error is zero if estimator_error == 0: break sample_weight_sum = np.sum(sample_weight) # Stop if the sum of sample weights has become non-positive if sample_weight_sum <= 0: break if iboost < self.n_estimators - 1: # Normalize sample_weight /= sample_weight_sum return self @abstractmethod def _boost(self, iboost, X, y, sample_weight): """Implement a single boost. Warning: This method needs to be overriden by subclasses. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples] The current sample weights. Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. error : float The classification error for the current boost. If None then boosting has terminated early. """ pass def staged_score(self, X, y, sample_weight=None): """Return staged scores for X, y. This generator method yields the ensemble score after each iteration of boosting and therefore allows monitoring, such as to determine the score on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like, shape = [n_samples] Labels for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. Returns ------- z : float """ for y_pred in self.staged_predict(X): if isinstance(self, ClassifierMixin): yield accuracy_score(y, y_pred, sample_weight=sample_weight) else: yield r2_score(y, y_pred, sample_weight=sample_weight) @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ if self.estimators_ is None or len(self.estimators_) == 0: raise ValueError("Estimator not fitted, " "call `fit` before `feature_importances_`.") try: norm = self.estimator_weights_.sum() return (sum(weight * clf.feature_importances_ for weight, clf in zip(self.estimator_weights_, self.estimators_)) / norm) except AttributeError: raise AttributeError( "Unable to compute feature importances " "since base_estimator does not have a " "feature_importances_ attribute") def _validate_X_predict(self, X): """Ensure that X is in the proper format""" if (self.base_estimator is None or isinstance(self.base_estimator, (BaseDecisionTree, BaseForest))): X = check_array(X, accept_sparse='csr', dtype=DTYPE) else: X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) return X def _samme_proba(estimator, n_classes, X): """Calculate algorithm 4, step 2, equation c) of Zhu et al [1]. References ---------- .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ proba = estimator.predict_proba(X) # Displace zero probabilities so the log is defined. # Also fix negative elements which may occur with # negative sample weights. proba[proba < np.finfo(proba.dtype).eps] = np.finfo(proba.dtype).eps log_proba = np.log(proba) return (n_classes - 1) * (log_proba - (1. / n_classes) * log_proba.sum(axis=1)[:, np.newaxis]) class AdaBoostClassifier(BaseWeightBoosting, ClassifierMixin): """An AdaBoost classifier. An AdaBoost [1] classifier is a meta-estimator that begins by fitting a classifier on the original dataset and then fits additional copies of the classifier on the same dataset but where the weights of incorrectly classified instances are adjusted such that subsequent classifiers focus more on difficult cases. This class implements the algorithm known as AdaBoost-SAMME [2]. Read more in the :ref:`User Guide <adaboost>`. Parameters ---------- base_estimator : object, optional (default=DecisionTreeClassifier) The base estimator from which the boosted ensemble is built. Support for sample weighting is required, as well as proper `classes_` and `n_classes_` attributes. n_estimators : integer, optional (default=50) The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early. learning_rate : float, optional (default=1.) Learning rate shrinks the contribution of each classifier by ``learning_rate``. There is a trade-off between ``learning_rate`` and ``n_estimators``. algorithm : {'SAMME', 'SAMME.R'}, optional (default='SAMME.R') If 'SAMME.R' then use the SAMME.R real boosting algorithm. ``base_estimator`` must support calculation of class probabilities. If 'SAMME' then use the SAMME discrete boosting algorithm. The SAMME.R algorithm typically converges faster than SAMME, achieving a lower test error with fewer boosting iterations. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- estimators_ : list of classifiers The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] The classes labels. n_classes_ : int The number of classes. estimator_weights_ : array of floats Weights for each estimator in the boosted ensemble. estimator_errors_ : array of floats Classification error for each estimator in the boosted ensemble. feature_importances_ : array of shape = [n_features] The feature importances if supported by the ``base_estimator``. See also -------- AdaBoostRegressor, GradientBoostingClassifier, DecisionTreeClassifier References ---------- .. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting", 1995. .. [2] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ def __init__(self, base_estimator=None, n_estimators=50, learning_rate=1., algorithm='SAMME.R', random_state=None): super(AdaBoostClassifier, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, learning_rate=learning_rate, random_state=random_state) self.algorithm = algorithm def fit(self, X, y, sample_weight=None): """Build a boosted classifier from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to ``1 / n_samples``. Returns ------- self : object Returns self. """ # Check that algorithm is supported if self.algorithm not in ('SAMME', 'SAMME.R'): raise ValueError("algorithm %s is not supported" % self.algorithm) # Fit return super(AdaBoostClassifier, self).fit(X, y, sample_weight) def _validate_estimator(self): """Check the estimator and set the base_estimator_ attribute.""" super(AdaBoostClassifier, self)._validate_estimator( default=DecisionTreeClassifier(max_depth=1)) # SAMME-R requires predict_proba-enabled base estimators if self.algorithm == 'SAMME.R': if not hasattr(self.base_estimator_, 'predict_proba'): raise TypeError( "AdaBoostClassifier with algorithm='SAMME.R' requires " "that the weak learner supports the calculation of class " "probabilities with a predict_proba method.\n" "Please change the base estimator or set " "algorithm='SAMME' instead.") if not has_fit_parameter(self.base_estimator_, "sample_weight"): raise ValueError("%s doesn't support sample_weight." % self.base_estimator_.__class__.__name__) def _boost(self, iboost, X, y, sample_weight): """Implement a single boost. Perform a single boost according to the real multi-class SAMME.R algorithm or to the discrete SAMME algorithm and return the updated sample weights. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples] The current sample weights. Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. estimator_error : float The classification error for the current boost. If None then boosting has terminated early. """ if self.algorithm == 'SAMME.R': return self._boost_real(iboost, X, y, sample_weight) else: # elif self.algorithm == "SAMME": return self._boost_discrete(iboost, X, y, sample_weight) def _boost_real(self, iboost, X, y, sample_weight): """Implement a single boost using the SAMME.R real algorithm.""" estimator = self._make_estimator() try: estimator.set_params(random_state=self.random_state) except ValueError: pass estimator.fit(X, y, sample_weight=sample_weight) y_predict_proba = estimator.predict_proba(X) if iboost == 0: self.classes_ = getattr(estimator, 'classes_', None) self.n_classes_ = len(self.classes_) y_predict = self.classes_.take(np.argmax(y_predict_proba, axis=1), axis=0) # Instances incorrectly classified incorrect = y_predict != y # Error fraction estimator_error = np.mean( np.average(incorrect, weights=sample_weight, axis=0)) # Stop if classification is perfect if estimator_error <= 0: return sample_weight, 1., 0. # Construct y coding as described in Zhu et al [2]: # # y_k = 1 if c == k else -1 / (K - 1) # # where K == n_classes_ and c, k in [0, K) are indices along the second # axis of the y coding with c being the index corresponding to the true # class label. n_classes = self.n_classes_ classes = self.classes_ y_codes = np.array([-1. / (n_classes - 1), 1.]) y_coding = y_codes.take(classes == y[:, np.newaxis]) # Displace zero probabilities so the log is defined. # Also fix negative elements which may occur with # negative sample weights. proba = y_predict_proba # alias for readability proba[proba < np.finfo(proba.dtype).eps] = np.finfo(proba.dtype).eps # Boost weight using multi-class AdaBoost SAMME.R alg estimator_weight = (-1. * self.learning_rate * (((n_classes - 1.) / n_classes) * inner1d(y_coding, np.log(y_predict_proba)))) # Only boost the weights if it will fit again if not iboost == self.n_estimators - 1: # Only boost positive weights sample_weight *= np.exp(estimator_weight * ((sample_weight > 0) | (estimator_weight < 0))) return sample_weight, 1., estimator_error def _boost_discrete(self, iboost, X, y, sample_weight): """Implement a single boost using the SAMME discrete algorithm.""" estimator = self._make_estimator() try: estimator.set_params(random_state=self.random_state) except ValueError: pass estimator.fit(X, y, sample_weight=sample_weight) y_predict = estimator.predict(X) if iboost == 0: self.classes_ = getattr(estimator, 'classes_', None) self.n_classes_ = len(self.classes_) # Instances incorrectly classified incorrect = y_predict != y # Error fraction estimator_error = np.mean( np.average(incorrect, weights=sample_weight, axis=0)) # Stop if classification is perfect if estimator_error <= 0: return sample_weight, 1., 0. n_classes = self.n_classes_ # Stop if the error is at least as bad as random guessing if estimator_error >= 1. - (1. / n_classes): self.estimators_.pop(-1) if len(self.estimators_) == 0: raise ValueError('BaseClassifier in AdaBoostClassifier ' 'ensemble is worse than random, ensemble ' 'can not be fit.') return None, None, None # Boost weight using multi-class AdaBoost SAMME alg estimator_weight = self.learning_rate * ( np.log((1. - estimator_error) / estimator_error) + np.log(n_classes - 1.)) # Only boost the weights if I will fit again if not iboost == self.n_estimators - 1: # Only boost positive weights sample_weight *= np.exp(estimator_weight * incorrect * ((sample_weight > 0) | (estimator_weight < 0))) return sample_weight, estimator_weight, estimator_error def predict(self, X): """Predict classes for X. The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : array of shape = [n_samples] The predicted classes. """ pred = self.decision_function(X) if self.n_classes_ == 2: return self.classes_.take(pred > 0, axis=0) return self.classes_.take(np.argmax(pred, axis=1), axis=0) def staged_predict(self, X): """Return staged predictions for X. The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in the ensemble. This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : generator of array, shape = [n_samples] The predicted classes. """ n_classes = self.n_classes_ classes = self.classes_ if n_classes == 2: for pred in self.staged_decision_function(X): yield np.array(classes.take(pred > 0, axis=0)) else: for pred in self.staged_decision_function(X): yield np.array(classes.take( np.argmax(pred, axis=1), axis=0)) def decision_function(self, X): """Compute the decision function of ``X``. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- score : array, shape = [n_samples, k] The decision function of the input samples. The order of outputs is the same of that of the `classes_` attribute. Binary classification is a special cases with ``k == 1``, otherwise ``k==n_classes``. For binary classification, values closer to -1 or 1 mean more like the first or second class in ``classes_``, respectively. """ check_is_fitted(self, "n_classes_") X = self._validate_X_predict(X) n_classes = self.n_classes_ classes = self.classes_[:, np.newaxis] pred = None if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R pred = sum(_samme_proba(estimator, n_classes, X) for estimator in self.estimators_) else: # self.algorithm == "SAMME" pred = sum((estimator.predict(X) == classes).T * w for estimator, w in zip(self.estimators_, self.estimator_weights_)) pred /= self.estimator_weights_.sum() if n_classes == 2: pred[:, 0] *= -1 return pred.sum(axis=1) return pred def staged_decision_function(self, X): """Compute decision function of ``X`` for each boosting iteration. This method allows monitoring (i.e. determine error on testing set) after each boosting iteration. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- score : generator of array, shape = [n_samples, k] The decision function of the input samples. The order of outputs is the same of that of the `classes_` attribute. Binary classification is a special cases with ``k == 1``, otherwise ``k==n_classes``. For binary classification, values closer to -1 or 1 mean more like the first or second class in ``classes_``, respectively. """ check_is_fitted(self, "n_classes_") X = self._validate_X_predict(X) n_classes = self.n_classes_ classes = self.classes_[:, np.newaxis] pred = None norm = 0. for weight, estimator in zip(self.estimator_weights_, self.estimators_): norm += weight if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R current_pred = _samme_proba(estimator, n_classes, X) else: # elif self.algorithm == "SAMME": current_pred = estimator.predict(X) current_pred = (current_pred == classes).T * weight if pred is None: pred = current_pred else: pred += current_pred if n_classes == 2: tmp_pred = np.copy(pred) tmp_pred[:, 0] *= -1 yield (tmp_pred / norm).sum(axis=1) else: yield pred / norm def predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the weighted mean predicted class probabilities of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : array of shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ check_is_fitted(self, "n_classes_") n_classes = self.n_classes_ X = self._validate_X_predict(X) if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R proba = sum(_samme_proba(estimator, n_classes, X) for estimator in self.estimators_) else: # self.algorithm == "SAMME" proba = sum(estimator.predict_proba(X) * w for estimator, w in zip(self.estimators_, self.estimator_weights_)) proba /= self.estimator_weights_.sum() proba = np.exp((1. / (n_classes - 1)) * proba) normalizer = proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba /= normalizer return proba def staged_predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the weighted mean predicted class probabilities of the classifiers in the ensemble. This generator method yields the ensemble predicted class probabilities after each iteration of boosting and therefore allows monitoring, such as to determine the predicted class probabilities on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : generator of array, shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ X = self._validate_X_predict(X) n_classes = self.n_classes_ proba = None norm = 0. for weight, estimator in zip(self.estimator_weights_, self.estimators_): norm += weight if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R current_proba = _samme_proba(estimator, n_classes, X) else: # elif self.algorithm == "SAMME": current_proba = estimator.predict_proba(X) * weight if proba is None: proba = current_proba else: proba += current_proba real_proba = np.exp((1. / (n_classes - 1)) * (proba / norm)) normalizer = real_proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 real_proba /= normalizer yield real_proba def predict_log_proba(self, X): """Predict class log-probabilities for X. The predicted class log-probabilities of an input sample is computed as the weighted mean predicted class log-probabilities of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : array of shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ return np.log(self.predict_proba(X)) class AdaBoostRegressor(BaseWeightBoosting, RegressorMixin): """An AdaBoost regressor. An AdaBoost [1] regressor is a meta-estimator that begins by fitting a regressor on the original dataset and then fits additional copies of the regressor on the same dataset but where the weights of instances are adjusted according to the error of the current prediction. As such, subsequent regressors focus more on difficult cases. This class implements the algorithm known as AdaBoost.R2 [2]. Read more in the :ref:`User Guide <adaboost>`. Parameters ---------- base_estimator : object, optional (default=DecisionTreeRegressor) The base estimator from which the boosted ensemble is built. Support for sample weighting is required. n_estimators : integer, optional (default=50) The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early. learning_rate : float, optional (default=1.) Learning rate shrinks the contribution of each regressor by ``learning_rate``. There is a trade-off between ``learning_rate`` and ``n_estimators``. loss : {'linear', 'square', 'exponential'}, optional (default='linear') The loss function to use when updating the weights after each boosting iteration. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- estimators_ : list of classifiers The collection of fitted sub-estimators. estimator_weights_ : array of floats Weights for each estimator in the boosted ensemble. estimator_errors_ : array of floats Regression error for each estimator in the boosted ensemble. feature_importances_ : array of shape = [n_features] The feature importances if supported by the ``base_estimator``. See also -------- AdaBoostClassifier, GradientBoostingRegressor, DecisionTreeRegressor References ---------- .. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting", 1995. .. [2] H. Drucker, "Improving Regressors using Boosting Techniques", 1997. """ def __init__(self, base_estimator=None, n_estimators=50, learning_rate=1., loss='linear', random_state=None): super(AdaBoostRegressor, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, learning_rate=learning_rate, random_state=random_state) self.loss = loss self.random_state = random_state def fit(self, X, y, sample_weight=None): """Build a boosted regressor from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (real numbers). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to 1 / n_samples. Returns ------- self : object Returns self. """ # Check loss if self.loss not in ('linear', 'square', 'exponential'): raise ValueError( "loss must be 'linear', 'square', or 'exponential'") # Fit return super(AdaBoostRegressor, self).fit(X, y, sample_weight) def _validate_estimator(self): """Check the estimator and set the base_estimator_ attribute.""" super(AdaBoostRegressor, self)._validate_estimator( default=DecisionTreeRegressor(max_depth=3)) def _boost(self, iboost, X, y, sample_weight): """Implement a single boost for regression Perform a single boost according to the AdaBoost.R2 algorithm and return the updated sample weights. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels in classification, real numbers in regression). sample_weight : array-like of shape = [n_samples] The current sample weights. Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. estimator_error : float The regression error for the current boost. If None then boosting has terminated early. """ estimator = self._make_estimator() try: estimator.set_params(random_state=self.random_state) except ValueError: pass generator = check_random_state(self.random_state) # Weighted sampling of the training set with replacement # For NumPy >= 1.7.0 use np.random.choice cdf = sample_weight.cumsum() cdf /= cdf[-1] uniform_samples = generator.random_sample(X.shape[0]) bootstrap_idx = cdf.searchsorted(uniform_samples, side='right') # searchsorted returns a scalar bootstrap_idx = np.array(bootstrap_idx, copy=False) # Fit on the bootstrapped sample and obtain a prediction # for all samples in the training set estimator.fit(X[bootstrap_idx], y[bootstrap_idx]) y_predict = estimator.predict(X) error_vect = np.abs(y_predict - y) error_max = error_vect.max() if error_max != 0.: error_vect /= error_max if self.loss == 'square': error_vect **= 2 elif self.loss == 'exponential': error_vect = 1. - np.exp(- error_vect) # Calculate the average loss estimator_error = (sample_weight * error_vect).sum() if estimator_error <= 0: # Stop if fit is perfect return sample_weight, 1., 0. elif estimator_error >= 0.5: # Discard current estimator only if it isn't the only one if len(self.estimators_) > 1: self.estimators_.pop(-1) return None, None, None beta = estimator_error / (1. - estimator_error) # Boost weight using AdaBoost.R2 alg estimator_weight = self.learning_rate * np.log(1. / beta) if not iboost == self.n_estimators - 1: sample_weight *= np.power( beta, (1. - error_vect) * self.learning_rate) return sample_weight, estimator_weight, estimator_error def _get_median_predict(self, X, limit): # Evaluate predictions of all estimators predictions = np.array([ est.predict(X) for est in self.estimators_[:limit]]).T # Sort the predictions sorted_idx = np.argsort(predictions, axis=1) # Find index of median prediction for each sample weight_cdf = self.estimator_weights_[sorted_idx].cumsum(axis=1) median_or_above = weight_cdf >= 0.5 * weight_cdf[:, -1][:, np.newaxis] median_idx = median_or_above.argmax(axis=1) median_estimators = sorted_idx[np.arange(X.shape[0]), median_idx] # Return median predictions return predictions[np.arange(X.shape[0]), median_estimators] def predict(self, X): """Predict regression value for X. The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : array of shape = [n_samples] The predicted regression values. """ check_is_fitted(self, "estimator_weights_") X = self._validate_X_predict(X) return self._get_median_predict(X, len(self.estimators_)) def staged_predict(self, X): """Return staged predictions for X. The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble. This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : generator of array, shape = [n_samples] The predicted regression values. """ check_is_fitted(self, "estimator_weights_") X = self._validate_X_predict(X) for i, _ in enumerate(self.estimators_, 1): yield self._get_median_predict(X, limit=i)
bsd-3-clause
vityurkiv/Ox
test/tests/time_integrators/scalar/run.py
5
4015
#!/usr/bin/env python import subprocess import sys import csv import matplotlib.pyplot as plt import numpy as np # Use fonts that match LaTeX from matplotlib import rcParams rcParams['font.family'] = 'serif' rcParams['font.size'] = 17 rcParams['font.serif'] = ['Computer Modern Roman'] rcParams['text.usetex'] = True # Small font size for the legend from matplotlib.font_manager import FontProperties fontP = FontProperties() fontP.set_size('x-small') def get_last_row(csv_filename): ''' Function which returns just the last row of a CSV file. We have to read every line of the file, there was no stackoverflow example of reading just the last line. http://stackoverflow.com/questions/20296955/reading-last-row-from-csv-file-python-error ''' with open(csv_filename, 'r') as f: lastrow = None for row in csv.reader(f): if (row != []): # skip blank lines at end of file. lastrow = row return lastrow def run_moose(dt, time_integrator): ''' Function which actually runs MOOSE. ''' implicit_flag = 'true' explicit_methods = ['ExplicitEuler', 'ExplicitMidpoint', 'Heun', 'Ralston'] # Set implicit_flag based on TimeIntegrator name if (time_integrator in explicit_methods): implicit_flag = 'false' command_line_args = ['../../../moose_test-opt', '-i', 'scalar.i', 'Executioner/dt={}'.format(dt), 'Executioner/TimeIntegrator/type={}'.format(time_integrator), 'GlobalParams/implicit={}'.format(implicit_flag)] try: child = subprocess.Popen(command_line_args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) # communicate() waits for the process to terminate, so there's no # need to wait() for it. It also sets the returncode attribute on # child. (stdoutdata, stderrdata) = child.communicate() if (child.returncode != 0): print('Running MOOSE failed: program output is below:') print(stdoutdata) raise except: print('Error executing moose_test') sys.exit(1) # Parse the last line of the output file to get the error at the final time. last_row = get_last_row('scalar_out.csv') return float(last_row[1]) # # Main program # fig = plt.figure() ax1 = fig.add_subplot(111) # Lists of timesteps and TimeIntegrators to plot. time_integrators = ['ImplicitEuler', 'ImplicitMidpoint', 'LStableDirk2', 'BDF2', 'CrankNicolson', 'LStableDirk3', 'LStableDirk4', 'AStableDirk4', 'ExplicitEuler', 'ExplicitMidpoint', 'Heun', 'Ralston'] dts = [.125, .0625, .03125, .015625] # Plot colors colors = ['maroon', 'blue', 'green', 'black', 'burlywood', 'olivedrab', 'midnightblue', 'tomato', 'darkmagenta', 'chocolate', 'lightslategray', 'skyblue'] # Plot line markers markers = ['v', 'o', 'x', '^', 'H', 'h', '+', 'D', '*', '4', 'd', '8'] # Plot line styles linestyles = [':', '-', '-.', '--', ':', '-.', '--', ':', '--', '-', '-.', '-'] for i in xrange(len(time_integrators)): time_integrator = time_integrators[i] # Place to store the results for this TimeIntegrator results = [] # Call MOOSE to compute the results for dt in dts: results.append(run_moose(dt, time_integrator)) # Make plot xdata = np.log10(np.reciprocal(dts)) ydata = np.log10(results) # Compute linear fit of last three points. start_fit = len(xdata) - 3 end_fit = len(xdata) fit = np.polyfit(xdata[start_fit:end_fit], ydata[start_fit:end_fit], 1) # Make the plot -- unpack the user's additional plotting arguments # from kwargs by prepending with **. ax1.plot(xdata, ydata, label=time_integrator + ", $" + "{:.2f}".format(fit[0]) + "$", color=colors[i], marker=markers[i], linestyle=linestyles[i]) # Set up the axis labels. ax1.set_xlabel('$\log (\Delta t^{-1})$') ax1.set_ylabel('$\log \|e(T)\|_{L^2}$') # Add a legend plt.legend(loc='lower left', prop=fontP) # Save a PDF plt.savefig('plot.pdf', format='pdf') # Local Variables: # python-indent: 2 # End:
lgpl-2.1
hitszxp/scikit-learn
sklearn/datasets/twenty_newsgroups.py
26
13430
"""Caching loader for the 20 newsgroups text classification dataset The description of the dataset is available on the official website at: http://people.csail.mit.edu/jrennie/20Newsgroups/ Quoting the introduction: The 20 Newsgroups data set is a collection of approximately 20,000 newsgroup documents, partitioned (nearly) evenly across 20 different newsgroups. To the best of my knowledge, it was originally collected by Ken Lang, probably for his Newsweeder: Learning to filter netnews paper, though he does not explicitly mention this collection. The 20 newsgroups collection has become a popular data set for experiments in text applications of machine learning techniques, such as text classification and text clustering. This dataset loader will download the recommended "by date" variant of the dataset and which features a point in time split between the train and test sets. The compressed dataset size is around 14 Mb compressed. Once uncompressed the train set is 52 MB and the test set is 34 MB. The data is downloaded, extracted and cached in the '~/scikit_learn_data' folder. The `fetch_20newsgroups` function will not vectorize the data into numpy arrays but the dataset lists the filenames of the posts and their categories as target labels. The `fetch_20newsgroups_tfidf` function will in addition do a simple tf-idf vectorization step. """ # Copyright (c) 2011 Olivier Grisel <[email protected]> # License: BSD 3 clause import os import logging import tarfile import pickle import shutil import re import codecs import numpy as np import scipy.sparse as sp from .base import get_data_home from .base import Bunch from .base import load_files from ..utils import check_random_state from ..feature_extraction.text import CountVectorizer from ..preprocessing import normalize from ..externals import joblib, six if six.PY3: from urllib.request import urlopen else: from urllib2 import urlopen logger = logging.getLogger(__name__) URL = ("http://people.csail.mit.edu/jrennie/" "20Newsgroups/20news-bydate.tar.gz") ARCHIVE_NAME = "20news-bydate.tar.gz" CACHE_NAME = "20news-bydate.pkz" TRAIN_FOLDER = "20news-bydate-train" TEST_FOLDER = "20news-bydate-test" def download_20newsgroups(target_dir, cache_path): """Download the 20 newsgroups data and stored it as a zipped pickle.""" archive_path = os.path.join(target_dir, ARCHIVE_NAME) train_path = os.path.join(target_dir, TRAIN_FOLDER) test_path = os.path.join(target_dir, TEST_FOLDER) if not os.path.exists(target_dir): os.makedirs(target_dir) if os.path.exists(archive_path): # Download is not complete as the .tar.gz file is removed after # download. logger.warn("Download was incomplete, downloading again.") os.remove(archive_path) logger.warn("Downloading dataset from %s (14 MB)", URL) opener = urlopen(URL) open(archive_path, 'wb').write(opener.read()) logger.info("Decompressing %s", archive_path) tarfile.open(archive_path, "r:gz").extractall(path=target_dir) os.remove(archive_path) # Store a zipped pickle cache = dict(train=load_files(train_path, encoding='latin1'), test=load_files(test_path, encoding='latin1')) compressed_content = codecs.encode(pickle.dumps(cache), 'zlib_codec') open(cache_path, 'wb').write(compressed_content) shutil.rmtree(target_dir) return cache def strip_newsgroup_header(text): """ Given text in "news" format, strip the headers, by removing everything before the first blank line. """ _before, _blankline, after = text.partition('\n\n') return after _QUOTE_RE = re.compile(r'(writes in|writes:|wrote:|says:|said:' r'|^In article|^Quoted from|^\||^>)') def strip_newsgroup_quoting(text): """ Given text in "news" format, strip lines beginning with the quote characters > or |, plus lines that often introduce a quoted section (for example, because they contain the string 'writes:'.) """ good_lines = [line for line in text.split('\n') if not _QUOTE_RE.search(line)] return '\n'.join(good_lines) def strip_newsgroup_footer(text): """ Given text in "news" format, attempt to remove a signature block. As a rough heuristic, we assume that signatures are set apart by either a blank line or a line made of hyphens, and that it is the last such line in the file (disregarding blank lines at the end). """ lines = text.strip().split('\n') for line_num in range(len(lines) - 1, -1, -1): line = lines[line_num] if line.strip().strip('-') == '': break if line_num > 0: return '\n'.join(lines[:line_num]) else: return text def fetch_20newsgroups(data_home=None, subset='train', categories=None, shuffle=True, random_state=42, remove=(), download_if_missing=True): """Load the filenames and data from the 20 newsgroups dataset. Parameters ---------- subset: 'train' or 'test', 'all', optional Select the dataset to load: 'train' for the training set, 'test' for the test set, 'all' for both, with shuffled ordering. data_home: optional, default: None Specify an download and cache folder for the datasets. If None, all scikit-learn data is stored in '~/scikit_learn_data' subfolders. categories: None or collection of string or unicode If None (default), load all the categories. If not None, list of category names to load (other categories ignored). shuffle: bool, optional Whether or not to shuffle the data: might be important for models that make the assumption that the samples are independent and identically distributed (i.i.d.), such as stochastic gradient descent. random_state: numpy random number generator or seed integer Used to shuffle the dataset. download_if_missing: optional, True by default If False, raise an IOError if the data is not locally available instead of trying to download the data from the source site. remove: tuple May contain any subset of ('headers', 'footers', 'quotes'). Each of these are kinds of text that will be detected and removed from the newsgroup posts, preventing classifiers from overfitting on metadata. 'headers' removes newsgroup headers, 'footers' removes blocks at the ends of posts that look like signatures, and 'quotes' removes lines that appear to be quoting another post. 'headers' follows an exact standard; the other filters are not always correct. """ data_home = get_data_home(data_home=data_home) cache_path = os.path.join(data_home, CACHE_NAME) twenty_home = os.path.join(data_home, "20news_home") cache = None if os.path.exists(cache_path): try: with open(cache_path, 'rb') as f: compressed_content = f.read() uncompressed_content = codecs.decode( compressed_content, 'zlib_codec') cache = pickle.loads(uncompressed_content) except Exception as e: print(80 * '_') print('Cache loading failed') print(80 * '_') print(e) if cache is None: if download_if_missing: cache = download_20newsgroups(target_dir=twenty_home, cache_path=cache_path) else: raise IOError('20Newsgroups dataset not found') if subset in ('train', 'test'): data = cache[subset] elif subset == 'all': data_lst = list() target = list() filenames = list() for subset in ('train', 'test'): data = cache[subset] data_lst.extend(data.data) target.extend(data.target) filenames.extend(data.filenames) data.data = data_lst data.target = np.array(target) data.filenames = np.array(filenames) data.description = 'the 20 newsgroups by date dataset' else: raise ValueError( "subset can only be 'train', 'test' or 'all', got '%s'" % subset) if 'headers' in remove: data.data = [strip_newsgroup_header(text) for text in data.data] if 'footers' in remove: data.data = [strip_newsgroup_footer(text) for text in data.data] if 'quotes' in remove: data.data = [strip_newsgroup_quoting(text) for text in data.data] if categories is not None: labels = [(data.target_names.index(cat), cat) for cat in categories] # Sort the categories to have the ordering of the labels labels.sort() labels, categories = zip(*labels) mask = np.in1d(data.target, labels) data.filenames = data.filenames[mask] data.target = data.target[mask] # searchsorted to have continuous labels data.target = np.searchsorted(labels, data.target) data.target_names = list(categories) # Use an object array to shuffle: avoids memory copy data_lst = np.array(data.data, dtype=object) data_lst = data_lst[mask] data.data = data_lst.tolist() if shuffle: random_state = check_random_state(random_state) indices = np.arange(data.target.shape[0]) random_state.shuffle(indices) data.filenames = data.filenames[indices] data.target = data.target[indices] # Use an object array to shuffle: avoids memory copy data_lst = np.array(data.data, dtype=object) data_lst = data_lst[indices] data.data = data_lst.tolist() return data def fetch_20newsgroups_vectorized(subset="train", remove=(), data_home=None): """Load the 20 newsgroups dataset and transform it into tf-idf vectors. This is a convenience function; the tf-idf transformation is done using the default settings for `sklearn.feature_extraction.text.Vectorizer`. For more advanced usage (stopword filtering, n-gram extraction, etc.), combine fetch_20newsgroups with a custom `Vectorizer` or `CountVectorizer`. Parameters ---------- subset: 'train' or 'test', 'all', optional Select the dataset to load: 'train' for the training set, 'test' for the test set, 'all' for both, with shuffled ordering. data_home: optional, default: None Specify an download and cache folder for the datasets. If None, all scikit-learn data is stored in '~/scikit_learn_data' subfolders. remove: tuple May contain any subset of ('headers', 'footers', 'quotes'). Each of these are kinds of text that will be detected and removed from the newsgroup posts, preventing classifiers from overfitting on metadata. 'headers' removes newsgroup headers, 'footers' removes blocks at the ends of posts that look like signatures, and 'quotes' removes lines that appear to be quoting another post. Returns ------- bunch : Bunch object bunch.data: sparse matrix, shape [n_samples, n_features] bunch.target: array, shape [n_samples] bunch.target_names: list, length [n_classes] """ data_home = get_data_home(data_home=data_home) filebase = '20newsgroup_vectorized' if remove: filebase += 'remove-' + ('-'.join(remove)) target_file = os.path.join(data_home, filebase + ".pk") # we shuffle but use a fixed seed for the memoization data_train = fetch_20newsgroups(data_home=data_home, subset='train', categories=None, shuffle=True, random_state=12, remove=remove) data_test = fetch_20newsgroups(data_home=data_home, subset='test', categories=None, shuffle=True, random_state=12, remove=remove) if os.path.exists(target_file): X_train, X_test = joblib.load(target_file) else: vectorizer = CountVectorizer(dtype=np.int16) X_train = vectorizer.fit_transform(data_train.data).tocsr() X_test = vectorizer.transform(data_test.data).tocsr() joblib.dump((X_train, X_test), target_file, compress=9) # the data is stored as int16 for compactness # but normalize needs floats X_train = X_train.astype(np.float64) X_test = X_test.astype(np.float64) normalize(X_train, copy=False) normalize(X_test, copy=False) target_names = data_train.target_names if subset == "train": data = X_train target = data_train.target elif subset == "test": data = X_test target = data_test.target elif subset == "all": data = sp.vstack((X_train, X_test)).tocsr() target = np.concatenate((data_train.target, data_test.target)) else: raise ValueError("%r is not a valid subset: should be one of " "['train', 'test', 'all']" % subset) return Bunch(data=data, target=target, target_names=target_names)
bsd-3-clause
emon10005/scikit-image
skimage/io/tests/test_mpl_imshow.py
12
2852
from __future__ import division import numpy as np from skimage import io from skimage._shared._warnings import expected_warnings import matplotlib.pyplot as plt def setup(): io.reset_plugins() # test images. Note that they don't have their full range for their dtype, # but we still expect the display range to equal the full dtype range. im8 = np.array([[0, 64], [128, 240]], np.uint8) im16 = im8.astype(np.uint16) * 256 im64 = im8.astype(np.uint64) imf = im8 / 255 im_lo = imf / 1000 im_hi = imf + 10 def n_subplots(ax_im): """Return the number of subplots in the figure containing an ``AxesImage``. Parameters ---------- ax_im : matplotlib.pyplot.AxesImage object The input ``AxesImage``. Returns ------- n : int The number of subplots in the corresponding figure. Notes ----- This function is intended to check whether a colorbar was drawn, in which case two subplots are expected. For standard imshows, one subplot is expected. """ return len(ax_im.get_figure().get_axes()) def test_uint8(): plt.figure() ax_im = io.imshow(im8) assert ax_im.cmap.name == 'gray' assert ax_im.get_clim() == (0, 255) assert n_subplots(ax_im) == 1 assert ax_im.colorbar is None def test_uint16(): plt.figure() ax_im = io.imshow(im16) assert ax_im.cmap.name == 'gray' assert ax_im.get_clim() == (0, 65535) assert n_subplots(ax_im) == 1 assert ax_im.colorbar is None def test_float(): plt.figure() ax_im = io.imshow(imf) assert ax_im.cmap.name == 'gray' assert ax_im.get_clim() == (0, 1) assert n_subplots(ax_im) == 1 assert ax_im.colorbar is None def test_low_dynamic_range(): with expected_warnings(["Low image dynamic range"]): ax_im = io.imshow(im_lo) assert ax_im.get_clim() == (im_lo.min(), im_lo.max()) # check that a colorbar was created assert ax_im.colorbar is not None def test_outside_standard_range(): plt.figure() with expected_warnings(["out of standard range"]): ax_im = io.imshow(im_hi) assert ax_im.get_clim() == (im_hi.min(), im_hi.max()) assert n_subplots(ax_im) == 2 assert ax_im.colorbar is not None def test_nonstandard_type(): plt.figure() with expected_warnings(["Non-standard image type", "Low image dynamic range"]): ax_im = io.imshow(im64) assert ax_im.get_clim() == (im64.min(), im64.max()) assert n_subplots(ax_im) == 2 assert ax_im.colorbar is not None def test_signed_image(): plt.figure() im_signed = np.array([[-0.5, -0.2], [0.1, 0.4]]) ax_im = io.imshow(im_signed) assert ax_im.get_clim() == (-0.5, 0.5) assert n_subplots(ax_im) == 2 assert ax_im.colorbar is not None if __name__ == '__main__': np.testing.run_module_suite()
bsd-3-clause
huletlab/PyAbel
examples/example_all_O2.py
1
4291
# -*- coding: utf-8 -*- # This example compares the available inverse Abel transform methods # currently - direct, hansenlaw, and basex # processing the O2- photoelectron velocity-map image # # Note it transforms only the Q0 (top-right) quadrant # using the fundamental transform code from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np import abel import collections import matplotlib.pylab as plt from time import time # inverse Abel transform methods ----------------------------- # dictionary of method: function() transforms = { "basex": abel.basex.basex_transform, "direct": abel.direct.direct_transform, "hansenlaw": abel.hansenlaw.hansenlaw_transform, "onion_bordas": abel.onion_bordas.onion_bordas_transform, "onion_dasch": abel.dasch.onion_peeling_transform, "three_point": abel.dasch.three_point_transform, "two_point" : abel.dasch.two_point_transform, } # sort dictionary transforms = collections.OrderedDict(sorted(transforms.items())) ntrans = np.size(transforms.keys()) # number of transforms # Image: O2- VMI 1024x1024 pixel ------------------ IM = np.loadtxt('data/O2-ANU1024.txt.bz2') # recenter the image to mid-pixel (odd image width) IModd = abel.tools.center.center_image(IM, center="slice", odd_size=True) h, w = IModd.shape print("centered image 'data/O2-ANU2048.txt' shape = {:d}x{:d}".format(h, w)) # split image into quadrants Q = abel.tools.symmetry.get_image_quadrants(IModd, reorient=True) Q0 = Q[0] Q0fresh = Q0.copy() # keep clean copy print ("quadrant shape {}".format(Q0.shape)) # Intensity mask used for intensity normalization # quadrant image region of bright pixels mask = np.zeros(Q0.shape, dtype=bool) mask[500:512, 358:365] = True # process Q0 quadrant using each method -------------------- iabelQ = [] # keep inverse Abel transformed image sp = [] # speed distributions meth = [] # methods for q, method in enumerate(transforms.keys()): Q0 = Q0fresh.copy() # top-right quadrant of O2- image print ("\n------- {:s} inverse ...".format(method)) t0 = time() # inverse Abel transform using 'method' IAQ0 = transforms[method](Q0, direction="inverse", dr=0.1) print (" {:.1f} sec".format(time()-t0)) # polar projection and speed profile radial, speed = abel.tools.vmi.angular_integration(IAQ0, origin=(0, 0), dr=0.1) # normalize image intensity and speed distribution IAQ0 /= IAQ0[mask].max() speed /= speed[radial > 50].max() # keep data for plots iabelQ.append(IAQ0) sp.append((radial, speed)) meth.append(method) # reassemble image, each quadrant a different method # plot inverse Abel transformed image slices, and respective speed distributions ax0 = plt.subplot2grid((1, 2), (0, 0)) ax1 = plt.subplot2grid((1, 2), (0, 1)) def ann_plt (quad, subquad, txt): # -ve because numpy coords from top annot_angle = -(30+30*subquad+quad*90)*np.pi/180 annot_coord = (h/2+(h*0.8)*np.cos(annot_angle)/2, w/2+(w*0.8)*np.sin(annot_angle)/2) ax0.annotate(txt, annot_coord, color="yellow", horizontalalignment='left') # for < 4 images pad using a blank quadrant r, c = Q0.shape Q = np.zeros((4, r, c)) indx = np.triu_indices(iabelQ[0].shape[0]) iq = 0 for q in range(4): Q[q] = iabelQ[iq].copy() ann_plt(q, 0, meth[iq]) ax1.plot(*(sp[iq]), label=meth[iq], alpha=0.3) iq += 1 if iq < len(transforms): Q[q][indx] = np.triu(iabelQ[iq])[indx] ann_plt(q, 1, meth[iq]) ax1.plot(*(sp[iq]), label=meth[iq], alpha=0.3) iq += 1 # reassemble image from transformed (part-)quadrants im = abel.tools.symmetry.put_image_quadrants((Q[0], Q[1], Q[2], Q[3]), original_image_shape=IModd.shape) ax0.axis('off') ax0.set_title("inverse Abel transforms") ax0.imshow(im, vmin=0, vmax=0.8) ax1.set_title("speed distribution") ax1.axis(ymin=-0.05, ymax=1.1, xmin=50, xmax=450) ax1.legend(loc=0, labelspacing=0.1, fontsize=10) plt.tight_layout() # save a copy of the plot plt.savefig('example_all_O2.png', dpi=100) plt.show()
mit
heyrict/exam
SysAna/sysana.py
1
3303
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys sys.path.insert(0, '..') from exam import * from data_processing import split_wrd, _in_list, unsqueeze_numlist, colorit import pandas as pd CHAP = 'Which chapter to choose(empty to enter search mode)\n'\ '\t0\t未知\n'\ '\t1\t骨、骨连接\n'\ '\t2\t肌\n'\ '\t3\t内脏学总论\n'\ '\t4\t消化系统\n'\ '\t5\t呼吸系统\n'\ '\t6\t泌尿系统\n'\ '\t7\t生殖系统\n'\ '\t8\t腹膜\n'\ '\t9\t心血管系统\n'\ '\t10\t淋巴系统\n'\ '\t11\t感觉器总论\n'\ '\t12\t视器\n'\ '\t13\t前庭蜗器\n'\ '\t16\t中枢神经系统\n'\ '\t17\t周围神经系统\n'\ '\t18\t内分泌系统\n'\ '\t19\t组织胚胎学\n' class BeginQuestFormSysAna(BeginQuestForm): def selchap(self,qf): # chapter kind = InteractiveAnswer(CHAP+':',accept_empty=True, serializer=lambda x: [int(i) for i in split_wrd(x,list(', ,、'))], verify=unsqueeze_numlist('0-13,16-19')).get() if kind: qf = QuestForm([i for i in qf if _in_list(i.args['Chapter'],kind)]) else: # include kind = InteractiveAnswer('Which chapter to include?(empty to include all): ',accept_empty=True, serializer=lambda x:split_wrd(x,list(', ,、'))).get() if kind: qf = QuestForm([i for i in qf if _in_list(','.join(i.q+i.sel),kind)]) # exclude kind = InteractiveAnswer('Which chapter to exclude?(empty to skip): ',accept_empty=True, serializer=lambda x:split_wrd(x,list(', ,、'))).get() if kind: qf = QuestForm([i for i in qf if not _in_list(','.join(i.q+i.sel),kind)]) # difficulties kind = InteractiveAnswer('Which difficulty(ies) to choose? ',\ serializer=lambda x:sum([list(i) for i in split_wrd(x,list(', ,、'),ignore_space=True)],[]),\ verify='1234').get() outqf = QuestForm([i for i in qf if _in_list(i.args['Difficulty'],kind)]) return outqf def raise_sel(self,quest,**kwargs): if quest.sel: for s,t in zip(quest.sel,'ABCDE'): print(t+'.',s) def raise_q(self,quest,**kwargs): print('Question %d/%d: '%(len(self.other)+len(self.correct)+len(self.wrong)+1,self.length),end='') print('\n'.join(quest.q),'' if len(quest.ta[0])==1 else '[多选]') return def check_ans(self,ans,quest,**kwargs): if ans == 'pass': print(colorit('Roger!','magenta')) return 'pass' if set(list(split_wrd(ans.upper(),list(', ,、'),''))) == set(list(''.join(quest.ta))): print(colorit('Correct!','green')) return True else: print(colorit('WRONG!','red')) return False def main(): t=QuestFormExcelLoader(qcol='question',selcol=['option_'+i for i in 'abcde'], tacol='question_answer', argcol={'Difficulty':'question_difclt','Chapter':'question_num'}) BeginQuestFormSysAna(t.load('Data.xlsx'),no_filter=t.is_cached).start() if __name__ == '__main__': main()
apache-2.0
pratapvardhan/pandas
pandas/core/reshape/concat.py
3
22200
""" concat routines """ import numpy as np from pandas import compat, DataFrame, Series, Index, MultiIndex from pandas.core.index import (_get_objs_combined_axis, _ensure_index, _get_consensus_names, _all_indexes_same) from pandas.core.arrays.categorical import (_factorize_from_iterable, _factorize_from_iterables) from pandas.core.internals import concatenate_block_managers from pandas.core import common as com from pandas.core.generic import NDFrame import pandas.core.dtypes.concat as _concat # --------------------------------------------------------------------- # Concatenate DataFrame objects def concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=None, copy=True): """ Concatenate pandas objects along a particular axis with optional set logic along the other axes. Can also add a layer of hierarchical indexing on the concatenation axis, which may be useful if the labels are the same (or overlapping) on the passed axis number. Parameters ---------- objs : a sequence or mapping of Series, DataFrame, or Panel objects If a dict is passed, the sorted keys will be used as the `keys` argument, unless it is passed, in which case the values will be selected (see below). Any None objects will be dropped silently unless they are all None in which case a ValueError will be raised axis : {0/'index', 1/'columns'}, default 0 The axis to concatenate along join : {'inner', 'outer'}, default 'outer' How to handle indexes on other axis(es) join_axes : list of Index objects Specific indexes to use for the other n - 1 axes instead of performing inner/outer set logic ignore_index : boolean, default False If True, do not use the index values along the concatenation axis. The resulting axis will be labeled 0, ..., n - 1. This is useful if you are concatenating objects where the concatenation axis does not have meaningful indexing information. Note the index values on the other axes are still respected in the join. keys : sequence, default None If multiple levels passed, should contain tuples. Construct hierarchical index using the passed keys as the outermost level levels : list of sequences, default None Specific levels (unique values) to use for constructing a MultiIndex. Otherwise they will be inferred from the keys names : list, default None Names for the levels in the resulting hierarchical index verify_integrity : boolean, default False Check whether the new concatenated axis contains duplicates. This can be very expensive relative to the actual data concatenation sort : boolean, default None Sort non-concatenation axis if it is not already aligned when `join` is 'outer'. The current default of sorting is deprecated and will change to not-sorting in a future version of pandas. Explicitly pass ``sort=True`` to silence the warning and sort. Explicitly pass ``sort=False`` to silence the warning and not sort. This has no effect when ``join='inner'``, which already preserves the order of the non-concatenation axis. .. versionadded:: 0.23.0 copy : boolean, default True If False, do not copy data unnecessarily Returns ------- concatenated : object, type of objs When concatenating all ``Series`` along the index (axis=0), a ``Series`` is returned. When ``objs`` contains at least one ``DataFrame``, a ``DataFrame`` is returned. When concatenating along the columns (axis=1), a ``DataFrame`` is returned. Notes ----- The keys, levels, and names arguments are all optional. A walkthrough of how this method fits in with other tools for combining pandas objects can be found `here <http://pandas.pydata.org/pandas-docs/stable/merging.html>`__. See Also -------- Series.append DataFrame.append DataFrame.join DataFrame.merge Examples -------- Combine two ``Series``. >>> s1 = pd.Series(['a', 'b']) >>> s2 = pd.Series(['c', 'd']) >>> pd.concat([s1, s2]) 0 a 1 b 0 c 1 d dtype: object Clear the existing index and reset it in the result by setting the ``ignore_index`` option to ``True``. >>> pd.concat([s1, s2], ignore_index=True) 0 a 1 b 2 c 3 d dtype: object Add a hierarchical index at the outermost level of the data with the ``keys`` option. >>> pd.concat([s1, s2], keys=['s1', 's2',]) s1 0 a 1 b s2 0 c 1 d dtype: object Label the index keys you create with the ``names`` option. >>> pd.concat([s1, s2], keys=['s1', 's2'], ... names=['Series name', 'Row ID']) Series name Row ID s1 0 a 1 b s2 0 c 1 d dtype: object Combine two ``DataFrame`` objects with identical columns. >>> df1 = pd.DataFrame([['a', 1], ['b', 2]], ... columns=['letter', 'number']) >>> df1 letter number 0 a 1 1 b 2 >>> df2 = pd.DataFrame([['c', 3], ['d', 4]], ... columns=['letter', 'number']) >>> df2 letter number 0 c 3 1 d 4 >>> pd.concat([df1, df2]) letter number 0 a 1 1 b 2 0 c 3 1 d 4 Combine ``DataFrame`` objects with overlapping columns and return everything. Columns outside the intersection will be filled with ``NaN`` values. >>> df3 = pd.DataFrame([['c', 3, 'cat'], ['d', 4, 'dog']], ... columns=['letter', 'number', 'animal']) >>> df3 letter number animal 0 c 3 cat 1 d 4 dog >>> pd.concat([df1, df3]) animal letter number 0 NaN a 1 1 NaN b 2 0 cat c 3 1 dog d 4 Combine ``DataFrame`` objects with overlapping columns and return only those that are shared by passing ``inner`` to the ``join`` keyword argument. >>> pd.concat([df1, df3], join="inner") letter number 0 a 1 1 b 2 0 c 3 1 d 4 Combine ``DataFrame`` objects horizontally along the x axis by passing in ``axis=1``. >>> df4 = pd.DataFrame([['bird', 'polly'], ['monkey', 'george']], ... columns=['animal', 'name']) >>> pd.concat([df1, df4], axis=1) letter number animal name 0 a 1 bird polly 1 b 2 monkey george Prevent the result from including duplicate index values with the ``verify_integrity`` option. >>> df5 = pd.DataFrame([1], index=['a']) >>> df5 0 a 1 >>> df6 = pd.DataFrame([2], index=['a']) >>> df6 0 a 2 >>> pd.concat([df5, df6], verify_integrity=True) Traceback (most recent call last): ... ValueError: Indexes have overlapping values: ['a'] """ op = _Concatenator(objs, axis=axis, join_axes=join_axes, ignore_index=ignore_index, join=join, keys=keys, levels=levels, names=names, verify_integrity=verify_integrity, copy=copy, sort=sort) return op.get_result() class _Concatenator(object): """ Orchestrates a concatenation operation for BlockManagers """ def __init__(self, objs, axis=0, join='outer', join_axes=None, keys=None, levels=None, names=None, ignore_index=False, verify_integrity=False, copy=True, sort=False): if isinstance(objs, (NDFrame, compat.string_types)): raise TypeError('first argument must be an iterable of pandas ' 'objects, you passed an object of type ' '"{name}"'.format(name=type(objs).__name__)) if join == 'outer': self.intersect = False elif join == 'inner': self.intersect = True else: # pragma: no cover raise ValueError('Only can inner (intersect) or outer (union) ' 'join the other axis') if isinstance(objs, dict): if keys is None: keys = sorted(objs) objs = [objs[k] for k in keys] else: objs = list(objs) if len(objs) == 0: raise ValueError('No objects to concatenate') if keys is None: objs = list(com._not_none(*objs)) else: # #1649 clean_keys = [] clean_objs = [] for k, v in zip(keys, objs): if v is None: continue clean_keys.append(k) clean_objs.append(v) objs = clean_objs name = getattr(keys, 'name', None) keys = Index(clean_keys, name=name) if len(objs) == 0: raise ValueError('All objects passed were None') # consolidate data & figure out what our result ndim is going to be ndims = set() for obj in objs: if not isinstance(obj, NDFrame): msg = ('cannot concatenate object of type "{0}";' ' only pd.Series, pd.DataFrame, and pd.Panel' ' (deprecated) objs are valid'.format(type(obj))) raise TypeError(msg) # consolidate obj._consolidate(inplace=True) ndims.add(obj.ndim) # get the sample # want the highest ndim that we have, and must be non-empty # unless all objs are empty sample = None if len(ndims) > 1: max_ndim = max(ndims) for obj in objs: if obj.ndim == max_ndim and np.sum(obj.shape): sample = obj break else: # filter out the empties if we have not multi-index possibilities # note to keep empty Series as it affect to result columns / name non_empties = [obj for obj in objs if sum(obj.shape) > 0 or isinstance(obj, Series)] if (len(non_empties) and (keys is None and names is None and levels is None and join_axes is None and not self.intersect)): objs = non_empties sample = objs[0] if sample is None: sample = objs[0] self.objs = objs # Standardize axis parameter to int if isinstance(sample, Series): axis = DataFrame()._get_axis_number(axis) else: axis = sample._get_axis_number(axis) # Need to flip BlockManager axis in the DataFrame special case self._is_frame = isinstance(sample, DataFrame) if self._is_frame: axis = 1 if axis == 0 else 0 self._is_series = isinstance(sample, Series) if not 0 <= axis <= sample.ndim: raise AssertionError("axis must be between 0 and {ndim}, input was" " {axis}".format(ndim=sample.ndim, axis=axis)) # if we have mixed ndims, then convert to highest ndim # creating column numbers as needed if len(ndims) > 1: current_column = 0 max_ndim = sample.ndim self.objs, objs = [], self.objs for obj in objs: ndim = obj.ndim if ndim == max_ndim: pass elif ndim != max_ndim - 1: raise ValueError("cannot concatenate unaligned mixed " "dimensional NDFrame objects") else: name = getattr(obj, 'name', None) if ignore_index or name is None: name = current_column current_column += 1 # doing a row-wise concatenation so need everything # to line up if self._is_frame and axis == 1: name = 0 obj = sample._constructor({name: obj}) self.objs.append(obj) # note: this is the BlockManager axis (since DataFrame is transposed) self.axis = axis self.join_axes = join_axes self.keys = keys self.names = names or getattr(keys, 'names', None) self.levels = levels self.sort = sort self.ignore_index = ignore_index self.verify_integrity = verify_integrity self.copy = copy self.new_axes = self._get_new_axes() def get_result(self): # series only if self._is_series: # stack blocks if self.axis == 0: name = com._consensus_name_attr(self.objs) mgr = self.objs[0]._data.concat([x._data for x in self.objs], self.new_axes) cons = _concat._get_series_result_type(mgr, self.objs) return cons(mgr, name=name).__finalize__(self, method='concat') # combine as columns in a frame else: data = dict(zip(range(len(self.objs)), self.objs)) cons = _concat._get_series_result_type(data) index, columns = self.new_axes df = cons(data, index=index) df.columns = columns return df.__finalize__(self, method='concat') # combine block managers else: mgrs_indexers = [] for obj in self.objs: mgr = obj._data indexers = {} for ax, new_labels in enumerate(self.new_axes): if ax == self.axis: # Suppress reindexing on concat axis continue obj_labels = mgr.axes[ax] if not new_labels.equals(obj_labels): indexers[ax] = obj_labels.reindex(new_labels)[1] mgrs_indexers.append((obj._data, indexers)) new_data = concatenate_block_managers( mgrs_indexers, self.new_axes, concat_axis=self.axis, copy=self.copy) if not self.copy: new_data._consolidate_inplace() cons = _concat._get_frame_result_type(new_data, self.objs) return (cons._from_axes(new_data, self.new_axes) .__finalize__(self, method='concat')) def _get_result_dim(self): if self._is_series and self.axis == 1: return 2 else: return self.objs[0].ndim def _get_new_axes(self): ndim = self._get_result_dim() new_axes = [None] * ndim if self.join_axes is None: for i in range(ndim): if i == self.axis: continue new_axes[i] = self._get_comb_axis(i) else: if len(self.join_axes) != ndim - 1: raise AssertionError("length of join_axes must not be equal " "to {length}".format(length=ndim - 1)) # ufff... indices = compat.lrange(ndim) indices.remove(self.axis) for i, ax in zip(indices, self.join_axes): new_axes[i] = ax new_axes[self.axis] = self._get_concat_axis() return new_axes def _get_comb_axis(self, i): data_axis = self.objs[0]._get_block_manager_axis(i) try: return _get_objs_combined_axis(self.objs, axis=data_axis, intersect=self.intersect, sort=self.sort) except IndexError: types = [type(x).__name__ for x in self.objs] raise TypeError("Cannot concatenate list of {types}" .format(types=types)) def _get_concat_axis(self): """ Return index to be used along concatenation axis. """ if self._is_series: if self.axis == 0: indexes = [x.index for x in self.objs] elif self.ignore_index: idx = com._default_index(len(self.objs)) return idx elif self.keys is None: names = [None] * len(self.objs) num = 0 has_names = False for i, x in enumerate(self.objs): if not isinstance(x, Series): raise TypeError("Cannot concatenate type 'Series' " "with object of type {type!r}" .format(type=type(x).__name__)) if x.name is not None: names[i] = x.name has_names = True else: names[i] = num num += 1 if has_names: return Index(names) else: return com._default_index(len(self.objs)) else: return _ensure_index(self.keys) else: indexes = [x._data.axes[self.axis] for x in self.objs] if self.ignore_index: idx = com._default_index(sum(len(i) for i in indexes)) return idx if self.keys is None: concat_axis = _concat_indexes(indexes) else: concat_axis = _make_concat_multiindex(indexes, self.keys, self.levels, self.names) self._maybe_check_integrity(concat_axis) return concat_axis def _maybe_check_integrity(self, concat_index): if self.verify_integrity: if not concat_index.is_unique: overlap = concat_index[concat_index.duplicated()].unique() raise ValueError('Indexes have overlapping values: ' '{overlap!s}'.format(overlap=overlap)) def _concat_indexes(indexes): return indexes[0].append(indexes[1:]) def _make_concat_multiindex(indexes, keys, levels=None, names=None): if ((levels is None and isinstance(keys[0], tuple)) or (levels is not None and len(levels) > 1)): zipped = compat.lzip(*keys) if names is None: names = [None] * len(zipped) if levels is None: _, levels = _factorize_from_iterables(zipped) else: levels = [_ensure_index(x) for x in levels] else: zipped = [keys] if names is None: names = [None] if levels is None: levels = [_ensure_index(keys)] else: levels = [_ensure_index(x) for x in levels] if not _all_indexes_same(indexes): label_list = [] # things are potentially different sizes, so compute the exact labels # for each level and pass those to MultiIndex.from_arrays for hlevel, level in zip(zipped, levels): to_concat = [] for key, index in zip(hlevel, indexes): try: i = level.get_loc(key) except KeyError: raise ValueError('Key {key!s} not in level {level!s}' .format(key=key, level=level)) to_concat.append(np.repeat(i, len(index))) label_list.append(np.concatenate(to_concat)) concat_index = _concat_indexes(indexes) # these go at the end if isinstance(concat_index, MultiIndex): levels.extend(concat_index.levels) label_list.extend(concat_index.labels) else: codes, categories = _factorize_from_iterable(concat_index) levels.append(categories) label_list.append(codes) if len(names) == len(levels): names = list(names) else: # make sure that all of the passed indices have the same nlevels if not len({idx.nlevels for idx in indexes}) == 1: raise AssertionError("Cannot concat indices that do" " not have the same number of levels") # also copies names = names + _get_consensus_names(indexes) return MultiIndex(levels=levels, labels=label_list, names=names, verify_integrity=False) new_index = indexes[0] n = len(new_index) kpieces = len(indexes) # also copies new_names = list(names) new_levels = list(levels) # construct labels new_labels = [] # do something a bit more speedy for hlevel, level in zip(zipped, levels): hlevel = _ensure_index(hlevel) mapped = level.get_indexer(hlevel) mask = mapped == -1 if mask.any(): raise ValueError('Values not found in passed level: {hlevel!s}' .format(hlevel=hlevel[mask])) new_labels.append(np.repeat(mapped, n)) if isinstance(new_index, MultiIndex): new_levels.extend(new_index.levels) new_labels.extend([np.tile(lab, kpieces) for lab in new_index.labels]) else: new_levels.append(new_index) new_labels.append(np.tile(np.arange(n), kpieces)) if len(new_names) < len(new_levels): new_names.extend(new_index.names) return MultiIndex(levels=new_levels, labels=new_labels, names=new_names, verify_integrity=False)
bsd-3-clause
Juanlu001/aquagpusph
examples/3D/spheric_testcase2_dambreak/cMake/plot_t.py
7
9347
#****************************************************************************** # * # * ** * * * * * # * * * * * * * * * * # ***** * * * * ***** ** *** * * ** *** *** * # * * * * * * * * * * * * * * * * * * * * # * * * * * * * * * * * * * * * * * * * * # * * ** * ** * * *** *** *** ** *** * * * # * * * * # ** * * * # * #****************************************************************************** # * # This file is part of AQUAgpusph, a free CFD program based on SPH. * # Copyright (C) 2012 Jose Luis Cercos Pita <[email protected]> * # * # AQUAgpusph is free software: you can redistribute it and/or modify * # it under the terms of the GNU General Public License as published by * # the Free Software Foundation, either version 3 of the License, or * # (at your option) any later version. * # * # AQUAgpusph is distributed in the hope that it will be useful, * # but WITHOUT ANY WARRANTY; without even the implied warranty of * # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * # GNU General Public License for more details. * # * # You should have received a copy of the GNU General Public License * # along with AQUAgpusph. If not, see <http://www.gnu.org/licenses/>. * # * #****************************************************************************** import math import sys import os from os import path try: from PyQt4 import QtGui, QtCore except: try: from PySide import QtGui, QtCore except: raise ImportError("PyQt4 or PySide is required to use this tool") try: from matplotlib.figure import Figure from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas except: raise ImportError("matplotlib is required to use this tool") class FigureController(FigureCanvas): """Matplotlib figure widget controller""" def __init__(self, parent=None): """Constructor""" # Create the figure in the canvas self.fig = Figure() self.ax = self.fig.add_subplot(111) FigureCanvas.__init__(self, self.fig) self.setParent(parent) # generates first "empty" plot t = [0.0] e = [0.0] self.fove = self.ax.fill_between(t, 0, e, facecolor='red', linewidth=0.0) self.fave = self.ax.fill_between(t, 0, e, facecolor='blue', linestyle="-", linewidth=0.0) self.love, = self.ax.plot(t, e, color='#990000', linestyle="-", linewidth=2.0, label='Average overhead') self.lave, = self.ax.plot(t, e, color='#000099', linestyle="-", linewidth=2.0, label='Average elapsed') self.line, = self.ax.plot(t, e, color="black", linestyle="-", linewidth=1.0, alpha=0.5, label='Elapsed') # Set some options self.ax.grid() self.ax.set_xlim(0, 0.1) self.ax.set_ylim(-0.1, 0.1) self.ax.set_autoscale_on(False) self.ax.set_xlabel(r"$t \, [\mathrm{s}]$", fontsize=21) self.ax.set_ylabel(r"$t_{CPU} \, [\mathrm{s}]$", fontsize=21) self.ax.legend(handles=[self.lave, self.love, self.line], loc='upper right') # force the figure redraw self.fig.canvas.draw() # call the update method (to speed-up visualization) self.timerEvent(None) # start timer, trigger event every 10000 millisecs (=10sec) self.timer = self.startTimer(1000) def readFile(self, filepath): """ Read and extract data from a file :param filepath File ot read """ abspath = filepath if not path.isabs(filepath): abspath = path.join(path.dirname(path.abspath(__file__)), filepath) # Read the file by lines f = open(abspath, "r") lines = f.readlines() f.close() data = [] for l in lines[:-1]: # Skip the last line, which may be unready l = l.strip() while l.find(' ') != -1: l = l.replace(' ', ' ') fields = l.split(' ') try: data.append(map(float, fields)) except: continue # Transpose the data return map(list, zip(*data)) def timerEvent(self, evt): """Custom timerEvent code, called at timer event receive""" # Read and plot the new data data = self.readFile('Performance.dat') t = data[0] e = data[1] e_ela = data[2] e_ove = data[5] # Clear nan values for i in range(len(e_ela)): if math.isnan(e_ela[i]): e_ela[i] = 0.0 if math.isnan(e_ove[i]): e_ove[i] = 0.0 e_ave = [e_ela[i] - e_ove[i] for i in range(len(e_ela))] # clear the fills for coll in (self.ax.collections): self.ax.collections.remove(coll) self.fove = self.ax.fill_between(t, 0, e_ela, facecolor='red', linestyle="-", linewidth=2.0) self.fave = self.ax.fill_between(t, 0, e_ave, facecolor='blue', linestyle="-", linewidth=2.0) self.love.set_data(t, e_ela) self.lave.set_data(t, e_ave) self.line.set_data(t, e) self.ax.set_xlim(0, t[-1]) self.ax.set_ylim(0, 1.5 * e_ela[-1]) # Redraw self.fig.canvas.draw() class ApplicationWindow(QtGui.QMainWindow): def __init__(self): QtGui.QMainWindow.__init__(self) self.setAttribute(QtCore.Qt.WA_DeleteOnClose) self.main_widget = QtGui.QWidget(self) lv = QtGui.QVBoxLayout(self.main_widget) plot_widget = FigureController(self.main_widget) show_inst_ela = QtGui.QCheckBox('Show instantaneous elapsed time') show_inst_ela.setCheckState(True) show_inst_ela.setTristate(False) lv.addWidget(plot_widget) lv.addWidget(show_inst_ela) show_inst_ela.stateChanged.connect(self.showInstEla) self.show_inst_ela = show_inst_ela self.plot_widget = plot_widget self.main_widget.setFocus() self.setCentralWidget(self.main_widget) def showInstEla(self, state): if not state: self.plot_widget.line.set_alpha(0.0) self.plot_widget.ax.legend(handles=[self.plot_widget.lave, self.plot_widget.love], loc='upper right') return self.plot_widget.ax.legend(handles=[self.plot_widget.lave, self.plot_widget.love, self.plot_widget.line], loc='upper right') self.plot_widget.line.set_alpha(0.5) return def fileQuit(self): self.close() def closeEvent(self, ce): self.fileQuit() if __name__ == '__main__': app = QtGui.QApplication(sys.argv) aw = ApplicationWindow() aw.setWindowTitle("Performance") aw.show() sys.exit(app.exec_())
gpl-3.0
marcocaccin/scikit-learn
examples/cluster/plot_mini_batch_kmeans.py
265
4081
""" ==================================================================== Comparison of the K-Means and MiniBatchKMeans clustering algorithms ==================================================================== We want to compare the performance of the MiniBatchKMeans and KMeans: the MiniBatchKMeans is faster, but gives slightly different results (see :ref:`mini_batch_kmeans`). We will cluster a set of data, first with KMeans and then with MiniBatchKMeans, and plot the results. We will also plot the points that are labelled differently between the two algorithms. """ print(__doc__) import time import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import MiniBatchKMeans, KMeans from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.datasets.samples_generator import make_blobs ############################################################################## # Generate sample data np.random.seed(0) batch_size = 45 centers = [[1, 1], [-1, -1], [1, -1]] n_clusters = len(centers) X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7) ############################################################################## # Compute clustering with Means k_means = KMeans(init='k-means++', n_clusters=3, n_init=10) t0 = time.time() k_means.fit(X) t_batch = time.time() - t0 k_means_labels = k_means.labels_ k_means_cluster_centers = k_means.cluster_centers_ k_means_labels_unique = np.unique(k_means_labels) ############################################################################## # Compute clustering with MiniBatchKMeans mbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size, n_init=10, max_no_improvement=10, verbose=0) t0 = time.time() mbk.fit(X) t_mini_batch = time.time() - t0 mbk_means_labels = mbk.labels_ mbk_means_cluster_centers = mbk.cluster_centers_ mbk_means_labels_unique = np.unique(mbk_means_labels) ############################################################################## # Plot result fig = plt.figure(figsize=(8, 3)) fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9) colors = ['#4EACC5', '#FF9C34', '#4E9A06'] # We want to have the same colors for the same cluster from the # MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per # closest one. order = pairwise_distances_argmin(k_means_cluster_centers, mbk_means_cluster_centers) # KMeans ax = fig.add_subplot(1, 3, 1) for k, col in zip(range(n_clusters), colors): my_members = k_means_labels == k cluster_center = k_means_cluster_centers[k] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('KMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % ( t_batch, k_means.inertia_)) # MiniBatchKMeans ax = fig.add_subplot(1, 3, 2) for k, col in zip(range(n_clusters), colors): my_members = mbk_means_labels == order[k] cluster_center = mbk_means_cluster_centers[order[k]] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('MiniBatchKMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % (t_mini_batch, mbk.inertia_)) # Initialise the different array to all False different = (mbk_means_labels == 4) ax = fig.add_subplot(1, 3, 3) for l in range(n_clusters): different += ((k_means_labels == k) != (mbk_means_labels == order[k])) identic = np.logical_not(different) ax.plot(X[identic, 0], X[identic, 1], 'w', markerfacecolor='#bbbbbb', marker='.') ax.plot(X[different, 0], X[different, 1], 'w', markerfacecolor='m', marker='.') ax.set_title('Difference') ax.set_xticks(()) ax.set_yticks(()) plt.show()
bsd-3-clause
NKI-CCB/imfusion
src/imfusion/expression/stats.py
2
2730
# -*- coding: utf-8 -*- """Implements a statistical models used for DE tests.""" # pylint: disable=wildcard-import,redefined-builtin,unused-wildcard-import from __future__ import absolute_import, division, print_function from builtins import * # pylint: enable=wildcard-import,redefined-builtin,unused-wildcard-import import numpy as np try: from rpy2.robjects import pandas2ri from rpy2.robjects.packages import importr pandas2ri.activate() # Note robject_translations is no longer needed in Rpy2 2.6+, # but is kept for compatibility with older Rpy2 versions. r_mass = importr('MASS') r_stats = importr( 'stats', robject_translations={'format_perc': '_format_perc'}) except ImportError: r_mass = None r_stats = None class NegativeBinomial(object): """ Models a negative binomial distribution. NegativeBinomial class that wraps functionality from the R MASS and stats packages for fitting and evaluating Negative Binomials. Requires rpy2 to be installed. """ def __init__(self, mu=None, size=None): self._check_rpy() self._mu = mu self._size = size @classmethod def fit(cls, data): """First the distribution using the given observations.""" cls._check_rpy() fit = r_mass.fitdistr(data, densfun='negative binomial') fit = dict(zip(fit.names, [np.array(item) for item in fit])) mu, size = fit['estimate'][1], fit['estimate'][0] return cls(mu=mu, size=size) @staticmethod def _check_rpy(): """Checks if Mass and Stats are available from rpy2.""" if r_mass is None or r_stats is None: raise ValueError('Rpy2 must be installed to use the ' 'NegativeBinomial distribution.') def pdf(self, x, log=False): """Returns the pdf of the distribution.""" return np.array( r_stats.dnbinom( x=x, mu=self._mu, size=self._size, log=log)) def cdf(self, q, log_p=False): """Returns the cdf of the distribution.""" return self._pnbinom( q, mu=self._mu, size=self._size, lower_tail=True, log_p=log_p) def sf(self, q, log_p=False): """Returns the sf of the distribution.""" return self._pnbinom( q, mu=self._mu, size=self._size, lower_tail=False, log_p=log_p) @staticmethod def _pnbinom(q, mu, size, **kwargs): p_val = r_stats.pnbinom(q, mu=mu, size=size, **kwargs) return p_val[0] if len(p_val) == 1 else np.array(p_val) def __repr__(self): return 'NegativeBinomial(mu={}, size={})'.format(self._size, self._mu) def __str__(self): return self.__repr__()
mit
kmather73/ggplot
ggplot/tests/test_geom_lines.py
12
4895
from __future__ import (absolute_import, division, print_function, unicode_literals) from six.moves import xrange from nose.tools import assert_equal, assert_true, assert_raises from . import get_assert_same_ggplot, cleanup assert_same_ggplot = get_assert_same_ggplot(__file__) from ggplot import * from ggplot.exampledata import diamonds import numpy as np import pandas as pd def _build_line_df(): np.random.seed(7776) df = pd.DataFrame({'wt': mtcars['wt'][:10], 'mpg': mtcars['mpg'][:10], 'a': np.random.normal(15, size=10), 'b': np.random.normal(0, size=10) }) return df @cleanup def test_geom_abline(): df = _build_line_df() gg = ggplot(df, aes(x='wt', y='mpg')) gg = gg + geom_point() + geom_abline(intercept=22, slope=.8, size=10) assert_same_ggplot(gg, 'geom_abline') @cleanup def test_geom_abline_multiple(): df = _build_line_df() gg = ggplot(df, aes(x='wt', y='mpg')) gg = gg + geom_point() + geom_abline(intercept=(20, 12), slope=(.8, 2), color=('red', 'blue'), alpha=(.3, .9), size=(10, 20)) assert_same_ggplot(gg, 'geom_abline_multiple') @cleanup def test_geom_abline_mapped(): df = _build_line_df() gg = ggplot(df, aes(x='wt', y='mpg', intercept='a', slope='b')) gg = gg + geom_point() + geom_abline(size=2) assert_same_ggplot(gg, 'geom_abline_mapped') # TODO: Uncomment when the handling is proper @cleanup def test_geom_abline_functions(): df = _build_line_df() def sfunc(x, y): return (y.iloc[-1] - y.iloc[0]) / (x.iloc[-1] - x.iloc[0]) def ifunc(x, y): return np.mean(y) gg = ggplot(df, aes(x='wt', y='mpg')) # Note, could have done intercept=np.mean gg = gg + geom_point() + geom_abline(aes(x='wt', y='mpg'), slope=sfunc, intercept=ifunc) assert_same_ggplot(gg, 'geom_abline_functions') @cleanup def test_geom_vline(): df = _build_line_df() gg = ggplot(df, aes(x='wt', y='mpg')) gg = gg + geom_point() + geom_vline(xintercept=3, size=10) assert_same_ggplot(gg, 'geom_vline') @cleanup def test_geom_vline_multiple(): df = _build_line_df() gg = ggplot(df, aes(x='wt', y='mpg')) gg = gg + geom_point() + geom_vline(xintercept=[2.5, 3.5], size=10) assert_same_ggplot(gg, 'geom_vline_multiple') @cleanup def test_geom_vline_mapped(): df = _build_line_df() gg = ggplot(df, aes(x='wt', y='mpg', xintercept='wt')) gg = (gg + geom_point(size=200, color='green', fill='blue', alpha=.7) + geom_vline(size=2)) assert_same_ggplot(gg, 'geom_vline_mapped') @cleanup def test_geom_vline_function(): df = _build_line_df() gg = ggplot(df, aes(x='wt', y='mpg')) def ifunc(x): return np.mean(x) gg = gg + geom_point() + geom_vline(aes(x='wt'), xintercept=ifunc) assert_same_ggplot(gg, 'geom_vline_function') @cleanup def test_geom_hline(): df = _build_line_df() gg = ggplot(df, aes(x='wt', y='mpg')) gg = gg + geom_point() + geom_hline(yintercept=20, size=10) assert_same_ggplot(gg, 'geom_hline') @cleanup def test_geom_hline_multiple(): df = _build_line_df() gg = ggplot(df, aes(x='wt', y='mpg')) gg = gg + geom_point() + geom_hline(yintercept=[16., 24.], size=10) assert_same_ggplot(gg, 'geom_hline_multiple') @cleanup def test_geom_hline_mapped(): df = _build_line_df() gg = ggplot(df, aes(x='wt', y='mpg', yintercept='mpg')) gg = (gg + geom_point(size=150, color='blue', alpha=.5) + geom_hline(size=2)) assert_same_ggplot(gg, 'geom_hline_mapped') @cleanup def test_geom_hline_function(): df = _build_line_df() gg = ggplot(df, aes(x='wt', y='mpg')) def ifunc(y): return np.mean(y) gg = gg + geom_point() + geom_hline(aes(y='mpg'), yintercept=ifunc) assert_same_ggplot(gg, 'geom_hline_function') @cleanup def test_geom_festival_of_lines(): # All 3 lines should intersect at the point of the same color. # Horizontal and vertical will overlap for points on the same line df = _build_line_df() df['color'] = range(len(df['wt'])) def xfunc(x): return x def yfunc(y): return y def ifunc(x, y): return y - 5 * x def sfunc(x, y): return 5 gg = ggplot(df, aes(x='wt', y='mpg', color='factor(color)')) gg = (gg + geom_point(size=150, alpha=.9) + geom_abline(size=2, intercept=ifunc, slope=sfunc) + geom_vline(size=2, xintercept=xfunc) + geom_hline(size=2, yintercept=yfunc)) assert_same_ggplot(gg, 'geom_festival_of_lines')
bsd-2-clause
PalNilsson/pilot2
pilot/user/atlas/setup.py
1
17850
#!/usr/bin/env python # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Authors: # - Paul Nilsson, [email protected], 2017-2020 import os import re import glob from time import sleep from pilot.common.errorcodes import ErrorCodes from pilot.common.exception import NoSoftwareDir from pilot.info import infosys from pilot.util.container import execute from pilot.util.filehandling import read_file, write_file, copy from .metadata import get_file_info_from_xml import logging logger = logging.getLogger(__name__) errors = ErrorCodes() def get_file_system_root_path(): """ Return the root path of the local file system. The function returns "/cvmfs" or "/(some path)/cvmfs" in case the expected file system root path is not where it usually is (e.g. on an HPC). A site can set the base path by exporting ATLAS_SW_BASE. :return: path (string) """ return os.environ.get('ATLAS_SW_BASE', '/cvmfs') def should_pilot_prepare_setup(noexecstrcnv, jobpars, imagename=None): """ Determine whether the pilot should add the setup to the payload command or not. The pilot will not add asetup if jobPars already contain the information (i.e. it was set by the payload creator). If noExecStrCnv is set, then jobPars is expected to contain asetup.sh + options If a stand-alone container / user defined container is used, pilot should not prepare asetup. :param noexecstrcnv: boolean. :param jobpars: job parameters (string). :param imagename: container image (string). :return: boolean. """ if imagename: return False if noexecstrcnv: if "asetup.sh" in jobpars: logger.info("asetup will be taken from jobPars") preparesetup = False else: logger.info("noExecStrCnv is set but asetup command was not found in jobPars (pilot will prepare asetup)") preparesetup = True else: logger.info("pilot will prepare the setup") preparesetup = True return preparesetup def get_alrb_export(add_if=False): """ Return the export command for the ALRB path if it exists. If the path does not exist, return empty string. :param add_if: Boolean. True means that an if statement will be placed around the export. :return: export command """ path = "%s/atlas.cern.ch/repo" % get_file_system_root_path() cmd = "export ATLAS_LOCAL_ROOT_BASE=%s/ATLASLocalRootBase;" % path if os.path.exists(path) else "" # if [ -z "$ATLAS_LOCAL_ROOT_BASE" ]; then export ATLAS_LOCAL_ROOT_BASE=/cvmfs/atlas.cern.ch/repo/ATLASLocalRootBase; fi; if cmd and add_if: cmd = 'if [ -z \"$ATLAS_LOCAL_ROOT_BASE\" ]; then ' + cmd + ' fi;' return cmd def get_asetup(asetup=True, alrb=False, add_if=False): """ Define the setup for asetup, i.e. including full path to asetup and setting of ATLAS_LOCAL_ROOT_BASE Only include the actual asetup script if asetup=True. This is not needed if the jobPars contain the payload command but the pilot still needs to add the exports and the atlasLocalSetup. :param asetup: Boolean. True value means that the pilot should include the asetup command. :param alrb: Boolean. True value means that the function should return special setup used with ALRB and containers. :param add_if: Boolean. True means that an if statement will be placed around the export. :raises: NoSoftwareDir if appdir does not exist. :return: source <path>/asetup.sh (string). """ cmd = "" alrb_cmd = get_alrb_export(add_if=add_if) if alrb_cmd != "": cmd = alrb_cmd if not alrb: cmd += "source ${ATLAS_LOCAL_ROOT_BASE}/user/atlasLocalSetup.sh --quiet;" if asetup: cmd += "source $AtlasSetup/scripts/asetup.sh" else: try: # use try in case infosys has not been initiated appdir = infosys.queuedata.appdir except Exception: appdir = "" if appdir == "": appdir = os.environ.get('VO_ATLAS_SW_DIR', '') if appdir != "": # make sure that the appdir exists if not os.path.exists(appdir): msg = 'appdir does not exist: %s' % appdir logger.warning(msg) raise NoSoftwareDir(msg) if asetup: cmd = "source %s/scripts/asetup.sh" % appdir # do not return an empty string #if not cmd: # cmd = "what?" return cmd def get_asetup_options(release, homepackage): """ Determine the proper asetup options. :param release: ATLAS release string. :param homepackage: ATLAS homePackage string. :return: asetup options (string). """ asetupopt = [] release = re.sub('^Atlas-', '', release) # is it a user analysis homePackage? if 'AnalysisTransforms' in homepackage: _homepackage = re.sub('^AnalysisTransforms-*', '', homepackage) if _homepackage == '' or re.search(r'^\d+\.\d+\.\d+$', release) is None: # Python 3 (added r) if release != "": asetupopt.append(release) if _homepackage != '': asetupopt += _homepackage.split('_') else: asetupopt += homepackage.split('/') if release not in homepackage and release not in asetupopt: asetupopt.append(release) # Add the notest,here for all setups (not necessary for late releases but harmless to add) asetupopt.append('notest') # asetupopt.append('here') # Add the fast option if possible (for the moment, check for locally defined env variable) if "ATLAS_FAST_ASETUP" in os.environ: asetupopt.append('fast') return ','.join(asetupopt) def is_standard_atlas_job(release): """ Is it a standard ATLAS job? A job is a standard ATLAS job if the release string begins with 'Atlas-'. :param release: Release value (string). :return: Boolean. Returns True if standard ATLAS job. """ return release.startswith('Atlas-') def set_inds(dataset): """ Set the INDS environmental variable used by runAthena. :param dataset: dataset for input files (realDatasetsIn) (string). :return: """ inds = "" _dataset = dataset.split(',') for ds in _dataset: if "DBRelease" not in ds and ".lib." not in ds: inds = ds break if inds != "": logger.info("setting INDS environmental variable to: %s" % (inds)) os.environ['INDS'] = inds else: logger.warning("INDS unknown") def get_analysis_trf(transform, workdir): """ Prepare to download the user analysis transform with curl. The function will verify the download location from a known list of hosts. :param transform: full trf path (url) (string). :param workdir: work directory (string). :return: exit code (int), diagnostics (string), transform_name (string) """ ec = 0 diagnostics = "" # test if $HARVESTER_WORKDIR is set harvester_workdir = os.environ.get('HARVESTER_WORKDIR') if harvester_workdir is not None: search_pattern = "%s/jobO.*.tar.gz" % harvester_workdir logger.debug("search_pattern - %s" % search_pattern) jobopt_files = glob.glob(search_pattern) for jobopt_file in jobopt_files: logger.debug("jobopt_file = %s workdir = %s" % (jobopt_file, workdir)) try: copy(jobopt_file, workdir) except Exception as e: logger.error("could not copy file %s to %s : %s" % (jobopt_file, workdir, e)) if '/' in transform: transform_name = transform.split('/')[-1] else: logger.warning('did not detect any / in %s (using full transform name)' % transform) transform_name = transform # is the command already available? (e.g. if already downloaded by a preprocess/main process step) if os.path.exists(os.path.join(workdir, transform_name)): logger.info('script %s is already available - no need to download again' % transform_name) return ec, diagnostics, transform_name original_base_url = "" # verify the base URL for base_url in get_valid_base_urls(): if transform.startswith(base_url): original_base_url = base_url break if original_base_url == "": diagnostics = "invalid base URL: %s" % transform return errors.TRFDOWNLOADFAILURE, diagnostics, "" # try to download from the required location, if not - switch to backup status = False for base_url in get_valid_base_urls(order=original_base_url): trf = re.sub(original_base_url, base_url, transform) logger.debug("attempting to download script: %s" % trf) status, diagnostics = download_transform(trf, transform_name, workdir) if status: break if not status: return errors.TRFDOWNLOADFAILURE, diagnostics, "" logger.info("successfully downloaded script") path = os.path.join(workdir, transform_name) logger.debug("changing permission of %s to 0o755" % path) try: os.chmod(path, 0o755) # Python 2/3 except Exception as e: diagnostics = "failed to chmod %s: %s" % (transform_name, e) return errors.CHMODTRF, diagnostics, "" return ec, diagnostics, transform_name def download_transform(url, transform_name, workdir): """ Download the transform from the given url :param url: download URL with path to transform (string). :param transform_name: trf name (string). :param workdir: work directory (string). :return: """ status = False diagnostics = "" path = os.path.join(workdir, transform_name) cmd = 'curl -sS \"%s\" > %s' % (url, path) trial = 1 max_trials = 3 # test if $HARVESTER_WORKDIR is set harvester_workdir = os.environ.get('HARVESTER_WORKDIR') if harvester_workdir is not None: # skip curl by setting max_trials = 0 max_trials = 0 source_path = os.path.join(harvester_workdir, transform_name) try: copy(source_path, path) status = True except Exception as error: status = False diagnostics = "Failed to copy file %s to %s : %s" % (source_path, path, error) logger.error(diagnostics) # try to download the trf a maximum of 3 times while trial <= max_trials: logger.info("executing command [trial %d/%d]: %s" % (trial, max_trials, cmd)) exit_code, stdout, stderr = execute(cmd, mute=True) if not stdout: stdout = "(None)" if exit_code != 0: # Analyze exit code / output diagnostics = "curl command failed: %d, %s, %s" % (exit_code, stdout, stderr) logger.warning(diagnostics) if trial == max_trials: logger.fatal('could not download transform: %s' % stdout) status = False break else: logger.info("will try again after 60 s") sleep(60) else: logger.info("curl command returned: %s" % stdout) status = True break trial += 1 return status, diagnostics def get_valid_base_urls(order=None): """ Return a list of valid base URLs from where the user analysis transform may be downloaded from. If order is defined, return given item first. E.g. order=http://atlpan.web.cern.ch/atlpan -> ['http://atlpan.web.cern.ch/atlpan', ...] NOTE: the URL list may be out of date. :param order: order (string). :return: valid base URLs (list). """ valid_base_urls = [] _valid_base_urls = ["http://www.usatlas.bnl.gov", "https://www.usatlas.bnl.gov", "http://pandaserver.cern.ch", "http://atlpan.web.cern.ch/atlpan", "https://atlpan.web.cern.ch/atlpan", "http://classis01.roma1.infn.it", "http://atlas-install.roma1.infn.it"] if order: valid_base_urls.append(order) for url in _valid_base_urls: if url != order: valid_base_urls.append(url) else: valid_base_urls = _valid_base_urls return valid_base_urls def get_payload_environment_variables(cmd, job_id, task_id, attempt_nr, processing_type, site_name, analysis_job): """ Return an array with enviroment variables needed by the payload. :param cmd: payload execution command (string). :param job_id: PanDA job id (string). :param task_id: PanDA task id (string). :param attempt_nr: PanDA job attempt number (int). :param processing_type: processing type (string). :param site_name: site name (string). :param analysis_job: True for user analysis jobs, False otherwise (boolean). :return: list of environment variables needed by the payload. """ variables = [] variables.append('export PANDA_RESOURCE=\'%s\';' % site_name) variables.append('export FRONTIER_ID=\"[%s_%s]\";' % (task_id, job_id)) variables.append('export CMSSW_VERSION=$FRONTIER_ID;') variables.append('export PandaID=%s;' % os.environ.get('PANDAID', 'unknown')) variables.append('export PanDA_TaskID=\'%s\';' % os.environ.get('PanDA_TaskID', 'unknown')) variables.append('export PanDA_AttemptNr=\'%d\';' % attempt_nr) variables.append('export INDS=\'%s\';' % os.environ.get('INDS', 'unknown')) # Unset ATHENA_PROC_NUMBER if set for event service Merge jobs if "Merge_tf" in cmd and 'ATHENA_PROC_NUMBER' in os.environ: variables.append('unset ATHENA_PROC_NUMBER;') variables.append('unset ATHENA_CORE_NUMBER;') if analysis_job: variables.append('export ROOT_TTREECACHE_SIZE=1;') try: core_count = int(os.environ.get('ATHENA_PROC_NUMBER')) except Exception: _core_count = 'export ROOTCORE_NCPUS=1;' else: _core_count = 'export ROOTCORE_NCPUS=%d;' % core_count variables.append(_core_count) if processing_type == "": logger.warning("RUCIO_APPID needs job.processingType but it is not set!") else: variables.append('export RUCIO_APPID=\'%s\';' % processing_type) variables.append('export RUCIO_ACCOUNT=\'%s\';' % os.environ.get('RUCIO_ACCOUNT', 'pilot')) return variables def get_writetoinput_filenames(writetofile): """ Extract the writeToFile file name(s). writeToFile='tmpin_mc16_13TeV.345935.PhPy8EG_A14_ttbarMET100_200_hdamp258p75_nonallhad.merge.AOD.e6620_e5984_s3126_r10724_r10726_tid15760866_00:AOD.15760866._000002.pool.root.1' -> return 'tmpin_mc16_13TeV.345935.PhPy8EG_A14_ttbarMET100_200_hdamp258p75_nonallhad.merge.AOD.e6620_e5984_s3126_r10724_r10726_tid15760866_00' :param writetofile: string containing file name information. :return: list of file names """ filenames = [] entries = writetofile.split('^') for entry in entries: if ':' in entry: name = entry.split(":")[0] name = name.replace('.pool.root.', '.txt.') # not necessary? filenames.append(name) return filenames def replace_lfns_with_turls(cmd, workdir, filename, infiles, writetofile=""): """ Replace all LFNs with full TURLs in the payload execution command. This function is used with direct access in production jobs. Athena requires a full TURL instead of LFN. :param cmd: payload execution command (string). :param workdir: location of metadata file (string). :param filename: metadata file name (string). :param infiles: list of input files. :param writetofile: :return: updated cmd (string). """ turl_dictionary = {} # { LFN: TURL, ..} path = os.path.join(workdir, filename) if os.path.exists(path): file_info_dictionary = get_file_info_from_xml(workdir, filename=filename) for inputfile in infiles: if inputfile in cmd: turl = file_info_dictionary[inputfile][0] turl_dictionary[inputfile] = turl # if turl.startswith('root://') and turl not in cmd: if turl not in cmd: cmd = cmd.replace(inputfile, turl) logger.info("replaced '%s' with '%s' in the run command" % (inputfile, turl)) # replace the LFNs with TURLs in the writetofile input file list (if it exists) if writetofile and turl_dictionary: filenames = get_writetoinput_filenames(writetofile) logger.info("filenames=%s" % filenames) for fname in filenames: new_lines = [] path = os.path.join(workdir, fname) if os.path.exists(path): f = read_file(path) for line in f.split('\n'): fname = os.path.basename(line) if fname in turl_dictionary: turl = turl_dictionary[fname] new_lines.append(turl) else: if line: new_lines.append(line) lines = '\n'.join(new_lines) if lines: write_file(path, lines) logger.info("lines=%s" % lines) else: logger.warning("file does not exist: %s" % path) else: logger.warning("could not find file: %s (cannot locate TURLs for direct access)" % filename) return cmd
apache-2.0
wwf5067/statsmodels
statsmodels/sandbox/tsa/movstat.py
34
14871
'''using scipy signal and numpy correlate to calculate some time series statistics original developer notes see also scikits.timeseries (movstat is partially inspired by it) added 2009-08-29 timeseries moving stats are in c, autocorrelation similar to here I thought I saw moving stats somewhere in python, maybe not) TODO moving statistics - filters don't handle boundary conditions nicely (correctly ?) e.g. minimum order filter uses 0 for out of bounds value -> append and prepend with last resp. first value - enhance for nd arrays, with axis = 0 Note: Equivalence for 1D signals >>> np.all(signal.correlate(x,[1,1,1],'valid')==np.correlate(x,[1,1,1])) True >>> np.all(ndimage.filters.correlate(x,[1,1,1], origin = -1)[:-3+1]==np.correlate(x,[1,1,1])) True # multidimensional, but, it looks like it uses common filter across time series, no VAR ndimage.filters.correlate(np.vstack([x,x]),np.array([[1,1,1],[0,0,0]]), origin = 1) ndimage.filters.correlate(x,[1,1,1],origin = 1)) ndimage.filters.correlate(np.vstack([x,x]),np.array([[0.5,0.5,0.5],[0.5,0.5,0.5]]), \ origin = 1) >>> np.all(ndimage.filters.correlate(np.vstack([x,x]),np.array([[1,1,1],[0,0,0]]), origin = 1)[0]==\ ndimage.filters.correlate(x,[1,1,1],origin = 1)) True >>> np.all(ndimage.filters.correlate(np.vstack([x,x]),np.array([[0.5,0.5,0.5],[0.5,0.5,0.5]]), \ origin = 1)[0]==ndimage.filters.correlate(x,[1,1,1],origin = 1)) update 2009-09-06: cosmetic changes, rearrangements ''' from __future__ import print_function import numpy as np from scipy import signal from numpy.testing import assert_array_equal, assert_array_almost_equal import statsmodels.api as sm def expandarr(x,k): #make it work for 2D or nD with axis kadd = k if np.ndim(x) == 2: kadd = (kadd, np.shape(x)[1]) return np.r_[np.ones(kadd)*x[0],x,np.ones(kadd)*x[-1]] def movorder(x, order = 'med', windsize=3, lag='lagged'): '''moving order statistics Parameters ---------- x : array time series data order : float or 'med', 'min', 'max' which order statistic to calculate windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- filtered array ''' #if windsize is even should it raise ValueError if lag == 'lagged': lead = windsize//2 elif lag == 'centered': lead = 0 elif lag == 'leading': lead = -windsize//2 +1 else: raise ValueError if np.isfinite(order) == True: #if np.isnumber(order): ord = order # note: ord is a builtin function elif order == 'med': ord = (windsize - 1)/2 elif order == 'min': ord = 0 elif order == 'max': ord = windsize - 1 else: raise ValueError #return signal.order_filter(x,np.ones(windsize),ord)[:-lead] xext = expandarr(x, windsize) #np.r_[np.ones(windsize)*x[0],x,np.ones(windsize)*x[-1]] return signal.order_filter(xext,np.ones(windsize),ord)[windsize-lead:-(windsize+lead)] def check_movorder(): '''graphical test for movorder''' import matplotlib.pylab as plt x = np.arange(1,10) xo = movorder(x, order='max') assert_array_equal(xo, x) x = np.arange(10,1,-1) xo = movorder(x, order='min') assert_array_equal(xo, x) assert_array_equal(movorder(x, order='min', lag='centered')[:-1], x[1:]) tt = np.linspace(0,2*np.pi,15) x = np.sin(tt) + 1 xo = movorder(x, order='max') plt.figure() plt.plot(tt,x,'.-',tt,xo,'.-') plt.title('moving max lagged') xo = movorder(x, order='max', lag='centered') plt.figure() plt.plot(tt,x,'.-',tt,xo,'.-') plt.title('moving max centered') xo = movorder(x, order='max', lag='leading') plt.figure() plt.plot(tt,x,'.-',tt,xo,'.-') plt.title('moving max leading') # identity filter ##>>> signal.order_filter(x,np.ones(1),0) ##array([ 1., 2., 3., 4., 5., 6., 7., 8., 9.]) # median filter ##signal.medfilt(np.sin(x), kernel_size=3) ##>>> plt.figure() ##<matplotlib.figure.Figure object at 0x069BBB50> ##>>> x=np.linspace(0,3,100);plt.plot(x,np.sin(x),x,signal.medfilt(np.sin(x), kernel_size=3)) # remove old version ##def movmeanvar(x, windowsize=3, valid='same'): ## ''' ## this should also work along axis or at least for columns ## ''' ## n = x.shape[0] ## x = expandarr(x, windowsize - 1) ## takeslice = slice(windowsize-1, n + windowsize-1) ## avgkern = (np.ones(windowsize)/float(windowsize)) ## m = np.correlate(x, avgkern, 'same')#[takeslice] ## print(m.shape) ## print(x.shape) ## xm = x - m ## v = np.correlate(x*x, avgkern, 'same') - m**2 ## v1 = np.correlate(xm*xm, avgkern, valid) #not correct for var of window ###>>> np.correlate(xm*xm,np.array([1,1,1])/3.0,'valid')-np.correlate(xm*xm,np.array([1,1,1])/3.0,'valid')**2 ## return m[takeslice], v[takeslice], v1 def movmean(x, windowsize=3, lag='lagged'): '''moving window mean Parameters ---------- x : array time series data windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- mk : array moving mean, with same shape as x Notes ----- for leading and lagging the data array x is extended by the closest value of the array ''' return movmoment(x, 1, windowsize=windowsize, lag=lag) def movvar(x, windowsize=3, lag='lagged'): '''moving window variance Parameters ---------- x : array time series data windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- mk : array moving variance, with same shape as x ''' m1 = movmoment(x, 1, windowsize=windowsize, lag=lag) m2 = movmoment(x, 2, windowsize=windowsize, lag=lag) return m2 - m1*m1 def movmoment(x, k, windowsize=3, lag='lagged'): '''non-central moment Parameters ---------- x : array time series data windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- mk : array k-th moving non-central moment, with same shape as x Notes ----- If data x is 2d, then moving moment is calculated for each column. ''' windsize = windowsize #if windsize is even should it raise ValueError if lag == 'lagged': #lead = -0 + windsize #windsize//2 lead = -0# + (windsize-1) + windsize//2 sl = slice((windsize-1) or None, -2*(windsize-1) or None) elif lag == 'centered': lead = -windsize//2 #0#-1 #+ #(windsize-1) sl = slice((windsize-1)+windsize//2 or None, -(windsize-1)-windsize//2 or None) elif lag == 'leading': #lead = -windsize +1#+1 #+ (windsize-1)#//2 +1 lead = -windsize +2 #-windsize//2 +1 sl = slice(2*(windsize-1)+1+lead or None, -(2*(windsize-1)+lead)+1 or None) else: raise ValueError avgkern = (np.ones(windowsize)/float(windowsize)) xext = expandarr(x, windsize-1) #Note: expandarr increases the array size by 2*(windsize-1) #sl = slice(2*(windsize-1)+1+lead or None, -(2*(windsize-1)+lead)+1 or None) print(sl) if xext.ndim == 1: return np.correlate(xext**k, avgkern, 'full')[sl] #return np.correlate(xext**k, avgkern, 'same')[windsize-lead:-(windsize+lead)] else: print(xext.shape) print(avgkern[:,None].shape) # try first with 2d along columns, possibly ndim with axis return signal.correlate(xext**k, avgkern[:,None], 'full')[sl,:] #x=0.5**np.arange(10);xm=x-x.mean();a=np.correlate(xm,[1],'full') #x=0.5**np.arange(3);np.correlate(x,x,'same') ##>>> x=0.5**np.arange(10);xm=x-x.mean();a=np.correlate(xm,xo,'full') ## ##>>> xo=np.ones(10);d=np.correlate(xo,xo,'full') ##>>> xo ##xo=np.ones(10);d=np.correlate(xo,xo,'full') ##>>> x=np.ones(10);xo=x-x.mean();a=np.correlate(xo,xo,'full') ##>>> xo=np.ones(10);d=np.correlate(xo,xo,'full') ##>>> d ##array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 9., ## 8., 7., 6., 5., 4., 3., 2., 1.]) ##def ccovf(): ## pass ## #x=0.5**np.arange(10);xm=x-x.mean();a=np.correlate(xm,xo,'full') __all__ = ['movorder', 'movmean', 'movvar', 'movmoment'] if __name__ == '__main__': print('\ncheckin moving mean and variance') nobs = 10 x = np.arange(nobs) ws = 3 ave = np.array([ 0., 1/3., 1., 2., 3., 4., 5., 6., 7., 8., 26/3., 9]) va = np.array([[ 0. , 0. ], [ 0.22222222, 0.88888889], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.22222222, 0.88888889], [ 0. , 0. ]]) ave2d = np.c_[ave, 2*ave] print(movmean(x, windowsize=ws, lag='lagged')) print(movvar(x, windowsize=ws, lag='lagged')) print([np.var(x[i-ws:i]) for i in range(ws, nobs)]) m1 = movmoment(x, 1, windowsize=3, lag='lagged') m2 = movmoment(x, 2, windowsize=3, lag='lagged') print(m1) print(m2) print(m2 - m1*m1) # this implicitly also tests moment assert_array_almost_equal(va[ws-1:,0], movvar(x, windowsize=3, lag='leading')) assert_array_almost_equal(va[ws//2:-ws//2+1,0], movvar(x, windowsize=3, lag='centered')) assert_array_almost_equal(va[:-ws+1,0], movvar(x, windowsize=ws, lag='lagged')) print('\nchecking moving moment for 2d (columns only)') x2d = np.c_[x, 2*x] print(movmoment(x2d, 1, windowsize=3, lag='centered')) print(movmean(x2d, windowsize=ws, lag='lagged')) print(movvar(x2d, windowsize=ws, lag='lagged')) assert_array_almost_equal(va[ws-1:,:], movvar(x2d, windowsize=3, lag='leading')) assert_array_almost_equal(va[ws//2:-ws//2+1,:], movvar(x2d, windowsize=3, lag='centered')) assert_array_almost_equal(va[:-ws+1,:], movvar(x2d, windowsize=ws, lag='lagged')) assert_array_almost_equal(ave2d[ws-1:], movmoment(x2d, 1, windowsize=3, lag='leading')) assert_array_almost_equal(ave2d[ws//2:-ws//2+1], movmoment(x2d, 1, windowsize=3, lag='centered')) assert_array_almost_equal(ave2d[:-ws+1], movmean(x2d, windowsize=ws, lag='lagged')) from scipy import ndimage print(ndimage.filters.correlate1d(x2d, np.array([1,1,1])/3., axis=0)) #regression test check xg = np.array([ 0. , 0.1, 0.3, 0.6, 1. , 1.5, 2.1, 2.8, 3.6, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, 24.5, 25.5, 26.5, 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5, 36.5, 37.5, 38.5, 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5, 48.5, 49.5, 50.5, 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5, 60.5, 61.5, 62.5, 63.5, 64.5, 65.5, 66.5, 67.5, 68.5, 69.5, 70.5, 71.5, 72.5, 73.5, 74.5, 75.5, 76.5, 77.5, 78.5, 79.5, 80.5, 81.5, 82.5, 83.5, 84.5, 85.5, 86.5, 87.5, 88.5, 89.5, 90.5, 91.5, 92.5, 93.5, 94.5]) assert_array_almost_equal(xg, movmean(np.arange(100), 10,'lagged')) xd = np.array([ 0.3, 0.6, 1. , 1.5, 2.1, 2.8, 3.6, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, 24.5, 25.5, 26.5, 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5, 36.5, 37.5, 38.5, 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5, 48.5, 49.5, 50.5, 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5, 60.5, 61.5, 62.5, 63.5, 64.5, 65.5, 66.5, 67.5, 68.5, 69.5, 70.5, 71.5, 72.5, 73.5, 74.5, 75.5, 76.5, 77.5, 78.5, 79.5, 80.5, 81.5, 82.5, 83.5, 84.5, 85.5, 86.5, 87.5, 88.5, 89.5, 90.5, 91.5, 92.5, 93.5, 94.5, 95.4, 96.2, 96.9, 97.5, 98. , 98.4, 98.7, 98.9, 99. ]) assert_array_almost_equal(xd, movmean(np.arange(100), 10,'leading')) xc = np.array([ 1.36363636, 1.90909091, 2.54545455, 3.27272727, 4.09090909, 5. , 6. , 7. , 8. , 9. , 10. , 11. , 12. , 13. , 14. , 15. , 16. , 17. , 18. , 19. , 20. , 21. , 22. , 23. , 24. , 25. , 26. , 27. , 28. , 29. , 30. , 31. , 32. , 33. , 34. , 35. , 36. , 37. , 38. , 39. , 40. , 41. , 42. , 43. , 44. , 45. , 46. , 47. , 48. , 49. , 50. , 51. , 52. , 53. , 54. , 55. , 56. , 57. , 58. , 59. , 60. , 61. , 62. , 63. , 64. , 65. , 66. , 67. , 68. , 69. , 70. , 71. , 72. , 73. , 74. , 75. , 76. , 77. , 78. , 79. , 80. , 81. , 82. , 83. , 84. , 85. , 86. , 87. , 88. , 89. , 90. , 91. , 92. , 93. , 94. , 94.90909091, 95.72727273, 96.45454545, 97.09090909, 97.63636364]) assert_array_almost_equal(xc, movmean(np.arange(100), 11,'centered'))
bsd-3-clause
akrherz/iem
scripts/climodat/check_database.py
1
1942
"""Rectify climodat database entries.""" from io import StringIO import sys import pandas as pd from pandas.io.sql import read_sql from pyiem.network import Table as NetworkTable from pyiem.util import get_dbconn, logger LOG = logger() def main(argv): """Go Main""" state = argv[1] nt = NetworkTable(f"{state}CLIMATE", only_online=False) pgconn = get_dbconn("coop") df = read_sql( f"SELECT station, year, day from alldata_{state} " "ORDER by station, day", pgconn, index_col=None, ) for station, gdf in df.groupby("station"): if station not in nt.sts: LOG.info( "station: %s is unknown to %sCLIMATE, skip", station, state ) continue # Make sure that our data archive starts on the first of a month minday = gdf["day"].min().replace(day=1) missing = pd.date_range(minday, gdf["day"].max()).difference( gdf["day"] ) if missing.empty: continue LOG.info( "station: %s, missing: %s [%s - %s] has:%s days", station, len(missing), missing.min().date(), missing.max().date(), len(gdf.index), ) sio = StringIO() for day in missing: sio.write( ("%s,%s,%s,%s,%s\n") % ( station, day, "%02i%02i" % (day.month, day.day), day.year, day.month, ) ) sio.seek(0) cursor = pgconn.cursor() cursor.copy_from( sio, f"alldata_{state.lower()}", columns=("station", "day", "sday", "year", "month"), sep=",", ) del sio cursor.close() pgconn.commit() if __name__ == "__main__": main(sys.argv)
mit
bl4ckdu5t/registron
setup.py
6
6544
#! /usr/bin/env python #----------------------------------------------------------------------------- # Copyright (c) 2013, PyInstaller Development Team. # # Distributed under the terms of the GNU General Public License with exception # for distributing bootloader. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- import os import stat from setuptools import setup, find_packages from distutils.command.build_py import build_py from distutils.command.sdist import sdist from PyInstaller import get_version import PyInstaller.utils.git DESC = ('Converts (packages) Python programs into stand-alone executables, ' 'under Windows, Linux, Mac OS X, AIX and Solaris.') LONG_DESC = """ PyInstaller is a program that converts (packages) Python programs into stand-alone executables, under Windows, Linux, Mac OS X, AIX and Solaris. Its main advantages over similar tools are that PyInstaller works with any version of Python since 2.3, it builds smaller executables thanks to transparent compression, it is fully multi-platform, and uses the OS support to load the dynamic libraries, thus ensuring full compatibility. The main goal of PyInstaller is to be compatible with 3rd-party packages out-of-the-box. This means that, with PyInstaller, all the required tricks to make external packages work are already integrated within PyInstaller itself so that there is no user intervention required. You'll never be required to look for tricks in wikis and apply custom modification to your files or your setup scripts. As an example, libraries like PyQt, Django or matplotlib are fully supported, without having to handle plugins or external data files manually. """ CLASSIFIERS = """ Classifier: Development Status :: 5 - Production/Stable Classifier: Environment :: Console Classifier: Intended Audience :: Developers Classifier: Intended Audience :: Other Audience Classifier: Intended Audience :: System Administrators Classifier: License :: OSI Approved :: GNU General Public License v2 (GPLv2) Classifier: Natural Language :: English Classifier: Operating System :: MacOS :: MacOS X Classifier: Operating System :: Microsoft :: Windows Classifier: Operating System :: POSIX Classifier: Operating System :: POSIX :: AIX Classifier: Operating System :: POSIX :: Linux Classifier: Operating System :: POSIX :: SunOS/Solaris Classifier: Programming Language :: C Classifier: Programming Language :: Python Classifier: Programming Language :: Python :: 2 Classifier: Programming Language :: Python :: 2.4 Classifier: Programming Language :: Python :: 2.5 Classifier: Programming Language :: Python :: 2.6 Classifier: Programming Language :: Python :: 2.7 Classifier: Programming Language :: Python :: 2 :: Only Classifier: Programming Language :: Python :: Implementation :: CPython Classifier: Topic :: Software Development Classifier: Topic :: Software Development :: Build Tools Classifier: Topic :: System :: Installation/Setup Classifier: Topic :: System :: Software Distribution Classifier: Topic :: Utilities """.splitlines() # Make the distribution files to always report the git-revision used # then building the distribution packages. This is done by replacing # PyInstaller/utils/git.py within the dist/build by a fake-module # which always returns the current git-revision. The original # source-file is unchanged. # # This has to be done in 'build_py' for bdist-commands and in 'sdist' # for sdist-commands. def _write_git_version_file(filename): """ Fake PyInstaller.utils.git.py to always return the current revision. """ git_version = PyInstaller.utils.git.get_repo_revision() st = os.stat(filename) # remove the file first for the case it's hard-linked to the # original file os.remove(filename) git_mod = open(filename, 'w') template = "def get_repo_revision(): return %r" try: git_mod.write(template % git_version) finally: git_mod.close() os.chmod(filename, stat.S_IMODE(st.st_mode)) class my_build_py(build_py): def build_module(self, module, module_file, package): res = build_py.build_module(self, module, module_file, package) if module == 'git' and package == 'PyInstaller.utils': filename = self.get_module_outfile( self.build_lib, package.split('.'), module) _write_git_version_file(filename) return res class my_sdist(sdist): def make_release_tree(self, base_dir, files): res = sdist.make_release_tree(self, base_dir, files) build_py = self.get_finalized_command('build_py') filename = build_py.get_module_outfile( base_dir, ['PyInstaller', 'utils'], 'git') _write_git_version_file(filename) return res setup( install_requires=['distribute'], name='PyInstaller', version=get_version(), description=DESC, long_description=LONG_DESC, keywords='packaging, standalone executable, pyinstaller, macholib, freeze, py2exe, py2app, bbfreeze', author='Giovanni Bajo, Hartmut Goebel, Martin Zibricky', author_email='[email protected]', maintainer='Giovanni Bajo, Hartmut Goebel, Martin Zibricky', maintainer_email='[email protected]', license=('GPL license with a special exception which allows to use ' 'PyInstaller to build and distribute non-free programs ' '(including commercial ones)'), url='http://www.pyinstaller.org', download_url='https://sourceforge.net/projects/pyinstaller/files', classifiers=CLASSIFIERS, zip_safe=False, packages=find_packages(), package_data={ # This includes precompiled bootloaders. 'PyInstaller': ['bootloader/*/*'], # This file is necessary for rthooks (runtime hooks). 'PyInstaller.loader': ['rthooks.dat'], }, include_package_data=True, cmdclass = { 'sdist': my_sdist, 'build_py': my_build_py, }, entry_points=""" [console_scripts] pyinstaller=PyInstaller.main:run pyi-archive_viewer=PyInstaller.cliutils.archive_viewer:run pyi-bindepend=PyInstaller.cliutils.bindepend:run pyi-build=PyInstaller.cliutils.build:run pyi-grab_version=PyInstaller.cliutils.grab_version:run pyi-make_comserver=PyInstaller.cliutils.make_comserver:run pyi-makespec=PyInstaller.cliutils.makespec:run pyi-set_version=PyInstaller.cliutils.set_version:run """ )
mit
switch-model/switch-hawaii-studies
database/build_database/tracking_pv.py
1
19745
#!/usr/bin/python # -*- coding: utf-8 -*- # sample SAM/NSRDB code available here: # https://sam.nrel.gov/samples # https://developer.nrel.gov/docs/solar/pvwatts-v5/ # https://nsrdb.nrel.gov/api-instructions # https://sam.nrel.gov/sdk # note: this script can be run piecemeal from iPython/Jupyter, or all-at-once from the command line # NOTE: this uses pandas DataFrames for most calculations, and breaks the work into batches # to avoid exceeding available memory (e.g., do one load zone worth of projects at a time, # then calculate one grid cell at a time and add it to the relevant projects). However, this # makes the code complex and the logic unclear, so it would probably be better to use a database, # where everything can be calculated at once in one query. (e.g. get a list of grid cells for all # projects from the database, then calculate cap factor for each grid cell and store it incrementally # in a cell cap factor table, then run one query which joins project -> project cell -> cell to # get hourly cap factors for all projects. This could use temporary tables for the cells, which # are then discarded. # NOTE: this stores all the hourly capacity factors in the postgresql database. That makes it # difficult to share with others. An alternative would be to store a separate text file for each # technology for each day and sync those via github. Disadvantages of that: querying is more complex # and we have to specify a reference time zone before saving the data (day boundaries are time zone # specific). Alternative: store in postgresql and publish a dump of the database. from __future__ import print_function, division import os, re, sys, struct, ctypes, datetime import numpy as np import pandas as pd import dateutil.tz # should be available, since pandas uses it import sqlalchemy from util import execute, executemany, switch_db, switch_host import shared_tables # number of digits that latitude and longitude should be rounded to before matching # to the nsrdb files lat_lon_digits = 2 # location of main database directory relative to this script file database_rel_dir = '..' # location of nsrdb hourly data files relative to the main database directory # all subdirectories of this one will be scanned for data files nsrdb_dir = 'NSRDB Hourly Irradiance Data' # pattern to match lat and lon in nsrdb file name (all matching files will # be read for that site, e.g., for multiple years); this should specify # named groups for at least 'lat' and 'lon'. # note: we don't try too hard to match an exact pattern of digits and symbols # (just use .* for each group). If the expressions can't be parsed, we let them # generate errors later. nsrdb_file_regex = re.compile(r'^(?P<stn>.*)_(?P<lat>.*)_(?P<lon>.*)_(?P<year>.*)[.]csv$') # location of System Advisor Model SDK relative to this script file sam_sdk_rel_dir = 'System Advisor Model' # load zone for which data is being prepared # TODO: add load zone to cluster input file load_zone = 'Oahu' # tuple of technology name and array_type for pvwatts # note: Appendix F of 2016-04-01 PSIP uses 2 for tracking, # but 3 (backtracking) seems like a better choice central_solar_techs = pd.DataFrame(dict( technology=['CentralFixedPV', 'CentralTrackingPV'], array_type=[0, 3], acres_per_mw=[7.6, 8.7], # for projects < 20 MW from p. v of http://www.nrel.gov/docs/fy13osti/56290.pdf )) # index the central_solar_techs and derive some useful values central_solar_techs.set_index('technology', inplace=True) # 1 / [(m2/acre) * (acre/mw)] central_solar_techs['mw_per_m2'] = (1.0 / (4046.86 * central_solar_techs['acres_per_mw'])) # find the database directory and System Advisor Model try: curdir = os.path.dirname(__file__) except NameError: # no __file__ variable; we're copying and pasting in an interactive session curdir = os.getcwd() pd.set_option('display.width', 200) database_dir = os.path.normpath(os.path.join(curdir, database_rel_dir)) if not os.path.exists(database_dir): raise RuntimeError("Unable to find database directory at " + database_dir) sam_sdk_dir = os.path.normpath(os.path.join(curdir, sam_sdk_rel_dir)) if not os.path.exists(sam_sdk_dir): raise RuntimeError("Unable to find System Advisor Model (SAM) SDK directory at " + sam_sdk_dir) # Load the System Advisor Model (SAM) SDK API # Note: SAM SDK can be downloaded from https://sam.nrel.gov/sdk # nsrdb/sam code is based on examples in sscapi.py itself # Also see https://nsrdb.nrel.gov/api-instructions and sam-sdk/ssc_guide.pdf # preload ssc library, so sscapi won't fail if it's not in the library search path if sys.platform == 'win32' or sys.platform == 'cygwin': if 8 * struct.calcsize("P") == 64: path = ['win64', 'ssc.dll'] else: path = ['win32', 'ssc.dll'] elif sys.platform == 'darwin': path = ['osx64', 'ssc.dylib'] elif sys.platform == 'linux2': path = ['linux64', 'ssc.so'] else: raise RuntimeError('Unsupported operating system: {}'.format(sys.platform)) ssc_dll = ctypes.CDLL(os.path.join(sam_sdk_dir, *path)) # add search path to sscapi.py sys.path.append(os.path.join(sam_sdk_dir, 'languages', 'python')) import sscapi ssc = sscapi.PySSC() pvwatts5 = ssc.module_create("pvwattsv5") ssc.module_exec_set_print(0) # setup database db_engine = sqlalchemy.create_engine('postgresql://' + switch_host + '/' + switch_db) def main(): tracking_pv() distributed_pv() shared_tables.calculate_interconnect_costs() def tracking_pv(): # make a list of all available NSRDB data files nsrdb_file_dict, years = get_nsrdb_file_dict() cluster_cell = pd.DataFrame.from_csv( db_path('GIS/Utility-Scale Solar Sites/solar_cluster_nsrdb_grid_renamed.csv'), index_col='gridclstid' ) cluster_cell = cluster_cell[cluster_cell['solar_covg']>0] cell = cluster_cell.groupby('nsrdb_id') cluster = cluster_cell.groupby('cluster_id') cluster_total_solar_area = cluster['solar_area'].sum() cluster_ids = cluster.groups.keys() # list of all cluster ids, for convenience cluster_id_digits = len(str(max(cluster_ids))) # max number of digits for a cluster id # site_ids for each cluster_id (these distinguish PV sites from wind sites that may have the same number) site_ids = ['PV_' + str(cluster_id).zfill(cluster_id_digits) for cluster_id in cluster_ids] # calculate weighted average lat and lon for each cluster # (note: the axis=0 and axis=1 keep pandas from generating lots of nans due to # trying to match column name in addition to row index) cluster_coords = pd.concat([ cluster_cell['cluster_id'], cluster_cell[['solar_lat', 'solar_lon']].multiply(cluster_cell['solar_area'], axis=0) ], axis=1).groupby('cluster_id').sum().div(cluster_total_solar_area, axis=0) cluster_coords.columns=['latitude', 'longitude'] # get list of technologies to be defined technologies = central_solar_techs.index.values # calculate capacity factors for all projects # This dict will hold vectors of capacity factors for each cluster for each year and technology. # This arrangement is simpler than using a DataFrame because we don't yet know the # indexes (timesteps) of the data for each year. cluster_cap_factors = dict() for tech in technologies: # go through all the needed nsrdb cells and add them to the capacity factor for the # relevant cluster and year for cell_id, grp in cell: # grp has one row for each cluster that uses data from this cell lat = round_coord(grp['nsrdb_lat'].iloc[0]) lon = round_coord(grp['nsrdb_lon'].iloc[0]) for year in years: cap_factors = get_cap_factors(nsrdb_file_dict[lat, lon, year], central_solar_techs.loc[tech, 'array_type']) # note: iterrows() would convert everything to a single (float) series, but itertuples doesn't for clst in grp.itertuples(): contrib = cap_factors * clst.solar_area / cluster_total_solar_area[clst.cluster_id] key = (tech, clst.cluster_id, year) if key in cluster_cap_factors: cluster_cap_factors[key] += contrib else: cluster_cap_factors[key] = contrib # get timesteps for each year (based on lat and lon of first cell in the list) timesteps = dict() lat = round_coord(cluster_cell['nsrdb_lat'].iloc[0]) lon = round_coord(cluster_cell['nsrdb_lon'].iloc[0]) for year in years: timesteps[year] = get_timesteps(nsrdb_file_dict[(lat, lon, year)]) # make an index of all timesteps timestep_index = pd.concat([pd.DataFrame(index=x) for x in timesteps.values()]).index.sort_values() # make a single dataframe to hold all the data cap_factor_df = pd.DataFrame( index=timestep_index, columns=pd.MultiIndex.from_product([technologies, site_ids]), dtype=float ) # assign values to the dataframe for ((tech, cluster_id, year), cap_factors) in cluster_cap_factors.iteritems(): cap_factor_df.update(pd.DataFrame( cap_factors, index=timesteps[year], columns=[(tech, 'PV_' + str(cluster_id).zfill(cluster_id_digits))] )) cap_factor_df.columns.names = ['technology', 'site'] cap_factor_df.index.names=['date_time'] # add load_zone and orientation to the index cap_factor_df['load_zone'] = load_zone cap_factor_df['orientation'] = 'na' cap_factor_df.set_index(['load_zone', 'orientation'], append=True, inplace=True) # convert to database orientation, with natural order for indexes, # but also keep as a DataFrame cap_factor_df = pd.DataFrame( {'cap_factor': cap_factor_df.stack(cap_factor_df.columns.names)} ) # sort table, then switch to using z, t, s, o as index (to match with project table) cap_factor_df = cap_factor_df.reorder_levels( ['load_zone', 'technology', 'site', 'orientation', 'date_time'] ).sort_index().reset_index('date_time') # make a dataframe showing potential projects (same structure as "project" table) # note: for now we don't really handle multiple load zones and we don't worry about orientation # (may eventually have projects available with different azimuth and slope) # This concatenates a list of DataFrames, one for each technology project_df = pd.concat([ pd.DataFrame(dict( load_zone=load_zone, technology=tech, site=site_ids, orientation='na', max_capacity=cluster_total_solar_area*central_solar_techs.loc[tech, 'mw_per_m2'], latitude=cluster_coords['latitude'], longitude=cluster_coords['longitude'], )) for tech in technologies ], axis=0).set_index(['load_zone', 'technology', 'site', 'orientation']) # store data in postgresql tables shared_tables.create_table("project") execute("DELETE FROM project WHERE technology IN %s;", [tuple(technologies)]) project_df.to_sql('project', db_engine, if_exists='append') # retrieve the project IDs (created automatically in the database) project_ids = pd.read_sql( "SELECT project_id, load_zone, technology, site, orientation " + "FROM project WHERE technology IN %(techs)s;", db_engine, index_col=['load_zone', 'technology', 'site', 'orientation'], params={'techs': tuple(technologies)} ) cap_factor_df['project_id'] = project_ids['project_id'] # convert date_time values into strings for insertion into postgresql. # Inserting a timezone-aware DatetimeIndex into postgresql fails; see # http://stackoverflow.com/questions/35435424/pandas-to-sql-gives-valueerror-with-timezone-aware-column/35552061 # note: the string conversion is pretty slow cap_factor_df['date_time'] = pd.DatetimeIndex(cap_factor_df['date_time']).strftime("%Y-%m-%d %H:%M:%S%z") cap_factor_df.set_index(['project_id', 'date_time'], inplace=True) # Do we need error checking here? If any projects aren't in cap_factor_df, they'll # create single rows with NaNs (and any prior existing cap_factors for them will # get dropped below). # If any rows in cap_factor_df aren't matched to a project, they'll go in with # a null project_id. shared_tables.create_table("cap_factor") # only created if it doesn't exist shared_tables.drop_indexes("cap_factor") # drop and recreate is faster than incremental sorting execute("DELETE FROM cap_factor WHERE project_id IN %s;", [tuple(project_ids['project_id'])]) cap_factor_df.to_sql('cap_factor', db_engine, if_exists='append', chunksize=10000) shared_tables.create_indexes("cap_factor") def get_cap_factors(file, array_type): dat = ssc.data_create() # set system parameters # These match Table 7 of Appendix F of 2016-04-01 PSIP Book 1 unless otherwise noted dc_ac_ratio = 1.5 ssc.data_set_number(dat, 'system_capacity', 1.0 * dc_ac_ratio) # dc, kW (we want 1000 kW AC) ssc.data_set_number(dat, 'dc_ac_ratio', dc_ac_ratio) ssc.data_set_number(dat, 'tilt', 0) ssc.data_set_number(dat, 'azimuth', 180) ssc.data_set_number(dat, 'inv_eff', 96) ssc.data_set_number(dat, 'losses', 14.0757) # array_type: 0=fixed rack, 1=fixed roof, 2=single-axis, 3=single-axis backtracked ssc.data_set_number(dat, 'array_type', array_type) # gcr: ground cover ratio (may be used for backtrack and shading calculations) ssc.data_set_number(dat, 'gcr', 0.4) ssc.data_set_number(dat, 'adjust:constant', 0) # module_type: 0=standard, 1=premium, 2=thin film # I set it to a reasonable value (probably default) ssc.data_set_number(dat, 'module_type', 0) # specify the file holding the solar data ssc.data_set_string(dat, 'solar_resource_file', file) # run PVWatts5 if ssc.module_exec(pvwatts5, dat) == 0: err = 'PVWatts V5 simulation error:\n' idx = 1 msg = ssc.module_log(pvwatts5, 0) while (msg is not None): err += '\t: {}\n'.format(msg) msg = ssc.module_log(pvwatts5, idx) idx += 1 raise RuntimeError(err.strip()) else: # get power production in kW; for a 1 kW AC system this is also the capacity factor cap_factors = np.asarray(ssc.data_get_array(dat, 'gen'), dtype=float) ssc.data_free(dat) return cap_factors def get_timesteps(file): """Retrieve timesteps from nsrdb file as pandas datetime series. Based on code in sscapi.run_test2().""" dat = ssc.data_create() ssc.data_set_string(dat, 'file_name', file) ssc.module_exec_simple_no_thread('wfreader', dat) # create a tzinfo structure for this file # note: nsrdb uses a fixed offset from UTC, i.e., no daylight saving time tz_offset = ssc.data_get_number(dat, 'tz') tzinfo = dateutil.tz.tzoffset(None, 3600 * tz_offset) df = pd.DataFrame(dict( year=ssc.data_get_array(dat, 'year'), month=ssc.data_get_array(dat, 'month'), day=ssc.data_get_array(dat, 'day'), hour=ssc.data_get_array(dat, 'hour'), minute=ssc.data_get_array(dat, 'minute'), )).astype(int) ssc.data_free(dat) # create pandas DatetimeIndex for the timesteps in the file # note: we ignore minutes because time indexes always refer to the start of the hour # in our database # note: if you use tz-aware datetime objects with pd.DatetimeIndex(), it converts them # to UTC and makes them tz-naive. If you use pd.to_datetime() to make a column of datetime # values, you have to specify UTC=True and then it does the same thing. # So we start with naive datetimes and then specify the tzinfo when creating the # DatetimeIndex. (We could also use idx.localize(tzinfo) after creating a naive DatetimeIndex.) timesteps = pd.DatetimeIndex( [datetime.datetime(year=t.year, month=t.month, day=t.day, hour=t.hour) for t in df.itertuples()], tz=tzinfo ) return timesteps # # This class is based on http://stackoverflow.com/questions/17976063/how-to-create-tzinfo-when-i-have-utc-offset # # It does the same thing as dateutil.tz.tzoffset, so we use that instead. # class TimeZoneInfo(datetime.tzinfo): # """tzinfo derived concrete class""" # _dst = datetime.timedelta(0) # _name = None # def __init__(self, offset_hours): # self._offset = datetime.timedelta(hours=offset_hours) # def utcoffset(self, dt): # return self._offset # def dst(self, dt): # return self.__class__._dst # def tzname(self, dt): # return self.__class__._name def db_path(path): """Convert the path specified relative to the database directory into a real path. For convenience, this also converts '/' file separators to whateer is appropriate for the current operating system.""" return os.path.join(database_dir, *path.split('/')) def round_coord(coord): # convert lat or lon from whatever form it's currently in to a standard form (2-digit rounded float) # this gives more stable matching in dictionaries, indexes, etc. return round(float(coord), 2) def get_nsrdb_file_dict(): # get a list of all the files that have data for each lat/lon pair # (parsed from the file names) file_dict = dict() years = set() for dir_name, dirs, files in os.walk(db_path(nsrdb_dir)): for f in files: file_path = os.path.join(dir_name, f) m = nsrdb_file_regex.match(f) if m is None: # print "Skipping unrecognized file {}".format(file_path) pass else: lat = round_coord(m.group('lat')) lon = round_coord(m.group('lon')) year = int(m.group('year')) file_dict[lat, lon, year] = file_path years.add(year) return file_dict, years def distributed_pv(): # for now, just reuse old data # store data in postgresql tables shared_tables.create_table("project") shared_tables.create_table("cap_factor") # remove old records (best before removing indexes) execute(""" DELETE FROM cap_factor WHERE project_id IN (SELECT project_id FROM project WHERE technology = 'DistPV'); """) execute(""" DELETE FROM project WHERE technology = 'DistPV'; """) # remove indexes shared_tables.drop_indexes("cap_factor") # drop and recreate is faster than incremental sorting execute(""" INSERT INTO project (load_zone, technology, site, orientation, max_capacity) SELECT load_zone, technology, 'DistPV' AS site, orientation, max_capacity FROM max_capacity_pre_2016_06_21 WHERE technology = 'DistPV'; """) execute(""" INSERT INTO cap_factor (project_id, date_time, cap_factor) SELECT project_id, date_time, cap_factor FROM cap_factor_pre_2016_06_21 cf JOIN project USING (load_zone, technology, orientation) WHERE cf.technology = 'DistPV'; """) # restore indexes shared_tables.create_indexes("cap_factor") if __name__ == '__main__': main()
apache-2.0
manashmndl/scikit-learn
sklearn/metrics/cluster/supervised.py
207
27395
"""Utilities to evaluate the clustering performance of models Functions named as *_score return a scalar value to maximize: the higher the better. """ # Authors: Olivier Grisel <[email protected]> # Wei LI <[email protected]> # Diego Molla <[email protected]> # License: BSD 3 clause from math import log from scipy.misc import comb from scipy.sparse import coo_matrix import numpy as np from .expected_mutual_info_fast import expected_mutual_information from ...utils.fixes import bincount def comb2(n): # the exact version is faster for k == 2: use it by default globally in # this module instead of the float approximate variant return comb(n, 2, exact=1) def check_clusterings(labels_true, labels_pred): """Check that the two clusterings matching 1D integer arrays""" labels_true = np.asarray(labels_true) labels_pred = np.asarray(labels_pred) # input checks if labels_true.ndim != 1: raise ValueError( "labels_true must be 1D: shape is %r" % (labels_true.shape,)) if labels_pred.ndim != 1: raise ValueError( "labels_pred must be 1D: shape is %r" % (labels_pred.shape,)) if labels_true.shape != labels_pred.shape: raise ValueError( "labels_true and labels_pred must have same size, got %d and %d" % (labels_true.shape[0], labels_pred.shape[0])) return labels_true, labels_pred def contingency_matrix(labels_true, labels_pred, eps=None): """Build a contengency matrix describing the relationship between labels. Parameters ---------- labels_true : int array, shape = [n_samples] Ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] Cluster labels to evaluate eps: None or float If a float, that value is added to all values in the contingency matrix. This helps to stop NaN propagation. If ``None``, nothing is adjusted. Returns ------- contingency: array, shape=[n_classes_true, n_classes_pred] Matrix :math:`C` such that :math:`C_{i, j}` is the number of samples in true class :math:`i` and in predicted class :math:`j`. If ``eps is None``, the dtype of this array will be integer. If ``eps`` is given, the dtype will be float. """ classes, class_idx = np.unique(labels_true, return_inverse=True) clusters, cluster_idx = np.unique(labels_pred, return_inverse=True) n_classes = classes.shape[0] n_clusters = clusters.shape[0] # Using coo_matrix to accelerate simple histogram calculation, # i.e. bins are consecutive integers # Currently, coo_matrix is faster than histogram2d for simple cases contingency = coo_matrix((np.ones(class_idx.shape[0]), (class_idx, cluster_idx)), shape=(n_classes, n_clusters), dtype=np.int).toarray() if eps is not None: # don't use += as contingency is integer contingency = contingency + eps return contingency # clustering measures def adjusted_rand_score(labels_true, labels_pred): """Rand index adjusted for chance The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings. The raw RI score is then "adjusted for chance" into the ARI score using the following scheme:: ARI = (RI - Expected_RI) / (max(RI) - Expected_RI) The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of the number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation). ARI is a symmetric measure:: adjusted_rand_score(a, b) == adjusted_rand_score(b, a) Read more in the :ref:`User Guide <adjusted_rand_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] Ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] Cluster labels to evaluate Returns ------- ari : float Similarity score between -1.0 and 1.0. Random labelings have an ARI close to 0.0. 1.0 stands for perfect match. Examples -------- Perfectly maching labelings have a score of 1 even >>> from sklearn.metrics.cluster import adjusted_rand_score >>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> adjusted_rand_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Labelings that assign all classes members to the same clusters are complete be not always pure, hence penalized:: >>> adjusted_rand_score([0, 0, 1, 2], [0, 0, 1, 1]) # doctest: +ELLIPSIS 0.57... ARI is symmetric, so labelings that have pure clusters with members coming from the same classes but unnecessary splits are penalized:: >>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 2]) # doctest: +ELLIPSIS 0.57... If classes members are completely split across different clusters, the assignment is totally incomplete, hence the ARI is very low:: >>> adjusted_rand_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 References ---------- .. [Hubert1985] `L. Hubert and P. Arabie, Comparing Partitions, Journal of Classification 1985` http://www.springerlink.com/content/x64124718341j1j0/ .. [wk] http://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index See also -------- adjusted_mutual_info_score: Adjusted Mutual Information """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) n_samples = labels_true.shape[0] classes = np.unique(labels_true) clusters = np.unique(labels_pred) # Special limit cases: no clustering since the data is not split; # or trivial clustering where each document is assigned a unique cluster. # These are perfect matches hence return 1.0. if (classes.shape[0] == clusters.shape[0] == 1 or classes.shape[0] == clusters.shape[0] == 0 or classes.shape[0] == clusters.shape[0] == len(labels_true)): return 1.0 contingency = contingency_matrix(labels_true, labels_pred) # Compute the ARI using the contingency data sum_comb_c = sum(comb2(n_c) for n_c in contingency.sum(axis=1)) sum_comb_k = sum(comb2(n_k) for n_k in contingency.sum(axis=0)) sum_comb = sum(comb2(n_ij) for n_ij in contingency.flatten()) prod_comb = (sum_comb_c * sum_comb_k) / float(comb(n_samples, 2)) mean_comb = (sum_comb_k + sum_comb_c) / 2. return ((sum_comb - prod_comb) / (mean_comb - prod_comb)) def homogeneity_completeness_v_measure(labels_true, labels_pred): """Compute the homogeneity and completeness and V-Measure scores at once Those metrics are based on normalized conditional entropy measures of the clustering labeling to evaluate given the knowledge of a Ground Truth class labels of the same samples. A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class. A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster. Both scores have positive values between 0.0 and 1.0, larger values being desirable. Those 3 metrics are independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score values in any way. V-Measure is furthermore symmetric: swapping ``labels_true`` and ``label_pred`` will give the same score. This does not hold for homogeneity and completeness. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- homogeneity: float score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling completeness: float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling v_measure: float harmonic mean of the first two See also -------- homogeneity_score completeness_score v_measure_score """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) if len(labels_true) == 0: return 1.0, 1.0, 1.0 entropy_C = entropy(labels_true) entropy_K = entropy(labels_pred) MI = mutual_info_score(labels_true, labels_pred) homogeneity = MI / (entropy_C) if entropy_C else 1.0 completeness = MI / (entropy_K) if entropy_K else 1.0 if homogeneity + completeness == 0.0: v_measure_score = 0.0 else: v_measure_score = (2.0 * homogeneity * completeness / (homogeneity + completeness)) return homogeneity, completeness, v_measure_score def homogeneity_score(labels_true, labels_pred): """Homogeneity metric of a cluster labeling given a ground truth A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is not symmetric: switching ``label_true`` with ``label_pred`` will return the :func:`completeness_score` which will be different in general. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- homogeneity: float score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- completeness_score v_measure_score Examples -------- Perfect labelings are homogeneous:: >>> from sklearn.metrics.cluster import homogeneity_score >>> homogeneity_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Non-perfect labelings that further split classes into more clusters can be perfectly homogeneous:: >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 1, 2])) ... # doctest: +ELLIPSIS 1.0... >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 1.0... Clusters that include samples from different classes do not make for an homogeneous labeling:: >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 0, 1])) ... # doctest: +ELLIPSIS 0.0... >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 0, 0])) ... # doctest: +ELLIPSIS 0.0... """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[0] def completeness_score(labels_true, labels_pred): """Completeness metric of a cluster labeling given a ground truth A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is not symmetric: switching ``label_true`` with ``label_pred`` will return the :func:`homogeneity_score` which will be different in general. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- completeness: float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- homogeneity_score v_measure_score Examples -------- Perfect labelings are complete:: >>> from sklearn.metrics.cluster import completeness_score >>> completeness_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Non-perfect labelings that assign all classes members to the same clusters are still complete:: >>> print(completeness_score([0, 0, 1, 1], [0, 0, 0, 0])) 1.0 >>> print(completeness_score([0, 1, 2, 3], [0, 0, 1, 1])) 1.0 If classes members are split across different clusters, the assignment cannot be complete:: >>> print(completeness_score([0, 0, 1, 1], [0, 1, 0, 1])) 0.0 >>> print(completeness_score([0, 0, 0, 0], [0, 1, 2, 3])) 0.0 """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[1] def v_measure_score(labels_true, labels_pred): """V-measure cluster labeling given a ground truth. This score is identical to :func:`normalized_mutual_info_score`. The V-measure is the harmonic mean between homogeneity and completeness:: v = 2 * (homogeneity * completeness) / (homogeneity + completeness) This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- v_measure: float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- homogeneity_score completeness_score Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import v_measure_score >>> v_measure_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> v_measure_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Labelings that assign all classes members to the same clusters are complete be not homogeneous, hence penalized:: >>> print("%.6f" % v_measure_score([0, 0, 1, 2], [0, 0, 1, 1])) ... # doctest: +ELLIPSIS 0.8... >>> print("%.6f" % v_measure_score([0, 1, 2, 3], [0, 0, 1, 1])) ... # doctest: +ELLIPSIS 0.66... Labelings that have pure clusters with members coming from the same classes are homogeneous but un-necessary splits harms completeness and thus penalize V-measure as well:: >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 1, 2])) ... # doctest: +ELLIPSIS 0.8... >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 0.66... If classes members are completely split across different clusters, the assignment is totally incomplete, hence the V-Measure is null:: >>> print("%.6f" % v_measure_score([0, 0, 0, 0], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 0.0... Clusters that include samples from totally different classes totally destroy the homogeneity of the labeling, hence:: >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 0, 0])) ... # doctest: +ELLIPSIS 0.0... """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[2] def mutual_info_score(labels_true, labels_pred, contingency=None): """Mutual Information between two clusterings The Mutual Information is a measure of the similarity between two labels of the same data. Where :math:`P(i)` is the probability of a random sample occurring in cluster :math:`U_i` and :math:`P'(j)` is the probability of a random sample occurring in cluster :math:`V_j`, the Mutual Information between clusterings :math:`U` and :math:`V` is given as: .. math:: MI(U,V)=\sum_{i=1}^R \sum_{j=1}^C P(i,j)\log\\frac{P(i,j)}{P(i)P'(j)} This is equal to the Kullback-Leibler divergence of the joint distribution with the product distribution of the marginals. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. contingency: None or array, shape = [n_classes_true, n_classes_pred] A contingency matrix given by the :func:`contingency_matrix` function. If value is ``None``, it will be computed, otherwise the given value is used, with ``labels_true`` and ``labels_pred`` ignored. Returns ------- mi: float Mutual information, a non-negative value See also -------- adjusted_mutual_info_score: Adjusted against chance Mutual Information normalized_mutual_info_score: Normalized Mutual Information """ if contingency is None: labels_true, labels_pred = check_clusterings(labels_true, labels_pred) contingency = contingency_matrix(labels_true, labels_pred) contingency = np.array(contingency, dtype='float') contingency_sum = np.sum(contingency) pi = np.sum(contingency, axis=1) pj = np.sum(contingency, axis=0) outer = np.outer(pi, pj) nnz = contingency != 0.0 # normalized contingency contingency_nm = contingency[nnz] log_contingency_nm = np.log(contingency_nm) contingency_nm /= contingency_sum # log(a / b) should be calculated as log(a) - log(b) for # possible loss of precision log_outer = -np.log(outer[nnz]) + log(pi.sum()) + log(pj.sum()) mi = (contingency_nm * (log_contingency_nm - log(contingency_sum)) + contingency_nm * log_outer) return mi.sum() def adjusted_mutual_info_score(labels_true, labels_pred): """Adjusted Mutual Information between two clusterings Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of clusters, regardless of whether there is actually more information shared. For two clusterings :math:`U` and :math:`V`, the AMI is given as:: AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [max(H(U), H(V)) - E(MI(U, V))] This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted Rand Index. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. Returns ------- ami: float(upperlimited by 1.0) The AMI returns a value of 1 when the two partitions are identical (ie perfectly matched). Random partitions (independent labellings) have an expected AMI around 0 on average hence can be negative. See also -------- adjusted_rand_score: Adjusted Rand Index mutual_information_score: Mutual Information (not adjusted for chance) Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import adjusted_mutual_info_score >>> adjusted_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> adjusted_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally in-complete, hence the AMI is null:: >>> adjusted_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 References ---------- .. [1] `Vinh, Epps, and Bailey, (2010). Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance, JMLR <http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf>`_ .. [2] `Wikipedia entry for the Adjusted Mutual Information <http://en.wikipedia.org/wiki/Adjusted_Mutual_Information>`_ """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) n_samples = labels_true.shape[0] classes = np.unique(labels_true) clusters = np.unique(labels_pred) # Special limit cases: no clustering since the data is not split. # This is a perfect match hence return 1.0. if (classes.shape[0] == clusters.shape[0] == 1 or classes.shape[0] == clusters.shape[0] == 0): return 1.0 contingency = contingency_matrix(labels_true, labels_pred) contingency = np.array(contingency, dtype='float') # Calculate the MI for the two clusterings mi = mutual_info_score(labels_true, labels_pred, contingency=contingency) # Calculate the expected value for the mutual information emi = expected_mutual_information(contingency, n_samples) # Calculate entropy for each labeling h_true, h_pred = entropy(labels_true), entropy(labels_pred) ami = (mi - emi) / (max(h_true, h_pred) - emi) return ami def normalized_mutual_info_score(labels_true, labels_pred): """Normalized Mutual Information between two clusterings Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale the results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual information is normalized by ``sqrt(H(labels_true) * H(labels_pred))`` This measure is not adjusted for chance. Therefore :func:`adjusted_mustual_info_score` might be preferred. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. Returns ------- nmi: float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling See also -------- adjusted_rand_score: Adjusted Rand Index adjusted_mutual_info_score: Adjusted Mutual Information (adjusted against chance) Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import normalized_mutual_info_score >>> normalized_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> normalized_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally in-complete, hence the NMI is null:: >>> normalized_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) classes = np.unique(labels_true) clusters = np.unique(labels_pred) # Special limit cases: no clustering since the data is not split. # This is a perfect match hence return 1.0. if (classes.shape[0] == clusters.shape[0] == 1 or classes.shape[0] == clusters.shape[0] == 0): return 1.0 contingency = contingency_matrix(labels_true, labels_pred) contingency = np.array(contingency, dtype='float') # Calculate the MI for the two clusterings mi = mutual_info_score(labels_true, labels_pred, contingency=contingency) # Calculate the expected value for the mutual information # Calculate entropy for each labeling h_true, h_pred = entropy(labels_true), entropy(labels_pred) nmi = mi / max(np.sqrt(h_true * h_pred), 1e-10) return nmi def entropy(labels): """Calculates the entropy for a labeling.""" if len(labels) == 0: return 1.0 label_idx = np.unique(labels, return_inverse=True)[1] pi = bincount(label_idx).astype(np.float) pi = pi[pi > 0] pi_sum = np.sum(pi) # log(a / b) should be calculated as log(a) - log(b) for # possible loss of precision return -np.sum((pi / pi_sum) * (np.log(pi) - log(pi_sum)))
bsd-3-clause
nelango/ViralityAnalysis
model/lib/nltk/parse/transitionparser.py
3
31227
# Natural Language Toolkit: Arc-Standard and Arc-eager Transition Based Parsers # # Author: Long Duong <[email protected]> # # Copyright (C) 2001-2015 NLTK Project # URL: <http://nltk.org/> # For license information, see LICENSE.TXT from __future__ import absolute_import from __future__ import division from __future__ import print_function import tempfile import pickle from os import remove from copy import deepcopy from operator import itemgetter try: from numpy import array from scipy import sparse from sklearn.datasets import load_svmlight_file from sklearn import svm except ImportError: pass from nltk.parse import ParserI, DependencyGraph, DependencyEvaluator class Configuration(object): """ Class for holding configuration which is the partial analysis of the input sentence. The transition based parser aims at finding set of operators that transfer the initial configuration to the terminal configuration. The configuration includes: - Stack: for storing partially proceeded words - Buffer: for storing remaining input words - Set of arcs: for storing partially built dependency tree This class also provides a method to represent a configuration as list of features. """ def __init__(self, dep_graph): """ :param dep_graph: the representation of an input in the form of dependency graph. :type dep_graph: DependencyGraph where the dependencies are not specified. """ # dep_graph.nodes contain list of token for a sentence self.stack = [0] # The root element self.buffer = list(range(1, len(dep_graph.nodes))) # The rest is in the buffer self.arcs = [] # empty set of arc self._tokens = dep_graph.nodes self._max_address = len(self.buffer) def __str__(self): return 'Stack : ' + \ str(self.stack) + ' Buffer : ' + str(self.buffer) + ' Arcs : ' + str(self.arcs) def _check_informative(self, feat, flag=False): """ Check whether a feature is informative The flag control whether "_" is informative or not """ if feat is None: return False if feat == '': return False if flag is False: if feat == '_': return False return True def extract_features(self): """ Extract the set of features for the current configuration. Implement standard features as describe in Table 3.2 (page 31) in Dependency Parsing book by Sandra Kubler, Ryan McDonal, Joakim Nivre. Please note that these features are very basic. :return: list(str) """ result = [] # Todo : can come up with more complicated features set for better # performance. if len(self.stack) > 0: # Stack 0 stack_idx0 = self.stack[len(self.stack) - 1] token = self._tokens[stack_idx0] if self._check_informative(token['word'], True): result.append('STK_0_FORM_' + token['word']) if 'lemma' in token and self._check_informative(token['lemma']): result.append('STK_0_LEMMA_' + token['lemma']) if self._check_informative(token['tag']): result.append('STK_0_POS_' + token['tag']) if 'feats' in token and self._check_informative(token['feats']): feats = token['feats'].split("|") for feat in feats: result.append('STK_0_FEATS_' + feat) # Stack 1 if len(self.stack) > 1: stack_idx1 = self.stack[len(self.stack) - 2] token = self._tokens[stack_idx1] if self._check_informative(token['tag']): result.append('STK_1_POS_' + token['tag']) # Left most, right most dependency of stack[0] left_most = 1000000 right_most = -1 dep_left_most = '' dep_right_most = '' for (wi, r, wj) in self.arcs: if wi == stack_idx0: if (wj > wi) and (wj > right_most): right_most = wj dep_right_most = r if (wj < wi) and (wj < left_most): left_most = wj dep_left_most = r if self._check_informative(dep_left_most): result.append('STK_0_LDEP_' + dep_left_most) if self._check_informative(dep_right_most): result.append('STK_0_RDEP_' + dep_right_most) # Check Buffered 0 if len(self.buffer) > 0: # Buffer 0 buffer_idx0 = self.buffer[0] token = self._tokens[buffer_idx0] if self._check_informative(token['word'], True): result.append('BUF_0_FORM_' + token['word']) if 'lemma' in token and self._check_informative(token['lemma']): result.append('BUF_0_LEMMA_' + token['lemma']) if self._check_informative(token['tag']): result.append('BUF_0_POS_' + token['tag']) if 'feats' in token and self._check_informative(token['feats']): feats = token['feats'].split("|") for feat in feats: result.append('BUF_0_FEATS_' + feat) # Buffer 1 if len(self.buffer) > 1: buffer_idx1 = self.buffer[1] token = self._tokens[buffer_idx1] if self._check_informative(token['word'], True): result.append('BUF_1_FORM_' + token['word']) if self._check_informative(token['tag']): result.append('BUF_1_POS_' + token['tag']) if len(self.buffer) > 2: buffer_idx2 = self.buffer[2] token = self._tokens[buffer_idx2] if self._check_informative(token['tag']): result.append('BUF_2_POS_' + token['tag']) if len(self.buffer) > 3: buffer_idx3 = self.buffer[3] token = self._tokens[buffer_idx3] if self._check_informative(token['tag']): result.append('BUF_3_POS_' + token['tag']) # Left most, right most dependency of stack[0] left_most = 1000000 right_most = -1 dep_left_most = '' dep_right_most = '' for (wi, r, wj) in self.arcs: if wi == buffer_idx0: if (wj > wi) and (wj > right_most): right_most = wj dep_right_most = r if (wj < wi) and (wj < left_most): left_most = wj dep_left_most = r if self._check_informative(dep_left_most): result.append('BUF_0_LDEP_' + dep_left_most) if self._check_informative(dep_right_most): result.append('BUF_0_RDEP_' + dep_right_most) return result class Transition(object): """ This class defines a set of transition which is applied to a configuration to get another configuration Note that for different parsing algorithm, the transition is different. """ # Define set of transitions LEFT_ARC = 'LEFTARC' RIGHT_ARC = 'RIGHTARC' SHIFT = 'SHIFT' REDUCE = 'REDUCE' def __init__(self, alg_option): """ :param alg_option: the algorithm option of this parser. Currently support `arc-standard` and `arc-eager` algorithm :type alg_option: str """ self._algo = alg_option if alg_option not in [ TransitionParser.ARC_STANDARD, TransitionParser.ARC_EAGER]: raise ValueError(" Currently we only support %s and %s " % (TransitionParser.ARC_STANDARD, TransitionParser.ARC_EAGER)) def left_arc(self, conf, relation): """ Note that the algorithm for left-arc is quite similar except for precondition for both arc-standard and arc-eager :param configuration: is the current configuration :return : A new configuration or -1 if the pre-condition is not satisfied """ if (len(conf.buffer) <= 0) or (len(conf.stack) <= 0): return -1 if conf.buffer[0] == 0: # here is the Root element return -1 idx_wi = conf.stack[len(conf.stack) - 1] flag = True if self._algo == TransitionParser.ARC_EAGER: for (idx_parent, r, idx_child) in conf.arcs: if idx_child == idx_wi: flag = False if flag: conf.stack.pop() idx_wj = conf.buffer[0] conf.arcs.append((idx_wj, relation, idx_wi)) else: return -1 def right_arc(self, conf, relation): """ Note that the algorithm for right-arc is DIFFERENT for arc-standard and arc-eager :param configuration: is the current configuration :return : A new configuration or -1 if the pre-condition is not satisfied """ if (len(conf.buffer) <= 0) or (len(conf.stack) <= 0): return -1 if self._algo == TransitionParser.ARC_STANDARD: idx_wi = conf.stack.pop() idx_wj = conf.buffer[0] conf.buffer[0] = idx_wi conf.arcs.append((idx_wi, relation, idx_wj)) else: # arc-eager idx_wi = conf.stack[len(conf.stack) - 1] idx_wj = conf.buffer.pop(0) conf.stack.append(idx_wj) conf.arcs.append((idx_wi, relation, idx_wj)) def reduce(self, conf): """ Note that the algorithm for reduce is only available for arc-eager :param configuration: is the current configuration :return : A new configuration or -1 if the pre-condition is not satisfied """ if self._algo != TransitionParser.ARC_EAGER: return -1 if len(conf.stack) <= 0: return -1 idx_wi = conf.stack[len(conf.stack) - 1] flag = False for (idx_parent, r, idx_child) in conf.arcs: if idx_child == idx_wi: flag = True if flag: conf.stack.pop() # reduce it else: return -1 def shift(self, conf): """ Note that the algorithm for shift is the SAME for arc-standard and arc-eager :param configuration: is the current configuration :return : A new configuration or -1 if the pre-condition is not satisfied """ if len(conf.buffer) <= 0: return -1 idx_wi = conf.buffer.pop(0) conf.stack.append(idx_wi) class TransitionParser(ParserI): """ Class for transition based parser. Implement 2 algorithms which are "arc-standard" and "arc-eager" """ ARC_STANDARD = 'arc-standard' ARC_EAGER = 'arc-eager' def __init__(self, algorithm): """ :param algorithm: the algorithm option of this parser. Currently support `arc-standard` and `arc-eager` algorithm :type algorithm: str """ if not(algorithm in [self.ARC_STANDARD, self.ARC_EAGER]): raise ValueError(" Currently we only support %s and %s " % (self.ARC_STANDARD, self.ARC_EAGER)) self._algorithm = algorithm self._dictionary = {} self._transition = {} self._match_transition = {} def _get_dep_relation(self, idx_parent, idx_child, depgraph): p_node = depgraph.nodes[idx_parent] c_node = depgraph.nodes[idx_child] if c_node['word'] is None: return None # Root word if c_node['head'] == p_node['address']: return c_node['rel'] else: return None def _convert_to_binary_features(self, features): """ :param features: list of feature string which is needed to convert to binary features :type features: list(str) :return : string of binary features in libsvm format which is 'featureID:value' pairs """ unsorted_result = [] for feature in features: self._dictionary.setdefault(feature, len(self._dictionary)) unsorted_result.append(self._dictionary[feature]) # Default value of each feature is 1.0 return ' '.join(str(featureID) + ':1.0' for featureID in sorted(unsorted_result)) def _is_projective(self, depgraph): arc_list = [] for key in depgraph.nodes: node = depgraph.nodes[key] if 'head' in node: childIdx = node['address'] parentIdx = node['head'] if parentIdx is not None: arc_list.append((parentIdx, childIdx)) for (parentIdx, childIdx) in arc_list: # Ensure that childIdx < parentIdx if childIdx > parentIdx: temp = childIdx childIdx = parentIdx parentIdx = temp for k in range(childIdx + 1, parentIdx): for m in range(len(depgraph.nodes)): if (m < childIdx) or (m > parentIdx): if (k, m) in arc_list: return False if (m, k) in arc_list: return False return True def _write_to_file(self, key, binary_features, input_file): """ write the binary features to input file and update the transition dictionary """ self._transition.setdefault(key, len(self._transition) + 1) self._match_transition[self._transition[key]] = key input_str = str(self._transition[key]) + ' ' + binary_features + '\n' input_file.write(input_str.encode('utf-8')) def _create_training_examples_arc_std(self, depgraphs, input_file): """ Create the training example in the libsvm format and write it to the input_file. Reference : Page 32, Chapter 3. Dependency Parsing by Sandra Kubler, Ryan McDonal and Joakim Nivre (2009) """ operation = Transition(self.ARC_STANDARD) count_proj = 0 training_seq = [] for depgraph in depgraphs: if not self._is_projective(depgraph): continue count_proj += 1 conf = Configuration(depgraph) while len(conf.buffer) > 0: b0 = conf.buffer[0] features = conf.extract_features() binary_features = self._convert_to_binary_features(features) if len(conf.stack) > 0: s0 = conf.stack[len(conf.stack) - 1] # Left-arc operation rel = self._get_dep_relation(b0, s0, depgraph) if rel is not None: key = Transition.LEFT_ARC + ':' + rel self._write_to_file(key, binary_features, input_file) operation.left_arc(conf, rel) training_seq.append(key) continue # Right-arc operation rel = self._get_dep_relation(s0, b0, depgraph) if rel is not None: precondition = True # Get the max-index of buffer maxID = conf._max_address for w in range(maxID + 1): if w != b0: relw = self._get_dep_relation(b0, w, depgraph) if relw is not None: if (b0, relw, w) not in conf.arcs: precondition = False if precondition: key = Transition.RIGHT_ARC + ':' + rel self._write_to_file( key, binary_features, input_file) operation.right_arc(conf, rel) training_seq.append(key) continue # Shift operation as the default key = Transition.SHIFT self._write_to_file(key, binary_features, input_file) operation.shift(conf) training_seq.append(key) print(" Number of training examples : " + str(len(depgraphs))) print(" Number of valid (projective) examples : " + str(count_proj)) return training_seq def _create_training_examples_arc_eager(self, depgraphs, input_file): """ Create the training example in the libsvm format and write it to the input_file. Reference : 'A Dynamic Oracle for Arc-Eager Dependency Parsing' by Joav Goldberg and Joakim Nivre """ operation = Transition(self.ARC_EAGER) countProj = 0 training_seq = [] for depgraph in depgraphs: if not self._is_projective(depgraph): continue countProj += 1 conf = Configuration(depgraph) while len(conf.buffer) > 0: b0 = conf.buffer[0] features = conf.extract_features() binary_features = self._convert_to_binary_features(features) if len(conf.stack) > 0: s0 = conf.stack[len(conf.stack) - 1] # Left-arc operation rel = self._get_dep_relation(b0, s0, depgraph) if rel is not None: key = Transition.LEFT_ARC + ':' + rel self._write_to_file(key, binary_features, input_file) operation.left_arc(conf, rel) training_seq.append(key) continue # Right-arc operation rel = self._get_dep_relation(s0, b0, depgraph) if rel is not None: key = Transition.RIGHT_ARC + ':' + rel self._write_to_file(key, binary_features, input_file) operation.right_arc(conf, rel) training_seq.append(key) continue # reduce operation flag = False for k in range(s0): if self._get_dep_relation(k, b0, depgraph) is not None: flag = True if self._get_dep_relation(b0, k, depgraph) is not None: flag = True if flag: key = Transition.REDUCE self._write_to_file(key, binary_features, input_file) operation.reduce(conf) training_seq.append(key) continue # Shift operation as the default key = Transition.SHIFT self._write_to_file(key, binary_features, input_file) operation.shift(conf) training_seq.append(key) print(" Number of training examples : " + str(len(depgraphs))) print(" Number of valid (projective) examples : " + str(countProj)) return training_seq def train(self, depgraphs, modelfile): """ :param depgraphs : list of DependencyGraph as the training data :type depgraphs : DependencyGraph :param modelfile : file name to save the trained model :type modelfile : str """ try: input_file = tempfile.NamedTemporaryFile( prefix='transition_parse.train', dir=tempfile.gettempdir(), delete=False) if self._algorithm == self.ARC_STANDARD: self._create_training_examples_arc_std(depgraphs, input_file) else: self._create_training_examples_arc_eager(depgraphs, input_file) input_file.close() # Using the temporary file to train the libsvm classifier x_train, y_train = load_svmlight_file(input_file.name) # The parameter is set according to the paper: # Algorithms for Deterministic Incremental Dependency Parsing by Joakim Nivre # Todo : because of probability = True => very slow due to # cross-validation. Need to improve the speed here model = svm.SVC( kernel='poly', degree=2, coef0=0, gamma=0.2, C=0.5, verbose=True, probability=True) model.fit(x_train, y_train) # Save the model to file name (as pickle) pickle.dump(model, open(modelfile, 'wb')) finally: remove(input_file.name) def parse(self, depgraphs, modelFile): """ :param depgraphs: the list of test sentence, each sentence is represented as a dependency graph where the 'head' information is dummy :type depgraphs: list(DependencyGraph) :param modelfile: the model file :type modelfile: str :return: list (DependencyGraph) with the 'head' and 'rel' information """ result = [] # First load the model model = pickle.load(open(modelFile, 'rb')) operation = Transition(self._algorithm) for depgraph in depgraphs: conf = Configuration(depgraph) while len(conf.buffer) > 0: features = conf.extract_features() col = [] row = [] data = [] for feature in features: if feature in self._dictionary: col.append(self._dictionary[feature]) row.append(0) data.append(1.0) np_col = array(sorted(col)) # NB : index must be sorted np_row = array(row) np_data = array(data) x_test = sparse.csr_matrix((np_data, (np_row, np_col)), shape=(1, len(self._dictionary))) # It's best to use decision function as follow BUT it's not supported yet for sparse SVM # Using decision funcion to build the votes array #dec_func = model.decision_function(x_test)[0] #votes = {} #k = 0 # for i in range(len(model.classes_)): # for j in range(i+1, len(model.classes_)): # #if dec_func[k] > 0: # votes.setdefault(i,0) # votes[i] +=1 # else: # votes.setdefault(j,0) # votes[j] +=1 # k +=1 # Sort votes according to the values #sorted_votes = sorted(votes.items(), key=itemgetter(1), reverse=True) # We will use predict_proba instead of decision_function prob_dict = {} pred_prob = model.predict_proba(x_test)[0] for i in range(len(pred_prob)): prob_dict[i] = pred_prob[i] sorted_Prob = sorted( prob_dict.items(), key=itemgetter(1), reverse=True) # Note that SHIFT is always a valid operation for (y_pred_idx, confidence) in sorted_Prob: #y_pred = model.predict(x_test)[0] # From the prediction match to the operation y_pred = model.classes_[y_pred_idx] if y_pred in self._match_transition: strTransition = self._match_transition[y_pred] baseTransition = strTransition.split(":")[0] if baseTransition == Transition.LEFT_ARC: if operation.left_arc(conf, strTransition.split(":")[1]) != -1: break elif baseTransition == Transition.RIGHT_ARC: if operation.right_arc(conf, strTransition.split(":")[1]) != -1: break elif baseTransition == Transition.REDUCE: if operation.reduce(conf) != -1: break elif baseTransition == Transition.SHIFT: if operation.shift(conf) != -1: break else: raise ValueError("The predicted transition is not recognized, expected errors") # Finish with operations build the dependency graph from Conf.arcs new_depgraph = deepcopy(depgraph) for key in new_depgraph.nodes: node = new_depgraph.nodes[key] node['rel'] = '' # With the default, all the token depend on the Root node['head'] = 0 for (head, rel, child) in conf.arcs: c_node = new_depgraph.nodes[child] c_node['head'] = head c_node['rel'] = rel result.append(new_depgraph) return result def demo(): """ >>> from nltk.parse import DependencyGraph, DependencyEvaluator >>> from nltk.parse.transitionparser import TransitionParser, Configuration, Transition >>> gold_sent = DependencyGraph(\""" ... Economic JJ 2 ATT ... news NN 3 SBJ ... has VBD 0 ROOT ... little JJ 5 ATT ... effect NN 3 OBJ ... on IN 5 ATT ... financial JJ 8 ATT ... markets NNS 6 PC ... . . 3 PU ... \""") >>> conf = Configuration(gold_sent) ###################### Check the Initial Feature ######################## >>> print(', '.join(conf.extract_features())) STK_0_POS_TOP, BUF_0_FORM_Economic, BUF_0_LEMMA_Economic, BUF_0_POS_JJ, BUF_1_FORM_news, BUF_1_POS_NN, BUF_2_POS_VBD, BUF_3_POS_JJ ###################### Check The Transition ####################### Check the Initialized Configuration >>> print(conf) Stack : [0] Buffer : [1, 2, 3, 4, 5, 6, 7, 8, 9] Arcs : [] A. Do some transition checks for ARC-STANDARD >>> operation = Transition('arc-standard') >>> operation.shift(conf) >>> operation.left_arc(conf, "ATT") >>> operation.shift(conf) >>> operation.left_arc(conf,"SBJ") >>> operation.shift(conf) >>> operation.shift(conf) >>> operation.left_arc(conf, "ATT") >>> operation.shift(conf) >>> operation.shift(conf) >>> operation.shift(conf) >>> operation.left_arc(conf, "ATT") Middle Configuration and Features Check >>> print(conf) Stack : [0, 3, 5, 6] Buffer : [8, 9] Arcs : [(2, 'ATT', 1), (3, 'SBJ', 2), (5, 'ATT', 4), (8, 'ATT', 7)] >>> print(', '.join(conf.extract_features())) STK_0_FORM_on, STK_0_LEMMA_on, STK_0_POS_IN, STK_1_POS_NN, BUF_0_FORM_markets, BUF_0_LEMMA_markets, BUF_0_POS_NNS, BUF_1_FORM_., BUF_1_POS_., BUF_0_LDEP_ATT >>> operation.right_arc(conf, "PC") >>> operation.right_arc(conf, "ATT") >>> operation.right_arc(conf, "OBJ") >>> operation.shift(conf) >>> operation.right_arc(conf, "PU") >>> operation.right_arc(conf, "ROOT") >>> operation.shift(conf) Terminated Configuration Check >>> print(conf) Stack : [0] Buffer : [] Arcs : [(2, 'ATT', 1), (3, 'SBJ', 2), (5, 'ATT', 4), (8, 'ATT', 7), (6, 'PC', 8), (5, 'ATT', 6), (3, 'OBJ', 5), (3, 'PU', 9), (0, 'ROOT', 3)] B. Do some transition checks for ARC-EAGER >>> conf = Configuration(gold_sent) >>> operation = Transition('arc-eager') >>> operation.shift(conf) >>> operation.left_arc(conf,'ATT') >>> operation.shift(conf) >>> operation.left_arc(conf,'SBJ') >>> operation.right_arc(conf,'ROOT') >>> operation.shift(conf) >>> operation.left_arc(conf,'ATT') >>> operation.right_arc(conf,'OBJ') >>> operation.right_arc(conf,'ATT') >>> operation.shift(conf) >>> operation.left_arc(conf,'ATT') >>> operation.right_arc(conf,'PC') >>> operation.reduce(conf) >>> operation.reduce(conf) >>> operation.reduce(conf) >>> operation.right_arc(conf,'PU') >>> print(conf) Stack : [0, 3, 9] Buffer : [] Arcs : [(2, 'ATT', 1), (3, 'SBJ', 2), (0, 'ROOT', 3), (5, 'ATT', 4), (3, 'OBJ', 5), (5, 'ATT', 6), (8, 'ATT', 7), (6, 'PC', 8), (3, 'PU', 9)] ###################### Check The Training Function ####################### A. Check the ARC-STANDARD training >>> import tempfile >>> import os >>> input_file = tempfile.NamedTemporaryFile(prefix='transition_parse.train', dir=tempfile.gettempdir(), delete=False) >>> parser_std = TransitionParser('arc-standard') >>> print(', '.join(parser_std._create_training_examples_arc_std([gold_sent], input_file))) Number of training examples : 1 Number of valid (projective) examples : 1 SHIFT, LEFTARC:ATT, SHIFT, LEFTARC:SBJ, SHIFT, SHIFT, LEFTARC:ATT, SHIFT, SHIFT, SHIFT, LEFTARC:ATT, RIGHTARC:PC, RIGHTARC:ATT, RIGHTARC:OBJ, SHIFT, RIGHTARC:PU, RIGHTARC:ROOT, SHIFT >>> parser_std.train([gold_sent],'temp.arcstd.model') Number of training examples : 1 Number of valid (projective) examples : 1 ... >>> remove(input_file.name) B. Check the ARC-EAGER training >>> input_file = tempfile.NamedTemporaryFile(prefix='transition_parse.train', dir=tempfile.gettempdir(),delete=False) >>> parser_eager = TransitionParser('arc-eager') >>> print(', '.join(parser_eager._create_training_examples_arc_eager([gold_sent], input_file))) Number of training examples : 1 Number of valid (projective) examples : 1 SHIFT, LEFTARC:ATT, SHIFT, LEFTARC:SBJ, RIGHTARC:ROOT, SHIFT, LEFTARC:ATT, RIGHTARC:OBJ, RIGHTARC:ATT, SHIFT, LEFTARC:ATT, RIGHTARC:PC, REDUCE, REDUCE, REDUCE, RIGHTARC:PU >>> parser_eager.train([gold_sent],'temp.arceager.model') Number of training examples : 1 Number of valid (projective) examples : 1 ... >>> remove(input_file.name) ###################### Check The Parsing Function ######################## A. Check the ARC-STANDARD parser >>> result = parser_std.parse([gold_sent], 'temp.arcstd.model') >>> de = DependencyEvaluator(result, [gold_sent]) >>> de.eval() >= (0, 0) True B. Check the ARC-EAGER parser >>> result = parser_eager.parse([gold_sent], 'temp.arceager.model') >>> de = DependencyEvaluator(result, [gold_sent]) >>> de.eval() >= (0, 0) True Note that result is very poor because of only one training example. """
mit
marius311/cosmoslik
cosmoslik/chains.py
1
36828
""" Python module for dealing with MCMC chains. Contains utilities to: * Load chains in a variety of formats * Compute statistics (mean, std-dev, conf intervals, ...) * Plot 1- and 2-d distributions of one or multiple parameters. * Post-process chains """ import os, sys, re from numpy import * from numpy.linalg import inv from itertools import takewhile, chain from collections import defaultdict import pickle from functools import partial from multiprocessing.pool import Pool from numbers import Number from functools import reduce from subprocess import check_output, CalledProcessError, STDOUT __all__ = ['Chain','Chains', 'like1d','like2d','likegrid','likegrid1d','likepoints', 'get_covariance', 'load_chain', 'load_cosmomc_chain'] class Chain(dict): """ An MCMC chain. This is just a Python dictionary mapping parameter names to arrays of values, along with the special keys 'lnl' and 'weight' """ def __init__(self,*args,**kwargs): super().__init__(*args,**kwargs) for k,v in list(self.items()): self[k]=atleast_1d(v) if self and 'weight' not in self: self['weight']=ones(len(list(self.values())[0])) def copy(self): """Deep copy the chain so post-processing, etc... works right""" return Chain({k:v.copy() for k,v in self.items()}) def params(self,non_numeric=False, fixed=False): """ Returns the parameters in this chain (i.e. the keys except 'lnl' and 'weight') Args: numeric: whether to include non-numeric parameters (default: False) fixed: whether to include parameters which don't vary (default: False) """ return (set([k for k,v in list(self.items()) if (not k.startswith('_') and (non_numeric or (v.ndim==1 and issubclass(v.dtype.type,Number))) and (fixed or not all(v==v[0])) )]) -set(["lnl","weight"])) def sample(self,s,keys=None): """Return a sample or a range of samples depending on if s is an integer or a slice object.""" return Chain((k,self[k][s]) for k in (keys if keys else list(self.keys()))) def iterrows(self): """Iterate over the samples in this chain.""" for i in range(self.length()): yield {k:v[i] for k,v in list(self.items())} def matrix(self,params=None): """Return this chain as an nsamp * nparams matrix.""" if params is None: params=self.params() if is_iter(params) and not isinstance(params,str): return vstack([self[p] for p in (params if params else self.params())]).T else: return self[params] def cov(self,params=None): """Returns the covariance of the parameters (or some subset of them) in this chain.""" return get_covariance(self.matrix(params), self["weight"]) def corr(self,params=None): """Returns the correlation matrix of the parameters (or some subset of them) in this chain.""" return get_correlation(self.matrix(params), self["weight"]) def mean(self,params=None): """Returns the mean of the parameters (or some subset of them) in this chain.""" return average(self.matrix(params),axis=0,weights=self["weight"]) def std(self,params=None): """Returns the std of the parameters (or some subset of them) in this chain.""" return sqrt(average((self.matrix(params)-self.mean(params))**2,axis=0,weights=self["weight"])) def skew(self,params=None): """Return skewness of one or more parameters. """ return average((self.matrix(params)-self.mean(params))**3,axis=0,weights=self["weight"])/self.std(params)**3 def confbound(self,param,level=0.95,bound=None): """ Compute an upper or lower confidence bound. Args: param (string): name of the parameter level (float): confidence level bound ('upper', 'lower', or None): whether to compute an upper or lower confidence bound. If set to None, will guess which based on the skewness of the distribution (will be lower bound for positively skewed distributions) """ if bound==None: bound = 'upper' if self.skew(param)>0 else 'lower' if bound=='lower': level = 1-level H, x = histogram(self[param],weights=self['weight'],bins=1000) xc = (x[1:]+x[:-1])/2 b = interp(level,cumsum(H)/float(H.sum()),xc) return (self[param].min(),b) if bound=='upper' else (b,self[param].max()) def acceptance(self): """Returns the acceptance ratio.""" return 1./mean(self["weight"]) def length(self,unique=True): """Returns the number of unique samples. Set unique=False to get total samples.""" return (len if unique else sum)(self['weight']) def burnin(self,n): """Remove the first n non-unique samples from the beginning of the chain.""" return self.sample(slice(sum(1 for _ in takewhile(lambda x: x<n, cumsum(self['weight']))),None)) def postprocd(self,func,nthreads=1,pool=None): """ Post-process some values into this chain. Args: func : a function which accepts all the keys in the chain and returns a dictionary of new keys to add. `func` must accept *all* keys in the chain, if there are ones you don't need, capture them with **_ in its call signature, e.g. to add in a parameter 'b' which is 'a' squared, use postprocd(lambda a,**_: {'b':a**2}) nthreads : the number of threads to use pool : any worker pool which has a pool.map function. default: multiprocessing.Pool(nthreads) Returns: A new chain with the new values post-processed in. Does not alter the original chain. If for some rows in the chain `func` did not return all the keys, these will be filled in with `nan`. Note: This repeatedly calls `func` on rows in the chain, so its very inneficient if you already have a vectorized version of your post-processing function. `postprocd` is mostly useful for slow non-vectorized post-processing functions, allowing convenient use of the `nthreads` option to this function. For the default implementation of `pool`, `func` must be picklable, meaning it must be a module-level function. """ if pool is not None: _pool = pool elif nthreads!=1: _pool = Pool(nthreads) else: _pool = None mp=map if _pool is None else _pool.map try: dat = list(mp(partial(_postprocd_helper,func),self.iterrows())) finally: if pool is None and _pool is not None: _pool.terminate() c=self.copy() allkeys = set(chain(*[list(d.keys()) for d in dat])) c.update({k:array([d.get(k,nan) for d in dat]) for k in allkeys}) return c def reweighted(self,func,nthreads=1,pool=None): """ Reweight this chain. Args: func : a function which accepts all keys in the chain, and returns a new weight for the step. `func` must accept *all* keys, if there are ones you don't need, capture them with **_ in its call signature, e.g. to add unit gaussian prior on parameter 'a' use reweighted(lambda a,**_: exp(-a**2/2) nthreads : the number of threads to use pool : any worker pool which has a pool.map function. default: multiprocessing.Pool(nthreads) Returns: A new chain, without altering the original chain Note: This repeatedly calls `func` on rows in the chain, so its very inneficient compared to a vectorized version of your post-processing function. `postprocd` is mostly useful for slow post-processing functions, allowing you to conveniently use the `nthreads` option to this function. For the default implementation of `pool`, `func` must be picklable, meaning it must be a module-level function. """ return self.postprocd(partial(_reweighted_helper,func),nthreads=nthreads,pool=pool) def add_gauss_prior(self, params, mean, covstd, nthreads=1, pool=None): """ Post-process a gaussian prior into the chain. Args: params - a parameter name, or a list of parameters mean - the mean (should be a list if params was a list) covstd - if params was a list, this should be a 2-d array holding the covariance if params was a single parameter, this should be the standard devation Returns: A new chain, without altering the original chain """ c=self.copy() dx = self.matrix(params) - mean if is_iter(params) and not isinstance(params,str): dlnl=sum(dot(dx,inv(covstd))*dx,axis=1)/2 else: dlnl=dx**2/2/covstd**2 c['weight'] *= exp(-dlnl) c['lnl'] += dlnl return c def best_fit(self): """Get the best fit sample.""" return {k:v[0] for k,v in list(self.sample(self['lnl'].argmin()).items())} def thin(self,delta): """Take every delta non-unique samples.""" c=ceil(cumsum(append(0,self["weight"]))/float(delta)) ids=where(c[1:]>c[:-1])[0] weight=diff(c[[0]+list(ids+1)]) t=self.sample(ids) t['weight']=weight return t def thinto(self,num): """Thin so we end up with `num` total samples""" return self.thin(self.length(unique=False)//num) def savecov(self,file,params=None): """Write the covariance to a file where the first line is specifies the parameter names.""" if not params: params = self.params() with open(file,'wb') as f: f.write(("# "+" ".join(params)+"\n").encode()) savetxt(f,self.cov(params)) def savechain(self,file,params=None): """Write the chain to a file where the first line is specifies the parameter names.""" keys = ['lnl','weight']+list(params if params else self.params()) with open(file,'w') as f: f.write("# "+" ".join(keys)+"\n") savetxt(f,self.matrix(keys)) def plot(self,param=None,ncols=5,fig=None,size=4): """Plot the value of a parameter as a function of sample number.""" from matplotlib.pyplot import figure if fig is None: fig=figure() params = [param] if param is not None else self.params() nrows = len(self.params())/ncols+1 fig.set_size_inches(ncols*size,nrows*size/1.6) for i,param in enumerate(params,1): ax=fig.add_subplot(nrows,ncols,i) ax.plot(cumsum(self['weight']),self[param]) ax.set_title(param) fig.tight_layout() def like1d(self,p,**kwargs): """ Plots 1D likelihood contours for a parameter. See :func:`~cosmoslik.chains.like1d` """ like1d(self[p],weights=self["weight"],**kwargs) def like2d(self,p1,p2,**kwargs): """ Plots 2D likelihood contours for a pair of parameters. See :func:`~cosmoslik.chains.like2d` """ like2d(self[p1], self[p2], weights=self["weight"], **kwargs) def likegrid(self,**kwargs): """ Make a grid (aka "triangle plot") of 1- and 2-d likelihood contours. See :func:`~cosmoslik.chains.likegrid` """ if 'color' in kwargs: kwargs['colors']=[kwargs.pop('color')] likegrid(self,**kwargs) def likepoints(self,*args,**kwargs): """ Plots samples from the chain as colored points. See :func:`~cosmoslik.chains.likepoints` """ return likepoints(self,*args,**kwargs) def likegrid1d(self,**kwargs): """ Make a grid of 1-d likelihood contours. See :func:`~cosmoslik.chains.likegrid1d` """ likegrid1d(self,**kwargs) def join(self): """Does nothing since already one chain.""" return self def __repr__(self): return self.__str__() def __str__(self): """Print a summary of the chain. """ return chain_stats(self) def chain_stats(chain): lines = [] lines.append(object.__repr__(chain)) params = chain.params(fixed=True) maxlen = max(12,max(len(p) for p in params))+4 if isinstance(chain,Chains): lines.append(('{:>%i}: {:}'%maxlen).format('# of chains',len(chain))) chain = chain.join() lines.append(('{:>%i}: {:}'%maxlen).format('# of steps',chain.length())) lines.append(('{:>%i}: {:.2f}'%maxlen).format('total weight',chain['weight'].sum())) lines.append(('{:>%i}: {:.3g}'%maxlen).format('acceptance',chain.acceptance())) for p in sorted(params): lines.append(('{:>%i}: {:>10.4g} ± {:.4g}'%maxlen).format(p,chain.mean(p),chain.std(p))) return '\n'.join(lines) class Chains(list): """A list of chains, e.g. from a run of several parallel chains""" def burnin(self,n): """Remove the first n samples from each chain.""" return Chains(c.burnin(n) for c in self) def join(self): """Combine the chains into one.""" return Chain((k,concatenate([c[k] for c in self])) for k in list(self[0].keys())) def plot(self,param=None,fig=None,**kwargs): """Plot the value of a parameter as a function of sample number for each chain.""" from matplotlib.pyplot import figure if fig is None: fig=figure() for c in self: if c: c.plot(param,fig=fig,**kwargs) def params(self,**kwargs): return self[0].params(**kwargs) def __repr__(self): return self.__str__() def __str__(self): """Print a summary of the chain. """ return chain_stats(self) def _postprocd_helper(func,kwargs): return func(**kwargs) def _reweighted_helper(func,weight,**kwargs): return {'weight': weight * func(weight=weight,**kwargs)} def likepoints(chain,p1,p2,pcolor, npoints=1000,cmap=None,nsig=3,clim=None,marker='.',markersize=10, ax=None,zorder=-1,cbar=True,cax=None,**kwargs): """ Plot p1 vs. p2 as points colored by the value of pcolor. Args: p1,p2,pcolor : parameter names npoints : first thins the chain so this number of points are plotted cmap : a colormap (default: jet) nsig : map the range of the color map to +/- nsig ax : axes to use for plotting (default: current axes) cbar : whether to draw a colorbar cax : axes to use for colorbar (default: steal from ax) marker, markersize, zorder, **kwargs : passed to the plot() command """ from matplotlib.pyplot import get_cmap, cm, gca, sca, colorbar from matplotlib import colors, colorbar if cmap is None: cmap=get_cmap('jet') if ax is None: ax=gca() mu,sig = chain.mean(pcolor), chain.std(pcolor) for s in chain.thin(int(sum(chain['weight'])/float(npoints))).iterrows(): if clim is None: c=cmap((s[pcolor]-mu)/(2*nsig*sig) + 0.5) else: c = cmap((s[pcolor]-clim[0])/(clim[1]-clim[0])) ax.plot(s[p1],s[p2],color=c,markeredgecolor=c,marker=marker,markersize=markersize,zorder=-1,**kwargs) if cax is None: cax = colorbar.make_axes(ax)[0] if clim is None: cb = colorbar.ColorbarBase(ax=cax, norm=colors.Normalize(vmin=mu-nsig*sig, vmax=mu+nsig*sig), cmap=cmap) else: cb = colorbar.ColorbarBase(ax=cax, norm=colors.Normalize(vmin=clim[0], vmax=clim[1]), cmap=cmap) sca(ax) return ax,cax def like2d(datx,daty,weights=None, nbins=15, which=[.68,.95], range=None, filled=True, color=None, cmap=None, smooth=None, ax=None, **kwargs): from matplotlib.pyplot import gca, get_cmap from matplotlib.mlab import movavg from matplotlib.colors import LinearSegmentedColormap from scipy.ndimage import gaussian_filter if ax is None: ax = gca() if weights is None: weights=ones(len(datx)) if color is None: color = kwargs.pop('c') if 'c' in kwargs else 'b' H,xe,ye = histogram2d(datx,daty,nbins,weights=weights, range=range) xem, yem = movavg(xe,2), movavg(ye,2) kwargs = dict(levels=confint2d(H, sorted(which)[::-1]+[0]),**kwargs) if smooth: H = gaussian_filter(H,smooth) args = (xem,yem,transpose(H)) if cmap is None: cmap = {'b':'Blues', 'g':'Greens', 'r':'Reds', 'orange':'Oranges', 'grey':'Greys'}.get(color) if cmap is None: cmap = LinearSegmentedColormap.from_list(None,['w',color]) else: cmap = get_cmap(cmap) if filled: ax.contourf(*args,cmap=cmap,**kwargs) ax.contour(*args,colors=color,**kwargs) def like1d(dat,weights=None, nbins=30,ranges=None,maxed=False, ax=None,smooth=False, kde=True, zero_endpoints=False, filled=False, **kw): from matplotlib.pyplot import gca if ax is None: ax = gca() if kde: try: from getdist import MCSamples except ImportError as e: raise Exception("Plotting with kde, kde1d, or kde2d set to True requires package 'getdist'. Install this package or set to False.") from e if ranges: i = bitwise_and(dat>(ranges[0] or -Inf), dat<(ranges[1] or Inf)) dat = dat[i] weights = weights[i] d = MCSamples(samples=dat, weights=weights, names=['x'], ranges={'x':ranges or (None,None)}, settings={'smooth_scale_1D':(smooth or -1)}).get1DDensity(0) d.normalize('max' if maxed else 'integral') xem, H = d.x, d.P * (maxed or 1) else: from matplotlib.mlab import movavg H, xe = histogram(dat,bins=nbins,weights=weights,normed=True,range=ranges) xem=movavg(xe,2) if smooth: from scipy.interpolate import PchipInterpolator itp = PchipInterpolator(xem,H) xem = linspace(xem.min(),xem.max(),100) H = itp(xem) if maxed: H = H/max(H) * (maxed or 1) if zero_endpoints: xem = hstack([[xem[0]],xem,[xem[-1]]]) H = hstack([[0],H,[0]]) if filled: ax.fill_between(xem,H,alpha=(0.5 if filled is True else filled),**kw) kw.pop('label') ax.plot(xem,H,**kw) def get_correlation(data,weights=None): cv = get_covariance(data,weights) n,n = cv.shape for i in range(n): std=sqrt(cv[i,i]) cv[i,:]/=std cv[:,i]/=std return cv def get_covariance(data,weights=None): if (weights is None): return cov(data.T) else: mean = sum(data.T*weights,axis=1)/sum(weights) zdata = data-mean return dot(zdata.T*weights,zdata)/(sum(weights)-1) def likegrid(chains, params=None, lims=None, ticks=None, nticks=4, nsig=4, spacing=0.05, xtick_rotation=30, colors=None, filled=True, nbins1d=30, smooth1d=False, kde1d=True, nbins2d=20, labels=None, fig=None, size=2, legend_loc=None, param_name_mapping=None, param_label_size=None): """ Make a grid (aka "triangle plot") of 1- and 2-d likelihood contours. Parameters ---------- chains : one or a list of `Chain` objects default_chain, optional : the chain used to get default parameters names, axes limits, and ticks either an index into chains or a `Chain` object (default: chains[0]) params, optional : list of parameter names which to show (default: all parameters from default_chain) lims, optional : a dictionary mapping parameter names to (min,max) axes limits (default: +/- 4 sigma from default_chain) ticks, optional : a dictionary mapping parameter names to list of [ticks] (default: automatically picks `nticks`) nticks, optional : roughly how many ticks per axes (default: 5) xtick_rotation, optional : numbers of degrees to rotate the xticks by (default: 30) spacing, optional : space in between plots as a fraction of figure width (default: 0.05) fig, optional : figure of figure number in which to plot (default: figure(0)) size, optional : size in inches of one plot (default: 2) colors, optional : colors to cycle through for plotting filled, optional : whether to fill in the contours (default: True) labels, optional : list of names for a legend legend_loc, optional : (x,y) location of the legend (coordinates scaled to [0,1]) nbins1d, optional : number (or len(chains) length list) of bins for 1d plots (default: 30) nbins2d, optional : number (or len(chains) length list) of bins for 2d plots (default: 20) """ from matplotlib.pyplot import figure, Line2D, xticks from matplotlib.ticker import MaxNLocator fig = figure(0) if fig is None else (figure(fig) if isinstance(fig,int) else fig) if type(chains)!=list: chains=[chains] if params==None: params = sorted(reduce(lambda x,y: set(x)&set(y), [c.params() for c in chains])) if param_name_mapping is None: param_name_mapping = {} if size is not None: fig.set_size_inches(*([size*len(params)]*2)) if colors is None: colors=['b','orange','k','m','cyan'] if not isinstance(nbins2d,list): nbins2d = [nbins2d]*len(chains) if not isinstance(nbins1d,list): nbins1d = [nbins1d]*len(chains) fig.subplots_adjust(hspace=spacing,wspace=spacing) if lims is None: lims = {} lims = {p:(lims[p] if p in lims else (min(max(min(c[p]),c.mean(p)-nsig*c.std(p)) for c in chains if p in c.params()), max(min(max(c[p]),c.mean(p)+nsig*c.std(p)) for c in chains if p in c.params()))) for p in params} if ticks is None: ticks = {} if isinstance(nticks,int): nticks={p:nticks for p in params} n=len(params) for (i,p1) in enumerate(params): for (j,p2) in enumerate(params): if (i<=j): ax=fig.add_subplot(n,n,j*n+i+1) ax.xaxis.set_major_locator(MaxNLocator(nticks.get(p1,5))) ax.yaxis.set_major_locator(MaxNLocator(nticks.get(p2,5))) ax.set_xlim(*lims[p1]) if (i==j): for (ch,col,nbins) in zip(chains,colors,nbins1d): if p1 in ch: ch.like1d(p1,nbins=nbins,color=col,ax=ax,smooth=smooth1d,kde=kde1d) ax.set_yticklabels([]) elif (i<j): for (ch,col,nbins) in zip(chains,colors,nbins2d): if p1 in ch and p2 in ch: ch.like2d(p1,p2,filled=filled,nbins=nbins,color=col,ax=ax) if p2 in ticks: ax.set_yticks(ticks[p2]) ax.set_ylim(*lims[p2]) if i==0: ax.set_ylabel(param_name_mapping.get(p2,p2),size=param_label_size) else: ax.set_yticklabels([]) if j==n-1: ax.set_xlabel(param_name_mapping.get(p1,p1),size=param_label_size) xticks(rotation=xtick_rotation) else: ax.set_xticklabels([]) if labels is not None: fig.legend([Line2D([0],[0],c=c,lw=2) for c in colors],labels, fancybox=True,shadow=False, loc='upper right', bbox_to_anchor=(legend_loc or (0.8,0.8))) from collections import Iterable import operator as op def likegrid1d(chains, params='all', lims=None, ticks=None, nticks=4, nsig=3, colors=None, nbins1d=30, smooth1d=False, kde1d=True, labels=None, fig=None, size=2, aspect=1, legend_loc=None, linewidth=1, param_name_mapping=None, param_label_size=None, tick_label_size=None, titley=1, ncol=4, axes=None): """ Make a grid of 1-d likelihood contours. Arguments: ---------- chains : one or a list of `Chain` objects default_chain, optional : the chain used to get default parameters names, axes limits, and ticks either an index into chains or a `Chain` object (default: chains[0]) params, optional : list of parameter names which to show can also be 'all' or 'common' which does the union/intersection of the params in all the chains lims, optional : a dictionary mapping parameter names to (min,max) axes limits (default: +/- 4 sigma from default_chain) ticks, optional : a dictionary giving a list of ticks for each parameter nticks, optional : roughly how many x ticks to show. can be dictionary to specify each parameter separately. (default: 4) fig, optional : figure of figure number in which to plot (default: new figure) ncol, optional : the number of colunms (default: 4) axes, optional : an array of axes into which to plot. if this is provided, fig and ncol are ignored. must have len(axes) >= len(params). size, optional : size in inches of one plot (default: 2) aspect, optional : aspect ratio (default: 1) colors, optional : colors to cycle through for plotting filled, optional : whether to fill in the contours (default: True) labels, optional : list of names for a legend legend_loc, optional : (x,y) location of the legend (coordinates scaled to [0,1]) nbins1d, optional : number of bins for 1d plots (default: 30) nbins2d, optional : number of bins for 2d plots (default: 20) """ from matplotlib.pyplot import gcf, Line2D from matplotlib.ticker import AutoMinorLocator, ScalarFormatter, MaxNLocator if type(chains)!=list: chains=[chains] if params in ['all','common']: params = sorted(reduce(lambda x,y: (op.__or__ if params=='all' else op.__and__)(set(x),set(y)), [c.params() for c in chains])) elif not isinstance(params,Iterable): raise ValueError("params should be iterable or 'all' or 'common'") if param_name_mapping is None: param_name_mapping = {} nrow = int(floor(len(params)/ncol))+1 if fig is None: fig = gcf() fig.subplots_adjust(hspace=0.4,wspace=0.1)#,bottom=0, top=1, left=0, right=1) if size is not None: fig.set_size_inches(size*ncol,size*nrow/aspect) if colors is None: colors = ['b','orange','k','m','cyan'] if lims is None: lims = {} lims = {p:(lims[p] if p in lims else (min(max(min(c[p]),c.mean(p)-nsig*c.std(p)) for c in chains if p in c.params()), max(min(max(c[p]),c.mean(p)+nsig*c.std(p)) for c in chains if p in c.params()))) for p in params} for (i,p1) in enumerate(params,1): ax=fig.add_subplot(nrow,ncol,i) if ticks is not None and p1 in ticks: ax.set_xticks(ticks[p1]) for (ch,col) in zip(chains,colors): if p1 in ch: ch.like1d(p1,nbins=nbins1d,color=col,ax=ax,linewidth=linewidth,smooth=smooth1d,kde=kde1d) ax.set_yticks([]) ax.set_xlim(lims[p1]) ax.set_ylim(0,1) ax.set_title(param_name_mapping.get(p1,p1),size=param_label_size,y=titley) ax.tick_params(labelsize=tick_label_size) if ticks and p1 in ticks: ax.set_xticks(ticks[p1]) else: ax.xaxis.set_major_locator(MaxNLocator(nbins=nticks.get(p1,4) if isinstance(nticks,dict) else nticks)) ax.xaxis.set_minor_locator(AutoMinorLocator()) ax.xaxis.set_major_formatter(ScalarFormatter(useOffset=False)) if labels is not None: lg = fig.legend([Line2D([0],[0],c=c,linewidth=2) for c in colors],labels,fancybox=True,shadow=False, loc='upper center', bbox_to_anchor=(legend_loc or (0.5,1.1))) return lg def confint2d(hist,which): """ Return confidence levels in a histogram. Parameters ---------- hist: A 2D histogram which: A list of confidence levels, e.g. [.68, .95] """ H=sort(hist.ravel())[::-1] sumH=sum(H) cdf=array([sum(H[H>x])/sumH for x in H]) return interp(which,cdf,H) def load_cosmomc_chain(path,paramnames=None): """ Load a chain from a file or files in a variety of different formats. If ``path`` is a CosmoSlik ini, the read the ``output_file`` key from the ini and load that chain. If ``path`` is a file, return a :class:`~cosmoslik.chains.Chain` object. The names of the parameters are expected either as a whitespace-separated comment on the first line of the file (CosmoSlik style) or in a separate file called <path>.paramnames (CosmoMC style). If ``path`` is a directory, assumes it contains one file for each parameter (WMAP style) and gets the parameter name from the file name. If ``path`` is a prefix such that there exists <path>_1, <path>_2, etc... then returns a :class:`~cosmoslik.chains.Chains` object which is a list of chains. """ if path.endswith('.ini'): p = load_ini(path) return load_chain(p['output_file']) else: def load_one_chain(path): nonlocal paramnames if os.path.isdir(path): if paramnames is not None: raise Exception("Can't specify custom parameter names if loading chain from a directory.") chain = {} for k in os.listdir(path): try: chain[k]=loadtxt(os.path.join(path,k),usecols=[-1]) except: pass return Chain(chain) else: # try automatically finding the corresponding *.paramnames file if paramnames is None: pnfiles = [os.path.join(os.path.dirname(path),f) for f in os.listdir(os.path.dirname(path)) if f.endswith('.paramnames') and os.path.basename(path).startswith(f[:-len('.paramnames')])] if len(pnfiles)>1: raise Exception('Found multiple paramnames files for this chain; %s'%pnfiles) elif len(pnfiles)==1: paramnames = pnfiles[0] # if we have a *.paramnames file at this point, load it if isinstance(paramnames,str): with open(paramnames) as f: paramnames = ['weight','lnl']+[line.split()[0] for line in f] with open(path) as f: # if still no *.paramnames, look for names inside a comment on the first line if paramnames is None: line = f.readline() if not line.startswith("#"): raise Exception("Couldn't find any paramnames. Specify paramnames=... by hand.") paramnames = re.sub("#","",line).split() try: data = loadtxt(f).T except: return None else: return Chain(list(zip(paramnames,data))) path = os.path.abspath(path) dir = os.path.dirname(path) files = [os.path.join(dir,f) for f in os.listdir('.' if dir=='' else dir) if re.match(os.path.basename(path)+'_[0-9]+',f) or f==os.path.basename(path)] if len(files)==1: return load_one_chain(files[0]) elif len(files)>1: return Chains([c for c in (load_one_chain(f) for f in files) if c]) else: raise IOError("File not found: "+path) def is_iter(x): try: iter(x) return True except: return False def combine_covs(*covs): """ Combines a bunch of covariances into a single array. If a parameter appears in multiple covariances, the covariance appearing last in the list is used. Each cov can be: * tuple of ([names...], 2-d array) * filename (file's first line is "#paramname1 paramname2 ..." and next lines are array) * `Chain` object (will call its cov() function) * {k:std(v)...} Returns: Tuple of ([names...], 2-d array) """ def to_array(cov): if isinstance(cov,tuple): return cov elif isinstance(cov,str): with open(cov) as f: return re.sub("#","",f.readline()).split(), loadtxt(f) elif isinstance(cov,Chain): return cov.params(), cov.cov() elif isinstance(cov,dict): return [k for k in cov], diag([v**2 for v in list(cov.values())]) else: raise ValueError("Unrecognized covariance data type.") covs = [to_array(cov) for cov in covs] allnames = list(chain(*[n for n,_ in covs])) allcov = zeros((len(allnames),len(allnames))) for (names,cov) in covs: idxs = [allnames.index(n) for n in names] for i in idxs: allcov[i,:] = allcov[:,i] = 0 allcov[ix_(idxs,idxs)] = cov return allnames, allcov def load_chain(filename, repack=False): """ Load a chain produced by a compatible CosmoSlik sampler like metropolis_hastings or emcee. Parameters: ----------- repack : If the chain file is not currently open (i.e. the chain is not currently running), and if the chain is stored in chunks as output from an MPI run, then overwrite the file with a more efficiently stored version which will be faster to load the next time. """ with open(filename, 'rb') as f: c = pickle.load(f) if isinstance(c,(Chain,Chains)): return c else: names = [n.decode() if isinstance(n,bytes) else n for n in c] dat = [] while True: try: dat.append(pickle.load(f,encoding="latin1")) except: break ii=set(i for i,_ in dat) if dat[0][1].dtype.kind=='V': c = Chains([Chain({n:concatenate([d['f%i'%k] for j,d in dat if i==j]) for k,n in enumerate(names)}) for i in ii]) else: c = Chains([Chain(dict(list(zip(names,vstack([d for j,d in dat if i==j]).T)))) for i in ii]) if repack: try: open_files = check_output(["lsof","--",filename], stderr=STDOUT).splitlines()[1:] except CalledProcessError as e: if e.returncode == 1 and e.output==b'': open_files = [] else: return c if not any([l.split()[3].decode()[-1] in "uw" for l in open_files]): with open(filename,'wb') as f: pickle.dump(c,f) print("Repacked: "+filename) return c
gpl-3.0
btabibian/scikit-learn
examples/calibration/plot_calibration.py
66
4795
""" ====================================== Probability calibration of classifiers ====================================== When performing classification you often want to predict not only the class label, but also the associated probability. This probability gives you some kind of confidence on the prediction. However, not all classifiers provide well-calibrated probabilities, some being over-confident while others being under-confident. Thus, a separate calibration of predicted probabilities is often desirable as a postprocessing. This example illustrates two different methods for this calibration and evaluates the quality of the returned probabilities using Brier's score (see https://en.wikipedia.org/wiki/Brier_score). Compared are the estimated probability using a Gaussian naive Bayes classifier without calibration, with a sigmoid calibration, and with a non-parametric isotonic calibration. One can observe that only the non-parametric model is able to provide a probability calibration that returns probabilities close to the expected 0.5 for most of the samples belonging to the middle cluster with heterogeneous labels. This results in a significantly improved Brier score. """ print(__doc__) # Author: Mathieu Blondel <[email protected]> # Alexandre Gramfort <[email protected]> # Balazs Kegl <[email protected]> # Jan Hendrik Metzen <[email protected]> # License: BSD Style. import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from sklearn.datasets import make_blobs from sklearn.naive_bayes import GaussianNB from sklearn.metrics import brier_score_loss from sklearn.calibration import CalibratedClassifierCV from sklearn.model_selection import train_test_split n_samples = 50000 n_bins = 3 # use 3 bins for calibration_curve as we have 3 clusters here # Generate 3 blobs with 2 classes where the second blob contains # half positive samples and half negative samples. Probability in this # blob is therefore 0.5. centers = [(-5, -5), (0, 0), (5, 5)] X, y = make_blobs(n_samples=n_samples, n_features=2, cluster_std=1.0, centers=centers, shuffle=False, random_state=42) y[:n_samples // 2] = 0 y[n_samples // 2:] = 1 sample_weight = np.random.RandomState(42).rand(y.shape[0]) # split train, test for calibration X_train, X_test, y_train, y_test, sw_train, sw_test = \ train_test_split(X, y, sample_weight, test_size=0.9, random_state=42) # Gaussian Naive-Bayes with no calibration clf = GaussianNB() clf.fit(X_train, y_train) # GaussianNB itself does not support sample-weights prob_pos_clf = clf.predict_proba(X_test)[:, 1] # Gaussian Naive-Bayes with isotonic calibration clf_isotonic = CalibratedClassifierCV(clf, cv=2, method='isotonic') clf_isotonic.fit(X_train, y_train, sw_train) prob_pos_isotonic = clf_isotonic.predict_proba(X_test)[:, 1] # Gaussian Naive-Bayes with sigmoid calibration clf_sigmoid = CalibratedClassifierCV(clf, cv=2, method='sigmoid') clf_sigmoid.fit(X_train, y_train, sw_train) prob_pos_sigmoid = clf_sigmoid.predict_proba(X_test)[:, 1] print("Brier scores: (the smaller the better)") clf_score = brier_score_loss(y_test, prob_pos_clf, sw_test) print("No calibration: %1.3f" % clf_score) clf_isotonic_score = brier_score_loss(y_test, prob_pos_isotonic, sw_test) print("With isotonic calibration: %1.3f" % clf_isotonic_score) clf_sigmoid_score = brier_score_loss(y_test, prob_pos_sigmoid, sw_test) print("With sigmoid calibration: %1.3f" % clf_sigmoid_score) ############################################################################### # Plot the data and the predicted probabilities plt.figure() y_unique = np.unique(y) colors = cm.rainbow(np.linspace(0.0, 1.0, y_unique.size)) for this_y, color in zip(y_unique, colors): this_X = X_train[y_train == this_y] this_sw = sw_train[y_train == this_y] plt.scatter(this_X[:, 0], this_X[:, 1], s=this_sw * 50, c=color, alpha=0.5, label="Class %s" % this_y) plt.legend(loc="best") plt.title("Data") plt.figure() order = np.lexsort((prob_pos_clf, )) plt.plot(prob_pos_clf[order], 'r', label='No calibration (%1.3f)' % clf_score) plt.plot(prob_pos_isotonic[order], 'g', linewidth=3, label='Isotonic calibration (%1.3f)' % clf_isotonic_score) plt.plot(prob_pos_sigmoid[order], 'b', linewidth=3, label='Sigmoid calibration (%1.3f)' % clf_sigmoid_score) plt.plot(np.linspace(0, y_test.size, 51)[1::2], y_test[order].reshape(25, -1).mean(1), 'k', linewidth=3, label=r'Empirical') plt.ylim([-0.05, 1.05]) plt.xlabel("Instances sorted according to predicted probability " "(uncalibrated GNB)") plt.ylabel("P(y=1)") plt.legend(loc="upper left") plt.title("Gaussian naive Bayes probabilities") plt.show()
bsd-3-clause
depet/scikit-learn
sklearn/neighbors/classification.py
2
14043
"""Nearest Neighbor Classification""" # Authors: Jake Vanderplas <[email protected]> # Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Sparseness support by Lars Buitinck <[email protected]> # Multi-output support by Arnaud Joly <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import warnings import numpy as np from scipy import stats from ..utils.extmath import weighted_mode from .base import \ _check_weights, _get_weights, \ NeighborsBase, KNeighborsMixin,\ RadiusNeighborsMixin, SupervisedIntegerMixin from ..base import ClassifierMixin from ..utils import atleast2d_or_csr class KNeighborsClassifier(NeighborsBase, KNeighborsMixin, SupervisedIntegerMixin, ClassifierMixin): """Classifier implementing the k-nearest neighbors vote. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. weights : str or callable weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Uniform weights are used by default. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDTree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : string or DistanceMetric object (default='minkowski') the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics. p : integer, optional (default = 2) Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. **kwargs : additional keyword arguments are passed to the distance function as additional arguments. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import KNeighborsClassifier >>> neigh = KNeighborsClassifier(n_neighbors=3) >>> neigh.fit(X, y) # doctest: +ELLIPSIS KNeighborsClassifier(...) >>> print(neigh.predict([[1.1]])) [0] >>> print(neigh.predict_proba([[0.9]])) [[ 0.66666667 0.33333333]] See also -------- RadiusNeighborsClassifier KNeighborsRegressor RadiusNeighborsRegressor NearestNeighbors Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. .. warning:: Regarding the Nearest Neighbors algorithms, if it is found that two neighbors, neighbor `k+1` and `k`, have identical distances but but different labels, the results will depend on the ordering of the training data. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', **kwargs): if kwargs: if 'warn_on_equidistant' in kwargs: kwargs.pop('warn_on_equidistant') warnings.warn("The warn_on_equidistant parameter is " "deprecated and will be removed in 0.16.", DeprecationWarning, stacklevel=2) self._init_params(n_neighbors=n_neighbors, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, **kwargs) self.weights = _check_weights(weights) def predict(self, X): """Predict the class labels for the provided data Parameters ---------- X : array of shape [n_samples, n_features] A 2-D array representing the test points. Returns ------- y : array of shape [n_samples] or [n_samples, n_outputs] Class labels for each data sample. """ X = atleast2d_or_csr(X) neigh_dist, neigh_ind = self.kneighbors(X) classes_ = self.classes_ _y = self._y if not self.outputs_2d_: _y = self._y.reshape((-1, 1)) classes_ = [self.classes_] n_outputs = len(classes_) n_samples = X.shape[0] weights = _get_weights(neigh_dist, self.weights) y_pred = np.empty((n_samples, n_outputs), dtype=classes_[0].dtype) for k, classes_k in enumerate(classes_): if weights is None: mode, _ = stats.mode(_y[neigh_ind, k], axis=1) else: mode, _ = weighted_mode(_y[neigh_ind, k], weights, axis=1) y_pred[:, k] = classes_k.take(mode.flatten().astype(np.int)) if not self.outputs_2d_: y_pred = y_pred.ravel() return y_pred def predict_proba(self, X): """Return probability estimates for the test data X. Parameters ---------- X : array, shape = (n_samples, n_features) A 2-D array representing the test points. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs of such arrays if n_outputs > 1. The class probabilities of the input samples. Classes are ordered by lexicographic order. """ X = atleast2d_or_csr(X) neigh_dist, neigh_ind = self.kneighbors(X) classes_ = self.classes_ _y = self._y if not self.outputs_2d_: _y = self._y.reshape((-1, 1)) classes_ = [self.classes_] n_samples = X.shape[0] weights = _get_weights(neigh_dist, self.weights) if weights is None: weights = np.ones_like(neigh_ind) all_rows = np.arange(X.shape[0]) probabilities = [] for k, classes_k in enumerate(classes_): pred_labels = _y[:, k][neigh_ind] proba_k = np.zeros((n_samples, classes_k.size)) # a simple ':' index doesn't work right for i, idx in enumerate(pred_labels.T): # loop is O(n_neighbors) proba_k[all_rows, idx] += weights[:, i] # normalize 'votes' into real [0,1] probabilities normalizer = proba_k.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba_k /= normalizer probabilities.append(proba_k) if not self.outputs_2d_: probabilities = probabilities[0] return probabilities class RadiusNeighborsClassifier(NeighborsBase, RadiusNeighborsMixin, SupervisedIntegerMixin, ClassifierMixin): """Classifier implementing a vote among neighbors within a given radius Parameters ---------- radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. weights : str or callable weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Uniform weights are used by default. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : string or DistanceMetric object (default='minkowski') the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics. p : integer, optional (default = 2) Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. outlier_label : int, optional (default = None) Label, which is given for outlier samples (samples with no neighbors on given radius). If set to None, ValueError is raised, when outlier is detected. **kwargs : additional keyword arguments are passed to the distance function as additional arguments. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import RadiusNeighborsClassifier >>> neigh = RadiusNeighborsClassifier(radius=1.0) >>> neigh.fit(X, y) # doctest: +ELLIPSIS RadiusNeighborsClassifier(...) >>> print(neigh.predict([[1.5]])) [0] See also -------- KNeighborsClassifier RadiusNeighborsRegressor KNeighborsRegressor NearestNeighbors Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, radius=1.0, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', outlier_label=None, **kwargs): self._init_params(radius=radius, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, **kwargs) self.weights = _check_weights(weights) self.outlier_label = outlier_label def predict(self, X): """Predict the class labels for the provided data Parameters ---------- X : array of shape [n_samples, n_features] A 2-D array representing the test points. Returns ------- y : array of shape [n_samples] or [n_samples, n_outputs] Class labels for each data sample. """ X = atleast2d_or_csr(X) n_samples = X.shape[0] neigh_dist, neigh_ind = self.radius_neighbors(X) inliers = [i for i, nind in enumerate(neigh_ind) if len(nind) != 0] outliers = [i for i, nind in enumerate(neigh_ind) if len(nind) == 0] classes_ = self.classes_ _y = self._y if not self.outputs_2d_: _y = self._y.reshape((-1, 1)) classes_ = [self.classes_] n_outputs = len(classes_) if self.outlier_label is not None: neigh_dist[outliers] = 1e-6 elif outliers: raise ValueError('No neighbors found for test samples %r, ' 'you can try using larger radius, ' 'give a label for outliers, ' 'or consider removing them from your dataset.' % outliers) weights = _get_weights(neigh_dist, self.weights) y_pred = np.empty((n_samples, n_outputs), dtype=classes_[0].dtype) for k, classes_k in enumerate(classes_): pred_labels = np.array([_y[ind, k] for ind in neigh_ind], dtype=object) if weights is None: mode = np.array([stats.mode(pl)[0] for pl in pred_labels[inliers]], dtype=np.int) else: mode = np.array([weighted_mode(pl, w)[0] for (pl, w) in zip(pred_labels[inliers], weights)], dtype=np.int) mode = mode.ravel().astype(np.int) y_pred[inliers, k] = classes_k.take(mode) if outliers: y_pred[outliers, :] = self.outlier_label if not self.outputs_2d_: y_pred = y_pred.ravel() return y_pred
bsd-3-clause
hmenke/espresso
samples/visualization_ljliquid.py
1
6372
# # Copyright (C) 2013-2018 The ESPResSo project # # This file is part of ESPResSo. # # ESPResSo is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ESPResSo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # """ Visualization sample for a Lennard Jones liquid with live plotting via matplotlib. """ from __future__ import print_function import numpy as np from matplotlib import pyplot from threading import Thread import espressomd from espressomd import thermostat from espressomd import integrate from espressomd import visualization required_features = ["LENNARD_JONES"] espressomd.assert_features(required_features) print(""" ======================================================= = lj_liquid.py = ======================================================= Program Information:""") print(espressomd.features()) dev = "cpu" # System parameters ############################################################# # 10 000 Particles box_l = 10.7437 density = 0.7 # Interaction parameters (repulsive Lennard Jones) ############################################################# lj_eps = 1.0 lj_sig = 1.0 lj_cut = 1.12246 lj_cap = 20 # Integration parameters ############################################################# system = espressomd.System(box_l=[box_l] * 3) system.set_random_state_PRNG() #system.seed = system.cell_system.get_state()['n_nodes'] * [1234] np.random.seed(seed=system.seed) system.time_step = 0.001 system.cell_system.skin = 0.4 #es._espressoHandle.Tcl_Eval('thermostat langevin 1.0 1.0') system.thermostat.set_langevin(kT=1.0, gamma=1.0) # warmup integration (with capped LJ potential) warm_steps = 100 warm_n_times = 30 # do the warmup until the particles have at least the distance min__dist min_dist = 0.9 # integration int_steps = 10 int_n_times = 50000 ############################################################# # Setup System # ############################################################# # Interaction setup ############################################################# system.non_bonded_inter[0, 0].lennard_jones.set_params( epsilon=lj_eps, sigma=lj_sig, cutoff=lj_cut, shift="auto") system.force_cap = lj_cap print("LJ-parameters:") print(system.non_bonded_inter[0, 0].lennard_jones.get_params()) # Particle setup ############################################################# volume = box_l * box_l * box_l n_part = int(volume * density) for i in range(n_part): system.part.add(id=i, pos=np.random.random(3) * system.box_l) system.analysis.dist_to(0) print("Simulate {} particles in a cubic simulation box {} at density {}." .format(n_part, box_l, density).strip()) print("Interactions:\n") act_min_dist = system.analysis.min_dist() print("Start with minimal distance {}".format(act_min_dist)) system.cell_system.max_num_cells = 2744 # Switch between openGl/Mayavi #visualizer = visualization.mayaviLive(system) visualizer = visualization.openGLLive(system) ############################################################# # Warmup Integration # ############################################################# print(""" Start warmup integration: At maximum {} times {} steps Stop if minimal distance is larger than {} """.strip().format(warm_n_times, warm_steps, min_dist)) # set LJ cap lj_cap = 20 system.force_cap = lj_cap print(system.non_bonded_inter[0, 0].lennard_jones) # Warmup Integration Loop i = 0 while (i < warm_n_times and act_min_dist < min_dist): system.integrator.run(warm_steps) # Warmup criterion act_min_dist = system.analysis.min_dist() # print("\rrun %d at time=%f (LJ cap=%f) min dist = %f\r" % # (i,system.time,lj_cap,act_min_dist), end=' ') i += 1 # Increase LJ cap lj_cap = lj_cap + 10 system.force_cap = lj_cap visualizer.update() # Just to see what else we may get from the c code # print(""" # ro variables: # cell_grid {0.cell_grid} # cell_size {0.cell_size} # local_box_l {0.local_box_l} # max_cut {0.max_cut} # max_part {0.max_part} # max_range {0.max_range} # max_skin {0.max_skin} # n_nodes {0.n_nodes} # n_part {0.n_part} # n_part_types {0.n_part_types} # periodicity {0.periodicity} # verlet_reuse {0.verlet_reuse} #""".format(system)) ############################################################# # Integration # ############################################################# print("\nStart integration: run %d times %d steps" % (int_n_times, int_steps)) # remove force capping lj_cap = 0 system.force_cap = lj_cap print(system.non_bonded_inter[0, 0].lennard_jones) # print initial energies energies = system.analysis.energy() print(energies) plot, = pyplot.plot([0], [energies['total']], label="total") pyplot.xlabel("Time") pyplot.ylabel("Energy") pyplot.legend() pyplot.show(block=False) j = 0 def main_loop(): global energies print("run %d at time=%f " % (i, system.time)) system.integrator.run(int_steps) visualizer.update() energies = system.analysis.energy() plot.set_xdata(np.append(plot.get_xdata(), system.time)) plot.set_ydata(np.append(plot.get_ydata(), energies['total'])) def main_thread(): for i in range(0, int_n_times): main_loop() last_plotted = 0 def update_plot(): global last_plotted current_time = plot.get_xdata()[-1] if last_plotted == current_time: return last_plotted = current_time pyplot.xlim(0, plot.get_xdata()[-1]) pyplot.ylim(plot.get_ydata().min(), plot.get_ydata().max()) pyplot.draw() pyplot.pause(0.01) t = Thread(target=main_thread) t.daemon = True t.start() visualizer.register_callback(update_plot, interval=1000) visualizer.start() # terminate program print("\nFinished.")
gpl-3.0
treycausey/scikit-learn
sklearn/pipeline.py
8
16439
""" The :mod:`sklearn.pipeline` module implements utilities to build a composite estimator, as a chain of transforms and estimators. """ # Author: Edouard Duchesnay # Gael Varoquaux # Virgile Fritsch # Alexandre Gramfort # Lars Buitinck # Licence: BSD from collections import defaultdict import numpy as np from scipy import sparse from .base import BaseEstimator, TransformerMixin from .externals.joblib import Parallel, delayed from .externals import six from .utils import tosequence from .externals.six import iteritems __all__ = ['Pipeline', 'FeatureUnion'] # One round of beers on me if someone finds out why the backslash # is needed in the Attributes section so as not to upset sphinx. class Pipeline(BaseEstimator): """Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implements fit and transform methods. The final estimator needs only implements fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. Parameters ---------- steps: list List of (name, transform) tuples (implementing fit/transform) that are chained, in the order in which they are chained, with the last object an estimator. Examples -------- >>> from sklearn import svm >>> from sklearn.datasets import samples_generator >>> from sklearn.feature_selection import SelectKBest >>> from sklearn.feature_selection import f_regression >>> from sklearn.pipeline import Pipeline >>> # generate some data to play with >>> X, y = samples_generator.make_classification( ... n_informative=5, n_redundant=0, random_state=42) >>> # ANOVA SVM-C >>> anova_filter = SelectKBest(f_regression, k=5) >>> clf = svm.SVC(kernel='linear') >>> anova_svm = Pipeline([('anova', anova_filter), ('svc', clf)]) >>> # You can set the parameters using the names issued >>> # For instance, fit using a k of 10 in the SelectKBest >>> # and a parameter 'C' of the svm >>> anova_svm.set_params(anova__k=10, svc__C=.1).fit(X, y) ... # doctest: +ELLIPSIS Pipeline(steps=[...]) >>> prediction = anova_svm.predict(X) >>> anova_svm.score(X, y) # doctest: +ELLIPSIS 0.77... """ # BaseEstimator interface def __init__(self, steps): self.named_steps = dict(steps) names, estimators = zip(*steps) if len(self.named_steps) != len(steps): raise ValueError("Names provided are not unique: %s" % (names,)) # shallow copy of steps self.steps = tosequence(zip(names, estimators)) transforms = estimators[:-1] estimator = estimators[-1] for t in transforms: if (not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not hasattr(t, "transform")): raise TypeError("All intermediate steps a the chain should " "be transforms and implement fit and transform" " '%s' (type %s) doesn't)" % (t, type(t))) if not hasattr(estimator, "fit"): raise TypeError("Last step of chain should implement fit " "'%s' (type %s) doesn't)" % (estimator, type(estimator))) def get_params(self, deep=True): if not deep: return super(Pipeline, self).get_params(deep=False) else: out = self.named_steps.copy() for name, step in six.iteritems(self.named_steps): for key, value in six.iteritems(step.get_params(deep=True)): out['%s__%s' % (name, key)] = value return out # Estimator interface def _pre_transform(self, X, y=None, **fit_params): fit_params_steps = dict((step, {}) for step, _ in self.steps) for pname, pval in six.iteritems(fit_params): step, param = pname.split('__', 1) fit_params_steps[step][param] = pval Xt = X for name, transform in self.steps[:-1]: if hasattr(transform, "fit_transform"): Xt = transform.fit_transform(Xt, y, **fit_params_steps[name]) else: Xt = transform.fit(Xt, y, **fit_params_steps[name]) \ .transform(Xt) return Xt, fit_params_steps[self.steps[-1][0]] def fit(self, X, y=None, **fit_params): """Fit all the transforms one after the other and transform the data, then fit the transformed data using the final estimator. """ Xt, fit_params = self._pre_transform(X, y, **fit_params) self.steps[-1][-1].fit(Xt, y, **fit_params) return self def fit_transform(self, X, y=None, **fit_params): """Fit all the transforms one after the other and transform the data, then use fit_transform on transformed data using the final estimator.""" Xt, fit_params = self._pre_transform(X, y, **fit_params) if hasattr(self.steps[-1][-1], 'fit_transform'): return self.steps[-1][-1].fit_transform(Xt, y, **fit_params) else: return self.steps[-1][-1].fit(Xt, y, **fit_params).transform(Xt) def predict(self, X): """Applies transforms to the data, and the predict method of the final estimator. Valid only if the final estimator implements predict.""" Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict(Xt) def predict_proba(self, X): """Applies transforms to the data, and the predict_proba method of the final estimator. Valid only if the final estimator implements predict_proba.""" Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict_proba(Xt) def decision_function(self, X): """Applies transforms to the data, and the decision_function method of the final estimator. Valid only if the final estimator implements decision_function.""" Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].decision_function(Xt) def predict_log_proba(self, X): Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict_log_proba(Xt) def transform(self, X): """Applies transforms to the data, and the transform method of the final estimator. Valid only if the final estimator implements transform.""" Xt = X for name, transform in self.steps: Xt = transform.transform(Xt) return Xt def inverse_transform(self, X): if X.ndim == 1: X = X[None, :] Xt = X for name, step in self.steps[::-1]: Xt = step.inverse_transform(Xt) return Xt def score(self, X, y=None): """Applies transforms to the data, and the score method of the final estimator. Valid only if the final estimator implements score.""" Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].score(Xt, y) @property def _pairwise(self): # check if first estimator expects pairwise input return getattr(self.steps[0][1], '_pairwise', False) def _name_estimators(estimators): """Generate names for estimators.""" names = [type(estimator).__name__.lower() for estimator in estimators] namecount = defaultdict(int) for est, name in zip(estimators, names): namecount[name] += 1 for k, v in list(six.iteritems(namecount)): if v == 1: del namecount[k] for i in reversed(range(len(estimators))): name = names[i] if name in namecount: names[i] += "-%d" % namecount[name] namecount[name] -= 1 return list(zip(names, estimators)) def make_pipeline(*steps): """Construct a Pipeline from the given estimators. This is a shorthand for the Pipeline constructor; it does not require, and does not permit, naming the estimators. Instead, they will be given names automatically based on their types. Examples -------- >>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.preprocessing import StandardScaler >>> make_pipeline(StandardScaler(), GaussianNB()) # doctest: +NORMALIZE_WHITESPACE Pipeline(steps=[('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('gaussiannb', GaussianNB())]) Returns ------- p : Pipeline """ return Pipeline(_name_estimators(steps)) def _fit_one_transformer(transformer, X, y): return transformer.fit(X, y) def _transform_one(transformer, name, X, transformer_weights): if transformer_weights is not None and name in transformer_weights: # if we have a weight for this transformer, muliply output return transformer.transform(X) * transformer_weights[name] return transformer.transform(X) def _fit_transform_one(transformer, name, X, y, transformer_weights, **fit_params): if transformer_weights is not None and name in transformer_weights: # if we have a weight for this transformer, muliply output if hasattr(transformer, 'fit_transform'): X_transformed = transformer.fit_transform(X, y, **fit_params) return X_transformed * transformer_weights[name], transformer else: X_transformed = transformer.fit(X, y, **fit_params).transform(X) return X_transformed * transformer_weights[name], transformer if hasattr(transformer, 'fit_transform'): X_transformed = transformer.fit_transform(X, y, **fit_params) return X_transformed, transformer else: X_transformed = transformer.fit(X, y, **fit_params).transform(X) return X_transformed, transformer class FeatureUnion(BaseEstimator, TransformerMixin): """Concatenates results of multiple transformer objects. This estimator applies a list of transformer objects in parallel to the input data, then concatenates the results. This is useful to combine several feature extraction mechanisms into a single transformer. Parameters ---------- transformer_list: list of (string, transformer) tuples List of transformer objects to be applied to the data. The first half of each tuple is the name of the transformer. n_jobs: int, optional Number of jobs to run in parallel (default 1). transformer_weights: dict, optional Multiplicative weights for features per transformer. Keys are transformer names, values the weights. """ def __init__(self, transformer_list, n_jobs=1, transformer_weights=None): self.transformer_list = transformer_list self.n_jobs = n_jobs self.transformer_weights = transformer_weights def get_feature_names(self): """Get feature names from all transformers. Returns ------- feature_names : list of strings Names of the features produced by transform. """ feature_names = [] for name, trans in self.transformer_list: if not hasattr(trans, 'get_feature_names'): raise AttributeError("Transformer %s does not provide" " get_feature_names." % str(name)) feature_names.extend([name + "__" + f for f in trans.get_feature_names()]) return feature_names def fit(self, X, y=None): """Fit all transformers using X. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data, used to fit transformers. """ transformers = Parallel(n_jobs=self.n_jobs)( delayed(_fit_one_transformer)(trans, X, y) for name, trans in self.transformer_list) self._update_transformer_list(transformers) return self def fit_transform(self, X, y=None, **fit_params): """Fit all transformers using X, transform the data and concatenate results. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data to be transformed. Returns ------- X_t : array-like or sparse matrix, shape (n_samples, sum_n_components) hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers. """ result = Parallel(n_jobs=self.n_jobs)( delayed(_fit_transform_one)(trans, name, X, y, self.transformer_weights, **fit_params) for name, trans in self.transformer_list) Xs, transformers = zip(*result) self._update_transformer_list(transformers) if any(sparse.issparse(f) for f in Xs): Xs = sparse.hstack(Xs).tocsr() else: Xs = np.hstack(Xs) return Xs def transform(self, X): """Transform X separately by each transformer, concatenate results. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data to be transformed. Returns ------- X_t : array-like or sparse matrix, shape (n_samples, sum_n_components) hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers. """ Xs = Parallel(n_jobs=self.n_jobs)( delayed(_transform_one)(trans, name, X, self.transformer_weights) for name, trans in self.transformer_list) if any(sparse.issparse(f) for f in Xs): Xs = sparse.hstack(Xs).tocsr() else: Xs = np.hstack(Xs) return Xs def get_params(self, deep=True): if not deep: return super(FeatureUnion, self).get_params(deep=False) else: out = dict(self.transformer_list) for name, trans in self.transformer_list: for key, value in iteritems(trans.get_params(deep=True)): out['%s__%s' % (name, key)] = value return out def _update_transformer_list(self, transformers): self.transformer_list[:] = [ (name, new) for ((name, old), new) in zip(self.transformer_list, transformers) ] # XXX it would be nice to have a keyword-only n_jobs argument to this function, # but that's not allowed in Python 2.x. def make_union(*transformers): """Construct a FeatureUnion from the given transformers. This is a shorthand for the FeatureUnion constructor; it does not require, and does not permit, naming the transformers. Instead, they will be given names automatically based on their types. It also does not allow weighting. Examples -------- >>> from sklearn.decomposition import PCA, TruncatedSVD >>> make_union(PCA(), TruncatedSVD()) # doctest: +NORMALIZE_WHITESPACE FeatureUnion(n_jobs=1, transformer_list=[('pca', PCA(copy=True, n_components=None, whiten=False)), ('truncatedsvd', TruncatedSVD(algorithm='randomized', n_components=2, n_iter=5, random_state=None, tol=0.0))], transformer_weights=None) Returns ------- f : FeatureUnion """ return FeatureUnion(_name_estimators(transformers))
bsd-3-clause
lthurlow/Network-Grapher
proj/external/matplotlib-1.2.1/doc/mpl_examples/animation/old_animation/dynamic_collection.py
9
1371
import random from matplotlib.collections import RegularPolyCollection import matplotlib.cm as cm from matplotlib.pyplot import figure, show from numpy.random import rand fig = figure() ax = fig.add_subplot(111, xlim=(0,1), ylim=(0,1), autoscale_on=False) ax.set_title("Press 'a' to add a point, 'd' to delete one") # a single point offsets = [(0.5,0.5)] facecolors = [cm.jet(0.5)] collection = RegularPolyCollection( #fig.dpi, 5, # a pentagon rotation=0, sizes=(50,), facecolors = facecolors, edgecolors = 'black', linewidths = (1,), offsets = offsets, transOffset = ax.transData, ) ax.add_collection(collection) def onpress(event): """ press 'a' to add a random point from the collection, 'd' to delete one """ if event.key=='a': x,y = rand(2) color = cm.jet(rand()) offsets.append((x,y)) facecolors.append(color) collection.set_offsets(offsets) collection.set_facecolors(facecolors) fig.canvas.draw() elif event.key=='d': N = len(offsets) if N>0: ind = random.randint(0,N-1) offsets.pop(ind) facecolors.pop(ind) collection.set_offsets(offsets) collection.set_facecolors(facecolors) fig.canvas.draw() fig.canvas.mpl_connect('key_press_event', onpress) show()
mit
thu-ml/zhusuan
examples/toy_examples/gaussian.py
1
3158
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import print_function from __future__ import division import numpy as np from scipy import stats import matplotlib.pyplot as plt import tensorflow as tf import zhusuan as zs @zs.meta_bayesian_net() def gaussian(n_x, stdev, n_particles): bn = zs.BayesianNet() bn.normal('x', tf.zeros([n_x]), std=stdev, n_samples=n_particles, group_ndims=1) return bn if __name__ == "__main__": tf.set_random_seed(1) # Define model parameters n_x = 1 # n_x = 10 stdev = 1 / (np.arange(n_x, dtype=np.float32) + 1) # Define HMC parameters kernel_width = 0.1 n_chains = 1000 n_iters = 200 burnin = n_iters // 2 n_leapfrogs = 5 # Build the computation graph model = gaussian(n_x, stdev, n_chains) adapt_step_size = tf.placeholder(tf.bool, shape=[], name="adapt_step_size") adapt_mass = tf.placeholder(tf.bool, shape=[], name="adapt_mass") hmc = zs.HMC(step_size=1e-3, n_leapfrogs=n_leapfrogs, adapt_step_size=adapt_step_size, adapt_mass=adapt_mass, target_acceptance_rate=0.9) x = tf.Variable(tf.zeros([n_chains, n_x]), trainable=False, name='x') sample_op, hmc_info = hmc.sample(model, {}, {'x': x}) # Run the inference with tf.Session() as sess: sess.run(tf.global_variables_initializer()) samples = [] print('Sampling...') for i in range(n_iters): _, x_sample, acc, ss = sess.run( [sample_op, hmc_info.samples['x'], hmc_info.acceptance_rate, hmc_info.updated_step_size], feed_dict={adapt_step_size: i < burnin // 2, adapt_mass: i < burnin // 2}) print('Sample {}: Acceptance rate = {}, updated step size = {}' .format(i, np.mean(acc), ss)) if i >= burnin: samples.append(x_sample) print('Finished.') samples = np.vstack(samples) # Check & plot the results print('Expected mean = {}'.format(np.zeros(n_x))) print('Sample mean = {}'.format(np.mean(samples, 0))) print('Expected stdev = {}'.format(stdev)) print('Sample stdev = {}'.format(np.std(samples, 0))) print('Relative error of stdev = {}'.format( (np.std(samples, 0) - stdev) / stdev)) def kde(xs, mu, batch_size): mu_n = len(mu) assert mu_n % batch_size == 0 xs_row = np.expand_dims(xs, 1) ys = np.zeros(xs.shape) for b in range(mu_n // batch_size): mu_col = np.expand_dims(mu[b * batch_size:(b + 1) * batch_size], 0) ys += (1 / np.sqrt(2 * np.pi) / kernel_width) * \ np.mean(np.exp((-0.5 / kernel_width ** 2) * np.square(xs_row - mu_col)), 1) ys /= (mu_n / batch_size) return ys if n_x == 1: xs = np.linspace(-5, 5, 1000) ys = kde(xs, np.squeeze(samples), n_chains) f, ax = plt.subplots() ax.plot(xs, ys) ax.plot(xs, stats.norm.pdf(xs, scale=stdev[0])) plt.show()
mit
cloud-fan/spark
python/pyspark/testing/sqlutils.py
23
7740
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import datetime import os import shutil import tempfile from contextlib import contextmanager from pyspark.sql import SparkSession from pyspark.sql.types import ArrayType, DoubleType, UserDefinedType, Row from pyspark.testing.utils import ReusedPySparkTestCase pandas_requirement_message = None try: from pyspark.sql.pandas.utils import require_minimum_pandas_version require_minimum_pandas_version() except ImportError as e: # If Pandas version requirement is not satisfied, skip related tests. pandas_requirement_message = str(e) pyarrow_requirement_message = None try: from pyspark.sql.pandas.utils import require_minimum_pyarrow_version require_minimum_pyarrow_version() except ImportError as e: # If Arrow version requirement is not satisfied, skip related tests. pyarrow_requirement_message = str(e) test_not_compiled_message = None try: from pyspark.sql.utils import require_test_compiled require_test_compiled() except Exception as e: test_not_compiled_message = str(e) have_pandas = pandas_requirement_message is None have_pyarrow = pyarrow_requirement_message is None test_compiled = test_not_compiled_message is None class UTCOffsetTimezone(datetime.tzinfo): """ Specifies timezone in UTC offset """ def __init__(self, offset=0): self.ZERO = datetime.timedelta(hours=offset) def utcoffset(self, dt): return self.ZERO def dst(self, dt): return self.ZERO class ExamplePointUDT(UserDefinedType): """ User-defined type (UDT) for ExamplePoint. """ @classmethod def sqlType(self): return ArrayType(DoubleType(), False) @classmethod def module(cls): return 'pyspark.sql.tests' @classmethod def scalaUDT(cls): return 'org.apache.spark.sql.test.ExamplePointUDT' def serialize(self, obj): return [obj.x, obj.y] def deserialize(self, datum): return ExamplePoint(datum[0], datum[1]) class ExamplePoint: """ An example class to demonstrate UDT in Scala, Java, and Python. """ __UDT__ = ExamplePointUDT() def __init__(self, x, y): self.x = x self.y = y def __repr__(self): return "ExamplePoint(%s,%s)" % (self.x, self.y) def __str__(self): return "(%s,%s)" % (self.x, self.y) def __eq__(self, other): return isinstance(other, self.__class__) and \ other.x == self.x and other.y == self.y class PythonOnlyUDT(UserDefinedType): """ User-defined type (UDT) for ExamplePoint. """ @classmethod def sqlType(self): return ArrayType(DoubleType(), False) @classmethod def module(cls): return '__main__' def serialize(self, obj): return [obj.x, obj.y] def deserialize(self, datum): return PythonOnlyPoint(datum[0], datum[1]) @staticmethod def foo(): pass @property def props(self): return {} class PythonOnlyPoint(ExamplePoint): """ An example class to demonstrate UDT in only Python """ __UDT__ = PythonOnlyUDT() # type: ignore class MyObject(object): def __init__(self, key, value): self.key = key self.value = value class SQLTestUtils(object): """ This util assumes the instance of this to have 'spark' attribute, having a spark session. It is usually used with 'ReusedSQLTestCase' class but can be used if you feel sure the the implementation of this class has 'spark' attribute. """ @contextmanager def sql_conf(self, pairs): """ A convenient context manager to test some configuration specific logic. This sets `value` to the configuration `key` and then restores it back when it exits. """ assert isinstance(pairs, dict), "pairs should be a dictionary." assert hasattr(self, "spark"), "it should have 'spark' attribute, having a spark session." keys = pairs.keys() new_values = pairs.values() old_values = [self.spark.conf.get(key, None) for key in keys] for key, new_value in zip(keys, new_values): self.spark.conf.set(key, new_value) try: yield finally: for key, old_value in zip(keys, old_values): if old_value is None: self.spark.conf.unset(key) else: self.spark.conf.set(key, old_value) @contextmanager def database(self, *databases): """ A convenient context manager to test with some specific databases. This drops the given databases if it exists and sets current database to "default" when it exits. """ assert hasattr(self, "spark"), "it should have 'spark' attribute, having a spark session." try: yield finally: for db in databases: self.spark.sql("DROP DATABASE IF EXISTS %s CASCADE" % db) self.spark.catalog.setCurrentDatabase("default") @contextmanager def table(self, *tables): """ A convenient context manager to test with some specific tables. This drops the given tables if it exists. """ assert hasattr(self, "spark"), "it should have 'spark' attribute, having a spark session." try: yield finally: for t in tables: self.spark.sql("DROP TABLE IF EXISTS %s" % t) @contextmanager def tempView(self, *views): """ A convenient context manager to test with some specific views. This drops the given views if it exists. """ assert hasattr(self, "spark"), "it should have 'spark' attribute, having a spark session." try: yield finally: for v in views: self.spark.catalog.dropTempView(v) @contextmanager def function(self, *functions): """ A convenient context manager to test with some specific functions. This drops the given functions if it exists. """ assert hasattr(self, "spark"), "it should have 'spark' attribute, having a spark session." try: yield finally: for f in functions: self.spark.sql("DROP FUNCTION IF EXISTS %s" % f) class ReusedSQLTestCase(ReusedPySparkTestCase, SQLTestUtils): @classmethod def setUpClass(cls): super(ReusedSQLTestCase, cls).setUpClass() cls.spark = SparkSession(cls.sc) cls.tempdir = tempfile.NamedTemporaryFile(delete=False) os.unlink(cls.tempdir.name) cls.testData = [Row(key=i, value=str(i)) for i in range(100)] cls.df = cls.spark.createDataFrame(cls.testData) @classmethod def tearDownClass(cls): super(ReusedSQLTestCase, cls).tearDownClass() cls.spark.stop() shutil.rmtree(cls.tempdir.name, ignore_errors=True)
apache-2.0
theoryno3/scikit-learn
sklearn/preprocessing/tests/test_data.py
3
35967
import warnings import numpy as np import numpy.linalg as la from scipy import sparse from distutils.version import LooseVersion from sklearn.utils.testing import assert_almost_equal, clean_warning_registry from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_no_warnings from sklearn.utils.sparsefuncs import mean_variance_axis from sklearn.preprocessing.data import _transform_selected from sklearn.preprocessing.data import Binarizer from sklearn.preprocessing.data import KernelCenterer from sklearn.preprocessing.data import Normalizer from sklearn.preprocessing.data import normalize from sklearn.preprocessing.data import OneHotEncoder from sklearn.preprocessing.data import StandardScaler from sklearn.preprocessing.data import scale from sklearn.preprocessing.data import MinMaxScaler from sklearn.preprocessing.data import RobustScaler from sklearn.preprocessing.data import robust_scale from sklearn.preprocessing.data import add_dummy_feature from sklearn.preprocessing.data import PolynomialFeatures from sklearn.utils.validation import DataConversionWarning from sklearn import datasets iris = datasets.load_iris() def toarray(a): if hasattr(a, "toarray"): a = a.toarray() return a def test_polynomial_features(): # Test Polynomial Features X1 = np.arange(6)[:, np.newaxis] P1 = np.hstack([np.ones_like(X1), X1, X1 ** 2, X1 ** 3]) deg1 = 3 X2 = np.arange(6).reshape((3, 2)) x1 = X2[:, :1] x2 = X2[:, 1:] P2 = np.hstack([x1 ** 0 * x2 ** 0, x1 ** 1 * x2 ** 0, x1 ** 0 * x2 ** 1, x1 ** 2 * x2 ** 0, x1 ** 1 * x2 ** 1, x1 ** 0 * x2 ** 2]) deg2 = 2 for (deg, X, P) in [(deg1, X1, P1), (deg2, X2, P2)]: P_test = PolynomialFeatures(deg, include_bias=True).fit_transform(X) assert_array_almost_equal(P_test, P) P_test = PolynomialFeatures(deg, include_bias=False).fit_transform(X) assert_array_almost_equal(P_test, P[:, 1:]) interact = PolynomialFeatures(2, interaction_only=True, include_bias=True) X_poly = interact.fit_transform(X) assert_array_almost_equal(X_poly, P2[:, [0, 1, 2, 4]]) def test_scaler_1d(): # Test scaling of dataset along single axis rng = np.random.RandomState(0) X = rng.randn(5) X_orig_copy = X.copy() scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=False) assert_array_almost_equal(X_scaled.mean(axis=0), 0.0) assert_array_almost_equal(X_scaled.std(axis=0), 1.0) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X_orig_copy) # Test with 1D list X = [0., 1., 2, 0.4, 1.] scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=False) assert_array_almost_equal(X_scaled.mean(axis=0), 0.0) assert_array_almost_equal(X_scaled.std(axis=0), 1.0) X_scaled = scale(X) assert_array_almost_equal(X_scaled.mean(axis=0), 0.0) assert_array_almost_equal(X_scaled.std(axis=0), 1.0) X = np.ones(5) assert_array_equal(scale(X, with_mean=False), X) def test_standard_scaler_numerical_stability(): """Test numerical stability of scaling""" # np.log(1e-5) is taken because of its floating point representation # was empirically found to cause numerical problems with np.mean & np.std. x = np.zeros(8, dtype=np.float64) + np.log(1e-5, dtype=np.float64) if LooseVersion(np.__version__) >= LooseVersion('1.9'): # This does not raise a warning as the number of samples is too low # to trigger the problem in recent numpy x_scaled = assert_no_warnings(scale, x) assert_array_almost_equal(scale(x), np.zeros(8)) else: w = "standard deviation of the data is probably very close to 0" x_scaled = assert_warns_message(UserWarning, w, scale, x) assert_array_almost_equal(x_scaled, np.zeros(8)) # with 2 more samples, the std computation run into numerical issues: x = np.zeros(10, dtype=np.float64) + np.log(1e-5, dtype=np.float64) w = "standard deviation of the data is probably very close to 0" x_scaled = assert_warns_message(UserWarning, w, scale, x) assert_array_almost_equal(x_scaled, np.zeros(10)) x = np.ones(10, dtype=np.float64) * 1e-100 x_small_scaled = assert_no_warnings(scale, x) assert_array_almost_equal(x_small_scaled, np.zeros(10)) # Large values can cause (often recoverable) numerical stability issues: x_big = np.ones(10, dtype=np.float64) * 1e100 w = "Dataset may contain too large values" x_big_scaled = assert_warns_message(UserWarning, w, scale, x_big) assert_array_almost_equal(x_big_scaled, np.zeros(10)) assert_array_almost_equal(x_big_scaled, x_small_scaled) x_big_centered = assert_warns_message(UserWarning, w, scale, x_big, with_std=False) assert_array_almost_equal(x_big_centered, np.zeros(10)) assert_array_almost_equal(x_big_centered, x_small_scaled) def test_scaler_2d_arrays(): # Test scaling of 2d array along first axis rng = np.random.RandomState(0) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has been copied assert_true(X_scaled is not X) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_true(X_scaled_back is not X) assert_true(X_scaled_back is not X_scaled) assert_array_almost_equal(X_scaled_back, X) X_scaled = scale(X, axis=1, with_std=False) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=1), 4 * [0.0]) X_scaled = scale(X, axis=1, with_std=True) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=1), 4 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=1), 4 * [1.0]) # Check that the data hasn't been modified assert_true(X_scaled is not X) X_scaled = scaler.fit(X).transform(X, copy=False) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert_true(X_scaled is X) X = rng.randn(4, 5) X[:, 0] = 1.0 # first feature is a constant, non zero feature scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert_true(X_scaled is not X) def test_min_max_scaler_iris(): X = iris.data scaler = MinMaxScaler() # default params X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), 0) assert_array_almost_equal(X_trans.min(axis=0), 0) assert_array_almost_equal(X_trans.max(axis=0), 1) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # not default params: min=1, max=2 scaler = MinMaxScaler(feature_range=(1, 2)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), 1) assert_array_almost_equal(X_trans.max(axis=0), 2) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # min=-.5, max=.6 scaler = MinMaxScaler(feature_range=(-.5, .6)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), -.5) assert_array_almost_equal(X_trans.max(axis=0), .6) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # raises on invalid range scaler = MinMaxScaler(feature_range=(2, 1)) assert_raises(ValueError, scaler.fit, X) def test_min_max_scaler_zero_variance_features(): # Check min max scaler on toy data with zero variance features X = [[0., 1., +0.5], [0., 1., -0.1], [0., 1., +1.1]] X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] # default params scaler = MinMaxScaler() X_trans = scaler.fit_transform(X) X_expected_0_1 = [[0., 0., 0.5], [0., 0., 0.0], [0., 0., 1.0]] assert_array_almost_equal(X_trans, X_expected_0_1) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) X_trans_new = scaler.transform(X_new) X_expected_0_1_new = [[+0., 1., 0.500], [-1., 0., 0.083], [+0., 0., 1.333]] assert_array_almost_equal(X_trans_new, X_expected_0_1_new, decimal=2) # not default params scaler = MinMaxScaler(feature_range=(1, 2)) X_trans = scaler.fit_transform(X) X_expected_1_2 = [[1., 1., 1.5], [1., 1., 1.0], [1., 1., 2.0]] assert_array_almost_equal(X_trans, X_expected_1_2) def test_min_max_scaler_1d(): # Test scaling of dataset along single axis rng = np.random.RandomState(0) X = rng.randn(5) X_orig_copy = X.copy() scaler = MinMaxScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(X_scaled.min(axis=0), 0.0) assert_array_almost_equal(X_scaled.max(axis=0), 1.0) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X_orig_copy) # Test with 1D list X = [0., 1., 2, 0.4, 1.] scaler = MinMaxScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(X_scaled.min(axis=0), 0.0) assert_array_almost_equal(X_scaled.max(axis=0), 1.0) # Constant feature. X = np.zeros(5) scaler = MinMaxScaler() X_scaled = scaler.fit(X).transform(X) assert_greater_equal(X_scaled.min(), 0.) assert_less_equal(X_scaled.max(), 1.) def test_scaler_without_centering(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) assert_raises(ValueError, StandardScaler().fit, X_csr) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) X_null = null_transform.fit_transform(X_csr) assert_array_equal(X_null.data, X_csr.data) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.data, X_csr.data) scaler = StandardScaler(with_mean=False).fit(X) X_scaled = scaler.transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) scaler_csr = StandardScaler(with_mean=False).fit(X_csr) X_csr_scaled = scaler_csr.transform(X_csr, copy=True) assert_false(np.any(np.isnan(X_csr_scaled.data))) scaler_csc = StandardScaler(with_mean=False).fit(X_csc) X_csc_scaled = scaler_csr.transform(X_csc, copy=True) assert_false(np.any(np.isnan(X_csc_scaled.data))) assert_equal(scaler.mean_, scaler_csr.mean_) assert_array_almost_equal(scaler.std_, scaler_csr.std_) assert_equal(scaler.mean_, scaler_csc.mean_) assert_array_almost_equal(scaler.std_, scaler_csc.std_) assert_array_almost_equal( X_scaled.mean(axis=0), [0., -0.01, 2.24, -0.35, -0.78], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) # Check that X has not been modified (copy) assert_true(X_scaled is not X) assert_true(X_csr_scaled is not X_csr) X_scaled_back = scaler.inverse_transform(X_scaled) assert_true(X_scaled_back is not X) assert_true(X_scaled_back is not X_scaled) assert_array_almost_equal(X_scaled_back, X) X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled) assert_true(X_csr_scaled_back is not X_csr) assert_true(X_csr_scaled_back is not X_csr_scaled) assert_array_almost_equal(X_csr_scaled_back.toarray(), X) X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc()) assert_true(X_csc_scaled_back is not X_csc) assert_true(X_csc_scaled_back is not X_csc_scaled) assert_array_almost_equal(X_csc_scaled_back.toarray(), X) def test_scaler_int(): # test that scaler converts integer input to floating # for both sparse and dense matrices rng = np.random.RandomState(42) X = rng.randint(20, size=(4, 5)) X[:, 0] = 0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) clean_warning_registry() with warnings.catch_warnings(record=True): X_null = null_transform.fit_transform(X_csr) assert_array_equal(X_null.data, X_csr.data) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.data, X_csr.data) clean_warning_registry() with warnings.catch_warnings(record=True): scaler = StandardScaler(with_mean=False).fit(X) X_scaled = scaler.transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) clean_warning_registry() with warnings.catch_warnings(record=True): scaler_csr = StandardScaler(with_mean=False).fit(X_csr) X_csr_scaled = scaler_csr.transform(X_csr, copy=True) assert_false(np.any(np.isnan(X_csr_scaled.data))) clean_warning_registry() with warnings.catch_warnings(record=True): scaler_csc = StandardScaler(with_mean=False).fit(X_csc) X_csc_scaled = scaler_csr.transform(X_csc, copy=True) assert_false(np.any(np.isnan(X_csc_scaled.data))) assert_equal(scaler.mean_, scaler_csr.mean_) assert_array_almost_equal(scaler.std_, scaler_csr.std_) assert_equal(scaler.mean_, scaler_csc.mean_) assert_array_almost_equal(scaler.std_, scaler_csc.std_) assert_array_almost_equal( X_scaled.mean(axis=0), [0., 1.109, 1.856, 21., 1.559], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis( X_csr_scaled.astype(np.float), 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) # Check that X has not been modified (copy) assert_true(X_scaled is not X) assert_true(X_csr_scaled is not X_csr) X_scaled_back = scaler.inverse_transform(X_scaled) assert_true(X_scaled_back is not X) assert_true(X_scaled_back is not X_scaled) assert_array_almost_equal(X_scaled_back, X) X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled) assert_true(X_csr_scaled_back is not X_csr) assert_true(X_csr_scaled_back is not X_csr_scaled) assert_array_almost_equal(X_csr_scaled_back.toarray(), X) X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc()) assert_true(X_csc_scaled_back is not X_csc) assert_true(X_csc_scaled_back is not X_csc_scaled) assert_array_almost_equal(X_csc_scaled_back.toarray(), X) def test_scaler_without_copy(): # Check that StandardScaler.fit does not change input rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_copy = X.copy() StandardScaler(copy=False).fit(X) assert_array_equal(X, X_copy) X_csr_copy = X_csr.copy() StandardScaler(with_mean=False, copy=False).fit(X_csr) assert_array_equal(X_csr.toarray(), X_csr_copy.toarray()) def test_scale_sparse_with_mean_raise_exception(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X_csr = sparse.csr_matrix(X) # check scaling and fit with direct calls on sparse data assert_raises(ValueError, scale, X_csr, with_mean=True) assert_raises(ValueError, StandardScaler(with_mean=True).fit, X_csr) # check transform and inverse_transform after a fit on a dense array scaler = StandardScaler(with_mean=True).fit(X) assert_raises(ValueError, scaler.transform, X_csr) X_transformed_csr = sparse.csr_matrix(scaler.transform(X)) assert_raises(ValueError, scaler.inverse_transform, X_transformed_csr) def test_scale_input_finiteness_validation(): # Check if non finite inputs raise ValueError X = [np.nan, 5, 6, 7, 8] assert_raises_regex(ValueError, "Input contains NaN, infinity or a value too large", scale, X) X = [np.inf, 5, 6, 7, 8] assert_raises_regex(ValueError, "Input contains NaN, infinity or a value too large", scale, X) def test_scale_function_without_centering(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_scaled = scale(X, with_mean=False) assert_false(np.any(np.isnan(X_scaled))) X_csr_scaled = scale(X_csr, with_mean=False) assert_false(np.any(np.isnan(X_csr_scaled.data))) # test csc has same outcome X_csc_scaled = scale(X_csr.tocsc(), with_mean=False) assert_array_almost_equal(X_scaled, X_csc_scaled.toarray()) # raises value error on axis != 0 assert_raises(ValueError, scale, X_csr, with_mean=False, axis=1) assert_array_almost_equal(X_scaled.mean(axis=0), [0., -0.01, 2.24, -0.35, -0.78], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert_true(X_scaled is not X) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) def test_robust_scaler_2d_arrays(): """Test robust scaling of 2d array along first axis""" rng = np.random.RandomState(0) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero scaler = RobustScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(np.median(X_scaled, axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0)[0], 0) def test_robust_scaler_iris(): X = iris.data scaler = RobustScaler() X_trans = scaler.fit_transform(X) assert_array_almost_equal(np.median(X_trans, axis=0), 0) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) q = np.percentile(X_trans, q=(25, 75), axis=0) iqr = q[1] - q[0] assert_array_almost_equal(iqr, 1) def test_robust_scale_axis1(): X = iris.data X_trans = robust_scale(X, axis=1) assert_array_almost_equal(np.median(X_trans, axis=1), 0) q = np.percentile(X_trans, q=(25, 75), axis=1) iqr = q[1] - q[0] assert_array_almost_equal(iqr, 1) def test_robust_scaler_zero_variance_features(): """Check RobustScaler on toy data with zero variance features""" X = [[0., 1., +0.5], [0., 1., -0.1], [0., 1., +1.1]] scaler = RobustScaler() X_trans = scaler.fit_transform(X) # NOTE: for such a small sample size, what we expect in the third column # depends HEAVILY on the method used to calculate quantiles. The values # here were calculated to fit the quantiles produces by np.percentile # using numpy 1.9 Calculating quantiles with # scipy.stats.mstats.scoreatquantile or scipy.stats.mstats.mquantiles # would yield very different results! X_expected = [[0., 0., +0.0], [0., 0., -1.0], [0., 0., +1.0]] assert_array_almost_equal(X_trans, X_expected) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # make sure new data gets transformed correctly X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] X_trans_new = scaler.transform(X_new) X_expected_new = [[+0., 1., +0.], [-1., 0., -0.83333], [+0., 0., +1.66667]] assert_array_almost_equal(X_trans_new, X_expected_new, decimal=3) def test_warning_scaling_integers(): # Check warning when scaling integer data X = np.array([[1, 2, 0], [0, 0, 0]], dtype=np.uint8) w = "Data with input dtype uint8 was converted to float64" clean_warning_registry() assert_warns_message(DataConversionWarning, w, scale, X) assert_warns_message(DataConversionWarning, w, StandardScaler().fit, X) assert_warns_message(DataConversionWarning, w, MinMaxScaler().fit, X) def test_normalizer_l1(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='l1', copy=True) X_norm = normalizer.transform(X) assert_true(X_norm is not X) X_norm1 = toarray(X_norm) normalizer = Normalizer(norm='l1', copy=False) X_norm = normalizer.transform(X) assert_true(X_norm is X) X_norm2 = toarray(X_norm) for X_norm in (X_norm1, X_norm2): row_sums = np.abs(X_norm).sum(axis=1) for i in range(3): assert_almost_equal(row_sums[i], 1.0) assert_almost_equal(row_sums[3], 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert_true(X_norm is not X) assert_true(isinstance(X_norm, sparse.csr_matrix)) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(row_sums[i], 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalizer_l2(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='l2', copy=True) X_norm1 = normalizer.transform(X) assert_true(X_norm1 is not X) X_norm1 = toarray(X_norm1) normalizer = Normalizer(norm='l2', copy=False) X_norm2 = normalizer.transform(X) assert_true(X_norm2 is X) X_norm2 = toarray(X_norm2) for X_norm in (X_norm1, X_norm2): for i in range(3): assert_almost_equal(la.norm(X_norm[i]), 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert_true(X_norm is not X) assert_true(isinstance(X_norm, sparse.csr_matrix)) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(la.norm(X_norm[i]), 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalizer_max(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='max', copy=True) X_norm1 = normalizer.transform(X) assert_true(X_norm1 is not X) X_norm1 = toarray(X_norm1) normalizer = Normalizer(norm='max', copy=False) X_norm2 = normalizer.transform(X) assert_true(X_norm2 is X) X_norm2 = toarray(X_norm2) for X_norm in (X_norm1, X_norm2): row_maxs = X_norm.max(axis=1) for i in range(3): assert_almost_equal(row_maxs[i], 1.0) assert_almost_equal(row_maxs[3], 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert_true(X_norm is not X) assert_true(isinstance(X_norm, sparse.csr_matrix)) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(row_maxs[i], 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalize(): # Test normalize function # Only tests functionality not used by the tests for Normalizer. X = np.random.RandomState(37).randn(3, 2) assert_array_equal(normalize(X, copy=False), normalize(X.T, axis=0, copy=False).T) assert_raises(ValueError, normalize, [[0]], axis=2) assert_raises(ValueError, normalize, [[0]], norm='l3') def test_binarizer(): X_ = np.array([[1, 0, 5], [2, 3, -1]]) for init in (np.array, list, sparse.csr_matrix, sparse.csc_matrix): X = init(X_.copy()) binarizer = Binarizer(threshold=2.0, copy=True) X_bin = toarray(binarizer.transform(X)) assert_equal(np.sum(X_bin == 0), 4) assert_equal(np.sum(X_bin == 1), 2) X_bin = binarizer.transform(X) assert_equal(sparse.issparse(X), sparse.issparse(X_bin)) binarizer = Binarizer(copy=True).fit(X) X_bin = toarray(binarizer.transform(X)) assert_true(X_bin is not X) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(copy=True) X_bin = binarizer.transform(X) assert_true(X_bin is not X) X_bin = toarray(X_bin) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(copy=False) X_bin = binarizer.transform(X) if init is not list: assert_true(X_bin is X) X_bin = toarray(X_bin) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(threshold=-0.5, copy=True) for init in (np.array, list): X = init(X_.copy()) X_bin = toarray(binarizer.transform(X)) assert_equal(np.sum(X_bin == 0), 1) assert_equal(np.sum(X_bin == 1), 5) X_bin = binarizer.transform(X) # Cannot use threshold < 0 for sparse assert_raises(ValueError, binarizer.transform, sparse.csc_matrix(X)) def test_center_kernel(): # Test that KernelCenterer is equivalent to StandardScaler # in feature space rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) scaler = StandardScaler(with_std=False) scaler.fit(X_fit) X_fit_centered = scaler.transform(X_fit) K_fit = np.dot(X_fit, X_fit.T) # center fit time matrix centerer = KernelCenterer() K_fit_centered = np.dot(X_fit_centered, X_fit_centered.T) K_fit_centered2 = centerer.fit_transform(K_fit) assert_array_almost_equal(K_fit_centered, K_fit_centered2) # center predict time matrix X_pred = rng.random_sample((2, 4)) K_pred = np.dot(X_pred, X_fit.T) X_pred_centered = scaler.transform(X_pred) K_pred_centered = np.dot(X_pred_centered, X_fit_centered.T) K_pred_centered2 = centerer.transform(K_pred) assert_array_almost_equal(K_pred_centered, K_pred_centered2) def test_fit_transform(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) for obj in ((StandardScaler(), Normalizer(), Binarizer())): X_transformed = obj.fit(X).transform(X) X_transformed2 = obj.fit_transform(X) assert_array_equal(X_transformed, X_transformed2) def test_add_dummy_feature(): X = [[1, 0], [0, 1], [0, 1]] X = add_dummy_feature(X) assert_array_equal(X, [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_coo(): X = sparse.coo_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert_true(sparse.isspmatrix_coo(X), X) assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_csc(): X = sparse.csc_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert_true(sparse.isspmatrix_csc(X), X) assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_csr(): X = sparse.csr_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert_true(sparse.isspmatrix_csr(X), X) assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_one_hot_encoder_sparse(): # Test OneHotEncoder's fit and transform. X = [[3, 2, 1], [0, 1, 1]] enc = OneHotEncoder() # discover max values automatically X_trans = enc.fit_transform(X).toarray() assert_equal(X_trans.shape, (2, 5)) assert_array_equal(enc.active_features_, np.where([1, 0, 0, 1, 0, 1, 1, 0, 1])[0]) assert_array_equal(enc.feature_indices_, [0, 4, 7, 9]) # check outcome assert_array_equal(X_trans, [[0., 1., 0., 1., 1.], [1., 0., 1., 0., 1.]]) # max value given as 3 enc = OneHotEncoder(n_values=4) X_trans = enc.fit_transform(X) assert_equal(X_trans.shape, (2, 4 * 3)) assert_array_equal(enc.feature_indices_, [0, 4, 8, 12]) # max value given per feature enc = OneHotEncoder(n_values=[3, 2, 2]) X = [[1, 0, 1], [0, 1, 1]] X_trans = enc.fit_transform(X) assert_equal(X_trans.shape, (2, 3 + 2 + 2)) assert_array_equal(enc.n_values_, [3, 2, 2]) # check that testing with larger feature works: X = np.array([[2, 0, 1], [0, 1, 1]]) enc.transform(X) # test that an error is raised when out of bounds: X_too_large = [[0, 2, 1], [0, 1, 1]] assert_raises(ValueError, enc.transform, X_too_large) assert_raises(ValueError, OneHotEncoder(n_values=2).fit_transform, X) # test that error is raised when wrong number of features assert_raises(ValueError, enc.transform, X[:, :-1]) # test that error is raised when wrong number of features in fit # with prespecified n_values assert_raises(ValueError, enc.fit, X[:, :-1]) # test exception on wrong init param assert_raises(TypeError, OneHotEncoder(n_values=np.int).fit, X) enc = OneHotEncoder() # test negative input to fit assert_raises(ValueError, enc.fit, [[0], [-1]]) # test negative input to transform enc.fit([[0], [1]]) assert_raises(ValueError, enc.transform, [[0], [-1]]) def test_one_hot_encoder_dense(): # check for sparse=False X = [[3, 2, 1], [0, 1, 1]] enc = OneHotEncoder(sparse=False) # discover max values automatically X_trans = enc.fit_transform(X) assert_equal(X_trans.shape, (2, 5)) assert_array_equal(enc.active_features_, np.where([1, 0, 0, 1, 0, 1, 1, 0, 1])[0]) assert_array_equal(enc.feature_indices_, [0, 4, 7, 9]) # check outcome assert_array_equal(X_trans, np.array([[0., 1., 0., 1., 1.], [1., 0., 1., 0., 1.]])) def _check_transform_selected(X, X_expected, sel): for M in (X, sparse.csr_matrix(X)): Xtr = _transform_selected(M, Binarizer().transform, sel) assert_array_equal(toarray(Xtr), X_expected) def test_transform_selected(): X = [[3, 2, 1], [0, 1, 1]] X_expected = [[1, 2, 1], [0, 1, 1]] _check_transform_selected(X, X_expected, [0]) _check_transform_selected(X, X_expected, [True, False, False]) X_expected = [[1, 1, 1], [0, 1, 1]] _check_transform_selected(X, X_expected, [0, 1, 2]) _check_transform_selected(X, X_expected, [True, True, True]) _check_transform_selected(X, X_expected, "all") _check_transform_selected(X, X, []) _check_transform_selected(X, X, [False, False, False]) def _run_one_hot(X, X2, cat): enc = OneHotEncoder(categorical_features=cat) Xtr = enc.fit_transform(X) X2tr = enc.transform(X2) return Xtr, X2tr def _check_one_hot(X, X2, cat, n_features): ind = np.where(cat)[0] # With mask A, B = _run_one_hot(X, X2, cat) # With indices C, D = _run_one_hot(X, X2, ind) # Check shape assert_equal(A.shape, (2, n_features)) assert_equal(B.shape, (1, n_features)) assert_equal(C.shape, (2, n_features)) assert_equal(D.shape, (1, n_features)) # Check that mask and indices give the same results assert_array_equal(toarray(A), toarray(C)) assert_array_equal(toarray(B), toarray(D)) def test_one_hot_encoder_categorical_features(): X = np.array([[3, 2, 1], [0, 1, 1]]) X2 = np.array([[1, 1, 1]]) cat = [True, False, False] _check_one_hot(X, X2, cat, 4) # Edge case: all non-categorical cat = [False, False, False] _check_one_hot(X, X2, cat, 3) # Edge case: all categorical cat = [True, True, True] _check_one_hot(X, X2, cat, 5) def test_one_hot_encoder_unknown_transform(): X = np.array([[0, 2, 1], [1, 0, 3], [1, 0, 2]]) y = np.array([[4, 1, 1]]) # Test that one hot encoder raises error for unknown features # present during transform. oh = OneHotEncoder(handle_unknown='error') oh.fit(X) assert_raises(ValueError, oh.transform, y) # Test the ignore option, ignores unknown features. oh = OneHotEncoder(handle_unknown='ignore') oh.fit(X) assert_array_equal( oh.transform(y).toarray(), np.array([[0., 0., 0., 0., 1., 0., 0.]]) ) # Raise error if handle_unknown is neither ignore or error. oh = OneHotEncoder(handle_unknown='42') oh.fit(X) assert_raises(ValueError, oh.transform, y)
bsd-3-clause
santis19/tesina-fisica
Flexion/modelo-sintetico/4-flex-y-lito-0.8/lib/double_window_selection.py
2
3825
import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Rectangle class DoubleWindowSelection(object): def __init__(self,x,y,ax1,ax2): self.x = x self.y = y #~ self.z = z self.dx = abs(self.x[0][0] - self.x[0][-1])/(np.shape(self.x)[1]-1) self.dy = abs(self.y[0][0] - self.y[-1][0])/(np.shape(self.y)[0]-1) assert self.dx == self.dy, "dx != dy" self.rect1 = Rectangle((0,0), 1, 1,fc='None') self.rect2 = Rectangle((0,0), 1, 1,fc='None') self.x_center, self.y_center = None, None self.half_width = (min(np.shape(self.x))/8)*self.dx self.x1, self.x2 = None, None self.y1, self.y2 = None, None self.ax1 = ax1 self.ax2 = ax2 self.l1, = self.ax1.plot([self.x_center],[self.y_center],'o') self.l2, = self.ax2.plot([self.x_center],[self.y_center],'o') self.ax1.add_patch(self.rect1) self.ax2.add_patch(self.rect2) self.ax1.figure.canvas.mpl_connect('button_press_event', self.on_press) self.ax1.figure.canvas.mpl_connect('scroll_event', self.on_scroll) self.ax1.figure.canvas.mpl_connect('key_press_event', self.on_key) print "\nWINDOWS INSTRUCTIONS:" print "Click to select the window center" print "Move the center with arrows or click again" print "Resize the window with the mouse scroll or with '+' and '-'" print "Press 'i' to show information about the window" def on_press(self,event): if event.inaxes == self.ax1 or event.inaxes == self.ax2: if event.button == 1: self.x_center, self.y_center = event.xdata, event.ydata #~ self.x_center, self.y_center = nearest_point(self.x, self.y, #~ self.x_center, self.y_center) self.x_center -= self.x_center%self.dx self.y_center -= self.y_center%self.dx self.rectangle_construction() else: return def on_scroll(self,event): self.half_width += event.step * self.dx self.rectangle_construction() def on_key(self,event): event_list = ["right","left","up","down"] if event.key in event_list: if event.key == "right": self.x_center += self.dx elif event.key == "left": self.x_center -= self.dx elif event.key == "up": self.y_center += self.dx elif event.key == "down": self.y_center -= self.dx self.rectangle_construction() if event.key == "i": print "(x,y)=",(self.x_center,self.y_center),"Width:",self.half_width*2 if event.key == "+" or event.key == "-": if event.key == "+": self.half_width += self.dx elif event.key == "-": self.half_width -= self.dx self.rectangle_construction() def rectangle_construction(self): self.x1 = self.x_center - self.half_width self.x2 = self.x_center + self.half_width self.y1 = self.y_center - self.half_width self.y2 = self.y_center + self.half_width self.rect1.set_width(self.x2 - self.x1) self.rect1.set_height(self.y2 - self.y1) self.rect1.set_xy((self.x1, self.y1)) self.l1.set_xdata([self.x_center]) self.l1.set_ydata([self.y_center]) self.rect2.set_width(self.x2 - self.x1) self.rect2.set_height(self.y2 - self.y1) self.rect2.set_xy((self.x1, self.y1)) self.l2.set_xdata([self.x_center]) self.l2.set_ydata([self.y_center]) self.ax1.figure.canvas.draw()
gpl-2.0
McIntyre-Lab/papers
fear_ase_2016/scripts/mcscript/wigglePlot.py
3
7358
#!/usr/bin/env python # Built-in packages import argparse from argparse import RawDescriptionHelpFormatter import logging import sys import re # Add-on packages import numpy as np import matplotlib matplotlib.use('Agg') # McLab Packages import mclib_Python as mclib from mclib_Python import bam as mcbam from mclib_Python import gff as mcgff from mclib_Python import vcf2 as mcvcf from mclib_Python import wiggle as mcwiggle # TODO: Add ability to make overlapping wiggle when up to XX groups are given def getOptions(): """ Function to pull in arguments """ description = """ This script constructs wiggle plots and gene models. Wiggle plots are created from sorted BAM files. Gene models require a GFF file at this time. """ parser = argparse.ArgumentParser(description=description, formatter_class=RawDescriptionHelpFormatter) group1 = parser.add_argument_group('Data Types', 'The following types of data are capable of being handled.') group1.add_argument("--bam", nargs='*', dest="bamList", action='store', required=True, help="Name with PATH to sorted BAM file. If multiple files are given they will be averaged. [Required]") group1.add_argument("--gff", dest="gffName", action='store', required=False, help="Name with PATH to a GFF file. Note if a GFFutils database has not been created it will be, this could take around 30min [Optional]") #group1.add_argument("--bed", dest="bedName", action='store', required=False, help="Name with PATH to a bed file [Optional].") # TODO: Add bed functionality group1.add_argument("--vcf", dest="vcfName", action='store', required=False, help="Name with PATH to a vcf file zipped using bgzip. [Optional]") #group1.add_argument("--fusions", dest="fusName", action='store', required=False, help="Name with PATH to a bed file contianing the genome coordinates to fusion name [Optional].") # TODO: Add fusion functionality group2 = parser.add_argument_group('Region of Interest', 'Select which region you want to focus on, one of the following is Required:') group2a = group2.add_mutually_exclusive_group(required=True) group2a.add_argument("--gene", dest="geneName", action='store', help="Name of the gene you want to make wiggles of.") group2a.add_argument("--region", dest="region", action='store', help="Name of the region of interset in the format 'chrom:start-end'") group3 = parser.add_argument_group('Factors', 'Various options to tweak output') group3.add_argument("--sample", dest="sample", action='store', required=False, help="Name of the sample you are working on. Note if you are using VCF file this name needs to match. [Optional]") group3.add_argument("--fudge", dest="ff", action='store', type=int, default=0, required=False, help="Use a fudge factor, if 999 then use the built in fudge factor calculation. [Optional]") group3.add_argument("--debug", dest="debug", action='store_true', required=False, help="Trun on debug output. [Optional]") group4 = parser.add_argument_group('Output') group4.add_argument("-o", dest="oname", action='store', required=True, help="Name of the output PNG. [Required]") group4.add_argument("--log", dest="log", action='store', required=False, help="Name of the log file [Optional]; NOTE: if no file is provided logging information will be output to STDOUT") args = parser.parse_args() #args = parser.parse_args(['--gff', '/home/jfear/storage/useful_dmel_data/dmel-all-no-analysis-r5.51.gff', '--bam','/mnt/storage/cegs_aln/bam_fb551_genome_nodup/r101_V1.sorted.bam','/mnt/storage/cegs_aln/bam_fb551_genome_nodup/r101_V2.sorted.bam', '-g', 'InR', '-o', '/home/jfear/tmp/inr.png']) return(args) def main(args): ################################################################################ # GENE ANNOTATION ################################################################################ if args.gffName and args.geneName: logger.info('Getting gene annotation from GFF file') ## Import GFF database myGffDb = mcgff.FlyGff(args.gffName) ## Pull gene from database myGene = mcgff.FlyGene(args.geneName, myGffDb) chrom = myGene.chrom start = myGene.start end = myGene.end ## Create Gene Model geneModel = mcwiggle.GeneModel(myGene) elif args.region: location = re.split(':|-',args.region) chrom = location[0] start = int(location[1]) end = int(location[2]) # TODO: would be nice to plot all gene models in a region geneModel = None else: logger.error('You need to specify either a gene name along with a GFF or a region to plot') raise ValueError ################################################################################ # GENE COVERAGE ################################################################################ logger.info('Creating pileups') # Pull in bam file and make gene pileup pileups = [] for bam in args.bamList: currBam = mcbam.Bam(bam) pileups.append(currBam.get_pileup(chrom, start, end)) # Average Pileups together avgPileup = mcbam.avg_pileups(pileups, fudgeFactor=args.ff) ################################################################################ # Pull Variants if requested ################################################################################ if args.vcfName: logger.info('Processing VCF file') # Attach vcf file myVcf = mcvcf.Vcf(args.vcfName) # Pull the region of interest region = myVcf.pull_vcf_region(chrom, start, end) # Grab inidividuals that are homozygous for an alternate base homz = myVcf.pull_homz(region=region, snp=True) # Create list of positions that have a variants. If a certain sample is # given only output variants for that sample. variantPos = list() for pos in homz: if args.sample: for line in homz[pos]: if line == args.sample: variantPos.append(pos) else: variantPos.append(pos) else: logger.debug('Setting VCF to None') variantPos = None ################################################################################ # Make fusion models if requested ################################################################################ # TODO: add fusion model fusionModel=None ################################################################################ # MAKE WIGGLES ################################################################################ mcwiggle.plot_wiggle(avgPileup, args.oname, chrom, start, end, geneModel=geneModel, fusionModel=fusionModel, variantPos=variantPos, title=args.sample) if __name__ == '__main__': # Turn on Logging if option -g was given args = getOptions() # Turn on logging logger = logging.getLogger() if args.debug: mclib.logger.setLogger(logger, args.log, 'debug') else: mclib.logger.setLogger(logger, args.log) # Output git commit version to log, if user has access mclib.git.git_to_log(__file__) # Run Main part of the script main(args) logger.info("Script complete.")
lgpl-3.0
JFriel/honours_project
networkx/build/lib/networkx/convert.py
9
13221
"""Functions to convert NetworkX graphs to and from other formats. The preferred way of converting data to a NetworkX graph is through the graph constuctor. The constructor calls the to_networkx_graph() function which attempts to guess the input type and convert it automatically. Examples -------- Create a graph with a single edge from a dictionary of dictionaries >>> d={0: {1: 1}} # dict-of-dicts single edge (0,1) >>> G=nx.Graph(d) See Also -------- nx_agraph, nx_pydot """ # Copyright (C) 2006-2013 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import warnings import networkx as nx __author__ = """\n""".join(['Aric Hagberg <[email protected]>', 'Pieter Swart ([email protected])', 'Dan Schult([email protected])']) __all__ = ['to_networkx_graph', 'from_dict_of_dicts', 'to_dict_of_dicts', 'from_dict_of_lists', 'to_dict_of_lists', 'from_edgelist', 'to_edgelist'] def _prep_create_using(create_using): """Return a graph object ready to be populated. If create_using is None return the default (just networkx.Graph()) If create_using.clear() works, assume it returns a graph object. Otherwise raise an exception because create_using is not a networkx graph. """ if create_using is None: return nx.Graph() try: create_using.clear() except: raise TypeError("Input graph is not a networkx graph type") return create_using def to_networkx_graph(data,create_using=None,multigraph_input=False): """Make a NetworkX graph from a known data structure. The preferred way to call this is automatically from the class constructor >>> d={0: {1: {'weight':1}}} # dict-of-dicts single edge (0,1) >>> G=nx.Graph(d) instead of the equivalent >>> G=nx.from_dict_of_dicts(d) Parameters ---------- data : a object to be converted Current known types are: any NetworkX graph dict-of-dicts dist-of-lists list of edges numpy matrix numpy ndarray scipy sparse matrix pygraphviz agraph create_using : NetworkX graph Use specified graph for result. Otherwise a new graph is created. multigraph_input : bool (default False) If True and data is a dict_of_dicts, try to create a multigraph assuming dict_of_dict_of_lists. If data and create_using are both multigraphs then create a multigraph from a multigraph. """ # NX graph if hasattr(data,"adj"): try: result= from_dict_of_dicts(data.adj,\ create_using=create_using,\ multigraph_input=data.is_multigraph()) if hasattr(data,'graph') and isinstance(data.graph,dict): result.graph=data.graph.copy() if hasattr(data,'node') and isinstance(data.node,dict): result.node=dict( (n,dd.copy()) for n,dd in data.node.items() ) return result except: raise nx.NetworkXError("Input is not a correct NetworkX graph.") # pygraphviz agraph if hasattr(data,"is_strict"): try: return nx.nx_agraph.from_agraph(data,create_using=create_using) except: raise nx.NetworkXError("Input is not a correct pygraphviz graph.") # dict of dicts/lists if isinstance(data,dict): try: return from_dict_of_dicts(data,create_using=create_using,\ multigraph_input=multigraph_input) except: try: return from_dict_of_lists(data,create_using=create_using) except: raise TypeError("Input is not known type.") # list or generator of edges if (isinstance(data,list) or isinstance(data,tuple) or hasattr(data,'next') or hasattr(data, '__next__')): try: return from_edgelist(data,create_using=create_using) except: raise nx.NetworkXError("Input is not a valid edge list") # Pandas DataFrame try: import pandas as pd if isinstance(data, pd.DataFrame): try: return nx.from_pandas_dataframe(data, create_using=create_using) except: msg = "Input is not a correct Pandas DataFrame." raise nx.NetworkXError(msg) except ImportError: msg = 'pandas not found, skipping conversion test.' warnings.warn(msg, ImportWarning) # numpy matrix or ndarray try: import numpy if isinstance(data,numpy.matrix) or \ isinstance(data,numpy.ndarray): try: return nx.from_numpy_matrix(data,create_using=create_using) except: raise nx.NetworkXError(\ "Input is not a correct numpy matrix or array.") except ImportError: warnings.warn('numpy not found, skipping conversion test.', ImportWarning) # scipy sparse matrix - any format try: import scipy if hasattr(data,"format"): try: return nx.from_scipy_sparse_matrix(data,create_using=create_using) except: raise nx.NetworkXError(\ "Input is not a correct scipy sparse matrix type.") except ImportError: warnings.warn('scipy not found, skipping conversion test.', ImportWarning) raise nx.NetworkXError(\ "Input is not a known data type for conversion.") return def convert_to_undirected(G): """Return a new undirected representation of the graph G.""" return G.to_undirected() def convert_to_directed(G): """Return a new directed representation of the graph G.""" return G.to_directed() def to_dict_of_lists(G,nodelist=None): """Return adjacency representation of graph as a dictionary of lists. Parameters ---------- G : graph A NetworkX graph nodelist : list Use only nodes specified in nodelist Notes ----- Completely ignores edge data for MultiGraph and MultiDiGraph. """ if nodelist is None: nodelist=G d = {} for n in nodelist: d[n]=[nbr for nbr in G.neighbors(n) if nbr in nodelist] return d def from_dict_of_lists(d,create_using=None): """Return a graph from a dictionary of lists. Parameters ---------- d : dictionary of lists A dictionary of lists adjacency representation. create_using : NetworkX graph Use specified graph for result. Otherwise a new graph is created. Examples -------- >>> dol= {0:[1]} # single edge (0,1) >>> G=nx.from_dict_of_lists(dol) or >>> G=nx.Graph(dol) # use Graph constructor """ G=_prep_create_using(create_using) G.add_nodes_from(d) if G.is_multigraph() and not G.is_directed(): # a dict_of_lists can't show multiedges. BUT for undirected graphs, # each edge shows up twice in the dict_of_lists. # So we need to treat this case separately. seen={} for node,nbrlist in d.items(): for nbr in nbrlist: if nbr not in seen: G.add_edge(node,nbr) seen[node]=1 # don't allow reverse edge to show up else: G.add_edges_from( ((node,nbr) for node,nbrlist in d.items() for nbr in nbrlist) ) return G def to_dict_of_dicts(G,nodelist=None,edge_data=None): """Return adjacency representation of graph as a dictionary of dictionaries. Parameters ---------- G : graph A NetworkX graph nodelist : list Use only nodes specified in nodelist edge_data : list, optional If provided, the value of the dictionary will be set to edge_data for all edges. This is useful to make an adjacency matrix type representation with 1 as the edge data. If edgedata is None, the edgedata in G is used to fill the values. If G is a multigraph, the edgedata is a dict for each pair (u,v). """ dod={} if nodelist is None: if edge_data is None: for u,nbrdict in G.adjacency_iter(): dod[u]=nbrdict.copy() else: # edge_data is not None for u,nbrdict in G.adjacency_iter(): dod[u]=dod.fromkeys(nbrdict, edge_data) else: # nodelist is not None if edge_data is None: for u in nodelist: dod[u]={} for v,data in ((v,data) for v,data in G[u].items() if v in nodelist): dod[u][v]=data else: # nodelist and edge_data are not None for u in nodelist: dod[u]={} for v in ( v for v in G[u] if v in nodelist): dod[u][v]=edge_data return dod def from_dict_of_dicts(d,create_using=None,multigraph_input=False): """Return a graph from a dictionary of dictionaries. Parameters ---------- d : dictionary of dictionaries A dictionary of dictionaries adjacency representation. create_using : NetworkX graph Use specified graph for result. Otherwise a new graph is created. multigraph_input : bool (default False) When True, the values of the inner dict are assumed to be containers of edge data for multiple edges. Otherwise this routine assumes the edge data are singletons. Examples -------- >>> dod= {0: {1:{'weight':1}}} # single edge (0,1) >>> G=nx.from_dict_of_dicts(dod) or >>> G=nx.Graph(dod) # use Graph constructor """ G=_prep_create_using(create_using) G.add_nodes_from(d) # is dict a MultiGraph or MultiDiGraph? if multigraph_input: # make a copy of the list of edge data (but not the edge data) if G.is_directed(): if G.is_multigraph(): G.add_edges_from( (u,v,key,data) for u,nbrs in d.items() for v,datadict in nbrs.items() for key,data in datadict.items() ) else: G.add_edges_from( (u,v,data) for u,nbrs in d.items() for v,datadict in nbrs.items() for key,data in datadict.items() ) else: # Undirected if G.is_multigraph(): seen=set() # don't add both directions of undirected graph for u,nbrs in d.items(): for v,datadict in nbrs.items(): if (u,v) not in seen: G.add_edges_from( (u,v,key,data) for key,data in datadict.items() ) seen.add((v,u)) else: seen=set() # don't add both directions of undirected graph for u,nbrs in d.items(): for v,datadict in nbrs.items(): if (u,v) not in seen: G.add_edges_from( (u,v,data) for key,data in datadict.items() ) seen.add((v,u)) else: # not a multigraph to multigraph transfer if G.is_multigraph() and not G.is_directed(): # d can have both representations u-v, v-u in dict. Only add one. # We don't need this check for digraphs since we add both directions, # or for Graph() since it is done implicitly (parallel edges not allowed) seen=set() for u,nbrs in d.items(): for v,data in nbrs.items(): if (u,v) not in seen: G.add_edge(u,v,attr_dict=data) seen.add((v,u)) else: G.add_edges_from( ( (u,v,data) for u,nbrs in d.items() for v,data in nbrs.items()) ) return G def to_edgelist(G,nodelist=None): """Return a list of edges in the graph. Parameters ---------- G : graph A NetworkX graph nodelist : list Use only nodes specified in nodelist """ if nodelist is None: return G.edges(data=True) else: return G.edges(nodelist,data=True) def from_edgelist(edgelist,create_using=None): """Return a graph from a list of edges. Parameters ---------- edgelist : list or iterator Edge tuples create_using : NetworkX graph Use specified graph for result. Otherwise a new graph is created. Examples -------- >>> edgelist= [(0,1)] # single edge (0,1) >>> G=nx.from_edgelist(edgelist) or >>> G=nx.Graph(edgelist) # use Graph constructor """ G=_prep_create_using(create_using) G.add_edges_from(edgelist) return G
gpl-3.0
matt77hias/QuadratureExperiments
src/visstochastic.py
1
2485
import numpy as np import matplotlib.pyplot as plt import mc from visdeterministic import VisRecord vr_mc = VisRecord(Q=mc.mc, ns=range(1, 34), label='monte carlo', color='g', marker='o', ls='-') vrs = [vr_mc] vr1_mc = VisRecord(Q=mc.mc, ns=range(1, 10001), label='monte carlo', color='g', marker='o', ls='-') vr1s = [vr1_mc] ############################################################################### # STOCHASTIC # ------------------------------ # ERRORS AND SIGNIFICANT DIGITS ############################################################################### def vis_relative_error(f, I, mcs=vrs): plt.figure() for m in mcs: fxs = np.zeros(len(m.ns)) Es = np.zeros(len(m.ns)) for j in range(len(m.ns)): fxs[j] = m.ntfx(m.ns[j]) Es[j] = np.divide(abs(I - m.Q(f, m.ns[j])), abs(I)) plt.semilogy(fxs, Es, label=m.label, color=m.color, marker=m.marker, ls=m.ls) plt.legend(loc=1) plt.title('Relative error ' + f.func_name + '(x)') plt.xlabel('#Function evaluations') plt.ylabel('|I-In|/I') plt.show() def vis_absolute_error(f, I, mcs=vrs): plt.figure() for m in mcs: fxs = np.zeros(len(m.ns)) Es = np.zeros(len(m.ns)) for j in range(len(m.ns)): fxs[j] = m.ntfx(m.ns[j]) Es[j] = abs(I - m.Q(f, m.ns[j])) plt.semilogy(fxs, Es, label=m.label, color=m.color, marker=m.marker, ls=m.ls) plt.legend(loc=1) plt.title('Absolute error: ' + f.func_name + '(x)') plt.xlabel('#Function evaluations') plt.ylabel('|I-In|') plt.show() def vis_sds(f, I, mcs=vrs): plt.figure() for m in mcs: fxs = np.zeros(len(m.ns)) Es = np.zeros(len(m.ns)) for j in range(len(m.ns)): fxs[j] = m.ntfx(m.ns[j]) Es[j] = np.log10(np.divide(abs(I - m.Q(f, m.ns[j])), abs(I))) plt.plot(fxs, Es, label=m.label, color=m.color, marker=m.marker, ls=m.ls) plt.legend(loc=1) plt.title('Number of significant digits ' + f.func_name + '(x)') plt.xlabel('#Function evaluations') plt.ylabel('#SDs') plt.show() def nb_of_functionevaluations(f, I, s=-7, mcs=vr1s): fxs = np.ones(len(mcs)) * -1 i = 0 for m in mcs: for j in range(len(m.ns)): if np.log10(np.divide(abs(I - m.Q(f, m.ns[j])), abs(I))) <= s: fxs[i] = m.ntfx(m.ns[j]) break i = i + 1 return fxs
gpl-3.0
yejingxin/PyKrige
pykrige/ok3d.py
1
33404
__doc__ = """Code by Benjamin S. Murphy [email protected] Dependencies: numpy scipy matplotlib Classes: OrdinaryKriging3D: Support for 3D Ordinary Kriging. References: P.K. Kitanidis, Introduction to Geostatistcs: Applications in Hydrogeology, (Cambridge University Press, 1997) 272 p. Copyright (c) 2015 Benjamin S. Murphy """ import numpy as np import scipy.linalg from scipy.spatial.distance import cdist import matplotlib.pyplot as plt import variogram_models import core class OrdinaryKriging3D: """class OrdinaryKriging3D Three-dimensional ordinary kriging Dependencies: numpy scipy matplotlib Inputs: X (array-like): X-coordinates of data points. Y (array-like): Y-coordinates of data points. Z (array-like): Z-coordinates of data points. Val (array-like): Values at data points. variogram_model (string, optional): Specified which variogram model to use; may be one of the following: linear, power, gaussian, spherical, exponential. Default is linear variogram model. To utilize as custom variogram model, specify 'custom'; you must also provide variogram_parameters and variogram_function. variogram_parameters (list, optional): Parameters that define the specified variogram model. If not provided, parameters will be automatically calculated such that the root-mean-square error for the fit variogram function is minimized. linear - [slope, nugget] power - [scale, exponent, nugget] gaussian - [sill, range, nugget] spherical - [sill, range, nugget] exponential - [sill, range, nugget] For a custom variogram model, the parameters are required, as custom variogram models currently will not automatically be fit to the data. The code does not check that the provided list contains the appropriate number of parameters for the custom variogram model, so an incorrect parameter list in such a case will probably trigger an esoteric exception someplace deep in the code. variogram_function (callable, optional): A callable function that must be provided if variogram_model is specified as 'custom'. The function must take only two arguments: first, a list of parameters for the variogram model; second, the distances at which to calculate the variogram model. The list provided in variogram_parameters will be passed to the function as the first argument. nlags (int, optional): Number of averaging bins for the semivariogram. Default is 6. weight (boolean, optional): Flag that specifies if semivariance at smaller lags should be weighted more heavily when automatically calculating variogram model. True indicates that weights will be applied. Default is False. (Kitanidis suggests that the values at smaller lags are more important in fitting a variogram model, so the option is provided to enable such weighting.) anisotropy_scaling_y (float, optional): Scalar stretching value to take into account anisotropy in the y direction. Default is 1 (effectively no stretching). Scaling is applied in the y direction in the rotated data frame (i.e., after adjusting for the anisotropy_angle_x/y/z, if anisotropy_angle_x/y/z is/are not 0). anisotropy_scaling_z (float, optional): Scalar stretching value to take into account anisotropy in the z direction. Default is 1 (effectively no stretching). Scaling is applied in the z direction in the rotated data frame (i.e., after adjusting for the anisotropy_angle_x/y/z, if anisotropy_angle_x/y/z is/are not 0). anisotropy_angle_x (float, optional): CCW angle (in degrees) by which to rotate coordinate system about the x axis in order to take into account anisotropy. Default is 0 (no rotation). Note that the coordinate system is rotated. X rotation is applied first, then y rotation, then z rotation. Scaling is applied after rotation. anisotropy_angle_y (float, optional): CCW angle (in degrees) by which to rotate coordinate system about the y axis in order to take into account anisotropy. Default is 0 (no rotation). Note that the coordinate system is rotated. X rotation is applied first, then y rotation, then z rotation. Scaling is applied after rotation. anisotropy_angle_z (float, optional): CCW angle (in degrees) by which to rotate coordinate system about the z axis in order to take into account anisotropy. Default is 0 (no rotation). Note that the coordinate system is rotated. X rotation is applied first, then y rotation, then z rotation. Scaling is applied after rotation. verbose (Boolean, optional): Enables program text output to monitor kriging process. Default is False (off). enable_plotting (Boolean, optional): Enables plotting to display variogram. Default is False (off). Callable Methods: display_variogram_model(): Displays semivariogram and variogram model. update_variogram_model(variogram_model, variogram_parameters=None, nlags=6, anisotropy_scaling=1.0, anisotropy_angle=0.0): Changes the variogram model and variogram parameters for the kriging system. Inputs: variogram_model (string): May be any of the variogram models listed above. May also be 'custom', in which case variogram_parameters and variogram_function must be specified. variogram_parameters (list, optional): List of variogram model parameters, as listed above. If not provided, a best fit model will be calculated as described above. variogram_function (callable, optional): A callable function that must be provided if variogram_model is specified as 'custom'. See above for more information. nlags (int, optional): Number of averaging bins for the semivariogram. Defualt is 6. weight (boolean, optional): Flag that specifies if semivariance at smaller lags should be weighted more heavily when automatically calculating variogram model. True indicates that weights will be applied. Default is False. anisotropy_scaling (float, optional): Scalar stretching value to take into account anisotropy. Default is 1 (effectively no stretching). Scaling is applied in the y-direction. anisotropy_angle (float, optional): Angle (in degrees) by which to rotate coordinate system in order to take into account anisotropy. Default is 0 (no rotation). switch_verbose(): Enables/disables program text output. No arguments. switch_plotting(): Enables/disable variogram plot display. No arguments. get_epsilon_residuals(): Returns the epsilon residuals of the variogram fit. No arguments. plot_epsilon_residuals(): Plots the epsilon residuals of the variogram fit in the order in which they were calculated. No arguments. get_statistics(): Returns the Q1, Q2, and cR statistics for the variogram fit (in that order). No arguments. print_statistics(): Prints out the Q1, Q2, and cR statistics for the variogram fit. NOTE that ideally Q1 is close to zero, Q2 is close to 1, and cR is as small as possible. execute(style, xpoints, ypoints, mask=None): Calculates a kriged grid. Inputs: style (string): Specifies how to treat input kriging points. Specifying 'grid' treats xpoints, ypoints, and zpoints as arrays of x, y,z coordinates that define a rectangular grid. Specifying 'points' treats xpoints, ypoints, and zpoints as arrays that provide coordinates at which to solve the kriging system. Specifying 'masked' treats xpoints, ypoints, zpoints as arrays of x, y, z coordinates that define a rectangular grid and uses mask to only evaluate specific points in the grid. xpoints (array-like, dim N): If style is specific as 'grid' or 'masked', x-coordinates of LxMxN grid. If style is specified as 'points', x-coordinates of specific points at which to solve kriging system. ypoints (array-like, dim M): If style is specified as 'grid' or 'masked', y-coordinates of LxMxN grid. If style is specified as 'points', y-coordinates of specific points at which to solve kriging system. Note that in this case, xpoints, ypoints, and zpoints must have the same dimensions (i.e., L = M = N). zpoints (array-like, dim L): If style is specified as 'grid' or 'masked', z-coordinates of LxMxN grid. If style is specified as 'points', z-coordinates of specific points at which to solve kriging system. Note that in this case, xpoints, ypoints, and zpoints must have the same dimensions (i.e., L = M = N). mask (boolean array, dim LxMxN, optional): Specifies the points in the rectangular grid defined by xpoints, ypoints, and zpoints that are to be excluded in the kriging calculations. Must be provided if style is specified as 'masked'. False indicates that the point should not be masked; True indicates that the point should be masked. backend (string, optional): Specifies which approach to use in kriging. Specifying 'vectorized' will solve the entire kriging problem at once in a vectorized operation. This approach is faster but also can consume a significant amount of memory for large grids and/or large datasets. Specifying 'loop' will loop through each point at which the kriging system is to be solved. This approach is slower but also less memory-intensive. Default is 'vectorized'. Outputs: kvalues (numpy array, dim LxMxN or dim Nx1): Interpolated values of specified grid or at the specified set of points. If style was specified as 'masked', kvalues will be a numpy masked array. sigmasq (numpy array, dim LxMxN or dim Nx1): Variance at specified grid points or at the specified set of points. If style was specified as 'masked', sigmasq will be a numpy masked array. References: P.K. Kitanidis, Introduction to Geostatistcs: Applications in Hydrogeology, (Cambridge University Press, 1997) 272 p. """ eps = 1.e-10 # Cutoff for comparison to zero variogram_dict = {'linear': variogram_models.linear_variogram_model, 'power': variogram_models.power_variogram_model, 'gaussian': variogram_models.gaussian_variogram_model, 'spherical': variogram_models.spherical_variogram_model, 'exponential': variogram_models.exponential_variogram_model} def __init__(self, x, y, z, val, variogram_model='linear', variogram_parameters=None, variogram_function=None, nlags=6, weight=False, anisotropy_scaling_y=1.0, anisotropy_scaling_z=1.0, anisotropy_angle_x=0.0, anisotropy_angle_y=0.0, anisotropy_angle_z=0.0, verbose=False, enable_plotting=False): # Code assumes 1D input arrays. Ensures that any extraneous dimensions # don't get in the way. Copies are created to avoid any problems with # referencing the original passed arguments. self.X_ORIG = np.atleast_1d(np.squeeze(np.array(x, copy=True))) self.Y_ORIG = np.atleast_1d(np.squeeze(np.array(y, copy=True))) self.Z_ORIG = np.atleast_1d(np.squeeze(np.array(z, copy=True))) self.VALUES = np.atleast_1d(np.squeeze(np.array(val, copy=True))) self.verbose = verbose self.enable_plotting = enable_plotting if self.enable_plotting and self.verbose: print "Plotting Enabled\n" self.XCENTER = (np.amax(self.X_ORIG) + np.amin(self.X_ORIG))/2.0 self.YCENTER = (np.amax(self.Y_ORIG) + np.amin(self.Y_ORIG))/2.0 self.ZCENTER = (np.amax(self.Z_ORIG) + np.amin(self.Z_ORIG))/2.0 self.anisotropy_scaling_y = anisotropy_scaling_y self.anisotropy_scaling_z = anisotropy_scaling_z self.anisotropy_angle_x = anisotropy_angle_x self.anisotropy_angle_y = anisotropy_angle_y self.anisotropy_angle_z = anisotropy_angle_z if self.verbose: print "Adjusting data for anisotropy..." self.X_ADJUSTED, self.Y_ADJUSTED, self.Z_ADJUSTED = \ core.adjust_for_anisotropy_3d(np.copy(self.X_ORIG), np.copy(self.Y_ORIG), np.copy(self.Z_ORIG), self.XCENTER, self.YCENTER, self.ZCENTER, self.anisotropy_scaling_y, self.anisotropy_scaling_z, self.anisotropy_angle_x, self.anisotropy_angle_y, self.anisotropy_angle_z) self.variogram_model = variogram_model if self.variogram_model not in self.variogram_dict.keys() and self.variogram_model != 'custom': raise ValueError("Specified variogram model '%s' is not supported." % variogram_model) elif self.variogram_model == 'custom': if variogram_function is None or not callable(variogram_function): raise ValueError("Must specify callable function for custom variogram model.") else: self.variogram_function = variogram_function else: self.variogram_function = self.variogram_dict[self.variogram_model] if self.verbose: print "Initializing variogram model..." self.lags, self.semivariance, self.variogram_model_parameters = \ core.initialize_variogram_model_3d(self.X_ADJUSTED, self.Y_ADJUSTED, self.Z_ADJUSTED, self.VALUES, self.variogram_model, variogram_parameters, self.variogram_function, nlags, weight) if self.verbose: if self.variogram_model == 'linear': print "Using '%s' Variogram Model" % 'linear' print "Slope:", self.variogram_model_parameters[0] print "Nugget:", self.variogram_model_parameters[1], '\n' elif self.variogram_model == 'power': print "Using '%s' Variogram Model" % 'power' print "Scale:", self.variogram_model_parameters[0] print "Exponent:", self.variogram_model_parameters[1] print "Nugget:", self.variogram_model_parameters[2], '\n' elif self.variogram_model == 'custom': print "Using Custom Variogram Model" else: print "Using '%s' Variogram Model" % self.variogram_model print "Sill:", self.variogram_model_parameters[0] print "Range:", self.variogram_model_parameters[1] print "Nugget:", self.variogram_model_parameters[2], '\n' if self.enable_plotting: self.display_variogram_model() if self.verbose: print "Calculating statistics on variogram model fit..." self.delta, self.sigma, self.epsilon = core.find_statistics_3d(self.X_ADJUSTED, self.Y_ADJUSTED, self.Z_ADJUSTED, self.VALUES, self.variogram_function, self.variogram_model_parameters) self.Q1 = core.calcQ1(self.epsilon) self.Q2 = core.calcQ2(self.epsilon) self.cR = core.calc_cR(self.Q2, self.sigma) if self.verbose: print "Q1 =", self.Q1 print "Q2 =", self.Q2 print "cR =", self.cR, '\n' def update_variogram_model(self, variogram_model, variogram_parameters=None, variogram_function=None, nlags=6, weight=False, anisotropy_scaling_y=1.0, anisotropy_scaling_z=1.0, anisotropy_angle_x=0.0, anisotropy_angle_y=0.0, anisotropy_angle_z=0.0): """Allows user to update variogram type and/or variogram model parameters.""" if anisotropy_scaling_y != self.anisotropy_scaling_y or anisotropy_scaling_z != self.anisotropy_scaling_z or \ anisotropy_angle_x != self.anisotropy_angle_x or anisotropy_angle_y != self.anisotropy_angle_y or \ anisotropy_angle_z != self.anisotropy_angle_z: if self.verbose: print "Adjusting data for anisotropy..." self.anisotropy_scaling_y = anisotropy_scaling_y self.anisotropy_scaling_z = anisotropy_scaling_z self.anisotropy_angle_x = anisotropy_angle_x self.anisotropy_angle_y = anisotropy_angle_y self.anisotropy_angle_z = anisotropy_angle_z self.X_ADJUSTED, self.Y_ADJUSTED, self.Z_ADJUSTED = \ core.adjust_for_anisotropy_3d(np.copy(self.X_ORIG), np.copy(self.Y_ORIG), np.copy(self.Z_ORIG), self.XCENTER, self.YCENTER, self.ZCENTER, self.anisotropy_scaling_y, self.anisotropy_scaling_z, self.anisotropy_angle_x, self.anisotropy_angle_y, self.anisotropy_angle_z) self.variogram_model = variogram_model if self.variogram_model not in self.variogram_dict.keys() and self.variogram_model != 'custom': raise ValueError("Specified variogram model '%s' is not supported." % variogram_model) elif self.variogram_model == 'custom': if variogram_function is None or not callable(variogram_function): raise ValueError("Must specify callable function for custom variogram model.") else: self.variogram_function = variogram_function else: self.variogram_function = self.variogram_dict[self.variogram_model] if self.verbose: print "Updating variogram mode..." self.lags, self.semivariance, self.variogram_model_parameters = \ core.initialize_variogram_model_3d(self.X_ADJUSTED, self.Y_ADJUSTED, self.Z_ADJUSTED, self.VALUES, self.variogram_model, variogram_parameters, self.variogram_function, nlags, weight) if self.verbose: if self.variogram_model == 'linear': print "Using '%s' Variogram Model" % 'linear' print "Slope:", self.variogram_model_parameters[0] print "Nugget:", self.variogram_model_parameters[1], '\n' elif self.variogram_model == 'power': print "Using '%s' Variogram Model" % 'power' print "Scale:", self.variogram_model_parameters[0] print "Exponent:", self.variogram_model_parameters[1] print "Nugget:", self.variogram_model_parameters[2], '\n' elif self.variogram_model == 'custom': print "Using Custom Variogram Model" else: print "Using '%s' Variogram Model" % self.variogram_model print "Sill:", self.variogram_model_parameters[0] print "Range:", self.variogram_model_parameters[1] print "Nugget:", self.variogram_model_parameters[2], '\n' if self.enable_plotting: self.display_variogram_model() if self.verbose: print "Calculating statistics on variogram model fit..." self.delta, self.sigma, self.epsilon = core.find_statistics_3d(self.X_ADJUSTED, self.Y_ADJUSTED, self.Z_ADJUSTED, self.VALUES, self.variogram_function, self.variogram_model_parameters) self.Q1 = core.calcQ1(self.epsilon) self.Q2 = core.calcQ2(self.epsilon) self.cR = core.calc_cR(self.Q2, self.sigma) if self.verbose: print "Q1 =", self.Q1 print "Q2 =", self.Q2 print "cR =", self.cR, '\n' def display_variogram_model(self): """Displays variogram model with the actual binned data""" fig = plt.figure() ax = fig.add_subplot(111) ax.plot(self.lags, self.semivariance, 'r*') ax.plot(self.lags, self.variogram_function(self.variogram_model_parameters, self.lags), 'k-') plt.show() def switch_verbose(self): """Allows user to switch code talk-back on/off. Takes no arguments.""" self.verbose = not self.verbose def switch_plotting(self): """Allows user to switch plot display on/off. Takes no arguments.""" self.enable_plotting = not self.enable_plotting def get_epsilon_residuals(self): """Returns the epsilon residuals for the variogram fit.""" return self.epsilon def plot_epsilon_residuals(self): """Plots the epsilon residuals for the variogram fit.""" fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(range(self.epsilon.size), self.epsilon, c='k', marker='*') ax.axhline(y=0.0) plt.show() def get_statistics(self): return self.Q1, self.Q2, self.cR def print_statistics(self): print "Q1 =", self.Q1 print "Q2 =", self.Q2 print "cR =", self.cR def _get_kriging_matrix(self, n): """Assembles the kriging matrix.""" xyz = np.concatenate((self.X_ADJUSTED[:, np.newaxis], self.Y_ADJUSTED[:, np.newaxis], self.Z_ADJUSTED[:, np.newaxis]), axis=1) d = cdist(xyz, xyz, 'euclidean') a = np.zeros((n+1, n+1)) a[:n, :n] = - self.variogram_function(self.variogram_model_parameters, d) np.fill_diagonal(a, 0.) a[n, :] = 1.0 a[:, n] = 1.0 a[n, n] = 0.0 return a def _exec_vector(self, a, bd, mask): """Solves the kriging system as a vectorized operation. This method can take a lot of memory for large grids and/or large datasets.""" npt = bd.shape[0] n = self.X_ADJUSTED.shape[0] zero_index = None zero_value = False a_inv = scipy.linalg.inv(a) if np.any(np.absolute(bd) <= self.eps): zero_value = True zero_index = np.where(np.absolute(bd) <= self.eps) b = np.zeros((npt, n+1, 1)) b[:, :n, 0] = - self.variogram_function(self.variogram_model_parameters, bd) if zero_value: b[zero_index[0], zero_index[1], 0] = 0.0 b[:, n, 0] = 1.0 if (~mask).any(): mask_b = np.repeat(mask[:, np.newaxis, np.newaxis], n+1, axis=1) b = np.ma.array(b, mask=mask_b) x = np.dot(a_inv, b.reshape((npt, n+1)).T).reshape((1, n+1, npt)).T kvalues = np.sum(x[:, :n, 0] * self.VALUES, axis=1) sigmasq = np.sum(x[:, :, 0] * -b[:, :, 0], axis=1) return kvalues, sigmasq def _exec_loop(self, a, bd_all, mask): """Solves the kriging system by looping over all specified points. Less memory-intensive, but involves a Python-level loop.""" npt = bd_all.shape[0] n = self.X_ADJUSTED.shape[0] kvalues = np.zeros(npt) sigmasq = np.zeros(npt) a_inv = scipy.linalg.inv(a) for j in np.nonzero(~mask)[0]: # Note that this is the same thing as range(npt) if mask is not defined, bd = bd_all[j] # otherwise it takes the non-masked elements. if np.any(np.absolute(bd) <= self.eps): zero_value = True zero_index = np.where(np.absolute(bd) <= self.eps) else: zero_value = False zero_index = None b = np.zeros((n+1, 1)) b[:n, 0] = - self.variogram_function(self.variogram_model_parameters, bd) if zero_value: b[zero_index[0], 0] = 0.0 b[n, 0] = 1.0 x = np.dot(a_inv, b) kvalues[j] = np.sum(x[:n, 0] * self.VALUES) sigmasq[j] = np.sum(x[:, 0] * -b[:, 0]) return kvalues, sigmasq def execute(self, style, xpoints, ypoints, zpoints, mask=None, backend='vectorized'): """Calculates a kriged grid and the associated variance. This is now the method that performs the main kriging calculation. Note that currently measurements (i.e., z values) are considered 'exact'. This means that, when a specified coordinate for interpolation is exactly the same as one of the data points, the variogram evaluated at the point is forced to be zero. Also, the diagonal of the kriging matrix is also always forced to be zero. In forcing the variogram evaluated at data points to be zero, we are effectively saying that there is no variance at that point (no uncertainty, so the value is 'exact'). In the future, the code may include an extra 'exact_values' boolean flag that can be adjusted to specify whether to treat the measurements as 'exact'. Setting the flag to false would indicate that the variogram should not be forced to be zero at zero distance (i.e., when evaluated at data points). Instead, the uncertainty in the point will be equal to the nugget. This would mean that the diagonal of the kriging matrix would be set to the nugget instead of to zero. Inputs: style (string): Specifies how to treat input kriging points. Specifying 'grid' treats xpoints, ypoints, and zpoints as arrays of x, y, and z coordinates that define a rectangular grid. Specifying 'points' treats xpoints, ypoints, and zpoints as arrays that provide coordinates at which to solve the kriging system. Specifying 'masked' treats xpoints, ypoints, and zpoints as arrays of x, y, and z coordinates that define a rectangular grid and uses mask to only evaluate specific points in the grid. xpoints (array-like, dim N): If style is specific as 'grid' or 'masked', x-coordinates of MxNxL grid. If style is specified as 'points', x-coordinates of specific points at which to solve kriging system. ypoints (array-like, dim M): If style is specified as 'grid' or 'masked', y-coordinates of LxMxN grid. If style is specified as 'points', y-coordinates of specific points at which to solve kriging system. Note that in this case, xpoints, ypoints, and zpoints must have the same dimensions (i.e., L = M = N). zpoints (array-like, dim L): If style is specified as 'grid' or 'masked', z-coordinates of LxMxN grid. If style is specified as 'points', z-coordinates of specific points at which to solve kriging system. Note that in this case, xpoints, ypoints, and zpoints must have the same dimensions (i.e., L = M = N). mask (boolean array, dim LxMxN, optional): Specifies the points in the rectangular grid defined by xpoints, ypoints, zpoints that are to be excluded in the kriging calculations. Must be provided if style is specified as 'masked'. False indicates that the point should not be masked, so the kriging system will be solved at the point. True indicates that the point should be masked, so the kriging system should will not be solved at the point. backend (string, optional): Specifies which approach to use in kriging. Specifying 'vectorized' will solve the entire kriging problem at once in a vectorized operation. This approach is faster but also can consume a significant amount of memory for large grids and/or large datasets. Specifying 'loop' will loop through each point at which the kriging system is to be solved. This approach is slower but also less memory-intensive. Default is 'vectorized'. Outputs: kvalues (numpy array, dim LxMxN or dim Nx1): Interpolated values of specified grid or at the specified set of points. If style was specified as 'masked', kvalues will be a numpy masked array. sigmasq (numpy array, dim LxMxN or dim Nx1): Variance at specified grid points or at the specified set of points. If style was specified as 'masked', sigmasq will be a numpy masked array. """ if self.verbose: print "Executing Ordinary Kriging...\n" if style != 'grid' and style != 'masked' and style != 'points': raise ValueError("style argument must be 'grid', 'points', or 'masked'") xpts = np.atleast_1d(np.squeeze(np.array(xpoints, copy=True))) ypts = np.atleast_1d(np.squeeze(np.array(ypoints, copy=True))) zpts = np.atleast_1d(np.squeeze(np.array(zpoints, copy=True))) n = self.X_ADJUSTED.shape[0] nx = xpts.size ny = ypts.size nz = zpts.size a = self._get_kriging_matrix(n) if style in ['grid', 'masked']: if style == 'masked': if mask is None: raise IOError("Must specify boolean masking array when style is 'masked'.") if mask.ndim != 3: raise ValueError("Mask is not three-dimensional.") if mask.shape[0] != nz or mask.shape[1] != ny or mask.shape[2] != nx: if mask.shape[0] == nx and mask.shape[2] == nz and mask.shape[1] == ny: mask = mask.swapaxes(0, 2) else: raise ValueError("Mask dimensions do not match specified grid dimensions.") mask = mask.flatten() npt = nz * ny * nx grid_z, grid_y, grid_x = np.meshgrid(zpts, ypts, xpts, indexing='ij') xpts = grid_x.flatten() ypts = grid_y.flatten() zpts = grid_z.flatten() elif style == 'points': if xpts.size != ypts.size and ypts.size != zpts.size: raise ValueError("xpoints and ypoints must have same dimensions " "when treated as listing discrete points.") npt = nx else: raise ValueError("style argument must be 'grid', 'points', or 'masked'") xpts, ypts, zpts = core.adjust_for_anisotropy_3d(xpts, ypts, zpts, self.XCENTER, self.YCENTER, self.ZCENTER, self.anisotropy_scaling_y, self.anisotropy_scaling_z, self.anisotropy_angle_x, self.anisotropy_angle_y, self.anisotropy_angle_z) if style != 'masked': mask = np.zeros(npt, dtype='bool') xyz_points = np.concatenate((zpts[:, np.newaxis], ypts[:, np.newaxis], xpts[:, np.newaxis]), axis=1) xyz_data = np.concatenate((self.Z_ADJUSTED[:, np.newaxis], self.Y_ADJUSTED[:, np.newaxis], self.X_ADJUSTED[:, np.newaxis]), axis=1) bd = cdist(xyz_points, xyz_data, 'euclidean') if backend == 'vectorized': kvalues, sigmasq = self._exec_vector(a, bd, mask) elif backend == 'loop': kvalues, sigmasq = self._exec_loop(a, bd, mask) else: raise ValueError('Specified backend {} is not supported for 3D ordinary kriging.'.format(backend)) if style == 'masked': kvalues = np.ma.array(kvalues, mask=mask) sigmasq = np.ma.array(sigmasq, mask=mask) if style in ['masked', 'grid']: kvalues = kvalues.reshape((nz, ny, nx)) sigmasq = sigmasq.reshape((nz, ny, nx)) return kvalues, sigmasq
bsd-3-clause
alvarofierroclavero/scikit-learn
sklearn/utils/setup.py
296
2884
import os from os.path import join from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): import numpy from numpy.distutils.misc_util import Configuration config = Configuration('utils', parent_package, top_path) config.add_subpackage('sparsetools') cblas_libs, blas_info = get_blas_info() cblas_compile_args = blas_info.pop('extra_compile_args', []) cblas_includes = [join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])] libraries = [] if os.name == 'posix': libraries.append('m') cblas_libs.append('m') config.add_extension('sparsefuncs_fast', sources=['sparsefuncs_fast.c'], libraries=libraries) config.add_extension('arrayfuncs', sources=['arrayfuncs.c'], depends=[join('src', 'cholesky_delete.h')], libraries=cblas_libs, include_dirs=cblas_includes, extra_compile_args=cblas_compile_args, **blas_info ) config.add_extension( 'murmurhash', sources=['murmurhash.c', join('src', 'MurmurHash3.cpp')], include_dirs=['src']) config.add_extension('lgamma', sources=['lgamma.c', join('src', 'gamma.c')], include_dirs=['src'], libraries=libraries) config.add_extension('graph_shortest_path', sources=['graph_shortest_path.c'], include_dirs=[numpy.get_include()]) config.add_extension('fast_dict', sources=['fast_dict.cpp'], language="c++", include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension('seq_dataset', sources=['seq_dataset.c'], include_dirs=[numpy.get_include()]) config.add_extension('weight_vector', sources=['weight_vector.c'], include_dirs=cblas_includes, libraries=cblas_libs, **blas_info) config.add_extension("_random", sources=["_random.c"], include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension("_logistic_sigmoid", sources=["_logistic_sigmoid.c"], include_dirs=[numpy.get_include()], libraries=libraries) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
fabioticconi/scikit-learn
sklearn/feature_extraction/tests/test_dict_vectorizer.py
110
3768
# Authors: Lars Buitinck # Dan Blanchard <[email protected]> # License: BSD 3 clause from random import Random import numpy as np import scipy.sparse as sp from numpy.testing import assert_array_equal from sklearn.utils.testing import (assert_equal, assert_in, assert_false, assert_true) from sklearn.feature_extraction import DictVectorizer from sklearn.feature_selection import SelectKBest, chi2 def test_dictvectorizer(): D = [{"foo": 1, "bar": 3}, {"bar": 4, "baz": 2}, {"bar": 1, "quux": 1, "quuux": 2}] for sparse in (True, False): for dtype in (int, np.float32, np.int16): for sort in (True, False): for iterable in (True, False): v = DictVectorizer(sparse=sparse, dtype=dtype, sort=sort) X = v.fit_transform(iter(D) if iterable else D) assert_equal(sp.issparse(X), sparse) assert_equal(X.shape, (3, 5)) assert_equal(X.sum(), 14) assert_equal(v.inverse_transform(X), D) if sparse: # CSR matrices can't be compared for equality assert_array_equal(X.A, v.transform(iter(D) if iterable else D).A) else: assert_array_equal(X, v.transform(iter(D) if iterable else D)) if sort: assert_equal(v.feature_names_, sorted(v.feature_names_)) def test_feature_selection(): # make two feature dicts with two useful features and a bunch of useless # ones, in terms of chi2 d1 = dict([("useless%d" % i, 10) for i in range(20)], useful1=1, useful2=20) d2 = dict([("useless%d" % i, 10) for i in range(20)], useful1=20, useful2=1) for indices in (True, False): v = DictVectorizer().fit([d1, d2]) X = v.transform([d1, d2]) sel = SelectKBest(chi2, k=2).fit(X, [0, 1]) v.restrict(sel.get_support(indices=indices), indices=indices) assert_equal(v.get_feature_names(), ["useful1", "useful2"]) def test_one_of_k(): D_in = [{"version": "1", "ham": 2}, {"version": "2", "spam": .3}, {"version=3": True, "spam": -1}] v = DictVectorizer() X = v.fit_transform(D_in) assert_equal(X.shape, (3, 5)) D_out = v.inverse_transform(X) assert_equal(D_out[0], {"version=1": 1, "ham": 2}) names = v.get_feature_names() assert_true("version=2" in names) assert_false("version" in names) def test_unseen_or_no_features(): D = [{"camelot": 0, "spamalot": 1}] for sparse in [True, False]: v = DictVectorizer(sparse=sparse).fit(D) X = v.transform({"push the pram a lot": 2}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) X = v.transform({}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) try: v.transform([]) except ValueError as e: assert_in("empty", str(e)) def test_deterministic_vocabulary(): # Generate equal dictionaries with different memory layouts items = [("%03d" % i, i) for i in range(1000)] rng = Random(42) d_sorted = dict(items) rng.shuffle(items) d_shuffled = dict(items) # check that the memory layout does not impact the resulting vocabulary v_1 = DictVectorizer().fit([d_sorted]) v_2 = DictVectorizer().fit([d_shuffled]) assert_equal(v_1.vocabulary_, v_2.vocabulary_)
bsd-3-clause
mbayon/TFG-MachineLearning
vbig/lib/python2.7/site-packages/numpy/doc/creation.py
52
5507
""" ============== Array Creation ============== Introduction ============ There are 5 general mechanisms for creating arrays: 1) Conversion from other Python structures (e.g., lists, tuples) 2) Intrinsic numpy array array creation objects (e.g., arange, ones, zeros, etc.) 3) Reading arrays from disk, either from standard or custom formats 4) Creating arrays from raw bytes through the use of strings or buffers 5) Use of special library functions (e.g., random) This section will not cover means of replicating, joining, or otherwise expanding or mutating existing arrays. Nor will it cover creating object arrays or structured arrays. Both of those are covered in their own sections. Converting Python array_like Objects to NumPy Arrays ==================================================== In general, numerical data arranged in an array-like structure in Python can be converted to arrays through the use of the array() function. The most obvious examples are lists and tuples. See the documentation for array() for details for its use. Some objects may support the array-protocol and allow conversion to arrays this way. A simple way to find out if the object can be converted to a numpy array using array() is simply to try it interactively and see if it works! (The Python Way). Examples: :: >>> x = np.array([2,3,1,0]) >>> x = np.array([2, 3, 1, 0]) >>> x = np.array([[1,2.0],[0,0],(1+1j,3.)]) # note mix of tuple and lists, and types >>> x = np.array([[ 1.+0.j, 2.+0.j], [ 0.+0.j, 0.+0.j], [ 1.+1.j, 3.+0.j]]) Intrinsic NumPy Array Creation ============================== NumPy has built-in functions for creating arrays from scratch: zeros(shape) will create an array filled with 0 values with the specified shape. The default dtype is float64. ``>>> np.zeros((2, 3)) array([[ 0., 0., 0.], [ 0., 0., 0.]])`` ones(shape) will create an array filled with 1 values. It is identical to zeros in all other respects. arange() will create arrays with regularly incrementing values. Check the docstring for complete information on the various ways it can be used. A few examples will be given here: :: >>> np.arange(10) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.arange(2, 10, dtype=np.float) array([ 2., 3., 4., 5., 6., 7., 8., 9.]) >>> np.arange(2, 3, 0.1) array([ 2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9]) Note that there are some subtleties regarding the last usage that the user should be aware of that are described in the arange docstring. linspace() will create arrays with a specified number of elements, and spaced equally between the specified beginning and end values. For example: :: >>> np.linspace(1., 4., 6) array([ 1. , 1.6, 2.2, 2.8, 3.4, 4. ]) The advantage of this creation function is that one can guarantee the number of elements and the starting and end point, which arange() generally will not do for arbitrary start, stop, and step values. indices() will create a set of arrays (stacked as a one-higher dimensioned array), one per dimension with each representing variation in that dimension. An example illustrates much better than a verbal description: :: >>> np.indices((3,3)) array([[[0, 0, 0], [1, 1, 1], [2, 2, 2]], [[0, 1, 2], [0, 1, 2], [0, 1, 2]]]) This is particularly useful for evaluating functions of multiple dimensions on a regular grid. Reading Arrays From Disk ======================== This is presumably the most common case of large array creation. The details, of course, depend greatly on the format of data on disk and so this section can only give general pointers on how to handle various formats. Standard Binary Formats ----------------------- Various fields have standard formats for array data. The following lists the ones with known python libraries to read them and return numpy arrays (there may be others for which it is possible to read and convert to numpy arrays so check the last section as well) :: HDF5: PyTables FITS: PyFITS Examples of formats that cannot be read directly but for which it is not hard to convert are those formats supported by libraries like PIL (able to read and write many image formats such as jpg, png, etc). Common ASCII Formats ------------------------ Comma Separated Value files (CSV) are widely used (and an export and import option for programs like Excel). There are a number of ways of reading these files in Python. There are CSV functions in Python and functions in pylab (part of matplotlib). More generic ascii files can be read using the io package in scipy. Custom Binary Formats --------------------- There are a variety of approaches one can use. If the file has a relatively simple format then one can write a simple I/O library and use the numpy fromfile() function and .tofile() method to read and write numpy arrays directly (mind your byteorder though!) If a good C or C++ library exists that read the data, one can wrap that library with a variety of techniques though that certainly is much more work and requires significantly more advanced knowledge to interface with C or C++. Use of Special Libraries ------------------------ There are libraries that can be used to generate arrays for special purposes and it isn't possible to enumerate all of them. The most common uses are use of the many array generation functions in random that can generate arrays of random values, and some utility functions to generate special matrices (e.g. diagonal). """ from __future__ import division, absolute_import, print_function
mit
dgketchum/MT_Rsense
obspnts/obsio/providers/ushcn.py
1
7794
from .. import LOCAL_DATA_PATH from .generic import ObsIO from StringIO import StringIO import glob import itertools import numpy as np import os import pandas as pd import subprocess import tarfile _RPATH_USHCN = 'ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2.5/*' _ELEMS_TO_USHCN_DATASET = {'tmin_mth_raw': 'raw', 'tmin_mth_tob': 'tob', 'tmin_mth_fls': 'FLs.52j', 'tmax_mth_raw': 'raw', 'tmax_mth_tob': 'tob', 'tmax_mth_fls': 'FLs.52j', 'tavg_mth_raw': 'raw', 'tavg_mth_tob': 'tob', 'tavg_mth_fls': 'FLs.52j', 'prcp_mth_raw': 'raw', 'prcp_mth_tob': 'tob', 'prcp_mth_fls': 'FLs.52j'} _ELEMS_TO_USHCN_VNAME = {'tmin_mth_raw': 'tmin', 'tmin_mth_tob': 'tmin', 'tmin_mth_fls': 'tmin', 'tmax_mth_raw': 'tmax', 'tmax_mth_tob': 'tmax', 'tmax_mth_fls': 'tmax', 'tavg_mth_raw': 'tavg', 'tavg_mth_tob': 'tavg', 'tavg_mth_fls': 'tavg', 'prcp_mth_raw': 'prcp', 'prcp_mth_tob': 'prcp', 'prcp_mth_fls': 'prcp'} _to_c = lambda x: x / 100.0 _to_mm = lambda x: x / 10.0 _ELEMS_CONVERT_FUNCT = {'tmin_mth_raw': _to_c, 'tmin_mth_tob': _to_c, 'tmin_mth_fls': _to_c, 'tmax_mth_raw': _to_c, 'tmax_mth_tob': _to_c, 'tmax_mth_fls': _to_c, 'tavg_mth_raw': _to_c, 'tavg_mth_tob': _to_c, 'tavg_mth_fls': _to_c, 'prcp_mth_raw': _to_mm, 'prcp_mth_tob': _to_mm, 'prcp_mth_fls': _to_mm} class UshcnObsIO(ObsIO): _avail_elems = ['tmin_mth_raw', 'tmin_mth_tob', 'tmin_mth_fls', 'tmax_mth_raw', 'tmax_mth_tob', 'tmax_mth_fls', 'tavg_mth_raw', 'tavg_mth_tob', 'tavg_mth_fls', 'prcp_mth_raw', 'prcp_mth_tob', 'prcp_mth_fls'] _requires_local = True name = "USHCN" def __init__(self, local_data_path=None, download_updates=True, **kwargs): super(UshcnObsIO, self).__init__(**kwargs) self.local_data_path = (local_data_path if local_data_path else LOCAL_DATA_PATH) self.path_ushcn_data = os.path.join(self.local_data_path, 'USHCN') if not os.path.isdir(self.path_ushcn_data): os.mkdir(self.path_ushcn_data) self.download_updates = download_updates self._download_run = False self._a_obs_prefix_dirs = None self._a_obs_tarfiles = None self._a_df_tobs = None @property def _obs_tarfiles(self): if self._a_obs_tarfiles is None: self._a_obs_tarfiles = {} for elem in self.elems: fpath = os.path.join(self.path_ushcn_data, 'ushcn.%s.latest.%s.tar' % (_ELEMS_TO_USHCN_VNAME[elem], _ELEMS_TO_USHCN_DATASET[elem])) tfile = tarfile.open(fpath) self._a_obs_tarfiles[elem] = tfile return self._a_obs_tarfiles def _read_stns(self): if self.download_updates and not self._download_run: self.download_local() stns = pd.read_fwf(os.path.join(self.path_ushcn_data, 'ushcn-v2.5-stations.txt'), colspecs=[(0, 11), (12, 20), (21, 30), (31, 37), (38, 40), (41, 71)], header=None, names=['station_id', 'latitude', 'longitude', 'elevation', 'state', 'station_name']) stns['station_name'] = stns.station_name.apply(unicode, errors='ignore') stns['provider'] = 'USHCN' stns['sub_provider'] = '' if self.bbox is not None: mask_bnds = ((stns.latitude >= self.bbox.south) & (stns.latitude <= self.bbox.north) & (stns.longitude >= self.bbox.west) & (stns.longitude <= self.bbox.east)) stns = stns[mask_bnds].copy() stns = stns.set_index('station_id', drop=False) return stns @property def _obs_prefix_dirs(self): if self._a_obs_prefix_dirs is None: self._a_obs_prefix_dirs = {elem: self._obs_tarfiles[elem]. getnames()[0].split('/')[1] for elem in self.elems} return self._a_obs_prefix_dirs def download_local(self): local_path = self.path_ushcn_data print "Syncing USHCN data to local..." subprocess.call(['wget', '-N', '--directory-prefix=' + local_path, _RPATH_USHCN]) print "Unzipping files..." fnames_tars = glob.glob(os.path.join(local_path, '*.gz')) for fname in fnames_tars: subprocess.call(['gunzip', '-f', os.path.join(local_path, fname)]) self._download_run = True def _parse_stn_obs(self, stn_id, elem): fname = os.path.join('.', self._obs_prefix_dirs[elem], '%s.%s.%s' % (stn_id, _ELEMS_TO_USHCN_DATASET[elem], _ELEMS_TO_USHCN_VNAME[elem])) obs_file = self._obs_tarfiles[elem].extractfile(fname) obs = pd.read_fwf(StringIO(obs_file.read()), colspecs=[(12, 16), (17, 17 + 5), (26, 26 + 5), (35, 35 + 5), (44, 44 + 5), (53, 53 + 5), (62, 62 + 5), (71, 71 + 5), (80, 80 + 5), (89, 89 + 5), (98, 98 + 5), (107, 107 + 5), (116, 116 + 5)], header=None, index_col=0, names=['year'] + ['%.2d' % mth for mth in np.arange(1, 13)], na_values='-9999') obs_file.close() obs = obs.unstack().swaplevel(0, 1).sortlevel(0, sort_remaining=True) obs = obs.reset_index() obs['time'] = pd.to_datetime(obs.year.astype(np.str) + obs.level_1, format='%Y%m') obs.drop(['year', 'level_1'], axis=1, inplace=True) obs.rename(columns={0: 'obs_value'}, inplace=True) obs.dropna(axis=0, subset=['obs_value'], inplace=True) if self.has_start_end_dates: mask_time = ((obs.time >= self.start_date) & (obs.time <= self.end_date)) obs.drop(obs[~mask_time].index, axis=0, inplace=True) obs['obs_value'] = _ELEMS_CONVERT_FUNCT[elem](obs['obs_value']) obs['station_id'] = stn_id obs['elem'] = elem return obs def _read_obs(self, stns_ids=None): # Saw extreme decreased performance due to garbage collection when # pandas ran checks for a chained assignment. Turn off this check # temporarily. opt_val = pd.get_option('mode.chained_assignment') pd.set_option('mode.chained_assignment', None) try: if stns_ids is None: stns_obs = self.stns else: stns_obs = self.stns.loc[stns_ids] obs = [self._parse_stn_obs(a_id, elem) for elem, a_id in itertools.product(self.elems, stns_obs.station_id)] obs = pd.concat(obs, ignore_index=True) finally: pd.set_option('mode.chained_assignment', opt_val) obs = obs.set_index(['station_id', 'elem', 'time']) obs = obs.sortlevel(0, sort_remaining=True) return obs
apache-2.0
xiaoxq/apollo
modules/tools/mapshow/libs/plot_smoothness.py
3
2247
#!/usr/bin/env python3 ############################################################################### # Copyright 2017 The Apollo Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### import matplotlib.animation as animation import matplotlib.pyplot as plt from cyber.python.cyber_py3 import cyber from modules.planning.proto import planning_pb2 from modules.tools.mapshow.libs.planning import Planning from modules.tools.mapshow.libs.subplot_traj_acc import TrajAccSubplot from modules.tools.mapshow.libs.subplot_traj_path import TrajPathSubplot from modules.tools.mapshow.libs.subplot_traj_speed import TrajSpeedSubplot planning = Planning() def update(frame_number): traj_speed_subplot.show(planning) traj_acc_subplot.show(planning) traj_path_subplot.show(planning) def planning_callback(planning_pb): planning.update_planning_pb(planning_pb) planning.compute_traj_data() def add_listener(): planning_sub = cyber.Node("st_plot") planning_sub.create_reader('/apollo/planning', planning_pb2.ADCTrajectory, planning_callback) def press_key(): pass if __name__ == '__main__': cyber.init() add_listener() fig = plt.figure(figsize=(14, 6)) fig.canvas.mpl_connect('key_press_event', press_key) ax = plt.subplot2grid((2, 2), (0, 0)) traj_speed_subplot = TrajSpeedSubplot(ax) ax2 = plt.subplot2grid((2, 2), (0, 1)) traj_acc_subplot = TrajAccSubplot(ax2) ax3 = plt.subplot2grid((2, 2), (1, 0)) traj_path_subplot = TrajPathSubplot(ax3) ani = animation.FuncAnimation(fig, update, interval=100) plt.show() cyber.shutdown()
apache-2.0
JT5D/scikit-learn
examples/ensemble/plot_forest_iris.py
7
6244
""" ==================================================================== Plot the decision surfaces of ensembles of trees on the iris dataset ==================================================================== Plot the decision surfaces of forests of randomized trees trained on pairs of features of the iris dataset. This plot compares the decision surfaces learned by a decision tree classifier (first column), by a random forest classifier (second column), by an extra- trees classifier (third column) and by an AdaBoost classifier (fourth column). In the first row, the classifiers are built using the sepal width and the sepal length features only, on the second row using the petal length and sepal length only, and on the third row using the petal width and the petal length only. In descending order of quality, when trained (outside of this example) on all 4 features using 30 estimators and scored using 10 fold cross validation, we see:: ExtraTreesClassifier() # 0.95 score RandomForestClassifier() # 0.94 score AdaBoost(DecisionTree(max_depth=3)) # 0.94 score DecisionTree(max_depth=None) # 0.94 score Increasing `max_depth` for AdaBoost lowers the standard deviation of the scores (but the average score does not improve). See the console's output for further details about each model. In this example you might try to: 1) vary the ``max_depth`` for the ``DecisionTreeClassifier`` and ``AdaBoostClassifier``, perhaps try ``max_depth=3`` for the ``DecisionTreeClassifier`` or ``max_depth=None`` for ``AdaBoostClassifier`` 2) vary ``n_estimators`` It is worth noting that RandomForests and ExtraTrees can be fitted in parallel on many cores as each tree is built independently of the others. AdaBoost's samples are built sequentially and so do not use multiple cores. """ print(__doc__) import numpy as np import pylab as pl from sklearn import clone from sklearn.datasets import load_iris from sklearn.ensemble import (RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier) from sklearn.externals.six.moves import xrange from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 n_estimators = 30 plot_colors = "ryb" cmap = pl.cm.RdYlBu plot_step = 0.02 # fine step width for decision surface contours plot_step_coarser = 0.5 # step widths for coarse classifier guesses RANDOM_SEED = 13 # fix the seed on each iteration # Load data iris = load_iris() plot_idx = 1 models = [DecisionTreeClassifier(max_depth=None), RandomForestClassifier(n_estimators=n_estimators), ExtraTreesClassifier(n_estimators=n_estimators), AdaBoostClassifier(DecisionTreeClassifier(max_depth=3), n_estimators=n_estimators)] for pair in ([0, 1], [0, 2], [2, 3]): for model in models: # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Shuffle idx = np.arange(X.shape[0]) np.random.seed(RANDOM_SEED) np.random.shuffle(idx) X = X[idx] y = y[idx] # Standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std # Train clf = clone(model) clf = model.fit(X, y) scores = clf.score(X, y) # Create a title for each column and the console by using str() and # slicing away useless parts of the string model_title = str(type(model)).split(".")[-1][:-2][:-len("Classifier")] model_details = model_title if hasattr(model, "estimators_"): model_details += " with {} estimators".format(len(model.estimators_)) print model_details + " with features", pair, "has a score of", scores pl.subplot(3, 4, plot_idx) if plot_idx <= len(models): # Add a title at the top of each column pl.title(model_title) # Now plot the decision boundary using a fine mesh as input to a # filled contour plot x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) # Plot either a single DecisionTreeClassifier or alpha blend the # decision surfaces of the ensemble of classifiers if isinstance(model, DecisionTreeClassifier): Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = pl.contourf(xx, yy, Z, cmap=cmap) else: # Choose alpha blend level with respect to the number of estimators # that are in use (noting that AdaBoost can use fewer estimators # than its maximum if it achieves a good enough fit early on) estimator_alpha = 1.0 / len(model.estimators_) for tree in model.estimators_: Z = tree.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = pl.contourf(xx, yy, Z, alpha=estimator_alpha, cmap=cmap) # Build a coarser grid to plot a set of ensemble classifications # to show how these are different to what we see in the decision # surfaces. These points are regularly space and do not have a black outline xx_coarser, yy_coarser = np.meshgrid(np.arange(x_min, x_max, plot_step_coarser), np.arange(y_min, y_max, plot_step_coarser)) Z_points_coarser = model.predict(np.c_[xx_coarser.ravel(), yy_coarser.ravel()]).reshape(xx_coarser.shape) cs_points = pl.scatter(xx_coarser, yy_coarser, s=15, c=Z_points_coarser, cmap=cmap, edgecolors="none") # Plot the training points, these are clustered together and have a # black outline for i, c in zip(xrange(n_classes), plot_colors): idx = np.where(y == i) pl.scatter(X[idx, 0], X[idx, 1], c=c, label=iris.target_names[i], cmap=cmap) plot_idx += 1 # move on to the next plot in sequence pl.suptitle("Classifiers on feature subsets of the Iris dataset") pl.axis("tight") pl.show()
bsd-3-clause
wkfwkf/statsmodels
examples/python/discrete_choice_example.py
30
5786
## Discrete Choice Models ### Fair's Affair data # A survey of women only was conducted in 1974 by *Redbook* asking about extramarital affairs. from __future__ import print_function import numpy as np from scipy import stats import matplotlib.pyplot as plt import statsmodels.api as sm from statsmodels.formula.api import logit, probit, poisson, ols print(sm.datasets.fair.SOURCE) print(sm.datasets.fair.NOTE) dta = sm.datasets.fair.load_pandas().data dta['affair'] = (dta['affairs'] > 0).astype(float) print(dta.head(10)) print(dta.describe()) affair_mod = logit("affair ~ occupation + educ + occupation_husb" "+ rate_marriage + age + yrs_married + children" " + religious", dta).fit() print(affair_mod.summary()) # How well are we predicting? affair_mod.pred_table() # The coefficients of the discrete choice model do not tell us much. What we're after is marginal effects. mfx = affair_mod.get_margeff() print(mfx.summary()) respondent1000 = dta.ix[1000] print(respondent1000) resp = dict(zip(range(1,9), respondent1000[["occupation", "educ", "occupation_husb", "rate_marriage", "age", "yrs_married", "children", "religious"]].tolist())) resp.update({0 : 1}) print(resp) mfx = affair_mod.get_margeff(atexog=resp) print(mfx.summary()) affair_mod.predict(respondent1000) affair_mod.fittedvalues[1000] affair_mod.model.cdf(affair_mod.fittedvalues[1000]) # The "correct" model here is likely the Tobit model. We have an work in progress branch "tobit-model" on github, if anyone is interested in censored regression models. #### Exercise: Logit vs Probit fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111) support = np.linspace(-6, 6, 1000) ax.plot(support, stats.logistic.cdf(support), 'r-', label='Logistic') ax.plot(support, stats.norm.cdf(support), label='Probit') ax.legend(); fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111) support = np.linspace(-6, 6, 1000) ax.plot(support, stats.logistic.pdf(support), 'r-', label='Logistic') ax.plot(support, stats.norm.pdf(support), label='Probit') ax.legend(); # Compare the estimates of the Logit Fair model above to a Probit model. Does the prediction table look better? Much difference in marginal effects? #### Genarlized Linear Model Example print(sm.datasets.star98.SOURCE) print(sm.datasets.star98.DESCRLONG) print(sm.datasets.star98.NOTE) dta = sm.datasets.star98.load_pandas().data print(dta.columns) print(dta[['NABOVE', 'NBELOW', 'LOWINC', 'PERASIAN', 'PERBLACK', 'PERHISP', 'PERMINTE']].head(10)) print(dta[['AVYRSEXP', 'AVSALK', 'PERSPENK', 'PTRATIO', 'PCTAF', 'PCTCHRT', 'PCTYRRND']].head(10)) formula = 'NABOVE + NBELOW ~ LOWINC + PERASIAN + PERBLACK + PERHISP + PCTCHRT ' formula += '+ PCTYRRND + PERMINTE*AVYRSEXP*AVSALK + PERSPENK*PTRATIO*PCTAF' ##### Aside: Binomial distribution # Toss a six-sided die 5 times, what's the probability of exactly 2 fours? stats.binom(5, 1./6).pmf(2) from scipy.misc import comb comb(5,2) * (1/6.)**2 * (5/6.)**3 from statsmodels.formula.api import glm glm_mod = glm(formula, dta, family=sm.families.Binomial()).fit() print(glm_mod.summary()) # The number of trials glm_mod.model.data.orig_endog.sum(1) glm_mod.fittedvalues * glm_mod.model.data.orig_endog.sum(1) # First differences: We hold all explanatory variables constant at their means and manipulate the percentage of low income households to assess its impact # on the response variables: exog = glm_mod.model.data.orig_exog # get the dataframe means25 = exog.mean() print(means25) means25['LOWINC'] = exog['LOWINC'].quantile(.25) print(means25) means75 = exog.mean() means75['LOWINC'] = exog['LOWINC'].quantile(.75) print(means75) resp25 = glm_mod.predict(means25) resp75 = glm_mod.predict(means75) diff = resp75 - resp25 # The interquartile first difference for the percentage of low income households in a school district is: print("%2.4f%%" % (diff[0]*100)) nobs = glm_mod.nobs y = glm_mod.model.endog yhat = glm_mod.mu from statsmodels.graphics.api import abline_plot fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111, ylabel='Observed Values', xlabel='Fitted Values') ax.scatter(yhat, y) y_vs_yhat = sm.OLS(y, sm.add_constant(yhat, prepend=True)).fit() fig = abline_plot(model_results=y_vs_yhat, ax=ax) ##### Plot fitted values vs Pearson residuals # Pearson residuals are defined to be # # $$\frac{(y - \mu)}{\sqrt{(var(\mu))}}$$ # # where var is typically determined by the family. E.g., binomial variance is $np(1 - p)$ fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111, title='Residual Dependence Plot', xlabel='Fitted Values', ylabel='Pearson Residuals') ax.scatter(yhat, stats.zscore(glm_mod.resid_pearson)) ax.axis('tight') ax.plot([0.0, 1.0],[0.0, 0.0], 'k-'); ##### Histogram of standardized deviance residuals with Kernel Density Estimate overlayed # The definition of the deviance residuals depends on the family. For the Binomial distribution this is # # $$r_{dev} = sign\(Y-\mu\)*\sqrt{2n(Y\log\frac{Y}{\mu}+(1-Y)\log\frac{(1-Y)}{(1-\mu)}}$$ # # They can be used to detect ill-fitting covariates resid = glm_mod.resid_deviance resid_std = stats.zscore(resid) kde_resid = sm.nonparametric.KDEUnivariate(resid_std) kde_resid.fit() fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111, title="Standardized Deviance Residuals") ax.hist(resid_std, bins=25, normed=True); ax.plot(kde_resid.support, kde_resid.density, 'r'); ##### QQ-plot of deviance residuals fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111) fig = sm.graphics.qqplot(resid, line='r', ax=ax)
bsd-3-clause
bolverk/white_dwarf_nova
draw_snapshots.py
2
4775
def plot_single(in_file, zfunc, zname, out_file): import pylab import numpy import h5py from matplotlib.collections import PolyCollection import matplotlib as mpl import matplotlib.pyplot as plt import os print(out_file) if os.path.isfile(out_file): return with h5py.File(in_file,'r+') as f: vert_idx_list = numpy.concatenate(([0], numpy.cumsum(f['Number of vertices in cell']))) verts = [] x_verts = numpy.array(f['x position of vertices']) y_verts = numpy.array(f['y position of vertices']) ghost_list = numpy.array(f['ghost']) for i in range(len(f['density'])): if ghost_list[i]<0.5: lowbound = int(vert_idx_list[i]) upbound = int(vert_idx_list[i+1]) verts.append([[x,y] for x,y in zip(x_verts[lowbound:upbound], y_verts[lowbound:upbound])]) coll = PolyCollection(verts, array=zfunc(f), cmap = mpl.cm.jet, edgecolors = 'none') fig, ax = plt.subplots() fig.suptitle(zname+' @ t = '+str(numpy.array(f['time'])[0])) ax.add_collection(coll) ax.autoscale_view() ax.set_aspect('equal') fig.colorbar(coll,ax=ax) print(out_file) if out_file==None: plt.show() else: plt.savefig(out_file) plt.clf() plt.cla() plt.close() def plot_all(zfunc, zname): import glob import numpy import joblib flist = glob.glob('snapshot_*.h5') joblib.Parallel(n_jobs=8)(joblib.delayed(plot_single) (fname, zfunc, zname, fname.replace('snapshot',zname).replace('.h5','.png')) for fname in flist) #[plot_single(fname,zfunc,zname, # fname.replace('snapshot',zname).replace('.h5','.png')) # for fname in flist] def log10_density_cgs(f): import numpy return numpy.log10(numpy.array(f['density']))[numpy.array(f['ghost'])<0.5] def log10_temperature(f): import numpy return numpy.log10(f['temperature'])[numpy.array(f['ghost'])<0.5] def x_velocity(f): import numpy return numpy.array(f['x_velocity'])[numpy.array(f['ghost'])<0.5] def y_velocity(f): import numpy return numpy.array(f['y_velocity'])[numpy.array(f['ghost'])<0.5] def He4_prof(f): import numpy return numpy.array(f['He4'])[numpy.array(f['ghost'])<0.5] def C12_prof(f): import numpy return numpy.array(f['C12'])[numpy.array(f['ghost'])<0.5] def O16_prof(f): import numpy return numpy.array(f['O16'])[numpy.array(f['ghost'])<0.5] def Ne20_prof(f): import numpy return numpy.array(f['Ne20'])[numpy.array(f['ghost'])<0.5] def Mg24_prof(f): import numpy return numpy.array(f['Mg24'])[numpy.array(f['ghost'])<0.5] def Si28_prof(f): import numpy return numpy.array(f['Si28'])[numpy.array(f['ghost'])<0.5] def S32_prof(f): import numpy return numpy.array(f['S32'])[numpy.array(f['ghost'])<0.5] def Ar36_prof(f): import numpy return numpy.array(f['Ar36'])[numpy.array(f['ghost'])<0.5] def Ca40_prof(f): import numpy return numpy.array(f['Ca40'])[numpy.array(f['ghost'])<0.5] def Ti44_prof(f): import numpy return numpy.array(f['Ti44'])[numpy.array(f['ghost'])<0.5] def Cr48_prof(f): import numpy return numpy.array(f['Cr48'])[numpy.array(f['ghost'])<0.5] def Fe52_prof(f): import numpy return numpy.array(f['Fe52'])[numpy.array(f['ghost'])<0.5] def Ni56_prof(f): import numpy return numpy.array(f['Ni56'])[numpy.array(f['ghost'])<0.5] def main(): import matplotlib matplotlib.use('Agg') import numpy #plot_single('snapshot_0.h5', # log10_temperature, # 'log10_temperature', # 'log10_temperature_0.png') plot_all(log10_density_cgs, 'log10_density') plot_all(log10_temperature, 'log10_temperature') plot_all(x_velocity, 'x_velocity') plot_all(y_velocity, 'y_velocity') #plot_all(He4_prof, 'He4') #plot_all(C12_prof, 'C12') #plot_all(O16_prof, 'O16') #plot_all(S32_prof, 'S32') #plot_all(Ne20_prof, 'Ne20') #plot_all(Mg24_prof, 'Mg24') #plot_all(Si28_prof, 'Si28') #plot_all(Ar36_prof, 'Ar36') #plot_all(Ca40_prof, 'Ca40') #plot_all(Ti44_prof, 'Ti44') #plot_all(Cr48_prof, 'Cr48') #plot_all(Fe52_prof, 'Fe52') #plot_all(Ni56_prof, 'Ni56') if __name__ == '__main__': main()
mit
zodiac/incubator-airflow
airflow/hooks/hive_hooks.py
22
27917
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function from builtins import zip from past.builtins import basestring import collections import unicodecsv as csv import itertools import logging import re import subprocess import time from tempfile import NamedTemporaryFile import hive_metastore from airflow.exceptions import AirflowException from airflow.hooks.base_hook import BaseHook from airflow.utils.helpers import as_flattened_list from airflow.utils.file import TemporaryDirectory from airflow import configuration import airflow.security.utils as utils HIVE_QUEUE_PRIORITIES = ['VERY_HIGH', 'HIGH', 'NORMAL', 'LOW', 'VERY_LOW'] class HiveCliHook(BaseHook): """Simple wrapper around the hive CLI. It also supports the ``beeline`` a lighter CLI that runs JDBC and is replacing the heavier traditional CLI. To enable ``beeline``, set the use_beeline param in the extra field of your connection as in ``{ "use_beeline": true }`` Note that you can also set default hive CLI parameters using the ``hive_cli_params`` to be used in your connection as in ``{"hive_cli_params": "-hiveconf mapred.job.tracker=some.jobtracker:444"}`` Parameters passed here can be overridden by run_cli's hive_conf param The extra connection parameter ``auth`` gets passed as in the ``jdbc`` connection string as is. :param mapred_queue: queue used by the Hadoop Scheduler (Capacity or Fair) :type mapred_queue: string :param mapred_queue_priority: priority within the job queue. Possible settings include: VERY_HIGH, HIGH, NORMAL, LOW, VERY_LOW :type mapred_queue_priority: string :param mapred_job_name: This name will appear in the jobtracker. This can make monitoring easier. :type mapred_job_name: string """ def __init__( self, hive_cli_conn_id="hive_cli_default", run_as=None, mapred_queue=None, mapred_queue_priority=None, mapred_job_name=None): conn = self.get_connection(hive_cli_conn_id) self.hive_cli_params = conn.extra_dejson.get('hive_cli_params', '') self.use_beeline = conn.extra_dejson.get('use_beeline', False) self.auth = conn.extra_dejson.get('auth', 'noSasl') self.conn = conn self.run_as = run_as if mapred_queue_priority: mapred_queue_priority = mapred_queue_priority.upper() if mapred_queue_priority not in HIVE_QUEUE_PRIORITIES: raise AirflowException( "Invalid Mapred Queue Priority. Valid values are: " "{}".format(', '.join(HIVE_QUEUE_PRIORITIES))) self.mapred_queue = mapred_queue self.mapred_queue_priority = mapred_queue_priority self.mapred_job_name = mapred_job_name def _prepare_cli_cmd(self): """ This function creates the command list from available information """ conn = self.conn hive_bin = 'hive' cmd_extra = [] if self.use_beeline: hive_bin = 'beeline' jdbc_url = "jdbc:hive2://{conn.host}:{conn.port}/{conn.schema}" if configuration.get('core', 'security') == 'kerberos': template = conn.extra_dejson.get( 'principal', "hive/[email protected]") if "_HOST" in template: template = utils.replace_hostname_pattern( utils.get_components(template)) proxy_user = "" # noqa if conn.extra_dejson.get('proxy_user') == "login" and conn.login: proxy_user = "hive.server2.proxy.user={0}".format(conn.login) elif conn.extra_dejson.get('proxy_user') == "owner" and self.run_as: proxy_user = "hive.server2.proxy.user={0}".format(self.run_as) jdbc_url += ";principal={template};{proxy_user}" elif self.auth: jdbc_url += ";auth=" + self.auth jdbc_url = jdbc_url.format(**locals()) cmd_extra += ['-u', jdbc_url] if conn.login: cmd_extra += ['-n', conn.login] if conn.password: cmd_extra += ['-p', conn.password] hive_params_list = self.hive_cli_params.split() return [hive_bin] + cmd_extra + hive_params_list def _prepare_hiveconf(self, d): """ This function prepares a list of hiveconf params from a dictionary of key value pairs. :param d: :type d: dict >>> hh = HiveCliHook() >>> hive_conf = {"hive.exec.dynamic.partition": "true", ... "hive.exec.dynamic.partition.mode": "nonstrict"} >>> hh._prepare_hiveconf(hive_conf) ["-hiveconf", "hive.exec.dynamic.partition=true",\ "-hiveconf", "hive.exec.dynamic.partition.mode=nonstrict"] """ if not d: return [] return as_flattened_list( itertools.izip( ["-hiveconf"] * len(d), ["{}={}".format(k, v) for k, v in d.items()] ) ) def run_cli(self, hql, schema=None, verbose=True, hive_conf=None): """ Run an hql statement using the hive cli. If hive_conf is specified it should be a dict and the entries will be set as key/value pairs in HiveConf :param hive_conf: if specified these key value pairs will be passed to hive as ``-hiveconf "key"="value"``. Note that they will be passed after the ``hive_cli_params`` and thus will override whatever values are specified in the database. :type hive_conf: dict >>> hh = HiveCliHook() >>> result = hh.run_cli("USE airflow;") >>> ("OK" in result) True """ conn = self.conn schema = schema or conn.schema if schema: hql = "USE {schema};\n{hql}".format(**locals()) with TemporaryDirectory(prefix='airflow_hiveop_') as tmp_dir: with NamedTemporaryFile(dir=tmp_dir) as f: f.write(hql.encode('UTF-8')) f.flush() hive_cmd = self._prepare_cli_cmd() hive_conf_params = self._prepare_hiveconf(hive_conf) if self.mapred_queue: hive_conf_params.extend( ['-hiveconf', 'mapreduce.job.queuename={}' .format(self.mapred_queue)]) if self.mapred_queue_priority: hive_conf_params.extend( ['-hiveconf', 'mapreduce.job.priority={}' .format(self.mapred_queue_priority)]) if self.mapred_job_name: hive_conf_params.extend( ['-hiveconf', 'mapred.job.name={}' .format(self.mapred_job_name)]) hive_cmd.extend(hive_conf_params) hive_cmd.extend(['-f', f.name]) if verbose: logging.info(" ".join(hive_cmd)) sp = subprocess.Popen( hive_cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=tmp_dir) self.sp = sp stdout = '' while True: line = sp.stdout.readline() if not line: break stdout += line.decode('UTF-8') if verbose: logging.info(line.decode('UTF-8').strip()) sp.wait() if sp.returncode: raise AirflowException(stdout) return stdout def test_hql(self, hql): """ Test an hql statement using the hive cli and EXPLAIN """ create, insert, other = [], [], [] for query in hql.split(';'): # naive query_original = query query = query.lower().strip() if query.startswith('create table'): create.append(query_original) elif query.startswith(('set ', 'add jar ', 'create temporary function')): other.append(query_original) elif query.startswith('insert'): insert.append(query_original) other = ';'.join(other) for query_set in [create, insert]: for query in query_set: query_preview = ' '.join(query.split())[:50] logging.info("Testing HQL [{0} (...)]".format(query_preview)) if query_set == insert: query = other + '; explain ' + query else: query = 'explain ' + query try: self.run_cli(query, verbose=False) except AirflowException as e: message = e.args[0].split('\n')[-2] logging.info(message) error_loc = re.search('(\d+):(\d+)', message) if error_loc and error_loc.group(1).isdigit(): l = int(error_loc.group(1)) begin = max(l-2, 0) end = min(l+3, len(query.split('\n'))) context = '\n'.join(query.split('\n')[begin:end]) logging.info("Context :\n {0}".format(context)) else: logging.info("SUCCESS") def load_df( self, df, table, create=True, recreate=False, field_dict=None, delimiter=',', encoding='utf8', pandas_kwargs=None, **kwargs): """ Loads a pandas DataFrame into hive. Hive data types will be inferred if not passed but column names will not be sanitized. :param table: target Hive table, use dot notation to target a specific database :type table: str :param create: whether to create the table if it doesn't exist :type create: bool :param recreate: whether to drop and recreate the table at every execution :type recreate: bool :param field_dict: mapping from column name to hive data type :type field_dict: dict :param encoding: string encoding to use when writing DataFrame to file :type encoding: str :param pandas_kwargs: passed to DataFrame.to_csv :type pandas_kwargs: dict :param kwargs: passed to self.load_file """ def _infer_field_types_from_df(df): DTYPE_KIND_HIVE_TYPE = { 'b': 'BOOLEAN', # boolean 'i': 'BIGINT', # signed integer 'u': 'BIGINT', # unsigned integer 'f': 'DOUBLE', # floating-point 'c': 'STRING', # complex floating-point 'O': 'STRING', # object 'S': 'STRING', # (byte-)string 'U': 'STRING', # Unicode 'V': 'STRING' # void } return dict((col, DTYPE_KIND_HIVE_TYPE[dtype.kind]) for col, dtype in df.dtypes.iteritems()) if pandas_kwargs is None: pandas_kwargs = {} with TemporaryDirectory(prefix='airflow_hiveop_') as tmp_dir: with NamedTemporaryFile(dir=tmp_dir) as f: if field_dict is None and (create or recreate): field_dict = _infer_field_types_from_df(df) df.to_csv(f, sep=delimiter, **pandas_kwargs) return self.load_file(filepath=f.name, table=table, delimiter=delimiter, field_dict=field_dict, **kwargs) def load_file( self, filepath, table, delimiter=",", field_dict=None, create=True, overwrite=True, partition=None, recreate=False): """ Loads a local file into Hive Note that the table generated in Hive uses ``STORED AS textfile`` which isn't the most efficient serialization format. If a large amount of data is loaded and/or if the tables gets queried considerably, you may want to use this operator only to stage the data into a temporary table before loading it into its final destination using a ``HiveOperator``. :param table: target Hive table, use dot notation to target a specific database :type table: str :param create: whether to create the table if it doesn't exist :type create: bool :param recreate: whether to drop and recreate the table at every execution :type recreate: bool :param partition: target partition as a dict of partition columns and values :type partition: dict :param delimiter: field delimiter in the file :type delimiter: str """ hql = '' if recreate: hql += "DROP TABLE IF EXISTS {table};\n" if create or recreate: if field_dict is None: raise ValueError("Must provide a field dict when creating a table") fields = ",\n ".join( [k + ' ' + v for k, v in field_dict.items()]) hql += "CREATE TABLE IF NOT EXISTS {table} (\n{fields})\n" if partition: pfields = ",\n ".join( [p + " STRING" for p in partition]) hql += "PARTITIONED BY ({pfields})\n" hql += "ROW FORMAT DELIMITED\n" hql += "FIELDS TERMINATED BY '{delimiter}'\n" hql += "STORED AS textfile;" hql = hql.format(**locals()) logging.info(hql) self.run_cli(hql) hql = "LOAD DATA LOCAL INPATH '{filepath}' " if overwrite: hql += "OVERWRITE " hql += "INTO TABLE {table} " if partition: pvals = ", ".join( ["{0}='{1}'".format(k, v) for k, v in partition.items()]) hql += "PARTITION ({pvals});" hql = hql.format(**locals()) logging.info(hql) self.run_cli(hql) def kill(self): if hasattr(self, 'sp'): if self.sp.poll() is None: print("Killing the Hive job") self.sp.terminate() time.sleep(60) self.sp.kill() class HiveMetastoreHook(BaseHook): """ Wrapper to interact with the Hive Metastore""" def __init__(self, metastore_conn_id='metastore_default'): self.metastore_conn = self.get_connection(metastore_conn_id) self.metastore = self.get_metastore_client() def __getstate__(self): # This is for pickling to work despite the thirft hive client not # being pickable d = dict(self.__dict__) del d['metastore'] return d def __setstate__(self, d): self.__dict__.update(d) self.__dict__['metastore'] = self.get_metastore_client() def get_metastore_client(self): """ Returns a Hive thrift client. """ from thrift.transport import TSocket, TTransport from thrift.protocol import TBinaryProtocol from hive_service import ThriftHive ms = self.metastore_conn auth_mechanism = ms.extra_dejson.get('authMechanism', 'NOSASL') if configuration.get('core', 'security') == 'kerberos': auth_mechanism = ms.extra_dejson.get('authMechanism', 'GSSAPI') kerberos_service_name = ms.extra_dejson.get('kerberos_service_name', 'hive') socket = TSocket.TSocket(ms.host, ms.port) if configuration.get('core', 'security') == 'kerberos' and auth_mechanism == 'GSSAPI': try: import saslwrapper as sasl except ImportError: import sasl def sasl_factory(): sasl_client = sasl.Client() sasl_client.setAttr("host", ms.host) sasl_client.setAttr("service", kerberos_service_name) sasl_client.init() return sasl_client from thrift_sasl import TSaslClientTransport transport = TSaslClientTransport(sasl_factory, "GSSAPI", socket) else: transport = TTransport.TBufferedTransport(socket) protocol = TBinaryProtocol.TBinaryProtocol(transport) return ThriftHive.Client(protocol) def get_conn(self): return self.metastore def check_for_partition(self, schema, table, partition): """ Checks whether a partition exists :param schema: Name of hive schema (database) @table belongs to :type schema: string :param table: Name of hive table @partition belongs to :type schema: string :partition: Expression that matches the partitions to check for (eg `a = 'b' AND c = 'd'`) :type schema: string :rtype: boolean >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> hh.check_for_partition('airflow', t, "ds='2015-01-01'") True """ self.metastore._oprot.trans.open() partitions = self.metastore.get_partitions_by_filter( schema, table, partition, 1) self.metastore._oprot.trans.close() if partitions: return True else: return False def check_for_named_partition(self, schema, table, partition_name): """ Checks whether a partition with a given name exists :param schema: Name of hive schema (database) @table belongs to :type schema: string :param table: Name of hive table @partition belongs to :type schema: string :partition: Name of the partitions to check for (eg `a=b/c=d`) :type schema: string :rtype: boolean >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> hh.check_for_named_partition('airflow', t, "ds=2015-01-01") True >>> hh.check_for_named_partition('airflow', t, "ds=xxx") False """ self.metastore._oprot.trans.open() try: self.metastore.get_partition_by_name( schema, table, partition_name) return True except hive_metastore.ttypes.NoSuchObjectException: return False finally: self.metastore._oprot.trans.close() def get_table(self, table_name, db='default'): """Get a metastore table object >>> hh = HiveMetastoreHook() >>> t = hh.get_table(db='airflow', table_name='static_babynames') >>> t.tableName 'static_babynames' >>> [col.name for col in t.sd.cols] ['state', 'year', 'name', 'gender', 'num'] """ self.metastore._oprot.trans.open() if db == 'default' and '.' in table_name: db, table_name = table_name.split('.')[:2] table = self.metastore.get_table(dbname=db, tbl_name=table_name) self.metastore._oprot.trans.close() return table def get_tables(self, db, pattern='*'): """ Get a metastore table object """ self.metastore._oprot.trans.open() tables = self.metastore.get_tables(db_name=db, pattern=pattern) objs = self.metastore.get_table_objects_by_name(db, tables) self.metastore._oprot.trans.close() return objs def get_databases(self, pattern='*'): """ Get a metastore table object """ self.metastore._oprot.trans.open() dbs = self.metastore.get_databases(pattern) self.metastore._oprot.trans.close() return dbs def get_partitions( self, schema, table_name, filter=None): """ Returns a list of all partitions in a table. Works only for tables with less than 32767 (java short max val). For subpartitioned table, the number might easily exceed this. >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> parts = hh.get_partitions(schema='airflow', table_name=t) >>> len(parts) 1 >>> parts [{'ds': '2015-01-01'}] """ self.metastore._oprot.trans.open() table = self.metastore.get_table(dbname=schema, tbl_name=table_name) if len(table.partitionKeys) == 0: raise AirflowException("The table isn't partitioned") else: if filter: parts = self.metastore.get_partitions_by_filter( db_name=schema, tbl_name=table_name, filter=filter, max_parts=32767) else: parts = self.metastore.get_partitions( db_name=schema, tbl_name=table_name, max_parts=32767) self.metastore._oprot.trans.close() pnames = [p.name for p in table.partitionKeys] return [dict(zip(pnames, p.values)) for p in parts] def max_partition(self, schema, table_name, field=None, filter=None): """ Returns the maximum value for all partitions in a table. Works only for tables that have a single partition key. For subpartitioned table, we recommend using signal tables. >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> hh.max_partition(schema='airflow', table_name=t) '2015-01-01' """ parts = self.get_partitions(schema, table_name, filter) if not parts: return None elif len(parts[0]) == 1: field = list(parts[0].keys())[0] elif not field: raise AirflowException( "Please specify the field you want the max " "value for") return max([p[field] for p in parts]) def table_exists(self, table_name, db='default'): """ Check if table exists >>> hh = HiveMetastoreHook() >>> hh.table_exists(db='airflow', table_name='static_babynames') True >>> hh.table_exists(db='airflow', table_name='does_not_exist') False """ try: t = self.get_table(table_name, db) return True except Exception as e: return False class HiveServer2Hook(BaseHook): """ Wrapper around the impyla library Note that the default authMechanism is PLAIN, to override it you can specify it in the ``extra`` of your connection in the UI as in """ def __init__(self, hiveserver2_conn_id='hiveserver2_default'): self.hiveserver2_conn_id = hiveserver2_conn_id def get_conn(self, schema=None): db = self.get_connection(self.hiveserver2_conn_id) auth_mechanism = db.extra_dejson.get('authMechanism', 'PLAIN') kerberos_service_name = None if configuration.get('core', 'security') == 'kerberos': auth_mechanism = db.extra_dejson.get('authMechanism', 'GSSAPI') kerberos_service_name = db.extra_dejson.get('kerberos_service_name', 'hive') # impyla uses GSSAPI instead of KERBEROS as a auth_mechanism identifier if auth_mechanism == 'KERBEROS': logging.warning("Detected deprecated 'KERBEROS' for authMechanism for %s. Please use 'GSSAPI' instead", self.hiveserver2_conn_id) auth_mechanism = 'GSSAPI' from impala.dbapi import connect return connect( host=db.host, port=db.port, auth_mechanism=auth_mechanism, kerberos_service_name=kerberos_service_name, user=db.login, database=schema or db.schema or 'default') def get_results(self, hql, schema='default', arraysize=1000): from impala.error import ProgrammingError with self.get_conn(schema) as conn: if isinstance(hql, basestring): hql = [hql] results = { 'data': [], 'header': [], } cur = conn.cursor() for statement in hql: cur.execute(statement) records = [] try: # impala Lib raises when no results are returned # we're silencing here as some statements in the list # may be `SET` or DDL records = cur.fetchall() except ProgrammingError: logging.debug("get_results returned no records") if records: results = { 'data': records, 'header': cur.description, } return results def to_csv( self, hql, csv_filepath, schema='default', delimiter=',', lineterminator='\r\n', output_header=True, fetch_size=1000): schema = schema or 'default' with self.get_conn(schema) as conn: with conn.cursor() as cur: logging.info("Running query: " + hql) cur.execute(hql) schema = cur.description with open(csv_filepath, 'wb') as f: writer = csv.writer(f, delimiter=delimiter, lineterminator=lineterminator, encoding='utf-8') if output_header: writer.writerow([c[0] for c in cur.description]) i = 0 while True: rows = [row for row in cur.fetchmany(fetch_size) if row] if not rows: break writer.writerows(rows) i += len(rows) logging.info("Written {0} rows so far.".format(i)) logging.info("Done. Loaded a total of {0} rows.".format(i)) def get_records(self, hql, schema='default'): """ Get a set of records from a Hive query. >>> hh = HiveServer2Hook() >>> sql = "SELECT * FROM airflow.static_babynames LIMIT 100" >>> len(hh.get_records(sql)) 100 """ return self.get_results(hql, schema=schema)['data'] def get_pandas_df(self, hql, schema='default'): """ Get a pandas dataframe from a Hive query >>> hh = HiveServer2Hook() >>> sql = "SELECT * FROM airflow.static_babynames LIMIT 100" >>> df = hh.get_pandas_df(sql) >>> len(df.index) 100 """ import pandas as pd res = self.get_results(hql, schema=schema) df = pd.DataFrame(res['data']) df.columns = [c[0] for c in res['header']] return df
apache-2.0
uvchik/pvlib-python
pvlib/test/test_tracking.py
1
12732
import datetime import numpy as np from numpy import nan import pandas as pd import pytest from pandas.util.testing import assert_frame_equal from pvlib.location import Location from pvlib import solarposition from pvlib import tracking def test_solar_noon(): apparent_zenith = pd.Series([10]) apparent_azimuth = pd.Series([180]) tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth, axis_tilt=0, axis_azimuth=0, max_angle=90, backtrack=True, gcr=2.0/7.0) expect = pd.DataFrame({'aoi': 10, 'surface_azimuth': 90, 'surface_tilt': 0, 'tracker_theta': 0}, index=[0], dtype=np.float64) assert_frame_equal(expect, tracker_data) def test_azimuth_north_south(): apparent_zenith = pd.Series([60]) apparent_azimuth = pd.Series([90]) tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth, axis_tilt=0, axis_azimuth=180, max_angle=90, backtrack=True, gcr=2.0/7.0) expect = pd.DataFrame({'aoi': 0, 'surface_azimuth': 90, 'surface_tilt': 60, 'tracker_theta': -60}, index=[0], dtype=np.float64) assert_frame_equal(expect, tracker_data) tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth, axis_tilt=0, axis_azimuth=0, max_angle=90, backtrack=True, gcr=2.0/7.0) expect['tracker_theta'] *= -1 assert_frame_equal(expect, tracker_data) def test_max_angle(): apparent_zenith = pd.Series([60]) apparent_azimuth = pd.Series([90]) tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth, axis_tilt=0, axis_azimuth=0, max_angle=45, backtrack=True, gcr=2.0/7.0) expect = pd.DataFrame({'aoi': 15, 'surface_azimuth': 90, 'surface_tilt': 45, 'tracker_theta': 45}, index=[0], dtype=np.float64) assert_frame_equal(expect, tracker_data) def test_backtrack(): apparent_zenith = pd.Series([80]) apparent_azimuth = pd.Series([90]) tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth, axis_tilt=0, axis_azimuth=0, max_angle=90, backtrack=False, gcr=2.0/7.0) expect = pd.DataFrame({'aoi': 0, 'surface_azimuth': 90, 'surface_tilt': 80, 'tracker_theta': 80}, index=[0], dtype=np.float64) assert_frame_equal(expect, tracker_data) tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth, axis_tilt=0, axis_azimuth=0, max_angle=90, backtrack=True, gcr=2.0/7.0) expect = pd.DataFrame({'aoi': 52.5716, 'surface_azimuth': 90, 'surface_tilt': 27.42833, 'tracker_theta': 27.4283}, index=[0], dtype=np.float64) assert_frame_equal(expect, tracker_data) def test_axis_tilt(): apparent_zenith = pd.Series([30]) apparent_azimuth = pd.Series([135]) tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth, axis_tilt=30, axis_azimuth=180, max_angle=90, backtrack=True, gcr=2.0/7.0) expect = pd.DataFrame({'aoi': 7.286245, 'surface_azimuth': 142.65730, 'surface_tilt': 35.98741, 'tracker_theta': -20.88121}, index=[0], dtype=np.float64) assert_frame_equal(expect, tracker_data) tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth, axis_tilt=30, axis_azimuth=0, max_angle=90, backtrack=True, gcr=2.0/7.0) expect = pd.DataFrame({'aoi': 47.6632, 'surface_azimuth': 50.96969, 'surface_tilt': 42.5152, 'tracker_theta': 31.6655}, index=[0], dtype=np.float64) assert_frame_equal(expect, tracker_data) def test_axis_azimuth(): apparent_zenith = pd.Series([30]) apparent_azimuth = pd.Series([90]) tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth, axis_tilt=0, axis_azimuth=90, max_angle=90, backtrack=True, gcr=2.0/7.0) expect = pd.DataFrame({'aoi': 30, 'surface_azimuth': 180, 'surface_tilt': 0, 'tracker_theta': 0}, index=[0], dtype=np.float64) assert_frame_equal(expect, tracker_data) apparent_zenith = pd.Series([30]) apparent_azimuth = pd.Series([180]) tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth, axis_tilt=0, axis_azimuth=90, max_angle=90, backtrack=True, gcr=2.0/7.0) expect = pd.DataFrame({'aoi': 0, 'surface_azimuth': 180, 'surface_tilt': 30, 'tracker_theta': 30}, index=[0], dtype=np.float64) assert_frame_equal(expect, tracker_data) def test_index_mismatch(): apparent_zenith = pd.Series([30]) apparent_azimuth = pd.Series([90,180]) with pytest.raises(ValueError): tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth, axis_tilt=0, axis_azimuth=90, max_angle=90, backtrack=True, gcr=2.0/7.0) def test_SingleAxisTracker_creation(): system = tracking.SingleAxisTracker(max_angle=45, gcr=.25, module='blah', inverter='blarg') assert system.max_angle == 45 assert system.gcr == .25 assert system.module == 'blah' assert system.inverter == 'blarg' def test_SingleAxisTracker_tracking(): system = tracking.SingleAxisTracker(max_angle=90, axis_tilt=30, axis_azimuth=180, gcr=2.0/7.0, backtrack=True) apparent_zenith = pd.Series([30]) apparent_azimuth = pd.Series([135]) tracker_data = system.singleaxis(apparent_zenith, apparent_azimuth) expect = pd.DataFrame({'aoi': 7.286245, 'surface_azimuth': 142.65730 , 'surface_tilt': 35.98741, 'tracker_theta': -20.88121}, index=[0], dtype=np.float64) assert_frame_equal(expect, tracker_data) ### results calculated using PVsyst pvsyst_solar_azimuth = 7.1609 pvsyst_solar_height = 27.315 pvsyst_axis_tilt = 20. pvsyst_axis_azimuth = 20. pvsyst_system = tracking.SingleAxisTracker(max_angle=60., axis_tilt=pvsyst_axis_tilt, axis_azimuth=180+pvsyst_axis_azimuth, backtrack=False) # the definition of azimuth is different from PYsyst apparent_azimuth = pd.Series([180+pvsyst_solar_azimuth]) apparent_zenith = pd.Series([90-pvsyst_solar_height]) tracker_data = pvsyst_system.singleaxis(apparent_zenith, apparent_azimuth) expect = pd.DataFrame({'aoi': 41.07852 , 'surface_azimuth': 180-18.432 , 'surface_tilt': 24.92122 , 'tracker_theta': -15.18391}, index=[0], dtype=np.float64) assert_frame_equal(expect, tracker_data) def test_LocalizedSingleAxisTracker_creation(): localized_system = tracking.LocalizedSingleAxisTracker(latitude=32, longitude=-111, module='blah', inverter='blarg') assert localized_system.module == 'blah' assert localized_system.inverter == 'blarg' assert localized_system.latitude == 32 assert localized_system.longitude == -111 def test_SingleAxisTracker_localize(): system = tracking.SingleAxisTracker(max_angle=45, gcr=.25, module='blah', inverter='blarg') localized_system = system.localize(latitude=32, longitude=-111) assert localized_system.module == 'blah' assert localized_system.inverter == 'blarg' assert localized_system.latitude == 32 assert localized_system.longitude == -111 def test_SingleAxisTracker_localize_location(): system = tracking.SingleAxisTracker(max_angle=45, gcr=.25, module='blah', inverter='blarg') location = Location(latitude=32, longitude=-111) localized_system = system.localize(location=location) assert localized_system.module == 'blah' assert localized_system.inverter == 'blarg' assert localized_system.latitude == 32 assert localized_system.longitude == -111 def test_get_irradiance(): system = tracking.SingleAxisTracker(max_angle=90, axis_tilt=30, axis_azimuth=180, gcr=2.0/7.0, backtrack=True) times = pd.DatetimeIndex(start='20160101 1200-0700', end='20160101 1800-0700', freq='6H') location = Location(latitude=32, longitude=-111) solar_position = location.get_solarposition(times) irrads = pd.DataFrame({'dni':[900,0], 'ghi':[600,0], 'dhi':[100,0]}, index=times) solar_zenith = solar_position['apparent_zenith'] solar_azimuth = solar_position['azimuth'] tracker_data = system.singleaxis(solar_zenith, solar_azimuth) irradiance = system.get_irradiance(irrads['dni'], irrads['ghi'], irrads['dhi'], solar_zenith=solar_zenith, solar_azimuth=solar_azimuth, surface_tilt=tracker_data['surface_tilt'], surface_azimuth=tracker_data['surface_azimuth']) expected = pd.DataFrame(data=np.array( [[ 961.80070, 815.94490, 145.85580, 135.32820, 10.52757492], [ nan, nan, nan, nan, nan]]), columns=['poa_global', 'poa_direct', 'poa_diffuse', 'poa_sky_diffuse', 'poa_ground_diffuse'], index=times) assert_frame_equal(irradiance, expected, check_less_precise=2) def test_SingleAxisTracker___repr__(): system = tracking.SingleAxisTracker(max_angle=45, gcr=.25, module='blah', inverter='blarg') expected = 'SingleAxisTracker: \n axis_tilt: 0\n axis_azimuth: 0\n max_angle: 45\n backtrack: True\n gcr: 0.25\n name: None\n surface_tilt: 0\n surface_azimuth: 180\n module: blah\n inverter: blarg\n albedo: 0.25\n racking_model: open_rack_cell_glassback' assert system.__repr__() == expected def test_LocalizedSingleAxisTracker___repr__(): localized_system = tracking.LocalizedSingleAxisTracker(latitude=32, longitude=-111, module='blah', inverter='blarg', gcr=0.25) expected = 'LocalizedSingleAxisTracker: \n axis_tilt: 0\n axis_azimuth: 0\n max_angle: 90\n backtrack: True\n gcr: 0.25\n name: None\n surface_tilt: 0\n surface_azimuth: 180\n module: blah\n inverter: blarg\n albedo: 0.25\n racking_model: open_rack_cell_glassback\n latitude: 32\n longitude: -111\n altitude: 0\n tz: UTC' assert localized_system.__repr__() == expected
bsd-3-clause
tmerrick1/spack
var/spack/repos/builtin/packages/py-multiqc/package.py
5
2328
############################################################################## # Copyright (c) 2013-2018, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, [email protected], All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the LICENSE file for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class PyMultiqc(PythonPackage): """MultiQC is a tool to aggregate bioinformatics results across many samples into a single report. It is written in Python and contains modules for a large number of common bioinformatics tools.""" homepage = "https://multiqc.info" url = "https://pypi.io/packages/source/m/multiqc/multiqc-1.0.tar.gz" version('1.5', 'c9fc5f54a75b1d0c3e119e0db7f5fe72') version('1.3', '78fef8a89c0bd40d559b10c1f736bbcd') version('1.0', '0b7310b3f75595e5be8099fbed2d2515') depends_on('[email protected]:') depends_on('py-setuptools', type='build') depends_on('py-click', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('py-lzstring', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('py-spectra', type=('build', 'run')) depends_on('py-matplotlib', type=('build', 'run')) depends_on('py-numpy', type=('build', 'run')) depends_on('py-pyyaml', type=('build', 'run')) depends_on('py-simplejson', type=('build', 'run'))
lgpl-2.1
sekikn/incubator-airflow
tests/providers/vertica/hooks/test_vertica.py
5
3835
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import unittest from unittest import mock from unittest.mock import patch from airflow.models import Connection from airflow.providers.vertica.hooks.vertica import VerticaHook class TestVerticaHookConn(unittest.TestCase): def setUp(self): super().setUp() self.connection = Connection( login='login', password='password', host='host', schema='vertica', ) class UnitTestVerticaHook(VerticaHook): conn_name_attr = 'vertica_conn_id' self.db_hook = UnitTestVerticaHook() self.db_hook.get_connection = mock.Mock() self.db_hook.get_connection.return_value = self.connection @patch('airflow.providers.vertica.hooks.vertica.connect') def test_get_conn(self, mock_connect): self.db_hook.get_conn() mock_connect.assert_called_once_with( host='host', port=5433, database='vertica', user='login', password="password" ) class TestVerticaHook(unittest.TestCase): def setUp(self): super().setUp() self.cur = mock.MagicMock() self.conn = mock.MagicMock() self.conn.cursor.return_value = self.cur conn = self.conn class UnitTestVerticaHook(VerticaHook): conn_name_attr = 'test_conn_id' def get_conn(self): return conn self.db_hook = UnitTestVerticaHook() @patch('airflow.hooks.dbapi.DbApiHook.insert_rows') def test_insert_rows(self, mock_insert_rows): table = "table" rows = [("hello",), ("world",)] target_fields = None commit_every = 10 self.db_hook.insert_rows(table, rows, target_fields, commit_every) mock_insert_rows.assert_called_once_with(table, rows, None, 10) def test_get_first_record(self): statement = 'SQL' result_sets = [('row1',), ('row2',)] self.cur.fetchone.return_value = result_sets[0] self.assertEqual(result_sets[0], self.db_hook.get_first(statement)) self.conn.close.assert_called_once_with() self.cur.close.assert_called_once_with() self.cur.execute.assert_called_once_with(statement) def test_get_records(self): statement = 'SQL' result_sets = [('row1',), ('row2',)] self.cur.fetchall.return_value = result_sets self.assertEqual(result_sets, self.db_hook.get_records(statement)) self.conn.close.assert_called_once_with() self.cur.close.assert_called_once_with() self.cur.execute.assert_called_once_with(statement) def test_get_pandas_df(self): statement = 'SQL' column = 'col' result_sets = [('row1',), ('row2',)] self.cur.description = [(column,)] self.cur.fetchall.return_value = result_sets df = self.db_hook.get_pandas_df(statement) self.assertEqual(column, df.columns[0]) self.assertEqual(result_sets[0][0], df.values.tolist()[0][0]) self.assertEqual(result_sets[1][0], df.values.tolist()[1][0])
apache-2.0
VillarrealA/pyoptools
pyoptools/raytrace/_comp_lib/ccd.py
9
8557
#!/usr/bin/env python # -*- coding: UTF-8 -*- #------------------------------------------------------------------------------ # Copyright (c) 2007, Ricardo Amézquita Orozco # All rights reserved. # # This software is provided without warranty under the terms of the BSD # license included in LICENSE.txt and may be redistributed only # under the conditions described in the aforementioned license. # # # Author: Ricardo Amézquita Orozco # Description: CCD definitión module # Symbols Defined: CCD #------------------------------------------------------------------------------ # ''' Definition of a CCD like object and helper functions ''' #from enthought.traits.api import Float, Instance, HasTraits, Tuple, Int, Bool, Property from scipy.misc import toimage from scipy.interpolate import interp2d,bisplrep,bisplev from numpy import arange, ma, meshgrid, linspace from pyoptools.raytrace.component import Component from pyoptools.raytrace.surface import ArrayDetector,Plane from pyoptools.misc.pmisc import wavelength2RGB from pyoptools.misc.lsq import polyfit2d from pyoptools.raytrace.shape import Shape from pyoptools.raytrace.shape import Rectangular #from gui.plotutils import plot, figure, cm, legend class CCD(Component): '''**Class to define a CCD like detector** *Attributes:* *size* Tuple with the phisical size of the CCD chip *transparent* Boolean to set the detector transparent characteristic. Not implemented Using the same CCD, images of different resolutions can be simulated. See the im_show and spot_diagram methods ''' # Geometrical size of the CCD chip #size = Tuple(Float(5),Float(5)) # Setting this attribute to *False*, make the CCD detector opaque #transparent=Bool(True) # Private attributes # detector surface #__d_surf = Instance(ArrayDetector) #__d_surf = Instance(Plane) def _get_hitlist(self): return tuple(self.__d_surf.hit_list) hit_list=property(_get_hitlist) def __init__(self, size=(10,10), transparent=True,*args,**kwargs): Component.__init__(self, *args, **kwargs) self.__d_surf= Plane(shape=Rectangular(size=size))#ArrayDetector (size=self.size, transparent=self.transparent) self.size=size self.surflist["S1"]=(self.__d_surf,(0,0,0),(0,0,0)) self.material=1. #~ def __reduce__(self): #~ args=() #self.intensity,self.wavelength,self.n ,self.label,self.parent,self.pop,self.orig_surf) #~ return(type(self),args,self.__getstate__()) #~ #~ #~ #TODO: Check if there is a better way to do this, because we are #~ #rewriting the constructor values here #~ #~ def __getstate__(self): #~ return self.__d_surf,self.size,self.surflist,self.material #~ #~ def __setstate__(self,state): #~ self.__d_surf,self.size,self.surflist,self.material=state def get_image(self,size=(256,256)): """ Returns the ccd hit_list as a grayscale PIL image *Attributes:* *size* Tuple (dx,dy) containing the image size in pixels. Use this attribute to set the simulated resolution. """ data= self.__d_surf.get_histogram(size) return(toimage(data, high=255, low=0,cmin=0,cmax=data.max())) def get_color_image(self, size=(256,256)): """ Returns the CCD hit_list as a color image, using the rays wavelenght. *Attributes* *size* Tuple (dx,dy) containing the image size in pixels. Use this attribute to set the simulated resolution. """ data= self.__d_surf.get_color_histogram(size) return(toimage(data, high=255, low=0)) #~ def im_show(self,fig=None, size=(256,256),cmap=cm.gray,title='Image',color=False): #~ """Shows a simulated image #~ #~ *Attributes:* #~ #~ *size* #~ Tuple (dx,dy) containing the image size in pixels. Use this #~ attribute to set the simulated resolution. #~ *cmap* #~ Color map to use in the image simulation. See the matplotlib.cm #~ module for information about colormaps. #~ *fig* #~ Pylab figure where the plot will be made. If set to None #~ a new figure will be created. #~ """ #~ if fig == None: #~ fig=figure() #~ #~ self.__d_surf.im_show(size,cmap,title,color) #~ #~ #~ def spot_diagram(self,fig=None, style="o", label=None): #~ '''Plot a spot diagram in a pylab figure #~ #~ Method that plots a spot diagram of the rays hitting the CCD. #~ #~ *Attributes:* #~ #~ *fig* #~ Pylab figure where the plot will be made. If set to None #~ a new figure will be created. #~ #~ *style* #~ Symbol to be used to represent the spot. See the pylab plot #~ documentation for more information. #~ #~ *label* #~ String containig the label to show in the figure for this spot diagram. #~ Can be used to identify diferent spot diagrams on the same figure. #~ ''' #~ #~ if fig == None: #~ fig=figure() #~ X=[] #~ Y=[] #~ COL=[] #~ if len(self.__d_surf._hit_list) >0: #~ for i in self.__d_surf._hit_list: #~ p=i[0] #~ # Hitlist[1] points to the incident ray #~ col=wavelength2RGB(i[1].wavelength) #~ X.append(p[0]) #~ Y.append(p[1]) #~ COL.append(col) #~ if label== None: #~ plot(X, Y, style, figure=fig) #~ else: #~ plot(X, Y, style,label=label,figure=fig) #~ legend() #~ return fig def get_optical_path_map(self,size=(20, 20), mask=None): """Return the optical path of the rays hitting the detector. This method uses the optical path of the rays hitting the surface, to create a optical path map. The returned value is an interpolation of the values obtained by the rays. Warning: If the rays hitting the surface are produced by more than one optical source, the returned map migth not be valid. *Atributes* *size* Tuple (nx,ny) containing the number of samples of the returned map. The map size will be the same as the CCD *mask* Shape instance containig the mask of the apperture. If not given, the mask will be automatically calculated. *Return value* A masked array as defined in the numpy.ma module, containig the optical paths """ X,Y,Z=self.get_optical_path_data() rv=bisplrep(X,Y,Z) nx, ny=size xs, ys=self.size xi=-xs/2. xf=-xi yi=-ys/2. yf=-yi xd=linspace(xi, xf,nx) yd=linspace(yi, yf,ny) data=bisplev(xd,yd,rv) if mask!=None: assert(isinstance(mask, Shape)) X, Y=meshgrid(xd, yd) m= ~mask.hit((X, Y, 0)) retval= ma.array(data, mask=m) else: retval=data return retval def get_optical_path_map_lsq(self,order=10): """Return the optical path of the rays hitting the detector. *Atributes* """ X,Y,Z=self.get_optical_path_data() e,p=polyfit2d(X, Y, Z, order=order) return e,p def get_optical_path_data(self): """Return the optical path of the rays hitting the detector. This method returns a tuple X,Y,D, containing the X,Y hit points, and D containing tha optical path data Warning: If the rays hitting the surface are produced by more than one optical source, the information may not be valid. """ X=[] Y=[] Z=[] for ip,r in self.hit_list: x,y,z= ip d= r.optical_path() X.append(x) Y.append(y) Z.append(d) return X,Y,Z
bsd-3-clause
XiaoLiuAI/RUPEE
src/python/model/statsmodel_wrapper.py
1
1509
import copy import numpy as np import statsmodels.api as sm import sklearn class MNLogit(sklearn.base.ClassifierMixin, sklearn.base.BaseEstimator): def __init__(self): self.algoModule = sm.MNLogit def choose_opt_params(self, X, y, params, cross_val_score, average_measure, metric_func): score_opt = -1 for param in params: estimator = sklearn.base.clone(self) estimator.set_params(**param) score = average_measure(cross_val_score(estimator, X, y, score_func=metric_func, cv=10, n_jobs= -1)) if score > score_opt: score_opt = score opt_params = param print 'best cross validation score of ', self.__class__.__name__, 'is:', score_opt, ' and it is generated with ', opt_params return opt_params def set_params(self, **params): self.__dict__.update(params) def fit(self, X, y): self.lb = sklearn.preprocessing.LabelBinarizer() self.lb.fit_transform(y) self.model_params = self.algoModule(y, X).fit_regularized().params def out_score(self, X): return self.algoModule(np.ones((4,1)), np.ones((4,1))).predict(self.model_params, X) def clone(self): return copy.deepcopy(self) def predict(self, X): y = self.lb.inverse_transform(self.out_score(X)) return y def highestScoreLabel(self, X): score = self.out_score(X) return np.max(score, axis=1), self.lb.inverse_transform(score)
gpl-2.0
Vimos/scikit-learn
sklearn/neural_network/tests/test_mlp.py
28
22183
""" Testing for Multi-layer Perceptron module (sklearn.neural_network) """ # Author: Issam H. Laradji # License: BSD 3 clause import sys import warnings import numpy as np from numpy.testing import assert_almost_equal, assert_array_equal from sklearn.datasets import load_digits, load_boston, load_iris from sklearn.datasets import make_regression, make_multilabel_classification from sklearn.exceptions import ConvergenceWarning from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.metrics import roc_auc_score from sklearn.neural_network import MLPClassifier from sklearn.neural_network import MLPRegressor from sklearn.preprocessing import LabelBinarizer from sklearn.preprocessing import StandardScaler, MinMaxScaler from scipy.sparse import csr_matrix from sklearn.utils.testing import (assert_raises, assert_greater, assert_equal, assert_false, ignore_warnings) from sklearn.utils.testing import assert_raise_message np.seterr(all='warn') ACTIVATION_TYPES = ["identity", "logistic", "tanh", "relu"] digits_dataset_multi = load_digits(n_class=3) X_digits_multi = MinMaxScaler().fit_transform(digits_dataset_multi.data[:200]) y_digits_multi = digits_dataset_multi.target[:200] digits_dataset_binary = load_digits(n_class=2) X_digits_binary = MinMaxScaler().fit_transform( digits_dataset_binary.data[:200]) y_digits_binary = digits_dataset_binary.target[:200] classification_datasets = [(X_digits_multi, y_digits_multi), (X_digits_binary, y_digits_binary)] boston = load_boston() Xboston = StandardScaler().fit_transform(boston.data)[: 200] yboston = boston.target[:200] iris = load_iris() X_iris = iris.data y_iris = iris.target def test_alpha(): # Test that larger alpha yields weights closer to zero X = X_digits_binary[:100] y = y_digits_binary[:100] alpha_vectors = [] alpha_values = np.arange(2) absolute_sum = lambda x: np.sum(np.abs(x)) for alpha in alpha_values: mlp = MLPClassifier(hidden_layer_sizes=10, alpha=alpha, random_state=1) with ignore_warnings(category=ConvergenceWarning): mlp.fit(X, y) alpha_vectors.append(np.array([absolute_sum(mlp.coefs_[0]), absolute_sum(mlp.coefs_[1])])) for i in range(len(alpha_values) - 1): assert (alpha_vectors[i] > alpha_vectors[i + 1]).all() def test_fit(): # Test that the algorithm solution is equal to a worked out example. X = np.array([[0.6, 0.8, 0.7]]) y = np.array([0]) mlp = MLPClassifier(solver='sgd', learning_rate_init=0.1, alpha=0.1, activation='logistic', random_state=1, max_iter=1, hidden_layer_sizes=2, momentum=0) # set weights mlp.coefs_ = [0] * 2 mlp.intercepts_ = [0] * 2 mlp.n_outputs_ = 1 mlp.coefs_[0] = np.array([[0.1, 0.2], [0.3, 0.1], [0.5, 0]]) mlp.coefs_[1] = np.array([[0.1], [0.2]]) mlp.intercepts_[0] = np.array([0.1, 0.1]) mlp.intercepts_[1] = np.array([1.0]) mlp._coef_grads = [] * 2 mlp._intercept_grads = [] * 2 # Initialize parameters mlp.n_iter_ = 0 mlp.learning_rate_ = 0.1 # Compute the number of layers mlp.n_layers_ = 3 # Pre-allocate gradient matrices mlp._coef_grads = [0] * (mlp.n_layers_ - 1) mlp._intercept_grads = [0] * (mlp.n_layers_ - 1) mlp.out_activation_ = 'logistic' mlp.t_ = 0 mlp.best_loss_ = np.inf mlp.loss_curve_ = [] mlp._no_improvement_count = 0 mlp._intercept_velocity = [np.zeros_like(intercepts) for intercepts in mlp.intercepts_] mlp._coef_velocity = [np.zeros_like(coefs) for coefs in mlp.coefs_] mlp.partial_fit(X, y, classes=[0, 1]) # Manually worked out example # h1 = g(X1 * W_i1 + b11) = g(0.6 * 0.1 + 0.8 * 0.3 + 0.7 * 0.5 + 0.1) # = 0.679178699175393 # h2 = g(X2 * W_i2 + b12) = g(0.6 * 0.2 + 0.8 * 0.1 + 0.7 * 0 + 0.1) # = 0.574442516811659 # o1 = g(h * W2 + b21) = g(0.679 * 0.1 + 0.574 * 0.2 + 1) # = 0.7654329236196236 # d21 = -(0 - 0.765) = 0.765 # d11 = (1 - 0.679) * 0.679 * 0.765 * 0.1 = 0.01667 # d12 = (1 - 0.574) * 0.574 * 0.765 * 0.2 = 0.0374 # W1grad11 = X1 * d11 + alpha * W11 = 0.6 * 0.01667 + 0.1 * 0.1 = 0.0200 # W1grad11 = X1 * d12 + alpha * W12 = 0.6 * 0.0374 + 0.1 * 0.2 = 0.04244 # W1grad21 = X2 * d11 + alpha * W13 = 0.8 * 0.01667 + 0.1 * 0.3 = 0.043336 # W1grad22 = X2 * d12 + alpha * W14 = 0.8 * 0.0374 + 0.1 * 0.1 = 0.03992 # W1grad31 = X3 * d11 + alpha * W15 = 0.6 * 0.01667 + 0.1 * 0.5 = 0.060002 # W1grad32 = X3 * d12 + alpha * W16 = 0.6 * 0.0374 + 0.1 * 0 = 0.02244 # W2grad1 = h1 * d21 + alpha * W21 = 0.679 * 0.765 + 0.1 * 0.1 = 0.5294 # W2grad2 = h2 * d21 + alpha * W22 = 0.574 * 0.765 + 0.1 * 0.2 = 0.45911 # b1grad1 = d11 = 0.01667 # b1grad2 = d12 = 0.0374 # b2grad = d21 = 0.765 # W1 = W1 - eta * [W1grad11, .., W1grad32] = [[0.1, 0.2], [0.3, 0.1], # [0.5, 0]] - 0.1 * [[0.0200, 0.04244], [0.043336, 0.03992], # [0.060002, 0.02244]] = [[0.098, 0.195756], [0.2956664, # 0.096008], [0.4939998, -0.002244]] # W2 = W2 - eta * [W2grad1, W2grad2] = [[0.1], [0.2]] - 0.1 * # [[0.5294], [0.45911]] = [[0.04706], [0.154089]] # b1 = b1 - eta * [b1grad1, b1grad2] = 0.1 - 0.1 * [0.01667, 0.0374] # = [0.098333, 0.09626] # b2 = b2 - eta * b2grad = 1.0 - 0.1 * 0.765 = 0.9235 assert_almost_equal(mlp.coefs_[0], np.array([[0.098, 0.195756], [0.2956664, 0.096008], [0.4939998, -0.002244]]), decimal=3) assert_almost_equal(mlp.coefs_[1], np.array([[0.04706], [0.154089]]), decimal=3) assert_almost_equal(mlp.intercepts_[0], np.array([0.098333, 0.09626]), decimal=3) assert_almost_equal(mlp.intercepts_[1], np.array(0.9235), decimal=3) # Testing output # h1 = g(X1 * W_i1 + b11) = g(0.6 * 0.098 + 0.8 * 0.2956664 + # 0.7 * 0.4939998 + 0.098333) = 0.677 # h2 = g(X2 * W_i2 + b12) = g(0.6 * 0.195756 + 0.8 * 0.096008 + # 0.7 * -0.002244 + 0.09626) = 0.572 # o1 = h * W2 + b21 = 0.677 * 0.04706 + # 0.572 * 0.154089 + 0.9235 = 1.043 # prob = sigmoid(o1) = 0.739 assert_almost_equal(mlp.predict_proba(X)[0, 1], 0.739, decimal=3) def test_gradient(): # Test gradient. # This makes sure that the activation functions and their derivatives # are correct. The numerical and analytical computation of the gradient # should be close. for n_labels in [2, 3]: n_samples = 5 n_features = 10 X = np.random.random((n_samples, n_features)) y = 1 + np.mod(np.arange(n_samples) + 1, n_labels) Y = LabelBinarizer().fit_transform(y) for activation in ACTIVATION_TYPES: mlp = MLPClassifier(activation=activation, hidden_layer_sizes=10, solver='lbfgs', alpha=1e-5, learning_rate_init=0.2, max_iter=1, random_state=1) mlp.fit(X, y) theta = np.hstack([l.ravel() for l in mlp.coefs_ + mlp.intercepts_]) layer_units = ([X.shape[1]] + [mlp.hidden_layer_sizes] + [mlp.n_outputs_]) activations = [] deltas = [] coef_grads = [] intercept_grads = [] activations.append(X) for i in range(mlp.n_layers_ - 1): activations.append(np.empty((X.shape[0], layer_units[i + 1]))) deltas.append(np.empty((X.shape[0], layer_units[i + 1]))) fan_in = layer_units[i] fan_out = layer_units[i + 1] coef_grads.append(np.empty((fan_in, fan_out))) intercept_grads.append(np.empty(fan_out)) # analytically compute the gradients def loss_grad_fun(t): return mlp._loss_grad_lbfgs(t, X, Y, activations, deltas, coef_grads, intercept_grads) [value, grad] = loss_grad_fun(theta) numgrad = np.zeros(np.size(theta)) n = np.size(theta, 0) E = np.eye(n) epsilon = 1e-5 # numerically compute the gradients for i in range(n): dtheta = E[:, i] * epsilon numgrad[i] = ((loss_grad_fun(theta + dtheta)[0] - loss_grad_fun(theta - dtheta)[0]) / (epsilon * 2.0)) assert_almost_equal(numgrad, grad) def test_lbfgs_classification(): # Test lbfgs on classification. # It should achieve a score higher than 0.95 for the binary and multi-class # versions of the digits dataset. for X, y in classification_datasets: X_train = X[:150] y_train = y[:150] X_test = X[150:] expected_shape_dtype = (X_test.shape[0], y_train.dtype.kind) for activation in ACTIVATION_TYPES: mlp = MLPClassifier(solver='lbfgs', hidden_layer_sizes=50, max_iter=150, shuffle=True, random_state=1, activation=activation) mlp.fit(X_train, y_train) y_predict = mlp.predict(X_test) assert_greater(mlp.score(X_train, y_train), 0.95) assert_equal((y_predict.shape[0], y_predict.dtype.kind), expected_shape_dtype) def test_lbfgs_regression(): # Test lbfgs on the boston dataset, a regression problems. X = Xboston y = yboston for activation in ACTIVATION_TYPES: mlp = MLPRegressor(solver='lbfgs', hidden_layer_sizes=50, max_iter=150, shuffle=True, random_state=1, activation=activation) mlp.fit(X, y) if activation == 'identity': assert_greater(mlp.score(X, y), 0.84) else: # Non linear models perform much better than linear bottleneck: assert_greater(mlp.score(X, y), 0.95) def test_learning_rate_warmstart(): # Tests that warm_start reuse past solutions. X = [[3, 2], [1, 6], [5, 6], [-2, -4]] y = [1, 1, 1, 0] for learning_rate in ["invscaling", "constant"]: mlp = MLPClassifier(solver='sgd', hidden_layer_sizes=4, learning_rate=learning_rate, max_iter=1, power_t=0.25, warm_start=True) with ignore_warnings(category=ConvergenceWarning): mlp.fit(X, y) prev_eta = mlp._optimizer.learning_rate mlp.fit(X, y) post_eta = mlp._optimizer.learning_rate if learning_rate == 'constant': assert_equal(prev_eta, post_eta) elif learning_rate == 'invscaling': assert_equal(mlp.learning_rate_init / pow(8 + 1, mlp.power_t), post_eta) def test_multilabel_classification(): # Test that multi-label classification works as expected. # test fit method X, y = make_multilabel_classification(n_samples=50, random_state=0, return_indicator=True) mlp = MLPClassifier(solver='lbfgs', hidden_layer_sizes=50, alpha=1e-5, max_iter=150, random_state=0, activation='logistic', learning_rate_init=0.2) mlp.fit(X, y) assert_equal(mlp.score(X, y), 1) # test partial fit method mlp = MLPClassifier(solver='sgd', hidden_layer_sizes=50, max_iter=150, random_state=0, activation='logistic', alpha=1e-5, learning_rate_init=0.2) for i in range(100): mlp.partial_fit(X, y, classes=[0, 1, 2, 3, 4]) assert_greater(mlp.score(X, y), 0.9) def test_multioutput_regression(): # Test that multi-output regression works as expected X, y = make_regression(n_samples=200, n_targets=5) mlp = MLPRegressor(solver='lbfgs', hidden_layer_sizes=50, max_iter=200, random_state=1) mlp.fit(X, y) assert_greater(mlp.score(X, y), 0.9) def test_partial_fit_classes_error(): # Tests that passing different classes to partial_fit raises an error X = [[3, 2]] y = [0] clf = MLPClassifier(solver='sgd') clf.partial_fit(X, y, classes=[0, 1]) assert_raises(ValueError, clf.partial_fit, X, y, classes=[1, 2]) def test_partial_fit_classification(): # Test partial_fit on classification. # `partial_fit` should yield the same results as 'fit' for binary and # multi-class classification. for X, y in classification_datasets: X = X y = y mlp = MLPClassifier(solver='sgd', max_iter=100, random_state=1, tol=0, alpha=1e-5, learning_rate_init=0.2) with ignore_warnings(category=ConvergenceWarning): mlp.fit(X, y) pred1 = mlp.predict(X) mlp = MLPClassifier(solver='sgd', random_state=1, alpha=1e-5, learning_rate_init=0.2) for i in range(100): mlp.partial_fit(X, y, classes=np.unique(y)) pred2 = mlp.predict(X) assert_array_equal(pred1, pred2) assert_greater(mlp.score(X, y), 0.95) def test_partial_fit_unseen_classes(): # Non regression test for bug 6994 # Tests for labeling errors in partial fit clf = MLPClassifier(random_state=0) clf.partial_fit([[1], [2], [3]], ["a", "b", "c"], classes=["a", "b", "c", "d"]) clf.partial_fit([[4]], ["d"]) assert_greater(clf.score([[1], [2], [3], [4]], ["a", "b", "c", "d"]), 0) def test_partial_fit_regression(): # Test partial_fit on regression. # `partial_fit` should yield the same results as 'fit' for regression. X = Xboston y = yboston for momentum in [0, .9]: mlp = MLPRegressor(solver='sgd', max_iter=100, activation='relu', random_state=1, learning_rate_init=0.01, batch_size=X.shape[0], momentum=momentum) with warnings.catch_warnings(record=True): # catch convergence warning mlp.fit(X, y) pred1 = mlp.predict(X) mlp = MLPRegressor(solver='sgd', activation='relu', learning_rate_init=0.01, random_state=1, batch_size=X.shape[0], momentum=momentum) for i in range(100): mlp.partial_fit(X, y) pred2 = mlp.predict(X) assert_almost_equal(pred1, pred2, decimal=2) score = mlp.score(X, y) assert_greater(score, 0.75) def test_partial_fit_errors(): # Test partial_fit error handling. X = [[3, 2], [1, 6]] y = [1, 0] # no classes passed assert_raises(ValueError, MLPClassifier(solver='sgd').partial_fit, X, y, classes=[2]) # lbfgs doesn't support partial_fit assert_false(hasattr(MLPClassifier(solver='lbfgs'), 'partial_fit')) def test_params_errors(): # Test that invalid parameters raise value error X = [[3, 2], [1, 6]] y = [1, 0] clf = MLPClassifier assert_raises(ValueError, clf(hidden_layer_sizes=-1).fit, X, y) assert_raises(ValueError, clf(max_iter=-1).fit, X, y) assert_raises(ValueError, clf(shuffle='true').fit, X, y) assert_raises(ValueError, clf(alpha=-1).fit, X, y) assert_raises(ValueError, clf(learning_rate_init=-1).fit, X, y) assert_raises(ValueError, clf(momentum=2).fit, X, y) assert_raises(ValueError, clf(momentum=-0.5).fit, X, y) assert_raises(ValueError, clf(nesterovs_momentum='invalid').fit, X, y) assert_raises(ValueError, clf(early_stopping='invalid').fit, X, y) assert_raises(ValueError, clf(validation_fraction=1).fit, X, y) assert_raises(ValueError, clf(validation_fraction=-0.5).fit, X, y) assert_raises(ValueError, clf(beta_1=1).fit, X, y) assert_raises(ValueError, clf(beta_1=-0.5).fit, X, y) assert_raises(ValueError, clf(beta_2=1).fit, X, y) assert_raises(ValueError, clf(beta_2=-0.5).fit, X, y) assert_raises(ValueError, clf(epsilon=-0.5).fit, X, y) assert_raises(ValueError, clf(solver='hadoken').fit, X, y) assert_raises(ValueError, clf(learning_rate='converge').fit, X, y) assert_raises(ValueError, clf(activation='cloak').fit, X, y) def test_predict_proba_binary(): # Test that predict_proba works as expected for binary class. X = X_digits_binary[:50] y = y_digits_binary[:50] clf = MLPClassifier(hidden_layer_sizes=5) with ignore_warnings(category=ConvergenceWarning): clf.fit(X, y) y_proba = clf.predict_proba(X) y_log_proba = clf.predict_log_proba(X) (n_samples, n_classes) = y.shape[0], 2 proba_max = y_proba.argmax(axis=1) proba_log_max = y_log_proba.argmax(axis=1) assert_equal(y_proba.shape, (n_samples, n_classes)) assert_array_equal(proba_max, proba_log_max) assert_array_equal(y_log_proba, np.log(y_proba)) assert_equal(roc_auc_score(y, y_proba[:, 1]), 1.0) def test_predict_proba_multiclass(): # Test that predict_proba works as expected for multi class. X = X_digits_multi[:10] y = y_digits_multi[:10] clf = MLPClassifier(hidden_layer_sizes=5) with ignore_warnings(category=ConvergenceWarning): clf.fit(X, y) y_proba = clf.predict_proba(X) y_log_proba = clf.predict_log_proba(X) (n_samples, n_classes) = y.shape[0], np.unique(y).size proba_max = y_proba.argmax(axis=1) proba_log_max = y_log_proba.argmax(axis=1) assert_equal(y_proba.shape, (n_samples, n_classes)) assert_array_equal(proba_max, proba_log_max) assert_array_equal(y_log_proba, np.log(y_proba)) def test_predict_proba_multilabel(): # Test that predict_proba works as expected for multilabel. # Multilabel should not use softmax which makes probabilities sum to 1 X, Y = make_multilabel_classification(n_samples=50, random_state=0, return_indicator=True) n_samples, n_classes = Y.shape clf = MLPClassifier(solver='lbfgs', hidden_layer_sizes=30, random_state=0) clf.fit(X, Y) y_proba = clf.predict_proba(X) assert_equal(y_proba.shape, (n_samples, n_classes)) assert_array_equal(y_proba > 0.5, Y) y_log_proba = clf.predict_log_proba(X) proba_max = y_proba.argmax(axis=1) proba_log_max = y_log_proba.argmax(axis=1) assert_greater((y_proba.sum(1) - 1).dot(y_proba.sum(1) - 1), 1e-10) assert_array_equal(proba_max, proba_log_max) assert_array_equal(y_log_proba, np.log(y_proba)) def test_sparse_matrices(): # Test that sparse and dense input matrices output the same results. X = X_digits_binary[:50] y = y_digits_binary[:50] X_sparse = csr_matrix(X) mlp = MLPClassifier(solver='lbfgs', hidden_layer_sizes=15, random_state=1) mlp.fit(X, y) pred1 = mlp.predict(X) mlp.fit(X_sparse, y) pred2 = mlp.predict(X_sparse) assert_almost_equal(pred1, pred2) pred1 = mlp.predict(X) pred2 = mlp.predict(X_sparse) assert_array_equal(pred1, pred2) def test_tolerance(): # Test tolerance. # It should force the solver to exit the loop when it converges. X = [[3, 2], [1, 6]] y = [1, 0] clf = MLPClassifier(tol=0.5, max_iter=3000, solver='sgd') clf.fit(X, y) assert_greater(clf.max_iter, clf.n_iter_) def test_verbose_sgd(): # Test verbose. X = [[3, 2], [1, 6]] y = [1, 0] clf = MLPClassifier(solver='sgd', max_iter=2, verbose=10, hidden_layer_sizes=2) old_stdout = sys.stdout sys.stdout = output = StringIO() with ignore_warnings(category=ConvergenceWarning): clf.fit(X, y) clf.partial_fit(X, y) sys.stdout = old_stdout assert 'Iteration' in output.getvalue() def test_early_stopping(): X = X_digits_binary[:100] y = y_digits_binary[:100] tol = 0.2 clf = MLPClassifier(tol=tol, max_iter=3000, solver='sgd', early_stopping=True) clf.fit(X, y) assert_greater(clf.max_iter, clf.n_iter_) valid_scores = clf.validation_scores_ best_valid_score = clf.best_validation_score_ assert_equal(max(valid_scores), best_valid_score) assert_greater(best_valid_score + tol, valid_scores[-2]) assert_greater(best_valid_score + tol, valid_scores[-1]) def test_adaptive_learning_rate(): X = [[3, 2], [1, 6]] y = [1, 0] clf = MLPClassifier(tol=0.5, max_iter=3000, solver='sgd', learning_rate='adaptive') clf.fit(X, y) assert_greater(clf.max_iter, clf.n_iter_) assert_greater(1e-6, clf._optimizer.learning_rate) @ignore_warnings(RuntimeError) def test_warm_start(): X = X_iris y = y_iris y_2classes = np.array([0] * 75 + [1] * 75) y_3classes = np.array([0] * 40 + [1] * 40 + [2] * 70) y_3classes_alt = np.array([0] * 50 + [1] * 50 + [3] * 50) y_4classes = np.array([0] * 37 + [1] * 37 + [2] * 38 + [3] * 38) y_5classes = np.array([0] * 30 + [1] * 30 + [2] * 30 + [3] * 30 + [4] * 30) # No error raised clf = MLPClassifier(hidden_layer_sizes=2, solver='lbfgs', warm_start=True).fit(X, y) clf.fit(X, y) clf.fit(X, y_3classes) for y_i in (y_2classes, y_3classes_alt, y_4classes, y_5classes): clf = MLPClassifier(hidden_layer_sizes=2, solver='lbfgs', warm_start=True).fit(X, y) message = ('warm_start can only be used where `y` has the same ' 'classes as in the previous call to fit.' ' Previously got [0 1 2], `y` has %s' % np.unique(y_i)) assert_raise_message(ValueError, message, clf.fit, X, y_i)
bsd-3-clause
kevin-intel/scikit-learn
maint_tools/check_pxd_in_installation.py
17
1962
"""Utility for testing presence and usability of .pxd files in the installation Usage: ------ python check_pxd_in_installation.py path/to/install_dir/of/scikit-learn """ import os import sys import pathlib import tempfile import textwrap import subprocess sklearn_dir = pathlib.Path(sys.argv[1]) pxd_files = list(sklearn_dir.glob("**/*.pxd")) print("> Found pxd files:") for pxd_file in pxd_files: print(' -', pxd_file) print("\n> Trying to compile a cython extension cimporting all corresponding " "modules\n") with tempfile.TemporaryDirectory() as tmpdir: tmpdir = pathlib.Path(tmpdir) # A cython test file which cimports all modules corresponding to found # pxd files. # e.g. sklearn/tree/_utils.pxd becomes `cimport sklearn.tree._utils` with open(tmpdir / 'tst.pyx', 'w') as f: for pxd_file in pxd_files: to_import = str(pxd_file.relative_to(sklearn_dir)) to_import = to_import.replace(os.path.sep, '.') to_import = to_import.replace('.pxd', '') f.write('cimport sklearn.' + to_import + '\n') # A basic setup file to build the test file. # We set the language to c++ and we use numpy.get_include() because # some modules require it. with open(tmpdir / 'setup_tst.py', 'w') as f: f.write(textwrap.dedent( """ from distutils.core import setup from distutils.extension import Extension from Cython.Build import cythonize import numpy extensions = [Extension("tst", sources=["tst.pyx"], language="c++", include_dirs=[numpy.get_include()])] setup(ext_modules=cythonize(extensions)) """)) subprocess.run(["python", "setup_tst.py", "build_ext", "-i"], check=True, cwd=tmpdir) print("\n> Compilation succeeded !")
bsd-3-clause
rubensmachado/nolearn
nolearn/grid_search.py
9
2364
""":func:`grid_search` is a wrapper around :class:`sklearn.grid_search.GridSearchCV`. :func:`grid_search` adds a printed report to the standard :class:`GridSearchCV` functionality, so you know about the best score and parameters. Usage example: .. doctest:: >>> import numpy as np >>> class Dataset: ... def __init__(self, data, target): ... self.data, self.target = data, target ... >>> from sklearn.linear_model import LogisticRegression >>> data = np.array([[1, 2, 3], [3, 3, 3]] * 20) >>> target = np.array([0, 1] * 20) >>> dataset = Dataset(data, target) >>> model = LogisticRegression() >>> parameters = dict(C=[1.0, 3.0]) >>> grid_search(dataset, model, parameters) # doctest: +ELLIPSIS parameters: {'C': [1.0, 3.0]} ... Best score: 1.0000 Best grid parameters: C=1.0, ... """ from __future__ import print_function from pprint import pprint import warnings from sklearn.base import BaseEstimator from sklearn.grid_search import GridSearchCV warnings.warn("""\ The nolearn.grid_search module will be removed in nolearn 0.6. If you want to continue to use this module, please consider copying the code into your own project. """) def print_report(grid_search, parameters): print() print("== " * 20) print("All parameters:") best_parameters = grid_search.best_estimator_.get_params() for param_name, value in sorted(best_parameters.items()): if not isinstance(value, BaseEstimator): print(" %s=%r," % (param_name, value)) print() print("== " * 20) print("Best score: %0.4f" % grid_search.best_score_) print("Best grid parameters:") for param_name in sorted(parameters.keys()): print(" %s=%r," % (param_name, best_parameters[param_name])) print("== " * 20) return grid_search def grid_search(dataset, clf, parameters, cv=None, verbose=4, n_jobs=1, **kwargs): # See http://scikit-learn.org/stable/modules/grid_search.html grid_search = GridSearchCV( clf, parameters, cv=cv, verbose=verbose, n_jobs=n_jobs, **kwargs ) if verbose: print("parameters:") pprint(parameters) grid_search.fit(dataset.data, dataset.target) if verbose: print_report(grid_search, parameters) return grid_search
mit
caseyclements/blaze
blaze/compute/tests/test_bcolz_compute.py
9
5874
from __future__ import absolute_import, division, print_function import pytest bcolz = pytest.importorskip('bcolz') from datashape import discover, dshape import numpy as np import pandas.util.testing as tm from odo import into from blaze import by from blaze.expr import symbol from blaze.compute.core import compute, pre_compute from blaze.compute.bcolz import get_chunksize b = bcolz.ctable(np.array([(1, 1., np.datetime64('2010-01-01')), (2, 2., np.datetime64('NaT')), (3, 3., np.datetime64('2010-01-03'))], dtype=[('a', 'i8'), ('b', 'f8'), ('date', 'datetime64[D]')])) t = symbol('t', 'var * {a: int64, b: float64, date: ?date}') to = symbol('to', 'var * {a: int64, b: float64}') bo = bcolz.ctable(np.array([(1, 1.), (2, 2.), (3, np.nan)], dtype=[('a', 'i8'), ('b', 'f8')])) def test_discover(): assert discover(b) == dshape('3 * {a: int64, b: float64, date: date}') assert discover(b['a']) == dshape('3 * int64') def test_reductions(): assert compute(t.a.sum(), b) == 6 assert compute(t.a.min(), b) == 1 assert compute(t.a.max(), b) == 3 assert compute(t.a.mean(), b) == 2.0 assert abs(compute(t.a.std(), b) - np.std([1, 2, 3])) < 1e-5 assert abs(compute(t.a.var(), b) - np.var([1, 2, 3])) < 1e-5 assert abs(compute(t.a.std(unbiased=True), b) - np.std([1, 2, 3], ddof=1)) < 1e-5 assert abs(compute(t.a.var(unbiased=True), b) - np.var([1, 2, 3], ddof=1)) < 1e-5 assert len(list(compute(t.distinct(), b))) == 3 assert len(list(compute(t.a.distinct(), b))) == 3 assert compute(t.a.nunique(), b) == 3 assert isinstance(compute(t.a.nunique(), b), np.integer) assert compute(t.a.count(), b) == 3 assert isinstance(compute(t.date.count(), b), np.integer) assert compute(t.date.nunique(), b) == 2 assert isinstance(compute(t.date.nunique(), b), np.integer) assert compute(t.date.count(), b) == 2 assert isinstance(compute(t.a.count(), b), np.integer) assert compute(t.a[0], b) == 1 assert compute(t.a[-1], b) == 3 assert compute(t[0], b) == compute(t[0], b) assert compute(t[-1], b) == compute(t[-1], b) def test_nunique(): assert compute(t.a.nunique(), b) == 3 assert compute(t.nunique(), b) == 3 def test_selection_head(): ds = dshape('var * {a: int32, b: int32, c: float64}') b = into(bcolz.ctable, [(i, i + 1, float(i) ** 2) for i in range(10)], dshape=ds) t = symbol('t', ds) # numpy reductions return numpy scalars assert compute((t.a < t.b).all(), b).item() is True assert list(compute(t[t.a < t.b].a.head(10), b)) == list(range(10)) assert list(compute(t[t.a > t.b].a.head(10), b)) == [] assert into([], compute(t[t.a + t.b > t.c], b)) == [(0, 1, 0), (1, 2, 1), (2, 3, 4)] assert len(compute(t[t.a + t.b > t.c].head(10), b)) # non-empty assert len(compute(t[t.a + t.b < t.c].head(10), b)) # non-empty def test_selection_isnan(): b = bcolz.ctable([[1, np.nan, 3], [1., 2., np.nan]], names=['a', 'b']) t = symbol('t', discover(b)) lhs = compute(t[t.a.isnan()], b) rhs = np.array([(np.nan, 2.0)], dtype=b.dtype) for n in b.dtype.names: assert np.isclose(lhs[n], rhs[n], equal_nan=True).all() assert np.isclose(compute(t[~t.b.isnan()], b)[n], np.array( [(1, 1.0), (np.nan, 2.0)], dtype=b.dtype)[n], equal_nan=True).all() def test_count_isnan(): assert compute(to.a[~to.b.isnan()].count(), bo) == 2 def test_count_isnan_object(): assert compute(to.a[~to.b.isnan()].count(), bo) == 2 def test_count_isnan_struct(): assert compute(t[~t.b.isnan()].count(), b) == 3 def test_nrows(): assert compute(t.nrows, b) == len(b) def test_nelements(): assert compute(t.nelements(axis=0), b) == len(b) assert compute(t.nelements(), b) == len(b) # This is no longer desired. Handled by compute_up def dont_test_pre_compute(): b = bcolz.ctable(np.array([(1, 1., 10.), (2, 2., 20.), (3, 3., 30.)], dtype=[('a', 'i8'), ('b', 'f8'), ('c', 'f8')])) s = symbol('s', discover(b)) result = pre_compute(s[['a', 'b']], b) assert result.names == ['a', 'b'] def eq(a, b): return np.array_equal(a, b) def test_unicode_field_names(): b = bcolz.ctable(np.array([(1, 1., 10.), (2, 2., 20.), (3, 3., 30.)], dtype=[('a', 'i8'), ('b', 'f8'), ('c', 'f8')])) s = symbol('s', discover(b)) assert eq(compute(s[u'a'], b)[:], compute(s['a'], b)[:]) assert eq(compute(s[[u'a', u'c']], b)[:], compute(s[['a', 'c']], b)[:]) assert eq(compute(s[u'a'], b)[:], compute(s['a'], b)[:]) assert eq(compute(s[[u'a', u'c']], b)[:], compute(s[['a', 'c']], b)[:]) def test_chunksize_inference(): b = bcolz.ctable(np.array([(1, 1., 10.), (2, 2., 20.), (3, 3., 30.)], dtype=[('a', 'i8'), ('b', 'f8'), ('c', 'f8')]), chunklen=2) assert get_chunksize(b) == 2 def test_notnull(): with pytest.raises(AttributeError): t.b.notnull def test_by_with_single_row(): ct = bcolz.ctable([[1, 1, 3, 3], [1, 2, 3, 4]], names=list('ab')) t = symbol('t', discover(ct)) subset = t[t.a == 3] expr = by(subset.a, b_sum=subset.b.sum()) result = compute(expr, ct) expected = compute(expr, ct, optimize=False) tm.assert_frame_equal(result, expected)
bsd-3-clause
JosmanPS/scikit-learn
sklearn/metrics/cluster/tests/test_supervised.py
206
7643
import numpy as np from sklearn.metrics.cluster import adjusted_rand_score from sklearn.metrics.cluster import homogeneity_score from sklearn.metrics.cluster import completeness_score from sklearn.metrics.cluster import v_measure_score from sklearn.metrics.cluster import homogeneity_completeness_v_measure from sklearn.metrics.cluster import adjusted_mutual_info_score from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.metrics.cluster import mutual_info_score from sklearn.metrics.cluster import expected_mutual_information from sklearn.metrics.cluster import contingency_matrix from sklearn.metrics.cluster import entropy from sklearn.utils.testing import assert_raise_message from nose.tools import assert_almost_equal from nose.tools import assert_equal from numpy.testing import assert_array_almost_equal score_funcs = [ adjusted_rand_score, homogeneity_score, completeness_score, v_measure_score, adjusted_mutual_info_score, normalized_mutual_info_score, ] def test_error_messages_on_wrong_input(): for score_func in score_funcs: expected = ('labels_true and labels_pred must have same size,' ' got 2 and 3') assert_raise_message(ValueError, expected, score_func, [0, 1], [1, 1, 1]) expected = "labels_true must be 1D: shape is (2" assert_raise_message(ValueError, expected, score_func, [[0, 1], [1, 0]], [1, 1, 1]) expected = "labels_pred must be 1D: shape is (2" assert_raise_message(ValueError, expected, score_func, [0, 1, 0], [[1, 1], [0, 0]]) def test_perfect_matches(): for score_func in score_funcs: assert_equal(score_func([], []), 1.0) assert_equal(score_func([0], [1]), 1.0) assert_equal(score_func([0, 0, 0], [0, 0, 0]), 1.0) assert_equal(score_func([0, 1, 0], [42, 7, 42]), 1.0) assert_equal(score_func([0., 1., 0.], [42., 7., 42.]), 1.0) assert_equal(score_func([0., 1., 2.], [42., 7., 2.]), 1.0) assert_equal(score_func([0, 1, 2], [42, 7, 2]), 1.0) def test_homogeneous_but_not_complete_labeling(): # homogeneous but not complete clustering h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 2, 2]) assert_almost_equal(h, 1.00, 2) assert_almost_equal(c, 0.69, 2) assert_almost_equal(v, 0.81, 2) def test_complete_but_not_homogeneous_labeling(): # complete but not homogeneous clustering h, c, v = homogeneity_completeness_v_measure( [0, 0, 1, 1, 2, 2], [0, 0, 1, 1, 1, 1]) assert_almost_equal(h, 0.58, 2) assert_almost_equal(c, 1.00, 2) assert_almost_equal(v, 0.73, 2) def test_not_complete_and_not_homogeneous_labeling(): # neither complete nor homogeneous but not so bad either h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) def test_non_consicutive_labels(): # regression tests for labels with gaps h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 2, 2, 2], [0, 1, 0, 1, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) ari_1 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2]) ari_2 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2]) assert_almost_equal(ari_1, 0.24, 2) assert_almost_equal(ari_2, 0.24, 2) def uniform_labelings_scores(score_func, n_samples, k_range, n_runs=10, seed=42): # Compute score for random uniform cluster labelings random_labels = np.random.RandomState(seed).random_integers scores = np.zeros((len(k_range), n_runs)) for i, k in enumerate(k_range): for j in range(n_runs): labels_a = random_labels(low=0, high=k - 1, size=n_samples) labels_b = random_labels(low=0, high=k - 1, size=n_samples) scores[i, j] = score_func(labels_a, labels_b) return scores def test_adjustment_for_chance(): # Check that adjusted scores are almost zero on random labels n_clusters_range = [2, 10, 50, 90] n_samples = 100 n_runs = 10 scores = uniform_labelings_scores( adjusted_rand_score, n_samples, n_clusters_range, n_runs) max_abs_scores = np.abs(scores).max(axis=1) assert_array_almost_equal(max_abs_scores, [0.02, 0.03, 0.03, 0.02], 2) def test_adjusted_mutual_info_score(): # Compute the Adjusted Mutual Information and test against known values labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]) labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2]) # Mutual information mi = mutual_info_score(labels_a, labels_b) assert_almost_equal(mi, 0.41022, 5) # Expected mutual information C = contingency_matrix(labels_a, labels_b) n_samples = np.sum(C) emi = expected_mutual_information(C, n_samples) assert_almost_equal(emi, 0.15042, 5) # Adjusted mutual information ami = adjusted_mutual_info_score(labels_a, labels_b) assert_almost_equal(ami, 0.27502, 5) ami = adjusted_mutual_info_score([1, 1, 2, 2], [2, 2, 3, 3]) assert_equal(ami, 1.0) # Test with a very large array a110 = np.array([list(labels_a) * 110]).flatten() b110 = np.array([list(labels_b) * 110]).flatten() ami = adjusted_mutual_info_score(a110, b110) # This is not accurate to more than 2 places assert_almost_equal(ami, 0.37, 2) def test_entropy(): ent = entropy([0, 0, 42.]) assert_almost_equal(ent, 0.6365141, 5) assert_almost_equal(entropy([]), 1) def test_contingency_matrix(): labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]) labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2]) C = contingency_matrix(labels_a, labels_b) C2 = np.histogram2d(labels_a, labels_b, bins=(np.arange(1, 5), np.arange(1, 5)))[0] assert_array_almost_equal(C, C2) C = contingency_matrix(labels_a, labels_b, eps=.1) assert_array_almost_equal(C, C2 + .1) def test_exactly_zero_info_score(): # Check numerical stability when information is exactly zero for i in np.logspace(1, 4, 4).astype(np.int): labels_a, labels_b = np.ones(i, dtype=np.int),\ np.arange(i, dtype=np.int) assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0) assert_equal(v_measure_score(labels_a, labels_b), 0.0) assert_equal(adjusted_mutual_info_score(labels_a, labels_b), 0.0) assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0) def test_v_measure_and_mutual_information(seed=36): # Check relation between v_measure, entropy and mutual information for i in np.logspace(1, 4, 4).astype(np.int): random_state = np.random.RandomState(seed) labels_a, labels_b = random_state.random_integers(0, 10, i),\ random_state.random_integers(0, 10, i) assert_almost_equal(v_measure_score(labels_a, labels_b), 2.0 * mutual_info_score(labels_a, labels_b) / (entropy(labels_a) + entropy(labels_b)), 0)
bsd-3-clause
jpautom/scikit-learn
sklearn/covariance/tests/test_covariance.py
34
11120
# Author: Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> # Virgile Fritsch <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_greater from sklearn import datasets from sklearn.covariance import empirical_covariance, EmpiricalCovariance, \ ShrunkCovariance, shrunk_covariance, \ LedoitWolf, ledoit_wolf, ledoit_wolf_shrinkage, OAS, oas X = datasets.load_diabetes().data X_1d = X[:, 0] n_samples, n_features = X.shape def test_covariance(): # Tests Covariance module on a simple dataset. # test covariance fit from data cov = EmpiricalCovariance() cov.fit(X) emp_cov = empirical_covariance(X) assert_array_almost_equal(emp_cov, cov.covariance_, 4) assert_almost_equal(cov.error_norm(emp_cov), 0) assert_almost_equal( cov.error_norm(emp_cov, norm='spectral'), 0) assert_almost_equal( cov.error_norm(emp_cov, norm='frobenius'), 0) assert_almost_equal( cov.error_norm(emp_cov, scaling=False), 0) assert_almost_equal( cov.error_norm(emp_cov, squared=False), 0) assert_raises(NotImplementedError, cov.error_norm, emp_cov, norm='foo') # Mahalanobis distances computation test mahal_dist = cov.mahalanobis(X) assert_greater(np.amin(mahal_dist), 0) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) cov = EmpiricalCovariance() cov.fit(X_1d) assert_array_almost_equal(empirical_covariance(X_1d), cov.covariance_, 4) assert_almost_equal(cov.error_norm(empirical_covariance(X_1d)), 0) assert_almost_equal( cov.error_norm(empirical_covariance(X_1d), norm='spectral'), 0) # test with one sample # Create X with 1 sample and 5 features X_1sample = np.arange(5).reshape(1, 5) cov = EmpiricalCovariance() assert_warns(UserWarning, cov.fit, X_1sample) assert_array_almost_equal(cov.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test integer type X_integer = np.asarray([[0, 1], [1, 0]]) result = np.asarray([[0.25, -0.25], [-0.25, 0.25]]) assert_array_almost_equal(empirical_covariance(X_integer), result) # test centered case cov = EmpiricalCovariance(assume_centered=True) cov.fit(X) assert_array_equal(cov.location_, np.zeros(X.shape[1])) def test_shrunk_covariance(): # Tests ShrunkCovariance module on a simple dataset. # compare shrunk covariance obtained from data and from MLE estimate cov = ShrunkCovariance(shrinkage=0.5) cov.fit(X) assert_array_almost_equal( shrunk_covariance(empirical_covariance(X), shrinkage=0.5), cov.covariance_, 4) # same test with shrinkage not provided cov = ShrunkCovariance() cov.fit(X) assert_array_almost_equal( shrunk_covariance(empirical_covariance(X)), cov.covariance_, 4) # same test with shrinkage = 0 (<==> empirical_covariance) cov = ShrunkCovariance(shrinkage=0.) cov.fit(X) assert_array_almost_equal(empirical_covariance(X), cov.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) cov = ShrunkCovariance(shrinkage=0.3) cov.fit(X_1d) assert_array_almost_equal(empirical_covariance(X_1d), cov.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) cov = ShrunkCovariance(shrinkage=0.5, store_precision=False) cov.fit(X) assert(cov.precision_ is None) def test_ledoit_wolf(): # Tests LedoitWolf module on a simple dataset. # test shrinkage coeff on a simple data set X_centered = X - X.mean(axis=0) lw = LedoitWolf(assume_centered=True) lw.fit(X_centered) shrinkage_ = lw.shrinkage_ score_ = lw.score(X_centered) assert_almost_equal(ledoit_wolf_shrinkage(X_centered, assume_centered=True), shrinkage_) assert_almost_equal(ledoit_wolf_shrinkage(X_centered, assume_centered=True, block_size=6), shrinkage_) # compare shrunk covariance obtained from data and from MLE estimate lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_centered, assume_centered=True) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) # compare estimates given by LW and ShrunkCovariance scov = ShrunkCovariance(shrinkage=lw.shrinkage_, assume_centered=True) scov.fit(X_centered) assert_array_almost_equal(scov.covariance_, lw.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) lw = LedoitWolf(assume_centered=True) lw.fit(X_1d) lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_1d, assume_centered=True) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) assert_array_almost_equal((X_1d ** 2).sum() / n_samples, lw.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) lw = LedoitWolf(store_precision=False, assume_centered=True) lw.fit(X_centered) assert_almost_equal(lw.score(X_centered), score_, 4) assert(lw.precision_ is None) # Same tests without assuming centered data # test shrinkage coeff on a simple data set lw = LedoitWolf() lw.fit(X) assert_almost_equal(lw.shrinkage_, shrinkage_, 4) assert_almost_equal(lw.shrinkage_, ledoit_wolf_shrinkage(X)) assert_almost_equal(lw.shrinkage_, ledoit_wolf(X)[1]) assert_almost_equal(lw.score(X), score_, 4) # compare shrunk covariance obtained from data and from MLE estimate lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) # compare estimates given by LW and ShrunkCovariance scov = ShrunkCovariance(shrinkage=lw.shrinkage_) scov.fit(X) assert_array_almost_equal(scov.covariance_, lw.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) lw = LedoitWolf() lw.fit(X_1d) lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_1d) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) assert_array_almost_equal(empirical_covariance(X_1d), lw.covariance_, 4) # test with one sample # warning should be raised when using only 1 sample X_1sample = np.arange(5).reshape(1, 5) lw = LedoitWolf() assert_warns(UserWarning, lw.fit, X_1sample) assert_array_almost_equal(lw.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test shrinkage coeff on a simple data set (without saving precision) lw = LedoitWolf(store_precision=False) lw.fit(X) assert_almost_equal(lw.score(X), score_, 4) assert(lw.precision_ is None) def test_ledoit_wolf_large(): # test that ledoit_wolf doesn't error on data that is wider than block_size rng = np.random.RandomState(0) # use a number of features that is larger than the block-size X = rng.normal(size=(10, 20)) lw = LedoitWolf(block_size=10).fit(X) # check that covariance is about diagonal (random normal noise) assert_almost_equal(lw.covariance_, np.eye(20), 0) cov = lw.covariance_ # check that the result is consistent with not splitting data into blocks. lw = LedoitWolf(block_size=25).fit(X) assert_almost_equal(lw.covariance_, cov) def test_oas(): # Tests OAS module on a simple dataset. # test shrinkage coeff on a simple data set X_centered = X - X.mean(axis=0) oa = OAS(assume_centered=True) oa.fit(X_centered) shrinkage_ = oa.shrinkage_ score_ = oa.score(X_centered) # compare shrunk covariance obtained from data and from MLE estimate oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_centered, assume_centered=True) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) # compare estimates given by OAS and ShrunkCovariance scov = ShrunkCovariance(shrinkage=oa.shrinkage_, assume_centered=True) scov.fit(X_centered) assert_array_almost_equal(scov.covariance_, oa.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0:1] oa = OAS(assume_centered=True) oa.fit(X_1d) oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d, assume_centered=True) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) assert_array_almost_equal((X_1d ** 2).sum() / n_samples, oa.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) oa = OAS(store_precision=False, assume_centered=True) oa.fit(X_centered) assert_almost_equal(oa.score(X_centered), score_, 4) assert(oa.precision_ is None) # Same tests without assuming centered data-------------------------------- # test shrinkage coeff on a simple data set oa = OAS() oa.fit(X) assert_almost_equal(oa.shrinkage_, shrinkage_, 4) assert_almost_equal(oa.score(X), score_, 4) # compare shrunk covariance obtained from data and from MLE estimate oa_cov_from_mle, oa_shinkrage_from_mle = oas(X) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) # compare estimates given by OAS and ShrunkCovariance scov = ShrunkCovariance(shrinkage=oa.shrinkage_) scov.fit(X) assert_array_almost_equal(scov.covariance_, oa.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) oa = OAS() oa.fit(X_1d) oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) assert_array_almost_equal(empirical_covariance(X_1d), oa.covariance_, 4) # test with one sample # warning should be raised when using only 1 sample X_1sample = np.arange(5).reshape(1, 5) oa = OAS() assert_warns(UserWarning, oa.fit, X_1sample) assert_array_almost_equal(oa.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test shrinkage coeff on a simple data set (without saving precision) oa = OAS(store_precision=False) oa.fit(X) assert_almost_equal(oa.score(X), score_, 4) assert(oa.precision_ is None)
bsd-3-clause
lxsmnv/spark
python/pyspark/sql/utils.py
6
5619
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import py4j class CapturedException(Exception): def __init__(self, desc, stackTrace): self.desc = desc self.stackTrace = stackTrace def __str__(self): return repr(self.desc) class AnalysisException(CapturedException): """ Failed to analyze a SQL query plan. """ class ParseException(CapturedException): """ Failed to parse a SQL command. """ class IllegalArgumentException(CapturedException): """ Passed an illegal or inappropriate argument. """ class StreamingQueryException(CapturedException): """ Exception that stopped a :class:`StreamingQuery`. """ class QueryExecutionException(CapturedException): """ Failed to execute a query. """ def capture_sql_exception(f): def deco(*a, **kw): try: return f(*a, **kw) except py4j.protocol.Py4JJavaError as e: s = e.java_exception.toString() stackTrace = '\n\t at '.join(map(lambda x: x.toString(), e.java_exception.getStackTrace())) if s.startswith('org.apache.spark.sql.AnalysisException: '): raise AnalysisException(s.split(': ', 1)[1], stackTrace) if s.startswith('org.apache.spark.sql.catalyst.analysis'): raise AnalysisException(s.split(': ', 1)[1], stackTrace) if s.startswith('org.apache.spark.sql.catalyst.parser.ParseException: '): raise ParseException(s.split(': ', 1)[1], stackTrace) if s.startswith('org.apache.spark.sql.streaming.StreamingQueryException: '): raise StreamingQueryException(s.split(': ', 1)[1], stackTrace) if s.startswith('org.apache.spark.sql.execution.QueryExecutionException: '): raise QueryExecutionException(s.split(': ', 1)[1], stackTrace) if s.startswith('java.lang.IllegalArgumentException: '): raise IllegalArgumentException(s.split(': ', 1)[1], stackTrace) raise return deco def install_exception_handler(): """ Hook an exception handler into Py4j, which could capture some SQL exceptions in Java. When calling Java API, it will call `get_return_value` to parse the returned object. If any exception happened in JVM, the result will be Java exception object, it raise py4j.protocol.Py4JJavaError. We replace the original `get_return_value` with one that could capture the Java exception and throw a Python one (with the same error message). It's idempotent, could be called multiple times. """ original = py4j.protocol.get_return_value # The original `get_return_value` is not patched, it's idempotent. patched = capture_sql_exception(original) # only patch the one used in py4j.java_gateway (call Java API) py4j.java_gateway.get_return_value = patched def toJArray(gateway, jtype, arr): """ Convert python list to java type array :param gateway: Py4j Gateway :param jtype: java type of element in array :param arr: python type list """ jarr = gateway.new_array(jtype, len(arr)) for i in range(0, len(arr)): jarr[i] = arr[i] return jarr def require_minimum_pandas_version(): """ Raise ImportError if minimum version of Pandas is not installed """ # TODO(HyukjinKwon): Relocate and deduplicate the version specification. minimum_pandas_version = "0.19.2" from distutils.version import LooseVersion try: import pandas have_pandas = True except ImportError: have_pandas = False if not have_pandas: raise ImportError("Pandas >= %s must be installed; however, " "it was not found." % minimum_pandas_version) if LooseVersion(pandas.__version__) < LooseVersion(minimum_pandas_version): raise ImportError("Pandas >= %s must be installed; however, " "your version was %s." % (minimum_pandas_version, pandas.__version__)) def require_minimum_pyarrow_version(): """ Raise ImportError if minimum version of pyarrow is not installed """ # TODO(HyukjinKwon): Relocate and deduplicate the version specification. minimum_pyarrow_version = "0.8.0" from distutils.version import LooseVersion try: import pyarrow have_arrow = True except ImportError: have_arrow = False if not have_arrow: raise ImportError("PyArrow >= %s must be installed; however, " "it was not found." % minimum_pyarrow_version) if LooseVersion(pyarrow.__version__) < LooseVersion(minimum_pyarrow_version): raise ImportError("PyArrow >= %s must be installed; however, " "your version was %s." % (minimum_pyarrow_version, pyarrow.__version__))
apache-2.0
lizardsystem/lizard-measure
lizard_measure/views.py
1
36112
# (c) Nelen & Schuurmans. GPL licensed, see LICENSE.txt. import json import logging import datetime import math import iso8601 from django.db.models.query_utils import Q from django.shortcuts import get_object_or_404 from django.shortcuts import render_to_response from django.template import RequestContext from django.http import HttpResponse from django.template.loader import get_template from django.views.generic.base import View from matplotlib.dates import date2num from matplotlib.lines import Line2D from lizard_area.models import Area from lizard_measure.models import Measure, MeasureStatus from lizard_measure.models import WaterBody from lizard_measure.models import MeasureType from lizard_measure.models import MeasurePeriod from lizard_measure.models import MeasureCategory from lizard_measure.models import Unit from lizard_measure.models import HorizontalBarGraph from lizard_measure.models import Score from lizard_measure.suitable_measures import get_suitable_measures from lizard_measure.models import SteeringParameterFree from lizard_measure.models import SteeringParameterPredefinedGraph from lizard_measure.models import PredefinedGraphSelection from lizard_measure.models import WatertypeGroup from lizard_measure.models import EsfPattern from lizard_registration.utils import get_user_permissions_overall from lizard_security.models import DataSet from lizard_area.models import Area from nens_graph.common import DateGridGraph from nens_graph.common import dates_values_comments from lizard_map.views import AppView from lizard_graph.views import TimeSeriesViewMixin from lizard_fewsnorm.models import GeoLocationCache from lizard_history.utils import get_history logger = logging.getLogger(__name__) # HOMEPAGE_KEY = 1 # Primary key of the Workspace for rendering the homepage. CRUMB_HOMEPAGE = {'name': 'home', 'url': '/'} # EKR Colors COLOR_1 = '#ff0000' COLOR_2 = '#ffaa00' COLOR_3 = '#ffff00' COLOR_4 = '#00ff00' COLOR_5 = '#0000ff' # def waterbody_shapefile_search(request): # """Return url to redirect to if a waterbody is found. # Only works with adapter lizard_shape. # """ # google_x = float(request.GET.get('x')) # google_y = float(request.GET.get('y')) # # Set up a basic map as only map can search... # mapnik_map = mapnik.Map(400, 400) # mapnik_map.srs = coordinates.GOOGLE # workspace = Workspace.objects.get(name="Homepage") # # The following adapter should be available in the fixture. # adapter = workspace.workspace_items.all()[0].adapter # search_results = adapter.search(google_x, google_y) # # Return url of first found object. # for search_result in search_results: # #name_in_shapefile = search_result['name'] # id_in_shapefile = search_result['identifier']['id'] # water_body = WaterBody.objects.get(ident=id_in_shapefile) # return HttpResponse(water_body.get_absolute_url()) # # Nothing found? Return an empty response and the # # javascript popup handler # # will fire. # return HttpResponse('') def _sorted_measures(area): """ Return list of measures that relate to area. Parent measures ordered alphabetically, child measures directly after parent measures, and loose child measures (parent not in list) at the end. """ # These must all occur in the list. Also related child measures # whose parent are with a different area. all_related_measures = Measure.objects.filter(Q(waterbodies__area=area)|Q(areas=area) ).distinct() all_related_measures_dict = dict([(m.id, m) for m in all_related_measures]) # get measures without parent: main measures parent_measures = all_related_measures.filter( parent__isnull=True, ).order_by( 'title', ) result_measures = [] for p in parent_measures: result_measures.append(p) child_measures = p.measure_set.filter(Q(waterbodies__area=area)|Q(areas=area)).distinct().order_by('title') result_measures.extend(child_measures) # Keep track of added measures if p.id in all_related_measures_dict: del all_related_measures_dict[p.id] for child_measure in child_measures: if child_measure.id in all_related_measures_dict: del all_related_measures_dict[child_measure.id] # Now all_related_measures_dict contains only the left-over measures left_over_measures = all_related_measures_dict.values() sorted(left_over_measures, key=lambda m: m.title) for measure in left_over_measures: measure.parent_other_area = True result_measures.append(measure) return result_measures class MeasureDetailView(AppView): """ Show measure details """ template_name='lizard_measure/measure.html' def measure(self): """Return a measure""" if not hasattr(self, '_measure'): self._measure = Measure.objects.get( pk=self.measure_id) return self._measure def get(self, request, *args, **kwargs): self.measure_id = kwargs['measure_id'] return super(MeasureDetailView, self).get( request, *args, **kwargs) class MeasureHistoryView(MeasureDetailView): """ Show measure history """ template_name='lizard_measure/measure_history.html' def history(self): """ Return full history, if possible cached """ if not hasattr(self, '_log_entry'): self._history = get_history( obj=self.measure(), ) return self._history class MeasureHistoryDetailView(MeasureDetailView): """ Show measure history details """ template_name='lizard_measure/measure_history_details.html' def action(self): """ Return history details dict """ if not hasattr(self, '_action'): self._action = get_history( log_entry_id=self.log_entry_id, ) return self._action class MeasureArchiveView(AppView): """ Readonly measure form. """ def get(self, request, *args, **kwargs): """ Return read only form for measure corresponding to specific log_entry. """ if request.user.is_authenticated(): self.template_name = 'lizard_measure/measure_form_read_only.js' self.measure_id = kwargs.get('measure_id') self.log_entry_id = kwargs.get('log_entry_id') else: self.template_name = 'portals/geen_toegang.js' return super(MeasureArchiveView, self).get(request, *args, **kwargs) class MeasureHistoryDetailView(MeasureDetailView): """ Show measure history details """ template_name='lizard_measure/measure_history_details.html' def action(self): """ Return history details dict """ if not hasattr(self, '_action'): self._action = get_history( log_entry_id=self.log_entry_id, ) return self._action def changes(self): """ Return list of changes using verbose names of fields """ result = [(self.measure()._meta.get_field(f).verbose_name, v) for f, v in self.action()['changes'].items()] return result def get(self, request, *args, **kwargs): """ Pick the log_entry_id from the url """ self.log_entry_id = kwargs['log_entry_id'] return super(MeasureHistoryDetailView, self).get( request, *args, **kwargs) # def measure_detail(request, measure_id, # template='lizard_measure/measure.html'): # measure = get_object_or_404(Measure, pk=measure_id) # return render_to_response( # template, # {'measure': measure}, # context_instance=RequestContext(request)) def krw_waterbody_measures(request, area_ident, template='lizard_measure/waterbody_measures.html'): """ Show list of measures for an area_ident. """ area = get_object_or_404(Area, ident=area_ident) result_measures = _sorted_measures(area) perms = dict(get_user_permissions_overall(request.user, 'user', as_list=True)) return render_to_response( template, {'waterbody': area, 'main_measures': result_measures, 'perm': perms }, context_instance=RequestContext(request)) def suited_measures(request, area_ident, template='lizard_measure/suited_measures.html'): # for testing purposes, we retrieve all measures area = get_object_or_404(Area, ident=area_ident) suitable_measure_types = get_suitable_measures(area) logger.debug("found %d suitable measures", len(suitable_measure_types)) return render_to_response( template, {'suitable_measure_types': suitable_measure_types}, context_instance=RequestContext(request)) def value_to_judgement(value, a=None, b=None, c=None, d=None): """ Simple classifier for judgements. """ if value < a: return "slecht" if value < b: return "ontoereikend" if value < c: return "matig" if value < d: return "goed" return "zeer goed" def value_to_html_color(value, a=None, b=None, c=None, d=None): """ Simple classifier for colors. All values will return a color. """ if value < a: return COLOR_1 if value < b: return COLOR_2 if value < c: return COLOR_3 if value < d: return COLOR_4 return COLOR_5 def comment_to_html_color(comment): """ Lookup the EKR color for a fewsnorm comment. Defaults to grey. """ return { 'slecht': COLOR_1, 'ontoereikend': COLOR_2, 'matig': COLOR_3, 'goed': COLOR_4, 'zeer goed': COLOR_5}.get(comment, '#cccccc') def krw_waterbody_ekr_scores( request, area_ident, horizontal_bar_graph_slug='ekr-extended', template='lizard_measure/waterbody_ekr_scores.html'): """ Show screen for ekr scores. A HorizontalBarGraph with slug 'ekr-extended' must be defined. """ area = get_object_or_404(Area, ident=area_ident) location = None try: location = GeoLocationCache.objects.get(ident=area_ident) except GeoLocationCache.DoesNotExist: pass hor_bar_graph = HorizontalBarGraph.objects.get( slug=horizontal_bar_graph_slug) graph_items = hor_bar_graph.horizontalbargraphitem_set.all() for graph_item in graph_items: if not graph_item.location and location: graph_item.location = location ekr_scores = [] try: ekr_scores = [(graph_item.time_series(with_comments=True), Score.from_graph_item(graph_item), graph_item) for graph_item in graph_items] except AttributeError: # Occurs when above location = # GeoLocationCache... fails... just return nothing. pass score_tables = [] for ts, score, graph_item in ekr_scores: new_score_table = { 'title': str(graph_item), 'score': score, 'data': []} # We assume there is only one. len_ts_values = len(ts.values()) if len_ts_values != 1: logger.error('Number of TimeSeries for HorizontalBarGraphItem %s is %d' % ( graph_item, len_ts_values)) if len_ts_values == 0: new_score_table['data'] = [{'timestamp': 'Geen tijdreeks beschikbaar', 'value': None}] # a, b, c, d = score.borders for single_ts in ts.values(): data_table = [] for timestamp, (value, flag, comment) in single_ts.get_events(): # value = math.trunc(10 * value) / 10.0 # Floor at 1 decimal data_table.append({'timestamp': timestamp, 'value': value, 'color': comment_to_html_color(comment), 'comment': comment}) new_score_table['data'] = data_table new_score_table['color_target_2015'] = comment_to_html_color(score.target_2015) new_score_table['color_target_2027'] = comment_to_html_color(score.target_2027) score_tables.append(new_score_table) return render_to_response( template, {'waterbody': area, 'score_tables': score_tables, 'COLOR_1': COLOR_1, 'COLOR_2': COLOR_2, 'COLOR_3': COLOR_3, 'COLOR_4': COLOR_4, 'COLOR_5': COLOR_5, }, context_instance=RequestContext(request)) def _image_measures(graph, measures, start_date, end_date, end_date_realized=None, legend_location=-1, title=None, wide_left_ticks=False): """Function to draw measures TODO: when a single measure is drawn, sometimes the whole picture is stretched out !attn! measure statuses are aggregated from child measures """ def calc_bar_colors(measure, end_date, is_planning): """Returns calculated bars. The bars are aggregated from measure_status_moments from sub measures. ** measure can also be a measure_collection. It uses the status_moment function only. """ measure_bar = [] measure_colors = [] measure_status_moments = measure.measure_status_moments( end_date=end_date, is_planning=is_planning) for msm_index, msm in enumerate(measure_status_moments): # drawing enddate: "infinity" or next status moment if msm_index == len(measure_status_moments) - 1: msm_end_date = end_date else: if is_planning: msm_end_date = measure_status_moments[ msm_index + 1].planning_date else: msm_end_date = measure_status_moments[ msm_index + 1].realisation_date if is_planning: begin = msm.planning_date else: begin = msm.realisation_date date_length = date2num(msm_end_date) - date2num(begin) measure_bar.append((date2num(begin), date_length)) measure_colors.append(msm.status.color.html) return measure_bar, measure_colors if end_date_realized is None: end_date_realized = min(end_date, datetime.datetime.now().date()) if title is None: title = "maatregel(en)" if wide_left_ticks: graph.margin_left_extra = 200 measure_name_length = 55 else: measure_name_length = 17 graph.figure.suptitle( title, x=0.5, y=1, horizontalalignment='center', verticalalignment='top') for index, measure in enumerate(measures): # realized measure_bar, measure_colors = calc_bar_colors( measure, end_date_realized, False) graph.axes.broken_barh(measure_bar, (-index - 0.2, 0.4), facecolors=measure_colors, edgecolors=measure_colors) # planning measure_bar_p, measure_colors_p = calc_bar_colors( measure, end_date, True) graph.axes.broken_barh(measure_bar_p, (-index - 0.45, 0.1), facecolors=measure_colors_p, edgecolors=measure_colors_p) # Y ticks yticklabels = [measure.short_name(max_length=measure_name_length) for measure in measures] yticklabels.reverse() graph.axes.set_yticks(range(int(-len(measures) + 0.5), 1)) graph.axes.set_yticklabels(yticklabels) graph.axes.set_xlim(date2num((start_date, end_date))) graph.axes.set_ylim(-len(measures) + 0.5, 0.5) # Legend if legend_location >= 0: legend_handles, legend_labels = [], [] for measure_status in MeasureStatus.objects.filter(valid=True): legend_handles.append( Line2D([], [], color=measure_status.color.html, lw=10)) legend_labels.append(measure_status.name) graph.legend(legend_handles, legend_labels, legend_location=legend_location) def measure_graph_api(request): """ wrapper around measure_graph which get arguments from parameters instead of url """ area_ident = request.GET.get('location', None) filter = request.GET.get('filter', 'all') return measure_graph(request, area_ident, filter) def measure_graph(request, area_ident, filter='all'): """ visualizes scores or measures in a graph identifier_list: [{'waterbody_slug': ...}, ...] start_end_dates: 2-tuple dates each row is an area """ if filter == 'measure': measures = Measure.objects.filter( Q(pk=area_ident)|Q(parent__id=area_ident)).order_by('title') else: area = get_object_or_404(Area, ident=area_ident) if filter == 'focus': measures = [m for m in _sorted_measures(area) if m.is_indicator == True] else: measures = _sorted_measures(area) start_date = iso8601.parse_date(request.GET.get('dt_start', '2008-1-1T00:00:00')).date() end_date = iso8601.parse_date(request.GET.get('dt_end', '2013-1-1T00:00:00')).date() width = int(request.GET.get('width', 380)) height = int(request.GET.get('height', 170)) legend_location = int(request.GET.get('legend-location', -1)) wide_left_ticks = request.GET.get('wide_left_ticks', 'false') == 'true' format = request.GET.get('format', None) graph = DateGridGraph(width=width, height=height) _image_measures(graph, measures, start_date, end_date, legend_location=legend_location, wide_left_ticks=wide_left_ticks) graph.set_margins() if format == 'ps': return graph.render( response=HttpResponse(content_type='application/postscript'), format='ps') else: return graph.png_response( response=HttpResponse(content_type='image/png')) def measure_detailedit_portal(request): """ Return JSON for request. """ c = RequestContext(request) measure_id = request.GET.get('measure_id', None) init_parent = request.GET.get('parent_id', None) area_id = request.GET.get('area_id', None) if init_parent: init_parent = Measure.objects.get(pk=init_parent) init_area = None init_waterbody = None if area_id: area = Area.objects.get(ident=area_id) if area.area_class == Area.AREA_CLASS_AAN_AFVOERGEBIED: init_area = area else: init_waterbody = WaterBody.objects.get(area=area) try: measure = Measure.objects.get(pk=measure_id) except Measure.DoesNotExist: measure = None if request.user.is_authenticated(): t = get_template('portals/maatregelen_form.js') c = RequestContext(request, { 'measure': measure, 'measure_types': json.dumps( [{'id': r.id, 'name': str(r)} for r in MeasureType.objects.all()] ), 'periods': json.dumps( [{'id': r.id, 'name': str(r)} for r in MeasurePeriod.objects.filter(valid=True)] ), 'aggregations': json.dumps( [{'id': r[0], 'name': r[1]} for r in Measure.AGGREGATION_TYPE_CHOICES] ), 'categories': json.dumps( [{'id': r.id, 'name': str(r)} for r in MeasureCategory.objects.filter(valid=True)] ), 'units': json.dumps( [{'id': r.id, 'name': str(r)} for r in Unit.objects.all()] ), 'init_parent': init_parent, 'init_area': init_area, 'init_waterbody': init_waterbody, }) else: t = get_template('portals/geen_toegang.js') return HttpResponse(t.render(c), mimetype="text/plain") def measure_groupedit_portal(request): """ Return JSON for request. """ c = RequestContext(request) perms = dict(get_user_permissions_overall(request.user, 'user', as_list=True)) if request.user.is_authenticated(): t = get_template('portals/maatregelen-beheer.js') c = RequestContext(request, { 'measure_types': json.dumps( [{'id': r.id, 'name': str(r)} for r in MeasureType.objects.all()], ), 'periods': json.dumps( [{'id': r.id, 'name': str(r)} for r in MeasurePeriod.objects.all()], ), 'aggregations': json.dumps( [{'id': r[0], 'name': r[1]} for r in Measure.AGGREGATION_TYPE_CHOICES], ), 'categories': json.dumps( [{'id': r.id, 'name': str(r)} for r in MeasureCategory.objects.all()], ), 'units': json.dumps( [{'id': r.id, 'name': str(r)} for r in Unit.objects.all()], ), 'perm': perms }) else: t = get_template('portals/geen_toegang.js') return HttpResponse(t.render(c), mimetype="text/plain") def organization_groupedit_portal(request): """ Return JSON for request. """ c = RequestContext(request) if request.user.is_authenticated(): perms = dict(get_user_permissions_overall(request.user, 'user', as_list=True)) t = get_template('portals/organisatie-beheer.js') c = RequestContext(request, { 'perm': perms }) else: t = get_template('portals/geen_toegang.js') return HttpResponse(t.render(c), mimetype="text/plain") def steering_parameter_form(request): """ Return JSON with editor for steering parameters . """ c = RequestContext(request) perms = dict(get_user_permissions_overall(request.user, 'user', as_list=True)) object_id = request.GET.get('object_id', None) area = get_object_or_404(Area,ident=object_id) if request.user.is_authenticated(): t = get_template('portals/stuurparameter_form.js') if area.area_class == Area.AREA_CLASS_KRW_WATERLICHAAM: predefined_graphs = PredefinedGraphSelection.objects.filter( Q(for_area_type=Area.AREA_CLASS_KRW_WATERLICHAAM)|Q(for_area_type=None)).distinct() related_areas = Area.objects.filter(Q(arealink_a__area_b=area)|Q(arealink_b__area_a=area)).distinct() elif area.area_class == Area.AREA_CLASS_AAN_AFVOERGEBIED: predefined_graphs = PredefinedGraphSelection.objects.filter( Q(for_area_type=Area.AREA_CLASS_AAN_AFVOERGEBIED)|Q(for_area_type=None)).distinct() related_areas = Area.objects.filter(Q(arealink_a__area_b=area)|Q(arealink_b__area_a=area)|Q(id=area.id)).distinct() c = RequestContext(request, { 'area': area, 'predefined_graphs': json.dumps( [{'id': r.id, 'name': r.name, 'for_area_type': r.for_area_type} for r in predefined_graphs]), 'related_areas': json.dumps( [{'id': r.id, 'name': r.name} for r in related_areas]), 'perm': perms }) else: t = get_template('portals/geen_toegang.js') return HttpResponse(t.render(c), mimetype="text/plain") def esfpattern_detailedit_portal(request): """ Return JSON for request. """ c = RequestContext(request) pattern_id = request.GET.get('esfpattern_id', None) try: pattern = EsfPattern.objects.get(pk=pattern_id) except EsfPattern.DoesNotExist: pattern = None if request.user.is_authenticated(): data_sets = [{'id': r.id, 'name': str(r)} for r in DataSet.objects.filter( pk__in=list(request.allowed_data_set_ids))] if request.user.is_superuser: data_sets = [{'id': r.id, 'name': str(r)} for r in DataSet.objects.all()] data_sets.append({'id':None, 'name': 'landelijk'}) t = get_template('portals/esfpattern_form.js') c = RequestContext(request, { 'pattern': pattern, 'measure_types': json.dumps( [{'id': r.id, 'name': str(r)} for r in MeasureType.objects.all()] ), 'watertype_group': json.dumps( [{'id': r.id, 'name': str(r)} for r in WatertypeGroup.objects.all()] ), 'data_sets': json.dumps(data_sets ), }) else: t = get_template('portals/geen_toegang.js') return HttpResponse(t.render(c), mimetype="text/plain") def steerparameter_overview(request): """ Return JSON for request. """ c = RequestContext(request) areas = Area.objects.all() predefined_graphs = PredefinedGraphSelection.objects.all().values_list('name', flat=True) #predefined_graphs = ['testa', 'testb'] parameters = SteeringParameterFree.objects.filter(area__in=areas).distinct().values_list('parameter_code', flat=True) parameters = [{'org': par, 'no_point': par.replace('.','_')} for par in parameters] perms = dict(get_user_permissions_overall(request.user, 'user', as_list=True)) #parameters = ['test','test2'] if request.user.is_authenticated(): t = get_template('portals/stuurparameter-overzicht.js') c = RequestContext(request, { 'predefined_graphs': predefined_graphs, 'parameters': parameters, 'perm': perms }) else: t = get_template('portals/geen_toegang.js') return HttpResponse(t.render(c), mimetype="text/plain") ################ EKR GRAPHS class HorizontalBarGraphView(View, TimeSeriesViewMixin): """ Display horizontal bars """ def _graph_items_from_request(self): """ Return graph_items and graph_settings graph_items must be a list with for each item a function time_series. This function accepts keyword arguments dt_start and dt_end and returns a list of timeseries. """ get = self.request.GET graph_settings = { 'width': 1200, 'height': 500, 'location': None, 'format': 'png', } location = get.get('location', None) if location is not None: try: location = GeoLocationCache.objects.filter(ident=location)[0] except IndexError: logger.exception( ("Tried to fetch a non existing " "GeoLocationCache %s, created dummy one") % location) location = GeoLocationCache(ident=location) graph_settings['location'] = location format = get.get('format', None) graph_settings['format'] = format graph_items = [] # Using the shortcut graph=<graph-slug> hor_graph_slug = get.get('graph', None) if hor_graph_slug is not None: # Add all graph items of graph to result try: hor_graph = HorizontalBarGraph.objects.get( slug=hor_graph_slug) graph_items.extend(hor_graph.horizontalbargraphitem_set.all()) except HorizontalBarGraph.DoesNotExist: logger.exception("Tried to fetch a non-existing hor.bar." "graph %s" % hor_graph_slug) # Graph settings can be overruled graph_parameters = ['width', 'height'] for graph_parameter in graph_parameters: if graph_parameter in get: graph_settings[graph_parameter] = get[graph_parameter] return graph_items, graph_settings def get(self, request, *args, **kwargs): """ Draw the EKR graph """ dt_start, dt_end = self._dt_from_request() graph_items, graph_settings = self._graph_items_from_request() graph = DateGridGraph( width=int(graph_settings['width']), height=int(graph_settings['height'])) # # Legend. Must do this before using graph location calculations # legend_handles = [ # Line2D([], [], color=value_to_html_color(0.8), lw=10), # Line2D([], [], color=value_to_html_color(0.6), lw=10), # Line2D([], [], color=value_to_html_color(0.4), lw=10), # Line2D([], [], color=value_to_html_color(0.2), lw=10), # Line2D([], [], color=value_to_html_color(0.0), lw=10), # ] # legend_labels = [ # 'Zeer goed', 'Goed', 'Matig', 'Ontoereikend', 'Slecht'] # graph.legend(legend_handles, legend_labels, legend_location=6) yticklabels = [] block_width = (date2num(dt_end) - date2num(dt_start)) / 50 # Legend #graph.margin_right_extra += 90 # Room for legend. See also nens_graph. legend_handles = [ Line2D([], [], color=COLOR_5, lw=10), Line2D([], [], color=COLOR_4, lw=10), Line2D([], [], color=COLOR_3, lw=10), Line2D([], [], color=COLOR_2, lw=10), Line2D([], [], color=COLOR_1, lw=10), ] legend_labels = [ 'zeer goed', 'goed', 'matig', 'ontoereikend', 'slecht', ] graph.legend(legend_handles, legend_labels, legend_location=7) for index, graph_item in enumerate(graph_items): if not graph_item.location: graph_item.location = graph_settings['location'] # Find the corresponding Score. score = Score.from_graph_item(graph_item) if score.id is None: graph_item.label = '(%s)' % graph_item.label yticklabels.append(graph_item.label) # We want to draw a shadow past the end of the last # event. That's why we ignore dt_start. try: ts = graph_item.time_series(dt_end=dt_end, with_comments=True) except: logger.exception( 'HorizontalBarView crashed on graph_item.time_series of %s' % graph_item) ts = {} if len(ts) != 1: logger.warn('Warning: drawing %d timeseries on a single bar ' 'HorizontalBarView', len(ts)) # We assume there is only one timeseries. for (loc, par, unit), single_ts in ts.items(): dates, values, comments, flag_dates, flag_values, flag_comments = ( dates_values_comments(single_ts)) if not dates: logger.warning('Tried to draw empty timeseries %s %s', loc, par) continue block_dates = [] block_dates_shadow = [] for date_index in range(len(dates) - 1): dist_to_next = (date2num(dates[date_index + 1]) - date2num(dates[date_index])) this_block_width = min(block_width, dist_to_next) block_dates.append( (date2num(dates[date_index]), this_block_width)) block_dates_shadow.append( (date2num(dates[date_index]), dist_to_next)) block_dates.append( (date2num(dates[-1]), block_width)) # Ignoring tzinfo, otherwise we can't compare. last_date = max(dt_start.replace(tzinfo=None), dates[-1]) block_dates_shadow.append( (date2num(last_date), (date2num(dt_end) - date2num(dt_start)))) a, b, c, d = score.borders block_colors = [comment_to_html_color(comment) for comment in comments] # Block shadow graph.axes.broken_barh( block_dates_shadow, (index - 0.2, 0.4), facecolors=block_colors, edgecolors=block_colors, alpha=0.2) # The 'real' block graph.axes.broken_barh( block_dates, (index - 0.4, 0.8), facecolors=block_colors, edgecolors='grey') # for goal in graph_item.goals.all(): # collected_goal_timestamps.update([goal.timestamp, ]) # For each unique bar goal timestamp, generate a mini # graph. The graphs are ordered by timestamp. goal_timestamps = [ datetime.datetime(2015, 1, 1, 0, 0), datetime.datetime(2027, 1, 1, 0, 0), ] subplot_numbers = [312, 313] for index, goal_timestamp in enumerate(goal_timestamps): axes_goal = graph.figure.add_subplot(subplot_numbers[index]) axes_goal.set_yticks(range(len(yticklabels))) axes_goal.set_yticklabels('') axes_goal.set_xticks([0, ]) axes_goal.set_xticklabels([goal_timestamp.year, ]) for graph_item_index, graph_item in enumerate(graph_items): # TODO: make more efficient; score is retrieved twice # in this function. score = Score.from_graph_item(graph_item) #print 'score: %s' % score #print 'doel scores: %s' % str(score.targets) #a, b, c, d = score.borders goal = score.targets[index] if goal is not None: axes_goal.broken_barh( [(-0.5, 1)], (graph_item_index - 0.4, 0.8), facecolors=comment_to_html_color(goal), edgecolors='grey') # # 0 or 1 items # goals = graph_item.goals.filter(timestamp=goal_timestamp) # for goal in goals: # axes_goal.broken_barh( # [(-0.5, 1)], (graph_item_index - 0.4, 0.8), # facecolors=value_to_html_color(goal.value), # edgecolors='grey') axes_goal.set_xlim((-0.5, 0.5)) axes_goal.set_ylim(-0.5, len(yticklabels) - 0.5) # Coordinates are related to the graph size - not graph 311 bar_width_px = 12 axes_x = float(graph.width - (graph.MARGIN_RIGHT + graph.margin_right_extra) + bar_width_px + 2 * bar_width_px * index ) / graph.width axes_y = float(graph.MARGIN_BOTTOM + graph.margin_bottom_extra) / graph.height axes_width = float(bar_width_px) / graph.width axes_height = float(graph.graph_height()) / graph.height axes_goal.set_position((axes_x, axes_y, axes_width, axes_height)) graph.axes.set_yticks(range(len(yticklabels))) graph.axes.set_yticklabels(yticklabels) graph.axes.set_xlim(date2num((dt_start, dt_end))) graph.axes.set_ylim(-0.5, len(yticklabels) - 0.5) # Set the margins, including legend. graph.set_margins() response_format = graph_settings['format'] if response_format == 'ps': return graph.render( response=HttpResponse(content_type='application/postscript'), format='ps') else: return graph.png_response( response=HttpResponse(content_type='image/png'))
gpl-3.0
annayqho/TheCannon
code/lamost/mass_age/paper_plots/residuals_grid_LA.py
1
3321
import matplotlib.pyplot as plt from matplotlib import rc import matplotlib.gridspec as gridspec from matplotlib.colors import LogNorm from math import log10, floor plt.rc('text', usetex=True) plt.rc('font', family='serif') import numpy as np def round_sig(x, sig=2): if x < 0: return -round(-x, sig-int(floor(log10(-x)))-1) return round(x, sig-int(floor(log10(x)))-1) names = ['\mbox{T}_{\mbox{eff}},', '\mbox{log g}', '\mbox{[Fe/H]}'] units = ['\mbox{K}', '\mbox{dex}', '\mbox{dex}'] snr_str = [r'SNR $\textless$ 50', r'50 $\textless$ SNR $\textless$ 100', r'SNR $\textgreater$ 100'] snr_str = snr_str[::-1] cutoffs = [0, 50, 100, 10000] #cutoffs = [0,50,100] cutoffs = cutoffs[::-1] y_highs = [300, 0.7, 0.5] x_lows = [4000, 1.1, -2.0, -0.08] x_highs = [5300, 3.8, 0.5, 0.4] direc = "../run_9_more_metal_poor" all_ids = np.load("../run_2_train_on_good/all_ids.npz")['arr_0'] all_apogee = np.load("../run_2_train_on_good/all_label.npz")['arr_0'] good_id = np.load("%s/tr_id.npz" %direc)['arr_0'] all_snr = np.load("../run_2_train_on_good/SNRs.npz")['arr_0'] IDs_lamost = np.loadtxt( "../../examples/test_training_overlap/lamost_sorted_by_ra_with_dr2_params.txt", usecols=(0,), dtype=(str)) labels_all_lamost = np.loadtxt( "../../examples/test_training_overlap/lamost_sorted_by_ra_with_dr2_params.txt", usecols=(3,4,5), dtype=(float)) inds = np.array([np.where(IDs_lamost==a)[0][0] for a in good_id]) lamost = labels_all_lamost[inds,:] choose = np.array([np.where(all_ids==val)[0][0] for val in good_id]) apogee = all_apogee[choose] snr = all_snr[choose] fig = plt.figure(figsize=(15,15)) gs = gridspec.GridSpec(3,3, wspace=0.3, hspace=0) props = dict(boxstyle='round', facecolor='white', alpha=0.3) for i in range(0, len(names)): name = names[i] unit = units[i] for j in range(0, len(cutoffs)-1): ax = plt.subplot(gs[j,i]) ax.axhline(y=0, c='k') #ax.legend(fontsize=14) choose = np.logical_and(snr < cutoffs[j], snr > cutoffs[j+1]) #choose = snr > cutoffs[j] diff = (lamost[:,i] - apogee[:,i])[choose] scatter = round_sig(np.std(diff), 3) bias = round_sig(np.mean(diff), 3) ax.hist2d( apogee[:,i][choose], diff, range=[[x_lows[i], x_highs[i]], [-y_highs[i], y_highs[i]]], bins=30, norm=LogNorm(), cmap="gray_r") if j < len(cutoffs) - 2: ax.get_xaxis().set_visible(False) ax.locator_params(nbins=5) ax.tick_params(axis='y', labelsize=20) ax.tick_params(axis='x', labelsize=20) if j == 0: ax.set_title(r"$\Delta %s_{\mbox{L-A}}$ [%s]" %(name, unit), fontsize=30) if j == 2: ax.set_xlabel("$%s$ [%s] from APOGEE" %(name, unit), fontsize=20) textstr1 = '%s' %(snr_str[j]) ax.text(0.05, 0.95, textstr1, transform=ax.transAxes, fontsize=20, verticalalignment='top', bbox=props) textstr2 = 'Scatter: %s \nBias: %s' %(scatter, bias) ax.text(0.05, 0.05, textstr2, transform=ax.transAxes, fontsize=20, verticalalignment='bottom', bbox=props) #ax.set_xlabel(r"APOGEE %s $(%s)$" %(name, unit)) #ax.set_ylabel(r"Cannon-LAMOST %s $(%s)$" %(name, unit)) plt.savefig("residuals_grid_la.png") #plt.show()
mit
mitschabaude/nanopores
scripts/pughpore/randomwalk/test/create_compare_nobind.py
1
4042
# -*- coding: utf-8 -*- from matplotlib import gridspec import math import matplotlib import nanopores import nanopores.geometries.pughpore as pughpore import matplotlib.pyplot as plt from matplotlib.ticker import FormatStrFormatter import numpy as np import os import sys import nanopores.tools.fields as f HOME = os.path.expanduser("~") PAPERDIR = os.path.join(HOME, "Dropbox", "nanopores") FIGDIR = os.path.join(PAPERDIR, "figures", "") DATADIR = os.path.join(HOME,"Dropbox", "nanopores", "fields") f.set_dir_mega() number=False geop = nanopores.Params(pughpore.params) hpore=geop.hpore fieldsname='eventspara_nobind' params=dict(avgbind1=17.2e6,avgbind2=3e4,P_bind1=0.193,P_bind2=3e-1,z0=hpore/2.+0.) drop, th = f.get("events_pugh_experiment", "drop", "t") th = [1e3*time for time in th] #cmap=matplotlib.cm.get_cmap('viridis') data=f.get_fields(fieldsname,**params) figname = fieldsname+'_%.1e_%.1e_%.1e_%.1e'%(params["avgbind1"],params["avgbind2"],params["P_bind1"],params["P_bind2"])+str(params["z0"]) t = data["t"] a = data["a"] ood = data["ood"] lendata=len(t) fac=1. if max(t)<1e-2: fac=1e3 t = [x*1e3 for x in t] P_bind1=params["P_bind1"] P_bind2=params["P_bind2"] avgbind1=params["avgbind1"]*1e-6 avgbind2=params["avgbind2"]*1e-6 color2='green' color1='lightgreen' color3='red' plt.figure(figsize=(7,5),dpi=80) gs = gridspec.GridSpec(2,3,width_ratios=[4,2,1],height_ratios=[1,2.5]) gs.update(wspace=0.,hspace=0.) minperc=0. maxperc=40. #plt1=plt.subplot(gs[1,0]) plt1=plt.subplot() for k in range(lendata): if ood[k]==0: type1 = plt1.scatter([t[k]],[a[k]],color=color2,s=8) else: type0 = plt1.scatter([t[k]],[a[k]],color=color3,s=8) experiment = plt1.scatter(th,drop,color='#888888',s=8) plt.legend([experiment,type0,type1],['experimental data','did not translocate','successful translocation'],scatterpoints=4,loc=(0.01,0.01),frameon=False) xfmt=FormatStrFormatter('%g') plt1.set_xlim([.2*min(t),max(max(t),max(th))*2.]) plt1.set_ylim([minperc,maxperc]) plt1.set_xscale('log') plt1.xaxis.set_major_formatter(xfmt) plt1.invert_yaxis() plt1.plot([17600],[26],marker='o',ms=115,mfc='None',mec='black') plt1.text(17600,24,"Assumed\n long bindings",fontsize=13,horizontalalignment='center') plt1.set_ylabel(r'A/I$_0$ [%]',fontsize=15) if fac==1.: # if P_bind1!=0.: # plt1.text(avgbind1*.5,27.,'Long binding',fontsize=9,horizontalalignment='center') # k=1.0 # plt1.add_patch(matplotlib.patches.Rectangle((avgbind1*10**(-k*2),0.),avgbind1*(10**(k)-10**(-k)),maxperc,facecolor=cmap(.7),alpha=.15)) # if P_bind2!=0.: # plt1.text(avgbind2*.5,27.,'Short binding',fontsize=9,horizontalalignment='center') # k=1.0 # plt1.add_patch(matplotlib.patches.Rectangle((avgbind2*10**(-k),0.),avgbind2*(10**(k)-10**(-k)),maxperc,facecolor=cmap(.4),alpha=.15)) plt1.set_xlabel(r'$\tau_{off}$ [ms]',fontsize=15) else: plt1.set_xlabel(ur'$\tau_{off}$ [µs]',fontsize=15) #plt2=plt.subplot(gs[1,1]) #for k in range(lendata): # if ood[k]==0: # type1 = plt2.scatter([t[k]],[a[k]],color=color2,s=8) # else: # type0 = plt2.scatter([t[k]],[a[k]],color=color3,s=8) #plt2.invert_yaxis() #plt2.set_ylim([maxperc,minperc]) #plt2.set_xlim([-2e-2*max(t),max(t)*(1.+2e-2)]) #plt2.axes.get_yaxis().set_visible(False) #plt2.axes.get_xaxis().major.locator.set_params(nbins=6) # #plt3=plt.subplot(gs[1,2]) #n, bins, patches = plt3.hist(np.array(a),15,normed=1,orientation='horizontal',color=color1,alpha=.5) #plt3.invert_yaxis() #plt3.set_xlim([0.,max(n)*1.2]) #plt3.set_ylim([maxperc,minperc]) #plt3.axes.get_xaxis().set_visible(False) #plt3.axes.get_yaxis().set_visible(False) # # # #plt4=plt.subplot(gs[0,1]) #n, bins, patches = plt4.hist(np.array(t),20,normed=1,color=color1,alpha=.5) #plt4.set_xlim([-2e-2*max(t),max(t)*(1.+2e-2)]) #plt4.axes.get_xaxis().set_visible(False) #plt4.axes.get_yaxis().set_visible(False) #plt.tight_layout() #plt.show() #plt.savefig('events_nobind_compare_2.pdf') nanopores.savefigs("rw/events", FIGDIR, ending=".pdf")
mit
IndraVikas/scikit-learn
sklearn/decomposition/tests/test_dict_learning.py
85
8565
import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import TempMemmap from sklearn.decomposition import DictionaryLearning from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.decomposition import SparseCoder from sklearn.decomposition import dict_learning_online from sklearn.decomposition import sparse_encode rng_global = np.random.RandomState(0) n_samples, n_features = 10, 8 X = rng_global.randn(n_samples, n_features) def test_dict_learning_shapes(): n_components = 5 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_overcomplete(): n_components = 12 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_reconstruction(): n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) # used to test lars here too, but there's no guarantee the number of # nonzero atoms is right. def test_dict_learning_reconstruction_parallel(): # regression test that parallel reconstruction works with n_jobs=-1 n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0, n_jobs=-1) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) def test_dict_learning_lassocd_readonly_data(): n_components = 12 with TempMemmap(X) as X_read_only: dico = DictionaryLearning(n_components, transform_algorithm='lasso_cd', transform_alpha=0.001, random_state=0, n_jobs=-1) code = dico.fit(X_read_only).transform(X_read_only) assert_array_almost_equal(np.dot(code, dico.components_), X_read_only, decimal=2) def test_dict_learning_nonzero_coefs(): n_components = 4 dico = DictionaryLearning(n_components, transform_algorithm='lars', transform_n_nonzero_coefs=3, random_state=0) code = dico.fit(X).transform(X[1]) assert_true(len(np.flatnonzero(code)) == 3) dico.set_params(transform_algorithm='omp') code = dico.transform(X[1]) assert_equal(len(np.flatnonzero(code)), 3) def test_dict_learning_unknown_fit_algorithm(): n_components = 5 dico = DictionaryLearning(n_components, fit_algorithm='<unknown>') assert_raises(ValueError, dico.fit, X) def test_dict_learning_split(): n_components = 5 dico = DictionaryLearning(n_components, transform_algorithm='threshold', random_state=0) code = dico.fit(X).transform(X) dico.split_sign = True split_code = dico.transform(X) assert_array_equal(split_code[:, :n_components] - split_code[:, n_components:], code) def test_dict_learning_online_shapes(): rng = np.random.RandomState(0) n_components = 8 code, dictionary = dict_learning_online(X, n_components=n_components, alpha=1, random_state=rng) assert_equal(code.shape, (n_samples, n_components)) assert_equal(dictionary.shape, (n_components, n_features)) assert_equal(np.dot(code, dictionary).shape, X.shape) def test_dict_learning_online_verbosity(): n_components = 5 # test verbosity from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout try: sys.stdout = StringIO() dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=1, random_state=0) dico.fit(X) dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=2, random_state=0) dico.fit(X) dict_learning_online(X, n_components=n_components, alpha=1, verbose=1, random_state=0) dict_learning_online(X, n_components=n_components, alpha=1, verbose=2, random_state=0) finally: sys.stdout = old_stdout assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_estimator_shapes(): n_components = 5 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0) dico.fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_overcomplete(): n_components = 12 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_initialization(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) dico = MiniBatchDictionaryLearning(n_components, n_iter=0, dict_init=V, random_state=0).fit(X) assert_array_equal(dico.components_, V) def test_dict_learning_online_partial_fit(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] dict1 = MiniBatchDictionaryLearning(n_components, n_iter=10 * len(X), batch_size=1, alpha=1, shuffle=False, dict_init=V, random_state=0).fit(X) dict2 = MiniBatchDictionaryLearning(n_components, alpha=1, n_iter=1, dict_init=V, random_state=0) for i in range(10): for sample in X: dict2.partial_fit(sample) assert_true(not np.all(sparse_encode(X, dict1.components_, alpha=1) == 0)) assert_array_almost_equal(dict1.components_, dict2.components_, decimal=2) def test_sparse_encode_shapes(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] for algo in ('lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'): code = sparse_encode(X, V, algorithm=algo) assert_equal(code.shape, (n_samples, n_components)) def test_sparse_encode_error(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = sparse_encode(X, V, alpha=0.001) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1) def test_sparse_encode_error_default_sparsity(): rng = np.random.RandomState(0) X = rng.randn(100, 64) D = rng.randn(2, 64) code = ignore_warnings(sparse_encode)(X, D, algorithm='omp', n_nonzero_coefs=None) assert_equal(code.shape, (100, 2)) def test_unknown_method(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init assert_raises(ValueError, sparse_encode, X, V, algorithm="<unknown>") def test_sparse_coder_estimator(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = SparseCoder(dictionary=V, transform_algorithm='lasso_lars', transform_alpha=0.001).transform(X) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1)
bsd-3-clause
probstj/pyMPB
examples/2D_PhC_quick.py
1
1525
#Copyright 2016 Juergen Probst #This program is free software; you can redistribute it and/or modify #it under the terms of the GNU General Public License as published by #the Free Software Foundation; either version 3 of the License, or #(at your option) any later version. #This program is distributed in the hope that it will be useful, #but WITHOUT ANY WARRANTY; without even the implied warranty of #MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #GNU General Public License for more details. #You should have received a copy of the GNU General Public License #along with this program. If not, see <http://www.gnu.org/licenses/>. from __future__ import division import sys from os import path import numpy as np import matplotlib.pyplot as plt from pympb.phc_simulations import TriHoles2D from pympb import log, defaults def main(): if len(sys.argv) > 1: mode=sys.argv[1] else: mode='sim' defaults.add_epsilon_as_inset = True sim = TriHoles2D( material='SiN', radius=0.34, numbands=4,#8, k_interpolation=5,#31, resolution=16, mesh_size=7, runmode=mode, num_processors=2, save_field_patterns=False, convert_field_patterns=False) if not sim: log.error('an error occurred during simulation. See the .out file') return log.info(' ##### success! #####\n\n') if __name__ == '__main__': main()
gpl-3.0
lkishline/expyfun
examples/sync_test.py
1
1368
""" ============= A-V sync test ============= This example tests synchronization between the screen and the audio playback. NOTE: On Linux (w/NVIDIA), XFCE has been observed to give consistent timings, whereas Compiz WMs did not (doubled timings). """ # Author: Dan McCloy <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt from expyfun import ExperimentController import expyfun.analyze as ea print(__doc__) # Fullscreen MUST be used to guarantee flip accuracy! with ExperimentController('SyncTest', full_screen=True, noise_db=-np.inf, participant='s', session='0', output_dir=None, suppress_resamp=True, check_rms=None) as ec: ec.load_buffer(np.r_[0.1, np.zeros(99)]) # RMS == 0.01 pressed = None screenshot = None while pressed != '8': # enable a clean quit if required ec.set_background_color('white') t1 = ec.start_stimulus(start_of_trial=False) # skip checks ec.set_background_color('black') t2 = ec.flip() diff = round(1000 * (t2 - t1), 2) ec.screen_text('IFI (ms): {}'.format(diff), wrap=False) screenshot = ec.screenshot() if screenshot is None else screenshot ec.flip() pressed = ec.wait_one_press(0.5)[0] ec.stop() plt.ion() ea.plot_screen(screenshot)
bsd-3-clause
jakirkham/bokeh
bokeh/core/json_encoder.py
3
9053
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2018, Anaconda, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- ''' Provide a functions and classes to implement a custom JSON encoder for serializing objects for BokehJS. The primary interface is provided by the |serialize_json| function, which uses the custom |BokehJSONEncoder| to produce JSON output. In general, functions in this module convert values in the following way: * Datetime values (Python, Pandas, NumPy) are converted to floating point milliseconds since epoch. * TimeDelta values are converted to absolute floating point milliseconds. * RelativeDelta values are converted to dictionaries. * Decimal values are converted to floating point. * Sequences (Pandas Series, NumPy arrays, python sequences) that are passed though this interface are converted to lists. Note, however, that arrays in data sources inside Bokeh Documents are converted elsewhere, and by default use a binary encoded format. * Bokeh ``Model`` instances are usually serialized elsewhere in the context of an entire Bokeh Document. Models passed trough this interface are converted to references. * ``HasProps`` (that are not Bokeh models) are converted to key/value dicts or all their properties and values. * ``Color`` instances are converted to CSS color values. .. |serialize_json| replace:: :class:`~bokeh.core.json_encoder.serialize_json` .. |BokehJSONEncoder| replace:: :class:`~bokeh.core.json_encoder.BokehJSONEncoder` ''' #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function, unicode_literals import logging log = logging.getLogger(__name__) #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports import collections import decimal import json # External imports import numpy as np # Bokeh imports from ..settings import settings from ..util.dependencies import import_optional from ..util.serialization import convert_datetime_type, convert_timedelta_type, is_datetime_type, is_timedelta_type, transform_series, transform_array #----------------------------------------------------------------------------- # Globals and constants #----------------------------------------------------------------------------- rd = import_optional("dateutil.relativedelta") pd = import_optional('pandas') __all__ = ( 'BokehJSONEncoder', 'serialize_json', ) #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- def serialize_json(obj, pretty=None, indent=None, **kwargs): ''' Return a serialized JSON representation of objects, suitable to send to BokehJS. This function is typically used to serialize single python objects in the manner expected by BokehJS. In particular, many datetime values are automatically normalized to an expected format. Some Bokeh objects can also be passed, but note that Bokeh models are typically properly serialized in the context of an entire Bokeh document. The resulting JSON always has sorted keys. By default. the output is as compact as possible unless pretty output or indentation is requested. Args: obj (obj) : the object to serialize to JSON format pretty (bool, optional) : Whether to generate prettified output. If ``True``, spaces are added after added after separators, and indentation and newlines are applied. (default: False) Pretty output can also be enabled with the environment variable ``BOKEH_PRETTY``, which overrides this argument, if set. indent (int or None, optional) : Amount of indentation to use in generated JSON output. If ``None`` then no indentation is used, unless pretty output is enabled, in which case two spaces are used. (default: None) Any additional keyword arguments are passed to ``json.dumps``, except for some that are computed internally, and cannot be overridden: * allow_nan * indent * separators * sort_keys Examples: .. code-block:: python >>> data = dict(b=np.datetime64('2017-01-01'), a = np.arange(3)) >>>print(serialize_json(data)) {"a":[0,1,2],"b":1483228800000.0} >>> print(serialize_json(data, pretty=True)) { "a": [ 0, 1, 2 ], "b": 1483228800000.0 } ''' # these args to json.dumps are computed internally and should not be passed along for name in ['allow_nan', 'separators', 'sort_keys']: if name in kwargs: raise ValueError("The value of %r is computed internally, overriding is not permissable." % name) if pretty is None: pretty = settings.pretty(False) if pretty: separators=(",", ": ") else: separators=(",", ":") if pretty and indent is None: indent = 2 return json.dumps(obj, cls=BokehJSONEncoder, allow_nan=False, indent=indent, separators=separators, sort_keys=True, **kwargs) #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- class BokehJSONEncoder(json.JSONEncoder): ''' A custom ``json.JSONEncoder`` subclass for encoding objects in accordance with the BokehJS protocol. ''' def transform_python_types(self, obj): ''' Handle special scalars such as (Python, NumPy, or Pandas) datetimes, or Decimal values. Args: obj (obj) : The object to encode. Anything not specifically handled in this method is passed on to the default system JSON encoder. ''' # date/time values that get serialized as milliseconds if is_datetime_type(obj): return convert_datetime_type(obj) if is_timedelta_type(obj): return convert_timedelta_type(obj) # slice objects elif isinstance(obj, slice): return dict(start=obj.start, stop=obj.stop, step=obj.step) # NumPy scalars elif np.issubdtype(type(obj), np.floating): return float(obj) elif np.issubdtype(type(obj), np.integer): return int(obj) elif np.issubdtype(type(obj), np.bool_): return bool(obj) # Decimal values elif isinstance(obj, decimal.Decimal): return float(obj) # RelativeDelta gets serialized as a dict elif rd and isinstance(obj, rd.relativedelta): return dict(years=obj.years, months=obj.months, days=obj.days, hours=obj.hours, minutes=obj.minutes, seconds=obj.seconds, microseconds=obj.microseconds) else: return super(BokehJSONEncoder, self).default(obj) def default(self, obj): ''' The required ``default`` method for JSONEncoder subclasses. Args: obj (obj) : The object to encode. Anything not specifically handled in this method is passed on to the default system JSON encoder. ''' from ..model import Model from ..colors import Color from .has_props import HasProps # array types -- use force_list here, only binary # encoding CDS columns for now if pd and isinstance(obj, (pd.Series, pd.Index)): return transform_series(obj, force_list=True) elif isinstance(obj, np.ndarray): return transform_array(obj, force_list=True) elif isinstance(obj, collections.deque): return list(map(self.default, obj)) elif isinstance(obj, Model): return obj.ref elif isinstance(obj, HasProps): return obj.properties_with_values(include_defaults=False) elif isinstance(obj, Color): return obj.to_css() else: return self.transform_python_types(obj) #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------
bsd-3-clause
irhete/predictive-monitoring-benchmark
preprocessing/preprocess_logs_production.py
1
4021
import pandas as pd import numpy as np import os input_data_folder = "../orig_logs" output_data_folder = "../labeled_logs_csv_processed" filenames = ["Production.csv"] case_id_col = "Case ID" activity_col = "Activity" resource_col = "Resource" timestamp_col = "Complete Timestamp" label_col = "label" pos_label = "deviant" neg_label = "regular" freq_threshold = 10 timeunit = 'm' # features for classifier static_cat_cols = ["Part_Desc_", "Rework"] static_num_cols = ["Work_Order_Qty"] dynamic_cat_cols = [activity_col, resource_col, "Report_Type", "Resource.1"] dynamic_num_cols = ["Qty_Completed", "Qty_for_MRB", "activity_duration"] static_cols = static_cat_cols + static_num_cols + [case_id_col, label_col] dynamic_cols = dynamic_cat_cols + dynamic_num_cols + [timestamp_col] cat_cols = dynamic_cat_cols + static_cat_cols def assign_label(group): tmp = group["Qty_Rejected"] > 0 tmp = tmp.reset_index()["Qty_Rejected"] if sum(tmp) > 0: idx = tmp[tmp==True].index[0] group = group.iloc[:idx,:] group[label_col] = pos_label else: group[label_col] = neg_label return group def extract_timestamp_features(group): group = group.sort_values(timestamp_col, ascending=False, kind='mergesort') tmp = group[timestamp_col] - group[timestamp_col].shift(-1) tmp = tmp.fillna(0) group["timesincelastevent"] = tmp.apply(lambda x: float(x / np.timedelta64(1, 'm'))) # m is for minutes tmp = group[timestamp_col] - group[timestamp_col].iloc[-1] tmp = tmp.fillna(0) group["timesincecasestart"] = tmp.apply(lambda x: float(x / np.timedelta64(1, 'm'))) # m is for minutes group = group.sort_values(timestamp_col, ascending=True, kind='mergesort') group["event_nr"] = range(1, len(group) + 1) return group def get_open_cases(date): return sum((dt_first_last_timestamps["start_time"] <= date) & (dt_first_last_timestamps["end_time"] > date)) for filename in filenames: data = pd.read_csv(os.path.join(input_data_folder,filename), sep=";") # add event duration data["Complete Timestamp"] = pd.to_datetime(data["Complete Timestamp"]) data["Start Timestamp"] = pd.to_datetime(data["Start Timestamp"]) tmp = data["Complete Timestamp"] - data["Start Timestamp"] tmp = tmp.fillna(0) data["activity_duration"] = tmp.apply(lambda x: float(x / np.timedelta64(1, timeunit))) # assign labels data = data.sort_values(timestamp_col, ascending=True, kind='mergesort').groupby(case_id_col).apply(assign_label) data = data[static_cols + dynamic_cols] # add features extracted from timestamp data[timestamp_col] = pd.to_datetime(data[timestamp_col]) data["timesincemidnight"] = data[timestamp_col].dt.hour * 60 + data[timestamp_col].dt.minute data["month"] = data[timestamp_col].dt.month data["weekday"] = data[timestamp_col].dt.weekday data["hour"] = data[timestamp_col].dt.hour data = data.groupby(case_id_col).apply(extract_timestamp_features) # add inter-case features data = data.sort_values([timestamp_col], ascending=True, kind='mergesort') dt_first_last_timestamps = data.groupby(case_id_col)[timestamp_col].agg([min, max]) dt_first_last_timestamps.columns = ["start_time", "end_time"] data["open_cases"] = data[timestamp_col].apply(get_open_cases) # impute missing values grouped = data.sort_values(timestamp_col, ascending=True, kind='mergesort').groupby(case_id_col) for col in static_cols + dynamic_cols: data[col] = grouped[col].transform(lambda grp: grp.fillna(method='ffill')) data[cat_cols] = data[cat_cols].fillna('missing') data = data.fillna(0) # set infrequent factor levels to "other" for col in cat_cols: counts = data[col].value_counts() mask = data[col].isin(counts[counts >= freq_threshold].index) data.loc[~mask, col] = "other" data.to_csv(os.path.join(output_data_folder,filename), sep=";", index=False)
apache-2.0
codein/poc
github_poller.py
1
2466
import os import requests import json import urllib from urllib import urlencode import pandas as pd import argparse import numpy as np import datetime import settings import utils base_url = 'https://api.github.com' issue_attributes = ['title', 'html_url'] def extract_issue_attributes(raw_issue): try: issue = {} for key in issue_attributes: issue[key] = raw_issue[key] hours = raw_issue['body'].split('\n')[0].lower().replace('p', '') issue['hours'] = int(hours) raw_date = raw_issue['closed_at'] date = datetime.datetime.strptime(raw_date, "%Y-%m-%dT%H:%M:%SZ") issue['date'] = date.strftime('%m/%d/%y') return issue except Exception as e: print(e) print(raw_issue['html_url']) def get_issues(url, issues=None): if issues is None: issues = [] request_headers = { 'content-type': 'application/json; charset=utf8', # 'Accept': 'application/vnd.bindo-' + settings.BINDO_API['api_version'] + '+json', 'Authorization': 'token ' + settings.GITHUB_OAUTH_TOKEN, } print(url) payload = { 'state': 'closed', 'sort': 'created', } response = requests.get(url, headers=request_headers, params=payload) if response.status_code == requests.codes.ok: issues= issues + (response.json()) if 'next' in response.links: next_url = response.links['next'] issues = get_issues(next_url['url'], issues) return issues for repo_dict in settings.GITHUB_REPOSITORIES: issues_url = '/repos/{org}/{repo}/issues'.format(**repo_dict) url = urllib.basejoin(base_url, issues_url) raw_issues = get_issues(url) issues = [] if len(raw_issues) > 0: for raw_issue in raw_issues: issue = extract_issue_attributes(raw_issue) if issue: issues.append(issue) df = pd.DataFrame(issues) copy_columns = [ ('title', 'comments'), ] for from_column, to_column in copy_columns: df[to_column] = df[from_column] output_columns = [ 'date', 'hours', 'comments', 'html_url', ] df = df[output_columns] output_file_location = '~/{repo}-issues.xlsx'.format(**repo_dict) output_file_location = utils.expanduser(output_file_location) utils.df_to_excel(output_file_location, df)
mit
srinathv/bokeh
bokeh/compat/mplexporter/tools.py
75
1732
""" Tools for matplotlib plot exporting """ def ipynb_vega_init(): """Initialize the IPython notebook display elements This function borrows heavily from the excellent vincent package: http://github.com/wrobstory/vincent """ try: from IPython.core.display import display, HTML except ImportError: print('IPython Notebook could not be loaded.') require_js = ''' if (window['d3'] === undefined) {{ require.config({{ paths: {{d3: "http://d3js.org/d3.v3.min"}} }}); require(["d3"], function(d3) {{ window.d3 = d3; {0} }}); }}; if (window['topojson'] === undefined) {{ require.config( {{ paths: {{topojson: "http://d3js.org/topojson.v1.min"}} }} ); require(["topojson"], function(topojson) {{ window.topojson = topojson; }}); }}; ''' d3_geo_projection_js_url = "http://d3js.org/d3.geo.projection.v0.min.js" d3_layout_cloud_js_url = ("http://wrobstory.github.io/d3-cloud/" "d3.layout.cloud.js") topojson_js_url = "http://d3js.org/topojson.v1.min.js" vega_js_url = 'http://trifacta.github.com/vega/vega.js' dep_libs = '''$.getScript("%s", function() { $.getScript("%s", function() { $.getScript("%s", function() { $.getScript("%s", function() { $([IPython.events]).trigger("vega_loaded.vincent"); }) }) }) });''' % (d3_geo_projection_js_url, d3_layout_cloud_js_url, topojson_js_url, vega_js_url) load_js = require_js.format(dep_libs) html = '<script>'+load_js+'</script>' display(HTML(html))
bsd-3-clause
google/telluride_decoding
telluride_decoding/plot_util.py
1
3811
# Copyright 2020 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # Lint as: python2 python3 """Utilities to plot results.""" # To prevent tkinter errors as per: https://stackoverflow.com/a/37605654 import os import matplotlib matplotlib.use('Agg') import tensorflow.compat.v2 as tf # pylint: disable=g-import-not-at-top # User should call tf.compat.v1.enable_v2_behavior() def matplotlib_pyplot(): """Imports matplotlib pyplot.""" import matplotlib.pyplot as plt # pylint: disable=g-import-not-at-top return plt def plot_mean_std(test_name, regularization_list, run_mean, run_std, golden_mean_std_dict=None, png_file_name=None, show_plot=False): """Plots the mean and standard deviation as an error bar figure. Args: test_name: The name of the test for use in plot title. regularization_list: A list of regularization values. run_mean: the mean from each regularization value, over tests run_std: the standard deviation from each regularization value. golden_mean_std_dict: The golden results as an ordered dictionary with the regularization values as the keys and tuples with these stats of the mean and standard deviation estimates: mean(m), means(s), std(m), std(s) png_file_name: If file name is not empty, save the plot to the PNG file. show_plot: If true, show the plot in a window. Raises: TypeError: If the input parameters are not correct. """ if not png_file_name and not show_plot: raise TypeError('PNG file name is empty and show_plot is false.') if len(regularization_list) != len(run_mean): raise TypeError('Lengths of regularizations (%d) and means (%d) are not ' 'equal.' % (len(regularization_list), len(run_mean))) if len(regularization_list) != len(run_std): raise TypeError('Lengths of regularizations (%d) and stds (%d) are not ' 'equal.' % (len(regularization_list), len(run_std))) plt = matplotlib_pyplot() plt.figure() if golden_mean_std_dict: golden_regularization_list = [] golden_mean_list = [] golden_std_list = [] for regularization_value, (mean_m, mean_s, _, _) in golden_mean_std_dict.items(): golden_regularization_list.append(regularization_value) golden_mean_list.append(mean_m) golden_std_list.append(mean_s) plt.errorbar( golden_regularization_list, golden_mean_list, golden_std_list, color='orange', uplims=True, lolims=True, label='golden') plt.errorbar( regularization_list, run_mean, run_std, color='blue', label='actual') plt.xscale('log') plt.xlabel('Regularization lambda (log10)') plt.ylabel('Mean correlation') plt.title(test_name + ' experiment correlation') plt.legend(loc='lower right') if png_file_name: base_dir = os.path.split(png_file_name)[0] if base_dir and not tf.io.gfile.exists(base_dir): tf.io.gfile.makedirs(base_dir) with tf.io.gfile.GFile(png_file_name, 'wb') as png_file: plt.savefig(png_file, format='png') if show_plot: plt.show()
apache-2.0
Didou09/tofu
setup.py
1
13075
""" A tomography library for fusion devices See: https://github.com/ToFuProject/tofu """ import os import glob import shutil import logging import platform import subprocess from codecs import open # ... setup tools from setuptools import setup, find_packages from setuptools import Extension # ... packages that need to be in pyproject.toml from Cython.Distutils import build_ext import numpy as np # ... local script import _updateversion as up # ... for `clean` command from distutils.command.clean import clean as Clean # == Checking platform ======================================================== is_platform_windows = False if platform.system() == "Windows": is_platform_windows = True # === Setting clean command =================================================== logging.basicConfig(level=logging.INFO) logger = logging.getLogger("tofu.setup") class CleanCommand(Clean): description = "Remove build artifacts from the source tree" def expand(self, path_list): """ Expand a list of path using glob magic. :param list[str] path_list: A list of path which may contains magic :rtype: list[str] :returns: A list of path without magic """ path_list2 = [] for path in path_list: if glob.has_magic(path): iterator = glob.iglob(path) path_list2.extend(iterator) else: path_list2.append(path) return path_list2 def find(self, path_list): """Find a file pattern if directories. Could be done using "**/*.c" but it is only supported in Python 3.5. :param list[str] path_list: A list of path which may contains magic :rtype: list[str] :returns: A list of path without magic """ import fnmatch path_list2 = [] for pattern in path_list: for root, _, filenames in os.walk("."): for filename in fnmatch.filter(filenames, pattern): path_list2.append(os.path.join(root, filename)) return path_list2 def run(self): Clean.run(self) cython_files = self.find(["*.pyx"]) cythonized_files = [ path.replace(".pyx", ".c") for path in cython_files ] cythonized_files += [ path.replace(".pyx", ".cpp") for path in cython_files ] so_files = self.find(["*.so"]) # really remove the directories # and not only if they are empty to_remove = [self.build_base] to_remove = self.expand(to_remove) to_remove += cythonized_files to_remove += so_files if not self.dry_run: for path in to_remove: try: if os.path.isdir(path): shutil.rmtree(path) else: os.remove(path) logger.info("removing '%s'", path) except OSError: pass # ============================================================================= # ============================================================================= # Check if openmp available # see http://openmp.org/wp/openmp-compilers/ omp_test = r""" #include <omp.h> #include <stdio.h> int main() { #pragma omp parallel printf("Hello from thread %d, nthreads %d\n", omp_get_thread_num(), omp_get_num_threads()); } """ def check_for_openmp(cc_var): import tempfile tmpdir = tempfile.mkdtemp() curdir = os.getcwd() os.chdir(tmpdir) filename = r"test.c" with open(filename, "w") as file: file.write(omp_test) with open(os.devnull, "w") as fnull: result = subprocess.call( [cc_var, "-fopenmp", filename], stdout=fnull, stderr=fnull ) os.chdir(curdir) # clean up shutil.rmtree(tmpdir) return result # ....... Using function if is_platform_windows: openmp_installed = False else: openmp_installed = not check_for_openmp("cc") # ============================================================================= # == Getting tofu version ===================================================== _HERE = os.path.abspath(os.path.dirname(__file__)) def get_version_tofu(path=_HERE): # Try from git isgit = ".git" in os.listdir(path) if isgit: try: git_branch = ( subprocess.check_output( [ "git", "rev-parse", "--abbrev-ref", "HEAD", ] ) .rstrip() .decode() ) deploy_branches = ["master", "deploy-test"] if (git_branch in deploy_branches or "TRAVIS_TAG" in os.environ): version_tofu = up.updateversion() else: isgit = False except Exception: isgit = False if not isgit: version_tofu = os.path.join(path, "tofu") version_tofu = os.path.join(version_tofu, "version.py") with open(version_tofu, "r") as fh: version_tofu = fh.read().strip().split("=")[-1].replace("'", "") version_tofu = version_tofu.lower().replace("v", "").replace(" ", "") return version_tofu version_tofu = get_version_tofu(path=_HERE) print("") print("Version for setup.py : ", version_tofu) print("") # ============================================================================= # ============================================================================= # Get the long description from the README file # Get the readme file whatever its extension (md vs rst) _README = [ ff for ff in os.listdir(_HERE) if len(ff) <= 10 and ff[:7] == "README." ] assert len(_README) == 1 _README = _README[0] with open(os.path.join(_HERE, _README), encoding="utf-8") as f: long_description = f.read() if _README[-3:] == ".md": long_description_content_type = "text/markdown" else: long_description_content_type = "text/x-rst" # ============================================================================= # ============================================================================= # Compiling files if openmp_installed: extra_compile_args = ["-O3", "-Wall", "-fopenmp", "-fno-wrapv"] extra_link_args = ["-fopenmp"] else: extra_compile_args = ["-O3", "-Wall", "-fno-wrapv"] extra_link_args = [] extensions = [ Extension( name="tofu.geom._GG", sources=["tofu/geom/_GG.pyx"], extra_compile_args=extra_compile_args, extra_link_args=extra_link_args, ), Extension( name="tofu.geom._basic_geom_tools", sources=["tofu/geom/_basic_geom_tools.pyx"], extra_compile_args=extra_compile_args, extra_link_args=extra_link_args, ), Extension( name="tofu.geom._distance_tools", sources=["tofu/geom/_distance_tools.pyx"], extra_compile_args=extra_compile_args, extra_link_args=extra_link_args, ), Extension( name="tofu.geom._sampling_tools", sources=["tofu/geom/_sampling_tools.pyx"], extra_compile_args=extra_compile_args, extra_link_args=extra_link_args, ), Extension( name="tofu.geom._raytracing_tools", sources=["tofu/geom/_raytracing_tools.pyx"], extra_compile_args=extra_compile_args, extra_link_args=extra_link_args, ), Extension( name="tofu.geom._vignetting_tools", sources=["tofu/geom/_vignetting_tools.pyx"], language="c++", extra_compile_args=extra_compile_args, extra_link_args=extra_link_args, ), ] setup( name="tofu", version="{ver}".format(ver=version_tofu), # Use scm to get code version from git tags # cf. https://pypi.python.org/pypi/setuptools_scm # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # https://packaging.python.org/en/latest/single_source_version.html # The version is stored only in the setup.py file and read from it (option # 1 in https://packaging.python.org/en/latest/single_source_version.html) use_scm_version=False, # Description of what tofu does description="A python library for Tomography for Fusion", long_description=long_description, long_description_content_type=long_description_content_type, # The project's main homepage. url="https://github.com/ToFuProject/tofu", # Author details author="Didier VEZINET and Laura MENDOZA", author_email="[email protected]", # Choose your license license="MIT", # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable "Development Status :: 4 - Beta", # Indicate who your project is intended for "Intended Audience :: Science/Research", "Topic :: Scientific/Engineering :: Physics", # Pick your license as you wish (should match "license" above) "License :: OSI Approved :: MIT License", # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", # In which language most of the code is written ? "Natural Language :: English", ], # What does your project relate to? keywords="tomography geometry 3D inversion synthetic fusion", # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=find_packages( exclude=[ "doc", "_Old", "_Old_doc", "plugins", "plugins.*", "*.plugins.*", "*.plugins", "*.tests10_plugins", "*.tests10_plugins.*", "tests10_plugins.*", "tests10_plugins", ] ), # packages = ['tofu','tofu.geom'], # Alternatively, if you want to distribute just a my_module.py, uncomment # this: # py_modules=["my_module"], # List run-time dependencies here. These will be installed by pip when # your project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/requirements.html install_requires=["numpy", "scipy", "matplotlib", "cython>=0.26"], python_requires=">=3.6", # List additional groups of dependencies here (e.g. development # dependencies). You can install these using the following syntax, # for example: # $ pip install -e .[dev,test] extras_require={ "dev": [ "check-manifest", "coverage", "pytest", "sphinx", "sphinx-gallery", "sphinx_bootstrap_theme", ] }, # If there are data files included in your packages that need to be # installed, specify them here. If using Python 2.6 or less, then these # have to be included in MANIFEST.in as well. # package_data={ # # If any package contains *.txt, *.rst or *.npz files, include them: # '': ['*.txt', '*.rst', '*.npz'], # # And include any *.csv files found in the 'ITER' package, too: # 'ITER': ['*.csv'], # }, package_data={ "tofu.tests.tests01_geom.test_03_core_data": ["*.py", "*.txt"], "tofu.geom.inputs": ["*.txt"], "tofu.mag.mag_ripple": ['*.sh', '*.f'] }, include_package_data=True, # Although 'package_data' is the preferred approach, in some case you may # need to place data files outside of your packages. See: # http://docs.python.org/3.4/distutils/setupscript.html # installing-additional-files # noqa # In this case, 'data_file' will be installed into '<sys.prefix>/my_data' # data_files=[('my_data', ['data/data_file'])], # executable scripts can be declared here # They can be python or non-python scripts # scripts=[ # ], # entry_points point to functions in the package # Theye are generally preferable over scripts because they provide # cross-platform support and allow pip to create the appropriate form # of executable for the target platform. entry_points={ 'console_scripts': [ 'tofuplot=tofu.entrypoints.tofuplot:main', 'tofucalc=tofu.entrypoints.tofucalc:main', 'tofu-version=scripts.tofuversion:main', 'tofu-custom=scripts.tofucustom:main', 'tofu=scripts.tofu_bash:main', ], }, py_modules=['_updateversion'], # Extensions and commands ext_modules=extensions, cmdclass={"build_ext": build_ext, "clean": CleanCommand}, include_dirs=[np.get_include()], )
mit
elkingtonmcb/shogun
examples/undocumented/python_modular/graphical/interactive_svr_demo.py
16
11301
""" Shogun demo, based on PyQT Demo by Eli Bendersky Christian Widmer Soeren Sonnenburg License: GPLv3 """ import numpy import sys, os, csv from PyQt4.QtCore import * from PyQt4.QtGui import * import matplotlib from matplotlib import mpl from matplotlib.colorbar import make_axes, Colorbar from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt4agg import NavigationToolbar2QTAgg as NavigationToolbar from matplotlib.figure import Figure from modshogun import * from modshogun import * from modshogun import * class Form(QMainWindow): def __init__(self, parent=None): super(Form, self).__init__(parent) self.setWindowTitle('SHOGUN interactive demo') self.data = DataHolder() self.series_list_model = QStandardItemModel() self.create_menu() self.create_main_frame() self.create_status_bar() self.on_show() def load_file(self, filename=None): filename = QFileDialog.getOpenFileName(self, 'Open a data file', '.', 'CSV files (*.csv);;All Files (*.*)') if filename: self.data.load_from_file(filename) self.fill_series_list(self.data.series_names()) self.status_text.setText("Loaded " + filename) def on_show(self): self.axes.clear() self.axes.grid(True) self.axes.plot(self.data.x1, self.data.x2, 'bo') self.axes.set_xlim((-5,5)) self.axes.set_ylim((-5,5)) self.canvas.draw() self.fill_series_list(self.data.get_stats()) def on_about(self): msg = __doc__ QMessageBox.about(self, "About the demo", msg.strip()) def fill_series_list(self, names): self.series_list_model.clear() for name in names: item = QStandardItem(name) item.setCheckState(Qt.Unchecked) item.setCheckable(False) self.series_list_model.appendRow(item) def onclick(self, event): print 'button=%d, x=%d, y=%d, xdata=%f, ydata=%f'%(event.button, event.x, event.y, event.xdata, event.ydata) self.data.add_example(event.xdata, event.ydata) self.on_show() def clear(self): self.data.clear() self.on_show() def enable_widgets(self): kernel_name = self.kernel_combo.currentText() if kernel_name == "LinearKernel": self.sigma.setDisabled(True) self.degree.setDisabled(True) elif kernel_name == "PolynomialKernel": self.sigma.setDisabled(True) self.degree.setEnabled(True) elif kernel_name == "GaussianKernel": self.sigma.setEnabled(True) self.degree.setDisabled(True) def train_svm(self): width = float(self.sigma.text()) degree = int(self.degree.text()) self.axes.clear() self.axes.grid(True) self.axes.plot(self.data.x1, self.data.x2, 'bo') # train svm labels = self.data.get_labels() print type(labels) lab = RegressionLabels(labels) features = self.data.get_examples() train = RealFeatures(features) kernel_name = self.kernel_combo.currentText() print "current kernel is %s" % (kernel_name) if kernel_name == "LinearKernel": gk = LinearKernel(train, train) gk.set_normalizer(IdentityKernelNormalizer()) elif kernel_name == "PolynomialKernel": gk = PolyKernel(train, train, degree, True) gk.set_normalizer(IdentityKernelNormalizer()) elif kernel_name == "GaussianKernel": gk = GaussianKernel(train, train, width) cost = float(self.cost.text()) tubeeps = float(self.tubeeps.text()) print "cost", cost svm = LibSVR(cost, tubeeps, gk, lab) svm.train() svm.set_epsilon(1e-2) x=numpy.linspace(-5.0,5.0,100) y=svm.apply(RealFeatures(numpy.array([x]))).get_labels() self.axes.plot(x,y,'r-') self.axes.set_xlim((-5,5)) self.axes.set_ylim((-5,5)) self.canvas.draw() def create_main_frame(self): self.main_frame = QWidget() plot_frame = QWidget() self.dpi = 100 self.fig = Figure((6.0, 6.0), dpi=self.dpi) self.canvas = FigureCanvas(self.fig) self.canvas.setParent(self.main_frame) cid = self.canvas.mpl_connect('button_press_event', self.onclick) self.axes = self.fig.add_subplot(111) self.cax = None #self.mpl_toolbar = NavigationToolbar(self.canvas, self.main_frame) log_label = QLabel("Number of examples:") self.series_list_view = QListView() self.series_list_view.setModel(self.series_list_model) cost_label = QLabel('C') #self.cost = QSpinBox()#QLineEdit() self.cost = QLineEdit() self.cost.setText("1.0") #self.cost.setMinimum(1) spin_label2 = QLabel('tube') self.tubeeps = QLineEdit() self.tubeeps.setText("0.1") spin_label3 = QLabel('sigma') self.sigma = QLineEdit() self.sigma.setText("1.2") #self.sigma.setMinimum(1) spin_label4 = QLabel('d') self.degree = QLineEdit() self.degree.setText("2") #self.sigma.setMinimum(1) spins_hbox = QHBoxLayout() spins_hbox.addWidget(cost_label) spins_hbox.addWidget(self.cost) spins_hbox.addWidget(spin_label2) spins_hbox.addWidget(self.tubeeps) spins_hbox.addWidget(spin_label3) spins_hbox.addWidget(self.sigma) spins_hbox.addWidget(spin_label4) spins_hbox.addWidget(self.degree) spins_hbox.addStretch(1) self.legend_cb = QCheckBox("Show Support Vectors") self.legend_cb.setChecked(False) self.show_button = QPushButton("&Train SVR") self.connect(self.show_button, SIGNAL('clicked()'), self.train_svm) self.clear_button = QPushButton("&Clear") self.connect(self.clear_button, SIGNAL('clicked()'), self.clear) self.kernel_combo = QComboBox() self.kernel_combo.insertItem(-1, "GaussianKernel") self.kernel_combo.insertItem(-1, "PolynomialKernel") self.kernel_combo.insertItem(-1, "LinearKernel") self.kernel_combo.maximumSize = QSize(300, 50) self.connect(self.kernel_combo, SIGNAL("currentIndexChanged(QString)"), self.enable_widgets) left_vbox = QVBoxLayout() left_vbox.addWidget(self.canvas) #left_vbox.addWidget(self.mpl_toolbar) right0_vbox = QVBoxLayout() right0_vbox.addWidget(log_label) right0_vbox.addWidget(self.series_list_view) #right0_vbox.addWidget(self.legend_cb) right0_vbox.addStretch(1) right2_vbox = QVBoxLayout() right2_label = QLabel("Settings") right2_vbox.addWidget(right2_label) right2_vbox.addWidget(self.show_button) right2_vbox.addWidget(self.kernel_combo) right2_vbox.addLayout(spins_hbox) right2_clearlabel = QLabel("Remove Data") right2_vbox.addWidget(right2_clearlabel) right2_vbox.addWidget(self.clear_button) right2_vbox.addStretch(1) right_vbox = QHBoxLayout() right_vbox.addLayout(right0_vbox) right_vbox.addLayout(right2_vbox) hbox = QVBoxLayout() hbox.addLayout(left_vbox) hbox.addLayout(right_vbox) self.main_frame.setLayout(hbox) self.setCentralWidget(self.main_frame) self.enable_widgets() def create_status_bar(self): self.status_text = QLabel("") self.statusBar().addWidget(self.status_text, 1) def create_menu(self): self.file_menu = self.menuBar().addMenu("&File") load_action = self.create_action("&Load file", shortcut="Ctrl+L", slot=self.load_file, tip="Load a file") quit_action = self.create_action("&Quit", slot=self.close, shortcut="Ctrl+Q", tip="Close the application") self.add_actions(self.file_menu, (load_action, None, quit_action)) self.help_menu = self.menuBar().addMenu("&Help") about_action = self.create_action("&About", shortcut='F1', slot=self.on_about, tip='About the demo') self.add_actions(self.help_menu, (about_action,)) def add_actions(self, target, actions): for action in actions: if action is None: target.addSeparator() else: target.addAction(action) def create_action( self, text, slot=None, shortcut=None, icon=None, tip=None, checkable=False, signal="triggered()"): action = QAction(text, self) if icon is not None: action.setIcon(QIcon(":/%s.png" % icon)) if shortcut is not None: action.setShortcut(shortcut) if tip is not None: action.setToolTip(tip) action.setStatusTip(tip) if slot is not None: self.connect(action, SIGNAL(signal), slot) if checkable: action.setCheckable(True) return action class DataHolder(object): """ Just a thin wrapper over a dictionary that holds integer data series. Each series has a name and a list of numbers as its data. The length of all series is assumed to be the same. The series can be read from a CSV file, where each line is a separate series. In each series, the first item in the line is the name, and the rest are data numbers. """ def __init__(self, filename=None): self.clear() self.load_from_file(filename) def clear(self): self.x1 = [] self.x2 = [] def get_stats(self): num = len(self.x1) str_num = "num examples: %i" % num return (str_num, str_num) def get_labels(self): return numpy.array(self.x2, dtype=numpy.float64) def get_examples(self): num = len(self.x1) examples = numpy.zeros((1,num)) for i in xrange(num): examples[0,i] = self.x1[i] return examples def add_example(self, x1, x2): self.x1.append(x1) self.x2.append(x2) def load_from_file(self, filename=None): self.data = {} self.names = [] if filename: for line in csv.reader(open(filename, 'rb')): self.names.append(line[0]) self.data[line[0]] = map(int, line[1:]) self.datalen = len(line[1:]) def series_names(self): """ Names of the data series """ return self.names def series_len(self): """ Length of a data series """ return self.datalen def series_count(self): return len(self.data) def get_series_data(self, name): return self.data[name] def main(): app = QApplication(sys.argv) form = Form() form.show() app.exec_() if __name__ == "__main__": main() #~ dh = DataHolder('qt_mpl_data.csv') #~ print dh.data #~ print dh.get_series_data('1991 Sales') #~ print dh.series_names() #~ print dh.series_count()
gpl-3.0
bzamecnik/sms-tools
lectures/04-STFT/plots-code/windows.py
1
1203
import math # matplotlib without any blocking GUI import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import numpy as np from smst.utils import audio from smst.models import dft (fs, x) = audio.read_wav('../../../sounds/oboe-A4.wav') N = 512 pin = 5000 w = np.ones(501) hM1 = int(math.floor((w.size + 1) / 2)) hM2 = int(math.floor(w.size / 2)) x1 = x[pin - hM1:pin + hM2] plt.figure(1, figsize=(9.5, 7)) plt.subplot(4, 1, 1) plt.plot(np.arange(-hM1, hM2), x1, lw=1.5) plt.axis([-hM1, hM2, min(x1), max(x1)]) plt.title('x (oboe-A4.wav)') mX, pX = dft.from_audio(x1, w, N) mX = mX - max(mX) plt.subplot(4, 1, 2) plt.plot(np.arange(mX.size), mX, 'r', lw=1.5) plt.axis([0, N / 4, -70, 0]) plt.title('mX (rectangular window)') w = np.hamming(501) mX, pX = dft.from_audio(x1, w, N) mX = mX - max(mX) plt.subplot(4, 1, 3) plt.plot(np.arange(mX.size), mX, 'r', lw=1.5) plt.axis([0, N / 4, -70, 0]) plt.title('mX (hamming window)') w = np.blackman(501) mX, pX = dft.from_audio(x1, w, N) mX = mX - max(mX) plt.subplot(4, 1, 4) plt.plot(np.arange(mX.size), mX, 'r', lw=1.5) plt.axis([0, N / 4, -70, 0]) plt.title('mX (blackman window)') plt.tight_layout() plt.savefig('windows.png')
agpl-3.0
DiegoAsterio/speedy-Gonzales
data_science_functions.py
1
18458
import matplotlib.pyplot as plt import numpy as np from functools import reduce import math import pandas as pd import random class LabeledSet: def __init__(self,input_dimension): self.input_dimension=input_dimension self.nb_examples=0 self.labels = dict() self.label_count = [] def addExample(self,vector,label): if label not in self.labels: self.labels[label] = len(self.labels) self.label_count.append(0) if (self.nb_examples==0): self.x=np.array([vector]) self.y=np.array([[label]]) else: self.x=np.vstack((self.x,vector)) self.y=np.vstack((self.y,label)) self.nb_examples=self.nb_examples+1 self.label_count[self.labels[label]] += 1 #Renvoie la dimension de l'espace d'entrée def getInputDimension(self): return self.input_dimension #Renvoie le nombre d'exemple dans le set def size(self): return self.nb_examples #Renvoie la valeur de x_i def getX(self,i): return self.x[i] #Renvoie la valeur de y_i def getY(self,i): return(self.y[i]) def getDistribution(self): suma = reduce((lambda x, y: x + y),self.label_count) return list(map((lambda x: float(x)/suma), self.label_count)) def getMaxLabel(self): maxim = -1 label = None for k, v in self.labels.items(): if self.label_count[v] > maxim: label = k maxim = self.label_count[v] return label def plot2DSet(set): """ LabeledSet -> NoneType Hypothèse: set est de dimension 2 affiche une représentation graphique du LabeledSet remarque: l'ordre des labels dans set peut être quelconque """ S_pos = set.x[np.where(set.y == 1),:][0] # tous les exemples de label +1 S_neg = set.x[np.where(set.y == -1),:][0] # tous les exemples de label -1 plt.scatter(S_pos[:,0],S_pos[:,1],marker='o') plt.scatter(S_neg[:,0],S_neg[:,1],marker='x') class Classifier: def __init__(self,input_dimension): """ Constructeur """ raise NotImplementedError("Please Implement this method") # Permet de calculer la prediction sur x => renvoie un score def predict(self,x): raise NotImplementedError("Please Implement this method") # Permet d'entrainer le modele sur un ensemble de données def train(self,labeledSet): raise NotImplementedError("Please Implement this method") # Permet de calculer la qualité du système def accuracy(self,set): nb_ok=0 for i in range(set.size()): score=self.predict(set.getX(i)) if (score*set.getY(i)>0): nb_ok=nb_ok+1 acc=nb_ok/(set.size() * 1.0) return acc def plot_frontiere(set,classifier,step=20): """ LabeledSet * Classifier * int -> NoneType Remarque: le 3e argument est optionnel et donne la "résolution" du tracé affiche la frontière de décision associée au classifieur """ mmax=set.x.max(0) mmin=set.x.min(0) x1grid,x2grid=np.meshgrid(np.linspace(mmin[0],mmax[0],step),np.linspace(mmin[1],mmax[1],step)) grid=np.hstack((x1grid.reshape(x1grid.size,1),x2grid.reshape(x2grid.size,1))) # calcul de la prediction pour chaque point de la grille res=np.array([classifier.predict(grid[i,:]) for i in range(len(grid)) ]) res=res.reshape(x1grid.shape) # tracer des frontieres plt.contourf(x1grid,x2grid,res,colors=["red","cyan"],levels=[-1000,0,1000],linewidth=2) def shannon(distr): k = len(distr) if k > 1: f = lambda x: 0 if x == 0 else x*math.log(x,k) logarithms = list((map (f, distr))) return - reduce ((lambda x, y: x+y), logarithms) else: return 0 def entropie(aSet): distr = aSet.getDistribution() return shannon(distr) def discretise(LSet, col): """ LabelledSet * int -> tuple[float, float] col est le numéro de colonne sur X à discrétiser rend la valeur de coupure qui minimise l'entropie ainsi que son entropie. """ # initialisation: min_entropie = 1.1 # on met à une valeur max car on veut minimiser min_seuil = 0.0 # trie des valeurs: ind= np.argsort(LSet.x,axis=0) # calcul des distributions des classes pour E1 et E2: inf_plus = 0 # nombre de +1 dans E1 inf_moins = 0 # nombre de -1 dans E1 sup_plus = 0 # nombre de +1 dans E2 sup_moins = 0 # nombre de -1 dans E2 # remarque: au départ on considère que E1 est vide et donc E2 correspond à E. # Ainsi inf_plus et inf_moins valent 0. Il reste à calculer sup_plus et sup_moins # dans E. for j in range(0,LSet.size()): if (LSet.getY(j) == -1): sup_moins += 1 else: sup_plus += 1 nb_total = (sup_plus + sup_moins) # nombre d'exemples total dans E # parcours pour trouver le meilleur seuil: for i in range(len(LSet.x)-1): v_ind_i = ind[i] # vecteur d'indices courant = LSet.getX(v_ind_i[col])[col] lookahead = LSet.getX(ind[i+1][col])[col] val_seuil = (courant + lookahead) / 2.0; # M-A-J de la distrib. des classes: # pour réduire les traitements: on retire un exemple de E2 et on le place # dans E1, c'est ainsi que l'on déplace donc le seuil de coupure. if LSet.getY(ind[i][col])[0] == -1: inf_moins += 1 sup_moins -= 1 else: inf_plus += 1 sup_plus -= 1 # calcul de la distribution des classes de chaque côté du seuil: nb_inf = (inf_moins + inf_plus)*1.0 # rem: on en fait un float pour éviter nb_sup = (sup_moins + sup_plus)*1.0 # que ce soit une division entière. # calcul de l'entropie de la coupure val_entropie_inf = shannon([inf_moins / nb_inf, inf_plus / nb_inf]) val_entropie_sup = shannon([sup_moins / nb_sup, sup_plus / nb_sup]) val_entropie = (nb_inf / nb_total) * val_entropie_inf + (nb_sup / nb_total) * val_entropie_sup # si cette coupure minimise l'entropie, on mémorise ce seuil et son entropie: if (min_entropie > val_entropie): min_entropie = val_entropie min_seuil = val_seuil return (min_seuil, min_entropie) def divise(LSet, att, seuil): plus_petits = LabeledSet(LSet.getInputDimension()) plus_grands = LabeledSet(LSet.getInputDimension()) for i in range (LSet.size()): if LSet.getX(i)[att] <= seuil: plus_petits.addExample(LSet.getX(i), LSet.getY(i)[0]) else: plus_grands.addExample(LSet.getX(i), LSet.getY(i)[0]) return plus_petits, plus_grands class ArbreBinaire: def __init__(self): self.attribut = None # numéro de l'attribut self.seuil = None self.inferieur = None # ArbreBinaire Gauche (valeurs <= au seuil) self.superieur = None # ArbreBinaire Gauche (valeurs > au seuil) self.classe = None # Classe si c'est une feuille: -1 ou +1 def est_feuille(self): """ rend True si l'arbre est une feuille """ return self.seuil == None def ajoute_fils(self,ABinf,ABsup,att,seuil): """ ABinf, ABsup: 2 arbres binaires att: numéro d'attribut seuil: valeur de seuil """ self.attribut = att self.seuil = seuil self.inferieur = ABinf self.superieur = ABsup def ajoute_feuille(self,classe): """ classe: -1 ou + 1 """ self.classe = classe def classifie(self,exemple): """ exemple : numpy.array rend la classe de l'exemple: +1 ou -1 """ if self.est_feuille(): return self.classe if exemple[self.attribut] <= self.seuil: return self.inferieur.classifie(exemple) return self.superieur.classifie(exemple) def to_graph(self, g, prefixe='A'): """ construit une représentation de l'arbre pour pouvoir l'afficher """ if self.est_feuille(): g.node(prefixe,str(self.classe),shape='box') else: g.node(prefixe, str(self.attribut)) self.inferieur.to_graph(g,prefixe+"g") self.superieur.to_graph(g,prefixe+"d") g.edge(prefixe,prefixe+"g", '<='+ str(self.seuil)) g.edge(prefixe,prefixe+"d", '>'+ str(self.seuil)) return g def construit_AD(LSet, epsilon): un_arbre = ArbreBinaire() if shannon(LSet.getDistribution()) <= epsilon: un_arbre.ajoute_feuille(LSet.getMaxLabel()) else: dim = LSet.getInputDimension() minim = float('inf') min_seuil = min_index = 0 for i in range(dim): seuil, entropie = discretise(LSet,i) if entropie < minim: min_seuil, minim, min_index = (seuil, entropie, i) smaller, bigger = divise(LSet,min_index,min_seuil) un_arbre.ajoute_fils(construit_AD(smaller,epsilon),construit_AD(bigger,epsilon),min_index, min_seuil) return un_arbre class ArbreDecision(Classifier): # Constructeur def __init__(self,epsilon): # valeur seuil d'entropie pour arrêter la construction self.epsilon= epsilon self.racine = None # Permet de calculer la prediction sur x => renvoie un score def predict(self,x): # classification de l'exemple x avec l'arbre de décision # on rend 0 (classe -1) ou 1 (classe 1) classe = self.racine.classifie(x) if (classe == 1): return(1) else: return(-1) # Permet d'entrainer le modele sur un ensemble de données def train(self,set): # construction de l'arbre de décision self.set=set self.racine = construit_AD(set,self.epsilon) # Permet d'afficher l'arbre def plot(self): gtree = gv.Digraph(format='png') return self.racine.to_graph(gtree) def createXOR(nb_points,covar): a_set = LabeledSet(2) var = [[covar,0], [0,covar]] positive_center1 = [0,0] positive_center2 = [1,1] X = np.random.multivariate_normal(positive_center1, var, int(nb_points/4)) Y = np.random.multivariate_normal(positive_center2, var, int(nb_points/4)) for i in range(len(X)): a_set.addExample(X[i],1) a_set.addExample(Y[i],1) negative_center1 = [1,0] negative_center2 = [0,1] X = np.random.multivariate_normal(negative_center1, var, int(nb_points/4)) Y = np.random.multivariate_normal(negative_center2, var, int(nb_points/4)) for i in range(len(X)): a_set.addExample(X[i],-1) a_set.addExample(Y[i],-1) return a_set class Perceptron(Classifier): def dist_euclidienne_vect(self,x,y): v = [(i-j)*(i-j) for i,j in np.column_stack([x,y])] return np.sqrt(np.sum(v)) def __init__(self,input_dimension,learning_rate, eps=0.001, verb = False): self.input_dimension = input_dimension self.m = learning_rate self.weights = np.zeros(input_dimension) self.eps = eps self.verbose = verb #Permet de calculer la prediction sur x => renvoie un score def predict(self,x): value = np.vdot(self.weights,x) if value > 0: return 1 else : return -1 #Permet d'entrainer le modele sur un ensemble de données def train(self,labeledSet): niter = 0 taille = labeledSet.size() old_weights = [float('inf') for i in range(self.input_dimension)] while(self.dist_euclidienne_vect(old_weights, self.weights)>self.eps and niter < 500): old_weights = self.weights for i in range(taille): vector = labeledSet.getX(i) label = labeledSet.getY(i) prediction = self.predict(vector) if (prediction != label): self.weights = [self.weights[i] + self.m*label*vector[i] for i in range(self.input_dimension)] niter += 1 if (self.verbose): print ("L'accuracy est %f apres %i iterations" %(self.accuracy(labeledSet),niter)) def tirage(v, m, remise): if remise: ret = [random.choice(v) for _ in range(m)] else: ret = random.sample(v,m) return ret def echantillonLS(LSet, m, remise, plus_info = False): index = tirage(range(LSet.size()),m,remise) choix = LabeledSet(LSet.getInputDimension()) pas_choisis = LabeledSet(LSet.getInputDimension()) for i in index: choix.addExample(LSet.x[i], LSet.y[i][0]) for i in range(LSet.size()): if i not in index: pas_choisis.addExample(LSet.x[i], LSet.y[i][0]) if not plus_info: return choix else: return choix, pas_choisis class ClassifierBaggingTree(Classifier): def __init__(self,nArbres,pourcentageExemples,seuil,remise): self.nArbres = nArbres self.pourcentage = pourcentageExemples self.seuil = seuil self.remise = remise self.foret = [] def train(self,LSet): N = int(LSet.size() * self.pourcentage) for _ in range(self.nArbres): echantillon = echantillonLS(LSet,N,self.remise) arb_dec = ArbreDecision(self.seuil) arb_dec.train(echantillon) self.foret.append(arb_dec) def predict(self,x): votes = np.array([arbre.predict(x) for arbre in self.foret]) if votes.mean() >= 0 : return 1 else: return -1 class ClassifierOOBPerceptron(Classifier): def __init__(self,nPercep,pourcentageExemples,seuil,remise): self.nPercep = nPercep self.pourcentage = pourcentageExemples self.seuil = seuil self.remise = remise self.ensemble = dict() self.echantillons = dict() self.size = 0 def train(self,LSet): N = int(LSet.size() * self.pourcentage) for _ in range(self.nPercep): echantillon = echantillonLS(LSet,N,self.remise) perc = Perceptron(LSet.getInputDimension(),0.05) perc.train(echantillon) self.ensemble[self.size] = perc self.echantillons[self.size] = echantillon self.size += 1 def can_vote(self, k, position): echantillon = self.echantillons[k] for x in echantillon.x: foundInEchantillon = True for i in range(len(x)): if x[i] != position[i]: foundInEchantillon = False if foundInEchantillon: return False return True def predict(self,x): right_to_vote = [self.can_vote(key, x) for key in self.echantillons] votes = np.array([self.ensemble[i].predict(x) for i in range(self.size) if right_to_vote[i] ]) try : if votes.mean() >= 0 : return 1 else: return -1 except RuntimeWarning: return 1 class ClassifierOOBTree(Classifier): def __init__(self,nArbres,pourcentageExemples,seuil,remise): self.nArbres = nArbres self.pourcentage = pourcentageExemples self.seuil = seuil self.remise = remise self.foret = dict() self.echantillons = dict() self.sizeForet = 0 def train(self,LSet): N = int(LSet.size() * self.pourcentage) for _ in range(self.nArbres): echantillon = echantillonLS(LSet,N,self.remise) arb_dec = ArbreDecision(self.seuil) arb_dec.train(echantillon) self.foret[self.sizeForet] = arb_dec self.echantillons[self.sizeForet] = echantillon self.sizeForet += 1 def can_vote(self, k, position): echantillon = self.echantillons[k] for x in echantillon.x: foundInEchantillon = True for i in range(len(x)): if x[i] != position[i]: foundInEchantillon = False if foundInEchantillon: return False return True def predict(self,x): right_to_vote = [self.can_vote(key, x) for key in self.echantillons] votes = np.array([self.foret[i].predict(x) for i in range(self.sizeForet) if right_to_vote[i] ]) try : if votes.mean() >= 0 : return 1 else: return -1 except RuntimeWarning: return 1 def dist_vect(x,y): v = [(i-j)*(i-j) for i,j in np.column_stack([x,y])] return np.sqrt(np.sum(v)) def initialisation(K, df): choice = random.sample(range(len(df)),K) return pd.DataFrame(df.iloc[choice]) def inertie_cluster(df): cntr = mon_centroide(df) ret=0 for i in range(len(df)): d = dist_vect(cntr,df.iloc[i]) ret += d*d return ret def mon_centroide(m): return m.mean(axis=0) def plus_proche(ex,centroides): minimum = float('inf') pos = -1 for i in range(len(centroides)): d = dist_vect(ex, centroides.iloc[i]) if minimum > d: pos = i minimum = d return pos def affecte_cluster(df,centr): M_affect = dict() for i in range(len(centr)): M_affect[i]=[] for i in range(len(df)): proche = plus_proche(df.iloc[i],centr) M_affect[proche].append(i) return M_affect def nouveaux_centroides(df, M): centrs = [mon_centroide(df.iloc[M[i]]) for i in range(len(M))] return pd.DataFrame(centrs) def inertie_globale(df, M): inrts = 0 for i in M: tmp = pd.DataFrame(df.iloc[M[i]]) inrts += inertie_cluster(tmp) return inrts def kmoyennes(K, df, eps, iter_max, verbose=False): diff = float('inf') Centroides = initialisation(K, df) M = affecte_cluster(df, Centroides) prev_inert = inertie_globale(df,M) while iter_max and diff>eps: Centroides = nouveaux_centroides(df,M) M = affecte_cluster(df, Centroides) nouv_inert = inertie_globale(df,M) diff = abs(nouv_inert - prev_inert) if verbose: print ("Inertie: %f Difference: %f "% (nouv_inert, diff)) prev_inert = nouv_inert iter_max -= 1 return Centroides, M
gpl-3.0
kiyoto/statsmodels
setup.py
2
15932
""" Much of the build system code was adapted from work done by the pandas developers [1], which was in turn based on work done in pyzmq [2] and lxml [3]. [1] http://pandas.pydata.org [2] http://zeromq.github.io/pyzmq/ [3] http://lxml.de/ """ import os from os.path import relpath, join as pjoin import sys import subprocess import re from distutils.version import StrictVersion, LooseVersion # temporarily redirect config directory to prevent matplotlib importing # testing that for writeable directory which results in sandbox error in # certain easy_install versions os.environ["MPLCONFIGDIR"] = "." no_frills = (len(sys.argv) >= 2 and ('--help' in sys.argv[1:] or sys.argv[1] in ('--help-commands', 'egg_info', '--version', 'clean'))) # try bootstrapping setuptools if it doesn't exist try: import pkg_resources try: pkg_resources.require("setuptools>=0.6c5") except pkg_resources.VersionConflict: from ez_setup import use_setuptools use_setuptools(version="0.6c5") from setuptools import setup, Command, find_packages _have_setuptools = True except ImportError: # no setuptools installed from distutils.core import setup, Command _have_setuptools = False if _have_setuptools: setuptools_kwargs = {"zip_safe": False, "test_suite": "nose.collector"} else: setuptools_kwargs = {} if sys.version_info[0] >= 3: sys.exit("Need setuptools to install statsmodels for Python 3.x") curdir = os.path.abspath(os.path.dirname(__file__)) README = open(pjoin(curdir, "README.rst")).read() DISTNAME = 'statsmodels' DESCRIPTION = 'Statistical computations and models for use with SciPy' LONG_DESCRIPTION = README MAINTAINER = 'Skipper Seabold, Josef Perktold' MAINTAINER_EMAIL ='[email protected]' URL = 'http://statsmodels.sourceforge.net/' LICENSE = 'BSD License' DOWNLOAD_URL = '' # These imports need to be here; setuptools needs to be imported first. from distutils.extension import Extension from distutils.command.build import build from distutils.command.build_ext import build_ext as _build_ext class build_ext(_build_ext): def build_extensions(self): numpy_incl = pkg_resources.resource_filename('numpy', 'core/include') for ext in self.extensions: if (hasattr(ext, 'include_dirs') and not numpy_incl in ext.include_dirs): ext.include_dirs.append(numpy_incl) _build_ext.build_extensions(self) def generate_cython(): cwd = os.path.abspath(os.path.dirname(__file__)) print("Cythonizing sources") p = subprocess.call([sys.executable, os.path.join(cwd, 'tools', 'cythonize.py'), 'statsmodels'], cwd=cwd) if p != 0: raise RuntimeError("Running cythonize failed!") def strip_rc(version): return re.sub(r"rc\d+$", "", version) def check_dependency_versions(min_versions): """ Don't let pip/setuptools do this all by itself. It's rude. For all dependencies, try to import them and check if the versions of installed dependencies match the minimum version requirements. If installed but version too low, raise an error. If not installed at all, return the correct ``setup_requires`` and ``install_requires`` arguments to be added to the setuptools kwargs. This prevents upgrading installed dependencies like numpy (that should be an explicit choice by the user and never happen automatically), but make things work when installing into an empty virtualenv for example. """ setup_requires = [] install_requires = [] try: from numpy.version import short_version as npversion except ImportError: setup_requires.append('numpy') install_requires.append('numpy') else: if not (LooseVersion(npversion) >= min_versions['numpy']): raise ImportError("Numpy version is %s. Requires >= %s" % (npversion, min_versions['numpy'])) try: import scipy except ImportError: install_requires.append('scipy') else: try: from scipy.version import short_version as spversion except ImportError: from scipy.version import version as spversion # scipy 0.7.0 if not (LooseVersion(spversion) >= min_versions['scipy']): raise ImportError("Scipy version is %s. Requires >= %s" % (spversion, min_versions['scipy'])) try: from pandas import __version__ as pversion except ImportError: install_requires.append('pandas') else: if not (LooseVersion(pversion) >= min_versions['pandas']): ImportError("Pandas version is %s. Requires >= %s" % (pversion, min_versions['pandas'])) try: from patsy import __version__ as patsy_version except ImportError: install_requires.append('patsy') else: # patsy dev looks like 0.1.0+dev pversion = re.match("\d*\.\d*\.\d*", patsy_version).group() if not (LooseVersion(pversion) >= min_versions['patsy']): raise ImportError("Patsy version is %s. Requires >= %s" % (pversion, min_versions["patsy"])) return setup_requires, install_requires MAJ = 0 MIN = 8 REV = 0 ISRELEASED = False VERSION = '%d.%d.%d' % (MAJ,MIN,REV) classifiers = [ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.2', 'Operating System :: OS Independent', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Topic :: Scientific/Engineering'] # Return the git revision as a string def git_version(): def _minimal_ext_cmd(cmd): # construct minimal environment env = {} for k in ['SYSTEMROOT', 'PATH']: v = os.environ.get(k) if v is not None: env[k] = v # LANGUAGE is used on win32 env['LANGUAGE'] = 'C' env['LANG'] = 'C' env['LC_ALL'] = 'C' out = subprocess.Popen(" ".join(cmd), stdout = subprocess.PIPE, env=env, shell=True).communicate()[0] return out try: out = _minimal_ext_cmd(['git', 'rev-parse', 'HEAD']) GIT_REVISION = out.strip().decode('ascii') except OSError: GIT_REVISION = "Unknown" return GIT_REVISION def write_version_py(filename=pjoin(curdir, 'statsmodels/version.py')): cnt = "\n".join(["", "# THIS FILE IS GENERATED FROM SETUP.PY", "short_version = '%(version)s'", "version = '%(version)s'", "full_version = '%(full_version)s'", "git_revision = '%(git_revision)s'", "release = %(isrelease)s", "", "if not release:", " version = full_version"]) # Adding the git rev number needs to be done inside write_version_py(), # otherwise the import of numpy.version messes up the build under Python 3. FULLVERSION = VERSION dowrite = True if os.path.exists('.git'): GIT_REVISION = git_version() elif os.path.exists(filename): # must be a source distribution, use existing version file try: from statsmodels.version import git_revision as GIT_REVISION except ImportError: dowrite = False GIT_REVISION = "Unknown" else: GIT_REVISION = "Unknown" if not ISRELEASED: FULLVERSION += '.dev0+' + GIT_REVISION[:7] if dowrite: try: a = open(filename, 'w') a.write(cnt % {'version': VERSION, 'full_version' : FULLVERSION, 'git_revision' : GIT_REVISION, 'isrelease': str(ISRELEASED)}) finally: a.close() class CleanCommand(Command): """Custom distutils command to clean the .so and .pyc files.""" user_options = [("all", "a", "")] def initialize_options(self): self.all = True self._clean_me = [] self._clean_trees = [] self._clean_exclude = ["bspline_ext.c", "bspline_impl.c"] for root, dirs, files in list(os.walk('statsmodels')): for f in files: if f in self._clean_exclude: continue if os.path.splitext(f)[-1] in ('.pyc', '.so', '.o', '.pyo', '.pyd', '.c', '.orig'): self._clean_me.append(pjoin(root, f)) for d in dirs: if d == '__pycache__': self._clean_trees.append(pjoin(root, d)) for d in ('build',): if os.path.exists(d): self._clean_trees.append(d) def finalize_options(self): pass def run(self): for clean_me in self._clean_me: try: os.unlink(clean_me) except Exception: pass for clean_tree in self._clean_trees: try: import shutil shutil.rmtree(clean_tree) except Exception: pass class CheckingBuildExt(build_ext): """Subclass build_ext to get clearer report if Cython is necessary.""" def check_cython_extensions(self, extensions): for ext in extensions: for src in ext.sources: if not os.path.exists(src): raise Exception("""Cython-generated file '%s' not found. Cython is required to compile statsmodels from a development branch. Please install Cython or download a source release of statsmodels. """ % src) def build_extensions(self): self.check_cython_extensions(self.extensions) build_ext.build_extensions(self) class DummyBuildSrc(Command): """ numpy's build_src command interferes with Cython's build_ext. """ user_options = [] def initialize_options(self): self.py_modules_dict = {} def finalize_options(self): pass def run(self): pass cmdclass = {'clean': CleanCommand, 'build': build} cmdclass["build_src"] = DummyBuildSrc cmdclass["build_ext"] = CheckingBuildExt # some linux distros require it #NOTE: we are not currently using this but add it to Extension, if needed. # libraries = ['m'] if 'win32' not in sys.platform else [] from numpy.distutils.misc_util import get_info npymath_info = get_info("npymath") ext_data = dict( kalman_loglike = {"name" : "statsmodels/tsa/kalmanf/kalman_loglike.c", "depends" : ["statsmodels/src/capsule.h"], "include_dirs": ["statsmodels/src"], "sources" : []}, _statespace = {"name" : "statsmodels/tsa/statespace/_statespace.c", "depends" : ["statsmodels/src/capsule.h"], "include_dirs": ["statsmodels/src"] + npymath_info['include_dirs'], "libraries": npymath_info['libraries'], "library_dirs": npymath_info['library_dirs'], "sources" : []}, linbin = {"name" : "statsmodels/nonparametric/linbin.c", "depends" : [], "sources" : []}, _smoothers_lowess = {"name" : "statsmodels/nonparametric/_smoothers_lowess.c", "depends" : [], "sources" : []} ) extensions = [] for name, data in ext_data.items(): data['sources'] = data.get('sources', []) + [data['name']] destdir = ".".join(os.path.dirname(data["name"]).split("/")) data.pop('name') obj = Extension('%s.%s' % (destdir, name), **data) extensions.append(obj) def get_data_files(): sep = os.path.sep # install the datasets data_files = {} root = pjoin(curdir, "statsmodels", "datasets") for i in os.listdir(root): if i is "tests": continue path = pjoin(root, i) if os.path.isdir(path): data_files.update({relpath(path, start=curdir).replace(sep, ".") : ["*.csv", "*.dta"]}) # add all the tests and results files for r, ds, fs in os.walk(pjoin(curdir, "statsmodels")): r_ = relpath(r, start=curdir) if r_.endswith('results'): data_files.update({r_.replace(sep, ".") : ["*.csv", "*.txt"]}) return data_files if __name__ == "__main__": if os.path.exists('MANIFEST'): os.unlink('MANIFEST') min_versions = { 'numpy' : '1.4.0', 'scipy' : '0.7.0', 'pandas' : '0.7.1', 'patsy' : '0.1.0', } if sys.version_info[0] == 3 and sys.version_info[1] >= 3: # 3.3 needs numpy 1.7+ min_versions.update({"numpy" : "1.7.0b2"}) (setup_requires, install_requires) = check_dependency_versions(min_versions) if _have_setuptools: setuptools_kwargs['setup_requires'] = setup_requires setuptools_kwargs['install_requires'] = install_requires write_version_py() # this adds *.csv and *.dta files in datasets folders # and *.csv and *.txt files in test/results folders package_data = get_data_files() packages = find_packages() packages.append("statsmodels.tsa.vector_ar.data") package_data["statsmodels.datasets.tests"].append("*.zip") package_data["statsmodels.iolib.tests.results"].append("*.dta") package_data["statsmodels.stats.tests.results"].append("*.json") package_data["statsmodels.tsa.vector_ar.tests.results"].append("*.npz") # data files that don't follow the tests/results pattern. should fix. package_data.update({"statsmodels.stats.tests" : ["*.txt"]}) package_data.update({"statsmodels.stats.libqsturng" : ["*.r", "*.txt", "*.dat"]}) package_data.update({"statsmodels.stats.libqsturng.tests" : ["*.csv", "*.dat"]}) package_data.update({"statsmodels.tsa.vector_ar.data" : ["*.dat"]}) package_data.update({"statsmodels.tsa.vector_ar.data" : ["*.dat"]}) # temporary, until moved: package_data.update({"statsmodels.sandbox.regression.tests" : ["*.dta", "*.csv"]}) #TODO: deal with this. Not sure if it ever worked for bdists #('docs/build/htmlhelp/statsmodelsdoc.chm', # 'statsmodels/statsmodelsdoc.chm') cwd = os.path.abspath(os.path.dirname(__file__)) if not os.path.exists(os.path.join(cwd, 'PKG-INFO')) and not no_frills: # Generate Cython sources, unless building from source release generate_cython() setup(name = DISTNAME, version = VERSION, maintainer = MAINTAINER, ext_modules = extensions, maintainer_email = MAINTAINER_EMAIL, description = DESCRIPTION, license = LICENSE, url = URL, download_url = DOWNLOAD_URL, long_description = LONG_DESCRIPTION, classifiers = classifiers, platforms = 'any', cmdclass = cmdclass, packages = packages, package_data = package_data, include_package_data=False, # True will install all files in repo **setuptools_kwargs)
bsd-3-clause
fabioticconi/scikit-learn
sklearn/linear_model/tests/test_huber.py
25
6981
# Authors: Manoj Kumar [email protected] # License: BSD 3 clause import numpy as np from scipy import optimize, sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_greater from sklearn.datasets import make_regression from sklearn.linear_model import ( HuberRegressor, LinearRegression, SGDRegressor, Ridge) from sklearn.linear_model.huber import _huber_loss_and_gradient def make_regression_with_outliers(n_samples=50, n_features=20): rng = np.random.RandomState(0) # Generate data with outliers by replacing 10% of the samples with noise. X, y = make_regression( n_samples=n_samples, n_features=n_features, random_state=0, noise=0.05) # Replace 10% of the sample with noise. num_noise = int(0.1 * n_samples) random_samples = rng.randint(0, n_samples, num_noise) X[random_samples, :] = 2.0 * rng.normal(0, 1, (num_noise, X.shape[1])) return X, y def test_huber_equals_lr_for_high_epsilon(): # Test that Ridge matches LinearRegression for large epsilon X, y = make_regression_with_outliers() lr = LinearRegression(fit_intercept=True) lr.fit(X, y) huber = HuberRegressor(fit_intercept=True, epsilon=1e3, alpha=0.0) huber.fit(X, y) assert_almost_equal(huber.coef_, lr.coef_, 3) assert_almost_equal(huber.intercept_, lr.intercept_, 2) def test_huber_gradient(): # Test that the gradient calculated by _huber_loss_and_gradient is correct rng = np.random.RandomState(1) X, y = make_regression_with_outliers() sample_weight = rng.randint(1, 3, (y.shape[0])) loss_func = lambda x, *args: _huber_loss_and_gradient(x, *args)[0] grad_func = lambda x, *args: _huber_loss_and_gradient(x, *args)[1] # Check using optimize.check_grad that the gradients are equal. for _ in range(5): # Check for both fit_intercept and otherwise. for n_features in [X.shape[1] + 1, X.shape[1] + 2]: w = rng.randn(n_features) w[-1] = np.abs(w[-1]) grad_same = optimize.check_grad( loss_func, grad_func, w, X, y, 0.01, 0.1, sample_weight) assert_almost_equal(grad_same, 1e-6, 4) def test_huber_sample_weights(): # Test sample_weights implementation in HuberRegressor""" X, y = make_regression_with_outliers() huber = HuberRegressor(fit_intercept=True, alpha=0.1) huber.fit(X, y) huber_coef = huber.coef_ huber_intercept = huber.intercept_ huber.fit(X, y, sample_weight=np.ones(y.shape[0])) assert_array_almost_equal(huber.coef_, huber_coef) assert_array_almost_equal(huber.intercept_, huber_intercept) X, y = make_regression_with_outliers(n_samples=5, n_features=20) X_new = np.vstack((X, np.vstack((X[1], X[1], X[3])))) y_new = np.concatenate((y, [y[1]], [y[1]], [y[3]])) huber.fit(X_new, y_new) huber_coef = huber.coef_ huber_intercept = huber.intercept_ huber.fit(X, y, sample_weight=[1, 3, 1, 2, 1]) assert_array_almost_equal(huber.coef_, huber_coef, 3) assert_array_almost_equal(huber.intercept_, huber_intercept, 3) # Test sparse implementation with sample weights. X_csr = sparse.csr_matrix(X) huber_sparse = HuberRegressor(fit_intercept=True, alpha=0.1) huber_sparse.fit(X_csr, y, sample_weight=[1, 3, 1, 2, 1]) assert_array_almost_equal(huber_sparse.coef_, huber_coef, 3) def test_huber_sparse(): X, y = make_regression_with_outliers() huber = HuberRegressor(fit_intercept=True, alpha=0.1) huber.fit(X, y) X_csr = sparse.csr_matrix(X) huber_sparse = HuberRegressor(fit_intercept=True, alpha=0.1) huber_sparse.fit(X_csr, y) assert_array_almost_equal(huber_sparse.coef_, huber.coef_) def test_huber_scaling_invariant(): """Test that outliers filtering is scaling independent.""" rng = np.random.RandomState(0) X, y = make_regression_with_outliers() huber = HuberRegressor(fit_intercept=False, alpha=0.0, max_iter=100, epsilon=1.35) huber.fit(X, y) n_outliers_mask_1 = huber.outliers_ huber.fit(X, 2. * y) n_outliers_mask_2 = huber.outliers_ huber.fit(2. * X, 2. * y) n_outliers_mask_3 = huber.outliers_ assert_array_equal(n_outliers_mask_2, n_outliers_mask_1) assert_array_equal(n_outliers_mask_3, n_outliers_mask_1) def test_huber_and_sgd_same_results(): """Test they should converge to same coefficients for same parameters""" X, y = make_regression_with_outliers(n_samples=5, n_features=2) # Fit once to find out the scale parameter. Scale down X and y by scale # so that the scale parameter is optimized to 1.0 huber = HuberRegressor(fit_intercept=False, alpha=0.0, max_iter=100, epsilon=1.35) huber.fit(X, y) X_scale = X / huber.scale_ y_scale = y / huber.scale_ huber.fit(X_scale, y_scale) assert_almost_equal(huber.scale_, 1.0, 3) sgdreg = SGDRegressor( alpha=0.0, loss="huber", shuffle=True, random_state=0, n_iter=1000000, fit_intercept=False, epsilon=1.35) sgdreg.fit(X_scale, y_scale) assert_array_almost_equal(huber.coef_, sgdreg.coef_, 1) def test_huber_warm_start(): X, y = make_regression_with_outliers() huber_warm = HuberRegressor( fit_intercept=True, alpha=1.0, max_iter=10000, warm_start=True, tol=1e-1) huber_warm.fit(X, y) huber_warm_coef = huber_warm.coef_.copy() huber_warm.fit(X, y) # SciPy performs the tol check after doing the coef updates, so # these would be almost same but not equal. assert_array_almost_equal(huber_warm.coef_, huber_warm_coef, 1) # No n_iter_ in old SciPy (<=0.9) # And as said above, the first iteration seems to be run anyway. if huber_warm.n_iter_ is not None: assert_equal(1, huber_warm.n_iter_) def test_huber_better_r2_score(): # Test that huber returns a better r2 score than non-outliers""" X, y = make_regression_with_outliers() huber = HuberRegressor(fit_intercept=True, alpha=0.01, max_iter=100) huber.fit(X, y) linear_loss = np.dot(X, huber.coef_) + huber.intercept_ - y mask = np.abs(linear_loss) < huber.epsilon * huber.scale_ huber_score = huber.score(X[mask], y[mask]) huber_outlier_score = huber.score(X[~mask], y[~mask]) # The Ridge regressor should be influenced by the outliers and hence # give a worse score on the non-outliers as compared to the huber regressor. ridge = Ridge(fit_intercept=True, alpha=0.01) ridge.fit(X, y) ridge_score = ridge.score(X[mask], y[mask]) ridge_outlier_score = ridge.score(X[~mask], y[~mask]) assert_greater(huber_score, ridge_score) # The huber model should also fit poorly on the outliers. assert_greater(ridge_outlier_score, huber_outlier_score)
bsd-3-clause
macks22/scikit-learn
examples/calibration/plot_compare_calibration.py
241
5008
""" ======================================== Comparison of Calibration of Classifiers ======================================== Well calibrated classifiers are probabilistic classifiers for which the output of the predict_proba method can be directly interpreted as a confidence level. For instance a well calibrated (binary) classifier should classify the samples such that among the samples to which it gave a predict_proba value close to 0.8, approx. 80% actually belong to the positive class. LogisticRegression returns well calibrated predictions as it directly optimizes log-loss. In contrast, the other methods return biased probilities, with different biases per method: * GaussianNaiveBayes tends to push probabilties to 0 or 1 (note the counts in the histograms). This is mainly because it makes the assumption that features are conditionally independent given the class, which is not the case in this dataset which contains 2 redundant features. * RandomForestClassifier shows the opposite behavior: the histograms show peaks at approx. 0.2 and 0.9 probability, while probabilities close to 0 or 1 are very rare. An explanation for this is given by Niculescu-Mizil and Caruana [1]: "Methods such as bagging and random forests that average predictions from a base set of models can have difficulty making predictions near 0 and 1 because variance in the underlying base models will bias predictions that should be near zero or one away from these values. Because predictions are restricted to the interval [0,1], errors caused by variance tend to be one- sided near zero and one. For example, if a model should predict p = 0 for a case, the only way bagging can achieve this is if all bagged trees predict zero. If we add noise to the trees that bagging is averaging over, this noise will cause some trees to predict values larger than 0 for this case, thus moving the average prediction of the bagged ensemble away from 0. We observe this effect most strongly with random forests because the base-level trees trained with random forests have relatively high variance due to feature subseting." As a result, the calibration curve shows a characteristic sigmoid shape, indicating that the classifier could trust its "intuition" more and return probabilties closer to 0 or 1 typically. * Support Vector Classification (SVC) shows an even more sigmoid curve as the RandomForestClassifier, which is typical for maximum-margin methods (compare Niculescu-Mizil and Caruana [1]), which focus on hard samples that are close to the decision boundary (the support vectors). .. topic:: References: .. [1] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005 """ print(__doc__) # Author: Jan Hendrik Metzen <[email protected]> # License: BSD Style. import numpy as np np.random.seed(0) import matplotlib.pyplot as plt from sklearn import datasets from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.svm import LinearSVC from sklearn.calibration import calibration_curve X, y = datasets.make_classification(n_samples=100000, n_features=20, n_informative=2, n_redundant=2) train_samples = 100 # Samples used for training the models X_train = X[:train_samples] X_test = X[train_samples:] y_train = y[:train_samples] y_test = y[train_samples:] # Create classifiers lr = LogisticRegression() gnb = GaussianNB() svc = LinearSVC(C=1.0) rfc = RandomForestClassifier(n_estimators=100) ############################################################################### # Plot calibration plots plt.figure(figsize=(10, 10)) ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2) ax2 = plt.subplot2grid((3, 1), (2, 0)) ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated") for clf, name in [(lr, 'Logistic'), (gnb, 'Naive Bayes'), (svc, 'Support Vector Classification'), (rfc, 'Random Forest')]: clf.fit(X_train, y_train) if hasattr(clf, "predict_proba"): prob_pos = clf.predict_proba(X_test)[:, 1] else: # use decision function prob_pos = clf.decision_function(X_test) prob_pos = \ (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) fraction_of_positives, mean_predicted_value = \ calibration_curve(y_test, prob_pos, n_bins=10) ax1.plot(mean_predicted_value, fraction_of_positives, "s-", label="%s" % (name, )) ax2.hist(prob_pos, range=(0, 1), bins=10, label=name, histtype="step", lw=2) ax1.set_ylabel("Fraction of positives") ax1.set_ylim([-0.05, 1.05]) ax1.legend(loc="lower right") ax1.set_title('Calibration plots (reliability curve)') ax2.set_xlabel("Mean predicted value") ax2.set_ylabel("Count") ax2.legend(loc="upper center", ncol=2) plt.tight_layout() plt.show()
bsd-3-clause
7even7/DAT210x
Module5/assignment4.py
1
10105
import numpy as np import pandas as pd from sklearn import preprocessing from sklearn.cluster import KMeans import matplotlib.pyplot as plt import matplotlib # # TODO: Parameters to play around with PLOT_TYPE_TEXT = False # If you'd like to see indices PLOT_VECTORS = True # If you'd like to see your original features in P.C.-Space matplotlib.style.use('ggplot') # Look Pretty c = ['red', 'green', 'blue', 'orange', 'yellow', 'brown'] def drawVectors(transformed_features, components_, columns, plt): num_columns = len(columns) # This function will project your *original* feature (columns) # onto your principal component feature-space, so that you can # visualize how "important" each one was in the # multi-dimensional scaling # Scale the principal components by the max value in # the transformed set belonging to that component xvector = components_[0] * max(transformed_features[:,0]) yvector = components_[1] * max(transformed_features[:,1]) ## Visualize projections # Sort each column by its length. These are your *original* # columns, not the principal components. import math important_features = { columns[i] : math.sqrt(xvector[i]**2 + yvector[i]**2) for i in range(num_columns) } important_features = sorted(zip(important_features.values(), important_features.keys()), reverse=True) print "Projected Features by importance:\n", important_features ax = plt.axes() for i in range(num_columns): # Use an arrow to project each original feature as a # labeled vector on your principal component axes plt.arrow(0, 0, xvector[i], yvector[i], color='b', width=0.0005, head_width=0.02, alpha=0.75, zorder=600000) plt.text(xvector[i]*1.2, yvector[i]*1.2, list(columns)[i], color='b', alpha=0.75, zorder=600000) return ax def doPCA(data, dimensions=2): from sklearn.decomposition import RandomizedPCA model = RandomizedPCA(n_components=dimensions) model.fit(data) return model def doKMeans(data, clusters): # # TODO: Do the KMeans clustering here, passing in the # of clusters parameter # and fit it against your data. Then, return a tuple containing the cluster # centers and the labels # # .. your code here .. model = KMeans(n_clusters=clusters).fit(data) return model.cluster_centers_, model.labels_ # # TODO: Load up the dataset. It has may or may not have nans in it. Make # sure you catch them and destroy them, by setting them to '0'. This is valid # for this dataset, since if the value is missing, you can assume no $ was spent # on it. # # .. your code here .. df = pd.read_csv('C:\Data\Projektit\DAT210x\Module5\Datasets\Wholesale customers data.csv') # # TODO: As instructed, get rid of the 'Channel' and 'Region' columns, since # you'll be investigating as if this were a single location wholesaler, rather # than a national / international one. Leaving these fields in here would cause # KMeans to examine and give weight to them. # # .. your code here .. df.drop(df[['Channel','Region' ]], axis=1, inplace=True) # # TODO: Before unitizing / standardizing / normalizing your data in preparation for # K-Means, it's a good idea to get a quick peek at it. You can do this using the # .describe() method, or even by using the built-in pandas df.plot.hist() # # .. your code here .. #df.describe() #df.plot.hist() # # INFO: Having checked out your data, you may have noticed there's a pretty big gap # between the top customers in each feature category and the rest. Some feature # scaling algos won't get rid of outliers for you, so it's a good idea to handle that # manually---particularly if your goal is NOT to determine the top customers. After # all, you can do that with a simple Pandas .sort_values() and not a machine # learning clustering algorithm. From a business perspective, you're probably more # interested in clustering your +/- 2 standard deviation customers, rather than the # creme dela creme, or bottom of the barrel'ers # # Remove top 5 and bottom 5 samples for each column: drop = {} for col in df.columns: # Bottom 5 sort = df.sort_values(by=col, ascending=True) if len(sort) > 5: sort=sort[:5] for index in sort.index: drop[index] = True # Just store the index once # Top 5 sort = df.sort_values(by=col, ascending=False) if len(sort) > 5: sort=sort[:5] for index in sort.index: drop[index] = True # Just store the index once # # INFO Drop rows by index. We do this all at once in case there is a # collision. This way, we don't end up dropping more rows than we have # to, if there is a single row that satisfies the drop for multiple columns. # Since there are 6 rows, if we end up dropping < 5*6*2 = 60 rows, that means # there indeed were collisions. print "Dropping {0} Outliers...".format(len(drop)) df.drop(inplace=True, labels=drop.keys(), axis=0) print df.describe() # # INFO: What are you interested in? # # Depending on what you're interested in, you might take a different approach # to normalizing/standardizing your data. # # You should note that all columns left in the dataset are of the same unit. # You might ask yourself, do I even need to normalize / standardize the data? # The answer depends on what you're trying to accomplish. For instance, although # all the units are the same (generic money unit), the price per item in your # store isn't. There may be some cheap items and some expensive one. If your goal # is to find out what items people buy tend to buy together but you didn't # unitize properly before running kMeans, the contribution of the lesser priced # item would be dwarfed by the more expensive item. # # For a great overview on a few of the normalization methods supported in SKLearn, # please check out: https://stackoverflow.com/questions/30918781/right-function-for-normalizing-input-of-sklearn-svm # # Suffice to say, at the end of the day, you're going to have to know what question # you want answered and what data you have available in order to select the best # method for your purpose. Luckily, SKLearn's interfaces are easy to switch out # so in the mean time, you can experiment with all of them and see how they alter # your results. # # # 5-sec summary before you dive deeper online: # # NORMALIZATION: Let's say your user spend a LOT. Normalization divides each item by # the average overall amount of spending. Stated differently, your # new feature is = the contribution of overall spending going into # that particular item: $spent on feature / $overall spent by sample # # MINMAX: What % in the overall range of $spent by all users on THIS particular # feature is the current sample's feature at? When you're dealing with # all the same units, this will produce a near face-value amount. Be # careful though: if you have even a single outlier, it can cause all # your data to get squashed up in lower percentages. # Imagine your buyers usually spend $100 on wholesale milk, but today # only spent $20. This is the relationship you're trying to capture # with MinMax. NOTE: MinMax doesn't standardize (std. dev.); it only # normalizes / unitizes your feature, in the mathematical sense. # MinMax can be used as an alternative to zero mean, unit variance scaling. # [(sampleFeatureValue-min) / (max-min)] * (max-min) + min # Where min and max are for the overall feature values for all samples. # # TODO: Un-comment just ***ONE*** of lines at a time and see how alters your results # Pay attention to the direction of the arrows, as well as their LENGTHS #T = preprocessing.StandardScaler().fit_transform(df) #T = preprocessing.MinMaxScaler().fit_transform(df) #T = preprocessing.MaxAbsScaler().fit_transform(df) #T = preprocessing.Normalizer().fit_transform(df) T = df # No Change # # INFO: Sometimes people perform PCA before doing KMeans, so that KMeans only # operates on the most meaningful features. In our case, there are so few features # that doing PCA ahead of time isn't really necessary, and you can do KMeans in # feature space. But keep in mind you have the option to transform your data to # bring down its dimensionality. If you take that route, then your Clusters will # already be in PCA-transformed feature space, and you won't have to project them # again for visualization. # Do KMeans n_clusters = 3 centroids, labels = doKMeans(T, n_clusters) print centroids # # TODO: Print out your centroids. They're currently in feature-space, which # is good. Print them out before you transform them into PCA space for viewing # # .. your code here .. #plt.scatter(centroids[0], centroids[1], label='Centroids') # Do PCA *after* to visualize the results. Project the centroids as well as # the samples into the new 2D feature space for visualization purposes. display_pca = doPCA(T) T = display_pca.transform(T) CC = display_pca.transform(centroids) # Visualize all the samples. Give them the color of their cluster label fig = plt.figure() ax = fig.add_subplot(111) if PLOT_TYPE_TEXT: # Plot the index of the sample, so you can further investigate it in your dset for i in range(len(T)): ax.text(T[i,0], T[i,1], df.index[i], color=c[labels[i]], alpha=0.75, zorder=600000) ax.set_xlim(min(T[:,0])*1.2, max(T[:,0])*1.2) ax.set_ylim(min(T[:,1])*1.2, max(T[:,1])*1.2) else: # Plot a regular scatter plot sample_colors = [ c[labels[i]] for i in range(len(T)) ] ax.scatter(T[:, 0], T[:, 1], c=sample_colors, marker='o', alpha=0.2) # Plot the Centroids as X's, and label them ax.scatter(CC[:, 0], CC[:, 1], marker='x', s=169, linewidths=3, zorder=1000, c=c) for i in range(len(centroids)): ax.text(CC[i, 0], CC[i, 1], str(i), zorder=500010, fontsize=18, color=c[i]) # Display feature vectors for investigation: if PLOT_VECTORS: drawVectors(T, display_pca.components_, df.columns, plt) # Add the cluster label back into the dataframe and display it: df['label'] = pd.Series(labels, index=df.index) print df plt.show()
mit
hsuantien/scikit-learn
sklearn/decomposition/tests/test_dict_learning.py
47
8095
import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.decomposition import DictionaryLearning from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.decomposition import SparseCoder from sklearn.decomposition import dict_learning_online from sklearn.decomposition import sparse_encode rng_global = np.random.RandomState(0) n_samples, n_features = 10, 8 X = rng_global.randn(n_samples, n_features) def test_dict_learning_shapes(): n_components = 5 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_overcomplete(): n_components = 12 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_reconstruction(): n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) # used to test lars here too, but there's no guarantee the number of # nonzero atoms is right. def test_dict_learning_reconstruction_parallel(): # regression test that parallel reconstruction works with n_jobs=-1 n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0, n_jobs=-1) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) def test_dict_learning_nonzero_coefs(): n_components = 4 dico = DictionaryLearning(n_components, transform_algorithm='lars', transform_n_nonzero_coefs=3, random_state=0) code = dico.fit(X).transform(X[1]) assert_true(len(np.flatnonzero(code)) == 3) dico.set_params(transform_algorithm='omp') code = dico.transform(X[1]) assert_equal(len(np.flatnonzero(code)), 3) def test_dict_learning_unknown_fit_algorithm(): n_components = 5 dico = DictionaryLearning(n_components, fit_algorithm='<unknown>') assert_raises(ValueError, dico.fit, X) def test_dict_learning_split(): n_components = 5 dico = DictionaryLearning(n_components, transform_algorithm='threshold', random_state=0) code = dico.fit(X).transform(X) dico.split_sign = True split_code = dico.transform(X) assert_array_equal(split_code[:, :n_components] - split_code[:, n_components:], code) def test_dict_learning_online_shapes(): rng = np.random.RandomState(0) n_components = 8 code, dictionary = dict_learning_online(X, n_components=n_components, alpha=1, random_state=rng) assert_equal(code.shape, (n_samples, n_components)) assert_equal(dictionary.shape, (n_components, n_features)) assert_equal(np.dot(code, dictionary).shape, X.shape) def test_dict_learning_online_verbosity(): n_components = 5 # test verbosity from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout try: sys.stdout = StringIO() dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=1, random_state=0) dico.fit(X) dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=2, random_state=0) dico.fit(X) dict_learning_online(X, n_components=n_components, alpha=1, verbose=1, random_state=0) dict_learning_online(X, n_components=n_components, alpha=1, verbose=2, random_state=0) finally: sys.stdout = old_stdout assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_estimator_shapes(): n_components = 5 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0) dico.fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_overcomplete(): n_components = 12 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_initialization(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) dico = MiniBatchDictionaryLearning(n_components, n_iter=0, dict_init=V, random_state=0).fit(X) assert_array_equal(dico.components_, V) def test_dict_learning_online_partial_fit(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] dict1 = MiniBatchDictionaryLearning(n_components, n_iter=10 * len(X), batch_size=1, alpha=1, shuffle=False, dict_init=V, random_state=0).fit(X) dict2 = MiniBatchDictionaryLearning(n_components, alpha=1, n_iter=1, dict_init=V, random_state=0) for i in range(10): for sample in X: dict2.partial_fit(sample) assert_true(not np.all(sparse_encode(X, dict1.components_, alpha=1) == 0)) assert_array_almost_equal(dict1.components_, dict2.components_, decimal=2) def test_sparse_encode_shapes(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] for algo in ('lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'): code = sparse_encode(X, V, algorithm=algo) assert_equal(code.shape, (n_samples, n_components)) def test_sparse_encode_error(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = sparse_encode(X, V, alpha=0.001) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1) def test_sparse_encode_error_default_sparsity(): rng = np.random.RandomState(0) X = rng.randn(100, 64) D = rng.randn(2, 64) code = ignore_warnings(sparse_encode)(X, D, algorithm='omp', n_nonzero_coefs=None) assert_equal(code.shape, (100, 2)) def test_unknown_method(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init assert_raises(ValueError, sparse_encode, X, V, algorithm="<unknown>") def test_sparse_coder_estimator(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = SparseCoder(dictionary=V, transform_algorithm='lasso_lars', transform_alpha=0.001).transform(X) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1)
bsd-3-clause
ntung/ramp-elnino-Saigon
test.py
1
10661
# coding: utf-8 # # <a href="http://www.datascience-paris-saclay.fr">Paris Saclay Center for Data Science</a> # #<a href=http://www.datascience-paris-saclay.fr/en/site/newsView/12>RAMP</a> on El Nino prediction # # <i> Balázs Kégl (CNRS), Claire Monteleoni (GWU), Mahesh Mohan (GWU), Timothy DelSole (COLA), Kathleen Pegion (COLA), Julie Leloup (UPMC), Alex Gramfort (LTCI) </i> # ## Introduction # # A climate index is real-valued time-series which has been designated of interest in the climate literature. For example, the El Niño–Southern Oscillation (ENSO) index has widespread uses for predictions of regional and seasonal conditions, as it tends to have strong (positive or negative) correlation with a variety of weather conditions and <a href=http://www.ipcc-wg2.gov/SREX/images/uploads/SREX-SPMbrochure_FINAL.pdf>extreme events</a> throughout the globe. The ENSO index is just one of the many climate indices studied. However there is currently significant room for improvement in predicting even this extremely well studied index with such high global impact. For example, most statistical and climatological models erred significantly in their predictions of the 2015 El Niño event; their predictions were off by several months. Better tools to predict such indices are critical for seasonal and regional climate prediction, and would thus address grand challenges in the study of climate change (<a href=http://wcrp-climate.org/grand-challenges>World Climate Research Programme: Grand Challenges, 2013)</a>. # # ### El Niño # # <a href="https://www.ncdc.noaa.gov/teleconnections/enso/indicators/sst.php">El Niño</a> (La Niña) is a phenomenon in the equatorial Pacific Ocean characterized by a five consecutive 3-month running mean of sea surface temperature (SST) anomalies in the <a href=http://www1.ncdc.noaa.gov/pub/data/cmb/teleconnections/nino-regions.gif>Niño 3.4 region</a> that is above (below) the threshold of $+0.5^\circ$C ($-0.5\circ$C). This standard of measure is known as the Oceanic Niño Index (ONI). # # <img src=http://www1.ncdc.noaa.gov/pub/data/cmb/teleconnections/nino-regions.gif> # # Mor information can be found <a href=https://www.ncdc.noaa.gov/teleconnections/enso/indicators/sst.php>here</a> on why it is an important region, and what is the history of the index. # # Here are the <a href = http://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/>current ENSO predictions</a>, updated monthly. # # # ### The CCSM4 simulator # # Our data is coming from the <a href=http://www.cesm.ucar.edu/models/ccsm4.0/>CCSM4.0</a> model (simulator). This allows us to access a full regular temperature map for a 500+ year period which makes the evaluation of the predictor more robust than if we used real measurements. # # ### The data # # The data is a time series of "images" $z_t$, consisting of temperature measurements (for a technical reason it is not SST that we will work with, rather air temperature) on a regular grid on the Earth, indexed by lon(gitude) and lat(itude) coordinates. The average temperatures are recorded every month for 501 years, giving 6012 time points. The goal is to predict the temperature in the El Nino region, <span style="color:red">6 months ahead</span>. # # ### The prediction task # # Similarly to the variable stars RAMP, the pipeline will consists of a feature extractor and a predictor. Since the task is regression, the predictor will be a regressor, and the score (to minimize) will be the <a href=http://en.wikipedia.org/wiki/Root-mean-square_deviation>root mean square error</a>. The feature extractor will have access to the whole data. It will construct a "classical" feature matrix where each row corresponds to a time point. You should collect all information into these features that you find relevant to the regressor. The feature extractor can take <span style="color:red">anything from the past</span>, that is, it will implement a function $x_t = f(z_1, \ldots, z_t)$. Since you will have access to the full data, in theory you can cheat (even inadvertantly) by using information from the future. Please do your best to avoid this since it would make the results irrelevant. # # ### Domain-knowledge suggestions # # You are of course free to explore any regression technique to improve the prediction. Since the input dimension is relatively large (2000+ dimensions per time point even after subsampling) sparse regression techniques (eg. LASSO) may be the best way to go, but this is just an a priori suggestion. The following list provides you other hints to start with, based on domain knowledge. # <ul> # <li>There is a strong seasonal cycle that must be taken into account. # <li>There is little scientific/observational evidence that regions outside the Pacific play a role in NINO3.4 variability, so it is probably best to focus on Pacific SST for predictions. # <li>The relation between tropical and extra-tropical Pacific SST is very unclear, so please explore! # <li>The NINO3.4 index has an oscillatory character (cold followed by warm followed by cold), but this pattern does not repeat exactly. It would be useful to be able to predict periods when the oscillation is “strong” and when it “breaks down.” # <li>A common shortcoming of empirical predictions is that they under-predict the <i>amplitude</i> of warm and cold events. Can this be improved? # <li>There is evidence that the predictability is low when forecasts start in, or cross over, March and April (the so-called “spring barrier”). Improving predictions through the spring barrier would be important. # <ul> # # Exploratory data analysis # Packages to install: # # conda install basemap<BR> # conda install -c https://conda.binstar.org/anaconda xray<BR> # conda install netcdf4 h5py<BR> # pip install pyresample<BR> # In[68]: #get_ipython().magic(u'matplotlib inline') #from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt import numpy as np import pandas as pd import xray # should be installed with pip import pyresample # should be installed with pip from sklearn.cross_validation import cross_val_score # Let's start by reading the data into an xray Dataset object. You can find all information on how to access and manipulate <code>Dataset</code> and <code>DataArray</code> objects at the <a href=http://xray.readthedocs.org/en/stable/>xray site</a>. # In[2]: temperatures_xray = xray.open_dataset( '../resampled_tas_Amon_CCSM4_piControl_r1i1p1_080001-130012.nc', decode_times=False) #temperatures_xray = xray.open_dataset( # 'COLA_data/tas_Amon_CCSM4_piControl_r2i1p1_095301-110812.nc', decode_times=False) #temperatures_xray = xray.open_dataset( # 'COLA_data/tas_Amon_CCSM4_piControl_r3i1p1_000101-012012.nc', decode_times=False) # there is no way to convert a date starting with the year 800 into pd array so we # shift the starting date to 1700 temperatures_xray['time'] = pd.date_range('1/1/1700', periods=temperatures_xray['time'].shape[0], freq='M') - np.timedelta64(15, 'D') # Printing it, you can see that it contains all the data, indices, and other metadata. # In[3]: temperatures_xray # The main data is in the 'tas' ("temperature at surface") DataArray. # In[4]: temperatures_xray['tas'] # You can index it in the same way as a <code>pandas</code> or <code>numpy</code> array. The result is always a <coda>DataArray</code> # In[5]: t = 123 lat = 13 lon = 29 temperatures_xray['tas'][t] temperatures_xray['tas'][t, lat] temperatures_xray['tas'][t, lat, lon] temperatures_xray['tas'][:, lat, lon] temperatures_xray['tas'][t, :, lon] temperatures_xray['tas'][:, :, lon] # You can convert any of these objects into a <code>numpy</code> array. # In[6]: temperatures_xray['tas'].values temperatures_xray['tas'][t].values temperatures_xray['tas'][t, lat].values temperatures_xray['tas'][t, lat, lon].values # You can also use slices, and slice bounds don't even have to be in the index arrays. The following function computes the target at time $t$. The input is an xray DataArray (3D panel) that contains the temperatures. We select the El Nino 3.4 region, and take the mean temperatures, specifying that we are taking the mean over the spatial (lat and lon) coordinates. The output is a vector with the same length as the original time series. # In[7]: en_lat_bottom = -5 en_lat_top = 5 en_lon_left = 360 - 170 en_lon_right = 360 - 120 def get_area_mean(tas, lat_bottom, lat_top, lon_left, lon_right): """The array of mean temperatures in a region at all time points.""" return tas.loc[:, lat_bottom:lat_top, lon_left:lon_right].mean(dim=('lat','lon')) def get_enso_mean(tas): """The array of mean temperatures in the El Nino 3.4 region at all time points.""" return get_area_mean(tas, en_lat_bottom, en_lat_top, en_lon_left, en_lon_right) # The following function plots the temperatures at a given $t$ (time_index). # In[8]: el_nino_lats = [en_lat_bottom, en_lat_top, en_lat_top, en_lat_bottom] el_nino_lons = [en_lon_right, en_lon_right, en_lon_left, en_lon_left] from matplotlib.patches import Polygon def plot_map(temperatures_xray, time_index): def draw_screen_poly(lats, lons, m): x, y = m(lons, lats) xy = zip(x,y) poly = Polygon(xy, edgecolor='black', fill=False) plt.gca().add_patch(poly) lons, lats = np.meshgrid(temperatures_xray['lon'], temperatures_xray['lat']) fig = plt.figure() ax = fig.add_axes([0.05, 0.05, 0.9,0.9]) map = Basemap(llcrnrlon=0, llcrnrlat=-89, urcrnrlon=360, urcrnrlat=89, projection='mill') # draw coastlines, country boundaries, fill continents. map.drawcoastlines(linewidth=0.25) #map.drawcountries(linewidth=0.25) #map.fillcontinents(color='coral',lake_color='aqua') # draw the edge of the map projection region (the projection limb) #map.drawmapboundary(fill_color='aqua') im = map.pcolormesh(lons, lats, temperatures_xray[time_index] - 273.15, shading='flat', cmap=plt.cm.jet, latlon=True) cb = map.colorbar(im,"bottom", size="5%", pad="2%") draw_screen_poly(el_nino_lats, el_nino_lons, map) time_str = str(pd.to_datetime(str(temperatures_xray['time'].values[time_index])))[:7] ax.set_title("Temperature map " + time_str) #plt.savefig("test_plot.pdf") plt.show() # Let's plot the temperature at a given time point. Feel free to change the time, play with the season, discover visually the variability of the temperature map. # In[9]: t = 12 plot_map(temperatures_xray['tas'], t)
gpl-2.0
wanggang3333/scikit-learn
sklearn/linear_model/setup.py
169
1567
import os from os.path import join import numpy from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration('linear_model', parent_package, top_path) cblas_libs, blas_info = get_blas_info() if os.name == 'posix': cblas_libs.append('m') config.add_extension('cd_fast', sources=['cd_fast.c'], libraries=cblas_libs, include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=blas_info.pop('extra_compile_args', []), **blas_info) config.add_extension('sgd_fast', sources=['sgd_fast.c'], include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], libraries=cblas_libs, extra_compile_args=blas_info.pop('extra_compile_args', []), **blas_info) # add other directories config.add_subpackage('tests') return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
kvasukib/groupflow_simulator
groupflow_scripts/tree_aggregation_simulations/tree_aggregation_bidirectional.py
2
31709
from scipy.stats import truncnorm, tstd, poisson, expon from numpy.random import randint, uniform from datetime import datetime from collections import defaultdict from sets import Set from heapq import heappop, heappush from time import time from scipy.cluster.hierarchy import * from scipy.spatial.distance import pdist import scipy.spatial.distance as ssd import os import sys import signal import numpy as np import matplotlib.pyplot as plt ONE_FORWARDING_ENTRY_PER_SWITCH = True def get_cluster_group_aggregation(group_indexes, linkage_array, difference_threshold): group_map = {} for group_index in group_indexes: group_map[group_index] = [group_index] next_cluster_index = len(group_indexes) for cluster in linkage_array: if cluster[2] > difference_threshold: break new_cluster_list = [] for index in group_map[cluster[0]]: new_cluster_list.append(index) for index in group_map[cluster[1]]: new_cluster_list.append(index) del group_map[cluster[0]] del group_map[cluster[1]] group_map[next_cluster_index] = new_cluster_list next_cluster_index += 1 #print 'Group Aggregations for Difference Threshold: ' + str(difference_threshold) #for cluster_index in group_map: # print 'Cluster Index: ' + str(cluster_index) # for group_index in group_map[cluster_index]: # print str(group_index) + ' ', # print ' ' return group_map def calc_best_rendevouz_point(topology, mcast_groups): aggregated_group_nodes = [] for group in mcast_groups: aggregated_group_nodes.append(group.src_node_id) for receiver_id in group.receiver_ids: aggregated_group_nodes.append(receiver_id) aggregated_group_nodes = list(Set(aggregated_group_nodes)) min_sum_tree_length = sys.maxint rv_node_id = None sp_tree = None for forwarding_element in topology.forwarding_elements: no_rendevouz_path = False potential_rv_node_id = forwarding_element.node_id potential_tree = topology.get_shortest_path_tree(potential_rv_node_id, aggregated_group_nodes) sum_tree_length = len(potential_tree) if sum_tree_length <= min_sum_tree_length: min_sum_tree_length = sum_tree_length rv_node_id = potential_rv_node_id sp_tree = potential_tree return rv_node_id, aggregated_group_nodes, sp_tree def aggregate_groups_via_tree_sim(topology, mcast_groups, bandwidth_overhead_threshold): group_map = defaultdict(lambda : None) next_agg_tree_index = 0 for group in mcast_groups: if len(group_map) == 0: # This is the first group to initialize, always uses a native multicast tree group.rendevouz_point_node_id = group.src_node_id group.rendevouz_point_shortest_path = [] group.aggregated_mcast_tree = topology.get_shortest_path_tree(group.src_node_id, list(group.receiver_ids)) group.aggregated_mcast_tree_index = next_agg_tree_index group.aggregated_bandwidth_Mbps = len(group.aggregated_mcast_tree) * group.bandwidth_Mbps group_map[next_agg_tree_index] = [group.group_index] next_agg_tree_index += 1 continue # If this is not the first group, iterate through all existing aggregated trees, and check if any can be extended # to cover the group without exceeding the bandwidth overhead threshold final_aggregated_groups = None final_aggregated_tree_index = None final_aggregated_mcast_tree = None final_rv_node_id = None final_aggregated_bandwidth_overhead = None for agg_tree_index in group_map: test_aggregated_groups = [group] for group_index in group_map[agg_tree_index]: test_aggregated_groups.append(mcast_groups[group_index]) rv_node_id, aggregated_group_nodes, aggregated_mcast_tree = calc_best_rendevouz_point(topology, test_aggregated_groups) # Got a rendevouz node for this potential aggregation, now calculate the bandwidth overhead of this potential aggregation native_bandwidth_Mbps = 0 aggregated_bandwidth_Mbps = 0 for test_group in test_aggregated_groups: native_bandwidth_Mbps += test_group.native_bandwidth_Mbps aggregated_bandwidth_Mbps += (len(aggregated_mcast_tree) * test_group.bandwidth_Mbps) bandwidth_overhead_ratio = float(aggregated_bandwidth_Mbps) / native_bandwidth_Mbps; if bandwidth_overhead_ratio > bandwidth_overhead_threshold: continue # This aggregation causes the bandwidth overhead ratio to exceed the threshold if final_aggregated_bandwidth_overhead is None or bandwidth_overhead_ratio < final_aggregated_bandwidth_overhead: final_aggregated_bandwidth_overhead = bandwidth_overhead_ratio final_aggregated_tree_index = agg_tree_index final_aggregated_groups = test_aggregated_groups final_aggregated_mcast_tree = aggregated_mcast_tree final_rv_node_id = rv_node_id # At this point, either a valid aggregation has been found (and stored in the "final" variables), or the group will # be assigned to a new, native tree if final_aggregated_tree_index is not None: # A valid aggregation has been found # print 'Assigning group #' + str(group.group_index) + ' to aggregated tree #' + str(final_aggregated_tree_index) + ' (BW Overhead: ' + str(final_aggregated_bandwidth_overhead) + ')' group_map[final_aggregated_tree_index].append(group.group_index) for agg_group in final_aggregated_groups: agg_group.rendevouz_point_node_id = final_rv_node_id agg_group.rendevouz_point_shortest_path = [] agg_group.aggregated_mcast_tree = final_aggregated_mcast_tree agg_group.aggregated_mcast_tree_index = final_aggregated_tree_index agg_group.aggregated_bandwidth_Mbps = (len(agg_group.aggregated_mcast_tree) * agg_group.bandwidth_Mbps) else: # Create a new aggregated tree index for the group group.rendevouz_point_node_id = group.src_node_id group.rendevouz_point_shortest_path = [] group.aggregated_mcast_tree = topology.get_shortest_path_tree(group.src_node_id, list(group.receiver_ids)) group.aggregated_mcast_tree_index = next_agg_tree_index group.aggregated_bandwidth_Mbps = len(group.aggregated_mcast_tree) * group.bandwidth_Mbps group_map[next_agg_tree_index] = [group.group_index] next_agg_tree_index += 1 # print 'Tree similarity aggregation results:\n' + str(group_map) return mcast_groups, group_map def generate_cluster_aggregated_mcast_trees(topology, mcast_groups, group_map): for group_aggregation in group_map: # print 'Cluster #' + str(group_aggregation) + ' - Groups: ' + (str(group_map[group_aggregation])) cluster_groups = [] for mcast_group_id in group_map[group_aggregation]: mcast_groups[mcast_group_id].aggregated_mcast_tree_index = group_aggregation cluster_groups.append(mcast_groups[mcast_group_id]) min_sum_path_length = sys.maxint rv_node_id, aggregated_group_nodes, aggregated_mcast_tree = calc_best_rendevouz_point(topology, cluster_groups) for mcast_group_id in group_map[group_aggregation]: src_node_id = mcast_groups[mcast_group_id].src_node_id mcast_groups[mcast_group_id].rendevouz_point_node_id = rv_node_id mcast_groups[mcast_group_id].rendevouz_point_shortest_path = [] mcast_groups[mcast_group_id].aggregated_mcast_tree = aggregated_mcast_tree mcast_groups[mcast_group_id].aggregated_bandwidth_Mbps = len(mcast_groups[mcast_group_id].aggregated_mcast_tree) * mcast_groups[mcast_group_id].bandwidth_Mbps return mcast_groups, group_map def get_vertex_set(edge_list): vertex_set = Set() for edge in edge_list: vertex_set.add(edge[0]) vertex_set.add(edge[1]) return vertex_set def get_num_connected_edges(edge_list, node_id): num_edges = 0 for edge in edge_list: if edge[0] == node_id: num_edges += 1 if edge[1] == node_id: num_edges += 1 return num_edges def get_terminal_vertices(edge_list): tail_set = Set() head_set = Set() for edge in edge_list: tail_set.add(edge[0]) head_set.add(edge[1]) return (tail_set.union(head_set)) - (head_set.intersection(tail_set)) def get_origin_vertices(edge_list, origin_candidates): node_edge_count = defaultdict(lambda : None) for edge in edge_list: if node_edge_count[edge[0]] is None: node_edge_count[edge[0]] = 1 else: node_edge_count[edge[0]] = node_edge_count[edge[0]] + 1 if node_edge_count[edge[1]] is None: node_edge_count[edge[1]] = -1 else: node_edge_count[edge[1]] = node_edge_count[edge[1]] - 1 origin_set = Set() for node_id in origin_candidates: if node_edge_count[node_id] is not None and node_edge_count[node_id] > 0: origin_set.add(node_id) return origin_set def get_intermediate_vertices(edge_list): tail_set = Set() head_set = Set() for edge in edge_list: tail_set.add(edge[0]) head_set.add(edge[1]) return tail_set.intersection(head_set) def aggregate_groups_via_clustering(groups, linkage_method, similarity_threshold, plot_dendrogram = False): src_dist_clustering = False if '_srcdist' in linkage_method: src_dist_clustering = True linkage_method = linkage_method[:-len('_srcdist')] # Generate the distance matrix used for clustering receivers_list = [] for group in groups: receivers_list.append(list(group.receiver_ids)) receivers_array = np.array(receivers_list) distance_matrix = [] group_index = 0 group_indexes = [] for group1 in groups: distance_matrix.append([]) for group2 in groups: jaccard_distance = group1.jaccard_distance(group2) if src_dist_clustering: src_distance = len(topo.get_shortest_path_tree(group1.src_node_id, [group2.src_node_id])) src_distance_ratio = (float(src_distance)/topo.network_diameter) # Distance between source nodes as a percentage of the network diameter distance_matrix[group_index].append(1 - ((1 - jaccard_distance) * (1 - src_distance_ratio))) else: distance_matrix[group_index].append(jaccard_distance) group_indexes.append(group_index) group_index += 1 comp_dist_array = ssd.squareform(distance_matrix) # Perform clustering, and plot a dendrogram of the results if requested z = linkage(comp_dist_array, method=linkage_method) group_map = get_cluster_group_aggregation(group_indexes, z, similarity_threshold) if plot_dendrogram: plt.figure(1, figsize=(6, 5)) print 'Linkage Array:\n' + str(z) print ' ' d = dendrogram(z, show_leaf_counts=True) plt.title('Multicast Group Clustering') plt.xlabel('Multicast Group Index') plt.ylabel('Cluster Similarity') plt.show() # Generate aggregated multicast trees based on the generated clusters generate_cluster_aggregated_mcast_trees(topo, groups, group_map) return groups, group_map def calc_network_performance_metrics(groups, group_map, debug_print = False): native_network_flow_table_size = 0 aggregated_network_flow_table_size = 0 native_bandwidth_Mbps = 0 aggregated_bandwidth_Mbps = 0 seen_aggregated_tree_indexes = [] non_reducible_flow_table_entries = 0 for group in groups: # print 'Calculating flow table size for group: ' + str(group.group_index) non_reducible_flow_table_entries += len(group.receiver_ids) + 1 native_bandwidth_Mbps += group.native_bandwidth_Mbps aggregated_bandwidth_Mbps += group.aggregated_bandwidth_Mbps native_network_flow_table_size += len(group.native_mcast_tree) + 1 aggregated_network_flow_table_size += len(group.receiver_ids) + 1 #print 'Native flow table size: ' + str(len(group.native_mcast_tree) + 1) #print 'Aggregated non-reducible state: ' + str(len(group.receiver_ids) + 1) if group.aggregated_mcast_tree_index not in seen_aggregated_tree_indexes: #print 'Calculating flow table size for aggregated tree: ' + str(group.aggregated_mcast_tree_index) seen_aggregated_tree_indexes.append(group.aggregated_mcast_tree_index) tree_terminal_vertices = get_terminal_vertices(group.aggregated_mcast_tree) #print str(tree_terminal_vertices) if ONE_FORWARDING_ENTRY_PER_SWITCH: aggregated_network_flow_table_size += len(group.aggregated_mcast_tree) + 1 - len(get_terminal_vertices(group.aggregated_mcast_tree)) else: non_terminal_vertices = get_vertex_set(group.aggregated_mcast_tree) - tree_terminal_vertices for vertex in non_terminal_vertices: aggregated_network_flow_table_size += get_num_connected_edges(group.aggregated_mcast_tree, vertex) #print 'Aggregated reducible state: ' + str(len(group.aggregated_mcast_tree) + 1) #if debug_print: # print ' ' # group.debug_print() reducible_native_network_flow_table_size = native_network_flow_table_size - non_reducible_flow_table_entries reducible_aggregated_network_flow_table_size = aggregated_network_flow_table_size - non_reducible_flow_table_entries bandwidth_overhead_ratio = float(aggregated_bandwidth_Mbps) / float(native_bandwidth_Mbps) flow_table_reduction_ratio = 1 - float(aggregated_network_flow_table_size) / float(native_network_flow_table_size) reducible_flow_table_reduction_ratio = 1 - float(reducible_aggregated_network_flow_table_size) / float(reducible_native_network_flow_table_size) if debug_print: print ' ' print 'Aggregated Network Bandwidth Utilization: ' + str(aggregated_bandwidth_Mbps) + ' Mbps' print 'Native Network Bandwidth Utilization: ' + str(native_bandwidth_Mbps) + ' Mbps' print 'Bandwidth Overhead Ratio: ' + str(bandwidth_overhead_ratio) print ' ' print 'Native Network Flow Table Size: ' + str(native_network_flow_table_size) print 'Aggregated Network Flow Table Size: ' + str(aggregated_network_flow_table_size) print 'Flow Table Reduction Ratio: ' + str(flow_table_reduction_ratio) print ' ' print 'Reducible Native Network Flow Table Size: ' + str(reducible_native_network_flow_table_size) print 'Reducible Aggregated Network Flow Table Size: ' + str(reducible_aggregated_network_flow_table_size) print 'Reducible Flow Table Reduction Ratio: ' + str(reducible_flow_table_reduction_ratio) return bandwidth_overhead_ratio, flow_table_reduction_ratio, reducible_flow_table_reduction_ratio, len(group_map) class ForwardingElement(object): def __init__(self, node_id): self.node_id = node_id def __str__(self): return 'Forwarding Element #' + str(self.node_id) class Link(object): def __init__(self, tail_node_id, head_node_id, cost): self.tail_node_id = tail_node_id # Node ID from which the link originates self.head_node_id = head_node_id # Node ID to which the link delivers traffic self.cost = cost def __str__(self): return 'Link: ' + str(self.tail_node_id) + ' --> ' + str(self.head_node_id) + ' C:' + str(self.cost) class SimTopo(object): def __init__(self): self.forwarding_elements = [] self.links = [] self.shortest_path_map = defaultdict(lambda : None) self.network_diameter = 0 self.recalc_path_tree_map = True def calc_shortest_path_tree(self): self.shortest_path_map = defaultdict(lambda : None) for source_forwarding_element in self.forwarding_elements: src_node_id = source_forwarding_element.node_id nodes = set(self.forwarding_elements) edges = self.links graph = defaultdict(list) for link in edges: graph[link.tail_node_id].append((link.cost, link.head_node_id)) src_path_tree_map = defaultdict(lambda : None) queue, seen = [(0,src_node_id,())], set() while queue: (cost,node1,path) = heappop(queue) if node1 not in seen: seen.add(node1) path = (node1, path) src_path_tree_map[node1] = path for next_cost, node2 in graph.get(node1, ()): if node2 not in seen: new_path_cost = cost + next_cost heappush(queue, (new_path_cost, node2, path)) for dst_forwarding_element in self.forwarding_elements: if self.shortest_path_map[src_node_id] is None: self.shortest_path_map[src_node_id] = defaultdict(lambda : None) dst_node_id = dst_forwarding_element.node_id shortest_path_edges = [] if dst_node_id == src_node_id: self.shortest_path_map[src_node_id][dst_node_id] = [] continue receiver_path = src_path_tree_map[dst_node_id] if receiver_path is None: continue while receiver_path[1]: shortest_path_edges.append((receiver_path[1][0], receiver_path[0])) receiver_path = receiver_path[1] self.shortest_path_map[src_node_id][dst_node_id] = shortest_path_edges self.recalc_path_tree_map = False # Recalculate the network diameter self.network_diameter = 0 for source_forwarding_element in self.forwarding_elements: for dest_forwarding_element in self.forwarding_elements: path = self.get_shortest_path_tree(source_forwarding_element.node_id, [dest_forwarding_element.node_id]) if path is not None and len(path) > self.network_diameter: self.network_diameter = len(path) # print 'Got network diameter: ' + str(self.network_diameter) def get_shortest_path_tree(self, source_node_id, receiver_node_id_list): if self.recalc_path_tree_map: self.calc_shortest_path_tree() if len(receiver_node_id_list) == 1: return self.shortest_path_map[source_node_id][receiver_node_id_list[0]] shortest_path_tree_edges = Set() for receiver_node_id in receiver_node_id_list: shortest_path = self.shortest_path_map[source_node_id][receiver_node_id] if shortest_path is None: print 'ERROR: No shortest path from node ' + str(source_node_id) + ' to ' + str(receiver_node_id) return None for edge in shortest_path: shortest_path_tree_edges.add(edge) # Return the set as a list of edges shortest_path_tree_edges = list(shortest_path_tree_edges) return shortest_path_tree_edges def load_from_edge_list(self, edge_list): self.forwarding_elements = [] self.links = [] seen_node_ids = [] for edge in edge_list: self.links.append(Link(edge[0], edge[1], 1)) if edge[0] not in seen_node_ids: self.forwarding_elements.append(ForwardingElement(edge[0])) seen_node_ids.append(edge[0]) if edge[1] not in seen_node_ids: self.forwarding_elements.append(ForwardingElement(edge[1])) seen_node_ids.append(edge[1]) self.recalc_path_tree_map = True def load_from_brite_topo(self, brite_filepath, debug_print = False): self.forwarding_elements = [] self.links = [] print 'Parsing BRITE topology at filepath: ' + str(brite_filepath) file = open(brite_filepath, 'r') line = file.readline() print 'BRITE ' + line # Skip ahead until the nodes section is reached in_node_section = False while not in_node_section: line = file.readline() if 'Nodes:' in line: in_node_section = True break # In the nodes section now, generate a forwarding element for each node while in_node_section: line = file.readline().strip() if not line: in_node_section = False if debug_print: print 'Finished parsing nodes' break line_split = line.split('\t') node_id = int(line_split[0]) if debug_print: print 'Generating forwarding element for ID: ' + str(node_id) self.forwarding_elements.append(ForwardingElement(node_id)) # Skip ahead to the edges section in_edge_section = False while not in_edge_section: line = file.readline() if 'Edges:' in line: in_edge_section = True break # In the edges section now, add all required links # Note: This code assumes that all links are bidirectional with cost 1 while in_edge_section: line = file.readline().strip() if not line: # Empty string in_edge_section = False if debug_print: print 'Finished parsing edges' break line_split = line.split('\t') node_id_1 = int(line_split[1]) node_id_2 = int(line_split[2]) if debug_print: print 'Adding bi-directional link between forwarding elements ' + str(node_id_1) + ' and ' + str(node_id_2) self.links.append(Link(node_id_1, node_id_2, 1)) self.links.append(Link(node_id_2, node_id_1, 1)) file.close() self.recalc_path_tree_map = True def __str__(self): return_str = '====================\nForwarding Elements:\n====================\n' for forwarding_element in self.forwarding_elements: return_str = return_str + str(forwarding_element) + '\n' return_str = return_str + '======\nLinks:\n======\n' for link in self.links: return_str = return_str + str(link) + '\n' return return_str class McastGroup(object): def __init__(self, topology, src_node_id, bandwidth_Mbps, mcast_group_index): self.group_index = mcast_group_index self.src_node_id = src_node_id self.receiver_ids = Set() self.topology = topology self.bandwidth_Mbps = bandwidth_Mbps self.native_mcast_tree = None self.native_bandwidth_Mbps = None self.aggregated_mcast_tree_index = None self.aggregated_mcast_tree = None self.rendevouz_point_node_id = None self.rendevouz_point_shortest_path = None self.aggregated_bandwidth_Mbps = None def set_receiver_ids(self, receiver_ids): self.receiver_ids = Set(receiver_ids) self.native_mcast_tree = self.topology.get_shortest_path_tree(self.src_node_id, list(self.receiver_ids)) self.native_bandwidth_Mbps = len(self.native_mcast_tree) * self.bandwidth_Mbps def generate_random_receiver_ids(self, num_receivers): # KLUDGE: Receiver IDs will always be generated until there is at least one receiver which is not colocated with the source # This prevents divide by 0 errors when calculating performance metrics # TODO - AC: Find a better way to handle this situation while len(self.receiver_ids) < num_receivers: new_node_id = randint(0, len(topo.forwarding_elements)) if new_node_id != self.src_node_id and new_node_id not in self.receiver_ids: self.receiver_ids.add(new_node_id) self.native_mcast_tree = self.topology.get_shortest_path_tree(self.src_node_id, list(self.receiver_ids)) self.native_bandwidth_Mbps = len(self.native_mcast_tree) * self.bandwidth_Mbps def jaccard_distance(self, mcast_group): return 1.0 - (float(len(self.receiver_ids.intersection(mcast_group.receiver_ids))) / float(len(self.receiver_ids.union(mcast_group.receiver_ids)))) def debug_print(self): print 'Multicast Group #' + str(self.group_index) + '\nSrc Node ID: ' + str(self.src_node_id) + '\nReceivers: ', for receiver_id in self.receiver_ids: print str(receiver_id) + ', ', print ' ' print 'Native Mcast Tree:\n' + str(self.native_mcast_tree) print 'Aggregated Mcast Tree Index: ' + str(self.aggregated_mcast_tree_index) print 'Aggregated Mcast Tree:\n' + str(self.aggregated_mcast_tree) print 'Rendevouz Point: Node #' + str(self.rendevouz_point_node_id) + '\nRendevouz Path: ' + str(self.rendevouz_point_shortest_path) def run_multicast_aggregation_test(topo, num_groups, min_group_size, max_group_size, similarity_type, similarity_parameter, debug_print = False, plot_dendrogram = False): # Generate random multicast groups groups = [] for i in range(0, num_groups): groups.append(McastGroup(topo, randint(0, len(topo.forwarding_elements)), 10, i)) groups[i].generate_random_receiver_ids(randint(min_group_size, max_group_size + 1)) #groups.append(McastGroup(topo, 0, 10, 0)) #groups[0].set_receiver_ids([6,7]) #groups.append(McastGroup(topo, 1, 10, 1)) #groups[1].set_receiver_ids([6,7]) #groups.append(McastGroup(topo, 8, 10, 2)) #groups[2].set_receiver_ids([6,7]) run_time_start = time() if 'single' in similarity_type or 'complete' in similarity_type or 'average' in similarity_type: groups, group_map = aggregate_groups_via_clustering(groups, similarity_type, similarity_parameter) elif 'tree_sim' in similarity_type: groups, group_map = aggregate_groups_via_tree_sim(topo, groups, similarity_parameter) else: print 'ERROR: Invalid similarity type - Supported options are "single", "average", "complete", or "tree_sim"' sys.exit(1) run_time = time() - run_time_start # Calculate network performance metrics bandwidth_overhead_ratio, flow_table_reduction_ratio, reducible_flow_table_reduction_ratio, num_trees = calc_network_performance_metrics(groups, group_map) return bandwidth_overhead_ratio, flow_table_reduction_ratio, reducible_flow_table_reduction_ratio, num_trees, run_time if __name__ == '__main__': if len(sys.argv) < 5: print 'Tree aggregation script requires the following 5 command line arguments:' print '[1] Topology filepath (string)' print '[2] Number of trials to run (integer)' print '[3] Number of multicast groups (integer)' print '[4] Group size range (string, in format "1-10"). If only a single number is specified, the minimum group size is set to 1' print '[5] Similarity type (string): one of "single", "complete", "average", or "tree_sim"' print '[6] Similarity parameter (float):' print '\tFor the "single", "complete", and "average" similarity types this sets the similarity threshold to use for clustering' print '\tFor the "tree_sim" similarity type this sets the bandwidth overhead threshold' print sys.exit(0) # Import the topology from BRITE format topo = SimTopo() if 'abilene' in sys.argv[1]: print 'Using hardcoded Abilene topology' topo.load_from_edge_list([[0,1], [0,2], [1,0], [1,2], [1,3], [2,0], [2,1], [2,5], [3,1], [3,4], [4,3], [4,5], [4,10], [5,2], [5,4], [5,6], [6,5], [6,10], [6,7], [7,6], [7,8], [8,7], [8,9], [9,8], [9,10], [10,6], [10,9], [10,4]]) else: topo.load_from_brite_topo(sys.argv[1]) #topo.load_from_edge_list([[0,2],[1,2],[2,0],[2,1],[2,3],[3,2],[3,4],[4,3],[4,5],[5,6],[5,7], [8,0]]) #similarity_threshold = 0.5 #bandwidth_overhead_ratio, flow_table_reduction_ratio, num_clusters = run_multicast_aggregation_test(topo, similarity_threshold, 'single', True) #sys.exit(0) bandwidth_overhead_list = [] flow_table_reduction_list = [] reducible_flow_table_reduction_list = [] num_trees_list = [] run_time_list = [] min_group_size = 1 max_group_size = 10 group_range_split = sys.argv[4].split('-') if len(group_range_split) == 1: max_group_size = int(group_range_split[0]) else: min_group_size = int(group_range_split[0]) max_group_size = int(group_range_split[1]) num_trials = int(sys.argv[2]) start_time = time() print 'Simulations started at: ' + str(datetime.now()) for i in range(0, num_trials): #if i % 20 == 0: # print 'Running trial #' + str(i) bandwidth_overhead_ratio, flow_table_reduction_ratio, reducible_flow_table_reduction_ratio, num_trees, run_time = \ run_multicast_aggregation_test(topo, int(sys.argv[3]), min_group_size, max_group_size, sys.argv[5], float(sys.argv[6]), False, False) bandwidth_overhead_list.append(bandwidth_overhead_ratio) flow_table_reduction_list.append(flow_table_reduction_ratio) reducible_flow_table_reduction_list.append(reducible_flow_table_reduction_ratio) num_trees_list.append(num_trees) run_time_list.append(run_time) end_time = time() print ' ' print 'Similarity Type: ' + sys.argv[5] print 'Similarity Threshold: ' + sys.argv[6] print 'Average Bandwidth Overhead: ' + str(sum(bandwidth_overhead_list) / len(bandwidth_overhead_list)) print 'Average Flow Table Reduction: ' + str(sum(flow_table_reduction_list) / len(flow_table_reduction_list)) print 'Average Reducible Flow Table Reduction: ' + str(sum(reducible_flow_table_reduction_list) / len(reducible_flow_table_reduction_list)) print 'Average # Aggregated Trees: ' + str(float(sum(num_trees_list)) / len(num_trees_list)) print 'Average Tree Agg. Run-Time: ' + str(float(sum(run_time_list)) / len(run_time_list)) print 'Expected Sim Run-Time: ' + str((float(sum(run_time_list)) / len(run_time_list)) * num_trials) print ' ' print 'Completed ' + str(num_trials) + ' trials in ' + str(end_time - start_time) + ' seconds (' + str(datetime.now()) + ')' sys.exit()
apache-2.0
cwu2011/scikit-learn
sklearn/utils/tests/test_class_weight.py
140
11909
import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.datasets import make_blobs from sklearn.utils.class_weight import compute_class_weight from sklearn.utils.class_weight import compute_sample_weight from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns def test_compute_class_weight(): # Test (and demo) compute_class_weight. y = np.asarray([2, 2, 2, 3, 3, 4]) classes = np.unique(y) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_true(cw[0] < cw[1] < cw[2]) cw = compute_class_weight("balanced", classes, y) # total effect of samples is preserved class_counts = np.bincount(y)[2:] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_true(cw[0] < cw[1] < cw[2]) def test_compute_class_weight_not_present(): # Raise error when y does not contain all class labels classes = np.arange(4) y = np.asarray([0, 0, 0, 1, 1, 2]) assert_raises(ValueError, compute_class_weight, "auto", classes, y) assert_raises(ValueError, compute_class_weight, "balanced", classes, y) def test_compute_class_weight_invariance(): # Test that results with class_weight="balanced" is invariant wrt # class imbalance if the number of samples is identical. # The test uses a balanced two class dataset with 100 datapoints. # It creates three versions, one where class 1 is duplicated # resulting in 150 points of class 1 and 50 of class 0, # one where there are 50 points in class 1 and 150 in class 0, # and one where there are 100 points of each class (this one is balanced # again). # With balancing class weights, all three should give the same model. X, y = make_blobs(centers=2, random_state=0) # create dataset where class 1 is duplicated twice X_1 = np.vstack([X] + [X[y == 1]] * 2) y_1 = np.hstack([y] + [y[y == 1]] * 2) # create dataset where class 0 is duplicated twice X_0 = np.vstack([X] + [X[y == 0]] * 2) y_0 = np.hstack([y] + [y[y == 0]] * 2) # cuplicate everything X_ = np.vstack([X] * 2) y_ = np.hstack([y] * 2) # results should be identical logreg1 = LogisticRegression(class_weight="balanced").fit(X_1, y_1) logreg0 = LogisticRegression(class_weight="balanced").fit(X_0, y_0) logreg = LogisticRegression(class_weight="balanced").fit(X_, y_) assert_array_almost_equal(logreg1.coef_, logreg0.coef_) assert_array_almost_equal(logreg.coef_, logreg0.coef_) def test_compute_class_weight_auto_negative(): # Test compute_class_weight when labels are negative # Test with balanced class labels. classes = np.array([-2, -1, 0]) y = np.asarray([-1, -1, 0, 0, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) # Test with unbalanced class labels. y = np.asarray([-1, 0, 0, -2, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([0.545, 1.636, 0.818]), decimal=3) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) class_counts = np.bincount(y + 2) assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2. / 3, 2., 1.]) def test_compute_class_weight_auto_unordered(): # Test compute_class_weight when classes are unordered classes = np.array([1, 0, 3]) y = np.asarray([1, 0, 0, 3, 3, 3]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1.636, 0.818, 0.545]), decimal=3) cw = compute_class_weight("balanced", classes, y) class_counts = np.bincount(y)[classes] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2., 1., 2. / 3]) def test_compute_sample_weight(): # Test (and demo) compute_sample_weight. # Test with balanced classes y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with user-defined weights sample_weight = compute_sample_weight({1: 2, 2: 1}, y) assert_array_almost_equal(sample_weight, [2., 2., 2., 1., 1., 1.]) # Test with column vector of balanced classes y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with unbalanced classes y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) expected_auto = np.asarray([.6, .6, .6, .6, .6, .6, 1.8]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y) expected_balanced = np.array([0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 2.3333]) assert_array_almost_equal(sample_weight, expected_balanced, decimal=4) # Test with `None` weights sample_weight = compute_sample_weight(None, y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 1.]) # Test with multi-output of balanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with multi-output with user-defined weights y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = compute_sample_weight([{1: 2, 2: 1}, {0: 1, 1: 2}], y) assert_array_almost_equal(sample_weight, [2., 2., 2., 2., 2., 2.]) # Test with multi-output of unbalanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [3, -1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, expected_balanced ** 2, decimal=3) def test_compute_sample_weight_with_subsample(): # Test compute_sample_weight with subsamples specified. # Test with balanced classes and all samples present y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with column vector of balanced classes and all samples present y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with a subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(4)) assert_array_almost_equal(sample_weight, [.5, .5, .5, 1.5, 1.5, 1.5]) sample_weight = compute_sample_weight("balanced", y, range(4)) assert_array_almost_equal(sample_weight, [2. / 3, 2. / 3, 2. / 3, 2., 2., 2.]) # Test with a bootstrap subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) expected_auto = np.asarray([1 / 3., 1 / 3., 1 / 3., 5 / 3., 5 / 3., 5 / 3.]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) expected_balanced = np.asarray([0.6, 0.6, 0.6, 3., 3., 3.]) assert_array_almost_equal(sample_weight, expected_balanced) # Test with a bootstrap subsample for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_balanced ** 2) # Test with a missing class y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) # Test with a missing class for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [2, 2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) def test_compute_sample_weight_errors(): # Test compute_sample_weight raises errors expected. # Invalid preset string y = np.asarray([1, 1, 1, 2, 2, 2]) y_ = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) assert_raises(ValueError, compute_sample_weight, "ni", y) assert_raises(ValueError, compute_sample_weight, "ni", y, range(4)) assert_raises(ValueError, compute_sample_weight, "ni", y_) assert_raises(ValueError, compute_sample_weight, "ni", y_, range(4)) # Not "auto" for subsample assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y, range(4)) # Not a list or preset for multi-output assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y_) # Incorrect length list for multi-output assert_raises(ValueError, compute_sample_weight, [{1: 2, 2: 1}], y_)
bsd-3-clause
karstenw/nodebox-pyobjc
examples/Extended Application/matplotlib/examples/api/joinstyle.py
1
1625
""" =========== Join styles =========== Illustrate the three different join styles """ import numpy as np import matplotlib.pyplot as plt # nodebox section if __name__ == '__builtin__': # were in nodebox import os import tempfile W = 800 inset = 20 size(W, 600) plt.cla() plt.clf() plt.close('all') def tempimage(): fob = tempfile.NamedTemporaryFile(mode='w+b', suffix='.png', delete=False) fname = fob.name fob.close() return fname imgx = 20 imgy = 0 def pltshow(plt, dpi=150): global imgx, imgy temppath = tempimage() plt.savefig(temppath, dpi=dpi) dx,dy = imagesize(temppath) w = min(W,dx) image(temppath,imgx,imgy,width=w) imgy = imgy + dy + 20 os.remove(temppath) size(W, HEIGHT+dy+40) else: def pltshow(mplpyplot): mplpyplot.show() # nodebox section end def plot_angle(ax, x, y, angle, style): phi = np.radians(angle) xx = [x + .5, x, x + .5*np.cos(phi)] yy = [y, y, y + .5*np.sin(phi)] ax.plot(xx, yy, lw=8, color='blue', solid_joinstyle=style) ax.plot(xx[1:], yy[1:], lw=1, color='black') ax.plot(xx[1::-1], yy[1::-1], lw=1, color='black') ax.plot(xx[1:2], yy[1:2], 'o', color='red', markersize=3) ax.text(x, y + .2, '%.0f degrees' % angle) fig, ax = plt.subplots() ax.set_title('Join style') for x, style in enumerate((('miter', 'round', 'bevel'))): ax.text(x, 5, style) for i in range(5): plot_angle(ax, x, i, pow(2.0, 3 + i), style) ax.set_xlim(-.5, 2.75) ax.set_ylim(-.5, 5.5) pltshow(plt)
mit
manipopopo/tensorflow
tensorflow/examples/tutorials/input_fn/boston.py
76
2920
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DNNRegressor with custom input_fn for Housing dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import pandas as pd import tensorflow as tf tf.logging.set_verbosity(tf.logging.INFO) COLUMNS = ["crim", "zn", "indus", "nox", "rm", "age", "dis", "tax", "ptratio", "medv"] FEATURES = ["crim", "zn", "indus", "nox", "rm", "age", "dis", "tax", "ptratio"] LABEL = "medv" def get_input_fn(data_set, num_epochs=None, shuffle=True): return tf.estimator.inputs.pandas_input_fn( x=pd.DataFrame({k: data_set[k].values for k in FEATURES}), y=pd.Series(data_set[LABEL].values), num_epochs=num_epochs, shuffle=shuffle) def main(unused_argv): # Load datasets training_set = pd.read_csv("boston_train.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) test_set = pd.read_csv("boston_test.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) # Set of 6 examples for which to predict median house values prediction_set = pd.read_csv("boston_predict.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) # Feature cols feature_cols = [tf.feature_column.numeric_column(k) for k in FEATURES] # Build 2 layer fully connected DNN with 10, 10 units respectively. regressor = tf.estimator.DNNRegressor(feature_columns=feature_cols, hidden_units=[10, 10], model_dir="/tmp/boston_model") # Train regressor.train(input_fn=get_input_fn(training_set), steps=5000) # Evaluate loss over one epoch of test_set. ev = regressor.evaluate( input_fn=get_input_fn(test_set, num_epochs=1, shuffle=False)) loss_score = ev["loss"] print("Loss: {0:f}".format(loss_score)) # Print out predictions over a slice of prediction_set. y = regressor.predict( input_fn=get_input_fn(prediction_set, num_epochs=1, shuffle=False)) # .predict() returns an iterator of dicts; convert to a list and print # predictions predictions = list(p["predictions"] for p in itertools.islice(y, 6)) print("Predictions: {}".format(str(predictions))) if __name__ == "__main__": tf.app.run()
apache-2.0
chrsrds/scikit-learn
sklearn/decomposition/tests/test_sparse_pca.py
2
7777
# Author: Vlad Niculae # License: BSD 3 clause import sys import pytest import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_allclose from sklearn.utils.testing import if_safe_multiprocessing_with_blas from sklearn.decomposition import SparsePCA, MiniBatchSparsePCA, PCA from sklearn.utils import check_random_state def generate_toy_data(n_components, n_samples, image_size, random_state=None): n_features = image_size[0] * image_size[1] rng = check_random_state(random_state) U = rng.randn(n_samples, n_components) V = rng.randn(n_components, n_features) centers = [(3, 3), (6, 7), (8, 1)] sz = [1, 2, 1] for k in range(n_components): img = np.zeros(image_size) xmin, xmax = centers[k][0] - sz[k], centers[k][0] + sz[k] ymin, ymax = centers[k][1] - sz[k], centers[k][1] + sz[k] img[xmin:xmax][:, ymin:ymax] = 1.0 V[k, :] = img.ravel() # Y is defined by : Y = UV + noise Y = np.dot(U, V) Y += 0.1 * rng.randn(Y.shape[0], Y.shape[1]) # Add noise return Y, U, V # SparsePCA can be a bit slow. To avoid having test times go up, we # test different aspects of the code in the same test def test_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) spca = SparsePCA(n_components=8, random_state=rng) U = spca.fit_transform(X) assert spca.components_.shape == (8, 10) assert U.shape == (12, 8) # test overcomplete decomposition spca = SparsePCA(n_components=13, random_state=rng) U = spca.fit_transform(X) assert spca.components_.shape == (13, 10) assert U.shape == (12, 13) def test_fit_transform(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) # Test that CD gives similar results spca_lasso = SparsePCA(n_components=3, method='cd', random_state=0, alpha=alpha) spca_lasso.fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_) @if_safe_multiprocessing_with_blas def test_fit_transform_parallel(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs spca = SparsePCA(n_components=3, n_jobs=2, method='lars', alpha=alpha, random_state=0).fit(Y) U2 = spca.transform(Y) assert not np.all(spca_lars.components_ == 0) assert_array_almost_equal(U1, U2) def test_transform_nan(): # Test that SparsePCA won't return NaN when there is 0 feature in all # samples. rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array Y[:, 0] = 0 estimator = SparsePCA(n_components=8) assert not np.any(np.isnan(estimator.fit_transform(Y))) def test_fit_transform_tall(): rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 65, (8, 8), random_state=rng) # tall array spca_lars = SparsePCA(n_components=3, method='lars', random_state=rng) U1 = spca_lars.fit_transform(Y) spca_lasso = SparsePCA(n_components=3, method='cd', random_state=rng) U2 = spca_lasso.fit(Y).transform(Y) assert_array_almost_equal(U1, U2) def test_initialization(): rng = np.random.RandomState(0) U_init = rng.randn(5, 3) V_init = rng.randn(3, 4) model = SparsePCA(n_components=3, U_init=U_init, V_init=V_init, max_iter=0, random_state=rng) model.fit(rng.randn(5, 4)) assert_allclose(model.components_, V_init / np.linalg.norm(V_init, axis=1)[:, None]) def test_mini_batch_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) pca = MiniBatchSparsePCA(n_components=8, random_state=rng) U = pca.fit_transform(X) assert pca.components_.shape == (8, 10) assert U.shape == (12, 8) # test overcomplete decomposition pca = MiniBatchSparsePCA(n_components=13, random_state=rng) U = pca.fit_transform(X) assert pca.components_.shape == (13, 10) assert U.shape == (12, 13) # XXX: test always skipped @pytest.mark.skipif(True, reason="skipping mini_batch_fit_transform.") def test_mini_batch_fit_transform(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = MiniBatchSparsePCA(n_components=3, random_state=0, alpha=alpha).fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs if sys.platform == 'win32': # fake parallelism for win32 import joblib _mp = joblib.parallel.multiprocessing joblib.parallel.multiprocessing = None try: spca = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0) U2 = spca.fit(Y).transform(Y) finally: joblib.parallel.multiprocessing = _mp else: # we can efficiently use parallelism spca = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0) U2 = spca.fit(Y).transform(Y) assert not np.all(spca_lars.components_ == 0) assert_array_almost_equal(U1, U2) # Test that CD gives similar results spca_lasso = MiniBatchSparsePCA(n_components=3, method='cd', alpha=alpha, random_state=0).fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_) def test_scaling_fit_transform(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 1000, (8, 8), random_state=rng) spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=rng) results_train = spca_lars.fit_transform(Y) results_test = spca_lars.transform(Y[:10]) assert_allclose(results_train[0], results_test[0]) def test_pca_vs_spca(): rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 1000, (8, 8), random_state=rng) Z, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) spca = SparsePCA(alpha=0, ridge_alpha=0, n_components=2) pca = PCA(n_components=2) pca.fit(Y) spca.fit(Y) results_test_pca = pca.transform(Z) results_test_spca = spca.transform(Z) assert_allclose(np.abs(spca.components_.dot(pca.components_.T)), np.eye(2), atol=1e-5) results_test_pca *= np.sign(results_test_pca[0, :]) results_test_spca *= np.sign(results_test_spca[0, :]) assert_allclose(results_test_pca, results_test_spca) @pytest.mark.parametrize("spca", [SparsePCA, MiniBatchSparsePCA]) def test_spca_deprecation_warning(spca): rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) warn_msg = "'normalize_components' has been deprecated in 0.22" with pytest.warns(DeprecationWarning, match=warn_msg): spca(normalize_components=True).fit(Y) @pytest.mark.parametrize("spca", [SparsePCA, MiniBatchSparsePCA]) def test_spca_error_unormalized_components(spca): rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) err_msg = "normalize_components=False is not supported starting " with pytest.raises(NotImplementedError, match=err_msg): spca(normalize_components=False).fit(Y)
bsd-3-clause
shujaatak/UAV_MissionPlanner
Lib/site-packages/numpy/lib/npyio.py
53
59490
__all__ = ['savetxt', 'loadtxt', 'genfromtxt', 'ndfromtxt', 'mafromtxt', 'recfromtxt', 'recfromcsv', 'load', 'loads', 'save', 'savez', 'savez_compressed', 'packbits', 'unpackbits', 'fromregex', 'DataSource'] import numpy as np import format import sys import os import sys import itertools import warnings from operator import itemgetter from cPickle import load as _cload, loads from _datasource import DataSource if sys.platform != 'cli': from _compiled_base import packbits, unpackbits else: def packbits(*args, **kw): raise NotImplementedError() def unpackbits(*args, **kw): raise NotImplementedError() from _iotools import LineSplitter, NameValidator, StringConverter, \ ConverterError, ConverterLockError, ConversionWarning, \ _is_string_like, has_nested_fields, flatten_dtype, \ easy_dtype, _bytes_to_name from numpy.compat import asbytes, asstr, asbytes_nested, bytes if sys.version_info[0] >= 3: from io import BytesIO else: from cStringIO import StringIO as BytesIO _string_like = _is_string_like def seek_gzip_factory(f): """Use this factory to produce the class so that we can do a lazy import on gzip. """ import gzip class GzipFile(gzip.GzipFile): def seek(self, offset, whence=0): # figure out new position (we can only seek forwards) if whence == 1: offset = self.offset + offset if whence not in [0, 1]: raise IOError, "Illegal argument" if offset < self.offset: # for negative seek, rewind and do positive seek self.rewind() count = offset - self.offset for i in range(count // 1024): self.read(1024) self.read(count % 1024) def tell(self): return self.offset if isinstance(f, str): f = GzipFile(f) elif isinstance(f, gzip.GzipFile): # cast to our GzipFile if its already a gzip.GzipFile g = GzipFile(fileobj=f.fileobj) g.name = f.name g.mode = f.mode f = g return f class BagObj(object): """ BagObj(obj) Convert attribute look-ups to getitems on the object passed in. Parameters ---------- obj : class instance Object on which attribute look-up is performed. Examples -------- >>> from numpy.lib.npyio import BagObj as BO >>> class BagDemo(object): ... def __getitem__(self, key): # An instance of BagObj(BagDemo) ... # will call this method when any ... # attribute look-up is required ... result = "Doesn't matter what you want, " ... return result + "you're gonna get this" ... >>> demo_obj = BagDemo() >>> bagobj = BO(demo_obj) >>> bagobj.hello_there "Doesn't matter what you want, you're gonna get this" >>> bagobj.I_can_be_anything "Doesn't matter what you want, you're gonna get this" """ def __init__(self, obj): self._obj = obj def __getattribute__(self, key): try: return object.__getattribute__(self, '_obj')[key] except KeyError: raise AttributeError, key def zipfile_factory(*args, **kwargs): import zipfile if sys.version_info >= (2, 5): kwargs['allowZip64'] = True return zipfile.ZipFile(*args, **kwargs) class NpzFile(object): """ NpzFile(fid) A dictionary-like object with lazy-loading of files in the zipped archive provided on construction. `NpzFile` is used to load files in the NumPy ``.npz`` data archive format. It assumes that files in the archive have a ".npy" extension, other files are ignored. The arrays and file strings are lazily loaded on either getitem access using ``obj['key']`` or attribute lookup using ``obj.f.key``. A list of all files (without ".npy" extensions) can be obtained with ``obj.files`` and the ZipFile object itself using ``obj.zip``. Attributes ---------- files : list of str List of all files in the archive with a ".npy" extension. zip : ZipFile instance The ZipFile object initialized with the zipped archive. f : BagObj instance An object on which attribute can be performed as an alternative to getitem access on the `NpzFile` instance itself. Parameters ---------- fid : file or str The zipped archive to open. This is either a file-like object or a string containing the path to the archive. own_fid : bool, optional Whether NpzFile should close the file handle. Requires that `fid` is a file-like object. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npz = np.load(outfile) >>> isinstance(npz, np.lib.io.NpzFile) True >>> npz.files ['y', 'x'] >>> npz['x'] # getitem access array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> npz.f.x # attribute lookup array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ def __init__(self, fid, own_fid=False): # Import is postponed to here since zipfile depends on gzip, an optional # component of the so-called standard library. _zip = zipfile_factory(fid) self._files = _zip.namelist() self.files = [] for x in self._files: if x.endswith('.npy'): self.files.append(x[:-4]) else: self.files.append(x) self.zip = _zip self.f = BagObj(self) if own_fid: self.fid = fid else: self.fid = None def close(self): """ Close the file. """ if self.zip is not None: self.zip.close() self.zip = None if self.fid is not None: self.fid.close() self.fid = None def __del__(self): self.close() def __getitem__(self, key): # FIXME: This seems like it will copy strings around # more than is strictly necessary. The zipfile # will read the string and then # the format.read_array will copy the string # to another place in memory. # It would be better if the zipfile could read # (or at least uncompress) the data # directly into the array memory. member = 0 if key in self._files: member = 1 elif key in self.files: member = 1 key += '.npy' if member: bytes = self.zip.read(key) if bytes.startswith(format.MAGIC_PREFIX): value = BytesIO(bytes) return format.read_array(value) else: return bytes else: raise KeyError, "%s is not a file in the archive" % key def __iter__(self): return iter(self.files) def items(self): """ Return a list of tuples, with each tuple (filename, array in file). """ return [(f, self[f]) for f in self.files] def iteritems(self): """Generator that returns tuples (filename, array in file).""" for f in self.files: yield (f, self[f]) def keys(self): """Return files in the archive with a ".npy" extension.""" return self.files def iterkeys(self): """Return an iterator over the files in the archive.""" return self.__iter__() def __contains__(self, key): return self.files.__contains__(key) def load(file, mmap_mode=None): """ Load a pickled, ``.npy``, or ``.npz`` binary file. Parameters ---------- file : file-like object or string The file to read. It must support ``seek()`` and ``read()`` methods. If the filename extension is ``.gz``, the file is first decompressed. mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, optional If not None, then memory-map the file, using the given mode (see `numpy.memmap`). The mode has no effect for pickled or zipped files. A memory-mapped array is stored on disk, and not directly loaded into memory. However, it can be accessed and sliced like any ndarray. Memory mapping is especially useful for accessing small fragments of large files without reading the entire file into memory. Returns ------- result : array, tuple, dict, etc. Data stored in the file. Raises ------ IOError If the input file does not exist or cannot be read. See Also -------- save, savez, loadtxt memmap : Create a memory-map to an array stored in a file on disk. Notes ----- - If the file contains pickle data, then whatever is stored in the pickle is returned. - If the file is a ``.npy`` file, then an array is returned. - If the file is a ``.npz`` file, then a dictionary-like object is returned, containing ``{filename: array}`` key-value pairs, one for each file in the archive. Examples -------- Store data to disk, and load it again: >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) >>> np.load('/tmp/123.npy') array([[1, 2, 3], [4, 5, 6]]) Mem-map the stored array, and then access the second row directly from disk: >>> X = np.load('/tmp/123.npy', mmap_mode='r') >>> X[1, :] memmap([4, 5, 6]) """ import gzip own_fid = False if isinstance(file, basestring): fid = open(file, "rb") own_fid = True elif isinstance(file, gzip.GzipFile): fid = seek_gzip_factory(file) own_fid = True else: fid = file try: # Code to distinguish from NumPy binary files and pickles. _ZIP_PREFIX = asbytes('PK\x03\x04') N = len(format.MAGIC_PREFIX) magic = fid.read(N) fid.seek(-N, 1) # back-up if magic.startswith(_ZIP_PREFIX): # zip-file (assume .npz) own_fid = False return NpzFile(fid, own_fid=True) elif magic == format.MAGIC_PREFIX: # .npy file if mmap_mode: return format.open_memmap(file, mode=mmap_mode) else: return format.read_array(fid) else: # Try a pickle try: return _cload(fid) except: raise IOError, \ "Failed to interpret file %s as a pickle" % repr(file) finally: if own_fid: fid.close() def save(file, arr): """ Save an array to a binary file in NumPy ``.npy`` format. Parameters ---------- file : file or str File or filename to which the data is saved. If file is a file-object, then the filename is unchanged. If file is a string, a ``.npy`` extension will be appended to the file name if it does not already have one. arr : array_like Array data to be saved. See Also -------- savez : Save several arrays into a ``.npz`` archive savetxt, load Notes ----- For a description of the ``.npy`` format, see `format`. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> np.save(outfile, x) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> np.load(outfile) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ own_fid = False if isinstance(file, basestring): if not file.endswith('.npy'): file = file + '.npy' fid = open(file, "wb") own_fid = True else: fid = file try: arr = np.asanyarray(arr) format.write_array(fid, arr) finally: if own_fid: fid.close() def savez(file, *args, **kwds): """ Save several arrays into a single file in uncompressed ``.npz`` format. If arguments are passed in with no keywords, the corresponding variable names, in the .npz file, are 'arr_0', 'arr_1', etc. If keyword arguments are given, the corresponding variable names, in the ``.npz`` file will match the keyword names. Parameters ---------- file : str or file Either the file name (string) or an open file (file-like object) where the data will be saved. If file is a string, the ``.npz`` extension will be appended to the file name if it is not already there. *args : Arguments, optional Arrays to save to the file. Since it is not possible for Python to know the names of the arrays outside `savez`, the arrays will be saved with names "arr_0", "arr_1", and so on. These arguments can be any expression. **kwds : Keyword arguments, optional Arrays to save to the file. Arrays will be saved in the file with the keyword names. Returns ------- None See Also -------- save : Save a single array to a binary file in NumPy format. savetxt : Save an array to a file as plain text. Notes ----- The ``.npz`` file format is a zipped archive of files named after the variables they contain. The archive is not compressed and each file in the archive contains one variable in ``.npy`` format. For a description of the ``.npy`` format, see `format`. When opening the saved ``.npz`` file with `load` a `NpzFile` object is returned. This is a dictionary-like object which can be queried for its list of arrays (with the ``.files`` attribute), and for the arrays themselves. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) Using `savez` with *args, the arrays are saved with default names. >>> np.savez(outfile, x, y) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> npzfile = np.load(outfile) >>> npzfile.files ['arr_1', 'arr_0'] >>> npzfile['arr_0'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Using `savez` with **kwds, the arrays are saved with the keyword names. >>> outfile = TemporaryFile() >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npzfile = np.load(outfile) >>> npzfile.files ['y', 'x'] >>> npzfile['x'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) See Also -------- numpy.savez_compressed : Save several arrays into a compressed .npz file format """ _savez(file, args, kwds, False) def savez_compressed(file, *args, **kwds): """ Save several arrays into a single file in compressed ``.npz`` format. If keyword arguments are given, then filenames are taken from the keywords. If arguments are passed in with no keywords, then stored file names are arr_0, arr_1, etc. Parameters ---------- file : string File name of .npz file. args : Arguments Function arguments. kwds : Keyword arguments Keywords. See Also -------- numpy.savez : Save several arrays into an uncompressed .npz file format """ _savez(file, args, kwds, True) def _savez(file, args, kwds, compress): # Import is postponed to here since zipfile depends on gzip, an optional # component of the so-called standard library. import zipfile # Import deferred for startup time improvement import tempfile if isinstance(file, basestring): if not file.endswith('.npz'): file = file + '.npz' namedict = kwds for i, val in enumerate(args): key = 'arr_%d' % i if key in namedict.keys(): raise ValueError, "Cannot use un-named variables and keyword %s" % key namedict[key] = val if compress: compression = zipfile.ZIP_DEFLATED else: compression = zipfile.ZIP_STORED zip = zipfile_factory(file, mode="w", compression=compression) # Stage arrays in a temporary file on disk, before writing to zip. fd, tmpfile = tempfile.mkstemp(suffix='-numpy.npy') os.close(fd) try: for key, val in namedict.iteritems(): fname = key + '.npy' fid = open(tmpfile, 'wb') try: format.write_array(fid, np.asanyarray(val)) fid.close() fid = None zip.write(tmpfile, arcname=fname) finally: if fid: fid.close() finally: os.remove(tmpfile) zip.close() # Adapted from matplotlib def _getconv(dtype): typ = dtype.type if issubclass(typ, np.bool_): return lambda x: bool(int(x)) if issubclass(typ, np.integer): return lambda x: int(float(x)) elif issubclass(typ, np.floating): return float elif issubclass(typ, np.complex): return complex elif issubclass(typ, np.bytes_): return bytes else: return str def loadtxt(fname, dtype=float, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False): """ Load data from a text file. Each row in the text file must have the same number of values. Parameters ---------- fname : file or str File or filename to read. If the filename extension is ``.gz`` or ``.bz2``, the file is first decompressed. dtype : data-type, optional Data-type of the resulting array; default: float. If this is a record data-type, the resulting array will be 1-dimensional, and each row will be interpreted as an element of the array. In this case, the number of columns used must match the number of fields in the data-type. comments : str, optional The character used to indicate the start of a comment; default: '#'. delimiter : str, optional The string used to separate values. By default, this is any whitespace. converters : dict, optional A dictionary mapping column number to a function that will convert that column to a float. E.g., if column 0 is a date string: ``converters = {0: datestr2num}``. Converters can also be used to provide a default value for missing data: ``converters = {3: lambda s: float(s or 0)}``. Default: None. skiprows : int, optional Skip the first `skiprows` lines; default: 0. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns. The default, None, results in all columns being read. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)``. The default is False. Returns ------- out : ndarray Data read from the text file. See Also -------- load, fromstring, fromregex genfromtxt : Load data with missing values handled as specified. scipy.io.loadmat : reads MATLAB data files Notes ----- This function aims to be a fast reader for simply formatted files. The `genfromtxt` function provides more sophisticated handling of, e.g., lines with missing values. Examples -------- >>> from StringIO import StringIO # StringIO behaves like a file object >>> c = StringIO("0 1\\n2 3") >>> np.loadtxt(c) array([[ 0., 1.], [ 2., 3.]]) >>> d = StringIO("M 21 72\\nF 35 58") >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), ... 'formats': ('S1', 'i4', 'f4')}) array([('M', 21, 72.0), ('F', 35, 58.0)], dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')]) >>> c = StringIO("1,0,2\\n3,0,4") >>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) >>> x array([ 1., 3.]) >>> y array([ 2., 4.]) """ # Type conversions for Py3 convenience comments = asbytes(comments) if delimiter is not None: delimiter = asbytes(delimiter) user_converters = converters if usecols is not None: usecols = list(usecols) own_fh = False if _is_string_like(fname): own_fh = True if fname.endswith('.gz'): fh = seek_gzip_factory(fname) elif fname.endswith('.bz2'): import bz2 fh = bz2.BZ2File(fname) else: fh = open(fname, 'U') elif hasattr(fname, 'readline'): fh = fname else: raise ValueError('fname must be a string or file handle') X = [] def flatten_dtype(dt): """Unpack a structured data-type.""" if dt.names is None: # If the dtype is flattened, return. # If the dtype has a shape, the dtype occurs # in the list more than once. return [dt.base] * int(np.prod(dt.shape)) else: types = [] for field in dt.names: tp, bytes = dt.fields[field] flat_dt = flatten_dtype(tp) types.extend(flat_dt) return types def split_line(line): """Chop off comments, strip, and split at delimiter.""" line = asbytes(line).split(comments)[0].strip() if line: return line.split(delimiter) else: return [] try: # Make sure we're dealing with a proper dtype dtype = np.dtype(dtype) defconv = _getconv(dtype) # Skip the first `skiprows` lines for i in xrange(skiprows): fh.readline() # Read until we find a line with some values, and use # it to estimate the number of columns, N. first_vals = None while not first_vals: first_line = fh.readline() if not first_line: # EOF reached raise IOError('End-of-file reached before encountering data.') first_vals = split_line(first_line) N = len(usecols or first_vals) dtype_types = flatten_dtype(dtype) if len(dtype_types) > 1: # We're dealing with a structured array, each field of # the dtype matches a column converters = [_getconv(dt) for dt in dtype_types] else: # All fields have the same dtype converters = [defconv for i in xrange(N)] # By preference, use the converters specified by the user for i, conv in (user_converters or {}).iteritems(): if usecols: try: i = usecols.index(i) except ValueError: # Unused converter specified continue converters[i] = conv # Parse each line, including the first for i, line in enumerate(itertools.chain([first_line], fh)): vals = split_line(line) if len(vals) == 0: continue if usecols: vals = [vals[i] for i in usecols] # Convert each value according to its column and store X.append(tuple([conv(val) for (conv, val) in zip(converters, vals)])) finally: if own_fh: fh.close() if len(dtype_types) > 1: # We're dealing with a structured array, with a dtype such as # [('x', int), ('y', [('s', int), ('t', float)])] # # First, create the array using a flattened dtype: # [('x', int), ('s', int), ('t', float)] # # Then, view the array using the specified dtype. try: X = np.array(X, dtype=np.dtype([('', t) for t in dtype_types])) X = X.view(dtype) except TypeError: # In the case we have an object dtype X = np.array(X, dtype=dtype) else: X = np.array(X, dtype) X = np.squeeze(X) if unpack: return X.T else: return X def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n'): """ Save an array to a text file. Parameters ---------- fname : filename or file handle If the filename ends in ``.gz``, the file is automatically saved in compressed gzip format. `loadtxt` understands gzipped files transparently. X : array_like Data to be saved to a text file. fmt : str or sequence of strs A single format (%10.5f), a sequence of formats, or a multi-format string, e.g. 'Iteration %d -- %10.5f', in which case `delimiter` is ignored. delimiter : str Character separating columns. newline : str .. versionadded:: 1.5.0 Character separating lines. See Also -------- save : Save an array to a binary file in NumPy ``.npy`` format savez : Save several arrays into a ``.npz`` compressed archive Notes ----- Further explanation of the `fmt` parameter (``%[flag]width[.precision]specifier``): flags: ``-`` : left justify ``+`` : Forces to preceed result with + or -. ``0`` : Left pad the number with zeros instead of space (see width). width: Minimum number of characters to be printed. The value is not truncated if it has more characters. precision: - For integer specifiers (eg. ``d,i,o,x``), the minimum number of digits. - For ``e, E`` and ``f`` specifiers, the number of digits to print after the decimal point. - For ``g`` and ``G``, the maximum number of significant digits. - For ``s``, the maximum number of characters. specifiers: ``c`` : character ``d`` or ``i`` : signed decimal integer ``e`` or ``E`` : scientific notation with ``e`` or ``E``. ``f`` : decimal floating point ``g,G`` : use the shorter of ``e,E`` or ``f`` ``o`` : signed octal ``s`` : string of characters ``u`` : unsigned decimal integer ``x,X`` : unsigned hexadecimal integer This explanation of ``fmt`` is not complete, for an exhaustive specification see [1]_. References ---------- .. [1] `Format Specification Mini-Language <http://docs.python.org/library/string.html# format-specification-mini-language>`_, Python Documentation. Examples -------- >>> x = y = z = np.arange(0.0,5.0,1.0) >>> np.savetxt('test.out', x, delimiter=',') # X is an array >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation """ # Py3 conversions first if isinstance(fmt, bytes): fmt = asstr(fmt) delimiter = asstr(delimiter) own_fh = False if _is_string_like(fname): own_fh = True if fname.endswith('.gz'): import gzip fh = gzip.open(fname, 'wb') else: if sys.version_info[0] >= 3: fh = open(fname, 'wb') else: fh = open(fname, 'w') elif hasattr(fname, 'seek'): fh = fname else: raise ValueError('fname must be a string or file handle') try: X = np.asarray(X) # Handle 1-dimensional arrays if X.ndim == 1: # Common case -- 1d array of numbers if X.dtype.names is None: X = np.atleast_2d(X).T ncol = 1 # Complex dtype -- each field indicates a separate column else: ncol = len(X.dtype.descr) else: ncol = X.shape[1] # `fmt` can be a string with multiple insertion points or a # list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d') if type(fmt) in (list, tuple): if len(fmt) != ncol: raise AttributeError('fmt has wrong shape. %s' % str(fmt)) format = asstr(delimiter).join(map(asstr, fmt)) elif type(fmt) is str: if fmt.count('%') == 1: fmt = [fmt, ]*ncol format = delimiter.join(fmt) elif fmt.count('%') != ncol: raise AttributeError('fmt has wrong number of %% formats. %s' % fmt) else: format = fmt for row in X: fh.write(asbytes(format % tuple(row) + newline)) finally: if own_fh: fh.close() import re def fromregex(file, regexp, dtype): """ Construct an array from a text file, using regular expression parsing. The returned array is always a structured array, and is constructed from all matches of the regular expression in the file. Groups in the regular expression are converted to fields of the structured array. Parameters ---------- file : str or file File name or file object to read. regexp : str or regexp Regular expression used to parse the file. Groups in the regular expression correspond to fields in the dtype. dtype : dtype or list of dtypes Dtype for the structured array. Returns ------- output : ndarray The output array, containing the part of the content of `file` that was matched by `regexp`. `output` is always a structured array. Raises ------ TypeError When `dtype` is not a valid dtype for a structured array. See Also -------- fromstring, loadtxt Notes ----- Dtypes for structured arrays can be specified in several forms, but all forms specify at least the data type and field name. For details see `doc.structured_arrays`. Examples -------- >>> f = open('test.dat', 'w') >>> f.write("1312 foo\\n1534 bar\\n444 qux") >>> f.close() >>> regexp = r"(\\d+)\\s+(...)" # match [digits, whitespace, anything] >>> output = np.fromregex('test.dat', regexp, ... [('num', np.int64), ('key', 'S3')]) >>> output array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')], dtype=[('num', '<i8'), ('key', '|S3')]) >>> output['num'] array([1312, 1534, 444], dtype=int64) """ own_fh = False if not hasattr(file, "read"): file = open(file, 'rb') own_fh = True try: if not hasattr(regexp, 'match'): regexp = re.compile(asbytes(regexp)) if not isinstance(dtype, np.dtype): dtype = np.dtype(dtype) seq = regexp.findall(file.read()) if seq and not isinstance(seq[0], tuple): # Only one group is in the regexp. # Create the new array as a single data-type and then # re-interpret as a single-field structured array. newdtype = np.dtype(dtype[dtype.names[0]]) output = np.array(seq, dtype=newdtype) output.dtype = dtype else: output = np.array(seq, dtype=dtype) return output finally: if own_fh: fh.close() #####-------------------------------------------------------------------------- #---- --- ASCII functions --- #####-------------------------------------------------------------------------- def genfromtxt(fname, dtype=float, comments='#', delimiter=None, skiprows=0, skip_header=0, skip_footer=0, converters=None, missing='', missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=None, replace_space='_', autostrip=False, case_sensitive=True, defaultfmt="f%i", unpack=None, usemask=False, loose=True, invalid_raise=True): """ Load data from a text file, with missing values handled as specified. Each line past the first `skiprows` lines is split at the `delimiter` character, and characters following the `comments` character are discarded. Parameters ---------- fname : file or str File or filename to read. If the filename extension is `.gz` or `.bz2`, the file is first decompressed. dtype : dtype, optional Data type of the resulting array. If None, the dtypes will be determined by the contents of each column, individually. comments : str, optional The character used to indicate the start of a comment. All the characters occurring on a line after a comment are discarded delimiter : str, int, or sequence, optional The string used to separate values. By default, any consecutive whitespaces act as delimiter. An integer or sequence of integers can also be provided as width(s) of each field. skip_header : int, optional The numbers of lines to skip at the beginning of the file. skip_footer : int, optional The numbers of lines to skip at the end of the file converters : variable or None, optional The set of functions that convert the data of a column to a value. The converters can also be used to provide a default value for missing data: ``converters = {3: lambda s: float(s or 0)}``. missing_values : variable or None, optional The set of strings corresponding to missing data. filling_values : variable or None, optional The set of values to be used as default when the data are missing. usecols : sequence or None, optional Which columns to read, with 0 being the first. For example, ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns. names : {None, True, str, sequence}, optional If `names` is True, the field names are read from the first valid line after the first `skiprows` lines. If `names` is a sequence or a single-string of comma-separated names, the names will be used to define the field names in a structured dtype. If `names` is None, the names of the dtype fields will be used, if any. excludelist : sequence, optional A list of names to exclude. This list is appended to the default list ['return','file','print']. Excluded names are appended an underscore: for example, `file` would become `file_`. deletechars : str, optional A string combining invalid characters that must be deleted from the names. defaultfmt : str, optional A format used to define default field names, such as "f%i" or "f_%02i". autostrip : bool, optional Whether to automatically strip white spaces from the variables. replace_space : char, optional Character(s) used in replacement of white spaces in the variables names. By default, use a '_'. case_sensitive : {True, False, 'upper', 'lower'}, optional If True, field names are case sensitive. If False or 'upper', field names are converted to upper case. If 'lower', field names are converted to lower case. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)`` usemask : bool, optional If True, return a masked array. If False, return a regular array. invalid_raise : bool, optional If True, an exception is raised if an inconsistency is detected in the number of columns. If False, a warning is emitted and the offending lines are skipped. Returns ------- out : ndarray Data read from the text file. If `usemask` is True, this is a masked array. See Also -------- numpy.loadtxt : equivalent function when no data is missing. Notes ----- * When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any missing data between two fields. * When the variables are named (either by a flexible dtype or with `names`, there must not be any header in the file (else a ValueError exception is raised). * Individual values are not stripped of spaces by default. When using a custom converter, make sure the function does remove spaces. Examples --------- >>> from StringIO import StringIO >>> import numpy as np Comma delimited file with mixed dtype >>> s = StringIO("1,1.3,abcde") >>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), ... ('mystring','S5')], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Using dtype = None >>> s.seek(0) # needed for StringIO example only >>> data = np.genfromtxt(s, dtype=None, ... names = ['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Specifying dtype and names >>> s.seek(0) >>> data = np.genfromtxt(s, dtype="i8,f8,S5", ... names=['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) An example with fixed-width columns >>> s = StringIO("11.3abcde") >>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'], ... delimiter=[1,3,5]) >>> data array((1, 1.3, 'abcde'), dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')]) """ # Py3 data conversions to bytes, for convenience comments = asbytes(comments) if isinstance(delimiter, unicode): delimiter = asbytes(delimiter) if isinstance(missing, unicode): missing = asbytes(missing) if isinstance(missing_values, (unicode, list, tuple)): missing_values = asbytes_nested(missing_values) # if usemask: from numpy.ma import MaskedArray, make_mask_descr # Check the input dictionary of converters user_converters = converters or {} if not isinstance(user_converters, dict): errmsg = "The input argument 'converter' should be a valid dictionary "\ "(got '%s' instead)" raise TypeError(errmsg % type(user_converters)) # Initialize the filehandle, the LineSplitter and the NameValidator own_fhd = False if isinstance(fname, basestring): fhd = np.lib._datasource.open(fname, 'U') own_fhd = True elif not hasattr(fname, 'read'): raise TypeError("The input should be a string or a filehandle. "\ "(got %s instead)" % type(fname)) else: fhd = fname split_line = LineSplitter(delimiter=delimiter, comments=comments, autostrip=autostrip)._handyman validate_names = NameValidator(excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Get the first valid lines after the first skiprows ones .. if skiprows: warnings.warn("The use of `skiprows` is deprecated.\n"\ "Please use `skip_header` instead.", DeprecationWarning) skip_header = skiprows # Skip the first `skip_header` rows for i in xrange(skip_header): fhd.readline() # Keep on until we find the first valid values first_values = None while not first_values: first_line = fhd.readline() if not first_line: raise IOError('End-of-file reached before encountering data.') if names is True: if comments in first_line: first_line = asbytes('').join(first_line.split(comments)[1:]) first_values = split_line(first_line) # Should we take the first values as names ? if names is True: fval = first_values[0].strip() if fval in comments: del first_values[0] # Check the columns to use: make sure `usecols` is a list if usecols is not None: try: usecols = [_.strip() for _ in usecols.split(",")] except AttributeError: try: usecols = list(usecols) except TypeError: usecols = [usecols, ] nbcols = len(usecols or first_values) # Check the names and overwrite the dtype.names if needed if names is True: names = validate_names([_bytes_to_name(_.strip()) for _ in first_values]) first_line = asbytes('') elif _is_string_like(names): names = validate_names([_.strip() for _ in names.split(',')]) elif names: names = validate_names(names) # Get the dtype if dtype is not None: dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names) # Make sure the names is a list (for 2.5) if names is not None: names = list(names) if usecols: for (i, current) in enumerate(usecols): # if usecols is a list of names, convert to a list of indices if _is_string_like(current): usecols[i] = names.index(current) elif current < 0: usecols[i] = current + len(first_values) # If the dtype is not None, make sure we update it if (dtype is not None) and (len(dtype) > nbcols): descr = dtype.descr dtype = np.dtype([descr[_] for _ in usecols]) names = list(dtype.names) # If `names` is not None, update the names elif (names is not None) and (len(names) > nbcols): names = [names[_] for _ in usecols] elif (names is not None) and (dtype is not None): names = dtype.names # Process the missing values ............................... # Rename missing_values for convenience user_missing_values = missing_values or () # Define the list of missing_values (one column: one list) missing_values = [list([asbytes('')]) for _ in range(nbcols)] # We have a dictionary: process it field by field if isinstance(user_missing_values, dict): # Loop on the items for (key, val) in user_missing_values.items(): # Is the key a string ? if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped, then continue # Redefine the key as needed if it's a column number if usecols: try: key = usecols.index(key) except ValueError: pass # Transform the value as a list of string if isinstance(val, (list, tuple)): val = [str(_) for _ in val] else: val = [str(val), ] # Add the value(s) to the current list of missing if key is None: # None acts as default for miss in missing_values: miss.extend(val) else: missing_values[key].extend(val) # We have a sequence : each item matches a column elif isinstance(user_missing_values, (list, tuple)): for (value, entry) in zip(user_missing_values, missing_values): value = str(value) if value not in entry: entry.append(value) # We have a string : apply it to all entries elif isinstance(user_missing_values, bytes): user_value = user_missing_values.split(asbytes(",")) for entry in missing_values: entry.extend(user_value) # We have something else: apply it to all entries else: for entry in missing_values: entry.extend([str(user_missing_values)]) # Process the deprecated `missing` if missing != asbytes(''): warnings.warn("The use of `missing` is deprecated.\n"\ "Please use `missing_values` instead.", DeprecationWarning) values = [str(_) for _ in missing.split(asbytes(","))] for entry in missing_values: entry.extend(values) # Process the filling_values ............................... # Rename the input for convenience user_filling_values = filling_values or [] # Define the default filling_values = [None] * nbcols # We have a dictionary : update each entry individually if isinstance(user_filling_values, dict): for (key, val) in user_filling_values.items(): if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped, then continue # Redefine the key if it's a column number and usecols is defined if usecols: try: key = usecols.index(key) except ValueError: pass # Add the value to the list filling_values[key] = val # We have a sequence : update on a one-to-one basis elif isinstance(user_filling_values, (list, tuple)): n = len(user_filling_values) if (n <= nbcols): filling_values[:n] = user_filling_values else: filling_values = user_filling_values[:nbcols] # We have something else : use it for all entries else: filling_values = [user_filling_values] * nbcols # Initialize the converters ................................ if dtype is None: # Note: we can't use a [...]*nbcols, as we would have 3 times the same # ... converter, instead of 3 different converters. converters = [StringConverter(None, missing_values=miss, default=fill) for (miss, fill) in zip(missing_values, filling_values)] else: dtype_flat = flatten_dtype(dtype, flatten_base=True) # Initialize the converters if len(dtype_flat) > 1: # Flexible type : get a converter from each dtype zipit = zip(dtype_flat, missing_values, filling_values) converters = [StringConverter(dt, locked=True, missing_values=miss, default=fill) for (dt, miss, fill) in zipit] else: # Set to a default converter (but w/ different missing values) zipit = zip(missing_values, filling_values) converters = [StringConverter(dtype, locked=True, missing_values=miss, default=fill) for (miss, fill) in zipit] # Update the converters to use the user-defined ones uc_update = [] for (i, conv) in user_converters.items(): # If the converter is specified by column names, use the index instead if _is_string_like(i): try: i = names.index(i) except ValueError: continue elif usecols: try: i = usecols.index(i) except ValueError: # Unused converter specified continue # Find the value to test: if len(first_line): testing_value = first_values[i] else: testing_value = None converters[i].update(conv, locked=True, testing_value=testing_value, default=filling_values[i], missing_values=missing_values[i],) uc_update.append((i, conv)) # Make sure we have the corrected keys in user_converters... user_converters.update(uc_update) miss_chars = [_.missing_values for _ in converters] # Initialize the output lists ... # ... rows rows = [] append_to_rows = rows.append # ... masks if usemask: masks = [] append_to_masks = masks.append # ... invalid invalid = [] append_to_invalid = invalid.append # Parse each line for (i, line) in enumerate(itertools.chain([first_line, ], fhd)): values = split_line(line) nbvalues = len(values) # Skip an empty line if nbvalues == 0: continue # Select only the columns we need if usecols: try: values = [values[_] for _ in usecols] except IndexError: append_to_invalid((i + skip_header + 1, nbvalues)) continue elif nbvalues != nbcols: append_to_invalid((i + skip_header + 1, nbvalues)) continue # Store the values append_to_rows(tuple(values)) if usemask: append_to_masks(tuple([v.strip() in m for (v, m) in zip(values, missing_values)])) if own_fhd: fhd.close() # Upgrade the converters (if needed) if dtype is None: for (i, converter) in enumerate(converters): current_column = map(itemgetter(i), rows) try: converter.iterupgrade(current_column) except ConverterLockError: errmsg = "Converter #%i is locked and cannot be upgraded: " % i current_column = itertools.imap(itemgetter(i), rows) for (j, value) in enumerate(current_column): try: converter.upgrade(value) except (ConverterError, ValueError): errmsg += "(occurred line #%i for value '%s')" errmsg %= (j + 1 + skip_header, value) raise ConverterError(errmsg) # Check that we don't have invalid values nbinvalid = len(invalid) if nbinvalid > 0: nbrows = len(rows) + nbinvalid - skip_footer # Construct the error message template = " Line #%%i (got %%i columns instead of %i)" % nbcols if skip_footer > 0: nbinvalid_skipped = len([_ for _ in invalid if _[0] > nbrows + skip_header]) invalid = invalid[:nbinvalid - nbinvalid_skipped] skip_footer -= nbinvalid_skipped # # nbrows -= skip_footer # errmsg = [template % (i, nb) # for (i, nb) in invalid if i < nbrows] # else: errmsg = [template % (i, nb) for (i, nb) in invalid] if len(errmsg): errmsg.insert(0, "Some errors were detected !") errmsg = "\n".join(errmsg) # Raise an exception ? if invalid_raise: raise ValueError(errmsg) # Issue a warning ? else: warnings.warn(errmsg, ConversionWarning) # Strip the last skip_footer data if skip_footer > 0: rows = rows[:-skip_footer] if usemask: masks = masks[:-skip_footer] # Convert each value according to the converter: # We want to modify the list in place to avoid creating a new one... # if loose: # conversionfuncs = [conv._loose_call for conv in converters] # else: # conversionfuncs = [conv._strict_call for conv in converters] # for (i, vals) in enumerate(rows): # rows[i] = tuple([convert(val) # for (convert, val) in zip(conversionfuncs, vals)]) if loose: rows = zip(*[map(converter._loose_call, map(itemgetter(i), rows)) for (i, converter) in enumerate(converters)]) else: rows = zip(*[map(converter._strict_call, map(itemgetter(i), rows)) for (i, converter) in enumerate(converters)]) # Reset the dtype data = rows if dtype is None: # Get the dtypes from the types of the converters column_types = [conv.type for conv in converters] # Find the columns with strings... strcolidx = [i for (i, v) in enumerate(column_types) if v in (type('S'), np.string_)] # ... and take the largest number of chars. for i in strcolidx: column_types[i] = "|S%i" % max(len(row[i]) for row in data) # if names is None: # If the dtype is uniform, don't define names, else use '' base = set([c.type for c in converters if c._checked]) if len(base) == 1: (ddtype, mdtype) = (list(base)[0], np.bool) else: ddtype = [(defaultfmt % i, dt) for (i, dt) in enumerate(column_types)] if usemask: mdtype = [(defaultfmt % i, np.bool) for (i, dt) in enumerate(column_types)] else: ddtype = zip(names, column_types) mdtype = zip(names, [np.bool] * len(column_types)) output = np.array(data, dtype=ddtype) if usemask: outputmask = np.array(masks, dtype=mdtype) else: # Overwrite the initial dtype names if needed if names and dtype.names: dtype.names = names # Case 1. We have a structured type if len(dtype_flat) > 1: # Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])] # First, create the array using a flattened dtype: # [('a', int), ('b1', int), ('b2', float)] # Then, view the array using the specified dtype. if 'O' in (_.char for _ in dtype_flat): if has_nested_fields(dtype): errmsg = "Nested fields involving objects "\ "are not supported..." raise NotImplementedError(errmsg) else: output = np.array(data, dtype=dtype) else: rows = np.array(data, dtype=[('', _) for _ in dtype_flat]) output = rows.view(dtype) # Now, process the rowmasks the same way if usemask: rowmasks = np.array(masks, dtype=np.dtype([('', np.bool) for t in dtype_flat])) # Construct the new dtype mdtype = make_mask_descr(dtype) outputmask = rowmasks.view(mdtype) # Case #2. We have a basic dtype else: # We used some user-defined converters if user_converters: ishomogeneous = True descr = [] for (i, ttype) in enumerate([conv.type for conv in converters]): # Keep the dtype of the current converter if i in user_converters: ishomogeneous &= (ttype == dtype.type) if ttype == np.string_: ttype = "|S%i" % max(len(row[i]) for row in data) descr.append(('', ttype)) else: descr.append(('', dtype)) # So we changed the dtype ? if not ishomogeneous: # We have more than one field if len(descr) > 1: dtype = np.dtype(descr) # We have only one field: drop the name if not needed. else: dtype = np.dtype(ttype) # output = np.array(data, dtype) if usemask: if dtype.names: mdtype = [(_, np.bool) for _ in dtype.names] else: mdtype = np.bool outputmask = np.array(masks, dtype=mdtype) # Try to take care of the missing data we missed names = output.dtype.names if usemask and names: for (name, conv) in zip(names or (), converters): missing_values = [conv(_) for _ in conv.missing_values if _ != asbytes('')] for mval in missing_values: outputmask[name] |= (output[name] == mval) # Construct the final array if usemask: output = output.view(MaskedArray) output._mask = outputmask if unpack: return output.squeeze().T return output.squeeze() def ndfromtxt(fname, **kwargs): """ Load ASCII data stored in a file and return it as a single array. Complete description of all the optional input parameters is available in the docstring of the `genfromtxt` function. See Also -------- numpy.genfromtxt : generic function. """ kwargs['usemask'] = False return genfromtxt(fname, **kwargs) def mafromtxt(fname, **kwargs): """ Load ASCII data stored in a text file and return a masked array. For a complete description of all the input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. """ kwargs['usemask'] = True return genfromtxt(fname, **kwargs) def recfromtxt(fname, **kwargs): """ Load ASCII data from a file and return it in a record array. If ``usemask=False`` a standard `recarray` is returned, if ``usemask=True`` a MaskedRecords array is returned. Complete description of all the optional input parameters is available in the docstring of the `genfromtxt` function. See Also -------- numpy.genfromtxt : generic function Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ kwargs.update(dtype=kwargs.get('dtype', None)) usemask = kwargs.get('usemask', False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output def recfromcsv(fname, **kwargs): """ Load ASCII data stored in a comma-separated file. The returned array is a record array (if ``usemask=False``, see `recarray`) or a masked record array (if ``usemask=True``, see `ma.mrecords.MaskedRecords`). For a complete description of all the input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. """ case_sensitive = kwargs.get('case_sensitive', "lower") or "lower" names = kwargs.get('names', True) if names is None: names = True kwargs.update(dtype=kwargs.get('update', None), delimiter=kwargs.get('delimiter', ",") or ",", names=names, case_sensitive=case_sensitive) usemask = kwargs.get("usemask", False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output
gpl-2.0
karstenw/nodebox-pyobjc
examples/Extended Application/matplotlib/examples/pyplots/fig_axes_labels_simple.py
1
1396
""" ====================== Fig Axes Labels Simple ====================== """ import numpy as np import matplotlib.pyplot as plt # nodebox section if __name__ == '__builtin__': # were in nodebox import os import tempfile W = 800 inset = 20 size(W, 600) plt.cla() plt.clf() plt.close('all') def tempimage(): fob = tempfile.NamedTemporaryFile(mode='w+b', suffix='.png', delete=False) fname = fob.name fob.close() return fname imgx = 20 imgy = 0 def pltshow(plt, dpi=150): global imgx, imgy temppath = tempimage() plt.savefig(temppath, dpi=dpi) dx,dy = imagesize(temppath) w = min(W,dx) image(temppath,imgx,imgy,width=w) imgy = imgy + dy + 20 os.remove(temppath) size(W, HEIGHT+dy+40) else: def pltshow(mplpyplot): mplpyplot.show() # nodebox section end fig = plt.figure() fig.subplots_adjust(top=0.8) ax1 = fig.add_subplot(211) ax1.set_ylabel('volts') ax1.set_title('a sine wave') t = np.arange(0.0, 1.0, 0.01) s = np.sin(2*np.pi*t) line, = ax1.plot(t, s, color='blue', lw=2) # Fixing random state for reproducibility np.random.seed(19680801) ax2 = fig.add_axes([0.15, 0.1, 0.7, 0.3]) n, bins, patches = ax2.hist(np.random.randn(1000), 50, facecolor='yellow', edgecolor='yellow') ax2.set_xlabel('time (s)') pltshow(plt)
mit
sanketloke/scikit-learn
sklearn/feature_selection/variance_threshold.py
123
2572
# Author: Lars Buitinck # License: 3-clause BSD import numpy as np from ..base import BaseEstimator from .base import SelectorMixin from ..utils import check_array from ..utils.sparsefuncs import mean_variance_axis from ..utils.validation import check_is_fitted class VarianceThreshold(BaseEstimator, SelectorMixin): """Feature selector that removes all low-variance features. This feature selection algorithm looks only at the features (X), not the desired outputs (y), and can thus be used for unsupervised learning. Read more in the :ref:`User Guide <variance_threshold>`. Parameters ---------- threshold : float, optional Features with a training-set variance lower than this threshold will be removed. The default is to keep all features with non-zero variance, i.e. remove the features that have the same value in all samples. Attributes ---------- variances_ : array, shape (n_features,) Variances of individual features. Examples -------- The following dataset has integer features, two of which are the same in every sample. These are removed with the default setting for threshold:: >>> X = [[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]] >>> selector = VarianceThreshold() >>> selector.fit_transform(X) array([[2, 0], [1, 4], [1, 1]]) """ def __init__(self, threshold=0.): self.threshold = threshold def fit(self, X, y=None): """Learn empirical variances from X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Sample vectors from which to compute variances. y : any Ignored. This parameter exists only for compatibility with sklearn.pipeline.Pipeline. Returns ------- self """ X = check_array(X, ('csr', 'csc'), dtype=np.float64) if hasattr(X, "toarray"): # sparse matrix _, self.variances_ = mean_variance_axis(X, axis=0) else: self.variances_ = np.var(X, axis=0) if np.all(self.variances_ <= self.threshold): msg = "No feature in X meets the variance threshold {0:.5f}" if X.shape[0] == 1: msg += " (X contains only one sample)" raise ValueError(msg.format(self.threshold)) return self def _get_support_mask(self): check_is_fitted(self, 'variances_') return self.variances_ > self.threshold
bsd-3-clause
hdmetor/scikit-learn
sklearn/linear_model/tests/test_randomized_l1.py
214
4690
# Authors: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.linear_model.randomized_l1 import (lasso_stability_path, RandomizedLasso, RandomizedLogisticRegression) from sklearn.datasets import load_diabetes, load_iris from sklearn.feature_selection import f_regression, f_classif from sklearn.preprocessing import StandardScaler from sklearn.linear_model.base import center_data diabetes = load_diabetes() X = diabetes.data y = diabetes.target X = StandardScaler().fit_transform(X) X = X[:, [2, 3, 6, 7, 8]] # test that the feature score of the best features F, _ = f_regression(X, y) def test_lasso_stability_path(): # Check lasso stability path # Load diabetes data and add noisy features scaling = 0.3 coef_grid, scores_path = lasso_stability_path(X, y, scaling=scaling, random_state=42, n_resampling=30) assert_array_equal(np.argsort(F)[-3:], np.argsort(np.sum(scores_path, axis=1))[-3:]) def test_randomized_lasso(): # Check randomized lasso scaling = 0.3 selection_threshold = 0.5 # or with 1 alpha clf = RandomizedLasso(verbose=False, alpha=1, random_state=42, scaling=scaling, selection_threshold=selection_threshold) feature_scores = clf.fit(X, y).scores_ assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:]) # or with many alphas clf = RandomizedLasso(verbose=False, alpha=[1, 0.8], random_state=42, scaling=scaling, selection_threshold=selection_threshold) feature_scores = clf.fit(X, y).scores_ assert_equal(clf.all_scores_.shape, (X.shape[1], 2)) assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:]) X_r = clf.transform(X) X_full = clf.inverse_transform(X_r) assert_equal(X_r.shape[1], np.sum(feature_scores > selection_threshold)) assert_equal(X_full.shape, X.shape) clf = RandomizedLasso(verbose=False, alpha='aic', random_state=42, scaling=scaling) feature_scores = clf.fit(X, y).scores_ assert_array_equal(feature_scores, X.shape[1] * [1.]) clf = RandomizedLasso(verbose=False, scaling=-0.1) assert_raises(ValueError, clf.fit, X, y) clf = RandomizedLasso(verbose=False, scaling=1.1) assert_raises(ValueError, clf.fit, X, y) def test_randomized_logistic(): # Check randomized sparse logistic regression iris = load_iris() X = iris.data[:, [0, 2]] y = iris.target X = X[y != 2] y = y[y != 2] F, _ = f_classif(X, y) scaling = 0.3 clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) X_orig = X.copy() feature_scores = clf.fit(X, y).scores_ assert_array_equal(X, X_orig) # fit does not modify X assert_array_equal(np.argsort(F), np.argsort(feature_scores)) clf = RandomizedLogisticRegression(verbose=False, C=[1., 0.5], random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) feature_scores = clf.fit(X, y).scores_ assert_array_equal(np.argsort(F), np.argsort(feature_scores)) def test_randomized_logistic_sparse(): # Check randomized sparse logistic regression on sparse data iris = load_iris() X = iris.data[:, [0, 2]] y = iris.target X = X[y != 2] y = y[y != 2] # center here because sparse matrices are usually not centered X, y, _, _, _ = center_data(X, y, True, True) X_sp = sparse.csr_matrix(X) F, _ = f_classif(X, y) scaling = 0.3 clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) feature_scores = clf.fit(X, y).scores_ clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) feature_scores_sp = clf.fit(X_sp, y).scores_ assert_array_equal(feature_scores, feature_scores_sp)
bsd-3-clause
justincassidy/scikit-learn
sklearn/tree/tests/test_export.py
130
9950
""" Testing for export functions of decision trees (sklearn.tree.export). """ from re import finditer from numpy.testing import assert_equal from nose.tools import assert_raises from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.ensemble import GradientBoostingClassifier from sklearn.tree import export_graphviz from sklearn.externals.six import StringIO from sklearn.utils.testing import assert_in # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] y2 = [[-1, 1], [-1, 2], [-1, 3], [1, 1], [1, 2], [1, 3]] w = [1, 1, 1, .5, .5, .5] def test_graphviz_toy(): # Check correctness of export_graphviz clf = DecisionTreeClassifier(max_depth=3, min_samples_split=1, criterion="gini", random_state=2) clf.fit(X, y) # Test export code out = StringIO() export_graphviz(clf, out_file=out) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test with feature_names out = StringIO() export_graphviz(clf, out_file=out, feature_names=["feature0", "feature1"]) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="feature0 <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test with class_names out = StringIO() export_graphviz(clf, out_file=out, class_names=["yes", "no"]) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]\\nclass = yes"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]\\n' \ 'class = yes"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]\\n' \ 'class = no"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test plot_options out = StringIO() export_graphviz(clf, out_file=out, filled=True, impurity=False, proportion=True, special_characters=True, rounded=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled, rounded", color="black", ' \ 'fontname=helvetica] ;\n' \ 'edge [fontname=helvetica] ;\n' \ '0 [label=<X<SUB>0</SUB> &le; 0.0<br/>samples = 100.0%<br/>' \ 'value = [0.5, 0.5]>, fillcolor="#e5813900"] ;\n' \ '1 [label=<samples = 50.0%<br/>value = [1.0, 0.0]>, ' \ 'fillcolor="#e58139ff"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label=<samples = 50.0%<br/>value = [0.0, 1.0]>, ' \ 'fillcolor="#399de5ff"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test max_depth out = StringIO() export_graphviz(clf, out_file=out, max_depth=0, class_names=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]\\nclass = y[0]"] ;\n' \ '1 [label="(...)"] ;\n' \ '0 -> 1 ;\n' \ '2 [label="(...)"] ;\n' \ '0 -> 2 ;\n' \ '}' assert_equal(contents1, contents2) # Test max_depth with plot_options out = StringIO() export_graphviz(clf, out_file=out, max_depth=0, filled=True, node_ids=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled", color="black"] ;\n' \ '0 [label="node #0\\nX[0] <= 0.0\\ngini = 0.5\\n' \ 'samples = 6\\nvalue = [3, 3]", fillcolor="#e5813900"] ;\n' \ '1 [label="(...)", fillcolor="#C0C0C0"] ;\n' \ '0 -> 1 ;\n' \ '2 [label="(...)", fillcolor="#C0C0C0"] ;\n' \ '0 -> 2 ;\n' \ '}' assert_equal(contents1, contents2) # Test multi-output with weighted samples clf = DecisionTreeClassifier(max_depth=2, min_samples_split=1, criterion="gini", random_state=2) clf = clf.fit(X, y2, sample_weight=w) out = StringIO() export_graphviz(clf, out_file=out, filled=True, impurity=False) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled", color="black"] ;\n' \ '0 [label="X[0] <= 0.0\\nsamples = 6\\n' \ 'value = [[3.0, 1.5, 0.0]\\n' \ '[1.5, 1.5, 1.5]]", fillcolor="#e5813900"] ;\n' \ '1 [label="X[1] <= -1.5\\nsamples = 3\\n' \ 'value = [[3, 0, 0]\\n[1, 1, 1]]", ' \ 'fillcolor="#e5813965"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="samples = 1\\nvalue = [[1, 0, 0]\\n' \ '[0, 0, 1]]", fillcolor="#e58139ff"] ;\n' \ '1 -> 2 ;\n' \ '3 [label="samples = 2\\nvalue = [[2, 0, 0]\\n' \ '[1, 1, 0]]", fillcolor="#e581398c"] ;\n' \ '1 -> 3 ;\n' \ '4 [label="X[0] <= 1.5\\nsamples = 3\\n' \ 'value = [[0.0, 1.5, 0.0]\\n[0.5, 0.5, 0.5]]", ' \ 'fillcolor="#e5813965"] ;\n' \ '0 -> 4 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '5 [label="samples = 2\\nvalue = [[0.0, 1.0, 0.0]\\n' \ '[0.5, 0.5, 0.0]]", fillcolor="#e581398c"] ;\n' \ '4 -> 5 ;\n' \ '6 [label="samples = 1\\nvalue = [[0.0, 0.5, 0.0]\\n' \ '[0.0, 0.0, 0.5]]", fillcolor="#e58139ff"] ;\n' \ '4 -> 6 ;\n' \ '}' assert_equal(contents1, contents2) # Test regression output with plot_options clf = DecisionTreeRegressor(max_depth=3, min_samples_split=1, criterion="mse", random_state=2) clf.fit(X, y) out = StringIO() export_graphviz(clf, out_file=out, filled=True, leaves_parallel=True, rotate=True, rounded=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled, rounded", color="black", ' \ 'fontname=helvetica] ;\n' \ 'graph [ranksep=equally, splines=polyline] ;\n' \ 'edge [fontname=helvetica] ;\n' \ 'rankdir=LR ;\n' \ '0 [label="X[0] <= 0.0\\nmse = 1.0\\nsamples = 6\\n' \ 'value = 0.0", fillcolor="#e581397f"] ;\n' \ '1 [label="mse = 0.0\\nsamples = 3\\nvalue = -1.0", ' \ 'fillcolor="#e5813900"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="True"] ;\n' \ '2 [label="mse = 0.0\\nsamples = 3\\nvalue = 1.0", ' \ 'fillcolor="#e58139ff"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="False"] ;\n' \ '{rank=same ; 0} ;\n' \ '{rank=same ; 1; 2} ;\n' \ '}' assert_equal(contents1, contents2) def test_graphviz_errors(): # Check for errors of export_graphviz clf = DecisionTreeClassifier(max_depth=3, min_samples_split=1) clf.fit(X, y) # Check feature_names error out = StringIO() assert_raises(IndexError, export_graphviz, clf, out, feature_names=[]) # Check class_names error out = StringIO() assert_raises(IndexError, export_graphviz, clf, out, class_names=[]) def test_friedman_mse_in_graphviz(): clf = DecisionTreeRegressor(criterion="friedman_mse", random_state=0) clf.fit(X, y) dot_data = StringIO() export_graphviz(clf, out_file=dot_data) clf = GradientBoostingClassifier(n_estimators=2, random_state=0) clf.fit(X, y) for estimator in clf.estimators_: export_graphviz(estimator[0], out_file=dot_data) for finding in finditer("\[.*?samples.*?\]", dot_data.getvalue()): assert_in("friedman_mse", finding.group())
bsd-3-clause
slabanja/ase
ase/calculators/jacapo/utils/bandstructure.py
4
7089
import os import numpy as np import matplotlib.pyplot as plt from ase.calculators.jacapo import * from ase.dft.dos import DOS class BandStructure: '''outline of class to facilitate band structure calculations ''' def __init__(self, atoms, BZpath=[], npoints=10, outnc='harris.nc'): """Headline here ... XXX. atoms is an ase.Atoms object with calculator attached. Presumably the self-consistent charge density has already been calculated, otherwise, it will be. BZpath is a list of tuples describing the path through the Brillouin zone. The tuples have the form (label, kpt), e.g. :: [('$\Gamma$',[0.0, 0.0, 0.0]), ('X',[0.0, 0.5, 0.5]), ('L',[0.5, 0.0, 0.0]), ('$\Gamma$',[0.0, 0.0, 0.0])] the label is used in the figure and can include latex markup. npoints is the number of points on each segment. It can either be a constant, which is used for every segment, or a list of integers that is an integer for each segment. """ self.atoms = atoms self.calc = atoms.get_calculator() #first, we make sure the charge density is up to date. self.calc.get_charge_density() self.ef = self.calc.get_ef() #self-consistent fermi level self.labels = [x[0] for x in BZpath] self.kpt_path = [np.array(x[1],dtype=np.float) for x in BZpath] self.npoints = npoints #first, setup the kpt path kpts = [] #start at second kpt and go to second to last segment nsegments = len(self.kpt_path) - 1 for i in range(nsegments-1): #get number of points on path. this counts the first point try: i_npt = npoints[i] except TypeError: i_npt = npoints #this is the vector connecting the two endpoint kpts of a segment kdiff = self.kpt_path[i+1] - self.kpt_path[i] #make a vector of evenly spaced intervals, one longer than needed #because we chop off the last entry. for j in np.linspace(0,1,i_npt+1)[0:-1]: k = self.kpt_path[i] + j*kdiff #shift by small random amount to break symmetry and #prevent time-inversion reduction krand = (1. + np.random.random(3))/1.e4 k += krand kpts.append(k) #now fill in the last segment, and end on the last point try: i_npt = npoints[-1] except TypeError: i_npt = npoints kdiff = self.kpt_path[-1] - self.kpt_path[-2] for j in np.linspace(0,1,i_npt+1)[1:]: k = self.kpt_path[-2] + j*kdiff #shift by small random amount to break symmetry and #prevent time-inversion reduction krand = (1. + np.random.random(3))/1.e4 k += krand kpts.append(k) #these are now the points needed for the Harris calculation. self.kpts = kpts self.dos = DOS(self.calc) self.dos_energies = self.dos.get_energies() self.dos_dos = self.dos.get_dos() #try to avoid rerunning the calculation if it is already done! if os.path.exists(outnc): self.calc = Jacapo(outnc) else: print 'calculation of harris required' self.calc.set_nc(outnc) #self.calc.debug=10 #save some time by not calculating stress self.calc.set_stress(False) #this seems to be necessary sometimes self.calc.delete_ncattdimvar(outnc, ncdims=['number_plane_waves']) #this has to come after removing number_of_planewaves self.calc.set_kpts(self.kpts) #freeze charge density self.calc.set_charge_mixing(updatecharge='No') #and, run calculation self.calc.calculate() def plot(self): ''' Make an interactive band-structure plot. clicking on a band will make it thicker and print which band was selected. ''' kpoints = self.calc.get_ibz_kpoints() eigenvalues = self.calc.get_all_eigenvalues() - self.ef #eigenvalues = np.array([self.calc.get_eigenvalues(kpt=i)-self.ef # for i in range(len(kpoints))]) self.handles = [] #used to get band indexes from plot fig = plt.figure() #plot DOS in figure ax = fig.add_subplot(122) ax.plot(self.dos_dos,self.dos_energies) plt.title('self-consistent Total DOS') ax.set_xticks([]) ax.set_yticks([]) ax.set_ylim([-20,20]) ax = fig.add_subplot(121) ax.set_title('Band structure') def onpick(event): 'make picked line bolder, set oldline back to regular thickness' self.lastartist.set_linewidth(1) self.lastartist = thisline = event.artist thisline.set_linewidth(5) plt.draw() #needed to update linewidth print 'Band %i selected' % self.handles.index(thisline) #you could insert code here to plot wavefunction, etc... fig.canvas.mpl_connect('pick_event',onpick) #we use indices for x. the tick labels are not shown and the distance #appears unimportant xdata = range(len(eigenvalues)) nkpts, nbands = eigenvalues.shape for i in range(nbands): #eigenvalues has shape(nkpts,nbands) #note the comma after line_handle line_handle, = ax.plot(xdata,eigenvalues[:,i],'.-',ms=1,picker=2) self.handles.append(line_handle) self.lastartist = self.handles[-1] #plot Fermi level ax.plot([0,len(self.kpts)],[0,0],'k--',label='$E_f$') plt.xlabel('|k|') plt.ylabel('$E-E_f$ (eV)') #set xtick locations and labels xtick_locs = np.zeros(len(self.kpt_path)) try: #this means the npoints is a list i_npt = self.npoints[0] for j,npt in enumerate(1,self.npoints): xtick_locs[j] = xtick_locs[j-1] + npt except TypeError: #npoints is a single number for j in range(1,len(self.labels)): xtick_locs[j] = xtick_locs[j-1] + self.npoints #the last location is off by one, so we fix it. xtick_locs[-1] -= 1 ax.set_xlim([xtick_locs[0],xtick_locs[-1]]) ax.set_xticks(xtick_locs) ax.set_xticklabels(self.labels) #this seems reasonable to avoid very deep energy states and high energy states ax.set_ylim([-20,20]) plt.show() return fig
gpl-2.0
ammarkhann/FinalSeniorCode
lib/python2.7/site-packages/scipy/optimize/_lsq/least_squares.py
27
37725
"""Generic interface for least-square minimization.""" from __future__ import division, print_function, absolute_import from warnings import warn import numpy as np from numpy.linalg import norm from scipy.sparse import issparse, csr_matrix from scipy.sparse.linalg import LinearOperator from scipy.optimize import _minpack, OptimizeResult from scipy.optimize._numdiff import approx_derivative, group_columns from scipy._lib.six import string_types from .trf import trf from .dogbox import dogbox from .common import EPS, in_bounds, make_strictly_feasible TERMINATION_MESSAGES = { -1: "Improper input parameters status returned from `leastsq`", 0: "The maximum number of function evaluations is exceeded.", 1: "`gtol` termination condition is satisfied.", 2: "`ftol` termination condition is satisfied.", 3: "`xtol` termination condition is satisfied.", 4: "Both `ftol` and `xtol` termination conditions are satisfied." } FROM_MINPACK_TO_COMMON = { 0: -1, # Improper input parameters from MINPACK. 1: 2, 2: 3, 3: 4, 4: 1, 5: 0 # There are 6, 7, 8 for too small tolerance parameters, # but we guard against it by checking ftol, xtol, gtol beforehand. } def call_minpack(fun, x0, jac, ftol, xtol, gtol, max_nfev, x_scale, diff_step): n = x0.size if diff_step is None: epsfcn = EPS else: epsfcn = diff_step**2 # Compute MINPACK's `diag`, which is inverse of our `x_scale` and # ``x_scale='jac'`` corresponds to ``diag=None``. if isinstance(x_scale, string_types) and x_scale == 'jac': diag = None else: diag = 1 / x_scale full_output = True col_deriv = False factor = 100.0 if jac is None: if max_nfev is None: # n squared to account for Jacobian evaluations. max_nfev = 100 * n * (n + 1) x, info, status = _minpack._lmdif( fun, x0, (), full_output, ftol, xtol, gtol, max_nfev, epsfcn, factor, diag) else: if max_nfev is None: max_nfev = 100 * n x, info, status = _minpack._lmder( fun, jac, x0, (), full_output, col_deriv, ftol, xtol, gtol, max_nfev, factor, diag) f = info['fvec'] if callable(jac): J = jac(x) else: J = np.atleast_2d(approx_derivative(fun, x)) cost = 0.5 * np.dot(f, f) g = J.T.dot(f) g_norm = norm(g, ord=np.inf) nfev = info['nfev'] njev = info.get('njev', None) status = FROM_MINPACK_TO_COMMON[status] active_mask = np.zeros_like(x0, dtype=int) return OptimizeResult( x=x, cost=cost, fun=f, jac=J, grad=g, optimality=g_norm, active_mask=active_mask, nfev=nfev, njev=njev, status=status) def prepare_bounds(bounds, n): lb, ub = [np.asarray(b, dtype=float) for b in bounds] if lb.ndim == 0: lb = np.resize(lb, n) if ub.ndim == 0: ub = np.resize(ub, n) return lb, ub def check_tolerance(ftol, xtol, gtol): message = "{} is too low, setting to machine epsilon {}." if ftol < EPS: warn(message.format("`ftol`", EPS)) ftol = EPS if xtol < EPS: warn(message.format("`xtol`", EPS)) xtol = EPS if gtol < EPS: warn(message.format("`gtol`", EPS)) gtol = EPS return ftol, xtol, gtol def check_x_scale(x_scale, x0): if isinstance(x_scale, string_types) and x_scale == 'jac': return x_scale try: x_scale = np.asarray(x_scale, dtype=float) valid = np.all(np.isfinite(x_scale)) and np.all(x_scale > 0) except (ValueError, TypeError): valid = False if not valid: raise ValueError("`x_scale` must be 'jac' or array_like with " "positive numbers.") if x_scale.ndim == 0: x_scale = np.resize(x_scale, x0.shape) if x_scale.shape != x0.shape: raise ValueError("Inconsistent shapes between `x_scale` and `x0`.") return x_scale def check_jac_sparsity(jac_sparsity, m, n): if jac_sparsity is None: return None if not issparse(jac_sparsity): jac_sparsity = np.atleast_2d(jac_sparsity) if jac_sparsity.shape != (m, n): raise ValueError("`jac_sparsity` has wrong shape.") return jac_sparsity, group_columns(jac_sparsity) # Loss functions. def huber(z, rho, cost_only): mask = z <= 1 rho[0, mask] = z[mask] rho[0, ~mask] = 2 * z[~mask]**0.5 - 1 if cost_only: return rho[1, mask] = 1 rho[1, ~mask] = z[~mask]**-0.5 rho[2, mask] = 0 rho[2, ~mask] = -0.5 * z[~mask]**-1.5 def soft_l1(z, rho, cost_only): t = 1 + z rho[0] = 2 * (t**0.5 - 1) if cost_only: return rho[1] = t**-0.5 rho[2] = -0.5 * t**-1.5 def cauchy(z, rho, cost_only): rho[0] = np.log1p(z) if cost_only: return t = 1 + z rho[1] = 1 / t rho[2] = -1 / t**2 def arctan(z, rho, cost_only): rho[0] = np.arctan(z) if cost_only: return t = 1 + z**2 rho[1] = 1 / t rho[2] = -2 * z / t**2 IMPLEMENTED_LOSSES = dict(linear=None, huber=huber, soft_l1=soft_l1, cauchy=cauchy, arctan=arctan) def construct_loss_function(m, loss, f_scale): if loss == 'linear': return None if not callable(loss): loss = IMPLEMENTED_LOSSES[loss] rho = np.empty((3, m)) def loss_function(f, cost_only=False): z = (f / f_scale) ** 2 loss(z, rho, cost_only=cost_only) if cost_only: return 0.5 * f_scale ** 2 * np.sum(rho[0]) rho[0] *= f_scale ** 2 rho[2] /= f_scale ** 2 return rho else: def loss_function(f, cost_only=False): z = (f / f_scale) ** 2 rho = loss(z) if cost_only: return 0.5 * f_scale ** 2 * np.sum(rho[0]) rho[0] *= f_scale ** 2 rho[2] /= f_scale ** 2 return rho return loss_function def least_squares( fun, x0, jac='2-point', bounds=(-np.inf, np.inf), method='trf', ftol=1e-8, xtol=1e-8, gtol=1e-8, x_scale=1.0, loss='linear', f_scale=1.0, diff_step=None, tr_solver=None, tr_options={}, jac_sparsity=None, max_nfev=None, verbose=0, args=(), kwargs={}): """Solve a nonlinear least-squares problem with bounds on the variables. Given the residuals f(x) (an m-dimensional real function of n real variables) and the loss function rho(s) (a scalar function), `least_squares` finds a local minimum of the cost function F(x):: minimize F(x) = 0.5 * sum(rho(f_i(x)**2), i = 0, ..., m - 1) subject to lb <= x <= ub The purpose of the loss function rho(s) is to reduce the influence of outliers on the solution. Parameters ---------- fun : callable Function which computes the vector of residuals, with the signature ``fun(x, *args, **kwargs)``, i.e., the minimization proceeds with respect to its first argument. The argument ``x`` passed to this function is an ndarray of shape (n,) (never a scalar, even for n=1). It must return a 1-d array_like of shape (m,) or a scalar. If the argument ``x`` is complex or the function ``fun`` returns complex residuals, it must be wrapped in a real function of real arguments, as shown at the end of the Examples section. x0 : array_like with shape (n,) or float Initial guess on independent variables. If float, it will be treated as a 1-d array with one element. jac : {'2-point', '3-point', 'cs', callable}, optional Method of computing the Jacobian matrix (an m-by-n matrix, where element (i, j) is the partial derivative of f[i] with respect to x[j]). The keywords select a finite difference scheme for numerical estimation. The scheme '3-point' is more accurate, but requires twice as much operations compared to '2-point' (default). The scheme 'cs' uses complex steps, and while potentially the most accurate, it is applicable only when `fun` correctly handles complex inputs and can be analytically continued to the complex plane. Method 'lm' always uses the '2-point' scheme. If callable, it is used as ``jac(x, *args, **kwargs)`` and should return a good approximation (or the exact value) for the Jacobian as an array_like (np.atleast_2d is applied), a sparse matrix or a `scipy.sparse.linalg.LinearOperator`. bounds : 2-tuple of array_like, optional Lower and upper bounds on independent variables. Defaults to no bounds. Each array must match the size of `x0` or be a scalar, in the latter case a bound will be the same for all variables. Use ``np.inf`` with an appropriate sign to disable bounds on all or some variables. method : {'trf', 'dogbox', 'lm'}, optional Algorithm to perform minimization. * 'trf' : Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method. * 'dogbox' : dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian. * 'lm' : Levenberg-Marquardt algorithm as implemented in MINPACK. Doesn't handle bounds and sparse Jacobians. Usually the most efficient method for small unconstrained problems. Default is 'trf'. See Notes for more information. ftol : float, optional Tolerance for termination by the change of the cost function. Default is 1e-8. The optimization process is stopped when ``dF < ftol * F``, and there was an adequate agreement between a local quadratic model and the true model in the last step. xtol : float, optional Tolerance for termination by the change of the independent variables. Default is 1e-8. The exact condition depends on the `method` used: * For 'trf' and 'dogbox' : ``norm(dx) < xtol * (xtol + norm(x))`` * For 'lm' : ``Delta < xtol * norm(xs)``, where ``Delta`` is a trust-region radius and ``xs`` is the value of ``x`` scaled according to `x_scale` parameter (see below). gtol : float, optional Tolerance for termination by the norm of the gradient. Default is 1e-8. The exact condition depends on a `method` used: * For 'trf' : ``norm(g_scaled, ord=np.inf) < gtol``, where ``g_scaled`` is the value of the gradient scaled to account for the presence of the bounds [STIR]_. * For 'dogbox' : ``norm(g_free, ord=np.inf) < gtol``, where ``g_free`` is the gradient with respect to the variables which are not in the optimal state on the boundary. * For 'lm' : the maximum absolute value of the cosine of angles between columns of the Jacobian and the residual vector is less than `gtol`, or the residual vector is zero. x_scale : array_like or 'jac', optional Characteristic scale of each variable. Setting `x_scale` is equivalent to reformulating the problem in scaled variables ``xs = x / x_scale``. An alternative view is that the size of a trust region along j-th dimension is proportional to ``x_scale[j]``. Improved convergence may be achieved by setting `x_scale` such that a step of a given size along any of the scaled variables has a similar effect on the cost function. If set to 'jac', the scale is iteratively updated using the inverse norms of the columns of the Jacobian matrix (as described in [JJMore]_). loss : str or callable, optional Determines the loss function. The following keyword values are allowed: * 'linear' (default) : ``rho(z) = z``. Gives a standard least-squares problem. * 'soft_l1' : ``rho(z) = 2 * ((1 + z)**0.5 - 1)``. The smooth approximation of l1 (absolute value) loss. Usually a good choice for robust least squares. * 'huber' : ``rho(z) = z if z <= 1 else 2*z**0.5 - 1``. Works similarly to 'soft_l1'. * 'cauchy' : ``rho(z) = ln(1 + z)``. Severely weakens outliers influence, but may cause difficulties in optimization process. * 'arctan' : ``rho(z) = arctan(z)``. Limits a maximum loss on a single residual, has properties similar to 'cauchy'. If callable, it must take a 1-d ndarray ``z=f**2`` and return an array_like with shape (3, m) where row 0 contains function values, row 1 contains first derivatives and row 2 contains second derivatives. Method 'lm' supports only 'linear' loss. f_scale : float, optional Value of soft margin between inlier and outlier residuals, default is 1.0. The loss function is evaluated as follows ``rho_(f**2) = C**2 * rho(f**2 / C**2)``, where ``C`` is `f_scale`, and ``rho`` is determined by `loss` parameter. This parameter has no effect with ``loss='linear'``, but for other `loss` values it is of crucial importance. max_nfev : None or int, optional Maximum number of function evaluations before the termination. If None (default), the value is chosen automatically: * For 'trf' and 'dogbox' : 100 * n. * For 'lm' : 100 * n if `jac` is callable and 100 * n * (n + 1) otherwise (because 'lm' counts function calls in Jacobian estimation). diff_step : None or array_like, optional Determines the relative step size for the finite difference approximation of the Jacobian. The actual step is computed as ``x * diff_step``. If None (default), then `diff_step` is taken to be a conventional "optimal" power of machine epsilon for the finite difference scheme used [NR]_. tr_solver : {None, 'exact', 'lsmr'}, optional Method for solving trust-region subproblems, relevant only for 'trf' and 'dogbox' methods. * 'exact' is suitable for not very large problems with dense Jacobian matrices. The computational complexity per iteration is comparable to a singular value decomposition of the Jacobian matrix. * 'lsmr' is suitable for problems with sparse and large Jacobian matrices. It uses the iterative procedure `scipy.sparse.linalg.lsmr` for finding a solution of a linear least-squares problem and only requires matrix-vector product evaluations. If None (default) the solver is chosen based on the type of Jacobian returned on the first iteration. tr_options : dict, optional Keyword options passed to trust-region solver. * ``tr_solver='exact'``: `tr_options` are ignored. * ``tr_solver='lsmr'``: options for `scipy.sparse.linalg.lsmr`. Additionally ``method='trf'`` supports 'regularize' option (bool, default is True) which adds a regularization term to the normal equation, which improves convergence if the Jacobian is rank-deficient [Byrd]_ (eq. 3.4). jac_sparsity : {None, array_like, sparse matrix}, optional Defines the sparsity structure of the Jacobian matrix for finite difference estimation, its shape must be (m, n). If the Jacobian has only few non-zero elements in *each* row, providing the sparsity structure will greatly speed up the computations [Curtis]_. A zero entry means that a corresponding element in the Jacobian is identically zero. If provided, forces the use of 'lsmr' trust-region solver. If None (default) then dense differencing will be used. Has no effect for 'lm' method. verbose : {0, 1, 2}, optional Level of algorithm's verbosity: * 0 (default) : work silently. * 1 : display a termination report. * 2 : display progress during iterations (not supported by 'lm' method). args, kwargs : tuple and dict, optional Additional arguments passed to `fun` and `jac`. Both empty by default. The calling signature is ``fun(x, *args, **kwargs)`` and the same for `jac`. Returns ------- `OptimizeResult` with the following fields defined: x : ndarray, shape (n,) Solution found. cost : float Value of the cost function at the solution. fun : ndarray, shape (m,) Vector of residuals at the solution. jac : ndarray, sparse matrix or LinearOperator, shape (m, n) Modified Jacobian matrix at the solution, in the sense that J^T J is a Gauss-Newton approximation of the Hessian of the cost function. The type is the same as the one used by the algorithm. grad : ndarray, shape (m,) Gradient of the cost function at the solution. optimality : float First-order optimality measure. In unconstrained problems, it is always the uniform norm of the gradient. In constrained problems, it is the quantity which was compared with `gtol` during iterations. active_mask : ndarray of int, shape (n,) Each component shows whether a corresponding constraint is active (that is, whether a variable is at the bound): * 0 : a constraint is not active. * -1 : a lower bound is active. * 1 : an upper bound is active. Might be somewhat arbitrary for 'trf' method as it generates a sequence of strictly feasible iterates and `active_mask` is determined within a tolerance threshold. nfev : int Number of function evaluations done. Methods 'trf' and 'dogbox' do not count function calls for numerical Jacobian approximation, as opposed to 'lm' method. njev : int or None Number of Jacobian evaluations done. If numerical Jacobian approximation is used in 'lm' method, it is set to None. status : int The reason for algorithm termination: * -1 : improper input parameters status returned from MINPACK. * 0 : the maximum number of function evaluations is exceeded. * 1 : `gtol` termination condition is satisfied. * 2 : `ftol` termination condition is satisfied. * 3 : `xtol` termination condition is satisfied. * 4 : Both `ftol` and `xtol` termination conditions are satisfied. message : str Verbal description of the termination reason. success : bool True if one of the convergence criteria is satisfied (`status` > 0). See Also -------- leastsq : A legacy wrapper for the MINPACK implementation of the Levenberg-Marquadt algorithm. curve_fit : Least-squares minimization applied to a curve fitting problem. Notes ----- Method 'lm' (Levenberg-Marquardt) calls a wrapper over least-squares algorithms implemented in MINPACK (lmder, lmdif). It runs the Levenberg-Marquardt algorithm formulated as a trust-region type algorithm. The implementation is based on paper [JJMore]_, it is very robust and efficient with a lot of smart tricks. It should be your first choice for unconstrained problems. Note that it doesn't support bounds. Also it doesn't work when m < n. Method 'trf' (Trust Region Reflective) is motivated by the process of solving a system of equations, which constitute the first-order optimality condition for a bound-constrained minimization problem as formulated in [STIR]_. The algorithm iteratively solves trust-region subproblems augmented by a special diagonal quadratic term and with trust-region shape determined by the distance from the bounds and the direction of the gradient. This enhancements help to avoid making steps directly into bounds and efficiently explore the whole space of variables. To further improve convergence, the algorithm considers search directions reflected from the bounds. To obey theoretical requirements, the algorithm keeps iterates strictly feasible. With dense Jacobians trust-region subproblems are solved by an exact method very similar to the one described in [JJMore]_ (and implemented in MINPACK). The difference from the MINPACK implementation is that a singular value decomposition of a Jacobian matrix is done once per iteration, instead of a QR decomposition and series of Givens rotation eliminations. For large sparse Jacobians a 2-d subspace approach of solving trust-region subproblems is used [STIR]_, [Byrd]_. The subspace is spanned by a scaled gradient and an approximate Gauss-Newton solution delivered by `scipy.sparse.linalg.lsmr`. When no constraints are imposed the algorithm is very similar to MINPACK and has generally comparable performance. The algorithm works quite robust in unbounded and bounded problems, thus it is chosen as a default algorithm. Method 'dogbox' operates in a trust-region framework, but considers rectangular trust regions as opposed to conventional ellipsoids [Voglis]_. The intersection of a current trust region and initial bounds is again rectangular, so on each iteration a quadratic minimization problem subject to bound constraints is solved approximately by Powell's dogleg method [NumOpt]_. The required Gauss-Newton step can be computed exactly for dense Jacobians or approximately by `scipy.sparse.linalg.lsmr` for large sparse Jacobians. The algorithm is likely to exhibit slow convergence when the rank of Jacobian is less than the number of variables. The algorithm often outperforms 'trf' in bounded problems with a small number of variables. Robust loss functions are implemented as described in [BA]_. The idea is to modify a residual vector and a Jacobian matrix on each iteration such that computed gradient and Gauss-Newton Hessian approximation match the true gradient and Hessian approximation of the cost function. Then the algorithm proceeds in a normal way, i.e. robust loss functions are implemented as a simple wrapper over standard least-squares algorithms. .. versionadded:: 0.17.0 References ---------- .. [STIR] M. A. Branch, T. F. Coleman, and Y. Li, "A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems," SIAM Journal on Scientific Computing, Vol. 21, Number 1, pp 1-23, 1999. .. [NR] William H. Press et. al., "Numerical Recipes. The Art of Scientific Computing. 3rd edition", Sec. 5.7. .. [Byrd] R. H. Byrd, R. B. Schnabel and G. A. Shultz, "Approximate solution of the trust region problem by minimization over two-dimensional subspaces", Math. Programming, 40, pp. 247-263, 1988. .. [Curtis] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of sparse Jacobian matrices", Journal of the Institute of Mathematics and its Applications, 13, pp. 117-120, 1974. .. [JJMore] J. J. More, "The Levenberg-Marquardt Algorithm: Implementation and Theory," Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer Verlag, pp. 105-116, 1977. .. [Voglis] C. Voglis and I. E. Lagaris, "A Rectangular Trust Region Dogleg Approach for Unconstrained and Bound Constrained Nonlinear Optimization", WSEAS International Conference on Applied Mathematics, Corfu, Greece, 2004. .. [NumOpt] J. Nocedal and S. J. Wright, "Numerical optimization, 2nd edition", Chapter 4. .. [BA] B. Triggs et. al., "Bundle Adjustment - A Modern Synthesis", Proceedings of the International Workshop on Vision Algorithms: Theory and Practice, pp. 298-372, 1999. Examples -------- In this example we find a minimum of the Rosenbrock function without bounds on independed variables. >>> def fun_rosenbrock(x): ... return np.array([10 * (x[1] - x[0]**2), (1 - x[0])]) Notice that we only provide the vector of the residuals. The algorithm constructs the cost function as a sum of squares of the residuals, which gives the Rosenbrock function. The exact minimum is at ``x = [1.0, 1.0]``. >>> from scipy.optimize import least_squares >>> x0_rosenbrock = np.array([2, 2]) >>> res_1 = least_squares(fun_rosenbrock, x0_rosenbrock) >>> res_1.x array([ 1., 1.]) >>> res_1.cost 9.8669242910846867e-30 >>> res_1.optimality 8.8928864934219529e-14 We now constrain the variables, in such a way that the previous solution becomes infeasible. Specifically, we require that ``x[1] >= 1.5``, and ``x[0]`` left unconstrained. To this end, we specify the `bounds` parameter to `least_squares` in the form ``bounds=([-np.inf, 1.5], np.inf)``. We also provide the analytic Jacobian: >>> def jac_rosenbrock(x): ... return np.array([ ... [-20 * x[0], 10], ... [-1, 0]]) Putting this all together, we see that the new solution lies on the bound: >>> res_2 = least_squares(fun_rosenbrock, x0_rosenbrock, jac_rosenbrock, ... bounds=([-np.inf, 1.5], np.inf)) >>> res_2.x array([ 1.22437075, 1.5 ]) >>> res_2.cost 0.025213093946805685 >>> res_2.optimality 1.5885401433157753e-07 Now we solve a system of equations (i.e., the cost function should be zero at a minimum) for a Broyden tridiagonal vector-valued function of 100000 variables: >>> def fun_broyden(x): ... f = (3 - x) * x + 1 ... f[1:] -= x[:-1] ... f[:-1] -= 2 * x[1:] ... return f The corresponding Jacobian matrix is sparse. We tell the algorithm to estimate it by finite differences and provide the sparsity structure of Jacobian to significantly speed up this process. >>> from scipy.sparse import lil_matrix >>> def sparsity_broyden(n): ... sparsity = lil_matrix((n, n), dtype=int) ... i = np.arange(n) ... sparsity[i, i] = 1 ... i = np.arange(1, n) ... sparsity[i, i - 1] = 1 ... i = np.arange(n - 1) ... sparsity[i, i + 1] = 1 ... return sparsity ... >>> n = 100000 >>> x0_broyden = -np.ones(n) ... >>> res_3 = least_squares(fun_broyden, x0_broyden, ... jac_sparsity=sparsity_broyden(n)) >>> res_3.cost 4.5687069299604613e-23 >>> res_3.optimality 1.1650454296851518e-11 Let's also solve a curve fitting problem using robust loss function to take care of outliers in the data. Define the model function as ``y = a + b * exp(c * t)``, where t is a predictor variable, y is an observation and a, b, c are parameters to estimate. First, define the function which generates the data with noise and outliers, define the model parameters, and generate data: >>> def gen_data(t, a, b, c, noise=0, n_outliers=0, random_state=0): ... y = a + b * np.exp(t * c) ... ... rnd = np.random.RandomState(random_state) ... error = noise * rnd.randn(t.size) ... outliers = rnd.randint(0, t.size, n_outliers) ... error[outliers] *= 10 ... ... return y + error ... >>> a = 0.5 >>> b = 2.0 >>> c = -1 >>> t_min = 0 >>> t_max = 10 >>> n_points = 15 ... >>> t_train = np.linspace(t_min, t_max, n_points) >>> y_train = gen_data(t_train, a, b, c, noise=0.1, n_outliers=3) Define function for computing residuals and initial estimate of parameters. >>> def fun(x, t, y): ... return x[0] + x[1] * np.exp(x[2] * t) - y ... >>> x0 = np.array([1.0, 1.0, 0.0]) Compute a standard least-squares solution: >>> res_lsq = least_squares(fun, x0, args=(t_train, y_train)) Now compute two solutions with two different robust loss functions. The parameter `f_scale` is set to 0.1, meaning that inlier residuals should not significantly exceed 0.1 (the noise level used). >>> res_soft_l1 = least_squares(fun, x0, loss='soft_l1', f_scale=0.1, ... args=(t_train, y_train)) >>> res_log = least_squares(fun, x0, loss='cauchy', f_scale=0.1, ... args=(t_train, y_train)) And finally plot all the curves. We see that by selecting an appropriate `loss` we can get estimates close to optimal even in the presence of strong outliers. But keep in mind that generally it is recommended to try 'soft_l1' or 'huber' losses first (if at all necessary) as the other two options may cause difficulties in optimization process. >>> t_test = np.linspace(t_min, t_max, n_points * 10) >>> y_true = gen_data(t_test, a, b, c) >>> y_lsq = gen_data(t_test, *res_lsq.x) >>> y_soft_l1 = gen_data(t_test, *res_soft_l1.x) >>> y_log = gen_data(t_test, *res_log.x) ... >>> import matplotlib.pyplot as plt >>> plt.plot(t_train, y_train, 'o') >>> plt.plot(t_test, y_true, 'k', linewidth=2, label='true') >>> plt.plot(t_test, y_lsq, label='linear loss') >>> plt.plot(t_test, y_soft_l1, label='soft_l1 loss') >>> plt.plot(t_test, y_log, label='cauchy loss') >>> plt.xlabel("t") >>> plt.ylabel("y") >>> plt.legend() >>> plt.show() In the next example, we show how complex-valued residual functions of complex variables can be optimized with ``least_squares()``. Consider the following function: >>> def f(z): ... return z - (0.5 + 0.5j) We wrap it into a function of real variables that returns real residuals by simply handling the real and imaginary parts as independent variables: >>> def f_wrap(x): ... fx = f(x[0] + 1j*x[1]) ... return np.array([fx.real, fx.imag]) Thus, instead of the original m-dimensional complex function of n complex variables we optimize a 2m-dimensional real function of 2n real variables: >>> from scipy.optimize import least_squares >>> res_wrapped = least_squares(f_wrap, (0.1, 0.1), bounds=([0, 0], [1, 1])) >>> z = res_wrapped.x[0] + res_wrapped.x[1]*1j >>> z (0.49999999999925893+0.49999999999925893j) """ if method not in ['trf', 'dogbox', 'lm']: raise ValueError("`method` must be 'trf', 'dogbox' or 'lm'.") if jac not in ['2-point', '3-point', 'cs'] and not callable(jac): raise ValueError("`jac` must be '2-point', '3-point', 'cs' or " "callable.") if tr_solver not in [None, 'exact', 'lsmr']: raise ValueError("`tr_solver` must be None, 'exact' or 'lsmr'.") if loss not in IMPLEMENTED_LOSSES and not callable(loss): raise ValueError("`loss` must be one of {0} or a callable." .format(IMPLEMENTED_LOSSES.keys())) if method == 'lm' and loss != 'linear': raise ValueError("method='lm' supports only 'linear' loss function.") if verbose not in [0, 1, 2]: raise ValueError("`verbose` must be in [0, 1, 2].") if len(bounds) != 2: raise ValueError("`bounds` must contain 2 elements.") if max_nfev is not None and max_nfev <= 0: raise ValueError("`max_nfev` must be None or positive integer.") if np.iscomplexobj(x0): raise ValueError("`x0` must be real.") x0 = np.atleast_1d(x0).astype(float) if x0.ndim > 1: raise ValueError("`x0` must have at most 1 dimension.") lb, ub = prepare_bounds(bounds, x0.shape[0]) if method == 'lm' and not np.all((lb == -np.inf) & (ub == np.inf)): raise ValueError("Method 'lm' doesn't support bounds.") if lb.shape != x0.shape or ub.shape != x0.shape: raise ValueError("Inconsistent shapes between bounds and `x0`.") if np.any(lb >= ub): raise ValueError("Each lower bound must be strictly less than each " "upper bound.") if not in_bounds(x0, lb, ub): raise ValueError("`x0` is infeasible.") x_scale = check_x_scale(x_scale, x0) ftol, xtol, gtol = check_tolerance(ftol, xtol, gtol) def fun_wrapped(x): return np.atleast_1d(fun(x, *args, **kwargs)) if method == 'trf': x0 = make_strictly_feasible(x0, lb, ub) f0 = fun_wrapped(x0) if f0.ndim != 1: raise ValueError("`fun` must return at most 1-d array_like.") if not np.all(np.isfinite(f0)): raise ValueError("Residuals are not finite in the initial point.") n = x0.size m = f0.size if method == 'lm' and m < n: raise ValueError("Method 'lm' doesn't work when the number of " "residuals is less than the number of variables.") loss_function = construct_loss_function(m, loss, f_scale) if callable(loss): rho = loss_function(f0) if rho.shape != (3, m): raise ValueError("The return value of `loss` callable has wrong " "shape.") initial_cost = 0.5 * np.sum(rho[0]) elif loss_function is not None: initial_cost = loss_function(f0, cost_only=True) else: initial_cost = 0.5 * np.dot(f0, f0) if callable(jac): J0 = jac(x0, *args, **kwargs) if issparse(J0): J0 = csr_matrix(J0) def jac_wrapped(x, _=None): return csr_matrix(jac(x, *args, **kwargs)) elif isinstance(J0, LinearOperator): def jac_wrapped(x, _=None): return jac(x, *args, **kwargs) else: J0 = np.atleast_2d(J0) def jac_wrapped(x, _=None): return np.atleast_2d(jac(x, *args, **kwargs)) else: # Estimate Jacobian by finite differences. if method == 'lm': if jac_sparsity is not None: raise ValueError("method='lm' does not support " "`jac_sparsity`.") if jac != '2-point': warn("jac='{0}' works equivalently to '2-point' " "for method='lm'.".format(jac)) J0 = jac_wrapped = None else: if jac_sparsity is not None and tr_solver == 'exact': raise ValueError("tr_solver='exact' is incompatible " "with `jac_sparsity`.") jac_sparsity = check_jac_sparsity(jac_sparsity, m, n) def jac_wrapped(x, f): J = approx_derivative(fun, x, rel_step=diff_step, method=jac, f0=f, bounds=bounds, args=args, kwargs=kwargs, sparsity=jac_sparsity) if J.ndim != 2: # J is guaranteed not sparse. J = np.atleast_2d(J) return J J0 = jac_wrapped(x0, f0) if J0 is not None: if J0.shape != (m, n): raise ValueError( "The return value of `jac` has wrong shape: expected {0}, " "actual {1}.".format((m, n), J0.shape)) if not isinstance(J0, np.ndarray): if method == 'lm': raise ValueError("method='lm' works only with dense " "Jacobian matrices.") if tr_solver == 'exact': raise ValueError( "tr_solver='exact' works only with dense " "Jacobian matrices.") jac_scale = isinstance(x_scale, string_types) and x_scale == 'jac' if isinstance(J0, LinearOperator) and jac_scale: raise ValueError("x_scale='jac' can't be used when `jac` " "returns LinearOperator.") if tr_solver is None: if isinstance(J0, np.ndarray): tr_solver = 'exact' else: tr_solver = 'lsmr' if method == 'lm': result = call_minpack(fun_wrapped, x0, jac_wrapped, ftol, xtol, gtol, max_nfev, x_scale, diff_step) elif method == 'trf': result = trf(fun_wrapped, jac_wrapped, x0, f0, J0, lb, ub, ftol, xtol, gtol, max_nfev, x_scale, loss_function, tr_solver, tr_options.copy(), verbose) elif method == 'dogbox': if tr_solver == 'lsmr' and 'regularize' in tr_options: warn("The keyword 'regularize' in `tr_options` is not relevant " "for 'dogbox' method.") tr_options = tr_options.copy() del tr_options['regularize'] result = dogbox(fun_wrapped, jac_wrapped, x0, f0, J0, lb, ub, ftol, xtol, gtol, max_nfev, x_scale, loss_function, tr_solver, tr_options, verbose) result.message = TERMINATION_MESSAGES[result.status] result.success = result.status > 0 if verbose >= 1: print(result.message) print("Function evaluations {0}, initial cost {1:.4e}, final cost " "{2:.4e}, first-order optimality {3:.2e}." .format(result.nfev, initial_cost, result.cost, result.optimality)) return result
mit
cainiaocome/scikit-learn
sklearn/metrics/cluster/bicluster.py
359
2797
from __future__ import division import numpy as np from sklearn.utils.linear_assignment_ import linear_assignment from sklearn.utils.validation import check_consistent_length, check_array __all__ = ["consensus_score"] def _check_rows_and_columns(a, b): """Unpacks the row and column arrays and checks their shape.""" check_consistent_length(*a) check_consistent_length(*b) checks = lambda x: check_array(x, ensure_2d=False) a_rows, a_cols = map(checks, a) b_rows, b_cols = map(checks, b) return a_rows, a_cols, b_rows, b_cols def _jaccard(a_rows, a_cols, b_rows, b_cols): """Jaccard coefficient on the elements of the two biclusters.""" intersection = ((a_rows * b_rows).sum() * (a_cols * b_cols).sum()) a_size = a_rows.sum() * a_cols.sum() b_size = b_rows.sum() * b_cols.sum() return intersection / (a_size + b_size - intersection) def _pairwise_similarity(a, b, similarity): """Computes pairwise similarity matrix. result[i, j] is the Jaccard coefficient of a's bicluster i and b's bicluster j. """ a_rows, a_cols, b_rows, b_cols = _check_rows_and_columns(a, b) n_a = a_rows.shape[0] n_b = b_rows.shape[0] result = np.array(list(list(similarity(a_rows[i], a_cols[i], b_rows[j], b_cols[j]) for j in range(n_b)) for i in range(n_a))) return result def consensus_score(a, b, similarity="jaccard"): """The similarity of two sets of biclusters. Similarity between individual biclusters is computed. Then the best matching between sets is found using the Hungarian algorithm. The final score is the sum of similarities divided by the size of the larger set. Read more in the :ref:`User Guide <biclustering>`. Parameters ---------- a : (rows, columns) Tuple of row and column indicators for a set of biclusters. b : (rows, columns) Another set of biclusters like ``a``. similarity : string or function, optional, default: "jaccard" May be the string "jaccard" to use the Jaccard coefficient, or any function that takes four arguments, each of which is a 1d indicator vector: (a_rows, a_columns, b_rows, b_columns). References ---------- * Hochreiter, Bodenhofer, et. al., 2010. `FABIA: factor analysis for bicluster acquisition <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881408/>`__. """ if similarity == "jaccard": similarity = _jaccard matrix = _pairwise_similarity(a, b, similarity) indices = linear_assignment(1. - matrix) n_a = len(a[0]) n_b = len(b[0]) return matrix[indices[:, 0], indices[:, 1]].sum() / max(n_a, n_b)
bsd-3-clause
fenglu-g/incubator-airflow
tests/contrib/operators/test_hive_to_dynamodb_operator.py
7
5053
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import json import unittest import datetime import mock import pandas as pd from airflow import configuration, DAG from airflow.contrib.hooks.aws_dynamodb_hook import AwsDynamoDBHook import airflow.contrib.operators.hive_to_dynamodb configuration.load_test_config() DEFAULT_DATE = datetime.datetime(2015, 1, 1) DEFAULT_DATE_ISO = DEFAULT_DATE.isoformat() DEFAULT_DATE_DS = DEFAULT_DATE_ISO[:10] try: from moto import mock_dynamodb2 except ImportError: mock_dynamodb2 = None class HiveToDynamoDBTransferOperatorTest(unittest.TestCase): def setUp(self): configuration.load_test_config() args = {'owner': 'airflow', 'start_date': DEFAULT_DATE} dag = DAG('test_dag_id', default_args=args) self.dag = dag self.sql = 'SELECT 1' self.hook = AwsDynamoDBHook( aws_conn_id='aws_default', region_name='us-east-1') @staticmethod def process_data(data, *args, **kwargs): return json.loads(data.to_json(orient='records')) @unittest.skipIf(mock_dynamodb2 is None, 'mock_dynamodb2 package not present') @mock_dynamodb2 def test_get_conn_returns_a_boto3_connection(self): hook = AwsDynamoDBHook(aws_conn_id='aws_default') self.assertIsNotNone(hook.get_conn()) @mock.patch('airflow.hooks.hive_hooks.HiveServer2Hook.get_pandas_df', return_value=pd.DataFrame(data=[('1', 'sid')], columns=['id', 'name'])) @unittest.skipIf(mock_dynamodb2 is None, 'mock_dynamodb2 package not present') @mock_dynamodb2 def test_get_records_with_schema(self, get_results_mock): # this table needs to be created in production self.hook.get_conn().create_table( TableName='test_airflow', KeySchema=[ { 'AttributeName': 'id', 'KeyType': 'HASH' }, ], AttributeDefinitions=[ { 'AttributeName': 'name', 'AttributeType': 'S' } ], ProvisionedThroughput={ 'ReadCapacityUnits': 10, 'WriteCapacityUnits': 10 } ) operator = airflow.contrib.operators.hive_to_dynamodb.HiveToDynamoDBTransferOperator( sql=self.sql, table_name="test_airflow", task_id='hive_to_dynamodb_check', table_keys=['id'], dag=self.dag) operator.execute(None) table = self.hook.get_conn().Table('test_airflow') table.meta.client.get_waiter( 'table_exists').wait(TableName='test_airflow') self.assertEqual(table.item_count, 1) @mock.patch('airflow.hooks.hive_hooks.HiveServer2Hook.get_pandas_df', return_value=pd.DataFrame(data=[('1', 'sid'), ('1', 'gupta')], columns=['id', 'name'])) @unittest.skipIf(mock_dynamodb2 is None, 'mock_dynamodb2 package not present') @mock_dynamodb2 def test_pre_process_records_with_schema(self, get_results_mock): # this table needs to be created in production self.hook.get_conn().create_table( TableName='test_airflow', KeySchema=[ { 'AttributeName': 'id', 'KeyType': 'HASH' }, ], AttributeDefinitions=[ { 'AttributeName': 'name', 'AttributeType': 'S' } ], ProvisionedThroughput={ 'ReadCapacityUnits': 10, 'WriteCapacityUnits': 10 } ) operator = airflow.contrib.operators.hive_to_dynamodb.HiveToDynamoDBTransferOperator( sql=self.sql, table_name='test_airflow', task_id='hive_to_dynamodb_check', table_keys=['id'], pre_process=self.process_data, dag=self.dag) operator.execute(None) table = self.hook.get_conn().Table('test_airflow') table.meta.client.get_waiter('table_exists').wait(TableName='test_airflow') self.assertEqual(table.item_count, 1) if __name__ == '__main__': unittest.main()
apache-2.0
molpopgen/fwdpy11
examples/tskit/precapitate.py
1
6357
# # Copyright (C) 2020 Kevin Thornton <[email protected]> # # This file is part of fwdpy11. # # fwdpy11 is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # fwdpy11 is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with fwdpy11. If not, see <http://www.gnu.org/licenses/>. # import argparse import concurrent.futures import sys from collections import namedtuple import msprime import numpy as np import pandas as pd import fwdpy11 SimOutput = namedtuple("SimOutput", ["S2N", "Pi2N", "Sn", "Pin"]) def make_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("-N", type=int, help="Diploid population size") parser.add_argument("--rho", type=float, help="4Nr") parser.add_argument("--theta", type=float, help="4Nu") parser.add_argument( "--simlen", type=int, help="Generations to run the forward simulation" ) parser.add_argument("--seed", type=int, help="Random number seed") parser.add_argument("--nreps", type=int, help="Number of simulation replicates") parser.add_argument("--nsam", type=int, help="Sample size to analyze") optional = parser.add_argument_group("Optional arguments") optional.add_argument("--model", type=str, help="msprime model", default="dtwf") return parser def run_msprime(Ne, rho, theta, model, seed): ts = msprime.simulate( 2 * Ne, Ne=Ne, model=model, random_seed=seed, recombination_rate=rho / Ne / 4, mutation_rate=theta / Ne / 4, ) return ts def run_msprime_get_stats(Ne, nsam, rho, theta, model, seed): ts = run_msprime(Ne, rho, theta, model, seed) samples = [i for i in ts.samples()] S1 = len(ts.tables.sites) pi1 = ts.diversity([samples])[0] rsample = np.random.choice(samples, nsam, replace=False) S2 = ts.segregating_sites([rsample])[0] pi2 = ts.diversity([rsample])[0] return SimOutput(S1, pi1, S2, pi2) def pi_from_fs(fs): nsam = len(fs) - 2 i = np.arange(nsam) + 1 pi = fs[1:-1] * 2 * (i / nsam) * ((nsam - i) / (nsam - 1)) return pi.sum() def process_sim(pop, sample, check_fixations): """ Get number of segregating sites and heterozyosity from the frequency spectrum """ fs = pop.tables.fs([sample]) if check_fixations: assert fs.data[-1] == 0, "hmmm...shouldn't be any fixations!" S = fs.sum() pi = pi_from_fs(fs) return S, pi def run_sim(N, rho, theta, simlen, model, nsam, fwdpy11_seed, msprime_seed): np.random.seed(msprime_seed) ts = run_msprime(N, rho, 0.0, model, msprime_seed) pop = fwdpy11.DiploidPopulation.create_from_tskit(ts) del ts # No longer needed pdict = { "nregions": [], "sregions": [], "recregions": [ fwdpy11.PoissonInterval(0, pop.tables.genome_length, rho / pop.N / 4) ], "rates": (0, 0, None), "gvalue": fwdpy11.Multiplicative(1), "demography": fwdpy11.DiscreteDemography(), "simlen": simlen, } params = fwdpy11.ModelParams(**pdict) rng = fwdpy11.GSLrng(fwdpy11_seed) fwdpy11.evolvets(rng, pop, params, 100) fwdpy11.infinite_sites(rng, pop, theta / pop.N / 4) an = pop.alive_nodes S2N, pi2N = process_sim(pop, an, check_fixations=True) rn = np.random.choice(an, size=nsam, replace=False) Sn, pin = process_sim(pop, rn, check_fixations=False) return SimOutput(S2N, pi2N, Sn, pin) if __name__ == "__main__": parser = make_parser() args = parser.parse_args(sys.argv[1:]) np.random.seed(args.seed) msprime_seeds = [] fwdpy11_seeds = [] for i in range(args.nreps): candidate = np.random.randint(0, np.iinfo(np.uint32).max) while candidate in msprime_seeds: candidate = np.random.randint(0, np.iinfo(np.uint32).max) msprime_seeds.append(candidate) candidate = np.random.randint(0, np.iinfo(np.uint32).max) while candidate in fwdpy11_seeds: candidate = np.random.randint(0, np.iinfo(np.uint32).max) fwdpy11_seeds.append(candidate) results = [] with concurrent.futures.ProcessPoolExecutor() as executor: futures = { executor.submit( run_sim, args.N, args.rho, args.theta, args.simlen, args.model, args.nsam, i, j, ) for i, j in zip(msprime_seeds, fwdpy11_seeds) } for future in concurrent.futures.as_completed(futures): results.append(future.result()) results = pd.DataFrame(results, columns=SimOutput._fields) results["watterson_n"] = results.Sn / (1.0 / (np.arange(args.nsam - 1) + 1)).sum() print(f"Means from fwdpy11:\n{results.mean()}") msprime_seeds = [] for i in range(args.nreps): candidate = np.random.randint(0, np.iinfo(np.uint32).max) while candidate in msprime_seeds: candidate = np.random.randint(0, np.iinfo(np.uint32).max) msprime_seeds.append(candidate) msprime_results = [] with concurrent.futures.ProcessPoolExecutor() as executor: futures = { executor.submit( run_msprime_get_stats, args.N, args.nsam, args.rho, args.theta, args.model, i, ) for i in msprime_seeds } for future in concurrent.futures.as_completed(futures): msprime_results.append(future.result()) msprime_results = pd.DataFrame(msprime_results, columns=SimOutput._fields) msprime_results["watterson_n"] = ( msprime_results.Sn / (1.0 / (np.arange(args.nsam - 1) + 1)).sum() ) print(f"Means from msprime:\n{msprime_results.mean()}")
gpl-3.0
moinulkuet/machine-learning
Part 3 - Classification/Section 16 - Support Vector Machine (SVM)/classification_template.py
37
2538
# Classification template # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('Social_Network_Ads.csv') X = dataset.iloc[:, [2, 3]].values y = dataset.iloc[:, 4].values # Splitting the dataset into the Training set and Test set from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) # Feature Scaling from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) # Fitting classifier to the Training set # Create your classifier here # Predicting the Test set results y_pred = classifier.predict(X_test) # Making the Confusion Matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred) # Visualising the Training set results from matplotlib.colors import ListedColormap X_set, y_set = X_train, y_train X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j) plt.title('Classifier (Training set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') plt.legend() plt.show() # Visualising the Test set results from matplotlib.colors import ListedColormap X_set, y_set = X_test, y_test X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j) plt.title('Classifier (Test set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') plt.legend() plt.show()
gpl-3.0
uglyboxer/linear_neuron
net-p3/lib/python3.5/site-packages/matplotlib/tests/test_legend.py
9
9232
from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import xrange try: # mock in python 3.3+ from unittest import mock except ImportError: import mock from nose.tools import assert_equal import numpy as np from matplotlib.testing.decorators import image_comparison, cleanup from matplotlib.cbook import MatplotlibDeprecationWarning import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.patches as mpatches @image_comparison(baseline_images=['legend_auto1'], remove_text=True) def test_legend_auto1(): 'Test automatic legend placement' fig = plt.figure() ax = fig.add_subplot(111) x = np.arange(100) ax.plot(x, 50 - x, 'o', label='y=1') ax.plot(x, x - 50, 'o', label='y=-1') ax.legend(loc=0) @image_comparison(baseline_images=['legend_auto2'], remove_text=True) def test_legend_auto2(): 'Test automatic legend placement' fig = plt.figure() ax = fig.add_subplot(111) x = np.arange(100) b1 = ax.bar(x, x, color='m') b2 = ax.bar(x, x[::-1], color='g') ax.legend([b1[0], b2[0]], ['up', 'down'], loc=0) @image_comparison(baseline_images=['legend_auto3']) def test_legend_auto3(): 'Test automatic legend placement' fig = plt.figure() ax = fig.add_subplot(111) x = [0.9, 0.1, 0.1, 0.9, 0.9, 0.5] y = [0.95, 0.95, 0.05, 0.05, 0.5, 0.5] ax.plot(x, y, 'o-', label='line') ax.set_xlim(0.0, 1.0) ax.set_ylim(0.0, 1.0) ax.legend(loc=0) @image_comparison(baseline_images=['legend_various_labels'], remove_text=True) def test_various_labels(): # tests all sorts of label types fig = plt.figure() ax = fig.add_subplot(121) ax.plot(list(xrange(4)), 'o', label=1) ax.plot(np.linspace(4, 4.1), 'o', label='D\xe9velopp\xe9s') ax.plot(list(xrange(4, 1, -1)), 'o', label='__nolegend__') ax.legend(numpoints=1, loc=0) @image_comparison(baseline_images=['rgba_alpha'], extensions=['png'], remove_text=True) def test_alpha_rgba(): import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1) ax.plot(range(10), lw=5) leg = plt.legend(['Longlabel that will go away'], loc=10) leg.legendPatch.set_facecolor([1, 0, 0, 0.5]) @image_comparison(baseline_images=['rcparam_alpha'], extensions=['png'], remove_text=True) def test_alpha_rcparam(): import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1) ax.plot(range(10), lw=5) with mpl.rc_context(rc={'legend.framealpha': .75}): leg = plt.legend(['Longlabel that will go away'], loc=10) # this alpha is going to be over-ridden by the rcparam whith # sets the alpha of the patch to be non-None which causes the alpha # value of the face color to be discarded. This behavior may not be # ideal, but it is what it is and we should keep track of it changing leg.legendPatch.set_facecolor([1, 0, 0, 0.5]) @image_comparison(baseline_images=['fancy'], remove_text=True) def test_fancy(): # using subplot triggers some offsetbox functionality untested elsewhere plt.subplot(121) plt.scatter(list(xrange(10)), list(xrange(10, 0, -1)), label='XX\nXX') plt.plot([5] * 10, 'o--', label='XX') plt.errorbar(list(xrange(10)), list(xrange(10)), xerr=0.5, yerr=0.5, label='XX') plt.legend(loc="center left", bbox_to_anchor=[1.0, 0.5], ncol=2, shadow=True, title="My legend", numpoints=1) @image_comparison(baseline_images=['framealpha'], remove_text=True) def test_framealpha(): x = np.linspace(1, 100, 100) y = x plt.plot(x, y, label='mylabel', lw=10) plt.legend(framealpha=0.5) @image_comparison(baseline_images=['scatter_rc3', 'scatter_rc1'], remove_text=True) def test_rc(): # using subplot triggers some offsetbox functionality untested elsewhere fig = plt.figure() ax = plt.subplot(121) ax.scatter(list(xrange(10)), list(xrange(10, 0, -1)), label='three') ax.legend(loc="center left", bbox_to_anchor=[1.0, 0.5], title="My legend") mpl.rcParams['legend.scatterpoints'] = 1 fig = plt.figure() ax = plt.subplot(121) ax.scatter(list(xrange(10)), list(xrange(10, 0, -1)), label='one') ax.legend(loc="center left", bbox_to_anchor=[1.0, 0.5], title="My legend") @image_comparison(baseline_images=['legend_expand'], remove_text=True) def test_legend_expand(): 'Test expand mode' legend_modes = [None, "expand"] fig, axes_list = plt.subplots(len(legend_modes), 1) x = np.arange(100) for ax, mode in zip(axes_list, legend_modes): ax.plot(x, 50 - x, 'o', label='y=1') l1 = ax.legend(loc=2, mode=mode) ax.add_artist(l1) ax.plot(x, x - 50, 'o', label='y=-1') l2 = ax.legend(loc=5, mode=mode) ax.add_artist(l2) ax.legend(loc=3, mode=mode, ncol=2) @cleanup def test_legend_remove(): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) lines = ax.plot(range(10)) leg = fig.legend(lines, "test") leg.remove() assert_equal(fig.legends, []) leg = ax.legend("test") leg.remove() assert ax.get_legend() is None class TestLegendFunction(object): # Tests the legend function on the Axes and pyplot. deprecation_message = ('The "loc" positional argument ' 'to legend is deprecated. Please use ' 'the "loc" keyword instead.') @cleanup def test_legend_label_loc_args(self): # Check the deprecated warning is created and that the appropriate # call to Legend is made. This wouldn't actually create a valid # legend as there is no artist to legendify, but that doesn't matter. with mock.patch('matplotlib.cbook.warn_deprecated') as deprecation: with mock.patch('matplotlib.legend.Legend') as Legend: plt.legend(['hello world'], 1) deprecation.assert_called_with('1.4', self.deprecation_message) Legend.assert_called_with(plt.gca(), [], ['hello world'], loc=1) @cleanup def test_old_legend_handler_interface(self): # Check the deprecated warning is created and that the appropriate # call to the legend handler is made. class AnyObject(object): pass class AnyObjectHandler(object): def __call__(self, legend, orig_handle, fontsize, handlebox): x0, y0 = handlebox.xdescent, handlebox.ydescent width, height = handlebox.width, handlebox.height patch = mpatches.Rectangle([x0, y0], width, height, facecolor='red', edgecolor='black', hatch='xx', lw=3, transform=handlebox.get_transform()) handlebox.add_artist(patch) return patch with mock.patch('warnings.warn') as warn: plt.legend([None], ['My first handler'], handler_map={None: AnyObjectHandler()}) warn.assert_called_with('Legend handers must now implement a ' '"legend_artist" method rather than ' 'being a callable.', MatplotlibDeprecationWarning, stacklevel=1) @cleanup def test_legend_handle_label_loc_args(self): # Check the deprecated warning is created and that the appropriate # call to Legend is made. lines = plt.plot(range(10)) with mock.patch('matplotlib.cbook.warn_deprecated') as deprecation: with mock.patch('matplotlib.legend.Legend') as Legend: plt.legend(lines, ['hello world'], 1) deprecation.assert_called_with('1.4', self.deprecation_message) Legend.assert_called_with(plt.gca(), lines, ['hello world'], loc=1) @cleanup def test_legend_handle_label(self): lines = plt.plot(range(10)) with mock.patch('matplotlib.legend.Legend') as Legend: plt.legend(lines, ['hello world']) Legend.assert_called_with(plt.gca(), lines, ['hello world']) @cleanup def test_legend_no_args(self): lines = plt.plot(range(10), label='hello world') with mock.patch('matplotlib.legend.Legend') as Legend: plt.legend() Legend.assert_called_with(plt.gca(), lines, ['hello world']) @cleanup def test_legend_label_args(self): lines = plt.plot(range(10), label='hello world') with mock.patch('matplotlib.legend.Legend') as Legend: plt.legend(['foobar']) Legend.assert_called_with(plt.gca(), lines, ['foobar']) @cleanup def test_legend_handler_map(self): lines = plt.plot(range(10), label='hello world') with mock.patch('matplotlib.axes.Axes.' 'get_legend_handles_labels') as handles_labels: handles_labels.return_value = lines, ['hello world'] plt.legend(handler_map={'1': 2}) handles_labels.assert_called_with({'1': 2}) if __name__ == '__main__': import nose nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
mit
brorfred/palettable
palettable/cubehelix/cubehelix.py
4
13383
# coding: utf-8 """ Cubehelix color maps and palettes. The Cubehelix algorithm makes color scales with monotonic changes in perceived brightness. This means that a cubehelix color map gracefully degrades into a monotonic grayscale color map when rendered without color. Cubehelix maps are generated algorithmically, giving the user flexibility in desiging a color map that is also safe for grayscale printers. This module provides several cubehelix realizations, while also exposing the algorithm directly through the :class:`Cubehelix` class. Cubehelix was developed by `D.A Green, 2011, BASI, 39, 289 <http://adsabs.harvard.edu/abs/2011arXiv1108.5083G>`_. The original Python port was done by James R. A. Davenport (see License). Original License ---------------- Copyright (c) 2014, James R. A. Davenport and contributors All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from __future__ import absolute_import, print_function try: import numpy as np except ImportError: # pragma: no cover HAVE_NPY = False else: HAVE_NPY = True from ..palette import Palette url = 'http://adsabs.harvard.edu/abs/2011arXiv1108.5083G' palette_type = 'sequential' palette_names = [ 'classic_16', 'perceptual_rainbow_16', 'purple_16', 'jim_special_16', 'red_16', 'cubehelix1_16', 'cubehelix2_16', 'cubehelix3_16' ] palette_rgb = dict(( ('classic_16', # dict(start=0.5, rotation=-1.5, gamma=1.0, sat=1.2, # min_light=0., max_light=1., n=16) [[0, 0, 0], [22, 10, 34], [24, 32, 68], [16, 62, 83], [14, 94, 74], [35, 116, 51], [80, 125, 35], [138, 122, 45], [190, 117, 85], [218, 121, 145], [219, 138, 203], [204, 167, 240], [191, 201, 251], [195, 229, 244], [220, 246, 239], [255, 255, 255]]), ('perceptual_rainbow_16', # Similar to Matteo Niccoli's Perceptual Rainbow: # http://mycarta.wordpress.com/2013/02/21/perceptual-rainbow-palette-the-method/ # https://github.com/jradavenport/cubehelix # dict(start_hue=240., end_hue=-300., min_sat=1., max_sat=2.5, # min_light=0.3, max_light=0.8, gamma=.9, n=16) [[135, 59, 97], [143, 64, 127], [143, 72, 157], [135, 85, 185], [121, 102, 207], [103, 123, 220], [84, 146, 223], [69, 170, 215], [59, 192, 197], [60, 210, 172], [71, 223, 145], [93, 229, 120], [124, 231, 103], [161, 227, 95], [198, 220, 100], [233, 213, 117]]), ('purple_16', # dict(start=0., rotation=0.0, n=16) [[0, 0, 0], [15, 14, 35], [31, 28, 68], [47, 43, 99], [63, 59, 127], [79, 75, 152], [96, 91, 174], [113, 107, 194], [130, 124, 211], [147, 142, 225], [164, 160, 237], [182, 178, 246], [200, 196, 252], [218, 215, 255], [236, 235, 255], [255, 255, 255]]), ('jim_special_16', # http://www.ifweassume.com/2014/04/cubehelix-colormap-for-python.html # dict(start=0.3, rotation=-0.5, n=16) [[0, 0, 0], [22, 10, 34], [37, 25, 68], [47, 43, 99], [52, 65, 125], [55, 88, 146], [59, 112, 160], [64, 137, 169], [74, 160, 173], [89, 181, 175], [109, 199, 177], [134, 214, 180], [163, 227, 189], [195, 237, 203], [226, 246, 225], [255, 255, 255]]), ('red_16', # http://www.ifweassume.com/2014/04/cubehelix-colormap-for-python.html # dict(start=0., rotation=0.5, n=16) [[0, 0, 0], [19, 12, 35], [44, 22, 65], [73, 32, 90], [104, 41, 107], [134, 53, 118], [162, 67, 124], [185, 83, 126], [204, 102, 128], [216, 124, 130], [225, 148, 136], [229, 172, 147], [232, 196, 164], [236, 219, 189], [242, 238, 219], [255, 255, 255]]), ('cubehelix1_16', # http://nbviewer.ipython.org/gist/anonymous/a4fa0adb08f9e9ea4f94 # dict(gamma=1.0, start=1.5, rotation=-1.0, sat=1.5, n=16) [[0, 0, 0], [27, 15, 0], [65, 23, 4], [104, 27, 32], [133, 33, 75], [147, 45, 126], [144, 66, 175], [129, 96, 210], [111, 131, 227], [99, 166, 226], [101, 197, 211], [120, 219, 194], [153, 233, 185], [193, 240, 191], [230, 245, 216], [255, 255, 255]]), ('cubehelix2_16', # http://nbviewer.ipython.org/gist/anonymous/a4fa0adb08f9e9ea4f94 # dict(gamma=1.0, start=2.0, rotation=1.0, sat=1.5, n=16) [[0, 0, 0], [0, 28, 14], [0, 51, 47], [7, 65, 91], [35, 71, 135], [78, 72, 168], [129, 72, 184], [177, 77, 181], [214, 90, 165], [235, 113, 143], [238, 142, 128], [230, 175, 127], [219, 206, 144], [216, 231, 178], [226, 247, 219], [255, 255, 255]]), ('cubehelix3_16', # http://nbviewer.ipython.org/gist/anonymous/a4fa0adb08f9e9ea4f94 # dict(gamma=1.0, start=2.0, rotation=1.0, sat=3, n=16) [[0, 0, 0], [0, 39, 12], [0, 68, 60], [0, 80, 131], [3, 75, 202], [72, 60, 252], [156, 43, 255], [235, 36, 244], [255, 45, 194], [255, 73, 134], [255, 115, 86], [255, 164, 67], [235, 209, 85], [211, 241, 135], [215, 255, 200], [255, 255, 255]]), )) class Cubehelix(Palette): """ Representation of a Cubehelix color map with matplotlib compatible views of the map. Parameters ---------- name : str colors : list Colors as list of 0-255 RGB triplets. Attributes ---------- name : str type : str number : int Number of colors in color map. colors : list Colors as list of 0-255 RGB triplets. hex_colors : list mpl_colors : list mpl_colormap : matplotlib LinearSegmentedColormap """ url = url def __init__(self, name, colors): super(Cubehelix, self).__init__(name, palette_type, colors) @classmethod def make(cls, start=0.5, rotation=-1.5, gamma=1.0, start_hue=None, end_hue=None, sat=None, min_sat=1.2, max_sat=1.2, min_light=0., max_light=1., n=256., reverse=False, name='custom_cubehelix'): """ Create an arbitrary Cubehelix color palette from the algorithm. See http://adsabs.harvard.edu/abs/2011arXiv1108.5083G for a technical explanation of the algorithm. Parameters ---------- start : scalar, optional Sets the starting position in the RGB color space. 0=blue, 1=red, 2=green. Default is ``0.5`` (purple). rotation : scalar, optional The number of rotations through the rainbow. Can be positive or negative, indicating direction of rainbow. Negative values correspond to Blue->Red direction. Default is ``-1.5``. start_hue : scalar, optional Sets the starting color, ranging from [-360, 360]. Combined with `end_hue`, this parameter overrides ``start`` and ``rotation``. This parameter is based on the D3 implementation by @mbostock. Default is ``None``. end_hue : scalar, optional Sets the ending color, ranging from [-360, 360]. Combined with `start_hue`, this parameter overrides ``start`` and ``rotation``. This parameter is based on the D3 implementation by @mbostock. Default is ``None``. gamma : scalar, optional The gamma correction for intensity. Values of ``gamma < 1`` emphasize low intensities while ``gamma > 1`` emphasises high intensities. Default is ``1.0``. sat : scalar, optional The uniform saturation intensity factor. ``sat=0`` produces grayscale, while ``sat=1`` retains the full saturation. Setting ``sat>1`` oversaturates the color map, at the risk of clipping the color scale. Note that ``sat`` overrides both ``min_stat`` and ``max_sat`` if set. min_sat : scalar, optional Saturation at the minimum level. Default is ``1.2``. max_sat : scalar, optional Satuation at the maximum level. Default is ``1.2``. min_light : scalar, optional Minimum lightness value. Default is ``0``. max_light : scalar, optional Maximum lightness value. Default is ``1``. n : scalar, optional Number of discrete rendered colors. Default is ``256``. reverse : bool, optional Set to ``True`` to reverse the color map. Will go from black to white. Good for density plots where shade -> density. Default is ``False``. name : str, optional Name of the color map (defaults to ``'custom_cubehelix'``). Returns ------- palette : `Cubehelix` A Cubehelix color palette. """ if not HAVE_NPY: # pragma: no cover raise RuntimeError('numpy not available.') # start_hue/end_hue were popularized by D3's implementation # and will override start/rotation if set if start_hue is not None and end_hue is not None: start = (start_hue / 360. - 1.) * 3. rotation = end_hue / 360. - start / 3. - 1. # lambd is effectively the color map grid lambd = np.linspace(min_light, max_light, n) # apply the gamma correction lambd_gamma = lambd ** gamma # Rotation angle # NOTE the equation for phi in Green 2011 does not have an extra `+1` # but the Fortran code does, as does the original cubehelix.py # I'm leaving out the +1 to keep to the original equation, but # worth investigating. In practice I see no difference! phi = 2.0 * np.pi * (start / 3.0 + rotation * lambd) if sat is None: sat = np.linspace(min_sat, max_sat, n) # Amplitude of helix from grayscale map amp = sat * lambd_gamma * (1. - lambd_gamma) / 2. # Compute the RGB vectors according to Green 2011 Eq 2 rot_matrix = np.array([[-0.14861, +1.78277], [-0.29227, -0.90649], [+1.97294, 0.0]]) sin_cos = np.array([np.cos(phi), np.sin(phi)]) rgb = (lambd_gamma + amp * np.dot(rot_matrix, sin_cos)).T * 255. # Clipping is necessary in some cases when sat > 1 np.clip(rgb, 0., 255., out=rgb) if reverse: rgb = rgb[::-1, :] colors = rgb.astype(int).tolist() return cls(name, colors) def print_maps(): """ Print a list of pre-made Cubehelix palettes. """ namelen = max(len(name) for name in palette_names) fmt = '{0:' + str(namelen + 4) + '}{1:16}' for name in palette_names: print(fmt.format(name, palette_type)) def get_map(name, reverse=False): """ Get a pre-made Cubehelix palette by name. Parameters ---------- name : str Name of map. Use `print_maps()` to see available names. reverse : bool, optional If True reverse colors from their default order. Returns ------- palette : Cubehelix """ try: # Make everthing lower case for matching index = [s.lower() for s in palette_names].index(name.lower()) except ValueError: msg = "{0!r} is an unknown Cubehelix palette." raise KeyError(msg.format(name)) real_name = palette_names[index] colors = palette_rgb[real_name] if reverse: real_name = real_name + '_r' colors = list(reversed(colors)) return Cubehelix(real_name, colors) def _get_all_maps(): """ Returns a dictionary of all Cubehelix palettes, including reversed ones. These default palettes are rendered with 16 colours. """ d = {} for name in palette_names: d[name] = get_map(name) d[name + '_r'] = get_map(name, reverse=True) return d
mit
imperial-genomics-facility/data-management-python
igf_data/igfdb/analysisadaptor.py
1
2825
import json import pandas as pd from sqlalchemy.sql import column from igf_data.igfdb.baseadaptor import BaseAdaptor from igf_data.igfdb.igfTables import Project, Analysis class AnalysisAdaptor(BaseAdaptor): ''' An adaptor class for Analysis table ''' def store_analysis_data(self,data,autosave=True): ''' A methodd for storing analysis data :param data: A dictionary or a dataframe. It sould have following columns * project_igf_id / project_id * analysis_type: (RNA_DIFFERENTIAL_EXPRESSION/RNA_TIME_SERIES/CHIP_PEAK_CALL/SOMATIC_VARIANT_CALLING) * analysis_description :param autosave: A toggle for autocommit, default True :returns: None ''' try: if not isinstance(data, pd.DataFrame): data=pd.DataFrame(data) if 'project_igf_id' in data.columns: project_map_function = \ lambda x: \ self.map_foreign_table_and_store_attribute( data=x, lookup_table=Project, lookup_column_name='project_igf_id', target_column_name='project_id') # prepare the function for project id data['project_id'] = '' data = \ data.apply( project_map_function, axis=1, result_type=None) # map project id foreign key id data.drop( 'project_igf_id', axis=1, inplace=True) #data=new_data self.store_records( table=Analysis, data=data) if autosave: self.commit_session() except Exception as e: if autosave: self.rollback_session() raise ValueError( 'Failed to store analysis data, error: {0}'.format(e)) def fetch_analysis_records_project_igf_id( self,project_igf_id='',output_mode='dataframe'): ''' A method for fetching analysis records based on project_igf_id :param project_igf_id: default: null :param output_mode: dataframe / object, default: dataframe :returns: Analysis record ''' try: session = self.session query = \ session.\ query(Project.project_igf_id, Analysis.analysis_type, Analysis.analysis_description).\ join(Analysis, Project.project_id==Analysis.project_id) if project_igf_id: query = \ query.\ filter(Project.project_igf_id==project_igf_id) results = \ self.fetch_records( query=query, output_mode=output_mode) return results except Exception as e: raise ValueError( 'Failed to fetch analysis record, error: {0}'.format(e))
apache-2.0
YihaoLu/statsmodels
statsmodels/emplike/descriptive.py
19
38795
""" Empirical likelihood inference on descriptive statistics This module conducts hypothesis tests and constructs confidence intervals for the mean, variance, skewness, kurtosis and correlation. If matplotlib is installed, this module can also generate multivariate confidence region plots as well as mean-variance contour plots. See _OptFuncts docstring for technical details and optimization variable definitions. General References: ------------------ Owen, A. (2001). "Empirical Likelihood." Chapman and Hall """ from __future__ import division import numpy as np from scipy import optimize from scipy.stats import chi2, skew, kurtosis from statsmodels.base.optimizer import _fit_newton import itertools from statsmodels.graphics import utils def DescStat(endog): """ Returns an instance to conduct inference on descriptive statistics via empirical likelihood. See DescStatUV and DescStatMV for more information. Parameters ---------- endog : ndarray Array of data Returns : DescStat instance If k=1, the function returns a univariate instance, DescStatUV. If k>1, the function returns a multivariate instance, DescStatMV. """ if endog.ndim == 1: endog = endog.reshape(len(endog), 1) if endog.shape[1] == 1: return DescStatUV(endog) if endog.shape[1] > 1: return DescStatMV(endog) class _OptFuncts(object): """ A class that holds functions that are optimized/solved. The general setup of the class is simple. Any method that starts with _opt_ creates a vector of estimating equations named est_vect such that np.dot(p, (est_vect))=0 where p is the weight on each observation as a 1 x n array and est_vect is n x k. Then _modif_Newton is called to determine the optimal p by solving for the Lagrange multiplier (eta) in the profile likelihood maximization problem. In the presence of nuisance parameters, _opt_ functions are optimized over to profile out the nuisance parameters. Any method starting with _ci_limits calculates the log likelihood ratio for a specific value of a parameter and then subtracts a pre-specified critical value. This is solved so that llr - crit = 0. """ def __init__(self, endog): pass def _log_star(self, eta, est_vect, weights, nobs): """ Transforms the log of observation probabilities in terms of the Lagrange multiplier to the log 'star' of the probabilities. Parameters ---------- eta : float Lagrange multiplier est_vect : ndarray (n,k) Estimating equations vector wts : nx1 array Observation weights Returns ------ data_star : array The weighted logstar of the estimting equations Notes ----- This function is only a placeholder for the _fit_Newton. The function value is not used in optimization and the optimal value is disregarded when computing the log likelihood ratio. """ data_star = np.log(weights) + (np.sum(weights) +\ np.dot(est_vect, eta)) idx = data_star < 1. / nobs not_idx = ~idx nx = nobs * data_star[idx] data_star[idx] = np.log(1. / nobs) - 1.5 + nx * (2. - nx / 2) data_star[not_idx] = np.log(data_star[not_idx]) return data_star def _hess(self, eta, est_vect, weights, nobs): """ Calculates the hessian of a weighted empirical likelihood problem. Parameters ---------- eta : ndarray, (1,m) Lagrange multiplier in the profile likelihood maximization est_vect : ndarray (n,k) Estimating equations vector weights : 1darray Observation weights Returns ------- hess : m x m array Weighted hessian used in _wtd_modif_newton """ #eta = np.squeeze(eta) data_star_doub_prime = np.sum(weights) + np.dot(est_vect, eta) idx = data_star_doub_prime < 1. / nobs not_idx = ~idx data_star_doub_prime[idx] = - nobs ** 2 data_star_doub_prime[not_idx] = - (data_star_doub_prime[not_idx]) ** -2 wtd_dsdp = weights * data_star_doub_prime return np.dot(est_vect.T, wtd_dsdp[:, None] * est_vect) def _grad(self, eta, est_vect, weights, nobs): """ Calculates the gradient of a weighted empirical likelihood problem Parameters ---------- eta : ndarray, (1,m) Lagrange multiplier in the profile likelihood maximization est_vect : ndarray, (n,k) Estimating equations vector weights : 1darray Observation weights Returns ------- gradient : ndarray (m,1) The gradient used in _wtd_modif_newton """ #eta = np.squeeze(eta) data_star_prime = np.sum(weights) + np.dot(est_vect, eta) idx = data_star_prime < 1. / nobs not_idx = ~idx data_star_prime[idx] = nobs * (2 - nobs * data_star_prime[idx]) data_star_prime[not_idx] = 1. / data_star_prime[not_idx] return np.dot(weights * data_star_prime, est_vect) def _modif_newton(self, eta, est_vect, weights): """ Modified Newton's method for maximizing the log 'star' equation. This function calls _fit_newton to find the optimal values of eta. Parameters ---------- eta : ndarray, (1,m) Lagrange multiplier in the profile likelihood maximization est_vect : ndarray, (n,k) Estimating equations vector weights : 1darray Observation weights Returns ------- params : 1xm array Lagrange multiplier that maximizes the log-likelihood """ nobs = len(est_vect) f = lambda x0: - np.sum(self._log_star(x0, est_vect, weights, nobs)) grad = lambda x0: - self._grad(x0, est_vect, weights, nobs) hess = lambda x0: - self._hess(x0, est_vect, weights, nobs) kwds = {'tol': 1e-8} eta = eta.squeeze() res = _fit_newton(f, grad, eta, (), kwds, hess=hess, maxiter=50, \ disp=0) return res[0] def _find_eta(self, eta): """ Finding the root of sum(xi-h0)/(1+eta(xi-mu)) solves for eta when computing ELR for univariate mean. Parameters ---------- eta : float Lagrange multiplier in the empirical likelihood maximization Returns ------- llr : float n times the log likelihood value for a given value of eta """ return np.sum((self.endog - self.mu0) / \ (1. + eta * (self.endog - self.mu0))) def _ci_limits_mu(self, mu): """ Calculates the difference between the log likelihood of mu_test and a specified critical value. Parameters ---------- mu : float Hypothesized value of the mean. Returns ------- diff : float The difference between the log likelihood value of mu0 and a specified value. """ return self.test_mean(mu)[0] - self.r0 def _find_gamma(self, gamma): """ Finds gamma that satisfies sum(log(n * w(gamma))) - log(r0) = 0 Used for confidence intervals for the mean Parameters ---------- gamma : float Lagrange multiplier when computing confidence interval Returns ------- diff : float The difference between the log-liklihood when the Lagrange multiplier is gamma and a pre-specified value """ denom = np.sum((self.endog - gamma) ** -1) new_weights = (self.endog - gamma) ** -1 / denom return -2 * np.sum(np.log(self.nobs * new_weights)) - \ self.r0 def _opt_var(self, nuisance_mu, pval=False): """ This is the function to be optimized over a nuisance mean parameter to determine the likelihood ratio for the variance Parameters ---------- nuisance_mu : float Value of a nuisance mean parameter Returns ------- llr : float Log likelihood of a pre-specified variance holding the nuisance parameter constant """ endog = self.endog nobs = self.nobs sig_data = ((endog - nuisance_mu) ** 2 \ - self.sig2_0) mu_data = (endog - nuisance_mu) est_vect = np.column_stack((mu_data, sig_data)) eta_star = self._modif_newton(np.array([1. / nobs, 1. / nobs]), est_vect, np.ones(nobs) * (1. / nobs)) denom = 1 + np.dot(eta_star, est_vect.T) self.new_weights = 1. / nobs * 1. / denom llr = np.sum(np.log(nobs * self.new_weights)) if pval: # Used for contour plotting return chi2.sf(-2 * llr, 1) return -2 * llr def _ci_limits_var(self, var): """ Used to determine the confidence intervals for the variance. It calls test_var and when called by an optimizer, finds the value of sig2_0 that is chi2.ppf(significance-level) Parameters ---------- var_test : float Hypothesized value of the variance Returns ------- diff : float The difference between the log likelihood ratio at var_test and a pre-specified value. """ return self.test_var(var)[0] - self.r0 def _opt_skew(self, nuis_params): """ Called by test_skew. This function is optimized over nuisance parameters mu and sigma Parameters ---------- nuis_params : 1darray An array with a nuisance mean and variance parameter Returns ------- llr : float The log likelihood ratio of a pre-specified skewness holding the nuisance parameters constant. """ endog = self.endog nobs = self.nobs mu_data = endog - nuis_params[0] sig_data = ((endog - nuis_params[0]) ** 2) - nuis_params[1] skew_data = ((((endog - nuis_params[0]) ** 3) / (nuis_params[1] ** 1.5))) - self.skew0 est_vect = np.column_stack((mu_data, sig_data, skew_data)) eta_star = self._modif_newton(np.array([1. / nobs, 1. / nobs, 1. / nobs]), est_vect, np.ones(nobs) * (1. / nobs)) denom = 1. + np.dot(eta_star, est_vect.T) self.new_weights = 1. / nobs * 1. / denom llr = np.sum(np.log(nobs * self.new_weights)) return -2 * llr def _opt_kurt(self, nuis_params): """ Called by test_kurt. This function is optimized over nuisance parameters mu and sigma Parameters ---------- nuis_params : 1darray An array with a nuisance mean and variance parameter Returns ------- llr : float The log likelihood ratio of a pre-speified kurtosis holding the nuisance parameters constant """ endog = self.endog nobs = self.nobs mu_data = endog - nuis_params[0] sig_data = ((endog - nuis_params[0]) ** 2) - nuis_params[1] kurt_data = (((((endog - nuis_params[0]) ** 4) / \ (nuis_params[1] ** 2))) - 3) - self.kurt0 est_vect = np.column_stack((mu_data, sig_data, kurt_data)) eta_star = self._modif_newton(np.array([1. / nobs, 1. / nobs, 1. / nobs]), est_vect, np.ones(nobs) * (1. / nobs)) denom = 1 + np.dot(eta_star, est_vect.T) self.new_weights = 1. / nobs * 1. / denom llr = np.sum(np.log(nobs * self.new_weights)) return -2 * llr def _opt_skew_kurt(self, nuis_params): """ Called by test_joint_skew_kurt. This function is optimized over nuisance parameters mu and sigma Parameters ----------- nuis_params : 1darray An array with a nuisance mean and variance parameter Returns ------ llr : float The log likelihood ratio of a pre-speified skewness and kurtosis holding the nuisance parameters constant. """ endog = self.endog nobs = self.nobs mu_data = endog - nuis_params[0] sig_data = ((endog - nuis_params[0]) ** 2) - nuis_params[1] skew_data = ((((endog - nuis_params[0]) ** 3) / \ (nuis_params[1] ** 1.5))) - self.skew0 kurt_data = (((((endog - nuis_params[0]) ** 4) / \ (nuis_params[1] ** 2))) - 3) - self.kurt0 est_vect = np.column_stack((mu_data, sig_data, skew_data, kurt_data)) eta_star = self._modif_newton(np.array([1. / nobs, 1. / nobs, 1. / nobs, 1. / nobs]), est_vect, np.ones(nobs) * (1. / nobs)) denom = 1. + np.dot(eta_star, est_vect.T) self.new_weights = 1. / nobs * 1. / denom llr = np.sum(np.log(nobs * self.new_weights)) return -2 * llr def _ci_limits_skew(self, skew): """ Parameters ---------- skew0 : float Hypothesized value of skewness Returns ------- diff : float The difference between the log likelihood ratio at skew and a pre-specified value. """ return self.test_skew(skew)[0] - self.r0 def _ci_limits_kurt(self, kurt): """ Parameters --------- skew0 : float Hypothesized value of kurtosis Returns ------- diff : float The difference between the log likelihood ratio at kurt and a pre-specified value. """ return self.test_kurt(kurt)[0] - self.r0 def _opt_correl(self, nuis_params, corr0, endog, nobs, x0, weights0): """ Parameters ---------- nuis_params : 1darray Array containing two nuisance means and two nuisance variances Returns ------- llr : float The log-likelihood of the correlation coefficient holding nuisance parameters constant """ mu1_data, mu2_data = (endog - nuis_params[::2]).T sig1_data = mu1_data ** 2 - nuis_params[1] sig2_data = mu2_data ** 2 - nuis_params[3] correl_data = ((mu1_data * mu2_data) - corr0 * (nuis_params[1] * nuis_params[3]) ** .5) est_vect = np.column_stack((mu1_data, sig1_data, mu2_data, sig2_data, correl_data)) eta_star = self._modif_newton(x0, est_vect, weights0) denom = 1. + np.dot(est_vect, eta_star) self.new_weights = 1. / nobs * 1. / denom llr = np.sum(np.log(nobs * self.new_weights)) return -2 * llr def _ci_limits_corr(self, corr): return self.test_corr(corr)[0] - self.r0 class DescStatUV(_OptFuncts): """ A class to compute confidence intervals and hypothesis tests involving mean, variance, kurtosis and skewness of a univariate random variable. Parameters ---------- endog : 1darray Data to be analyzed Attributes ---------- endog : 1darray Data to be analyzed nobs : float Number of observations """ def __init__(self, endog): self.endog = np.squeeze(endog) self.nobs = endog.shape[0] def test_mean(self, mu0, return_weights=False): """ Returns - 2 x log-likelihood ratio, p-value and weights for a hypothesis test of the mean. Parameters ---------- mu0 : float Mean value to be tested return_weights : bool If return_weights is True the funtion returns the weights of the observations under the null hypothesis. Default is False Returns ------- test_results : tuple The log-likelihood ratio and p-value of mu0 """ self.mu0 = mu0 endog = self.endog nobs = self.nobs eta_min = (1. - (1. / nobs)) / (self.mu0 - max(endog)) eta_max = (1. - (1. / nobs)) / (self.mu0 - min(endog)) eta_star = optimize.brentq(self._find_eta, eta_min, eta_max) new_weights = (1. / nobs) * 1. / (1. + eta_star * (endog - self.mu0)) llr = -2 * np.sum(np.log(nobs * new_weights)) if return_weights: return llr, chi2.sf(llr, 1), new_weights else: return llr, chi2.sf(llr, 1) def ci_mean(self, sig=.05, method='gamma', epsilon=10 ** -8, gamma_low=-10 ** 10, gamma_high=10 ** 10): """ Returns the confidence interval for the mean. Parameters ---------- sig : float significance level. Default is .05 method : str Root finding method, Can be 'nested-brent' or 'gamma'. Default is 'gamma' 'gamma' Tries to solve for the gamma parameter in the Lagrange (see Owen pg 22) and then determine the weights. 'nested brent' uses brents method to find the confidence intervals but must maximize the likelihhod ratio on every iteration. gamma is generally much faster. If the optimizations does not converge, try expanding the gamma_high and gamma_low variable. gamma_low : float Lower bound for gamma when finding lower limit. If function returns f(a) and f(b) must have different signs, consider lowering gamma_low. gamma_high : float Upper bound for gamma when finding upper limit. If function returns f(a) and f(b) must have different signs, consider raising gamma_high. epsilon : float When using 'nested-brent', amount to decrease (increase) from the maximum (minimum) of the data when starting the search. This is to protect against the likelihood ratio being zero at the maximum (minimum) value of the data. If data is very small in absolute value (<10 ``**`` -6) consider shrinking epsilon When using 'gamma', amount to decrease (increase) the minimum (maximum) by to start the search for gamma. If fucntion returns f(a) and f(b) must have differnt signs, consider lowering epsilon. Returns ------- Interval : tuple Confidence interval for the mean """ endog = self.endog sig = 1 - sig if method == 'nested-brent': self.r0 = chi2.ppf(sig, 1) middle = np.mean(endog) epsilon_u = (max(endog) - np.mean(endog)) * epsilon epsilon_l = (np.mean(endog) - min(endog)) * epsilon ulim = optimize.brentq(self._ci_limits_mu, middle, max(endog) - epsilon_u) llim = optimize.brentq(self._ci_limits_mu, middle, min(endog) + epsilon_l) return llim, ulim if method == 'gamma': self.r0 = chi2.ppf(sig, 1) gamma_star_l = optimize.brentq(self._find_gamma, gamma_low, min(endog) - epsilon) gamma_star_u = optimize.brentq(self._find_gamma, \ max(endog) + epsilon, gamma_high) weights_low = ((endog - gamma_star_l) ** -1) / \ np.sum((endog - gamma_star_l) ** -1) weights_high = ((endog - gamma_star_u) ** -1) / \ np.sum((endog - gamma_star_u) ** -1) mu_low = np.sum(weights_low * endog) mu_high = np.sum(weights_high * endog) return mu_low, mu_high def test_var(self, sig2_0, return_weights=False): """ Returns -2 x log-likelihoog ratio and the p-value for the hypothesized variance Parameters ---------- sig2_0 : float Hypothesized variance to be tested return_weights : bool If True, returns the weights that maximize the likelihood of observing sig2_0. Default is False Returns -------- test_results : tuple The log-likelihood ratio and the p_value of sig2_0 Examples -------- >>> random_numbers = np.random.standard_normal(1000)*100 >>> el_analysis = sm.emplike.DescStat(random_numbers) >>> hyp_test = el_analysis.test_var(9500) """ self.sig2_0 = sig2_0 mu_max = max(self.endog) mu_min = min(self.endog) llr = optimize.fminbound(self._opt_var, mu_min, mu_max, \ full_output=1)[1] p_val = chi2.sf(llr, 1) if return_weights: return llr, p_val, self.new_weights.T else: return llr, p_val def ci_var(self, lower_bound=None, upper_bound=None, sig=.05): """ Returns the confidence interval for the variance. Parameters ---------- lower_bound : float The minimum value the lower confidence interval can take. The p-value from test_var(lower_bound) must be lower than 1 - significance level. Default is .99 confidence limit assuming normality upper_bound : float The maximum value the upper confidence interval can take. The p-value from test_var(upper_bound) must be lower than 1 - significance level. Default is .99 confidence limit assuming normality sig : float The significance level. Default is .05 Returns -------- Interval : tuple Confidence interval for the variance Examples -------- >>> random_numbers = np.random.standard_normal(100) >>> el_analysis = sm.emplike.DescStat(random_numbers) >>> el_analysis.ci_var() >>> 'f(a) and f(b) must have different signs' >>> el_analysis.ci_var(.5, 2) Notes ----- If the function returns the error f(a) and f(b) must have different signs, consider lowering lower_bound and raising upper_bound. """ endog = self.endog if upper_bound is None: upper_bound = ((self.nobs - 1) * endog.var()) / \ (chi2.ppf(.0001, self.nobs - 1)) if lower_bound is None: lower_bound = ((self.nobs - 1) * endog.var()) / \ (chi2.ppf(.9999, self.nobs - 1)) self.r0 = chi2.ppf(1 - sig, 1) llim = optimize.brentq(self._ci_limits_var, lower_bound, endog.var()) ulim = optimize.brentq(self._ci_limits_var, endog.var(), upper_bound) return llim, ulim def plot_contour(self, mu_low, mu_high, var_low, var_high, mu_step, var_step, levs=[.2, .1, .05, .01, .001]): """ Returns a plot of the confidence region for a univariate mean and variance. Parameters ---------- mu_low : float Lowest value of the mean to plot mu_high : float Highest value of the mean to plot var_low : float Lowest value of the variance to plot var_high : float Highest value of the variance to plot mu_step : float Increments to evaluate the mean var_step : float Increments to evaluate the mean levs : list Which values of significance the contour lines will be drawn. Default is [.2, .1, .05, .01, .001] Returns ------- fig : matplotlib figure instance The contour plot """ fig, ax = utils.create_mpl_ax() ax.set_ylabel('Variance') ax.set_xlabel('Mean') mu_vect = list(np.arange(mu_low, mu_high, mu_step)) var_vect = list(np.arange(var_low, var_high, var_step)) z = [] for sig0 in var_vect: self.sig2_0 = sig0 for mu0 in mu_vect: z.append(self._opt_var(mu0, pval=True)) z = np.asarray(z).reshape(len(var_vect), len(mu_vect)) ax.contour(mu_vect, var_vect, z, levels=levs) return fig def test_skew(self, skew0, return_weights=False): """ Returns -2 x log-likelihood and p-value for the hypothesized skewness. Parameters ---------- skew0 : float Skewness value to be tested return_weights : bool If True, function also returns the weights that maximize the likelihood ratio. Default is False. Returns -------- test_results : tuple The log-likelihood ratio and p_value of skew0 """ self.skew0 = skew0 start_nuisance = np.array([self.endog.mean(), self.endog.var()]) llr = optimize.fmin_powell(self._opt_skew, start_nuisance, full_output=1, disp=0)[1] p_val = chi2.sf(llr, 1) if return_weights: return llr, p_val, self.new_weights.T return llr, p_val def test_kurt(self, kurt0, return_weights=False): """ Returns -2 x log-likelihood and the p-value for the hypothesized kurtosis. Parameters ---------- kurt0 : float Kurtosis value to be tested return_weights : bool If True, function also returns the weights that maximize the likelihood ratio. Default is False. Returns ------- test_results : tuple The log-likelihood ratio and p-value of kurt0 """ self.kurt0 = kurt0 start_nuisance = np.array([self.endog.mean(), self.endog.var()]) llr = optimize.fmin_powell(self._opt_kurt, start_nuisance, full_output=1, disp=0)[1] p_val = chi2.sf(llr, 1) if return_weights: return llr, p_val, self.new_weights.T return llr, p_val def test_joint_skew_kurt(self, skew0, kurt0, return_weights=False): """ Returns - 2 x log-likelihood and the p-value for the joint hypothesis test for skewness and kurtosis Parameters ---------- skew0 : float Skewness value to be tested kurt0 : float Kurtosis value to be tested return_weights : bool If True, function also returns the weights that maximize the likelihood ratio. Default is False. Returns ------- test_results : tuple The log-likelihood ratio and p-value of the joint hypothesis test. """ self.skew0 = skew0 self.kurt0 = kurt0 start_nuisance = np.array([self.endog.mean(), self.endog.var()]) llr = optimize.fmin_powell(self._opt_skew_kurt, start_nuisance, full_output=1, disp=0)[1] p_val = chi2.sf(llr, 2) if return_weights: return llr, p_val, self.new_weights.T return llr, p_val def ci_skew(self, sig=.05, upper_bound=None, lower_bound=None): """ Returns the confidence interval for skewness. Parameters ---------- sig : float The significance level. Default is .05 upper_bound : float Maximum value of skewness the upper limit can be. Default is .99 confidence limit assuming normality. lower_bound : float Minimum value of skewness the lower limit can be. Default is .99 confidence level assuming normality. Returns ------- Interval : tuple Confidence interval for the skewness Notes ----- If function returns f(a) and f(b) must have different signs, consider expanding lower and upper bounds """ nobs = self.nobs endog = self.endog if upper_bound is None: upper_bound = skew(endog) + \ 2.5 * ((6. * nobs * (nobs - 1.)) / \ ((nobs - 2.) * (nobs + 1.) * \ (nobs + 3.))) ** .5 if lower_bound is None: lower_bound = skew(endog) - \ 2.5 * ((6. * nobs * (nobs - 1.)) / \ ((nobs - 2.) * (nobs + 1.) * \ (nobs + 3.))) ** .5 self.r0 = chi2.ppf(1 - sig, 1) llim = optimize.brentq(self._ci_limits_skew, lower_bound, skew(endog)) ulim = optimize.brentq(self._ci_limits_skew, skew(endog), upper_bound) return llim, ulim def ci_kurt(self, sig=.05, upper_bound=None, lower_bound=None): """ Returns the confidence interval for kurtosis. Parameters ---------- sig : float The significance level. Default is .05 upper_bound : float Maximum value of kurtosis the upper limit can be. Default is .99 confidence limit assuming normality. lower_bound : float Minimum value of kurtosis the lower limit can be. Default is .99 confidence limit assuming normality. Returns -------- Interval : tuple Lower and upper confidence limit Notes ----- For small n, upper_bound and lower_bound may have to be provided by the user. Consider using test_kurt to find values close to the desired significance level. If function returns f(a) and f(b) must have different signs, consider expanding the bounds. """ endog = self.endog nobs = self.nobs if upper_bound is None: upper_bound = kurtosis(endog) + \ (2.5 * (2. * ((6. * nobs * (nobs - 1.)) / \ ((nobs - 2.) * (nobs + 1.) * \ (nobs + 3.))) ** .5) * \ (((nobs ** 2.) - 1.) / ((nobs - 3.) *\ (nobs + 5.))) ** .5) if lower_bound is None: lower_bound = kurtosis(endog) - \ (2.5 * (2. * ((6. * nobs * (nobs - 1.)) / \ ((nobs - 2.) * (nobs + 1.) * \ (nobs + 3.))) ** .5) * \ (((nobs ** 2.) - 1.) / ((nobs - 3.) *\ (nobs + 5.))) ** .5) self.r0 = chi2.ppf(1 - sig, 1) llim = optimize.brentq(self._ci_limits_kurt, lower_bound, \ kurtosis(endog)) ulim = optimize.brentq(self._ci_limits_kurt, kurtosis(endog), \ upper_bound) return llim, ulim class DescStatMV(_OptFuncts): """ A class for conducting inference on multivariate means and correlation. Parameters ---------- endog : ndarray Data to be analyzed Attributes ---------- endog : ndarray Data to be analyzed nobs : float Number of observations """ def __init__(self, endog): self.endog = endog self.nobs = endog.shape[0] def mv_test_mean(self, mu_array, return_weights=False): """ Returns -2 x log likelihood and the p-value for a multivariate hypothesis test of the mean Parameters ---------- mu_array : 1d array Hypothesized values for the mean. Must have same number of elements as columns in endog return_weights : bool If True, returns the weights that maximize the likelihood of mu_array. Default is False. Returns ------- test_results : tuple The log-likelihood ratio and p-value for mu_array """ endog = self.endog nobs = self.nobs if len(mu_array) != endog.shape[1]: raise Exception('mu_array must have the same number of \ elements as the columns of the data.') mu_array = mu_array.reshape(1, endog.shape[1]) means = np.ones((endog.shape[0], endog.shape[1])) means = mu_array * means est_vect = endog - means start_vals = 1. / nobs * np.ones(endog.shape[1]) eta_star = self._modif_newton(start_vals, est_vect, np.ones(nobs) * (1. / nobs)) denom = 1 + np.dot(eta_star, est_vect.T) self.new_weights = 1 / nobs * 1 / denom llr = -2 * np.sum(np.log(nobs * self.new_weights)) p_val = chi2.sf(llr, mu_array.shape[1]) if return_weights: return llr, p_val, self.new_weights.T else: return llr, p_val def mv_mean_contour(self, mu1_low, mu1_upp, mu2_low, mu2_upp, step1, step2, levs=[.2, .1, .05, .01, .001], var1_name=None, var2_name=None, plot_dta=False): """ Creates a confidence region plot for the mean of bivariate data Parameters ---------- m1_low : float Minimum value of the mean for variable 1 m1_upp : float Maximum value of the mean for variable 1 mu2_low : float Minimum value of the mean for variable 2 mu2_upp : float Maximum value of the mean for variable 2 step1 : float Increment of evaluations for variable 1 step2 : float Increment of evaluations for variable 2 levs : list Levels to be drawn on the contour plot. Default = [.2, .1 .05, .01, .001] plot_dta : bool If True, makes a scatter plot of the data on top of the contour plot. Defaultis False. var1_name : str Name of variable 1 to be plotted on the x-axis var2_name : str Name of variable 2 to be plotted on the y-axis Notes ----- The smaller the step size, the more accurate the intervals will be If the function returns optimization failed, consider narrowing the boundaries of the plot Examples -------- >>> two_rvs = np.random.standard_normal((20,2)) >>> el_analysis = sm.empllike.DescStat(two_rvs) >>> contourp = el_analysis.mv_mean_contour(-2, 2, -2, 2, .1, .1) >>> contourp.show() """ if self.endog.shape[1] != 2: raise Exception('Data must contain exactly two variables') fig, ax = utils.create_mpl_ax() if var2_name is None: ax.set_ylabel('Variable 2') else: ax.set_ylabel(var2_name) if var1_name is None: ax.set_xlabel('Variable 1') else: ax.set_xlabel(var1_name) x = (np.arange(mu1_low, mu1_upp, step1)) y = (np.arange(mu2_low, mu2_upp, step2)) pairs = itertools.product(x, y) z = [] for i in pairs: z.append(self.mv_test_mean(np.asarray(i))[0]) X, Y = np.meshgrid(x, y) z = np.asarray(z) z = z.reshape(X.shape[1], Y.shape[0]) ax.contour(x, y, z.T, levels=levs) if plot_dta: ax.plot(self.endog[:, 0], self.endog[:, 1], 'bo') return fig def test_corr(self, corr0, return_weights=0): """ Returns -2 x log-likelihood ratio and p-value for the correlation coefficient between 2 variables Parameters ---------- corr0 : float Hypothesized value to be tested return_weights : bool If true, returns the weights that maximize the log-likelihood at the hypothesized value """ nobs = self.nobs endog = self.endog if endog.shape[1] != 2: raise Exception('Correlation matrix not yet implemented') nuis0 = np.array([endog[:, 0].mean(), endog[:, 0].var(), endog[:, 1].mean(), endog[:, 1].var()]) x0 = np.zeros(5) weights0 = np.array([1. / nobs] * int(nobs)) args = (corr0, endog, nobs, x0, weights0) llr = optimize.fmin(self._opt_correl, nuis0, args=args, full_output=1, disp=0)[1] p_val = chi2.sf(llr, 1) if return_weights: return llr, p_val, self.new_weights.T return llr, p_val def ci_corr(self, sig=.05, upper_bound=None, lower_bound=None): """ Returns the confidence intervals for the correlation coefficient Parameters ---------- sig : float The significance level. Default is .05 upper_bound : float Maximum value the upper confidence limit can be. Default is 99% confidence limit assuming normality. lower_bound : float Minimum value the lower condidence limit can be. Default is 99% confidence limit assuming normality. Returns ------- interval : tuple Confidence interval for the correlation """ endog = self.endog nobs = self.nobs self.r0 = chi2.ppf(1 - sig, 1) point_est = np.corrcoef(endog[:, 0], endog[:, 1])[0, 1] if upper_bound is None: upper_bound = min(.999, point_est + \ 2.5 * ((1. - point_est ** 2.) / \ (nobs - 2.)) ** .5) if lower_bound is None: lower_bound = max(- .999, point_est - \ 2.5 * (np.sqrt((1. - point_est ** 2.) / \ (nobs - 2.)))) llim = optimize.brenth(self._ci_limits_corr, lower_bound, point_est) ulim = optimize.brenth(self._ci_limits_corr, point_est, upper_bound) return llim, ulim
bsd-3-clause
blueburningcoder/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backend_bases.py
69
69740
""" Abstract base classes define the primitives that renderers and graphics contexts must implement to serve as a matplotlib backend :class:`RendererBase` An abstract base class to handle drawing/rendering operations. :class:`FigureCanvasBase` The abstraction layer that separates the :class:`matplotlib.figure.Figure` from the backend specific details like a user interface drawing area :class:`GraphicsContextBase` An abstract base class that provides color, line styles, etc... :class:`Event` The base class for all of the matplotlib event handling. Derived classes suh as :class:`KeyEvent` and :class:`MouseEvent` store the meta data like keys and buttons pressed, x and y locations in pixel and :class:`~matplotlib.axes.Axes` coordinates. """ from __future__ import division import os, warnings, time import numpy as np import matplotlib.cbook as cbook import matplotlib.colors as colors import matplotlib.transforms as transforms import matplotlib.widgets as widgets from matplotlib import rcParams class RendererBase: """An abstract base class to handle drawing/rendering operations. The following methods *must* be implemented in the backend: * :meth:`draw_path` * :meth:`draw_image` * :meth:`draw_text` * :meth:`get_text_width_height_descent` The following methods *should* be implemented in the backend for optimization reasons: * :meth:`draw_markers` * :meth:`draw_path_collection` * :meth:`draw_quad_mesh` """ def __init__(self): self._texmanager = None def open_group(self, s): """ Open a grouping element with label *s*. Is only currently used by :mod:`~matplotlib.backends.backend_svg` """ pass def close_group(self, s): """ Close a grouping element with label *s* Is only currently used by :mod:`~matplotlib.backends.backend_svg` """ pass def draw_path(self, gc, path, transform, rgbFace=None): """ Draws a :class:`~matplotlib.path.Path` instance using the given affine transform. """ raise NotImplementedError def draw_markers(self, gc, marker_path, marker_trans, path, trans, rgbFace=None): """ Draws a marker at each of the vertices in path. This includes all vertices, including control points on curves. To avoid that behavior, those vertices should be removed before calling this function. *gc* the :class:`GraphicsContextBase` instance *marker_trans* is an affine transform applied to the marker. *trans* is an affine transform applied to the path. This provides a fallback implementation of draw_markers that makes multiple calls to :meth:`draw_path`. Some backends may want to override this method in order to draw the marker only once and reuse it multiple times. """ tpath = trans.transform_path(path) for vertices, codes in tpath.iter_segments(): if len(vertices): x,y = vertices[-2:] self.draw_path(gc, marker_path, marker_trans + transforms.Affine2D().translate(x, y), rgbFace) def draw_path_collection(self, master_transform, cliprect, clippath, clippath_trans, paths, all_transforms, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls): """ Draws a collection of paths, selecting drawing properties from the lists *facecolors*, *edgecolors*, *linewidths*, *linestyles* and *antialiaseds*. *offsets* is a list of offsets to apply to each of the paths. The offsets in *offsets* are first transformed by *offsetTrans* before being applied. This provides a fallback implementation of :meth:`draw_path_collection` that makes multiple calls to draw_path. Some backends may want to override this in order to render each set of path data only once, and then reference that path multiple times with the different offsets, colors, styles etc. The generator methods :meth:`_iter_collection_raw_paths` and :meth:`_iter_collection` are provided to help with (and standardize) the implementation across backends. It is highly recommended to use those generators, so that changes to the behavior of :meth:`draw_path_collection` can be made globally. """ path_ids = [] for path, transform in self._iter_collection_raw_paths( master_transform, paths, all_transforms): path_ids.append((path, transform)) for xo, yo, path_id, gc, rgbFace in self._iter_collection( path_ids, cliprect, clippath, clippath_trans, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls): path, transform = path_id transform = transforms.Affine2D(transform.get_matrix()).translate(xo, yo) self.draw_path(gc, path, transform, rgbFace) def draw_quad_mesh(self, master_transform, cliprect, clippath, clippath_trans, meshWidth, meshHeight, coordinates, offsets, offsetTrans, facecolors, antialiased, showedges): """ This provides a fallback implementation of :meth:`draw_quad_mesh` that generates paths and then calls :meth:`draw_path_collection`. """ from matplotlib.collections import QuadMesh paths = QuadMesh.convert_mesh_to_paths( meshWidth, meshHeight, coordinates) if showedges: edgecolors = np.array([[0.0, 0.0, 0.0, 1.0]], np.float_) linewidths = np.array([1.0], np.float_) else: edgecolors = facecolors linewidths = np.array([0.0], np.float_) return self.draw_path_collection( master_transform, cliprect, clippath, clippath_trans, paths, [], offsets, offsetTrans, facecolors, edgecolors, linewidths, [], [antialiased], [None]) def _iter_collection_raw_paths(self, master_transform, paths, all_transforms): """ This is a helper method (along with :meth:`_iter_collection`) to make it easier to write a space-efficent :meth:`draw_path_collection` implementation in a backend. This method yields all of the base path/transform combinations, given a master transform, a list of paths and list of transforms. The arguments should be exactly what is passed in to :meth:`draw_path_collection`. The backend should take each yielded path and transform and create an object that can be referenced (reused) later. """ Npaths = len(paths) Ntransforms = len(all_transforms) N = max(Npaths, Ntransforms) if Npaths == 0: return transform = transforms.IdentityTransform() for i in xrange(N): path = paths[i % Npaths] if Ntransforms: transform = all_transforms[i % Ntransforms] yield path, transform + master_transform def _iter_collection(self, path_ids, cliprect, clippath, clippath_trans, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls): """ This is a helper method (along with :meth:`_iter_collection_raw_paths`) to make it easier to write a space-efficent :meth:`draw_path_collection` implementation in a backend. This method yields all of the path, offset and graphics context combinations to draw the path collection. The caller should already have looped over the results of :meth:`_iter_collection_raw_paths` to draw this collection. The arguments should be the same as that passed into :meth:`draw_path_collection`, with the exception of *path_ids*, which is a list of arbitrary objects that the backend will use to reference one of the paths created in the :meth:`_iter_collection_raw_paths` stage. Each yielded result is of the form:: xo, yo, path_id, gc, rgbFace where *xo*, *yo* is an offset; *path_id* is one of the elements of *path_ids*; *gc* is a graphics context and *rgbFace* is a color to use for filling the path. """ Npaths = len(path_ids) Noffsets = len(offsets) N = max(Npaths, Noffsets) Nfacecolors = len(facecolors) Nedgecolors = len(edgecolors) Nlinewidths = len(linewidths) Nlinestyles = len(linestyles) Naa = len(antialiaseds) Nurls = len(urls) if (Nfacecolors == 0 and Nedgecolors == 0) or Npaths == 0: return if Noffsets: toffsets = offsetTrans.transform(offsets) gc = self.new_gc() gc.set_clip_rectangle(cliprect) if clippath is not None: clippath = transforms.TransformedPath(clippath, clippath_trans) gc.set_clip_path(clippath) if Nfacecolors == 0: rgbFace = None if Nedgecolors == 0: gc.set_linewidth(0.0) xo, yo = 0, 0 for i in xrange(N): path_id = path_ids[i % Npaths] if Noffsets: xo, yo = toffsets[i % Noffsets] if Nfacecolors: rgbFace = facecolors[i % Nfacecolors] if Nedgecolors: gc.set_foreground(edgecolors[i % Nedgecolors]) if Nlinewidths: gc.set_linewidth(linewidths[i % Nlinewidths]) if Nlinestyles: gc.set_dashes(*linestyles[i % Nlinestyles]) if rgbFace is not None and len(rgbFace)==4: gc.set_alpha(rgbFace[-1]) rgbFace = rgbFace[:3] gc.set_antialiased(antialiaseds[i % Naa]) if Nurls: gc.set_url(urls[i % Nurls]) yield xo, yo, path_id, gc, rgbFace def get_image_magnification(self): """ Get the factor by which to magnify images passed to :meth:`draw_image`. Allows a backend to have images at a different resolution to other artists. """ return 1.0 def draw_image(self, x, y, im, bbox, clippath=None, clippath_trans=None): """ Draw the image instance into the current axes; *x* is the distance in pixels from the left hand side of the canvas. *y* the distance from the origin. That is, if origin is upper, y is the distance from top. If origin is lower, y is the distance from bottom *im* the :class:`matplotlib._image.Image` instance *bbox* a :class:`matplotlib.transforms.Bbox` instance for clipping, or None """ raise NotImplementedError def option_image_nocomposite(self): """ overwrite this method for renderers that do not necessarily want to rescale and composite raster images. (like SVG) """ return False def draw_tex(self, gc, x, y, s, prop, angle, ismath='TeX!'): raise NotImplementedError def draw_text(self, gc, x, y, s, prop, angle, ismath=False): """ Draw the text instance *gc* the :class:`GraphicsContextBase` instance *x* the x location of the text in display coords *y* the y location of the text in display coords *s* a :class:`matplotlib.text.Text` instance *prop* a :class:`matplotlib.font_manager.FontProperties` instance *angle* the rotation angle in degrees **backend implementers note** When you are trying to determine if you have gotten your bounding box right (which is what enables the text layout/alignment to work properly), it helps to change the line in text.py:: if 0: bbox_artist(self, renderer) to if 1, and then the actual bounding box will be blotted along with your text. """ raise NotImplementedError def flipy(self): """ Return true if y small numbers are top for renderer Is used for drawing text (:mod:`matplotlib.text`) and images (:mod:`matplotlib.image`) only """ return True def get_canvas_width_height(self): 'return the canvas width and height in display coords' return 1, 1 def get_texmanager(self): """ return the :class:`matplotlib.texmanager.TexManager` instance """ if self._texmanager is None: from matplotlib.texmanager import TexManager self._texmanager = TexManager() return self._texmanager def get_text_width_height_descent(self, s, prop, ismath): """ get the width and height, and the offset from the bottom to the baseline (descent), in display coords of the string s with :class:`~matplotlib.font_manager.FontProperties` prop """ raise NotImplementedError def new_gc(self): """ Return an instance of a :class:`GraphicsContextBase` """ return GraphicsContextBase() def points_to_pixels(self, points): """ Convert points to display units *points* a float or a numpy array of float return points converted to pixels You need to override this function (unless your backend doesn't have a dpi, eg, postscript or svg). Some imaging systems assume some value for pixels per inch:: points to pixels = points * pixels_per_inch/72.0 * dpi/72.0 """ return points def strip_math(self, s): return cbook.strip_math(s) def start_rasterizing(self): pass def stop_rasterizing(self): pass class GraphicsContextBase: """ An abstract base class that provides color, line styles, etc... """ # a mapping from dash styles to suggested offset, dash pairs dashd = { 'solid' : (None, None), 'dashed' : (0, (6.0, 6.0)), 'dashdot' : (0, (3.0, 5.0, 1.0, 5.0)), 'dotted' : (0, (1.0, 3.0)), } def __init__(self): self._alpha = 1.0 self._antialiased = 1 # use 0,1 not True, False for extension code self._capstyle = 'butt' self._cliprect = None self._clippath = None self._dashes = None, None self._joinstyle = 'miter' self._linestyle = 'solid' self._linewidth = 1 self._rgb = (0.0, 0.0, 0.0) self._hatch = None self._url = None self._snap = None def copy_properties(self, gc): 'Copy properties from gc to self' self._alpha = gc._alpha self._antialiased = gc._antialiased self._capstyle = gc._capstyle self._cliprect = gc._cliprect self._clippath = gc._clippath self._dashes = gc._dashes self._joinstyle = gc._joinstyle self._linestyle = gc._linestyle self._linewidth = gc._linewidth self._rgb = gc._rgb self._hatch = gc._hatch self._url = gc._url self._snap = gc._snap def get_alpha(self): """ Return the alpha value used for blending - not supported on all backends """ return self._alpha def get_antialiased(self): "Return true if the object should try to do antialiased rendering" return self._antialiased def get_capstyle(self): """ Return the capstyle as a string in ('butt', 'round', 'projecting') """ return self._capstyle def get_clip_rectangle(self): """ Return the clip rectangle as a :class:`~matplotlib.transforms.Bbox` instance """ return self._cliprect def get_clip_path(self): """ Return the clip path in the form (path, transform), where path is a :class:`~matplotlib.path.Path` instance, and transform is an affine transform to apply to the path before clipping. """ if self._clippath is not None: return self._clippath.get_transformed_path_and_affine() return None, None def get_dashes(self): """ Return the dash information as an offset dashlist tuple. The dash list is a even size list that gives the ink on, ink off in pixels. See p107 of to PostScript `BLUEBOOK <http://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF>`_ for more info. Default value is None """ return self._dashes def get_joinstyle(self): """ Return the line join style as one of ('miter', 'round', 'bevel') """ return self._joinstyle def get_linestyle(self, style): """ Return the linestyle: one of ('solid', 'dashed', 'dashdot', 'dotted'). """ return self._linestyle def get_linewidth(self): """ Return the line width in points as a scalar """ return self._linewidth def get_rgb(self): """ returns a tuple of three floats from 0-1. color can be a matlab format string, a html hex color string, or a rgb tuple """ return self._rgb def get_url(self): """ returns a url if one is set, None otherwise """ return self._url def get_snap(self): """ returns the snap setting which may be: * True: snap vertices to the nearest pixel center * False: leave vertices as-is * None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel center """ return self._snap def set_alpha(self, alpha): """ Set the alpha value used for blending - not supported on all backends """ self._alpha = alpha def set_antialiased(self, b): """ True if object should be drawn with antialiased rendering """ # use 0, 1 to make life easier on extension code trying to read the gc if b: self._antialiased = 1 else: self._antialiased = 0 def set_capstyle(self, cs): """ Set the capstyle as a string in ('butt', 'round', 'projecting') """ if cs in ('butt', 'round', 'projecting'): self._capstyle = cs else: raise ValueError('Unrecognized cap style. Found %s' % cs) def set_clip_rectangle(self, rectangle): """ Set the clip rectangle with sequence (left, bottom, width, height) """ self._cliprect = rectangle def set_clip_path(self, path): """ Set the clip path and transformation. Path should be a :class:`~matplotlib.transforms.TransformedPath` instance. """ assert path is None or isinstance(path, transforms.TransformedPath) self._clippath = path def set_dashes(self, dash_offset, dash_list): """ Set the dash style for the gc. *dash_offset* is the offset (usually 0). *dash_list* specifies the on-off sequence as points. ``(None, None)`` specifies a solid line """ self._dashes = dash_offset, dash_list def set_foreground(self, fg, isRGB=False): """ Set the foreground color. fg can be a matlab format string, a html hex color string, an rgb unit tuple, or a float between 0 and 1. In the latter case, grayscale is used. The :class:`GraphicsContextBase` converts colors to rgb internally. If you know the color is rgb already, you can set ``isRGB=True`` to avoid the performace hit of the conversion """ if isRGB: self._rgb = fg else: self._rgb = colors.colorConverter.to_rgba(fg) def set_graylevel(self, frac): """ Set the foreground color to be a gray level with *frac* """ self._rgb = (frac, frac, frac) def set_joinstyle(self, js): """ Set the join style to be one of ('miter', 'round', 'bevel') """ if js in ('miter', 'round', 'bevel'): self._joinstyle = js else: raise ValueError('Unrecognized join style. Found %s' % js) def set_linewidth(self, w): """ Set the linewidth in points """ self._linewidth = w def set_linestyle(self, style): """ Set the linestyle to be one of ('solid', 'dashed', 'dashdot', 'dotted'). """ try: offset, dashes = self.dashd[style] except: raise ValueError('Unrecognized linestyle: %s' % style) self._linestyle = style self.set_dashes(offset, dashes) def set_url(self, url): """ Sets the url for links in compatible backends """ self._url = url def set_snap(self, snap): """ Sets the snap setting which may be: * True: snap vertices to the nearest pixel center * False: leave vertices as-is * None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel center """ self._snap = snap def set_hatch(self, hatch): """ Sets the hatch style for filling """ self._hatch = hatch def get_hatch(self): """ Gets the current hatch style """ return self._hatch class Event: """ A matplotlib event. Attach additional attributes as defined in :meth:`FigureCanvasBase.mpl_connect`. The following attributes are defined and shown with their default values *name* the event name *canvas* the FigureCanvas instance generating the event *guiEvent* the GUI event that triggered the matplotlib event """ def __init__(self, name, canvas,guiEvent=None): self.name = name self.canvas = canvas self.guiEvent = guiEvent class IdleEvent(Event): """ An event triggered by the GUI backend when it is idle -- useful for passive animation """ pass class DrawEvent(Event): """ An event triggered by a draw operation on the canvas In addition to the :class:`Event` attributes, the following event attributes are defined: *renderer* the :class:`RendererBase` instance for the draw event """ def __init__(self, name, canvas, renderer): Event.__init__(self, name, canvas) self.renderer = renderer class ResizeEvent(Event): """ An event triggered by a canvas resize In addition to the :class:`Event` attributes, the following event attributes are defined: *width* width of the canvas in pixels *height* height of the canvas in pixels """ def __init__(self, name, canvas): Event.__init__(self, name, canvas) self.width, self.height = canvas.get_width_height() class LocationEvent(Event): """ A event that has a screen location The following additional attributes are defined and shown with their default values In addition to the :class:`Event` attributes, the following event attributes are defined: *x* x position - pixels from left of canvas *y* y position - pixels from bottom of canvas *inaxes* the :class:`~matplotlib.axes.Axes` instance if mouse is over axes *xdata* x coord of mouse in data coords *ydata* y coord of mouse in data coords """ x = None # x position - pixels from left of canvas y = None # y position - pixels from right of canvas inaxes = None # the Axes instance if mouse us over axes xdata = None # x coord of mouse in data coords ydata = None # y coord of mouse in data coords # the last event that was triggered before this one lastevent = None def __init__(self, name, canvas, x, y,guiEvent=None): """ *x*, *y* in figure coords, 0,0 = bottom, left """ Event.__init__(self, name, canvas,guiEvent=guiEvent) self.x = x self.y = y if x is None or y is None: # cannot check if event was in axes if no x,y info self.inaxes = None self._update_enter_leave() return # Find all axes containing the mouse axes_list = [a for a in self.canvas.figure.get_axes() if a.in_axes(self)] if len(axes_list) == 0: # None found self.inaxes = None self._update_enter_leave() return elif (len(axes_list) > 1): # Overlap, get the highest zorder axCmp = lambda _x,_y: cmp(_x.zorder, _y.zorder) axes_list.sort(axCmp) self.inaxes = axes_list[-1] # Use the highest zorder else: # Just found one hit self.inaxes = axes_list[0] try: xdata, ydata = self.inaxes.transData.inverted().transform_point((x, y)) except ValueError: self.xdata = None self.ydata = None else: self.xdata = xdata self.ydata = ydata self._update_enter_leave() def _update_enter_leave(self): 'process the figure/axes enter leave events' if LocationEvent.lastevent is not None: last = LocationEvent.lastevent if last.inaxes!=self.inaxes: # process axes enter/leave events if last.inaxes is not None: last.canvas.callbacks.process('axes_leave_event', last) if self.inaxes is not None: self.canvas.callbacks.process('axes_enter_event', self) else: # process a figure enter event if self.inaxes is not None: self.canvas.callbacks.process('axes_enter_event', self) LocationEvent.lastevent = self class MouseEvent(LocationEvent): """ A mouse event ('button_press_event', 'button_release_event', 'scroll_event', 'motion_notify_event'). In addition to the :class:`Event` and :class:`LocationEvent` attributes, the following attributes are defined: *button* button pressed None, 1, 2, 3, 'up', 'down' (up and down are used for scroll events) *key* the key pressed: None, chr(range(255), 'shift', 'win', or 'control' *step* number of scroll steps (positive for 'up', negative for 'down') Example usage:: def on_press(event): print 'you pressed', event.button, event.xdata, event.ydata cid = fig.canvas.mpl_connect('button_press_event', on_press) """ x = None # x position - pixels from left of canvas y = None # y position - pixels from right of canvas button = None # button pressed None, 1, 2, 3 inaxes = None # the Axes instance if mouse us over axes xdata = None # x coord of mouse in data coords ydata = None # y coord of mouse in data coords step = None # scroll steps for scroll events def __init__(self, name, canvas, x, y, button=None, key=None, step=0, guiEvent=None): """ x, y in figure coords, 0,0 = bottom, left button pressed None, 1, 2, 3, 'up', 'down' """ LocationEvent.__init__(self, name, canvas, x, y, guiEvent=guiEvent) self.button = button self.key = key self.step = step class PickEvent(Event): """ a pick event, fired when the user picks a location on the canvas sufficiently close to an artist. Attrs: all the :class:`Event` attributes plus *mouseevent* the :class:`MouseEvent` that generated the pick *artist* the :class:`~matplotlib.artist.Artist` picked other extra class dependent attrs -- eg a :class:`~matplotlib.lines.Line2D` pick may define different extra attributes than a :class:`~matplotlib.collections.PatchCollection` pick event Example usage:: line, = ax.plot(rand(100), 'o', picker=5) # 5 points tolerance def on_pick(event): thisline = event.artist xdata, ydata = thisline.get_data() ind = event.ind print 'on pick line:', zip(xdata[ind], ydata[ind]) cid = fig.canvas.mpl_connect('pick_event', on_pick) """ def __init__(self, name, canvas, mouseevent, artist, guiEvent=None, **kwargs): Event.__init__(self, name, canvas, guiEvent) self.mouseevent = mouseevent self.artist = artist self.__dict__.update(kwargs) class KeyEvent(LocationEvent): """ A key event (key press, key release). Attach additional attributes as defined in :meth:`FigureCanvasBase.mpl_connect`. In addition to the :class:`Event` and :class:`LocationEvent` attributes, the following attributes are defined: *key* the key pressed: None, chr(range(255), shift, win, or control This interface may change slightly when better support for modifier keys is included. Example usage:: def on_key(event): print 'you pressed', event.key, event.xdata, event.ydata cid = fig.canvas.mpl_connect('key_press_event', on_key) """ def __init__(self, name, canvas, key, x=0, y=0, guiEvent=None): LocationEvent.__init__(self, name, canvas, x, y, guiEvent=guiEvent) self.key = key class FigureCanvasBase: """ The canvas the figure renders into. Public attributes *figure* A :class:`matplotlib.figure.Figure` instance """ events = [ 'resize_event', 'draw_event', 'key_press_event', 'key_release_event', 'button_press_event', 'button_release_event', 'scroll_event', 'motion_notify_event', 'pick_event', 'idle_event', 'figure_enter_event', 'figure_leave_event', 'axes_enter_event', 'axes_leave_event' ] def __init__(self, figure): figure.set_canvas(self) self.figure = figure # a dictionary from event name to a dictionary that maps cid->func self.callbacks = cbook.CallbackRegistry(self.events) self.widgetlock = widgets.LockDraw() self._button = None # the button pressed self._key = None # the key pressed self._lastx, self._lasty = None, None self.button_pick_id = self.mpl_connect('button_press_event',self.pick) self.scroll_pick_id = self.mpl_connect('scroll_event',self.pick) if False: ## highlight the artists that are hit self.mpl_connect('motion_notify_event',self.onHilite) ## delete the artists that are clicked on #self.mpl_disconnect(self.button_pick_id) #self.mpl_connect('button_press_event',self.onRemove) def onRemove(self, ev): """ Mouse event processor which removes the top artist under the cursor. Connect this to the 'mouse_press_event' using:: canvas.mpl_connect('mouse_press_event',canvas.onRemove) """ def sort_artists(artists): # This depends on stable sort and artists returned # from get_children in z order. L = [ (h.zorder, h) for h in artists ] L.sort() return [ h for zorder, h in L ] # Find the top artist under the cursor under = sort_artists(self.figure.hitlist(ev)) h = None if under: h = under[-1] # Try deleting that artist, or its parent if you # can't delete the artist while h: print "Removing",h if h.remove(): self.draw_idle() break parent = None for p in under: if h in p.get_children(): parent = p break h = parent def onHilite(self, ev): """ Mouse event processor which highlights the artists under the cursor. Connect this to the 'motion_notify_event' using:: canvas.mpl_connect('motion_notify_event',canvas.onHilite) """ if not hasattr(self,'_active'): self._active = dict() under = self.figure.hitlist(ev) enter = [a for a in under if a not in self._active] leave = [a for a in self._active if a not in under] print "within:"," ".join([str(x) for x in under]) #print "entering:",[str(a) for a in enter] #print "leaving:",[str(a) for a in leave] # On leave restore the captured colour for a in leave: if hasattr(a,'get_color'): a.set_color(self._active[a]) elif hasattr(a,'get_edgecolor'): a.set_edgecolor(self._active[a][0]) a.set_facecolor(self._active[a][1]) del self._active[a] # On enter, capture the color and repaint the artist # with the highlight colour. Capturing colour has to # be done first in case the parent recolouring affects # the child. for a in enter: if hasattr(a,'get_color'): self._active[a] = a.get_color() elif hasattr(a,'get_edgecolor'): self._active[a] = (a.get_edgecolor(),a.get_facecolor()) else: self._active[a] = None for a in enter: if hasattr(a,'get_color'): a.set_color('red') elif hasattr(a,'get_edgecolor'): a.set_edgecolor('red') a.set_facecolor('lightblue') else: self._active[a] = None self.draw_idle() def pick(self, mouseevent): if not self.widgetlock.locked(): self.figure.pick(mouseevent) def blit(self, bbox=None): """ blit the canvas in bbox (default entire canvas) """ pass def resize(self, w, h): """ set the canvas size in pixels """ pass def draw_event(self, renderer): """ This method will be call all functions connected to the 'draw_event' with a :class:`DrawEvent` """ s = 'draw_event' event = DrawEvent(s, self, renderer) self.callbacks.process(s, event) def resize_event(self): """ This method will be call all functions connected to the 'resize_event' with a :class:`ResizeEvent` """ s = 'resize_event' event = ResizeEvent(s, self) self.callbacks.process(s, event) def key_press_event(self, key, guiEvent=None): """ This method will be call all functions connected to the 'key_press_event' with a :class:`KeyEvent` """ self._key = key s = 'key_press_event' event = KeyEvent(s, self, key, self._lastx, self._lasty, guiEvent=guiEvent) self.callbacks.process(s, event) def key_release_event(self, key, guiEvent=None): """ This method will be call all functions connected to the 'key_release_event' with a :class:`KeyEvent` """ s = 'key_release_event' event = KeyEvent(s, self, key, self._lastx, self._lasty, guiEvent=guiEvent) self.callbacks.process(s, event) self._key = None def pick_event(self, mouseevent, artist, **kwargs): """ This method will be called by artists who are picked and will fire off :class:`PickEvent` callbacks registered listeners """ s = 'pick_event' event = PickEvent(s, self, mouseevent, artist, **kwargs) self.callbacks.process(s, event) def scroll_event(self, x, y, step, guiEvent=None): """ Backend derived classes should call this function on any scroll wheel event. x,y are the canvas coords: 0,0 is lower, left. button and key are as defined in MouseEvent. This method will be call all functions connected to the 'scroll_event' with a :class:`MouseEvent` instance. """ if step >= 0: self._button = 'up' else: self._button = 'down' s = 'scroll_event' mouseevent = MouseEvent(s, self, x, y, self._button, self._key, step=step, guiEvent=guiEvent) self.callbacks.process(s, mouseevent) def button_press_event(self, x, y, button, guiEvent=None): """ Backend derived classes should call this function on any mouse button press. x,y are the canvas coords: 0,0 is lower, left. button and key are as defined in :class:`MouseEvent`. This method will be call all functions connected to the 'button_press_event' with a :class:`MouseEvent` instance. """ self._button = button s = 'button_press_event' mouseevent = MouseEvent(s, self, x, y, button, self._key, guiEvent=guiEvent) self.callbacks.process(s, mouseevent) def button_release_event(self, x, y, button, guiEvent=None): """ Backend derived classes should call this function on any mouse button release. *x* the canvas coordinates where 0=left *y* the canvas coordinates where 0=bottom *guiEvent* the native UI event that generated the mpl event This method will be call all functions connected to the 'button_release_event' with a :class:`MouseEvent` instance. """ s = 'button_release_event' event = MouseEvent(s, self, x, y, button, self._key, guiEvent=guiEvent) self.callbacks.process(s, event) self._button = None def motion_notify_event(self, x, y, guiEvent=None): """ Backend derived classes should call this function on any motion-notify-event. *x* the canvas coordinates where 0=left *y* the canvas coordinates where 0=bottom *guiEvent* the native UI event that generated the mpl event This method will be call all functions connected to the 'motion_notify_event' with a :class:`MouseEvent` instance. """ self._lastx, self._lasty = x, y s = 'motion_notify_event' event = MouseEvent(s, self, x, y, self._button, self._key, guiEvent=guiEvent) self.callbacks.process(s, event) def leave_notify_event(self, guiEvent=None): """ Backend derived classes should call this function when leaving canvas *guiEvent* the native UI event that generated the mpl event """ self.callbacks.process('figure_leave_event', LocationEvent.lastevent) LocationEvent.lastevent = None def enter_notify_event(self, guiEvent=None): """ Backend derived classes should call this function when entering canvas *guiEvent* the native UI event that generated the mpl event """ event = Event('figure_enter_event', self, guiEvent) self.callbacks.process('figure_enter_event', event) def idle_event(self, guiEvent=None): 'call when GUI is idle' s = 'idle_event' event = IdleEvent(s, self, guiEvent=guiEvent) self.callbacks.process(s, event) def draw(self, *args, **kwargs): """ Render the :class:`~matplotlib.figure.Figure` """ pass def draw_idle(self, *args, **kwargs): """ :meth:`draw` only if idle; defaults to draw but backends can overrride """ self.draw(*args, **kwargs) def draw_cursor(self, event): """ Draw a cursor in the event.axes if inaxes is not None. Use native GUI drawing for efficiency if possible """ pass def get_width_height(self): """ return the figure width and height in points or pixels (depending on the backend), truncated to integers """ return int(self.figure.bbox.width), int(self.figure.bbox.height) filetypes = { 'emf': 'Enhanced Metafile', 'eps': 'Encapsulated Postscript', 'pdf': 'Portable Document Format', 'png': 'Portable Network Graphics', 'ps' : 'Postscript', 'raw': 'Raw RGBA bitmap', 'rgba': 'Raw RGBA bitmap', 'svg': 'Scalable Vector Graphics', 'svgz': 'Scalable Vector Graphics' } # All of these print_* functions do a lazy import because # a) otherwise we'd have cyclical imports, since all of these # classes inherit from FigureCanvasBase # b) so we don't import a bunch of stuff the user may never use def print_emf(self, *args, **kwargs): from backends.backend_emf import FigureCanvasEMF # lazy import emf = self.switch_backends(FigureCanvasEMF) return emf.print_emf(*args, **kwargs) def print_eps(self, *args, **kwargs): from backends.backend_ps import FigureCanvasPS # lazy import ps = self.switch_backends(FigureCanvasPS) return ps.print_eps(*args, **kwargs) def print_pdf(self, *args, **kwargs): from backends.backend_pdf import FigureCanvasPdf # lazy import pdf = self.switch_backends(FigureCanvasPdf) return pdf.print_pdf(*args, **kwargs) def print_png(self, *args, **kwargs): from backends.backend_agg import FigureCanvasAgg # lazy import agg = self.switch_backends(FigureCanvasAgg) return agg.print_png(*args, **kwargs) def print_ps(self, *args, **kwargs): from backends.backend_ps import FigureCanvasPS # lazy import ps = self.switch_backends(FigureCanvasPS) return ps.print_ps(*args, **kwargs) def print_raw(self, *args, **kwargs): from backends.backend_agg import FigureCanvasAgg # lazy import agg = self.switch_backends(FigureCanvasAgg) return agg.print_raw(*args, **kwargs) print_bmp = print_rgb = print_raw def print_svg(self, *args, **kwargs): from backends.backend_svg import FigureCanvasSVG # lazy import svg = self.switch_backends(FigureCanvasSVG) return svg.print_svg(*args, **kwargs) def print_svgz(self, *args, **kwargs): from backends.backend_svg import FigureCanvasSVG # lazy import svg = self.switch_backends(FigureCanvasSVG) return svg.print_svgz(*args, **kwargs) def get_supported_filetypes(self): return self.filetypes def get_supported_filetypes_grouped(self): groupings = {} for ext, name in self.filetypes.items(): groupings.setdefault(name, []).append(ext) groupings[name].sort() return groupings def print_figure(self, filename, dpi=None, facecolor='w', edgecolor='w', orientation='portrait', format=None, **kwargs): """ Render the figure to hardcopy. Set the figure patch face and edge colors. This is useful because some of the GUIs have a gray figure face color background and you'll probably want to override this on hardcopy. Arguments are: *filename* can also be a file object on image backends *orientation* only currently applies to PostScript printing. *dpi* the dots per inch to save the figure in; if None, use savefig.dpi *facecolor* the facecolor of the figure *edgecolor* the edgecolor of the figure *orientation* ' landscape' | 'portrait' (not supported on all backends) *format* when set, forcibly set the file format to save to """ if format is None: if cbook.is_string_like(filename): format = os.path.splitext(filename)[1][1:] if format is None or format == '': format = self.get_default_filetype() if cbook.is_string_like(filename): filename = filename.rstrip('.') + '.' + format format = format.lower() method_name = 'print_%s' % format if (format not in self.filetypes or not hasattr(self, method_name)): formats = self.filetypes.keys() formats.sort() raise ValueError( 'Format "%s" is not supported.\n' 'Supported formats: ' '%s.' % (format, ', '.join(formats))) if dpi is None: dpi = rcParams['savefig.dpi'] origDPI = self.figure.dpi origfacecolor = self.figure.get_facecolor() origedgecolor = self.figure.get_edgecolor() self.figure.dpi = dpi self.figure.set_facecolor(facecolor) self.figure.set_edgecolor(edgecolor) try: result = getattr(self, method_name)( filename, dpi=dpi, facecolor=facecolor, edgecolor=edgecolor, orientation=orientation, **kwargs) finally: self.figure.dpi = origDPI self.figure.set_facecolor(origfacecolor) self.figure.set_edgecolor(origedgecolor) self.figure.set_canvas(self) #self.figure.canvas.draw() ## seems superfluous return result def get_default_filetype(self): raise NotImplementedError def set_window_title(self, title): """ Set the title text of the window containing the figure. Note that this has no effect if there is no window (eg, a PS backend). """ if hasattr(self, "manager"): self.manager.set_window_title(title) def switch_backends(self, FigureCanvasClass): """ instantiate an instance of FigureCanvasClass This is used for backend switching, eg, to instantiate a FigureCanvasPS from a FigureCanvasGTK. Note, deep copying is not done, so any changes to one of the instances (eg, setting figure size or line props), will be reflected in the other """ newCanvas = FigureCanvasClass(self.figure) return newCanvas def mpl_connect(self, s, func): """ Connect event with string *s* to *func*. The signature of *func* is:: def func(event) where event is a :class:`matplotlib.backend_bases.Event`. The following events are recognized - 'button_press_event' - 'button_release_event' - 'draw_event' - 'key_press_event' - 'key_release_event' - 'motion_notify_event' - 'pick_event' - 'resize_event' - 'scroll_event' For the location events (button and key press/release), if the mouse is over the axes, the variable ``event.inaxes`` will be set to the :class:`~matplotlib.axes.Axes` the event occurs is over, and additionally, the variables ``event.xdata`` and ``event.ydata`` will be defined. This is the mouse location in data coords. See :class:`~matplotlib.backend_bases.KeyEvent` and :class:`~matplotlib.backend_bases.MouseEvent` for more info. Return value is a connection id that can be used with :meth:`~matplotlib.backend_bases.Event.mpl_disconnect`. Example usage:: def on_press(event): print 'you pressed', event.button, event.xdata, event.ydata cid = canvas.mpl_connect('button_press_event', on_press) """ return self.callbacks.connect(s, func) def mpl_disconnect(self, cid): """ disconnect callback id cid Example usage:: cid = canvas.mpl_connect('button_press_event', on_press) #...later canvas.mpl_disconnect(cid) """ return self.callbacks.disconnect(cid) def flush_events(self): """ Flush the GUI events for the figure. Implemented only for backends with GUIs. """ raise NotImplementedError def start_event_loop(self,timeout): """ Start an event loop. This is used to start a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. This should not be confused with the main GUI event loop, which is always running and has nothing to do with this. This is implemented only for backends with GUIs. """ raise NotImplementedError def stop_event_loop(self): """ Stop an event loop. This is used to stop a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. This is implemented only for backends with GUIs. """ raise NotImplementedError def start_event_loop_default(self,timeout=0): """ Start an event loop. This is used to start a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. This should not be confused with the main GUI event loop, which is always running and has nothing to do with this. This function provides default event loop functionality based on time.sleep that is meant to be used until event loop functions for each of the GUI backends can be written. As such, it throws a deprecated warning. Call signature:: start_event_loop_default(self,timeout=0) This call blocks until a callback function triggers stop_event_loop() or *timeout* is reached. If *timeout* is <=0, never timeout. """ str = "Using default event loop until function specific" str += " to this GUI is implemented" warnings.warn(str,DeprecationWarning) if timeout <= 0: timeout = np.inf timestep = 0.01 counter = 0 self._looping = True while self._looping and counter*timestep < timeout: self.flush_events() time.sleep(timestep) counter += 1 def stop_event_loop_default(self): """ Stop an event loop. This is used to stop a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. Call signature:: stop_event_loop_default(self) """ self._looping = False class FigureManagerBase: """ Helper class for matlab mode, wraps everything up into a neat bundle Public attibutes: *canvas* A :class:`FigureCanvasBase` instance *num* The figure nuamber """ def __init__(self, canvas, num): self.canvas = canvas canvas.manager = self # store a pointer to parent self.num = num self.canvas.mpl_connect('key_press_event', self.key_press) def destroy(self): pass def full_screen_toggle (self): pass def resize(self, w, h): 'For gui backends: resize window in pixels' pass def key_press(self, event): # these bindings happen whether you are over an axes or not #if event.key == 'q': # self.destroy() # how cruel to have to destroy oneself! # return if event.key == 'f': self.full_screen_toggle() # *h*ome or *r*eset mnemonic elif event.key == 'h' or event.key == 'r' or event.key == "home": self.canvas.toolbar.home() # c and v to enable left handed quick navigation elif event.key == 'left' or event.key == 'c' or event.key == 'backspace': self.canvas.toolbar.back() elif event.key == 'right' or event.key == 'v': self.canvas.toolbar.forward() # *p*an mnemonic elif event.key == 'p': self.canvas.toolbar.pan() # z*o*om mnemonic elif event.key == 'o': self.canvas.toolbar.zoom() elif event.key == 's': self.canvas.toolbar.save_figure(self.canvas.toolbar) if event.inaxes is None: return # the mouse has to be over an axes to trigger these if event.key == 'g': event.inaxes.grid() self.canvas.draw() elif event.key == 'l': ax = event.inaxes scale = ax.get_yscale() if scale=='log': ax.set_yscale('linear') ax.figure.canvas.draw() elif scale=='linear': ax.set_yscale('log') ax.figure.canvas.draw() elif event.key is not None and (event.key.isdigit() and event.key!='0') or event.key=='a': # 'a' enables all axes if event.key!='a': n=int(event.key)-1 for i, a in enumerate(self.canvas.figure.get_axes()): if event.x is not None and event.y is not None and a.in_axes(event): if event.key=='a': a.set_navigate(True) else: a.set_navigate(i==n) def show_popup(self, msg): """ Display message in a popup -- GUI only """ pass def set_window_title(self, title): """ Set the title text of the window containing the figure. Note that this has no effect if there is no window (eg, a PS backend). """ pass # cursors class Cursors: #namespace HAND, POINTER, SELECT_REGION, MOVE = range(4) cursors = Cursors() class NavigationToolbar2: """ Base class for the navigation cursor, version 2 backends must implement a canvas that handles connections for 'button_press_event' and 'button_release_event'. See :meth:`FigureCanvasBase.mpl_connect` for more information They must also define :meth:`save_figure` save the current figure :meth:`set_cursor` if you want the pointer icon to change :meth:`_init_toolbar` create your toolbar widget :meth:`draw_rubberband` (optional) draw the zoom to rect "rubberband" rectangle :meth:`press` (optional) whenever a mouse button is pressed, you'll be notified with the event :meth:`release` (optional) whenever a mouse button is released, you'll be notified with the event :meth:`dynamic_update` (optional) dynamically update the window while navigating :meth:`set_message` (optional) display message :meth:`set_history_buttons` (optional) you can change the history back / forward buttons to indicate disabled / enabled state. That's it, we'll do the rest! """ def __init__(self, canvas): self.canvas = canvas canvas.toolbar = self # a dict from axes index to a list of view limits self._views = cbook.Stack() self._positions = cbook.Stack() # stack of subplot positions self._xypress = None # the location and axis info at the time of the press self._idPress = None self._idRelease = None self._active = None self._lastCursor = None self._init_toolbar() self._idDrag=self.canvas.mpl_connect('motion_notify_event', self.mouse_move) self._button_pressed = None # determined by the button pressed at start self.mode = '' # a mode string for the status bar self.set_history_buttons() def set_message(self, s): 'display a message on toolbar or in status bar' pass def back(self, *args): 'move back up the view lim stack' self._views.back() self._positions.back() self.set_history_buttons() self._update_view() def dynamic_update(self): pass def draw_rubberband(self, event, x0, y0, x1, y1): 'draw a rectangle rubberband to indicate zoom limits' pass def forward(self, *args): 'move forward in the view lim stack' self._views.forward() self._positions.forward() self.set_history_buttons() self._update_view() def home(self, *args): 'restore the original view' self._views.home() self._positions.home() self.set_history_buttons() self._update_view() def _init_toolbar(self): """ This is where you actually build the GUI widgets (called by __init__). The icons ``home.xpm``, ``back.xpm``, ``forward.xpm``, ``hand.xpm``, ``zoom_to_rect.xpm`` and ``filesave.xpm`` are standard across backends (there are ppm versions in CVS also). You just need to set the callbacks home : self.home back : self.back forward : self.forward hand : self.pan zoom_to_rect : self.zoom filesave : self.save_figure You only need to define the last one - the others are in the base class implementation. """ raise NotImplementedError def mouse_move(self, event): #print 'mouse_move', event.button if not event.inaxes or not self._active: if self._lastCursor != cursors.POINTER: self.set_cursor(cursors.POINTER) self._lastCursor = cursors.POINTER else: if self._active=='ZOOM': if self._lastCursor != cursors.SELECT_REGION: self.set_cursor(cursors.SELECT_REGION) self._lastCursor = cursors.SELECT_REGION if self._xypress: x, y = event.x, event.y lastx, lasty, a, ind, lim, trans = self._xypress[0] self.draw_rubberband(event, x, y, lastx, lasty) elif (self._active=='PAN' and self._lastCursor != cursors.MOVE): self.set_cursor(cursors.MOVE) self._lastCursor = cursors.MOVE if event.inaxes and event.inaxes.get_navigate(): try: s = event.inaxes.format_coord(event.xdata, event.ydata) except ValueError: pass except OverflowError: pass else: if len(self.mode): self.set_message('%s : %s' % (self.mode, s)) else: self.set_message(s) else: self.set_message(self.mode) def pan(self,*args): 'Activate the pan/zoom tool. pan with left button, zoom with right' # set the pointer icon and button press funcs to the # appropriate callbacks if self._active == 'PAN': self._active = None else: self._active = 'PAN' if self._idPress is not None: self._idPress = self.canvas.mpl_disconnect(self._idPress) self.mode = '' if self._idRelease is not None: self._idRelease = self.canvas.mpl_disconnect(self._idRelease) self.mode = '' if self._active: self._idPress = self.canvas.mpl_connect( 'button_press_event', self.press_pan) self._idRelease = self.canvas.mpl_connect( 'button_release_event', self.release_pan) self.mode = 'pan/zoom mode' self.canvas.widgetlock(self) else: self.canvas.widgetlock.release(self) for a in self.canvas.figure.get_axes(): a.set_navigate_mode(self._active) self.set_message(self.mode) def press(self, event): 'this will be called whenver a mouse button is pressed' pass def press_pan(self, event): 'the press mouse button in pan/zoom mode callback' if event.button == 1: self._button_pressed=1 elif event.button == 3: self._button_pressed=3 else: self._button_pressed=None return x, y = event.x, event.y # push the current view to define home if stack is empty if self._views.empty(): self.push_current() self._xypress=[] for i, a in enumerate(self.canvas.figure.get_axes()): if x is not None and y is not None and a.in_axes(event) and a.get_navigate(): a.start_pan(x, y, event.button) self._xypress.append((a, i)) self.canvas.mpl_disconnect(self._idDrag) self._idDrag=self.canvas.mpl_connect('motion_notify_event', self.drag_pan) self.press(event) def press_zoom(self, event): 'the press mouse button in zoom to rect mode callback' if event.button == 1: self._button_pressed=1 elif event.button == 3: self._button_pressed=3 else: self._button_pressed=None return x, y = event.x, event.y # push the current view to define home if stack is empty if self._views.empty(): self.push_current() self._xypress=[] for i, a in enumerate(self.canvas.figure.get_axes()): if x is not None and y is not None and a.in_axes(event) \ and a.get_navigate() and a.can_zoom(): self._xypress.append(( x, y, a, i, a.viewLim.frozen(), a.transData.frozen())) self.press(event) def push_current(self): 'push the current view limits and position onto the stack' lims = []; pos = [] for a in self.canvas.figure.get_axes(): xmin, xmax = a.get_xlim() ymin, ymax = a.get_ylim() lims.append( (xmin, xmax, ymin, ymax) ) # Store both the original and modified positions pos.append( ( a.get_position(True).frozen(), a.get_position().frozen() ) ) self._views.push(lims) self._positions.push(pos) self.set_history_buttons() def release(self, event): 'this will be called whenever mouse button is released' pass def release_pan(self, event): 'the release mouse button callback in pan/zoom mode' self.canvas.mpl_disconnect(self._idDrag) self._idDrag=self.canvas.mpl_connect('motion_notify_event', self.mouse_move) for a, ind in self._xypress: a.end_pan() if not self._xypress: return self._xypress = [] self._button_pressed=None self.push_current() self.release(event) self.draw() def drag_pan(self, event): 'the drag callback in pan/zoom mode' for a, ind in self._xypress: #safer to use the recorded button at the press than current button: #multiple button can get pressed during motion... a.drag_pan(self._button_pressed, event.key, event.x, event.y) self.dynamic_update() def release_zoom(self, event): 'the release mouse button callback in zoom to rect mode' if not self._xypress: return last_a = [] for cur_xypress in self._xypress: x, y = event.x, event.y lastx, lasty, a, ind, lim, trans = cur_xypress # ignore singular clicks - 5 pixels is a threshold if abs(x-lastx)<5 or abs(y-lasty)<5: self._xypress = None self.release(event) self.draw() return x0, y0, x1, y1 = lim.extents # zoom to rect inverse = a.transData.inverted() lastx, lasty = inverse.transform_point( (lastx, lasty) ) x, y = inverse.transform_point( (x, y) ) Xmin,Xmax=a.get_xlim() Ymin,Ymax=a.get_ylim() # detect twinx,y axes and avoid double zooming twinx, twiny = False, False if last_a: for la in last_a: if a.get_shared_x_axes().joined(a,la): twinx=True if a.get_shared_y_axes().joined(a,la): twiny=True last_a.append(a) if twinx: x0, x1 = Xmin, Xmax else: if Xmin < Xmax: if x<lastx: x0, x1 = x, lastx else: x0, x1 = lastx, x if x0 < Xmin: x0=Xmin if x1 > Xmax: x1=Xmax else: if x>lastx: x0, x1 = x, lastx else: x0, x1 = lastx, x if x0 > Xmin: x0=Xmin if x1 < Xmax: x1=Xmax if twiny: y0, y1 = Ymin, Ymax else: if Ymin < Ymax: if y<lasty: y0, y1 = y, lasty else: y0, y1 = lasty, y if y0 < Ymin: y0=Ymin if y1 > Ymax: y1=Ymax else: if y>lasty: y0, y1 = y, lasty else: y0, y1 = lasty, y if y0 > Ymin: y0=Ymin if y1 < Ymax: y1=Ymax if self._button_pressed == 1: a.set_xlim((x0, x1)) a.set_ylim((y0, y1)) elif self._button_pressed == 3: if a.get_xscale()=='log': alpha=np.log(Xmax/Xmin)/np.log(x1/x0) rx1=pow(Xmin/x0,alpha)*Xmin rx2=pow(Xmax/x0,alpha)*Xmin else: alpha=(Xmax-Xmin)/(x1-x0) rx1=alpha*(Xmin-x0)+Xmin rx2=alpha*(Xmax-x0)+Xmin if a.get_yscale()=='log': alpha=np.log(Ymax/Ymin)/np.log(y1/y0) ry1=pow(Ymin/y0,alpha)*Ymin ry2=pow(Ymax/y0,alpha)*Ymin else: alpha=(Ymax-Ymin)/(y1-y0) ry1=alpha*(Ymin-y0)+Ymin ry2=alpha*(Ymax-y0)+Ymin a.set_xlim((rx1, rx2)) a.set_ylim((ry1, ry2)) self.draw() self._xypress = None self._button_pressed = None self.push_current() self.release(event) def draw(self): 'redraw the canvases, update the locators' for a in self.canvas.figure.get_axes(): xaxis = getattr(a, 'xaxis', None) yaxis = getattr(a, 'yaxis', None) locators = [] if xaxis is not None: locators.append(xaxis.get_major_locator()) locators.append(xaxis.get_minor_locator()) if yaxis is not None: locators.append(yaxis.get_major_locator()) locators.append(yaxis.get_minor_locator()) for loc in locators: loc.refresh() self.canvas.draw() def _update_view(self): '''update the viewlim and position from the view and position stack for each axes ''' lims = self._views() if lims is None: return pos = self._positions() if pos is None: return for i, a in enumerate(self.canvas.figure.get_axes()): xmin, xmax, ymin, ymax = lims[i] a.set_xlim((xmin, xmax)) a.set_ylim((ymin, ymax)) # Restore both the original and modified positions a.set_position( pos[i][0], 'original' ) a.set_position( pos[i][1], 'active' ) self.draw() def save_figure(self, *args): 'save the current figure' raise NotImplementedError def set_cursor(self, cursor): """ Set the current cursor to one of the :class:`Cursors` enums values """ pass def update(self): 'reset the axes stack' self._views.clear() self._positions.clear() self.set_history_buttons() def zoom(self, *args): 'activate zoom to rect mode' if self._active == 'ZOOM': self._active = None else: self._active = 'ZOOM' if self._idPress is not None: self._idPress=self.canvas.mpl_disconnect(self._idPress) self.mode = '' if self._idRelease is not None: self._idRelease=self.canvas.mpl_disconnect(self._idRelease) self.mode = '' if self._active: self._idPress = self.canvas.mpl_connect('button_press_event', self.press_zoom) self._idRelease = self.canvas.mpl_connect('button_release_event', self.release_zoom) self.mode = 'Zoom to rect mode' self.canvas.widgetlock(self) else: self.canvas.widgetlock.release(self) for a in self.canvas.figure.get_axes(): a.set_navigate_mode(self._active) self.set_message(self.mode) def set_history_buttons(self): 'enable or disable back/forward button' pass
agpl-3.0
ljschumacher/tierpsy-tracker
tierpsy/analysis/feat_food/getFoodContourNN.py
1
8481
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jul 18 16:55:14 2017 @author: ajaver Get food contour using a pre-trained neural network """ import tables import os import numpy as np import cv2 from skimage.morphology import disk from tierpsy import AUX_FILES_DIR RESIZING_SIZE = 512 #the network was trained with images of this size 512 MODEL_PATH = os.path.join(AUX_FILES_DIR, 'unet_RMSprop-5-04999-0.3997.h5') def _get_sizes(im_size, d4a_size= 24, n_conv_layers=4): ''' Useful to determine the expected inputs and output sizes of a u-net. Additionally if the image is larger than the network output the points to subdivide the image in tiles are given ''' #assuming 4 layers of convolutions def _in_size(d4a_size): mm = d4a_size for n in range(n_conv_layers): mm = mm*2 + 2 + 2 return mm def _out_size(d4a_size): mm = d4a_size -2 -2 for n in range(n_conv_layers): mm = mm*2 - 2 - 2 return mm #this is the size of the central reduced layer. I choose this value manually input_size = _in_size(d4a_size) #required 444 of input output_size = _out_size(d4a_size) #set 260 of outpu pad_size = int((input_size-output_size)/2) if any(x < output_size for x in im_size): msg = 'All the sides of the image ({}) must be larger or equal to ' \ 'the network output {}.' raise ValueError(msg.format(im_size, output_size)) n_tiles_x = int(np.ceil(im_size[0]/output_size)) n_tiles_y = int(np.ceil(im_size[1]/output_size)) txs = np.round(np.linspace(0, im_size[0] - output_size, n_tiles_x)).astype(np.int) tys = np.round(np.linspace(0, im_size[1] - output_size, n_tiles_y)).astype(np.int) tile_corners = [(tx, ty) for tx in txs for ty in tys] return input_size, output_size, pad_size, tile_corners def _preprocess(X, input_size, pad_size, tile_corners ): ''' Pre-process an image to input for the pre-trained u-net model ''' def _get_tile_in(img, x,y): return img[np.newaxis, x:x+input_size, y:y+input_size, :] def _cast_tf(D): D = D.astype(np.float32()) if D.ndim == 2: D = D[..., None] return D #normalize image X = _cast_tf(X) X /= 255 X -= np.median(X) pad_size_s = ((pad_size,pad_size), (pad_size,pad_size), (0,0)) X = np.lib.pad(X, pad_size_s, 'reflect') X = [_get_tile_in(X, x, y) for x,y in tile_corners] return X def get_unet_prediction(Xi, model_t, n_flips = 1, im_size=None, n_conv_layers = 4, d4a_size = 24, _is_debug=False): ''' Predict the food probability for each pixel using a pretrained u-net model (Helper) ''' def _flip_d(img_o, nn): if nn == 0: img = img_o[::-1, :] elif nn == 2: img = img_o[:, ::-1] elif nn == 3: img = img_o[::-1, ::-1] else: img = img_o return img if im_size is None: im_size = Xi.shape input_size, output_size, pad_size, tile_corners = \ _get_sizes(im_size, d4a_size= d4a_size, n_conv_layers=n_conv_layers) Y_pred = np.zeros(im_size) for n_t in range(n_flips): X = _flip_d(Xi, n_t) if im_size is None: im_size = X.shape x_crop = _preprocess(X, input_size, pad_size, tile_corners) x_crop = np.concatenate(x_crop) y_pred = model_t.predict(x_crop) Y_pred_s = np.zeros(X.shape) N_s = np.zeros(X.shape) for (i,j), yy,xx in zip(tile_corners, y_pred, x_crop): Y_pred_s[i:i+output_size, j:j+output_size] += yy[:,:,1] if _is_debug: import matplotlib.pylab as plt plt.figure() plt.subplot(1,2,1) plt.imshow(np.squeeze(xx)) plt.subplot(1,2,2) plt.imshow(yy[:,:,1]) N_s[i:i+output_size, j:j+output_size] += 1 Y_pred += _flip_d(Y_pred_s/N_s, n_t) return Y_pred def get_food_prob(mask_file, model, max_bgnd_images = 2, _is_debug = False): ''' Predict the food probability for each pixel using a pretrained u-net model. ''' with tables.File(mask_file, 'r') as fid: if not '/full_data' in fid: raise ValueError('The mask file {} does not content the /full_data dataset.'.format(mask_file)) bgnd_o = fid.get_node('/full_data')[:max_bgnd_images] assert bgnd_o.ndim == 3 if bgnd_o.shape[0] > 1: bgnd = [np.max(bgnd_o[i:i+1], axis=0) for i in range(bgnd_o.shape[0]-1)] else: bgnd = [np.squeeze(bgnd_o)] min_size = min(bgnd[0].shape) resize_factor = min(RESIZING_SIZE, min_size)/min_size dsize = tuple(int(x*resize_factor) for x in bgnd[0].shape[::-1]) bgnd_s = [cv2.resize(x, dsize) for x in bgnd] for b_img in bgnd_s: Y_pred = get_unet_prediction(b_img, model, n_flips=1) if _is_debug: import matplotlib.pylab as plt plt.figure() plt.subplot(1,2,1) plt.imshow(b_img, cmap='gray') plt.subplot(1, 2,2) plt.imshow(Y_pred, interpolation='none') original_size = bgnd[0].shape return Y_pred, original_size, bgnd_s def get_food_contour_nn(mask_file, model=None, _is_debug=False): ''' Get the food contour using a pretrained u-net model. This function is faster if a preloaded model is given since it is very slow to load the model and tensorflow. ''' if model is None: from keras.models import load_model model = load_model(MODEL_PATH) food_prob, original_size, bgnd_images = get_food_prob(mask_file, model, _is_debug=_is_debug) #bgnd_images are only used in debug mode #%% patch_m = (food_prob>0.5).astype(np.uint8) _, cnts, _ = cv2.findContours(patch_m, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) #pick the largest contour cnt_areas = [cv2.contourArea(x) for x in cnts] ind = np.argmax(cnt_areas) patch_m = np.zeros(patch_m.shape, np.uint8) patch_m = cv2.drawContours(patch_m, cnts , ind, color=1, thickness=cv2.FILLED) patch_m = cv2.morphologyEx(patch_m, cv2.MORPH_CLOSE, disk(3), iterations=5) _, cnts, _ = cv2.findContours(patch_m, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) assert len(cnts) == 1 cnts = cnts[0] hull = cv2.convexHull(cnts) hull_area = cv2.contourArea(hull) cnt_solidity = cv2.contourArea(cnts)/hull_area food_cnt = np.squeeze(cnts).astype(np.float) # rescale contour to be the same dimension as the original images food_cnt[:,0] *= original_size[0]/food_prob.shape[0] food_cnt[:,1] *= original_size[1]/food_prob.shape[1] #%% if _is_debug: import matplotlib.pylab as plt img = bgnd_images[0] #np.squeeze(food_cnt) patch_n = np.zeros(img.shape, np.uint8) patch_n = cv2.drawContours(patch_n, [cnts], 0, color=1, thickness=cv2.FILLED) top = img.max() bot = img.min() img_n = (img-bot)/(top-bot) img_rgb = np.repeat(img_n[..., None], 3, axis=2) #img_rgb = img_rgb.astype(np.uint8) img_rgb[...,0] = ((patch_n==0)*0.5 + 0.5)*img_rgb[...,0] plt.figure() plt.imshow(img_rgb) plt.plot(hull[:,:,0], hull[:,:,1], 'r') plt.title('solidity = {:.3}'.format(cnt_solidity)) #%% return food_cnt, food_prob, cnt_solidity if __name__ == '__main__': mask_file = '/Users/ajaver/OneDrive - Imperial College London/optogenetics/Arantza/MaskedVideos/oig8/oig-8_ChR2_control_males_3_Ch1_11052017_161018.hdf5' #mask_file = '/Volumes/behavgenom_archive$/Avelino/Worm_Rig_Tests/short_movies_new/MaskedVideos/Double_picking_020317/trp-4_worms6_food1-3_Set4_Pos5_Ch3_02032017_153225.hdf5' food_cnt, food_prob,cnt_solidity = get_food_contour_nn(mask_file, _is_debug=True)
mit
itdxer/neupy
examples/cnn/cifar10_cnn.py
1
2477
import numpy as np from sklearn import metrics from sklearn.preprocessing import OneHotEncoder from neupy.layers import * from neupy import algorithms from neupy.utils import asfloat from load_cifar10 import read_cifar10 def process_cifar10_data(x_train, x_test): x_train, x_test = asfloat(x_train), asfloat(x_test) mean = x_train.mean(axis=(0, 1, 2)).reshape(1, 1, 1, -1) std = x_train.std(axis=(0, 1, 2)).reshape(1, 1, 1, -1) x_train -= mean x_train /= std x_test -= mean x_test /= std return x_train, x_test def one_hot_encoder(y_train, y_test): y_train, y_test = asfloat(y_train), asfloat(y_test) target_scaler = OneHotEncoder(categories='auto', sparse=False) y_train = target_scaler.fit_transform(y_train.reshape(-1, 1)) y_test = target_scaler.transform(y_test.reshape(-1, 1)) return y_train, y_test if __name__ == '__main__': x_train, x_test, y_train, y_test = read_cifar10() x_train, x_test = process_cifar10_data(x_train, x_test) y_train, y_test = one_hot_encoder(y_train, y_test) network = algorithms.Adam( [ Input((32, 32, 3)), Convolution((3, 3, 32)) >> Relu(), Convolution((3, 3, 32)) >> Relu(), MaxPooling((2, 2)), Convolution((3, 3, 64)) >> Relu(), Convolution((3, 3, 64)) >> Relu(), MaxPooling((2, 2)), Reshape(), Relu(256) >> Dropout(0.5), Softmax(10), ], step=algorithms.step_decay( initial_value=0.001, # Parameter controls step redution frequency. The larger # the value the slower step parameter decreases. Step will # be reduced after every mini-batch update. In the training # data we have 500 mini-batches. reduction_freq=5 * 500, ), regularizer=algorithms.l2(0.01), loss='categorical_crossentropy', batch_size=100, shuffle_data=True, verbose=True, ) network.train(x_train, y_train, x_test, y_test, epochs=30) y_predicted = network.predict(x_test).argmax(axis=1) y_test_labels = np.asarray(y_test.argmax(axis=1)).reshape(len(y_test)) print(metrics.classification_report(y_test_labels, y_predicted)) score = metrics.accuracy_score(y_test_labels, y_predicted) print("Validation accuracy: {:.2%}".format(score)) print(metrics.confusion_matrix(y_predicted, y_test_labels))
mit
wavelets/pandashells
pandashells/test/p_config_test.py
10
1841
#! /usr/bin/env python import copy from contextlib import contextmanager import json import os import sys from mock import patch, MagicMock from unittest import TestCase from pandashells.lib import config_lib from pandashells.bin.p_config import ( main, ) @contextmanager def mute_output(): sys.stdout = MagicMock() yield sys.stdout = sys.__stdout__ class MainTests(TestCase): # tests wipe out config file (might want to change this later) def setUp(self): if os.path.isfile(config_lib.CONFIG_FILE_NAME): cmd = 'rm {} 2>/dev/null'.format(config_lib.CONFIG_FILE_NAME) os.system(cmd) def tearDown(self): if os.path.isfile(config_lib.CONFIG_FILE_NAME): cmd = 'rm {} 2>/dev/null'.format(config_lib.CONFIG_FILE_NAME) os.system(cmd) @patch( 'pandashells.bin.p_config.sys.argv', [ 'p.config', '--force_defaults', ] ) def test_force_defaults(self): with mute_output(): main() with open(config_lib.CONFIG_FILE_NAME) as config_file: config_dict = json.loads(config_file.read()) self.assertEqual(config_dict, config_lib.DEFAULT_DICT) @patch( 'pandashells.bin.p_config.sys.argv', [ 'p.config', '--io_output_na_rep', '', '--io_input_type', 'table', ] ) def test_custom(self): with mute_output(): main() with open(config_lib.CONFIG_FILE_NAME) as config_file: expected_dict = copy.copy(config_lib.DEFAULT_DICT) expected_dict['io_output_na_rep'] = '' expected_dict['io_input_type'] = 'table' config_dict = json.loads(config_file.read()) self.assertEqual(config_dict, expected_dict)
bsd-2-clause